National Library of Energy BETA

Sample records for total wholesale motor

  1. BOAT BUILDING ACC./SUPPLIES MFGR. MOTOR/ENG. MFGR. DLRS/WHOLESALERS

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    $ $ $ nmma.org BOAT BUILDING ACC./SUPPLIES MFGR. MOTOR/ENG. MFGR. DLRS/WHOLESALERS BOAT SERVICES BOAT BUILDING ACC./SUPPLIES MFGR. MOTOR/ENG. MFGR. DLRS/WHOLESALERS BOAT BUILDING ACC./SUPPLIES MFGR. MOTOR/ENG. MFGR. DLRS/WHOLESALERS BOAT SERVICES BOAT SERVICES B 963,818 $16.3 $9.9 $13.7 $39.9 313,803 472,594 177,421 B 338,526 32,485 78,472 164,338 17,880 45,351 737,509 B 12,182,157 9,926,221 249,803 12,182,157 1,268,624 9.4 12,182,157 963,818 34,833 $51.4 BILLION $6.6 $8.1 $30.9 $61.3 $40.7

  2. Wholesale Power Rate Schedules | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Rate Schedules Wholesale Power Rate Schedules Wholesale Power Rate Schedules October 1, 2012 ALA-1-N Wholesale Power Rate Schedule Area: PowerSouth Energy Cooperative System:...

  3. ,"U.S. Sales for Resale, Total Refiner Motor Gasoline Sales Volumes...

    Energy Information Administration (EIA) (indexed site)

    Resale, Total Refiner Motor Gasoline Sales Volumes" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ...

  4. ,"Motor Gasoline Sales to End Users, Total Refiner Sales Volumes...

    Energy Information Administration (EIA) (indexed site)

    ... Refiners (Thousand Gallons per Day)","New Mexico Total Gasoline Retail Sales by Refiners ...87,16127.8,1684.4,1377.2,128.8,497.8,835.6,2030.3,1178.7,674.5,56.4,3.9,4678.6,764.1,9.3,1...

  5. Wholesale Power Rate Schedules | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Rate Schedules » Wholesale Power Rate Schedules Wholesale Power Rate Schedules October 1, 2016 JW-2-F Wholesale Power Rate Schedule Area: Duke Energy Florida System: Jim Woodruff October 1, 2016 JW-1-K Wholesale Power Rate Schedule Area: Woodruff Preference Customer System: Jim Woodruff October 1, 2015 KP-AP-1-C Wholesale Power Rate Schedule Area: American Electric Power System: Kerr-Philpott October 1, 2015 KP-AP-2-C Wholesale Power Rate Schedule Area: American Electric Power System:

  6. NREL: Transmission Grid Integration - Wholesale Electricity Market...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wholesale Electricity Market Operations Researchers at NREL are studying wholesale electricity market operations to understand how they currently maximize competition, efficiency, ...

  7. Wholesale Power Rate Schedules | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Power Rate Schedules October 1, 2011 CBR-1-H Wholesale Power Rate Schedule Area: Big Rivers and Henderson, KY System: CU October 1, 2011 CM-1-H Wholesale Power Rate...

  8. Total skin electron beam therapy using an inclinable couch on motorized table and a compensating filter

    SciTech Connect

    Fuse, H.; Suzuki, K.; Shida, K.; Takahashi, H.; Kobayashi, D.; Seki, M.; Mori, Y.; Sakae, T.; Isobe, T.; Okumura, T.; Sakurai, H.

    2014-06-15

    Total skin electron beam is a specialized technique that involves irradiating the entire skin from the skin surface to only a few millimetres in depth. In the Stanford technique, the patient is in a standing position and six different directional positions are used during treatment. Our technique uses large electron beams in six directions with an inclinable couch on motorized table and a compensating filter was also used to spread the electron beam and move its intensity peak. Dose uniformity measurements were performed using Gafchromic films which indicated that the surface dose was 2.04 ± 0.05 Gy. This technique can ensure the dose reproducibility because the patient is fixed in place using an inclinable couch on a motorized table.

  9. Motors

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    motor fails? When a motor fails, the user or owner faces three choices: to rewind to a lower efficiency; to rewind and maintain the original efficiency; or to replace it with a...

  10. CK-1-H Wholesale Power Rate Schedule | Department of Energy

    Energy.gov [DOE] (indexed site)

    quantities. Document Available for Download PDF icon CK-1-H Rate Schedule More Documents & Publications CBR-1-H Wholesale Power Rate Schedule CTV-1-H Wholesale Power Rate ...

  11. Replacement-2-A Wholesale Power Rate Schedule | Department of...

    Office of Environmental Management (EM)

    2-A Wholesale Power Rate Schedule Replacement-2-A Wholesale Power Rate Schedule Area: Replacement Energy System: Kerr-Philpott This rate schedule shall be available to public...

  12. The Value of Distributed Generation and CHP Resources in Wholesale...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    The Value of Distributed Generation and CHP Resources in Wholesale Power Markets, September 2005 The Value of Distributed Generation and CHP Resources in Wholesale Power Markets, ...

  13. AP-3-B Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    3-B Wholesale Power Rate Schedule AP-3-B Wholesale Power Rate Schedule Area: American ... American Electric Power Service Corporation (hereinafter called the Company), PJM ...

  14. AP-1-B Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    1-B Wholesale Power Rate Schedule AP-1-B Wholesale Power Rate Schedule Area: American ... American Electric Power Service Corporation (hereinafter called the Company), the ...

  15. AP-2-B Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    2-B Wholesale Power Rate Schedule AP-2-B Wholesale Power Rate Schedule Area: American ... American Electric Power Service Corporation (hereinafter called the Company), the ...

  16. AP-4-B Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    4-B Wholesale Power Rate Schedule AP-4-B Wholesale Power Rate Schedule Area: American ... of American Electric Power Service Corporation (hereinafter called the Company) and ...

  17. Electric Wholesale Market Regimes in the United States: Implications...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Wholesale Market Regimes in the United States: Implications for Investment Electric Wholesale Market Regimes in the United States: Implications for Investment PowerPoint ...

  18. Pump-2 Wholesale Power Rate Schedule | Department of Energy

    Energy Saver

    2 Wholesale Power Rate Schedule Pump-2 Wholesale Power Rate Schedule Area: Carters & ... Document Available for Download PDF icon Pump-2 Rate Schedule More Documents & ...

  19. Pump-1-A Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    1-A Wholesale Power Rate Schedule Pump-1-A Wholesale Power Rate Schedule Area: Carters & ... Document Available for Download PDF icon Pump-1-A Rate Schedule More Documents & ...

  20. 1993 Wholesale Power and Transmission Rate Schedules.

    SciTech Connect

    US Bonneville Power Administration

    1993-10-01

    Bonneville Power Administration 1993 Wholesale Power Rate Schedules and General Rate Schedule Provisions and 1993 Transmission Rate Schedules and General Transmission Rate Schedule Provisions, contained herein, were approved on an interim basis effective October 1, 1993. These rate schedules and provisions were approved by the Federal Energy Commission, United States Department of Energy, in September, 1993. These rate schedules and provisions supersede the Administration`s Wholesale Power Rate Schedules and General Rate Schedule Provisions and Transmission Rate Schedules and General Transmission Rate Schedule Provisions effective October 1, 1991.

  1. CSI-1-H Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    CSI-1-H Wholesale Power Rate Schedule CSI-1-H Wholesale Power Rate Schedule Area: Southern Illinois System: CU This rate schedule shall be available to Southern Illinois Power...

  2. VA-3-B Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    3-B Wholesale Power Rate Schedule VA-3-B Wholesale Power Rate Schedule Area: Virginia Power System: Kerr-Philpott This rate schedule shall be available to public bodies and...

  3. NC-1-B Wholesale Power Rate Schedule | Department of Energy

    Energy Saver

    NC-1-B Wholesale Power Rate Schedule NC-1-B Wholesale Power Rate Schedule Area: Virginia PowerCP&L System: Kerr-Philpott This rate schedule shall be available to public bodies and...

  4. VA-4-B Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    4-B Wholesale Power Rate Schedule VA-4-B Wholesale Power Rate Schedule Area: Virginia Power System: Kerr-Philpott This rate schedule shall be available to public bodies and...

  5. VA-1-B Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    1-B Wholesale Power Rate Schedule VA-1-B Wholesale Power Rate Schedule Area: Virginia Power System: Kerr-Philpott This rate schedule shall be available to public bodies and...

  6. VA-2-B Wholesale Power Rate Schedule | Department of Energy

    Office of Environmental Management (EM)

    2-B Wholesale Power Rate Schedule VA-2-B Wholesale Power Rate Schedule Area: Virginia Power System: Kerr-Philpott This rate schedule shall be available to public bodies and...

  7. CSI-1-H Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    CSI-1-H Wholesale Power Rate Schedule CSI-1-H Wholesale Power Rate Schedule Area: Southern Illinois System: CU This rate schedule shall be available to Southern Illinois Power ...

  8. CEK-1-H Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    CEK-1-H Wholesale Power Rate Schedule CEK-1-H Wholesale Power Rate Schedule Area: East Kentucky System: CU This rate schedule shall be available to East Kentucky Power Cooperative ...

  9. CTV-1-H Wholesale Power Rate Schedule | Department of Energy

    Energy.gov [DOE] (indexed site)

    TVA. Document Available for Download PDF icon CTV-1-H Rate Schedule More Documents & Publications CTVI-1-A Wholesale Power Rate Schedule CEK-1-H Wholesale Power Rate Schedule CM

  10. CBR-1-H Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    CBR-1-H Wholesale Power Rate Schedule CBR-1-H Wholesale Power Rate Schedule Area: Big Rivers and Henderson, KY System: CU This rate schedule shall be available to Big Rivers ...

  11. CM-1-H Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    CM-1-H Wholesale Power Rate Schedule CM-1-H Wholesale Power Rate Schedule Area: MEAM, MDEA, and SMEPA System: CU This rate schedule shall be available to the South Mississippi ...

  12. CC-1-I Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    CC-1-I Wholesale Power Rate Schedule CC-1-I Wholesale Power Rate Schedule Area: Carolina Power & Light Company, Western Division System: CU This rate schedule shall be available to...

  13. Electric Wholesale Market Regimes in the United States: Implications for

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Investment | Department of Energy Wholesale Market Regimes in the United States: Implications for Investment Electric Wholesale Market Regimes in the United States: Implications for Investment PowerPoint presentation to the Electricity Advisory Committee by Charles Whitmore, Senior Market Advisor at the Federal Energy Regulatory Commission on electric wholesale market regimes in the United States and the implications for investment in those markets. Electric Wholesale Market Regimes in the

  14. Total

    Energy Information Administration (EIA) (indexed site)

    Product: Total Crude Oil Liquefied Petroleum Gases PropanePropylene Normal ButaneButylene Other Liquids Oxygenates Fuel Ethanol MTBE Other Oxygenates Biomass-based Diesel Fuel ...

  15. Total..........................................................

    Energy Information Administration (EIA) (indexed site)

    0.9 Q Q Q Heat Pump......7.7 0.3 Q Q Steam or Hot Water System......Census Division Total West Energy Information Administration ...

  16. Total..........................................................

    Energy Information Administration (EIA) (indexed site)

    0.9 Q Q Q Heat Pump......6.2 3.8 2.4 Steam or Hot Water System......Census Division Total Northeast Energy Information ...

  17. Total............................................................

    Energy Information Administration (EIA) (indexed site)

    Total................................................................... 111.1 2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500............................................... 3.2 357 336 113 188 177 59 500 to 999....................................................... 23.8 733 667 308 343 312 144 1,000 to 1,499................................................. 20.8 1,157 1,086 625 435 409 235 1,500 to 1,999................................................. 15.4 1,592

  18. Total

    Energy Information Administration (EIA) (indexed site)

    Total floor- space 1 Heated floor- space 2 Total floor- space 1 Cooled floor- space 2 Total floor- space 1 Lit floor- space 2 All buildings 87,093 80,078 70,053 79,294 60,998 83,569 68,729 Building floorspace (square feet) 1,001 to 5,000 8,041 6,699 5,833 6,124 4,916 7,130 5,590 5,001 to 10,000 8,900 7,590 6,316 7,304 5,327 8,152 6,288 10,001 to 25,000 14,105 12,744 10,540 12,357 8,840 13,250 10,251 25,001 to 50,000 11,917 10,911 9,638 10,813 7,968 11,542 9,329 50,001 to 100,000 13,918 13,114

  19. Total...................................................................

    Energy Information Administration (EIA) (indexed site)

    2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500............................................... 3.2 357 336 113 188 177 59 500 to 999....................................................... 23.8 733 667 308 343 312 144 1,000 to 1,499................................................. 20.8 1,157 1,086 625 435 409 235 1,500 to 1,999................................................. 15.4 1,592 1,441 906 595 539 339 2,000 to

  20. Total..........................................................................

    Energy Information Administration (EIA) (indexed site)

    . 111.1 20.6 15.1 5.5 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.4 500 to 999........................................................... 23.8 4.6 3.6 1.1 1,000 to 1,499..................................................... 20.8 2.8 2.2 0.6 1,500 to 1,999..................................................... 15.4 1.9 1.4 0.5 2,000 to 2,499..................................................... 12.2 2.3 1.7 0.5 2,500 to

  1. Total..........................................................................

    Energy Information Administration (EIA) (indexed site)

    5.6 17.7 7.9 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.5 0.3 Q 500 to 999........................................................... 23.8 3.9 2.4 1.5 1,000 to 1,499..................................................... 20.8 4.4 3.2 1.2 1,500 to 1,999..................................................... 15.4 3.5 2.4 1.1 2,000 to 2,499..................................................... 12.2 3.2 2.1 1.1 2,500 to

  2. Total..........................................................................

    Energy Information Administration (EIA) (indexed site)

    0.7 21.7 6.9 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.6 Q Q 500 to 999........................................................... 23.8 9.0 4.2 1.5 3.2 1,000 to 1,499..................................................... 20.8 8.6 4.7 1.5 2.5 1,500 to 1,999..................................................... 15.4 6.0 2.9 1.2 1.9 2,000 to 2,499..................................................... 12.2 4.1 2.1 0.7

  3. Total..........................................................................

    Energy Information Administration (EIA) (indexed site)

    4.2 7.6 16.6 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 1.0 0.2 0.8 500 to 999........................................................... 23.8 6.3 1.4 4.9 1,000 to 1,499..................................................... 20.8 5.0 1.6 3.4 1,500 to 1,999..................................................... 15.4 4.0 1.4 2.6 2,000 to 2,499..................................................... 12.2 2.6 0.9 1.7 2,500 to

  4. MISS-1-N Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    MISS-1-N Wholesale Power Rate Schedule MISS-1-N Wholesale Power Rate Schedule Area: South Mississippi Electric Power Association System: Georgia-Alabama-South Carolina This rate schedule shall be available to the South Mississippi Electric Power Association (hereinafter called the Customer) to whom power may be wheeled pursuant to contracts between the Government and PowerSouth Energy Cooperative (hereinafter called PowerSouth). This rate schedule shall be applicable to the sale at wholesale of

  5. JW-1-K Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    1-K Wholesale Power Rate Schedule JW-1-K Wholesale Power Rate Schedule Area: Woodruff Preference Customer System: Jim Woodruff This rate schedule shall be available to public bodies and cooperatives served by the Duke Energy Florida and having points of delivery within 150 miles of the Jim Woodruff Project (hereinafter called the Project). This rate schedule shall be applicable to firm power and accompanying energy made available by the Government from the Project and sold in wholesale

  6. Santee-2-E Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    2-E Wholesale Power Rate Schedule Santee-2-E Wholesale Power Rate Schedule Area: None System: Georgia-Alabama-South Carolina This rate schedule shall be available to public bodies and cooperatives (any one of whom is hereinafter call the Customer) in South Carolina to whom power may be wheeled pursuant to contracts between the Government and South Carolina Public Service Authority (hereinafter called the Authority). This rate schedule shall be applicable to the sale at wholesale of power and

  7. Santee-3-E Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    3-E Wholesale Power Rate Schedule Santee-3-E Wholesale Power Rate Schedule Area: None System: Georgia-Alabama-South Carolina This rate schedule shall be available to public bodies and cooperatives (any one of whom is hereinafter call the Customer) in South Carolina to whom power may be scheduled pursuant to contracts between the Government and South Carolina Public Service Authority (hereinafter called the Authority). This rate schedule shall be applicable to the sale at wholesale of power and

  8. Santee-4-E Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    4-E Wholesale Power Rate Schedule Santee-4-E Wholesale Power Rate Schedule Area: Santee-Cooper System: Georgia-Alabama-South Carolina This rate schedule shall be available to public bodies and cooperatives (any one of whom is hereinafter call the Customer) in South Carolina served through the transmission facilities of South Carolina Public Service Authority (hereinafter called the Authority). This rate schedule shall be applicable to the sale at wholesale of power and accompanying energy

  9. October 1996 - September 2001 Wholesale Power Rates (rates/previous...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    affecting a specific power purchase. For more specific information see: 1996 Final Wholesale Power and Transmission Rate Schedules: Power Rates (PDF, 84 pages, 188 kb) Ancillary...

  10. Duke-3-E Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    This rate schedule shall be applicable to the sale at wholesale of power and accompanying energy generated at the Allatoona, Buford, J. Strom Thurmond, Walter F. George, Hartwell, ...

  11. Duke-4-E Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    This rate schedule shall be applicable to the sale at wholesale of power and accompanying energy generated at the Allatoona, Buford, J. Strom Thurmond, Walter F. George, Hartwell, ...

  12. SOCO-3-E Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    This rate schedule shall be applicable to the sale at wholesale of power and accompanying energy generated at the Allatoona, Buford, J. Strom Thurmond, Walter F. George, Hartwell, ...

  13. Duke-2-E Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    This rate schedule shall be applicable to the sale at wholesale of power and accompanying energy generated at the Allatoona, Buford, J. Strom Thurmond, Walter F. George, Hartwell, ...

  14. Duke-1-E Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    This rate schedule shall be applicable to the sale at wholesale of power and accompanying energy generated at the Allatoona, Buford, J. Strom Thurmond, Walter F. George, Hartwell, ...

  15. Total................................................

    Energy Information Administration (EIA) (indexed site)

    .. 111.1 86.6 2,522 1,970 1,310 1,812 1,475 821 1,055 944 554 Total Floorspace (Square Feet) Fewer than 500............................. 3.2 0.9 261 336 162 Q Q Q 334 260 Q 500 to 999.................................... 23.8 9.4 670 683 320 705 666 274 811 721 363 1,000 to 1,499.............................. 20.8 15.0 1,121 1,083 622 1,129 1,052 535 1,228 1,090 676 1,500 to 1,999.............................. 15.4 14.4 1,574 1,450 945 1,628 1,327 629 1,712 1,489 808 2,000 to

  16. Total..........................................................

    Energy Information Administration (EIA) (indexed site)

    .. 111.1 24.5 1,090 902 341 872 780 441 Total Floorspace (Square Feet) Fewer than 500...................................... 3.1 2.3 403 360 165 366 348 93 500 to 999.............................................. 22.2 14.4 763 660 277 730 646 303 1,000 to 1,499........................................ 19.1 5.8 1,223 1,130 496 1,187 1,086 696 1,500 to 1,999........................................ 14.4 1.0 1,700 1,422 412 1,698 1,544 1,348 2,000 to 2,499........................................ 12.7

  17. Total...................................................................

    Energy Information Administration (EIA) (indexed site)

    Floorspace (Square Feet) Total Floorspace 1 Fewer than 500............................................ 3.2 0.4 Q 0.6 1.7 0.4 500 to 999................................................... 23.8 4.8 1.4 4.2 10.2 3.2 1,000 to 1,499............................................. 20.8 10.6 1.8 1.8 4.0 2.6 1,500 to 1,999............................................. 15.4 12.4 1.5 0.5 0.5 0.4 2,000 to 2,499............................................. 12.2 10.7 1.0 0.2 Q Q 2,500 to

  18. Total.........................................................................

    Energy Information Administration (EIA) (indexed site)

    Floorspace (Square Feet) Total Floorspace 2 Fewer than 500.................................................. 3.2 Q 0.8 0.9 0.8 0.5 500 to 999.......................................................... 23.8 1.5 5.4 5.5 6.1 5.3 1,000 to 1,499.................................................... 20.8 1.4 4.0 5.2 5.0 5.2 1,500 to 1,999.................................................... 15.4 1.4 3.1 3.5 3.6 3.8 2,000 to 2,499.................................................... 12.2 1.4 3.2 3.0 2.3 2.3

  19. Total..........................................................................

    Energy Information Administration (EIA) (indexed site)

    25.6 40.7 24.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.9 1.0 500 to 999........................................................... 23.8 4.6 3.9 9.0 6.3 1,000 to 1,499..................................................... 20.8 2.8 4.4 8.6 5.0 1,500 to 1,999..................................................... 15.4 1.9 3.5 6.0 4.0 2,000 to 2,499..................................................... 12.2 2.3 3.2 4.1

  20. Total..........................................................................

    Energy Information Administration (EIA) (indexed site)

    7.1 7.0 8.0 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.4 Q Q 0.5 500 to 999........................................................... 23.8 2.5 1.5 2.1 3.7 1,000 to 1,499..................................................... 20.8 1.1 2.0 1.5 2.5 1,500 to 1,999..................................................... 15.4 0.5 1.2 1.2 1.9 2,000 to 2,499..................................................... 12.2 0.7 0.5 0.8 1.4

  1. Total...........................................................

    Energy Information Administration (EIA) (indexed site)

    14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500.................................... 3.2 0.7 Q 0.3 0.3 0.7 0.6 0.3 Q 500 to 999........................................... 23.8 2.7 1.4 2.2 2.8 5.5 5.1 3.0 1.1 1,000 to 1,499..................................... 20.8 2.3 1.4 2.4 2.5 3.5 3.5 3.6 1.6 1,500 to 1,999..................................... 15.4 1.8 1.4 2.2 2.0 2.4 2.4 2.1 1.2 2,000 to 2,499..................................... 12.2 1.4 0.9

  2. Total...........................................................

    Energy Information Administration (EIA) (indexed site)

    26.7 28.8 20.6 13.1 22.0 16.6 38.6 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................... 3.2 1.9 0.9 Q Q Q 1.3 2.3 500 to 999........................................... 23.8 10.5 7.3 3.3 1.4 1.2 6.6 12.9 1,000 to 1,499..................................... 20.8 5.8 7.0 3.8 2.2 2.0 3.9 8.9 1,500 to 1,999..................................... 15.4 3.1 4.2 3.4 2.0 2.7 1.9 5.0 2,000 to 2,499..................................... 12.2 1.7 2.7 2.9 1.8 3.2 1.1 2.8

  3. CM-1-H Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    CM-1-H Wholesale Power Rate Schedule CM-1-H Wholesale Power Rate Schedule October 1, 2011 - 3:22pm Addthis Availability: This rate schedule shall be available to the South Mississippi Electric Power Association, Municipal Energy Agency of Mississippi, and Mississippi Delta Energy Agency (hereinafter called the Customers). Applicability: This rate schedule shall be applicable to electric capacity and energy available from the Dale Hollow, Center Hill, Wolf Creek, Cheatham, Old Hickory, Barkley,

  4. ALA-1-N Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ALA-1-N Wholesale Power Rate Schedule ALA-1-N Wholesale Power Rate Schedule Area: PowerSouth Energy Cooperative System: Georgia-Alabama-South Carolina This rate schedule shall be available to the PowerSouth Energy Cooperative. This rate schedule shall be applicable to power and accompanying energy generated at the Allatoona, Buford, J. Strom Thurmond, Walter F. George, Hartwell, Millers Ferry, West Point, Robert F. Henry, Carters, and Richard B. Russell Projects and sold under contract between

  5. Paying for demand-side response at the wholesale level

    SciTech Connect

    Falk, Jonathan

    2010-11-15

    The recent FERC Notice of Public Rulemaking regarding the payment to demand-side resources in wholesale markets has engendered a great deal of comments including FERC's obligation to ensure just and reasonable rates in the wholesale market and criteria for what FERC should do (on grounds of economic efficiency) without any real focus on what that commitment would really mean if FERC actually pursued it. (author)

  6. Replacement-1 Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Replacement-1 Wholesale Power Rate Schedule Replacement-1 Wholesale Power Rate Schedule Area: Replacement Energy System: Georgia-Alabama-South Carolina This rate schedule shall be available to public bodies and cooperatives (any one of whom is hereinafter called the Customer) in Georgia, Alabama, Mississippi, Florida, South Carolina, or North Carolina to whom power is provided pursuant to contracts between the Government and the Customer. This rate schedule shall be applicable to the sale at

  7. Regulation-1 Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Regulation-1 Wholesale Power Rate Schedule Regulation-1 Wholesale Power Rate Schedule Area: Regulation Services System: Georgia-Alabama-South Carolina This rate schedule shall be available to public bodies and cooperatives (any one of whom is hereinafter called the Customer) in Georgia, Alabama, Mississippi, Florida, South Carolina, or North Carolina to whom service is provided pursuant to contracts between the Government and the Customer. This rate schedule shall be applicable to the sale of

  8. SOCO-1-E Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    1-E Wholesale Power Rate Schedule SOCO-1-E Wholesale Power Rate Schedule Area: AMEA, Unaffil AL Munis and Coops, Hampton, East Miss., SMEPA off-System System: Georgia-Alabama-South Carolina This rate schedule shall be available to public bodies and cooperatives (any one of whom is hereinafter called the Customer) in Georgia, Alabama, Mississippi, and Florida to whom power may be transmitted and scheduled pursuant to contracts between the Government and Southern Company Services, Incorporated

  9. SOCO-2-E Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    2-E Wholesale Power Rate Schedule SOCO-2-E Wholesale Power Rate Schedule Area: PowerSouth Off-System System: Georgia-Alabama-South Carolina This rate schedule shall be available to public bodies and cooperatives (any one of whom is hereinafter called the Customer) in Georgia, Alabama, Mississippi, and Florida to whom power may be transmitted pursuant to contracts between the Government and Southern Company Services, Incorporated (hereinafter called the Company) and the Customer. This rate

  10. SOCO-4-E Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    4-E Wholesale Power Rate Schedule SOCO-4-E Wholesale Power Rate Schedule Area: OPC System: Georgia-Alabama-South Carolina This rate schedule shall be available to public bodies and cooperatives (any one of whom is hereinafter called the Customer) in Georgia, Alabama, Mississippi, and Florida served through the transmission facilities of Southern Company Services, Inc. (hereinafter called the Company) or the Georgia Integrated Transmission System. This rate schedule shall be applicable to the

  11. Santee-1-E Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    1-E Wholesale Power Rate Schedule Santee-1-E Wholesale Power Rate Schedule Area: Central, Bamberg, and Georgetown System: Georgia-Alabama-South Carolina This rate schedule shall be available to public bodies and cooperatives (any one of whom is hereinafter call the Customer) in South Carolina to whom power may be wheeled and scheduled pursuant to contracts between the Government and South Carolina Public Service Authority (hereinafter called the Authority). This rate schedule shall be applicable

  12. VANC-1 Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    VANC-1 Wholesale Power Rate Schedule VANC-1 Wholesale Power Rate Schedule This rate schedule shall be available to public bodies and cooperatives or their agents (any one of whom is hereinafter called the Customer) in North Carolina and Virginia to whom transmission is provided from the PJM Interconnection LLC (hereinafter called PJM) or Carolina Power & Light Company (hereinafter called CP&L). This rate schedule shall be applicable to transmission services provided and sold under

  13. Total Imports

    Energy Information Administration (EIA) (indexed site)

    Data Series: Imports - Total Imports - Crude Oil Imports - Crude Oil, Commercial Imports - by SPR Imports - into SPR by Others Imports - Total Products Imports - Total Motor Gasoline Imports - Finished Motor Gasoline Imports - Reformulated Gasoline Imports - Reformulated Gasoline Blended w/ Fuel Ethanol Imports - Other Reformulated Gasoline Imports - Conventional Gasoline Imports - Conv. Gasoline Blended w/ Fuel Ethanol Imports - Conv. Gasoline Blended w/ Fuel Ethanol, Ed55 & < Imports -

  14. File:07FDDExemptWholesaleGeneratorStatusProcess.pdf | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    FDDExemptWholesaleGeneratorStatusProcess.pdf Jump to: navigation, search File File history File usage Metadata File:07FDDExemptWholesaleGeneratorStatusProcess.pdf Size of this...

  15. CP&L-4-B Wholesale Power Rate Schedule | Department of Energy

    Energy Saver

    4-B Wholesale Power Rate Schedule CP&L-4-B Wholesale Power Rate Schedule Area: Carolina Power & Light, Eastern Division System: Kerr-Philpott This rate schedule shall be available...

  16. CP&L-3-B Wholesale Power Rate Schedule | Department of Energy

    Energy Saver

    3-B Wholesale Power Rate Schedule CP&L-3-B Wholesale Power Rate Schedule Area: Carolina Power & Light, Eastern Division System: Kerr-Philpott This rate schedule shall be available...

  17. CP&L-2-B Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    2-B Wholesale Power Rate Schedule CP&L-2-B Wholesale Power Rate Schedule Area: Carolina Power & Light, Eastern Division System: Kerr-Philpott This rate schedule shall be available...

  18. CP&L-1-B Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    1-B Wholesale Power Rate Schedule CP&L-1-B Wholesale Power Rate Schedule Area: Carolina Power & Light, Eastern Division System: Kerr-Philpott This rate schedule shall be available...

  19. KP-DEP-4-C Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    4-C Wholesale Power Rate Schedule KP-DEP-4-C Wholesale Power Rate Schedule Area: Duke Energy Progress System: Kerr-Philpott This rate schedule shall be available to public bodies ...

  20. KP-AP-1-C Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    1-C Wholesale Power Rate Schedule KP-AP-1-C Wholesale Power Rate Schedule Area: American Electric Power System: Kerr-Philpott This rate schedule shall be available to public bodies ...

  1. KP-DEP-3-C Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    3-C Wholesale Power Rate Schedule KP-DEP-3-C Wholesale Power Rate Schedule Area: Duke Energy Progress System: Kerr-Philpott This rate schedule shall be available to public bodies ...

  2. KP-DEP-2-C Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    2-C Wholesale Power Rate Schedule KP-DEP-2-C Wholesale Power Rate Schedule Area: Duke Energy Progress System: Kerr-Philpott This rate schedule shall be available to public bodies ...

  3. KP-DEP-1-C Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    1-C Wholesale Power Rate Schedule KP-DEP-1-C Wholesale Power Rate Schedule Area: Duke Energy Progress System: Kerr-Philpott This rate schedule shall be available to public bodies ...

  4. KP-AP-4-C Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    AP-4-C Wholesale Power Rate Schedule KP-AP-4-C Wholesale Power Rate Schedule Area: American Electric Power System: Kerr-Philpott This rate schedule shall be available to public ...

  5. KP-NC-1-C Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    NC-1-C Wholesale Power Rate Schedule KP-NC-1-C Wholesale Power Rate Schedule Area: Virginia PowerDuke Energy Progress System: Kerr-Philpott This rate schedule shall be available ...

  6. The Value of Distributed Generation and CHP Resources in Wholesale Power Markets, September 2005

    Energy.gov [DOE]

    Report evaluating DG/CHP as wholesale power resources, installed on the utility side of the customer meter

  7. EIS-0102: Bonneville Power Administration's 1983 Wholesale Power Rate

    Energy.gov [DOE]

    The U.S. Department of Energy's Bonneville Power Administration prepared this EIS to evaluate the potential environmental impacts associated with an increase in wholesale power rates that would become effective on November 1, 1983, including the effects of rate hikes in that year and the cumulative effects of previous rate hikes.

  8. Supreme court agrees: FERC must regulate wholesale markets

    SciTech Connect

    Wolak, Frank A.

    2008-08-15

    The author believes that wholesale markets in the United States would have a greater likelihood of ultimately benefiting consumers if the Federal Energy Regulatory Commission did not have the mandate under the Federal Power Act (FPA) to ensure that wholesale prices are ''just and reasonable.'' However, he continues to believe that the FERC cannot avoid having an ex post criteria for asssessing whether market prices are just and reasonable. Moreover, changes in the design and regulatory oversight of U.S. wholesale electricity markets in recent years, including the recent Supreme Court decision, have caused him to believe even more strongly in the guardrails-for-market-outcomes approach. Finally, several questions are addressed which relate to the pricing of fixed-price, long-term contracts and the impact of these obligations on the behavior of suppliers in short-term wholesale markets that are directly relevant to answering the two major questions that the Supreme Court remanded to FERC in its recent decision.

  9. 2007 Wholesale Power Rate Case Initial Proposal : Risk Analysis Study.

    SciTech Connect

    United States. Bonneville Power Administration.

    2005-11-01

    The Federal Columbia River Power System (FCRPS), operated on behalf of the ratepayers of the PNW by BPA and other Federal agencies, faces many uncertainties during the FY 2007-2009 rate period. Among these uncertainties, the largest revolve around hydro conditions, market prices and river operations for fish recovery. In order to provide a high probability of making its U.S. Treasury payments, BPA performs a Risk Analysis as part of its rate-making process. In this Risk Analysis, BPA identifies key risks, models their relationships, and then analyzes their impacts on net revenues (total revenues less expenses). BPA subsequently evaluates in the ToolKit Model the Treasury Payment Probability (TPP) resulting from the rates, risks, and risk mitigation measures described here and in the Wholesale Power Rate Development Study (WPRDS). If the TPP falls short of BPA's standard, additional risk mitigation revenues, such as PNRR and CRAC revenues are incorporated in the modeling in ToolKit until the TPP standard is met. Increased wholesale market price volatility and six years of drought have significantly changed the profile of risk and uncertainty facing BPA and its stakeholders. These present new challenges for BPA in its effort to keep its power rates as low as possible while fully meeting its obligations to the U.S. Treasury. As a result, the risk BPA faces in not receiving the level of secondary revenues that have been credited to power rates before receiving those funds is greater. In addition to market price volatility, BPA also faces uncertainty around the financial impacts of operations for fish programs in FY 2006 and in the FY 2007-2009 rate period. A new Biological Opinion or possible court-ordered change to river operations in FY 2006 through FY 2009 may reduce BPA's net revenues included Initial Proposal. Finally, the FY 2007-2009 risk analysis includes new operational risks as well as a more comprehensive analysis of non-operating risks. Both the operational

  10. 2007 Wholesale Power Rate Case Initial Proposal : Wholesale Power Rate Development Study.

    SciTech Connect

    United States. Bonneville Power Administration.

    2007-11-01

    The Wholesale Power Rate Development Study (WPRDS) calculates BPA proposed rates based on information either developed in the WPRDS or supplied by the other studies that comprise the BPA rate proposal. All of these studies, and accompanying documentation, provide the details of computations and assumptions. In general, information about loads and resources is provided by the Load Resource Study (LRS), WP-07-E-BPA-01, and the LRS Documentation, WP-07-E-BPA-01A. Revenue requirements information, as well as the Planned Net Revenues for Risk (PNNR), is provided in the Revenue Requirement Study, WP-07-E-BPA-02, and its accompanying Revenue Requirement Study Documentation, WP-07-E-BPA-02A and WP-07-E-BPA-02B. The Market Price Forecast Study (MPFS), WP-07-E-BPA-03, and the MPFS Documentation, WP-07-E-BPA-03A, provide the WPRDS with information regarding seasonal and diurnal differentiation of energy rates, as well information regarding monthly market prices for Demand Rates. In addition, this study provides information for the pricing of unbundled power products. The Risk Analysis Study, WP-07-E-BPA-04, and the Risk Analysis Study Documentation, WP-07-E-BPA-04A, provide short-term balancing purchases as well as secondary energy sales and revenue. The Section 7(b)(2) Rate Test Study, WP-07-E-BPA-06, and the Section 7(b)(2) Rate Test Study Documentation, WP-07-E-BPA-06A, implement Section 7(b)(2) of the Northwest Power Act to ensure that BPA preference customers firm power rates applied to their general requirements are no higher than rates calculated using specific assumptions in the Northwest Power Act.

  11. REPORT TO CONGRESS ON COMPETITION IN WHOLESALE AND RETAIL MARKETS

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    REPORT TO CONGRESS ON COMPETITION IN WHOLESALE AND RETAIL MARKETS FOR ELECTRIC ENERGY Pursuant to Section 1815 of the Energy Policy Act of 2005 The Electric Energy Market Competition Task Force The Electric Energy Market Competition Task Force Members: J. Bruce McDonald, Department of Justice Michael Bardee, Federal Energy Regulatory Commission John H. Seesel, Federal Trade Commission David Meyer, Department of Energy Karen Larsen, Department of Agriculture Report Contributors: Robin Allen -

  12. Wholesale electricity market design with increasing levels of renewable

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    generation: Revenue sufficiency and long-term reliability | Argonne National Laboratory Revenue sufficiency and long-term reliability Title Wholesale electricity market design with increasing levels of renewable generation: Revenue sufficiency and long-term reliability Publication Type Journal Article Year of Publication 2016 Authors Milligan, M, Frew, BA, Bloom, A, Ela, E, Botterud, A, Townsend, A, Levin, T Journal The Electricity Journal Volume 29 Start Page 26 Issue 2 Pagination 13 Date

  13. Stocks of Total Motor Gasoline

    Energy Information Administration (EIA) (indexed site)

    240,111 238,619 239,629 237,004 237,631 238,998 1990-2016 PADD 1 68,276 67,636 68,378 69,664 68,624 72,465 1990-2016 New England 5,173 5,296 4,641 4,999 4,697 4,841 1990-2016 ...

  14. Imports of Total Motor Gasoline

    Gasoline and Diesel Fuel Update

    898 946 779 691 933 921 1982-2016 East Coast (PADD 1) 875 862 708 611 864 862 2004-2016 Midwest (PADD 2) 5 6 10 1 3 6 2004-2016 Gulf Coast (PADD 3) 0 57 35 69 38 37 2004-2016 Rocky ...

  15. SCE&G-2-E Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    2-E Wholesale Power Rate Schedule SCE&G-2-E Wholesale Power Rate Schedule Area: None System: Georgia-Alabama-South Carolina This rate schedule shall be available public bodies and cooperatives (any one of which is hereinafter called the Customer) in South Carolina to whom power may be wheeled pursuant to contracts between the Government and the South Carolina Electric & Gas Company (hereinafter called the Company). This rate schedule shall be applicable to the sale at wholesale of power

  16. SCE&G-3-E Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    3-E Wholesale Power Rate Schedule SCE&G-3-E Wholesale Power Rate Schedule Area: None System: Georgia-Alabama-South Carolina This rate schedule shall be available public bodies and cooperatives (any one of which is hereinafter called the Customer) in South Carolina to whom power may be scheduled pursuant to contracts between the Government and the South Carolina Electric & Gas Company (hereinafter called the Company). This rate schedule shall be applicable to the sale at wholesale of

  17. SCE&G-4-E Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    4-E Wholesale Power Rate Schedule SCE&G-4-E Wholesale Power Rate Schedule Area: None System: Georgia-Alabama-South Carolina This rate schedule shall be available public bodies and cooperatives (any one of which is hereinafter called the Customer) in South Carolina served through the transmission facilities of South Carolina Electric & Gas Company (hereinafter called the Company). This rate schedule shall be applicable to the sale at wholesale of power and accompanying energy generated at

  18. 2007 Wholesale Power Rate Case Initial Proposal : Revenue Requirement Study.

    SciTech Connect

    United States. Bonneville Power Administration.

    2005-11-01

    The purpose of this Study is to establish the level of revenues from wholesale power rates necessary to recover, in accordance with sound business principles, the Federal Columbia River Power System (FCRPS) costs associated with the production, acquisition, marketing, and conservation of electric power. The generation revenue requirement includes: recovery of the Federal investment in hydro generation, fish and wildlife and conservation costs; Federal agencies' operations and maintenance (O&M) expenses allocated to power; capitalized contract expenses associated with non-Federal power suppliers such as Energy Northwest (EN); other power purchase expenses, such as short-term power purchases; power marketing expenses; cost of transmission services necessary for the sale and delivery of FCRPS power; and all other generation-related costs incurred by the Administrator pursuant to law.

  19. The potential impacts of a competitive wholesale market in the midwest: A preliminary examination of centralized dispatch

    SciTech Connect

    Lesieutre, Bernard C.; Bartholomew, Emily; Eto, Joseph H.; Hale, Douglas; Luong, Thanh

    2004-07-01

    In March 2005, the Midwest Independent System Operator (MISO) will begin operating the first-ever wholesale market for electricity in the central and upper Midwestern portion of the United States. Region-wide, centralized, security-constrained, bid-based dispatch will replace the current system of decentralized dispatch by individual utilities and control areas. This report focuses on how the operation of generators may change under centralized dispatch. We analyze a stylized example of these changes by comparing a base case dispatch based on a ''snapshot'' taken from MISO's state estimator for an actual, historical dispatch (4 p.m., July 7, 2003) to a hypothetical, centralized dispatch that seeks to minimize the total system cost of production, using estimated cost data collected by the EIA. Based on these changes in dispatch, we calculate locational marginal prices, which in turn reveals the location of congestion within MISO's footprint, as well as the distribution of congestion revenues. We also consider two sensitivity scenarios that examine (1) the effect of changes in MISO membership (2003 vs. 2004 membership lists), and (2) different load and electrical data, based on a snapshot from a different date and time (1 p.m., Feb. 18, 2004). Although our analysis offers important insights into how the MISO market could operate when it opens, we do not address the question of the total benefits or costs of creating a wholesale market in the Midwest.

  20. Property:EIA/861/ActivityWholesaleMarketing | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    engages in wholesale power marketing (Y or N) 1 References EIA Form EIA-861 Final Data File for 2008 - F861 File Layout-2008.doc Pages using the property "EIA861...

  1. KP-AP-2-C Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    2-C Wholesale Power Rate Schedule KP-AP-2-C Wholesale Power Rate Schedule Area: American Electric Power System: Kerr-Philpott This rate schedule shall be available to public bodies and cooperatives (any one of whom is hereinafter called the Customer) in Virginia to whom power may be transmitted pursuant to contracts between the Government, American Electric Power Service Corporation (hereinafter called the Company), the Company's Transmission Operator, currently PJM Interconnection LLC

  2. KP-AP-3-C Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    3-C Wholesale Power Rate Schedule KP-AP-3-C Wholesale Power Rate Schedule Area: American Electric Power System: Kerr-Philpott This rate schedule shall be available to public bodies and cooperatives (any one of whom is hereinafter called the Customer) in Virginia to whom power may be scheduled pursuant to contracts between the Government, American Electric Power Service Corporation (hereinafter called the Company), PJM Interconnection LLC (hereinafter called PJM), and the Customer. This rate

  3. KP-Replacement-2-B Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Replacement-2-B Wholesale Power Rate Schedule KP-Replacement-2-B Wholesale Power Rate Schedule Area: Replacement Energy System: Kerr-Philpott This rate schedule shall be available to public bodies and cooperatives (any one of whom is hereinafter called the Customer) in North Carolina and Virginia to whom power is provided pursuant to contracts between the Government and the customer from the John H. Kerr and Philpott Projects (or Kerr-Philpott System). This rate schedule shall be applicable to

  4. KP-VA-1-C Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    1-C Wholesale Power Rate Schedule KP-VA-1-C Wholesale Power Rate Schedule Area: Virginia Power System: Kerr-Philpott This rate schedule shall be available to public bodies and cooperatives (any one of whom is hereinafter called the Customer) in Virginia and North Carolina to whom power may be transmitted and scheduled pursuant to contracts between the Government, Virginia Electric and Power Company (hereinafter called the Company), the Company's Transmission Operator, currently PJM

  5. KP-VA-2-C Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    2-C Wholesale Power Rate Schedule KP-VA-2-C Wholesale Power Rate Schedule Area: Virginia Power System: Kerr-Philpott This rate schedule shall be available to public bodies and cooperatives (any one of whom is hereinafter called the Customer) in Virginia and North Carolina to whom power may be transmitted pursuant to contracts between the Government, Virginia Electric and Power Company (hereinafter called the Company), the Company's Transmission Operator, currently PJM Interconnection LLC

  6. KP-VA-3-C Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    3-C Wholesale Power Rate Schedule KP-VA-3-C Wholesale Power Rate Schedule Area: Virginia Power System: Kerr-Philpott This rate schedule shall be available to public bodies and cooperatives (any one of whom is hereinafter called the Customer) in Virginia and North Carolina to whom power may be scheduled pursuant to contracts between the Government, Virginia Electric and Power Company (hereinafter called the Company), the Company's Transmission Operator, currently PJM Interconnection LLC

  7. KP-VA-4-C Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    4-C Wholesale Power Rate Schedule KP-VA-4-C Wholesale Power Rate Schedule Area: Virginia Power System: Kerr-Philpott This rate schedule shall be available to public bodies and cooperatives (any one of whom is hereinafter called the Customer) in Virginia and North Carolina served through the transmission facilities of Virginia Electric and Power Company (hereinafter called the Company) and PJM Interconnection LLC (hereinafter called PJM). This rate schedule shall be applicable to the sale at

  8. CU-CBR-1-I Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    CBR-1-I Wholesale Power Rate Schedule CU-CBR-1-I Wholesale Power Rate Schedule Area: Big Rivers and Henderson, KY System: CU This rate schedule shall be available to Big Rivers Electric Corporation and includes the City of Henderson, Kentucky. This rate schedule shall be applicable to electric capacity and energy available from the Dale Hollow, Center Hill, Wolf Creek, Cheatham, Old Hickory, Barkley, J. Percy Priest, and Cordell Hull Projects (all of such projects being hereinafter called

  9. CU-CC-1-J Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    CC-1-J Wholesale Power Rate Schedule CU-CC-1-J Wholesale Power Rate Schedule Area: Duke Energy Progress, Western Division System: CU This rate schedule shall be available to public bodies and cooperatives served through the facilities of Duke Energy Progress (formerly known as Carolina Power & Light Company), Western Division (hereinafter called the Customers). This rate schedule shall be applicable to electric capacity and energy available from the Dale Hollow, Center Hill, Wolf Creek,

  10. CU-CEK-1-I Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    CEK-1-I Wholesale Power Rate Schedule CU-CEK-1-I Wholesale Power Rate Schedule Area: East Kentucky System: CU This rate schedule shall be available to East Kentucky Power Cooperative (hereinafter called the Customer). This rate schedule shall be applicable to electric capacity and energy available from the Dale Hollow, Center Hill, Wolf Creek, Cheatham, Old Hickory, Barkley, J. Percy Priest, and Cordell Hull Projects (all of such projects being hereinafter called collectively the

  11. CU-CK-1-I Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    CK-1-I Wholesale Power Rate Schedule CU-CK-1-I Wholesale Power Rate Schedule Area: Kentucky Utilities System: CU This rate schedule shall be available to public bodies served through the facilities of Kentucky Utilities Company, (hereinafter called the Customers.) This rate schedule shall be applicable to electric capacity and energy available from the Dale Hollow, Center Hill, Wolf Creek, Cheatham, Old Hickory, Barkley, J. Percy Priest, and Cordell Hull Projects (all of such projects being

  12. CU-CM-1-I Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    CM-1-I Wholesale Power Rate Schedule CU-CM-1-I Wholesale Power Rate Schedule Area: MEAM, MDEA, and SMEPA System: CU This rate schedule shall be available to the South Mississippi Electric Power Association, Municipal Energy Agency of Mississippi, and Mississippi Delta Energy Agency. This rate schedule shall be applicable to electric capacity and energy available from the Dale Hollow, Center Hill, Wolf Creek, Cheatham, Old Hickory, Barkley, J. Percy Priest, and Cordell Hull Projects (all of such

  13. CU-CSI-1-I Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    CSI-1-I Wholesale Power Rate Schedule CU-CSI-1-I Wholesale Power Rate Schedule Area: Southern Illinois System: CU This rate schedule shall be available to Southern Illinois Power Cooperative (hereinafter the Customer). This rate schedule shall be applicable to electric capacity and energy available from the Dale Hollow, Center Hill, Wolf Creek, Cheatham, Old Hickory, Barkley, J. Percy Priest, and Cordell Hull Projects (all of such projects being hereinafter called collectively the

  14. CU-CTV-1-I Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    CTV-1-I Wholesale Power Rate Schedule CU-CTV-1-I Wholesale Power Rate Schedule Area: Tennessee Valley Authority System: CU This rate schedule shall be available to the Tennessee Valley Authority (hereinafter called TVA). This rate schedule shall be applicable to electric capacity and energy generated at the Dale Hollow, Center Hill, Wolf Creek, Old Hickory, Cheatham, Barkley, J. Percy Priest, and Cordell Hull Projects (all of such projects being hereafter called collectively the "Cumberland

  15. CU-CTVI-1-B Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    CTVI-1-B Wholesale Power Rate Schedule CU-CTVI-1-B Wholesale Power Rate Schedule Area: Former customers of TVA System: Cumberland This rate schedule shall be available to customers (hereinafter called the Customer) who are or were formerly in the Tennessee Valley Authority (hereinafter called TVA) service area. This rate schedule shall be applicable to electric capacity and energy generated at the Dale Hollow, Center Hill, Wolf Creek, Old Hickory, Cheatham, Barkley, J. Percy Priest, and Cordell

  16. CU-Replacement-3 Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Replacement-3 Wholesale Power Rate Schedule CU-Replacement-3 Wholesale Power Rate Schedule Area: Virginia, North Carolina, Tennessee, Georgia, Alabama, Mississippi, Kentucky, southern Illinois System: CU This rate schedule shall be available to public bodies and cooperatives ( any one of whom is hereinafter called the Customer) in Virginia, North Carolina, Tennessee, Georgia, Alabama, Mississippi, Kentucky and southern Illinois to whom power is provided pursuant to contracts between the

  17. SCE&G-1-E Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    1-E Wholesale Power Rate Schedule SCE&G-1-E Wholesale Power Rate Schedule Area: South Carolina Electric & Gas Area System: Georgia-Alabama-South Carolina This rate schedule shall be available public bodies and cooperatives (any one of which is hereinafter called the Customer) in South Carolina to whom power may be wheeled and scheduled pursuant to contracts between the Government and the South Carolina Electric & Gas Company (hereinafter called the Company). This rate schedule shall

  18. S. 3047: A Bill to amend the antitrust laws in order to preserve and promote wholesale and retail competition in the retail gasoline market. Introduced in the Senate of the United States, One Hundredth First Congress, Second Session, September 13, 1990

    SciTech Connect

    Not Available

    1990-01-01

    This bill would amend the antitrust laws in order to preserve and promote wholesale and retail competition in the retail gasoline market. The bill defines limits on the purchases required of a retailer from the producer or refiner and defines the exceptions under which any large integrated refiner can operate any motor fuel service station in the US. The Federal Trade Commission is charged with the enforcement.

  19. Introduction to IEEE 841-1994, IEEE standard for petroleum and chemical industry: Severe duty totally enclosed fan-cooled (TEFC) squirrel cage induction motors -- up to and including 500 hp

    SciTech Connect

    Doughty, R.L.

    1995-12-31

    IEEE 841, Recommended Practice for Chemical Industry Severe Duty Squirrel-Cage Induction Motors--600 V and Below, first issued in 1986, has been significantly revised and reissued as a Standard. The scope has been increased to include severe duty TEFC squirrel-cage induction motors with antifriction bearings in sizes up to and including 500 horsepower. Motor rated voltages of 2,300 V and 4,000 V have been added. Changes to the standard are reviewed in detail. Requirements are identified that improve motor reliability and increase motor life.

  20. Higher Efficiency HVAC Motors

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Higher Efficiency HVAC Motors 2016 Building Technologies Office Peer Review PJ Piper, pjpiper@qmpower.com CEO, QM Power, Inc. 2 Project Summary Timeline: Start date: 10/1/14 Planned end date: 9/30/16 Key Milestones 1. Target Application and Machine Specs; 2/13/15 2. Motor Design; 9/30/15 3. Build prototype; 3/31/16 4. Performance validation; 8/1/16 Budget: Total Project $ to Date: * DOE: $239,947 * Cost Share: $189,801 Total Project $: * DOE: $750,000 * Cost Share: $635,756 Key Partners: Project

  1. Electric Motors

    Energy.gov [DOE]

    Section 313 of the Energy Independence and Security Act (EISA) of 2007 raised Federal minimum efficiency standards for general-purpose, single-speed, polyphase induction motors of 1 to 500 horsepower (hp). This new standard took effect in December 2010. The new minimum efficiency levels match FEMP's performance requirement for these motors.

  2. The Motor Fuel Consumer Protection Act of 1991. Introduced in the Senate of the United States, One Hundred Second Congress, Second Session, October 1, 1992

    SciTech Connect

    1992-12-31

    The report addresses S. 790 a bill to amend the antitrust laws in order to preserve and promote wholesale and retail competition to the gasoline market and to protect the motoring safety of the American public. The legislative text, background and need for the legislation is given.

  3. Market Evolution: Wholesale Electricity Market Design for 21st Century Power Systems

    SciTech Connect

    Cochran, Jaquelin; Miller, Mackay; Milligan, Michael; Ela, Erik; Arent, Douglas; Bloom, Aaron; Futch, Matthew; Kiviluoma, Juha; Holtinnen, Hannele; Orths, Antje; Gomez-Lazaro, Emilio; Martin-Martinez, Sergio; Kukoda, S.; Garcia, Glycon; Mikkelsen, Kim M.; Yongqiang, Zhao; Sandholt, Kaare

    2013-10-01

    Demand for affordable, reliable, domestically sourced, and low-carbon electricity is on the rise. This growing demand is driven in part by evolving public policy priorities, especially reducing the health and environmental impacts of electricity service and expanding energy access to under-served customers. Consequently, variable renewable energy resources comprise an increasing share ofelectricity generation globally. At the same time, new opportunities for addressing the variability of renewables are being strengthened through advances in smart grids, communications, and technologies that enable dispatchable demand response and distributed generation to extend to the mass market. A key challenge of merging these opportunities is market design -- determining how to createincentives and compensate providers justly for attributes and performance that ensure a reliable and secure grid -- in a context that fully realizes the potential of a broad array of sources of flexibility in both the wholesale power and retail markets. This report reviews the suite of wholesale power market designs in use and under consideration to ensure adequacy, security, and flexibilityin a landscape of significant variable renewable energy. It also examines considerations needed to ensure that wholesale market designs are inclusive of emerging technologies, such as demand response, distributed generation, and storage.

  4. 2007 Wholesale Power Rate Case Final Proposal : Risk Analysis Study.

    SciTech Connect

    United States. Bonneville Power Administration.

    2006-07-01

    BPA's operating environment is filled with numerous uncertainties, and thus the rate-setting process must take into account a wide spectrum of risks. The objective of the Risk Analysis is to identify, model, and analyze the impacts that key risks have on BPA's net revenue (total revenues less total expenses). This is carried out in two distinct steps: a risk analysis step, in which the distributions, or profiles, of operating and non operating risks are defined, and a risk mitigation step, in which different rate tools are tested to assess their ability to recover BPA's costs in the face of this uncertainty. Two statistical models are used in the risk analysis step for this rate proposal, the Risk Analysis Model (RiskMod), and the Non-Operating Risk Model (NORM), while a third model, the ToolKit, is used to test the effectiveness of rate tools options in the risk mitigation step. RiskMod is discussed in Sections 2.1 through 2.4, the NORM is discussed in Section 2.5, and the ToolKit is discussed in Section 3. The models function together so that BPA can develop rates that cover all of its costs and provide a high probability of making its Treasury payments on time and in full during the rate period. By law, BPA's payments to Treasury are the lowest priority for revenue application, meaning that payments to Treasury are the first to be missed if financial reserves are insufficient to pay all bills on time. For this reason, BPA measures its potential for recovering costs in terms of probability of being able to make Treasury payments on time (also known as Treasury Payment Probability or TPP).

  5. Advanced Motors

    SciTech Connect

    Knoth, Edward A; Chelluri, Bhanumathi; Schumaker, Edward J

    2012-12-14

    vProject Summary Transportation energy usage is predicted to increase substantially by 2020. Hybrid vehicles and fuel cell powered vehicles are destined to become more prominent as fuel prices rise with the demand. Hybrid and fuel cell vehicle platforms are both dependent on high performance electric motors. Electric motors for transportation duty will require sizeable low-speed torque to accelerate the vehicle. As motor speed increases, the torque requirement decreases which results in a nearly constant power motor output. Interior permanent magnet synchronous motors (IPMSM) are well suited for this duty. , , These rotor geometries are configured in straight lines and semi circular arc shapes. These designs are of limited configurations because of the lack of availability of permanent magnets of any other shapes at present. We propose to fabricate rotors via a novel processing approach where we start with magnet powders and compact them into a net shape rotor in a single step. Using this approach, widely different rotor designs can be implemented for efficiency. The current limitation on magnet shape and thickness will be eliminated. This is accomplished by co-filling magnet and soft iron powders at specified locations in intricate shapes using specially designed dies and automatic powder filling station. The process fundamentals for accomplishing occurred under a previous Applied Technology Program titled, Motors and Generators for the 21st Century. New efficient motor designs that are not currently possible (or cost prohibitive) can be accomplished by this approach. Such an approach to motor fabrication opens up a new dimension in motor design. Feasibility Results We were able to optimize a IPMSM rotor to take advantage of the powder co-filling and DMC compaction processing methods. The minimum low speed torque requirement of 5 N-m can be met through an optimized design with magnet material having a Br capability of 0.2 T. This level of magnetic performance can

  6. Market Evolution: Wholesale Electricity Market Design for 21st Century Power Systems

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    1stCenturyPower.org Technical Report NREL/TP-6A20-57477 October 2013 Contract No. DE-AC36-08GO28308 Market Evolution: Wholesale Electricity Market Design for 21 st Century Power Systems Jaquelin Cochran, Mackay Miller, Michael Milligan, Erik Ela, Douglas Arent, and Aaron Bloom National Renewable Energy Laboratory Matthew Futch IBM Juha Kiviluoma and Hannele Holtinnen VTT Technical Research Centre of Finland Antje Orths Energinet.dk Emilio Gómez-Lázaro and Sergio Martín-Martínez Universidad

  7. Evolution of Wholesale Electricity Market Design with Increasing Levels of Renewable Generation

    SciTech Connect

    Ela, E.; Milligan, M.; Bloom, A.; Botterud, A.; Townsend, A.; Levin, T.

    2014-09-01

    Variable generation such as wind and photovoltaic solar power has increased substantially in recent years. Variable generation has unique characteristics compared to the traditional technologies that supply energy in the wholesale electricity markets. These characteristics create unique challenges in planning and operating the power system, and they can also influence the performance and outcomes from electricity markets. This report focuses on two particular issues related to market design: revenue sufficiency for long-term reliability and incentivizing flexibility in short-term operations. The report provides an overview of current design and some designs that have been proposed by industry or researchers.

  8. Evolution of Wholesale Electricity Market Design with Increasing Levels of Renewable Generation

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Evolution of Wholesale Electricity Market Design with Increasing Levels of Renewable Generation E. Ela, 1 M. Milligan, 1 A. Bloom, 1 A. Botterud, 2 A. Townsend, 1 and T. Levin 2 1 National Renewable Energy Laboratory 2 Argonne National Laboratory Technical Report NREL/TP-5D00-61765 September 2014 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost

  9. Therma motor

    DOEpatents

    Kandarian, R.

    The disclosure is directed to a thermal motor utilizing two tapered prestressed parallel adjacent cylinders lengthwise disposed about one third in a coolant. Heat is applied to contacting portions of the cylinders outside the coolant to cause them to deform and turn. Heat sources such as industrial waste heat, geothermal hot water, solar radiation, etc. can be used.

  10. Understanding the Benefits of Dispersed Grid-Connected Photovoltaics: From Avoiding the Next Major Outage to Taming Wholesale Power Markets

    SciTech Connect

    Letendre, Steven E.; Perez, Richard

    2006-07-15

    Thanks to new solar resource assessment techniques using cloud cover data available from geostationary satellites, it is apparent that grid-connected PV installations can serve to enhance electric grid reliability, preventing or hastening recovery from major power outages and serving to mitigate extreme price spikes in wholesale energy markets. (author)

  11. Thin-layer drying behavior of vegetable wastes from wholesale market

    SciTech Connect

    Lopez, A.; Iguaz, A.; Esnoz, A.; Virseda, P.

    2000-05-01

    The thin-layer drying behavior of vegetable wastes (as a mix of lettuce and cauliflower leaves) from wholesale market for a temperature range of 50--150 C was determined. Drying of this material was found to take part only in the falling-rate period. The experimental data were fitted to the simple exponential model and the Page model. Both models have good prediction capability. Effective diffusion coefficient varied from 6.03 x 10{sup {minus}9} to 3.15 x 10{sup {minus}8} m{sup 2}/s with an activation energy of diffusion of 19.82 kJ/mol. The temperature dependence of the effective diffusion coefficient was expressed by an Arrhenius-type relationship.

  12. MotorMaster+

    Energy.gov [DOE]

    MotorMaster+ is a free online National Electrical Manufacturers Association (NEMA) Premium® efficiency motor selection and management tool that supports motor and motor systems planning by identifying the most efficient action for a given repair or motor purchase decision. The tool includes a catalog of more than 20,000 low-voltage induction motors, and features motor inventory management tools, maintenance log tracking, efficiency analysis, savings evaluation, energy accounting, and environmental reporting capabilities.

  13. Motor Repair Tech Brief

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Motor Repair Tech Brief u Why do motors fail? u When should you repair instead of replace? u How can reliability and efficiency be assured in a repair? This Tech Brief applies to: Random Wound Induction Motors Designs A-E Acknowledgements The following series of Repair Documents-The Service Center Evaluation Guide, Selected Bibliography on Electric Motor Repair, Model Repair Specifications for Low Voltage Motors, and Motor Repair Tech Brief- were produced by the U.S. Department of Energy's

  14. 2007 Wholesale Power Rate Case Initial Proposal : Risk Analysis Study Documentation.

    SciTech Connect

    United States. Bonneville Power Administration.

    2005-11-01

    The RiskMod Model is comprised of a set of risk simulation models, collectively referred to as RiskSim; a set of computer programs that manages data referred to as Data Management Procedures; and RevSim, a model that calculates net revenues. RiskMod interacts with the AURORA Model, the RAM2007, and the ToolKit Model during the process of performing the Risk Analysis Study. AURORA is the computer model being used to perform the Market Price Forecast Study (see Market Price Forecast Study, WP-07-E-BPA-03); the RAM2007 is the computer model being used to calculate rates (see Wholesale Power Rate Development Study, WP-07-E-BPA-05); and the ToolKit is the computer model being used to develop the risk mitigation package that achieves BPA's 92.6 percent TPP standard (see Section 3 in the Risk Analysis Study, WP-07-E-BPA-04). Variations in monthly loads, resources, natural gas prices, forward market electricity prices, transmission expenses, and aluminum smelter benefit payments are simulated in RiskSim. Monthly spot market electricity prices for the simulated loads, resources, and natural gas prices are estimated by the AURORA Model. Data Management Procedures facilitate the format and movement of data that flow to and/or from RiskSim, AURORA, and RevSim. RevSim estimates net revenues using risk data from RiskSim, spot market electricity prices from AURORA, loads and resources data from the Load Resource Study, WP-07-E-BPA-01, various revenues from the Revenue Forecast component of the Wholesale Power Rate Development Study, WP-07-E-BPA-05, and rates and expenses from the RAM2007. Annual average surplus energy revenues, purchased power expenses, and section 4(h)(10)(C) credits calculated by RevSim are used in the Revenue Forecast and the RAM2007. Heavy Load Hour (HLH) and Light Load Hour (LLH) surplus and deficit energy values from RevSim are used in the Transmission Expense Risk Model. Net revenues estimated for each simulation by RevSim are input into the ToolKit Model

  15. 2007 Wholesale Power Rate Case Final Proposal : Risk Analysis Study Documentation.

    SciTech Connect

    United States. Bonneville Power Administration.

    2006-07-01

    The RiskMod Model is comprised of a set of risk simulation models, collectively referred to as RiskSim; a set of computer programs that manages data referred to as Data Management Procedures; and RevSim, a model that calculates net revenues. RiskMod interacts with the AURORA Model, the RAM2007, and the ToolKit Model during the process of performing the Risk Analysis Study. AURORA is the computer model being used to perform the Market Price Forecast Study (see Market Price Forecast Study, WP-07-FS-BPA-03); the RAM2007 is the computer model being used to calculate rates (see Wholesale Power Rate Development Study, WP-07-FS-BPA-05); and the ToolKit is the computer model being used to develop the risk mitigation package that achieves BPA's 92.6 percent TPP standard (see Section 3 in the Risk Analysis Study, WP-07-FS-BPA-04). Variations in monthly loads, resources, natural gas prices, forward market electricity prices, transmission expenses, and aluminum smelter benefit payments are simulated in RiskSim. Monthly spot market electricity prices for the simulated loads, resources, and natural gas prices are estimated by the AURORA Model. Data Management Procedures facilitate the format and movement of data that flow to and/or from RiskSim, AURORA, and RevSim. RevSim estimates net revenues using risk data from RiskSim, spot market electricity prices from AURORA, loads and resources data from the Load Resource Study, WP-07-FS-BPA-01, various revenues from the Revenue Forecast component of the Wholesale Power Rate Development Study, WP-07-FSBPA-05, and rates and expenses from the RAM2007. Annual average surplus energy revenues, purchased power expenses, and section 4(h)(10)(C) credits calculated by RevSim are used in the Revenue Forecast and the RAM2007. Heavy Load Hour (HLH) and Light Load Hour (LLH) surplus and deficit energy values from RevSim are used in the Transmission Expense Risk Model. Net revenues estimated for each simulation by RevSim are input into the Tool

  16. 2007 Wholesale Power Rate Adjustment Proceeding (WP-07) : Administrator's Final Record of Decision.

    SciTech Connect

    United States. Bonneville Power Administration.

    2006-07-01

    This Record of Decision (ROD) contains the decisions of the Bonneville Power Administration (BPA), based on the record compiled in this rate proceeding, with respect to the adoption of power rates for the three-year rate period commencing October 1, 2006, through September 30, 2009. This ''2007 Wholesale Power Rate Adjustment Proceeding'' is designed to establish replacement rate schedules and General Rate Schedule Provisions (GRSPs) for those that expire on September 30, 2006. This power rate case also establishes the General Transfer Agreement (GTA) Delivery Charge for the period of October 1, 2007, through September 30, 2009. BPA's Power Subscription Strategy and Record of Decision (Subscription Strategy), as well as other Agency processes, provide much of the policy context for this rate case and are described in Section 2. This ROD follows a full evidentiary hearing and briefing, including an Oral Argument before the BPA Administrator. Sections 3 through 18, including any appendices or attachments, present the issues raised by parties in this proceeding, the parties positions, BPA staff positions on the issues, BPA's evaluations of the positions, and the Administrator's decisions. Parties had the opportunity to file briefs on exceptions to the Draft ROD, before issuance of this Final Record of Decision.

  17. S. 790: This Act may be cited as the Motor Fuel Consumer Protection Act of 1991, introduced in the Senate of the United States, One Hundred Second Congress, First Session, April 9, 1991

    SciTech Connect

    Not Available

    1991-01-01

    This bill would amend the antitrust laws in order to preserve and promote wholesale and retail competition in the retail gasoline market. The bill describes limits on the ownership and operation of service stations. The main provision is the it shall be unlawful for any producer or refiner to require any retail motor fuel dealer to purchase more than 70% of the monthly retail sales of motor fuel from such refiner or producer. Motor fuel refers to gasoline, diesel fuel, alcohol, or any mixture of these sold for use in automobiles and related vehicles.

  18. Unbundling of services in a competitive wholesale market: Lessons from the UK

    SciTech Connect

    Evans, N.L.

    1996-03-01

    Since the beginning of operation of the electricity Pool in England and Wales in 1990, the energy and capacity components of Pool prices have only to a limited extent reflected changes in supply and demand in the wholesale market. To a greater extent, they have resulted from the specific bidding tactics adopted by dominant generators. These bidding tactics have, in turn, been influenced by the companies` contractual positions (with regard to fuel purchases and electricity sales), their relationship with the regulator, and their longer term strategic objectives. In recent years greater attention has focused on Uplift, the third component of Pool prices. Uplift represents the difference between the Pool Purchase Price (the price received by generators), and the Pool Selling Price (the price paid by suppliers). The costs of Uplift (against which most suppliers are unhedged) have increased considerably since the early years of operation of the Pool, and Uplift revenues have become an important source of profits for the major generators. In this paper the author describes the development of the three key price components in the electricity Pool in England and Wales since its establishment in 1990 and explain the reasons behind the principal price movements. The author focuses on Uplift and discusses the way in which increases in the level of Uplift have led to pressures for greater unbundling of the various Uplift components. This unbundling has been associated with moves to increase the extent to which various Pool services which contribute to Uplift are exposed to competition. The author concludes the paper with a discussion of the messages that emerge for the electricity market as a whole from England and Wales experiences with Uplift.

  19. Motor Systems | Department of Energy

    Office of Environmental Management (EM)

    Efficiency Motors Eliminate Voltage Unbalance Eliminate Excessive In-Plant Distribution System Voltage Drops Improve Motor Operation at Off-Design Voltages Turn Motors Off When ...

  20. General Motors | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Motors Jump to: navigation, search Name: General Motors Place: Detroit, MI Website: www.generalmotors.com References: General Motors1 Information About Partnership with NREL...

  1. Aurica Motors | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Aurica Motors Jump to: navigation, search Name: Aurica Motors Place: California Product: California-based Aurica Motors is planning to develop and manufacture an electric vehicle...

  2. Myers Motors | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Myers Motors Jump to: navigation, search Name: Myers Motors Place: Tallmadge, Ohio Zip: 44278 Sector: Vehicles Product: Myers Motors produces three wheeled electric vehicles....

  3. Dynein Motor Domain Shows Ring-Shaped Motor, Buttress

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Dynein Motor Domain Shows Ring-Shaped Motor, Buttress Dynein Motor Domain Shows Ring-Shaped Motor, Buttress Print Monday, 28 November 2011 14:52 Movement is fundamental to life. It...

  4. Motor Current Data Collection System

    Energy Science and Technology Software Center

    1992-12-01

    The Motor Current Data Collection System (MCDCS) uses IBM compatible PCs to collect, process, and store Motor Current Signature information.

  5. High Temperature Downhole Motor - Energy Innovation Portal

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Geothermal Geothermal Find More Like This Return to Search High Temperature Downhole Motor Sandia National Laboratories Contact SNL About This Technology Publications: PDF Document Publication Market Sheet (164 KB) Technology Marketing Summary Drilling costs amount to over half of the total cost of geothermal energy production. To address the high cost of well construction, Sandia engineers are developing a high temperature downhole motor that provides a high-power downhole rotation solution for

  6. Motor/generator

    DOEpatents

    Hickam, Christopher Dale

    2008-05-13

    A motor/generator is provided for connecting between a transmission input shaft and an output shaft of a prime mover. The motor/generator may include a motor/generator housing, a stator mounted to the motor/generator housing, a rotor mounted at least partially within the motor/generator housing and rotatable about a rotor rotation axis, and a transmission-shaft coupler drivingly coupled to the rotor. The transmission-shaft coupler may include a clamp, which may include a base attached to the rotor and a plurality of adjustable jaws.

  7. Motor degradation prediction methods

    SciTech Connect

    Arnold, J.R.; Kelly, J.F.; Delzingaro, M.J.

    1996-12-01

    Motor Operated Valve (MOV) squirrel cage AC motor rotors are susceptible to degradation under certain conditions. Premature failure can result due to high humidity/temperature environments, high running load conditions, extended periods at locked rotor conditions (i.e. > 15 seconds) or exceeding the motor`s duty cycle by frequent starts or multiple valve stroking. Exposure to high heat and moisture due to packing leaks, pressure seal ring leakage or other causes can significantly accelerate the degradation. ComEd and Liberty Technologies have worked together to provide and validate a non-intrusive method using motor power diagnostics to evaluate MOV rotor condition and predict failure. These techniques have provided a quick, low radiation dose method to evaluate inaccessible motors, identify degradation and allow scheduled replacement of motors prior to catastrophic failures.

  8. Motorized support jack

    DOEpatents

    Haney, Steven J. (Tracey, CA); Herron, Donald Joe (Manteca, CA)

    2001-01-01

    A compact, vacuum compatible motorized jack for supporting heavy loads and adjusting their positions is provided. The motorized jack includes: (a) a housing having a base; (b) a first roller device that provides a first slidable surface and that is secured to the base; (c) a second roller device that provides a second slidable surface and that has an upper surface; (d) a wedge that is slidably positioned between the first roller device and the second roller device so that the wedge is in contact with the first slidable surface and the second slidable surface; (e) a motor; and (d) a drive mechanism that connects the motor and the wedge to cause the motor to controllably move the wedge forwards or backwards. Individual motorized jacks can support and lift of an object at an angle. Two or more motorized jacks can provide tip, tilt and vertical position adjustment capabilities.

  9. Motorized support jack

    DOEpatents

    Haney, Steven J.; Herron, Donald Joe

    2003-05-13

    A compact, vacuum compatible motorized jack for supporting heavy loads and adjusting their positions is provided. The motorized jack includes: (a) a housing having a base; (b) a first roller device that provides a first slidable surface and that is secured to the base; (c) a second roller device that provides a second slidable surface and that has an upper surface; (d) a wedge that is slidably positioned between the first roller device and the second roller device so that the wedge is in contact with the first slidable surface and the second slidable surface; (e) a motor; and (d) a drive mechanism that connects the motor and the wedge to cause the motor to controllably move the wedge forwards or backwards. Individual motorized jacks can support and lift of an object at an angle. Two or more motorized jacks can provide tip, tilt and vertical position adjustment capabilities.

  10. Short-Term Energy Outlook Model Documentation: Motor Gasoline Consumption Model

    Reports and Publications

    2011-01-01

    The motor gasoline consumption module of the Short-Term Energy Outlook (STEO) model is designed to provide forecasts of total U.S. consumption of motor gasolien based on estimates of vehicle miles traveled and average vehicle fuel economy.

  11. Hybrid vehicle motor alignment

    SciTech Connect

    Levin, Michael Benjamin

    2001-07-03

    A rotor of an electric motor for a motor vehicle is aligned to an axis of rotation for a crankshaft of an internal combustion engine having an internal combustion engine and an electric motor. A locator is provided on the crankshaft, a piloting tool is located radially by the first locator to the crankshaft. A stator of the electric motor is aligned to a second locator provided on the piloting tool. The stator is secured to the engine block. The rotor is aligned to the crankshaft and secured thereto.

  12. When to Purchase Premium Efficiency Motors

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Premium Efficiency Motors Consider premium effciency motors for new motor procurements when specifying motor-driven equipment, repairing or rewinding failed standard effciency ...

  13. Motor Gasoline Sales to End Users, Total Refiner Sales Volumes

    Gasoline and Diesel Fuel Update

    29,725.8 24,722.5 21,633.6 25,454.1 1983-2015 East Coast (PADD 1) 14,548.8 12,347.0 9,304.0 6,838.8 3,815.2 8,406.0 1994-2015 New England (PADD 1A) 1,424.3 1,070.8 W W W W ...

  14. Motor Gasoline Sales to End Users, Total Refiner Sales Volumes

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    W W W W W W 1993-2016 Maine - - - - - - 1993-2016 Massachusetts W W W W W W 1993-2016 New Hampshire W W W W W W 1993-2016 Rhode Island W W W W W W 1993-2016 Vermont - - - - - - ...

  15. Stepping motor controller

    DOEpatents

    Bourret, S.C.; Swansen, J.E.

    1982-07-02

    A stepping motor is microprocessor controlled by digital circuitry which monitors the output of a shaft encoder adjustably secured to the stepping motor and generates a subsequent stepping pulse only after the preceding step has occurred and a fixed delay has expired. The fixed delay is variable on a real-time basis to provide for smooth and controlled deceleration.

  16. Stepping motor controller

    DOEpatents

    Bourret, Steven C.; Swansen, James E.

    1984-01-01

    A stepping motor is microprocessingly controlled by digital circuitry which monitors the output of a shaft encoder adjustably secured to the stepping motor and generates a subsequent stepping pulse only after the preceding step has occurred and a fixed delay has expired. The fixed delay is variable on a real-time basis to provide for smooth and controlled deceleration.

  17. Improve Motor System Performance with MotorMaster+

    SciTech Connect

    2010-08-01

    Fact sheet describes how industrial plants can improve their motor system performance using DOE-AMO's MotorMaster+ software tool.

  18. BSA Motors | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    BSA Motors Jump to: navigation, search Name: BSA Motors Place: India Product: India-based maker of 2-wheel electric scooters. References: BSA Motors1 This article is a stub. You...

  19. Aptera Motors | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Aptera Motors Jump to: navigation, search Name: Aptera Motors Address: 2778 Loker Avenue West Place: Carlsbad, California Zip: 92008 Region: Southern CA Area Sector: Vehicles...

  20. AQWON Motors | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search Name: AQWON-Motors Place: Speinshart, Germany Zip: 92676 Sector: Hydro, Hydrogen Product: AQWON-Motors has developed the first hydrogen powered 2 stroke-engine...

  1. Brandl Motor | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Brandl Motor Jump to: navigation, search Name: Brandl Motor Address: Calvinstr 24 Place: Berlin Zip: 10557 Region: Germany Sector: Marine and Hydrokinetic Phone Number: +49 30 39...

  2. Motor VFDs | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    VFDs Jump to: navigation, search TODO: Add description List of Motor VFDs Incentives Retrieved from "http:en.openei.orgwindex.php?titleMotorVFDs&oldid521368" Feedback...

  3. Improve Motor System Efficiency for a Broad Range of Motors with MotorMaster+ International

    SciTech Connect

    2005-05-01

    Available at no charge, MotorMaster+ International is designed to support motor systems improvement planning at industrial facilities by identifying the most cost-effective choice when deciding to repair or replace older motor models.

  4. Energy efficient motor application

    SciTech Connect

    Koenig, S.R.

    1999-01-20

    Motor driven processes represent a large portion of the energy consumption in the United States and, as a result, present a large opportunity for energy savings. Energy efficient motors reduce energy use and will see wider implementation as the impact of the Energy Policy Act of 1992 is felt. These motors are made possible by design and material improvements without compromising reliability, quality, or performance. One drawback is their potential for nuisance tripping due to a high inrush current at starting. Solutions do exist to this problem. Economics also play a large role in energy efficient motor application. The cost of repairing a motor or installing a new machine as well as any utility rebates determine if the efficient motor price premium is offset by energy savings. Other issues such as adjustable speed drives, belts and supply voltage affect efficiency as well. Several industry examples demonstrate the potential results. A thorough understanding of these factors show the energy efficient motor can be a good choice for most applications.

  5. MotorMaster+ Tool | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    MotorMaster+ Tool MotorMaster+ Tool This presentation discusses industrial motor systems and introduces the MotorMaster+ Tool Suite. MotorMaster+ Tool Presentation (March 19, 2009) ...

  6. System and method for motor parameter estimation

    DOEpatents

    Luhrs, Bin; Yan, Ting

    2014-03-18

    A system and method for determining unknown values of certain motor parameters includes a motor input device connectable to an electric motor having associated therewith values for known motor parameters and an unknown value of at least one motor parameter. The motor input device includes a processing unit that receives a first input from the electric motor comprising values for the known motor parameters for the electric motor and receive a second input comprising motor data on a plurality of reference motors, including values for motor parameters corresponding to the known motor parameters of the electric motor and values for motor parameters corresponding to the at least one unknown motor parameter value of the electric motor. The processor determines the unknown value of the at least one motor parameter from the first input and the second input and determines a motor management strategy for the electric motor based thereon.

  7. MotorWeek

    ScienceCinema

    None

    2016-07-12

    In 2008, PBS's MotorWeek, television's original automotive magazine, visited Argonne's Transportation Technology R&D Center "to learn what it really takes to make clean power sources a viable reality."

  8. MotorWeek

    SciTech Connect

    2009-01-01

    In 2008, PBS's MotorWeek, television's original automotive magazine, visited Argonne's Transportation Technology R&D Center "to learn what it really takes to make clean power sources a viable reality."

  9. High Efficiency Motors for Refrigerated Open Display Cases

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Motors for Refrigerated Open Display Cases 2016 Building Technologies Office Peer Review PJ Piper, pjpiper@qmpower.com CEO, QM Power, Inc. 2 Project Summary Budget: Total DOE $ to date: $387,393 Total future DOE $: $617,259 Key Partners: Project Goal: QM Power is targeting the demonstration, testing and deployment of replicable, cost- effective, low-risk, higher efficiency fan motor solutions with market leaders. Using Q-Sync technology instead of incumbent solutions would be the equivalent of

  10. Motor Energy Conservation Measures

    Energy Science and Technology Software Center

    2010-12-31

    This software requires inputs of simple motor inventory information and calculates the energy and cost benefits of various retrofit opportunities. This tool includes energy conservation measures for: High Efficiency Motor retrofit and Cogged V-belts retrofit. This tool calculates energy savings, demand reduction, cost savings, and building life cycle costs including: simple payback, discounted payback, net-present value, and savings to investment ratio. In addition this tool also displays the environmental benefits of a project.

  11. Report on Toyota Prius Motor Thermal Management

    SciTech Connect

    Hsu, J.S.

    2005-02-11

    peak-torque (400-Nm) region, the efficiency goes down to the 40-50% range, and the power factor is nearly 100%. The efficiency is not a major concern at the high-torque region. The water-ethylene-glycol heat exchanger attached to the motor is small. During continuous operation, it dissipates about 76% of the total motor heat loss with 35 C coolant. The heat exchanger is less effective when the coolant temperature increases. With 75 C coolant, the heat exchanger dissipates about 38% of the motor heat. When the coolant temperature is 105 C, the heat exchanger not only stops cooling the motor but also adds heat to the large motor housing that acts as an air-cooled heat sink. From start to the base speed, 400 Nms of torque can be produced by the Prius motor with a reasonably low stator current. However, the permissible running time of the motor depends on the load drawn from the motor and the coolant temperature. In the Toyota Prius hybrid configuration, if the motor gets too hot and cannot keep running, the load can be shifted back to the engine. The motor acts to improve the system efficiency without being overly designed. A detailed thermal model was developed to help predict the temperature levels in key motor components. The model was calibrated and compared with the experimentally measured temperatures. Very good agreement was obtained between model and experiment. This model can now be used to predict the temperature of key motor components at a variety of operating conditions and to evaluate the thermal characteristics of new motor designs. It should be pointed out that a fuel-cell motor does not have an engine to fall back on to provide the needed wheel power. Therefore, the design philosophy of a fuel-cell motor is very different from that of a hybrid Prius motor. Further thermal management studies in the high-speed region of the Prius motor, fed by its inverter, are planned.

  12. New wholesale power market design using linked forward markets : a study for the DOE energy storage systems program.

    SciTech Connect

    Silva Monroy, Cesar Augusto; Loose, Verne William; Ellison, James F.; Elliott, Ryan Thomas; Byrne, Raymond Harry; Guttromson, Ross; Tesfatsion, Leigh S.

    2013-04-01

    This report proposes a reformulation of U.S. ISO/RTO-managed wholesale electric power mar- kets for improved reliability and e ciency of system operations. Current markets do not specify or compensate primary frequency response. They also unnecessarily limit the participation of new technologies in reserve markets and o er insu cient economic inducements for new capacity invest- ment. In the proposed market reformulation, energy products are represented as physically-covered rm contracts and reserve products as physically-covered call option contracts. Trading of these products is supported by a backbone of linked ISO/RTO-managed forward markets with planning horizons ranging from multiple years to minutes ahead. A principal advantage of this reformulation is that reserve needs can be speci ed in detail, and resources can o er the services for which they are best suited, without being forced to conform to rigid reserve product de nitions. This should improve the business case for electric energy storage and other emerging technologies to provide reserve. In addition, the facilitation of price discovery should help to ensure e cient energy/reserve procurement and adequate levels of new capacity investment.

  13. Modeling of GE Appliances: Cost Benefit Study of Smart Appliances in Wholesale Energy, Frequency Regulation, and Spinning Reserve Markets

    SciTech Connect

    Fuller, Jason C.; Parker, Graham B.

    2012-12-31

    This report is the second in a series of three reports describing the potential of GE’s DR-enabled appliances to provide benefits to the utility grid. The first report described the modeling methodology used to represent the GE appliances in the GridLAB-D simulation environment and the estimated potential for peak demand reduction at various deployment levels. The third report will explore the technical capability of aggregated group actions to positively impact grid stability, including frequency and voltage regulation and spinning reserves, and the impacts on distribution feeder voltage regulation, including mitigation of fluctuations caused by high penetration of photovoltaic distributed generation. In this report, a series of analytical methods were presented to estimate the potential cost benefit of smart appliances while utilizing demand response. Previous work estimated the potential technical benefit (i.e., peak reduction) of smart appliances, while this report focuses on the monetary value of that participation. The effects on wholesale energy cost and possible additional revenue available by participating in frequency regulation and spinning reserve markets were explored.

  14. Bent shaft motor

    DOEpatents

    Benavides, Gilbert L.

    1998-01-01

    A nonelectromagnetic motor comprising a base, a bent shaft which is rotable relative to the base wherein the bent shaft comprises a straight portion aligned with a main axis and an offset portion that is offset with respect to the main axis; and a drive means for driving the offset portion of the bent shaft along a generally circular path in a plane perpendicular to the main axis to rotate the bent shaft. The bent shaft and drive means for driving the bent shaft can be selected from piezoelectric, magnetostrictive, rheological and shape memory alloys. The drive means of the nonelectromagnetic motor can additionally comprise a shell which shell surrounds and houses the bent shaft and precesses or gyrates which in turn causes the bent drive shaft to rotate. The nonelectromagnetic motor does not rely on friction for the application of torque upon a rotor.

  15. Bent shaft motor

    DOEpatents

    Benavides, G.L.

    1998-05-05

    A nonelectromagnetic motor comprising a base, a bent shaft which is rotatable relative to the base wherein the bent shaft comprises a straight portion aligned with a main axis and an offset portion that is offset with respect to the main axis; and a drive means for driving the offset portion of the bent shaft along a generally circular path in a plane perpendicular to the main axis to rotate the bent shaft. The bent shaft and drive means for driving the bent shaft can be selected from piezoelectric, magnetostrictive, rheological and shape memory alloys. The drive means of the nonelectromagnetic motor can additionally comprise a shell which shell surrounds and houses the bent shaft and precesses or gyrates which in turn causes the bent drive shaft to rotate. The nonelectromagnetic motor does not rely on friction for the application of torque upon a rotor. 11 figs.

  16. Magnet Motor Corp | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Magnet Motor Corp Jump to: navigation, search Name: Magnet Motor Corp. Place: Starnberg, Germany Zip: 82319 Sector: Vehicles Product: Magnet motor Corp has been developing and...

  17. Source: Energy Information Administration, Form EIA-782A, "Refiners...

    Energy Information Administration (EIA) (indexed site)

    Motor Gasoline No. 2 Distillate Residual Fuel Oil 5. U.S. Refiner Wholesale Petroleum Product Volumes Figure Percentages of Refiner Wholesale Volumes 1995 Annual Averages Motor...

  18. Source: Energy Information Administration, Form EIA-782A, "Refiners...

    Energy Information Administration (EIA) (indexed site)

    Motor Gasoline No. 2 Distillate Residual Fuel Oil 5. U.S. Refiner Wholesale Petroleum Product Volumes Figure Percentages of Refiner Wholesale Volumes 1997 Annual Averages Motor...

  19. Source: Energy Information Administration, Form EIA-782A, "Refiners...

    Energy Information Administration (EIA) (indexed site)

    Motor Gasoline No. 2 Distillate Residual Fuel Oil 5. U.S. Refiner Wholesale Petroleum Product Volumes Figure Percentages of Refiner Wholesale Volumes 1996 Annual Averages Motor...

  20. Motor current signature analysis method for diagnosing motor operated devices

    DOEpatents

    Haynes, Howard D.; Eissenberg, David M.

    1990-01-01

    A motor current noise signature analysis method and apparatus for remotely monitoring the operating characteristics of an electric motor-operated device such as a motor-operated valve. Frequency domain signal analysis techniques are applied to a conditioned motor current signal to distinctly identify various operating parameters of the motor driven device from the motor current signature. The signature may be recorded and compared with subsequent signatures to detect operating abnormalities and degradation of the device. This diagnostic method does not require special equipment to be installed on the motor-operated device, and the current sensing may be performed at remote control locations, e.g., where the motor-operated devices are used in accessible or hostile environments.

  1. Dynein Motor Domain Shows Ring-Shaped Motor, Buttress

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Dynein Motor Domain Shows Ring-Shaped Motor, Buttress Print Movement is fundamental to life. It takes place even at the cellular level where cargo is continually being transported...

  2. Research Laboratories General Motors Corporation General Motors Technical Center

    Office of Legacy Management (LM)

    . MI. 1-q Research Laboratories General Motors Corporation General Motors Technical Center Warren, Michigan 48090 January 21, 1977 Occupational Health Standards Branch Office of Standards Development U. S. Nuclear Requlatory Commission Washington, D.C. 20555 Attention: Mr. Robert E. Alexander, Chief Dear Mr. Alexander: In 1974, General Motors Corporation acquired a manufacturing plant in Adrian, Michigan. On October 21, 1976, General Motors announced that work would begin immediately to prepare

  3. Method for assessing motor insulation on operating motors

    DOEpatents

    Kueck, John D.; Otaduy, Pedro J.

    1997-01-01

    A method for monitoring the condition of electrical-motor-driven devices. The method is achieved by monitoring electrical variables associated with the functioning of an operating motor, applying these electrical variables to a three phase equivalent circuit and determining non-symmetrical faults in the operating motor based upon symmetrical components analysis techniques.

  4. Method for assessing motor insulation on operating motors

    DOEpatents

    Kueck, J.D.; Otaduy, P.J.

    1997-03-18

    A method for monitoring the condition of electrical-motor-driven devices is disclosed. The method is achieved by monitoring electrical variables associated with the functioning of an operating motor, applying these electrical variables to a three phase equivalent circuit and determining non-symmetrical faults in the operating motor based upon symmetrical components analysis techniques. 15 figs.

  5. Magnetically Coupled Adjustable Speed Motor Drives - Motor Tip Sheet #13

    SciTech Connect

    2008-07-01

    Alternating current electric motors rotate at a nearly constant speed that is determined by motor design and line frequency. Energy savings of 50% or more may be available when fixed speed systems are modified to allow the motor speed to match variable load requirements of a centrifugal fan or pump.

  6. General Motors sidestream separator

    SciTech Connect

    Tessier, R.J.

    1981-01-01

    On February 15, 1980, the United States Environmental Protection Agency, acting pursuant to Paragraph 113(D) (4) of the Clean Air Act, issued to General Motors an innovative technology order covering fifteen coal-fired spreader-stoker boilers located at six General Motors plants in Ohio. The purpose and effect of this order was to permit General Motors time to develop a new, innovative technique for controlling particulate emissions from the specified boilers before compliance with the federally approved Ohio particulate control regulation was required. This new technology was christened, The Sidestream Separator, by General Motors. It provides a highly cost effective means of reducing particulate emissions below levels currently obtainable with conventionally used high efficiency mechanical collectors. These improvements could prove to be of substantial benefit to many industrial facilities with spreader-stoker coal-fired boilers that cannot be brought into compliance with applicble air pollution regulations except by application of far more expensive and unwieldly electrostatic precipitators (ESP's) or fabric filters (baghouses).

  7. AGNI Motors | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    India Zip: 370 230 Sector: Vehicles Product: UK-based manufacturer of DC Motors and Battery Management Systems for Electric Vehicles References: AGNI Motors1 This article is a...

  8. Barge Truck Total

    Annual Energy Outlook

    Barge Truck Total delivered cost per short ton Shipments with transportation rates over total shipments Total delivered cost per short ton Shipments with transportation rates over...

  9. Customer response to day-ahead wholesale market electricity prices: Case study of RTP program experience in New York

    SciTech Connect

    Goldman, C.; Hopper, N.; Sezgen, O.; Moezzi, M.; Bharvirkar, R.; Neenan, B.; Boisvert, R.; Cappers, P.; Pratt, D.

    2004-07-01

    There is growing interest in policies, programs and tariffs that encourage customer loads to provide demand response (DR) to help discipline wholesale electricity markets. Proposals at the retail level range from eliminating fixed rate tariffs as the default service for some or all customer groups to reinstituting utility-sponsored load management programs with market-based inducements to curtail. Alternative rate designs include time-of-use (TOU), day-ahead real-time pricing (RTP), critical peak pricing, and even pricing usage at real-time market balancing prices. Some Independent System Operators (ISOs) have implemented their own DR programs whereby load curtailment capabilities are treated as a system resource and are paid an equivalent value. The resulting load reductions from these tariffs and programs provide a variety of benefits, including limiting the ability of suppliers to increase spot and long-term market-clearing prices above competitive levels (Neenan et al., 2002; Boren stein, 2002; Ruff, 2002). Unfortunately, there is little information in the public domain to characterize and quantify how customers actually respond to these alternative dynamic pricing schemes. A few empirical studies of large customer RTP response have shown modest results for most customers, with a few very price-responsive customers providing most of the aggregate response (Herriges et al., 1993; Schwarz et al., 2002). However, these studies examined response to voluntary, two-part RTP programs implemented by utilities in states without retail competition.1 Furthermore, the researchers had limited information on customer characteristics so they were unable to identify the drivers to price response. In the absence of a compelling characterization of why customers join RTP programs and how they respond to prices, many initiatives to modernize retail electricity rates seem to be stymied.

  10. Motor gasolines, summer 1985

    SciTech Connect

    Dickson, C.L.; Woodward, P.W.

    1986-06-01

    Samples for this report were collected from service stations throughout the country and were analyzed in laboratories of various refiners, motor manufacturers, chemical companies, and research institutes. Analytical data for the 1571 motor gasoline and 206 motor gasoline/alcohol blend samples were submitted to the National Institute for Petroleum and Energy Research (NIPER), Bartlesville, Oklahoma, for reporting. This work is jointly funded by the American Petroleum Institute (API) and the United States Department of Energy (DOE), Bartlesville Project Office (DOE cooperative agreement No. FC22-83FE60149). The data are representative of the products of 62 marketers, large and small, which manufacture and supply gasoline. They are tabulated by groups according to brands (unlabeled) and grades for 17 marketing districts into which the country is divided. A map shows the marketing areas, districts, and sampling locations. The report includes trend charts of selected properties of motor fuels over the last twenty-five years. Twelve octane distribution graphs for leaded and unleaded grades of gasoline are presented for areas 1, 2, 3, and 4. The average antiknock (octane) index (R + M)/2 of gasoline sold in the United States during June, July, and August 1985 was 87.4 for unleaded below 90.0, 91.7 for unleaded 90.0 and above, and 88.8 for leaded below 93.0 grades of gasoline. Analyses of motor gasoline containing various alcohols are reported in separate tables beginning with this report. The average antiknock (octane) index (R + M)/2 of gasoline containing alcohols was 88.6 for unleaded below 90.0, 91.4 for unleaded 90.0 and above, and 90.2 for leaded below 93.0 grades of gasoline. 16 figs., 8 tabs.

  11. Unique Lanthide-Free Motor Construction

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Unique Lanthanide-Free Motor Construction Josh Ley, Principal Investigator Jon Lutz, Presenter Alan Gilbert, Program Manager UQM Technologies, Inc. April 21, 2014 APE044 This presentation does not contain any proprietary, confidential, or otherwise restricted information Overview Timeline Project start date: 10/01/2011 Project end date: 10/31/2015 Percent complete: 60% Budget Total project funding - $2,667K DOE Share - $889K UQM Share Funding received in FY13: $765K Funding for FY14: $806K

  12. Multiple stage miniature stepping motor

    DOEpatents

    Niven, William A.; Shikany, S. David; Shira, Michael L.

    1981-01-01

    A stepping motor comprising a plurality of stages which may be selectively activated to effect stepping movement of the motor, and which are mounted along a common rotor shaft to achieve considerable reduction in motor size and minimum diameter, whereby sequential activation of the stages results in successive rotor steps with direction being determined by the particular activating sequence followed.

  13. Exposure to motor vehicle emissions: An intake fraction approach

    SciTech Connect

    Marshall, Julian D.

    2002-05-01

    Motor vehicles are a significant source of population exposure to air pollution. Focusing on California's South Coast Air Basin as a case study, the author combines ambient monitoring station data with hourly time-activity patterns to determine the population intake of motor vehicle emissions during 1996-1999. Three microenvironments are considered wherein the exposure to motor vehicle emissions is higher than in ambient air: in and near vehicles, inside a building that is near a freeway, and inside a residence with an attached garage. Total motor vehicle emissions are taken from the EMFAC model. The 15 million people in the South Coast inhale 0.0048% of primary, nonreactive compounds emitted into the basin by motor vehicles. Intake of motor vehicle emissions is 46% higher than the average ambient concentration times the average breathing rate, because of microenvironments and because of temporal and spatial correlation among breathing rates, concentrations, and population densities. Intake fraction (iF) summarizes the emissions-to-intake relationship as the ratio of population intake to total emissions. iF is a population level exposure metric that incorporates spatial, temporal, and interindividual variability in exposures. iFs can facilitate the calculation of population exposures by distilling complex emissions-transport-receptor relationships. The author demonstrates this point by predicting the population intake of various primary gaseous emissions from motor vehicles, based on the intake fraction for benzene and carbon monoxide.

  14. Higher Efficiency HVAC Motors | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Higher Efficiency HVAC Motors Higher Efficiency HVAC Motors Advanced permanent magnet motor technology will drive HVAC energy savings. Advanced permanent magnet motor technology will drive HVAC energy savings. Advanced permanent magnet motor technology will drive HVAC energy savings. Advanced permanent magnet motor technology will drive HVAC energy savings. Advanced permanent magnet motor technology will drive HVAC energy savings. Advanced permanent magnet motor technology will drive HVAC energy

  15. Motor technology for mining applications advances

    SciTech Connect

    Fiscor, S.

    2009-08-15

    AC motors are steadily replacing DC motors in mining and mineral processing equipment, requiring less maintenance. The permanent magnet rotor, or the synchronous motor, has enabled Blador to introduce a line of cooling tower motors. Synchronous motors are soon likely to take over from the induction motor. 1 photo.

  16. Motor gasolines, summer 1979

    SciTech Connect

    Shelton, E.M.

    1980-02-01

    Analytical data for 2401 samples of motor gasoline, from service stations throughout the country, were collected and analyzed under agreement between the Bartlesville Energy Technology Center and the American Petroleum Institute. The samples represent the products of 48 companies, large and small, which manufacture and supply gasoline. These data are tabulated by groups according to brands (unlabeled) and grades for 17 marketing areas and districts into which the country is divided. A map included in this report, shows marketing areas, districts and sampling locations. The report also includes charts indicating the trends of selected properties of motor fuels since 1949. Twelve octane distribution percent charts for areas 1, 2, 3, and 4 for unleaded, regular, and premium grades of gasoline are presented in this report. The antiknock (octane) index ((R + M)/2) averages of gasoline sold in this country were 88.6, 89.3, and 93.7 unleaded, regular, and premium grades of gasolines, respectively.

  17. Motor gasolines, summer 1983

    SciTech Connect

    Shelton, E.M.

    1984-02-01

    The samples were collected from service stations throughout the country and were analyzed in the laboratories of various refiners, motor manufacturers, chemical companies, and research institutes. The analytical data for 1583 samples of motor gasoline, were submitted to the National Institute for Petroleum and Energy Research, Bartlesville, Oklahoma for study, necessary calculations, and compilation under a cooperative agreement between the National Institute for Petroleum and Energy Research (NIPER) and the American Petroleum Institute (API). They represent the products of 48 companies, large and small, which manufacture and supply gasoline. These data are tabulated by groups according to brands (unlabeled) and grades for 17 marketing districts into which the country is divided. A map included in this report, shows marketing areas, districts and sampling locations. The report also includes charts indicating the trends of selected properties of motor fuels since 1959. Sixteen octane distribution percent charts for areas 1, 2, 3, and 4 for unleaded antiknock index (R+M)/2 below 90.0, unleaded antiknock index (R+M)/2 90.0 and above, and leaded antiknock index (R+M)/2 below 93.0 grades of gasoline are presented in this report. The antiknock (octane) index (R+M)/2 averages of gasoline sold in this country were 87.5 for unleaded below 90.0, 91.4 for unleaded 90.0 and above, and 89.0 for leaded below 93.0 grades of gasoline. 16 figures, 5 tables.

  18. Motor gasolines, summer 1980

    SciTech Connect

    Shelton, E.M.

    1981-02-01

    Analytical data for 2062 samples of motor gasoline were collected from service stations throughout the country and were analyzed in the laboratories of various refiners, motor manufacturers, and chemical companies. The data were submitted to the Bartlesville Energy Technology Center for study, necessary calculations, and compilation under a cooperative agreement between the Bartlesville Energy Technology Center (BETC) and the American Petroleum Institute (API). The samples represent the products of 48 companies, large and small, which manufacture and supply gasoline. These data are tabulated by groups according to brands (unlabeled) and grades for 17 marketing districts into which the country is divided. A map included in this report, shows marketing areas, districts and sampling locations. The report also includes charts indicating the trends of selected properties of motor fuels since 1949. Twelve octane distribution percent charts for areas 1, 2, 3, and 4 for unleaded, regular, and premium grades of gasoline are presented in this report. The anitknock (octane) index ((R + M)/2) averages of gasolines sold in this country were 87.8 for the unleaded below 90.0, 91.6 for the unleaded 90.0 and above, 88.9 for the regular, and 92.8 for the premium grades of gasoline.

  19. Motor gasolines, Summer 1982

    SciTech Connect

    Shelton, E.M.

    1983-03-01

    The samples were collected from service stations throughout the country and were analyzed in the laboratories of various refiners, motor manufacturers, and chemical companies. The analytical data for 796 samples of motor gasoline, were submitted to the Bartlesville Energy Technology Center for study, necessary calculations, and compilation under a cooperative agreement between the Bartlesville Energy Technology Center (BETC) and the American Petroleum Institute (API). They represent the products of 22 companies, large and small, which manufacture and supply gasoline. These data are tabulated by groups according to brands (unlabeled) and grades for 17 marketing districts into which the country is divided. A map included in this report, shows marketing areas, districts and sampling locations. The report also includes charts indicating the trends of selected properties of motor fuels since 1959. Sixteen octane distribution percent charts for areas 1, 2, 3, and 4 for unleaded antiknock index (R + M)/2 below 90.0, unleaded antiknock index (R + M)/2 90.0 and above, leaded antiknock index (R + M)/2 below 93.0, and leaded antiknock index (R + M)/2 93.0 and above grades of gasoline are presented in this report. The antiknock (octane) index (R + M)/2 averages of gasoline sold in this country were 87.3 for unleaded below 90.0, 91.7 for unleaded 90.0 and above, 89.0 for leaded below 93.0, and no data in this report for 93.0 and above grades of leaded gasoline.

  20. Motor Fuel Excise Taxes

    SciTech Connect

    2015-09-01

    A new report from the National Renewable Energy Laboratory (NREL) explores the role of alternative fuels and energy efficient vehicles in motor fuel taxes. Throughout the United States, it is common practice for federal, state, and local governments to tax motor fuels on a per gallon basis to fund construction and maintenance of our transportation infrastructure. In recent years, however, expenses have outpaced revenues creating substantial funding shortfalls that have required supplemental funding sources. While rising infrastructure costs and the decreasing purchasing power of the gas tax are significant factors contributing to the shortfall, the increased use of alternative fuels and more stringent fuel economy standards are also exacerbating revenue shortfalls. The current dynamic places vehicle efficiency and petroleum use reduction polices at direct odds with policies promoting robust transportation infrastructure. Understanding the energy, transportation, and environmental tradeoffs of motor fuel tax policies can be complicated, but recent experiences at the state level are helping policymakers align their energy and environmental priorities with highway funding requirements.

  1. Total Crude by Pipeline

    Energy Information Administration (EIA) (indexed site)

    Product: Total Crude by All Transport Methods Domestic Crude by All Transport Methods Foreign Crude by All Transport Methods Total Crude by Pipeline Domestic Crude by Pipeline Foreign Crude by Pipeline Total Crude by Tanker Domestic Crude by Tanker Foreign Crude by Tanker Total Crude by Barge Domestic Crude by Barge Foreign Crude by Barge Total Crude by Tank Cars (Rail) Domestic Crude by Tank Cars (Rail) Foreign Crude by Tank Cars (Rail) Total Crude by Trucks Domestic Crude by Trucks Foreign

  2. ,"Total Natural Gas Consumption

    Energy Information Administration (EIA) (indexed site)

    Gas Consumption (billion cubic feet)",,,,,"Natural Gas Energy Intensity (cubic feetsquare foot)" ,"Total ","Space Heating","Water Heating","Cook- ing","Other","Total ","Space...

  3. General Motors Perspective

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Motors Perspective Dr.-Ing. Wolfgang Oelerich Adam Opel AG GM Alternative Propulsion Center Europe Compressed & Cryo- Compressed Hydrogen Storage Workshop 14 th / 15 th February 2011 Washington DC Chevrolet Equinox as Part of GM's Global "Project Driveway" Power: 73 kW Acceleration (0-100 km/h): 12 s Top speed: 160 km/h Fuel: 4.2 kg Compressed Hydrogen Gas (70 MPa) in three Type 4 filament wound carbon fiber composite vessels Range: 320 km Over 2.5 million km (1.5 million miles)

  4. Motor Gasoline Assessment, Spring 1997

    Reports and Publications

    1997-01-01

    Analyzes the factors causing the run up of motor gasoline prices during spring 1996 and the different market conditions during spring 1997 that caused prices to decline.

  5. Mission Motors | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    External resources Los Angeles Times Auto Blog Autobloggreen Treehugger.com Autopia (Wired) References "Mission Motors: Contact" Retrieved from "http:en.openei.orgw...

  6. Die Casting Copper Motor Rotors

    Energy.gov [DOE]

    Though it conducts electricity less efficiently than copper, aluminum is the industry’s preferred fabrication material in electric induction motor rotors. Traditional tool steel casting molds...

  7. How to Build a Motor

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Motor Sign In About | Careers | Contact | Investors | bpa.gov Search News & Us Expand News & Us Projects & Initiatives Expand Projects & Initiatives Finance & Rates Expand...

  8. Motor Gasoline Market Spring 2007 and Implications for Spring 2008

    Reports and Publications

    2008-01-01

    This report focuses on the major factors that drove the widening difference between wholesale gasoline and crude oil prices in 2007 and explores how those factors might impact gasoline prices in 2008.

  9. When to Purchase Premium Efficiency Motors | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    When to Purchase Premium Efficiency Motors Consider premium efficiency motors for new motor procurements when specifying motor-driven equipment, repairing or rewinding failed ...

  10. Motor vehicle fuel economy, the forgotten HC control stragegy?

    SciTech Connect

    Deluchi, M.; Wang, Quanlu; Greene, D.L.

    1992-06-01

    Emissions of hydrocarbons from motor vehicles are recognized as major contributors to ozone pollution in urban areas. Petroleum-based motor fuels contain volatile organic compounds (VOC) which, together with oxides of nitrogen, promote the formation of ozone in the troposphere via complex photochemical reactions. VOC emissions from the tailpipe and evaporation from the fuel and engine systems of highway vehicles are believed to account for about 40% of total VOC emissions in any region. But motor fuels also generate emissions throughout the fuel cycle, from crude oil production to refining, storage, transportation, and handling, that can make significant contributions to the total inventory of VOC emissions. Many of these sources of emissions are directly related to the quantity of fuel produced and handled throughout the fuel cycle. It is, therefore, reasonable to expect that a reduction in total fuel throughput might result in a reduction of VOC emissions. In particular, reducing vehicle fuel consumption by increasing vehicle fuel economy should reduce total fuel throughput, thereby cutting total emissions of VOCS. In this report we identify the sources of VOC emissions throughout the motor fuel cycle, quantify them to the extent possible, and describe their dependence on automobile and light truck fuel economy.

  11. Alternative Motor Fuel Use Model

    Energy Science and Technology Software Center

    1992-11-16

    AMFU is a tool for the analysis and prediction of motor fuel use by highway vehicles. The model advances the art of vehicle stock modeling by including a representation of the choice of motor fuel for flexible and dual fuel vehicles.

  12. Motor-operated gearbox efficiency

    SciTech Connect

    DeWall, K.G.; Watkins, J.C.; Bramwell, D.; Weidenhamer, G.H.

    1996-12-01

    Researchers at the Idaho National Engineering Laboratory recently conducted tests investigating the operating efficiency of the power train (gearbox) in motor-operators typically used in nuclear power plants to power motor-operated valves. Actual efficiency ratios were determined from in-line measurements of electric motor torque (input to the operator gearbox) and valve stem torque (output from the gearbox) while the operators were subjected to gradually increasing loads until the electric motor stalled. The testing included parametric studies under reduced voltage and elevated temperature conditions. As part of the analysis of the results, the authors compared efficiency values determined from testing to the values published by the operator manufacturer and typically used by the industry in calculations for estimating motor-operator capabilities. The operators they tested under load ran at efficiencies lower than the running efficiency (typically 50%) published by the operator manufacturer.

  13. Piezoelectric wave motor

    DOEpatents

    Yerganian, Simon Scott

    2003-02-11

    A piezoelectric motor having a stator in which piezoelectric elements are contained in slots formed in the stator transverse to the desired wave motion. When an electric field is imposed on the elements, deformation of the elements imposes a force perpendicular to the sides of the slot, deforming the stator. Appropriate frequency and phase-shifting of the electric field will produce a wave in the stator and motion in a rotor. In a preferred aspect, the piezoelectric elements are configured so that deformation of the elements in the direction of an imposed electric field, generally referred to as the d.sub.33 direction, is utilized to produce wave motion in the stator. In a further aspect, the elements are compressed into the slots so as to minimize tensile stresses on the elements in use.

  14. Piezoelectric wave motor

    DOEpatents

    Yerganian, Simon Scott

    2001-07-17

    A piezoelectric motor having a stator in which piezoelectric elements are contained in slots formed in the stator transverse to the desired wave motion. When an electric field is imposed on the elements, deformation of the elements imposes a force perpendicular to the sides of the slot, deforming the stator. Appropriate frequency and phase shifting of the electric field will produce a wave in the stator and motion in a rotor. In a preferred aspect, the piezoelectric elements are configured so that deformation of the elements in direction of an imposed electric field, generally referred to as the d.sub.33 direction, is utilized to produce wave motion in the stator. In a further aspect, the elements are compressed into the slots so as to minimize tensile stresses on the elements in use.

  15. EcoMotors | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search Name: EcoMotors Place: California Zip: 94952 Product: EcoMotors is a family-controlled developer of green cars, Diesels and Hybrids. References: EcoMotors1 This...

  16. NREL: Transportation Research - Electric Motor Thermal Management

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Electric Motor Thermal Management A photo of a piece of laboratory testing equipment. NREL research in electric motors is helping to improve the performance and reliability of electric-drive vehicles. Photo by Kevin Bennion, NREL NREL's electric motor thermal management research generates experimental data and simulation processes for the modeling, analysis, design, and construction of new electric motors. Electric motor thermal management involves a multifaceted interaction of motor operating

  17. The Importance of Motor Shaft Alignment

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    The Importance of Motor Shaft Alignment The objective of optimized shaft alignment is to ... While misalignment has no measurable effect on motor effciency, correct shaft alignment ...

  18. MotorMaster+ International | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    volt amps (kVA) readings Edit and modify motor rewind efficiency loss defaults Determine ... a National Electrical Manufacturers Association (NEMA) Premium efficiency motor. ...

  19. Renault Samsung Motors | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Renault Samsung Motors Jump to: navigation, search Name: Renault Samsung Motors Place: Korea (Republic) Sector: Solar Product: Korea-based automobile manufacturer. The firm is also...

  20. Magnetically Coupled Adjustable Speed Motor Drives

    SciTech Connect

    Not Available

    2008-07-01

    This is one in a series of tip sheets to help manufacturers optimize their industrial motor and motor-driven systems.

  1. Turn Motors Off When Not in Use

    SciTech Connect

    Not Available

    2008-07-01

    This is one in a series of tip sheets to help manufacturers optimize their industrial motor and motor-driven systems.

  2. Michigan: General Motors Optimizes Engine Valve Technology |...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Michigan: General Motors Optimizes Engine Valve Technology Michigan: General Motors Optimizes Engine Valve Technology November 8, 2013 - 12:00am Addthis An EERE-supported effort to ...

  3. Magnetically Coupled Adjustable Speed Motor Drives

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Because of energy effciency and control capabilities, VFD and motor combinations have replaced constant speed motors in virtually every type of industrial plant. Although VFDs have ...

  4. Continuous Energy Improvement in Motor Driven Systems

    Energy.gov [DOE] (indexed site)

    Continuous Energy Improvement in Motor Driven Systems A GUIDEBOOK FOR INDUSTRY Continuous Energy Improvement in Motor Driven Systems DISCLAIMER This publication was prepared by the ...

  5. Trexa Motor Corporation TMC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Trexa Motor Corporation TMC Jump to: navigation, search Name: Trexa Motor Corporation (TMC) Place: Los Angeles, California Sector: Vehicles Product: Los Angeles - based subsidiary...

  6. Submersible canned motor mixer pump

    DOEpatents

    Guardiani, Richard F.; Pollick, Richard D.

    1997-01-01

    A mixer pump used in a waste tank for mobilizing high-level radioactive liquid waste having a column assembly containing power cables, a motor housing with electric motor means which includes a stator can of a stator assembly and a rotor can of a rotor assembly, and an impeller assembly with an impeller connected to a shaft of the rotor assembly. The column assembly locates the motor housing with the electric motor means adjacent to the impeller which creates an hydraulic head, and which forces the liquid waste into the motor housing to cool the electric motor means and to lubricate radial and thrust bearing assemblies. Hard-on-hard bearing surfaces of the bearing assemblies and a ring assembly between the impeller and electric motor means act to grind down large particles in the liquid waste flow. These larger particles are received in slots in the static bearing members of the radial bearing assemblies. Only solid waste particles smaller than the clearances in the system can pass therethrough, thereby resisting damage to and the interruption of the operation of the mixer pump.

  7. Submersible canned motor mixer pump

    DOEpatents

    Guardiani, R.F.; Pollick, R.D.

    1997-10-07

    A mixer pump is described used in a waste tank for mobilizing high-level radioactive liquid waste having a column assembly containing power cables, a motor housing with electric motor means which includes a stator can of a stator assembly and a rotor can of a rotor assembly, and an impeller assembly with an impeller connected to a shaft of the rotor assembly. The column assembly locates the motor housing with the electric motor means adjacent to the impeller which creates an hydraulic head, and which forces the liquid waste into the motor housing to cool the electric motor means and to lubricate radial and thrust bearing assemblies. Hard-on-hard bearing surfaces of the bearing assemblies and a ring assembly between the impeller and electric motor means act to grind down large particles in the liquid waste flow. These larger particles are received in slots in the static bearing members of the radial bearing assemblies. Only solid waste particles smaller than the clearances in the system can pass there through, thereby resisting damage to and the interruption of the operation of the mixer pump. 10 figs.

  8. Submersible canned motor transfer pump

    DOEpatents

    Guardiani, Richard F.; Pollick, Richard D.; Nyilas, Charles P.; Denmeade, Timothy J.

    1997-01-01

    A transfer pump used in a waste tank for transferring high-level radioactive liquid waste from a waste tank and having a column assembly, a canned electric motor means, and an impeller assembly with an upper impeller and a lower impeller connected to a shaft of a rotor assembly. The column assembly locates a motor housing with the electric motor means adjacent to the impeller assembly which creates an hydraulic head, and which forces the liquid waste, into the motor housing to cool the electric motor means and to cool and/or lubricate the radial and thrust bearing assemblies. Hard-on-hard bearing surfaces of the bearing assemblies and a ring assembly between the upper impeller and electric motor means grind large particles in the liquid waste flow. Slots in the static bearing member of the radial bearing assemblies further grind down the solid waste particles so that only particles smaller than the clearances in the system can pass therethrough, thereby resisting damage to and the interruption of the operation of the transfer pump. The column assembly is modular so that sections can be easily assembled, disassembled and/or removed. A second embodiment employs a stator jacket which provides an alternate means for cooling the electric motor means and lubricating and/or cooling the bearing assemblies, and a third embodiment employs a variable level suction device which allows liquid waste to be drawn into the transfer pump from varying and discrete levels in the waste tank.

  9. State observer for synchronous motors

    DOEpatents

    Lang, Jeffrey H.

    1994-03-22

    A state observer driven by measurements of phase voltages and currents for estimating the angular orientation of a rotor of a synchronous motor such as a variable reluctance motor (VRM). Phase voltages and currents are detected and serve as inputs to a state observer. The state observer includes a mathematical model of the electromechanical operation of the synchronous motor. The characteristics of the state observer are selected so that the observer estimates converge to the actual rotor angular orientation and velocity, winding phase flux linkages or currents.

  10. ,"Total Fuel Oil Expenditures

    Energy Information Administration (EIA) (indexed site)

    . Fuel Oil Expenditures by Census Region for Non-Mall Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per...

  11. ,"Total Fuel Oil Consumption

    Energy Information Administration (EIA) (indexed site)

    0. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for Non-Mall Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  12. ,"Total Fuel Oil Expenditures

    Energy Information Administration (EIA) (indexed site)

    4. Fuel Oil Expenditures by Census Region, 1999" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per Square Foot"...

  13. Total Space Heat-

    Gasoline and Diesel Fuel Update

    Commercial Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration...

  14. ,"Total Fuel Oil Expenditures

    Energy Information Administration (EIA) (indexed site)

    A. Fuel Oil Expenditures by Census Region for All Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per...

  15. ,"Total Fuel Oil Consumption

    Energy Information Administration (EIA) (indexed site)

    A. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  16. Total Space Heat-

    Gasoline and Diesel Fuel Update

    Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

  17. Total Space Heat-

    Gasoline and Diesel Fuel Update

    Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings*...

  18. Turn Motors Off When Not in Use - Motor Tip Sheet #10

    SciTech Connect

    2008-07-01

    Motors use no energy when turned off. Reducing motor operating time by just 10% usually saves more energy than replacing a standard efficiency motor with a NEMA Premium® efficiency motor. In fact, given that 97% of the life cycle cost of purchasing and operating a motor is energy-related, turning a motor off 10% of the time could reduce energy costs enough to purchase three new motors.

  19. Tesla Motors | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    to hold an initial public offering soon.2 References Tesla Motors http:www.reuters.comarticleGCA-GreenBusinessidUSTRE5AJ41M20091120?rpc64&sptrue Retrieved from...

  20. Parallel Total Energy

    Energy Science and Technology Software Center

    2004-10-21

    This is a total energy electronic structure code using Local Density Approximation (LDA) of the density funtional theory. It uses the plane wave as the wave function basis set. It can sue both the norm conserving pseudopotentials and the ultra soft pseudopotentials. It can relax the atomic positions according to the total energy. It is a parallel code using MP1.

  1. Segmented rail linear induction motor

    DOEpatents

    Cowan, M. Jr.; Marder, B.M.

    1996-09-03

    A segmented rail linear induction motor has a segmented rail consisting of a plurality of nonferrous electrically conductive segments aligned along a guideway. The motor further includes a carriage including at least one pair of opposed coils fastened to the carriage for moving the carriage. A power source applies an electric current to the coils to induce currents in the conductive surfaces to repel the coils from adjacent edges of the conductive surfaces. 6 figs.

  2. Segmented rail linear induction motor

    DOEpatents

    Cowan, Jr., Maynard; Marder, Barry M.

    1996-01-01

    A segmented rail linear induction motor has a segmented rail consisting of a plurality of nonferrous electrically conductive segments aligned along a guideway. The motor further includes a carriage including at least one pair of opposed coils fastened to the carriage for moving the carriage. A power source applies an electric current to the coils to induce currents in the conductive surfaces to repel the coils from adjacent edges of the conductive surfaces.

  3. Direct drive field actuator motors

    DOEpatents

    Grahn, Allen R.

    1998-01-01

    A positive-drive field actuator motor including a stator carrying at least one field actuator which changes in dimension responsive to application of an energy field, and at least one drive shoe movable by the dimensional changes of the field actuator to contact and move a rotor element with respect to the stator. Various embodiments of the motor are disclosed, and the rotor element may be moved linearly or arcuately.

  4. Direct drive field actuator motors

    DOEpatents

    Grahn, A.R.

    1998-03-10

    A positive-drive field actuator motor is described which includes a stator carrying at least one field actuator which changes in dimension responsive to application of an energy field, and at least one drive shoe movable by the dimensional changes of the field actuator to contact and move a rotor element with respect to the stator. Various embodiments of the motor are disclosed, and the rotor element may be moved linearly or arcuately. 62 figs.

  5. Electric motor for laser-mechanical drilling

    SciTech Connect

    Grubb, Daryl L.; Faircloth, Brian O.; Zediker, Mark S.

    2015-07-07

    A high power laser drilling system utilizing an electric motor laser bottom hole assembly. A high power laser beam travels within the electric motor for advancing a borehole. High power laser drilling system includes a down hole electrical motor having a hollow rotor for conveying a high power laser beam through the electrical motor.

  6. Summary Max Total Units

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Summary Max Total Units *If All Splits, No Rack Units **If Only FW, AC Splits 1000 52 28 28 2000 87 59 35 3000 61 33 15 4000 61 33 15 Totals 261 153 93 ***Costs $1,957,500.00 $1,147,500.00 $697,500.00 Notes: added several refrigerants removed bins from analysis removed R-22 from list 1000lb, no Glycol, CO2 or ammonia Seawater R-404A only * includes seawater units ** no seawater units included *** Costs = (total units) X (estimate of $7500 per unit) 1000lb, air cooled split systems, fresh water

  7. Motor Repair Tech Brief | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Repair Tech Brief Motor Repair Tech Brief This Tech Brief answers: Why do motors fail? When should you repair instead of replace? And how can reliability and efficiency be assured in a repair? Motor Repair Tech Brief (March 2000) (941.96 KB) More Documents & Publications Extend the Operating Life of Your Motor Service Center Evaluation Guide Premium Efficiency Motor Selection and Application Guide - A Handbook for Industry

  8. Total Space Heat-

    Gasoline and Diesel Fuel Update

    Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other...

  9. ARM - Measurement - Total carbon

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    carbon ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Total carbon The total concentration of carbon in all its organic and non-organic forms. Categories Atmospheric Carbon, Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including

  10. Submersible canned motor transfer pump

    DOEpatents

    Guardiani, R.F.; Pollick, R.D.; Nyilas, C.P.; Denmeade, T.J.

    1997-08-19

    A transfer pump is described which is used in a waste tank for transferring high-level radioactive liquid waste from a waste tank and having a column assembly, a canned electric motor means, and an impeller assembly with an upper impeller and a lower impeller connected to a shaft of a rotor assembly. The column assembly locates a motor housing with the electric motor means adjacent to the impeller assembly which creates an hydraulic head, and which forces the liquid waste, into the motor housing to cool the electric motor means and to cool and/or lubricate the radial and thrust bearing assemblies. Hard-on-hard bearing surfaces of the bearing assemblies and a ring assembly between the upper impeller and electric motor means grind large particles in the liquid waste flow. Slots in the static bearing member of the radial bearing assemblies further grind down the solid waste particles so that only particles smaller than the clearances in the system can pass there through, thereby resisting damage to and the interruption of the operation of the transfer pump. The column assembly is modular so that sections can be easily assembled, disassembled and/or removed. A second embodiment employs a stator jacket which provides an alternate means for cooling the electric motor means and lubricating and/or cooling the bearing assemblies, and a third embodiment employs a variable level suction device which allows liquid waste to be drawn into the transfer pump from varying and discrete levels in the waste tank. 17 figs.

  11. Improve Motor Operation at Off-Design Voltages - Motor Tip Sheet #9

    SciTech Connect

    2008-07-01

    Motors are designed to operate within +/- 10% of their nameplate rated voltages. When motors operate at conditions of over- or under-voltage, motor efficiency and other performance parameters are degraded.

  12. Three phase AC motor controller

    DOEpatents

    Vuckovich, Michael; Wright, Maynard K.; Burkett, John P.

    1984-03-20

    A motor controller for a three phase AC motor (10) which is adapted to operate bidirectionally from signals received either from a computer (30) or a manual control (32). The controller is comprised of digital logic circuit means which implement a forward and reverse command signal channel (27, 29) for the application of power through the forward and reverse power switching relays (16, 18, 20, 22). The digital logic elements are cross coupled to prevent activation of both channels simultaneously and each includes a plugging circuit (65, 67) for stopping the motor upon the removal of control signal applied to one of the two channels (27, 29) for a direction of rotation desired. Each plugging circuit (65, 67) includes a one-shot pulse signal generator (88, 102) which outputs a single pulse signal of predetermined pulsewidth which is adapted to inhibit further operation of the application of power in the channel which is being activated and to apply a reversal command signal to the other channel which provides a reversed phase application of power to the motor for a period defined by the pulse-width output of the one-shot signal generator to plug the motor (10) which will then be inoperative until another rotational command signal is applied to either of the two channels.

  13. Total DOE/NNSA

    National Nuclear Security Administration (NNSA)

    8 Actuals 2009 Actuals 2010 Actuals 2011 Actuals 2012 Actuals 2013 Actuals 2014 Actuals 2015 Actuals Total DOE/NNSA 4,385 4,151 4,240 4,862 5,154 5,476 7,170 7,593 Total non-NNSA 3,925 4,017 4,005 3,821 3,875 3,974 3,826 3765 Total Facility 8,310 8,168 8,245 8,683 9,029 9,450 10,996 11,358 non-NNSA includes DOE offices and Strategic Parternship Projects (SPP) employees NNSA M&O Employee Reporting

  14. Homopolar motor with dual rotors

    DOEpatents

    Hsu, J.S.

    1998-12-01

    A homopolar motor has a field rotor mounted on a frame for rotation in a first rotational direction and for producing an electromagnetic field, and an armature rotor mounted for rotation on said frame within said electromagnetic field and in a second rotational direction counter to said first rotational direction of said field rotor. The two rotors are coupled through a 1:1 gearing mechanism, so as to travel at the same speed but in opposite directions. This doubles the output voltage and output power, as compared to a motor in which only the armature is rotated. Several embodiments are disclosed. 7 figs.

  15. Homopolar motor with dual rotors

    DOEpatents

    Hsu, John S.

    1998-01-01

    A homopolar motor (10) has a field rotor (15) mounted on a frame (11) for rotation in a first rotational direction and for producing an electromagnetic field, and an armature rotor (17) mounted for rotation on said frame (11) within said electromagnetic field and in a second rotational direction counter to said first rotational direction of said field rotor (15). The two rotors (15, 17) are coupled through a 1:1 gearing mechanism (19), so as to travel at the same speed but in opposite directions. This doubles the output voltage and output power, as compared to a motor in which only the armature is rotated. Several embodiments are disclosed.

  16. Thermoelectric generator for motor vehicle

    DOEpatents

    Bass, John C.

    1997-04-29

    A thermoelectric generator for producing electric power for a motor vehicle from the heat of the exhaust gasses produced by the engine of the motor vehicle. The exhaust gasses pass through a finned heat transfer support structure which has seat positions on its outside surface for the positioning of thermoelectric modules. A good contact cylinder provides a framework from which a spring force can be applied to the thermoelectric modules to hold them in good contact on their seats on the surface of the heat transfer support structure.

  17. Workplace Charging Challenge Partner: Ford Motor Company | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Ford Motor Company Workplace Charging Challenge Partner: Ford Motor Company Workplace Charging Challenge Partner: Ford Motor Company Joined the Challenge: January 2013 ...

  18. HMAX ®:Active Energy Control for Electric Motors | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    HMAX :Active Energy Control for Electric Motors HMAX :Active Energy Control for Electric Motors Real-Time Sensing and Control of Electric Motor Operation Optimizes Energy ...

  19. Selected Bibliography on Electric Motor Repair | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Selected Bibliography on Electric Motor Repair Selected Bibliography on Electric Motor Repair The following series of repair documents related to electric motors were produced by...

  20. VIA Motors electric vehicle platform | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    VIA Motors electric vehicle platform VIA Motors electric vehicle platform extended range electric vehicle technologies VIA Motors electric vehicle platform (1.1 MB) More Documents ...

  1. IEMDC IN-LINE ELECTRIC MOTOR DRIVEN COMPRESSOR

    SciTech Connect

    Michael J. Crowley; Prem N. Bansal

    2004-10-01

    This report contains the final project summary and deliverables required by the award for the development of an In-line Electric Motor Driven Compressor (IEMDC). Extensive work was undertaken during the course of the project to develop the motor and the compressor section of the IEMDC unit. Multiple design iterations were performed to design an electric motor for operation in a natural gas environment and to successfully integrate the motor with a compressor. During the project execution, many challenges were successfully overcome in order to achieve the project goals and to maintain the system design integrity. Some of the challenges included limiting the magnitude of the compressor aerodynamic loading for appropriate sizing of the magnetic bearings, achieving a compact motor rotor size to meet the rotor dynamic requirements of API standards, devising a motor cooling scheme using high pressure natural gas, minimizing the impact of cooling on system efficiency, and balancing the system thrust loads for the magnetic thrust bearing. Design methods that were used on the project included validated state-of-the-art techniques such as finite element analysis and computational fluid dynamics along with the combined expertise of both Curtiss-Wright Electro-Mechanical Corporation and Dresser-Rand Company. One of the most significant areas of work undertaken on the project was the development of the unit configuration for the system. Determining the configuration of the unit was a significant step in achieving integration of the electric motor into a totally enclosed compression system. Product review of the IEMDC unit configuration was performed during the course of the development process; this led to an alternate design configuration. The alternate configuration is a modular design with the electric motor and compressor section each being primarily contained in its own pressure containing case. This new concept resolved the previous conflict between the aerodynamic flow

  2. 21 briefing pages total

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    briefing pages total p. 1 Reservist Differential Briefing U.S. Office of Personnel Management December 11, 2009 p. 2 Agenda - Introduction of Speakers - Background - References/Tools - Overview of Reservist Differential Authority - Qualifying Active Duty Service and Military Orders - Understanding Military Leave and Earnings Statements p. 3 Background 5 U.S.C. 5538 (Section 751 of the Omnibus Appropriations Act, 2009, March 11, 2009) (Public Law 111-8) Law requires OPM to consult with DOD Law

  3. Buying an Energy-Efficient Electric Motor

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    BUYING AN ENERGY-EFFICIENT ELECTRIC MOTOR Efficiency is an important factor to consider when buying or rewinding an electric motor. This fact sheet shows you how to obtain the most ...

  4. Honda Motor Co Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Motor Co Ltd Jump to: navigation, search Name: Honda Motor Co Ltd Place: Tokyo, Tokyo, Japan Zip: 107-8556 Sector: Vehicles Product: Leading global car manufacturer which began...

  5. Turn Motors Off When Not in Use

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... Each start is one factor in the life expectancy and reliability of the motor, and some ... Keep the motor clean so airfow and heat transfer are not impeded * Allow suffcient rest ...

  6. Training: Motor Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Motor Systems Training: Motor Systems April 16, 2014 - 6:33pm Addthis Learn about the diverse training sessions offered. The courses are taught by highly qualified instructors who ...

  7. Energy Management for Motor-Driven Systems

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ENERGY Energy Management for Motor Driven Systems The energy savings network-plug into it Energy Management for Motor-Driven Systems Prepared by Gilbert A. McCoy and John G. ...

  8. Frequency modulation drive for a piezoelectric motor

    DOEpatents

    Mittas, Anthony

    2001-01-01

    A piezoelectric motor has peak performance at a specific frequency f.sub.1 that may vary over a range of frequencies. A drive system is disclosed for operating such a motor at peak performance without feedback. The drive system consists of the motor and an ac source connected to power the motor, the ac source repeatedly generating a frequency over a range from f.sub.1 -.DELTA.x to f.sub.1 +.DELTA.y.

  9. Selected Bibliography on Electric Motor Repair

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Selected Bibliography on Electric Motor Repair Acknowledgements The following series of Repair Documents-The Service Center Evaluation Guide, Selected Bibliography on Electric Motor Repair, Model Repair Specifications for Low Voltage Motors, and Motor Repair Tech Brief- were produced by the U.S. Department of Energy's Office of Industrial Technologies (OIT) with input from trade associations, consulting companies, manufacturers, non-profit corporations, and others. OIT would like to thank the

  10. Determining Electric Motor Load and Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE)

    To compare the operating costs of an existing standard motor with an appropriately-sized energy-efficient replacement, you need to determine operating hours, efficiency improvement values, and load. Part-load is a term used to describe the actual load served by the motor as compared to the rated full-load capability of the motor. Motor part-loads may be estimated through using input power, amperage, or speed measurements. This fact sheet briefly discusses several load estimation techniques.

  11. Motorized control for mirror mount apparatus

    DOEpatents

    Cutburth, Ronald W.

    1989-01-01

    A motorized control and automatic braking system for adjusting mirror mount apparatus is disclosed. The motor control includes a planetary gear arrangement to provide improved pitch adjustment capability while permitting a small packaged design. The motor control for mirror mount adjustment is suitable for laser beam propagation applications. The brake is a system of constant contact, floating detents which engage the planetary gear at selected between-teeth increments to stop rotation instantaneously when the drive motor stops.

  12. Energy Management for Motor Driven Systems

    SciTech Connect

    2000-02-01

    This document assists in establishing an energy management plan, identifying energy savings opportunities, and designing a motor improvement plan.

  13. EIS-0039: Motor Gasoline Deregulation and the Gasoline Tilt

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Economic Regulatory Administration developed this EIS to evaluate the environmental impacts, including social and economic impacts, that may result from either of two proposed regulatory changes: (1) the exemption of motor gasoline from the Department of Energy's Mandatory Petroleum Price and Allocation Regulations, and (2) the adoption of the gasoline tilt, a proposed regulation that would allow refiners to recover an additional amount of their total increased costs on gasoline.

  14. Compatibility of refrigerants and lubricants with motor materials under retrofit conditions. Final report, Volume IV - pictures

    SciTech Connect

    Doerr, R.G.; Waite, T.D.

    1996-10-01

    Compatibility tests were conducted on motor materials to determine if exposure to the original refrigerant/mineral oil would affect compatibility of the motor materials after retrofit to the alternative refrigerant/lubricant. The motor materials were exposed at elevated temperature to the original refrigerant and mineral oil for 500 hours, followed by exposure to the alternative refrigerant and lubricant for 500 hours. Measurements were also taken after 168 and 336 hours. As a control, some samples were exposed to the original refrigerant/mineral oil for a total of 1000 hours.

  15. Method and apparatus for monitoring motor operated valve motor output torque and power at valve seating

    DOEpatents

    Casada, D.A.

    1996-01-16

    A method and apparatus are provided for monitoring a motor operated valve during the brief period when the valve seats and the torque switch trips to deenergize the valve motor. The method uses voltage measurements on the load side of a deenergizing switch that opens to deenergize the motor to determine, among other things, final motor rotational speed and the decelerating torque at motor deenergization. 14 figs.

  16. Method and apparatus for monitoring motor operated valve motor output torque and power at valve seating

    DOEpatents

    Casada, Donald A.

    1996-01-01

    A method and apparatus are provided for monitoring a motor operated valve during the brief period when the valve seats and the torque switch trips to deenergize the valve motor. The method uses voltage measurements on the load side of a deenergizing switch that opens to deenergize the motor to determine, among other things, final motor rotational speed and the decelerating torque at motor deenergization.

  17. MotorMaster+ Fact Sheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fact Sheet MotorMaster+ Fact Sheet Fact sheet describing how industrial plants can improve their motor system performance using AMO's MotorMaster+ software tool. Fact Sheet (1.24 MB) More Documents & Publications MotorMaster+ Software Tool Brochure MotorMaster+ International Fact Sheet MotorMaster+ User Manual

  18. MotorMaster+ International Fact Sheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    International Fact Sheet MotorMaster+ International Fact Sheet This fact sheet describes how industrial plants can improve their motor system performance for a broader range of motors with AMO's MotorMaster+ International software tool. MotorMaster+ International Fact Sheet (984.17 KB) More Documents & Publications MotorMaster+ Software Tool Brochure

  19. MotorMaster+ User Manual | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    User Manual MotorMaster+ User Manual This user manual is designed to help users understand the MotorMaster+ software tool. MotorMaster+ User Manual (1.92 MB) More Documents & Publications MotorMaster+ International Fact Sheet Replacing an Oversized and Underloaded Electric Motor MotorMaster+ Software Tool Brochure

  20. Multi motor controller MMC32: User manual

    SciTech Connect

    Feng-Berman, S.K.; Siddons, D.P.

    1993-02-01

    The MMC32 is a versatile stepping motor controller for systems with many motors. The system as currently configured can control up to 32 motors, with all motors capable of full speed operation concurrently in different pulse modes. Each individual motor`s position can be monitored in an open loop, a closed loop, or an encoded loop, even when the motor is moving. There are 2 limit switch inputs for each motor, and a further input to accept a reference position marker. The motors can be controlled via a front panel keyboard with display, or by a host computer over an IEEE-488 interface. Both methods can be used together if required. The details for manual operation are in Chapter 4, and for remote computer control are in Chapter 5. The manual operation is controlled by the front panel keypad with interactive menu display. There is an ``emergency stop`` key on the front panel keypad to abort the motion of all motors without losing track of the motors` position.

  1. Reduced vibration motor winding arrangement

    DOEpatents

    Slavik, C.J.; Rhudy, R.G.; Bushman, R.E.

    1997-11-11

    An individual phase winding arrangement having a sixty electrical degree phase belt width for use with a three phase motor armature includes a delta connected phase winding portion and a wye connected phase winding portion. Both the delta and wye connected phase winding portions have a thirty electrical degree phase belt width. The delta and wye connected phase winding portions are each formed from a preselected number of individual coils each formed, in turn, from an unequal number of electrical conductor turns in the approximate ratio of {radical}3. The individual coils of the delta and wye connected phase winding portions may either be connected in series or parallel. This arrangement provides an armature winding for a three phase motor which retains the benefits of the widely known and utilized thirty degree phase belt concept, including improved mmf waveform and fundamental distribution factor, with consequent reduced vibrations and improved efficiency. 4 figs.

  2. Reduced vibration motor winding arrangement

    DOEpatents

    Slavik, Charles J.; Rhudy, Ralph G.; Bushman, Ralph E.

    1997-01-01

    An individual phase winding arrangement having a sixty electrical degree phase belt width for use with a three phase motor armature includes a delta connected phase winding portion and a wye connected phase winding portion. Both the delta and wye connected phase winding portions have a thirty electrical degree phase belt width. The delta and wye connected phase winding portions are each formed from a preselected number of individual coils each formed, in turn, from an unequal number of electrical conductor turns in the approximate ratio of .sqroot.3. The individual coils of the delta and wye connected phase winding portions may either be connected in series or parallel. This arrangement provides an armature winding for a three phase motor which retains the benefits of the widely known and utilized thirty degree phase belt concept, including improved mmf waveform and fundamental distribution factor, with consequent reduced vibrations and improved efficiency.

  3. Online Monitoring of Induction Motors

    SciTech Connect

    McJunkin, Timothy R.; Agarwal, Vivek; Lybeck, Nancy Jean

    2016-01-01

    The online monitoring of active components project, under the Advanced Instrumentation, Information, and Control Technologies Pathway of the Light Water Reactor Sustainability Program, researched diagnostic and prognostic models for alternating current induction motors (IM). Idaho National Laboratory (INL) worked with the Electric Power Research Institute (EPRI) to augment and revise the fault signatures previously implemented in the Asset Fault Signature Database of EPRI’s Fleet Wide Prognostic and Health Management (FW PHM) Suite software. Induction Motor diagnostic models were researched using the experimental data collected by Idaho State University. Prognostic models were explored in the set of literature and through a limited experiment with 40HP to seek the Remaining Useful Life Database of the FW PHM Suite.

  4. Method and apparatus for controlling multiple motors

    DOEpatents

    Jones, Rollin G.; Kortegaard, Bert L.; Jones, David F.

    1987-01-01

    A method and apparatus are provided for simultaneously controlling a plurality of stepper motors. Addressing circuitry generates address data for each motor in a periodic address sequence. Memory circuits respond to the address data for each motor by accessing a corresponding memory location containing a first operational data set functionally related to a direction for moving the motor, speed data, and rate of speed change. First logic circuits respond to the first data set to generate a motor step command. Second logic circuits respond to the command from the first logic circuits to generate a third data set for replacing the first data set in memory with a current operational motor status, which becomes the first data set when the motor is next addressed.

  5. Electrostatic generator/motor configurations

    DOEpatents

    Post, Richard F

    2014-02-04

    Electrostatic generators/motors designs are provided that generally may include a first cylindrical stator centered about a longitudinal axis; a second cylindrical stator centered about the axis, a first cylindrical rotor centered about the axis and located between the first cylindrical stator and the second cylindrical stator. The first cylindrical stator, the second cylindrical stator and the first cylindrical rotor may be concentrically aligned. A magnetic field having field lines about parallel with the longitudinal axis is provided.

  6. Hermetically sealed superconducting magnet motor

    DOEpatents

    DeVault, Robert C.; McConnell, Benjamin W.; Phillips, Benjamin A.

    1996-01-01

    A hermetically sealed superconducting magnet motor includes a rotor separated from a stator by either a radial gap, an axial gap, or a combined axial and radial gap. Dual conically shaped stators are used in one embodiment to levitate a disc-shaped rotor made of superconducting material within a conduit for moving cryogenic fluid. As the rotor is caused to rotate when the field stator is energized, the fluid is pumped through the conduit.

  7. Hermetically sealed superconducting magnet motor

    DOEpatents

    DeVault, R.C.; McConnell, B.W.; Phillips, B.A.

    1996-07-02

    A hermetically sealed superconducting magnet motor includes a rotor separated from a stator by either a radial gap, an axial gap, or a combined axial and radial gap. Dual conically shaped stators are used in one embodiment to levitate a disc-shaped rotor made of superconducting material within a conduit for moving cryogenic fluid. As the rotor is caused to rotate when the field stator is energized, the fluid is pumped through the conduit. 6 figs.

  8. INSPECTION MEANS FOR INDUCTION MOTORS

    DOEpatents

    Williams, A.W.

    1959-03-10

    an appartus is descripbe for inspcting electric motors and more expecially an appartus for detecting falty end rings inn suqirrel cage inductio motors while the motor is running. In its broua aspects, the mer would around ce of reference tedtor means also itons in the phase ition of the An electronic circuit for conversion of excess-3 binary coded serial decimal numbers to straight binary coded serial decimal numbers is reported. The converter of the invention in its basic form generally coded pulse words of a type having an algebraic sign digit followed serially by a plurality of decimal digits in order of decreasing significance preceding a y algebraic sign digit followed serially by a plurality of decimal digits in order of decreasing significance. A switching martix is coupled to said input circuit and is internally connected to produce serial straight binary coded pulse groups indicative of the excess-3 coded input. A stepping circuit is coupled to the switching matrix and to a synchronous counter having a plurality of x decimal digit and plurality of y decimal digit indicator terminals. The stepping circuit steps the counter in synchornism with the serial binary pulse group output from the switching matrix to successively produce pulses at corresponding ones of the x and y decimal digit indicator terminals. The combinations of straight binary coded pulse groups and corresponding decimal digit indicator signals so produced comprise a basic output suitable for application to a variety of output apparatus.

  9. System and method for motor speed estimation of an electric motor

    DOEpatents

    Lu, Bin; Yan, Ting; Luebke, Charles John; Sharma, Santosh Kumar

    2012-06-19

    A system and method for a motor management system includes a computer readable storage medium and a processing unit. The processing unit configured to determine a voltage value of a voltage input to an alternating current (AC) motor, determine a frequency value of at least one of a voltage input and a current input to the AC motor, determine a load value from the AC motor, and access a set of motor nameplate data, where the set of motor nameplate data includes a rated power, a rated speed, a rated frequency, and a rated voltage of the AC motor. The processing unit is also configured to estimate a motor speed based on the voltage value, the frequency value, the load value, and the set of nameplate data and also store the motor speed on the computer readable storage medium.

  10. Turn Motors Off When Not in Use | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Turn Motors Off When Not in Use Turn Motors Off When Not in Use Motors do not use energy when turned off. Reducing motor operating time by just 10% usually saves more energy than replacing a standard efficiency motor with a premium efficiency motor. This tip sheet discusses pros and cons of repeated motor starts and stops and provides suggested actions. Motor Systems Tip Sheet #10 Turn Motors Off When Not in Use (November 2012) (458 KB) More Documents & Publications Improving Motor and Drive

  11. Using the motor to monitor pump conditions

    SciTech Connect

    Casada, D.

    1996-12-01

    When the load of a mechanical device being driven by a motor changes, whether in response to changes in the overall process or changes in the performance of the driven device, the motor inherently responds. For induction motors, the current amplitude and phase angle change as the shaft load changes. By examining the details of these changes in amplitude and phase, load fluctuations of the driven device can be observed. The usefulness of the motor as a transducer to improve the understanding of devices with high torque fluctuations, such as positive displacement compressors and motor-operated valves, has been recognized and demonstrated for a number of years. On such devices as these, the spectrum of the motor current amplitude, phase, or power normally has certain characteristic peaks associated with various load components, such as the piston stroke or gear tooth meshing frequencies. Comparison and trending of the amplitudes of these peaks has been shown to provide some indication of their mechanical condition. For most centrifugal pumps, the load fluctuations are normally low in torque amplitude, and as a result, the motor experiences a correspondingly lower level of load fluctuation. However, both laboratory and field test data have demonstrated that the motor does provide insight into some important pump performance conditions, such as hydraulic stability and pump-to-motor alignment. Comparisons of other dynamic signals, such as vibration and pressure pulsation, to motor data for centrifugal pumps are provided. The effects of inadequate suction head, misalignment, mechanical and hydraulic unbalance on these signals are presented.

  12. Multi motor controller MMC32: User manual

    SciTech Connect

    Feng-Berman, S.K.; Siddons, D.P.

    1993-02-01

    The MMC32 is a versatile stepping motor controller for systems with many motors. The system as currently configured can control up to 32 motors, with all motors capable of full speed operation concurrently in different pulse modes. Each individual motor's position can be monitored in an open loop, a closed loop, or an encoded loop, even when the motor is moving. There are 2 limit switch inputs for each motor, and a further input to accept a reference position marker. The motors can be controlled via a front panel keyboard with display, or by a host computer over an IEEE-488 interface. Both methods can be used together if required. The details for manual operation are in Chapter 4, and for remote computer control are in Chapter 5. The manual operation is controlled by the front panel keypad with interactive menu display. There is an emergency stop'' key on the front panel keypad to abort the motion of all motors without losing track of the motors' position.

  13. Method for assessing in-service motor efficiency and in-service motor/load efficiency

    DOEpatents

    Kueck, John D.; Otaduy, Pedro J.

    1997-01-01

    A method and apparatus for assessing the efficiency of an in-service motor. The operating characteristics of the in-service motor are remotely measured. The operating characteristics are then applied to an equivalent circuit for electrical motors. Finally the equivalent circuit is evaluated to determine the performance characteristics of said in-service motor. Based upon the evaluation an individual is able to determine the rotor speed, power output, efficiency, and toque of the in-service motor. Additionally, an individual is able to confirm the calculations by comparing measured values with values obtained as a result of the motor equivalent circuit evaluation.

  14. Replacing an Oversized and Underloaded Electric Motor | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Replacing an Oversized and Underloaded Electric Motor Replacing an Oversized and Underloaded Electric Motor This fact sheet will assist in decisions regarding replacement of over-sized and under-loaded motors. It includes a discussion of how the MotorMaster+ software can be used to conduct motor replacement analyses. Replacing an Oversized and Underloaded Electric Motor (September 1996) (161.65 KB) More Documents & Publications MotorMaster+ User Manual Buying an Energy-Efficient

  15. Determination of Total Petroleum Hydrocarbons (TPH) Using Total Carbon Analysis

    SciTech Connect

    Ekechukwu, A.A.

    2002-05-10

    Several methods have been proposed to replace the Freon(TM)-extraction method to determine total petroleum hydrocarbon (TPH) content. For reasons of cost, sensitivity, precision, or simplicity, none of the replacement methods are feasible for analysis of radioactive samples at our facility. We have developed a method to measure total petroleum hydrocarbon content in aqueous sample matrixes using total organic carbon (total carbon) determination. The total carbon content (TC1) of the sample is measured using a total organic carbon analyzer. The sample is then contacted with a small volume of non-pokar solvent to extract the total petroleum hydrocarbons. The total carbon content of the resultant aqueous phase of the extracted sample (TC2) is measured. Total petroleum hydrocarbon content is calculated (TPH = TC1-TC2). The resultant data are consistent with results obtained using Freon(TM) extraction followed by infrared absorbance.

  16. U.S. Total Exports

    Energy Information Administration (EIA) (indexed site)

    Total To Barbados Total To Brazil Freeport, TX Sabine Pass, LA Total to Canada Eastport, ID Calais, ME Detroit, MI Marysville, MI Port Huron, MI Crosby, ND Portal, ND Sault St. Marie, MI St. Clair, MI Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Morgan, MT Sherwood, ND Pittsburg, NH Buffalo, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to Egypt Freeport, TX Total to

  17. U.S. Total Exports

    Energy Information Administration (EIA) (indexed site)

    Sabine Pass, LA Total To Barbados Miami, FL Total To Brazil Freeport, TX Sabine Pass, LA Total to Canada Eastport, ID Calais, ME Detroit, MI Marysville, MI Port Huron, MI Portal, ND Sault St. Marie, MI St. Clair, MI Noyes, MN Babb, MT Havre, MT Port of Morgan, MT Sherwood, ND Pittsburg, NH Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to Dominican Republic Sabine Pass, LA Total

  18. Energy-Efficient Electric Motor Selection Handbook

    SciTech Connect

    McCoy, Gilbert A.; Litman, Todd; Douglass, John G.

    1990-10-01

    Substantial reductions in energy and operational costs can be achieved through the use of energy-efficient electric motors. A handbook was compiled to help industry identify opportunities for cost-effective application of these motors. It covers the economic and operational factors to be considered when motor purchase decisions are being made. Its audience includes plant managers, plant engineers, and others interested in energy management or preventative maintenance programs.

  19. Rotary steerable motor system for underground drilling

    DOEpatents

    Turner, William E.; Perry, Carl A.; Wassell, Mark E.; Barbely, Jason R.; Burgess, Daniel E.; Cobern, Martin E.

    2008-06-24

    A preferred embodiment of a system for rotating and guiding a drill bit in an underground bore includes a drilling motor and a drive shaft coupled to drilling motor so that drill bit can be rotated by the drilling motor. The system further includes a guidance module having an actuating arm movable between an extended position wherein the actuating arm can contact a surface of the bore and thereby exert a force on the housing of the guidance module, and a retracted position.

  20. Rotary steerable motor system for underground drilling

    DOEpatents

    Turner, William E.; Perry, Carl A.; Wassell, Mark E.; Barbely, Jason R.; Burgess, Daniel E.; Cobern, Martin E.

    2010-07-27

    A preferred embodiment of a system for rotating and guiding a drill bit in an underground bore includes a drilling motor and a drive shaft coupled to drilling motor so that drill bit can be rotated by the drilling motor. The system further includes a guidance module having an actuating arm movable between an extended position wherein the actuating arm can contact a surface of the bore and thereby exert a force on the housing of the guidance module, and a retracted position.

  1. Optimizing Your Motor-Driven System

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    OPTIMIZING YOUR MOTOR-DRIVEN SYSTEM Electric motor-driven systems are estimated to consume over half of all electricity in the United States and over 70% of all electricity in many industrial plants. This fact sheet presents an overview of electric drive systems and highlights common ways you can improve system efficiency and reli- ability. By optimizing the efficiency of your motor-driven systems, you can increase productivity while saving significant amounts of energy and money. Introduction A

  2. Extend the Operating Life of Your Motor

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Extend the Operating Life of Your Motor Why Do Motors Fail? Certain components of motors degrade with time and operating stress. Electrical insulation weakens over time with exposure to voltage unbalance, over and undervoltage, voltage disturbances, and temperature. Contact between moving surfaces causes wear. Wear is affected by dirt, moisture, and corrosive fumes and is greatly accelerated when lubricant is misapplied, becomes overheated or contaminated, or is not replaced at regular

  3. Construction of AC Motor Controllers for NOvA Experiment Upgrades

    SciTech Connect

    Cooley, Patrick; ,

    2011-08-04

    I have been constructing Alternating Current (AC) motor controllers for manipulation of particle beam detectors. The capability and reliability of these motor controllers are essential to the Laboratory's mission of accurate analysis of the particle beam's position. The device is moved in and out of the beam's path by the motor controller followed by the Neutrinos at the Main Injector Off-Axis {nu}{sub e} Appearance (NOvA) Experiment further down the beam pipe. In total, I built and tested ten ac motor controllers for new beam operations in the NOvA experiment. These units will prove to be durable and provide extremely accurate beam placement for NOvA Experiment far into the future.

  4. System and method for determining stator winding resistance in an AC motor using motor drives

    DOEpatents

    Lu, Bin; Habetler, Thomas G; Zhang, Pinjia

    2013-02-26

    A system and method for determining the stator winding resistance of AC motors is provided. The system includes an AC motor drive having an input connectable to an AC source and an output connectable to an input terminal of an AC motor, a pulse width modulation (PWM) converter having switches therein to control current flow and terminal voltages in the AC motor, and a control system connected to the PWM converter. The control system generates a command signal to cause the PWM converter to control an output of the AC motor drive corresponding to an input to the AC motor, selectively generates a modified command signal to cause the PWM converter to inject a DC signal into the output of the AC motor drive, and determines a stator winding resistance of the AC motor based on the DC signal of at least one of the voltage and current.

  5. List of Motors Incentives | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    DuctAir sealing Furnaces Heat pumps Lighting Motors Refrigerators Water Heaters Windows Photovoltaics Solar Water Heat Ground Source Heat Pumps Yes Burbank Water & Power -...

  6. General Motors | Energy Systems Integration | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    General Motors (GM) is partnering with NREL on a multiyear, multimillion-dollar joint research and development effort to lower the cost of automotive fuel cell stacks through ...

  7. Electrical system for a motor vehicle

    DOEpatents

    Tamor, M.A.

    1999-07-20

    In one embodiment of the present invention, an electrical system for a motor vehicle comprises a capacitor, an engine cranking motor coupled to receive motive power from the capacitor, a storage battery and an electrical generator having an electrical power output, the output coupled to provide electrical energy to the capacitor and to the storage battery. The electrical system also includes a resistor which limits current flow from the battery to the engine cranking motor. The electrical system further includes a diode which allows current flow through the diode from the generator to the battery but which blocks current flow through the diode from the battery to the cranking motor. 2 figs.

  8. Electrical system for a motor vehicle

    DOEpatents

    Tamor, Michael Alan

    1999-01-01

    In one embodiment of the present invention, an electrical system for a motor vehicle comprises a capacitor, an engine cranking motor coupled to receive motive power from the capacitor, a storage battery and an electrical generator having an electrical power output, the output coupled to provide electrical energy to the capacitor and to the storage battery. The electrical system also includes a resistor which limits current flow from the battery to the engine cranking motor. The electrical system further includes a diode which allows current flow through the diode from the generator to the battery but which blocks current flow through the diode from the battery to the cranking motor.

  9. ,"Motor Gasoline Sales Through Retail Outlets Prices "

    Energy Information Administration (EIA) (indexed site)

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Motor Gasoline Sales Through Retail Outlets Prices ",60,"Annual",2014,"6301984" ,"Release...

  10. Mission Motors Company | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Place: San Francisco, California Zip: 94103 Product: San Francisco-based electric Motorcycle manufacturer. References: Mission Motors Company1 This article is a stub. You can...

  11. Estimating Motor Efficiency in the Field

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    acceptable methods and devices, motor effciency values can be obtained at full and part load. ... The necessary instruments are costly, and the process is very time and labor ...

  12. Catalytically Induced Electrokinetics for Motors and Micropumps...

    Office of Scientific and Technical Information (OSTI)

    Electrokinetics for Motors and Micropumps. Abstract not provided. Authors: Paxton, Walter F Publication Date: 2011-10-01 OSTI Identifier: 1118642 Report Number(s):...

  13. Sterling Motor Technologie | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Technologie Jump to: navigation, search Name: Sterling Motor Technologie Place: Karlsruhe, Baden-Wrttemberg, Germany Zip: 76131 Product: Development of sterling engines....

  14. Price of Motor Gasoline Through Retail Outlets

    Annual Energy Outlook

    & Stocks by State (Dollars per Gallon Excluding Taxes) Data Series: Retail Price - Motor Gasoline Retail Price - Regular Gasoline Retail Price - Midgrade Gasoline Retail Price...

  15. Motor Wave Group | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wave Group Jump to: navigation, search Name: Motor Wave Group Place: Hong Kong Region: China Sector: Marine and Hydrokinetic Website: www.motorwavegroup.com This company is listed...

  16. Motor Systems Assessment Training, Including Use of the Motor Systems Tool Suite

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Motor Systems Assessment Training Presented by: Gilbert McCoy, PE Washington State University Extension Energy Program (360) 956-2086 mccoyg@energy.wsu.edu 2 Motor Systems Assessment Training 3 Motor Systems Assessment Training Department of Energy Information Resources U.S. DOE Industrial Technologies Program (ITP) BestPractices Website www.eere.energy.gov/industry/bestpractices EERE Information Center (877) 337-3463 Or www.eere.energy.gov/informationcenter 4 Motor Systems Assessment Training

  17. 2012 Wholesale Power Rate Case

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    3 - September 2015 RDS 11 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 B C D E F G H I J K L M N O...

  18. Development of Ulta-Efficient Electric Motors

    SciTech Connect

    Shoykhet, B.; Schiferl, R.; Duckworth, R.; Rey, C.M.; Schwenterly, S.W.; Gouge, M.J.

    2008-05-01

    Electric motors utilize a large amount of electrical energy in utility and industrial applications. Electric motors constructed with high temperature superconducting (HTS) materials have the potential to dramatically reduce electric motor size and losses. HTS motors are best suited for large motor applications at ratings above 1000 horsepower (hp), where the energy savings from the efficiency improvement can overcome the additional power required to keep the superconductors on the rotor cooled. Large HTS based motors are expected to be half the volume and have half the losses of conventional induction motors of the same rating. For a 5000 hp industrial motor, this energy savings can result in $50,000 in operating cost savings over the course of a single year of operation. Since large horsepower motors utilize (or convert) about 30% of the electrical power generated in the United States and about 70% of large motors are candidates for replacement by HTS motors, the annual energy savings potential through the utilization of HTS motors can be up to $1 Billion in the United States alone. Research in the application of HTS materials to electric motors has lead to a number of HTS motor prototypes yet no industrial HTS motor product has yet been introduced. These motor demonstrations have been synchronous motors with HTS field windings, on the rotor. Figure 1-1 shows a solid model rendering of this type of motor. The rotor winding is made with HTS coils that are held at cryogenic temperature by introducing cooling fluid from the cryocooler to the rotor through a transfer coupling. The stator winding is made of copper wire. The HTS winding is thermally isolated from the warm armature and motor shafts by a vacuum insulation space and through the use of composite torque tubes. The stator in Figure 1-1 is an air core stator in that the stator teeth and a small part of the yoke is made up of nonmagnetic material so the magnetic fields distribute themselves as if in air

  19. ,"U.S. Sales to End Users, Total Refiner Motor Gasoline Sales...

    Energy Information Administration (EIA) (indexed site)

    ...,35511.7,3333,19611.5 35384,33037.6,5593.7,19470.1 35414,32905.7,6143.2,20151.7 ... 37391,38123.1,1894.5,24519.4 37422,38389.1,1947.2,24537.6 37452,38328.7,1921.5,24343.9 ...

  20. U.S. Sales for Resale, Total Refiner Motor Gasoline Sales Volumes

    Energy Information Administration (EIA) (indexed site)

    NA NA NA NA NA NA 1983-2016 by Grade Regular NA NA NA NA NA NA 1983-2016 Midgrade NA NA NA NA NA NA 1988-2016 Premium NA NA NA NA NA NA 1983-2016 by Formulation Conventional NA NA NA NA NA NA 1994-2016 Oxygenated - - - - - - 1994-2016 Reformulated NA NA NA NA NA NA

  1. U.S. Sales to End Users, Total Refiner Motor Gasoline Sales Volumes

    Energy Information Administration (EIA) (indexed site)

    25,220.5 25,860.0 25,967.6 26,711.1 26,333.6 26,532.9 1983-2016 by Grade Regular 20,698.8 21,263.3 21,331.0 21,940.6 21,587.4 21,748.3 1983-2016 Midgrade 1,790.7 1,828.0 1,842.8 1,898.9 1,887.9 1,899.4 1988-2016 Premium 2,731.0 2,768.7 2,793.8 2,871.6 2,858.4 2,885.3 1983-2016 by Formulation Conventional 16,220.8 16,658.8 16,651.0 17,047.0 16,981.8 17,079.3 1994-2016 Oxygenated - - - - - - 1994-2016 Reformulated 8,999.7 9,201.2 9,316.6 9,664.1 9,351.8 9,453.6

  2. Motor vehicle fuel economy, the forgotten HC control stragegy. [Hydrocarbon (HC)

    SciTech Connect

    Deluchi, M.; Wang, Quanlu; Greene, D.L.

    1992-06-01

    Emissions of hydrocarbons from motor vehicles are recognized as major contributors to ozone pollution in urban areas. Petroleum-based motor fuels contain volatile organic compounds (VOC) which, together with oxides of nitrogen, promote the formation of ozone in the troposphere via complex photochemical reactions. VOC emissions from the tailpipe and evaporation from the fuel and engine systems of highway vehicles are believed to account for about 40% of total VOC emissions in any region. But motor fuels also generate emissions throughout the fuel cycle, from crude oil production to refining, storage, transportation, and handling, that can make significant contributions to the total inventory of VOC emissions. Many of these sources of emissions are directly related to the quantity of fuel produced and handled throughout the fuel cycle. It is, therefore, reasonable to expect that a reduction in total fuel throughput might result in a reduction of VOC emissions. In particular, reducing vehicle fuel consumption by increasing vehicle fuel economy should reduce total fuel throughput, thereby cutting total emissions of VOCS. In this report we identify the sources of VOC emissions throughout the motor fuel cycle, quantify them to the extent possible, and describe their dependence on automobile and light truck fuel economy.

  3. Total Eolica | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Eolica Jump to: navigation, search Name: Total Eolica Place: Spain Product: Project developer References: Total Eolica1 This article is a stub. You can help OpenEI by expanding...

  4. Oscillation control system for electric motor drive

    DOEpatents

    Slicker, James M.; Sereshteh, Ahmad

    1988-01-01

    A feedback system for controlling mechanical oscillations in the torsionally complaint drive train of an electric or other vehicle. Motor speed is converted in a processor to estimate state signals in which a plant model which are used to electronically modify thetorque commands applied to the motor.

  5. Oscillation control system for electric motor drive

    DOEpatents

    Slicker, J.M.; Sereshteh, A.

    1988-08-30

    A feedback system for controlling mechanical oscillations in the torsionally complaint drive train of an electric or other vehicle. Motor speed is converted in a processor to estimate state signals in which a plant model which are used to electronically modify the torque commands applied to the motor. 5 figs.

  6. Rare-Earth-Free Traction Motor: Rare Earth-Free Traction Motor for Electric Vehicle Applications

    SciTech Connect

    2012-01-01

    REACT Project: Baldor will develop a new type of traction motor with the potential to efficiently power future generations of EVs. Unlike today’s large, bulky EV motors which use expensive, imported rare-earth-based magnets, Baldor’s motor could be light, compact, contain no rare earth materials, and have the potential to deliver more torque at a substantially lower cost. Key innovations in this project include the use of a unique motor design, incorporation of an improved cooling system, and the development of advanced materials manufacturing techniques. These innovations could significantly reduce the cost of an electric motor.

  7. Total

    Energy Information Administration (EIA) (indexed site)

    1,001 to 5,000 2,777 8,041 10,232 2.9 786 56 5,001 to 10,000 1,229 8,900 9,225 7.2 965 62 10,001 to 25,000 884 14,105 14,189 16.0 994 65 25,001 to 50,000 332 11,917 11,327 35.9 1,052 72 50,001 to 100,000 199 13,918 12,345 69.9 1,127 80 100,001 to 200,000 90 12,415 11,310 137.9 1,098 89 200,001 to 500,000 38 10,724 10,356 284.2 1,035 99 Over 500,000 8 7,074 9,196 885.0 769 117 Principal building activity Education 389 12,239 10,885 31.5 1,124 53 Food sales 177 1,252 1,172 7.1 1,067 121 Food

  8. Total

    Energy Information Administration (EIA) (indexed site)

    1,001 to 5,000 2,777 8,041 10,232 2.9 786 56 5,001 to 10,000 1,229 8,900 9,225 7.2 965 62 10,001 to 25,000 884 14,105 14,189 16.0 994 65 25,001 to 50,000 332 11,917 11,327 35.9 1,052 72 50,001 to 100,000 199 13,918 12,345 69.9 1,127 80 100,001 to 200,000 90 12,415 11,310 137.9 1,098 89 200,001 to 500,000 38 10,724 10,356 284.2 1,035 99 Over 500,000 8 7,074 9,196 885.0 769 117 Principal building activity Education 389 12,239 10,885 31.5 1,124 53 Food sales 177 1,252 1,172 7.1 1,067 121 Food

  9. Total

    Energy Information Administration (EIA) (indexed site)

    Median square feet per building (thousand) Median square feet per worker Median operating hours per week Median age of buildings (years) All buildings 5,557 87,093 88,182 5.0 1,029 50 32 Building floorspace (square feet) 1,001 to 5,000 2,777 8,041 10,232 2.8 821 49 37 5,001 to 10,000 1,229 8,900 9,225 7.0 1,167 50 31 10,001 to 25,000 884 14,105 14,189 15.0 1,444 56 32 25,001 to 50,000 332 11,917 11,327 35.0 1,461 60 29 50,001 to 100,000 199 13,918 12,345 67.0 1,442 60 26 100,001 to 200,000 90

  10. Total

    Gasoline and Diesel Fuel Update

    Fuel Oil, Greater than 500 ppm Sulfur Residual Fuel Oil Lubricants Asphalt and Road Oil Other Products Period: Annual (as of January 1) Download Series History Download ...

  11. Total

    Gasoline and Diesel Fuel Update

    of photovoltaic module shipments, 2015 (peak kilowatts) Source Disposition Source: U.S. Energy Information Administration, Form EIA-63B, 'Annual Photovoltaic CellModule ...

  12. Total..........................................................

    Energy Information Administration (EIA) (indexed site)

    ... Housing Units (millions) UrbanRural Location (as Self-Reported) Living Space ... Housing Units (millions) UrbanRural Location (as Self-Reported) Living Space ...

  13. Total..........................................................

    Energy Information Administration (EIA) (indexed site)

    ... Housing Units (millions) UrbanRural Location (as Self-Reported) City Town Suburbs Rural ... Housing Units (millions) UrbanRural Location (as Self-Reported) City Town Suburbs Rural ...

  14. Total..........................................................

    Annual Energy Outlook

    Living Space Characteristics Detached Attached Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC3.2 ...

  15. Total..........................................................

    Energy Information Administration (EIA) (indexed site)

    ... 111.1 20.6 15.1 5.5 Do Not Have Cooling Equipment...... 17.8 4.0 2.4 1.7 Have Cooling Equipment...... 93.3 ...

  16. Total..........................................................

    Annual Energy Outlook

    ... Average Square Feet per Apartment in a -- Apartments (millions) Major Outside Wall Construction Siding (Aluminum, Vinyl, Steel)...... 35.3 3.5 1,286 1,090 325 852 786 461 ...

  17. Total

    Gasoline and Diesel Fuel Update

    ... District heat 48 5,964 8,230 124.9 725 87 District chilled water 54 4,608 5,742 85.4 803 ... Natural gas 12 732 1,048 61.5 699 67 District chilled water 54 4,608 5,742 85.4 803 87 ...

  18. Total..............................................

    Energy Information Administration (EIA) (indexed site)

    111.1 86.6 2,720 1,970 1,310 1,941 1,475 821 1,059 944 554 Census Region and Division Northeast.................................... 20.6 13.9 3,224 2,173 836 2,219 1,619 583 903 830 Q New England.......................... 5.5 3.6 3,365 2,154 313 2,634 1,826 Q 951 940 Q Middle Atlantic........................ 15.1 10.3 3,167 2,181 1,049 2,188 1,603 582 Q Q Q Midwest...................................... 25.6 21.0 2,823 2,239 1,624 2,356 1,669 1,336 1,081 961 778 East North

  19. Total...........................................................

    Energy Information Administration (EIA) (indexed site)

    Q Million U.S. Housing Units Renter- Occupied Housing Units (millions) Type of Renter-Occupied Housing Unit U.S. Housing Units (millions Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Table HC4.2 Living Space Characteristics by Renter-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing

  20. Total............................................................

    Energy Information Administration (EIA) (indexed site)

  1. Total.............................................................

    Energy Information Administration (EIA) (indexed site)

    26.7 28.8 20.6 13.1 22.0 16.6 38.6 Personal Computers Do Not Use a Personal Computer........... 35.5 17.1 10.8 4.2 1.8 1.6 10.3 20.6 Use a Personal Computer....................... 75.6 9.6 18.0 16.4 11.3 20.3 6.4 17.9 Most-Used Personal Computer Type of PC Desk-top Model.................................. 58.6 7.6 14.2 13.1 9.2 14.6 5.0 14.5 Laptop Model...................................... 16.9 2.0 3.8 3.3 2.1 5.7 1.3 3.5 Hours Turned on Per Week Less than 2 Hours..............................

  2. Total..............................................................

    Energy Information Administration (EIA) (indexed site)

    ,171 1,618 1,031 845 630 401 Census Region and Division Northeast................................................... 20.6 2,334 1,664 562 911 649 220 New England.......................................... 5.5 2,472 1,680 265 1,057 719 113 Middle Atlantic........................................ 15.1 2,284 1,658 670 864 627 254 Midwest...................................................... 25.6 2,421 1,927 1,360 981 781 551 East North Central.................................. 17.7 2,483 1,926 1,269

  3. Total..............................................................

    Energy Information Administration (EIA) (indexed site)

    Do Not Have Cooling Equipment................ 17.8 5.3 4.7 2.8 1.9 3.1 3.6 7.5 Have Cooling Equipment............................. 93.3 21.5 24.1 17.8 11.2 18.8 13.0 31.1 Use Cooling Equipment.............................. 91.4 21.0 23.5 17.4 11.0 18.6 12.6 30.3 Have Equipment But Do Not Use it............. 1.9 0.5 0.6 0.4 Q Q 0.5 0.8 Type of Air-Conditioning Equipment 1, 2 Central System.......................................... 65.9 11.0 16.5 13.5 8.7 16.1 6.4 17.2 Without a Heat

  4. Total...............................................................

    Energy Information Administration (EIA) (indexed site)

    20.6 25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer ........... 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer......................... 75.6 13.7 17.5 26.6 17.8 Number of Desktop PCs 1.......................................................... 50.3 9.3 11.9 18.2 11.0 2.......................................................... 16.2 2.9 3.5 5.5 4.4 3 or More............................................. 9.0 1.5 2.1 2.9 2.5 Number of Laptop PCs

  5. Total...............................................................

    Energy Information Administration (EIA) (indexed site)

    0.7 21.7 6.9 12.1 Personal Computers Do Not Use a Personal Computer ........... 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer......................... 75.6 26.6 14.5 4.1 7.9 Number of Desktop PCs 1.......................................................... 50.3 18.2 10.0 2.9 5.3 2.......................................................... 16.2 5.5 3.0 0.7 1.8 3 or More............................................. 9.0 2.9 1.5 0.5 0.8 Number of Laptop PCs

  6. Total...............................................................

    Energy Information Administration (EIA) (indexed site)

    26.7 28.8 20.6 13.1 22.0 16.6 38.6 Personal Computers Do Not Use a Personal Computer ........... 35.5 17.1 10.8 4.2 1.8 1.6 10.3 20.6 Use a Personal Computer......................... 75.6 9.6 18.0 16.4 11.3 20.3 6.4 17.9 Number of Desktop PCs 1.......................................................... 50.3 8.3 14.2 11.4 7.2 9.2 5.3 14.2 2.......................................................... 16.2 0.9 2.6 3.7 2.9 6.2 0.8 2.6 3 or More............................................. 9.0 0.4 1.2

  7. Total...............................................................

    Energy Information Administration (EIA) (indexed site)

    Do Not Have Cooling Equipment................. 17.8 5.3 4.7 2.8 1.9 3.1 3.6 7.5 Have Cooling Equipment.............................. 93.3 21.5 24.1 17.8 11.2 18.8 13.0 31.1 Use Cooling Equipment............................... 91.4 21.0 23.5 17.4 11.0 18.6 12.6 30.3 Have Equipment But Do Not Use it............. 1.9 0.5 0.6 0.4 Q Q 0.5 0.8 Air-Conditioning Equipment 1, 2 Central System............................................ 65.9 11.0 16.5 13.5 8.7 16.1 6.4 17.2 Without a Heat

  8. Total...............................................................

    Energy Information Administration (EIA) (indexed site)

    47.1 19.0 22.7 22.3 Personal Computers Do Not Use a Personal Computer ........... 35.5 16.9 6.5 4.6 7.6 Use a Personal Computer......................... 75.6 30.3 12.5 18.1 14.7 Number of Desktop PCs 1.......................................................... 50.3 21.1 8.3 10.7 10.1 2.......................................................... 16.2 6.2 2.8 4.1 3.0 3 or More............................................. 9.0 2.9 1.4 3.2 1.6 Number of Laptop PCs

  9. Total................................................................

    Energy Information Administration (EIA) (indexed site)

    111.1 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Do Not Have Space Heating Equipment....... 1.2 0.5 0.3 0.2 Q 0.2 0.3 0.6 Have Main Space Heating Equipment.......... 109.8 26.2 28.5 20.4 13.0 21.8 16.3 37.9 Use Main Space Heating Equipment............ 109.1 25.9 28.1 20.3 12.9 21.8 16.0 37.3 Have Equipment But Do Not Use It.............. 0.8 0.3 0.3 Q Q N 0.4 0.6 Main Heating Fuel and Equipment Natural Gas.................................................. 58.2 12.2 14.4 11.3 7.1 13.2 7.6 18.3 Central

  10. Total.................................................................

    Energy Information Administration (EIA) (indexed site)

    49.2 15.1 15.6 11.1 7.0 5.2 8.0 Have Cooling Equipment............................... 93.3 31.3 15.1 15.6 11.1 7.0 5.2 8.0 Use Cooling Equipment................................ 91.4 30.4 14.6 15.4 11.1 6.9 5.2 7.9 Have Equipment But Do Not Use it............... 1.9 1.0 0.5 Q Q Q Q Q Do Not Have Cooling Equipment................... 17.8 17.8 N N N N N N Air-Conditioning Equipment 1, 2 Central System............................................. 65.9 3.9 15.1 15.6 11.1 7.0 5.2 8.0 Without a Heat

  11. Total.................................................................

    Energy Information Administration (EIA) (indexed site)

    14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Do Not Have Space Heating Equipment........ 1.2 N Q Q 0.2 0.4 0.2 0.2 Q Have Main Space Heating Equipment........... 109.8 14.7 7.4 12.4 12.2 18.5 18.3 17.1 9.2 Use Main Space Heating Equipment............. 109.1 14.6 7.3 12.4 12.2 18.2 18.2 17.1 9.1 Have Equipment But Do Not Use It............... 0.8 Q Q Q Q 0.3 Q N Q Main Heating Fuel and Equipment Natural Gas................................................... 58.2 9.2 4.9 7.8 7.1 8.8 8.4 7.8 4.2 Central

  12. Total.................................................................

    Energy Information Administration (EIA) (indexed site)

    26.7 28.8 20.6 13.1 22.0 16.6 38.6 Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day.............................. 8.2 2.9 2.5 1.3 0.5 1.0 2.4 4.6 2 Times A Day........................................... 24.6 6.5 7.0 4.3 3.2 3.6 4.8 10.3 Once a Day................................................ 42.3 8.8 9.8 8.7 5.1 10.0 5.0 12.9 A Few Times Each Week........................... 27.2 5.6 7.2 4.7 3.3 6.3 3.2 7.5 About Once a Week................................... 3.9 1.1 1.1

  13. Total..................................................................

    Energy Information Administration (EIA) (indexed site)

    78.1 64.1 4.2 1.8 2.3 5.7 Do Not Have Cooling Equipment..................... 17.8 11.3 9.3 0.6 Q 0.4 0.9 Have Cooling Equipment................................. 93.3 66.8 54.7 3.6 1.7 1.9 4.8 Use Cooling Equipment.................................. 91.4 65.8 54.0 3.6 1.7 1.9 4.7 Have Equipment But Do Not Use it................. 1.9 1.1 0.8 Q N Q Q Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 51.7 43.9 2.5 0.7 1.6 3.1 Without a Heat

  14. Total..................................................................

    Energy Information Administration (EIA) (indexed site)

    33.0 8.0 3.4 5.9 14.4 1.2 Do Not Have Cooling Equipment..................... 17.8 6.5 1.6 0.9 1.3 2.4 0.2 Have Cooling Equipment................................. 93.3 26.5 6.5 2.5 4.6 12.0 1.0 Use Cooling Equipment.................................. 91.4 25.7 6.3 2.5 4.4 11.7 0.8 Have Equipment But Do Not Use it................. 1.9 0.8 Q Q 0.2 0.3 Q Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 14.1 3.6 1.5 2.1 6.4 0.6 Without a Heat

  15. Total..................................................................

    Energy Information Administration (EIA) (indexed site)

    . 111.1 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Do Not Have Cooling Equipment..................... 17.8 3.9 1.8 2.2 2.1 3.1 2.6 1.7 0.4 Have Cooling Equipment................................. 93.3 10.8 5.6 10.3 10.4 15.8 16.0 15.6 8.8 Use Cooling Equipment.................................. 91.4 10.6 5.5 10.3 10.3 15.3 15.7 15.3 8.6 Have Equipment But Do Not Use it................. 1.9 Q Q Q Q 0.6 0.4 0.3 Q Type of Air-Conditioning Equipment 1, 2 Central

  16. Total...................................................................

    Energy Information Administration (EIA) (indexed site)

    15.2 7.8 1.0 1.2 3.3 1.9 For Two Housing Units............................. 0.9 Q N Q 0.6 N Heat Pump.................................................. 9.2 7.4 0.3 Q 0.7 0.5 Portable Electric Heater............................... 1.6 0.8 Q Q Q 0.3 Other Equipment......................................... 1.9 0.7 Q Q 0.7 Q Fuel Oil........................................................... 7.7 5.5 0.4 0.8 0.9 0.2 Steam or Hot Water System........................ 4.7 2.9 Q 0.7 0.8 N For One Housing

  17. Total...................................................................

    Energy Information Administration (EIA) (indexed site)

    Air-Conditioning Equipment 1, 2 Central System............................................... 65.9 47.5 4.0 2.8 7.9 3.7 Without a Heat Pump.................................. 53.5 37.8 3.4 2.2 7.0 3.1 With a Heat Pump....................................... 12.3 9.7 0.6 0.5 1.0 0.6 Window/Wall Units.......................................... 28.9 14.9 2.3 3.5 6.0 2.1 1 Unit........................................................... 14.5 6.6 1.0 1.6 4.2 1.2 2

  18. Total...................................................................

    Energy Information Administration (EIA) (indexed site)

    Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 47.5 4.0 2.8 7.9 3.7 Without a Heat Pump.................................. 53.5 37.8 3.4 2.2 7.0 3.1 With a Heat Pump....................................... 12.3 9.7 0.6 0.5 1.0 0.6 Window/Wall Units........................................ 28.9 14.9 2.3 3.5 6.0 2.1 1 Unit........................................................... 14.5 6.6 1.0 1.6 4.2 1.2 2

  19. Total....................................................................

    Energy Information Administration (EIA) (indexed site)

    14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Household Size 1 Person.......................................................... 30.0 4.6 2.5 3.7 3.2 5.4 5.5 3.7 1.6 2 Persons......................................................... 34.8 4.3 1.9 4.4 4.1 5.9 5.3 5.5 3.4 3 Persons......................................................... 18.4 2.5 1.3 1.7 1.9 2.9 3.5 2.8 1.6 4 Persons......................................................... 15.9 1.9 0.8 1.5 1.6 3.0 2.5 3.1 1.4 5

  20. Total.......................................................................

    Energy Information Administration (EIA) (indexed site)

    0.6 15.1 5.5 Personal Computers Do Not Use a Personal Computer ................... 35.5 6.9 5.3 1.6 Use a Personal Computer................................ 75.6 13.7 9.8 3.9 Number of Desktop PCs 1.................................................................. 50.3 9.3 6.8 2.5 2.................................................................. 16.2 2.9 1.9 1.0 3 or More..................................................... 9.0 1.5 1.1 0.4 Number of Laptop PCs

  1. Total.......................................................................

    Energy Information Administration (EIA) (indexed site)

    5.6 17.7 7.9 Personal Computers Do Not Use a Personal Computer ................... 35.5 8.1 5.6 2.5 Use a Personal Computer................................ 75.6 17.5 12.1 5.4 Number of Desktop PCs 1.................................................................. 50.3 11.9 8.4 3.4 2.................................................................. 16.2 3.5 2.2 1.3 3 or More..................................................... 9.0 2.1 1.5 0.6 Number of Laptop PCs

  2. Total.......................................................................

    Energy Information Administration (EIA) (indexed site)

    4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer ................... 35.5 6.4 2.2 4.2 Use a Personal Computer................................ 75.6 17.8 5.3 12.5 Number of Desktop PCs 1.................................................................. 50.3 11.0 3.4 7.6 2.................................................................. 16.2 4.4 1.3 3.1 3 or More..................................................... 9.0 2.5 0.7 1.8 Number of Laptop PCs

  3. Total........................................................................

    Energy Information Administration (EIA) (indexed site)

    25.6 40.7 24.2 Do Not Have Space Heating Equipment............... 1.2 Q Q Q 0.7 Have Main Space Heating Equipment.................. 109.8 20.5 25.6 40.3 23.4 Use Main Space Heating Equipment.................... 109.1 20.5 25.6 40.1 22.9 Have Equipment But Do Not Use It...................... 0.8 N N Q 0.6 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 11.4 18.4 13.6 14.7 Central Warm-Air Furnace................................ 44.7 6.1

  4. Total........................................................................

    Energy Information Administration (EIA) (indexed site)

    5.6 17.7 7.9 Do Not Have Space Heating Equipment............... 1.2 Q Q N Have Main Space Heating Equipment.................. 109.8 25.6 17.7 7.9 Use Main Space Heating Equipment.................... 109.1 25.6 17.7 7.9 Have Equipment But Do Not Use It...................... 0.8 N N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 18.4 13.1 5.3 Central Warm-Air Furnace................................ 44.7 16.2 11.6 4.7 For One Housing

  5. Total........................................................................

    Energy Information Administration (EIA) (indexed site)

    0.7 21.7 6.9 12.1 Do Not Have Space Heating Equipment............... 1.2 Q Q N Q Have Main Space Heating Equipment.................. 109.8 40.3 21.4 6.9 12.0 Use Main Space Heating Equipment.................... 109.1 40.1 21.2 6.9 12.0 Have Equipment But Do Not Use It...................... 0.8 Q Q N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 13.6 5.6 2.3 5.7 Central Warm-Air Furnace................................ 44.7 11.0 4.4

  6. Total........................................................................

    Energy Information Administration (EIA) (indexed site)

    7.1 7.0 8.0 12.1 Do Not Have Space Heating Equipment............... 1.2 Q Q Q 0.2 Have Main Space Heating Equipment.................. 109.8 7.1 6.8 7.9 11.9 Use Main Space Heating Equipment.................... 109.1 7.1 6.6 7.9 11.4 Have Equipment But Do Not Use It...................... 0.8 N Q N 0.5 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 3.8 0.4 3.8 8.4 Central Warm-Air Furnace................................ 44.7 1.8 Q 3.1 6.0

  7. Total...........................................................................

    Energy Information Administration (EIA) (indexed site)

    0.6 15.1 5.5 Do Not Have Cooling Equipment............................. 17.8 4.0 2.4 1.7 Have Cooling Equipment.......................................... 93.3 16.5 12.8 3.8 Use Cooling Equipment........................................... 91.4 16.3 12.6 3.7 Have Equipment But Do Not Use it.......................... 1.9 0.3 Q Q Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 6.0 5.2 0.8 Without a Heat

  8. Total...........................................................................

    Energy Information Administration (EIA) (indexed site)

    5.6 17.7 7.9 Do Not Have Cooling Equipment............................. 17.8 2.1 1.8 0.3 Have Cooling Equipment.......................................... 93.3 23.5 16.0 7.5 Use Cooling Equipment........................................... 91.4 23.4 15.9 7.5 Have Equipment But Do Not Use it.......................... 1.9 Q Q Q Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 17.3 11.3 6.0 Without a Heat

  9. Total...........................................................................

    Energy Information Administration (EIA) (indexed site)

    4.2 7.6 16.6 Do Not Have Cooling Equipment............................. 17.8 10.3 3.1 7.3 Have Cooling Equipment.......................................... 93.3 13.9 4.5 9.4 Use Cooling Equipment........................................... 91.4 12.9 4.3 8.5 Have Equipment But Do Not Use it.......................... 1.9 1.0 Q 0.8 Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 10.5 3.9 6.5 Without a Heat

  10. Total.............................................................................

    Energy Information Administration (EIA) (indexed site)

    Do Not Have Cooling Equipment............................... 17.8 4.0 2.1 1.4 10.3 Have Cooling Equipment............................................ 93.3 16.5 23.5 39.3 13.9 Use Cooling Equipment............................................. 91.4 16.3 23.4 38.9 12.9 Have Equipment But Do Not Use it............................ 1.9 0.3 Q 0.5 1.0 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 6.0 17.3 32.1 10.5 Without a Heat

  11. Total.............................................................................

    Energy Information Administration (EIA) (indexed site)

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 1.2 1.0 0.2 2 Times A Day...................................................... 24.6 4.0 2.7 1.2 Once a Day........................................................... 42.3 7.9 5.4 2.5 A Few Times Each Week...................................... 27.2 6.0 4.8 1.2 About Once a Week.............................................. 3.9 0.6 0.5 Q Less Than Once a

  12. Total.............................................................................

    Energy Information Administration (EIA) (indexed site)

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 1.4 1.0 0.4 2 Times A Day...................................................... 24.6 5.8 3.5 2.3 Once a Day........................................................... 42.3 10.7 7.8 2.9 A Few Times Each Week...................................... 27.2 5.6 4.0 1.6 About Once a Week.............................................. 3.9 0.9 0.6 0.3 Less Than Once a

  13. Total.............................................................................

    Energy Information Administration (EIA) (indexed site)

    Do Not Have Cooling Equipment............................... 17.8 2.1 1.8 0.3 Have Cooling Equipment............................................ 93.3 23.5 16.0 7.5 Use Cooling Equipment............................................. 91.4 23.4 15.9 7.5 Have Equipment But Do Not Use it............................ 1.9 Q Q Q Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 17.3 11.3 6.0 Without a Heat

  14. Total.............................................................................

    Energy Information Administration (EIA) (indexed site)

    Do Not Have Cooling Equipment............................... 17.8 1.4 0.8 0.2 0.3 Have Cooling Equipment............................................ 93.3 39.3 20.9 6.7 11.8 Use Cooling Equipment............................................. 91.4 38.9 20.7 6.6 11.7 Have Equipment But Do Not Use it............................ 1.9 0.5 Q Q Q Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 32.1 17.6 5.2 9.3 Without a Heat

  15. Total.............................................................................

    Energy Information Administration (EIA) (indexed site)

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 2.6 0.7 1.9 2 Times A Day...................................................... 24.6 6.6 2.0 4.6 Once a Day........................................................... 42.3 8.8 2.9 5.8 A Few Times Each Week...................................... 27.2 4.7 1.5 3.1 About Once a Week.............................................. 3.9 0.7 Q 0.6 Less Than Once a

  16. Total.............................................................................

    Energy Information Administration (EIA) (indexed site)

    Do Not Have Cooling Equipment............................... 17.8 10.3 3.1 7.3 Have Cooling Equipment............................................ 93.3 13.9 4.5 9.4 Use Cooling Equipment............................................. 91.4 12.9 4.3 8.5 Have Equipment But Do Not Use it............................ 1.9 1.0 Q 0.8 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 10.5 3.9 6.5 Without a Heat

  17. Total.............................................................................

    Energy Information Administration (EIA) (indexed site)

    Do Not Have Cooling Equipment............................... 17.8 8.5 2.7 2.6 4.0 Have Cooling Equipment............................................ 93.3 38.6 16.2 20.1 18.4 Use Cooling Equipment............................................. 91.4 37.8 15.9 19.8 18.0 Have Equipment But Do Not Use it............................ 1.9 0.9 0.3 0.3 0.4 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 25.8 10.9 16.6 12.5 Without a Heat

  18. Total..............................................................................

    Energy Information Administration (EIA) (indexed site)

    20.6 25.6 40.7 24.2 Do Not Have Cooling Equipment................................ 17.8 4.0 2.1 1.4 10.3 Have Cooling Equipment............................................. 93.3 16.5 23.5 39.3 13.9 Use Cooling Equipment.............................................. 91.4 16.3 23.4 38.9 12.9 Have Equipment But Do Not Use it............................. 1.9 0.3 Q 0.5 1.0 Air-Conditioning Equipment 1, 2 Central System........................................................... 65.9 6.0 17.3 32.1 10.5

  19. Total..............................................................................

    Energy Information Administration (EIA) (indexed site)

    0.7 21.7 6.9 12.1 Do Not Have Cooling Equipment................................ 17.8 1.4 0.8 0.2 0.3 Have Cooling Equipment............................................. 93.3 39.3 20.9 6.7 11.8 Use Cooling Equipment.............................................. 91.4 38.9 20.7 6.6 11.7 Have Equipment But Do Not Use it............................. 1.9 0.5 Q Q Q Air-Conditioning Equipment 1, 2 Central System........................................................... 65.9 32.1 17.6 5.2 9.3 Without a

  20. Total..............................................................................

    Energy Information Administration (EIA) (indexed site)

    111.1 7.1 7.0 8.0 12.1 Personal Computers Do Not Use a Personal Computer .......................... 35.5 3.0 2.0 2.7 3.1 Use a Personal Computer....................................... 75.6 4.2 5.0 5.3 9.0 Number of Desktop PCs 1......................................................................... 50.3 3.1 3.4 3.4 5.4 2......................................................................... 16.2 0.7 1.1 1.2 2.2 3 or More............................................................ 9.0 0.3

  1. Total..............................................................................

    Energy Information Administration (EIA) (indexed site)

    7.1 19.0 22.7 22.3 Do Not Have Cooling Equipment................................ 17.8 8.5 2.7 2.6 4.0 Have Cooling Equipment............................................. 93.3 38.6 16.2 20.1 18.4 Use Cooling Equipment.............................................. 91.4 37.8 15.9 19.8 18.0 Have Equipment But Do Not Use it............................. 1.9 0.9 0.3 0.3 0.4 Air-Conditioning Equipment 1, 2 Central System........................................................... 65.9 25.8 10.9 16.6 12.5

  2. Total.................................................................................

    Energy Information Administration (EIA) (indexed site)

    7.1 7.0 8.0 12.1 Do Not Have Cooling Equipment................................... 17.8 1.8 Q Q 4.9 Have Cooling Equipment................................................ 93.3 5.3 7.0 7.8 7.2 Use Cooling Equipment................................................. 91.4 5.3 7.0 7.7 6.6 Have Equipment But Do Not Use it............................... 1.9 Q N Q 0.6 Air-Conditioning Equipment 1, 2 Central System.............................................................. 65.9 1.1 6.4 6.4 5.4 Without a

  3. Total....................................................................................

    Energy Information Administration (EIA) (indexed site)

    25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer.................................. 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer.............................................. 75.6 13.7 17.5 26.6 17.8 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 10.4 14.1 20.5 13.7 Laptop Model............................................................. 16.9 3.3 3.4 6.1 4.1 Hours Turned on Per Week Less than 2

  4. Total....................................................................................

    Energy Information Administration (EIA) (indexed site)

    5.6 17.7 7.9 Personal Computers Do Not Use a Personal Computer.................................. 35.5 8.1 5.6 2.5 Use a Personal Computer.............................................. 75.6 17.5 12.1 5.4 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 14.1 10.0 4.0 Laptop Model............................................................. 16.9 3.4 2.1 1.3 Hours Turned on Per Week Less than 2

  5. Total....................................................................................

    Energy Information Administration (EIA) (indexed site)

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day................................................. 8.2 3.0 1.6 0.3 1.1 2 Times A Day.............................................................. 24.6 8.3 4.2 1.3 2.7 Once a Day................................................................... 42.3 15.0 8.1 2.7 4.2 A Few Times Each Week............................................. 27.2 10.9 6.0 1.8 3.1 About Once a Week..................................................... 3.9

  6. Total....................................................................................

    Energy Information Administration (EIA) (indexed site)

    Personal Computers Do Not Use a Personal Computer.................................. 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer.............................................. 75.6 26.6 14.5 4.1 7.9 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 20.5 11.0 3.4 6.1 Laptop Model............................................................. 16.9 6.1 3.5 0.7 1.9 Hours Turned on Per Week Less than 2

  7. Total....................................................................................

    Energy Information Administration (EIA) (indexed site)

    4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer.................................. 35.5 6.4 2.2 4.2 Use a Personal Computer.............................................. 75.6 17.8 5.3 12.5 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 13.7 4.2 9.5 Laptop Model............................................................. 16.9 4.1 1.1 3.0 Hours Turned on Per Week Less than 2

  8. Total....................................................................................

    Energy Information Administration (EIA) (indexed site)

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day................................................. 8.2 3.7 1.6 1.4 1.5 2 Times A Day.............................................................. 24.6 10.8 4.1 4.3 5.5 Once a Day................................................................... 42.3 17.0 7.2 8.7 9.3 A Few Times Each Week............................................. 27.2 11.4 4.7 6.4 4.8 About Once a Week.....................................................

  9. Total....................................................................................

    Energy Information Administration (EIA) (indexed site)

    111.1 47.1 19.0 22.7 22.3 Personal Computers Do Not Use a Personal Computer.................................. 35.5 16.9 6.5 4.6 7.6 Use a Personal Computer.............................................. 75.6 30.3 12.5 18.1 14.7 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 22.9 9.8 14.1 11.9 Laptop Model............................................................. 16.9 7.4 2.7 4.0 2.9 Hours Turned on Per Week Less than 2

  10. Total.........................................................................................

    Energy Information Administration (EIA) (indexed site)

    ..... 111.1 7.1 7.0 8.0 12.1 Personal Computers Do Not Use a Personal Computer...................................... 35.5 3.0 2.0 2.7 3.1 Use a Personal Computer.................................................. 75.6 4.2 5.0 5.3 9.0 Most-Used Personal Computer Type of PC Desk-top Model............................................................. 58.6 3.2 3.9 4.0 6.7 Laptop Model................................................................. 16.9 1.0 1.1 1.3 2.4 Hours Turned on Per Week Less

  11. High-speed electrical motor evaluation

    SciTech Connect

    Not Available

    1989-02-03

    Under this task, MTI conducted a general review of state-of-the-art high-speed motors. The purpose of this review was to assess the operating parameters, limitations and performance of existing motor designs, and to establish commercial sources for a motor compatible with the requirements of the Brayton-cycle system. After the motor requirements were established, a list of motor types, manufacturers and designs capable of achieving the requisite performance was compiled. This list was based on an in-house evaluation of designs. Following the establishment of these options, a technical evaluation of the designs selected was conducted. In parallel with their evaluations, MTI focused on the establishment of commercial sources.

  12. Electrostatic generator/motor configurations

    DOEpatents

    Post, Richard Freeman

    2012-09-11

    Electrostatic generators/motors designs are provided that include a stator fixedly connected to a first central support centered about a central axis. The stator elements are attached to the first central support. Similarly, a second stator is connected to a central support centered about the central axis, and the second stator has stator elements attached to the second central support. A rotor is located between the first stator and the second stator and includes an outer support, where the rotor is rotatably centered about the central axis, the rotor having elements in contact with the outer support, each rotor element having an extending rotor portion that extends radially from the outer support toward the axis of rotation.

  13. Honda motor company's CVCC engine

    SciTech Connect

    Abernathy, W.J.; Ronan, L.

    1980-07-01

    Honda Motor Company of Japan in a four-year period from 1968 to 1872 designed, tested, and mass-produced a stratified charge engine, the CVCC, which in comparison to conventional engines of similar output at the time was lower in CO, HC and NO/sub x/ emissions and higher in fuel economy. Honda developed the CVCC engine without government assistance or outside help. Honda's success came at a time when steadily increasing fuel costs and the various provisions of the Clean Air Act had forced US automakers to consider possible alternatives to the conventional gasoline engine. While most major engine manufacturers had investigated some form of stratified charge engine, Honda's CVCC was the only one to find successful market application. This case study examines the circumstances surrounding the development of the CVCC engine and its introduction into the Japanese and American markets.

  14. FreedomCAR Advanced Traction Drive Motor Development Phase I

    SciTech Connect

    Ley, Josh; Lutz, Jon

    2006-09-01

    The overall objective of this program is to design and develop an advanced traction motor that will meet the FreedomCAR and Vehicle Technologies (FCVT) 2010 goals and the traction motor technical targets. The motor specifications are given in Section 1.3. Other goals of the program include providing a cost study to ensure the motor can be developed within the cost targets needed for the automotive industry. The program has focused on using materials that are both high performance and low costs such that the performance can be met and cost targets are achieved. In addition, the motor technologies and machine design features must be compatible with high volume manufacturing and able to provide high reliability, efficiency, and ruggedness while simultaneously reducing weight and volume. Weight and volume reduction will become a major factor in reducing cost, material cost being the most significant part of manufacturing cost at high volume. Many motor technology categories have been considered in the past and present for traction drive applications, including: brushed direct current (DC), PM (PM) brushless dc (BLDC), alternating current (AC) induction, switched reluctance and synchronous reluctance machines. Of these machine technologies, PM BLDC has consistently demonstrated an advantage in terms of power density and efficiency. As rare earth magnet cost has declined, total cost may also be reduced over the other technologies. Of the many different configurations of PM BLDC machines, those which incorporate power production utilizing both magnetic torque as well as reluctance torque appear to have the most promise for traction applications. There are many different PM BLDC machine configurations which employ both of these torque producing mechanisms; however, most would fall into one of two categories--some use weaker magnets and rely more heavily on reluctance torque (reluctance-dominant PM machines), others use strong PMs and supplement with reluctance torque

  15. Proton Motor Fuel Cell GmbH | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Motor Fuel Cell GmbH Jump to: navigation, search Name: Proton Motor Fuel Cell GmbH Place: Starnberg, Germany Zip: D-82319 Product: Proton Motor Fuel Cell has been developing and...

  16. A Five-Leg Inverter for Driving a Traction Motor and a Compressor Motor

    SciTech Connect

    Su, Gui-Jia; Hsu, John S

    2006-01-01

    This paper presents an integrated inverter for speed control of a traction motor and a compressor motor to reduce the compressor drive cost in EV/HEV applications. The inverter comprises five phase-legs; three of which are for control of a three-phase traction motor and the remaining two for a two-phase compressor motor with three terminals. The common terminal of the two-phase motor is tied to the neutral point of the three-phase traction motor to eliminate the requirement of a third phase leg. Further cost savings are made possible by sharing the switching devices, dc bus filter capacitors, gate drive power supplies, and control circuit. Simulation and experimental results are included to verify that speed control of the two motors is independent from each other.

  17. Energy Management for Motor-Driven Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Management for Motor-Driven Systems Energy Management for Motor-Driven Systems This document assists in establishing an energy management plan, identifying energy savings opportunities, and designing a motor improvement plan. Energy Management for Motor-Driven Systems (June 1997) (2.41 MB) More Documents & Publications Eliminate Voltage Unbalance Optimizing Your Motor-Driven System Continuous Energy Improvement in Motor Driven Systems - A Guidebook for Industry

  18. Estimating Motor Efficiency in the Field | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Estimating Motor Efficiency in the Field Estimating Motor Efficiency in the Field Some utility companies and public agencies offer rebates to encourage customers to upgrade their existing standard efficiency motors to premium efficiency motors. It is important to know the efficiency of the existing motor and how it is being used to accurately estimate potential annual energy and dollar savings. This tip sheet provides suggested actions and estimates of savings from improved efficiency. Motor

  19. Optimizing Your Motor-Driven System | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Your Motor-Driven System Optimizing Your Motor-Driven System This fact sheet presents an overview of electric drive systems and highlights common ways you can improve motor system efficiency and reliability. By optimizing the efficiency of your motor-driven systems, you can increase productivity while saving significant amounts of energy and money. Optimizing Your Motor Driven System (September 1996) (86.29 KB) More Documents & Publications When to Purchase Premium Efficiency Motors Energy

  20. Premium Efficiency Motor Selection and Application Guide - A Handbook for

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Industry | Department of Energy Premium Efficiency Motor Selection and Application Guide - A Handbook for Industry Premium Efficiency Motor Selection and Application Guide - A Handbook for Industry This handbook informs new motor purchase decisions by identifying energy and cost savings that can come from replacing motors with premium efficiency units. The handbook provides an overview of current motor use in the industrial sector, including the development of motor efficiency standards,

  1. Ultra-Efficient and Power-Dense Electric Motors

    SciTech Connect

    2009-01-01

    This factsheet describes a research project whose goal is to develop line-start and line-run constant-speed electric motors and simple-to-control electric motors with the goal of obtaining at least a 30% reduction in motor losses as compared to conventional energy-efficient induction motors and a 15% reduction in motor losses as compared to NEMA Premium® efficient induction motors.

  2. Ultra-Efficient and Power-Dense Electric Motors

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Ultra-Efficient and Power-Dense Electric Motors Advanced Electric Motors Offer Large Energy Savings in Industrial Applications Pumps, fans, and compressors use more than 60% of industrial electric motor energy in the United States. The most widely used motors in these applications are constant-speed motors that are started and run across the line. In some applications, variable- speed motors, powered from an open-loop variable-speed drive, are utilized without any rotor position feedback device

  3. Improve Motor System Efficiency with MotorMaster+, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)

    SciTech Connect

    Not Available

    2008-12-01

    This fact sheet describes how the Industrial Technologies Program MotorMaster+ software tool aids industrial plants with finding energy-efficient motor replacement options and managing motor systems.

  4. A New Class of Switched Reluctance Motors without Permanent Magnets...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Motors without Permanent Magnets A New Class of Switched Reluctance Motors without Permanent Magnets 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program ...

  5. Improving Motor and Drive System Performance - A Sourcebook for...

    Energy Saver

    Motor and Drive System Basics: Summarizes important terms, relationships, and system design considerations relating to motor and drive systems. Performance Opportunity Road Map: ...

  6. The Importance of Motor Shaft Alignment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    The Importance of Motor Shaft Alignment The Importance of Motor Shaft Alignment The objective of optimized shaft alignment is to increase the operating life span of rotating ...

  7. ,"Finished Motor Gasoline Refinery, Bulk Terminal, and Natural...

    Energy Information Administration (EIA) (indexed site)

    AM" "Back to Contents","Data 1: Finished Motor Gasoline Refinery, Bulk Terminal, and ... "Date","U.S. Finished Motor Gasoline Stocks at Refineries, Bulk ...

  8. Premium Efficiency Motor Selection and Application Guide - A...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Premium Efficiency Motor Selection and Application Guide - A Handbook for Industry Premium Efficiency Motor Selection and Application Guide - A Handbook for Industry This handbook ...

  9. Motor monitoring method and apparatus using high frequency current components

    DOEpatents

    Casada, Donald A.

    1996-01-01

    A motor current analysis method and apparatus for monitoring electrical-motor-driven devices. The method and apparatus utilize high frequency portions of the motor current spectra to evaluate the condition of the electric motor and the device driven by the electric motor. The motor current signal produced as a result of an electric motor is monitored and the low frequency components of the signal are removed by a high-pass filter. The signal is then analyzed to determine the condition of the electrical motor and the driven device.

  10. Continuous Energy Improvement in Motor Driven Systems - A Guidebook...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Improvement in Motor Driven Systems - A Guidebook for Industry Continuous Energy Improvement in Motor Driven Systems - A Guidebook for Industry This guidebook provides a ...

  11. United States Industrial Motor Systems Market Opportunities Assessment...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Motor Systems Market Opportunities Assessment: Executive Summary United States Industrial Motor Systems Market Opportunities Assessment: Executive Summary In addition to serving ...

  12. United States Industrial Electric Motor Systems Market Opportunities...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Electric Motor Systems Market Opportunities Assessment United States Industrial Electric Motor Systems Market Opportunities Assessment The objectives of the Market Assessment were ...

  13. Motor monitoring method and apparatus using high frequency current components

    DOEpatents

    Casada, D.A.

    1996-05-21

    A motor current analysis method and apparatus for monitoring electrical-motor-driven devices are disclosed. The method and apparatus utilize high frequency portions of the motor current spectra to evaluate the condition of the electric motor and the device driven by the electric motor. The motor current signal produced as a result of an electric motor is monitored and the low frequency components of the signal are removed by a high-pass filter. The signal is then analyzed to determine the condition of the electrical motor and the driven device. 16 figs.

  14. FULLY INTEGRATED HIGH SPEED MEGAWATT CLASS MOTOR AND HIGH FREQUENCY...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    FULLY INTEGRATED HIGH SPEED MEGAWATT CLASS MOTOR AND HIGH FREQUENCY VARIABLE SPEED DRIVE SYSTEM FULLY INTEGRATED HIGH SPEED MEGAWATT CLASS MOTOR AND HIGH FREQUENCY VARIABLE SPEED ...

  15. ,"U.S. Motor Gasoline Refiner Sales Volumes"

    Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","U.S. Motor Gasoline Refiner Sales ... AM" "Back to Contents","Data 1: U.S. Motor Gasoline Refiner Sales Volumes" ...

  16. Petroleum Products Table 31. Motor Gasoline Prices by Grade...

    Energy Information Administration (EIA) (indexed site)

    at end of table. 31. Motor Gasoline Prices by Grade, Sales Type, PAD District, and State 56 Energy Information Administration Petroleum Marketing Annual 1996 Table 31. Motor...

  17. Improving Motor and Drive System Performance: A Sourcebook for Industry

    SciTech Connect

    Not Available

    2008-09-01

    This is one in a series of sourcebooks to assist industrial personnel in understanding and optimizing motors and motor-driven systems

  18. Improve Motor Operation at Off-Design Voltages

    SciTech Connect

    Not Available

    2008-07-01

    This is one in a series of tip sheets to help manufacturers optimize their industrial motor and motor-driven systems.

  19. When Should Inverter-Duty Motors Be Specified?

    SciTech Connect

    Not Available

    2008-07-01

    This is one in a series of tip sheets to help manufacturers optimize their industrial motor and motor-driven systems.

  20. Improving Motor and Drive System Performance: A Sourcebook for Industry

    SciTech Connect

    2010-06-25

    This is one in a series of sourcebooks to assist industrial personnel in understanding and optimizing motors and motor-driven systems.

  1. Minimize Adverse Motor and Adjustable Speed Drive Interactions

    SciTech Connect

    Not Available

    2008-07-01

    This is one in a series of tip sheets to help manufacturers optimize their industrial motor and motor-driven systems.

  2. Vehicle Technologies Office: Electric Motors Research and Development...

    Office of Environmental Management (EM)

    Vehicle Technologies Office: Electric Motors Research and Development Vehicle Technologies Office: Electric Motors Research and Development To reach the EV Everywhere Grand ...

  3. Overview of the DOE Advanced Power Electronics and Electric Motor...

    Energy.gov [DOE] (indexed site)

    Power Electronics and Electric Motor R&D Program Susan Rogers Steven Boyd Advanced Power Electronics and Electric Motors Vehicle Technologies Office June 17, 2014 VEHICLE ...

  4. New rocket propellant and motor design offer high-performance...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    New rocket propellant and motor design offer high-performance and safety New rocket propellant and motor design offer high-performance and safety Scientists recently flight tested ...

  5. United States Industrial Motor-Driven Systems Market Assessment...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Motor-Driven Systems Market Assessment: Charting a Roadmap to Energy Savings for Industry United States Industrial Motor-Driven Systems Market Assessment: Charting a Roadmap to ...

  6. When Should Inverter-Duty Motors Be Specified?

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Electronic adjustable speed drives, known as variable frequency drives (VFD), used to be marketed as "usable with any standard motor." However, premature failures of motor ...

  7. Motor Fuel Excise Taxes (Fact Sheet), NREL (National Renewable...

    Alternative Fuels and Advanced Vehicles Data Center

    Motor Fuel Excise Taxes A new report from the National Renewable Energy Laboratory (NREL) explores the role of alternative fuels and energy efficient vehicles in motor fuel taxes. ...

  8. Improving Motor and Drive System Performance - A Sourcebook for...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    The sourcebook is divided into four main sections: Motor and Drive System Basics: Summarizes important terms, relationships, and system design considerations relating to motor and ...

  9. Vision Industries dba Vision Motor Corp | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Industries dba Vision Motor Corp Jump to: navigation, search Name: Vision Industries (dba Vision Motor Corp) Place: Santa Monica, California Zip: 90405 Product: Santa Monica-based...

  10. Ford Motor Co Sustainable Technologies and Hybrid Programme ...

    OpenEI (Open Energy Information) [EERE & EIA]

    Motor Co Sustainable Technologies and Hybrid Programme Jump to: navigation, search Name: Ford Motor Co - Sustainable Technologies and Hybrid Programme Place: Allen Park, Michigan...

  11. Nevada Department of Motor Vehicles | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Nevada Department of Motor Vehicles Name: Nevada Department of Motor Vehicles Address: 555 Wright Way Place: Carson City, Nevada Zip: 89711 Phone Number: 702-486-4368 Website:...

  12. Motor Systems Efficiency Supply Curves | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Motor Systems Efficiency Supply Curves Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Motor Systems Efficiency Supply Curves AgencyCompany Organization: United...

  13. Extended core for motor/generator

    DOEpatents

    Shoykhet, Boris A.

    2005-05-10

    An extended stator core in a motor/generator can be utilized to mitigate losses in end regions of the core and a frame of the motor/generator. To mitigate the losses, the stator core can be extended to a length substantially equivalent to or greater than a length of a magnetically active portion in the rotor. Alternatively, a conventional length stator core can be utilized with a shortened magnetically active portion to mitigate losses in the motor/generator. To mitigate the losses in the core caused by stator winding, the core can be extended to a length substantially equivalent or greater than a length of stator winding.

  14. Extended core for motor/generator

    DOEpatents

    Shoykhet, Boris A.

    2006-08-22

    An extended stator core in a motor/generator can be utilized to mitigate losses in end regions of the core and a frame of the motor/generator. To mitigate the losses, the stator core can be extended to a length substantially equivalent to or greater than a length of a magnetically active portion in the rotor. Alternatively, a conventional length stator core can be utilized with a shortened magnetically active portion to mitigate losses in the motor/generator. To mitigate the losses in the core caused by stator winding, the core can be extended to a length substantially equivalent or greater than a length of stator winding.

  15. The Paris Motor Show | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    The Paris Motor Show The Paris Motor Show October 4, 2010 - 9:39am Addthis David Sandalow at the Paris Auto Show | DOE photo David Sandalow at the Paris Auto Show | DOE photo David Sandalow David Sandalow Former Under Secretary of Energy (Acting) and Assistant Secretary for Policy & International Affairs At the Paris Motor Show today, electric cars are everywhere. Chevrolet is showing off the Volt, its plug-in hybrid due in U.S. showrooms this December. (Motown music blared as a Chevy rep

  16. Synchronous motor with soft start element formed between the motor rotor and motor output shaft to successfully synchronize loads that have high inertia and/or high torque

    DOEpatents

    Umans, Stephen D; Nisley, Donald L; Melfi, Michael J

    2014-10-28

    A line-start synchronous motor has a housing, a rotor shaft, and an output shaft. A soft-start coupling portion is operatively coupled to the output shaft and the rotor shaft. The soft-start coupling portion is configurable to enable the synchronous motor to obtain synchronous operation and to drive, at least near synchronous speed during normal steady state operation of the motor, a load having characteristics sufficient to prevent obtaining normal synchronous operation of the motor when the motor is operatively connected to the load in the absence of the soft-start coupling. The synchronous motor is sufficiently rated to obtain synchronous operation and to drive, at least near synchronous speed during normal steady state operation of the motor, a load having characteristics sufficient to prevent obtaining normal synchronous operation of the motor when the motor is operatively connected to the load in the absence of the soft-start coupling.

  17. Energy-efficient electric motors study

    SciTech Connect

    Not Available

    1981-03-23

    The study identifies the industrial decision makers, investigated the information they needed to know, how they can best be reached, and the motivating factors for purchasing energy-efficient electric motors. A survey was conducted of purchasers of integral horsepower polyphase motors. The survey measured current knowledge of and awareness of energy-efficient motors, decision-making criteria, information sources, purchase and usage patterns, and related factors. The survey data were used for the electric motor market penetration analysis. Additionally, a telephone survey was made. The study also provides analyses of distribution channels, commercialization constraints, and the impacts of government programs and rising energy prices. A description of study findings, conclusions, and recommendations is presented. Sample questionnaires and copies of letters to respondents are presented in 3 appendices. Appendices D and E contain descriptions of the methods used. (MCW)

  18. Method and apparatus for large motor control

    DOEpatents

    Rose, Chris R.; Nelson, Ronald O.

    2003-08-12

    Apparatus and method for providing digital signal processing method for controlling the speed and phase of a motor involves inputting a reference signal having a frequency and relative phase indicative of a time based signal; modifying the reference signal to introduce a slew-rate limited portion of each cycle of the reference signal; inputting a feedback signal having a frequency and relative phase indicative of the operation of said motor; modifying the feedback signal to introduce a slew-rate limited portion of each cycle of the feedback signal; analyzing the modified reference signal and the modified feedback signal to determine the frequency of the modified reference signal and of the modified feedback signal and said relative phase between said modified reference signal and said modified feedback signal; and outputting control signals to the motor for adjusting said speed and phase of the motor based on the frequency determination and determination of the relative phase.

  19. Tesla Motors Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Vehicles Product: California-based producer of luxury electric vehicles, such as sports cars. References: Tesla Motors Inc1 This article is a stub. You can help OpenEI by...

  20. Country Total Percent of U.S. Total Canada

    Annual Energy Outlook

    Taiwan 60,155 1% Vietnam 361,184 4% All others 1,861,971 19% Total 9,755,831 100% Table 7 . Photovoltaic module import shipments by country, 2015 Note: All Others includes Czech ...

  1. Determination of Total Solids in Biomass and Total Dissolved...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... The published moisture loss on drying for sodium tartrate is 15.62% (84.38% total solids). 14.6 Sample size: Determined by sample matrix. 14.7 Sample storage: Samples should be ...

  2. Trapped field internal dipole superconducting motor generator

    DOEpatents

    Hull, John R.

    2001-01-01

    A motor generator including a high temperature superconductor rotor and an internally disposed coil assembly. The motor generator superconductor rotor is constructed of a plurality of superconductor elements magnetized to produce a dipole field. The coil assembly can be either a conventional conductor or a high temperature superconductor. The superconductor rotor elements include a magnetization direction and c-axis for the crystals of the elements and which is oriented along the magnetization direction.

  3. General Motors Perspective | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    General Motors Perspective General Motors Perspective Presented at the R&D Strategies for Compressed, Cryo-Compressed and Cryo-Sorbent Hydrogen Storage Technologies Workshops on February 14 and 15, 2011. compressed_hydrogen2011_2_oelerich.pdf (965.39 KB) More Documents & Publications Research and Development Strategies for Compressed & Cryo-Hydrogen Storage Systems - Workshop Summary Report Technical Assessment of Compressed Hydrogen Storage Tank Systems for Automotive Applications

  4. Direct-drive field actuator motors

    DOEpatents

    Grahn, Allen R.

    1995-01-01

    A high-torque, low speed, positive-drive field actuator motor including a stator carrying at least one field actuator which changes in dimension responsive to application of an energy field, and at least one drive shoe movable by the dimensional changes of the field actuator to contact and move a rotor element with respect to the stator. Various embodiments of the motor are disclosed, and the rotor element may be moved linearly or arcuately.

  5. Direct-drive field actuator motors

    DOEpatents

    Grahn, A.R.

    1995-07-11

    A high-torque, low speed, positive-drive field actuator motor is disclosed including a stator carrying at least one field actuator which changes in dimension responsive to application of an energy field, and at least one drive shoe movable by the dimensional changes of the field actuator to contact and move a rotor element with respect to the stator. Various embodiments of the motor are disclosed, and the rotor element may be moved linearly or arcuately. 37 figs.

  6. Equivalent Circuit Modeling of Hysteresis Motors

    SciTech Connect

    Nitao, J J; Scharlemann, E T; Kirkendall, B A

    2009-08-31

    We performed a literature review and found that many equivalent circuit models of hysteresis motors in use today are incorrect. The model by Miyairi and Kataoka (1965) is the correct one. We extended the model by transforming it to quadrature coordinates, amenable to circuit or digital simulation. 'Hunting' is an oscillatory phenomenon often observed in hysteresis motors. While several works have attempted to model the phenomenon with some partial success, we present a new complete model that predicts hunting from first principles.

  7. Replacing an Oversized and Underloaded Electric Motor

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    1 Konstantin Lobodovsky, Ramesh Ganeriwal, and Anil Gupta, Field Measurements and Determination of Electric Motor Efficiency. Sixth World Energy Engineering Congress, Atlanta, Georgia, December 1, 1983. 2 Jeffrey Jowett and William D. Biesemeyer, Facts and Fiction of HVAC Motor Measuring for Energy Savings. American Council for an Energy Efficient Economy Summer Study on Energy Efficiency in Buildings, Volume 5, Asilomar, California, August 28-September 3, 1994. 3 Ramesh Ganeriwal, Anil Gupta,

  8. Avoid Nuisance Tripping with Premium Efficiency Motors

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Avoid Nuisance Tripping with Premium Efficiency Motors In most cases, upgrading to premium effciency motors has no noticeable impact on the electrical system. However, in rare cases nuisance trips can occur during start-up. Addressing this topic requires an understanding of starting current. The National Electrical Manufacturers Association (NEMA) recognizes and describes two components of starting current: instantaneous peak inrush and locked rotor current (LRC). Nuisance tripping primarily has

  9. DC Motor control using motor-generator set with controlled generator field

    DOEpatents

    Belsterling, Charles A.; Stone, John

    1982-01-01

    A d.c. generator is connected in series opposed to the polarity of a d.c. power source supplying a d.c. drive motor. The generator is part of a motor-generator set, the motor of which is supplied from the power source connected to the motor. A generator field control means varies the field produced by at least one of the generator windings in order to change the effective voltage output. When the generator voltage is exactly equal to the d.c. voltage supply, no voltage is applied across the drive motor. As the field of the generator is reduced, the drive motor is supplied greater voltage until the full voltage of the d.c. power source is supplied when the generator has zero field applied. Additional voltage may be applied across the drive motor by reversing and increasing the reversed field on the generator. The drive motor may be reversed in direction from standstill by increasing the generator field so that a reverse voltage is applied across the d.c. motor.

  10. Convective Cooling and Passive Stack Improvements in Motors (Presentation)

    SciTech Connect

    Bennion, K.

    2014-06-01

    This presentation discusses current research at NREL in convective cooling and passive stack improvements in motors.

  11. MotorMaster+ Software Tool Brochure | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Software Tool Brochure MotorMaster+ Software Tool Brochure This brochure provides information on AMO's MotorMaster+ software tool, including how it works, next steps, and how to access it. MotorMaster+ Brochure (2.48 MB) More Documents & Publications MotorMaster+ International Fact Sheet

  12. A Guide to AC Motor Repair and Replacement

    SciTech Connect

    2004-03-01

    This booklet provides helpful information for making informed repair or replace decisions for electric motors.

  13. Halbach array DC motor/generator

    DOEpatents

    Merritt, Bernard T.; Dreifuerst, Gary R.; Post, Richard F.

    1998-01-01

    A new configuration of DC motor/generator is based on a Halbach array of permanent magnets. This motor does not use ferrous materials so that the only losses are winding losses and losses due to bearings and windage. An "inside-out" design is used as compared to a conventional motor/generator design. The rotating portion, i.e., the rotor, is on the outside of the machine. The stationary portion, i.e., the stator, is formed by the inside of the machine. The rotor contains an array of permanent magnets that provide a uniform field. The windings of the motor are placed in or on the stator. The stator windings are then "switched" or "commutated" to provide a DC motor/generator much the same as in a conventional DC motor. The commutation can be performed by mechanical means using brushes or by electronic means using switching circuits. The invention is useful in electric vehicles and adjustable speed DC drives.

  14. Halbach array DC motor/generator

    DOEpatents

    Merritt, B.T.; Dreifuerst, G.R.; Post, R.F.

    1998-01-06

    A new configuration of DC motor/generator is based on a Halbach array of permanent magnets. This motor does not use ferrous materials so that the only losses are winding losses and losses due to bearings and windage. An ``inside-out`` design is used as compared to a conventional motor/generator design. The rotating portion, i.e., the rotor, is on the outside of the machine. The stationary portion, i.e., the stator, is formed by the inside of the machine. The rotor contains an array of permanent magnets that provide a uniform field. The windings of the motor are placed in or on the stator. The stator windings are then ``switched`` or ``commutated`` to provide a DC motor/generator much the same as in a conventional DC motor. The commutation can be performed by mechanical means using brushes or by electronic means using switching circuits. The invention is useful in electric vehicles and adjustable speed DC drives. 17 figs.

  15. TotalView Training 2015

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    TotalView Training 2015 TotalView Training 2015 NERSC will host an in-depth training course on TotalView, a graphical parallel debugger developed by Rogue Wave Software, on Thursday, March 26, 2015. This will be provided by Rogue Wave Software staff members. The training will include a lecture and demo sessions in the morning, followed by a hands-on parallel debugging session in the afternoon. Location This event will be presented online using WebEx technology and in person at NERSC Oakland

  16. Characteristics RSE Column Factor: Total

    Energy Information Administration (EIA) (indexed site)

    and 1994 Vehicle Characteristics RSE Column Factor: Total 1993 Family Income Below Poverty Line Eli- gible for Fed- eral Assist- ance 1 RSE Row Factor: Less than 5,000 5,000...

  17. ARM - Measurement - Total cloud water

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    cloud water ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Total cloud water The total concentration (mass/vol) of ice and liquid water particles in a cloud; this includes condensed water content (CWC). Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a

  18. Magnetically Coupled Adjustable Speed Motor Drives | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Magnetically Coupled Adjustable Speed Motor Drives Magnetically Coupled Adjustable Speed Motor Drives Alternating current electric motors rotate at a nearly constant speed that is determined by motor design and line frequency. Energy savings of 50% or more may be available when fixed speed systems are modified to allow the motor speed to match variable load requirements of a centrifugal fan or pump. This tip sheet describes the advantages of magnetically coupled ASDs and provides suggested

  19. Avoid Nuisance Tripping with Premium Efficiency Motors | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Avoid Nuisance Tripping with Premium Efficiency Motors Avoid Nuisance Tripping with Premium Efficiency Motors In most cases, upgrading to premium efficiency motors has no noticeable impact on the electrical system. However, in rare cases nuisance trips can occur during start-up. Addressing this topic requires an understanding of starting current.This tip sheet discusses how to avoid nuisance tripping with premium efficiency motors and provides suggested actions. Motor Systems Tip

  20. Improving Motor and Drive System Performance - A Sourcebook for Industry

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    | Department of Energy Motor and Drive System Performance - A Sourcebook for Industry Improving Motor and Drive System Performance - A Sourcebook for Industry This sourcebook outlines opportunities to improve motor and drive systems performance. The sourcebook is divided into four main sections: Motor and Drive System Basics: Summarizes important terms, relationships, and system design considerations relating to motor and drive systems. Performance Opportunity Road Map: Details the key

  1. Model Repair Specifications for Low Voltage Induction Motors | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Model Repair Specifications for Low Voltage Induction Motors Model Repair Specifications for Low Voltage Induction Motors These Model Repair Specifications are intended to cover routine repair and rewind of low-voltage random-wound three-phase AC squirrel cage induction motors. Model Repair Specifications for Low Voltage Induction Motors (November 1999) (1.31 MB) More Documents & Publications DOE Navigant Master Presentation Improving Motor and Drive System Performance - A

  2. Model Repair Specifications for Low Voltage Induction Motors

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Model Repair Specifications For Low Voltage Induction Motors Model Repair Specifications for Low Voltage Induction Motors These Model Repair Specifications are intended to cover routine repair and rewind of low-voltage random-wound three-phase AC squirrel cage induction motors. For motors falling outside this description, the more comprehensive model specifications below are recommended. Electric Motor Model Repair Specifications DOE/BP-2748 Available from the U.S. Department of Energy's Office

  3. Buying an Energy-Efficient Electric Motor | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Buying an Energy-Efficient Electric Motor Buying an Energy-Efficient Electric Motor Efficiency is an important factor to consider when buying or rewinding an electric motor. This fact sheet shows you how to obtain the most efficient motor at the lowest price and avoid common problems and answers a number of frequently asked questions. Buying an Energy-Efficient Electric Motor (September 1996) (105.69 KB) More Documents & Publications Notice and Request for Comments, Federal Register, 71 FR

  4. United States Industrial Electric Motor Systems Market Opportunities

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Assessment | Department of Energy Electric Motor Systems Market Opportunities Assessment United States Industrial Electric Motor Systems Market Opportunities Assessment The objectives of the Market Assessment were to: Develop a detailed profile of the stock of motor-driven equipment in U.S. industrial facilities; Characterize and estimate the magnitude of opportunities to improve the energy efficiency of industrial motor systems; Develop a profile of motor system purchase and maintenance

  5. United States Industrial Motor Systems Market Opportunities Assessment:

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Executive Summary | Department of Energy Motor Systems Market Opportunities Assessment: Executive Summary United States Industrial Motor Systems Market Opportunities Assessment: Executive Summary In addition to serving DOE's program planning and evaluation needs, the Motor Systems Market Assessment is designed to be of value to manufacturers, distributors, engineers, and others int he supply channels for motor systems. United States Industrial Motor Systems Market Opportunities Assessment:

  6. SU-E-T-545: MLC Distance Travelled as a Predictor for Motor Failure

    SciTech Connect

    Stathakis, S; Defoor, D; Linden, P; Kirby, N; Papanikolaou, N; Mavroidis, P

    2015-06-15

    Purpose: To study the frequency of Multi-Leaf Collimator (MLC) leaf failures, investigate methods to predict them and reduce linac downtime. Methods: A Varian HD120 MLC was used in our study. The hyperterminal MLC errors logged from 06/2012 to 12/2014 were collected. Along with the hyperterminal errors, the MLC motor changes and all other MLC interventions by the linear accelerator engineer were recorded. The MLC dynalog files were also recorded on a daily basis for each treatment and during linac QA. The dynalog files were analyzed to calculate root mean square errors (RMS) and cumulative MLC travel distance per motor. An in-house MatLab code was used to analyze all dynalog files, record RMS errors and calculate the distance each MLC traveled per day. Results: A total of 269 interventions were recorded over a period of 18 months. Of these, 146 included MLC motor leaf change, 39 T-nut replacements, and 84 MLC cleaning sessions. Leaves close to the middle of each side required the most maintenance. In the A bank, leaves A27 to A40 recorded 73% of all interventions, while the same leaves in the B bank counted for 52% of the interventions. On average, leaves in the middle of the bank had their motors changed approximately every 1500m of travel. Finally, it was found that the number of RMS errors increased prior to an MLC motor change. Conclusion: An MLC dynalog file analysis software was developed that can be used to log daily MLC usage. Our eighteen-month data analysis showed that there is a correlation between the distance an MLC travels, the RMS and the life of the MLC motor. We plan to use this tool to predict MLC motor failures and with proper and timely intervention, reduce the downtime of the linac during clinical hours.

  7. When Should Inverter-Duty Motors Be Specified? - Motor Tip Sheet #14

    SciTech Connect

    2008-07-01

    Electronic adjustable speed drives (ASDs) used to be marketed as “usable with any standard motor.” However, premature failures of motor insulation systems began to occur with the introduction of fast-switching pulse-width modulated (PWM) drives.

  8. ISSUANCE 2016-06-10: Energy Conservation Program: Certification, Compliance, Labeling, and Enforcement for Electric Motors and Small Electric Motors, Notice of Proposed Rulemaking

    Office of Energy Efficiency and Renewable Energy (EERE)

    Energy Conservation Program: Certification, Compliance, Labeling, and Enforcement for Electric Motors and Small Electric Motors, Notice of Proposed Rulemaking

  9. Trends in motor gasolines: 1942-1981

    SciTech Connect

    Shelton, E M; Whisman, M L; Woodward, P W

    1982-06-01

    Trends in motor gasolines for the years of 1942 through 1981 have been evaluated based upon data contained in surveys that have been prepared and published by the Bartlesville Energy Technology Center (BETC). These surveys have been published twice annually since 1935 describing the properties of motor gasolines from throughout the country. The surveys have been conducted in cooperation with the American Petroleum Institute (API) since 1948. Various companies from throughout the country obtain samples from retail outlets, analyze the samples by the American Society for Testing and Materials (ASTM) procedures, and report data to the Bartlesville center for compilation, tabulation, calculation, analysis and publication. A typical motor gasoline report covers 2400 samples from service stations throughout the country representing some 48 companies that manufacture and supply gasoline. The reports include trend charts, octane plots, and tables of test results from about a dozen different tests. From these data in 77 semiannual surveys, a summary report has thus been assembled that shows trends in motor gasolines throughout the entire era of winter 1942 to 1943 to the present. Trends of physical properties including octane numbers, antiknock ratings, distillation temperatures, Reid vapor pressure, sulfur and lead content are tabulated, plotted and discussed in the current report. Also included are trend effects of technological advances and the interactions of engine design, societal and political events and prices upon motor gasoline evolution during the 40 year period.

  10. CATEGORY Total Procurement Total Small Business Small Disadvantaged

    National Nuclear Security Administration (NNSA)

    CATEGORY Total Procurement Total Small Business Small Disadvantaged Business Woman Owned Small Business HubZone Small Business Veteran-Owned Small Business Service Disabled Veteran Owned Small Business FY 2013 Dollars Accomplished $1,049,087,940 $562,676,028 $136,485,766 $106,515,229 $12,080,258 $63,473,852 $28,080,960 FY 2013 % Accomplishment 54.40% 13.00% 10.20% 1.20% 6.60% 2.70% FY 2014 Dollars Accomplished $868,961,755 $443,711,175 $92,478,522 $88,633,031 $29,867,820 $43,719,452 $26,826,374

  11. Commercial Building Motor Protection Response Report

    SciTech Connect

    James, Daniel P.; Kueck, John

    2015-06-17

    When voltages recover, motors may immediately reenergize and reaccelerate, or delay for a few minutes, or stay stalled. The estimated motor response is given for both the voltage sag magnitude and voltage sag duration. These response estimates are based on experience and available test data. Good data is available for voltage sag response for many components such as relays and contactors, but little data is available for both voltage sag and recovery response. The tables in Appendix A include data from recent voltage sag and recovery tests performed by SCE and BPA on air conditioners and energy management systems. The response of the motor can vary greatly depending on the type of protection and control. The time duration for the voltage sag consists of those times that are of interest for bulk power system modelers.

  12. The Role of Reluctance in PM Motors

    SciTech Connect

    Otaduy, P.J.

    2005-06-16

    The international research community has lately focused efforts on interior permanent magnet (IPM) motors to produce a traction motor for hybrid electric vehicles (HEV). One of the beneficial features of this technology is the additional torque produced by reluctance. The objective of this report is to analytically describe the role that reluctance plays in permanent magnet (PM) motors, to explore ways to increase reluctance torque without sacrificing the torque produced by the PMs, and to compare three IPM configurations with respect to torque, power, amount of magnet material required (cost), and percentage of reluctance torque. Results of this study will be used to determine future research directions in utilizing reluctance to obtain maximum torque and power while using a minimum amount of magnet material.

  13. Advanced motor driven clamped borehole seismic receiver

    DOEpatents

    Engler, B.P.; Sleefe, G.E.; Striker, R.P.

    1993-02-23

    A borehole seismic tool is described including a borehole clamp which only moves perpendicular to the borehole. The clamp is driven by an electric motor, via a right angle drive. When used as a seismic receiver, the tool has a three part housing, two of which are hermetically sealed. Accelerometers or geophones are mounted in one hermetically sealed part, the electric motor in the other hermetically sealed part, and the clamp and right angle drive in the third part. Preferably the tool includes cable connectors at both ends. Optionally a shear plate can be added to the clamp to extend the range of the tool.

  14. Motor Gasoline Market Model documentation report

    SciTech Connect

    Not Available

    1993-09-01

    The purpose of this report is to define the objectives of the Motor Gasoline Market Model (MGMM), describe its basic approach and to provide detail on model functions. This report is intended as a reference document for model analysts, users, and the general public. The MGMM performs a short-term (6- to 9-month) forecast of demand and price for motor gasoline in the US market; it also calculates end of month stock levels. The model is used to analyze certain market behavior assumptions or shocks and to determine the effect on market price, demand and stock level.

  15. Soft-commutated direct current motor

    DOEpatents

    Hsu, J.S.

    1999-07-27

    A method and circuit is disclosed for soft-commutation of a direct current (DC) motor. An attenuation circuit is connected through auxiliary brushes A, A[prime], B and B[prime] to the commutator (16) to drain circuit from successive armature coils (15) before the main brushes (27, 28) disconnects from each of the coils (15). This prevents the spark generation that normally occurs in conventional DC motors. The attenuation circuit may also be connected before energization of the coil (15) for a soft turning on operation. 13 figs.

  16. Soft-commutated direct current motor

    DOEpatents

    Hsu, John S.

    1999-01-01

    A method and circuit is disclosed for soft-commutation of a direct current (DC) motor. An attenuation circuit is connected through auxiliary brushes A, A', B and B' to the commutator (16) to drain circuit from successive armature coils (15) before the main brushes (27, 28) disconnects from each of the coils (15). This prevents the spark generation that normally occurs in conventional DC motors. The attenuation circuit may also be connected before energization of the coil (15) for a soft turning on operation.

  17. The China Motor Systems Energy Conservation Program: A major national initiative to reduce motor system energy use in China

    SciTech Connect

    Nadel, Steven; Wang, Wanxing; Liu, Peter; McKane, Aimee T.

    2001-05-31

    Electric motor systems are widely used in China to power fans, pumps, blowers, air compressors, refrigeration compressors, conveyers, machinery, and many other types of equipment. Overall, electric motor systems consume more than 600 billion kWh annually, accounting for more than 50 percent of China's electricity use. There are large opportunities to improve the efficiency of motor systems. Electric motors in China are approximately 2-4 percent less efficient on average than motors in the U.S. and Canada. Fans and pumps in China are approximately 3-5 percent less efficient than in developed countries. Even more importantly, motors, fans, pumps, air compressors and other motor-driven equipment are frequently applied with little attention to system efficiency. More optimized design, including appropriate sizing and use of speed control strategies, can reduce energy use by 20 percent or more in many applications. Unfortunately, few Chinese enterprises use or even know about these energy-saving practices. Opportunities for motor system improvements are probably greater in China than in the U.S. In order to begin capturing these savings, China is establishing a China Motor Systems Energy Conservation Program. Elements of this program include work to develop minimum efficiency standards for motors, a voluntary ''green motor'' labeling program for high-efficiency motors, efforts to develop and promote motor system management guidelines, and a training, technical assistance and financing program to promote optimization of key motor systems.

  18. U.S. Department of Energy's Motor Challenge Program: A National...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy's Motor Challenge Program: A National Strategy for Energy Efficient Industrial Motor-Driven Systems U.S. Department of Energy's Motor Challenge Program: A ...

  19. Modeling Reluctance-Assisted PM Motors

    SciTech Connect

    Otaduy, P.J.

    2006-01-13

    This report contains a derivation of the fundamental equations used to calculate the base speed, torque delivery, and power output of a reluctance-assisted PM motor which has a saliency ratio greater than 1 as a function of its terminal voltage, current, voltage-phase angle, and current-phase angle. The equations are applied to model Motor X using symbolically-oriented methods with the computer tool Mathematica to determine: (1) the values of current-phase angle and voltage-phase angle that are uniquely determined once a base speed has been selected; (2) the attainable current in the voltage-limited region above base speed as a function of terminal voltage, speed, and current-phase angle; (3) the attainable current in the voltage-limited region above base speed as a function of terminal voltage, speed, and voltage-phase angle; (4) the maximum-power output in the voltage-limited region above base speed as a function of speed; (5) the optimal voltage-phase angle in the voltage-limited region above base speed required to obtain maximum-power output; (6) the maximum-power speed curve which was linear from rest to base speed in the current limited region below base speed; (7) the current angle as a function of saliency ratio in the current-limited region below base speed; and (8) the torque as a function of saliency ratio which is almost linear in the current-limited region below base speed. The equations were applied to model Motor X using numerically-oriented methods with the computer tool LabVIEW. The equations were solved iteratively to find optimal current and voltage angles that yield maximum power and maximum efficiency from rest through the current-limited region to base speed and then through the voltage-limited region to high-rotational speeds. Currents, voltages, and reluctance factors were all calculated and external loops were employed to perform additional optimization with respect to PM pitch angle (magnet fraction) and with respect to magnet strength

  20. Million Cu. Feet Percent of National Total

    Annual Energy Outlook

    Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: ...

  1. Million Cu. Feet Percent of National Total

    Energy Information Administration (EIA) (indexed site)

    0 New Hampshire - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle ...

  2. Total Number of Operable Refineries

    Energy Information Administration (EIA) (indexed site)

    Data Series: Total Number of Operable Refineries Number of Operating Refineries Number of Idle Refineries Atmospheric Crude Oil Distillation Operable Capacity (B/CD) Atmospheric Crude Oil Distillation Operating Capacity (B/CD) Atmospheric Crude Oil Distillation Idle Capacity (B/CD) Atmospheric Crude Oil Distillation Operable Capacity (B/SD) Atmospheric Crude Oil Distillation Operating Capacity (B/SD) Atmospheric Crude Oil Distillation Idle Capacity (B/SD) Vacuum Distillation Downstream Charge

  3. Premature ignition of a rocket motor.

    SciTech Connect

    Moore, Darlene Ruth

    2010-10-01

    During preparation for a rocket sled track (RST) event, there was an unexpected ignition of the zuni rocket motor (10/9/08). Three Sandia staff and a contractor were involved in the accident; the contractor was seriously injured and made full recovery. The data recorder battery energized the low energy initiator in the rocket.

  4. QER- Comment of Honda Motor Co., Inc.

    Office of Energy Efficiency and Renewable Energy (EERE)

    Attached please find comments for the record for the Quadrennial Energy Review : Comment on the Public Meeting “Enhancing Infrastructure Resiliency,” Held April 11, 2014, Washington, D.C. filed on behalf of American Honda Motor Co., Inc. If you have any questions, please contact the undersigned.

  5. Physical context management for a motor vehicle

    DOEpatents

    Dixon, Kevin R.; Forsythe, James C.; Lippitt, Carl E.; Lippitt, legal representative, Lois Diane

    2009-10-27

    Computer software for and a method of enhancing safety for an operator of a motor vehicle comprising employing a plurality of sensors of vehicle and operator conditions, matching collective output from the sensors against a plurality of known dangerous conditions, and preventing certain activity of the operator if a known dangerous condition is detected.

  6. Pulp and Paper Mills: Profiting from Efficient Motor System Use...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Pulp and Paper Mills: Profiting from Efficient Motor System Use Pulp and Paper Mills: Profiting from Efficient Motor System Use This 2-page fact sheet describes The Paper and ...

  7. 38017,"AMERADA HESS CORP ",1,130,"MOTOR...

    Energy Information Administration (EIA) (indexed site)

    INC ",1,130,"MOTOR GAS, CONVENTIONAL, OTHER",4912,"GUAYANILLA, PR","PUERTO RICO",6,830,"SPAIN",15,0,0,,,,, 38017,"TRAMMO PETRO INC ",2,130,"MOTOR GAS, CONVENTIONAL,...

  8. Collective alignment of polar filaments by molecular motors.

    SciTech Connect

    Ziebert, F.; Aranson, I. S.; Vershinin, M.; Gross, S. P.; Materials Science Division; Univ. of California at Irvine

    2009-04-01

    We study the alignment of polar biofilaments, such as microtubules and actin, subject to the action of multiple molecular motors attached simultaneously to more than one filament. Focusing on a paradigm model of only two filaments interacting with multiple motors, we were able to investigate in detail the alignment dynamics. While almost no alignment occurs in the case of a single motor, the filaments become rapidly aligned due to the collective action of the motors. Our analysis shows that the alignment time is governed by the number of bound motors and the magnitude of the motors stepping fluctuations. We predict that the time scale of alignment is in the order of seconds, much faster than that reported for passive crosslink-induced bundling. In vitro experiments on the alignment of microtubules by multiple-motor covered beads are in qualitative agreement. We also discuss another mode of fast alignment of filaments, namely the cooperation between motors and passive crosslinks.

  9. Secrets of the Motor That Drives Archaea Revealed

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Secrets of the Motor That Drives Archaea Revealed Secrets of the Motor That Drives Archaea Revealed Print Thursday, 14 February 2013 00:00 An international team led by John Tainer...

  10. Minimize Adverse Motor and Adjustable Speed Drive Interactions - Motor Tip Sheet #15

    SciTech Connect

    2008-07-01

    Electronic adjustable speed drives (ASDs) are an extremely efficient and valuable asset to motor systems. They allow precise process control and provide energy savings within systems that do not need to continuously operate at full output.

  11. Simple cost model for EV traction motors

    SciTech Connect

    Cuenca, R.M.

    1995-02-01

    A simple cost model has been developed that allows the calculation of the OEM cost of electric traction motors of three different types, normalized as a function of power in order to accommodate different power and size. The model includes enough information on the various elements integrated in the motors to allow analysis of individual components and to factor-in the effects of changes in commodities prices. A scalable cost model for each of the main components of an electric vehicle (EV) is a useful tool that can have direct application in computer simulation or in parametric studies. For the cost model to have wide usefulness, it needs to be valid for a range of values of some parameter that determines the magnitude or size of the component. For instance, in the case of batteries, size may be determined by energy capacity, usually expressed in kilowatt-hours (kWh), while in the case of traction motors, size is better determined by rated power, usually expressed in kilowatts (kW). The simplest case is when the cost of the component in question is a direct function of its size; then cost is simply the product of its specific cost ($/unit size) and the number of units (size) in the vehicle in question. Batteries usually fall in this category (cost = energy capacity x $/kWh). But cost is not always linear with size or magnitude; motors (and controllers), for instance, become relatively less expensive as power rating increases. Traction motors, one of the main components for EV powertrains are examined in this paper, and a simplified cost model is developed for the three most popular design variations.

  12. Selected Bibliography on Electric Motor Repair | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Selected Bibliography on Electric Motor Repair Selected Bibliography on Electric Motor Repair The following series of repair documents related to electric motors were produced by the U.S. Department of Energy's Advanced Manufacturing Office (formerly the Office of Industrial Technologies) with input from trade associations, consulting companies, manufacturers, non-profit operations, and others. Selected Bibliography on Electric Motor Repair (November 1999) (1.38 MB) More Documents &

  13. Motor Packaging with Consideration of Electromagnetic and Material...

    Energy.gov [DOE] (indexed site)

    Documents & Publications Motor Packaging with Consideration of Electromagnetic and Material Characteristics Alnico and Ferrite Hybrid Excitation Electric Machines Wireless Charging

  14. Motor Energy Savings Potential Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Motor Energy Savings Potential Report Motor Energy Savings Potential Report This report describes the current state of motor technology and estimates opportunities for energy savings through application of more advanced technologies in a variety of residential and commercial end uses. The objectives of this report were to characterize the state and type of motor technologies used in residential and commercial appliances and equipment and to identify opportunities to reduce the energy consumption

  15. Optimizing Electric Motor Systems at a Corporate Campus Facility |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Electric Motor Systems at a Corporate Campus Facility Optimizing Electric Motor Systems at a Corporate Campus Facility Minnesota Mining and Manufacturing (3M) conducted an in-house motor system performance optimization project. This four-page case study describes their experience. Optimizing Electric Motor Systems at a Corporate Campus Facility (May 2002) (191.7 KB) More Documents & Publications Metal and Glass Manufacturers Reduce Costs by Increasing Energy

  16. Extended cage adjustable speed electric motors and drive packages

    DOEpatents

    Hsu, J.S.

    1999-03-23

    The rotor cage of a motor is extended, a second stator is coupled to this extended rotor cage, and the windings have the same number of poles. The motor torque and speed can be controlled by either injecting energy into or extracting energy out from the rotor cage. The motor produces less harmonics than existing doubly-fed motors. Consequently, a new type of low cost, high efficiency drive is produced. 12 figs.

  17. Extended cage adjustable speed electric motors and drive packages

    DOEpatents

    Hsu, John S.

    1999-01-01

    The rotor cage of a motor is extended, a second stator is coupled to this extended rotor cage, and the windings have the same number of poles. The motor torque and speed can be controlled by either injecting energy into or extracting energy out from the rotor cage. The motor produces less harmonics than existing doubly-fed motors. Consequently, a new type of low cost, high efficiency drive is produced.

  18. Continuous Energy Improvement in Motor Driven Systems - A Guidebook for

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Industry | Department of Energy Energy Improvement in Motor Driven Systems - A Guidebook for Industry Continuous Energy Improvement in Motor Driven Systems - A Guidebook for Industry This guidebook provides a step-by-step approach to developing a motor system energy-improvement action plan. An action plan includes which motors should be repaired or replaced with higher efficiency models, recommendations on maintaining a spares inventory, and discussion of improvements in maintenance

  19. EERE Success Story-Revolutionary Refrigeration Motor Slashes Supermarket

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Usage | Department of Energy Revolutionary Refrigeration Motor Slashes Supermarket Energy Usage EERE Success Story-Revolutionary Refrigeration Motor Slashes Supermarket Energy Usage June 7, 2016 - 11:40am Addthis QM Power discusses the company's new refrigeration motor with a supermarket. (Source: QM Power) QM Power discusses the company's new refrigeration motor with a supermarket. (Source: QM Power) Source: QM Power Source: QM Power QM Power discusses the company's new refrigeration

  20. Design Storm for Total Retention.pdf

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Title: Design Storm for "Total Retention" under Individual Permit, Poster, Individual ... International. Environmental Programs Design Storm for "Total Retention" under ...