National Library of Energy BETA

Sample records for total energy imports

  1. Total Imports

    Energy Information Administration (EIA) (indexed site)

    Data Series: Imports - Total Imports - Crude Oil Imports - Crude Oil, Commercial Imports - by SPR Imports - into SPR by Others Imports - Total Products Imports - Total Motor Gasoline Imports - Finished Motor Gasoline Imports - Reformulated Gasoline Imports - Reformulated Gasoline Blended w/ Fuel Ethanol Imports - Other Reformulated Gasoline Imports - Conventional Gasoline Imports - Conv. Gasoline Blended w/ Fuel Ethanol Imports - Conv. Gasoline Blended w/ Fuel Ethanol, Ed55 & < Imports -

  2. U.S. Total Imports

    Energy Information Administration (EIA) (indexed site)

    St. Clair, MI International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake

  3. Total Imports of Residual Fuel

    Energy Information Administration (EIA) (indexed site)

    2010 2011 2012 2013 2014 2015 View History U.S. Total 133,646 119,888 93,672 82,173 63,294 69,914 1936-2015 PAD District 1 88,999 79,188 59,594 33,566 30,944 34,524 1981-2015 Connecticut 220 129 1995-2015 Delaware 748 1,704 510 1,604 2,479 1995-2015 Florida 15,713 11,654 10,589 8,331 5,055 7,198 1995-2015 Georgia 5,648 7,668 6,370 4,038 2,037 1,629 1995-2015 Maine 1,304 651 419 75 317 135 1995-2015 Maryland 3,638 1,779 1,238 433 938 589 1995-2015 Massachusetts 123 50 78 542 88 1995-2015 New

  4. Total Imports of Residual Fuel

    Energy Information Administration (EIA) (indexed site)

    Mar-16 Apr-16 May-16 Jun-16 Jul-16 Aug-16 View History U.S. Total 8,596 6,340 4,707 8,092 8,512 8,017 1936-2016 PAD District 1 2,694 1,250 1,327 2,980 2,074 3,566 1981-2016 Connecticut 1995-2015 Delaware 280 231 385 1995-2016 Florida 800 200 531 499 765 1995-2016 Georgia 149 106 1995-2016 Maine 1995-2015 Maryland 84 66 1995-2016 Massachusetts 1995-2015 New Hampshire 1995-2015 New Jersey 1,073 734 355 1,984 399 1,501 1995-2016 New York 210 196 175 1,223 653 1995-2016 North Carolina 1995-2011

  5. Parallel Total Energy

    Energy Science and Technology Software Center

    2004-10-21

    This is a total energy electronic structure code using Local Density Approximation (LDA) of the density funtional theory. It uses the plane wave as the wave function basis set. It can sue both the norm conserving pseudopotentials and the ultra soft pseudopotentials. It can relax the atomic positions according to the total energy. It is a parallel code using MP1.

  6. Fact #837: September 8, Gap between Net Imports and Total Imports of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Petroleum is Widening | Department of Energy 7: September 8, Gap between Net Imports and Total Imports of Petroleum is Widening Fact #837: September 8, Gap between Net Imports and Total Imports of Petroleum is Widening Net imports of petroleum (total imports minus exports) were 6.2 million barrels per day in 2013 - the lowest since the 1980's (dark blue line). The widening gap between total imports (light blue line) and net imports (dark blue line) is due to an increase in exports of

  7. Fact #837: September 8, 2014 Gap between Net Imports and Total Imports of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Petroleum is Widening - Dataset | Department of Energy 7: September 8, 2014 Gap between Net Imports and Total Imports of Petroleum is Widening - Dataset Fact #837: September 8, 2014 Gap between Net Imports and Total Imports of Petroleum is Widening - Dataset Excel file with dataset for Fact #837: Gap between Net Imports and Total Imports of Petroleum is Widening fotw#837_web.xlsx (21.22 KB) More Documents & Publications Fact #935: July 25, 2016 By Volume, Net Petroleum Imports are at

  8. Price of Lake Charles, LA Liquefied Natural Gas Total Imports...

    Gasoline and Diesel Fuel Update

    Liquefied Natural Gas Total Imports (Dollars per Thousand Cubic Feet) Price of Lake Charles, LA Liquefied Natural Gas Total Imports (Dollars per Thousand Cubic Feet) Decade Year-0 ...

  9. 2009 Total Energy Production by State | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Total Energy Production by State 2009 Total Energy Production by State 2009 Total Energy Production by State...

  10. Fact #736: July 16, 2012 Total Petroleum Imports and Net Petroleum Imports: The Difference is Growing

    Energy.gov [DOE]

    When referring to U.S. imports of petroleum, it is important to make the distinction between total imports and net imports. Net imports are equal to the amount of total imported petroleum minus the...

  11. Solar total energy project Shenandoah

    SciTech Connect

    1980-01-10

    This document presents the description of the final design for the Solar Total Energy System (STES) to be installed at the Shenandoah, Georgia, site for utilization by the Bleyle knitwear plant. The system is a fully cascaded total energy system design featuring high temperature paraboloidal dish solar collectors with a 235 concentration ratio, a steam Rankine cycle power conversion system capable of supplying 100 to 400 kW(e) output with an intermediate process steam take-off point, and a back pressure condenser for heating and cooling. The design also includes an integrated control system employing the supervisory control concept to allow maximum experimental flexibility. The system design criteria and requirements are presented including the performance criteria and operating requirements, environmental conditions of operation; interface requirements with the Bleyle plant and the Georgia Power Company lines; maintenance, reliability, and testing requirements; health and safety requirements; and other applicable ordinances and codes. The major subsystems of the STES are described including the Solar Collection Subysystem (SCS), the Power Conversion Subsystem (PCS), the Thermal Utilization Subsystem (TUS), the Control and Instrumentation Subsystem (CAIS), and the Electrical Subsystem (ES). Each of these sections include design criteria and operational requirements specific to the subsystem, including interface requirements with the other subsystems, maintenance and reliability requirements, and testing and acceptance criteria. (WHK)

  12. Total Energy Facilities Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Energy Facilities Biomass Facility Jump to: navigation, search Name Total Energy Facilities Biomass Facility Facility Total Energy Facilities Sector Biomass Facility Type...

  13. Total Eolica | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Eolica Jump to: navigation, search Name: Total Eolica Place: Spain Product: Project developer References: Total Eolica1 This article is a stub. You can help OpenEI by expanding...

  14. Fact #837: September 8, Gap between Net Imports and Total Imports...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    day in 2013 - the lowest since the 1980's (dark blue line). The widening gap between total imports (light blue line) and net imports (dark blue line) is due to an increase in ...

  15. Everett, MA Liquefied Natural Gas Total Imports (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Total Imports (Million Cubic Feet) Everett, MA Liquefied Natural Gas Total Imports (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 2,583 2,728 2014 5,470 3,783 2,334 2,806 2,175 3,311 1,567 2,871 2,505 2,003 2015 7,729 7,623 5,521 1,673 2,557 7,133 8,237 2,563 2,653 1,541 2,452 2016 10,633 8,593 5,626 4,693 5,087 7,520 5,703 7,998 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release

  16. Percentages of Total Imported Crude Oil by API Gravity

    Energy Information Administration (EIA) (indexed site)

    Percentages of Total Imported Crude Oil by API Gravity (Percent by Interval) Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes API Gravity Mar-16 Apr-16 May-16 Jun-16 Jul-16 Aug-16 View History 20.0º or Less 15.82 15.37 15.79 16.03 16.65 19.61 1983-2016 20.1º to 25.0º 40.58 40.60 44.06 37.92 40.00 38.13 1983-2016 25.1º to 30.0º 6.44 5.96 8.63 10.60 10.98 8.27 1983-2016 30.1º to 35.0º 28.91 26.65 21.40

  17. U.S. Total Imports of Residual Fuel

    Gasoline and Diesel Fuel Update

    of Residual Fuel Area: U.S. Total PAD District 1 Connecticut Delaware Florida Georgia Maine Maryland Massachusetts New Hampshire New Jersey New York North Carolina Pennsylvania ...

  18. ,"U.S. Total Crude Oil and Products Imports"

    Energy Information Administration (EIA) (indexed site)

    ... of Crude Oil and Petroleum Products (Thousand Barrels per Day)","U.S. Imports from Guatemala of Crude Oil and Petroleum Products (Thousand Barrels per Day)","U.S. Imports from ...

  19. ,"U.S. Total Crude Oil and Products Imports"

    Energy Information Administration (EIA) (indexed site)

    ... Greece of Crude Oil and Petroleum Products (Thousand Barrels)","U.S. Imports from Guatemala of Crude Oil and Petroleum Products (Thousand Barrels)","U.S. Imports from Guinea of ...

  20. ,"U.S. Total Crude Oil and Products Imports"

    Energy Information Administration (EIA) (indexed site)

    ... Panama of Crude Oil and Petroleum Products (Thousand Barrels)","U.S. Imports from Papua New Guinea of Crude Oil and Petroleum Products (Thousand Barrels)","U.S. Imports from Peru ...

  1. ,"U.S. Total Crude Oil and Products Imports"

    Energy Information Administration (EIA) (indexed site)

    ... Belgium of Crude Oil and Petroleum Products (Thousand Barrels)","U.S. Imports from Belize of Crude Oil and Petroleum Products (Thousand Barrels)","U.S. Imports from Benin of ...

  2. TENESOL formerly known as TOTAL ENERGIE | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search Name: TENESOL (formerly known as TOTAL ENERGIE) Place: la Tour de Salvagny, France Zip: 69890 Sector: Solar Product: Makes polycrystalline silicon modules, and PV-based...

  3. National Fuel Cell and Hydrogen Energy Overview: Total Energy...

    Energy.gov [DOE] (indexed site)

    Presentation by Sunita Satyapal at the Total Energy USA 2012 meeting in Houston, Texas, on November 27, 2012. National Fuel Cell and Hydrogen Energy Overview (4.73 MB) More ...

  4. Total Crude Oil and Petroleum Products Imports by Processing Area

    Gasoline and Diesel Fuel Update

    Supplement from: U.S. Crude Oil and Natural Gas Proved Reserves Top 100 U.S. Oil and Gas Fields With Data for 2013 | Release Date: April 2, 2015 | Next Release Date: January 2016 Previous Issues (pdf): Year: 2009 2008 2007 (Appendix B) 2006 (Appendix B) 2005 (Appendix B) 2004 (Appendix B) 2003 (Appendix B) 2002 (Appendix B) 2001 (Appendix B) 2000 (Appendix B) 1999 (Appendix B) 1998 (Appendix B) 1997 (Appendix B) 1996 (Appendix B) Go Introduction This supplement to the U.S. Energy Information

  5. Total Energy - U.S. Energy Information Administration (EIA)

    Energy Information Administration (EIA) (indexed site)

    Total Energy Glossary › FAQS › Overview Data Monthly Annual Analysis & Projections Major Topics Most popular Annual Monthly Projections Recurring U.S. States All reports Browse by Tag Alphabetical Frequency Tag Cloud Current Issues & Trends See more › U.S. energy production, consumption has changed significantly since 1908 liquid fuelsproductioncrude oilconsumptioncoalrenewable Weekly Energy Snapshots provides a weekly recap of EIA data visualizations

  6. Total..........................................................

    Energy Information Administration (EIA) (indexed site)

    0.9 Q Q Q Heat Pump......7.7 0.3 Q Q Steam or Hot Water System......Census Division Total West Energy Information Administration ...

  7. Total..........................................................

    Energy Information Administration (EIA) (indexed site)

    0.9 Q Q Q Heat Pump......6.2 3.8 2.4 Steam or Hot Water System......Census Division Total Northeast Energy Information ...

  8. AEO2011: World Total Coal Flows By Importing Regions and Exporting...

    OpenEI (Open Energy Information) [EERE & EIA]

    Coal Flows By Importing Regions and Exporting Countries This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report...

  9. Achieving Total Employee Engagement in Energy Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Raytheon Employee Engagement in Energy Conservation Department of Energy August 5, 2010 Steve Fugarazzo Raytheon Company Enterprise Energy Team Copyright © 2007 Raytheon Company. All rights reserved. Customer Success Is Our Mission is a trademark of Raytheon Company. Page 2 8/9/2010 Presentation Overview  Company Background  Communication & Outreach Initiatives - Internal Partnerships - Energy Champions - Energy Citizens - Energy Awareness Events & Contests Page 3 8/9/2010

  10. Achieving Total Employee Engagement in Energy Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Raytheon Employee Engagement in Energy Conservation Department of Energy August 5, 2010 ... and Safety (EHS) - Earth Day events, employee contests Human Resources - New ...

  11. Trends in Commercial Buildings--Total Primary Energy Detail

    Energy Information Administration (EIA) (indexed site)

    Energy Consumption and Graph Total Primary Energy Consumption Graph Detail and Data Table 1979 to 1992 primary consumption trend with 95% confidence ranges 1979 to 1992 primary...

  12. Trends in Commercial Buildings--Total Site Energy Detail

    Energy Information Administration (EIA) (indexed site)

    Energy Consumption and Graph Total Site Energy Consumption Graph Detail and Data Table 1979 to 1992 site consumption trend with 95% confidence ranges 1979 to 1992 site...

  13. ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy...

    Energy Information Administration (EIA) (indexed site)

    A. Fuel Oil Consumption (Btu) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy Intensity (thousand Btu...

  14. Compare All CBECS Activities: Total Energy Use

    Energy Information Administration (EIA) (indexed site)

    are more likely to contain specialized, high energy-consuming equipment-food service (cooking and ventilation equipment), inpatient health care (medical equipment), and food sales...

  15. EQUUS Total Return Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search Name: EQUUS Total Return Inc Place: Houston, Texas Product: A business development company and VC investor that trades as a closed-end fund. EQUUS is...

  16. Fact #837: September 8, 2014 Gap between Net Imports and Total...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Excel file with dataset for Fact 837: Gap between Net Imports and Total Imports of ... were Only 33% of U.S. Consumption in 2013 - Dataset Fact 839: September 22, 2014 ...

  17. Achieving Total Employee Engagement in Energy Efficiency | Department...

    Energy.gov [DOE] (indexed site)

    Ratheon and GM share their experiences with employee engagement to achieve energy efficiency and sustainability goals in this presentation. Achieving Total Employee Engagement in ...

  18. Cove Point, MD Natural Gas Liquefied Natural Gas Total Imports (Million

    Energy Information Administration (EIA) (indexed site)

    Cubic Feet) Total Imports (Million Cubic Feet) Cove Point, MD Natural Gas Liquefied Natural Gas Total Imports (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 2,984 2,621 5,981 2015 2,844 3,045 3,097 3,105 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: U.S. Liquefied Natural Gas Imports by Point of Entry Cove Point,

  19. Elba Island, GA Liquefied Natural Gas Total Imports (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Total Imports (Million Cubic Feet) Elba Island, GA Liquefied Natural Gas Total Imports (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 3,066 367 1,939 1,784 2015 2,847 3,010 3,004 2,925 2016 2,877 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: U.S. Liquefied Natural Gas Imports by Point of Entry Elba Island, GA LNG

  20. BTO Publishes Two Important Building Energy Modeling Documents...

    Energy Saver

    Publishes Two Important Building Energy Modeling Documents BTO Publishes Two Important Building Energy Modeling Documents February 10, 2016 - 3:41pm Addthis Selections from the ...

  1. California Energy Standards Recognize the Importance of Filter...

    Energy Saver

    California Energy Standards Recognize the Importance of Filter Selection - Building America Top Innovation California Energy Standards Recognize the Importance of Filter Selection ...

  2. US Crude Oil Production Surpasses Net Imports | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    US Crude Oil Production Surpasses Net Imports US Crude Oil Production Surpasses Net Imports Source: Energy Information Administration Short Term Energy Outlook. Chart by Daniel Wood.

  3. Table 21. Total Energy Related Carbon Dioxide Emissions, Projected...

    Energy Information Administration (EIA) (indexed site)

    Total Energy Related Carbon Dioxide Emissions, Projected vs. Actual Projected (million metric tons) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 ...

  4. "Table 21. Total Energy Related Carbon Dioxide Emissions, Projected...

    Energy Information Administration (EIA) (indexed site)

    Total Energy Related Carbon Dioxide Emissions, Projected vs. Actual" "Projected" " (million metric tons)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,200...

  5. "Table A15. Selected Energy Operating Ratios for Total Energy...

    Energy Information Administration (EIA) (indexed site)

    ... Division, Form EIA-846, '1991" "Manufacturing Energy Consumption Survey,' and Bureau of the Census, Industry" "Division, data files for the '1991 Annual Survey of Manufactures.'"

  6. Secretary Moniz: Biofuels Important to America's Energy Future | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Moniz: Biofuels Important to America's Energy Future Secretary Moniz: Biofuels Important to America's Energy Future August 1, 2013 - 5:54pm Addthis Watch the video of Secretary Moniz's remarks on the importance of biofuels to America's clean energy future. | Video by Matty Greene, the Energy Department. Rebecca Matulka Rebecca Matulka Former Digital Communications Specialist, Office of Public Affairs Today at the Energy Department's Biomass 2013 annual conference in Washington,

  7. AEO2011:Total Energy Supply, Disposition, and Price Summary ...

    OpenEI (Open Energy Information) [EERE & EIA]

    case. The dataset uses quadrillion Btu and the U.S. Dollar. The data is broken down into production, imports, exports, consumption and price. Data and Resources AEO2011:Total...

  8. Total Net Imports of Crude Oil and Petroleum Products into the U.S.

    Energy Information Administration (EIA) (indexed site)

    Net Imports by Country Country: Total All Countries Persian Gulf OPEC Algeria Angola Ecuador Gabon Indonesia Iran Iraq Kuwait Libya Nigeria Qatar Saudi Arabia United Arab Emirates Venezuela Non OPEC Afghanistan Albania Andora Anguilla Antigua and Barbuda Argentina Armenia Aruba Australia Austria Azerbaijan Bahamas Bahrain Bangladesh Barbados Belarus Belgium Belize Benin Bermuda Bolivia Bosnia and Herzegovina Botswana Brazil Brunei Bulgaria Burkina Faso Burma Cambodia Cameroon Canada Cayman

  9. HDR Geothermal Energy: Important Lessons From Fenton Hill

    National Nuclear Security Administration (NNSA)

    2009 SGP-TR-187 HOT DRY ROCK GEOTHERMAL ENERGY: IMPORTANT LESSONS FROM FENTON HILL ... concept of Hot Dry Rock (HDR) geothermal energy originated at Los Alamos National ...

  10. Total..........................................................

    Annual Energy Outlook

    Living Space Characteristics Detached Attached Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC3.2 ...

  11. Category:Imported Properties | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    D Property:Depiction F Property:FoafHomepage Property:FoafName Property:FoafPage K Property:Knows Retrieved from "http:en.openei.orgwindex.php?titleCategory:Imported...

  12. Energy Secretary Bodman in Turkey to Highlight Importance of...

    Energy Saver

    Highlight Importance of Expanding Oil and Gas Supply and Infrastructure Energy Secretary Bodman in Turkey to Highlight Importance of Expanding Oil and Gas Supply and Infrastructure ...

  13. National Fuel Cell and Hydrogen Energy Overview: Total Energy USA 2012

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation by Sunita Satyapal at the Total Energy USA 2012 meeting in Houston, Texas, on November 27, 2012.

  14. Total

    Energy Information Administration (EIA) (indexed site)

    Product: Total Crude Oil Liquefied Petroleum Gases PropanePropylene Normal ButaneButylene Other Liquids Oxygenates Fuel Ethanol MTBE Other Oxygenates Biomass-based Diesel Fuel ...

  15. Total

    Gasoline and Diesel Fuel Update

    of photovoltaic module shipments, 2015 (peak kilowatts) Source Disposition Source: U.S. Energy Information Administration, Form EIA-63B, 'Annual Photovoltaic CellModule ...

  16. Total............................................................

    Energy Information Administration (EIA) (indexed site)

    Total................................................................... 111.1 2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500............................................... 3.2 357 336 113 188 177 59 500 to 999....................................................... 23.8 733 667 308 343 312 144 1,000 to 1,499................................................. 20.8 1,157 1,086 625 435 409 235 1,500 to 1,999................................................. 15.4 1,592

  17. Total-energy and pressure calculations for random substitutional alloys

    SciTech Connect

    Johnson, D.D. ); Nicholson, D.M. ); Pinski, F.J. ); Gyoerffy, B.L. ); Stocks, G.M. )

    1990-05-15

    We present the details and the derivation of density-functional-based expressions for the total energy and pressure for random substitutional alloys (RSA) using the Korringa-Kohn-Rostoker Green's-function approach in combination with the coherent-potential approximation (CPA) to treat the configurational averaging. This includes algebraic cancellation of various electronic core contributions to the total energy and pressure, as in ordered-solid muffin-tin-potential calculations. Thus, within the CPA, total-energy and pressure calculations for RSA have the same foundation and have been found to have the same accuracy as those obtained in similar calculations for ordered solids. Results of our calculations for the impurity formation energy, and for the bulk moduli, the lattice parameters, and the energy of mixing as a function of concentration in fcc Cu{sub {ital c}}Zn{sub 1{minus}{ital c}} alloys show that this generalized density-functional theory will be useful in studying alloy phase stability.

  18. Total...........................................................

    Energy Information Administration (EIA) (indexed site)

    Q Million U.S. Housing Units Renter- Occupied Housing Units (millions) Type of Renter-Occupied Housing Unit U.S. Housing Units (millions Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Table HC4.2 Living Space Characteristics by Renter-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing

  19. Total

    Energy Information Administration (EIA) (indexed site)

    Total floor- space 1 Heated floor- space 2 Total floor- space 1 Cooled floor- space 2 Total floor- space 1 Lit floor- space 2 All buildings 87,093 80,078 70,053 79,294 60,998 83,569 68,729 Building floorspace (square feet) 1,001 to 5,000 8,041 6,699 5,833 6,124 4,916 7,130 5,590 5,001 to 10,000 8,900 7,590 6,316 7,304 5,327 8,152 6,288 10,001 to 25,000 14,105 12,744 10,540 12,357 8,840 13,250 10,251 25,001 to 50,000 11,917 10,911 9,638 10,813 7,968 11,542 9,329 50,001 to 100,000 13,918 13,114

  20. Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings

    SciTech Connect

    Fridley, David; Fridley, David G.; Zheng, Nina; Zhou, Nan

    2008-03-01

    Buildings represent an increasingly important component of China's total energy consumption mix. However, accurately assessing the total volume of energy consumed in buildings is difficult owing to deficiencies in China's statistical collection system and a lack of national surveys. Official statistics suggest that buildings account for about 19% of China's total energy consumption, while others estimate the proportion at 23%, rising to 30% over the next few years. In addition to operational energy, buildings embody the energy used in the in the mining, extraction, harvesting, processing, manufacturing and transport of building materials as well as the energy used in the construction and decommissioning of buildings. This embodied energy, along with a building's operational energy, constitutes the building's life-cycle energy and emissions footprint. This report first provides a review of international studies on commercial building life-cycle energy use from which data are derived to develop an assessment of Chinese commercial building life-cycle energy use, then examines in detail two cases for the development of office building operational energy consumption to 2020. Finally, the energy and emissions implications of the two cases are presented.

  1. Total...................................................................

    Energy Information Administration (EIA) (indexed site)

    2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500............................................... 3.2 357 336 113 188 177 59 500 to 999....................................................... 23.8 733 667 308 343 312 144 1,000 to 1,499................................................. 20.8 1,157 1,086 625 435 409 235 1,500 to 1,999................................................. 15.4 1,592 1,441 906 595 539 339 2,000 to

  2. Total..........................................................................

    Energy Information Administration (EIA) (indexed site)

    . 111.1 20.6 15.1 5.5 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.4 500 to 999........................................................... 23.8 4.6 3.6 1.1 1,000 to 1,499..................................................... 20.8 2.8 2.2 0.6 1,500 to 1,999..................................................... 15.4 1.9 1.4 0.5 2,000 to 2,499..................................................... 12.2 2.3 1.7 0.5 2,500 to

  3. Total..........................................................................

    Energy Information Administration (EIA) (indexed site)

    5.6 17.7 7.9 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.5 0.3 Q 500 to 999........................................................... 23.8 3.9 2.4 1.5 1,000 to 1,499..................................................... 20.8 4.4 3.2 1.2 1,500 to 1,999..................................................... 15.4 3.5 2.4 1.1 2,000 to 2,499..................................................... 12.2 3.2 2.1 1.1 2,500 to

  4. Total..........................................................................

    Energy Information Administration (EIA) (indexed site)

    0.7 21.7 6.9 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.6 Q Q 500 to 999........................................................... 23.8 9.0 4.2 1.5 3.2 1,000 to 1,499..................................................... 20.8 8.6 4.7 1.5 2.5 1,500 to 1,999..................................................... 15.4 6.0 2.9 1.2 1.9 2,000 to 2,499..................................................... 12.2 4.1 2.1 0.7

  5. Total..........................................................................

    Energy Information Administration (EIA) (indexed site)

    4.2 7.6 16.6 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 1.0 0.2 0.8 500 to 999........................................................... 23.8 6.3 1.4 4.9 1,000 to 1,499..................................................... 20.8 5.0 1.6 3.4 1,500 to 1,999..................................................... 15.4 4.0 1.4 2.6 2,000 to 2,499..................................................... 12.2 2.6 0.9 1.7 2,500 to

  6. Energy Secretary Moniz and Export-Import Bank Chairman Hochberg...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Secretary Moniz and Export-Import Bank Chairman Hochberg to Visit First Solar Facility in Perrysburg, Ohio Energy Secretary Moniz and Export-Import Bank Chairman Hochberg to Visit ...

  7. Total................................................

    Energy Information Administration (EIA) (indexed site)

    .. 111.1 86.6 2,522 1,970 1,310 1,812 1,475 821 1,055 944 554 Total Floorspace (Square Feet) Fewer than 500............................. 3.2 0.9 261 336 162 Q Q Q 334 260 Q 500 to 999.................................... 23.8 9.4 670 683 320 705 666 274 811 721 363 1,000 to 1,499.............................. 20.8 15.0 1,121 1,083 622 1,129 1,052 535 1,228 1,090 676 1,500 to 1,999.............................. 15.4 14.4 1,574 1,450 945 1,628 1,327 629 1,712 1,489 808 2,000 to

  8. Total..........................................................

    Energy Information Administration (EIA) (indexed site)

    .. 111.1 24.5 1,090 902 341 872 780 441 Total Floorspace (Square Feet) Fewer than 500...................................... 3.1 2.3 403 360 165 366 348 93 500 to 999.............................................. 22.2 14.4 763 660 277 730 646 303 1,000 to 1,499........................................ 19.1 5.8 1,223 1,130 496 1,187 1,086 696 1,500 to 1,999........................................ 14.4 1.0 1,700 1,422 412 1,698 1,544 1,348 2,000 to 2,499........................................ 12.7

  9. Total...................................................................

    Energy Information Administration (EIA) (indexed site)

    Floorspace (Square Feet) Total Floorspace 1 Fewer than 500............................................ 3.2 0.4 Q 0.6 1.7 0.4 500 to 999................................................... 23.8 4.8 1.4 4.2 10.2 3.2 1,000 to 1,499............................................. 20.8 10.6 1.8 1.8 4.0 2.6 1,500 to 1,999............................................. 15.4 12.4 1.5 0.5 0.5 0.4 2,000 to 2,499............................................. 12.2 10.7 1.0 0.2 Q Q 2,500 to

  10. Total.........................................................................

    Energy Information Administration (EIA) (indexed site)

    Floorspace (Square Feet) Total Floorspace 2 Fewer than 500.................................................. 3.2 Q 0.8 0.9 0.8 0.5 500 to 999.......................................................... 23.8 1.5 5.4 5.5 6.1 5.3 1,000 to 1,499.................................................... 20.8 1.4 4.0 5.2 5.0 5.2 1,500 to 1,999.................................................... 15.4 1.4 3.1 3.5 3.6 3.8 2,000 to 2,499.................................................... 12.2 1.4 3.2 3.0 2.3 2.3

  11. Total..........................................................................

    Energy Information Administration (EIA) (indexed site)

    25.6 40.7 24.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.9 1.0 500 to 999........................................................... 23.8 4.6 3.9 9.0 6.3 1,000 to 1,499..................................................... 20.8 2.8 4.4 8.6 5.0 1,500 to 1,999..................................................... 15.4 1.9 3.5 6.0 4.0 2,000 to 2,499..................................................... 12.2 2.3 3.2 4.1

  12. Total..........................................................................

    Energy Information Administration (EIA) (indexed site)

    7.1 7.0 8.0 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.4 Q Q 0.5 500 to 999........................................................... 23.8 2.5 1.5 2.1 3.7 1,000 to 1,499..................................................... 20.8 1.1 2.0 1.5 2.5 1,500 to 1,999..................................................... 15.4 0.5 1.2 1.2 1.9 2,000 to 2,499..................................................... 12.2 0.7 0.5 0.8 1.4

  13. Total...........................................................

    Energy Information Administration (EIA) (indexed site)

    14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500.................................... 3.2 0.7 Q 0.3 0.3 0.7 0.6 0.3 Q 500 to 999........................................... 23.8 2.7 1.4 2.2 2.8 5.5 5.1 3.0 1.1 1,000 to 1,499..................................... 20.8 2.3 1.4 2.4 2.5 3.5 3.5 3.6 1.6 1,500 to 1,999..................................... 15.4 1.8 1.4 2.2 2.0 2.4 2.4 2.1 1.2 2,000 to 2,499..................................... 12.2 1.4 0.9

  14. Total...........................................................

    Energy Information Administration (EIA) (indexed site)

    26.7 28.8 20.6 13.1 22.0 16.6 38.6 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................... 3.2 1.9 0.9 Q Q Q 1.3 2.3 500 to 999........................................... 23.8 10.5 7.3 3.3 1.4 1.2 6.6 12.9 1,000 to 1,499..................................... 20.8 5.8 7.0 3.8 2.2 2.0 3.9 8.9 1,500 to 1,999..................................... 15.4 3.1 4.2 3.4 2.0 2.7 1.9 5.0 2,000 to 2,499..................................... 12.2 1.7 2.7 2.9 1.8 3.2 1.1 2.8

  15. California Energy Standards Recognize the Importance of Filter Selection -

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Building America Top Innovation | Department of Energy California Energy Standards Recognize the Importance of Filter Selection - Building America Top Innovation California Energy Standards Recognize the Importance of Filter Selection - Building America Top Innovation Correct filter sizing is an issue that applies to all new and existing homes that use ducted HVAC systems-about 68% of existing U.S. homes and most of the homes currently under construction. In order BA top innov CARB Filter

  16. Nuclear energy is an important source of power, supplying 20

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    energy is an important source of power, supplying 20 percent of the nation's electricity. More than 100 nuclear power plants are operating in the U.S., and countries around the world are implementing nuclear power as a carbon-free alternative to fossil fuels. We can maximize the climate and energy security benefits provided by responsible global nuclear energy expansion by developing options to increase the energy extracted from nuclear fuel, improve waste management, and strengthen nuclear

  17. BTO Publishes Two Important Building Energy Modeling Documents | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Publishes Two Important Building Energy Modeling Documents BTO Publishes Two Important Building Energy Modeling Documents February 10, 2016 - 3:41pm Addthis Selections from the front page of the BEM R&D roadmap draft and the recommended initiatives table. Image credit: Navigant Consulting. Selections from the front page of the BEM R&D roadmap draft and the recommended initiatives table. Image credit: Navigant Consulting. Amir Roth, Ph.D. Amir Roth, Ph.D. Building Energy

  18. Table 28. Percentages of Total Imported Crude Oil by API Gravity

    Energy Information Administration (EIA) (indexed site)

    Notes section for additional detail. Sources: Energy Information Administration, Form FEA-F701-M-0, "Transfer Pricing Report," January 1978 through December 1978; Form ERA-51,...

  19. Hot Dry Rock Geothermal Energy- Important Lessons From Fenton...

    OpenEI (Open Energy Information) [EERE & EIA]

    navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Hot Dry Rock Geothermal Energy- Important Lessons From Fenton Hill Abstract The concept of Hot Dry Rock...

  20. HDR Geothermal Energy: Important Lessons From Fenton Hill

    National Nuclear Security Administration (NNSA)

    Stanford University, Stanford, California, February 9-11, 2009 SGP-TR-187 HOT DRY ROCK GEOTHERMAL ENERGY: IMPORTANT LESSONS FROM FENTON HILL Donald W. Brown Los Alamos National...

  1. Strategic Energy Planning, Project Development and the Importance of Champions

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Roger Taylor Group Manager State, Local & Tribal Initiatives November 18, 2009 Strategic Energy Planning, Project Development and the Importance of Champions Renewable Resource Options Geothermal Biomass Solar Hydro Wind National Renewable Energy Laboratory Innovation for Our Energy Future Power Direct Use PV - Remote Homes Direct Use Buildings Stock Watering Big Wind Small Wind Small Hydro Biomass Heat, Power & Fuels Diesel Hybrids Power Direct Use PV - Remote Homes CS Power & Heat

  2. Table 16. Total Energy Consumption, Projected vs. Actual

    Energy Information Administration (EIA) (indexed site)

    Total Energy Consumption, Projected vs. Actual" "Projected" " (quadrillion Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",88.02,89.53,90.72,91.73,92.71,93.61,94.56,95.73,96.69,97.69,98.89,100,100.79,101.7,102.7,103.6,104.3,105.23 "AEO 1995",,89.21,89.98,90.57,91.91,92.98,93.84,94.61,95.3,96.19,97.18,98.38,99.37,100.3,101.2,102.1,102.9,103.88 "AEO

  3. Total Crude Oil and Petroleum Products Imports by Area of Entry

    Energy Information Administration (EIA) (indexed site)

    by Area of Entry Product: Total Crude Oil and Petroleum Products Crude Oil Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquefied Petroleum Gases Ethane Ethylene Propane Propylene Normal Butane Butylene Isobutane Isobutylene Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Biomass-Based Diesel Fuel Other Renewable Diesel Fuel

  4. Net Imports of Total Crude Oil and Products into the U.S. by Country

    Energy Information Administration (EIA) (indexed site)

    2010 2011 2012 2013 2014 2015 View History Total All Countries 9,441 8,450 7,393 6,237 5,065 4,711 1973-2015 Persian Gulf 1,705 1,842 2,149 1,988 1,861 1,494 1993-2015 OPEC* 4,787 4,429 4,093 3,483 2,996 2,654 1993-2015 Algeria 510 355 241 108 109 105 1993-2015 Angola 393 346 233 215 154 136 1993-2015 Ecuador 135 147 117 153 116 108 1993-2015 Gabon 46 34 43 23 18 12 1993-2015 Indonesia 37 20 6 23 24 38 1993-2015 Iran 0 0 1993-2014 Iraq 415 459 476 341 369 229 1996-2015 Kuwait 197 191 305 328 311

  5. Net Imports of Total Crude Oil and Products into the U.S. by Country

    Energy Information Administration (EIA) (indexed site)

    Mar-16 Apr-16 May-16 Jun-16 Jul-16 Aug-16 View History Total All Countries 5,000 4,674 4,525 4,836 5,298 5,196 1973-2016 Persian Gulf 1,805 1,707 1,923 1,712 1,751 1,808 1993-2016 OPEC* 3,423 3,179 3,420 3,154 3,563 3,220 1993-2016 Algeria 147 130 91 171 191 169 1993-2016 Angola 172 242 161 128 299 159 1993-2016 Ecuador 175 95 144 124 134 143 1993-2016 Gabon 6 0 5 1993-2016 Indonesia 38 43 43 53 48 51 1993-2016 Iran 1993-2014 Iraq 365 349 555 434 390 488 1996-2016 Kuwait 123 199 177 135 323 156

  6. Table 16. Total Energy Consumption, Projected vs. Actual Projected

    Energy Information Administration (EIA) (indexed site)

    Total Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 88.0 89.5 90.7 91.7 92.7 93.6 94.6 95.7 96.7 97.7 98.9 100.0 100.8 101.7 102.7 103.6 104.3 105.2 AEO 1995 89.2 90.0 90.6 91.9 93.0 93.8 94.6 95.3 96.2 97.2 98.4 99.4 100.3 101.2 102.1 102.9 103.9 AEO 1996 90.6 91.3 92.5 93.5 94.3 95.1 95.9 96.9 98.0 99.2 100.4 101.4 102.1 103.1 103.8 104.7 105.5 106.5 107.2

  7. Table 17. Total Delivered Residential Energy Consumption, Projected vs. Actual

    Energy Information Administration (EIA) (indexed site)

    Total Delivered Residential Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 10.3 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.5 10.5 10.5 10.5 10.5 10.6 10.6 AEO 1995 11.0 10.8 10.8 10.8 10.8 10.8 10.8 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.8 10.8 10.9 AEO 1996 10.4 10.7 10.7 10.7 10.8 10.8 10.9 10.9 11.0 11.2 11.2 11.3 11.4 11.5 11.6 11.7 11.8 12.0 12.1

  8. Table 18. Total Delivered Commercial Energy Consumption, Projected vs. Actual

    Energy Information Administration (EIA) (indexed site)

    Total Delivered Commercial Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 6.8 6.9 6.9 7.0 7.1 7.1 7.2 7.2 7.3 7.3 7.4 7.4 7.4 7.5 7.5 7.5 7.5 7.6 AEO 1995 6.9 6.9 7.0 7.0 7.0 7.1 7.1 7.1 7.1 7.1 7.2 7.2 7.2 7.2 7.3 7.3 7.3 AEO 1996 7.1 7.2 7.2 7.3 7.3 7.4 7.4 7.5 7.6 7.6 7.7 7.7 7.8 7.9 8.0 8.0 8.1 8.2 8.2 AEO 1997 7.4 7.4 7.4 7.5 7.5 7.6 7.7 7.7 7.8 7.8 7.9 7.9

  9. Table 19. Total Delivered Industrial Energy Consumption, Projected vs. Actual

    Energy Information Administration (EIA) (indexed site)

    Total Delivered Industrial Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 25.4 25.9 26.3 26.7 27.0 27.1 26.8 26.6 26.9 27.2 27.7 28.1 28.3 28.7 29.1 29.4 29.7 30.0 AEO 1995 26.2 26.3 26.5 27.0 27.3 26.9 26.6 26.8 27.1 27.5 27.9 28.2 28.4 28.7 29.0 29.3 29.6 AEO 1996 26.5 26.6 27.3 27.5 26.9 26.5 26.7 26.9 27.2 27.6 27.9 28.2 28.3 28.5 28.7 28.9 29.2 29.4 29.6

  10. Table 20. Total Delivered Transportation Energy Consumption, Projected vs. Actual

    Energy Information Administration (EIA) (indexed site)

    Total Delivered Transportation Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 23.6 24.1 24.5 24.7 25.1 25.4 25.7 26.2 26.5 26.9 27.2 27.6 27.9 28.3 28.6 28.9 29.2 29.5 AEO 1995 23.3 24.0 24.2 24.7 25.1 25.5 25.9 26.2 26.5 26.9 27.3 27.7 28.0 28.3 28.5 28.7 28.9 AEO 1996 23.9 24.1 24.5 24.8 25.3 25.7 26.0 26.4 26.7 27.1 27.5 27.8 28.1 28.4 28.6 28.9 29.1 29.3

  11. Potential displacement of petroleum imports by solar energy technologies

    SciTech Connect

    DeLeon, P.; Jackson, B.L.; McNown, R.F.; Mahrenholz, G.J.

    1980-05-01

    The United States currently imports close to half of its petroleum requirements. This report delineates the economic, social, and political costs of such a foreign oil dependency. These costs are often intangible, but combined they clearly constitute a greater price for imported petroleum than the strictly economic cost. If we can assume that imported oil imposes significant socioeconomic costs upon the American economy and society, one way to reduce these costs is to develop alternative, domestic energy sources - such as solar energy technologies - which can displace foreign petroleum. The second half of this report estimates that by the year 2000, solar energy technologies can displace 3.6 quads of petroleum. This figure includes solar energy applications in utilities, industrial and agricultural process heat, and transportation. The estimate can be treated as a lower bound; if the United States were to achieve the proposed goal of 20 quads by 2000, the amount of displaced oil probably would be greater. Although all the displaced oil would not be imported, the reduction in imported petroleum would relieve many of the conditions that increase the present cost of foreign oil to the American consumer.

  12. ,"U.S. Total Crude Oil and Products Imports"

    Energy Information Administration (EIA) (indexed site)

    3,"Annual",2015,"6/30/1973" ,"Release Date:","10/31/2016" ,"Next Release Date:","9/29/2017" ,"Excel File Name:","pet_move_impcus_a2_nus_ep00_im0_mbblpd_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_move_impcus_a2_nus_ep00_im0_mbblpd_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov"

  13. An Important Step Forward for CCUS | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    An Important Step Forward for CCUS An Important Step Forward for CCUS November 20, 2012 - 1:29pm Addthis Schlumberger technicians and rig crew lowering monitoring instrumentation into a well. | Photo credit to the Illinois State Geological Survey. Schlumberger technicians and rig crew lowering monitoring instrumentation into a well. | Photo credit to the Illinois State Geological Survey. Thomas Johnson Technical Writer for the Office of Fossil Energy What are the key facts? CCUS has been widely

  14. Delaware Total Electric Power Industry Net Generation, by Energy...

    Energy Information Administration (EIA) (indexed site)

    ...e","-","-","-","-","-" "Other","-","-",11,6,"-" "Total",7182,8534,7524,4842,5628 " " "s Value is less than 0.5 of the table metric, but value is included in any associated total.

  15. Total China Investment Co Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    China Investment Co Ltd Jump to: navigation, search Name: Total (China) Investment Co. Ltd. Place: Beijing, China Zip: 100004 Product: Total has been present in China for about 30...

  16. Total reaction cross sections in CEM and MCNP6 at intermediate energies

    SciTech Connect

    Kerby, Leslie M.; Mashnik, Stepan G.

    2015-05-14

    Accurate total reaction cross section models are important to achieving reliable predictions from spallation and transport codes. The latest version of the Cascade Exciton Model (CEM) as incorporated in the code CEM03.03, and the Monte Carlo N-Particle transport code (MCNP6), both developed at Los Alamos National Laboratory (LANL), each use such cross sections. Having accurate total reaction cross section models in the intermediate energy region (50 MeV to 5 GeV) is very important for different applications, including analysis of space environments, use in medical physics, and accelerator design, to name just a few. The current inverse cross sections used in the preequilibrium and evaporation stages of CEM are based on the Dostrovsky et al. model, published in 1959. Better cross section models are now available. Implementing better cross section models in CEM and MCNP6 should yield improved predictions for particle spectra and total production cross sections, among other results.

  17. Total Agroindustria Canavieira S A | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Agroindustria Canavieira S A Jump to: navigation, search Name: Total Agroindustria Canavieira SA Place: Bambui, Minas Gerais, Brazil Product: Ethanol producer in Minas Gerais,...

  18. Utah Total Electric Power Industry Net Summer Capacity, by Energy...

    Energy Information Administration (EIA) (indexed site)

    Utah" "Energy Source",2006,2007,2008,2009,2010 "Fossil",6398,6830,6819,6897,6969 " ... " Other Gases","-","-","-","-","-" "Nuclear","-","-","-","-","-" ...

  19. "Table A48. Selected Energy Operating Ratios for Total Energy Consumption for"

    Energy Information Administration (EIA) (indexed site)

    8. Selected Energy Operating Ratios for Total Energy Consumption for" " Heat, Power, and Electricity Generation by Census Region, Census Division, and Economic" " Characteristics of the Establishment, 1994" ,,,"Consumption","Major" " "," ","Consumption","per Dollar","Byproducts(b)","Fuel Oil(c)"," " " ","Consumption","per Dollar","of

  20. "Table A50. Selected Energy Operating Ratios for Total Energy Consumption for"

    Energy Information Administration (EIA) (indexed site)

    0. Selected Energy Operating Ratios for Total Energy Consumption for" " Heat, Power, and Electricity Generation by Industry Group," " Selected Industries, and Economic Characteristics of the" " Establishment, 1991 (Continued)" ,,,,,"Major" ,,,"Consumption","Consumption per","Byproducts(c)","Fuel Oil(d)" ,,"Consumption","per Dollar","Dollar of Value","as a Percent

  1. Why is Utility Data Important | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    to save energy. For commercial energy users, detailed energy data can help you set sound energy management goals, identify cost-effective energy efficiency measures, and target...

  2. "Table A28. Total Expenditures for Purchased Energy Sources...

    Energy Information Administration (EIA) (indexed site)

    ... Division, Form EIA-846, '1991" "Manufacturing Energy Consumption Survey,' and Bureau of the Census, Industry" "Division, data files for the '1991 Annual Survey of Manufactures.'

  3. ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy...

    Energy Information Administration (EIA) (indexed site)

    in this table do not include enclosed malls and strip malls. In the 1999 CBECS, total fuel oil consumption in malls was not statistically significant. (*)Value rounds to zero...

  4. Property:Building/SPElectrtyUsePercTotal | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    PElectrtyUsePercTotal" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 100.0 + Sweden Building 05K0002 + 100.0 + Sweden Building 05K0003 +...

  5. Property:RenewableFuelStandard/Total | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Property Edit with form History Facebook icon Twitter icon Property:RenewableFuelStandardTotal Jump to: navigation, search This is a property of type Number. Pages using the...

  6. Iowa Total Electric Power Industry Net Summer Capacity, by Energy...

    Energy Information Administration (EIA) (indexed site)

    Iowa" "Energy Source",2006,2007,2008,2009,2010 "Fossil",9496,10391,10340,10467,10263 " Coal",6097,6967,6928,7107,6956 " Petroleum",1027,1023,1017,1014,1007 " Natural ...

  7. Maine Total Electric Power Industry Net Summer Capacity, by Energy...

    Energy Information Administration (EIA) (indexed site)

    Maine" "Energy Source",2006,2007,2008,2009,2010 "Fossil",2770,2751,2761,2738,2738 " Coal",85,85,85,85,85 " Petroleum",1030,1031,1031,1008,1008 " Natural Gas",1655,1636,1645,1645,16...

  8. Michigan Total Electric Power Industry Net Generation, by Energy...

    Energy Information Administration (EIA) (indexed site)

    Michigan" "Energy Source",2006,2007,2008,2009,2010 "Fossil",80004,84933,80179,75869,78535 " Coal",67780,70811,69855,66848,65604 " Petroleum",402,699,458,399,382 " Natural ...

  9. Texas Total Electric Power Industry Net Summer Capacity, by Energy...

    Energy Information Administration (EIA) (indexed site)

    Texas" "Energy Source",2006,2007,2008,2009,2010 "Fossil",92088,91494,91450,87547,92136 " ... " Other Gases",287,308,187,184,306 "Nuclear",4860,4860,4927,4927,4966 ...

  10. Ohio Total Electric Power Industry Net Summer Capacity, by Energy...

    Energy Information Administration (EIA) (indexed site)

    Ohio" "Energy Source",2006,2007,2008,2009,2010 "Fossil",31582,31418,31154,31189,30705 " ... " Other Gases",100,100,100,100,123 "Nuclear",2120,2124,2124,2134,2134 ...

  11. Property:Geothermal/TotalProjectCost | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Churchill Co., NV Geothermal Project + 14,571,873 + A Demonstration System for Capturing Geothermal Energy from Mine Waters beneath Butte, MT Geothermal Project + 2,155,497 + A...

  12. Vermont Total Electric Power Industry Net Generation, by Energy...

    Energy Information Administration (EIA) (indexed site)

    Vermont" "Energy Source",2006,2007,2008,2009,2010 "Fossil",9,10,7,7,8 " Coal","-","-","-","-","-" " Petroleum",7,8,4,2,5 " Natural Gas",2,2,3,4,4 " Other Gases","-","-","-","-","-" ...

  13. Nebraska Total Electric Power Industry Net Generation, by Energy...

    Energy Information Administration (EIA) (indexed site)

    Nebraska" "Energy Source",2006,2007,2008,2009,2010 "Fossil",21461,20776,22273,23684,23769 " Coal",20683,19630,21480,23350,23363 " Petroleum",19,36,35,23,31 " Natural ...

  14. Oregon Total Electric Power Industry Net Generation, by Energy...

    Energy Information Administration (EIA) (indexed site)

    Oregon" "Energy Source",2006,2007,2008,2009,2010 "Fossil",13621,19224,21446,19338,19781 " Coal",2371,4352,4044,3197,4126 " Petroleum",12,14,15,8,3 " Natural Gas",11239,14858,17387,...

  15. Nevada Total Electric Power Industry Net Generation, by Energy...

    Energy Information Administration (EIA) (indexed site)

    Nevada" "Energy Source",2006,2007,2008,2009,2010 "Fossil",28459,29370,31801,33436,30702 " Coal",7254,7091,7812,7540,6997 " Petroleum",17,11,14,16,11 " Natural Gas",21184,22263,2397...

  16. Utah Total Electric Power Industry Net Generation, by Energy...

    Energy Information Administration (EIA) (indexed site)

    Utah" "Energy Source",2006,2007,2008,2009,2010 "Fossil",40306,44634,45466,42034,40599 " Coal",36856,37171,38020,35526,34057 " Petroleum",62,39,44,36,50 " Natural ...

  17. Oklahoma Total Electric Power Industry Net Generation, by Energy...

    Energy Information Administration (EIA) (indexed site)

    Oklahoma" "Energy Source",2006,2007,2008,2009,2010 "Fossil",68093,67765,70122,68700,65435 " Coal",35032,34438,36315,34059,31475 " Petroleum",64,160,23,9,18 " Natural ...

  18. Ohio Total Electric Power Industry Net Generation, by Energy...

    Energy Information Administration (EIA) (indexed site)

    Ohio" "Energy Source",2006,2007,2008,2009,2010 "Fossil",137494,138543,134878,119712,126652 " Coal",133400,133131,130694,113712,117828 " Petroleum",1355,1148,1438,1312,1442 " ...

  19. Idaho Total Electric Power Industry Net Summer Capacity, by Energy...

    Energy Information Administration (EIA) (indexed site)

    Idaho" "Energy Source",2006,2007,2008,2009,2010 "Fossil",667,667,828,834,834 " Coal",17,17,17,17,17 " Petroleum",5,5,5,5,5 " Natural Gas",645,645,805,812,812 " Other ...

  20. Colorado Total Electric Power Industry Net Generation, by Energy...

    Energy Information Administration (EIA) (indexed site)

    Colorado" "Energy Source",2006,2007,2008,2009,2010 "Fossil",48211,50980,48334,45490,45639 " Coal",36269,35936,34828,31636,34559 " Petroleum",21,28,19,13,17 " Natural ...

  1. Kentucky Total Electric Power Industry Net Generation, by Energy...

    Energy Information Administration (EIA) (indexed site)

    Kentucky" "Energy Source",2006,2007,2008,2009,2010 "Fossil",95720,95075,95478,86937,95182 " Coal",91198,90483,91621,84038,91054 " Petroleum",3341,2791,2874,2016,2285 " Natural ...

  2. Delaware Total Electric Power Industry Net Generation, by Energy...

    Energy Information Administration (EIA) (indexed site)

    Delaware" "Energy Source",2006,2007,2008,2009,2010 "Fossil",7182,8486,7350,4710,5489 " Coal",4969,5622,5267,2848,2568 " Petroleum",132,241,219,258,56 " Natural ...

  3. Indiana Total Electric Power Industry Net Generation, by Energy...

    Energy Information Administration (EIA) (indexed site)

    Indiana" "Energy Source",2006,2007,2008,2009,2010 "Fossil",129345,129576,128206,114118,121101 " Coal",123645,122803,122036,108312,112328 " Petroleum",148,170,178,157,155 " Natural ...

  4. Idaho Total Electric Power Industry Net Generation, by Energy...

    Energy Information Administration (EIA) (indexed site)

    Idaho" "Energy Source",2006,2007,2008,2009,2010 "Fossil",1381,1741,1790,1726,1778 " Coal",82,84,90,83,88 " Petroleum","s","s","s","s","s" " Natural Gas",1298,1657,1700,1644,1689 " ...

  5. Florida Total Electric Power Industry Net Generation, by Energy...

    Energy Information Administration (EIA) (indexed site)

    Florida" "Energy Source",2006,2007,2008,2009,2010 "Fossil",184530,188433,180167,181553,197662 " Coal",65423,67908,64823,54003,59897 " Petroleum",22904,20203,11971,9221,9122 " ...

  6. Hawaii Total Electric Power Industry Net Generation, by Energy...

    Energy Information Administration (EIA) (indexed site)

    Hawaii" "Energy Source",2006,2007,2008,2009,2010 "Fossil",10646,10538,10356,9812,9655 " Coal",1549,1579,1648,1500,1546 " Petroleum",9054,8914,8670,8289,8087 " Natural ...

  7. Illinois Total Electric Power Industry Net Generation, by Energy...

    Energy Information Administration (EIA) (indexed site)

    Illinois" "Energy Source",2006,2007,2008,2009,2010 "Fossil",97212,103072,101101,94662,99605 " Coal",91649,95265,96644,89967,93611 " Petroleum",136,132,143,113,110 " Natural ...

  8. Georgia Total Electric Power Industry Net Generation, by Energy...

    Energy Information Administration (EIA) (indexed site)

    Georgia" "Energy Source",2006,2007,2008,2009,2010 "Fossil",100299,107165,99661,90634,97823 " Coal",86504,90298,85491,69478,73298 " Petroleum",834,788,742,650,641 " Natural ...

  9. Kansas Total Electric Power Industry Net Generation, by Energy...

    Energy Information Administration (EIA) (indexed site)

    Kansas" "Energy Source",2006,2007,2008,2009,2010 "Fossil",35172,38590,36363,35033,34895 " Coal",33281,36250,34003,32243,32505 " Petroleum",51,207,130,121,103 " Natural ...

  10. Iowa Total Electric Power Industry Net Generation, by Energy...

    Energy Information Administration (EIA) (indexed site)

    Iowa" "Energy Source",2006,2007,2008,2009,2010 "Fossil",37014,41388,42734,38621,42749 " Coal",34405,37986,40410,37351,41283 " Petroleum",208,312,161,85,154 " Natural ...

  11. Washington Total Electric Power Industry Net Generation, by Energy...

    Energy Information Administration (EIA) (indexed site)

    Washington" "Energy Source",2006,2007,2008,2009,2010 "Fossil",14255,16215,18879,19747,19211 " Coal",6373,8557,8762,7478,8527 " Petroleum",38,37,35,54,32 " Natural ...

  12. Wisconsin Total Electric Power Industry Net Generation, by Energy...

    Energy Information Administration (EIA) (indexed site)

    Wisconsin" "Energy Source",2006,2007,2008,2009,2010 "Fossil",46352,47530,47881,43477,46384 " Coal",40116,40028,41706,37280,40169 " Petroleum",877,1013,931,712,718 " Natural ...

  13. Virginia Total Electric Power Industry Net Generation, by Energy...

    Energy Information Administration (EIA) (indexed site)

    Virginia" "Energy Source",2006,2007,2008,2009,2010 "Fossil",42343,48422,42242,38888,43751 " Coal",34288,35421,31776,25599,25459 " Petroleum",839,2097,1150,1088,1293 " Natural ...

  14. New Mexico Total Electric Power Industry Net Generation, by Energy...

    Energy Information Administration (EIA) (indexed site)

    Mexico" "Energy Source",2006,2007,2008,2009,2010 "Fossil",35790,34308,35033,37823,34180 " Coal",29859,27604,27014,29117,25618 " Petroleum",41,44,53,45,50 " Natural ...

  15. New York Total Electric Power Industry Net Generation, by Energy...

    Energy Information Administration (EIA) (indexed site)

    York" "Energy Source",2006,2007,2008,2009,2010 "Fossil",69880,75234,66756,57187,64503 " Coal",20968,21406,19154,12759,13583 " Petroleum",6778,8195,3745,2648,2005 " Natural ...

  16. Wyoming Total Electric Power Industry Net Generation, by Energy...

    Energy Information Administration (EIA) (indexed site)

    Wyoming" "Energy Source",2006,2007,2008,2009,2010 "Fossil",43749,44080,44635,42777,43781 " Coal",42892,43127,43808,41954,42987 " Petroleum",46,47,44,50,56 " Natural ...

  17. New Jersey Total Electric Power Industry Net Generation, by Energy...

    Energy Information Administration (EIA) (indexed site)

    Jersey" "Energy Source",2006,2007,2008,2009,2010 "Fossil",26910,29576,30264,26173,31662 " Coal",10862,10211,9028,5100,6418 " Petroleum",270,453,325,278,235 " Natural ...

  18. "Table A45. Selected Energy Operating Ratios for Total Energy Consumption"

    Energy Information Administration (EIA) (indexed site)

    5. Selected Energy Operating Ratios for Total Energy Consumption" " for Heat, Power, and Electricity Generation by Industry Group," " Selected Industries, and Value of Shipment Categories, 1994" ,,,,,"Major" ,,,"Consumption","Consumption per","Byproducts(c)","Fuel Oil(d)" ,,"Consumption","per Dollar","Dollar of Value","as a Percent","as a Percent","RSE"

  19. "Table A46. Selected Energy Operating Ratios for Total Energy Consumption"

    Energy Information Administration (EIA) (indexed site)

    Selected Energy Operating Ratios for Total Energy Consumption" " for Heat, Power, and Electricity Generation by Industry Group," " Selected Industries, and Employment Size Categories, 1994" ,,,,,"Major" ,,,"Consumption","Consumption per","Byproducts(c)","Fuel Oil(d)" ,,"Consumption","per Dollar","Dollar of Value","as a Percent","as a Percent","RSE"

  20. "Table A47. Selected Energy Operating Ratios for Total Energy Consumption for"

    Energy Information Administration (EIA) (indexed site)

    7. Selected Energy Operating Ratios for Total Energy Consumption for" " Heat, Power, and Electricity Generation by Census Region, Census Division, Industry Group, and" " Selected Industries, 1994" ,,,,,"Major" ,,,,"Consumption","Byproducts(b)" ,,,"Consumption","per Dollar","as a","Fuel Oil(c) as" ,,"Consumption","per Dollar","of Value","Percent of","a

  1. "Table A51. Selected Energy Operating Ratios for Total Energy Consumption for"

    Energy Information Administration (EIA) (indexed site)

    1. Selected Energy Operating Ratios for Total Energy Consumption for" " Heat, Power, and Electricity Generation by Census Region and Economic" " Characteristics of the Establishment, 1991 " ,,,,,"Major" ,,,"Consumption","Consumption per","Byproducts(c)","Fuel Oil(d)" ,,"Consumption","per Dollar","Dollar of Value","as a Percent","as a Percent","RSE"

  2. "Table A8. Selected Energy Operating Ratios for Total Energy Consumption for"

    Energy Information Administration (EIA) (indexed site)

    A8. Selected Energy Operating Ratios for Total Energy Consumption for" " Heat, Power, and Electricity Generation by Census Region, Industry Group, and" " Selected Industries, 1991" ,,,,,"Major" ,,,,"Consumption","Byproducts(b)" ,,,"Consumption","per Dollar","as a","Fuel Oil(c) as" ,,"Consumption","per Dollar","of Value","Percent of","a Percent

  3. Tennessee Total Electric Power Industry Net Generation, by Energy Source

    Energy Information Administration (EIA) (indexed site)

    Tennessee" "Energy Source",2006,2007,2008,2009,2010 "Fossil",61336,61205,57753,42242,46203 " Coal",60498,60237,57058,41633,43670 " Petroleum",160,232,216,187,217 " Natural Gas",664,722,467,409,2302 " Other Gases",14,13,12,12,13 "Nuclear",24679,28700,27030,26962,27739 "Renewables",8559,5910,6611,11162,9125 "Pumped Storage",-668,-704,-739,-650,-721 "Other",5,3,8,1,3

  4. Texas Total Electric Power Industry Net Generation, by Energy Source

    Energy Information Administration (EIA) (indexed site)

    Texas" "Energy Source",2006,2007,2008,2009,2010 "Fossil",349849,351720,344813,333227,341054 " Coal",146391,147279,147132,139107,150173 " Petroleum",1789,1309,1034,1405,708 " Natural Gas",197870,199531,193247,189066,186882 " Other Gases",3798,3601,3401,3649,3291 "Nuclear",41264,40955,40727,41498,41335 "Renewables",8480,11932,18679,22133,28967 "Pumped

  5. Pennsylvania Total Electric Power Industry Net Generation, by Energy Source

    Energy Information Administration (EIA) (indexed site)

    Pennsylvania" "Energy Source",2006,2007,2008,2009,2010 "Fossil",138173,143909,137862,136047,145210 " Coal",122558,122693,117583,105475,110369 " Petroleum",1518,1484,938,915,571 " Natural Gas",13542,19198,18731,29215,33718 " Other Gases",554,534,610,443,552 "Nuclear",75298,77376,78658,77328,77828 "Renewables",5317,4782,5353,6035,6577 "Pumped Storage",-698,-723,-354,-731,-708

  6. Louisiana Total Electric Power Industry Net Generation, by Energy Source

    Energy Information Administration (EIA) (indexed site)

    Louisiana" "Energy Source",2006,2007,2008,2009,2010 "Fossil",69795,71028,72850,70155,80110 " Coal",24395,23051,24100,23067,23924 " Petroleum",1872,2251,2305,1858,3281 " Natural Gas",41933,43915,45344,44003,51344 " Other Gases",1595,1811,1101,1227,1561 "Nuclear",16735,17078,15371,16782,18639 "Renewables",3676,3807,3774,3600,3577 "Pumped

  7. Maine Total Electric Power Industry Net Generation, by Energy Source

    Energy Information Administration (EIA) (indexed site)

    Maine" "Energy Source",2006,2007,2008,2009,2010 "Fossil",8214,7869,8264,7861,8733 " Coal",321,376,352,72,87 " Petroleum",595,818,533,433,272 " Natural Gas",7298,6675,7380,7355,8374 " Other Gases","-","-","-","-","-" "Nuclear","-","-","-","-","-" "Renewables",8246,7945,8515,8150,7963 "Pumped

  8. Maryland Total Electric Power Industry Net Generation, by Energy Source

    Energy Information Administration (EIA) (indexed site)

    Maryland" "Energy Source",2006,2007,2008,2009,2010 "Fossil",32091,33303,29810,26529,27102 " Coal",29408,29699,27218,24162,23668 " Petroleum",581,985,406,330,322 " Natural Gas",1770,2241,1848,1768,2897 " Other Gases",332,378,338,269,215 "Nuclear",13830,14353,14679,14550,13994 "Renewables",2730,2256,2587,2440,2241 "Pumped Storage","-","-","-","-","-"

  9. Massachusetts Total Electric Power Industry Net Generation, by Energy Source

    Energy Information Administration (EIA) (indexed site)

    Massachusetts" "Energy Source",2006,2007,2008,2009,2010 "Fossil",36773,40001,34251,30913,34183 " Coal",11138,12024,10629,9028,8306 " Petroleum",2328,3052,2108,897,296 " Natural Gas",23307,24925,21514,20988,25582 " Other Gases","-","-","-","-","-" "Nuclear",5830,5120,5869,5396,5918 "Renewables",2791,2038,2411,2430,2270 "Pumped

  10. Minnesota Total Electric Power Industry Net Generation, by Energy Source

    Energy Information Administration (EIA) (indexed site)

    Minnesota" "Energy Source",2006,2007,2008,2009,2010 "Fossil",36125,36463,34879,32263,32454 " Coal",33070,32190,31755,29327,28083 " Petroleum",494,405,232,65,31 " Natural Gas",2561,3842,2866,2846,4341 " Other Gases","-",26,27,24,"-" "Nuclear",13183,13103,12997,12393,13478 "Renewables",3631,4586,6578,7546,7480 "Pumped

  11. Mississippi Total Electric Power Industry Net Generation, by Energy Source

    Energy Information Administration (EIA) (indexed site)

    Mississippi" "Energy Source",2006,2007,2008,2009,2010 "Fossil",34254,39184,37408,36266,43331 " Coal",18105,17407,16683,12958,13629 " Petroleum",399,399,76,17,81 " Natural Gas",15706,21335,20607,23267,29619 " Other Gases",44,42,40,25,2 "Nuclear",10419,9359,9397,10999,9643 "Renewables",1541,1493,1391,1424,1504 "Pumped Storage","-","-","-","-","-"

  12. Missouri Total Electric Power Industry Net Generation, by Energy Source

    Energy Information Administration (EIA) (indexed site)

    Missouri" "Energy Source",2006,2007,2008,2009,2010 "Fossil",81245,80127,78788,75122,79870 " Coal",77450,75084,73532,71611,75047 " Petroleum",61,60,57,88,126 " Natural Gas",3729,4979,5196,3416,4690 " Other Gases",5,3,3,7,7 "Nuclear",10117,9372,9379,10247,8996 "Renewables",223,1234,2293,2391,2527 "Pumped Storage",48,383,545,567,888 "Other",54,37,24,27,32

  13. Montana Total Electric Power Industry Net Generation, by Energy Source

    Energy Information Administration (EIA) (indexed site)

    Montana" "Energy Source",2006,2007,2008,2009,2010 "Fossil",17583,18960,18822,16181,19068 " Coal",17085,18357,18332,15611,18601 " Petroleum",419,479,419,490,409 " Natural Gas",68,106,66,78,57 " Other Gases",11,19,6,1,2 "Nuclear","-","-","-","-","-" "Renewables",10661,9971,10704,10422,10442 "Pumped

  14. Alabama Total Electric Power Industry Net Generation, by Energy Source

    Energy Information Administration (EIA) (indexed site)

    Alabama" "Energy Source",2006,2007,2008,2009,2010 "Fossil",97827,101561,97376,87580,102762 " Coal",78109,77994,74605,55609,63050 " Petroleum",180,157,204,219,200 " Natural Gas",19407,23232,22363,31617,39235 " Other Gases",131,178,204,135,277 "Nuclear",31911,34325,38993,39716,37941 "Renewables",11136,7937,9493,15585,11081 "Pumped

  15. Alaska Total Electric Power Industry Net Generation, by Energy Source

    Energy Information Administration (EIA) (indexed site)

    Alaska" "Energy Source",2006,2007,2008,2009,2010 "Fossil",5443,5519,5598,5365,5308 " Coal",617,641,618,631,620 " Petroleum",768,1010,978,1157,937 " Natural Gas",4058,3868,4002,3577,3750 " Other Gases","-","-","-","-","-" "Nuclear","-","-","-","-","-" "Renewables",1231,1302,1177,1337,1452 "Pumped

  16. Arizona Total Electric Power Industry Net Generation, by Energy Source

    Energy Information Administration (EIA) (indexed site)

    Arizona" "Energy Source",2006,2007,2008,2009,2010 "Fossil",73385,79794,82715,74509,73386 " Coal",40443,41275,43840,39707,43644 " Petroleum",73,49,52,63,66 " Natural Gas",32869,38469,38822,34739,29676 " Other Gases","-","-","-","-","-" "Nuclear",24012,26782,29250,30662,31200 "Renewables",6846,6639,7400,6630,6941 "Pumped Storage",149,125,95,169,209

  17. Arkansas Total Electric Power Industry Net Generation, by Energy Source

    Energy Information Administration (EIA) (indexed site)

    Arkansas" "Energy Source",2006,2007,2008,2009,2010 "Fossil",33626,34203,34639,36385,40667 " Coal",24183,25744,26115,25075,28152 " Petroleum",161,94,64,88,45 " Natural Gas",9282,8364,8461,11221,12469 " Other Gases","-","-","-","-","-" "Nuclear",15233,15486,14168,15170,15023 "Renewables",3273,4860,6173,5778,5283 "Pumped Storage",15,30,48,100,-1

  18. California Total Electric Power Industry Net Generation, by Energy Source

    Energy Information Administration (EIA) (indexed site)

    California" "Energy Source",2006,2007,2008,2009,2010 "Fossil",112317,122151,125699,118679,112376 " Coal",2235,2298,2280,2050,2100 " Petroleum",2368,2334,1742,1543,1059 " Natural Gas",105691,115700,119992,113463,107522 " Other Gases",2022,1818,1685,1623,1695 "Nuclear",31959,35792,32482,31764,32201 "Renewables",71963,52173,48912,53428,58881 "Pumped Storage",96,310,321,153,-171

  19. Hydrocarbon/Total Combustibles Sensor - Energy Innovation Portal

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Hydrocarbon Gas Liquids (HGL): Recent Market Trends and Issues Release date: November 25, 2014 Executive summary Over the past five years, rapid growth in U.S. onshore natural gas and oil production has led to increased volumes of natural gas plant liquids (NGPL) and liquefied refinery gases (LRG). The increasing economic importance of these volumes, as a result of their significant growth in production, has revealed the need for better data accuracy and transparency to improve the quality of

  20. E-print Network Website Policies and Important Links -- Energy...

    Office of Scientific and Technical Information (OSTI)

    Website Policies Important Links Javascript Not Enabled OSTI Security Website Policies and Important Links

  1. Sorting through the many total-energy-cycle pathways possible with early plug-in hybrids.

    SciTech Connect

    Gaines, L.; Burnham, A.; Rousseau, A.; Santini, D.; Energy Systems

    2008-01-01

    Using the 'total energy cycle' methodology, we compare U.S. near term (to {approx}2015) alternative pathways for converting energy to light-duty vehicle kilometers of travel (VKT) in plug-in hybrids (PHEVs), hybrids (HEVs), and conventional vehicles (CVs). For PHEVs, we present total energy-per-unit-of-VKT information two ways (1) energy from the grid during charge depletion (CD); (2) energy from stored on-board fossil fuel when charge sustaining (CS). We examine 'incremental sources of supply of liquid fuel such as (a) oil sands from Canada, (b) Fischer-Tropsch diesel via natural gas imported by LNG tanker, and (c) ethanol from cellulosic biomass. We compare such fuel pathways to various possible power converters producing electricity, including (i) new coal boilers, (ii) new integrated, gasified coal combined cycle (IGCC), (iii) existing natural gas fueled combined cycle (NGCC), (iv) existing natural gas combustion turbines, (v) wood-to-electricity, and (vi) wind/solar. We simulate a fuel cell HEV and also consider the possibility of a plug-in hybrid fuel cell vehicle (FCV). For the simulated FCV our results address the merits of converting some fuels to hydrogen to power the fuel cell vs. conversion of those same fuels to electricity to charge the PHEV battery. The investigation is confined to a U.S. compact sized car (i.e. a world passenger car). Where most other studies have focused on emissions (greenhouse gases and conventional air pollutants), this study focuses on identification of the pathway providing the most vehicle kilometers from each of five feedstocks examined. The GREET 1.7 fuel cycle model and the new GREET 2.7 vehicle cycle model were used as the foundation for this study. Total energy, energy by fuel type, total greenhouse gases (GHGs), volatile organic compounds (VOC), carbon monoxide (CO), nitrogen oxides (NO{sub x}), fine particulate (PM2.5) and sulfur oxides (SO{sub x}) values are presented. We also isolate the PHEV emissions contribution

  2. Table A52. Total Inputs of Energy for Heat, Power, and Electricity...

    Energy Information Administration (EIA) (indexed site)

    ... '1994" "Manufacturing Energy Consumption Survey', and Bureau of the Census, Industry" "Division, data files for the '1994 Annual Survey of Manufactures.'" "Table A53. Total ...

  3. U.S. Department of Energy Releases Revised Total System Life...

    Energy Saver

    U.S. Department of Energy Releases Revised Total System Life Cycle Cost Estimate and Fee Adequacy Report ... U.S. Department of Energy Awards Contracts for Waste Storage Canisters for ...

  4. Total reaction cross sections in CEM and MCNP6 at intermediate energies

    DOE PAGES [OSTI]

    Kerby, Leslie M.; Mashnik, Stepan G.

    2015-05-14

    Accurate total reaction cross section models are important to achieving reliable predictions from spallation and transport codes. The latest version of the Cascade Exciton Model (CEM) as incorporated in the code CEM03.03, and the Monte Carlo N-Particle transport code (MCNP6), both developed at Los Alamos National Laboratory (LANL), each use such cross sections. Having accurate total reaction cross section models in the intermediate energy region (50 MeV to 5 GeV) is very important for different applications, including analysis of space environments, use in medical physics, and accelerator design, to name just a few. The current inverse cross sections used inmore » the preequilibrium and evaporation stages of CEM are based on the Dostrovsky et al. model, published in 1959. Better cross section models are now available. Implementing better cross section models in CEM and MCNP6 should yield improved predictions for particle spectra and total production cross sections, among other results.« less

  5. Annual Energy Outlook 2014 projects reduced need for U.S. oil imports due to tight oil production growth

    Energy Information Administration (EIA) (indexed site)

    7, 2014 Annual Energy Outlook 2014 projects reduced need for U.S. oil imports due to tight oil production growth U.S. production of tight crude oil is expected to make up a larger share of total U.S. oil output in the years ahead, and help lower imports share of total U.S. oil consumption. In its annual long-term projections, the U.S. Energy Information Administration (EIA) expects total U.S. crude oil production to reach a record 9.6 million barrels per day (bbl/d) in 2019, under its baseline

  6. The Importance of Motor Shaft Alignment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    The Importance of Motor Shaft Alignment The Importance of Motor Shaft Alignment The objective of optimized shaft alignment is to increase the operating life span of rotating ...

  7. DOE - Fossil Energy: Natural Gas Imports and Exports Quarterly...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Lists all short-term purchasers of imported gas during the past 5 quarters. Attachment C-4: Describes all individual short-term import transactions (provides monthly data on...

  8. U.S. Department of Energy Releases Revised Total System Life Cycle Cost

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Estimate and Fee Adequacy Report for Yucca Mountain Project | Department of Energy Revised Total System Life Cycle Cost Estimate and Fee Adequacy Report for Yucca Mountain Project U.S. Department of Energy Releases Revised Total System Life Cycle Cost Estimate and Fee Adequacy Report for Yucca Mountain Project August 5, 2008 - 2:40pm Addthis WASHINGTON, DC -The U.S. Department of Energy (DOE) today released a revised estimate of the total system life cycle cost for a repository at Yucca

  9. Why is shale gas important? | Department of Energy

    Energy.gov [DOE] (indexed site)

    Why is shale gas important? (1.27 MB) More Documents & Publications Natural Gas from Shale: Questions and Answers Shale Gas Glossary How is shale gas produced?

  10. Importance of Biomass Production and Supply | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Importance of Biomass Production and Supply Importance of Biomass Production and Supply Bryce Stokes gave this presentation at the Symbiosis Conference. symbiosis_conference_stokes.pdf (1.67 MB) More Documents & Publications Biomass Program Peer Review Sustainability Platform ECOWAS - GBEP REGIONAL BIOMASS RESOURCE ASSESSMENT WORKSHOP U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry

  11. LED Color Stability: 10 Important Questions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Color Stability: 10 Important Questions LED Color Stability: 10 Important Questions This April 15, 2014 webinar examined the causes of color shift, and took a look at existing metrics used to describe color shift/color stability in LED lighting. The lumen maintenance lifetime of many LED products is 25,000 hours or more, but that doesn't mean products are guaranteed to perform the same over that time. One thing that could change is the color of the light, or chromaticity. Presenters Michael

  12. Fact #864: March 16, 2015 Imports of Primary Energy have Declined...

    Office of Environmental Management (EM)

    Fact 864: March 16, 2015 Imports of Primary Energy have Declined Sharply Since the Peak Reached in 2007 Fact 864: March 16, 2015 Imports of Primary Energy have Declined Sharply ...

  13. As OPEC Ministers Meet, Secretary Chu Stresses the Importance of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Independence | Department of Energy As OPEC Ministers Meet, Secretary Chu Stresses the Importance of Energy Independence As OPEC Ministers Meet, Secretary Chu Stresses the Importance of Energy Independence March 15, 2009 - 12:00am Addthis Washington, DC - As OPEC ministers held a meeting in Vienna Sunday, U.S. Energy Secretary Steven Chu again stressed the need for energy independence and called for global cooperation on energy, economic and climate challenges. "While OPEC's actions are

  14. Conservation Standards Enforcement: Importer Q&As | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Importer Q&As Conservation Standards Enforcement: Importer Q&As Under the Energy Policy and Conservation Act (EPCA), as amended, an importer is a manufacturer. Therefore, an importer is held to the same standard as a domestic manufacturer -- just as though the importer had built the product(s) it imports. These FAQs are designed to help an importer identify key issues to consider to ensure compliance with the energy and water conservation standards for consumer products and commercial

  15. Fact #864: March 16, 2015 Imports of Primary Energy have Declined Sharply

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Since the Peak Reached in 2007 | Department of Energy 4: March 16, 2015 Imports of Primary Energy have Declined Sharply Since the Peak Reached in 2007 Fact #864: March 16, 2015 Imports of Primary Energy have Declined Sharply Since the Peak Reached in 2007 Primary energy imports have declined by about 34% since the peak reached in 2007. During this same period, exports of primary energy have more than doubled. The combination of decreasing imports and rising exports of primary energy have

  16. DOE Selects Projects Totaling $12.4 Million Aimed at Increasing Domestic Energy Production While Enhancing Environmental Protection

    Office of Energy Efficiency and Renewable Energy (EERE)

    A total of 11 research projects that will help find ways to extract more energy from unconventional oil and gas resources while reducing environmental risks have been selected totaling $12.4 million by DOE's Office of Fossil Energy.

  17. "Table A22. Total Quantity of Purchased Energy Sources by Census Region,"

    Energy Information Administration (EIA) (indexed site)

    2. Total Quantity of Purchased Energy Sources by Census Region," " Industry Group, and Selected Industries, 1991" " (Estimates in Btu or Physical Units)" ,,,,,,"Natural",,,"Coke" " "," ","Total","Electricity","Residual","Distillate","Gas(c)"," ","Coal","and Breeze"," ","RSE" "SIC","

  18. Table A20. Total First Use (formerly Primary Consumption) of Energy for All P

    Energy Information Administration (EIA) (indexed site)

    Total First Use (formerly Primary Consumption) of Energy for All Purposes by Census" " Region, Census Division, and Economic Characteristics of the Establishment, 1994" " (Estimates in Btu or Physical Units)" ,,,,,,,,"Coke",,"Shipments" " "," ","Net","Residual","Distillate","Natural Gas(e)"," ","Coal","and Breeze"," ","of Energy

  19. Table A41. Total Inputs of Energy for Heat, Power, and Electricity

    Energy Information Administration (EIA) (indexed site)

    A41. Total Inputs of Energy for Heat, Power, and Electricity" " Generation by Census Region, Industry Group, Selected Industries, and Type of" " Energy Management Program, 1991" " (Estimates in Trillion Btu)" ,,," Census Region",,,,"RSE" "SIC","Industry Groups",," -------------------------------------------",,,,"Row" "Code(a)","and

  20. Table A50. Total Inputs of Energy for Heat, Power, and Electricity Generatio

    Energy Information Administration (EIA) (indexed site)

    A50. Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Census Region, Industry Group, Selected Industries, and Type of" " Energy-Management Program, 1994" " (Estimates in Trillion Btu)" ,,,," Census Region",,,"RSE" "SIC",,,,,,,"Row" "Code(a)","Industry Group and

  1. Energy Secretary Bodman in Turkey to Highlight Importance of Expanding Oil

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    and Gas Supply and Infrastructure | Department of Energy in Turkey to Highlight Importance of Expanding Oil and Gas Supply and Infrastructure Energy Secretary Bodman in Turkey to Highlight Importance of Expanding Oil and Gas Supply and Infrastructure November 16, 2007 - 4:31pm Addthis ISTANBUL, TURKEY - U.S. Secretary of Energy Samuel W. Bodman today highlighted the significance of improving U.S.-Turkish business relationships, enhancing investment opportunities in the energy sector, and

  2. Table A9. Total Primary Consumption of Energy for All Purposes by Census

    Energy Information Administration (EIA) (indexed site)

    A9. Total Primary Consumption of Energy for All Purposes by Census" " Region and Economic Characteristics of the Establishment, 1991" " (Estimates in Btu or Physical Units)" ,,,,,,,,"Coke" " "," ","Net","Residual","Distillate","Natural Gas(d)"," ","Coal","and Breeze"," ","RSE" " ","Total","Electricity(b)","Fuel

  3. Table A17. Total First Use (formerly Primary Consumption) of Energy for All P

    Energy Information Administration (EIA) (indexed site)

    Total First Use (formerly Primary Consumption) of Energy for All Purposes" " by Employment Size Categories, Industry Group, and Selected Industries, 1994" " (Estimates in Trillion Btu)" ,,,," "," Employment Size(b)" ,,,,,,,,,"RSE" "SIC"," "," "," "," "," "," "," ",1000,"Row" "Code(a)","Industry Group and

  4. Table A31. Total Inputs of Energy for Heat, Power, and Electricity Generation

    Energy Information Administration (EIA) (indexed site)

    Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Value of Shipment Categories, Industry Group, and Selected Industries, 1991" " (Continued)" " (Estimates in Trillion Btu)",,,,"Value of Shipments and Receipts(b)" ,,,," (million dollars)" ,,,"-","-","-","-","-","-","RSE" "SIC"," "," "," "," ","

  5. Table A45. Total Inputs of Energy for Heat, Power, and Electricity Generation

    Energy Information Administration (EIA) (indexed site)

    Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Enclosed Floorspace, Percent Conditioned Floorspace, and Presence of Computer" " Controls for Building Environment, 1991" " (Estimates in Trillion Btu)" ,,"Presence of Computer Controls" ,," for Buildings Environment",,"RSE" "Enclosed Floorspace and"," ","--------------","--------------","Row" "Percent

  6. Table A55. Number of Establishments by Total Inputs of Energy for Heat, Powe

    Energy Information Administration (EIA) (indexed site)

    Number of Establishments by Total Inputs of Energy for Heat, Power, and Electricity Generation," " by Industry Group, Selected Industries, and" " Presence of Cogeneration Technologies, 1994: Part 2" ,,,"Steam Turbines",,,,"Steam Turbines" ,," ","Supplied by Either","Conventional",,,"Supplied by","One or More",," " " "," ",,"Conventional","Combustion

  7. "Table A24. Total Expenditures for Purchased Energy Sources by Census Region,"

    Energy Information Administration (EIA) (indexed site)

    4. Total Expenditures for Purchased Energy Sources by Census Region," " Industry Group, and Selected Industries, 1991" " (Estimates in Million Dollars)" ,,,,,,,,,,,"RSE" "SIC"," "," "," ","Residual","Distillate ","Natural"," "," ","Coke"," ","Row" "Code(a)","Industry Groupsc and

  8. "Table A32. Total Quantity of Purchased Energy Sources by Census Region,"

    Energy Information Administration (EIA) (indexed site)

    Quantity of Purchased Energy Sources by Census Region," " Census Division, Industry Group, and Selected Industries, 1994" " (Estimates in Btu or Physical Units)" ,,,,,,"Natural",,,"Coke" " "," ","Total","Electricity","Residual","Distillate","Gas(c)"," ","Coal","and Breeze"," ","RSE" "SIC","

  9. "Table A36. Total Expenditures for Purchased Energy Sources by Census Region,"

    Energy Information Administration (EIA) (indexed site)

    6. Total Expenditures for Purchased Energy Sources by Census Region," " Census Division, Industry Group, and Selected Industries, 1994" " (Estimates in Million Dollars)" ,,,,,,,,,,,"RSE" "SIC"," "," "," ","Residual","Distillate ","Natural"," "," ","Coke"," ","Row" "Code(a)","Industry Group and

  10. "Table A37. Total Expenditures for Purchased Energy Sources by Census Region,"

    Energy Information Administration (EIA) (indexed site)

    7. Total Expenditures for Purchased Energy Sources by Census Region," " Census Division, and Economic Characteristics of the Establishment, 1994" " (Estimates in Million Dollars)" " "," "," "," ",," "," "," "," "," ","RSE" " "," "," ","Residual","Distillate","Natural"," ","

  11. Fact #864: March 16, 2015 Imports of Primary Energy have Declined Sharply

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Since the Peak Reached in 2007 | Department of Energy 4: March 16, 2015 Imports of Primary Energy have Declined Sharply Since the Peak Reached in 2007 Fact #864: March 16, 2015 Imports of Primary Energy have Declined Sharply Since the Peak Reached in 2007 Excel file and dataset for Imports of Primary Energy have Declined Sharply Since the Peak Reached in 2007 fotw#864_web.xlsx (22.86 KB) More Documents & Publications Fact #915: March 7, 2016 Average Historical Annual Gasoline Pump Price,

  12. The contribution of low-energy protons to the total on-orbit SEU rate

    DOE PAGES [OSTI]

    Dodds, Nathaniel Anson; Martinez, Marino J.; Dodd, Paul E.; Shaneyfelt, Marty R.; Sexton, Frederick W.; Black, Jeffrey D.; Lee, David S.; Swanson, Scot E.; Bhuva, B. L.; Warren, K. M.; et al

    2015-11-10

    Low- and high-energy proton experimental data and error rate predictions are presented for many bulk Si and SOI circuits from the 20-90 nm technology nodes to quantify how much low-energy protons (LEPs) can contribute to the total on-orbit single-event upset (SEU) rate. Every effort was made to predict LEP error rates that are conservatively high; even secondary protons generated in the spacecraft shielding have been included in the analysis. Across all the environments and circuits investigated, and when operating within 10% of the nominal operating voltage, LEPs were found to increase the total SEU rate to up to 4.3 timesmore » as high as it would have been in the absence of LEPs. Therefore, the best approach to account for LEP effects may be to calculate the total error rate from high-energy protons and heavy ions, and then multiply it by a safety margin of 5. If that error rate can be tolerated then our findings suggest that it is justified to waive LEP tests in certain situations. Trends were observed in the LEP angular responses of the circuits tested. As a result, grazing angles were the worst case for the SOI circuits, whereas the worst-case angle was at or near normal incidence for the bulk circuits.« less

  13. Argentina: An Important All-of-the-Above Energy Partner | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Argentina: An Important All-of-the-Above Energy Partner Argentina: An Important All-of-the-Above Energy Partner June 16, 2014 - 5:03pm Addthis Deputy Energy Secretary Daniel Poneman, third from left, meets with Argentinian President Cristina Fernández de Kirchner in Argentina on May 22, 2014. | Photo courtesy of the U.S. State Department. Deputy Energy Secretary Daniel Poneman, third from left, meets with Argentinian President Cristina Fernández de Kirchner in Argentina on May 22,

  14. Framework for Evaluating the Total Value Proposition of Clean Energy Technologies

    SciTech Connect

    Pater, J. E.

    2006-02-01

    Conventional valuation techniques fail to include many of the financial advantages of clean energy technologies. By omitting benefits associated with risk management, emissions reductions, policy incentives, resource use, corporate social responsibility, and societal economic benefits, investors and firms sacrifice opportunities for new revenue streams and avoided costs. In an effort to identify some of these externalities, this analysis develops a total value proposition for clean energy technologies. It incorporates a series of values under each of the above categories, describing the opportunities for recapturing investments throughout the value chain. The framework may be used to create comparable value propositions for clean energy technologies supporting investment decisions, project siting, and marketing strategies. It can also be useful in policy-making decisions.

  15. Imports of Total Motor Gasoline

    Gasoline and Diesel Fuel Update

    898 946 779 691 933 921 1982-2016 East Coast (PADD 1) 875 862 708 611 864 862 2004-2016 Midwest (PADD 2) 5 6 10 1 3 6 2004-2016 Gulf Coast (PADD 3) 0 57 35 69 38 37 2004-2016 Rocky ...

  16. Energy Secretary Moniz and Export-Import Bank Chairman Hochberg to Visit

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    First Solar Facility in Perrysburg, Ohio | Department of Energy Moniz and Export-Import Bank Chairman Hochberg to Visit First Solar Facility in Perrysburg, Ohio Energy Secretary Moniz and Export-Import Bank Chairman Hochberg to Visit First Solar Facility in Perrysburg, Ohio February 14, 2015 - 6:35pm Addthis News Media Contact 202 586 4940 RSVP@hq.doe.gov Energy Secretary Moniz and Export-Import Bank Chairman Hochberg to Visit First Solar Facility in Perrysburg, Ohio WASHINGTON- On Friday,

  17. Average Neutron Total Cross Sections in the Unresolved Energy Range From ORELA High Resolutio Transmission Measurements

    SciTech Connect

    Derrien, H

    2004-05-27

    Average values of the neutron total cross sections of {sup 233}U, {sup 235}U, {sup 238}U, and {sup 239}Pu have been obtained in the unresolved resonance energy range from high-resolution transmission measurements performed at ORELA in the past two decades. The cross sections were generated by correcting the effective total cross sections for the self-shielding effects due to the resonance structure of the data. The self-shielding factors were found by calculating the effective and true cross sections with the computer code SAMMY for the same Doppler and resolution conditions as for the transmission measurements, using an appropriate set of resonance parameters. Our results are compared to results of previous measurements and to the current ENDF/B-VI data.

  18. Table A14. Total First Use (formerly Primary Consumption) of Energy for All P

    Energy Information Administration (EIA) (indexed site)

    4. Total First Use (formerly Primary Consumption) of Energy for All Purposes" " by Value of Shipment Categories, Industry Group, and Selected Industries, 1994" " (Estimates in Trillion Btu)" ,,,," Value of Shipments and Receipts(b)" ,,,," "," (million dollars)" ,,,,,,,,,"RSE" "SIC"," "," "," "," "," "," "," ",500,"Row"," ","

  19. Table A15. Total Inputs of Energy for Heat, Power, and Electricity Generation

    Energy Information Administration (EIA) (indexed site)

    Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Value of Shipment Categories, Industry Group, and Selected Industries, 1994" " (Estimates in Trillion Btu)" ,,,," Value of Shipments and Receipts(b)" ,,,," "," (million dollars)" ,,,,,,,,,"RSE" "SIC"," "," "," "," "," "," "," ",500,"Row" "Code(a)","Industry

  20. Table A30. Total Primary Consumption of Energy for All Purposes by Value of

    Energy Information Administration (EIA) (indexed site)

    0. Total Primary Consumption of Energy for All Purposes by Value of" "Shipment Categories, Industry Group, and Selected Industries, 1991" " (Estimates in Trillion Btu)" ,,,," Value of Shipments and Receipts(b)" ,,,," ","(million dollars)" ,,,"-","-","-","-","-","-","RSE" "SIC"," "," "," "," "," ","

  1. Table A34. Total Inputs of Energy for Heat, Power, and Electricity Generation

    Energy Information Administration (EIA) (indexed site)

    Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Employment Size Categories, Industry Group, and Selected Industries, 1991" " (Continued)" " (Estimates in Trillion Btu)" ,,,,,"Employment Size" ,,,"-","-","-","-","-","-","RSE" "SIC"," "," "," "," "," "," ",,"1,000","Row"

  2. Table A10. Total Inputs of Energy for Heat, Power, and Electricity Generatio

    Energy Information Administration (EIA) (indexed site)

    0. Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Fuel Type, Industry Group, Selected Industries, and End Use, 1994:" " Part 2" " (Estimates in Trillion Btu)" ,,,,,"Distillate",,,"Coal" ,,,,,"Fuel Oil",,,"(excluding",,"RSE" "SIC",,,"Net","Residual","and Diesel",,,"Coal Coke",,"Row" "Code(a)","End-Use

  3. Table A54. Number of Establishments by Total Inputs of Energy for Heat, Powe

    Energy Information Administration (EIA) (indexed site)

    Number of Establishments by Total Inputs of Energy for Heat, Power, and Electricity Generation," " by Industry Group, Selected Industries, and" " Presence of General Technologies, 1994: Part 2" ,," "," ",," "," ",," "," "," "," " ,,,,"Computer Control" ,," "," ","of Processes"," "," ",," "," ",," "

  4. "Table 19. Total Delivered Industrial Energy Consumption, Projected vs. Actual"

    Energy Information Administration (EIA) (indexed site)

    Total Delivered Industrial Energy Consumption, Projected vs. Actual" "Projected" " (quadrillion Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",25.43,25.904,26.303,26.659,26.974,27.062,26.755,26.598,26.908,27.228,27.668,28.068,28.348,28.668,29.068,29.398,29.688,30.008 "AEO

  5. Issues in the appraisal of energy projects for oil-importing developing countries

    SciTech Connect

    Anand, S.; Nalebuff, B.

    1985-01-01

    This paper develops a theoretical framework to evaluate the benefits and costs of energy projects in oil-importing developing countries. It uses framework to address various questions including the problems of energy dependency and vulnerability, market price, royalty values, increases in real prices of exhaustible resources, the true costs of stockpiling oil, and the need for an international institution to act as coordinator for information gathering and project diversification across countries. Of interest to energy specialists, researchers, project designers, and policymakers.

  6. Energy Secretary Moniz to Highlight the Importance of Grid Modernization in

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Florida | Department of Energy the Importance of Grid Modernization in Florida Energy Secretary Moniz to Highlight the Importance of Grid Modernization in Florida January 13, 2016 - 11:49am Addthis News Media Contact 202-586-4940 DOENews@hq.doe.gov WASHINGTON - On Thursday, January 14, 2016, U.S. Department of Energy Secretary Dr. Ernest Moniz will travel to Florida to visit several Florida Power & Light Company (FPL) facilities in Ft. Lauderdale and Miami. Arriving in Florida just days

  7. Development of a Total Energy, Environment and Asset Management (TE2AM tm) Curriculum

    SciTech Connect

    2012-12-31

    The University of Wisconsin Department of Engineering Professional Development (EPD) has completed the sponsored project entitled, Development of a Total Energy, Environment and Asset Management (TE2AM™) Curriculum. The project involved the development of a structured professional development program to improve the knowledge, skills, capabilities, and competencies of engineers and operators of commercial buildings. TE2AM™ advances a radically different approach to commercial building design, operation, maintenance, and end-­‐of-­‐life disposition. By employing asset management principles to the lifecycle of a commercial building, owners and occupants will realize improved building performance, reduced energy consumption and positive environmental impacts. Through our commercialization plan, we intend to offer TE2AM™ courses and certificates to the professional community and continuously improve TE2AM™ course materials. The TE2AM™ project supports the DOE Strategic Theme 1 -­‐ Energy Security; and will further advance the DOE Strategic Goal 1.4 Energy Productivity. Through participation in the TE2AM™ curriculum, engineers and operators of commercial buildings will be eligible for a professional certificate; denoting the completion of a prescribed series of learning activities. The project involved a comprehensive, rigorous approach to curriculum development, and accomplished the following goals: 1. Identify, analyze and prioritize key learning needs of engineers, architects and technical professionals as operators of commercial buildings. 2. Design and develop TE2AM™ curricula and instructional strategies to meet learning needs of the target learning community. 3. Establish partnerships with the sponsor and key stakeholders to enhance the development and delivery of learning programs. 4. Successfully commercialize and sustain the training and certificate programs for a substantial time following the term of the award. The project team was

  8. "Table 17. Total Delivered Residential Energy Consumption, Projected vs. Actual"

    Energy Information Administration (EIA) (indexed site)

    Total Delivered Residential Energy Consumption, Projected vs. Actual" "Projected" " (quadrillion Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",10.31,10.36,10.36,10.37,10.38,10.4,10.4,10.41,10.43,10.43,10.44,10.45,10.46,10.49,10.51,10.53,10.56,10.6 "AEO 1995",,10.96,10.8,10.81,10.81,10.79,10.77,10.75,10.73,10.72,10.7,10.7,10.69,10.7,10.72,10.75,10.8,10.85 "AEO

  9. "Table 18. Total Delivered Commercial Energy Consumption, Projected vs. Actual"

    Energy Information Administration (EIA) (indexed site)

    Total Delivered Commercial Energy Consumption, Projected vs. Actual" "Projected" " (quadrillion Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",6.82,6.87,6.94,7,7.06,7.13,7.16,7.22,7.27,7.32,7.36,7.38,7.41,7.45,7.47,7.5,7.51,7.55 "AEO 1995",,6.94,6.9,6.95,6.99,7.02,7.05,7.08,7.09,7.11,7.13,7.15,7.17,7.19,7.22,7.26,7.3,7.34 "AEO

  10. "Table 20. Total Delivered Transportation Energy Consumption, Projected vs. Actual"

    Energy Information Administration (EIA) (indexed site)

    Total Delivered Transportation Energy Consumption, Projected vs. Actual" "Projected" " (quadrillion Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",23.62,24.08,24.45,24.72,25.06,25.38,25.74,26.16,26.49,26.85,27.23,27.55,27.91,28.26,28.61,28.92,29.18,29.5 "AEO 1995",,23.26,24.01,24.18,24.69,25.11,25.5,25.86,26.15,26.5,26.88,27.28,27.66,27.99,28.25,28.51,28.72,28.94 "AEO

  11. Rising tide of U.S. oil imports sparks debate on energy security

    SciTech Connect

    Crow, P.

    1996-06-17

    This paper reviews the historical trends in domestic oil production and the oil imports. The paper exposes government policies related to developing more strategic plans for curtailing such increases in imports while showing the continued increase in demand. It provides information from the Energy Information Administration on net oil imports as a share of US oil consumption. It also provides information showing the sources of current US imports. Discussion is made on the potential threat to national security as a result of political instability in numerous of these oil exporting countries.

  12. Impacts on U.S. Energy Markets and the Economy of Reducing Oil Imports

    Reports and Publications

    1996-01-01

    This study was undertaken at the request of the General Accounting Office (GAO). Its purpose is to evaluate the impacts on U.S. energy markets and the economy of reducing oil imports. The approach and assumptions underlying this report were specified by GAO and are attached as an Appendix. The study focuses on two approaches: (1) a set of cases with alternative world crude oil price trajectories and (2) two cases which investigate the use of an oil import tariff to achieve a target reduction in the oil imports. The analysis presented uses the National Energy Modeling System, which is maintained by the Office of Integrated Analysis and Forecasting within the Energy Information Administration (EIA), and the DRI/McGraw Hill Macroeconomic Model of the U.S. Economy, a proprietary model maintained by DRI and subscribed to by EIA.

  13. Total energy cycle assessment of electric and conventional vehicles: an energy and environmental analysis. Volume 1: technical report

    SciTech Connect

    Cuenca, R.; Formento, J.; Gaines, L.; Marr, B.; Santini, D.; Wang, M.; Adelman, S.; Kline, D.; Mark, J.; Ohi, J.; Rau, N.; Freeman, S.; Humphreys, K.; Placet, M.

    1998-01-01

    This report compares the energy use, oil use and emissions of electric vehicles (EVs) with those of conventional, gasoline-powered vehicles (CVs) over the total life cycle of the vehicles. The various stages included in the vehicles` life cycles include vehicle manufacture, fuel production, and vehicle operation. Disposal is not included. An inventory of the air emissions associated with each stage of the life cycle is estimated. Water pollutants and solid wastes are reported for individual processes, but no comprehensive inventory is developed. Volume I contains the major results, a discussion of the conceptual framework of the study, and summaries of the vehicle, utility, fuel production, and manufacturing analyses. It also contains summaries of comments provided by external peer reviewers and brief responses to these comments.

  14. Website Policies and Important Links | OSTI, US Dept of Energy Office of

    Office of Scientific and Technical Information (OSTI)

    Scientific and Technical Information Website Policies and Important Links This page provides a comprehensive overview of the policies of this federally sponsored website, consistent with guidance established by the U.S. Office of Management and Budget (OMB) as implemented by the U.S. Department of Energy. Disclaimer Acceptable Use Policy User Privacy Copyright Attribution Accessibility/Section 508 Website Security Linking to OSTI Website Linking to Outside Websites Freedom of Information

  15. "Table B29. Primary Space-Heating Energy Sources, Total Floorspace...

    Energy Information Administration (EIA) (indexed site)

    ... ......",2853,2734,"Q",339,"Q",2165 "Propane ......",7076,6790,1323,1947,930,"Q" "Other ......",1401,1399,"Q",713,"Q","Q" "Energy End Uses ...

  16. Table A13. Total Consumption of Offsite-Produced Energy for...

    Energy Information Administration (EIA) (indexed site)

    ... Statistics Division, Form EIA-846, '1991" "Manufacturing Energy Consumption Survey,' and Bureau of the Census, Industry" "Division, data files for the '1991 Annual Survey of

  17. Table A26. Total Quantity of Purchased Energy Sources by Census...

    Energy Information Administration (EIA) (indexed site)

    ... Division, Form EIA-846, '1991" "Manufacturing Energy Consumption Survey,' and Bureau of the Census, Industry" "Division, data files for the '1991 Annual Survey of Manufactures.'

  18. Property:Building/SPPurchasedEngyNrmlYrMwhYrTotal | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    dEngyNrmlYrMwhYrTotal" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 4355.0 + Sweden Building 05K0002 + 1530.1 + Sweden Building 05K0003...

  19. Property:Building/SPPurchasedEngyPerAreaKwhM2Total | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    EngyPerAreaKwhM2Total" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 221.549575215 + Sweden Building 05K0002 + 213.701117318 + Sweden...

  20. Property:Building/SPPurchasedEngyForPeriodMwhYrTotal | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    gyForPeriodMwhYrTotal" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 4228.0 + Sweden Building 05K0002 + 1501.1 + Sweden Building 05K0003...

  1. Table A11. Total Inputs of Energy for Heat, Power, and Electricity Generatio

    Energy Information Administration (EIA) (indexed site)

    2" " (Estimates in Trillion Btu)" ,,,,,,,"Coal" ,,,,"Distillate",,,"(excluding" ,,,,"Fuel Oil",,,"Coal Coke",,"RSE" ,,"Net","Residual","and Diesel",,,"and",,"Row" "End-Use Categories","Total","Electricity(a)","Fuel Oil","Fuel(b)","Natural

  2. Table A37. Total Inputs of Energy for Heat, Power, and Electricity

    Energy Information Administration (EIA) (indexed site)

    2" " (Estimates in Trillion Btu)" ,,,,,,,"Coal" ,,,,"Distillate",,,"(excluding" ,,,,"Fuel Oil",,,"Coal Coke",,"RSE" ,,"Net","Residual","and Diesel",,,"and",,"Row" "End-Use Categories","Total","Electricity(a)","Fuel Oil","Fuel(b)","Natural

  3. FAST NEUTRON SPECTROMETER USING SPACED SEMICONDUCTORS FOR MEASURING TOTAL ENERGY OF NEUTRONS CAPTURED

    DOEpatents

    Love, T.A.; Murray, R.B.

    1964-04-14

    A fast neutron spectrometer was designed, which utilizes a pair of opposed detectors having a layer of /sup 6/LiF between to produce alpha and T pair for each neutron captured to provide signals, which, when combined, constitute a measure of neutron energy. (AEC)

  4. Table A10. Total Inputs of Energy for Heat, Power, and Electricity Generatio

    Energy Information Administration (EIA) (indexed site)

    1" " (Estimates in Btu or Physical Units)" ,,,,,"Distillate",,,"Coal" ,,,,,"Fuel Oil",,,"(excluding" ,,,"Net","Residual","and Diesel",,,"Coal Coke",,"RSE" "SIC",,"Total","Electricity(b)","Fuel Oil","Fuel(c)","Natural Gas(d)","LPG","and Breeze)","Other(e)","Row" "Code(a)","End-Use

  5. Table A11. Total Inputs of Energy for Heat, Power, and Electricity Generatio

    Energy Information Administration (EIA) (indexed site)

    1" " (Estimates in Btu or Physical Units)" ,,,,"Distillate",,,"Coal" ,,,,"Fuel Oil",,,"(excluding" ,,"Net","Residual","and Diesel",,,"Coal Coke",,"RSE" ,"Total","Electricity(a)","Fuel Oil","Fuel(b)","Natural Gas(c)","LPG","and Breeze)","Other(d)","Row" "End-Use Categories","(trillion

  6. Table A36. Total Inputs of Energy for Heat, Power, and Electricity

    Energy Information Administration (EIA) (indexed site)

    ,,,,,,,,"Coal" " Part 1",,,,,,,,"(excluding" " (Estimates in Btu or Physical Units)",,,,,"Distillate",,,"Coal Coke" ,,,,,"Fuel Oil",,,"and" ,,,"Net","Residual","and Diesel","Natural Gas",,"Breeze)",,"RSE" "SIC",,"Total","Electricity(b)","Fuel Oil","Fuel","(billion","LPG","(1000

  7. Table A36. Total Inputs of Energy for Heat, Power, and Electricity

    Energy Information Administration (EIA) (indexed site)

    " Part 2" " (Estimates in Trillion Btu)",,,,,,,,"Coal" ,,,,,"Distillate",,,"(excluding" ,,,,,"Fuel Oil",,,"Coal Coke",,"RSE" "SIC",,,"Net","Residual","and Diesel",,,"and",,"Row" "Code(a)","End-Use Categories","Total","Electricity(b)","Fuel Oil","Fuel(c)","Natural

  8. Table A37. Total Inputs of Energy for Heat, Power, and Electricity

    Energy Information Administration (EIA) (indexed site)

    1",,,,,,,"Coal" " (Estimates in Btu or Physical Units)",,,,,,,"(excluding" ,,,,"Distillate",,,"Coal Coke" ,,"Net",,"Fuel Oil",,,"and" ,,"Electricity(a)","Residual","and Diesel","Natural Gas",,"Breeze)",,"RSE" ,"Total","(million","Fuel Oil","Fuel","(billion","LPG","(1000

  9. Total energy study of the microscopic structure and electronic properties of tetragonal perovskite SrTiO{sub 3}

    SciTech Connect

    Rubio-Ponce, A.; Olgun, D.

    2014-05-15

    To study the structural and electronic properties of cubic perovskite SrTiO{sub 3} and its stress-induced tetragonal phase, we have performed total energy calculations and studied the effect of oxygen vacancies on the electronic properties of tetragonal perovskite SrTiO{sub 3}. The method used was the relativistic full-potential linearized augmented plane wave (FLAPW) method. To obtain the geometry that minimizes the total energy, we relaxed the internal atomic sites of the tetragonal cell. As a result of this procedure, we have found that the titanium atoms move toward the plane of the vacancy by 0.03 , and the apical oxygen atoms move to the same plane by approximately 0.14 . These results are discussed in comparison with experimental data.

  10. Table A32. Total Consumption of Offsite-Produced Energy for Heat, Power, and

    Energy Information Administration (EIA) (indexed site)

    Consumption of Offsite-Produced Energy for Heat, Power, and" " Electricity Generation by Value of Shipment Categories, Industry Group, and" " Selected Industries, 1991" " (Estimates in Trillion Btu)" ,,,,"Value of Shipments and Receipts(b)" ,,,," (million dollars)" ,," ","-","-","-","-","-","-","RSE" ," "," ","

  11. "Table A33. Total Quantity of Purchased Energy Sources by Census Region, Census Division,"

    Energy Information Administration (EIA) (indexed site)

    Quantity of Purchased Energy Sources by Census Region, Census Division," " and Economic Characteristics of the Establishment, 1994" " (Estimates in Btu or Physical Units)" ,,,,,"Natural",,,"Coke" " ","Total","Electricity","Residual","Distillate","Gas(c)"," ","Coal","and Breeze","Other(d)","RSE" "

  12. The Importance of High Temporal Resolution in Modeling Renewable Energy Penetration Scenarios

    SciTech Connect

    Nicolosi, Marco; Mills, Andrew D; Wiser, Ryan H

    2010-10-08

    Traditionally, modeling investment and dispatch problems in electricity economics has been limited by computation power. Due to this limitation, simplifications are applied. One common practice, for example, is to reduce the temporal resolution of the dispatch by clustering similar load levels. The increase of intermittent electricity from renewable energy sources (RES-E) changes the validity of this assumption. RES-E already cover a certain amount of the total demand. This leaves an increasingly volatile residual demand to be matched by the conventional power market. This paper quantifies differences in investment decisions by applying three different time-resolution residual load patterns in an investment and dispatch power system model. The model optimizes investment decisions in five year steps between today and 2030 with residual load levels for 8760, 288 and 16 time slices per year. The market under consideration is the four zone ERCOT market in Texas. The results show that investment decisions significantly differ across the three scenarios. In particular, investments into base-load technologies are substantially reduced in the high resolution scenario (8760 residual load levels) relative to the scenarios with lower temporal resolution. Additionally, the amount of RES-E curtailment and the market value of RES-E exhibit noteworthy differences.

  13. Table A33. Total Primary Consumption of Energy for All Purposes by Employment

    Energy Information Administration (EIA) (indexed site)

    Primary Consumption of Energy for All Purposes by Employment" " Size Categories, Industry Group, and Selected Industries, 1991 (Continued)" " (Estimates in Trillion Btu)" ,,,,,"Employment Size" ,,,"-","-","-","-","-","-","RSE" "SIC"," "," "," "," "," "," ",,500,"Row" "Code(a)","Industry Groups and

  14. Pennsylvania Total Electric Power Industry Net Summer Capacity, by Energy Source

    Energy Information Administration (EIA) (indexed site)

    Pennsylvania" "Energy Source",2006,2007,2008,2009,2010 "Fossil",32893,32751,32654,32663,32530 " Coal",18771,18581,18513,18539,18481 " Petroleum",4664,4660,4540,4533,4534 " Natural Gas",9349,9410,9507,9491,9415 " Other Gases",110,100,94,101,100 "Nuclear",9234,9305,9337,9455,9540 "Renewables",1365,1529,1619,1971,1984 "Pumped Storage",1513,1521,1521,1521,1521

  15. Minnesota Total Electric Power Industry Net Summer Capacity, by Energy Source

    Energy Information Administration (EIA) (indexed site)

    Minnesota" "Energy Source",2006,2007,2008,2009,2010 "Fossil",9714,9550,10548,10752,10519 " Coal",5444,5207,5235,4826,4789 " Petroleum",746,764,782,801,795 " Natural Gas",3524,3579,4531,5126,4936 " Other Gases","-","-","-","-","-" "Nuclear",1668,1668,1668,1668,1594 "Renewables",1259,1658,2008,2192,2588 "Pumped

  16. Alabama Total Electric Power Industry Net Summer Capacity, by Energy Source

    Energy Information Administration (EIA) (indexed site)

    Alabama" "Energy Source",2006,2007,2008,2009,2010 "Fossil",21804,21784,22372,22540,23519 " Coal",11557,11544,11506,11486,11441 " Petroleum",43,43,43,43,43 " Natural Gas",10104,10098,10724,10912,11936 " Other Gases",100,100,100,100,100 "Nuclear",5008,4985,4985,4985,5043 "Renewables",3852,3846,3865,3863,3855 "Pumped Storage","-","-","-","-","-"

  17. Alaska Total Electric Power Industry Net Summer Capacity, by Energy Source

    Energy Information Administration (EIA) (indexed site)

    Alaska" "Energy Source",2006,2007,2008,2009,2010 "Fossil",1485,1561,1593,1591,1618 " Coal",105,105,112,111,111 " Petroleum",575,622,643,644,663 " Natural Gas",805,834,838,836,845 " Other Gases","-","-","-","-","-" "Nuclear","-","-","-","-","-" "Renewables",400,400,403,422,422 "Pumped

  18. Arizona Total Electric Power Industry Net Summer Capacity, by Energy Source

    Energy Information Administration (EIA) (indexed site)

    Arizona" "Energy Source",2006,2007,2008,2009,2010 "Fossil",18784,18756,18942,19351,19338 " Coal",5830,5818,5818,6227,6233 " Petroleum",90,93,93,93,93 " Natural Gas",12864,12845,13031,13031,13012 " Other Gases","-","-","-","-","-" "Nuclear",3872,3872,3942,3942,3937 "Renewables",2736,2736,2762,2826,2901 "Pumped Storage",216,216,216,216,216

  19. Arkansas Total Electric Power Industry Net Summer Capacity, by Energy Source

    Energy Information Administration (EIA) (indexed site)

    Arkansas" "Energy Source",2006,2007,2008,2009,2010 "Fossil",10965,11807,11756,11753,12451 " Coal",3846,3846,3861,3864,4535 " Petroleum",23,22,22,22,22 " Natural Gas",7096,7939,7873,7867,7894 " Other Gases","-","-","-","-","-" "Nuclear",1824,1838,1839,1835,1835 "Renewables",1691,1623,1643,1659,1667 "Pumped Storage",28,28,28,28,28

  20. California Total Electric Power Industry Net Summer Capacity, by Energy Source

    Energy Information Administration (EIA) (indexed site)

    California" "Energy Source",2006,2007,2008,2009,2010 "Fossil",39351,39961,39950,41443,42654 " Coal",389,389,367,367,374 " Petroleum",789,754,752,734,701 " Natural Gas",38001,38556,38635,40146,41370 " Other Gases",171,262,197,197,209 "Nuclear",4390,4390,4390,4390,4390 "Renewables",15776,15774,15945,16295,16460 "Pumped Storage",3688,3688,3813,3813,3813 "Other",8,"-",7,7,11

  1. An estimation of the total atmospheric pollution in the city of Thessaloniki using solar energy data

    SciTech Connect

    Sahsamanoglou, H.S.; Makrogiannis, T.I.; Meletis, H. )

    1991-01-01

    The atmospheric mass over the city of Thessaloniki is characterized by a generally increased pollution due to solid particles in the lower atmosphere. This conclusion has been reached after a comparison between values of total solar radiation, taken in the city center during clear sky days, and values predicted by the model of D.F. Heermann et al. for corresponding days. Pollution varies between a minimum value which is constant over the year and independent of weather situations (pollution background), and a maximum value. The minimum pollution causes an attenuation of solar radiation about 15%, compared to the values given by the above model. The atmospheric pollution in the city, during a usual day with clear sky, causes an attenuation varying between 10% in the summer and 20% in the winter, when compared to the constant background of the pollution. During the most unfavorable days with clear sky, the percentages are 30% in the summer and 40% in the winter.

  2. U.S. LNG Imports and Exports (2004-2012) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    U.S. LNG Imports and Exports (2004-2012) U.S. LNG Imports and Exports (2004-2012) U.S. LNG Imports and Exports (2004-2012) U.S. LNG Imports and Exports (2004-2012) (586.35 KB) More Documents & Publications Detailed Monthly and Annual LNG Import Statistics (2004-2012) Natural Gas Imports and Exports - Fourth Quarter Report 2012 Natural Gas Imports and Exports Fourth Quarter Report 2013

  3. ,"Total Natural Gas Consumption

    Energy Information Administration (EIA) (indexed site)

    Gas Consumption (billion cubic feet)",,,,,"Natural Gas Energy Intensity (cubic feetsquare foot)" ,"Total ","Space Heating","Water Heating","Cook- ing","Other","Total ","Space...

  4. LNG Imports by Truck into the U.S. Form | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Imports by Truck into the U.S. Form LNG Imports by Truck into the U.S. Form LNG Imports by Truck Form (Excel) (41 KB) LNG Imports by Truck Form (pdf) (14.14 KB) More Documents & Publications LNG Imports by Vessel into the U.S. Form LNG Exports by Truck out of

  5. CNG Imports by Truck into the U.S. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Truck into the U.S. CNG Imports by Truck into the U.S. CNG Imports by Truck Form (Excel) (41 KB) CNG Imports by Truck Form (pdf) (14.11 KB) More Documents & Publications Other Exports by Rail out of the U.S. Other Imports by Truck into the U.S. CNG Imports by Rail

  6. CNG Imports by Vessel into the U.S. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Vessel into the U.S. CNG Imports by Vessel into the U.S. CNG Imports by Vessel Form (Excel) (41 KB) CNG Imports by Vessel Form (pdf) (14.24 KB) More Documents & Publications Other Imports by Vessel into the U.S. Other Imports by Truck

  7. CNG Imports by Waterborne Transport into the U.S. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Waterborne Transport into the U.S. CNG Imports by Waterborne Transport into the U.S. CNG Imports by Waterborne Transport Form (Excel) (41 KB) CNG Imports by Waterborne Transport Form (pdf) (11.26 KB) More Documents & Publications LNG Imports by Waterborne Transport into the U.S. Other Imports by Waterborne Transport

  8. Other Imports by Vessel into the U.S. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Vessel into the U.S. Other Imports by Vessel into the U.S. Other Imports by Vessel Form (Excel) (41 KB) Other Imports by Vessel Form (pdf) (14.23 KB) More Documents & Publications CNG Imports by Vessel into the U.S. Other Imports by Truck

  9. Other Imports by Waterborne Transport into the U.S. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Waterborne Transport into the U.S. Other Imports by Waterborne Transport into the U.S. Other Imports by Waterborne Transport Form (Excel) (41 KB) Other Imports by Waterborne Transport Form (pdf) (11.25 KB) More Documents & Publications CNG Imports by Waterborne Transport into the U.S. LNG Imports by Waterborne Transport

  10. LNG Imports by Rail into the U.S. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Rail into the U.S. LNG Imports by Rail into the U.S. LNG Imports by Rail Form (Excel) (54.5 KB) LNG Imports by Rail Form (pdf) (11.21 KB) More Documents & Publications LNG Imports by Truck into the U.S. Form LNG Imports by Vessel into the U.S. Form LNG Exports by Truck

  11. The Importance of Natural Gas in the Industrial Sector With a Focus on Energy-Intensive Industries

    Energy Information Administration (EIA) (indexed site)

    Importance of Natural Gas in the Industrial Sector With a Focus on Energy-Intensive Industries Elizabeth Sendich February 28, 2014 Independent Statistics & Analysis www.eia.gov U.S. Energy Information Administration Washington, DC 20585 This paper is released to encourage discussion and critical comment. The analysis and conclusions expressed here are those of the authors and not necessarily those of the U.S. Energy Information Administration. WORKING PAPER SERIES February 2014 Elizabeth

  12. CNG Imports by Rail into the U.S. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Rail into the U.S. CNG Imports by Rail into the U.S. CNG Imports by Rail Form (Excel) (40.5 KB) CNG Imports by Rail Form (pdf) (11.18 KB) More Documents & Publications LNG Exports by Rail out of the U.S. Other Imports by Rail into the U.S. Other Exports by Rail out of

  13. Other Imports by Rail into the U.S. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Rail into the U.S. Other Imports by Rail into the U.S. Other Imports by Rail Form (Excel) (40.5 KB) Other Imports By Rail Form (pdf) (11.18 KB) More Documents & Publications LNG Exports by Rail out of the U.S. CNG Imports by Rail into the U.S. Other Exports by Rail out of

  14. ,"Total Fuel Oil Consumption

    Energy Information Administration (EIA) (indexed site)

    0. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for Non-Mall Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  15. Total Space Heat-

    Gasoline and Diesel Fuel Update

    Commercial Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration...

  16. ,"Total Fuel Oil Consumption

    Energy Information Administration (EIA) (indexed site)

    A. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  17. LNG Imports by Vessel into the U.S. Form | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Vessel into the U.S. Form LNG Imports by Vessel into the U.S. Form LNG Imports by Vessel Form (Excel) (41 KB) LNG Imports by Vessel Form (pdf) (14.23 KB) More Documents & Publications LNG Imports by Truck into the U.S. Form LNG Exports by Vessel in ISO Containers out of the U.S. Form LNG Imports by Rail into

  18. LNG Imports by Waterborne Transport into the U.S. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Waterborne Transport into the U.S. LNG Imports by Waterborne Transport into the U.S. LNG Imports by Waterborne Transport Form (Excel) (41 KB) LNG Imports by Waterborne Transport Form (pdf) (11.26 KB) More Documents & Publications CNG Imports by Waterborne Transport into the U.S. Other Imports by Waterborne Transport into the U.S. LNG Exports by Rail out of

  19. Natural Gas Imports by Pipeline into the U.S. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    by Pipeline into the U.S. Natural Gas Imports by Pipeline into the U.S. Natural Gas Import by Pipeline Form (Excel) (42 KB) Natural Gas Imports by Pipeline Form (pdf) (14.54 KB) More Documents & Publications Other Imports by Truck into the U.S. Natural Gas Exports by Pipeline out of the U.S. CNG Imports by Truck into the U.S.

  20. Effect of total lymphoid irradiation on functional status in chronic multiple sclerosis: importance of lymphopenia early after treatment--the pros

    SciTech Connect

    Devereux, C.; Troiano, R.; Zito, G.; Devereux, R.B.; Kopecky, K.J.; Friedman, R.; Dowling, P.C.; Hafstein, M.P.; Rohowsky-Kochan, C.; Cook, S.D.

    1988-07-01

    To determine whether immunosuppression by total lymphoid irradiation (TLI) slowed deterioration of chronic progressive multiple sclerosis (MS), functional impairment score and blood lymphocyte counts were compared at 6-month intervals through 4 years following treatment of MS patients by either TLI (n = 27) or sham irradiation (n = 21). At each interval, 20 to 30% fewer TLI-treated patients had deteriorated (p less than 0.05 at 6, 12, and 18 months), and the difference in mean functional impairment score between groups became progressively greater (p less than 0.01 at 42 and 48 months). Benefit accrued principally to the 17 TLI-treated patients with absolute blood lymphocyte counts less than 900/mm3 3 months after treatment, whose mean functional impairment score remained within 0.6 units of baseline (p = NS), whereas the ten TLI patients with higher post-treatment lymphocyte counts had progressive deterioration (p less than 0.05 to p less than 0.001 versus TLI-treated patients with lower lymphocyte counts at all intervals except 30 months) and had deteriorated by more than 5 functional scale units by 42 and 48 months. Side effects were minor and complications rare in TLI-treated patients, but one TLI-treated patient developed staphylococcal sepsis. Thus, TLI slows deterioration of chronic progressive MS, with what appears to be enduring benefit through 4 years compartmented to patients with greater induced lymphopenia. Modification of lymphoid irradiation regimens to increase the proportion of MS patients who achieve a favorable degree of lymphopenia and to avert functional hyposplenism may further improve the benefit/risk ratio.

  1. Building America Top Innovations 2014 Profile: California Energy Standards Recognize the Importance of Filter Selection

    Energy Saver

    DOE goals call for zero energy ready homes that are 50% more efficient than the 2009 IECC and whole-house retrofits that reduce energy use 25% in existing homes by 2025. By specifying minimum ventilation rates, ASHRAE 62.2 is a critical enabling innovation that will contribute to DOE's long-term goal of saving the nation $2.2 trillion in energy-related costs through a 50% reduction in building energy consumption. BUILDING AMERICA TOP INNOVATIONS 2014 PROFILE Building America research and support

  2. Natural Gas Production and U.S. Oil Imports | Department of Energy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Natural Gas Production and U.S. Oil Imports Natural Gas Production and U.S. Oil Imports January 26, 2012 - 11:14am Addthis Matthew Loveless Matthew Loveless Data Integration ...

  3. Colossal Magnetoresistive Manganite Based Fast Bolometric X-ray Sensors for Total Energy Measurements of Free Electron Lasers

    SciTech Connect

    Yong, G J; Kolagani, R M; Adhikari, S; Mundle, R M; Cox, D W; Davidson III, A L; Liang, Y; Drury, O B; Hau-Riege, S P; Gardner, C; Ables, E; Bionta, R M; Friedrich, S

    2008-12-17

    Bolometric detectors based on epitaxial thin films of rare earth perovskite manganites have been proposed as total energy monitors for X-ray pulses at the Linac Coherent Light Source free electron laser. We demonstrate such a detector scheme based on epitaxial thin films of the perovskite manganese oxide material Nd{sub 0.67}Sr{sub x0.33}MnO{sub 3}, grown by pulsed laser deposition on buffered silicon substrates. The substrate and sensor materials are chosen to meet the conflicting requirements of radiation hardness, sensitivity, speed and linearity over a dynamic range of three orders of magnitude. The key challenge in the material development is the integration of the sensor material with Si. Si is required to withstand the free electron laser pulse impact and to achieve a readout speed three orders of magnitude faster than conventional cryoradiometers for compatibility with the Linac Coherent Light Source pulse rate. We discuss sensor material development and the photoresponse of prototype devices. This Linac Coherent Light Source total energy monitor represents the first practical application of manganite materials as bolometric sensors.

  4. The impacts on U.S. energy markets and the economy of reducing oil imports. Service report

    SciTech Connect

    1996-09-01

    The General Accounting Office (GAO) has responded to a request from Representative John Kasich by requesting that the Energy Information Administration (EIA) use the National Energy Modeling System (NEMS) to estimate the cost to the U.S. economy of reducing oil imports. The analysis summarized by this paper focuses on two approaches toward a target reduction in oil imports: (1) a set of cases with alternative world crude oil price trajectories, and (2) two cases which investigates the use of an oil import fee.

  5. U.S. Natural Gas Imports & Exports 2015 - Energy Information Administration

    Energy Information Administration (EIA) (indexed site)

    U.S. Natural Gas Imports & Exports 2015 With data for 2015 | Release date: May 31, 2016 | Next Release Date: May 2017 Print Previous Reports Years: 2014 2013 2012 2011 2010 2009 2008 prior issues Go Summary Natural gas net imports fell to 935 Bcf in 2015. This decline in net imports continues a trend that began in 2007, when net imports of natural gas exceeded 3,785 Bcf. Net imports of natural gas declined because of increases in domestic natural gas production over that period. Preliminary

  6. DOE and State Organizations Update Important Agreement on Coordinating a Unified Response to Energy Emergencies

    Energy.gov [DOE]

    Secretary Moniz last week signed an updated Energy Emergency Assurance Coordinators (EEAC) Agreement with the National Association of State Energy Officials, National Association of Regulatory Utility Commissioners, National Governors Association, and the National Emergency Management Association. Updating the EEAC Agreement is a critical step in helping the Federal Government and States work together to provide a unified response to energy emergencies. The updated EEAC Agreement lays out concrete items to improve our collective ability to share information, which is essential for making sound response and restoration decisions during emergencies.

  7. Rule Issued to Prohibit Importation of Products that Fail To Comply with Federal Energy Conservation Standards

    Energy.gov [DOE]

    After collaborating with the Department of Energy and considering comments from stakeholders, the U.S. Customs and Border Protection (“CBP”) and the U.S. Department of the Treasury issued a final...

  8. Fission Fragment Mass Distributions and Total Kinetic Energy Release of 235-Uranium and 238-Uranium in Neutron-Induced Fission at Intermediate and Fast Neutron Energies

    SciTech Connect

    Duke, Dana Lynn

    2015-11-12

    This Ph.D. dissertation describes a measurement of the change in mass distributions and average total kinetic energy (TKE) release with increasing incident neutron energy for fission of 235U and 238U. Although fission was discovered over seventy-five years ago, open questions remain about the physics of the fission process. The energy of the incident neutron, En, changes the division of energy release in the resulting fission fragments, however, the details of energy partitioning remain ambiguous because the nucleus is a many-body quantum system. Creating a full theoretical model is difficult and experimental data to validate existing models are lacking. Additional fission measurements will lead to higher-quality models of the fission process, therefore improving applications such as the development of next-generation nuclear reactors and defense. This work also paves the way for precision experiments such as the Time Projection Chamber (TPC) for fission cross section measurements and the Spectrometer for Ion Determination in Fission (SPIDER) for precision mass yields.

  9. Table 8.4a Consumption for Electricity Generation by Energy Source: Total (All Sectors), 1949-2011 (Sum of Tables 8.4b and 8.4c; Billion Btu)

    Energy Information Administration (EIA) (indexed site)

    a Consumption for Electricity Generation by Energy Source: Total (All Sectors), 1949-2011 (Sum of Tables 8.4b and 8.4c; Billion Btu) Year Fossil Fuels Nuclear Electric Power 5 Renewable Energy Other 9 Electricity Net Imports 10 Total Coal 1 Petroleum 2 Natural Gas 3 Other Gases 4 Total Conventional Hydroelectric Power 5 Biomass Geo- thermal 5 Solar/PV 5,8 Wind 5 Total Wood 6 Waste 7 1949 1,995,055 414,632 569,375 NA 2,979,062 0 1,424,722 5,803 NA NA NA NA 1,430,525 NA 5,420 4,415,007 1950

  10. Environmental assessment of air quality, noise and cooling tower drift from the Jersey City Total Energy Demonstration

    SciTech Connect

    Davis, W.T.; Kolb, J.O.

    1980-06-01

    This assessment covers three specific effects from the operation of the Total Energy (TE) demonstration: (1) air quality from combustion emissions of 600 kW diesel engines and auxiliary boilers fueled with No. 2 distillate oil, (2) noise levels from TE equipment operation, (3) cooling tower drift from two, 2220 gpm, forced-draft cooling towers. For the air quality study, measurements were performed to determine both the combustion emission rates and ground-level air quality at the Demonstration site. Stack analysis of NO/sub x/, SO/sub 2/, CO, particulates, and total hydrocarbons characterized emission rates over a range of operating conditions. Ground-level air quality was monitored during two six-week periods during the summer and winter of 1977. The noise study was performed by measuring sound levels in db(A) in the area within approximately 60 m of the CEB. The noise survey investigated the effects on noise distribution of different wind conditions, time of day or night, and condition of doors - open or closed - near the diesel engines in the CEB. In the cooling tower study, drift emission characteristics were measured to quantify the drift emission before and after cleaning of the tower internals to reduce fallout of large drift droplets in the vicinity of the CEB.

  11. Join the discussion on important DOE research | OSTI, US Dept of Energy

    Office of Scientific and Technical Information (OSTI)

    Office of Scientific and Technical Information Join the discussion on important DOE research Back to the OSTI News Listing for 2008 Join the discussion! A new social networking feature, Document Discussion, has been added to the DOE Information Bridge to provide a forum for moderated, substantive commentary on important DOE research and development. Users may perform a search at the Information Bridge site and then begin a discussion or add to a discussion about any of the documents in the

  12. Total energy cycle assessment of electric and conventional vehicles: an energy and environmental analysis. Volume 2: appendices A-D to technical report

    SciTech Connect

    1998-01-01

    This report compares the energy use, oil use and emissions of electric vehicles (EVs) with those of conventional, gasoline- powered vehicles (CVs) over the total life cycle of the vehicles. The various stages included in the vehicles` life cycles include vehicle manufacture, fuel production, and vehicle operation. Disposal is not included. An inventory of the air emissions associated with each stage of the life cycle is estimated. Water pollutants and solid wastes are reported for individual processes, but no comprehensive inventory is developed. Volume II contains additional details on the vehicle, utility, and materials analyses and discusses several details of the methodology.

  13. Total energy cycle assessment of electric and conventional vehicles: an energy and environmental analysis. Volume 4: peer review comments on technical report

    SciTech Connect

    1998-01-01

    This report compares the energy use, oil use and emissions of electric vehicles (EVs) with those of conventional, gasoline-powered vehicles (CVs) over the total life cycle of the vehicles. The various stages included in the vehicles` life cycles include vehicle manufacture, fuel production, and vehicle operation. Disposal is not included. An inventory of the air emissions associated with each stage of the life cycle is estimated. Water pollutants and solid wastes are reported for individual processes, but no comprehensive inventory is developed. Volume IV includes copies of all the external peer review comments on the report distributed for review in July 1997.

  14. Building America Top Innovations 2014 Profile: California Energy Standards Recognize the Importance of Filter Selection

    SciTech Connect

    none,

    2014-11-01

    This 2014 Top Innovation profile describes Building America research on HVAC air filter sizing that prompted a change in the California “Title 24” Energy Code requiring filter manufacturers, HVAC designers, and HERS raters to make changes that will encourage the use of higher MERV filters without degrading HVAC performance.

  15. Study: Algae Could Replace 17% of U.S. Oil Imports | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Study: Algae Could Replace 17% of U.S. Oil Imports Study: Algae Could Replace 17% of U.S. Oil Imports April 13, 2011 - 6:30pm Addthis Algae samples back at the NREL lab, ready to be analyzed and run through the Fluorescent-Activated Cell Sorter, or FACS, which separates the cells. | Credit: NREL Staff Photographer Dennis Schroeder. Algae samples back at the NREL lab, ready to be analyzed and run through the Fluorescent-Activated Cell Sorter, or FACS, which separates the cells. | Credit: NREL

  16. Issues in the appraisal of energy projects for oil-importing developing countries. World Bank staff working paper

    SciTech Connect

    Anand, S.; Nalebuff, B.

    1985-01-01

    The paper develops a theoretical framework to evaluate the benefits and costs of energy projects in oil-importing developing countries (OIDCs). The framework is used to address various questions: How should the problems of energy dependency and vulnerability be reflected in a project appraisal. Are there externalities not captured in the market price of the resource. Should royalty values be included in cost-benefit calculations. Why do the real prices of exhaustible resources rise over time. Should several energy development projects be done simultaneously. What are the true costs of stockpiling oil. Is there a need for an international institution to act as coordinator directing a strategy for information gathering and project diversification across countries.

  17. Combined iterative reconstruction and image-domain decomposition for dual energy CT using total-variation regularization

    SciTech Connect

    Dong, Xue; Niu, Tianye; Zhu, Lei

    2014-05-15

    Purpose: Dual-energy CT (DECT) is being increasingly used for its capability of material decomposition and energy-selective imaging. A generic problem of DECT, however, is that the decomposition process is unstable in the sense that the relative magnitude of decomposed signals is reduced due to signal cancellation while the image noise is accumulating from the two CT images of independent scans. Direct image decomposition, therefore, leads to severe degradation of signal-to-noise ratio on the resultant images. Existing noise suppression techniques are typically implemented in DECT with the procedures of reconstruction and decomposition performed independently, which do not explore the statistical properties of decomposed images during the reconstruction for noise reduction. In this work, the authors propose an iterative approach that combines the reconstruction and the signal decomposition procedures to minimize the DECT image noise without noticeable loss of resolution. Methods: The proposed algorithm is formulated as an optimization problem, which balances the data fidelity and total variation of decomposed images in one framework, and the decomposition step is carried out iteratively together with reconstruction. The noise in the CT images from the proposed algorithm becomes well correlated even though the noise of the raw projections is independent on the two CT scans. Due to this feature, the proposed algorithm avoids noise accumulation during the decomposition process. The authors evaluate the method performance on noise suppression and spatial resolution using phantom studies and compare the algorithm with conventional denoising approaches as well as combined iterative reconstruction methods with different forms of regularization. Results: On the Catphan600 phantom, the proposed method outperforms the existing denoising methods on preserving spatial resolution at the same level of noise suppression, i.e., a reduction of noise standard deviation by one order

  18. Benchmark atomization energy of ethane : importance of accurate zero-point vibrational energies and diagonal Born-Oppenheimer corrections for a 'simple' organic molecule.

    SciTech Connect

    Karton, A.; Martin, J. M. L.; Ruscic, B.; Chemistry; Weizmann Institute of Science

    2007-06-01

    A benchmark calculation of the atomization energy of the 'simple' organic molecule C2H6 (ethane) has been carried out by means of W4 theory. While the molecule is straightforward in terms of one-particle and n-particle basis set convergence, its large zero-point vibrational energy (and anharmonic correction thereto) and nontrivial diagonal Born-Oppenheimer correction (DBOC) represent interesting challenges. For the W4 set of molecules and C2H6, we show that DBOCs to the total atomization energy are systematically overestimated at the SCF level, and that the correlation correction converges very rapidly with the basis set. Thus, even at the CISD/cc-pVDZ level, useful correlation corrections to the DBOC are obtained. When applying such a correction, overall agreement with experiment was only marginally improved, but a more significant improvement is seen when hydrogen-containing systems are considered in isolation. We conclude that for closed-shell organic molecules, the greatest obstacles to highly accurate computational thermochemistry may not lie in the solution of the clamped-nuclei Schroedinger equation, but rather in the zero-point vibrational energy and the diagonal Born-Oppenheimer correction.

  19. Annual Energy Outlook Report | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    gas from plentiful shale gas resources-and temper the growth of energy imports. The net import share of total U.S. energy consumption in 2035 is 17 percent, compared with 24...

  20. Total Space Heat-

    Gasoline and Diesel Fuel Update

    Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other...

  1. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    Energy Information Administration (EIA) (indexed site)

    West Virginia" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",5,2,"NA",2,"NA","NA","NA"," " "Number of retail

  2. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    Energy Information Administration (EIA) (indexed site)

    Alaska" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",17,34,"NA",19,"NA","NA","NA"," " "Number of retail

  3. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    Energy Information Administration (EIA) (indexed site)

    District of Columbia" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",3,"NA","NA","NA","NA",26,1," " "Number of retail

  4. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    Energy Information Administration (EIA) (indexed site)

    Hawaii" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",14,"NA","NA",1,2,"NA","NA"," " "Number of retail

  5. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    Energy Information Administration (EIA) (indexed site)

    Indiana" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",7,72,"NA",39,"NA","NA","NA"," " "Number of retail

  6. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    Energy Information Administration (EIA) (indexed site)

    Iowa" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",3,137,"NA",42,"NA","NA","NA"," " "Number of retail

  7. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    Energy Information Administration (EIA) (indexed site)

    Louisiana" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",7,22,"NA",12,"NA","NA","NA"," " "Number of retail

  8. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    Energy Information Administration (EIA) (indexed site)

    Missouri" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",5,86,"NA",42,"NA","NA","NA"," " "Number of retail

  9. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    Energy Information Administration (EIA) (indexed site)

    Nebraska" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities","NA",148,1,10,"NA","NA","NA"," " "Number of retail

  10. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    Energy Information Administration (EIA) (indexed site)

    Carolina" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",4,22,"NA",21,"NA","NA","NA"," " "Number of retail

  11. Neutron Total Cross Sections of {sup 235}U From Transmission Measurements in the Energy Range 2 keV to 300 keV and Statistical Model Analysis of the Data

    SciTech Connect

    Derrien, H.; Harvey, J.A.; Larson, N.M.; Leal, L.C.; Wright, R.Q.

    2000-05-01

    The average {sup 235}U neutron total cross sections were obtained in the energy range 2 keV to 330 keV from high-resolution transmission measurements of a 0.033 atom/b sample.1 The experimental data were corrected for the contribution of isotope impurities and for resonance self-shielding effects in the sample. The results are in very good agreement with the experimental data of Poenitz et al.4 in the energy range 40 keV to 330 keV and are the only available accurate experimental data in the energy range 2 keV to 40 keV. ENDF/B-VI evaluated data are 1.7% larger. The SAMMY/FITACS code 2 was used for a statistical model analysis of the total cross section, selected fission cross sections and data in the energy range 2 keV to 200 keV. SAMMY/FITACS is an extended version of SAMMY which allows consistent analysis of the experimental data in the resolved and unresolved resonance region. The Reich-Moore resonance parameters were obtained 3 from a SAMMY Bayesian fits of high resolution experimental neutron transmission and partial cross section data below 2.25 keV, and the corresponding average parameters and covariance data were used in the present work as input for the statistical model analysis of the high energy range of the experimental data. The result of the analysis shows that the average resonance parameters obtained from the analysis of the unresolved resonance region are consistent with those obtained in the resolved energy region. Another important result is that ENDF/B-VI capture cross section could be too small by more than 10% in the energy range 10 keV to 200 keV.

  12. NEUTRON TOTAL CROSS SECTIONS OF 235U FROM TRANSMISSION MEASUREMENTS IN THE ENERGY RANGE 2 keV to 300 keV AND STATISTICAL MODEL ANALYSIS OF THE DATA

    SciTech Connect

    Derrien, H.

    2000-05-22

    The average {sup 235}U neutron total cross sections were obtained in the energy range 2 keV to 330 keV from high-resolution transmission measurements of a 0.033 atom/b sample. The experimental data were corrected for the contribution of isotope impurities and for resonance self-shielding effects in the sample. The results are in very good agreement with the experimental data of Poenitz et al. in the energy range 40 keV to 330 keV and are the only available accurate experimental data in the energy range 2 keV to 40 keV. ENDF/B-VI evaluated data are 1.7% larger. The SAMMY/FITACS code was used for a statistical model analysis of the total cross section, selected fission cross sections and {alpha} data in the energy range 2 keV to 200 keV. SAMMY/FITACS is an extended version of SAMMY which allows consistent analysis of the experimental data in the resolved and unresolved resonance region. The Reich-Moore resonance parameters were obtained from a SAMMY Bayesian fits of high resolution experimental neutron transmission and partial cross section data below 2.25 keV, and the corresponding average parameters and covariance data were used in the present work as input for the statistical model analysis of the high energy range of the experimental data. The result of the analysis shows that the average resonance parameters obtained from the analysis of the unresolved resonance region are consistent with those obtained in the resolved energy region. Another important result is that ENDF/B-VI capture cross section could be too small by more than 10% in the energy range 10 keV to 200 keV.

  13. Stepped-anneal and total helium/hydrogen measurements in high-energy proton-irradiated tungsten

    SciTech Connect

    Oliver, B.M.; Hamilton, M.L.; Garner, F.A.; Sommer, W.F.; Maloy, S.A.; Ferguson, P.D.

    1998-12-31

    To provide structural material design data for the Accelerator Production of Tritium (APT) project, a 1 mA, 800 MeV proton beam at the Los Alamos Neutron Science Center (LANSCE) was used to irradiate a large number of metal samples, including a tungsten target similar to that being considered as the neutron source for the tritium production. The maximum proton fluence to the tungsten target was {approximately} 10{sup 21} protons/cm{sup 2}. An unavoidable byproduct of spallation reactions is the formation of large amounts of hydrogen and helium. Postulated accident scenarios for APT involving the use of tungsten rods clad with Alloy 718, raise concerns as to the amount and rate of release of these gases due to temperatures increases from afterheat accumulation, with the major concern being pressurizing and possibly failure of the cladding. To address these issues, portions of the LANSCE tungsten rods were subjected to temperature histories calculated as likely to occur, and the time-dependent evolution of helium and hydrogen gases was measured. Stepped-anneal and total helium/hydrogen measurements were conducted on multiple samples of the tungsten material. Helium measurements were conducted at Pacific Northwest National Laboratory (PNNL) using a high-sensitivity magnetic-sector isotope-dilution helium analysis system. Stepped-anneal measurements were conducted at temperatures from {approximately} 25 C to {approximately} 1,600 C in {approximately} 100 C steps. Total helium measurements were conducted by rapid vaporization after completion of the stepped-anneal process, and are compared with Monte Carlo calculations performed at Los Alamos National Laboratory (LANL) using the LAHET code system. Hydrogen measurements were conducted between {approximately} 750 C and {approximately} 1,200 C using a high-temperature furnace that had been extensively modified for the application. Hydrogen detection was accomplished by periodic sampling of the furnace gas using a separate

  14. Hadronic Total Cross Sections (R) in E+E- Interactions: Data from DOE laboratory experiments as compiled in data reviews by the Durham High Energy Physics Database Group

    DOE Data Explorer

    Whalley, M. R.

    A comprehensive compilation of experimental data on total hadronic cross sections, and R ratios, in e+e- interactions is presented. Published data from the Novosibirsk, Orsay, Frascati, SLAC, CORNELL, DESY, KEK and CERN e+e- colliders on both exclusive and inclusive final particle states are included from threshold energies to the highest LEP energies. The data are presented in tabular form supplemented by compilation plots of different exclusive final particle states and of different energy regions. (Taken from abstract of paper, A Compilation of Data on Hadronic Total Cross Sections in E+E- Interactions, M.R. Whalley, Journal of Physics G (Nuclear and Particle Physics), Volume 29, Number 12A, 2003). The Durham High Energy Physics (HEP) Database Group makes these data, extracted from papers and data reviews, available in one place in an easy-to-access format. The data are also included in the Durham HEP Reaction Data Database, which can be searched at http://hepdata.cedar.ac.uk/reaction

  15. Monthly energy review, May 1995

    SciTech Connect

    1995-05-24

    Energy production during Feb 95 totaled 5.4 quadrillion Btu (Q), 3.1% over Feb 94. Energy consumption totaled 7.4 Q, 0.7% below Feb 94. Net imports of energy totaled 1.3 Q, 5.6% below Feb 94. This publication is divided into energy overview, energy consumption, petroleum, natural gas, oil and gas resource development, coal, electricity, nuclear energy, energy prices, and international energy.

  16. Total Space Heating Water Heating Cook-

    Annual Energy Outlook

    Commercial Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing...

  17. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update

    Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

  18. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    Energy Information Administration (EIA) (indexed site)

    Vermont" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",2,14,"NA",2,1,"NA","NA"," " "Number of retail customers",258928,54912,"NA",49378,1,"NA","NA",363219 "Retail

  19. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    Energy Information Administration (EIA) (indexed site)

    Virginia" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",3,16,"NA",13,"NA",1,1," " "Number of retail customers",2934456,166751,"NA",629034,"NA",20,"NA",3730261 "Retail sales

  20. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    Energy Information Administration (EIA) (indexed site)

    Washington" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",4,41,2,18,1,3,1," " "Number of retail customers",1460672,1669068,10,167371,1,17,"NA",3297139 "Retail sales

  1. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    Energy Information Administration (EIA) (indexed site)

    Wisconsin" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",13,82,"NA",24,2,"NA","NA"," " "Number of retail customers",2439647,282258,"NA",260892,2,"NA","NA",2982799

  2. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    Energy Information Administration (EIA) (indexed site)

    Wyoming" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",5,13,1,18,"NA","NA","NA"," " "Number of retail customers",198292,36318,5,99606,"NA","NA","NA",334221 "Retail

  3. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    Energy Information Administration (EIA) (indexed site)

    United States" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",256,1948,6,810,144,188,67," " "Number of retail customers",93329397,21335809,40029,19096482,656,13411030,"NA",147213403 "Retail sales

  4. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    Energy Information Administration (EIA) (indexed site)

    Arizona" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",23,29,3,9,11,"NA","NA"," " "Number of retail customers",1675038,1078638,16690,187629,12,"NA","NA",2958007 "Retail sales

  5. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    Energy Information Administration (EIA) (indexed site)

    California" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",29,41,2,4,65,17,3," " "Number of retail customers",11676056,3110257,2197,16506,69,185755,"NA",14990840 "Retail sales

  6. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    Energy Information Administration (EIA) (indexed site)

    Colorado" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",10,29,1,28,7,"NA","NA"," " "Number of retail customers",1500660,428854,13,632335,7,"NA","NA",2561869 "Retail sales

  7. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    Energy Information Administration (EIA) (indexed site)

    Connecticut" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",7,8,"NA","NA",3,35,2," " "Number of retail customers",948486,71741,"NA","NA",3,597272,"NA",1617502 "Retail sales

  8. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    Energy Information Administration (EIA) (indexed site)

    Delaware" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",2,9,"NA",1,1,27,1," " "Number of retail customers",267434,66283,"NA",88026,1,38537,"NA",460281 "Retail sales

  9. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    Energy Information Administration (EIA) (indexed site)

    Georgia" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",2,53,"NA",42,1,"NA","NA"," " "Number of retail customers",2410042,333203,"NA",1966788,31,"NA","NA",4710064

  10. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    Energy Information Administration (EIA) (indexed site)

    Idaho" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",3,11,2,17,"NA","NA","NA"," " "Number of retail customers",693393,43895,1,84578,"NA","NA","NA",821867 "Retail

  11. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    Energy Information Administration (EIA) (indexed site)

    Illinois" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",4,41,"NA",26,2,53,3," " "Number of retail customers",1911129,270483,"NA",301219,318,3268220,"NA",5751369 "Retail sales

  12. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    Energy Information Administration (EIA) (indexed site)

    Kansas" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",4,118,1,29,"NA","NA","NA"," " "Number of retail customers",953679,235288,4,292717,"NA","NA","NA",1481688 "Retail

  13. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    Energy Information Administration (EIA) (indexed site)

    Kentucky" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",5,30,1,24,2,"NA","NA"," " "Number of retail customers",1220619,210206,17,813201,4,"NA","NA",2244047 "Retail sales

  14. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    Energy Information Administration (EIA) (indexed site)

    Maine" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",2,4,"NA",2,1,32,6," " "Number of retail customers",39,10603,"NA",2535,1,788335,"NA",801513 "Retail sales

  15. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    Energy Information Administration (EIA) (indexed site)

    Maryland" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",10,5,"NA",3,8,52,5," " "Number of retail customers",1638979,28808,"NA",208447,8,610640,"NA",2486882 "Retail sales

  16. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    Energy Information Administration (EIA) (indexed site)

    Massachusetts" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",13,40,"NA","NA",27,40,5," " "Number of retail customers",2182382,399857,"NA","NA",40,544399,"NA",3126678 "Retail

  17. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    Energy Information Administration (EIA) (indexed site)

    Michigan" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",8,41,"NA",10,2,12,3," " "Number of retail customers",4177118,306315,"NA",318985,2,6419,"NA",4808839 "Retail sales

  18. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    Energy Information Administration (EIA) (indexed site)

    Mississippi" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",2,23,1,25,"NA","NA","NA"," " "Number of retail customers",628656,134500,7,741758,"NA","NA","NA",1504921

  19. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    Energy Information Administration (EIA) (indexed site)

    Montana" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",5,1,3,29,"NA",2,1," " "Number of retail customers",377770,983,20971,197627,"NA",419,"NA",597770 "Retail sales

  20. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    Energy Information Administration (EIA) (indexed site)

    Hampshire" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",3,5,"NA",1,"NA",20,4," " "Number of retail customers",496060,12226,"NA",78794,"NA",128985,"NA",716065 "Retail sales

  1. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    Energy Information Administration (EIA) (indexed site)

    Jersey" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",17,9,"NA",1,35,58,4," " "Number of retail customers",3270179,55120,"NA",11581,39,649669,"NA",3986588 "Retail sales

  2. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    Energy Information Administration (EIA) (indexed site)

    York" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",19,48,"NA",4,5,69,9," " "Number of retail customers",5052054,1270394,"NA",18139,15,1751992,"NA",8092594 "Retail sales

  3. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    Energy Information Administration (EIA) (indexed site)

    Dakota" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",3,12,1,21,"NA","NA","NA"," " "Number of retail customers",238608,11023,21,186997,"NA","NA","NA",436649 "Retail

  4. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    Energy Information Administration (EIA) (indexed site)

    Ohio" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",10,85,"NA",25,6,52,6," " "Number of retail customers",2143362,375117,"NA",383167,12,2618989,"NA",5520647 "Retail sales

  5. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    Energy Information Administration (EIA) (indexed site)

    Oklahoma" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",3,62,1,31,"NA","NA","NA"," " "Number of retail customers",1291253,204450,1,508162,"NA","NA","NA",2003866

  6. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    Energy Information Administration (EIA) (indexed site)

    Oregon" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",8,18,1,19,"NA",4,3," " "Number of retail customers",1421279,294747,1,203211,"NA",484,"NA",1919722 "Retail sales

  7. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    Energy Information Administration (EIA) (indexed site)

    Pennsylvania" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",15,35,"NA",13,5,73,10," " "Number of retail customers",3554206,83922,"NA",219570,5,2146096,"NA",6003799 "Retail sales

  8. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    Energy Information Administration (EIA) (indexed site)

    Rhode Island" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",2,1,"NA","NA","NA",17,1," " "Number of retail customers",462381,4658,"NA","NA","NA",32071,"NA",499110

  9. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    Energy Information Administration (EIA) (indexed site)

    Dakota" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",6,36,1,31,"NA","NA","NA"," " "Number of retail customers",243148,60553,22,154530,"NA","NA","NA",458253 "Retail

  10. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    Energy Information Administration (EIA) (indexed site)

    Tennessee" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",3,61,1,26,1,"NA","NA"," " "Number of retail customers",47264,2213496,23,969214,1,"NA","NA",3229998 "Retail sales

  11. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    Energy Information Administration (EIA) (indexed site)

    Texas" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",89,72,"NA",68,13,"NA","NA"," " "Number of retail customers",7744205,1849743,"NA",2076859,50,"NA","NA",11670857

  12. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    Energy Information Administration (EIA) (indexed site)

    Utah" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",1,40,1,9,1,"NA","NA"," " "Number of retail customers",835233,244217,7,48538,1,"NA","NA",1127996 "Retail sales

  13. Measurement of the 240Pu/239Pu mass ratio using a transition-edge-sensor microcalorimeter for total decay energy spectroscopy

    DOE PAGES [OSTI]

    Hoover, Andrew S.; Bond, Evelyn M.; Croce, Mark P.; Holesinger, Terry G.; Kunde, Gerd J.; Rabin, Michael W.; Wolfsberg, Laura E.; Bennett, Douglas A.; Hays-Wehle, James P.; Schmidt, Dan R.; et al

    2015-02-27

    In this study, we have developed a new category of sensor for measurement of the 240Pu/239Pu mass ratio from aqueous solution samples with advantages over existing methods. Aqueous solution plutonium samples were evaporated and encapsulated inside of a gold foil absorber, and a superconducting transition-edge-sensor microcalorimeter detector was used to measure the total reaction energy (Q-value) of nuclear decays via heat generated when the energy is thermalized. Since all of the decay energy is contained in the absorber, we measure a single spectral peak for each isotope, resulting in a simple spectral analysis problem with minimal peak overlap. We foundmore » that mechanical kneading of the absorber dramatically improves spectral quality by reducing the size of radioactive inclusions within the absorber to scales below 50 nm such that decay products primarily interact with atoms of the host material. Due to the low noise performance of the microcalorimeter detector, energy resolution values of 1 keV fwhm (full width at half-maximum) at 5.5 MeV have been achieved, an order of magnitude improvement over α-spectroscopy with conventional silicon detectors. We measured the 240Pu/239Pu mass ratio of two samples and confirmed the results by comparison to mass spectrometry values. These results have implications for future measurements of trace samples of nuclear material.« less

  14. Measurement of the 240Pu/239Pu mass ratio using a transition-edge-sensor microcalorimeter for total decay energy spectroscopy

    SciTech Connect

    Hoover, Andrew S.; Bond, Evelyn M.; Croce, Mark P.; Holesinger, Terry G.; Kunde, Gerd J.; Rabin, Michael W.; Wolfsberg, Laura E.; Bennett, Douglas A.; Hays-Wehle, James P.; Schmidt, Dan R.; Swetz, Daniel; Ullom, Joel N.

    2015-02-27

    In this study, we have developed a new category of sensor for measurement of the 240Pu/239Pu mass ratio from aqueous solution samples with advantages over existing methods. Aqueous solution plutonium samples were evaporated and encapsulated inside of a gold foil absorber, and a superconducting transition-edge-sensor microcalorimeter detector was used to measure the total reaction energy (Q-value) of nuclear decays via heat generated when the energy is thermalized. Since all of the decay energy is contained in the absorber, we measure a single spectral peak for each isotope, resulting in a simple spectral analysis problem with minimal peak overlap. We found that mechanical kneading of the absorber dramatically improves spectral quality by reducing the size of radioactive inclusions within the absorber to scales below 50 nm such that decay products primarily interact with atoms of the host material. Due to the low noise performance of the microcalorimeter detector, energy resolution values of 1 keV fwhm (full width at half-maximum) at 5.5 MeV have been achieved, an order of magnitude improvement over α-spectroscopy with conventional silicon detectors. We measured the 240Pu/239Pu mass ratio of two samples and confirmed the results by comparison to mass spectrometry values. These results have implications for future measurements of trace samples of nuclear material.

  15. Total Energy Outcome City Pilot

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Results should include a working policy that requires; 1) benchmarking of all public and ... Additional Funding: No other funding has been utilized Budget History 090112- FY2013 ...

  16. Comparison of approaches to Total Quality Management. Including an examination of the Department of Energy`s position on quality management

    SciTech Connect

    Bennett, C.T.

    1994-03-01

    This paper presents a comparison of several qualitatively different approaches to Total Quality Management (TQM). The continuum ranges from management approaches that are primarily standards -- with specific guidelines, but few theoretical concepts -- to approaches that are primarily philosophical, with few specific guidelines. The approaches to TQM discussed in this paper include the International Organization for Standardization (ISO) 9000 Standard, the Malcolm Baldrige National Quality Award, Senge`s the Learning Organization, Watkins and Marsick`s approach to organizational learning, Covey`s Seven Habits of Highly Successful People, and Deming`s Fourteen Points for Management. Some of these approaches (Deming and ISO 9000) are then compared to the DOE`s official position on quality management and conduct of operations (DOE Orders 5700.6C and 5480.19). Using a tabular format, it is shown that while 5700.6C (Quality Assurance) maps well to many of the current approaches to TQM, DOE`s principle guide to management Order 5419.80 (Conduct of Operations) has many significant conflicts with some of the modern approaches to continuous quality improvement.

  17. Importance of energy efficiency in the design of the Process and Environmental Technology Laboratory (PETL) at Sandia National Laboratories, New Mexico (NM)

    SciTech Connect

    Wrons, R.

    1998-06-01

    As part of the design of the Process and Environmental Technology Laboratory (PETL) in FY97, an energy conservation report (ECR) was completed. The original energy baseline for the building, established in Title 1 design, was 595,000 BTU/sq. ft./yr, site energy use. Following the input of several reviewers and the incorporation of the various recommendations into the Title 2 design, the projected energy consumption was reduced to 341,000 BTU/sq. ft./yr. Of this reduction, it is estimated that about 150,000 BTU/sq. ft./yr resulted from inclusion of more energy efficient options into the design. The remaining reductions resulted from better accounting of energy consumption between Title 1 ECR and the final ECR. The energy efficient features selected by the outcome of the ECR were: (1) Energy Recovery system, with evaporative cooling assist, for the Exhaust/Make-up Air System; (2) Chilled Water Thermal Storage system; (3) Premium efficiency motors for large, year-round applications; (4) Variable frequency drives for all air handling fan motors; (4) Premium efficiency multiple boiler system; and (5) Lighting control system. The annual energy cost savings due to these measures will be about $165,000. The estimated annual energy savings are two million kWhrs electric, and 168,000 therms natural gas, the total of which is equivalent to 23,000 million BTUs per year. Put into the perspective of a typical office/light lab at SNL/NM, the annual energy savings is equal the consumption of a 125,000 square foot building. The reduced air emissions are approximately 2,500 tons annually.

  18. Stockpile coordination project. Harvard Energy Security Program. Final report. [Response of other oil importers to USA SPR policy

    SciTech Connect

    Devarajan, S.; Hubbard, R.G.; Weiner, R.

    1983-10-01

    This report considers the response of other oil importers to the United States' SPR policy. The treatment models the behavior of public stockpiles in other countries as endogenous. Simple theoretical and more complex simulation models are used to compare a cooperative stockpile drawdown policy (among oil importers) to one in which each country acts in its own self-interest. Finally, a specific agreement is proposed that attempts to capture the benefits from cooperation.

  19. Implications of Export/Import Reporting Requirements in the United States - International Atomic Energy Agency Safeguards Additional Protocol

    SciTech Connect

    Killinger, Mark H.; Benjamin, Eugene L.; McNair, Gary W.

    2001-02-20

    The United States has signed but not ratified the US/IAEA Safeguards Additional Protocol. If ratified, the Additional Protocol will require the US to report to the IAEA certain nuclear-related exports and imports to the IAEA. This document identifies and assesses the issues associated with the US making those reports. For example, some regulatory changes appear to be necessary. The document also attempts to predict the impact on the DOE Complex by assessing the historical flow of exports and imports that would be reportable if the Additional Protocol were in force.

  20. Assessing recycling versus incineration of key materials in municipal waste: The importance of efficient energy recovery and transport distances

    SciTech Connect

    Merrild, Hanna; Larsen, Anna W.; Christensen, Thomas H.

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer We model the environmental impact of recycling and incineration of household waste. Black-Right-Pointing-Pointer Recycling of paper, glass, steel and aluminium is better than incineration. Black-Right-Pointing-Pointer Recycling and incineration of cardboard and plastic can be equally good alternatives. Black-Right-Pointing-Pointer Recyclables can be transported long distances and still have environmental benefits. Black-Right-Pointing-Pointer Paper has a higher environmental benefit than recyclables found in smaller amounts. - Abstract: Recycling of materials from municipal solid waste is commonly considered to be superior to any other waste treatment alternative. For the material fractions with a significant energy content this might not be the case if the treatment alternative is a waste-to-energy plant with high energy recovery rates. The environmental impacts from recycling and from incineration of six material fractions in household waste have been compared through life cycle assessment assuming high-performance technologies for material recycling as well as for waste incineration. The results showed that there are environmental benefits when recycling paper, glass, steel and aluminium instead of incinerating it. For cardboard and plastic the results were more unclear, depending on the level of energy recovery at the incineration plant, the system boundaries chosen and which impact category was in focus. Further, the environmental impact potentials from collection, pre-treatment and transport was compared to the environmental benefit from recycling and this showed that with the right means of transport, recyclables can in most cases be transported long distances. However, the results also showed that recycling of some of the material fractions can only contribute marginally in improving the overall waste management system taking into consideration their limited content in average Danish household waste.

  1. Measuring Dependence on Imported Oil

    Reports and Publications

    1995-01-01

    U.S. dependence on imported oil can be measured in at least two ways. The differences hinge largely on whether oil imports are defined as net imports (total imports minus exports) or as total imports. EIA introduces a revised table that expresses dependence on imports in terms of both measures.

  2. Federal environmental standards of potential importance to operations and activities at US Department of Energy sites. Draft

    SciTech Connect

    Fowler, K.M.; Bilyard, G.R.; Davidson, S.A.; Jonas, R.J.; Joseph, J.

    1993-06-01

    The US Department of Energy (DOE) is now engaged in a program of environmental restoration nationwide across its 45 sites. It is also bringing its facilities into compliance with environmental regulations, decontaminating and decommissioning unwanted facilities, and constructing new waste management facilities. One of the most difficult questions that DOE must face in successfully remediating its inactive waste sites, decontaminating and decommissioning its inactive facilities, and operating its waste management facilities is: ``What criteria and standards should be met?`` Acceptable standards or procedures for determining standards will assist DOE in its conduct of ongoing waste management and pending cleanup activities by helping to ensure that those activities are conducted in compliance with applicable laws and regulations and are accepted by the regulatory community and the public. This document reports on the second of three baseline activities that are being conducted as prerequisites to either the development of quantitative standards that could be used by DOE, or consistent procedures for developing such standards. The first and third baseline activities are also briefly discussed in conjunction with the second of the three activities.

  3. Monthly energy review: September 1996

    SciTech Connect

    1996-09-01

    Energy production during June 1996 totaled 5.6 quadrillion Btu, a 0.5% decrease from the level of production during June 1995. Energy consumption during June 1996 totaled 7.1 quadrillion Btu, 2.7% above the level of consumption during June 1995. Net imports of energy during June 1996 totaled 1.6 quadrillion Btu, 4.5% above the level of net imports 1 year earlier. Statistics are presented on the following topics: energy consumption, petroleum, natural gas, oil and gas resource development, coal, electricity, nuclear energy, energy prices, and international energy. 37 figs., 59 tabs.

  4. GRD Import

    Energy Science and Technology Software Center

    2010-11-01

    Imports RAW data (*.GRD) files created by Ion-TOF’s SurfaceLab version 6.1 or later into Matlab and saves the resulting variables to a file.

  5. Total Crude Oil and Products Imports from All Countries

    Energy Information Administration (EIA) (indexed site)

    Other Renewable Fuels Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur Residual F.O., Greater than 1% Sulfur Naphtha for Petrochem. Feed. Use Other

  6. U.S. Total Crude Oil and Products Imports

    Energy Information Administration (EIA) (indexed site)

    11,793 11,436 10,598 9,859 9,241 9,449 1973-2015 Persian Gulf 1,711 1,861 2,156 2,009 1,875 1,507 1973-2015 OPEC* 4,906 4,555 4,271 3,720 3,237 2,894 1973-2015 Algeria 510 358 242 115 110 108 1973-2015 Angola 393 346 233 216 154 136 1973-2015 Ecuador 212 206 180 236 215 231 1993-2015 Gabon 47 34 43 25 18 12 1973-2015 Indonesia 37 21 7 24 25 41 1973-2015 Iran 1973-2001 Iraq 415 459 476 341 369 229 1973-2015 Kuwait 197 191 305 328 311 204 1973-2015 Libya 70 15 61 59 6 7 1973-2015 Nigeria 1,023 818

  7. Rocky Mountain (PADD 4) Total Crude Oil and Products Imports

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Conventional Gasoline Blend. Comp. Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm ...

  8. Rocky Mountain (PADD 4) Total Crude Oil and Products Imports

    Annual Energy Outlook

    Jan-16 Feb-16 Mar-16 Apr-16 May-16 Jun-16 View History All Countries 9,114 7,678 8,211 7,785 7,534 8,487 1981-2016 Persian Gulf 1995-2003 OPEC* 2003-2012 Algeria 2007-2010 Nigeria ...

  9. East Coast (PADD 1) Total Crude Oil and Products Imports

    Energy Information Administration (EIA) (indexed site)

    2010 2011 2012 2013 2014 2015 View History All Countries 922,432 859,818 727,383 661,835 605,839 632,218 1981-2015 Persian Gulf 32,645 36,655 49,578 36,276 39,750 28,276 1993-2015 OPEC* 297,725 276,478 216,695 191,739 122,057 95,156 1993-2015 Algeria 28,538 27,871 29,164 9,781 6,440 4,234 1993-2015 Angola 44,554 45,631 30,832 30,371 25,299 17,880 1993-2015 Ecuador 550 347 1,813 1,223 411 931 1995-2015 Gabon 12,809 1,258 6,179 4,800 2,700 3,792 1993-2015 Indonesia 2 1 356 474 526 1995-2015 Iraq

  10. East Coast (PADD 1) Total Crude Oil and Products Imports

    Energy Information Administration (EIA) (indexed site)

    Mar-16 Apr-16 May-16 Jun-16 Jul-16 Aug-16 View History All Countries 52,343 59,570 56,245 63,583 62,424 59,566 1981-2016 Persian Gulf 3,951 2,738 3,343 3,487 3,820 3,752 1993-2016 OPEC* 12,417 15,062 14,321 14,771 18,757 15,181 1993-2016 Algeria 421 66 577 1,489 994 1993-2016 Angola 1,276 2,971 1,458 1,671 4,308 2,956 1993-2016 Ecuador 174 171 176 1995-2016 Gabon 156 1993-2016 Indonesia 26 165 138 56 54 1995-2016 Iraq 1,705 584 3,343 1,493 1,800 2,753 1995-2016 Kuwait 90 1995-2016 Libya

  11. Gulf Coast (PADD 3) Total Crude Oil and Products Imports

    Energy Information Administration (EIA) (indexed site)

    2010 2011 2012 2013 2014 2015 View History All Countries 2,254,145 2,129,181 1,905,552 1,650,598 1,438,615 1,385,579 1981-2015 Persian Gulf 429,791 482,680 576,149 524,793 449,578 353,894 1993-2015 OPEC* 1,194,872 1,113,798 1,079,695 892,754 783,979 706,394 1993-2015 Algeria 120,394 86,197 46,013 25,935 25,923 32,058 1993-2015 Angola 74,435 61,935 31,366 26,107 14,170 17,596 1993-2015 Ecuador 10,659 4,645 8,261 19,213 25,737 18,597 1993-2015 Gabon 4,213 11,299 8,112 3,643 1,841 687 1993-2015

  12. Gulf Coast (PADD 3) Total Crude Oil and Products Imports

    Energy Information Administration (EIA) (indexed site)

    Mar-16 Apr-16 May-16 Jun-16 Jul-16 Aug-16 View History All Countries 132,706 119,378 133,764 123,081 136,820 131,239 1981-2016 Persian Gulf 39,280 33,162 39,719 33,356 38,013 37,251 1993-2016 OPEC* 75,496 63,072 70,225 61,684 75,572 64,823 1993-2016 Algeria 3,755 4,047 2,788 4,493 3,973 3,503 1993-2016 Angola 2,810 3,248 2,140 1,804 3,320 1,321 1993-2016 Ecuador 1,074 352 684 523 854 990 1993-2016 Gabon 200 2 1993-2016 Indonesia 152 244 107 401 126 196 1993-2016 Iraq 8,980 8,284 11,984 8,958

  13. Price of Elba Island, GA Liquefied Natural Gas Total Imports...

    Annual Energy Outlook

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 4.36 4.82 4.58 3.91 2015 3.08 2.74 2.76 2.76...

  14. Price of Everett, MA Liquefied Natural Gas Total Imports (Dollars...

    Gasoline and Diesel Fuel Update

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 8.68 11.01 9.05 5.99 6.95 9.17 6.56 5.75 5.34 8.91 2015 13.53 10.90 10.29 5.98 6.24 4.51 3.66 4.56 6.25...

  15. Price of Everett, MA Liquefied Natural Gas Total Imports (Dollars...

    Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 4.41 5.16 6.65 7.58 7.32 10.33 5.87 2010's 4.79 4.77 3.70 5.49 8.00...

  16. Midwest (PADD 2) Total Crude Oil and Products Imports

    Energy Information Administration (EIA) (indexed site)

    2010 2011 2012 2013 2014 2015 View History All Countries 541,439 604,817 670,834 718,478 764,835 812,181 1981-2015 Persian Gulf 20,913 18,297 11,397 14,291 12,302 12,559 1993-2015 OPEC* 59,140 28,181 15,713 14,841 12,302 12,559 1993-2015 Algeria 29,969 8,429 4,074 380 1993-2015 Angola 4,619 1,012 1993-2011 Ecuador 1993-2007 Gabon 72 1995-2012 Iraq 101 2,654 1995-2011 Kuwait 949 1995-2013 Libya 2005-2009 Nigeria 3,401 1993-2010 Qatar 2 1995-2015 Saudi Arabia 20,812 15,643 11,397 13,342 12,302

  17. Midwest (PADD 2) Total Crude Oil and Products Imports

    Energy Information Administration (EIA) (indexed site)

    Mar-16 Apr-16 May-16 Jun-16 Jul-16 Aug-16 View History All Countries 74,799 65,198 63,812 59,575 64,573 71,666 1981-2016 Persian Gulf 1,199 2,627 1,100 802 1,120 804 1993-2016 OPEC* 1,199 2,627 1,100 802 1,120 804 1993-2016 Algeria 1993-2015 Angola 1993-2011 Ecuador 1993-2007 Gabon 1995-2012 Iraq 1995-2011 Kuwait 1995-2013 Libya 2005-2009 Nigeria 1993-2010 Qatar 1 1 1 1995-2016 Saudi Arabia 1,199 2,626 1,100 801 1,119 804 1993-2016 Venezuela 1993-2013 Non OPEC* 73,600 62,571 62,712 58,773 63,453

  18. Percentages of Total Imported Crude Oil by API Gravity

    Energy Information Administration (EIA) (indexed site)

    2009 2010 2011 2012 2013 2014 View History 20.0 or Less 14.08 15.13 17.20 16.66 16.20 18.49 1978-2014 20.1 to 25.0 26.11 26.01 27.47 29.77 33.87 36.73 1978-2014 25.1 to...

  19. Total Crude Oil and Products Imports from All Countries

    Energy Information Administration (EIA) (indexed site)

    Argentina Aruba Australia Austria Azerbaijan Bahamas Bahrain Barbados Belarus Belgium Belize Benin Bolivia Bosnia and Herzegovina Brazil Brunei Bulgaria Burma Cameroon Canada Chad ...

  20. ,"U.S. Total Crude Oil and Products Imports"

    Energy Information Administration (EIA) (indexed site)

    ...US-NBB1","MTTIMNUS-NBO1","MTTIMUSBE1","MTTIMNUS-NBH1","MTTIMNUS-NBN1","MTTIMNUS-NBL1","MTTIMNUS-NBK1","MTTIMUSBR1","MTTIMUSBX1","MTTIMNUS-NBU1","MTTIMNUS-NBM1","MTTI...

  1. U.S. Total Crude Oil and Products Imports

    Energy Information Administration (EIA) (indexed site)

    2010 2011 2012 2013 2014 2015 View History All Countries 4,304,533 4,174,210 3,878,852 3,598,454 3,372,904 3,448,734 1981-2015 Persian Gulf 624,638 679,403 789,082 733,325 684,235 549,906 1993-2015 OPEC* 1,790,811 1,662,720 1,563,273 1,357,907 1,181,458 1,056,471 1993-2015 Algeria 186,019 130,723 88,487 42,014 40,193 39,478 1993-2015 Angola 143,512 126,259 85,335 78,672 56,343 49,767 1993-2015 Ecuador 77,224 75,072 65,913 86,278 78,413 84,176 1993-2015 Gabon 17,022 12,557 15,886 8,993 6,531

  2. U.S. Total Crude Oil and Products Imports

    Energy Information Administration (EIA) (indexed site)

    310,060 294,858 315,660 302,286 325,716 319,629 1981-2016 Persian Gulf 56,422 51,276 59,920 51,466 55,597 56,261 1993-2016 OPEC* 110,857 100,517 112,899 99,098 117,900 106,087 1993-2016 Algeria 4,558 4,113 3,161 5,487 5,926 5,240 1993-2016 Angola 5,323 7,265 4,995 3,837 9,277 4,942 1993-2016 Ecuador 8,188 5,466 7,133 6,702 7,245 7,854 1993-2016 Gabon 200 158 1993-2016 Indonesia 1,172 1,291 1,904 1,601 1,493 1,601 1993-2016 Iraq 11,326 10,480 17,213 13,011 12,094 15,120 1996-2016 Kuwait 3,812

  3. West Coast (PADD 5) Total Crude Oil and Products Imports

    Energy Information Administration (EIA) (indexed site)

    2010 2011 2012 2013 2014 2015 View History All Countries 496,881 498,326 483,396 472,244 467,890 511,732 1981-2015 Persian Gulf 141,289 141,771 151,958 157,965 182,605 155,177 1993-2015 OPEC* 239,068 244,263 251,163 258,573 263,120 242,362 1993-2015 Algeria 7,112 8,226 9,236 6,298 7,830 3,186 1995-2015 Angola 19,904 17,681 23,137 22,194 16,874 14,291 1995-2015 Ecuador 66,015 70,080 55,839 65,842 52,265 64,648 1993-2015 Gabon 1,523 550 1,990 1995-2014 Indonesia 12,986 7,168 2,194 6,950 7,220

  4. West Coast (PADD 5) Total Crude Oil and Products Imports

    Energy Information Administration (EIA) (indexed site)

    Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur Residual F.O., Greater than 1% Sulfur Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed.

  5. Country Total Percent of U.S. Total Canada

    Annual Energy Outlook

    Taiwan 60,155 1% Vietnam 361,184 4% All others 1,861,971 19% Total 9,755,831 100% Table 7 . Photovoltaic module import shipments by country, 2015 Note: All Others includes Czech ...

  6. Barge Truck Total

    Annual Energy Outlook

    Barge Truck Total delivered cost per short ton Shipments with transportation rates over total shipments Total delivered cost per short ton Shipments with transportation rates over...

  7. Annual Energy Review 2004 - August 2005

    Annual Energy Outlook

    which is accounted for in both fossil fuels and renewable energy but counted only once in total consumption; and 0.04 electricity net imports. l Primary consumption,...

  8. Monthly energy review, May 1994

    SciTech Connect

    Not Available

    1994-05-25

    Energy production during February 1994 totaled 5.3 quadrillion Btu, a 2.2% increase over February 1993. Coal production increased 9%, natural gas rose 2.5%, and petroleum decreased 3.6%; all other forms of energy production combined were down 3%. Energy consumption during the same period totaled 7.5 quadrillion Btu, 4.1% above February 1993. Natural gas consumption increased 5.8%, petroleum 5.2%, and coal 2.3%; consumption of all other energy forms combined decreased 0.7%. Net imports of energy totaled 1.4 quadrillion Btu, 16.9% above February 1993; petroleum net imports increased 10.1%, natural gas net imports were down 4.9%, and coal net exports fell 43.7%. This document is divided into: energy overview, energy consumption, petroleum, natural gas, oil and gas resource development, coal, electricity, nuclear energy, energy prices, international energy, appendices (conversion factors, etc.), and glossary.

  9. Total Crude by Pipeline

    Energy Information Administration (EIA) (indexed site)

    Product: Total Crude by All Transport Methods Domestic Crude by All Transport Methods Foreign Crude by All Transport Methods Total Crude by Pipeline Domestic Crude by Pipeline Foreign Crude by Pipeline Total Crude by Tanker Domestic Crude by Tanker Foreign Crude by Tanker Total Crude by Barge Domestic Crude by Barge Foreign Crude by Barge Total Crude by Tank Cars (Rail) Domestic Crude by Tank Cars (Rail) Foreign Crude by Tank Cars (Rail) Total Crude by Trucks Domestic Crude by Trucks Foreign

  10. S. 341: A bill to reduce the Nation's dependence on imported oil, to provide for the energy security of the Nation and for other purposes, introduced in the United States Senate, One Hundred Second Congress, First Session, February 5, 1991

    SciTech Connect

    Not Available

    1991-01-01

    This bill would reduce the nation's dependence on imported oil to provide for the energy security of the nation. The purposes are to significantly reduce the nation's oil dependency; encourage more efficient use of energy; encourage development and deployment of renewable energy sources; streamline the hydroelectric licensing process; enhance the role of coal and clean coal technologies; establish priorities for Federal energy research, development, demonstration, and commercialization; encourage development of domestic energy resources on the Outer Continental Shelf; provide for oil and gas exploration, production, and development in the Arctic National Wildlife Refuge in Alaska; encourage increased utilization of natural gas and other domestic energy resources to displace imported oil; reduce the consumption of oil in the transportation sector and encourage use of alternative energy sources for transportation; and encourage production and use of nuclear power by providing for the commercialization of advanced nuclear reactor technologies.

  11. Oil/Liquids | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    oil prices grow to about 125 per barrel (2009 dollars) in 2035. In this environment, net imports of energy meet a major, but declining, share of total U.S. energy demand in the...

  12. PVT -- A photovoltaic/thermal concentrator total energy system: Final phase 1 project report. Building opportunities in the U.S. for photovoltaics (PV:BONUS) Two

    SciTech Connect

    1998-12-31

    United Solar completed its Phase 1 report and its proposal for Phase 2 of the PVBONUS Two program at the end of March 1998. At the same time, it also completed and submitted a proposal to the California Energy Commission PIER program for additional funding to cost-share development and testing of a pre-production model of the PVT-14. It was unsuccessful in both of these proposed efforts. While waiting for the proposal decisions, work continued in April and May to analyze the system design and component decisions described below. This document is a final summation report on the Phase 1 effort of the PVBONUS Two program that describes the key technical issues that United Solar and its subcontractor, Industrial Solar Technology Corporation, worked on in preparation of a Phase 2 award. The decisions described were ones that will guide the design and fabrication of a pre-production prototype of a 1500:1 mirrored concentrator with gallium arsenide cells when United solar resumes its development work. The material below is organized by citing the key components that underwent a design review, what the company considered, what was decided, the name of the expected supplier, if not to be produced in-house, and some information about expected costs. The cost figures given are usually budgetary estimates, not the result of firm quotations or extensive analysis.

  13. Energy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency ...

  14. Energy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    3 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion ...

  15. Energy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    2 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion ...

  16. Total quality management implementation guidelines

    SciTech Connect

    Not Available

    1993-12-01

    These Guidelines were designed by the Energy Quality Council to help managers and supervisors in the Department of Energy Complex bring Total Quality Management to their organizations. Because the Department is composed of a rich mixture of diverse organizations, each with its own distinctive culture and quality history, these Guidelines are intended to be adapted by users to meet the particular needs of their organizations. For example, for organizations that are well along on their quality journeys and may already have achieved quality results, these Guidelines will provide a consistent methodology and terminology reference to foster their alignment with the overall Energy quality initiative. For organizations that are just beginning their quality journeys, these Guidelines will serve as a startup manual on quality principles applied in the Energy context.

  17. ,"Total District Heat Consumption (trillion Btu)",,,,,"District...

    Energy Information Administration (EIA) (indexed site)

    Heat Consumption (trillion Btu)",,,,,"District Heat Energy Intensity (thousand Btusquare foot)" ,"Total ","Space Heating","Water Heating","Cook- ing","Other","Total ","Space...

  18. ,"Total Natural Gas Consumption (trillion Btu)",,,,,"Natural...

    Energy Information Administration (EIA) (indexed site)

    Gas Consumption (trillion Btu)",,,,,"Natural Gas Energy Intensity (thousand Btusquare foot)" ,"Total ","Space Heating","Water Heating","Cook- ing","Other","Total ","Space...

  19. U.S. Energy Information Administration (EIA) - Pub

    Gasoline and Diesel Fuel Update

    Energy production, imports, and exports Net U.S. imports of energy declined from 30% of total energy consumption in 2005 to 13% in 2013, as a result of strong growth in domestic oil and dry natural gas production from tight formations and slow growth of total energy consumption. The decline in net energy imports is projected to continue at a slower rate in the AEO2015 Reference case, with energy imports and exports coming into balance around 2028 (although liquid fuel imports continue, at a

  20. ,"Total Fuel Oil Expenditures

    Energy Information Administration (EIA) (indexed site)

    . Fuel Oil Expenditures by Census Region for Non-Mall Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per...

  1. ,"Total Fuel Oil Expenditures

    Energy Information Administration (EIA) (indexed site)

    4. Fuel Oil Expenditures by Census Region, 1999" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per Square Foot"...

  2. ,"Total Fuel Oil Expenditures

    Energy Information Administration (EIA) (indexed site)

    A. Fuel Oil Expenditures by Census Region for All Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per...

  3. Total Space Heat-

    Gasoline and Diesel Fuel Update

    Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

  4. Total Space Heat-

    Gasoline and Diesel Fuel Update

    Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings*...

  5. Company Level Imports Explanatory Notes

    Gasoline and Diesel Fuel Update

    Company Level Imports Explanatory Notes Notice: Ongoing analysis of imports data to the Energy Information Administration reveals that some imports are not correctly reported on Form EIA-814 "Monthly Imports Report". Contact with the companies provides sufficient information for EIA to include these imports in the data even though they have not provided complete reports on Form EIA-814. Estimates are included in aggregate data, but the estimates are not included in the file of

  6. United States Total Electric Power Industry Net Generation, by...

    Energy Information Administration (EIA) (indexed site)

    Total Electric Power Industry Net Generation, by Energy Source, 2006 - 2010" "(Thousand Megawatthours)" "United States" "Energy Source",2006,2007,2008,2009,2010 ...

  7. Property:TotalValue | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    22,888,360 + American Transmission Company LLC Smart Grid Project + 2,661,650 + Atlantic City Electric Company Smart Grid Project + 37,400,000 + Avista Utilities Smart Grid...

  8. Summary Max Total Units

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Summary Max Total Units *If All Splits, No Rack Units **If Only FW, AC Splits 1000 52 28 28 2000 87 59 35 3000 61 33 15 4000 61 33 15 Totals 261 153 93 ***Costs $1,957,500.00 $1,147,500.00 $697,500.00 Notes: added several refrigerants removed bins from analysis removed R-22 from list 1000lb, no Glycol, CO2 or ammonia Seawater R-404A only * includes seawater units ** no seawater units included *** Costs = (total units) X (estimate of $7500 per unit) 1000lb, air cooled split systems, fresh water

  9. Total Space Heat-

    Annual Energy Outlook

    12 1 18 (*) 2 1 Q 6 Buildings without Cooling ... 30 1 (*) 4 (*) 14 (*) 4 (*) 1 6 Water-Heating Energy Source Electricity ... 402 21 57 42...

  10. ARM - Measurement - Total carbon

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    carbon ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Total carbon The total concentration of carbon in all its organic and non-organic forms. Categories Atmospheric Carbon, Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including

  11. Office Buildings - Energy Consumption

    Energy Information Administration (EIA) (indexed site)

    Energy Consumption Office buildings consumed more than 17 percent of the total energy used by the commercial buildings sector (Table 4). At least half of total energy, electricity,...

  12. U.S. LNG Imports - The Next Wave

    Reports and Publications

    2007-01-01

    U.S. LNG imports - The Next Wave, is now available as a special supplement to the January 2007 issue of the Short-Term Energy Outlook (STEO). Although liquefied natural gas (LNG) imports still account for less than 3% of total U.S. natural gas supplies, the global market is growing and the Energy Information Administration (EIA) foresees another wave of U.S. LNG import growth over the next two years. The supplement focuses on recent trends in global and U.S. LNG trade, and presents factors expected to influence LNG imports through 2008. EIA expects year-over-year increases in LNG imports of 34.5% and 38.5% in 2007 and 2008, respectively.

  13. Energy efficiency, renewable energy and sustainable development

    SciTech Connect

    Ervin, C.A.

    1994-12-31

    The Office of Energy Efficiency and Renewable Energy (EE) is part of the U.S. Department of Energy that is specifically charged with encouraging the more efficient use of energy resources, and the use of renewable energy resources - such as solar power, wind power, biomass energy and geothermal energy. In the past several years, EE has increased its emphasis on technology deployment through partnerships with states, local governments and private companies. Partnerships move new discoveries more quickly into the marketplace, where they can create jobs, prevent pollution, save resources, and produce many other benefits. The author then emphasizes the importance of this effort in a number of different sections of the paper: energy consumption pervades everything we do; U.S. energy imports are rising to record levels; transportation energy demand is increasing; U.S. energy use is increasing; population growth increases world energy demand; total costs of energy consumption aren`t always counted; world energy markets offer incredible potential; cost of renewables is decreasing; clean energy is essential to sustainable development; sustainable energy policy; sustainable energy initiatives: utilities, buildings, and transportation.

  14. Total DOE/NNSA

    National Nuclear Security Administration (NNSA)

    8 Actuals 2009 Actuals 2010 Actuals 2011 Actuals 2012 Actuals 2013 Actuals 2014 Actuals 2015 Actuals Total DOE/NNSA 4,385 4,151 4,240 4,862 5,154 5,476 7,170 7,593 Total non-NNSA 3,925 4,017 4,005 3,821 3,875 3,974 3,826 3765 Total Facility 8,310 8,168 8,245 8,683 9,029 9,450 10,996 11,358 non-NNSA includes DOE offices and Strategic Parternship Projects (SPP) employees NNSA M&O Employee Reporting

  15. PUGET SOUND ENERGY, INC- 14-123-LNG

    Energy.gov [DOE]

    The Office of Fossil Energy gives notice of receipt of an application filed on September 4,  2014, by Puget Sound Energy, Inc. requesting authorization to import and export a combined total of up...

  16. U.S. crude oil production expected to exceed oil imports later this year

    Energy Information Administration (EIA) (indexed site)

    crude oil production expected to exceed oil imports later this year U.S. crude oil production is expected to surpass U.S. crude oil imports by the fourth quarter of this year. That would mark the first time since February 1995 that domestic crude oil output exceeds imports, according to the latest monthly energy outlook from the U.S. Energy Information Administration. The United States will still need to import crude oil to help meet domestic demand. However, total crude oil imports this year

  17. 21 briefing pages total

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    briefing pages total p. 1 Reservist Differential Briefing U.S. Office of Personnel Management December 11, 2009 p. 2 Agenda - Introduction of Speakers - Background - References/Tools - Overview of Reservist Differential Authority - Qualifying Active Duty Service and Military Orders - Understanding Military Leave and Earnings Statements p. 3 Background 5 U.S.C. 5538 (Section 751 of the Omnibus Appropriations Act, 2009, March 11, 2009) (Public Law 111-8) Law requires OPM to consult with DOD Law

  18. Monthly energy review, May 1997

    SciTech Connect

    1997-05-01

    This is an overview of the May energy statistics by the Energy Information Administration. The contents of the report include an energy overview, US energy production, trade stocks and prices for petroleum, natural gas, oil and gas resource development, coal, electricity, nuclear energy, energy prices, and international energy. Energy production during February 1997 totaled 5.4 quadrillion Btu, a 1.9% decrease from the level of production during February 1996. Coal production increased 1.2%, natural gas production decreased 2.9%, and production of crude oil and natural gas plant liquids decreased 2.1%. All other forms of energy production combined were down 6.3% from the level of production during February 1996. Energy consumption during February 1997 totaled 7.5 quadrillion Btu, 4.0% below the level of consumption during February 1996. Consumption of petroleum products decreased 4.4%, consumption of natural gas was down 3.5%, and consumption of coal fell 2.2%. Consumption of all other forms of energy combined decreased 6.7% from the level 1 year earlier. Net imports of energy during February 1997 totaled 1.5 quadrillion Btu, 14.1% above the level of net imports 1 year earlier. Net imports of petroleum increased 12.7% and net imports of natural gas were up 7.4%. Net exports of coal fell 12.1% from the level in February 1996. 37 figs., 75 tabs.

  19. DOE/EIA-0035(93/05) Energy R*y

    Gasoline and Diesel Fuel Update

    wind, photovoltaic, and solar b Production and consumption totals exclude wood, waste, geothermal, thermal energy; and net imports of electricity and coal coke. wind,...

  20. DOE/EIA-0035(93/07) Monthly Energy Review W S. IRA W,

    Gasoline and Diesel Fuel Update

    wind, photovoltaic, and solar b Production and consumption totals exclude wood, waste, geothermal, thermal energy; and net imports of electricity and coal coke. wind,...

  1. ENERGY

    Energy.gov [DOE] (indexed site)

    U.S. Department of ENERGY Department of Energy Quadrennial Technology Review-2015 Framing Document http:energy.govqtr 2015-01-13 Page 2 The United States faces serious ...

  2. Energy

    Office of Legacy Management (LM)

    Energy Washington; DC 20585 : . ' , - o" ' ' ,' DEC ?; ;y4,,, ' . The Honorable ... Dear,Mayor 'Kalwitz: " . " Secretary of Energy Hazel' O'Leary has announceha new,approach ...

  3. US Crude Oil Production Surpasses Net Imports | Department of...

    Office of Environmental Management (EM)

    US Crude Oil Production Surpasses Net Imports US Crude Oil Production Surpasses Net Imports Source: Energy Information Administration Short Term Energy Outlook. Chart by Daniel...

  4. Energy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy Energy National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place on Earth pursues a broader array of world-class scientific endeavors. Energy Overview Charlie McMillan, Director of Los Alamos National Laboratory 0:50 Director McMillan on energy security With energy use increasing across the nation and the world, Los Alamos National Laboratory is using its world-class scientific capabilities to enhance

  5. ARM - Measurement - Shortwave broadband total downwelling irradiance

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    downwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave broadband total downwelling irradiance The total diffuse and direct radiant energy that comes from some continuous range of directions, at wavelengths between 0.4 and 4 {mu}m, that is being emitted downwards. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following

  6. NREL: Building America Total Quality Management - 2015 Peer Review |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy NREL: Building America Total Quality Management - 2015 Peer Review NREL: Building America Total Quality Management - 2015 Peer Review Presenter: Stacey Rothgeb, NREL View the Presentation NREL: Building America Total Quality Management - 2015 Peer Review (2.43 MB) More Documents & Publications Home Performance with ENERGY STAR - 2014 BTO Peer Review NREL: Building America Total Quality Management - 2015 Peer Review R25 Polyisocyanurate Composite Insulation Material

  7. Company Level Imports Archives

    Energy Information Administration (EIA) (indexed site)

    Company Level Imports Company Level Imports Archives 2015 Imports by Month January XLS February XLS March XLS April XLS May XLS June XLS July XLS August XLS September XLS October...

  8. United States Total Electric Power Industry Net Summer Capacity...

    Energy Information Administration (EIA) (indexed site)

    Total Electric Power Industry Net Summer Capacity, by Energy Source, 2006 - 2010" "(Megawatts)" "United ... Gases",2256,2313,1995,1932,2700 "Nuclear",100334,100266,100755,101004,10116...

  9. Real-space formulation of the electrostatic potential and total...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Real-space formulation of the electrostatic potential and total energy of solids Citation Details In-Document Search Title: Real-space formulation of the ...

  10. Workshops, Focus Groups and Important Documents | Department...

    Energy.gov [DOE] (indexed site)

    Workshops, Focus Groups and Important Documents Rolling out the Energy Department ... Documents Relevant documents to the DOE-QTR are provided below, including all drafts and ...

  11. Determination of Total Petroleum Hydrocarbons (TPH) Using Total Carbon Analysis

    SciTech Connect

    Ekechukwu, A.A.

    2002-05-10

    Several methods have been proposed to replace the Freon(TM)-extraction method to determine total petroleum hydrocarbon (TPH) content. For reasons of cost, sensitivity, precision, or simplicity, none of the replacement methods are feasible for analysis of radioactive samples at our facility. We have developed a method to measure total petroleum hydrocarbon content in aqueous sample matrixes using total organic carbon (total carbon) determination. The total carbon content (TC1) of the sample is measured using a total organic carbon analyzer. The sample is then contacted with a small volume of non-pokar solvent to extract the total petroleum hydrocarbons. The total carbon content of the resultant aqueous phase of the extracted sample (TC2) is measured. Total petroleum hydrocarbon content is calculated (TPH = TC1-TC2). The resultant data are consistent with results obtained using Freon(TM) extraction followed by infrared absorbance.

  12. U.S. Total Exports

    Energy Information Administration (EIA) (indexed site)

    Total To Barbados Total To Brazil Freeport, TX Sabine Pass, LA Total to Canada Eastport, ID Calais, ME Detroit, MI Marysville, MI Port Huron, MI Crosby, ND Portal, ND Sault St. Marie, MI St. Clair, MI Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Morgan, MT Sherwood, ND Pittsburg, NH Buffalo, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to Egypt Freeport, TX Total to

  13. U.S. Total Exports

    Energy Information Administration (EIA) (indexed site)

    Sabine Pass, LA Total To Barbados Miami, FL Total To Brazil Freeport, TX Sabine Pass, LA Total to Canada Eastport, ID Calais, ME Detroit, MI Marysville, MI Port Huron, MI Portal, ND Sault St. Marie, MI St. Clair, MI Noyes, MN Babb, MT Havre, MT Port of Morgan, MT Sherwood, ND Pittsburg, NH Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to Dominican Republic Sabine Pass, LA Total

  14. Total quality management program planning

    SciTech Connect

    Thornton, P.T.; Spence, K.

    1994-05-01

    As government funding grows scarce, competition between the national laboratories is increasing dramatically. In this era of tougher competition, there is no for resistance to change. There must instead be a uniform commitment to improving the overall quality of our products (research and technology) and an increased focus on our customers` needs. There has been an ongoing effort to bring the principles of total quality management (TQM) to all Energy Systems employees to help them better prepare for future changes while responding to the pressures on federal budgets. The need exists for instituting a vigorous program of education and training to an understanding of the techniques needed to improve and initiate a change in organizational culture. The TQM facilitator is responsible for educating the work force on the benefits of self-managed work teams, designing a program of instruction for implementation, and thus getting TQM off the ground at the worker and first-line supervisory levels so that the benefits can flow back up. This program plan presents a conceptual model for TQM in the form of a hot air balloon. In this model, there are numerous factors which can individually and collectively impede the progress of TQM within the division and the Laboratory. When these factors are addressed and corrected, the benefits of TQM become more visible. As this occurs, it is hoped that workers and management alike will grasp the ``total quality`` concept as an acceptable agent for change and continual improvement. TQM can then rise to the occasion and take its rightful place as an integral and valid step in the Laboratory`s formula for survival.

  15. Company Level Imports

    Energy Information Administration (EIA) (indexed site)

    top five exporting countries accounted for 74% of United States crude oil imports in July while the top ten sources accounted for approximately 92% of all U.S. crude oil imports. ...

  16. U.S. Energy Information Administration (EIA) - Data

    Annual Energy Outlook

    Energy Flow Archives Energy Flow Diagrams 2014 Total energy Primary Energy Consumption by Source and Sector Petroleum Natural gas Coal Electricity Energy Flow Diagrams 2013 Total...

  17. Total

    Energy Information Administration (EIA) (indexed site)

    1,001 to 5,000 2,777 8,041 10,232 2.9 786 56 5,001 to 10,000 1,229 8,900 9,225 7.2 965 62 10,001 to 25,000 884 14,105 14,189 16.0 994 65 25,001 to 50,000 332 11,917 11,327 35.9 1,052 72 50,001 to 100,000 199 13,918 12,345 69.9 1,127 80 100,001 to 200,000 90 12,415 11,310 137.9 1,098 89 200,001 to 500,000 38 10,724 10,356 284.2 1,035 99 Over 500,000 8 7,074 9,196 885.0 769 117 Principal building activity Education 389 12,239 10,885 31.5 1,124 53 Food sales 177 1,252 1,172 7.1 1,067 121 Food

  18. Total

    Energy Information Administration (EIA) (indexed site)

    1,001 to 5,000 2,777 8,041 10,232 2.9 786 56 5,001 to 10,000 1,229 8,900 9,225 7.2 965 62 10,001 to 25,000 884 14,105 14,189 16.0 994 65 25,001 to 50,000 332 11,917 11,327 35.9 1,052 72 50,001 to 100,000 199 13,918 12,345 69.9 1,127 80 100,001 to 200,000 90 12,415 11,310 137.9 1,098 89 200,001 to 500,000 38 10,724 10,356 284.2 1,035 99 Over 500,000 8 7,074 9,196 885.0 769 117 Principal building activity Education 389 12,239 10,885 31.5 1,124 53 Food sales 177 1,252 1,172 7.1 1,067 121 Food

  19. Total

    Energy Information Administration (EIA) (indexed site)

    Median square feet per building (thousand) Median square feet per worker Median operating hours per week Median age of buildings (years) All buildings 5,557 87,093 88,182 5.0 1,029 50 32 Building floorspace (square feet) 1,001 to 5,000 2,777 8,041 10,232 2.8 821 49 37 5,001 to 10,000 1,229 8,900 9,225 7.0 1,167 50 31 10,001 to 25,000 884 14,105 14,189 15.0 1,444 56 32 25,001 to 50,000 332 11,917 11,327 35.0 1,461 60 29 50,001 to 100,000 199 13,918 12,345 67.0 1,442 60 26 100,001 to 200,000 90

  20. Total

    Gasoline and Diesel Fuel Update

    Fuel Oil, Greater than 500 ppm Sulfur Residual Fuel Oil Lubricants Asphalt and Road Oil Other Products Period: Annual (as of January 1) Download Series History Download ...

  1. Total..........................................................

    Energy Information Administration (EIA) (indexed site)

    ... Housing Units (millions) UrbanRural Location (as Self-Reported) Living Space ... Housing Units (millions) UrbanRural Location (as Self-Reported) Living Space ...

  2. Total..........................................................

    Energy Information Administration (EIA) (indexed site)

    ... Housing Units (millions) UrbanRural Location (as Self-Reported) City Town Suburbs Rural ... Housing Units (millions) UrbanRural Location (as Self-Reported) City Town Suburbs Rural ...

  3. Total..........................................................

    Energy Information Administration (EIA) (indexed site)

    ... 111.1 20.6 15.1 5.5 Do Not Have Cooling Equipment...... 17.8 4.0 2.4 1.7 Have Cooling Equipment...... 93.3 ...

  4. Total..........................................................

    Annual Energy Outlook

    ... Average Square Feet per Apartment in a -- Apartments (millions) Major Outside Wall Construction Siding (Aluminum, Vinyl, Steel)...... 35.3 3.5 1,286 1,090 325 852 786 461 ...

  5. Total

    Gasoline and Diesel Fuel Update

    ... District heat 48 5,964 8,230 124.9 725 87 District chilled water 54 4,608 5,742 85.4 803 ... Natural gas 12 732 1,048 61.5 699 67 District chilled water 54 4,608 5,742 85.4 803 87 ...

  6. Total..............................................

    Energy Information Administration (EIA) (indexed site)

    111.1 86.6 2,720 1,970 1,310 1,941 1,475 821 1,059 944 554 Census Region and Division Northeast.................................... 20.6 13.9 3,224 2,173 836 2,219 1,619 583 903 830 Q New England.......................... 5.5 3.6 3,365 2,154 313 2,634 1,826 Q 951 940 Q Middle Atlantic........................ 15.1 10.3 3,167 2,181 1,049 2,188 1,603 582 Q Q Q Midwest...................................... 25.6 21.0 2,823 2,239 1,624 2,356 1,669 1,336 1,081 961 778 East North

  7. Total............................................................

    Energy Information Administration (EIA) (indexed site)

  8. Total.............................................................

    Energy Information Administration (EIA) (indexed site)

    26.7 28.8 20.6 13.1 22.0 16.6 38.6 Personal Computers Do Not Use a Personal Computer........... 35.5 17.1 10.8 4.2 1.8 1.6 10.3 20.6 Use a Personal Computer....................... 75.6 9.6 18.0 16.4 11.3 20.3 6.4 17.9 Most-Used Personal Computer Type of PC Desk-top Model.................................. 58.6 7.6 14.2 13.1 9.2 14.6 5.0 14.5 Laptop Model...................................... 16.9 2.0 3.8 3.3 2.1 5.7 1.3 3.5 Hours Turned on Per Week Less than 2 Hours..............................

  9. Total..............................................................

    Energy Information Administration (EIA) (indexed site)

    ,171 1,618 1,031 845 630 401 Census Region and Division Northeast................................................... 20.6 2,334 1,664 562 911 649 220 New England.......................................... 5.5 2,472 1,680 265 1,057 719 113 Middle Atlantic........................................ 15.1 2,284 1,658 670 864 627 254 Midwest...................................................... 25.6 2,421 1,927 1,360 981 781 551 East North Central.................................. 17.7 2,483 1,926 1,269

  10. Total..............................................................

    Energy Information Administration (EIA) (indexed site)

    Do Not Have Cooling Equipment................ 17.8 5.3 4.7 2.8 1.9 3.1 3.6 7.5 Have Cooling Equipment............................. 93.3 21.5 24.1 17.8 11.2 18.8 13.0 31.1 Use Cooling Equipment.............................. 91.4 21.0 23.5 17.4 11.0 18.6 12.6 30.3 Have Equipment But Do Not Use it............. 1.9 0.5 0.6 0.4 Q Q 0.5 0.8 Type of Air-Conditioning Equipment 1, 2 Central System.......................................... 65.9 11.0 16.5 13.5 8.7 16.1 6.4 17.2 Without a Heat

  11. Total...............................................................

    Energy Information Administration (EIA) (indexed site)

    20.6 25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer ........... 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer......................... 75.6 13.7 17.5 26.6 17.8 Number of Desktop PCs 1.......................................................... 50.3 9.3 11.9 18.2 11.0 2.......................................................... 16.2 2.9 3.5 5.5 4.4 3 or More............................................. 9.0 1.5 2.1 2.9 2.5 Number of Laptop PCs

  12. Total...............................................................

    Energy Information Administration (EIA) (indexed site)

    0.7 21.7 6.9 12.1 Personal Computers Do Not Use a Personal Computer ........... 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer......................... 75.6 26.6 14.5 4.1 7.9 Number of Desktop PCs 1.......................................................... 50.3 18.2 10.0 2.9 5.3 2.......................................................... 16.2 5.5 3.0 0.7 1.8 3 or More............................................. 9.0 2.9 1.5 0.5 0.8 Number of Laptop PCs

  13. Total...............................................................

    Energy Information Administration (EIA) (indexed site)

    26.7 28.8 20.6 13.1 22.0 16.6 38.6 Personal Computers Do Not Use a Personal Computer ........... 35.5 17.1 10.8 4.2 1.8 1.6 10.3 20.6 Use a Personal Computer......................... 75.6 9.6 18.0 16.4 11.3 20.3 6.4 17.9 Number of Desktop PCs 1.......................................................... 50.3 8.3 14.2 11.4 7.2 9.2 5.3 14.2 2.......................................................... 16.2 0.9 2.6 3.7 2.9 6.2 0.8 2.6 3 or More............................................. 9.0 0.4 1.2

  14. Total...............................................................

    Energy Information Administration (EIA) (indexed site)

    Do Not Have Cooling Equipment................. 17.8 5.3 4.7 2.8 1.9 3.1 3.6 7.5 Have Cooling Equipment.............................. 93.3 21.5 24.1 17.8 11.2 18.8 13.0 31.1 Use Cooling Equipment............................... 91.4 21.0 23.5 17.4 11.0 18.6 12.6 30.3 Have Equipment But Do Not Use it............. 1.9 0.5 0.6 0.4 Q Q 0.5 0.8 Air-Conditioning Equipment 1, 2 Central System............................................ 65.9 11.0 16.5 13.5 8.7 16.1 6.4 17.2 Without a Heat

  15. Total...............................................................

    Energy Information Administration (EIA) (indexed site)

    47.1 19.0 22.7 22.3 Personal Computers Do Not Use a Personal Computer ........... 35.5 16.9 6.5 4.6 7.6 Use a Personal Computer......................... 75.6 30.3 12.5 18.1 14.7 Number of Desktop PCs 1.......................................................... 50.3 21.1 8.3 10.7 10.1 2.......................................................... 16.2 6.2 2.8 4.1 3.0 3 or More............................................. 9.0 2.9 1.4 3.2 1.6 Number of Laptop PCs

  16. Total................................................................

    Energy Information Administration (EIA) (indexed site)

    111.1 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Do Not Have Space Heating Equipment....... 1.2 0.5 0.3 0.2 Q 0.2 0.3 0.6 Have Main Space Heating Equipment.......... 109.8 26.2 28.5 20.4 13.0 21.8 16.3 37.9 Use Main Space Heating Equipment............ 109.1 25.9 28.1 20.3 12.9 21.8 16.0 37.3 Have Equipment But Do Not Use It.............. 0.8 0.3 0.3 Q Q N 0.4 0.6 Main Heating Fuel and Equipment Natural Gas.................................................. 58.2 12.2 14.4 11.3 7.1 13.2 7.6 18.3 Central

  17. Total.................................................................

    Energy Information Administration (EIA) (indexed site)

    49.2 15.1 15.6 11.1 7.0 5.2 8.0 Have Cooling Equipment............................... 93.3 31.3 15.1 15.6 11.1 7.0 5.2 8.0 Use Cooling Equipment................................ 91.4 30.4 14.6 15.4 11.1 6.9 5.2 7.9 Have Equipment But Do Not Use it............... 1.9 1.0 0.5 Q Q Q Q Q Do Not Have Cooling Equipment................... 17.8 17.8 N N N N N N Air-Conditioning Equipment 1, 2 Central System............................................. 65.9 3.9 15.1 15.6 11.1 7.0 5.2 8.0 Without a Heat

  18. Total.................................................................

    Energy Information Administration (EIA) (indexed site)

    14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Do Not Have Space Heating Equipment........ 1.2 N Q Q 0.2 0.4 0.2 0.2 Q Have Main Space Heating Equipment........... 109.8 14.7 7.4 12.4 12.2 18.5 18.3 17.1 9.2 Use Main Space Heating Equipment............. 109.1 14.6 7.3 12.4 12.2 18.2 18.2 17.1 9.1 Have Equipment But Do Not Use It............... 0.8 Q Q Q Q 0.3 Q N Q Main Heating Fuel and Equipment Natural Gas................................................... 58.2 9.2 4.9 7.8 7.1 8.8 8.4 7.8 4.2 Central

  19. Total.................................................................

    Energy Information Administration (EIA) (indexed site)

    26.7 28.8 20.6 13.1 22.0 16.6 38.6 Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day.............................. 8.2 2.9 2.5 1.3 0.5 1.0 2.4 4.6 2 Times A Day........................................... 24.6 6.5 7.0 4.3 3.2 3.6 4.8 10.3 Once a Day................................................ 42.3 8.8 9.8 8.7 5.1 10.0 5.0 12.9 A Few Times Each Week........................... 27.2 5.6 7.2 4.7 3.3 6.3 3.2 7.5 About Once a Week................................... 3.9 1.1 1.1

  20. Total..................................................................

    Energy Information Administration (EIA) (indexed site)

    78.1 64.1 4.2 1.8 2.3 5.7 Do Not Have Cooling Equipment..................... 17.8 11.3 9.3 0.6 Q 0.4 0.9 Have Cooling Equipment................................. 93.3 66.8 54.7 3.6 1.7 1.9 4.8 Use Cooling Equipment.................................. 91.4 65.8 54.0 3.6 1.7 1.9 4.7 Have Equipment But Do Not Use it................. 1.9 1.1 0.8 Q N Q Q Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 51.7 43.9 2.5 0.7 1.6 3.1 Without a Heat

  1. Total..................................................................

    Energy Information Administration (EIA) (indexed site)

    33.0 8.0 3.4 5.9 14.4 1.2 Do Not Have Cooling Equipment..................... 17.8 6.5 1.6 0.9 1.3 2.4 0.2 Have Cooling Equipment................................. 93.3 26.5 6.5 2.5 4.6 12.0 1.0 Use Cooling Equipment.................................. 91.4 25.7 6.3 2.5 4.4 11.7 0.8 Have Equipment But Do Not Use it................. 1.9 0.8 Q Q 0.2 0.3 Q Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 14.1 3.6 1.5 2.1 6.4 0.6 Without a Heat

  2. Total..................................................................

    Energy Information Administration (EIA) (indexed site)

    . 111.1 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Do Not Have Cooling Equipment..................... 17.8 3.9 1.8 2.2 2.1 3.1 2.6 1.7 0.4 Have Cooling Equipment................................. 93.3 10.8 5.6 10.3 10.4 15.8 16.0 15.6 8.8 Use Cooling Equipment.................................. 91.4 10.6 5.5 10.3 10.3 15.3 15.7 15.3 8.6 Have Equipment But Do Not Use it................. 1.9 Q Q Q Q 0.6 0.4 0.3 Q Type of Air-Conditioning Equipment 1, 2 Central

  3. Total...................................................................

    Energy Information Administration (EIA) (indexed site)

    15.2 7.8 1.0 1.2 3.3 1.9 For Two Housing Units............................. 0.9 Q N Q 0.6 N Heat Pump.................................................. 9.2 7.4 0.3 Q 0.7 0.5 Portable Electric Heater............................... 1.6 0.8 Q Q Q 0.3 Other Equipment......................................... 1.9 0.7 Q Q 0.7 Q Fuel Oil........................................................... 7.7 5.5 0.4 0.8 0.9 0.2 Steam or Hot Water System........................ 4.7 2.9 Q 0.7 0.8 N For One Housing

  4. Total...................................................................

    Energy Information Administration (EIA) (indexed site)

    Air-Conditioning Equipment 1, 2 Central System............................................... 65.9 47.5 4.0 2.8 7.9 3.7 Without a Heat Pump.................................. 53.5 37.8 3.4 2.2 7.0 3.1 With a Heat Pump....................................... 12.3 9.7 0.6 0.5 1.0 0.6 Window/Wall Units.......................................... 28.9 14.9 2.3 3.5 6.0 2.1 1 Unit........................................................... 14.5 6.6 1.0 1.6 4.2 1.2 2

  5. Total...................................................................

    Energy Information Administration (EIA) (indexed site)

    Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 47.5 4.0 2.8 7.9 3.7 Without a Heat Pump.................................. 53.5 37.8 3.4 2.2 7.0 3.1 With a Heat Pump....................................... 12.3 9.7 0.6 0.5 1.0 0.6 Window/Wall Units........................................ 28.9 14.9 2.3 3.5 6.0 2.1 1 Unit........................................................... 14.5 6.6 1.0 1.6 4.2 1.2 2

  6. Total....................................................................

    Energy Information Administration (EIA) (indexed site)

    14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Household Size 1 Person.......................................................... 30.0 4.6 2.5 3.7 3.2 5.4 5.5 3.7 1.6 2 Persons......................................................... 34.8 4.3 1.9 4.4 4.1 5.9 5.3 5.5 3.4 3 Persons......................................................... 18.4 2.5 1.3 1.7 1.9 2.9 3.5 2.8 1.6 4 Persons......................................................... 15.9 1.9 0.8 1.5 1.6 3.0 2.5 3.1 1.4 5

  7. Total.......................................................................

    Energy Information Administration (EIA) (indexed site)

    0.6 15.1 5.5 Personal Computers Do Not Use a Personal Computer ................... 35.5 6.9 5.3 1.6 Use a Personal Computer................................ 75.6 13.7 9.8 3.9 Number of Desktop PCs 1.................................................................. 50.3 9.3 6.8 2.5 2.................................................................. 16.2 2.9 1.9 1.0 3 or More..................................................... 9.0 1.5 1.1 0.4 Number of Laptop PCs

  8. Total.......................................................................

    Energy Information Administration (EIA) (indexed site)

    5.6 17.7 7.9 Personal Computers Do Not Use a Personal Computer ................... 35.5 8.1 5.6 2.5 Use a Personal Computer................................ 75.6 17.5 12.1 5.4 Number of Desktop PCs 1.................................................................. 50.3 11.9 8.4 3.4 2.................................................................. 16.2 3.5 2.2 1.3 3 or More..................................................... 9.0 2.1 1.5 0.6 Number of Laptop PCs

  9. Total.......................................................................

    Energy Information Administration (EIA) (indexed site)

    4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer ................... 35.5 6.4 2.2 4.2 Use a Personal Computer................................ 75.6 17.8 5.3 12.5 Number of Desktop PCs 1.................................................................. 50.3 11.0 3.4 7.6 2.................................................................. 16.2 4.4 1.3 3.1 3 or More..................................................... 9.0 2.5 0.7 1.8 Number of Laptop PCs

  10. Total........................................................................

    Energy Information Administration (EIA) (indexed site)

    25.6 40.7 24.2 Do Not Have Space Heating Equipment............... 1.2 Q Q Q 0.7 Have Main Space Heating Equipment.................. 109.8 20.5 25.6 40.3 23.4 Use Main Space Heating Equipment.................... 109.1 20.5 25.6 40.1 22.9 Have Equipment But Do Not Use It...................... 0.8 N N Q 0.6 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 11.4 18.4 13.6 14.7 Central Warm-Air Furnace................................ 44.7 6.1

  11. Total........................................................................

    Energy Information Administration (EIA) (indexed site)

    5.6 17.7 7.9 Do Not Have Space Heating Equipment............... 1.2 Q Q N Have Main Space Heating Equipment.................. 109.8 25.6 17.7 7.9 Use Main Space Heating Equipment.................... 109.1 25.6 17.7 7.9 Have Equipment But Do Not Use It...................... 0.8 N N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 18.4 13.1 5.3 Central Warm-Air Furnace................................ 44.7 16.2 11.6 4.7 For One Housing

  12. Total........................................................................

    Energy Information Administration (EIA) (indexed site)

    0.7 21.7 6.9 12.1 Do Not Have Space Heating Equipment............... 1.2 Q Q N Q Have Main Space Heating Equipment.................. 109.8 40.3 21.4 6.9 12.0 Use Main Space Heating Equipment.................... 109.1 40.1 21.2 6.9 12.0 Have Equipment But Do Not Use It...................... 0.8 Q Q N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 13.6 5.6 2.3 5.7 Central Warm-Air Furnace................................ 44.7 11.0 4.4

  13. Total........................................................................

    Energy Information Administration (EIA) (indexed site)

    7.1 7.0 8.0 12.1 Do Not Have Space Heating Equipment............... 1.2 Q Q Q 0.2 Have Main Space Heating Equipment.................. 109.8 7.1 6.8 7.9 11.9 Use Main Space Heating Equipment.................... 109.1 7.1 6.6 7.9 11.4 Have Equipment But Do Not Use It...................... 0.8 N Q N 0.5 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 3.8 0.4 3.8 8.4 Central Warm-Air Furnace................................ 44.7 1.8 Q 3.1 6.0

  14. Total...........................................................................

    Energy Information Administration (EIA) (indexed site)

    0.6 15.1 5.5 Do Not Have Cooling Equipment............................. 17.8 4.0 2.4 1.7 Have Cooling Equipment.......................................... 93.3 16.5 12.8 3.8 Use Cooling Equipment........................................... 91.4 16.3 12.6 3.7 Have Equipment But Do Not Use it.......................... 1.9 0.3 Q Q Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 6.0 5.2 0.8 Without a Heat

  15. Total...........................................................................

    Energy Information Administration (EIA) (indexed site)

    5.6 17.7 7.9 Do Not Have Cooling Equipment............................. 17.8 2.1 1.8 0.3 Have Cooling Equipment.......................................... 93.3 23.5 16.0 7.5 Use Cooling Equipment........................................... 91.4 23.4 15.9 7.5 Have Equipment But Do Not Use it.......................... 1.9 Q Q Q Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 17.3 11.3 6.0 Without a Heat

  16. Total...........................................................................

    Energy Information Administration (EIA) (indexed site)

    4.2 7.6 16.6 Do Not Have Cooling Equipment............................. 17.8 10.3 3.1 7.3 Have Cooling Equipment.......................................... 93.3 13.9 4.5 9.4 Use Cooling Equipment........................................... 91.4 12.9 4.3 8.5 Have Equipment But Do Not Use it.......................... 1.9 1.0 Q 0.8 Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 10.5 3.9 6.5 Without a Heat

  17. Total.............................................................................

    Energy Information Administration (EIA) (indexed site)

    Do Not Have Cooling Equipment............................... 17.8 4.0 2.1 1.4 10.3 Have Cooling Equipment............................................ 93.3 16.5 23.5 39.3 13.9 Use Cooling Equipment............................................. 91.4 16.3 23.4 38.9 12.9 Have Equipment But Do Not Use it............................ 1.9 0.3 Q 0.5 1.0 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 6.0 17.3 32.1 10.5 Without a Heat

  18. Total.............................................................................

    Energy Information Administration (EIA) (indexed site)

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 1.2 1.0 0.2 2 Times A Day...................................................... 24.6 4.0 2.7 1.2 Once a Day........................................................... 42.3 7.9 5.4 2.5 A Few Times Each Week...................................... 27.2 6.0 4.8 1.2 About Once a Week.............................................. 3.9 0.6 0.5 Q Less Than Once a

  19. Total.............................................................................

    Energy Information Administration (EIA) (indexed site)

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 1.4 1.0 0.4 2 Times A Day...................................................... 24.6 5.8 3.5 2.3 Once a Day........................................................... 42.3 10.7 7.8 2.9 A Few Times Each Week...................................... 27.2 5.6 4.0 1.6 About Once a Week.............................................. 3.9 0.9 0.6 0.3 Less Than Once a

  20. Total.............................................................................

    Energy Information Administration (EIA) (indexed site)

    Do Not Have Cooling Equipment............................... 17.8 2.1 1.8 0.3 Have Cooling Equipment............................................ 93.3 23.5 16.0 7.5 Use Cooling Equipment............................................. 91.4 23.4 15.9 7.5 Have Equipment But Do Not Use it............................ 1.9 Q Q Q Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 17.3 11.3 6.0 Without a Heat

  1. Total.............................................................................

    Energy Information Administration (EIA) (indexed site)

    Do Not Have Cooling Equipment............................... 17.8 1.4 0.8 0.2 0.3 Have Cooling Equipment............................................ 93.3 39.3 20.9 6.7 11.8 Use Cooling Equipment............................................. 91.4 38.9 20.7 6.6 11.7 Have Equipment But Do Not Use it............................ 1.9 0.5 Q Q Q Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 32.1 17.6 5.2 9.3 Without a Heat

  2. Total.............................................................................

    Energy Information Administration (EIA) (indexed site)

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 2.6 0.7 1.9 2 Times A Day...................................................... 24.6 6.6 2.0 4.6 Once a Day........................................................... 42.3 8.8 2.9 5.8 A Few Times Each Week...................................... 27.2 4.7 1.5 3.1 About Once a Week.............................................. 3.9 0.7 Q 0.6 Less Than Once a

  3. Total.............................................................................

    Energy Information Administration (EIA) (indexed site)

    Do Not Have Cooling Equipment............................... 17.8 10.3 3.1 7.3 Have Cooling Equipment............................................ 93.3 13.9 4.5 9.4 Use Cooling Equipment............................................. 91.4 12.9 4.3 8.5 Have Equipment But Do Not Use it............................ 1.9 1.0 Q 0.8 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 10.5 3.9 6.5 Without a Heat

  4. Total.............................................................................

    Energy Information Administration (EIA) (indexed site)

    Do Not Have Cooling Equipment............................... 17.8 8.5 2.7 2.6 4.0 Have Cooling Equipment............................................ 93.3 38.6 16.2 20.1 18.4 Use Cooling Equipment............................................. 91.4 37.8 15.9 19.8 18.0 Have Equipment But Do Not Use it............................ 1.9 0.9 0.3 0.3 0.4 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 25.8 10.9 16.6 12.5 Without a Heat

  5. Total..............................................................................

    Energy Information Administration (EIA) (indexed site)

    20.6 25.6 40.7 24.2 Do Not Have Cooling Equipment................................ 17.8 4.0 2.1 1.4 10.3 Have Cooling Equipment............................................. 93.3 16.5 23.5 39.3 13.9 Use Cooling Equipment.............................................. 91.4 16.3 23.4 38.9 12.9 Have Equipment But Do Not Use it............................. 1.9 0.3 Q 0.5 1.0 Air-Conditioning Equipment 1, 2 Central System........................................................... 65.9 6.0 17.3 32.1 10.5

  6. Total..............................................................................

    Energy Information Administration (EIA) (indexed site)

    0.7 21.7 6.9 12.1 Do Not Have Cooling Equipment................................ 17.8 1.4 0.8 0.2 0.3 Have Cooling Equipment............................................. 93.3 39.3 20.9 6.7 11.8 Use Cooling Equipment.............................................. 91.4 38.9 20.7 6.6 11.7 Have Equipment But Do Not Use it............................. 1.9 0.5 Q Q Q Air-Conditioning Equipment 1, 2 Central System........................................................... 65.9 32.1 17.6 5.2 9.3 Without a

  7. Total..............................................................................

    Energy Information Administration (EIA) (indexed site)

    111.1 7.1 7.0 8.0 12.1 Personal Computers Do Not Use a Personal Computer .......................... 35.5 3.0 2.0 2.7 3.1 Use a Personal Computer....................................... 75.6 4.2 5.0 5.3 9.0 Number of Desktop PCs 1......................................................................... 50.3 3.1 3.4 3.4 5.4 2......................................................................... 16.2 0.7 1.1 1.2 2.2 3 or More............................................................ 9.0 0.3

  8. Total..............................................................................

    Energy Information Administration (EIA) (indexed site)

    7.1 19.0 22.7 22.3 Do Not Have Cooling Equipment................................ 17.8 8.5 2.7 2.6 4.0 Have Cooling Equipment............................................. 93.3 38.6 16.2 20.1 18.4 Use Cooling Equipment.............................................. 91.4 37.8 15.9 19.8 18.0 Have Equipment But Do Not Use it............................. 1.9 0.9 0.3 0.3 0.4 Air-Conditioning Equipment 1, 2 Central System........................................................... 65.9 25.8 10.9 16.6 12.5

  9. Total.................................................................................

    Energy Information Administration (EIA) (indexed site)

    7.1 7.0 8.0 12.1 Do Not Have Cooling Equipment................................... 17.8 1.8 Q Q 4.9 Have Cooling Equipment................................................ 93.3 5.3 7.0 7.8 7.2 Use Cooling Equipment................................................. 91.4 5.3 7.0 7.7 6.6 Have Equipment But Do Not Use it............................... 1.9 Q N Q 0.6 Air-Conditioning Equipment 1, 2 Central System.............................................................. 65.9 1.1 6.4 6.4 5.4 Without a

  10. Total....................................................................................

    Energy Information Administration (EIA) (indexed site)

    25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer.................................. 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer.............................................. 75.6 13.7 17.5 26.6 17.8 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 10.4 14.1 20.5 13.7 Laptop Model............................................................. 16.9 3.3 3.4 6.1 4.1 Hours Turned on Per Week Less than 2

  11. Total....................................................................................

    Energy Information Administration (EIA) (indexed site)

    5.6 17.7 7.9 Personal Computers Do Not Use a Personal Computer.................................. 35.5 8.1 5.6 2.5 Use a Personal Computer.............................................. 75.6 17.5 12.1 5.4 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 14.1 10.0 4.0 Laptop Model............................................................. 16.9 3.4 2.1 1.3 Hours Turned on Per Week Less than 2

  12. Total....................................................................................

    Energy Information Administration (EIA) (indexed site)

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day................................................. 8.2 3.0 1.6 0.3 1.1 2 Times A Day.............................................................. 24.6 8.3 4.2 1.3 2.7 Once a Day................................................................... 42.3 15.0 8.1 2.7 4.2 A Few Times Each Week............................................. 27.2 10.9 6.0 1.8 3.1 About Once a Week..................................................... 3.9

  13. Total....................................................................................

    Energy Information Administration (EIA) (indexed site)

    Personal Computers Do Not Use a Personal Computer.................................. 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer.............................................. 75.6 26.6 14.5 4.1 7.9 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 20.5 11.0 3.4 6.1 Laptop Model............................................................. 16.9 6.1 3.5 0.7 1.9 Hours Turned on Per Week Less than 2

  14. Total....................................................................................

    Energy Information Administration (EIA) (indexed site)

    4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer.................................. 35.5 6.4 2.2 4.2 Use a Personal Computer.............................................. 75.6 17.8 5.3 12.5 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 13.7 4.2 9.5 Laptop Model............................................................. 16.9 4.1 1.1 3.0 Hours Turned on Per Week Less than 2

  15. Total....................................................................................

    Energy Information Administration (EIA) (indexed site)

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day................................................. 8.2 3.7 1.6 1.4 1.5 2 Times A Day.............................................................. 24.6 10.8 4.1 4.3 5.5 Once a Day................................................................... 42.3 17.0 7.2 8.7 9.3 A Few Times Each Week............................................. 27.2 11.4 4.7 6.4 4.8 About Once a Week.....................................................

  16. Total....................................................................................

    Energy Information Administration (EIA) (indexed site)

    111.1 47.1 19.0 22.7 22.3 Personal Computers Do Not Use a Personal Computer.................................. 35.5 16.9 6.5 4.6 7.6 Use a Personal Computer.............................................. 75.6 30.3 12.5 18.1 14.7 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 22.9 9.8 14.1 11.9 Laptop Model............................................................. 16.9 7.4 2.7 4.0 2.9 Hours Turned on Per Week Less than 2

  17. Total.........................................................................................

    Energy Information Administration (EIA) (indexed site)

    ..... 111.1 7.1 7.0 8.0 12.1 Personal Computers Do Not Use a Personal Computer...................................... 35.5 3.0 2.0 2.7 3.1 Use a Personal Computer.................................................. 75.6 4.2 5.0 5.3 9.0 Most-Used Personal Computer Type of PC Desk-top Model............................................................. 58.6 3.2 3.9 4.0 6.7 Laptop Model................................................................. 16.9 1.0 1.1 1.3 2.4 Hours Turned on Per Week Less

  18. ARM - Measurement - Shortwave spectral total downwelling irradiance

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    total downwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave spectral total downwelling irradiance The rate at which radiant energy, at specrally-resolved wavelengths between 0.4 and 4 {mu}m, is being emitted upwards and downwards into a radiation field and transferred across a surface area (real or imaginary) in a hemisphere of directions. Categories Radiometric Instruments

  19. Energy

    Annual Energy Outlook

    M onthly Energy Re< view Ila A a m 0 II 8 IIIW *g U In this issue: New data on nuclear electricity in Eastern Europe (Table 10.4) 9'Ij a - Ordering Information This publication...

  20. U.S. Energy Information Administration | State Energy Data 2014...

    Gasoline and Diesel Fuel Update

    LG liquefied petroleum gases LO electrical system energy losses LU lubricants MB ... energy TN total net energy (net of electrical system energy losses) UO unfinished ...

  1. " Level: National Data and Regional Totals;"

    Energy Information Administration (EIA) (indexed site)

    2 Capability to Switch Natural Gas to Alternative Energy Sources, 2002;" " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Billion Cubic Feet." ,,"Natural Gas",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke",,"RSE" "NAICS"," ","Total","

  2. Renewable Energy Technology Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Renewable Energy Technology Basics Renewable Energy Technology Basics Renewable energy technologies produce sustainable, clean energy from sources such as the sun, the wind, plants, and water. According to the Energy Information Administration, in 2007, renewable sources of energy accounted for about 7% of total energy consumption and 9.4% of total electricity generation in the United States. Renewable energy technologies have the potential to strengthen our nation's energy security, improve

  3. ARM - Measurement - Shortwave narrowband total downwelling irradiance

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    downwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave narrowband total downwelling irradiance The rate at which radiant energy, in narrow bands of wavelengths shorter than approximately 4 {mu}m, passes through a horizontal unit area in a downward direction. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following

  4. ARM - Measurement - Shortwave narrowband total upwelling irradiance

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    upwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave narrowband total upwelling irradiance The rate at which radiant energy, in narrow bands of wavelengths shorter than approximately 4 {mu}m, passes through a horizontal unit area in an upward direction. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments.

  5. Annual Energy Review 1999

    SciTech Connect

    Seiferlein, Katherine E.

    2000-07-01

    A generation ago the Ford Foundation convened a group of experts to explore and assess the Nation’s energy future, and published their conclusions in A Time To Choose: America’s Energy Future (Cambridge, MA: Ballinger, 1974). The Energy Policy Project developed scenarios of U.S. potential energy use in 1985 and 2000. Now, with 1985 well behind us and 2000 nearly on the record books, it may be of interest to take a look back to see what actually happened and consider what it means for our future. The study group sketched three primary scenarios with differing assumptions about the growth of energy use. The Historical Growth scenario assumed that U.S. energy consumption would continue to expand by 3.4 percent per year, the average rate from 1950 to 1970. This scenario assumed no intentional efforts to change the pattern of consumption, only efforts to encourage development of our energy supply. The Technical Fix scenario anticipated a “conscious national effort to use energy more efficiently through engineering know-how." The Zero Energy Growth scenario, while not clamping down on the economy or calling for austerity, incorporated the Technical Fix efficiencies plus additional efficiencies. This third path anticipated that economic growth would depend less on energy-intensive industries and more on those that require less energy, i.e., the service sector. In 2000, total energy consumption was projected to be 187 quadrillion British thermal units (Btu) in the Historical Growth case, 124 quadrillion Btu in the Technical Fix case, and 100 quadrillion Btu in the Zero Energy Growth case. The Annual Energy Review 1999 reports a preliminary total consumption for 1999 of 97 quadrillion Btu (see Table 1.1), and the Energy Information Administration’s Short-Term Energy Outlook (April 2000) forecasts total energy consumption of 98 quadrillion Btu in 2000. What energy consumption path did the United States actually travel to get from 1974, when the scenarios were drawn

  6. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook

    5A. Fuel Oil Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003 Total Fuel Oil Consumption (million gallons) Total Floorspace of Buildings Using...

  7. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update

    2A. Natural Gas Consumption and Conditional Energy Intensity by Year Constructed for All Buildings, 2003 Total Natural Gas Consumption (billion cubic feet) Total Floorspace of...

  8. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update

    5A. Natural Gas Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003 Total Natural Gas Consumption (billion cubic feet) Total Floorspace of...

  9. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook

    0A. Electricity Consumption and Conditional Energy Intensity by Climate Zonea for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings...

  10. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook

    0A. Natural Gas Consumption and Conditional Energy Intensity by Climate Zonea for All Buildings, 2003 Total Natural Gas Consumption (billion cubic feet) Total Floorspace of...

  11. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update

    8A. Natural Gas Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 2 Total Natural Gas Consumption (billion cubic feet) Total Floorspace...

  12. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook

    9A. Natural Gas Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 3 Total Natural Gas Consumption (billion cubic feet) Total Floorspace...

  13. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook

    9A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 3 Total Electricity Consumption (billion kWh) Total Floorspace of...

  14. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook

    2A. Electricity Consumption and Conditional Energy Intensity by Year Constructed for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings...

  15. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update

    8A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 2 Total Electricity Consumption (billion kWh) Total Floorspace of...

  16. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook

    5A. Electricity Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings...

  17. American coal imports 2015

    SciTech Connect

    Frank Kolojeski

    2007-09-15

    As 2007 ends, the US coal industry passes two major milestones - the ending of the Synfuel tax break, affecting over 100M st annually, and the imposition of tighter and much more expensive safety measures, particularly in deep mines. Both of these issues, arriving at a time of wretched steam coal price levels, promise to result in a major shake up in the Central Appalachian mining sector. The report utilizes a microeconomic regional approach to determine whether either of these two schools of thought have any validity. Transport, infrastructure, competing fuels and regional issues are examined in detail and this forecasts estimates coal demand and imports on a region by region basis for the years 2010 and 2015. Some of the major highlights of the forecast are: Import growth will be driven by steam coal demand in the eastern and southern US; Transport will continue to be the key driver - we believe that inland rail rates will deter imports from being railed far inland and that the great majority of imports will be delivered directly by vessel, barge or truck to end users; Colombian coal will be the overwhelmingly dominant supply source and possesses a costs structure to enable it to compete with US-produced coal in any market conditions; Most of the growth will come from existing power plants - increasing capacity utilization at existing import facilities and other plants making investments to add imports to the supply portfolio - the growth is not dependent upon a lot of new coal fired capacity being built. Contents of the report are: Key US market dynamics; International supply dynamics; Structure of the US coal import market; and Geographic analysis.

  18. Determination of Total Solids in Biomass and Total Dissolved...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... The published moisture loss on drying for sodium tartrate is 15.62% (84.38% total solids). 14.6 Sample size: Determined by sample matrix. 14.7 Sample storage: Samples should be ...

  19. EIS-0508: Downeast LNG Import-Export Project, Robbinston, Maine...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    8: Downeast LNG Import-Export Project, Robbinston, Maine EIS-0508: Downeast LNG Import-Export Project, Robbinston, Maine SUMMARY The Federal Energy Regulatory Commission (FERC) is ...

  20. Methane Hydrate R&D | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    R&D Methane Hydrate R&D Natural gas is an important energy resource for the United States, providing nearly one-quarter of total energy use. The Department of Energy's Office of Fossil Energy has played a major role in developing technologies to help tap new, unconventional sources of natural gas. Fossil Energy Research Benefits - Methane Hydrate (1.01 MB) More Documents & Publications Idaho Operations AMWTP Fact Sheet Greenpower Trap Mufflerl System CERTIFIED REALTY SPECIALIST