National Library of Energy BETA

Sample records for total distillate fuel

  1. Total Adjusted Sales of Distillate Fuel Oil

    Gasoline and Diesel Fuel Update

    End Use: Total Residential Commercial Industrial Oil Company Farm Electric Power Railroad Vessel Bunkering On-Highway Military Off-Highway All Other Period: Annual Download Series ...

  2. Total Sales of Distillate Fuel Oil

    Energy Information Administration (EIA) (indexed site)

    End Use: Total Residential Commercial Industrial Oil Company Farm Electric Power Railroad Vessel Bunkering On-Highway Military Off-Highway All Other Period: Annual Download Series ...

  3. "Table A2. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel"

    Energy Information Administration (EIA) (indexed site)

    . Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel" " Oil for Selected Purposes by Census Region, Industry Group, and Selected" " Industries, 1991" " (Estimates in Barrels per Day) " ,,,,," Input for Heat,",,," Primary" " ",," Consumption for All Purposes",,,"Power, and Generation of Electricity",,," Consumption for Nonfuel Purposes ",,,"RSE" "SIC",,"

  4. Distillate Fuel Oil Sales for Residential Use

    Energy Information Administration (EIA) (indexed site)

    End Use/ Product: Residential - Distillate Fuel Oil Residential - No. 1 Residential - No. 2 Residential - Kerosene Commercial - Distillate Fuel Oil Commercial - No. 1 Distillate Commercial - No. 2 Distillate Commercial - No. 2 Fuel Oil Commercial - Ultra Low Sulfur Diesel Commercial - Low Sulfur Diesel Commercial - High Sulfur Diesel Commercial - No. 4 Fuel Oil Commercial - Residual Fuel Oil Commercial - Kerosene Industrial - Distillate Fuel Oil Industrial - No. 1 Distillate Industrial - No. 2

  5. Adjusted Distillate Fuel Oil Sales for Residential Use

    Energy Information Administration (EIA) (indexed site)

    End Use Product: Residential - Distillate Fuel Oil Residential - No. 1 Residential - No. 2 Residential - Kerosene Commercial - Distillate Fuel Oil Commercial - No. 1 Distillate ...

  6. The Influence of Molecular Structure of Distillate Fuels on HFRR...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    The Influence of Molecular Structure of Distillate Fuels on HFRR Lubricity The Influence of Molecular Structure of Distillate Fuels on HFRR Lubricity Presentation given at 2007 ...

  7. ,"Total Fuel Oil Expenditures

    Energy Information Administration (EIA) (indexed site)

    . Fuel Oil Expenditures by Census Region for Non-Mall Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per...

  8. ,"Total Fuel Oil Consumption

    Energy Information Administration (EIA) (indexed site)

    0. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for Non-Mall Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  9. ,"Total Fuel Oil Expenditures

    Energy Information Administration (EIA) (indexed site)

    4. Fuel Oil Expenditures by Census Region, 1999" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per Square Foot"...

  10. ,"Total Fuel Oil Expenditures

    Energy Information Administration (EIA) (indexed site)

    A. Fuel Oil Expenditures by Census Region for All Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per...

  11. ,"Total Fuel Oil Consumption

    Energy Information Administration (EIA) (indexed site)

    A. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  12. Table 10.24 Reasons that Made Distillate Fuel Oil Unswitchable...

    Annual Energy Outlook

    4 Reasons that Made Distillate Fuel Oil Unswitchable, 2006; Level: National Data; Row: ... Combinations of NAICS Distillate Fuel Oil Unswitchable Distillate Capable of ...

  13. Prime Supplier Sales Volumes of Distillate Fuel Oils and Kerosene...

    Gasoline and Diesel Fuel Update

    Marketing Annual 1997 401 Table 50. Prime Supplier Sales Volumes of Distillate Fuel Oils and Kerosene by PAD District and State (Thousand Gallons per Day) - Continued...

  14. Table 50. Prime Supplier Sales Volumes of Distillate Fuel Oils...

    Energy Information Administration (EIA) (indexed site)

    Marketing Annual 1999 359 Table 50. Prime Supplier Sales Volumes of Distillate Fuel Oils and Kerosene by PAD District and State (Thousand Gallons per Day) - Continued...

  15. Distillate Fuel Oil Assessment for Winter 1996-1997

    Reports and Publications

    1997-01-01

    This article describes findings of an analysis of the current low level of distillate stocks which are available to help meet the demand for heating fuel this winter, and presents a summary of the Energy Information Administration's distillate fuel oil outlook for the current heating season under two weather scenarios.

  16. Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...

    Annual Energy Outlook

    Petroleum Marketing Annual 1999 295 Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil Volumes by PAD District and State (Thousand Gallons per Day) - Continued...

  17. East Coast (PADD 1) Distillate Fuel Oil Imports

    Gasoline and Diesel Fuel Update

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 942 1,260 1,471 1,990 2000's 2,114 1,896 1,914 1,969 2,258 2,132 2,118 1,955 1,695 1,237 2010's 1,471 2,114 2,970 2,608 3,801 4,282

    Other Renewable Fuels Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending

  18. ,,,,"Reasons that Made Distillate Fuel Oil Unswitchable"

    Energy Information Administration (EIA) (indexed site)

    4 Relative Standard Errors for Table 10.24;" " Unit: Percents." ,,,,"Reasons that Made Distillate Fuel Oil Unswitchable" " "," ",,,,,,,,,,,,," " ,,"Total Amount of ","Total Amount of","Equipment is Not","Switching","Unavailable ",,"Long-Term","Unavailable",,"Combinations of " "NAICS"," ","Distillate Fuel Oil","Unswitchable

  19. Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...

    Annual Energy Outlook

    839.2 135.0 1,251.9 See footnotes at end of table. 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil Volumes by PAD District and State Energy Information Administration ...

  20. Distillate Fuel Oil Days of Supply

    Gasoline and Diesel Fuel Update

    Changes to proved reserves of U.S. natural gas by source, 2013-14 trillion cubic feet Year-end 2013 2014 Year-end 2014 proved 2014 revisions and 2014 proved Source of natural gas reserves Discoveries other changes production reserves Coalbed methane 12.4 0.4 4.3 -1.4 15.7 Shale 159.1 37.8 16.2 -13.4 199.7 Other U.S. natural gas Lower 48 onshore 166.0 11.4 -8.4 -11.7 157.2 Lower 48 offshore 9.1 0.8 0.8 -1.3 9.4 Alaska 7.4 0.1 -0.4 -0.3 6.8 U.S. TOTAL 354.0 50.5 12.4 -28.1 388.8 Note: Lower 48

  1. Distillate Fuel Oil Refinery, Bulk Terminal, and Natural Gas Plant Stocks

    Gasoline and Diesel Fuel Update

    Product: Finished Motor Gasoline Reformulated Gasoline Conventional Gasoline Motor Gasoline Blending Comp. (MGBC) MGBC - Reformulated MGBC - Conventional Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., Greater than 15 to 500 ppm Distillate F.O., Greater 500 ppm Residual Fuel Oil Propane/Propylene Period-Units: Monthly-Thousand Barrels Annual-Thousand Barrels Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources &

  2. ,,"Distillate Fuel Oil",,,"Alternative Energy Sources(b)"

    Energy Information Administration (EIA) (indexed site)

    ...med(c)","Switchable","Switchable","Receipts(d)","Gas","Fuel Oil","Coal","LPG","Breeze","Other(e)" ,,"Total United States" 311,"Food",20,42,22,70,30,52,0,58,0,70 311221," Wet Corn ...

  3. ,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)"

    Energy Information Administration (EIA) (indexed site)

    ...med(d)","Switchable","Switchable","Receipts(e)","Gas","Fuel Oil","Coal","LPG","Breeze","Other(f)" ,,"Total United States" 311,"Food",8,15,9,21,19,18,0,27,0,41 311221," Wet Corn ...

  4. ,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)"

    Energy Information Administration (EIA) (indexed site)

    ...med(d)","Switchable","Switchable","Receipts(e)","Gas","Fuel Oil","Coal","LPG","Breeze","Other(f)" ,,"Total United States" 311,"Food",9,24,10.6,52.6,26.8,32,"X",28.4,"X",32.7 3112," ...

  5. U.S. Distillate Fuel Oil and Kerosene Sales by End Use

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Distillate Fuel Oil and Kerosene Sales by End Use (Thousand Gallons) Area: U.S. East Coast ... Residential Distillate Fuel Oil 4,103,881 3,930,517 3,625,747 3,473,310 3,536,111 ...

  6. ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy...

    Energy Information Administration (EIA) (indexed site)

    A. Fuel Oil Consumption (Btu) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy Intensity (thousand Btu...

  7. Refiner/marketer targets production of transportation fuels and distillates

    SciTech Connect

    Thompson, J.E.

    1997-01-01

    Citgo Petroleum Corp., the wholly owned subsidiary of Petroleos de Venezuela, S.A. (PDVSA), the Venezuelan national oil company, owns two gasoline producing refineries, a 305,000-b/d system in Lake Charles, La., and a 130,000-b/d facility in Corpus Christi, Texas. Each is considered a deep conversion facility capable of converting heavy, sour crudes into a high percentage of transportation fuels and distillates. Two smaller refineries, one in Paulsboro, N.J., and one in Savannah, GA., have the capacity to process 40,000 b/d and 28,000 b/d of crude, respectively, for asphalt products. In the past two years, Citgo`s light oils refineries operated safely and reliably with a minimum of unscheduled shutdowns. An ongoing emphasis to increase reliability has resulted in extended run lengths at the refineries. Citgo has invested $314 million at its facilities in 1995, much of this toward environmental and regulatory projects, such as the new waste water treatment unit at the Lake Charles refinery. Over the next few years, Citgo expects to complete $1.5 billion in capital spending for major processing units such as a 60,000-b/d FCC feed hydrotreater unit at the Lake Charles refinery and crude expansion at the Corpus Christi refinery. Product exchanges and expanded transport agreements are allowing Citgo to extend its marketing reach.

  8. ,"U.S. Distillate Fuel Oil and Kerosene Sales by End Use"

    Energy Information Administration (EIA) (indexed site)

    Distillate Fuel Oil and Kerosene Sales by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  9. "Characteristic(a)","Total","Electricity(b)","Fuel Oil","Fuel...

    Energy Information Administration (EIA) (indexed site)

    and"," " "Characteristic(a)","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural ... It does not include electricity inputs from onsite" "cogeneration or generation from ...

  10. Composition-explicit distillation curves of aviation fuel JP-8 and a coal-based jet fuel

    SciTech Connect

    Beverly L. Smith; Thomas J. Bruno

    2007-09-15

    We have recently introduced several important improvements in the measurement of distillation curves for complex fluids. The modifications to the classical measurement provide for (1) a composition explicit data channel for each distillate fraction (for both qualitative and quantitative analysis); (2) temperature measurements that are true thermodynamic state points; (3) temperature, volume, and pressure measurements of low uncertainty suitable for an equation of state development; (4) consistency with a century of historical data; (5) an assessment of the energy content of each distillate fraction; (6) a trace chemical analysis of each distillate fraction; and (7) a corrosivity assessment of each distillate fraction. The most significant modification is achieved with a new sampling approach that allows precise qualitative as well as quantitative analyses of each fraction, on the fly. We have applied the new method to the measurement of rocket propellant, gasoline, and jet fuels. In this paper, we present the application of the technique to representative batches of the military aviation fuel JP-8, and also to a coal-derived fuel developed as a potential substitute. We present not only the distillation curves but also a chemical characterization of each fraction and discuss the contrasts between the two fluids. 26 refs., 5 figs., 6 tabs.

  11. ,"New Mexico Sales of Distillate Fuel Oil by End Use"

    Energy Information Administration (EIA) (indexed site)

    Sales of Distillate Fuel Oil by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Sales of Distillate Fuel Oil by End Use",13,"Annual",2014,"6/30/1984" ,"Release Date:","12/22/2015" ,"Next Release Date:","Last Week of November 2016" ,"Excel

  12. ,"U.S. Adjusted Sales of Distillate Fuel Oil by End Use"

    Energy Information Administration (EIA) (indexed site)

    Distillate Fuel Oil by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Adjusted Sales of Distillate Fuel Oil by End Use",13,"Annual",2014,"6/30/1984" ,"Release Date:","12/22/2015" ,"Next Release Date:","Last Week of November 2016" ,"Excel File

  13. "Characteristic(a)","Total","Fuel Oil","Fuel Oil(b)","Natural...

    Energy Information Administration (EIA) (indexed site)

    ... oil converted to residual and distillate fuel oils) are excluded." " NFNo applicable ... for any table cell, multiply the cell's" "corresponding RSE column and RSE row factors. ...

  14. "Table A10. Total Consumption of LPG, Distillate Fuel Oil...

    Energy Information Administration (EIA) (indexed site)

    ... Form EIA-846, '1991" "Manufacturing Energy Consumption Survey,' and the Bureau of the Census, Industry" "Division, data files for the '1991 Annual Survey of Manufactures.'

  15. U.S. Adjusted Distillate Fuel Oil and Kerosene Sales by End Use

    Energy Information Administration (EIA) (indexed site)

    Show Data By: End Use Product Area 2009 2010 2011 2012 2013 2014 View History Residential Distillate Fuel Oil 4,328,840 3,897,937 3,713,883 3,223,851 3,714,150 4,041,766 1984-2014 ...

  16. Total Imports of Residual Fuel

    Energy Information Administration (EIA) (indexed site)

    2010 2011 2012 2013 2014 2015 View History U.S. Total 133,646 119,888 93,672 82,173 63,294 69,914 1936-2015 PAD District 1 88,999 79,188 59,594 33,566 30,944 34,524 1981-2015 Connecticut 220 129 1995-2015 Delaware 748 1,704 510 1,604 2,479 1995-2015 Florida 15,713 11,654 10,589 8,331 5,055 7,198 1995-2015 Georgia 5,648 7,668 6,370 4,038 2,037 1,629 1995-2015 Maine 1,304 651 419 75 317 135 1995-2015 Maryland 3,638 1,779 1,238 433 938 589 1995-2015 Massachusetts 123 50 78 542 88 1995-2015 New

  17. Total Imports of Residual Fuel

    Energy Information Administration (EIA) (indexed site)

    Mar-16 Apr-16 May-16 Jun-16 Jul-16 Aug-16 View History U.S. Total 8,596 6,340 4,707 8,092 8,512 8,017 1936-2016 PAD District 1 2,694 1,250 1,327 2,980 2,074 3,566 1981-2016 Connecticut 1995-2015 Delaware 280 231 385 1995-2016 Florida 800 200 531 499 765 1995-2016 Georgia 149 106 1995-2016 Maine 1995-2015 Maryland 84 66 1995-2016 Massachusetts 1995-2015 New Hampshire 1995-2015 New Jersey 1,073 734 355 1,984 399 1,501 1995-2016 New York 210 196 175 1,223 653 1995-2016 North Carolina 1995-2011

  18. ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy...

    Energy Information Administration (EIA) (indexed site)

    in this table do not include enclosed malls and strip malls. In the 1999 CBECS, total fuel oil consumption in malls was not statistically significant. (*)Value rounds to zero...

  19. Fuel-blending stocks from the hydrotreatment of a distillate formed by direct coal liquefaction

    SciTech Connect

    Andile B. Mzinyati

    2007-09-15

    The direct liquefaction of coal in the iron-catalyzed Suplex process was evaluated as a technology complementary to Fischer-Tropsch synthesis. A distinguishing feature of the Suplex process, from other direct liquefaction processes, is the use of a combination of light- and heavy-oil fractions as the slurrying solvent. This results in a product slate with a small residue fraction, a distillate/naphtha mass ratio of 6, and a 65.8 mass % yield of liquid fuel product on a dry, ash-free coal basis. The densities of the resulting naphtha (C{sub 5}-200{sup o}C) and distillate (200-400{sup o}C) fractions from the hydroprocessing of the straight-run Suplex distillate fraction were high (0.86 and 1.04 kg/L, respectively). The aromaticity of the distillate fraction was found to be typical of coal liquefaction liquids, at 60-65%, with a Ramsbottom carbon residue content of 0.38 mass %. Hydrotreatment of the distillate fraction under severe conditions (200{sup o}C, 20.3 MPa, and 0.41 g{sub feed} h{sup -1} g{sub catalyst}{sup -1}) with a NiMo/Al{sub 2}O{sub 3} catalyst gave a product with a phenol content of {lt}1 ppm, a nitrogen content {lt}200 ppm, and a sulfur content {lt}25 ppm. The temperature was found to be the main factor affecting diesel fraction selectivity when operating at conditions of WHSV = 0.41 g{sub feed} h{sup -1} g{sub catalyst}{sup -1} and PH{sub 2} = 20.3 MPa, with excessively high temperatures (T {gt} 420{sup o}C) leading to a decrease in diesel selectivity. The fuels produced by the hydroprocessing of the straight-run Suplex distillate fraction have properties that make them desirable as blending components, with the diesel fraction having a cetane number of 48 and a density of 0.90 kg/L. The gasoline fraction was found to have a research octane number (RON) of 66 and (N + 2A) value of 100, making it ideal as a feedstock for catalytic reforming and further blending with Fischer-Tropsch liquids. 44 refs., 9 figs., 12 tabs.

  20. ,"U.S. Adjusted Distillate Fuel Oil and Kerosene Sales by End Use"

    Energy Information Administration (EIA) (indexed site)

    Distillate Fuel Oil and Kerosene Sales by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Residential",4,"Annual",2014,"6/30/1984" ,"Data 2","Commercial",10,"Annual",2014,"6/30/1984" ,"Data

  1. ,"U.S. Distillate Fuel Oil and Kerosene Sales by End Use"

    Energy Information Administration (EIA) (indexed site)

    Distillate Fuel Oil and Kerosene Sales by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Residential",4,"Annual",2014,"6/30/1984" ,"Data 2","Commercial",10,"Annual",2014,"6/30/1984" ,"Data

  2. U.S. Total No. 2 Distillate Prices by Sales Type

    Gasoline and Diesel Fuel Update

    2010 2011 2012 2013 2014 2015 View History No. 2 Distillate Sales to End Users, Average 2.449 - - - - - 1983-2015 Residential 2.798 - - - - - 1978-2015 CommercialInstitutional ...

  3. Cryogenic distillation: a fuel enrichment system for near-term tokamak-type D-T fusion reactors

    SciTech Connect

    Misra, B.; Davis, J.F.

    1980-02-01

    The successful operation and economic viability of deuterium-tritium- (D-T-) fueled tokamak-type commercial power fusion reactors will depend to a large extent on the development of reliable tritium-containment and fuel-recycle systems. Of the many operating steps in the fuel recycle scheme, separation or enrichment of the isotropic species of hydrogen by cryogenic distillation is one of the most important. A parametric investigation was carried out to study the effects of the various operating conditions and the composition of the spent fuel on the degree of separation. A computer program was developed for the design and analysis of a system of interconnected distillation columns for isotopic separation such that the requirements of near-term D-T-fueled reactors are met. The analytical results show that a distillation cascade consisting of four columns is capable of reprocessing spent fuel varying over a wide range of compositions to yield reinjection-grade fuel with essentially unlimited D/T ratio.

  4. Evaluation of Exxon donor solvent full-range distillate as a utility boiler fuel. Final report

    SciTech Connect

    Reese, J.; Folsom, B.; Jones, F.

    1984-03-01

    The use of Exxon Donor Solvent (EDS) as a utility boiler fuel was evaluated at Southern California Edison Company's Highgrove Unit 4, a Combustion Engineering 44.5 net Mw wall-fired boiler. The EDS evaluated was a full range solvent oil produced at the Exxon Coal-Liquefaction Pilot Plant in Baytown, Texas. This evaluation involved modifying the boiler equipment and operating procedures for EDS, and then firing 4500 barrels of EDS in the boiler. The resulting boiler performance and emissions with EDS were compared to those with a blended low-sulfur petroleum distillate similar to No. 4 fuel oil and with natural gas. The boiler was operated over a range of load and excess air conditions during the tests. The potential for NO/sub x/ reduction with a burner out of service (BOOS) was also evaluated. Boiler performance, including excess air requirements, maximum load, thermal efficiency and heat rate efficiency was similar to that with oil. The NO/sub x/ emissions with EDS were about 12 percent higher than with oil. NO/sub x/ reduction with BOOS was about 20 percent with both oil and EDS. EDS use did not result in an increase in particulate emissions. Submicron particulate, however, was increased with EDS. Required equipment modifications at Highgrove primarily involved material compatibility with EDS, fuel system capacity, and the burner nozzles. The use of EDS required the implementation of health and safety procedures due to the adverse health effects that could result from prolonged exposure to the fuel. The results of the evaluation demostrated that EDS can be used in a utility boiler designed for oil with only minor modifications.

  5. Recovery of Navy distillate fuel from reclaimed product. Volume II. Literature review

    SciTech Connect

    Brinkman, D.W.; Whisman, M.L.

    1984-11-01

    In an effort to assist the Navy to better utilize its waste hydrocarbons, NIPER, with support from the US Department of Energy, is conducting research designed to ultimately develop a practical technique for converting Reclaimed Product (RP) into specification Naval Distillate Fuel (F-76). This first phase of the project was focused on reviewing the literature and available information from equipment manufacturers. The literature survey has been carefully culled for methodology applicable to the conversion of RP into diesel fuel suitable for Navy use. Based upon the results of this study, a second phase has been developed and outlined in which experiments will be performed to determine the most practical recycling technologies. It is realized that the final selection of one particular technology may be site-specific due to vast differences in RP volume and available facilities. A final phase, if funded, would involve full-scale testing of one of the recommended techniques at a refueling depot. The Phase I investigations are published in two volumes. Volume 1, Technical Discussion, includes the narrative and Appendices I and II. Appendix III, a detailed Literature Review, includes both a narrative portion and an annotated bibliography containing about 800 references and abstracts. This appendix, because of its volume, has been published separately as Volume 2.

  6. U.S. Total Imports of Residual Fuel

    Gasoline and Diesel Fuel Update

    of Residual Fuel Area: U.S. Total PAD District 1 Connecticut Delaware Florida Georgia Maine Maryland Massachusetts New Hampshire New Jersey New York North Carolina Pennsylvania ...

  7. Evaluation of Biodiesel Fuels from Supercritical Fluid Processing with the Advanced Distillation Curve Method

    Office of Energy Efficiency and Renewable Energy (EERE)

    Supercritical transesterification processing permits efficient fuel system and combustion chamber designs to optimize fuel utilization in diesel engines.,

  8. Total

    Energy Information Administration (EIA) (indexed site)

    Product: Total Crude Oil Liquefied Petroleum Gases PropanePropylene Normal ButaneButylene Other Liquids Oxygenates Fuel Ethanol MTBE Other Oxygenates Biomass-based Diesel Fuel ...

  9. Table 4b. Relative Standard Errors for Total Fuel Oil Consumption...

    Gasoline and Diesel Fuel Update

    4b. Relative Standard Errors for Total Fuel Oil Consumption per Effective Occupied Square Foot, 1992 Building Characteristics All Buildings Using Fuel Oil (thousand) Total Fuel Oil...

  10. Table 4a. Total Fuel Oil Consumption per Effective Occupied Square...

    Annual Energy Outlook

    Table 4a. Total Fuel Oil Consumption per Effective Occupied Square Foot, 1992 Building Characteristics All Buildings Using Fuel Oil (thousand) Total Fuel Oil Consumption (trillion...

  11. Conversion of lpg hydrocarbons to distillate fuels or lubes using integration of lpg dehydrogenation and mogdl

    SciTech Connect

    Chang, C. D.; Penick, J. E.; Socha, R. F.

    1985-09-17

    Disclosed is a method and apparatus for producing distillate and/or lubes which employ integrating catalytic (or thermal) dehydrogenation of paraffins with MOGDL. The process feeds the product from a low temperature propane and/or butane dehydrogenation zone into a first catalytic reactor zone, which operates at low pressure and contains zeolite oligomerization catalysts, where the low molecular weight olefins are reacted to primarily gasoline range materials. These gasoline range materials can then be pressurized to the pressure required for reacting to distillate in a second catalytic reactor zone operating at high pressure and containing a zeolite oligomerization catalyst. The distillate is subsequently sent to a hydrotreating unit and product separation zone to form lubes and other finished products.

  12. Summary and recommendations: Total fuel cycle assessment workshop

    SciTech Connect

    1995-08-01

    This report summarizes the activities of the Total Fuel Cycle Assessment Workshop held in Austin, Texas, during October 6--7, 1994. It also contains the proceedings from that workshop.

  13. Property:RenewableFuelStandard/Total | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Property Edit with form History Facebook icon Twitter icon Property:RenewableFuelStandardTotal Jump to: navigation, search This is a property of type Number. Pages using the...

  14. National Fuel Cell and Hydrogen Energy Overview: Total Energy...

    Energy.gov [DOE] (indexed site)

    Presentation by Sunita Satyapal at the Total Energy USA 2012 meeting in Houston, Texas, on November 27, 2012. National Fuel Cell and Hydrogen Energy Overview (4.73 MB) More ...

  15. Conversion of LPG hydrocarbons to distillate fuels or lubes using integration of LPG dehydrogenation and mogdl

    SciTech Connect

    Chang, C.D.; Penick, J.E.; Socha, R.F.

    1987-07-07

    This patent describes an apparatus for producing distillates of lubes from paraffins, which comprise: (a) a dehydrogenation reactor including means for passing a paraffinic feedstock stream into a dehydrogenation zone at conditions of pressure and temperature selected to convert the paraffins to an olefin rich effluent stream comprising at least one of the group consisting of propylene and butylene; (b) a low pressure oligomerization catalytic reactor including means for contacting the olefin rich effluent stream in a low pressure oligomerization catalytic reactor zone with a crystalline zeolite oligomerization catalyst at conditions of pressure and temperature selected to convert olefins to a first reactor effluent stream rich in liquid olefinic gasoline range hydrocarbons; (c) a first means for separating the first reactor effluent stream to form a substantially liquid C/sub 5/+ rich stream and a C/sub 4/- rich stream; (d) means for passing the C/sub 5/+ rich stream to a high pressure oligomerization catalytic reactor zone; (e) a high pressure oligomerization catalytic reactor including means for contacting the substantially liquid C/sub 5/+ rich stream in the high pressure oligomerization catalytic reactor zone with a crystalline zeolite oligomerization catalyst at conditions of temperature and pressure selected to produce a second reactor effluent stream which is rich in distillate; (f) second means for separating the second reactor effluent stream to recover an olefinic gasoline stream and a distillate stream; and (g) a hydrotreating reactor including means for contacting the distillate stream with hydrogen in a hydrotreating unit to produce a hydrotreated distillate stream comprising lube range hydrocarbons.

  16. Conversion of LPG hydrocarbons into distillate fuels using an integral LPG dehydrogenation-MOGD process

    SciTech Connect

    Owen, H.; Zahner, J.C.

    1987-06-23

    This patent describes a process for converting lower paraffinic hydrocarbon feedstock comprising propane and/or butane into heavier hydrocarbons comprising gasoline and distillate, comprising the steps of: feeding the paraffinic feedstock to a dehydrogenation zone under conversion conditions for dehydrogenating at least a portion of the feedstock; recovering a first dehydrogenation gaseous effluent stream comprising propene and/or butene; contacting the first gaseous effluent steam with a liquid lean oil sorbent stream comprising C/sub 5//sup +/ hydrocarbons under sorption conditions to produce a C/sub 3//sup +/ rich liquid absorber stream and a light gas stream; sequentially pressurizing, heating and passing the C/sub 3//sup +/ rich liquid absorber stream to an oligomerization reactor zone at elevated temperature and pressure; contacting the C/sub 3//sup +/ rich stream with oligomerization catalyst in the oligomerization reactor zone for conversion of at least a portion of lower olefins to heavier hydrocarbons under oligomerization reaction conditions to provide a second reactor effluent stream comprising gasoline and distillate boiling range hydrocarbons; flash separating the second reactor effluent stream into a separator vapor stream comprising a major portion of the hydrocarbons which later form the lean oil stream, and a major portion of the C/sub 4//sup -/ hydrocarbons and a separator liquid stream comprising the gasoline and distillate boiling range materials produced in the oligomerization reactor zone; fractionating the separator liquid stream in a first product debutanizer tower into a first debutanizer overhead vapor stream comprising C/sub 4//sup -/ hydrocarbons and a product debutanizer liquid bottoms stream comprising C/sub 5//sup +/ gasoline and distillate boiling range hydrocarbons.

  17. Alabama Natural Gas % of Total Vehicle Fuel Deliveries (Percent)

    Energy Information Administration (EIA) (indexed site)

    Vehicle Fuel Deliveries (Percent) Alabama Natural Gas % of Total Vehicle Fuel Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.44 0.20 0.15 0.08 0.71 0.57 0.57 2000's 0.57 0.52 0.52 0.52 0.52 0.67 0.47 0.36 0.32 0.29 2010's 0.37 0.64 0.64 0.63 1.07 1.07 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring

  18. A Total Cost of Ownership Model for Solid Oxide Fuel Cells in...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    A Total Cost of Ownership Model for Solid Oxide Fuel Cells in Combined Heat and Power and ... Efficiency and Renewable Energy (EERE) Fuel Cells Technologies Office (FCTO) under ...

  19. A Total Cost of Ownership Model for Low Temperature PEM Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    LBNL-6772E A Total Cost of Ownership Model for Low Temperature PEM Fuel Cells in Combined ... Efficiency and Renewable Energy (EERE) Fuel Cells Technologies Office (FCTO) under ...

  20. Geothermal Energy Market Study on the Atlantic Coastal Plain: Technical Feasibility of use of Eastern Geothermal Energy in Vacuum Distillation of Ethanol Fuel

    SciTech Connect

    1981-04-01

    The DOE is studying availability, economics, and uses of geothermal energy. These studies are being conducted to assure maximum cost-effective use of geothermal resources. The DOE is also aiding development of a viable ethanol fuel industry. One important point of the ethanol program is to encourage use of non-fossil fuels, such as geothermal energy, as process heat to manufacture ethanol. Geothermal waters available in the eastern US tend to be lower in temperature (180 F or less) than those available in the western states (above 250 F). Technically feasible use of eastern geothermal energy for ethanol process heat requires use of technology that lowers ethanol process temperature requirements. Vacuum (subatmospheric) distillation is one such technology. This study, then, addresses technical feasibility of use of geothermal energy to provide process heat to ethanol distillation units operated at vacuum pressures. They conducted this study by performing energy balances on conventional and vacuum ethanol processes of ten million gallons per year size. Energy and temperature requirements for these processes were obtained from the literature or were estimated (for process units or technologies not covered in available literature). Data on available temperature and energy of eastern geothermal resources was obtained from the literature. These data were compared to ethanol process requirements, assuming a 150 F geothermal resource temperature. Conventional ethanol processes require temperatures of 221 F for mash cooking to 240 F for stripping. Fermentation, conducted at 90 F, is exothermic and requires no process heat. All temperature requirements except those for fermentation exceed assumed geothermal temperatures of 150 F. They assumed a 130 millimeter distillation pressure for the vacuum process. It requires temperatures of 221 F for mash cooking and 140 F for distillation. Data indicate lower energy requirements for the vacuum ethanol process (30 million BTUs per

  1. An Evaluation of the Total Cost of Ownership of Fuel Cell-Powered...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    An Evaluation of the Total Cost of Ownership of Fuel Cell- Powered Material Handling ... DE-AC36-08GO28308 An Evaluation of the Total Cost of Ownership of Fuel Cell- Powered ...

  2. A Total Cost of Ownership Model for Solid Oxide Fuel Cells in...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    a total cost of ownership model for emerging applications in stationary fuel cell systems. ... A Total Cost of Ownership Model for Low Temperature PEM Fuel Cells in Combined Heat ...

  3. An Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Handling Equipment | Department of Energy An Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material Handling Equipment An Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material Handling Equipment This report by the National Renewable Energy Laboratory discusses an analysis of the total cost of ownership of fuel cell-powered and traditional battery-powered material handling equipment, including the capital costs of battery and fuel cell systems, the cost of

  4. Fuel Tables.indd

    Gasoline and Diesel Fuel Update

    F8: Distillate Fuel Oil Price and Expenditure Estimates, 2014 State Prices Expenditures ... Where shown, (s) Expenditure value less than 0.05. Notes: Distillate fuel oil estimates ...

  5. Table 8.6a Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Total (All Sectors), 1989-2011 (Sum of Tables 8.6b and 8.6c)

    Energy Information Administration (EIA) (indexed site)

    a Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Total (All Sectors), 1989-2011 (Sum of Tables 8.6b and 8.6c) Year Coal 1 Petroleum Natural Gas 6 Other Gases 7 Biomass Other 10 Distillate Fuel Oil 2 Residual Fuel Oil 3 Other Liquids 4 Petroleum Coke 5 Total 5 Wood 8 Waste 9 Short Tons Barrels Short Tons Barrels Thousand Cubic Feet Billion Btu Billion Btu Billion Btu 1989 16,509,639 1,410,151 16,356,550 353,000 247,409 19,356,746

  6. Environmental Emissions from Energy Technology Systems: The Total Fuel Cycle

    SciTech Connect

    San Martin, Robert L.

    1989-01-01

    This is a summary report that compares emissions during the entire project life cycle for a number of fossil-fueled and renewable electric power systems, including geothermal steam (probably modeled after The Geysers). The life cycle is broken into Fuel Extraction, Construction, and Operation. The only emission covered is carbon dioxide.

  7. Environmental Emissions From Energy Technology Systems: The Total Fuel Cycle

    SciTech Connect

    San Martin, Robert L.

    1989-04-01

    This is a summary report that compares emissions during the entire project life cycle for a number of fossil-fueled and renewable electric power systems, including geothermal steam (probably modeled after The Geysers). The life cycle is broken into Fuel Extraction, Construction, and Operation. The only emission covered is carbon dioxide. (DJE 2005)

  8. "Code(a)","End Use","Total","Electricity(b)","Fuel Oil","Diesel Fuel(c)","Natural Gas(d)","NGL(e)","Coke and Breeze)","Other(f)"

    Energy Information Administration (EIA) (indexed site)

    2 Relative Standard Errors for Table 5.2;" " Unit: Percents." ,,,,,"Distillate" ,,,,,"Fuel Oil",,,"Coal" "NAICS",,,"Net","Residual","and",,"LPG and","(excluding Coal" "Code(a)","End Use","Total","Electricity(b)","Fuel Oil","Diesel Fuel(c)","Natural Gas(d)","NGL(e)","Coke and Breeze)&

  9. Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material Handling Equipment

    SciTech Connect

    Ramsden, T.

    2013-04-01

    This report discusses an analysis of the total cost of ownership of fuel cell-powered and traditional battery-powered material handling equipment (MHE, or more typically 'forklifts'). A number of fuel cell MHE deployments have received funding support from the federal government. Using data from these government co-funded deployments, DOE's National Renewable Energy Laboratory (NREL) has been evaluating the performance of fuel cells in material handling applications. NREL has assessed the total cost of ownership of fuel cell MHE and compared it to the cost of ownership of traditional battery-powered MHE. As part of its cost of ownership assessment, NREL looked at a range of costs associated with MHE operation, including the capital costs of battery and fuel cell systems, the cost of supporting infrastructure, maintenance costs, warehouse space costs, and labor costs. Considering all these costs, NREL found that fuel cell MHE can have a lower overall cost of ownership than comparable battery-powered MHE.

  10. Total

    Gasoline and Diesel Fuel Update

    Fuel Oil, Greater than 500 ppm Sulfur Residual Fuel Oil Lubricants Asphalt and Road Oil Other Products Period: Annual (as of January 1) Download Series History Download ...

  11. Impacts of Increasing Natural Gas Fueled CHP from 20 to 35 Percent of Total

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Electricity Production in Texas, April 2011 | Department of Energy Impacts of Increasing Natural Gas Fueled CHP from 20 to 35 Percent of Total Electricity Production in Texas, April 2011 Impacts of Increasing Natural Gas Fueled CHP from 20 to 35 Percent of Total Electricity Production in Texas, April 2011 This report is an examination of the possible impacts, implications, and practicality of increasing the amount of electrical energy produced from combined heat and power (CHP) facilities

  12. Total Number of Operable Refineries

    Energy Information Administration (EIA) (indexed site)

    Data Series: Total Number of Operable Refineries Number of Operating Refineries Number of Idle Refineries Atmospheric Crude Oil Distillation Operable Capacity (B/CD) Atmospheric Crude Oil Distillation Operating Capacity (B/CD) Atmospheric Crude Oil Distillation Idle Capacity (B/CD) Atmospheric Crude Oil Distillation Operable Capacity (B/SD) Atmospheric Crude Oil Distillation Operating Capacity (B/SD) Atmospheric Crude Oil Distillation Idle Capacity (B/SD) Vacuum Distillation Downstream Charge

  13. Rocky Mountain (PADD 4) Total Crude Oil and Products Imports

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Conventional Gasoline Blend. Comp. Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm ...

  14. "End Use","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural Gas(c)","NGL(d)","Coke and Breeze)","Other(e)"

    Energy Information Administration (EIA) (indexed site)

    6 Relative Standard Errors for Table 5.6;" " Unit: Percents." " "," ",," ","Distillate"," "," ",," " " ",,,,"Fuel Oil",,,"Coal" " "," ","Net","Residual","and",,"LPG and","(excluding Coal"," " "End Use","Total","Electricity(a)","Fuel Oil","Diesel

  15. Catalytic distillation structure

    DOEpatents

    Smith, Jr., Lawrence A.

    1984-01-01

    Catalytic distillation structure for use in reaction distillation columns, a providing reaction sites and distillation structure and consisting of a catalyst component and a resilient component intimately associated therewith. The resilient component has at least about 70 volume % open space and being present with the catalyst component in an amount such that the catalytic distillation structure consist of at least 10 volume % open space.

  16. Stocks of Distillate Fuel Oil

    Energy Information Administration (EIA) (indexed site)

    156,972 155,732 152,378 150,550 148,602 148,912 1982-2016 PADD 1 67,073 66,391 64,764 65,721 64,801 64,939 1990-2016 New England 12,875 12,828 12,753 12,790 13,008 12,791 1990-2016 Central Atlantic 40,330 40,422 39,313 40,033 39,994 39,737 1990-2016 Lower Atlantic 13,868 13,141 12,699 12,898 11,800 12,411 1990-2016 PADD 2 33,149 31,751 32,827 32,393 31,107 30,589 1990-2016 PADD 3 38,605 40,303 38,538 37,081 37,451 38,580 1990-2016 PADD 4 3,830 3,492 3,151 3,304 3,676 3,687 1990-2016 PADD 5

  17. Imports of Distillate Fuel Oil

    Annual Energy Outlook

    175 90 207 126 118 52 1982-2016 East Coast (PADD 1) 173 81 199 120 107 48 2004-2016 Midwest (PADD 2) 2 1 2 3 2 1 2004-2016 Gulf Coast (PADD 3) 0 0 0 0 0 0 2004-2016 Rocky Mountain ...

  18. Catalytic distillation structure

    DOEpatents

    Smith, L.A. Jr.

    1984-04-17

    Catalytic distillation structure is described for use in reaction distillation columns, and provides reaction sites and distillation structure consisting of a catalyst component and a resilient component intimately associated therewith. The resilient component has at least about 70 volume % open space and is present with the catalyst component in an amount such that the catalytic distillation structure consists of at least 10 volume % open space. 10 figs.

  19. " Level: National Data and Regional Totals...

    Energy Information Administration (EIA) (indexed site)

    ... Standard Industrial Classification (SIC) system." " (b) 'Distillate Fuel Oil' includes ... gas obtained from utilities, local distribution companies," "and any other ...

  20. Total........................................................................

    Energy Information Administration (EIA) (indexed site)

    25.6 40.7 24.2 Do Not Have Space Heating Equipment............... 1.2 Q Q Q 0.7 Have Main Space Heating Equipment.................. 109.8 20.5 25.6 40.3 23.4 Use Main Space Heating Equipment.................... 109.1 20.5 25.6 40.1 22.9 Have Equipment But Do Not Use It...................... 0.8 N N Q 0.6 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 11.4 18.4 13.6 14.7 Central Warm-Air Furnace................................ 44.7 6.1

  1. Total........................................................................

    Energy Information Administration (EIA) (indexed site)

    5.6 17.7 7.9 Do Not Have Space Heating Equipment............... 1.2 Q Q N Have Main Space Heating Equipment.................. 109.8 25.6 17.7 7.9 Use Main Space Heating Equipment.................... 109.1 25.6 17.7 7.9 Have Equipment But Do Not Use It...................... 0.8 N N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 18.4 13.1 5.3 Central Warm-Air Furnace................................ 44.7 16.2 11.6 4.7 For One Housing

  2. Total..........................................................

    Energy Information Administration (EIA) (indexed site)

    0.9 Q Q Q Heat Pump......7.7 0.3 Q Q Steam or Hot Water System......Census Division Total West Energy Information Administration ...

  3. Total..........................................................

    Energy Information Administration (EIA) (indexed site)

    0.9 Q Q Q Heat Pump......6.2 3.8 2.4 Steam or Hot Water System......Census Division Total Northeast Energy Information ...

  4. Total............................................................

    Energy Information Administration (EIA) (indexed site)

    Total................................................................... 111.1 2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500............................................... 3.2 357 336 113 188 177 59 500 to 999....................................................... 23.8 733 667 308 343 312 144 1,000 to 1,499................................................. 20.8 1,157 1,086 625 435 409 235 1,500 to 1,999................................................. 15.4 1,592

  5. Table A3. Refiner/Reseller Prices of Distillate and Residual...

    Energy Information Administration (EIA) (indexed site)

    A3. RefinerReseller Prices of Distillate and Residual Fuel Oils, by PAD District, 1983-Present (Cents per Gallon Excluding Taxes) Geographic Area Year No. 1 Distillate No. 2...

  6. Total...................................................................

    Energy Information Administration (EIA) (indexed site)

    15.2 7.8 1.0 1.2 3.3 1.9 For Two Housing Units............................. 0.9 Q N Q 0.6 N Heat Pump.................................................. 9.2 7.4 0.3 Q 0.7 0.5 Portable Electric Heater............................... 1.6 0.8 Q Q Q 0.3 Other Equipment......................................... 1.9 0.7 Q Q 0.7 Q Fuel Oil........................................................... 7.7 5.5 0.4 0.8 0.9 0.2 Steam or Hot Water System........................ 4.7 2.9 Q 0.7 0.8 N For One Housing

  7. Total........................................................................

    Energy Information Administration (EIA) (indexed site)

    0.7 21.7 6.9 12.1 Do Not Have Space Heating Equipment............... 1.2 Q Q N Q Have Main Space Heating Equipment.................. 109.8 40.3 21.4 6.9 12.0 Use Main Space Heating Equipment.................... 109.1 40.1 21.2 6.9 12.0 Have Equipment But Do Not Use It...................... 0.8 Q Q N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 13.6 5.6 2.3 5.7 Central Warm-Air Furnace................................ 44.7 11.0 4.4

  8. Total........................................................................

    Energy Information Administration (EIA) (indexed site)

    7.1 7.0 8.0 12.1 Do Not Have Space Heating Equipment............... 1.2 Q Q Q 0.2 Have Main Space Heating Equipment.................. 109.8 7.1 6.8 7.9 11.9 Use Main Space Heating Equipment.................... 109.1 7.1 6.6 7.9 11.4 Have Equipment But Do Not Use It...................... 0.8 N Q N 0.5 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 3.8 0.4 3.8 8.4 Central Warm-Air Furnace................................ 44.7 1.8 Q 3.1 6.0

  9. Total................................................................

    Energy Information Administration (EIA) (indexed site)

    111.1 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Do Not Have Space Heating Equipment....... 1.2 0.5 0.3 0.2 Q 0.2 0.3 0.6 Have Main Space Heating Equipment.......... 109.8 26.2 28.5 20.4 13.0 21.8 16.3 37.9 Use Main Space Heating Equipment............ 109.1 25.9 28.1 20.3 12.9 21.8 16.0 37.3 Have Equipment But Do Not Use It.............. 0.8 0.3 0.3 Q Q N 0.4 0.6 Main Heating Fuel and Equipment Natural Gas.................................................. 58.2 12.2 14.4 11.3 7.1 13.2 7.6 18.3 Central

  10. Total.................................................................

    Energy Information Administration (EIA) (indexed site)

    14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Do Not Have Space Heating Equipment........ 1.2 N Q Q 0.2 0.4 0.2 0.2 Q Have Main Space Heating Equipment........... 109.8 14.7 7.4 12.4 12.2 18.5 18.3 17.1 9.2 Use Main Space Heating Equipment............. 109.1 14.6 7.3 12.4 12.2 18.2 18.2 17.1 9.1 Have Equipment But Do Not Use It............... 0.8 Q Q Q Q 0.3 Q N Q Main Heating Fuel and Equipment Natural Gas................................................... 58.2 9.2 4.9 7.8 7.1 8.8 8.4 7.8 4.2 Central

  11. Total

    Energy Information Administration (EIA) (indexed site)

    Total floor- space 1 Heated floor- space 2 Total floor- space 1 Cooled floor- space 2 Total floor- space 1 Lit floor- space 2 All buildings 87,093 80,078 70,053 79,294 60,998 83,569 68,729 Building floorspace (square feet) 1,001 to 5,000 8,041 6,699 5,833 6,124 4,916 7,130 5,590 5,001 to 10,000 8,900 7,590 6,316 7,304 5,327 8,152 6,288 10,001 to 25,000 14,105 12,744 10,540 12,357 8,840 13,250 10,251 25,001 to 50,000 11,917 10,911 9,638 10,813 7,968 11,542 9,329 50,001 to 100,000 13,918 13,114

  12. Table 5.6 End Uses of Fuel Consumption, 2010;

    Energy Information Administration (EIA) (indexed site)

    6 End Uses of Fuel Consumption, 2010; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal Net Residual and LPG and (excluding Coal End Use Total Electricity(a) Fuel Oil Diesel Fuel(b) Natural Gas(c) NGL(d) Coke and Breeze) Other(e) Total United States TOTAL FUEL CONSUMPTION 14,228 2,437 79 130 5,211 69 868 5,435 Indirect Uses-Boiler Fuel -- 27 46 19 2,134 10 572 -- Conventional Boiler Use -- 27 20 4 733

  13. Total...................................................................

    Energy Information Administration (EIA) (indexed site)

    2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500............................................... 3.2 357 336 113 188 177 59 500 to 999....................................................... 23.8 733 667 308 343 312 144 1,000 to 1,499................................................. 20.8 1,157 1,086 625 435 409 235 1,500 to 1,999................................................. 15.4 1,592 1,441 906 595 539 339 2,000 to

  14. Total..........................................................................

    Energy Information Administration (EIA) (indexed site)

    . 111.1 20.6 15.1 5.5 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.4 500 to 999........................................................... 23.8 4.6 3.6 1.1 1,000 to 1,499..................................................... 20.8 2.8 2.2 0.6 1,500 to 1,999..................................................... 15.4 1.9 1.4 0.5 2,000 to 2,499..................................................... 12.2 2.3 1.7 0.5 2,500 to

  15. Total..........................................................................

    Energy Information Administration (EIA) (indexed site)

    5.6 17.7 7.9 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.5 0.3 Q 500 to 999........................................................... 23.8 3.9 2.4 1.5 1,000 to 1,499..................................................... 20.8 4.4 3.2 1.2 1,500 to 1,999..................................................... 15.4 3.5 2.4 1.1 2,000 to 2,499..................................................... 12.2 3.2 2.1 1.1 2,500 to

  16. Total..........................................................................

    Energy Information Administration (EIA) (indexed site)

    0.7 21.7 6.9 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.6 Q Q 500 to 999........................................................... 23.8 9.0 4.2 1.5 3.2 1,000 to 1,499..................................................... 20.8 8.6 4.7 1.5 2.5 1,500 to 1,999..................................................... 15.4 6.0 2.9 1.2 1.9 2,000 to 2,499..................................................... 12.2 4.1 2.1 0.7

  17. Total..........................................................................

    Energy Information Administration (EIA) (indexed site)

    4.2 7.6 16.6 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 1.0 0.2 0.8 500 to 999........................................................... 23.8 6.3 1.4 4.9 1,000 to 1,499..................................................... 20.8 5.0 1.6 3.4 1,500 to 1,999..................................................... 15.4 4.0 1.4 2.6 2,000 to 2,499..................................................... 12.2 2.6 0.9 1.7 2,500 to

  18. Total................................................

    Energy Information Administration (EIA) (indexed site)

    .. 111.1 86.6 2,522 1,970 1,310 1,812 1,475 821 1,055 944 554 Total Floorspace (Square Feet) Fewer than 500............................. 3.2 0.9 261 336 162 Q Q Q 334 260 Q 500 to 999.................................... 23.8 9.4 670 683 320 705 666 274 811 721 363 1,000 to 1,499.............................. 20.8 15.0 1,121 1,083 622 1,129 1,052 535 1,228 1,090 676 1,500 to 1,999.............................. 15.4 14.4 1,574 1,450 945 1,628 1,327 629 1,712 1,489 808 2,000 to

  19. Total..........................................................

    Energy Information Administration (EIA) (indexed site)

    .. 111.1 24.5 1,090 902 341 872 780 441 Total Floorspace (Square Feet) Fewer than 500...................................... 3.1 2.3 403 360 165 366 348 93 500 to 999.............................................. 22.2 14.4 763 660 277 730 646 303 1,000 to 1,499........................................ 19.1 5.8 1,223 1,130 496 1,187 1,086 696 1,500 to 1,999........................................ 14.4 1.0 1,700 1,422 412 1,698 1,544 1,348 2,000 to 2,499........................................ 12.7

  20. Total...................................................................

    Energy Information Administration (EIA) (indexed site)

    Floorspace (Square Feet) Total Floorspace 1 Fewer than 500............................................ 3.2 0.4 Q 0.6 1.7 0.4 500 to 999................................................... 23.8 4.8 1.4 4.2 10.2 3.2 1,000 to 1,499............................................. 20.8 10.6 1.8 1.8 4.0 2.6 1,500 to 1,999............................................. 15.4 12.4 1.5 0.5 0.5 0.4 2,000 to 2,499............................................. 12.2 10.7 1.0 0.2 Q Q 2,500 to

  1. Total.........................................................................

    Energy Information Administration (EIA) (indexed site)

    Floorspace (Square Feet) Total Floorspace 2 Fewer than 500.................................................. 3.2 Q 0.8 0.9 0.8 0.5 500 to 999.......................................................... 23.8 1.5 5.4 5.5 6.1 5.3 1,000 to 1,499.................................................... 20.8 1.4 4.0 5.2 5.0 5.2 1,500 to 1,999.................................................... 15.4 1.4 3.1 3.5 3.6 3.8 2,000 to 2,499.................................................... 12.2 1.4 3.2 3.0 2.3 2.3

  2. Total..........................................................................

    Energy Information Administration (EIA) (indexed site)

    25.6 40.7 24.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.9 1.0 500 to 999........................................................... 23.8 4.6 3.9 9.0 6.3 1,000 to 1,499..................................................... 20.8 2.8 4.4 8.6 5.0 1,500 to 1,999..................................................... 15.4 1.9 3.5 6.0 4.0 2,000 to 2,499..................................................... 12.2 2.3 3.2 4.1

  3. Total..........................................................................

    Energy Information Administration (EIA) (indexed site)

    7.1 7.0 8.0 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.4 Q Q 0.5 500 to 999........................................................... 23.8 2.5 1.5 2.1 3.7 1,000 to 1,499..................................................... 20.8 1.1 2.0 1.5 2.5 1,500 to 1,999..................................................... 15.4 0.5 1.2 1.2 1.9 2,000 to 2,499..................................................... 12.2 0.7 0.5 0.8 1.4

  4. ,"U.S. Sales for Resale Refiner Sales Volumes of Aviation Fuels...

    Energy Information Administration (EIA) (indexed site)

    Sales Volumes of Aviation Fuels, Kerosene, Propane, No.1 and No. 2 Distillates" ,"Click ... Volumes of Aviation Fuels, Kerosene, Propane, No.1 and No. 2 Distillates",11,"Monthly"...

  5. ,"U.S. Sales to End Users Refiner Sales Volumes of Aviation Fuels...

    Energy Information Administration (EIA) (indexed site)

    Sales Volumes of Aviation Fuels, Kerosene, Propane, No.1 and No. 2 Distillates" ,"Click ... Volumes of Aviation Fuels, Kerosene, Propane, No.1 and No. 2 Distillates",11,"Monthly"...

  6. Catalytic distillation process

    DOEpatents

    Smith, Jr., Lawrence A. (Bellaire, TX)

    1982-01-01

    A method for conducting chemical reactions and fractionation of the reaction mixture comprising feeding reactants to a distillation column reactor into a feed zone and concurrently contacting the reactants with a fixed bed catalytic packing to concurrently carry out the reaction and fractionate the reaction mixture. For example, a method for preparing methyl tertiary butyl ether in high purity from a mixed feed stream of isobutene and normal butene comprising feeding the mixed feed stream to a distillation column reactor into a feed zone at the lower end of a distillation reaction zone, and methanol into the upper end of said distillation reaction zone, which is packed with a properly supported cationic ion exchange resin, contacting the C.sub.4 feed and methanol with the catalytic distillation packing to react methanol and isobutene, and concurrently fractionating the ether from the column below the catalytic zone and removing normal butene overhead above the catalytic zone.

  7. Catalytic distillation process

    DOEpatents

    Smith, L.A. Jr.

    1982-06-22

    A method is described for conducting chemical reactions and fractionation of the reaction mixture comprising feeding reactants to a distillation column reactor into a feed zone and concurrently contacting the reactants with a fixed bed catalytic packing to concurrently carry out the reaction and fractionate the reaction mixture. For example, a method for preparing methyl tertiary butyl ether in high purity from a mixed feed stream of isobutene and normal butene comprising feeding the mixed feed stream to a distillation column reactor into a feed zone at the lower end of a distillation reaction zone, and methanol into the upper end of said distillation reaction zone, which is packed with a properly supported cationic ion exchange resin, contacting the C[sub 4] feed and methanol with the catalytic distillation packing to react methanol and isobutene, and concurrently fractionating the ether from the column below the catalytic zone and removing normal butene overhead above the catalytic zone.

  8. Total...........................................................

    Energy Information Administration (EIA) (indexed site)

    14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500.................................... 3.2 0.7 Q 0.3 0.3 0.7 0.6 0.3 Q 500 to 999........................................... 23.8 2.7 1.4 2.2 2.8 5.5 5.1 3.0 1.1 1,000 to 1,499..................................... 20.8 2.3 1.4 2.4 2.5 3.5 3.5 3.6 1.6 1,500 to 1,999..................................... 15.4 1.8 1.4 2.2 2.0 2.4 2.4 2.1 1.2 2,000 to 2,499..................................... 12.2 1.4 0.9

  9. Total...........................................................

    Energy Information Administration (EIA) (indexed site)

    26.7 28.8 20.6 13.1 22.0 16.6 38.6 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................... 3.2 1.9 0.9 Q Q Q 1.3 2.3 500 to 999........................................... 23.8 10.5 7.3 3.3 1.4 1.2 6.6 12.9 1,000 to 1,499..................................... 20.8 5.8 7.0 3.8 2.2 2.0 3.9 8.9 1,500 to 1,999..................................... 15.4 3.1 4.2 3.4 2.0 2.7 1.9 5.0 2,000 to 2,499..................................... 12.2 1.7 2.7 2.9 1.8 3.2 1.1 2.8

  10. Advanced Distillation Final Report

    SciTech Connect

    Maddalena Fanelli; Ravi Arora; Annalee Tonkovich; Jennifer Marco; Ed Rode

    2010-03-24

    The Advanced Distillation project was concluded on December 31, 2009. This U.S. Department of Energy (DOE) funded project was completed successfully and within budget during a timeline approved by DOE project managers, which included a one year extension to the initial ending date. The subject technology, Microchannel Process Technology (MPT) distillation, was expected to provide both capital and operating cost savings compared to conventional distillation technology. With efforts from Velocys and its project partners, MPT distillation was successfully demonstrated at a laboratory scale and its energy savings potential was calculated. While many objectives established at the beginning of the project were met, the project was only partially successful. At the conclusion, it appears that MPT distillation is not a good fit for the targeted separation of ethane and ethylene in large-scale ethylene production facilities, as greater advantages were seen for smaller scale distillations. Early in the project, work involved flowsheet analyses to discern the economic viability of ethane-ethylene MPT distillation and develop strategies for maximizing its impact on the economics of the process. This study confirmed that through modification to standard operating processes, MPT can enable net energy savings in excess of 20%. This advantage was used by ABB Lumus to determine the potential impact of MPT distillation on the ethane-ethylene market. The study indicated that a substantial market exists if the energy saving could be realized and if installed capital cost of MPT distillation was on par or less than conventional technology. Unfortunately, it was determined that the large number of MPT distillation units needed to perform ethane-ethylene separation for world-scale ethylene facilities, makes the targeted separation a poor fit for the technology in this application at the current state of manufacturing costs. Over the course of the project, distillation experiments were

  11. Table 5.8 End Uses of Fuel Consumption, 2010;

    Energy Information Administration (EIA) (indexed site)

    8 End Uses of Fuel Consumption, 2010; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal Net Demand Residual and LPG and (excluding Coal End Use for Electricity(a) Fuel Oil Diesel Fuel(b) Natural Gas(c) NGL(d) Coke and Breeze) Total United States TOTAL FUEL CONSUMPTION 2,886 79 130 5,211 69 868 Indirect Uses-Boiler Fuel 44 46 19 2,134 10 572 Conventional Boiler Use 44 20 4 733 3 72 CHP

  12. Distillation Column Flooding Predictor

    SciTech Connect

    2002-02-01

    This factsheet describes a research project whose goal is to develop the flooding predictor, an advanced process control strategy, into a universally useable tool that will maximize the separation yield of a distillation column.

  13. ,"U.S. Total Sales of Residual Fuel Oil by End Use"

    Energy Information Administration (EIA) (indexed site)

    to Oil Company Consumers (Thousand Gallons)","U.S. Residual Fuel Oil SalesDeliveries to Electric Utility Consumers (Thousand Gallons)","U.S. Residual Fuel Oil SalesDeliveries to...

  14. Table 5.5 End Uses of Fuel Consumption, 2010;

    Energy Information Administration (EIA) (indexed site)

    5 End Uses of Fuel Consumption, 2010; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Residual and Natural Gas(c) LPG and Coke and Breeze) Total Electricity(a) Fuel Oil Diesel Fuel(b) (billion NGL(d) (million Other(e) End Use (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) (trillion Btu) Total United States TOTAL FUEL CONSUMPTION

  15. SRS 2010 Vegetation Inventory GeoStatistical Mapping Results for Custom Reaction Intensity and Total Dead Fuels.

    SciTech Connect

    Edwards, Lloyd A.; Paresol, Bernard

    2014-09-01

    This report of the geostatistical analysis results of the fire fuels response variables, custom reaction intensity and total dead fuels is but a part of an SRS 2010 vegetation inventory project. For detailed description of project, theory and background including sample design, methods, and results please refer to USDA Forest Service Savannah River Site internal report “SRS 2010 Vegetation Inventory GeoStatistical Mapping Report”, (Edwards & Parresol 2013).

  16. Total Crude Oil and Products Imports from All Countries

    Energy Information Administration (EIA) (indexed site)

    Other Renewable Fuels Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur Residual F.O., Greater than 1% Sulfur Naphtha for Petrochem. Feed. Use Other

  17. An Evaluation of the Total Cost of Ownership of Fuel Cell-Powered...

    Energy.gov [DOE] (indexed site)

    handling equipment, including the capital costs of battery and fuel cell systems, the cost of supporting infrastructure, maintenance costs, warehouse space costs, and labor costs. ...

  18. Table A11. Total Inputs of Energy for Heat, Power, and Electricity Generatio

    Energy Information Administration (EIA) (indexed site)

    2" " (Estimates in Trillion Btu)" ,,,,,,,"Coal" ,,,,"Distillate",,,"(excluding" ,,,,"Fuel Oil",,,"Coal Coke",,"RSE" ,,"Net","Residual","and Diesel",,,"and",,"Row" "End-Use Categories","Total","Electricity(a)","Fuel Oil","Fuel(b)","Natural

  19. Table A37. Total Inputs of Energy for Heat, Power, and Electricity

    Energy Information Administration (EIA) (indexed site)

    2" " (Estimates in Trillion Btu)" ,,,,,,,"Coal" ,,,,"Distillate",,,"(excluding" ,,,,"Fuel Oil",,,"Coal Coke",,"RSE" ,,"Net","Residual","and Diesel",,,"and",,"Row" "End-Use Categories","Total","Electricity(a)","Fuel Oil","Fuel(b)","Natural

  20. DISTILLATION OF CALCIUM

    DOEpatents

    Barton, J.

    1954-07-27

    This invention relates to an improvement in the process for the purification of caicium or magnesium containing an alkali metal as impurity, which comprises distiiling a batch of the mixture in two stages, the first stage distillation being carried out in the presence of an inert gas at an absolute pressure substantially greater than the vapor pressure of calcium or maguesium at the temperature of distillation, but less than the vaper pressure at that temperature of the alkali metal impurity so that only the alkali metal is vaporized and condensed on a condensing surface. A second stage distilso that substantially only the calcium or magnesium distills under its own vapor pressure only and condenses in solid form on a lower condensing surface.

  1. Table 5.7 End Uses of Fuel Consumption, 2010;

    Energy Information Administration (EIA) (indexed site)

    7 End Uses of Fuel Consumption, 2010; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Demand Residual and Natural Gas(c) LPG and Coke and Breeze) for Electricity(a) Fuel Oil Diesel Fuel(b) (billion NGL(d) (million End Use (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) Total United States TOTAL FUEL CONSUMPTION 845,727 13 22 5,064 18

  2. A Total Cost of Ownership Model for Low Temperature PEM Fuel Cells in Combined Heat and Power and Backup Power Applications

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report prepared by the Lawrence Berkeley National Laboratory describes a total cost of ownership model for emerging applications in stationary fuel cell systems.

  3. West Coast (PADD 5) Total Crude Oil and Products Imports

    Energy Information Administration (EIA) (indexed site)

    Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur Residual F.O., Greater than 1% Sulfur Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed.

  4. Develop and test fuel cell powered on-site integrated total energy systems

    SciTech Connect

    Kaufman, A.; Werth, J.

    1988-12-01

    This report describes the design, fabrication and testing of a 25kW phosphoric acid fuel cell system aimed at stationary applications, and the technology development underlying that system. The 25kW fuel cell ran at rated power in both the open and closed loop mode in the summer of 1988. Problems encountered and solved include acid replenishment leakage, gas cross-leakage and edge-leakage in bipolar plates, corrosion of metallic cooling plates and current collectors, cooling groove depth variations, coolant connection leaks, etc. 84 figs., 7 tabs.

  5. National Fuel Cell and Hydrogen Energy Overview: Total Energy USA 2012

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation by Sunita Satyapal at the Total Energy USA 2012 meeting in Houston, Texas, on November 27, 2012.

  6. Table 5.1 End Uses of Fuel Consumption, 2010;

    Energy Information Administration (EIA) (indexed site)

    5.1 End Uses of Fuel Consumption, 2010; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Residual and Natural Gas(d) LPG and Coke and Breeze) NAICS Total Electricity(b) Fuel Oil Diesel Fuel(c) (billion NGL(e) (million Other(f) Code(a) End Use (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) (trillion Btu) Total United States

  7. "Characteristic(a)","Electricity","Fuel Oil","Fuel Oil(b)","Natural...

    Energy Information Administration (EIA) (indexed site)

    " Unit: Percents." " ",," "," ",," "," " "Economic",,"Residual","Distillate",,"LPG and" "Characteristic(a)","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal

  8. Total Imports

    Energy Information Administration (EIA) (indexed site)

    Data Series: Imports - Total Imports - Crude Oil Imports - Crude Oil, Commercial Imports - by SPR Imports - into SPR by Others Imports - Total Products Imports - Total Motor Gasoline Imports - Finished Motor Gasoline Imports - Reformulated Gasoline Imports - Reformulated Gasoline Blended w/ Fuel Ethanol Imports - Other Reformulated Gasoline Imports - Conventional Gasoline Imports - Conv. Gasoline Blended w/ Fuel Ethanol Imports - Conv. Gasoline Blended w/ Fuel Ethanol, Ed55 & < Imports -

  9. A Total Cost of Ownership Model for Solid Oxide Fuel Cells in Combined Heat and Power and Power-Only Applications

    Energy.gov [DOE]

    This report prepared by Lawrence Berkeley National Laboratory describes a total cost of ownership model for emerging applications in stationary fuel cell systems. Solid oxide fuel cell systems (SOFC) for use in combined heat and power (CHP) and power-only applications from 1 to 250 kilowatts-electric are considered.

  10. Product Supplied for Distillate Fuel Oil

    Gasoline and Diesel Fuel Update

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 4.77 2.81 3.07 2.74 2.51 1990's 3.10 2.59 2.25 2.59 2.50 2.39 2.97 3.02 2.45 2.61 2000's 4.10 4.19 3.41 5.54 6.09 7.59 6.83 6.92 8.58 4.47 2010's 5.02 4.64 3.25 4.08 5.51 3.07

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 2.69 2.40 2.40 2.33 2.44 2.57 2.54 2.48 2.41 2.56 2.71 2.79 1990 3.11 2.94 2.42 2.95 2.51 2.75 2.95 2.79 2.82 2.71 2.74 4.23 1991 3.61 3.08 2.76 2.87 2.14 2.19 2.36 2.53 2.32 2.27

  11. Distillate Fuel Oil Sales for Military Use

    Gasoline and Diesel Fuel Update

    Maine 1,487 2,852 1,506 1,071 1,058 2,482 1984-2014 Massachusetts 500 343 3,101 466 329 453 1984-2014 New Hampshire 1,480 490 253 104 90 257 1984-2014 Rhode Island 1,643 903 900 ...

  12. Distillate Fuel Oil Sales for Residential Use

    Energy Information Administration (EIA) (indexed site)

    4,103,881 3,930,517 3,625,747 3,473,310 3,536,111 3,802,848 1984-2014 East Coast (PADD 1) 3,670,994 3,545,676 3,274,963 3,183,878 3,240,215 3,501,957 1984-2014 New England (PADD...

  13. Distillate Fuel Oil Sales for Farm Use

    Energy Information Administration (EIA) (indexed site)

    660,024 2,928,175 2,942,436 3,031,878 3,026,611 3,209,391 1984-2014 East Coast (PADD 1) 333,748 454,160 375,262 382,639 404,799 401,686 1984-2014 New England (PADD 1A) 13,909...

  14. Distillate Fuel Oil Sales for Railroad Use

    Energy Information Administration (EIA) (indexed site)

    2,759,140 2,974,641 3,121,150 3,118,150 3,369,781 3,670,338 1984-2014 East Coast (PADD 1) 459,324 482,929 514,418 492,156 460,066 480,024 1984-2014 New England (PADD 1A) 43,763...

  15. Distillate Fuel Oil Sales for Industrial Use

    Energy Information Administration (EIA) (indexed site)

    2,159,428 2,045,164 2,179,953 2,325,503 2,271,056 2,417,898 1984-2014 East Coast (PADD 1) 597,048 560,403 568,024 568,997 559,886 600,949 1984-2014 New England (PADD 1A) 60,994...

  16. Distillate Fuel Oil Sales for Commercial Use

    Energy Information Administration (EIA) (indexed site)

    785,246 2,738,304 2,715,335 2,557,543 2,471,897 2,543,778 1984-2014 East Coast (PADD 1) 1,565,353 1,528,778 1,433,828 1,286,053 1,295,125 1,348,704 1984-2014 New England (PADD 1A)...

  17. Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures"

    Energy Information Administration (EIA) (indexed site)

    1. Total Fuel Oil Consumption and Expenditures, 1999" ,"All Buildings Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures" ,"Number of Buildings (thousand)","Floorspac...

  18. Distributive Distillation Enabled by Microchannel Process Technology...

    Office of Scientific and Technical Information (OSTI)

    distillation for new plants. A design concept for a modular microchannel distillation unit was developed in Task 3. In Task 4, Ultrasonic Additive Machining (UAM) was evaluated...

  19. American Distillation Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Distillation Inc Jump to: navigation, search Name: American Distillation Inc. Place: Leland, North Carolina Zip: 28451 Product: Biodiesel producer in North Carolina. References:...

  20. Table 5.3 End Uses of Fuel Consumption, 2010;

    Energy Information Administration (EIA) (indexed site)

    3 End Uses of Fuel Consumption, 2010; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Demand Residual and Natural Gas(d) LPG and Coke and Breeze) NAICS for Electricity(b) Fuel Oil Diesel Fuel(c) (billion NGL(e) (million Code(a) End Use (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) Total United States 311 - 339 ALL

  1. Distillation process using microchannel technology

    DOEpatents

    Tonkovich, Anna Lee; Simmons, Wayne W.; Silva, Laura J.; Qiu, Dongming; Perry, Steven T.; Yuschak, Thomas; Hickey, Thomas P.; Arora, Ravi; Smith, Amanda; Litt, Robert Dwayne; Neagle, Paul

    2009-11-03

    The disclosed invention relates to a distillation process for separating two or more components having different volatilities from a liquid mixture containing the components. The process employs microchannel technology for effecting the distillation and is particularly suitable for conducting difficult separations, such as the separation of ethane from ethylene, wherein the individual components are characterized by having volatilities that are very close to one another.

  2. Distillation Column Flooding Predictor

    SciTech Connect

    George E. Dzyacky

    2010-11-23

    The Flooding Predictor™ is a patented advanced control technology proven in research at the Separations Research Program, University of Texas at Austin, to increase distillation column throughput by over 6%, while also increasing energy efficiency by 10%. The research was conducted under a U. S. Department of Energy Cooperative Agreement awarded to George Dzyacky of 2ndpoint, LLC. The Flooding Predictor™ works by detecting the incipient flood point and controlling the column closer to its actual hydraulic limit than historical practices have allowed. Further, the technology uses existing column instrumentation, meaning no additional refining infrastructure is required. Refiners often push distillation columns to maximize throughput, improve separation, or simply to achieve day-to-day optimization. Attempting to achieve such operating objectives is a tricky undertaking that can result in flooding. Operators and advanced control strategies alike rely on the conventional use of delta-pressure instrumentation to approximate the column’s approach to flood. But column delta-pressure is more an inference of the column’s approach to flood than it is an actual measurement of it. As a consequence, delta pressure limits are established conservatively in order to operate in a regime where the column is never expected to flood. As a result, there is much “left on the table” when operating in such a regime, i.e. the capacity difference between controlling the column to an upper delta-pressure limit and controlling it to the actual hydraulic limit. The Flooding Predictor™, an innovative pattern recognition technology, controls columns at their actual hydraulic limit, which research shows leads to a throughput increase of over 6%. Controlling closer to the hydraulic limit also permits operation in a sweet spot of increased energy-efficiency. In this region of increased column loading, the Flooding Predictor is able to exploit the benefits of higher liquid

  3. fuel

    National Nuclear Security Administration (NNSA)

    4%2A en Cheaper catalyst may lower fuel costs for hydrogen-powered cars http:www.nnsa.energy.govblogcheaper-catalyst-may-lower-fuel-costs-hydrogen-powered-cars

  4. fuel

    National Nuclear Security Administration (NNSA)

    4%2A en Cheaper catalyst may lower fuel costs for hydrogen-powered cars http:nnsa.energy.govblogcheaper-catalyst-may-lower-fuel-costs-hydrogen-powered-cars

  5. Fuels

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing ... Heavy Duty Fuels DISI Combustion HCCISCCI Fundamentals Spray Combustion Modeling ...

  6. FRACTIONAL DISTILLATION SEPARATION OF PLUTONIUM VALUES FROM LIGHT ELEMENT VALUES

    DOEpatents

    Cunningham, B.B.

    1957-12-17

    A process is described for removing light element impurities from plutonium. It has been found that plutonium contaminated with impurities may be purified by converting the plutonium to a halide and purifying the halide by a fractional distillation whereby impurities may be distilled from the plutonium halide. A particularly effective method includes the step of forming a lower halide such as the trior tetrahalide and distilling the halide under conditions such that no decomposition of the halide occurs. Molecular distillation methods are particularly suitable for this process. The apparatus may comprise an evaporation plate with means for heating it and a condenser surface with means for cooling it. The condenser surface is placed at a distance from the evaporating surface less than the mean free path of molecular travel of the material being distilled at the pressure and temperature used. The entire evaporating system is evacuated until the pressure is about 10/sup -4/ millimeters of mercury. A high temperuture method is presented for sealing porous materials such as carbon or graphite that may be used as a support or a moderator in a nuclear reactor. The carbon body is subjected to two surface heats simultaneously in an inert atmosphere; the surface to be sealed is heated to 1500 degrees centigrade; and another surface is heated to 300 degrees centigrade, whereupon the carbon vaporizes and flows to the cooler surface where it is deposited to seal that surface. This method may be used to seal a nuclear fuel in the carbon structure.

  7. Table A10. Total Inputs of Energy for Heat, Power, and Electricity Generatio

    Energy Information Administration (EIA) (indexed site)

    1" " (Estimates in Btu or Physical Units)" ,,,,,"Distillate",,,"Coal" ,,,,,"Fuel Oil",,,"(excluding" ,,,"Net","Residual","and Diesel",,,"Coal Coke",,"RSE" "SIC",,"Total","Electricity(b)","Fuel Oil","Fuel(c)","Natural Gas(d)","LPG","and Breeze)","Other(e)","Row" "Code(a)","End-Use

  8. Table A11. Total Inputs of Energy for Heat, Power, and Electricity Generatio

    Energy Information Administration (EIA) (indexed site)

    1" " (Estimates in Btu or Physical Units)" ,,,,"Distillate",,,"Coal" ,,,,"Fuel Oil",,,"(excluding" ,,"Net","Residual","and Diesel",,,"Coal Coke",,"RSE" ,"Total","Electricity(a)","Fuel Oil","Fuel(b)","Natural Gas(c)","LPG","and Breeze)","Other(d)","Row" "End-Use Categories","(trillion

  9. Table A36. Total Inputs of Energy for Heat, Power, and Electricity

    Energy Information Administration (EIA) (indexed site)

    ,,,,,,,,"Coal" " Part 1",,,,,,,,"(excluding" " (Estimates in Btu or Physical Units)",,,,,"Distillate",,,"Coal Coke" ,,,,,"Fuel Oil",,,"and" ,,,"Net","Residual","and Diesel","Natural Gas",,"Breeze)",,"RSE" "SIC",,"Total","Electricity(b)","Fuel Oil","Fuel","(billion","LPG","(1000

  10. Table A36. Total Inputs of Energy for Heat, Power, and Electricity

    Energy Information Administration (EIA) (indexed site)

    " Part 2" " (Estimates in Trillion Btu)",,,,,,,,"Coal" ,,,,,"Distillate",,,"(excluding" ,,,,,"Fuel Oil",,,"Coal Coke",,"RSE" "SIC",,,"Net","Residual","and Diesel",,,"and",,"Row" "Code(a)","End-Use Categories","Total","Electricity(b)","Fuel Oil","Fuel(c)","Natural

  11. Table A37. Total Inputs of Energy for Heat, Power, and Electricity

    Energy Information Administration (EIA) (indexed site)

    1",,,,,,,"Coal" " (Estimates in Btu or Physical Units)",,,,,,,"(excluding" ,,,,"Distillate",,,"Coal Coke" ,,"Net",,"Fuel Oil",,,"and" ,,"Electricity(a)","Residual","and Diesel","Natural Gas",,"Breeze)",,"RSE" ,"Total","(million","Fuel Oil","Fuel","(billion","LPG","(1000

  12. Winter fuels report

    SciTech Connect

    Not Available

    1990-11-29

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and state and local governments on the following topics: distillate fuel oil net production, imports and stocks for all PADD's and product supplied on a US level; propane net product supplied on a US level; propane net production, imports and stocks for Petroleum Administration for Defense Districts (PADD) I, II, and III; natural gas supply and disposition and underground storage for the United States and consumption for all PADD's; residential and wholesale pricing data for propane and heating oil for those states participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the United States and selected cities; and US total heating degree-days by city. 27 figs, 12 tabs.

  13. Winter fuels report

    SciTech Connect

    Not Available

    1995-02-03

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`s; as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6-10 Day and 30-Day outlook for temperature and precipitation and US total heating degree-days by city.

  14. Winter fuels report

    SciTech Connect

    Not Available

    1995-02-17

    The Winter Fuels Report is intended to provide consise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: Distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; Natural gas supply and disposition and underground storage for the US and consumption for all PADD`s as well as selected National average prices; Residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; Crude oil and petroleum price comparisons for the US and selected cities; and A 6-10 Day and 30-Day outlook for temperature and precipitation and US total heating degree days by city.

  15. The Northeast heating fuel market: Assessment and options

    SciTech Connect

    2000-07-01

    In response to a Presidential request, this study examines how the distillate fuel oil market (and related energy markets) in the Northeast behaved in the winter of 1999-2000, explains the role played by residential, commercial, industrial, and electricity generation sector consumers in distillate fuel oil markets and describes how that role is influenced by the structure of tie energy markets in the Northeast. In addition, this report explores the potential for nonresidential users to move away from distillate fuel oil and how this might impact future prices, and discusses conversion of distillate fuel oil users to other fuels over the next 5 years. Because the President's and Secretary's request focused on converting factories and other large-volume users of mostly high-sulfur distillate fuel oil to other fuels, transportation sector use of low-sulfur distillate fuel oil is not examined here.

  16. Corrosion inhibition for distillation apparatus

    DOEpatents

    Baumert, Kenneth L.; Sagues, Alberto A.; Davis, Burtron H.; Schweighardt, Frank K.

    1985-01-01

    Tower material corrosion in an atmospheric or sub-atmospheric distillation tower in a coal liquefaction process is reduced or eliminated by subjecting chloride-containing tray contents to an appropriate ion-exchange resin to remove chloride from such tray contents materials.

  17. Performance and emissions of non-petroleum fuels in a direct-injection stratified charge Sl engine

    SciTech Connect

    Freeman, L.E.; Chui, G.K.; Roby, R.J.

    1982-10-01

    Seven fuels derived from coal and shale resources were evaluated using a direct-injection stratified charge engine. The fuels were refined to different degrees which ranged from those typical of gasoline blending components to those similar to current gasoline. Results showed that fuels refined to have properties similar to gasoline performed like gasoline. The less refined fuels were limited in performance. The total carbon monoxide and the hydrocarbon emissions varied with the volatility of the fuels. Most fuels with a higher overall distillation curve generally gave higher hydrocarbon and carbon monoxide emissions. The NOx emissions increased with the percent aromatics in the fuels. The hydrocarbon emissions were found to increase with fuel viscosity. Within the range of engine operation, nearly all the fuels evaluated gave satisfactory performance. With some modifications, even the less refined fuels can be potentially suitable for use in this engine.

  18. Effect of Narrow Cut Oil Shale Distillates on HCCI Engine Performance

    SciTech Connect

    Eaton, Scott J; Bunting, Bruce G; Lewis Sr, Samuel Arthur; Fairbridge, Craig

    2009-01-01

    In this investigation, oil shale crude obtained from the Green River Formation in Colorado using Paraho Direct retorting was mildly hydrotreated and distilled to produce 7 narrow boiling point fuels of equal volumes. The resulting derived cetane numbers ranged between 38.3 and 43.9. Fuel chemistry and bulk properties strongly correlated with boiling point.

  19. "Code(a)","Subsector and Industry","Source(b)","Fuel Oil","Fuel...

    Energy Information Administration (EIA) (indexed site)

    ... oil converted to residual and distillate fuel oils) are excluded." " NFNo applicable ... for any table cell, multiply the cell's" "corresponding RSE column and RSE row factors. ...

  20. "End Use","for Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural...

    Energy Information Administration (EIA) (indexed site)

    Errors for Table 5.8;" " Unit: Percents." ,,,"Distillate" ,,,"Fuel Oil",,,"Coal" ,"Net Demand","Residual","and",,"LPG and","(excluding Coal" "End Use","for ...

  1. "Code(a)","End Use","for Electricity(b)","Fuel Oil","Diesel Fuel...

    Energy Information Administration (EIA) (indexed site)

    Unit: Percents." " "," ",," ","Distillate"," "," " " "," ",,,"Fuel Oil",,,"Coal" "NAICS"," ","Net Demand","Residual","and",,"LPG and","(excluding Coal" "Code(a)","End Use","for ...

  2. Distributive Distillation Enabled by Microchannel Process Technology

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Distributive Distillation Enabled by Microchannel Process Technology Citation Details In-Document Search Title: Distributive Distillation Enabled by Microchannel Process Technology The application of microchannel technology for distributive distillation was studied to achieve the Grand Challenge goals of 25% energy savings and 10% return on investment. In Task 1, a detailed study was conducted and two distillation systems were identified that would meet

  3. A Total Cost of Ownership Model for Low Temperature PEM Fuel Cells in Combined Heat and Power and Backup Power Applications

    SciTech Connect

    University of California, Berkeley; Wei, Max; Lipman, Timothy; Mayyas, Ahmad; Chien, Joshua; Chan, Shuk Han; Gosselin, David; Breunig, Hanna; Stadler, Michael; McKone, Thomas; Beattie, Paul; Chong, Patricia; Colella, Whitney; James, Brian

    2014-06-23

    A total cost of ownership model is described for low temperature proton exchange membrane stationary fuel cell systems for combined heat and power (CHP) applications from 1-250kW and backup power applications from 1-50kW. System designs and functional specifications for these two applications were developed across the range of system power levels. Bottom-up cost estimates were made for balance of plant costs, and detailed direct cost estimates for key fuel cell stack components were derived using design-for-manufacturing-and-assembly techniques. The development of high throughput, automated processes achieving high yield are projected to reduce the cost for fuel cell stacks to the $300/kW level at an annual production volume of 100 MW. Several promising combinations of building types and geographical location in the U.S. were identified for installation of fuel cell CHP systems based on the LBNL modelling tool DER CAM. Life-cycle modelling and externality assessment were done for hotels and hospitals. Reduced electricity demand charges, heating credits and carbon credits can reduce the effective cost of electricity ($/kWhe) by 26-44percent in locations such as Minneapolis, where high carbon intensity electricity from the grid is displaces by a fuel cell system operating on reformate fuel. This project extends the scope of existing cost studies to include externalities and ancillary financial benefits and thus provides a more comprehensive picture of fuel cell system benefits, consistent with a policy and incentive environment that increasingly values these ancillary benefits. The project provides a critical, new modelling capacity and should aid a broad range of policy makers in assessing the integrated costs and benefits of fuel cell systems versus other distributed generation technologies.

  4. Fuel Tables.indd

    Gasoline and Diesel Fuel Update

    F7: Distillate Fuel Oil Consumption Estimates, 2014 State Residential Commercial Industrial Transportation Electric Power Total Residential Commercial Industrial Transportation Electric Power Total Thousand Barrels Trillion Btu Alabama 18 677 3,447 20,567 177 24,885 0.1 3.9 19.9 118.8 1.0 143.7 Alaska 1,155 1,264 4,022 5,738 507 12,686 6.7 7.3 23.2 33.1 2.9 73.2 Arizona 2 1,025 5,201 18,452 108 24,789 (s) 5.9 30.0 106.5 0.6 143.1 Arkansas 5 570 5,157 15,448 45 21,225 (s) 3.3 29.8 89.2 0.3 122.6

  5. ITP Chemicals: Hybripd Separations/Distillation Technology. Research...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Hybripd SeparationsDistillation Technology. Research Opportunities for Energy and Emissions Reduction ITP Chemicals: Hybripd SeparationsDistillation Technology. Research ...

  6. ITP Chemicals: Hybrid Separations/Distillation Technology. Research...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Hybrid SeparationsDistillation Technology. Research Opportunities for Energy and Emissions Reduction ITP Chemicals: Hybrid SeparationsDistillation Technology. Research ...

  7. PADDs 1 and 3 Transportation Fuels Markets

    Energy Information Administration (EIA) (indexed site)

    ... (either in E10 or E85 blends) and how much biodiesel was blended into distillate fuels. ... onto trucks, and to a much lesser extent biodiesel, which is blended with diesel fuel. ...

  8. Prime Supplier Sales Volumes of Total Distillate and Kerosene

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Maine 2,119.3 2,055.1 1,682.9 1,282.4 1,035.5 904.0 1983-2016 Massachusetts 3,301.4 3,231.0 2,395.7 2,084.1 1,680.9 1,461.4 1983-2016 New Hampshire 1,366.4 1,315.2 975.0 837.7 ...

  9. Distributive Distillation Enabled by Microchannel Process Technology

    SciTech Connect

    Arora, Ravi

    2013-01-22

    The application of microchannel technology for distributive distillation was studied to achieve the Grand Challenge goals of 25% energy savings and 10% return on investment. In Task 1, a detailed study was conducted and two distillation systems were identified that would meet the Grand Challenge goals if the microchannel distillation technology was used. Material and heat balance calculations were performed to develop process flow sheet designs for the two distillation systems in Task 2. The process designs were focused on two methods of integrating the microchannel technology 1) Integrating microchannel distillation to an existing conventional column, 2) Microchannel distillation for new plants. A design concept for a modular microchannel distillation unit was developed in Task 3. In Task 4, Ultrasonic Additive Machining (UAM) was evaluated as a manufacturing method for microchannel distillation units. However, it was found that a significant development work would be required to develop process parameters to use UAM for commercial distillation manufacturing. Two alternate manufacturing methods were explored. Both manufacturing approaches were experimentally tested to confirm their validity. The conceptual design of the microchannel distillation unit (Task 3) was combined with the manufacturing methods developed in Task 4 and flowsheet designs in Task 2 to estimate the cost of the microchannel distillation unit and this was compared to a conventional distillation column. The best results were for a methanol-water separation unit for the use in a biodiesel facility. For this application microchannel distillation was found to be more cost effective than conventional system and capable of meeting the DOE Grand Challenge performance requirements.

  10. Reactive Distillation for Esterification of Bio-based Organic Acids

    SciTech Connect

    Fields, Nathan; Miller, Dennis J.; Asthana, Navinchandra S.; Kolah, Aspi K.; Vu, Dung; Lira, Carl T.

    2008-09-23

    The following is the final report of the three year research program to convert organic acids to their ethyl esters using reactive distillation. This report details the complete technical activities of research completed at Michigan State University for the period of October 1, 2003 to September 30, 2006, covering both reactive distillation research and development and the underlying thermodynamic and kinetic data required for successful and rigorous design of reactive distillation esterification processes. Specifically, this project has led to the development of economical, technically viable processes for ethyl lactate, triethyl citrate and diethyl succinate production, and on a larger scale has added to the overall body of knowledge on applying fermentation based organic acids as platform chemicals in the emerging biorefinery. Organic acid esters constitute an attractive class of biorenewable chemicals that are made from corn or other renewable biomass carbohydrate feedstocks and replace analogous petroleum-based compounds, thus lessening U.S. dependence on foreign petroleum and enhancing overall biorefinery viability through production of value-added chemicals in parallel with biofuels production. Further, many of these ester products are candidates for fuel (particularly biodiesel) components, and thus will serve dual roles as both industrial chemicals and fuel enhancers in the emerging bioeconomy. The technical report from MSU is organized around the ethyl esters of four important biorenewables-based acids: lactic acid, citric acid, succinic acid, and propionic acid. Literature background on esterification and reactive distillation has been provided in Section One. Work on lactic acid is covered in Sections Two through Five, citric acid esterification in Sections Six and Seven, succinic acid in Section Eight, and propionic acid in Section Nine. Section Ten covers modeling of ester and organic acid vapor pressure properties using the SPEAD (Step Potential

  11. Atmospheric Crude Oil Distillation Operable Capacity

    Gasoline and Diesel Fuel Update

    4 Arizona - Natural Gas 2015 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S3. Summary statistics for natural gas - Arizona, 2011-2015 2011 2012 2013 2014 2015 Number of Wells Producing Natural Gas at End of Year Oil Wells 1 1 1 0 1 Gas Wells 5 R 4 R 3 R 6 6 Production (million cubic feet) Gross

  12. Table A10. Total Inputs of Energy for Heat, Power, and Electricity Generatio

    Energy Information Administration (EIA) (indexed site)

    0. Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Fuel Type, Industry Group, Selected Industries, and End Use, 1994:" " Part 2" " (Estimates in Trillion Btu)" ,,,,,"Distillate",,,"Coal" ,,,,,"Fuel Oil",,,"(excluding",,"RSE" "SIC",,,"Net","Residual","and Diesel",,,"Coal Coke",,"Row" "Code(a)","End-Use

  13. Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures...

    Energy Information Administration (EIA) (indexed site)

    . Total Fuel Oil Consumption and Expenditures for Non-Mall Buildings, 2003" ,"All Buildings* Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures" ,"Number of Buildings...

  14. Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures...

    Energy Information Administration (EIA) (indexed site)

    A. Total Fuel Oil Consumption and Expenditures for All Buildings, 2003" ,"All Buildings Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures" ,"Number of Buildings...

  15. Winter fuels report

    SciTech Connect

    Not Available

    1990-11-01

    The report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and state and local governments on the following topics: (1) distillate fuel oil net production, imports and stocks for all PADD's and product supplied on a US level; (2) propane net production, imports and stocks for Petroleum Administration for Defense Districts (PADD) I, II, and III; (3) natural gas supply and disposition and underground storage for the United States and consumption for all PADD's; (4) residential and wholesale pricing data for propane and heating oil for those states participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; (5) crude oil and petroleum price comparisons for the United States and selected cities; and (6) US total heating degree-days by city.

  16. Accurate and Reliable Quantification of Total Microalgal Fuel Potential as Fatty Acid Methyl Esters by in situ Transesterfication

    SciTech Connect

    Laurens, L. M. L.; Quinn, M.; Van Wychen, S.; Templeton, D. W.; Wolfrum, E. J.

    2012-04-01

    In the context of algal biofuels, lipids, or better aliphatic chains of the fatty acids, are perhaps the most important constituents of algal biomass. Accurate quantification of lipids and their respective fuel yield is crucial for comparison of algal strains and growth conditions and for process monitoring. As an alternative to traditional solvent-based lipid extraction procedures, we have developed a robust whole-biomass in situ transesterification procedure for quantification of algal lipids (as fatty acid methyl esters, FAMEs) that (a) can be carried out on a small scale (using 4-7 mg of biomass), (b) is applicable to a range of different species, (c) consists of a single-step reaction, (d) is robust over a range of different temperature and time combinations, and (e) tolerant to at least 50% water in the biomass. Unlike gravimetric lipid quantification, which can over- or underestimate the lipid content, whole biomass transesterification reflects the true potential fuel yield of algal biomass. We report here on the comparison of the yield of FAMEs by using different catalysts and catalyst combinations, with the acid catalyst HCl providing a consistently high level of conversion of fatty acids with a precision of 1.9% relative standard deviation. We investigate the influence of reaction time, temperature, and biomass water content on the measured FAME content and profile for 4 different samples of algae (replete and deplete Chlorella vulgaris, replete Phaeodactylum tricornutum, and replete Nannochloropsis sp.). We conclude by demonstrating a full mass balance closure of all fatty acids around a traditional lipid extraction process.

  17. DOE Will Convert Northeast Home Heating Oil Reserve to Ultra Low Sulfur Distillate

    Office of Energy Efficiency and Renewable Energy (EERE)

    The current inventory of the Northeast Home Heating Oil Reserve will be converted to cleaner burning ultra low sulfur distillate to comply with new, more stringent fuel standards by some Northeastern states, the U.S. Department of Energy said today.

  18. Table A9. Total Primary Consumption of Energy for All Purposes by Census

    Energy Information Administration (EIA) (indexed site)

    A9. Total Primary Consumption of Energy for All Purposes by Census" " Region and Economic Characteristics of the Establishment, 1991" " (Estimates in Btu or Physical Units)" ,,,,,,,,"Coke" " "," ","Net","Residual","Distillate","Natural Gas(d)"," ","Coal","and Breeze"," ","RSE" " ","Total","Electricity(b)","Fuel

  19. New Design Methods and Algorithms for Multi-component Distillation...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Design Methods and Algorithms for Multi-component Distillation Processes New Design Methods and Algorithms for Multi-component Distillation Processes multicomponent.pdf (517.32 KB) ...

  20. Distillation: Still towering over other options

    SciTech Connect

    Kunesh, J.G.; Kister, H.Z.; Lockett, M.J.; Fair, J.R.

    1995-10-01

    Distillation dominates separations in the chemical process industries (CPI), at least for mixtures that normally are processed as liquids. The authors fully expect that distillation will continue to be the method of choice for many separations, and the method against which other options must be compared. So, in this article, they will put into some perspective just why distillation continues to reign as the king of separations, and what steps are being taken to improve its applicability and performance, as well as basic understanding of the technique.

  1. Winters fuels report

    SciTech Connect

    1995-10-27

    The outlook for distillate fuel oil this winter is for increased demand and a return to normal inventory patterns, assuming a resumption of normal, cooler weather than last winter. With industrial production expected to grow slightly from last winter`s pace, overall consumption is projected to increase 3 percent from last winter, to 3.4 million barrels per day during the heating season (October 1, 1995-March 31, 1996). Much of the supply win come from stock drawdowns and refinery production. Estimates for the winter are from the Energy Information Administration`s (EIA) 4th Quarter 1995 Short-Tenn Energy Outlook (STEO) Mid-World Oil Price Case forecast. Inventories in place on September 30, 1995, of 132 million barrels were 9 percent below the unusually high year-earlier level. Inventories of high-sulfur distillate fuel oil, the principal type used for heating, were 13 percent lower than a year earlier. Supply problems are not anticipated because refinery production and the ready availability of imports should be adequate to meet demand. Residential heating off prices are expected to be somewhat higher than last winter`s, as the effects of lower crude oil prices are offset by lower distillate inventories. Heating oil is forecast to average $0.92 per gallon, the highest price since the winter of 1992-93. Diesel fuel (including tax) is predicted to be slightly higher than last year at $1.13 per gallon. This article focuses on the winter assessment for distillate fuel oil, how well last year`s STEO winter outlook compared to actual events, and expectations for the coming winter. Additional analyses include regional low-sulfur and high-sulfur distillate supply, demand, and prices, and recent trends in distillate fuel oil inventories.

  2. Experiments and Theoretical Data for Studying the Impact of Fission Yield Uncertainties on the Nuclear Fuel Cycle with TALYS/GEF and the Total Monte Carlo Method

    SciTech Connect

    Pomp, S.; Al-Adili, A.; Alhassan, E.; Gustavsson, C.; Helgesson, P.; Hellesen, C.; Koning, A.J.; Lantz, M.; Österlund, M.; Rochman, D.; Simutkin, V.; Sjöstrand, H.; Solders, A.

    2015-01-15

    We describe the research program of the nuclear reactions research group at Uppsala University concerning experimental and theoretical efforts to quantify and reduce nuclear data uncertainties relevant for the nuclear fuel cycle. We briefly describe the Total Monte Carlo (TMC) methodology and how it can be used to study fuel cycle and accident scenarios, and summarize our relevant experimental activities. Input from the latter is to be used to guide the nuclear models and constrain parameter space for TMC. The TMC method relies on the availability of good nuclear models. For this we use the TALYS code which is currently being extended to include the GEF model for the fission channel. We present results from TALYS-1.6 using different versions of GEF with both default and randomized input parameters and compare calculations with experimental data for {sup 234}U(n,f) in the fast energy range. These preliminary studies reveal some systematic differences between experimental data and calculations but give overall good and promising results.

  3. Minimizing corrosion in coal liquid distillation

    DOEpatents

    Baumert, Kenneth L.; Sagues, Alberto A.; Davis, Burtron H.

    1985-01-01

    In an atmospheric distillation tower of a coal liquefaction process, tower materials corrosion is reduced or eliminated by introduction of boiling point differentiated streams to boiling point differentiated tower regions.

  4. Determination of total Pu content in a Spent Fuel Assembly by Measuring Passive Neutron Count rate and Multiplication with the Differential Die-Away Instrument

    SciTech Connect

    Henzl, Vladimir; Croft, Stephen; Swinhoe, Martyn T.; Tobin, Stephen J.

    2012-07-18

    A key objective of the Next Generation Safeguards Initiative (NGSI) is to evaluate and develop non-destructive assay (NDA) techniques to determine the elemental plutonium content in a commercial-grade nuclear spent fuel assembly (SFA) [1]. Within this framework, we investigate by simulation a novel analytical approach based on combined information from passive measurement of the total neutron count rate of a SFA and its multiplication determined by the active interrogation using an instrument based on a Differential Die-Away technique (DDA). We use detailed MCNPX simulations across an extensive set of SFA characteristics to establish the approach and demonstrate its robustness. It is predicted that Pu content can be determined by the proposed method to a few %.

  5. Fuel Oil and Kerosene Sales

    Reports and Publications

    2015-01-01

    Provides information, illustrations and state-level statistical data on end-use sales of kerosene; No.1, No. 2, and No. 4 distillate fuel oil; and residual fuel oil. State-level kerosene sales include volumes for residential, commercial, industrial, farm, and all other uses. State-level distillate sales include volumes for residential, commercial, industrial, oil company, railroad, vessel bunkering, military, electric utility, farm, on-highway, off-highway construction, and other uses. State-level residual fuel sales include volumes for commercial, industrial, oil company, vessel bunkering, military, electric utility, and other uses.

  6. SRC residual fuel oils

    SciTech Connect

    Tewari, K.C.; Foster, E.P.

    1985-10-15

    Coal solids (SRC) and distillate oils are combined to afford single-phase blends of residual oils which have utility as fuel oils substitutes. The components are combined on the basis of their respective polarities, that is, on the basis of their heteroatom content, to assure complete solubilization of SRC. The resulting composition is a fuel oil blend which retains its stability and homogeneity over the long term.

  7. SRC Residual fuel oils

    DOEpatents

    Tewari, Krishna C.; Foster, Edward P.

    1985-01-01

    Coal solids (SRC) and distillate oils are combined to afford single-phase blends of residual oils which have utility as fuel oils substitutes. The components are combined on the basis of their respective polarities, that is, on the basis of their heteroatom content, to assure complete solubilization of SRC. The resulting composition is a fuel oil blend which retains its stability and homogeneity over the long term.

  8. Winter fuels report

    SciTech Connect

    Not Available

    1990-10-04

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and state and local governments on the following topics: distillate fuel oil net production, imports and stocks for all PADD's and product supplied on a US level; propane net production, imports and stocks for Petroleum Administration for Defense Districts (PADD) I, II, and III; natural gas supply and disposition, underground storage, and consumption for all PADD's; residential and wholesale pricing data for propane and heating oil for those states participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil price comparisons for the United States and selected cities; and US total heating degree-days by city. This report will be published weekly by the EIA starting the first week in October 1990 and will continue until the first week in April 1991. The data will also be available electronically after 5:00 p.m. on Thursday during the heating season through the EIA Electronic Publication System (EPUB). 12 tabs.

  9. Winter fuels report

    SciTech Connect

    Not Available

    1995-01-27

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysis, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`s, as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6-10 Day, 30-Day and 90-Day outlook for temperature and precipitation and US total heating degree-days by city.

  10. Winter fuels report

    SciTech Connect

    Not Available

    1995-01-13

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`s, as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6-10 day, 30-Day, and 90-Day outlook for temperature and precipitation and US total heating degree-days by city.

  11. Winter fuels report

    SciTech Connect

    Not Available

    1994-10-01

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: Distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`s; as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6-10 Day, 30-Day, and 90-Day outlook for temperature and precipitation and US total heating degree-days by city.

  12. Winter fuels report. Week ending, January 26, 1996

    SciTech Connect

    1996-01-23

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers analysts, and State and local governments on the following topics: (1) distillate fuel oil net production, imports and stocks on a U.S. level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a U.S. level; (2) propane net production, imports and stocks on a U.S. level and for PADD`s I, II, and III; (3) natural gas supply and disposition and underground storage for the U.S. and consumption for all PADD`s; as well as selected National average prices; (4) residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; (5) crude oil and petroleum price comparisons for the U.S. and selected cities; and (6) a 6-10 Day and 30-Day outlook for temperature and precipitation and U.S. total heating degree-days by city. The distillate fuel oil and propane supply data are collected and published weekly. The data are based on company submissions for the week ending 7:00 a.m. for the preceding Friday. Weekly data for distillate fuel oil are also published in the Weekly Petroleum Status Report. Monthly data for distillate fuel oil and propane are published in the Petroleum Supply Monthly. The residential pricing information is collected by the EIA and the State Energy Offices on a semimonthly basis for the EIA/State Heating Oil and Propane Program. The wholesale price comparison data are collected daily and are published weekly. Residential heating fuel prices are derived from price quotes for home delivery of No. 2 fuel oil and propane. As such, they reflect prices in effect on the dates shown. Wholesale heating oil and propane prices are estimates using a sample of terminal quotes to represent average State prices on the dates given.

  13. Classic papers in Solar Energy: Solar distillation

    SciTech Connect

    Howe, E.D.

    1990-06-01

    The following Classic Paper was presented by Professor Howe at the first international Conference on Solar Energy at Tucson, Arizona, USA in 1955. That conference was sponsored by the Association of Applied solar Energy (AFASE), the precursor of ISES. Although this paper does not represent the many developments in solar distillation later applied by Professor Howe in the South Pacific, it is a classic paper because it presents Professor Howe's pioneering work in setting up the Seawater Conversion Laboratory in Richmond for the University of California at Berkeley, US. The research of Professor Howe and his colleagues at the Seawater Conversion Laboratory formed the foundation of contemporary solar energy desalination and distillation systems.

  14. Fuel Cell Case Study

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Building & Energy Initiatives * Solar 20 new; 30 total, ... * Alternative Energy-Fuel Cells, waste to electricity, ... History of Fuel Cell Contemplation * Back in 2006, UTC Power ...

  15. Texas Sales of Distillate Fuel Oil by End Use

    Energy Information Administration (EIA) (indexed site)

    ,329,790 5,693,270 6,373,078 6,688,629 6,914,481 7,837,118 1984-2014 Residential 67 28 127 102 16 59 1984-2014 Commercial 136,419 100,886 184,312 173,303 142,268 132,601 1984-2014 Industrial 189,981 197,024 233,292 241,601 240,179 270,760 1984-2014 Oil Company 210,865 316,523 541,640 736,186 679,737 886,957 1984-2014 Farm 201,769 207,183 243,170 216,915 190,572 222,849 1984-2014 Electric Power 19,495 15,646 23,156 20,022 20,706 24,700 1984-2014 Railroad 429,026 467,128 498,006 483,096 504,823

  16. Table 50. Prime Supplier Sales Volumes of Distillate Fuel Oils...

    Energy Information Administration (EIA) (indexed site)

    3,856.4 26,071.0 56,502.9 1,351.8 60,057.4 April ... 1,030.8 157.5 20,855.8 21,528.9 3,655.2 25,184.0 46,039.8 817.2 48,045.3 May...

  17. Prime Supplier Sales Volumes of Distillate Fuel Oils and Kerosene...

    Energy Information Administration (EIA) (indexed site)

    165,833.6 February ... 7,190.5 4,192.4 55,685.0 76,234.8 22,030.8 98,265.6 153,950.6 2,265.8 167,599.4 March ... 3,741.4...

  18. Table 50. Prime Supplier Sales Volumes of Distillate Fuel Oils...

    Energy Information Administration (EIA) (indexed site)

    December ... 3,872.6 4,684.1 35,790.4 88,601.0 20,217.6 108,818.6 144,609.0 1,089.2 154,255.0 1998 Average ... 2,643.4 1,854.8...

  19. Stocks of Distillate Fuel Oil 15 ppm Sulfur and Under

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    128,930 135,683 2004-2016 PADD 1 48,011 47,644 49,624 47,947 48,127 49,490 2004-2016 New England 3,841 4,379 4,534 4,438 5,029 5,888 2004-2016 Central Atlantic 31,859 30,793...

  20. Stocks of Distillate Fuel Oil Greater Than 500 ppm Sulfur

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    15,747 15,675 15,436 1993-2016 PADD 1 9,594 10,156 10,022 10,045 9,893 9,629 1993-2016 New England 3,108 3,131 2,948 3,290 3,055 3,284 1993-2016 Central Atlantic 5,474 5,933...

  1. Florida Sales of Distillate Fuel Oil by End Use

    Energy Information Administration (EIA) (indexed site)

    840,100 2,027,012 1,914,621 1,918,039 2,023,650 2,038,923 1984-2014 Residential 1,551 1,820 1,085 572 451 728 1984-2014 Commercial 126,292 113,313 100,791 104,860 113,873 110,082 ...

  2. Louisiana Sales of Distillate Fuel Oil by End Use

    Energy Information Administration (EIA) (indexed site)

    514,474 1,744,771 1,873,769 1,488,986 1,405,392 1,375,580 1984-2014 Residential 1,036 140 34 53 84 89 1984-2014 Commercial 59,689 38,695 39,659 36,840 17,590 21,197 1984-2014 Industrial 21,826 26,063 20,770 33,052 31,744 33,670 1984-2014 Oil Company 243,789 319,394 364,261 245,303 183,801 178,810 1984-2014 Farm 42,624 44,027 49,985 48,462 40,785 46,134 1984-2014 Electric Power 4,321 4,775 5,464 2,733 4,610 4,826 1984-2014 Railroad 18,345 25,425 32,515 28,110 39,578 45,790 1984-2014 Vessel

  3. Mississippi Sales of Distillate Fuel Oil by End Use

    Energy Information Administration (EIA) (indexed site)

    835,855 800,065 771,577 830,756 806,396 819,763 1984-2014 Residential 5 5 4 7 7 8 1984-2014 Commercial 26,641 23,713 26,383 26,386 24,019 28,803 1984-2014 Industrial 21,853 18,362 15,450 20,153 21,186 19,595 1984-2014 Oil Company 3,955 4,262 4,058 6,226 7,450 6,419 1984-2014 Farm 41,080 57,087 52,559 81,878 84,753 79,443 1984-2014 Electric Power 3,796 3,393 2,019 1,674 2,223 1,921 1984-2014 Railroad 24,727 17,936 37,741 29,848 32,550 35,578 1984-2014 Vessel Bunkering 141,302 93,384 58,285 58,505

  4. New Mexico Sales of Distillate Fuel Oil by End Use

    Gasoline and Diesel Fuel Update

    Vessel Bunkering 0 0 0 0 0 0 1984-2014 On-Highway 432,794 472,924 495,600 495,026 484,394 504,615 1984-2014 Military 582 306 859 572 405 682 1984-2014 Off-Highway 5,729 24,907 ...

  5. Alabama Sales of Distillate Fuel Oil by End Use

    Gasoline and Diesel Fuel Update

    Vessel Bunkering 61,852 65,017 41,339 25,542 24,650 20,222 1984-2014 On-Highway 657,070 711,371 717,466 705,904 754,337 768,994 1984-2014 Military 2,014 2,203 2,135 1,649 1,326 ...

  6. Refiner and Blender Net Production of Distillate Fuel Oil

    Gasoline and Diesel Fuel Update

    496 4,599 4,536 4,662 4,784 4,984 1982-2016 PADD 1 378 373 373 393 398 374 1990-2016 PADD 2 995 1,094 1,084 1,112 1,092 1,118 1990-2016 PADD 3 2,412 2,455 2,424 2,505 2,588 2,731 1990-2016 PADD 4 209 189 185 207 220 225 1990-2016 PADD 5 502 489 470 446 486 538 1990

  7. Distillate Fuel Oil Sales for All Other Uses

    Gasoline and Diesel Fuel Update

    Connecticut 0 0 0 0 0 0 1984-2014 Maine 0 0 0 0 0 0 1984-2014 Massachusetts 0 0 0 0 0 0 1984-2014 New Hampshire 0 0 0 0 0 0 1984-2014 Rhode Island 0 0 0 0 0 0 1984-2014 Vermont 0 0 ...

  8. Distillate Fuel Oil Sales for Oil Company Use

    Annual Energy Outlook

    Connecticut 12 2 0 3 4 0 1984-2014 Maine 0 438 238 0 0 0 1984-2014 Massachusetts 0 871 965 887 0 0 1984-2014 New Hampshire 0 997 0 2 0 27 1984-2014 Rhode Island 0 0 0 0 0 0 ...

  9. Distillate Fuel Oil Sales for Off-Highway Use

    Energy Information Administration (EIA) (indexed site)

    1,985,592 2,148,677 2,070,260 2,088,157 2,063,319 2,014,184 1984-2014 East Coast (PADD 1) 605,884 615,812 634,470 621,261 584,856 604,093 1984-2014 New England (PADD 1A) 81,453...

  10. Distillate Fuel Oil Sales for Vessel Bunkering Use

    Energy Information Administration (EIA) (indexed site)

    1,912,984 2,002,834 2,133,395 1,768,324 1,675,521 1,593,398 1984-2014 East Coast (PADD 1) 276,013 259,319 296,947 283,254 274,142 289,674 1984-2014 New England (PADD 1A) 45,147...

  11. Methods of producing transportation fuel

    DOEpatents

    Nair, Vijay; Roes, Augustinus Wilhelmus Maria; Cherrillo, Ralph Anthony; Bauldreay, Joanna M.

    2011-12-27

    Systems, methods, and heaters for treating a subsurface formation are described herein. At least one method for producing transportation fuel is described herein. The method for producing transportation fuel may include providing formation fluid having a boiling range distribution between -5.degree. C. and 350.degree. C. from a subsurface in situ heat treatment process to a subsurface treatment facility. A liquid stream may be separated from the formation fluid. The separated liquid stream may be hydrotreated and then distilled to produce a distilled stream having a boiling range distribution between 150.degree. C. and 350.degree. C. The distilled liquid stream may be combined with one or more additives to produce transportation fuel.

  12. Opportunities for Innovation in Fuel-Engine Co-Optimization

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Innovation in Fuel-Engine Co-Optimization Paul Miles Co-Optima Advanced Engine Development Team Lead BioEnergy 2016: Mobilizing the BioEconomy through Innovation July 12-14, 2016 Walter E. Washington Convention Center Fuels specifications are Property based SI Fuels (ANSI D4814): * Vapor pressure * Distillation curve (& driveability index) * Distillation residue * Corrosivity * Gum content * Oxidation stability With the exception of sulfur, lead, benzene, and overall O 2 content, details of

  13. Fuel oil and kerosene sales 1997

    SciTech Connect

    1998-08-01

    The Fuel Oil and Kerosene Sales 1997 report provides information, illustrations and state-level statistical data on end-use sales of kerosene; No. 1, No. 2, and No. 4 distillate fuel oil; and residual fuel oil. State-level kerosene sales include volumes for residential, commercial, industrial, farm, and all other uses. State-level distillate sales include volumes for residential, commercial, industrial, oil company, railroad, vessel bunkering, military, electric utility, farm, on-highway, off highway construction, and other uses. State-level residual fuel sales include volumes for commercial, industrial, oil company, vessel bunkering, military, electric utility, and other uses. 24 tabs.

  14. Decontamination performance of selected in situ technologies for jet fuel contamination. Master's thesis

    SciTech Connect

    Chesley, G.D.

    1993-01-01

    Specific study of jet fuel is warranted because of the quantitive and qualitative component differences between jet fuel and other hydrocarbon fuels. Quantitatively, jet fuel contains a larger aliphatic or saturate fraction and a smaller aromatic fraction than other fuels (i.e. heating oil and diesel oil) in the medium-boiling-point-distillate class of fuels. Since the aliphatic and aromatic fractions of fuel are not equally susceptible to biodegradation, jet fuel decontamination using biodegradation may be different from other fuels.

  15. Million Cu. Feet Percent of National Total

    Annual Energy Outlook

    Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: ...

  16. Experimental investigation on hydrogen cryogenic distillation equipped with package made by ICIT

    SciTech Connect

    Bornea, A.; Zamfirache, M.; Stefan, L.; Stefanescu, I.; Preda, A.

    2015-03-15

    ICIT (Institute for Cryogenics and Isotopic Technologies) has used its experience in cryogenic water distillation process to propose a similar process for hydrogen distillation that can be used in detritiation technologies. This process relies on the same packages but a stainless filling is tested instead of the phosphorous bronze filling used for water distillation. This paper presents two types of packages developed for hydrogen distillation, both have a stainless filling but it differs in terms of density, exchange surface and specific volume. Performance data have been obtained on laboratory scale. In order to determine the characteristics of the package, the installation was operated in the total reflux mode, for different flow rate for the liquid. There were made several experiments considering different operating conditions. Samples extracted at the top and bottom of cryogenic distillation column allowed mathematical processing to determine the separation performance. The experiments show a better efficiency for the package whose exchange surface was higher and there were no relevant differences between both packages as the operating pressure of the cryogenic column was increasing. For a complete characterization of the packages, future experiments will be considered to determine performance at various velocities in the column and their correlation with the pressure in the column. We plan further experiments to separate tritium from the mixture of isotopes DT, having in view that our goal is to apply this results to a detritiation plant.

  17. Low-temperature distillation plants: a comparison with seawater reverse osmosis

    SciTech Connect

    Hoffman, D.

    1981-07-01

    Low-temperature distillation plants using large aluminum-alloy heat-transfer surfaces have reduced energy requirements to levels projected today for second-generation seawater reverse-osmosis (SWRO) plants. Less sensitive to feed contamination, and totally free from maintenance associated with a complex and critical feed-pretreatment system and periodic membrane replacements, the low-temperature distillation plants out-perform SWRO plants also by their higher-quality product, 2-10 ppM TDS versus 300 to 1000 ppM TDS. Energy requirements and operating costs for Low Temperature Vapor Compression (LT-VC) and Multi-Effect-Distillation (LT-MED) plants, in dual-purpose and various waste-heat-utilization schemes, are compared with those of SWRO plants. 10 references, 14 figures, 8 tables.

  18. Outlook for Light-Duty-Vehicle Fuel Demand | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Outlook for Light-Duty-Vehicle Fuel Demand Outlook for Light-Duty-Vehicle Fuel Demand Gasoline and distillate demand impact of the Energy Independance and Security Act of 2007 PDF ...

  19. Table 8.6b Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Electric Power Sector, 1989-2011 (Subset of Table 8.6a)

    Energy Information Administration (EIA) (indexed site)

    b Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Electric Power Sector, 1989-2011 (Subset of Table 8.6a) Year Coal 1 Petroleum Natural Gas 6 Other Gases 7 Biomass Other 10 Distillate Fuel Oil 2 Residual Fuel Oil 3 Other Liquids 4 Petroleum Coke 5 Total 5 Wood 8 Waste 9 Short Tons Barrels Short Tons Barrels Thousand Cubic Feet Billion Btu Billion Btu Billion Btu 1989 638,798 119,640 1,471,031 762 – 1,591,433 81,669,945 2,804 24,182 5,687

  20. Table 8.6c Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Commercial and Industrial Sectors, 1989-2011 (Subset of Table 8.6a)

    Energy Information Administration (EIA) (indexed site)

    c Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Commercial and Industrial Sectors, 1989-2011 (Subset of Table 8.6a) Year Coal 1 Petroleum Natural Gas 6 Other Gases 7 Biomass Other 10 Distillate Fuel Oil 2 Residual Fuel Oil 3 Other Liquids 4 Petroleum Coke 5 Total 5 Wood 8 Waste 9 Short Tons Barrels Short Tons Barrels Thousand Cubic Feet Billion Btu Billion Btu Billion Btu Commercial Sector 11<//td> 1989 711,212 202,091 600,653 – –

  1. Contact structure for use in catalytic distillation

    DOEpatents

    Jones, E.M. Jr.

    1985-08-20

    A method and apparatus are disclosed for conducting catalytic chemical reactions and fractionation of the reaction mixture, comprising and feeding reactants into a distillation column reactor contracting said reactant in a liquid phase with a fixed bed catalyst in the form of a contact catalyst structure, consisting of closed porous containers containing the catalyst for the reaction and a clip means to hold and support said containers, which are disposed above, i.e., on the distillation trays in the tower. The trays have weir means to provide a liquid level on the trays to substantially cover the containers. In other words, the trays function in their ordinary manner with the addition thereto of the catalyst. The reaction mixture is concurrently fractionated in the column. 7 figs.

  2. Contact structure for use in catalytic distillation

    DOEpatents

    Jones, Jr., Edward M.

    1984-01-01

    A method for conducting catalytic chemical reactions and fractionation of the reaction mixture comprising feeding reactants into a distillation column reactor contracting said reactant in liquid phase with a fixed bed catalyst in the form of a contact catalyst structure consisting of closed porous containers containing the catatlyst for the reaction and a clip means to hold and support said containers, which are disposed above, i.e., on the distillation trays in the tower. The trays have weir means to provide a liquid level on the trays to substantially cover the containers. In other words, the trays function in their ordinary manner with the addition thereto of the catalyst. The reaction mixture is concurrently fractionated in the column.

  3. Contact structure for use in catalytic distillation

    DOEpatents

    Jones, Jr., Edward M.

    1985-01-01

    A method and apparatus for conducting catalytic chemical reactions and fractionation of the reaction mixture, comprising and feeding reactants into a distillation column reactor contracting said reactant in a liquid phase with a fixed bed catalyst in the form of a contact catalyst structure, consisting of closed porous containers containing the catalyst for the reaction and a clip means to hold and support said containers, which are disposed above, i.e., on the distillation trays in the tower. The trays have weir means to provide a liquid level on the trays to substantially cover the containers. In other words, the trays function in their ordinary manner with the addition thereto of the catalyst. The reaction mixture is concurrently fractionated in the column.

  4. Contact structure for use in catalytic distillation

    DOEpatents

    Jones, E.M. Jr.

    1984-03-27

    A method is described for conducting catalytic chemical reactions and fractionation of the reaction mixture comprising feeding reactants into a distillation column reactor, contracting said reactant in liquid phase with a fixed bed catalyst in the form of a contact catalyst structure consisting of closed porous containers containing the catalyst for the reaction and a clip means to hold and support said containers, which are disposed above, i.e., on the distillation trays in the tower. The trays have weir means to provide a liquid level on the trays to substantially cover the containers. In other words, the trays function in their ordinary manner with the addition thereto of the catalyst. The reaction mixture is concurrently fractionated in the column. 7 figs.

  5. Winter fuels report, week ending: March 25, 1994

    SciTech Connect

    Not Available

    1994-03-31

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: Distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; Propane net production, imports and stocks on a US level and for PADD`s I, II, and III; Natural gas supply and disposition and underground storage for the US and consumption for all PADD`s; as well as selected National average prices; Residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; Crude oil and petroleum price comparisons for the US and selected cities; and A 6-10 Day, 30-Day, and 90-Day outlook for temperature and precipitation and US total heating degree-days by city. The distillate fuel oil and propane supply data are collected and published weekly.

  6. Catalytic hydroprocessing of petroleum and distillates

    SciTech Connect

    Oballa, M.C.; Shih, S.S.

    1994-12-31

    There is a strong push for the processing of heavy oils, bitumen and/or residue, which carries with it some problems. These are connected with obtaining state-of-the-art technologies at reasonable capital and operating costs to the refiner. Then there are problems associated with choosing the best catalyst--one specially designed to lower considerably the high content of heteroatoms (S, N, O) and metals (V, Ni, Fe). To address the above considerations, engineers and scientists working in the processing of petroleum and distillates from different parts of the world presented papers covering different facets of residue upgrading and distillate hydrotreating. This book is a compilation of most of the papers presented in the five sessions of the symposium. The editors have broadly classified the papers in terms of content into the following four categories: catalyst deactivation; upgrading of heavy oils and residue; hydrotreating of distillates; and general papers. All papers have been processed separately for inclusion on the data base.

  7. DOE Technical Targets for Fuel Cell Systems for Portable Power...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    environmental impact through the use of reusable fuel cartridges, recyclable components, ... of the total fuel cell system, including fuel tank, fuel, and any hybridization batteries. ...

  8. Crude oil steam distillation in steam flooding. Final report

    SciTech Connect

    Wu, C.H.; Elder, R.B.

    1980-08-01

    Steam distillation yields of sixteen crude oils from various parts of the United States have been determined at a saturated steam pressure of 200 psig. Study made to investigate the effect of steam pressure (200 to 500 psig) on steam distillation yields indicates that the maximum yields of a crude oil may be obtained at 200 psig. At a steam distillation correlation factor (V/sub w//V/sub oi/) of 15, the determined steam distillation yields range from 12 to 56% of initial oil volume for the sixteen crude oils with gravity ranging from 12 to 40/sup 0/API. Regression analysis of experimental steam distillation yields shows that the boiling temperature (simulated distillation temperature) at 20% simulated distillation yield can predict the steam distillation yields reasonably well: the standard error ranges from 2.8 to 3.5% (in yield) for V/sub w//V/sub oi/ < 5 and from 3.5 to 4.5% for V/sub w//V/sub oi/ > 5. The oil viscosity (cs) at 100/sup 0/F can predict the steam distillation yields with standard error from 3.1 to 4.3%. The API gravity can predict the steam distillation yields with standard error from 4.4 to 5.7%. Characterization factor is an unsatisfactory correlation independent variable for correlation purpose.

  9. Apparatus for distilling shale oil from oil shale

    SciTech Connect

    Shishido, T.; Sato, Y.

    1984-02-14

    An apparatus for distilling shale oil from oil shale comprises: a vertical type distilling furnace which is divided by two vertical partitions each provided with a plurality of vent apertures into an oil shale treating chamber and two gas chambers, said oil shale treating chamber being located between said two gas chambers in said vertical type distilling furnace, said vertical type distilling furnace being further divided by at least one horizontal partition into an oil shale distilling chamber in the lower part thereof and at least one oil shale preheating chamber in the upper part thereof, said oil shale distilling chamber and said oil shale preheating chamber communication with each other through a gap provided at an end of said horizontal partition, an oil shale supplied continuously from an oil shale supply port provided in said oil shale treating chamber at the top thereof into said oil shale treating chamber continuously moving from the oil shale preheating chamber to the oil shale distilling chamber, a high-temperature gas blown into an oil shale distilling chamber passing horizontally through said oil shale in said oil shale treating chamber, thereby said oil shale is preheated in said oil shale preheating chamber, and a gaseous shale oil is distilled from said preheated oil shale in said oil shale distilling chamber; and a separator for separating by liquefaction a gaseous shale oil from a gas containing the gaseous shale oil discharged from the oil shale preheating chamber.

  10. Winter fuels report, week ending October 12, 1990

    SciTech Connect

    Not Available

    1990-10-18

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and state and local governments on the following topics: distillate fuel oil net production, imports and stocks for all PADD's and product supplied on a US level; propane net production, imports and stocks for Petroleum Administration for Defense Districts (PADD) I, II, and III; natural gas supply and disposition and underground storage for the United States and consumption for all PADD's; residential and wholesale pricing data for propane and heating oil for those states participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the United States and selected cities; and US total heating degree-days by city.

  11. Winter fuels report, week ending November 30, 1990. [Contains Glossary

    SciTech Connect

    Not Available

    1990-12-06

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and state and local governments on the following topics: distillate fuel oil net production, imports and stocks for all PADD's and product supplied on a US level; propane net production, imports and stocks for Petroleum Administration for Defense Districts (PADD) I, II, and III; natural gas supply and disposition and underground storage for the United States and consumption for all PADD's; residential and wholesale pricing data for propane and heating oil for those states participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the United States and selected cites; and US total heating degree-days by city. This report will be published weekly by the EIA starting the first week in October 1990 and will continue until the first week in April 1991. 27 figs., 12 tabs.

  12. Winter fuels report, week ending January 11, 1991. [Contains glossary

    SciTech Connect

    Not Available

    1991-01-17

    The Winter Fuels Report is intended to provide concise, timely information on the following topics: distillate fuel oil net production, imports and stocks for all PADD's and product supplied on US level; propane net production, imports and stocks for Petroleum Administration for Defense Districts (PADD) I, II, and III; natural gas supply and disposition and underground storage for the United States and consumption for all PADD's; residential and wholesale pricing data for propane and heating oil for those States participating in the joint Energy Information Administration (EIA)/ State Heating Oil and Propane Program; crude oil petroleum price comparisons for the United States and selected cities; and US total heating degree-days by city. 34 figs., 12 tabs.

  13. Winter fuels report, week ending December 16, 1994

    SciTech Connect

    Not Available

    1994-12-22

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local Governments on the following topics: distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s 1, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD, as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6--10 Day, 30-Day, and 90-Day outlook for temperature and precipitation and US total heating degree-days by city.

  14. Winter fuels report week ending: November 17, 1995

    SciTech Connect

    1995-12-01

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`s; as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6-10 Day and 30-Day outlook for temperature and precipitation and US total heating degree-days by city.

  15. Winter fuels report, week ending October 29, 1993

    SciTech Connect

    Not Available

    1993-11-04

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`s; as well as selected National average prices. Residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6--10 Day, and 90-Day outlook for temperature and precipitation and US total heating degree-days by city.

  16. Winter Fuels Report week ending: November 8, 1991

    SciTech Connect

    Not Available

    1991-11-14

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks for PADD's 1, 2, and 3; natural gas supply and disposition and underground storage for the United States and consumption for all PADD's; residential and wholesale pricing data for propane and heating oil for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the United States and selected cities; and US total heating degree-days by city.

  17. Winter fuels report, week ending April 30, 1993. [Contains glossary

    SciTech Connect

    Not Available

    1993-05-06

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks on a US level and for afl Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD's I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD's; as well as selected National average prices. Residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6--10 Day, 30-Day, and 90-Day outlook for temperature and precipitation and US total heating degree-days by city.

  18. Winter fuels reports, week ending: November 24, 1995

    SciTech Connect

    1995-11-30

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`s; as well as selected National average prices. Residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6-10 Day and 30-Day outlook for temperature and precipitation and US total heating degree-days by city.

  19. Winter fuels report, week ending October 6, 1995

    SciTech Connect

    1995-10-06

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topcs: distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s, I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`s; as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Informatoin Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6-10 Day and 30-Day outlook for temperature and precipitation and US total heating degree-days by city.

  20. Winter Fuels Report: Week ending November 10, 1995

    SciTech Connect

    1995-11-01

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on: distillate fuel oil net production, imports and stocks on a US level and for all PADD and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`s; as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and, a 6-10 Day and 30-Day outlook for temperature and precipitation and US total heating degree-days by city.

  1. Winter fuels report, week ending December 7, 1990. [Contains glossary

    SciTech Connect

    Not Available

    1990-12-13

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and state and local governments on the following topics: distillate fuel oil net production, imports and stocks for all PADD's and product supplied on a US level; propane net production, imports and stocks for Petroleum Administration for Defense Districts (PADD) I, II, and III; natural gas supply and disposition and underground storage for the United States and consumption for all PADD's; residential and wholesale pricing data for propane and heating oil for those states participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the United States and selected cities; and US total heating degree-days by city. This report will be published weekly by the EIA starting the first week in October 1990 and will continue until the first week in April 1991. 27 figs., 12 tabs.

  2. Winter fuels report, week ending November 16, 1990

    SciTech Connect

    Not Available

    1990-11-21

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: Distillate fuel oil net production, imports and stocks for all PADD's and product supplied on a US level; propane net production, imports and stocks for Petroleum Administration for Defense Districts (PADD) I, II, and III; natural gas supply and disposition and underground storage for the United States and consumption for all PADD's; residential and wholesale pricing data for propane and heating oil for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the United States and selected cities; and US total heating degree-days by city. 27 figs., 12 tabs.

  3. Winter fuels report, week ending January 4, 1991. [Contains glossary

    SciTech Connect

    Not Available

    1991-01-10

    The Winter Fuels Report is intended to provide concise, timely information on the following: distillate fuel oil net production, imports and stocks for all PADD's and product supplied on a US level; propane net production, imports and stocks for Petroleum Administration for Defense Districts (PADD), I, II, and III; natural gas supply and disposition and underground storage for the United States and consumption for all PADD's; residential and wholesale pricing data for propane and heating oil for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the United States and selected cities; and US total heating degree-days by city. 34 figs., 12 tabs.

  4. Winter fuels report, week ending December 1, 1995

    SciTech Connect

    1995-12-07

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`s; as well as selected National average prices. Residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6--10 Day and 30-Day outlook for temperature and precipitation and US total heating degree-days by city.

  5. Winter fuels report, week ending November 9, 1990

    SciTech Connect

    Not Available

    1990-11-15

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and state and local governments on the following topics: distillate fuel oil net production, imports and stocks for all PADD's and product supplied on a US level; propane net production, imports and stocks for Petroleum Administration for Defense Districts (PADD) I, II, and III; natural gas supply and disposition and underground storage for the United States and consumption for all PADD's; residential and wholesale pricing data for propane and heating oil for those states participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the United States and selected cities; and US total heating degree-days by city. 27 figs., 12 tabs.

  6. Northeast Heating Fuel Market The, Assessment and Options

    Reports and Publications

    2000-01-01

    In response to the President's request, this study examines how the distillate fuel oil market (and related energy markets) in the Northeast behaved in the winter of 1999-2000, explains the role played by residential, commercial, industrial, and electricity generation sector consumers in distillate fuel oil markets and describes how that role is influenced by the structure of the energy markets in the Northeast

  7. Launching Renewable Aviation Fuels

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Bulk Fuel Purchases / Farm to Fleet * Rocky Mountain/ West Coast bulk fuels contract awarded for fuel delivery starting December 2015 awarded 77.6 MM gallons of F-76 with 10% synthetic fuels content (142 MM gallons total F-76) - Covers San Diego, Bremerton, Hawaii - Synthetic fuel supplied by AltAir (Paramount, CA) using the HEFA process - Provides the fuel for RIMPAC 2016 - Solicitation for deliveries starting 1 October 2016 recently closed * Inland/ East/ Gulf Coast solicitation recently

  8. New Design Methods and Algorithms for Multi-component Distillation

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Processes | Department of Energy Design Methods and Algorithms for Multi-component Distillation Processes New Design Methods and Algorithms for Multi-component Distillation Processes multicomponent.pdf (517.32 KB) More Documents & Publications Development of Method and Algorithms To Identify Easily Implementable Energy-Efficient Low-Cost Multicomponent Distillation Column Trains With Large Energy Savings For Wide Number of Separations CX-100137 Categorical Exclusion Determination ITP

  9. Increasing Distillate Production at U.S. Refineries

    Reports and Publications

    2010-01-01

    Paper explores the potential for U.S. refiners to create more distillate and less gasoline without major additional investments beyond those already planned.

  10. Use of extractive distillation to produce concentrated nitric acid

    SciTech Connect

    Campbell, P.C.; Griffin, T.P.; Irwin, C.F.

    1981-04-01

    Concentrated nitric acid (> 95 wt %) is needed for the treatment of off-gases from a fuels-reprocessing plant. The production of concentrated nitric acid by means of extractive distillation in the two-pot apparatus was studied to determine the steady-state behavior of the system. Four parameters, EDP volume (V/sub EDP/) and temperature (T/sub EDP/), acid feed rate, and solvent recycle, were independently varied. The major response factors were percent recovery (CPRR) and product purity (CCP). Stage efficiencies also provided information about the system response. Correlations developed for the response parameters are: CPRR = 0.02(V/sub EDP/ - 800 cc) + 53.5; CCP = -0.87 (T/sub EDP/ - 140/sup 0/C) + 81; eta/sub V,EDP/ = 9.1(F/sub feed/ - 11.5 cc/min) - 0.047(V/sub EDP/ - 800 cc) - 2.8(F/sub Mg(NO/sub 3/)/sub 2// - 50 cc/min) + 390; and eta/sub L,EDP/ = 1.9(T/sub EDP/ - 140/sup 0/C) + 79. A computer simulation of the process capable of predicting steady-state conditions was developed, but it requires further work.

  11. Winter Heating Fuels - Energy Information Administration

    Energy Information Administration (EIA) (indexed site)

    Winter Heating Fuels Click on the map to view state specific heating fuels data below | click to reset to U.S. values Click on map above to view state-specific heating fuel data Propane Heating oil Natural gas Electricity For more data on: Heating oil and propane prices - Heating Oil and Propane Update Propane stocks - Weekly Petroleum Status Report Heating oil/distillate stocks - Weekly Petroleum Status Report Natural gas storage - Weekly Natural Gas Storage Report Natural gas prices - Natural

  12. Omniphobic Membrane for Robust Membrane Distillation

    SciTech Connect

    Lin, SH; Nejati, S; Boo, C; Hu, YX; Osuji, CO; Ehmelech, M

    2014-11-01

    In this work, we fabricate an omniphobic microporous membrane for membrane distillation (MD) by modifying a hydrophilic glass fiber membrane with silica nanoparticles followed by surface fluorination and polymer coating. The modified glass fiber membrane exhibits an anti-wetting property not only against water but also against low surface tension organic solvents that easily wet a hydrophobic polytetrafluoroethylene (PTFE) membrane that is commonly used in MD applications. By comparing the performance of the PTFE and omniphobic membranes in direct contact MD experiments in the presence of a surfactant (sodium dodecyl sulfate, SDS), we show that SDS wets the hydrophobic PTFE membrane but not the omniphobic membrane. Our results suggest that omniphobic membranes are critical for MD applications with feed waters containing surface active species, such as oil and gas produced water, to prevent membrane pore wetting.

  13. APPLICATION OF VACUUM SALT DISTILLATION TECHNOLOGY FOR THE REMOVAL OF FLUORIDE

    SciTech Connect

    Pierce, R.; Pak, D.

    2011-08-10

    Vacuum distillation of chloride salts from plutonium oxide (PuO{sub 2}) and simulant PuO{sub 2} has been previously demonstrated at Department of Energy (DOE) sites using kilogram quantities of chloride salt. The apparatus for vacuum distillation contains a zone heated using a furnace and a zone actively cooled using either recirculated water or compressed air. During a vacuum distillation operation, a sample boat containing the feed material is placed into the apparatus while it is cool, and the system is sealed. The system is evacuated using a vacuum pump. Once a sufficient vacuum is attained, heating begins. Volatile salts distill from the heated zone to the cooled zone where they condense, leaving behind the non-volatile materials in the feed boat. The application of vacuum salt distillation (VSD) is of interest to the HB-Line Facility and the MOX Fuel Fabrication Facility (MFFF) at the Savannah River Site (SRS). Both facilities are involved in efforts to disposition excess fissile materials. Many of these materials contain chloride and fluoride salt concentrations which make them unsuitable for dissolution without prior removal of the chloride and fluoride salts. Between September 2009 and January 2011, the Savannah River National Laboratory (SRNL) and HB-Line designed, developed, tested, and successfully deployed a system for the distillation of chloride salts. Subsequent efforts are attempting to adapt the technology for the removal of fluoride. Fluoride salts of interest are less-volatile than the corresponding chloride salts. Consequently, an alternate approach is required for the removal of fluoride without significantly increasing the operating temperature. HB-Line Engineering requested SRNL to evaluate and demonstrate the feasibility of an alternate approach using both non-radioactive simulants and plutonium-bearing materials. Whereas the earlier developments targeted the removal of sodium chloride (NaCl) and potassium chloride (KCl), the current

  14. Fuel flexible fuel injector

    DOEpatents

    Tuthill, Richard S; Davis, Dustin W; Dai, Zhongtao

    2015-02-03

    A disclosed fuel injector provides mixing of fuel with airflow by surrounding a swirled fuel flow with first and second swirled airflows that ensures mixing prior to or upon entering the combustion chamber. Fuel tubes produce a central fuel flow along with a central airflow through a plurality of openings to generate the high velocity fuel/air mixture along the axis of the fuel injector in addition to the swirled fuel/air mixture.

  15. untitled

    Gasoline and Diesel Fuel Update

    Prime Supplier Sales Volumes of Distillate Fuel Oils and Kerosene by PAD District and ... No. 2 Distillate Total Distillate and Kerosene No. 2 Fuel Oil No. 2 Diesel Fuel No. 2 ...

  16. Fuel oil and kerosene sales 1996

    SciTech Connect

    1997-08-01

    The Fuel Oil and Kerosene Sales 1996 report provides information, illustrations and State-level statistical data on end-use sales of kerosene; No. 1, No. 2, and No. 4 distillate fuel oil; and residual fuel oil. State-level kerosene sales include volumes for residential, commercial, industrial, farm, and all other uses. State-level distillate sales include volumes for residential, commercial, industrial, oil company, railroad, vessel bunkering, military, electric utility, farm, on-highway, off highway construction, and other uses. State-level residual fuel sales include volumes for commercial, industrial, oil company, vessel bunkering, military, electric utility, and other uses. The Petroleum Marketing Division, Office of Oil and Gas, Energy Information Administration ensures the accuracy, quality, and confidentiality of the published data in the Fuel Oil and Kerosene Sales 1996. 24 tabs.

  17. Compare All CBECS Activities: Fuel Oil Use

    Gasoline and Diesel Fuel Update

    Fuel Oil Use Compare Activities by ... Fuel Oil Use Total Fuel Oil Consumption by Building Type Commercial buildings in the U.S. used a total of approximately 1.3 billion gallons...

  18. Million Cu. Feet Percent of National Total Million Cu. Feet...

    Annual Energy Outlook

    Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: ...

  19. Million Cu. Feet Percent of National Total Million Cu. Feet...

    Annual Energy Outlook

    Feet Percent of National Total Total Net Movements: -1,159,080 - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total ...

  20. Million Cu. Feet Percent of National Total Million Cu. Feet...

    Gasoline and Diesel Fuel Update

    Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: 0 Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: ...

  1. Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...

    Energy Information Administration (EIA) (indexed site)

    October ... 14,752.6 69,758.6 7,217.1 15,271.7 21,969.7 85,030.3 3,137.2 25,623.2 25,106.9 110,653.4 November ... 14,904.2...

  2. Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...

    Annual Energy Outlook

    25,794.3 125,232.3 November ... 14,453.5 66,101.3 8,392.5 14,607.4 22,846.0 80,708.7 3,071.6 38,342.1 25,917.7 119,050.8 December ......

  3. Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...

    Annual Energy Outlook

    I January ... 3,767.8 15,166.2 1,271.9 3,441.5 5,039.7 18,607.8 1,103.3 23,611.9 6,143.0 42,219.7 February ... 4,023.0 15,858.8...

  4. A Method to Distill Hydrogen Isotopes from Lithium | Princeton...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    to Distill Hydrogen Isotopes from Lithium This white paper outlines a method for the removal of tritium and deuterium from liquid lithium. The method is based on rapid or flash ...

  5. Membrane augmented distillation to separate solvents from water

    DOEpatents

    Huang, Yu; Baker, Richard W.; Daniels, Rami; Aldajani, Tiem; Ly, Jennifer H.; Alvarez, Franklin R.; Vane, Leland M.

    2012-09-11

    Processes for removing water from organic solvents, such as ethanol. The processes include distillation to form a rectified overhead vapor, compression of the rectified vapor, and treatment of the compressed vapor by two sequential membrane separation steps.

  6. Heat Integrated Distillation through Use of Microchannel Technology

    Energy.gov [DOE]

    This factsheet describes a research project whose goal is to develop a breakthrough distillation process using Microchannel Process Technology to integrate heat transfer and separation into a single unit operation.

  7. Four different shale oils processed into jet fuel

    SciTech Connect

    Not Available

    1987-03-01

    Crude shale oils produced by (a) Geokinetics, (b) Occidental, (c) Paraho, and (d) Tosco II processes have each been catalytically hydroprocessed to produce jet fuel fractions. The shale oil hydroprocessing was performed at low, medium and high hydroprocessing severities. Hydroprocessing severity was changed mainly by varying the temperature. Full boiling range (121-300/sup 0/C) jet fuel was produced from the hydroprocessed product of the raw oil distillates boiling below 343/sup 0/C. This paper describes the shale oil properties and hydroprocessing, gives the results of sulfur removal and hydrogenated shale oil distillation, and lists the physical and chemical properties of the jet fuels. 2 figures, 3 tables.

  8. President's Hydrogen Fuel Initiative

    Office of Energy Efficiency and Renewable Energy (EERE)

    Hydrogen Infrastructure and Fuel Cell Technologies put on an Accelerated Schedule. President Bush commits a total $1.7 billion over first 5 years

  9. Correlations estimate volume distilled using gravity, boiling point

    SciTech Connect

    Moreno, A.; Consuelo Perez de Alba, M. del; Manriquez, L.; Guardia Mendoz, P. de la

    1995-10-23

    Mathematical nd graphic correlations have been developed for estimating cumulative volume distilled as a function of crude API gravity and true boiling point (TBP). The correlations can be used for crudes with gravities of 21--34{degree} API and boiling points of 150--540 C. In distillation predictions for several mexican and Iraqi crude oils, the correlations have exhibited accuracy comparable to that of laboratory measurements. The paper discusses the need for such a correlation and the testing of the correlation.

  10. Low Temperature Geothermal Resource Assessment for Membrane Distillation

    Office of Scientific and Technical Information (OSTI)

    Desalination in the United States: Preprint (Conference) | SciTech Connect Low Temperature Geothermal Resource Assessment for Membrane Distillation Desalination in the United States: Preprint Citation Details In-Document Search Title: Low Temperature Geothermal Resource Assessment for Membrane Distillation Desalination in the United States: Preprint Substantial drought and declines in potable groundwater in the United States over the last decade has increased the demand for fresh water.

  11. Microsoft PowerPoint - 2011WinterFuels_finalv3.pptx [Read-Only...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    The West is forecast to be slightly colder than it was last year. g y y * Inventories of distillate fuel oil and ... should serve to g mitigate price increases if winter is ...

  12. DOE Hydrogen and Fuel Cells Program Record, Record # 13008: Industry...

    Energy.gov [DOE] (indexed site)

    record from the DOE Hydrogen and Fuel Cells Program focuses on deployments of fuel cell powered lift trucks. ... An Evaluation of the Total Cost of Ownership of Fuel ...

  13. Table 5.15 Fuel Oil and Kerosene Sales, 1984-2010 (Thousand Gallons)

    Energy Information Administration (EIA) (indexed site)

    5 Fuel Oil and Kerosene Sales, 1984-2010 (Thousand Gallons) Year Distillate Fuel Oil Residential Commercial Industrial Oil Company Farm Electric Power 1 Railroad Vessel Bunkering On-Highway Diesel Military Off-Highway Diesel Other Total 1984 8,215,722 5,538,184 2,555,898 848,083 3,201,600 648,665 2,944,694 1,763,782 16,797,423 700,788 1,756,077 700,864 45,671,779 1985 7,728,057 4,463,226 2,440,661 684,227 3,102,106 523,010 2,786,479 1,698,985 17,279,650 661,644 1,522,041 168,625 43,058,711 1986

  14. Proceedings of the 6. international conference on stability and handling of liquid fuels. Volume 2

    SciTech Connect

    Giles, H.N.

    1998-12-01

    Volume 2 of these proceedings contain 42 papers arranged under the following topical sections: Fuel blending and compatibility; Middle distillates; Microbiology; Alternative fuels; General topics (analytical methods, tank remediation, fuel additives, storage stability); and Poster presentations (analysis methods, oxidation kinetics, health problems).

  15. Winter fuels report week ending February 1, 1991. [Contains Glossary

    SciTech Connect

    Not Available

    1991-02-07

    This Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and state and local governments on the following topics: distillate fuel oil net production, imports and stocks for all PADD's and product supplied on a US level; propane net production, imports and stocks for Petroleum Administration for Defense Districts (PADD) 1, 2 and 3; natural gas supply and disposition and underground storage for the United states and consumption for all PADD's; residential and wholesale pricing data for propane and heating oil for those states participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the United states and selected cities; and US total heating degree-days by city. 34 figs., 12 tabs.

  16. Winter fuels report, week ending September 27, 1991. [Contains glossary

    SciTech Connect

    Not Available

    1991-10-03

    This report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and state and local governments on the following topics: distillate fuel oil net production, imports and stocks for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks for PADD's 1, 2, 3; natural gas supply and disposition and underground storage for the United States and consumption for all PADD's; residential and wholesale pricing data for propane and heating oil for those states participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the United States and selected cities; and US total heating degree-days by city. 37 figs., 13 tabs.

  17. Winter fuels report, week ending November 15, 1991. [CONTAINS GLOSSARY

    SciTech Connect

    Not Available

    1991-11-21

    This report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and state and local governments on the following topics: distillate fuel oil net production, imports and stocks for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks for PADD's I, II, and III; natural gas supply and disposition and underground storage for the United States and consumption for all PADD's; residential and wholesale pricing data for propane and heating oil for those states participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the United States and selected cities; and US total heating degree-days by city. 37 figs., 13 tabs.

  18. Winter Fuels Report for the week ending November 2, 1990

    SciTech Connect

    Not Available

    1990-11-08

    The report is to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and state and local governments on the following topics: distillate fuel oil net production, imports and stocks for all Petroleum Administration for Defense Districts (PADDs) and product supplied on a US level; propane net production, imports and stocks for PADD I, II, and III;natural gas supply and disposition and underground storage for the United States and consumption for all PADDs; residential and wholesale pricing data for propane and heating oil for those states participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the United States and selected cities; and US total heating degree-days by city.

  19. Winter fuels report, week ending December 14, 1990. [Contains glossary

    SciTech Connect

    Not Available

    1990-12-20

    This report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and state and local governments on the following topics: distillate fuel oil net production, imports and stocks for all PADD's and product supplied on a US level; propane net production, imports and stocks for Petroleum Administration for Defense Districts (PADD) I, II, and III; natural gas supply and disposition and underground storage for the United States and consumption for all PADD's; residential and wholesale pricing data for propane and heating oil for those states participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the United States and selected cities; and US total heating degree-days by city. This report will be published weekly by the EIA starting the first week in October 1990 and will continue until the first week in April 1991. 34 figs., 12 tabs.

  20. Fuel oil and kerosene sales 1994

    SciTech Connect

    1995-09-27

    This publication contains the 1994 survey results of the ``Annual Fuel Oil and Kerosene Sales Report`` (Form EIA-821). This is the sixth year that the survey data have appeared in a separate publication. Prior to the 1989 report, the statistics appeared in the Petroleum Marketing Annual (PMA)for reference year 1988 and the Petroleum Marketing Monthly (PMM) for reference years 1984 through 1987. The 1994 edition marks the 11th annual presentation of the results of the ongoing ``Annual Fuel Oil and Kerosene Sales Report`` survey. Distillate and residual fuel oil sales continued to move in opposite directions during 1994. Distillate sales rose for the third year in a row, due to a growing economy. Residual fuel oil sales, on the other hand, declined for the sixth year in a row, due to competitive natural gas prices, and a warmer heating season than in 1993. Distillate fuel oil sales increased 4.4 percent while residual fuel oil sales declined 1.6 percent. Kerosene sales decreased 1.4 percent in 1994.

  1. Winter fuels report, week ending October 20, 1995

    SciTech Connect

    1995-11-01

    Weekly estimates of distillate stocks (131.6 MMB) are now 2.1 MMB below the lower bound of the three year average, and the current rate of increase is also lower than the average of the past three years. Heating fuels are 48% of the total inventory and have fallen 1.3 MMB during the past week. Distillate production dipped while demand increased. The supply of propane for the current week declined 1.5 MMB from the prior reporting period but is in the normal range for the time of the year. The natural gas supply available for distribution in August 1995 was estimated to be 1,795 BCF, which was almost unchanged from the previous year. The August 1995 consumption of 1,502 BCF was 6% greater than the previous year. This gas volume included 276 BCF injected into underground storage and 16 BCF exported. In July 1995, major gas pipeline companies paid an average of $1.91/KCF for gas purchased from domestic producers, which was a decrease from $2.03 in the previous month. The price for imported gas was $1.10/KCF. Heating oil prices showed little movement during this period, as did propane prices.

  2. U.S. Total No. 2 Distillate Prices by Sales Type

    Energy Information Administration (EIA) (indexed site)

    Area: U.S. East Coast (PADD 1) New England (PADD 1A) Connecticut Maine Massachusetts New Hampshire Rhode Island Vermont Central Atlantic (PADD 1B) Delaware District of Columbia Maryland New Jersey New York Pennsylvania Lower Atlantic (PADD 1C) Virginia West Virginia Midwest (PADD 2) Illinois Indiana Michigan Minnesota Ohio Wisconsin Gulf Coast (PADD 3) Rocky Mountain (PADD 4) Idaho West Coast (PADD 5) Alaska Oregon Washington Period: Monthly Annual Download Series History Download Series History

  3. Total Adjusted Sales of Residual Fuel Oil

    Energy Information Administration (EIA) (indexed site)

    Show Data By: End Use Area 2009 2010 2011 2012 2013 2014 View History U.S. 7,835,436 ... Maryland 39,436 40,305 23,696 11,201 11,023 9,121 1984-2014 New Jersey 514,864 368,310 ...

  4. Total Sales of Residual Fuel Oil

    Gasoline and Diesel Fuel Update

    Maine 129,181 92,567 83,603 49,235 75,802 66,087 1984-2014 Massachusetts 59,627 52,228 34,862 30,474 67,739 82,301 1984-2014 New Hampshire 33,398 18,320 13,301 10,285 19,997 22,917 ...

  5. Total Crude Oil and Petroleum Products Exports

    Energy Information Administration (EIA) (indexed site)

    Exports Product: Total Crude Oil and Petroleum Products Crude Oil Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Biomass-Based Diesel Unfinished Oils Naphthas and Lighter

  6. Hydrogen as a fuel for fuel cell vehicles: A technical and economic comparison

    SciTech Connect

    Ogden, J.; Steinbugler, M.; Kreutz, T.

    1997-12-31

    All fuel cells currently being developed for near term use in vehicles require hydrogen as a fuel. Hydrogen can be stored directly or produced onboard the vehicle by reforming methanol, ethanol or hydrocarbon fuels derived from crude oil (e.g., Diesel, gasoline or middle distillates). The vehicle design is simpler with direct hydrogen storage, but requires developing a more complex refueling infrastructure. In this paper, the authors compare three leading options for fuel storage onboard fuel cell vehicles: compressed gas hydrogen storage; onboard steam reforming of methanol; onboard partial oxidation (POX) of hydrocarbon fuels derived from crude oil. Equilibrium, kinetic and heat integrated system (ASPEN) models have been developed to estimate the performance of onboard steam reforming and POX fuel processors. These results have been incorporated into a fuel cell vehicle model, allowing us to compare the vehicle performance, fuel economy, weight, and cost for various fuel storage choices and driving cycles. A range of technical and economic parameters were considered. The infrastructure requirements are also compared for gaseous hydrogen, methanol and hydrocarbon fuels from crude oil, including the added costs of fuel production, storage, distribution and refueling stations. Considering both vehicle and infrastructure issues, the authors compare hydrogen to other fuel cell vehicle fuels. Technical and economic goals for fuel cell vehicle and hydrogen technologies are discussed. Potential roles for hydrogen in the commercialization of fuel cell vehicles are sketched.

  7. ,"No. 2 Distillate Sales to End Users Refiner Sales Volumes"

    Energy Information Administration (EIA) (indexed site)

    ... Refiners (Thousand Gallons per Day)","New Mexico No 2 Distillate Retail Sales by Refiners ...57.7,6018.7,64.6,101.5,691.5,1553.8,1576.9,2030.5,4320.3,1350.4,683.2,792.4,316.4,804.3,37...

  8. Major Fuels","Electricity","Natural Gas","Fuel Oil","District...

    Energy Information Administration (EIA) (indexed site)

    (million square feet)","Total of Major Fuels","Electricity","Natural Gas","Fuel Oil","District Heat" "All Buildings ...",4657,67338,81552,66424,10...

  9. Fuel Options

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Hydrogen Production Market Transformation Fuel Cells Predictive Simulation of Engines ... Twitter Google + Vimeo Newsletter Signup SlideShare Fuel Options HomeCapabilitiesFuel ...

  10. New Design Methods and Algorithms for Multi-component Distillation Processes

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Methods and Algorithms for Multi-component Distillation Processes Improved Energy Efficiency through the Determination of Optimal Distillation Configuration The ability to apply low-energy distillation confgurations can allow chemical manufacturers to reduce energy consumption of both existing and grassroots plants. However, the determina- tion of an appropriate confguration is limited by an incomplete knowledge of the 'search space' for a proper distillation network. Currently, no systematic

  11. Table 5.4 End Uses of Fuel Consumption, 2010;

    Annual Energy Outlook

    Coal Code(a) End Use for Electricity(b) Fuel Oil Diesel Fuel(c) Natural Gas(d) NGL(e) Coke and Breeze) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL ...

  12. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    Fueling Infrastructure Tax Credit An income tax credit is available to eligible taxpayers who construct or purchase and install qualified alternative fueling infrastructure. The tax credit is 20% of the total allowable costs associated with construction or purchase and installation of the equipment, up to $400,000 per facility. For the purpose of this tax credit, qualified alternative fuels include natural gas and propane. This tax credit expires December 31, 2017. (Reference West Virginia Code

  13. Evaluation of coal-derived liquids as boiler fuels. Volume 2: boiler test results. Final report

    SciTech Connect

    Not Available

    1985-09-01

    A combustion demonstration using six coal-derived liquid (CDL) fuels was conducted on a utility boiler located at the Plant Sweatt Electric Generating Station of Mississippi Power Company in Meridian, Mississippi. The test program was conducted in two phases. The first phase included the combustion tests of the two conventional fuels (natural gas and No. 6 fuel oil) and three coal-derived liquid fuels (Solvent Refined Coal-II full range distillate, H-Coal heavy distillate and H-Coal blended distillate). The second phase involved the evaluation of three additional CDL fuels (H-Coal light distillate, Exxon Donor Solvent full range distillate and Solvent Refined Coal-II middle distillate). The test boiler was a front wall-fired Babcock and Wilcox unit with a rated steam flow of 425,000 lb/h and a generating capacity of 40 MW. Boiler performance and emissions were evaluated with baseline and CDL fuels at 15, 25, 40 MW loads and at various excess air levels. Low NO/sub x/ (staged) combustion techniques were also implemented. Boiler performance monitoring included measurements for fuel steam and flue gas flow, pressure, temperature, and heat absorption, resulting in a calculated combustion efficiency, boiler efficiency, and heat rate. Emissions measurements included oxygen, carbon dioxide, carbon monoxide, oxides of nitrogen, sulfur dioxide, sulfur trioxide, acid dewpoint, particulate mass, size distribution and morphology, chlorides, and opacity. The test program demonstrated the general suitability of CDL fuels for use in existing oil-fired utility boilers. No significant boiler tube surface modifications will be required. The CDL fuels could be handled similarly to No. 2 oil with appropriate safety procedures and materials compatibility considerations. Volume 2 of a five-volume report contains the detailed boiler test results. 96 figs., 26 tabs.

  14. Fossil fuels -- future fuels

    SciTech Connect

    1998-03-01

    Fossil fuels -- coal, oil, and natural gas -- built America`s historic economic strength. Today, coal supplies more than 55% of the electricity, oil more than 97% of the transportation needs, and natural gas 24% of the primary energy used in the US. Even taking into account increased use of renewable fuels and vastly improved powerplant efficiencies, 90% of national energy needs will still be met by fossil fuels in 2020. If advanced technologies that boost efficiency and environmental performance can be successfully developed and deployed, the US can continue to depend upon its rich resources of fossil fuels.

  15. Opportunity fuels

    SciTech Connect

    Lutwen, R.C.

    1994-12-31

    Opportunity fuels - fuels that can be converted to other forms of energy at lower cost than standard fossil fuels - are discussed in outline form. The type and source of fuels, types of fuels, combustability, methods of combustion, refinery wastes, petroleum coke, garbage fuels, wood wastes, tires, and economics are discussed.

  16. Integrated process of distillation with side reactors for synthesis of organic acid esters

    DOEpatents

    Panchal, Chandrakant B; Prindle, John C; Kolah, Aspri; Miller, Dennis J; Lira, Carl T

    2015-11-04

    An integrated process and system for synthesis of organic-acid esters is provided. The method of synthesizing combines reaction and distillation where an organic acid and alcohol composition are passed through a distillation chamber having a plurality of zones. Side reactors are used for drawing off portions of the composition and then recycling them to the distillation column for further purification. Water is removed from a pre-reactor prior to insertion into the distillation column. An integrated heat integration system is contained within the distillation column for further purification and optimizing efficiency in the obtaining of the final product.

  17. Enhanced Separation Efficiency in Olefin/Paraffin Distillation

    Energy.gov [DOE]

    This factsheet describes a research project whose main objective is to develop technologies to enhance separation efficiencies by replacing the conventional packing materials with hollow fiber membranes, which have a high specific area and separated channels for both liquid and vapor phases. The use of hollow fibers in distillation columns can help refineries decrease operating costs, reduce greenhouse gas emissions through reduced heating costs, and help expand U.S. refining capacity through improvements to existing sites, without large scale capital investment.

  18. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    by at least 50% by 2015 as compared to the total amount used in 2006. In addition, state agencies must reduce petroleum-based diesel fuel use by 25% by 2015. (Reference ...

  19. Fuel Tables.indd

    Annual Energy Outlook

    ... Where shown, (s) Btu value less than 0.05. Notes: Motor gasoline estimates include fuel ethanol blended into motor gasoline. * Totals may not equal sum of components due to ...

  20. Fuel Tables.indd

    Gasoline and Diesel Fuel Update

    Where shown, (s) Physical unit value less than 0.5 or Btu value less than 0.05. Notes: * There are no direct fuel costs for hydroelectric power. * Totals may not equal sum of ...

  1. Combined process for heavy oil, upgrading and synthetic fuel production

    SciTech Connect

    Polomski, R.E.

    1984-06-05

    A process for upgrading heavy oil to fuel products comprises deasphalting the heavy oil with an oxygenated solvent and simultaneously converting the oxygenated solvent and deasphalted oil over a ZSM-5 type catalyst to produce gasoline and distillate boiling range hydrocarbons.

  2. Farm alcohol fuel project. Final report

    SciTech Connect

    Demmel, D.

    1981-11-15

    The Small Energy Project is a research and demonstration effort designed to assist small farmers in the utilization of energy conservation techniques on their farms. The Farm Alcohol Project was designed to demonstrate the production of alcohol fuels on small farms in order to reduce purchased liquid fuel requirements. The Project considered the use of on-farm raw materials for process heat and the production of fuel grade, low prood ethanol in volumes up to 10,000 gallons per year. The fuel would be used entirely on the farm. The approach considered low-cost systems the farmer could build himself from local resources. Various crops were considered for ethanol production. The interest in farm alcohol production reached a peak in 1980 and then decreased substantially as farmers learned that the process of alcohol production on the farm was much more complicated than earlier anticipated. Details of Alcohol Project experiences in ethanol production, primarily from corn, are included in this report. A one-bushel distillation plant was constructed as a learning tool to demonstrate the production of ethanol. The report discusses the various options in starch conversion, fermentation and distillation that can be utilized. The advantages and disavantages of atmospheric and the more complicated process of vacuum distillation are evaluated. Larger farm plants are considered in the report, although no experience in operating such plants was gained through the Project. Various precautions and other considerations are included for farm plant designs. A larger community portable distillery is also evaluated. Such a plant was considered for servicing farms with limited plant equipment. The farms serviced would perform only fermentation tasks, with the portable device performing distillation and starch conversion.

  3. Deliveries of fuel oil and kerosene in 1980

    SciTech Connect

    Not Available

    1982-02-11

    This report contains numerical data on deliveries of distillate fuel oil, residual fuel oil, and kerosene which will be helpful to federal and state agencies, industry, and trade associations in trend analysis, policy/decision making, and forecasting. The data for 1979 and 1980 are tabulated under the following headings: all uses, residential, commercial, industrial, oil companies, electric utilities, transportation, military, and farm use. The appendix contains product and end-use descriptions. (DMC)

  4. Winter fuels report: Week ending October 19, 1990

    SciTech Connect

    Not Available

    1990-10-25

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and state and local governments on the following topics: distillate fuel oil net production, imports and stocks for all PADD's and product supplied on the US level; propane net production, imports and stocks for Petroleum Administration for Defense Districts (PADD) I, II, and III; natural gas supply and disposition and underground storage for the United States and consumption for all PADD's; residential and wholesale pricing data for propane and heating oil for those states participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the United States and selected cities; and US total heating degree-days by city. This report will be published weekly by the EIA starting the first week in October 1990 and will continue until the first week in April 1991. The data will also be available electronically after 5:00 pm on Thursday during the heating season through the EIA Electronic Publication System (EPUB).

  5. Winter fuels report, week ending December 21, 1990. [Contains glossary

    SciTech Connect

    Not Available

    1990-12-28

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks for all PADD's and product supplied on a US level; propane net production, imports and stocks for Petroleum Administration for Defense Districts (PADD), I, II, and III; natural gas supply and disposition and underground storage for the United States and consumption for all PADD's; residential and wholesale pricing data for propane and heating oil for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the United States and selected cities; and US total heating degree-days by city. This report will be published weekly by the EIA starting the first week in October 1990 and will continue until the first week in April 1991. The data will also be available electronically after 5:00 p.m. on Thursday during the heating season through the EIA Electronic Publication System (EPUB). 34 figs., 12 tabs.

  6. Winter fuels report, week ending October 5, 1990

    SciTech Connect

    Not Available

    1990-10-11

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and state and local governments on the following topics: distillate fuel oil net production, imports and stocks for all PADD's and product supplied on a US level; propane net production, imports and stocks for Petroleum Administration for Defense Districts (PADD) I, II, and III; natural gas supply and disposition and underground storage, for the United States and consumption for all PADD's; residential and wholesale pricing data for propane and heating oil for those states participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the United States and selected cities; and US total heating degree-days by city. This report will be published weekly by the EIA starting the first week in October 1990 and will continue until the first week in April 1991. The data will also be electronically after 5:00 p.m. on Thursday during the heating season through the EIA Electronic Publication System (EPUB). See page ii for details. 12 tabs.

  7. Winter fuels report, Week ending December 2, 1994

    SciTech Connect

    Not Available

    1994-12-08

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policy makers, consumers, analysts, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s 1, 2, and 3; natural gas supply and disposition and underground storage for the US and consumption for all PADD`s; as well as selected National average prices. Residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6--10 Day, 30-day, and 90-Day outlook for temperature and precipitation and US total heating degree-days by city.

  8. Winter fuels report, week ending December 9, 1994

    SciTech Connect

    Not Available

    1994-12-15

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`s: as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6-10 Day, 30-Day, and 90-Day outlook for temperature and precipitation and US total heating degree-days by city.

  9. Winter fuels report. Week ending: October 13, 1995

    SciTech Connect

    1995-10-19

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`s, as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6--10-Day and 30-Day outlook for temperature and precipitation and US total heating degree-days by city. This report is published weekly by the EIA starting the second week in October 1995 and will continue until the second week in April 1996. The data will also be available electronically after 5:00 p.m. on Wednesday and Thursday during the heating season through the EIA Electronic Publication System (EPUB). 36 figs., 13 tabs.

  10. Winter fuels report. Week ending: December 29, 1995

    SciTech Connect

    1996-01-05

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s 1, 2, and 3; natural gas supply and disposition and underground storage for the US and consumption for all PADD`s; as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6--10 Day and 30-Day outlook for temperature and precipitation and US total heating degree-days by city. 36 figs., 13 tabs.

  11. Winter fuels report, week ending April 1, 1994

    SciTech Connect

    Not Available

    1994-04-07

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`S; as well as selected National average prices. Residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6--10 Day, 30-Day, and 90-Day outlook for temperature and precipitation and US total heating degree-days by city.

  12. Winter fuels report, week ending January 14, 1994

    SciTech Connect

    Not Available

    1994-01-21

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`S; as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6--10 Day, 30-Day, and 90-Day outlook for temperature and precipitation and US total heating degree-days by city.

  13. Winter fuels report, week ending January 7, 1994

    SciTech Connect

    Not Available

    1994-01-13

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`S; as well as selected National average prices; residential and wholesale pricing, data for heating oil and propane for those States participating, in the joint Energy Information Administration (EIA)/State Heating, Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6-10 Day, 30-Day, and 90-Day outlook for temperature and precipitation and US total heating degree-days by city.

  14. Winter fuels report, week ending November 26, 1993

    SciTech Connect

    Not Available

    1993-12-02

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`s; as well as selected National average prices. Residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6--10 day, 30-day, and 90-day outlook for temperature and precipitation and US total heating degree-days by city.

  15. Winter fuels report week ending, February 4, 1994

    SciTech Connect

    Not Available

    1994-02-10

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: Distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; Propane net production, imports and stocks on a US level and for PADD`s I, II, and III; Natural gas supply and disposition and underground storage for the US and consumption for all PADD`S (as well as selected National average prices); Residential and wholesale pricing data for heating, oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating, Oil and Propane Program; Crude oil and petroleum price comparisons for the US and selected cities; and a 6--10 day, 30-day, and 90-day outlook for temperature and precipitation and US total heating degree-days by city.

  16. Winter fuels report, week ending October 8, 1993

    SciTech Connect

    Not Available

    1993-10-15

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: Distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`S; as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6--10 Day, 30-Day, and 90-Day outlook for temperature and precipitation and US total heating degree-days by city.

  17. Winter fuels report week ending, February 11, 1994

    SciTech Connect

    Not Available

    1994-02-17

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`S; as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6--10 Day, 30-Day, and 90-Day outlook for temperature and precipitation and US total heating degree-days by city.

  18. Winter fuels report, week ending October 15, 1993

    SciTech Connect

    Not Available

    1993-10-21

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: Distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`S; as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6--10 Day, 30-Day, and 90-Day outlook for temperature and precipitation and US total heating degree-days by city.

  19. Winter fuels report, week ending January 21, 1994

    SciTech Connect

    Not Available

    1994-01-27

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`S; as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6--10 Day, 30-Day, and 90-Day outlook for temperature and precipitation and US total heating degree-days by city.

  20. Winter fuels report, week ending March 11, 1994

    SciTech Connect

    Not Available

    1994-03-17

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: Distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`S; as well as selected National average prices. Residential and wholesale pricing, data for heating oil and propane for those States participating, in the joint Energy Information Administration (EIA)/State Heating, Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6--10 Day, 30-Day, and 90-Day outlook for temperature and precipitation and US total heating, degree-days by city.

  1. Winter fuels report, week ending March 4, 1994

    SciTech Connect

    Not Available

    1994-03-10

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`S; as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6--10 Day, 30-Day, and 90-Day outlook for temperature and precipitation and US total heating degree-days by city.

  2. Winter fuels report, week ending November 19, 1993

    SciTech Connect

    Not Available

    1993-11-26

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: Distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`S; as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6--10 Day, 30-Day, and 90-Day outlook for temperature and precipitation and US total heating degree-days by city.

  3. Winter fuels report, week ending January 28, 1994

    SciTech Connect

    Not Available

    1994-02-03

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II, and III; natural cas supply and disposition and underground storage for the US and consumption for all PADD`S; as well as selected National average prices. Residential and wholesale pricing, data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6--10 Day, 30-Day, and 90-Day outlook for temperature and precipitation and US total heating, degree-days by city.

  4. Winter fuels report, week ending February 25, 1994

    SciTech Connect

    Not Available

    1994-03-03

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II, and 111; natural gas supply and disposition and underground storage for the US and consumption for all PADD`s; as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating, in the joint Energy Information Administration (EIA)/State Heating, Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6--10 Day, 30-Day, and 90-Day outlook for temperature and precipitation and US total heating degree-days by city.

  5. Winter fuels report week ending, November 5, 1993

    SciTech Connect

    Not Available

    1993-11-12

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: Distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`S; as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6--10 Day, 30-Day, and 90-Day outlook for temperature and precipitation and US total heating degree-days by city.

  6. Winter fuels report, week ending November 12, 1993

    SciTech Connect

    Not Available

    1993-11-18

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: Distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`S; as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6--10 Day, 30-Day, and 90-Day outlook for temperature and precipitation and US total heating degree-days by city.

  7. Winter fuels report week ending, December 17, 1993

    SciTech Connect

    Not Available

    1993-12-23

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s 1, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`S; as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6--10 Day, 30-Day, and 90-Day outlook for temperature and precipitation and US total heating degree-days by city.

  8. Winter fuels report. Week ending: December 31, 1993

    SciTech Connect

    Not Available

    1994-01-06

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: Distillate fuel oil net production, imports and stocks on a U.S. level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a U.S. level; propane net production, imports and stocks on a U.S. level and for PADD`s I,II, and III; natural gas supply and disposition and underground storage for the U.S. and consumption for all PADD`s as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the U.S. and selected cities; and a 6-10 day, 30 day,and 90 day outlook for temperature and precipitation and U.S. total heating degree-days by city. This report is for the week ending December 31, 1993.

  9. Winter fuels report. Week ending: January 20, 1995

    SciTech Connect

    Not Available

    1995-01-01

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks on a U.S. level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s 1, 2, and 3; natural gas supply and disposition and underground storage for the US and consumption for all PADD`s; as well as selected National average prices. Residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6--10 Day, 30-Day, and 90-Day outlook for temperature and precipitation and US total heating degree-days by city.

  10. Winter fuels report. Week ending December 10, 1993

    SciTech Connect

    Not Available

    1993-12-16

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks on a U.S. level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a U.S. level; propane net production, imports and stocks on a U.S. level and for PADD`s I, II, and III; natural gas supply and disposition and underground storage for the U.S. and consumption for all PADD`s; as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the U.S. and selected cities; and a 6--10 Day, 30-Day, and 90-Day outlook for temperature and precipitation and U.S. total heating degree-days by city. 37 figs., 13 tabs.

  11. Winter fuels report, week ending April 30, 1993

    SciTech Connect

    Not Available

    1993-05-06

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks on a US level and for afl Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`s; as well as selected National average prices. Residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6--10 Day, 30-Day, and 90-Day outlook for temperature and precipitation and US total heating degree-days by city.

  12. Winter fuels report. Week ending: January 19, 1996

    SciTech Connect

    1996-01-25

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, the policymakers, consumers, analysts, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s 1, 2, and 3; natural gas supply and disposition and underground storage for the US and consumption for all PADD`s, as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6--10 Day and 30-Day outlook for temperature and precipitation and US total heating degree-days by city. 36 figs., 13 tabs.

  13. Winter fuels report. Week ending: January 12, 1996

    SciTech Connect

    1996-01-19

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s 1, 2, and 3; natural gas supply and disposition and underground storage for the US and consumption for all PADD`S; as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6--10 Day and 30-Day outlook for temperature and precipitation and US total heating degree-days by city. 36 figs., 21 tabs.

  14. Winter fuels report. Week ending: March 3, 1995

    SciTech Connect

    1995-03-09

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`s; as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6--10 Day and 30-Day outlook for temperature and precipitation and US total heating degree-days by city. 36 fig., 13 tabs.

  15. Winter fuels report, week ending October 7, 1994

    SciTech Connect

    Not Available

    1994-10-14

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, the policymakers, consumers, analysts, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`S; as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6-10 Day, 30-Day, and 90-Day outlook for temperature and precipitation and US total heating degree-days by city.

  16. Winter fuels report week ending, December 3, 1993

    SciTech Connect

    Not Available

    1993-12-09

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s I, 11, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`S; as well as selected National average prices. residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6-10 Day, 30-Day, and 90-Day outlook for temperature and precipitation and US total heating degree-days by city.

  17. Winter fuels report, week ending February 24, 1995

    SciTech Connect

    1995-03-02

    The Winter Fuels Report for the week ending February 24, 1995 is intended to provide concise timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: Distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplies on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`s; as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6--10 Day and 30-Day outlook for temperature and precipitation and US total heating degree-days by city.

  18. Winter fuels report week ending, February 18, 1994

    SciTech Connect

    Not Available

    1994-02-24

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`s; as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6--10 Day, 30-Day, and 90-Day outlook for temperature and precipitation and US total heating degree-days by city.

  19. Winter fuels report, week ending March 10, 1995

    SciTech Connect

    1995-03-16

    The Winter Fuels Report for the week ending March 10, 1995 is intended to provide concise timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: Distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplies on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`s; as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6--10 Day and 30-Day outlook for temperature and precipitation and US total heating degree-days by city.

  20. Winter fuels report, Week ending December 30, 1994

    SciTech Connect

    Not Available

    1995-01-06

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policy makers, consumers, analysts, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a U.S. level and for PADD`s 1, 2, and 3; natural gas supply and disposition and underground storage for the US and consumptive for all PADD`s; as well as selected National average prices. Residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6--10 Day, 30-Day, and 90-Day outlook for temperature and precipitation and US total heating degree-days by city.

  1. Winter fuels report, week ending March 24, 1995

    SciTech Connect

    1995-03-30

    The Winter Fuels Report for the week ending March 24, 1995 is intended to provide concise timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: Distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplies on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`s; as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6--10 Day and 30-Day outlook for temperature and precipitation and US total heating degree-days by city.

  2. Winter fuels report, week ending November 18, 1994

    SciTech Connect

    Not Available

    1994-11-25

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level, propane net production, imports and stocks on a US level and for PADD`s I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`s: as well as selected National average prices; residential and wholesale pricing, data for heating, oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6-10 Day, 30-Day, and 90-Day outlook for temperature and precipitation and US total heating degree-days by city.

  3. Winter fuels report. Week ending: December 15, 1995

    SciTech Connect

    1995-12-21

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s 1, 2, and 3; natural gas supply and disposition and underground storage for the US and consumption for all PADD`s; as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6--10 Day and 30-Day outlook for temperature and precipitation and US total heating degree-days by city. 36 figs., 13 tabs.

  4. Winter fuels report. Week ending: January 6, 1995

    SciTech Connect

    Not Available

    1995-01-12

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the followings topics: distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PASS) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`s; as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6--10 Day, 30-Day, and 90-Day outlook for temperature and precipitation and US total heating degree-days by city.

  5. Winter fuels report week ending, October 22, 1993

    SciTech Connect

    Not Available

    1993-10-28

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: Distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`S; as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6--10 Day, 30-Day, and 90-Day outlook for temperature and precipitation and US total heating degree-days by city.

  6. Table 5.2 End Uses of Fuel Consumption, 2010;

    Energy Information Administration (EIA) (indexed site)

    Coal Code(a) End Use Total Electricity(b) Fuel Oil Diesel Fuel(c) Natural Gas(d) NGL(e) Coke and Breeze) Other(f) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL ...

  7. Alternative Fuels Data Center: Biodiesel Fueling Stations

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fueling ...

  8. "Characteristic(a)","Total(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","Breeze","Other(g)","Produced Onsite(h)"

    Energy Information Administration (EIA) (indexed site)

    1.3 Relative Standard Errors for Table 1.3;" " Unit: Percents." " "," "," "," "," "," "," "," "," "," " " "," ",," "," ",," "," ",," ","Shipments" "Economic",,"Net","Residual","Distillate",,"LPG and",,"Coke and"," ","of Energy

  9. "Code(a)","Subsector and Industry","Total","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal","and Breeze","Other(e)"

    Energy Information Administration (EIA) (indexed site)

    9 Relative Standard Errors for Table 7.9;" " Unit: Percents." " "," "," ",," "," "," "," "," "," "," "," " " "," " "NAICS"," "," ",,"Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and

  10. Fuel cell gas management system

    DOEpatents

    DuBose, Ronald Arthur

    2000-01-11

    A fuel cell gas management system including a cathode humidification system for transferring latent and sensible heat from an exhaust stream to the cathode inlet stream of the fuel cell; an anode humidity retention system for maintaining the total enthalpy of the anode stream exiting the fuel cell equal to the total enthalpy of the anode inlet stream; and a cooling water management system having segregated deionized water and cooling water loops interconnected by means of a brazed plate heat exchanger.

  11. Florida Natural Gas Input Supplemental Fuels (Million Cubic Feet...

    Annual Energy Outlook

    Input Supplemental Fuels (Million Cubic Feet) Florida Natural Gas Input Supplemental Fuels ... Total Supplemental Supply of Natural Gas Florida Supplemental Supplies of Natural Gas ...

  12. Nevada Natural Gas Input Supplemental Fuels (Million Cubic Feet...

    Energy Information Administration (EIA) (indexed site)

    Input Supplemental Fuels (Million Cubic Feet) Nevada Natural Gas Input Supplemental Fuels ... Referring Pages: Total Supplemental Supply of Natural Gas Nevada Supplemental Supplies of ...

  13. Hydrogen and Fuel Cell Activities: 5th International Conference...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Fuel Cell Activities: Progress and Future Directions: Total Energy USA 2012 DOE Hydrogen and Fuel Cell Overview: January 2011 National Petroleum Council ...

  14. Fuel pin

    DOEpatents

    Christiansen, David W.; Karnesky, Richard A.; Leggett, Robert D.; Baker, Ronald B.

    1989-10-03

    A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

  15. Fuel pin

    DOEpatents

    Christiansen, David W. (Kennewick, WA); Karnesky, Richard A. (Richland, WA); Leggett, Robert D. (Richland, WA); Baker, Ronald B. (Richland, WA)

    1989-01-01

    A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

  16. Fuel pin

    DOEpatents

    Christiansen, D.W.; Karnesky, R.A.; Leggett, R.D.; Baker, R.B.

    1987-11-24

    A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

  17. Major Fuels","Electricity",,"Natural Gas","Fuel Oil","District

    Energy Information Administration (EIA) (indexed site)

    . Total Energy Consumption by Major Fuel for Non-Mall Buildings, 2003" ,"All Buildings*",,"Total Energy Consumption (trillion Btu)" ,"Number of Buildings (thousand)","Floorspace...

  18. Major Fuels","Site Electricity","Natural Gas","Fuel Oil","District...

    Energy Information Administration (EIA) (indexed site)

    C1. Total Energy Consumption by Major Fuel, 1999" ,"All Buildings",,"Total Energy Consumption (trillion Btu)",,,,,"Primary Electricity (trillion Btu)" ,"Number of Buildings...

  19. New Design Methods and Algorithms for Energy Efficient Multicomponent Distillation Column Trains

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Methods and Algorithms for Energy Efficient Multicomponent Distillation Column Trains Enabling optimal configurations for high volume chemical separations Distillation is a ubiquitous method in the chemical and petrochemical industries to separate mixtures into their individual components and accounts for a large percentage of all separations in chemical and petrochemical plants. A large fraction of the separations are mixtures containing four or more components requiring multiple distillation

  20. New Design Methods and Algorithms for Energy Efficient Multicomponent Distillation Column Trains

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Rakesh Agrawal, School of Chemical Engineering, Purdue University U.S. DOE Advanced Manufacturing Office Program Review Meeting Washington, D.C. June 14-15, 2016 This presentation does not contain any proprietary, confidential, or otherwise restricted information. Project Objective Distillation: Essential to Meet Human Needs Courtesy: static.squarespace.com/ Courtesy: ths.talawanda.org Project Objective Distillation: Essential to Meet Human Needs  Multicomponent distillation: ubiquitous in

  1. Pyroprocessing of fast flux test facility nuclear fuel

    SciTech Connect

    Westphal, B.R.; Wurth, L.A.; Fredrickson, G.L.; Galbreth, G.G.; Vaden, D.; Elliott, M.D.; Price, J.C.; Honeyfield, E.M.; Patterson, M.N.

    2013-07-01

    Used nuclear fuel from the Fast Flux Test Facility (FFTF) was recently transferred to the Idaho National Laboratory and processed by pyroprocessing in the Fuel Conditioning Facility. Approximately 213 kg of uranium from sodium-bonded metallic FFTF fuel was processed over a one year period with the equipment previously used for the processing of EBR-II used fuel. The peak burnup of the FFTF fuel ranged from 10 to 15 atom% for the 900+ chopped elements processed. Fifteen low-enriched uranium ingots were cast following the electrorefining and distillation operations to recover approximately 192 kg of uranium. A material balance on the primary fuel constituents, uranium and zirconium, during the FFTF campaign will be presented along with a brief description of operating parameters. Recoverable uranium during the pyroprocessing of FFTF nuclear fuel was greater than 95% while the purity of the final electro-refined uranium products exceeded 99%. (authors)

  2. Pyroprocessing of Fast Flux Test Facility Nuclear Fuel

    SciTech Connect

    B.R. Westphal; G.L. Fredrickson; G.G. Galbreth; D. Vaden; M.D. Elliott; J.C. Price; E.M. Honeyfield; M.N. Patterson; L. A. Wurth

    2013-10-01

    Used nuclear fuel from the Fast Flux Test Facility (FFTF) was recently transferred to the Idaho National Laboratory and processed by pyroprocessing in the Fuel Conditioning Facility. Approximately 213 kg of uranium from sodium-bonded metallic FFTF fuel was processed over a one year period with the equipment previously used for the processing of EBR-II used fuel. The peak burnup of the FFTF fuel ranged from 10 to 15 atom% for the 900+ chopped elements processed. Fifteen low-enriched uranium ingots were cast following the electrorefining and distillation operations to recover approximately 192 kg of uranium. A material balance on the primary fuel constituents, uranium and zirconium, during the FFTF campaign will be presented along with a brief description of operating parameters. Recoverable uranium during the pyroprocessing of FFTF nuclear fuel was greater than 95% while the purity of the final electrorefined uranium products exceeded 99%.

  3. Fuel Cell Demonstration Program

    SciTech Connect

    Gerald Brun

    2006-09-15

    In an effort to promote clean energy projects and aid in the commercialization of new fuel cell technologies the Long Island Power Authority (LIPA) initiated a Fuel Cell Demonstration Program in 1999 with six month deployments of Proton Exchange Membrane (PEM) non-commercial Beta model systems at partnering sites throughout Long Island. These projects facilitated significant developments in the technology, providing operating experience that allowed the manufacturer to produce fuel cells that were half the size of the Beta units and suitable for outdoor installations. In 2001, LIPA embarked on a large-scale effort to identify and develop measures that could improve the reliability and performance of future fuel cell technologies for electric utility applications and the concept to establish a fuel cell farm (Farm) of 75 units was developed. By the end of October of 2001, 75 Lorax 2.0 fuel cells had been installed at the West Babylon substation on Long Island, making it the first fuel cell demonstration of its kind and size anywhere in the world at the time. Designed to help LIPA study the feasibility of using fuel cells to operate in parallel with LIPA's electric grid system, the Farm operated 120 fuel cells over its lifetime of over 3 years including 3 generations of Plug Power fuel cells (Lorax 2.0, Lorax 3.0, Lorax 4.5). Of these 120 fuel cells, 20 Lorax 3.0 units operated under this Award from June 2002 to September 2004. In parallel with the operation of the Farm, LIPA recruited government and commercial/industrial customers to demonstrate fuel cells as on-site distributed generation. From December 2002 to February 2005, 17 fuel cells were tested and monitored at various customer sites throughout Long Island. The 37 fuel cells operated under this Award produced a total of 712,635 kWh. As fuel cell technology became more mature, performance improvements included a 1% increase in system efficiency. Including equipment, design, fuel, maintenance, installation

  4. Fuels for Advanced Combustion Engines Research Diesel Fuels: Analysis of Physical and Chemical Properties

    SciTech Connect

    Gallant, Tom; Franz, Jim; Alnajjar, Mikhail; Storey, John Morse; Lewis Sr, Samuel Arthur; Sluder, Scott; Cannella, William C; Fairbridge, Craig; Hager, Darcy; Dettman, Heather; Luecke, Jon; Ratcliff, Matthew A.; Zigler, Brad

    2009-01-01

    The CRC Fuels for Advanced Combustion Engines working group has worked to identify a matrix of research diesel fuels for use in advanced combustion research applications. Nine fuels were specified and formulated to investigate the effects of cetane number aromatic content and 90% distillation fraction. Standard ASTM analyses were performed on the fuels as well as GC/MS and /u1H//u1/u3C NMR analyses and thermodynamic characterizations. Details of the actual results of the fuel formulations compared with the design values are presented, as well as results from standard analyses, such as heating value, viscosity and density. Cetane number characterizations were accomplished by using both the engine method and the Ignition Quality Tester (IQT/sT) apparatus.

  5. Fractional distillation of C/sub 2//C/sub 3/ hydrocarbons at optimum pressures

    SciTech Connect

    Tedder, D.W.

    1984-08-07

    A method of recovering by distillation the separate components of a hydrocarbon gas mixture comprising ethylene, ethane, propylene and propane which comprises separating the ethylene and ethane as an overhead from a propylene and propane bottom in a first distillation tower at from about 400 to about 600 psia, separating ethylene and ethane as an ethylene overhead and an ethane bottom in a second distillation tower at from about 600 to about 700 psia, and separating propylene as an overhead from a propane bottom in a third distillation tower at from about 280 to about 300 psia is disclosed.

  6. T-534: Vulnerability in the PDF distiller of the BlackBerry Attachment...

    Energy.gov [DOE] (indexed site)

    PROBLEM: Vulnerability in the PDF distiller of the BlackBerry Attachment Service for the BlackBerry Enterprise Server. PLATFORM: * BlackBerry Enterprise Server Express version...

  7. Million Cu. Feet Percent of National Total

    Energy Information Administration (EIA) (indexed site)

    4 Delaware - Natural Gas 2015 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S8. Summary statistics for natural gas - Delaware, 2011-2015 2011 2012 2013 2014 2015 Number of Wells Producing Natural Gas at End of Year Oil Wells 0 0 0 0 0 Gas Wells 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals

  8. Million Cu. Feet Percent of National Total

    Energy Information Administration (EIA) (indexed site)

    4 Massachusetts - Natural Gas 2015 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S23. Summary statistics for natural gas - Massachusetts, 2011-2015 2011 2012 2013 2014 2015 Number of Wells Producing Natural Gas at End of Year Oil Wells 0 0 0 0 0 Gas Wells 0 0 0 0 0 Production (million cubic feet) Gross

  9. Percentage of Total Natural Gas Industrial Deliveries included...

    Gasoline and Diesel Fuel Update

    Price Percentage of Total Industrial Deliveries included in Prices Vehicle Fuel Price Electric Power Price Period: Monthly Annual Download Series History Download Series ...

  10. U.S. Adjusted Sales of Distillate Fuel Oil by End Use

    Energy Information Administration (EIA) (indexed site)

    Area: U.S. East Coast (PADD 1) New England (PADD 1A) Connecticut Maine Massachusetts New Hampshire Rhode Island Vermont Central Atlantic (PADD 1B) Delaware District of Columbia Maryland New Jersey New York Pennsylvania Lower Atlantic (PADD 1C) Florida Georgia North Carolina South Carolina Virginia West Virginia Midwest (PADD 2) Illinois Indiana Iowa Kansas Kentucky Michigan Minnesota Missouri Nebraska North Dakota Ohio Oklahoma South Dakota Tennessee Wisconsin Gulf Coast (PADD 3) Alabama

  11. Stocks of Distillate Fuel Oil Greater Than 15 ppm to 500 ppm...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    7,736 8,385 8,505 8,299 1993-2016 PADD 1 5,695 5,241 5,102 5,162 5,289 5,069 1993-2016 New England 3,839 3,354 3,250 3,424 3,460 3,335 1993-2016 Central Atlantic 1,426 1,524...

  12. ,"U.S. Adjusted Distillate Fuel Oil and Kerosene Sales by End...

    Energy Information Administration (EIA) (indexed site)

    worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Residential",4,"Annual",2013,"6301984" ,"Data...

  13. Refiner and Blender Net Production of Distillate Fuel Oil 15 ppm Sulfur and

    Gasoline and Diesel Fuel Update

    Under 4,159 4,271 4,245 4,219 4,421 4,654 2004-2016 PADD 1 331 323 347 299 363 349 2004-2016 PADD 2 1,017 1,110 1,101 1,109 1,099 1,111 2004-2016 PADD 3 2,131 2,182 2,158 2,205 2,287 2,465 2004-2016 PADD 4 211 189 186 203 209 224 2004-2016 PADD 5 469 468 454 403 462 505 2004

  14. Refiner and Blender Net Production of Distillate Fuel Oil > 15 pmm to 500

    Gasoline and Diesel Fuel Update

    ppm Sulfur 67 99 8 104 81 77 1993-2016 PADD 1 15 22 5 50 8 5 1993-2016 PADD 2 -9 -2 -4 -3 5 0 1993-2016 PADD 3 53 75 12 40 50 56 1993-2016 PADD 4 0 1 0 5 11 1 1993-2016 PADD 5 7 2 -5 13 7 15 1993

  15. Refiner and Blender Net Production of Distillate Fuel Oil > 500 ppm Sulfur

    Gasoline and Diesel Fuel Update

    Weekly 4-Week Average Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 10/07/16 10/14/16 10/21/16 10/28/16 11/04/16 11/11/16 View History U.S. 270 229 282 338 282 253 1993-2016 PADD 1 31 28 21 44 27 19 1993-2016 PADD 2 -13 -14 -12 6 -13 7 1993-2016 PADD 3 228 197 254 260 251 210 1993-2016 PADD 4 -2 -1 0 -1 -1 -1 1993-2016 PADD 5 26 19 20 29 18 18 1993

  16. The Influence of Molecular Structure of Distillate Fuels on HFRR Lubricity

    Energy.gov [DOE]

    Presentation given at 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  17. U.S. Sales of Distillate Fuel Oil by End Use

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Area: U.S. East Coast (PADD 1) New England (PADD 1A) Connecticut Maine Massachusetts New Hampshire Rhode Island Vermont Central Atlantic (PADD 1B) Delaware District of Columbia ...

  18. Alternative Fuels Data Center: Emerging Fuels

    Alternative Fuels and Advanced Vehicles Data Center

    Emerging Fuels Printable Version Share this resource Send a link to Alternative Fuels Data Center: Emerging Fuels to someone by E-mail Share Alternative Fuels Data Center: Emerging Fuels on Facebook Tweet about Alternative Fuels Data Center: Emerging Fuels on Twitter Bookmark Alternative Fuels Data Center: Emerging Fuels on Google Bookmark Alternative Fuels Data Center: Emerging Fuels on Delicious Rank Alternative Fuels Data Center: Emerging Fuels on Digg Find More places to share Alternative

  19. Alternative Fuels Data Center: Electricity Fuel Basics

    Alternative Fuels and Advanced Vehicles Data Center

    Electricity Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Electricity Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Electricity Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Electricity Fuel Basics on Google Bookmark Alternative Fuels Data Center: Electricity Fuel Basics on Delicious Rank Alternative Fuels Data Center: Electricity Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Electricity Fuel Basics on

  20. Alternative Fuels Data Center: Ethanol Fuel Basics

    Alternative Fuels and Advanced Vehicles Data Center

    Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fuel Basics on Google Bookmark Alternative Fuels Data Center: Ethanol Fuel Basics on Delicious Rank Alternative Fuels Data Center: Ethanol Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fuel Basics on AddThis.com... More in this

  1. Alternative Fuels Data Center: Ethanol Fueling Stations

    Alternative Fuels and Advanced Vehicles Data Center

    Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fueling Stations on Google Bookmark Alternative Fuels Data Center: Ethanol Fueling Stations on Delicious Rank Alternative Fuels Data Center: Ethanol Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fueling Stations on

  2. Alternative Fuels Data Center: Hydrogen Fueling Stations

    Alternative Fuels and Advanced Vehicles Data Center

    Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fueling Stations on Google Bookmark Alternative Fuels Data Center: Hydrogen Fueling Stations on Delicious Rank Alternative Fuels Data Center: Hydrogen Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Fueling Stations

  3. Alternative Fuels Data Center: Propane Fueling Stations

    Alternative Fuels and Advanced Vehicles Data Center

    Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Propane Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Propane Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Propane Fueling Stations on Google Bookmark Alternative Fuels Data Center: Propane Fueling Stations on Delicious Rank Alternative Fuels Data Center: Propane Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Propane Fueling Stations on

  4. Advanced Fuel Reformer Development: Putting the 'Fuel' in Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fuel Reformer Development Putting the 'Fuel' in Fuel Cells Subir Roychoudhury Precision Combustion, Inc. (PCI), North Haven, CT Shipboard Fuel Cell Workshop March 29, 2011 ...

  5. Transportation Fuels

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Transportation Fuels DOE would invest $52 million to fund a major fleet transformation at Idaho National Laboratory, along with the installation of nine fuel management systems, purchase of additional flex fuel cars and one E85 ethanol fueling station. Transportation projects, such as the acquisition of highly efficient and alternative-fuel vehicles, are not authorized by ESPC legislation. DOE has twice proportion of medium vehicles and three times as many heavy vehicles as compared to the

  6. Literature search for the non-aqueous separation of zinc from fuel rod cladding. [After dissolution in liquid metal

    SciTech Connect

    Sandvig, R. L.; Dyer, S. J.; Lambert, G. A.; Baldwin, C. E.

    1980-06-21

    This report reviews the literature of processes for the nonaqueous separation of zinc from dissolved fuel assembly cladding. The processes considered were distillation, pyrochemical processing, and electrorefining. The last two techniques were only qualitatively surveyed while the first, distillation, was surveyed in detail. A survey of available literature from 1908 through 1978 on the distillation of zinc was performed. The literature search indicated that a zinc recovery rate in excess of 95% is possible; however, technical problems exist because of the high temperatures required and the corrosive nature of liquid zinc. The report includes a bibliography of the surveyed literature and a computer simulation of vapor pressures in binary systems. 129 references.

  7. Comparison of advanced distillation control methods. Third annual report

    SciTech Connect

    Riggs, J.B.

    1997-07-01

    Detailed dynamic simulations of three industrial distillation columns (a propylene/propane splitter, a xylene/toluene column, and a depropanizer) have been used to study the issue of configuration selection for diagonal PI dual composition controls, feedforward from a feed composition analyzer, and decouplers. Auto Tune Variation (ATV) identification with on-line detuning for setpoint changes was used for tuning the diagonal proportional integral (PI) composition controls. In addition, robustness tests were conducted by inducting reboiler duty upsets. For single composition control, the (L, V) configuration was found to be best. For dual composition control, the optimum configuration changes from one column to another. Moreover, the use of analysis tools, such as RGA, appears to be of little value in identifying the optimum configuration for dual composition control. Using feedforward from a feed composition analyzer and using decouplers are shown to offer significant advantages for certain specific cases.

  8. Low capital implementation of distributed distillation in ethylene recovery

    DOEpatents

    Reyneke, Rian; Foral, Michael J.; Lee, Guang-Chung

    2006-10-31

    An apparatus for recovering ethylene from a hydrocarbon feed stream, where the apparatus is a single distillation column pressure shell encasing an upper region and a lower region. The upper region houses an ethylene distributor rectifying section and the lower region houses a C2 distributor section and an ethylene distributor stripping section. Vapor passes from the lower region into the upper region, and liquid passes from the upper region to the lower region. The process for recovering the ethylene is also disclosed. The hydrocarbon feed stream is introduced into the C2 distributor section, and after a series of stripping and refluxing steps, distinct hydrocarbon products are recovered from the C2 distributor section, the ethylene distributor stripping section, and the ethylene distributor rectifying section, respectively.

  9. UV resonance Raman characterization of polycyclic aromatic hydrocarbons in coal liquid distillates

    SciTech Connect

    Rumelfanger, R.; Asher, S.A.; Perry, M.B.

    1988-02-01

    Ultraviolet resonance Raman spectroscopy has been used to characterize the polycyclic aromatic hydrocarbon composition of a series of distillates of coal-derived liquids. The UV Raman spectra easily monitor changes in the polycyclic aromatic hydrocarbon composition as a function of distillation temperature. Specific species, such as pyrene, can be determined by judicious choice of excitation wavelength.

  10. Alternative Fuels Data Center: Flexible Fuel Vehicles

    Alternative Fuels and Advanced Vehicles Data Center

    Ethanol Printable Version Share this resource Send a link to Alternative Fuels Data Center: Flexible Fuel Vehicles to someone by E-mail Share Alternative Fuels Data Center: Flexible Fuel Vehicles on Facebook Tweet about Alternative Fuels Data Center: Flexible Fuel Vehicles on Twitter Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicles on Google Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicles on Delicious Rank Alternative Fuels Data Center: Flexible Fuel Vehicles on Digg

  11. Fuel Cells and Renewable Gaseous Fuels

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Cell Technologies Office | 1 7142015 Fuel Cells and Renewable Gaseous Fuels Bioenergy 2015: Renewable Gaseous Fuels Breakout Session Sarah Studer, PhD ORISE Fellow Fuel Cell ...

  12. Opportunity fuels

    SciTech Connect

    Lutwen, R.C.

    1996-12-31

    The paper consists of viewgraphs from a conference presentation. A comparison is made of opportunity fuels, defined as fuels that can be converted to other forms of energy at lower cost than standard fossil fuels. Types of fuels for which some limited technical data is provided include petroleum coke, garbage, wood waste, and tires. Power plant economics and pollution concerns are listed for each fuel, and compared to coal and natural gas power plant costs. A detailed cost breakdown for different plant types is provided for use in base fuel pricing.

  13. Analysis of Oxygenated Compounds in Hydrotreated Biomass Fast Pyrolysis Oil Distillate Fractions

    SciTech Connect

    Christensen, Earl D.; Chupka, Gina; Luecke, Jon; Smurthwaite, Tricia D.; Alleman, Teresa L.; Iisa, Kristiina; Franz, James A.; Elliott, Douglas C.; McCormick, Robert L.

    2011-10-06

    Three hydrotreated bio-oils with different oxygen contents (8.2, 4.9, and 0.4 w/w) were distilled to produce Light, Naphtha, Jet, Diesel, and Gasoil boiling range fractions that were characterized for oxygen containing species by a variety of analytical methods. The bio-oils were originally generated from lignocellulosic biomass in an entrained-flow fast pyrolysis reactor. Analyses included elemental composition, carbon type distribution by {sup 13}C NMR, acid number, GC-MS, volatile organic acids by LC, and carbonyl compounds by DNPH derivatization and LC. Acid number titrations employed an improved titrant-electrode combination with faster response that allowed detection of multiple endpoints in many samples and for acid values attributable to carboxylic acids and to phenols to be distinguished. Results of these analyses showed that the highest oxygen content bio-oil fractions contained oxygen as carboxylic acids, carbonyls, aryl ethers, phenols, and alcohols. Carboxylic acids and carbonyl compounds detected in this sample were concentrated in the Light, Naphtha, and Jet fractions (<260 C boiling point). Carboxylic acid content of all of the high oxygen content fractions was likely too high for these materials to be considered as fuel blendstocks although potential for blending with crude oil or refinery intermediate streams may exist for the Diesel and Gasoil fractions. The 4.9 % oxygen sample contained almost exclusively phenolic compounds found to be present throughout the boiling range of this sample, but imparting measurable acidity primarily in the Light, Naphtha and Jet fractions. Additional study is required to understand what levels of the weakly acidic phenols could be tolerated in a refinery feedstock. The Diesel and Gasoil fractions from this upgraded oil had low acidity but still contained 3 to 4 wt% oxygen present as phenols that could not be specifically identified. These materials appear to have excellent potential as refinery feedstocks and some

  14. CSV File Documentation: Consumption

    Gasoline and Diesel Fuel Update

    Product: Total Finished Motor Gasoline Reformulated Gasoline Reformulated Blended w/ Fuel Ethanol Reformulated Other Conventional Gasoline Conventional Blended w/ Fuel Ethanol Conventional Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Blended w/ Fuel Ethanol, Greater than Ed55 Conventional Other Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm Sulfur and under Distillate F.O., Greater than 15 ppm to 500 ppm Sulfur Distillate F.O.,

  15. Fuels Technologies

    Office of Environmental Management (EM)

    ... and why do NO x x emissions emissions increase when fueling with biodiesel? increase when fueling with biodiesel? NO NO x x increase is larger at higher increase is larger ...

  16. Synthetic Fuel

    ScienceCinema

    Idaho National Laboratory - Steve Herring, Jim O'Brien, Carl Stoots

    2016-07-12

    Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhouse gass Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhous

  17. Fuel Economy

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Energy Department is investing in groundbreaking research that will make cars weigh less, drive further and consume less fuel.

  18. Barge Truck Total

    Annual Energy Outlook

    Barge Truck Total delivered cost per short ton Shipments with transportation rates over total shipments Total delivered cost per short ton Shipments with transportation rates over...

  19. FUEL CELLS Fuel Cell Cars

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    CELLS Fuel Cell Cars Power, performance, and pollution - free Only water from tailpipe More efficient than traditional combustion Only water and heat as byproducts Produce electricity without any combustion Scale up easily to meet many power needs Hydrogen in. Electricity, Heat and Water Out. Share the knowledge #FuelCellsNow #HydrogenNow Learn more: energy.gov/eere/fuelcells Most abundant element in universe Fuel Cell Cars Power, performance, and pollution - free Only water from tailpipe Fuel

  20. Winter fuels report. Week ending: February 2, 1996

    SciTech Connect

    1996-02-01

    This is the last issue of this document due to budget cuts. Most data will continue to be available electronically via EPUB and the Internet. This report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: (1) distillate fuel oil net production, imports and stocks on a U.S. level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a U.S. level; (2) propane net production, imports and stocks on a U.S. level and for PADD`s I, II, and III; (3) natural gas supply and disposition and underground storage for the U.S. and consumption for all PADD`s; as well as selected National average prices; (4) residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; (5) crude oil and petroleum price comparisons for the U.S. and selected cities; and (6) a 6-10 Day and 30-Day outlook for temperature and precipitation and U.S. total heating degree-days by city.

  1. Environmental assessment of air quality, noise and cooling tower drift from the Jersey City Total Energy Demonstration

    SciTech Connect

    Davis, W.T.; Kolb, J.O.

    1980-06-01

    This assessment covers three specific effects from the operation of the Total Energy (TE) demonstration: (1) air quality from combustion emissions of 600 kW diesel engines and auxiliary boilers fueled with No. 2 distillate oil, (2) noise levels from TE equipment operation, (3) cooling tower drift from two, 2220 gpm, forced-draft cooling towers. For the air quality study, measurements were performed to determine both the combustion emission rates and ground-level air quality at the Demonstration site. Stack analysis of NO/sub x/, SO/sub 2/, CO, particulates, and total hydrocarbons characterized emission rates over a range of operating conditions. Ground-level air quality was monitored during two six-week periods during the summer and winter of 1977. The noise study was performed by measuring sound levels in db(A) in the area within approximately 60 m of the CEB. The noise survey investigated the effects on noise distribution of different wind conditions, time of day or night, and condition of doors - open or closed - near the diesel engines in the CEB. In the cooling tower study, drift emission characteristics were measured to quantify the drift emission before and after cleaning of the tower internals to reduce fallout of large drift droplets in the vicinity of the CEB.

  2. Gasoline and Diesel Fuel Update

    Annual Energy Outlook

    to the States covered by each primary publication cell. The distribution of allocations was proportional to the annual State total volume of retail on-highway diesel fuel sales. ...

  3. Kinetic and reactor models for HDT of middle distillates

    SciTech Connect

    Cotta, R.M.; Filho, R.M.

    1996-12-31

    Hydrodesulfurization (HDS) and hydrodenitrogenation (HDN) of middle distillates over a commercial Ni-Mo/y-Al{sub 2}O{sub 3} has been studied under wide operating conditions just as 340 to 380{degrees}C and 38 to 98 atm. A Power Law model was presented to each one of those reactions. The parameters of kinetic equations were estimated solving the ordinary differential equations by the 4 order Runge-Kutta-Gill algorithm and Marquardt method for searching of set of kinetic parameters (kinetic constants as well as the orders of reactions). An adiabatic diesel hydrotreating trickle-bed reactor packed with the same catalyst was simulated numerically in order to check up the behavior of this specific reaction system. One dimensional pseudo-homogeneous model was used in this work. For each feed, the mass and energy balance equations were integrated along the length of the catalytic bed using the 4th Runge-Kutta-Gill method. The performance of two industrial reactors was checked. 5 refs., 2 tabs.

  4. Simple rules help select best hydrocarbon distillation scheme

    SciTech Connect

    Sanchezllanes, M.T.; Perez, A.L.; Martinez, M.P.; Aguilar-Rodriguez, E.; Rosal, R. del )

    1993-12-06

    Separation economics depend mainly on investment for major equipment and energy consumption. This relationship, together with the fact that, in most cases, many alternative schemes will be proposed, make it essential to find an optimum scheme that minimizes overall costs. Practical solutions are found by applying heuristics -- exploratory problem-solving techniques that eliminate alternatives without applying rigorous mathematical procedures. These techniques have been applied to a case study. In the case study, a hydrocarbon mixture will be transported through a pipeline to a fractionation plant, where it will be separated into commercial products for distribution. The fractionation will consist of a simple train of distillation columns, the sequence of which will be defined by applying heuristic rules and determining the required thermal duties for each column. The facility must separate ethane, propane and mixed butanes, natural gasoline (light straight-run, or LSR, gasoline), and condensate (heavy naphtha). The ethane will be delivered to an ethylene plant as a gaseous stream, the propane and butanes will be stored in cryogenic tanks, and the gasoline and heavy naphtha also will be stored.

  5. Comparison of advanced distillation control methods. Second annual report

    SciTech Connect

    1996-11-01

    Detailed dynamic simulations of three industrial distillation columns (a propylene/propane splitter, a xylene/toluene column, and a depropanizer) have been used to study the issue of configuration selection for diagonal PI dual composition controls. ATV identification with on-line detuning was used for tuning the diagonal PI composition controllers. Each configuration was evaluated with respect to steady-state RGA values, sensitivity to feed composition changes, and open loop dynamic performance. Each configuration was tuned using setpoint changes over a wider range of operation for robustness and tested for feed composition upsets. Overall, configuration selection was shown to have a dominant effect upon control performance. Configuration analysis tools (e.g., RGA, condition number, disturbance sensitivity), were found to reject configuration choices that are obviously poor choices, but were unable to critically differentiate between the remaining viable choices. Configuration selection guidelines are given although it is demonstrated that the most reliable configuration selection approach is based upon testing the viable configurations using dynamic column simulators.

  6. Comparison of advanced distillation control methods. Second annual report

    SciTech Connect

    Riggs, J.B.

    1996-11-01

    Detailed dynamic simulations of two industrial distillation columns (a propylene/propane splitter and a xylene/toluene column) have been used to study the issue of configuration selection for diagonal PI dual composition controls. Auto Tune Variation (ATV) identification with on-line detuning was used for tuning the diagonal proportional integral (PI) composition controls. Each configuration was evaluated with respect to steady-state relative gain array (RGA) values, sensitivity to feed composition changes, and open loop dynamic performance. Each configuration was tuned using setpoint changes over a wider range of operation for robustness and tested for feed composition upsets. Overall, configuration selection was shown to have a dominant effect upon control performance. Configuration analysis tools (e.g., RGA, condition number, disturbance sensitivity) were found to reject configuration choices that are obviously poor choices, but were unable to critically differentiate between the remaining viable choices. Configuration selection guidelines are given although it is demonstrated that the most reliable configuration selection approach is based upon testing the viable configurations using dynamic column simulators.

  7. Distillation sequence for the purification and recovery of hydrocarbons

    DOEpatents

    Reyneke, Rian; Foral, Michael; Papadopoulos, Christos G.; Logsdon, Jeffrey S.; Eng, Wayne W. Y.; Lee, Guang-Chung; Sinclair, Ian

    2007-12-25

    This invention is an improved distillation sequence for the separation and purification of ethylene from a cracked gas. A hydrocarbon feed enters a C2 distributor column. The top of the C2 distributor column is thermally coupled to an ethylene distributor column, and the bottoms liquid of a C2 distributor column feeds a deethanizer column. The C2 distributor column utilizes a conventional reboiler. The top of the ethylene distributor is thermally coupled with a demethanizer column, and the bottoms liquid of the ethylene distributor feeds a C2 splitter column. The ethylene distributor column utilizes a conventional reboiler. The deethanizer and C2 splitter columns are also thermally coupled and operated at a substantially lower pressure than the C2 distributor column, the ethylene distributor column, and the demethanizer column. Alternatively, a hydrocarbon feed enters a deethanizer column. The top of the deethanizer is thermally coupled to an ethylene distributor column, and the ethylene distributor column utilizes a conventional reboiler. The top of the ethylene distributor column is thermally coupled with a demethanizer column, and the bottoms liquid of the ethylene distributor column feeds a C2 splitter column. The C2 splitter column operates at a pressure substantially lower than the ethylene distributor column, the demethanizer column, and the deethanizer column.

  8. Alternative Fuels Data Center: Biodiesel Fuel Basics

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fuel Basics on Twitter ...

  9. Recent developments at the cathode processor for spent fuel treatment.

    SciTech Connect

    Westphal, B. R.; Vaden, D.; Hua, T. Q.; Willit, J. L.; Laug, D. V.

    2002-07-29

    As part of the spent fuel treatment program at Argonne National Laboratory, a vacuum distillation process is being employed for the recovery of uranium following an electrorefining process. Distillation of a molten salt electrolyte, primarily consisting of a eutectic mixture of lithium and potassium chlorides with minor amounts of fission product chlorides, from uranium is achieved by a batch operation called cathode processing. Described in this paper are recent developments, both equipment and process-related, at the cathode processor during the treatment of blanket-type spent fuel. For the equipment developments, the installation of a new induction heating coil has produced significant improvements in equipment performance. The process developments include the elimination of a process step and the study of plutonium in the uranium product.

  10. Fractional distillation as a strategy for reducing the genotoxic potential of SRC-II coal liquids: a status report

    SciTech Connect

    Pelroy, R.A.; Wilson, B.W.

    1981-09-01

    This report presents results of studies on the effects of fractional distillation on the genotoxic potential of Solvent Refined Coal (SRC-II) liquids. SRC-II source materials and distilled liquids were provided by Pittsburg and Midway Coal Mining Co. Fractional distillations were conducted on products from the P-99 process development unit operating under conditions approximating those anticipated at the SRC-II demonstration facility. Distillation cuts were subjected to chemical fractionation, in vitro bioassay and initial chemical analysis. Findings are discussed as they relate to the temperature at which various distillate cuts were produced. This document is the first of two status reports scheduled for 1981 describing these studies.

  11. Total Crude Oil and Petroleum Products Imports by Area of Entry

    Energy Information Administration (EIA) (indexed site)

    by Area of Entry Product: Total Crude Oil and Petroleum Products Crude Oil Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquefied Petroleum Gases Ethane Ethylene Propane Propylene Normal Butane Butylene Isobutane Isobutylene Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Biomass-Based Diesel Fuel Other Renewable Diesel Fuel

  12. APEX nuclear fuel cycle for production of LWR fuel and elimination of radioactive waste

    SciTech Connect

    Steinberg, M.; Powell, J.R.

    1981-08-01

    The development of a nuclear fission fuel cycle is proposed which eliminates all the radioactive fission product waste effluent and the need for geological-age high level waste storage and provides a long term supply of fissile fuel for an LWR power reactor economy. The fuel cycle consists of reprocessing LWR spent fuel (1 to 2 years old) to remove the stable nonradioactive (NRFP, e.g. lanthanides, etc.) and short-lived fission products (SLFP e.g. half-lives of (1 to 2 years) and returning, in dilute form, the long-lived fission products, ((LLFPs, e.g. 30 y half-life Cs, Sr, and 10 y Kr, and 16 x 10/sup 6/ y I) and the transuranics (TUs, e.g. Pu, Am, Cm, and Np) to be refabricated into fresh fuel elements. Makeup fertile and fissile fuel are to be supplied through the use of a Spallator (linear accelerator spallation-target fuel-producer). The reprocessing of LWR fuel elements is to be performed by means of the Chelox process which consists of Airox treatment (air oxidation and hydrogen reduction) followed by chelation with an organic reagent (..beta..-diketonate) and vapor distillation of the organometallic compounds for separation and partitioning of the fission products.

  13. Apex nuclear fuel cycle for production of light water reactor fuel and elimination of radioactive waste

    SciTech Connect

    Steinberg, M.; Hiroshi, T.; Powell, J.R.

    1982-09-01

    The development of a nuclear fission fuel cycle is proposed that eliminates all the radioactive fission product (FP) waste effluent and the need for geological age high-level waste storage and provides a longterm supply of fissile fuel for a light water reactor (LWR) economy. The fuel cycle consists of reprocessing LWR spent fuel (1 to 2 yr old) to remove the stable nonradioactive FPs (NRFPs) e.g., lanthanides, etc.) and short-lived FPs (SLFP) (e.g., half-lives of less than or equal to 1 to 2 yr) and returning, in dilute form, the long-lived FPs (LLFPs) (e.g., 30-yr half-life cesium and strontium, 10-yr krypton, and 16 X 10/sup 6/-yr iodine) and the transuranics (TUs) (e.g., plutonium, americium, curium, and neptunium) to be refabricated into fresh fuel elements. Makeup fertile and fissile fuel (FF) are to be supplied through the use of the spallator (linear accelerator spallation-target fuel producer). The reprocessing of LWR fuel elements is to be performed by means of the chelox process, which consists of chopping and leaching with an organic chelating reagent (..beta..-diketonate) and distillation of the organometallic compounds formed for purposes of separating and partitioning the FPs. The stable NRFPs and SLFPs are allowed to decay to background in 10 to 20 yr for final disposal to the environment.

  14. Compression-ignition fuel properties of Fischer-Tropsch syncrude

    SciTech Connect

    Suppes, G.J.; Terry, J.G.; Burkhart, M.L.; Cupps, M.P.

    1998-05-01

    Fischer-Tropsch conversion of natural gas to liquid hydrocarbon fuel typically includes Fischer-Tropsch synthesis followed by refining (hydrocracking and distillation) of the syncrude into mostly diesel or kerosene with some naphtha (a feedstock for gasoline production). Refining is assumed necessary, possibly overlooking the exception fuel qualities of syncrude for more direct utilization as a compression-ignition (CI) fuel. This paper evaluates cetane number, viscosity, cloud-point, and pour-point properties of syncrude and blends of syncrude with blend stocks such as ethanol and diethyl ether. The results show that blends comprised primarily of syncrude are potentially good CI fuels, with pour-point temperature depression being the largest development obstacle. The resulting blends may provide a much-needed and affordable alternative CI fuel. Particularly good market opportunities exist with Environmental Policy Act (EPACT) applications.

  15. U.S. Fuel Consumed at Refineries

    Energy Information Administration (EIA) (indexed site)

    Barrels, Except Where Noted) Area: U.S. East Coast (PADD 1) Midwest (PADD 2) Gulf Coast (PADD 3) Rocky Mountain (PADD 4) West Coast (PADD 5) Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area 2010 2011 2012 2013 2014 2015 View History Crude Oil 0 0 0 0 0 0 1986-2015 Liquefied Petroleum Gases 2,404 1,291 1,521 1,311 2,305 3,009 1986-2015 Distillate Fuel Oil 440 483 539 475 309 364 1986-2015

  16. Fuel alcohol: the road to independence

    SciTech Connect

    Stull, C.B.

    1982-01-01

    This report describes the production of ethanol using an on-farm fuel alcohol still. Directions are given in lay-language, easily understandable to novices in the field of fermentation. Preparation of the mash, fermentation, and distillation are discussed along with some basic background information on these processes. The design and construction of the still is presented. Off-the-shelf equipment was used in the construction. Vats, pumps, and testing equipment used in the processing are described. Diagrams and a glossary are included. The alcohol produced is used for space heating of a house and greenhouse. (DMC)

  17. New Design Methods and Algorithms for Multi-component Distillation Processes

    SciTech Connect

    2009-02-01

    This factsheet describes a research project whose main goal is to develop methods and software tools for the identification and analysis of optimal multi-component distillation configurations for reduced energy consumption in industrial processes.

  18. A heat & mass integration approach to reduce capital and operating costs of a distillation configuration

    SciTech Connect

    Madenoor Ramapriya, Gautham; Jiang, Zheyu; Tawarmalani, Mohit; Agrawal, Rakesh

    2015-11-11

    We propose a general method to consolidate distillation columns of a distillation configuration using heat and mass integration. The proposed method encompasses all heat and mass integrations known till date, and includes many more. Each heat and mass integration eliminates a distillation column, a condenser, a reboiler and the heat duty associated with a reboiler. Thus, heat and mass integration can potentially offer significant capital and operating cost benefits. In this talk, we will study the various possible heat and mass integrations in detail, and demonstrate their benefits using case studies. This work will lay out a framework to synthesize an entire new class of useful configurations based on heat and mass integration of distillation columns.

  19. Checklist for transition to new highway fuel(s).

    SciTech Connect

    Risch, C.; Santini, D.J.

    2011-12-15

    Transportation is vital to the U.S. economy and society. As such, U.S. Presidents have repeatedly stated that the nation needs to reduce dependence on petroleum, especially for the highway transportation sector. Throughout history, highway transportation fuel transitions have been completed successfully both in United States and abroad. Other attempts have failed, as described in Appendix A: Historical Highway Fuel Transitions. Planning for a transition is critical because the changes can affect our nation's ability to compete in the world market. A transition will take many years to complete. While it is tempting to make quick decisions about the new fuel(s) of choice, it is preferable and necessary to analyze all the pertinent criteria to ensure that correct decisions are made. Doing so will reduce the number of changes in highway fuel(s). Obviously, changes may become necessary because of occurrences such as significant technology breakthroughs or major world events. With any and all of the possible transitions to new fuel(s), the total replacement of gasoline and diesel fuels is not expected. These conventional fuels are envisioned to coexist with the new fuel(s) for decades, while the revised fuel and vehicle infrastructures are implemented. The transition process must analyze the needs of the primary 'players,' which consist of the customers, the government, the fuel industry, and the automotive industry. To maximize the probability of future successes, the prime considerations of these groups must be addressed. Section 2 presents a succinct outline of the Checklist. Section 3 provides a brief discussion about the groupings on the Checklist.

  20. Method of generating hydrocarbon reagents from diesel, natural gas and other logistical fuels

    DOEpatents

    Herling, Darrell R.; Aardahl, Chris L.; Rozmiarek, Robert T.; Rappe, Kenneth G.; Wang, Yong; Holladay, Jamelyn D.

    2010-06-29

    The present invention provides a process for producing reagents for a chemical reaction by introducing a fuel containing hydrocarbons into a flash distillation process wherein the fuel is separated into a first component having a lower average molecular weight and a second component having a higher average molecular weight. The first component is then reformed to produce synthesis gas wherein the synthesis gas is reacted catalytically to produce the desire reagent.

  1. Method of Generating Hydrocarbon Reagents from Diesel, Natural Gas and Other Logistical Fuels

    DOEpatents

    Herling, Darrell R [Richland, WA; Aardahl, Chris L. [Richland, WA; Rozmiarek, Robert T. [Middleton, WI; Rappe, Kenneth G. [Richland, WA; Wang, Yong [Richland, WA; Holladay, Jamelyn D. [Kennewick, WA

    2008-10-14

    The present invention provides a process for producing reagents for a chemical reaction by introducing a fuel containing hydrocarbons into a flash distillation process wherein the fuel is separated into a first component having a lower average molecular weight and a second component having a higher average molecular weight. The first component is then reformed to produce synthesis gas wherein the synthesis gas is reacted catalytically to produce the desire reagent.

  2. Do-it-yourself guideline for constructing a solar alcohol distillation system

    SciTech Connect

    Kennedy, B.W.

    1982-07-27

    The development and testing of a solar powered distillation system are described. The system consists of a parabolic dish collector, a two axis sun tracking stand, sun tracking solar cell system, condenser, fermentation tanks, and continuous distillation still. The assembly instructions for the parabolic dish are included as well as the basic steps to follow in mashing and fermenting of corn meal. 15 figures. (DMC)

  3. Quantum tomographic cryptography with Bell diagonal states: Nonequivalence of classical and quantum distillation protocols

    SciTech Connect

    Kaszlikowski, Dagomir; Lim, J.Y.; Willeboordse, Frederick H.; Oi, D.K.L.; Gopinathan, Ajay; Kwek, L.C.

    2005-01-01

    We present a generalized tomographic quantum key distribution protocol in which the two parties share a Bell diagonal mixed state of two qubits. We show that if an eavesdropper performs a coherent measurement on many quantum ancilla states simultaneously, classical methods of secure key distillation are less effective than quantum entanglement distillation protocols. We also show that certain classes of Bell diagonal states are resistant to any attempt at incoherent eavesdropping.

  4. Word Pro - S3

    Energy Information Administration (EIA) (indexed site)

    ... renewable diesel fuel (including biodiesel) blended into distillate fuel oil. c ... * For total heat content of petroleum consumption by all sectors, see data for heat ...

  5. Word Pro - S3

    Energy Information Administration (EIA) (indexed site)

    ... renewable diesel fuel (including biodiesel) blended into distillate fuel oil. c ... Notes: * Transportation sector data are estimates. * For total petroleum consumption by ...

  6. Comparison of Advanced Distillation Control Methods, Final Technical Report

    SciTech Connect

    Dr. James B. Riggs

    2000-11-30

    Detailed dynamic simulations of three industrial distillation columns (a propylene/propane splitter, a xylene/toluene column, and a depropanizer) have been used to evaluate configuration selections for single-ended and dual-composition control, as well as to compare conventional and advanced control approaches. In addition, a simulator of a main fractionator was used to compare the control performance of conventional and advanced control. For each case considered, the controllers were tuned by using setpoint changes and tested using feed composition upsets. Proportional Integral (PI) control performance was used to evaluate the configuration selection problem. For single ended control, the energy balance configuration was found to yield the best performance. For dual composition control, nine configurations were considered. It was determined that the use of dynamic simulations is required in order to identify the optimum configuration from among the nine possible choices. The optimum configurations were used to evaluate the relative control performance of conventional PI controllers, MPC (Model Predictive Control), PMBC (Process Model-Based Control), and ANN (Artificial Neural Networks) control. It was determined that MPC works best when one product is much more important than the other, while PI was superior when both products were equally important. PMBC and ANN were not found to offer significant advantages over PI and MPC. MPC was found to outperform conventional PI control for the main fractionator. MPC was applied to three industrial columns: one at Phillips Petroleum and two at Union Carbide. In each case, MPC was found to significantly outperform PI controls. The major advantage of the MPC controller is its ability to effectively handle a complex set of constraints and control objectives.

  7. Million Cu. Feet Percent of National Total

    Energy Information Administration (EIA) (indexed site)

    0 Alabama - Natural Gas 2015 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S1. Summary statistics for natural gas - Alabama, 2011-2015 2011 2012 2013 2014 2015 Number of Wells Producing Natural Gas at End of Year Oil Wells 346 367 402 436 414 Gas Wells R 6,243 R 6,203 R 6,174 R 6,117 6,044 Production

  8. Million Cu. Feet Percent of National Total

    Energy Information Administration (EIA) (indexed site)

    2 Alaska - Natural Gas 2015 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S2. Summary statistics for natural gas - Alaska, 2011-2015 2011 2012 2013 2014 2015 Number of Wells Producing Natural Gas at End of Year Oil Wells 2,040 1,981 2,006 2,042 2,096 Gas Wells R 274 R 281 R 300 R 338 329 Production

  9. Million Cu. Feet Percent of National Total

    Energy Information Administration (EIA) (indexed site)

    0 Colorado - Natural Gas 2015 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S6. Summary statistics for natural gas - Colorado, 2011-2015 2011 2012 2013 2014 2015 Number of Wells Producing Natural Gas at End of Year Oil Wells 5,963 6,456 6,799 7,771 7,733 Gas Wells R 43,792 R 46,141 R 46,883 R 46,876

  10. Million Cu. Feet Percent of National Total

    Energy Information Administration (EIA) (indexed site)

    6 District of Columbia - Natural Gas 2015 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S9. Summary statistics for natural gas - District of Columbia, 2011-2015 2011 2012 2013 2014 2015 Number of Wells Producing Natural Gas at End of Year Oil Wells 0 0 0 0 0 Gas Wells 0 0 0 0 0 Production (million cubic

  11. Million Cu. Feet Percent of National Total

    Energy Information Administration (EIA) (indexed site)

    4 Hawaii - Natural Gas 2015 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S13. Summary statistics for natural gas - Hawaii, 2011-2015 2011 2012 2013 2014 2015 Number of Wells Producing Natural Gas at End of Year Oil Wells 0 0 0 0 0 Gas Wells 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From

  12. Million Cu. Feet Percent of National Total

    Energy Information Administration (EIA) (indexed site)

    6 Idaho - Natural Gas 2015 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S14. Summary statistics for natural gas - Idaho, 2011-2015 2011 2012 2013 2014 2015 Number of Wells Producing Natural Gas at End of Year Oil Wells 0 0 0 0 0 Gas Wells 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From

  13. Million Cu. Feet Percent of National Total

    Energy Information Administration (EIA) (indexed site)

    20 Maine - Natural Gas 2015 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S21. Summary statistics for natural gas - Maine, 2011-2015 2011 2012 2013 2014 2015 Number of Wells Producing Natural Gas at End of Year Oil Wells 0 0 0 0 0 Gas Wells 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From

  14. Million Cu. Feet Percent of National Total

    Energy Information Administration (EIA) (indexed site)

    0 Mississippi - Natural Gas 2015 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S26. Summary statistics for natural gas - Mississippi, 2011-2015 2011 2012 2013 2014 2015 Number of Wells Producing Natural Gas at End of Year Oil Wells 561 618 581 540 501 Gas Wells R 1,703 R 1,666 R 1,632 R 1,594 1,560

  15. Million Cu. Feet Percent of National Total

    Energy Information Administration (EIA) (indexed site)

    4 Montana - Natural Gas 2015 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S28. Summary statistics for natural gas - Montana, 2011-2015 2011 2012 2013 2014 2015 Number of Wells Producing Natural Gas at End of Year Oil Wells 1,956 2,147 2,268 2,377 2,277 Gas Wells R 6,615 R 6,366 R 5,870 R 5,682 5,655

  16. Million Cu. Feet Percent of National Total

    Energy Information Administration (EIA) (indexed site)

    4 New Mexico - Natural Gas 2015 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S33. Summary statistics for natural gas - New Mexico, 2011-2015 2011 2012 2013 2014 2015 Number of Wells Producing Natural Gas at End of Year Oil Wells 12,887 13,791 14,171 14,814 14,580 Gas Wells R 40,231 R 40,441 R 40,119 R

  17. Million Cu. Feet Percent of National Total

    Energy Information Administration (EIA) (indexed site)

    6 New York - Natural Gas 2015 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S34. Summary statistics for natural gas - New York, 2011-2015 2011 2012 2013 2014 2015 Number of Wells Producing Natural Gas at End of Year Oil Wells 988 1,170 1,589 1,731 1,697 Gas Wells R 7,372 R 7,731 R 7,553 R 7,619 7,605

  18. Million Cu. Feet Percent of National Total

    Energy Information Administration (EIA) (indexed site)

    0 North Dakota - Natural Gas 2015 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S36. Summary statistics for natural gas - North Dakota, 2011-2015 2011 2012 2013 2014 2015 Number of Wells Producing Natural Gas at End of Year Oil Wells 5,561 7,379 9,363 11,532 12,799 Gas Wells R 526 R 451 R 423 R 398 462

  19. Million Cu. Feet Percent of National Total

    Energy Information Administration (EIA) (indexed site)

    2 Ohio - Natural Gas 2015 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S37. Summary statistics for natural gas - Ohio, 2011-2015 2011 2012 2013 2014 2015 Number of Wells Producing Natural Gas at End of Year Oil Wells 6,775 6,745 7,038 7,257 5,941 Gas Wells R 31,966 R 31,647 R 30,804 R 31,060 26,599

  20. Million Cu. Feet Percent of National Total

    Energy Information Administration (EIA) (indexed site)

    4 Oklahoma - Natural Gas 2015 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S38. Summary statistics for natural gas - Oklahoma, 2011-2015 2011 2012 2013 2014 2015 Number of Wells Producing Natural Gas at End of Year Oil Wells 6,723 7,360 8,744 7,105 8,368 Gas Wells R 51,712 R 51,472 R 50,606 R 50,044

  1. Million Cu. Feet Percent of National Total

    Energy Information Administration (EIA) (indexed site)

    6 Oregon - Natural Gas 2015 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S39. Summary statistics for natural gas - Oregon, 2011-2015 2011 2012 2013 2014 2015 Number of Wells Producing Natural Gas at End of Year Oil Wells 0 0 0 0 0 Gas Wells R 28 R 24 R 24 R 12 14 Production (million cubic feet) Gross

  2. Million Cu. Feet Percent of National Total

    Energy Information Administration (EIA) (indexed site)

    8 Pennsylvania - Natural Gas 2015 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S40. Summary statistics for natural gas - Pennsylvania, 2011-2015 2011 2012 2013 2014 2015 Number of Wells Producing Natural Gas at End of Year Oil Wells 7,046 7,627 7,164 8,481 7,557 Gas Wells R 61,815 R 62,922 R 61,838 R

  3. Million Cu. Feet Percent of National Total

    Energy Information Administration (EIA) (indexed site)

    6 Tennessee - Natural Gas 2015 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S44. Summary statistics for natural gas - Tennessee, 2011-2015 2011 2012 2013 2014 2015 Number of Wells Producing Natural Gas at End of Year Oil Wells 52 75 NA NA NA Gas Wells R 1,027 R 1,027 1,089 NA NA Production (million cubic

  4. Million Cu. Feet Percent of National Total

    Energy Information Administration (EIA) (indexed site)

    8 Texas - Natural Gas 2015 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S45. Summary statistics for natural gas - Texas, 2011-2015 2011 2012 2013 2014 2015 Number of Wells Producing Natural Gas at End of Year Oil Wells 85,030 94,203 96,949 104,205 105,159 Gas Wells R 139,368 R 140,087 R 140,964 R 142,292

  5. Million Cu. Feet Percent of National Total

    Energy Information Administration (EIA) (indexed site)

    0 Utah - Natural Gas 2015 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S46. Summary statistics for natural gas - Utah, 2011-2015 2011 2012 2013 2014 2015 Number of Wells Producing Natural Gas at End of Year Oil Wells 3,119 3,520 3,946 4,249 3,966 Gas Wells R 7,603 R 8,121 R 8,300 R 8,537 8,739 Production

  6. Million Cu. Feet Percent of National Total

    Energy Information Administration (EIA) (indexed site)

    4 Virginia - Natural Gas 2015 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S48. Summary statistics for natural gas - Virginia, 2011-2015 2011 2012 2013 2014 2015 Number of Wells Producing Natural Gas at End of Year Oil Wells 2 1 1 2 2 Gas Wells R 7,781 R 7,874 7,956 R 8,061 8,111 Production (million

  7. PILOT-SCALE REMOVAL OF FLUORIDE FROM LEGACY PLUTONIUM MATERIALS USING VACUUM SALT DISTILLATION

    SciTech Connect

    Pierce, R. A.; Pak, D. J.

    2012-09-11

    Between September 2009 and January 2011, the Savannah River National Laboratory (SRNL) and HB-Line designed, developed, tested, and successfully deployed a system for the distillation of chloride salts. In 2011, SRNL adapted the technology for the removal of fluoride from fluoride-bearing salts. The method involved an in situ reaction between potassium hydroxide (KOH) and the fluoride salt to yield potassium fluoride (KF) and the corresponding oxide. The KF and excess KOH can be distilled below 1000{deg}C using vacuum salt distillation (VSD). The apparatus for vacuum distillation contains a zone heated by a furnace and a zone actively cooled using either recirculated water or compressed air. During a vacuum distillation operation, a sample boat containing the feed material is placed into the apparatus while it is cool, and the system is sealed. The system is evacuated using a vacuum pump. Once a sufficient vacuum is attaned, heating begins. Volatile salts distill from the heated zone to the cooled zone where they condense, leaving behind the non-volatile material in the feed boat. Studies discussed in this report were performed involving the use of non-radioactive simulants in small-scale and pilot-scale systems as well as radioactive testing of a small-scale system with plutonium-bearing materials. Aspects of interest include removable liner design considerations, boat materials, in-line moisture absorption, and salt deposition.

  8. Fuel-cell engine stream conditioning system

    DOEpatents

    DuBose, Ronald Arthur

    2002-01-01

    A stream conditioning system for a fuel cell gas management system or fuel cell engine. The stream conditioning system manages species potential in at least one fuel cell reactant stream. A species transfer device is located in the path of at least one reactant stream of a fuel cell's inlet or outlet, which transfer device conditions that stream to improve the efficiency of the fuel cell. The species transfer device incorporates an exchange media and a sorbent. The fuel cell gas management system can include a cathode loop with the stream conditioning system transferring latent and sensible heat from an exhaust stream to the cathode inlet stream of the fuel cell; an anode humidity retention system for maintaining the total enthalpy of the anode stream exiting the fuel cell related to the total enthalpy of the anode inlet stream; and a cooling water management system having segregated deionized water and cooling water loops interconnected by means of a brazed plate heat exchanger.

  9. Total Crude by Pipeline

    Energy Information Administration (EIA) (indexed site)

    Product: Total Crude by All Transport Methods Domestic Crude by All Transport Methods Foreign Crude by All Transport Methods Total Crude by Pipeline Domestic Crude by Pipeline Foreign Crude by Pipeline Total Crude by Tanker Domestic Crude by Tanker Foreign Crude by Tanker Total Crude by Barge Domestic Crude by Barge Foreign Crude by Barge Total Crude by Tank Cars (Rail) Domestic Crude by Tank Cars (Rail) Foreign Crude by Tank Cars (Rail) Total Crude by Trucks Domestic Crude by Trucks Foreign

  10. Fuel Model | NISAC

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Fuels Model This model informs analyses of the availability of transportation fuel in the event the fuel supply chain is disrupted. The portion of the fuel supply system...

  11. ,"Total Natural Gas Consumption

    Energy Information Administration (EIA) (indexed site)

    Gas Consumption (billion cubic feet)",,,,,"Natural Gas Energy Intensity (cubic feetsquare foot)" ,"Total ","Space Heating","Water Heating","Cook- ing","Other","Total ","Space...

  12. Single-Step Syngas-to-Distillates (S2D) Synthesis via Methanol and Dimethyl Ether Intermediates: Final Report

    SciTech Connect

    Dagle, Robert A.; Lebarbier, Vanessa MC; Lizarazo Adarme, Jair A.; King, David L.; Zhu, Yunhua; Gray, Michel J.; Jones, Susanne B.; Biddy, Mary J.; Hallen, Richard T.; Wang, Yong; White, James F.; Holladay, Johnathan E.; Palo, Daniel R.

    2013-11-26

    The objective of the work was to enhance price-competitive, synthesis gas (syngas)-based production of transportation fuels that are directly compatible with the existing vehicle fleet (i.e., vehicles fueled by gasoline, diesel, jet fuel, etc.). To accomplish this, modifications to the traditional methanol-to-gasoline (MTG) process were investigated. In this study, we investigated direct conversion of syngas to distillates using methanol and dimethyl ether intermediates. For this application, a Pd/ZnO/Al2O3 (PdZnAl) catalyst previously developed for methanol steam reforming was evaluated. The PdZnAl catalyst was shown to be far superior to a conventional copper-based methanol catalyst when operated at relatively high temperatures (i.e., >300°C), which is necessary for MTG-type applications. Catalytic performance was evaluated through parametric studies. Process conditions such as temperature, pressure, gas-hour-space velocity, and syngas feed ratio (i.e., hydrogen:carbon monoxide) were investigated. PdZnAl catalyst formulation also was optimized to maximize conversion and selectivity to methanol and dimethyl ether while suppressing methane formation. Thus, a PdZn/Al2O3 catalyst optimized for methanol and dimethyl ether formation was developed through combined catalytic material and process parameter exploration. However, even after compositional optimization, a significant amount of undesirable carbon dioxide was produced (formed via the water-gas-shift reaction), and some degree of methane formation could not be completely avoided. Pd/ZnO/Al2O3 used in combination with ZSM-5 was investigated for direct syngas-to-distillates conversion. High conversion was achieved as thermodynamic constraints are alleviated when methanol and dimethyl are intermediates for hydrocarbon formation. When methanol and/or dimethyl ether are products formed separately, equilibrium restrictions occur. Thermodynamic relaxation also enables the use of lower operating pressures than what

  13. Reactive Distillation for Esterification of Bio-based Organic...

    Office of Scientific and Technical Information (OSTI)

    ... a total condenser with chiller capable of achieving a ... comparisons in column performance could be made on a ... Predicted mole fraction curves are shown as continuous ...

  14. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    Alternative Fuel Vehicle Conversion Grant Program In early 2017, the Ohio Environmental Protection Agency will administer a one-time, $5 million grant program to replace or convert Class 7 and Class 8 diesel or gasoline trucks to natural gas or propane trucks. Vehicles must be privately operated in Ohio at least 50% of the time. Maximum grant awards will be 50% of the fuel components of the new vehicle or 50% of the cost of the conversion parts, up to $25,000. Total grants to any recipient may

  15. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    Requirement for School Buses Every school bus that is capable of operating on diesel fuel must be capable of operating using blends of at least 20% biodiesel (B20). At least 2% of the total volume of fuel purchased annually by local school districts statewide for use in diesel school buses must be a minimum of B20, to the extent that biodiesel blends are available and compatible with the technology of the vehicles and the equipment used. (Reference North Carolina General Statutes 115C-240 and

  16. Advanced Fuel Reformer Development: Putting the 'Fuel' in Fuel Cells |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Fuel Reformer Development: Putting the 'Fuel' in Fuel Cells Advanced Fuel Reformer Development: Putting the 'Fuel' in Fuel Cells Presented at the DOE-DOD Shipboard APU Workshop on March 29, 2011. apu2011_6_roychoudhury.pdf (4.83 MB) More Documents & Publications System Design - Lessons Learned, Generic Concepts, Characteristics & Impacts Fuel Cells For Transportation - 1999 Annual Progress Report Energy Conversion Team Fuel Cell Systems Annual Progress Report

  17. ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures"

    Energy Information Administration (EIA) (indexed site)

    4. Fuel Oil Consumption and Expenditure Intensities for Non-Mall Buildings, 2003" ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures" ,"per Building (gallons)","per Square Foot...

  18. ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures"

    Energy Information Administration (EIA) (indexed site)

    2. Fuel Oil Consumption and Expenditure Intensities, 1999" ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures" ,"per Building (gallons)","per Square Foot (gallons)","per Worker...

  19. California Fuel Cell Partnership: Alternative Fuels Research

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fuel Cell Partnership - Alternative Fuels Research TNS Automotive Chris White Communications Director cwhite@cafcp.org 2 TNS Automotive for California Fuel Cell Partnership ...

  20. Fuel injector

    DOEpatents

    Lambeth, Malcolm David Dick

    2001-02-27

    A fuel injector comprises first and second housing parts, the first housing part being located within a bore or recess formed in the second housing part, the housing parts defining therebetween an inlet chamber, a delivery chamber axially spaced from the inlet chamber, and a filtration flow path interconnecting the inlet and delivery chambers to remove particulate contaminants from the flow of fuel therebetween.

  1. U.S. Department of Energy Fuel Cell Activities: Progress and...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    S. Department of Energy Fuel Cell Activities: Progress and Future Directions: Total Energy USA 2012 U.S. ... 2012 Flow Cells for Energy Storage Workshop DOE Fuel Cell ...

  2. "Table A22. Total Quantity of Purchased Energy Sources by Census Region,"

    Energy Information Administration (EIA) (indexed site)

    2. Total Quantity of Purchased Energy Sources by Census Region," " Industry Group, and Selected Industries, 1991" " (Estimates in Btu or Physical Units)" ,,,,,,"Natural",,,"Coke" " "," ","Total","Electricity","Residual","Distillate","Gas(c)"," ","Coal","and Breeze"," ","RSE" "SIC","

  3. Fuel cell-fuel cell hybrid system

    DOEpatents

    Geisbrecht, Rodney A.; Williams, Mark C.

    2003-09-23

    A device for converting chemical energy to electricity is provided, the device comprising a high temperature fuel cell with the ability for partially oxidizing and completely reforming fuel, and a low temperature fuel cell juxtaposed to said high temperature fuel cell so as to utilize remaining reformed fuel from the high temperature fuel cell. Also provided is a method for producing electricity comprising directing fuel to a first fuel cell, completely oxidizing a first portion of the fuel and partially oxidizing a second portion of the fuel, directing the second fuel portion to a second fuel cell, allowing the first fuel cell to utilize the first portion of the fuel to produce electricity; and allowing the second fuel cell to utilize the second portion of the fuel to produce electricity.

  4. ,"for Electricity(a)","Fuel Oil","Diesel Fuel(b)","(billion","NGL(d)","(million"

    Energy Information Administration (EIA) (indexed site)

    7 Relative Standard Errors for Table 5.7;" " Unit: Percents." ,,,"Distillate",,,"Coal" ,,,"Fuel Oil",,,"(excluding Coal" ,"Net Demand","Residual","and","Natural Gas(c)","LPG and","Coke and Breeze)" ,"for Electricity(a)","Fuel Oil","Diesel Fuel(b)","(billion","NGL(d)","(million" "End Use","(million

  5. FUEL ELEMENT

    DOEpatents

    Bean, R.W.

    1963-11-19

    A ceramic fuel element for a nuclear reactor that has improved structural stability as well as improved cooling and fission product retention characteristics is presented. The fuel element includes a plurality of stacked hollow ceramic moderator blocks arranged along a tubular raetallic shroud that encloses a series of axially apertured moderator cylinders spaced inwardly of the shroud. A plurality of ceramic nuclear fuel rods are arranged in the annular space between the shroud and cylinders of moderator and appropriate support means and means for directing gas coolant through the annular space are also provided. (AEC)

  6. Hydrogen-enriched fuels

    SciTech Connect

    Roser, R.

    1998-08-01

    NRG Technologies, Inc. is attempting to develop hardware and infrastructure that will allow mixtures of hydrogen and conventional fuels to become viable alternatives to conventional fuels alone. This commercialization can be successful if the authors are able to achieve exhaust emission levels of less than 0.03 g/kw-hr NOx and CO; and 0.15 g/kw-hr NMHC at full engine power without the use of exhaust catalysts. The major barriers to achieving these goals are that the lean burn regimes required to meet exhaust emissions goals reduce engine output substantially and tend to exhibit higher-than-normal total hydrocarbon emissions. Also, hydrogen addition to conventional fuels increases fuel cost, and reduces both vehicle range and engine output power. Maintaining low emissions during transient driving cycles has not been demonstrated. A three year test plan has been developed to perform the investigations into the issues described above. During this initial year of funding research has progressed in the following areas: (a) a cost effective single-cylinder research platform was constructed; (b) exhaust gas speciation was performed to characterize the nature of hydrocarbon emissions from hydrogen-enriched natural gas fuels; (c) three H{sub 2}/CH{sub 4} fuel compositions were analyzed using spark timing and equivalence ratio sweeping procedures and finally; (d) a full size pick-up truck platform was converted to run on HCNG fuels. The testing performed in year one of the three year plan represents a baseline from which to assess options for overcoming the stated barriers to success.

  7. Crude oil and finished fuel storage stability: An annotated review

    SciTech Connect

    Whisman, M.L.; Anderson, R.P.; Woodward, P.W.; Giles, H.N.

    1991-01-01

    A state-of-the-art review and assessment of storage effects on crude oil and product quality was undertaken through a literature search by computer accessing several data base sources. Pertinent citations from that literature search are tabulated for the years 1980 to the present. This 1990 revision supplements earlier reviews by Brinkman and others which covered stability publications through 1979 and an update in 1983 by Goetzinger and others that covered the period 1952--1982. For purposes of organization, citations are listed in the current revision chronologically starting with the earliest 1980 publications. The citations have also been divided according to primary subject matter. Consequently 11 sections appear including: alternate fuels, gasoline, distillate fuel, jet fuel, residual fuel, crude oil, biodegradation, analyses, reaction mechanisms, containment, and handling and storage. Each section contains a brief narrative followed by all the citations for that category.

  8. Fuel cell system

    DOEpatents

    Early, Jack; Kaufman, Arthur; Stawsky, Alfred

    1982-01-01

    A fuel cell system is comprised of a fuel cell module including sub-stacks of series-connected fuel cells, the sub-stacks being held together in a stacked arrangement with cold plates of a cooling means located between the sub-stacks to function as electrical terminals. The anode and cathode terminals of the sub-stacks are connected in parallel by means of the coolant manifolds which electrically connect selected cold plates. The system may comprise a plurality of the fuel cell modules connected in series. The sub-stacks are designed to provide a voltage output equivalent to the desired voltage demand of a low voltage, high current DC load such as an electrolytic cell to be driven by the fuel cell system. This arrangement in conjunction with switching means can be used to drive a DC electrical load with a total voltage output selected to match that of the load being driven. This arrangement eliminates the need for expensive voltage regulation equipment.

  9. The cough response to ultrasonically nebulized distilled water in heart-lung transplantation patients

    SciTech Connect

    Higenbottam, T.; Jackson, M.; Woolman, P.; Lowry, R.; Wallwork, J.

    1989-07-01

    As a result of clinical heart-lung transplantation, the lungs are denervated below the level of the tracheal anastomosis. It has been questioned whether afferent vagal reinnervation occurs after surgery. Here we report the cough frequency, during inhalation of ultrasonically nebulized distilled water, of 15 heart-lung transplant patients studied 6 wk to 36 months after surgery. They were compared with 15 normal subjects of a similar age and sex. The distribution of the aerosol was studied in five normal subjects using /sup 99m/technetium diethylene triamine pentaacetate (/sup 99m/Tc-DTPA) in saline. In seven patients, the sensitivity of the laryngeal mucosa to instilled distilled water (0.2 ml) was tested at the time of fiberoptic bronchoscopy by recording the cough response. Ten percent of the aerosol was deposited onto the larynx and trachea, 56% on the central airways, and 34% in the periphery of the lung. The cough response to the aerosol was strikingly diminished in the patients compared with normal subjects (p less than 0.001), but all seven patients coughed when distilled water was instilled onto the larynx. As expected, the laryngeal mucosa of heart-lung transplant patients remains sensitive to distilled water. However, the diminished coughing when the distilled water is distributed by aerosol to the central airways supports the view that vagal afferent nerves do not reinnervate the lungs after heart-lung transplantation, up to 36 months after surgery.

  10. Surrogate Model Development for Fuels for Advanced Combustion Engines

    SciTech Connect

    Anand, Krishnasamy; Ra, youngchul; Reitz, Rolf; Bunting, Bruce G

    2011-01-01

    The fuels used in internal-combustion engines are complex mixtures of a multitude of different types of hydrocarbon species. Attempting numerical simulations of combustion of real fuels with all of the hydrocarbon species included is highly unrealistic. Thus, a surrogate model approach is generally adopted, which involves choosing a few representative hydrocarbon species whose overall behavior mimics the characteristics of the target fuel. The present study proposes surrogate models for the nine fuels for advanced combustion engines (FACE) that have been developed for studying low-emission, high-efficiency advanced diesel engine concepts. The surrogate compositions for the fuels are arrived at by simulating their distillation profiles to within a maximum absolute error of 4% using a discrete multi-component (DMC) fuel model that has been incorporated in the multi-dimensional computational fluid dynamics (CFD) code, KIVA-ERC-CHEMKIN. The simulated surrogate compositions cover the range and measured concentrations of the various hydrocarbon classes present in the fuels. The fidelity of the surrogate fuel models is judged on the basis of matching their specific gravity, lower heating value, hydrogen/carbon (H/C) ratio, cetane number, and cetane index with the measured data for all nine FACE fuels.

  11. Factors influencing specific fuel use in Nebraska

    SciTech Connect

    Shelton, D.P.; Von Bargen, K.

    1981-01-01

    Fuel use data relating to agricultural field operations were collected and analyzed during the Nebraska fuel use survey. The farms surveyed had a mean size of 598 ha and a mean total tractor power rating of 221 kW. Mean operating depth, field speed, and tractor power rating were determined for the major field operations. Mean field speeds were generally in agreement with commonly accepted values. Total annual fuel energy use increased with increasing farm size. Over 87 percent of this energy was used from April through October. Even though total fuel energy was increased, specific fuel energy use decreased with increasing farm size. Specific fuel use for field operations was influenced by the size of area worked, operation depth, field speed, and tractor power rating.

  12. Fuel Cells

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    and robust solid oxide fuel cell (SOFC) system. Specific objectives include achieving an efficiency of greater than 60 percent, meeting a stack cost target of 175 per kW, and ...

  13. Fuel economizer

    SciTech Connect

    Zwierzelewski, V.F.

    1984-06-26

    A fuel economizer device for use with an internal combustion engine fitted with a carburetor is disclosed. The fuel economizer includes a plate member which is mounted between the carburetor and the intake portion of the intake manifold. The plate member further has at least one aperture formed therein. One tube is inserted through the at least one aperture in the plate member. The one tube extends longitudinally in the passage of the intake manifold from the intake portion toward the exit portion thereof. The one tube concentrates the mixture of fuel and air from the carburetor and conveys the mixture of fuel and air to a point adjacent but spaced away from the inlet port of the internal combustion engine.

  14. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    State Agency Vehicle Procurement and Management Requirement When purchasing a motor vehicle, a state agency must select one that is capable of being powered by cleaner fuels, including electricity and natural gas, if the total life cycle cost of ownership is less than or comparable to that of a gasoline-powered vehicle. A committee of representatives from the Minnesota Departments of Administration, Agriculture, Commerce, Natural Resources, and Transportation, as well as the Pollution Control

  15. Global optimization of multicomponent distillation configurations: 2. Enumeration based global minimization algorithm

    DOE PAGES [OSTI]

    Nallasivam, Ulaganathan; Shah, Vishesh H.; Shenvi, Anirudh A.; Huff, Joshua; Tawarmalani, Mohit; Agrawal, Rakesh

    2016-02-10

    We present a general Global Minimization Algorithm (GMA) to identify basic or thermally coupled distillation configurations that require the least vapor duty under minimum reflux conditions for separating any ideal or near-ideal multicomponent mixture into a desired number of product streams. In this algorithm, global optimality is guaranteed by modeling the system using Underwood equations and reformulating the resulting constraints to bilinear inequalities. The speed of convergence to the globally optimal solution is increased by using appropriate feasibility and optimality based variable-range reduction techniques and by developing valid inequalities. As a result, the GMA can be coupled with already developedmore » techniques that enumerate basic and thermally coupled distillation configurations, to provide for the first time, a global optimization based rank-list of distillation configurations.« less

  16. Source book for planning nuclear dual-purpose electric/distillation desalination plants

    SciTech Connect

    Reed, S.A.

    1981-02-01

    A source book on nuclear dual-purpose electric/distillation desalination plants was prepared to assist government and other planners in preparing broad evaluations of proposed applications of dual-purpose plants. The document is divided into five major sections. Section 1 presents general discussions relating to the benefits of dual-purpose plants, and spectrum for water-to-power ratios. Section 2 presents information on commercial nuclear plants manufactured by US manufacturers. Section 3 gives information on distillation desalting processes and equipment. Section 4 presents a discussion on feedwater pretreatment and scale control. Section 5 deals with methods for coupling the distillation and electrical generating plants to operate in the dual mode.

  17. Carbonate fuel cell anodes

    DOEpatents

    Donado, R.A.; Hrdina, K.E.; Remick, R.J.

    1993-04-27

    A molten alkali metal carbonates fuel cell porous anode of lithium ferrite and a metal or metal alloy of nickel, cobalt, nickel/iron, cobalt/iron, nickel/iron/aluminum, cobalt/iron/aluminum and mixtures thereof wherein the total iron content including ferrite and iron of the composite is about 25 to about 80 percent, based upon the total anode, provided aluminum when present is less than about 5 weight percent of the anode. A process is described for production of the lithium ferrite containing anode by slipcasting.

  18. Carbonate fuel cell anodes

    DOEpatents

    Donado, Rafael A. (Chicago, IL); Hrdina, Kenneth E. (Glenview, IL); Remick, Robert J. (Bolingbrook, IL)

    1993-01-01

    A molten alkali metal carbonates fuel cell porous anode of lithium ferrite and a metal or metal alloy of nickel, cobalt, nickel/iron, cobalt/iron, nickel/iron/aluminum, cobalt/iron/aluminum and mixtures thereof wherein the total iron content including ferrite and iron of the composite is about 25 to about 80 percent, based upon the total anode, provided aluminum when present is less than about 5 weight percent of the anode. A process for production of the lithium ferrite containing anode by slipcasting.

  19. Fuel Tables.indd

    Gasoline and Diesel Fuel Update

    0: Residual Fuel Oil Price and Expenditure Estimates, 2014 State Prices Expenditures Commercial Industrial Transportation Electric Power Total Commercial Industrial Transportation Electric Power Total Dollars per Million Btu Million Dollars Alabama - 15.65 11.37 - 12.59 - 34.4 62.9 - 97.2 Alaska - - - 18.87 18.87 - - - 14.1 14.1 Arizona - - - - - - - - - - Arkansas - 16.03 - 19.89 16.12 - 1.0 - (s) 1.1 California 15.94 15.94 21.60 - 21.60 0.1 0.5 1,825.7 - 1,826.3 Colorado - - - - - - - - - -

  20. Fact #635: August 9, 2010 Fuel Consumption from Lawn and Garden...

    Energy.gov [DOE] (indexed site)

    The fuel used in this equipment accounts for only 1.8% of total gasoline use. Fuel Consumption from Lawn and Garden Equipment, 2008 Bar graph showing the fuel consumption ...

  1. New Design Methods And Algorithms For High Energy-Efficient And Low-cost Distillation Processes

    SciTech Connect

    Agrawal, Rakesh

    2013-11-21

    This project sought and successfully answered two big challenges facing the creation of low-energy, cost-effective, zeotropic multi-component distillation processes: first, identification of an efficient search space that includes all the useful distillation configurations and no undesired configurations; second, development of an algorithm to search the space efficiently and generate an array of low-energy options for industrial multi-component mixtures. Such mixtures are found in large-scale chemical and petroleum plants. Commercialization of our results was addressed by building a user interface allowing practical application of our methods for industrial problems by anyone with basic knowledge of distillation for a given problem. We also provided our algorithm to a major U.S. Chemical Company for use by the practitioners. The successful execution of this program has provided methods and algorithms at the disposal of process engineers to readily generate low-energy solutions for a large class of multicomponent distillation problems in a typical chemical and petrochemical plant. In a petrochemical complex, the distillation trains within crude oil processing, hydrotreating units containing alkylation, isomerization, reformer, LPG (liquefied petroleum gas) and NGL (natural gas liquids) processing units can benefit from our results. Effluents from naphtha crackers and ethane-propane crackers typically contain mixtures of methane, ethylene, ethane, propylene, propane, butane and heavier hydrocarbons. We have shown that our systematic search method with a more complete search space, along with the optimization algorithm, has a potential to yield low-energy distillation configurations for all such applications with energy savings up to 50%.

  2. Advanced Fuel Cycle Economic Sensitivity Analysis

    SciTech Connect

    David Shropshire; Kent Williams; J.D. Smith; Brent Boore

    2006-12-01

    A fuel cycle economic analysis was performed on four fuel cycles to provide a baseline for initial cost comparison using the Gen IV Economic Modeling Work Group G4 ECON spreadsheet model, Decision Programming Language software, the 2006 Advanced Fuel Cycle Cost Basis report, industry cost data, international papers, the nuclear power related cost study from MIT, Harvard, and the University of Chicago. The analysis developed and compared the fuel cycle cost component of the total cost of energy for a wide range of fuel cycles including: once through, thermal with fast recycle, continuous fast recycle, and thermal recycle.

  3. Systems and methods for reactive distillation with recirculation of light components

    DOEpatents

    Stickney, Michael J. (Nassau Bay, TX); Jones, Jr., Edward M. (Friendswood, TX)

    2011-07-26

    Systems and methods for producing gas-to-liquids products using reactive distillation are provided. The method for producing gas-to-liquids products can include reacting a feedstock in a column having a distillation zone and a reaction zone to provide a bottoms stream and an overhead stream. A first portion of the overhead stream can be recycled to the column at the top of the reaction zone and second portion of the overhead stream can be recycled to the column at the bottom of the reaction zone.

  4. Process for converting heavy oil deposited on coal to distillable oil in a low severity process

    DOEpatents

    Ignasiak, Teresa; Strausz, Otto; Ignasiak, Boleslaw; Janiak, Jerzy; Pawlak, Wanda; Szymocha, Kazimierz; Turak, Ali A.

    1994-01-01

    A process for removing oil from coal fines that have been agglomerated or blended with heavy oil comprises the steps of heating the coal fines to temperatures over 350.degree. C. up to 450.degree. C. in an inert atmosphere, such as steam or nitrogen, to convert some of the heavy oil to lighter, and distilling and collecting the lighter oils. The pressure at which the process is carried out can be from atmospheric to 100 atmospheres. A hydrogen donor can be added to the oil prior to deposition on the coal surface to increase the yield of distillable oil.

  5. High Efficiency Direct Carbon and Hydrogen Fuel Cells for Fossil Fuel Power Generation

    SciTech Connect

    Steinberg, M; Cooper, J F; Cherepy, N

    2002-01-02

    Hydrogen he1 cells have been under development for a number of years and are now nearing commercial applications. Direct carbon fuel cells, heretofore, have not reached practical stages of development because of problems in fuel reactivity and cell configuration. The carbon/air fuel cell reaction (C + O{sub 2} = CO{sub 2}) has the advantage of having a nearly zero entropy change. This allows a theoretical efficiency of 100 % at 700-800 C. The activities of the C fuel and CO{sub 2} product do not change during consumption of the fuel. Consequently, the EMF is invariant; this raises the possibility of 100% fuel utilization in a single pass. (In contrast, the high-temperature hydrogen fuel cell has a theoretical efficiency of and changes in fuel activity limit practical utilizations to 75-85%.) A direct carbon fuel cell is currently being developed that utilizes reactive carbon particulates wetted by a molten carbonate electrolyte. Pure COZ is evolved at the anode and oxygen from air is consumed at the cathode. Electrochemical data is reported here for the carbon/air cell utilizing carbons derived from he1 oil pyrolysis, purified coal, purified bio-char and petroleum coke. At 800 O C, a voltage efficiency of 80% was measured at power densities of 0.5-1 kW/m2. Carbon and hydrogen fuels may be produced simultaneously at lugh efficiency from: (1) natural gas, by thermal decomposition, (2) petroleum, by coking or pyrolysis of distillates, (3) coal, by sequential hydrogasification to methane and thermal pyrolysis of the methane, with recycle of the hydrogen, and (4) biomass, similarly by sequential hydrogenation and thermal pyrolysis. Fuel production data may be combined with direct C and H2 fuel cell operating data for power cycle estimates. Thermal to electric efficiencies indicate 80% HHV [85% LHV] for petroleum, 75.5% HHV [83.4% LHV] for natural gas and 68.3% HHV [70.8% LHV] for lignite coal. Possible benefits of integrated carbon and hydrogen fuel cell power

  6. Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact Sheet Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact Sheet Fact sheet produced by the Fuel Cell ...

  7. Total Space Heat-

    Gasoline and Diesel Fuel Update

    Commercial Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration...

  8. Total Space Heat-

    Gasoline and Diesel Fuel Update

    Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

  9. Total Space Heat-

    Gasoline and Diesel Fuel Update

    Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings*...

  10. Chapter 7: Advancing Systems and Technologies to Produce Cleaner Fuels

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    7: Advancing Systems and Technologies to Produce Cleaner Fuels September 2015 Quadrennial Technology Review 7 Advancing Systems and Technologies to Produce Cleaner Fuels Issues and RDD&D Opportunities  Fossil fuels account for 82% of total U.S. primary energy use.  Each fuel has strengths and weaknesses in relation to energy security, economic competitiveness, and environmental responsibility identified in Chapter 1.  Low-cost fuels can contribute to economic prosperity. Oil and gas

  11. Molten salt extraction of transuranic and reactive fission products from used uranium oxide fuel

    DOEpatents

    Herrmann, Steven Douglas

    2014-05-27

    Used uranium oxide fuel is detoxified by extracting transuranic and reactive fission products into molten salt. By contacting declad and crushed used uranium oxide fuel with a molten halide salt containing a minor fraction of the respective uranium trihalide, transuranic and reactive fission products partition from the fuel to the molten salt phase, while uranium oxide and non-reactive, or noble metal, fission products remain in an insoluble solid phase. The salt is then separated from the fuel via draining and distillation. By this method, the bulk of the decay heat, fission poisoning capacity, and radiotoxicity are removed from the used fuel. The remaining radioactivity from the noble metal fission products in the detoxified fuel is primarily limited to soft beta emitters. The extracted transuranic and reactive fission products are amenable to existing technologies for group uranium/transuranic product recovery and fission product immobilization in engineered waste forms.

  12. Apparatus for converting hydrocarbon fuel into hydrogen gas and carbon dioxide

    DOEpatents

    Clawson, Lawrence G. (Dover, MA); Mitchell, William L. (Belmont, MA); Bentley, Jeffrey M. (Westford, MA); Thijssen, Johannes H. J. (Cambridge, MA)

    2001-01-01

    A hydrocarbon fuel reformer (200) is disclosed suitable for producing synthesis hydrogen gas from reactions with hydrocarbons fuels, oxygen, and steam. The reformer (200) comprises first and second tubes (208,218). The first tube (208) includes a first catalyst (214) and receives a first mixture of steam and a first fuel. The second tube (218) is annularly disposed about the first tube (208) and receives a second mixture of an oxygen-containing gas and a second fuel. In one embodiment, a third tube (224) is annularly disposed about the second tube (218) and receives a first reaction reformate from the first tube (208) and a second reaction reformate from the second tube (218). A catalyst reforming zone (260) annularly disposed about the third tube (224) may be provided to subject reformate constituents to a shift reaction. In another embodiment, a fractionator is provided to distill first and second fuels from a fuel supply source.

  13. Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development

    Alternative Fuels and Advanced Vehicles Data Center

    Fueling Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Hydrogen Fueling

  14. Reforming of fuel inside fuel cell generator

    DOEpatents

    Grimble, R.E.

    1988-03-08

    Disclosed is an improved method of reforming a gaseous reformable fuel within a solid oxide fuel cell generator, wherein the solid oxide fuel cell generator has a plurality of individual fuel cells in a refractory container, the fuel cells generating a partially spent fuel stream and a partially spent oxidant stream. The partially spent fuel stream is divided into two streams, spent fuel stream 1 and spent fuel stream 2. Spent fuel stream 1 is burned with the partially spent oxidant stream inside the refractory container to produce an exhaust stream. The exhaust stream is divided into two streams, exhaust stream 1 and exhaust stream 2, and exhaust stream 1 is vented. Exhaust stream 2 is mixed with spent fuel stream 2 to form a recycle stream. The recycle stream is mixed with the gaseous reformable fuel within the refractory container to form a fuel stream which is supplied to the fuel cells. Also disclosed is an improved apparatus which permits the reforming of a reformable gaseous fuel within such a solid oxide fuel cell generator. The apparatus comprises a mixing chamber within the refractory container, means for diverting a portion of the partially spent fuel stream to the mixing chamber, means for diverting a portion of exhaust gas to the mixing chamber where it is mixed with the portion of the partially spent fuel stream to form a recycle stream, means for injecting the reformable gaseous fuel into the recycle stream, and means for circulating the recycle stream back to the fuel cells. 1 fig.

  15. Reforming of fuel inside fuel cell generator

    DOEpatents

    Grimble, Ralph E.

    1988-01-01

    Disclosed is an improved method of reforming a gaseous reformable fuel within a solid oxide fuel cell generator, wherein the solid oxide fuel cell generator has a plurality of individual fuel cells in a refractory container, the fuel cells generating a partially spent fuel stream and a partially spent oxidant stream. The partially spent fuel stream is divided into two streams, spent fuel stream I and spent fuel stream II. Spent fuel stream I is burned with the partially spent oxidant stream inside the refractory container to produce an exhaust stream. The exhaust stream is divided into two streams, exhaust stream I and exhaust stream II, and exhaust stream I is vented. Exhaust stream II is mixed with spent fuel stream II to form a recycle stream. The recycle stream is mixed with the gaseous reformable fuel within the refractory container to form a fuel stream which is supplied to the fuel cells. Also disclosed is an improved apparatus which permits the reforming of a reformable gaseous fuel within such a solid oxide fuel cell generator. The apparatus comprises a mixing chamber within the refractory container, means for diverting a portion of the partially spent fuel stream to the mixing chamber, means for diverting a portion of exhaust gas to the mixing chamber where it is mixed with the portion of the partially spent fuel stream to form a recycle stream, means for injecting the reformable gaseous fuel into the recycle stream, and means for circulating the recycle stream back to the fuel cells.

  16. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    petroleum gas (propane); coal-derived liquid fuels; hydrogen; electricity; pure biodiesel (B100); fuels, other than alcohol, derived from biological materials; and P-Series fuels. ...

  17. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    Select Fuels Clear all All Fuels GasolineE10 Low Sulfur Diesel Biodiesel Compressed ... chart. More fuel information: Biodiesel EthanolE100 Electricity Hydrogen ...

  18. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    Beginning January 1, 2017, alternative fuels will be taxed equal to the motor fuel tax on a gallon equivalent basis. Alternative fuels include natural gas, propane, hydrogen, and ...

  19. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    buses and other motor vehicles to use U.S. Environmental Protection Agency compliant alternative fuel systems, purchase alternative fuel equipment, and install fueling stations. ...

  20. Fuel Cell Technologies Overview

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fuel Cell Seminar Orlando, FL Dr. Sunita Satyapal U.S. Department of Energy Fuel Cell Technologies Program Program Manager 1112011 2 | Fuel Cell Technologies Program Source: US ...