National Library of Energy BETA

Sample records for total delivered cost

  1. Table 1. Real Average Transportation and Delivered Costs of Coal...

    Energy Information Administration (EIA) (indexed site)

    Real Average Transportation and Delivered Costs of Coal, By Year and Primary Transport Mode" "Year","Average Transportation Cost of Coal (Dollars per Ton)","Average Delivered Cost...

  2. Table 17. Total Delivered Residential Energy Consumption, Projected vs. Actual

    Energy Information Administration (EIA) (indexed site)

    Total Delivered Residential Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 10.3 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.5 10.5 10.5 10.5 10.5 10.6 10.6 AEO 1995 11.0 10.8 10.8 10.8 10.8 10.8 10.8 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.8 10.8 10.9 AEO 1996 10.4 10.7 10.7 10.7 10.8 10.8 10.9 10.9 11.0 11.2 11.2 11.3 11.4 11.5 11.6 11.7 11.8 12.0 12.1

  3. Table 18. Total Delivered Commercial Energy Consumption, Projected vs. Actual

    Energy Information Administration (EIA) (indexed site)

    Total Delivered Commercial Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 6.8 6.9 6.9 7.0 7.1 7.1 7.2 7.2 7.3 7.3 7.4 7.4 7.4 7.5 7.5 7.5 7.5 7.6 AEO 1995 6.9 6.9 7.0 7.0 7.0 7.1 7.1 7.1 7.1 7.1 7.2 7.2 7.2 7.2 7.3 7.3 7.3 AEO 1996 7.1 7.2 7.2 7.3 7.3 7.4 7.4 7.5 7.6 7.6 7.7 7.7 7.8 7.9 8.0 8.0 8.1 8.2 8.2 AEO 1997 7.4 7.4 7.4 7.5 7.5 7.6 7.7 7.7 7.8 7.8 7.9 7.9

  4. Table 19. Total Delivered Industrial Energy Consumption, Projected vs. Actual

    Energy Information Administration (EIA) (indexed site)

    Total Delivered Industrial Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 25.4 25.9 26.3 26.7 27.0 27.1 26.8 26.6 26.9 27.2 27.7 28.1 28.3 28.7 29.1 29.4 29.7 30.0 AEO 1995 26.2 26.3 26.5 27.0 27.3 26.9 26.6 26.8 27.1 27.5 27.9 28.2 28.4 28.7 29.0 29.3 29.6 AEO 1996 26.5 26.6 27.3 27.5 26.9 26.5 26.7 26.9 27.2 27.6 27.9 28.2 28.3 28.5 28.7 28.9 29.2 29.4 29.6

  5. Table 20. Total Delivered Transportation Energy Consumption, Projected vs. Actual

    Energy Information Administration (EIA) (indexed site)

    Total Delivered Transportation Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 23.6 24.1 24.5 24.7 25.1 25.4 25.7 26.2 26.5 26.9 27.2 27.6 27.9 28.3 28.6 28.9 29.2 29.5 AEO 1995 23.3 24.0 24.2 24.7 25.1 25.5 25.9 26.2 26.5 26.9 27.3 27.7 28.0 28.3 28.5 28.7 28.9 AEO 1996 23.9 24.1 24.5 24.8 25.3 25.7 26.0 26.4 26.7 27.1 27.5 27.8 28.1 28.4 28.6 28.9 29.1 29.3

  6. Barge Truck Total

    Annual Energy Outlook

    Barge Truck Total delivered cost per short ton Shipments with transportation rates over total shipments Total delivered cost per short ton Shipments with transportation rates over...

  7. Five and Dime: Revisiting Strategies for Lowering the Costs of Delivering Energy Efficiency (101)

    Energy.gov [DOE]

    Better Buildings Residential Network Peer Exchange Call Series: Five and Dime: Revisiting Strategies for Lowering the Costs of Delivering Energy Efficiency (101), call slides and discussion summary.

  8. Delivering on Obama's renewables promise will cost billions

    SciTech Connect

    2009-04-15

    For wind energy in the eastern half of the U.S., costs would be $50 billion to $80 billion for transmission lines, in addition to the $700 billion to $1.1 trillion to build the wind farms to generate power.

  9. ,"Alabama Share of Total U.S. Natural Gas Delivered to Consumers"

    Energy Information Administration (EIA) (indexed site)

    Share of Total U.S. Natural Gas Delivered to Consumers" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Share of Total U.S. Natural Gas Delivered to Consumers",5,"Annual",2015,"6/30/1993" ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016"

  10. U.S. Army Corps of Engineers Delivers Cost and Schedule Validation...

    Energy Saver

    for Hanford Waste Treatment Plant U.S. Army Corps of Engineers Delivers Cost and Schedule Validation for Hanford Waste Treatment Plant September 7, 2006 - 8:53am Addthis ...

  11. Update of Hydrogen from Biomass - Determination of the Delivered Cost of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Hydrogen: Milestone Completion Report | Department of Energy Update of Hydrogen from Biomass - Determination of the Delivered Cost of Hydrogen: Milestone Completion Report Update of Hydrogen from Biomass - Determination of the Delivered Cost of Hydrogen: Milestone Completion Report Milestone report summarizing the economic feasibility of producing hydrogen from biomass via (1) gasification/reforming of the resulting syngas and (2) fast pyrolysis/reforming of the resulting bio-oil. 33112.pdf

  12. U.S. Natural Gas % of Total Residential Consumers Delivered for the Account

    Energy Information Administration (EIA) (indexed site)

    of Others (Percent) Residential Consumers Delivered for the Account of Others (Percent) U.S. Natural Gas % of Total Residential Consumers Delivered for the Account of Others (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 9 10 11 2010's 12 12 13 14 14 14 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages:

  13. U.S. Army Corps of Engineers Delivers Cost and Schedule Validation for

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Hanford Waste Treatment Plant | Department of Energy Army Corps of Engineers Delivers Cost and Schedule Validation for Hanford Waste Treatment Plant U.S. Army Corps of Engineers Delivers Cost and Schedule Validation for Hanford Waste Treatment Plant September 7, 2006 - 8:53am Addthis Corps Report Validates Cost of $12.2 billion and Construction Completion in November 2019 WASHINGTON, DC - The U.S. Department of Energy (DOE) today released the U.S. Army Corps of Engineers (USACE) report

  14. U.S. Natural Gas % of Total Commercial Delivered for the Account of Others

    Energy Information Administration (EIA) (indexed site)

    (Percent) Commercial Delivered for the Account of Others (Percent) U.S. Natural Gas % of Total Commercial Delivered for the Account of Others (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 10.9 1990's 13.4 14.9 16.8 16.1 20.7 23.3 22.4 29.2 33.0 33.9 2000's 36.1 34.0 36.4 34.9 35.9 35.0 36.3 37.6 38.1 40.8 2010's 42.5 44.2 46.8 46.1 46.2 46.6 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  15. U.S. Natural Gas % of Total Industrial Delivered for the Account of Others

    Energy Information Administration (EIA) (indexed site)

    (Percent) Industrial Delivered for the Account of Others (Percent) U.S. Natural Gas % of Total Industrial Delivered for the Account of Others (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 63.1 1990's 64.8 67.3 69.7 70.7 74.8 76.0 80.6 81.9 83.9 81.3 2000's 80.2 79.2 77.3 77.9 76.3 75.9 76.6 77.8 79.6 81.2 2010's 82.8 83.7 83.8 83.4 85.1 84.9 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  16. Total Estimated Contract Cost: Performance Period Total Fee Paid

    Office of Environmental Management (EM)

    DE-AM09-05SR22405DE-AT30-07CC60011SL14 Contractor: Contract Number: Contract Type: Cost Plus Award Fee 357,223 597,797 894,699 EM Contractor Fee Site: Stanford Linear...

  17. "Table 19. Total Delivered Industrial Energy Consumption, Projected vs. Actual"

    Energy Information Administration (EIA) (indexed site)

    Total Delivered Industrial Energy Consumption, Projected vs. Actual" "Projected" " (quadrillion Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",25.43,25.904,26.303,26.659,26.974,27.062,26.755,26.598,26.908,27.228,27.668,28.068,28.348,28.668,29.068,29.398,29.688,30.008 "AEO

  18. Project Functions and Activities Definitions for Total Project Cost

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    1997-03-28

    This chapter provides guidelines developed to define the obvious disparity of opinions and practices with regard to what exactly is included in total estimated cost (TEC) and total project cost (TPC).

  19. Total Estimated Contract Cost: Performance Period

    Office of Environmental Management (EM)

    FY2012 Fee Information Minimum Fee Maximum Fee September 2015 Contract Number: Cost Plus Incentive Fee Contractor: 3,264,909,094 Contract Period: EM Contractor Fee s Idaho...

  20. "Table 17. Total Delivered Residential Energy Consumption, Projected vs. Actual"

    Energy Information Administration (EIA) (indexed site)

    Total Delivered Residential Energy Consumption, Projected vs. Actual" "Projected" " (quadrillion Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",10.31,10.36,10.36,10.37,10.38,10.4,10.4,10.41,10.43,10.43,10.44,10.45,10.46,10.49,10.51,10.53,10.56,10.6 "AEO 1995",,10.96,10.8,10.81,10.81,10.79,10.77,10.75,10.73,10.72,10.7,10.7,10.69,10.7,10.72,10.75,10.8,10.85 "AEO

  1. "Table 18. Total Delivered Commercial Energy Consumption, Projected vs. Actual"

    Energy Information Administration (EIA) (indexed site)

    Total Delivered Commercial Energy Consumption, Projected vs. Actual" "Projected" " (quadrillion Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",6.82,6.87,6.94,7,7.06,7.13,7.16,7.22,7.27,7.32,7.36,7.38,7.41,7.45,7.47,7.5,7.51,7.55 "AEO 1995",,6.94,6.9,6.95,6.99,7.02,7.05,7.08,7.09,7.11,7.13,7.15,7.17,7.19,7.22,7.26,7.3,7.34 "AEO

  2. "Table 20. Total Delivered Transportation Energy Consumption, Projected vs. Actual"

    Energy Information Administration (EIA) (indexed site)

    Total Delivered Transportation Energy Consumption, Projected vs. Actual" "Projected" " (quadrillion Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",23.62,24.08,24.45,24.72,25.06,25.38,25.74,26.16,26.49,26.85,27.23,27.55,27.91,28.26,28.61,28.92,29.18,29.5 "AEO 1995",,23.26,24.01,24.18,24.69,25.11,25.5,25.86,26.15,26.5,26.88,27.28,27.66,27.99,28.25,28.51,28.72,28.94 "AEO

  3. FY 2007 Total System Life Cycle Cost, Pub 2008

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Analysis of the Total System Life Cycle Cost (TSLCC) of the Civilian Radioactive Waste Management Program presents the Office of Civilian Radioactive Waste Management’s (OCRWM) May 2007 total...

  4. CIGNA Study Uncovers Relationship of Disabilities to Total Benefits Costs

    Energy.gov [DOE]

    The findings of a new study reveal an interesting trend. Integrating disability programs with health care programs can potentially lower employers' total benefits costs and help disabled employees get back to work sooner and stay at work.

  5. Alaska Share of Total U.S. Natural Gas Delivered to Consumers

    Gasoline and Diesel Fuel Update

    633 622 566 802 639 548 1996-2014 Lease Condensate (million bbls) 0 0 0 0 63 2 1998-2014 Total Gas (billion cu ft) 193 246 351 1,243 1,093 1,190 1996-2014 Nonassociated Gas (billion cu ft) 173 231 288 289 353 356 1996-2014 Associated Gas (billion cu ft) 20 15 63 954 740 834 (Million Cubic Feet)

    Alaska Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Alaska Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0

  6. California Share of Total U.S. Natural Gas Delivered to Consumers

    Gasoline and Diesel Fuel Update

    272 522 542 627 606 588 1996-2014 Lease Condensate (million bbls) 0 0 2 1 0 0 1998-2014 Total Gas (billion cu ft) 460 441 395 360 248 303 1996-2014 Nonassociated Gas (billion cu ft) 314 254 267 37 61 37 1996-2014 Associated Gas (billion cu ft) 146 187 128 323 187 266 (Million Cubic Feet)

    Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) California Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1

  7. Louisiana Share of Total U.S. Natural Gas Delivered to Consumers

    Gasoline and Diesel Fuel Update

    149 183 152 157 180 221 1996-2014 Lease Condensate (million bbls) 25 29 29 40 41 51 1998-2014 Total Gas (billion cu ft) 13,125 19,326 15,162 9,995 8,913 13,200 1996-2014 Nonassociated Gas (billion cu ft) 12,718 19,037 14,905 9,755 8,560 12,845 1996-2014 Associated Gas (billion cu ft) 407 289 257 240 353 35 (Million Cubic Feet)

    Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Louisiana Quantity of Production Associated with Reported Wellhead Value

  8. Texas Share of Total U.S. Natural Gas Delivered to Consumers

    Gasoline and Diesel Fuel Update

    1,455 1,883 2,456 4,293 4,065 5,060 1996-2014 Lease Condensate (million bbls) 124 274 445 896 683 944 1998-2014 Total Gas (billion cu ft) 31,336 36,190 37,479 35,178 30,143 37,750 1996-2014 Nonassociated Gas (billion cu ft) 28,549 32,605 32,240 26,632 21,944 27,130 1996-2014 Associated Gas (billion cu ft) 2,787 3,585 5,239 8,546 8,199 10,620 (Million Cubic Feet)

    Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Texas Quantity of Production Associated with

  9. New Osage Nation Facilities Deliver High Energy Performance, Comfort, and Cost Savings

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Osage Nation (OK) celebrated the opening of two state-of-the-art tribal government buildings designed with energy efficiency, comfort, and cost savings in mind. The buildings incorporate daylighting, geothermal heat pumps, fans, and other environmentally friendly design features that optimize the use of natural light, moderate heating and cooling, and reduce electricity consumption and costs.

  10. An Evaluation of the Total Cost of Ownership of Fuel Cell-Powered...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    An Evaluation of the Total Cost of Ownership of Fuel Cell- Powered Material Handling ... DE-AC36-08GO28308 An Evaluation of the Total Cost of Ownership of Fuel Cell- Powered ...

  11. A Total Cost of Ownership Model for Solid Oxide Fuel Cells in...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    a total cost of ownership model for emerging applications in stationary fuel cell systems. ... A Total Cost of Ownership Model for Low Temperature PEM Fuel Cells in Combined Heat ...

  12. An Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Handling Equipment | Department of Energy An Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material Handling Equipment An Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material Handling Equipment This report by the National Renewable Energy Laboratory discusses an analysis of the total cost of ownership of fuel cell-powered and traditional battery-powered material handling equipment, including the capital costs of battery and fuel cell systems, the cost of

  13. Total Estimated Contract Cost: Contract Option Period: Maximum...

    Office of Environmental Management (EM)

    & Wilcox Conversion Services, LLC Contract Number: DE-AC30-11CC40015 Contract Type: Cost Plus Award Fee EM Contractor Fee September 2015 Site: Portsmouth Paducah Project Office...

  14. Total Estimated Contract Cost: Contract Option Period: Performance

    Office of Environmental Management (EM)

    Contractor: Bechtel National Inc. Contract Number: DE-AC27-01RV14136 Contract Type: Cost Plus Award Fee NA Maximum Fee 599,588,540 Fee Available 102,622,325 10,868,785,789...

  15. Total Estimated Contract Cost: Contract Option Period: Maximum...

    Office of Environmental Management (EM)

    LLC Contract Number: DE-AC30-11CC40015 Contract Type: Cost Plus Award Fee EM Contractor Fee December 2015 Site: Portsmouth Paducah Project Office Contract Name: Operation of DUF6

  16. Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material Handling Equipment

    SciTech Connect

    Ramsden, T.

    2013-04-01

    This report discusses an analysis of the total cost of ownership of fuel cell-powered and traditional battery-powered material handling equipment (MHE, or more typically 'forklifts'). A number of fuel cell MHE deployments have received funding support from the federal government. Using data from these government co-funded deployments, DOE's National Renewable Energy Laboratory (NREL) has been evaluating the performance of fuel cells in material handling applications. NREL has assessed the total cost of ownership of fuel cell MHE and compared it to the cost of ownership of traditional battery-powered MHE. As part of its cost of ownership assessment, NREL looked at a range of costs associated with MHE operation, including the capital costs of battery and fuel cell systems, the cost of supporting infrastructure, maintenance costs, warehouse space costs, and labor costs. Considering all these costs, NREL found that fuel cell MHE can have a lower overall cost of ownership than comparable battery-powered MHE.

  17. A Total Cost of Ownership Model for Solid Oxide Fuel Cells in...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    A Total Cost of Ownership Model for Solid Oxide Fuel Cells in Combined Heat and Power and ... Efficiency and Renewable Energy (EERE) Fuel Cells Technologies Office (FCTO) under ...

  18. A Total Cost of Ownership Model for Low Temperature PEM Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    LBNL-6772E A Total Cost of Ownership Model for Low Temperature PEM Fuel Cells in Combined ... Efficiency and Renewable Energy (EERE) Fuel Cells Technologies Office (FCTO) under ...

  19. U.S. Department of Energy Releases Revised Total System Life Cycle Cost

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Estimate and Fee Adequacy Report for Yucca Mountain Project | Department of Energy Revised Total System Life Cycle Cost Estimate and Fee Adequacy Report for Yucca Mountain Project U.S. Department of Energy Releases Revised Total System Life Cycle Cost Estimate and Fee Adequacy Report for Yucca Mountain Project August 5, 2008 - 2:40pm Addthis WASHINGTON, DC -The U.S. Department of Energy (DOE) today released a revised estimate of the total system life cycle cost for a repository at Yucca

  20. Costs of Storing and Transporting Hydrogen

    Energy.gov [DOE]

    An analysis was performed to estimate the costs associated with storing and transporting hydrogen. These costs can be added to a hydrogen production cost to determine the total delivered cost of hydrogen.

  1. SU-E-T-515: Field-In-Field Compensation Technique Using Multi-Leaf Collimator to Deliver Total Body Irradiation (TBI) Dose

    SciTech Connect

    Lakeman, T; Wang, IZ

    2014-06-01

    Purpose: Total body irradiation (TBI) uses large parallel-opposed radiation fields to suppress the patient's immune system and eradicate the residual cancer cells in preparation of recipient for bone marrow transplant. The manual placement of lead compensators has been used conventionally to compensate for the varying thickness through the entire body in large-field TBI. The goal of this study is to pursue utilizing the modern field-in-field (FIF) technique with the multi-leaf collimator (MLC) to more accurately and efficiently deliver dose to patients in need of TBI. Method: Treatment plans utilizing the FIF technique to deliver a total body dose were created retrospectively for patients for whom CT data had been previously acquired. Treatment fields include one pair of opposed open large fields (collimator=45) with a specific weighting and a succession of smaller fields (collimator=90) each with their own weighting. The smaller fields are shaped by moving MLC to block the sections of the patient which have already received close to 100% of the prescribed dose. The weighting factors for each of these fields were calculated using the attenuation coefficient of the initial lead compensators and the separation of the patient in different positions in the axial plane. Results: Dose-volume histograms (DVH) were calculated for evaluating the FIF compensation technique. The maximum body doses calculated from the DVH were reduced from the non-compensated 179.3% to 148.2% in the FIF plans, indicating a more uniform dose with the FIF compensation. All calculated monitor units were well within clinically acceptable limits and exceeded those of the original lead compensation plan by less than 50 MU (only ~1.1% increase). Conclusion: MLC FIF technique for TBI will not significantly increase the beam on time while it can substantially reduce the compensator setup time and the potential risk of errors in manually placing lead compensators.

  2. An Evaluation of the Total Cost of Ownership of Fuel Cell-Powered...

    Energy.gov [DOE] (indexed site)

    handling equipment, including the capital costs of battery and fuel cell systems, the cost of supporting infrastructure, maintenance costs, warehouse space costs, and labor costs. ...

  3. ,"U.S. Total Refiner Acquisition Cost of Crude Oil"

    Energy Information Administration (EIA) (indexed site)

    Refiner Acquisition Cost of Crude Oil" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Total Refiner Acquisition Cost of Crude Oil",3,"Annual",2015,"6/30/1968" ,"Release Date:","11/1/2016" ,"Next Release Date:","12/1/2016" ,"Excel File

  4. Total

    Energy Information Administration (EIA) (indexed site)

    Product: Total Crude Oil Liquefied Petroleum Gases PropanePropylene Normal ButaneButylene Other Liquids Oxygenates Fuel Ethanol MTBE Other Oxygenates Biomass-based Diesel Fuel ...

  5. Total..........................................................

    Energy Information Administration (EIA) (indexed site)

    0.9 Q Q Q Heat Pump......7.7 0.3 Q Q Steam or Hot Water System......Census Division Total West Energy Information Administration ...

  6. Total..........................................................

    Energy Information Administration (EIA) (indexed site)

    0.9 Q Q Q Heat Pump......6.2 3.8 2.4 Steam or Hot Water System......Census Division Total Northeast Energy Information ...

  7. Total............................................................

    Energy Information Administration (EIA) (indexed site)

    Total................................................................... 111.1 2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500............................................... 3.2 357 336 113 188 177 59 500 to 999....................................................... 23.8 733 667 308 343 312 144 1,000 to 1,499................................................. 20.8 1,157 1,086 625 435 409 235 1,500 to 1,999................................................. 15.4 1,592

  8. Total

    Energy Information Administration (EIA) (indexed site)

    Total floor- space 1 Heated floor- space 2 Total floor- space 1 Cooled floor- space 2 Total floor- space 1 Lit floor- space 2 All buildings 87,093 80,078 70,053 79,294 60,998 83,569 68,729 Building floorspace (square feet) 1,001 to 5,000 8,041 6,699 5,833 6,124 4,916 7,130 5,590 5,001 to 10,000 8,900 7,590 6,316 7,304 5,327 8,152 6,288 10,001 to 25,000 14,105 12,744 10,540 12,357 8,840 13,250 10,251 25,001 to 50,000 11,917 10,911 9,638 10,813 7,968 11,542 9,329 50,001 to 100,000 13,918 13,114

  9. Total...................................................................

    Energy Information Administration (EIA) (indexed site)

    2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500............................................... 3.2 357 336 113 188 177 59 500 to 999....................................................... 23.8 733 667 308 343 312 144 1,000 to 1,499................................................. 20.8 1,157 1,086 625 435 409 235 1,500 to 1,999................................................. 15.4 1,592 1,441 906 595 539 339 2,000 to

  10. Total..........................................................................

    Energy Information Administration (EIA) (indexed site)

    . 111.1 20.6 15.1 5.5 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.4 500 to 999........................................................... 23.8 4.6 3.6 1.1 1,000 to 1,499..................................................... 20.8 2.8 2.2 0.6 1,500 to 1,999..................................................... 15.4 1.9 1.4 0.5 2,000 to 2,499..................................................... 12.2 2.3 1.7 0.5 2,500 to

  11. Total..........................................................................

    Energy Information Administration (EIA) (indexed site)

    5.6 17.7 7.9 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.5 0.3 Q 500 to 999........................................................... 23.8 3.9 2.4 1.5 1,000 to 1,499..................................................... 20.8 4.4 3.2 1.2 1,500 to 1,999..................................................... 15.4 3.5 2.4 1.1 2,000 to 2,499..................................................... 12.2 3.2 2.1 1.1 2,500 to

  12. Total..........................................................................

    Energy Information Administration (EIA) (indexed site)

    0.7 21.7 6.9 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.6 Q Q 500 to 999........................................................... 23.8 9.0 4.2 1.5 3.2 1,000 to 1,499..................................................... 20.8 8.6 4.7 1.5 2.5 1,500 to 1,999..................................................... 15.4 6.0 2.9 1.2 1.9 2,000 to 2,499..................................................... 12.2 4.1 2.1 0.7

  13. Total..........................................................................

    Energy Information Administration (EIA) (indexed site)

    4.2 7.6 16.6 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 1.0 0.2 0.8 500 to 999........................................................... 23.8 6.3 1.4 4.9 1,000 to 1,499..................................................... 20.8 5.0 1.6 3.4 1,500 to 1,999..................................................... 15.4 4.0 1.4 2.6 2,000 to 2,499..................................................... 12.2 2.6 0.9 1.7 2,500 to

  14. Total................................................

    Energy Information Administration (EIA) (indexed site)

    .. 111.1 86.6 2,522 1,970 1,310 1,812 1,475 821 1,055 944 554 Total Floorspace (Square Feet) Fewer than 500............................. 3.2 0.9 261 336 162 Q Q Q 334 260 Q 500 to 999.................................... 23.8 9.4 670 683 320 705 666 274 811 721 363 1,000 to 1,499.............................. 20.8 15.0 1,121 1,083 622 1,129 1,052 535 1,228 1,090 676 1,500 to 1,999.............................. 15.4 14.4 1,574 1,450 945 1,628 1,327 629 1,712 1,489 808 2,000 to

  15. Total..........................................................

    Energy Information Administration (EIA) (indexed site)

    .. 111.1 24.5 1,090 902 341 872 780 441 Total Floorspace (Square Feet) Fewer than 500...................................... 3.1 2.3 403 360 165 366 348 93 500 to 999.............................................. 22.2 14.4 763 660 277 730 646 303 1,000 to 1,499........................................ 19.1 5.8 1,223 1,130 496 1,187 1,086 696 1,500 to 1,999........................................ 14.4 1.0 1,700 1,422 412 1,698 1,544 1,348 2,000 to 2,499........................................ 12.7

  16. Total...................................................................

    Energy Information Administration (EIA) (indexed site)

    Floorspace (Square Feet) Total Floorspace 1 Fewer than 500............................................ 3.2 0.4 Q 0.6 1.7 0.4 500 to 999................................................... 23.8 4.8 1.4 4.2 10.2 3.2 1,000 to 1,499............................................. 20.8 10.6 1.8 1.8 4.0 2.6 1,500 to 1,999............................................. 15.4 12.4 1.5 0.5 0.5 0.4 2,000 to 2,499............................................. 12.2 10.7 1.0 0.2 Q Q 2,500 to

  17. Total.........................................................................

    Energy Information Administration (EIA) (indexed site)

    Floorspace (Square Feet) Total Floorspace 2 Fewer than 500.................................................. 3.2 Q 0.8 0.9 0.8 0.5 500 to 999.......................................................... 23.8 1.5 5.4 5.5 6.1 5.3 1,000 to 1,499.................................................... 20.8 1.4 4.0 5.2 5.0 5.2 1,500 to 1,999.................................................... 15.4 1.4 3.1 3.5 3.6 3.8 2,000 to 2,499.................................................... 12.2 1.4 3.2 3.0 2.3 2.3

  18. Total..........................................................................

    Energy Information Administration (EIA) (indexed site)

    25.6 40.7 24.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.9 1.0 500 to 999........................................................... 23.8 4.6 3.9 9.0 6.3 1,000 to 1,499..................................................... 20.8 2.8 4.4 8.6 5.0 1,500 to 1,999..................................................... 15.4 1.9 3.5 6.0 4.0 2,000 to 2,499..................................................... 12.2 2.3 3.2 4.1

  19. Total..........................................................................

    Energy Information Administration (EIA) (indexed site)

    7.1 7.0 8.0 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.4 Q Q 0.5 500 to 999........................................................... 23.8 2.5 1.5 2.1 3.7 1,000 to 1,499..................................................... 20.8 1.1 2.0 1.5 2.5 1,500 to 1,999..................................................... 15.4 0.5 1.2 1.2 1.9 2,000 to 2,499..................................................... 12.2 0.7 0.5 0.8 1.4

  20. Delivering safety

    SciTech Connect

    Baldwin, N.D.; Spooner, K.G.; Walkden, P.

    2007-07-01

    In the United Kingdom there have been significant recent changes to the management of civil nuclear liabilities. With the formation in April 2005 of the Nuclear Decommissioning Authority (NDA), ownership of the civil nuclear licensed sites in the UK, including the Magnox Reactor Stations, passed to this new organisation. The NDAs mission is to seek acceleration of the nuclear clean up programme and deliver increased value for money and, consequently, are driving their contractors to seek more innovative ways of performing work. British Nuclear Group manages the UK Magnox stations under contract to the NDA. This paper summarises the approach being taken within its Reactor Sites business to work with suppliers to enhance working arrangements at sites, improve the delivery of decommissioning programmes and deliver improvements in safety and environmental performance. The UK Magnox stations are 1. generation gas-graphite reactors, constructed in the 1950's and 1960's. Two stations are currently still operating, three are shut-down undergoing defueling and the other five are being decommissioned. Despite the distractions of industry restructuring, an uncompromising policy of demanding improved performance in conjunction with improved safety and environmental standards has been adopted. Over the past 5 years, this policy has resulted in step-changes in performance at Reactor Sites, with increased electrical output and accelerated defueling and decommissioning. The improvements in performance have been mirrored by improvements in safety (DACR of 0 at 5 sites); environmental standards (reductions in energy and water consumption, increased waste recycling) and the overall health of the workforce (20% reduction in sickness absence). These achievements have, in turn, been recognised by external bodies, resulting in several awards, including: the world's first ISRS and IERS level 10 awards (Sizewell, 2006), the NUMEX plant maintenance award (Bradwell, 2006), numerous Ro

  1. Total...........................................................

    Energy Information Administration (EIA) (indexed site)

    14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500.................................... 3.2 0.7 Q 0.3 0.3 0.7 0.6 0.3 Q 500 to 999........................................... 23.8 2.7 1.4 2.2 2.8 5.5 5.1 3.0 1.1 1,000 to 1,499..................................... 20.8 2.3 1.4 2.4 2.5 3.5 3.5 3.6 1.6 1,500 to 1,999..................................... 15.4 1.8 1.4 2.2 2.0 2.4 2.4 2.1 1.2 2,000 to 2,499..................................... 12.2 1.4 0.9

  2. Total...........................................................

    Energy Information Administration (EIA) (indexed site)

    26.7 28.8 20.6 13.1 22.0 16.6 38.6 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................... 3.2 1.9 0.9 Q Q Q 1.3 2.3 500 to 999........................................... 23.8 10.5 7.3 3.3 1.4 1.2 6.6 12.9 1,000 to 1,499..................................... 20.8 5.8 7.0 3.8 2.2 2.0 3.9 8.9 1,500 to 1,999..................................... 15.4 3.1 4.2 3.4 2.0 2.7 1.9 5.0 2,000 to 2,499..................................... 12.2 1.7 2.7 2.9 1.8 3.2 1.1 2.8

  3. Total Cost Per MwH for all common large scale power generation...

    OpenEI (Open Energy Information) [EERE & EIA]

    out of the stack, toxificaiton of the lakes and streams, plant decommision costs. For nuclear yiou are talking about managing the waste in perpetuity. The plant decomission costs...

  4. Considering the total cost of electricity from sunlight and the alternatives

    SciTech Connect

    Fthenakis, Vasilis

    2015-03-01

    Photovoltaic (PV) electricity generation has grown to about 17 GW in the United States, corresponding to one tenth of the global capacity. Most deployment in the country has happened during the last 6 years. Reflecting back, in early 2008 this author and his collaborators James Mason and Ken Zweibel, published in Scientific American and in Energy Policy a Solar Grand Plan demonstrating the feasibility of renewable energy in providing 69% of the United States electricity demand by 2050, while reducing CO2 emissions by 60% from 2005 levels; the PV contribution to this plan was assessed to be 250 GW by 2030 and 2900 GW by 2050 [1]. The DOE's more detailed SunShot vision study, released in 2012, showed the possibility of having 300 GW of PV installed in the United States by 2030, and 630 GW by 2050. Assessing the sustainability of such rapid growth of photovoltaics necessitates undertaking a careful analysis because PV markets largely are enabled by its promise to produce reliable electricity with minimum environmental burdens. Measurable aspects of sustainability include cost, resource availability, and environmental impact. The question of cost concerns the affordability of solar energy compared to other energy sources throughout the world. Environmental impacts include local-, regional-, and global-effects, as well as the usage of land and water, which must be considered in a comparable context over a long time, multigenerational horizon. As a result, the availability of material resources matters to current and future-generations under the constraint of affordability.

  5. Feasibility studies to improve plant availability and reduce total installed cost in IGCC plants

    SciTech Connect

    Sullivan, Kevin; Anasti, William; Fang, Yichuan; Subramanyan, Karthik; Leininger, Tom; Zemsky, Christine

    2015-03-30

    The main purpose of this project is to look at technologies and philosophies that would help reduce the costs of an Integrated Gasification Combined Cycle (IGCC) plant, increase its availability or do both. GE’s approach to this problem is to consider options in three different areas: 1) technology evaluations and development; 2) constructability approaches; and 3) design and operation methodologies. Five separate tasks were identified that fall under the three areas: Task 2 – Integrated Operations Philosophy; Task 3 – Slip Forming of IGCC Components; Task 4 – Modularization of IGCC Components; Task 5 – Fouling Removal; and Task 6 – Improved Slag Handling. Overall, this project produced results on many fronts. Some of the ideas could be utilized immediately by those seeking to build an IGCC plant in the near future. These include the considerations from the Integrated Operations Philosophy task and the different construction techniques of Slip Forming and Modularization (especially if the proposed site is in a remote location or has a lack of a skilled workforce). Other results include ideas for promising technologies that require further development and testing to realize their full potential and be available for commercial operation. In both areas GE considers this project to be a success in identifying areas outside the core IGCC plant systems that are ripe for cost reduction and ity improvement opportunities.

  6. Considering the total cost of electricity from sunlight and the alternatives

    DOE PAGES [OSTI]

    Fthenakis, Vasilis

    2015-03-01

    Photovoltaic (PV) electricity generation has grown to about 17 GW in the United States, corresponding to one tenth of the global capacity. Most deployment in the country has happened during the last 6 years. Reflecting back, in early 2008 this author and his collaborators James Mason and Ken Zweibel, published in Scientific American and in Energy Policy a Solar Grand Plan demonstrating the feasibility of renewable energy in providing 69% of the United States electricity demand by 2050, while reducing CO2 emissions by 60% from 2005 levels; the PV contribution to this plan was assessed to be 250 GW bymore » 2030 and 2900 GW by 2050 [1]. The DOE's more detailed SunShot vision study, released in 2012, showed the possibility of having 300 GW of PV installed in the United States by 2030, and 630 GW by 2050. Assessing the sustainability of such rapid growth of photovoltaics necessitates undertaking a careful analysis because PV markets largely are enabled by its promise to produce reliable electricity with minimum environmental burdens. Measurable aspects of sustainability include cost, resource availability, and environmental impact. The question of cost concerns the affordability of solar energy compared to other energy sources throughout the world. Environmental impacts include local-, regional-, and global-effects, as well as the usage of land and water, which must be considered in a comparable context over a long time, multigenerational horizon. As a result, the availability of material resources matters to current and future-generations under the constraint of affordability.« less

  7. A Total Cost of Ownership Model for Low Temperature PEM Fuel Cells in Combined Heat and Power and Backup Power Applications

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report prepared by the Lawrence Berkeley National Laboratory describes a total cost of ownership model for emerging applications in stationary fuel cell systems.

  8. A Total Cost of Ownership Model for Solid Oxide Fuel Cells in Combined Heat and Power and Power-Only Applications

    Energy.gov [DOE]

    This report prepared by Lawrence Berkeley National Laboratory describes a total cost of ownership model for emerging applications in stationary fuel cell systems. Solid oxide fuel cell systems (SOFC) for use in combined heat and power (CHP) and power-only applications from 1 to 250 kilowatts-electric are considered.

  9. A Total Cost of Ownership Model for Low Temperature PEM Fuel Cells in Combined Heat and Power and Backup Power Applications

    SciTech Connect

    University of California, Berkeley; Wei, Max; Lipman, Timothy; Mayyas, Ahmad; Chien, Joshua; Chan, Shuk Han; Gosselin, David; Breunig, Hanna; Stadler, Michael; McKone, Thomas; Beattie, Paul; Chong, Patricia; Colella, Whitney; James, Brian

    2014-06-23

    A total cost of ownership model is described for low temperature proton exchange membrane stationary fuel cell systems for combined heat and power (CHP) applications from 1-250kW and backup power applications from 1-50kW. System designs and functional specifications for these two applications were developed across the range of system power levels. Bottom-up cost estimates were made for balance of plant costs, and detailed direct cost estimates for key fuel cell stack components were derived using design-for-manufacturing-and-assembly techniques. The development of high throughput, automated processes achieving high yield are projected to reduce the cost for fuel cell stacks to the $300/kW level at an annual production volume of 100 MW. Several promising combinations of building types and geographical location in the U.S. were identified for installation of fuel cell CHP systems based on the LBNL modelling tool DER CAM. Life-cycle modelling and externality assessment were done for hotels and hospitals. Reduced electricity demand charges, heating credits and carbon credits can reduce the effective cost of electricity ($/kWhe) by 26-44percent in locations such as Minneapolis, where high carbon intensity electricity from the grid is displaces by a fuel cell system operating on reformate fuel. This project extends the scope of existing cost studies to include externalities and ancillary financial benefits and thus provides a more comprehensive picture of fuel cell system benefits, consistent with a policy and incentive environment that increasingly values these ancillary benefits. The project provides a critical, new modelling capacity and should aid a broad range of policy makers in assessing the integrated costs and benefits of fuel cell systems versus other distributed generation technologies.

  10. Reduced computational cost, totally symmetric angular quadrature sets for discrete ordinates radiation transport. Master`s thesis

    SciTech Connect

    Oder, J.M.

    1997-12-01

    Several new quadrature sets for use in the discrete ordinates method of solving the Boltzmann neutral particle transport equation are derived. These symmetric quadratures extend the traditional symmetric quadratures by allowing ordinates perpendicular to one or two of the coordinate axes. Comparable accuracy with fewer required ordinates is obtained. Quadratures up to seventh order are presented. The validity and efficiency of the quadratures is then tested and compared with the Sn level symmetric quadratures relative to a Monte Carlo benchmark solution. The criteria for comparison include current through the surface, scalar flux at the surface, volume average scalar flux, and time required for convergence. Appreciable computational cost was saved when used in an unstructured tetrahedral cell code using highly accurate characteristic methods. However, no appreciable savings in computation time was found using the new quadratures compared with traditional Sn methods on a regular Cartesian mesh using the standard diamond difference method. These quadratures are recommended for use in three-dimensional calculations on an unstructured mesh.

  11. Million Cu. Feet Percent of National Total

    Annual Energy Outlook

    Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: ...

  12. Five and Dime: Revisiting Strategies for Lowering the Costs of...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Five and Dime: Revisiting Strategies for Lowering the Costs of Delivering Energy Efficiency (101) Five and Dime: Revisiting Strategies for Lowering the Costs of Delivering Energy ...

  13. Natural Gas Delivered to Vehicle Fuel Consumers

    Gasoline and Diesel Fuel Update

    Volumes Delivered to Industrial Consumers Volumes Delivered to Vehicle Fuel Consumers Volumes Delivered to Electric Power Consumers Period: Monthly Annual Download Series History ...

  14. Delivering

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... and technology to national security challenges and safety. ... The Board made three fundamental commitments to NNSA. These ... are highlighted in this report: Responding to ...

  15. Early Edison Users Deliver Results

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Early Edison Users Deliver Results Early Edison Users Deliver Results January 31, 2014 Contact: Margie Wylie, mwylie@lbl.gov, +1 510 486 7421 Before any supercomputer is accepted at NERSC, scientists are invited to put the system through its paces during an "early science" phase. While the main aim of this period is to test the new system, many scientists are able to use the time to significantly advance their work. (»Related story: "Edison Electrifies Scientific

  16. Million Cu. Feet Percent of National Total Million Cu. Feet...

    Annual Energy Outlook

    Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: ...

  17. Million Cu. Feet Percent of National Total Million Cu. Feet...

    Gasoline and Diesel Fuel Update

    Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: 0 Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: ...

  18. Microsoft Word - IG Testimony - UCLANL Cost Incurred- Long9 delivered...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... The remainder was for meals at restaurants in Los Alamos, Santa Fe, and Albuquerque, New ... After the completion of our review, we were informed that the Laboratory was able to ...

  19. Pump-and-Treat Systems Prove Effective, Deliver Cost Savings...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Water from the aquifer is pumped through the wells and piped to the pump-and-treat facilities, where contaminants are removed through an ion exchange that relies on tiny resin ...

  20. ORISE: Delivering Cost Savings and Customer Service with Off...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    With smaller budgets and faster turnaround needed for proposal reviews, utilizing Web-base... much easier, ORISE established a SharePoint, Web-based collaboration environment. ...

  1. Incorporating psychological influences in probabilistic cost analysis

    SciTech Connect

    Kujawski, Edouard; Alvaro, Mariana; Edwards, William

    2004-01-08

    Today's typical probabilistic cost analysis assumes an ''ideal'' project that is devoid of the human and organizational considerations that heavily influence the success and cost of real-world projects. In the real world ''Money Allocated Is Money Spent'' (MAIMS principle); cost underruns are rarely available to protect against cost overruns while task overruns are passed on to the total project cost. Realistic cost estimates therefore require a modified probabilistic cost analysis that simultaneously models the cost management strategy including budget allocation. Psychological influences such as overconfidence in assessing uncertainties and dependencies among cost elements and risks are other important considerations that are generally not addressed. It should then be no surprise that actual project costs often exceed the initial estimates and are delivered late and/or with a reduced scope. This paper presents a practical probabilistic cost analysis model that incorporates recent findings in human behavior and judgment under uncertainty, dependencies among cost elements, the MAIMS principle, and project management practices. Uncertain cost elements are elicited from experts using the direct fractile assessment method and fitted with three-parameter Weibull distributions. The full correlation matrix is specified in terms of two parameters that characterize correlations among cost elements in the same and in different subsystems. The analysis is readily implemented using standard Monte Carlo simulation tools such as {at}Risk and Crystal Ball{reg_sign}. The analysis of a representative design and engineering project substantiates that today's typical probabilistic cost analysis is likely to severely underestimate project cost for probability of success values of importance to contractors and procuring activities. The proposed approach provides a framework for developing a viable cost management strategy for allocating baseline budgets and contingencies. Given the

  2. Cutting-Edge Savannah River Site Project Avoids Millions in Costs, Removes Chemical Solvents from Underground: Project avoided costs totaling more than $15 million, removed tons of chemical solvents from beneath the Savannah River Site

    Energy.gov [DOE]

    AIKEN, S.C. – Workers recently completed a multiyear project that removed more than 33,000 gallons of non-radioactive chemical solvents from beneath a portion of the Savannah River Site (SRS), preventing those pollutants from entering the local water table and helping the site avoid costs of more than $15 million.

  3. Development of a Low Cost Ultra Specular Advanced Polymer Film...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Low Cost Ultra Specular Advanced Polymer Film Solar Reflector Development of a Low Cost Ultra Specular Advanced Polymer Film Solar Reflector This presentation was delivered at the ...

  4. Natural Gas Delivered to Consumers (Summary)

    Gasoline and Diesel Fuel Update

    & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual Download Series History Download Series History ...

  5. Summary Max Total Units

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Summary Max Total Units *If All Splits, No Rack Units **If Only FW, AC Splits 1000 52 28 28 2000 87 59 35 3000 61 33 15 4000 61 33 15 Totals 261 153 93 ***Costs $1,957,500.00 $1,147,500.00 $697,500.00 Notes: added several refrigerants removed bins from analysis removed R-22 from list 1000lb, no Glycol, CO2 or ammonia Seawater R-404A only * includes seawater units ** no seawater units included *** Costs = (total units) X (estimate of $7500 per unit) 1000lb, air cooled split systems, fresh water

  6. Low Cost Heliostat Development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Low Cost Heliostat Development Low Cost Heliostat Development This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23-25, ...

  7. Total Imports

    Energy Information Administration (EIA) (indexed site)

    Data Series: Imports - Total Imports - Crude Oil Imports - Crude Oil, Commercial Imports - by SPR Imports - into SPR by Others Imports - Total Products Imports - Total Motor Gasoline Imports - Finished Motor Gasoline Imports - Reformulated Gasoline Imports - Reformulated Gasoline Blended w/ Fuel Ethanol Imports - Other Reformulated Gasoline Imports - Conventional Gasoline Imports - Conv. Gasoline Blended w/ Fuel Ethanol Imports - Conv. Gasoline Blended w/ Fuel Ethanol, Ed55 & < Imports -

  8. Solar Water Heating with Low-Cost Plastic Systems

    SciTech Connect

    2012-01-01

    Federal buildings consumed over 392,000 billion Btu of site delivered energy for buildings during FY 2007 at a total cost of $6.5 billion. Earlier data indicate that about 10% of this is used to heat water.[2] Targeting energy consumption in Federal buildings, the Energy Independence and Security Act of 2007 (EISA) requires new Federal buildings and major renovations to meet 30% of their hot water demand with solar energy, provided it is cost-effective over the life of the system. In October 2009, President Obama expanded the energy reduction and performance requirements of EISA and its subsequent regulations with his Executive Order 13514.

  9. INDEPENDENT COST REVIEW (ICR)

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... Report SOP Standard Operating Procedure TEC Total Estimated Cost TIPR Technical ... FY13 FY14 FY15 FY16 Total PED Construction TEC OPC TPC Note: above values include MR...

  10. Soft Costs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    costs program works to lower the non-hardware costs of ... data analysis, business innovation, and training. ... for as much as 64% of the total cost of a new solar system. ...

  11. Startup Costs

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    1997-03-28

    This chapter discusses startup costs for construction and environmental projects, and estimating guidance for startup costs.

  12. Maine Natural Gas Delivered to Commercial Consumers for the Account...

    Annual Energy Outlook

    Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) Maine Natural Gas Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet)...

  13. Alternative Fuels Data Center: Seattle Bakery Delivers With Biodiesel...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Seattle Bakery Delivers With Biodiesel Trucks to someone by E-mail Share Alternative Fuels Data Center: Seattle Bakery Delivers With Biodiesel Trucks on Facebook Tweet about ...

  14. Alternative Fuels Data Center: Foodliner Delivers Goods in Illinois...

    Alternative Fuels and Advanced Vehicles Data Center

    Foodliner Delivers Goods in Illinois With Natural Gas Tractors to someone by E-mail Share Alternative Fuels Data Center: Foodliner Delivers Goods in Illinois With Natural Gas ...

  15. Deputy Secretary Poneman Delivers Remarks on Nuclear Power at...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Deputy Secretary Poneman Delivers Remarks on Nuclear Power at Tokyo American Center in Japan Deputy Secretary Poneman Delivers Remarks on Nuclear Power at Tokyo American Center in ...

  16. Deputy Secretary Poneman Delivers Remarks on Nuclear Power at...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Delivers Remarks on Nuclear Power at Tokyo American Center in Japan Deputy Secretary Poneman Delivers Remarks on Nuclear Power at Tokyo American Center in Japan December 15, 2011 - ...

  17. New Jersey Price of Natural Gas Delivered to Residential Consumers...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Delivered to Residential Consumers (Dollars per Thousand Cubic Feet) New Jersey Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet) Year Jan...

  18. Nevada Natural Gas Delivered to Commercial Consumers for the...

    Annual Energy Outlook

    Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) Nevada ... Natural Gas Delivered to Commercial Consumers for the Account of Others Nevada Natural Gas ...

  19. Washington Natural Gas Delivered to Commercial Consumers for...

    Energy Information Administration (EIA) (indexed site)

    Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) Washington Natural Gas Delivered to Commercial Consumers for the Account of Others (Million Cubic...

  20. AMO Director Delivers Keynote at Copper Development Association...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Delivers Keynote at Copper Development Association Spring Meeting AMO Director Delivers Keynote at Copper Development Association Spring Meeting June 29, 2016 - 4:40pm Addthis AMO ...

  1. Texas Natural Gas Delivered to Commercial Consumers for the Account...

    Gasoline and Diesel Fuel Update

    Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) Texas ... Natural Gas Delivered to Commercial Consumers for the Account of Others Texas Natural Gas ...

  2. North Carolina Natural Gas Delivered to Commercial Consumers...

    Annual Energy Outlook

    Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) North Carolina Natural Gas Delivered to Commercial Consumers for the Account of Others (Million...

  3. Virginia Natural Gas Delivered to Commercial Consumers for the...

    Gasoline and Diesel Fuel Update

    Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) Virginia Natural Gas Delivered to Commercial Consumers for the Account of Others (Million Cubic...

  4. Oklahoma Natural Gas Delivered to Commercial Consumers for the...

    Annual Energy Outlook

    Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) Oklahoma ... Natural Gas Delivered to Commercial Consumers for the Account of Others Oklahoma Natural ...

  5. New York Natural Gas Delivered to Commercial Consumers for the...

    Annual Energy Outlook

    Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) New York ... Natural Gas Delivered to Commercial Consumers for the Account of Others New York Natural ...

  6. New Jersey Natural Gas Delivered to Commercial Consumers for...

    Annual Energy Outlook

    Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) New ... Natural Gas Delivered to Commercial Consumers for the Account of Others New Jersey Natural ...

  7. New Mexico Natural Gas Delivered to Commercial Consumers for...

    Annual Energy Outlook

    Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) New ... Natural Gas Delivered to Commercial Consumers for the Account of Others New Mexico Natural ...

  8. Kansas Natural Gas Delivered to Commercial Consumers for the...

    Annual Energy Outlook

    Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) Kansas Natural Gas Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet)...

  9. New Hampshire Natural Gas Delivered to Commercial Consumers for...

    Annual Energy Outlook

    Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) New Hampshire Natural Gas Delivered to Commercial Consumers for the Account of Others (Million ...

  10. Minnesota Natural Gas Delivered to Commercial Consumers for the...

    Gasoline and Diesel Fuel Update

    Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) Minnesota ... Natural Gas Delivered to Commercial Consumers for the Account of Others Minnesota Natural ...

  11. DOE Fuel Cell Technologies Office Record 13013: H2 Delivery Cost...

    Energy Saver

    3013: H2 Delivery Cost Projections - 2013 DOE Fuel Cell Technologies Office Record 13013: H2 Delivery ... past, current, and projected costs for delivering and dispensing hydrogen. ...

  12. Development of Low Cost Industrially Scalable PCM Capsules for...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    for Thermal Energy Storage in CSP Plants Development of Low Cost Industrially Scalable PCM Capsules for Thermal Energy Storage in CSP Plants This presentation was delivered at ...

  13. Million Cu. Feet Percent of National Total

    Energy Information Administration (EIA) (indexed site)

    4 Delaware - Natural Gas 2015 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S8. Summary statistics for natural gas - Delaware, 2011-2015 2011 2012 2013 2014 2015 Number of Wells Producing Natural Gas at End of Year Oil Wells 0 0 0 0 0 Gas Wells 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals

  14. Million Cu. Feet Percent of National Total

    Energy Information Administration (EIA) (indexed site)

    4 Massachusetts - Natural Gas 2015 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S23. Summary statistics for natural gas - Massachusetts, 2011-2015 2011 2012 2013 2014 2015 Number of Wells Producing Natural Gas at End of Year Oil Wells 0 0 0 0 0 Gas Wells 0 0 0 0 0 Production (million cubic feet) Gross

  15. EECBG Success Story: New Sustainability Manager Delivers Savings for Delray Beach

    Energy.gov [DOE]

    Delray Beach, Florida, had a good problem: Recovery Act funding to support the city's mission to reduce energy costs – but no seasoned pro to help realize those savings. Through an Energy Efficiency and Conservation Block Grant (EECBG), the South Florida city hired a former city manager to oversee projects that would deliver both energy and financial savings. Learn more.

  16. Alternative Fuels Data Center: Electric Trucks Deliver at Kansas City

    Alternative Fuels and Advanced Vehicles Data Center

    Schools Electric Trucks Deliver at Kansas City Schools to someone by E-mail Share Alternative Fuels Data Center: Electric Trucks Deliver at Kansas City Schools on Facebook Tweet about Alternative Fuels Data Center: Electric Trucks Deliver at Kansas City Schools on Twitter Bookmark Alternative Fuels Data Center: Electric Trucks Deliver at Kansas City Schools on Google Bookmark Alternative Fuels Data Center: Electric Trucks Deliver at Kansas City Schools on Delicious Rank Alternative Fuels

  17. Determination of Total Petroleum Hydrocarbons (TPH) Using Total Carbon Analysis

    SciTech Connect

    Ekechukwu, A.A.

    2002-05-10

    Several methods have been proposed to replace the Freon(TM)-extraction method to determine total petroleum hydrocarbon (TPH) content. For reasons of cost, sensitivity, precision, or simplicity, none of the replacement methods are feasible for analysis of radioactive samples at our facility. We have developed a method to measure total petroleum hydrocarbon content in aqueous sample matrixes using total organic carbon (total carbon) determination. The total carbon content (TC1) of the sample is measured using a total organic carbon analyzer. The sample is then contacted with a small volume of non-pokar solvent to extract the total petroleum hydrocarbons. The total carbon content of the resultant aqueous phase of the extracted sample (TC2) is measured. Total petroleum hydrocarbon content is calculated (TPH = TC1-TC2). The resultant data are consistent with results obtained using Freon(TM) extraction followed by infrared absorbance.

  18. LIFE Cost of Electricity, Capital and Operating Costs

    SciTech Connect

    Anklam, T

    2011-04-14

    Successful commercialization of fusion energy requires economic viability as well as technical and scientific feasibility. To assess economic viability, we have conducted a pre-conceptual level evaluation of LIFE economics. Unit costs are estimated from a combination of bottom-up costs estimates, working with representative vendors, and scaled results from previous studies of fission and fusion plants. An integrated process model of a LIFE power plant was developed to integrate and optimize unit costs and calculate top level metrics such as cost of electricity and power plant capital cost. The scope of this activity was the entire power plant site. Separately, a development program to deliver the required specialized equipment has been assembled. Results show that LIFE power plant cost of electricity and plant capital cost compare favorably to estimates for new-build LWR's, coal and gas - particularly if indicative costs of carbon capture and sequestration are accounted for.

  19. Maine Share of Total U.S. Natural Gas Delivered to Consumers

    Gasoline and Diesel Fuel Update

    0.0 0.0 0.0 0.0 0.0 0.0 1993-2014 Commercial 0.2 0.2 0.2 0.3 0.2 0.3 1993-2014 Industrial 0.4 0.4 0.4 0.4 0.4 0.3 1993-2014 Vehicle Fuel 0.0 0.0 0.0 0.0 0.0 0.0 1999-2014 Electric...

  20. Washington Share of Total U.S. Natural Gas Delivered to Consumers

    Annual Energy Outlook

    1.8 1.6 1.8 1.9 1.7 1.5 1993-2014 Commercial 1.8 1.7 1.8 1.8 1.7 1.6 1993-2014 Industrial 1.2 1.0 1.1 1.1 1.1 1.0 1993-2014 Vehicle Fuel 1.9 1.5 1.7 1.7 1.4 1.4 1993-2014 Electric...

  1. Hawaii Share of Total U.S. Natural Gas Delivered to Consumers

    Annual Energy Outlook

    0.0 0.0 0.0 0.0 0.0 0.0 1993-2014 Commercial 0.1 0.1 0.1 0.1 0.1 0.1 1993-2014 Industrial 0.0 0.0 0.0 0.0 0.0 0.0 1997-2014 Vehicle Fuel -- -- -- -- 0.0 0.0 1999-2014 Electric...

  2. Nebraska Share of Total U.S. Natural Gas Delivered to Consumers

    Annual Energy Outlook

    Commercial 1.0 1.0 0.9 1.0 0.9 0.9 1993-2015 Industrial 1.2 1.2 1.2 1.2 1.1 1.1 1993-2015 Vehicle Fuel 0.1 0.1 0.1 0.2 0.1 0.1 1993-2015 Electric Power 0.1 0.1 0.1 0.1 0.1 0.0

  3. South Dakota Share of Total U.S. Natural Gas Delivered to Consumers

    Gasoline and Diesel Fuel Update

    Commercial 0.4 0.4 0.3 0.4 0.4 0.3 1993-2015 Industrial 0.6 0.6 0.6 0.6 0.6 0.6 1993-2015 Vehicle Fuel 0.0 -- -- -- 0.0 0.0 1993-2015 Electric Power 0.0 0.0 0.0 0.0 0.0 0.1

  4. New York Share of Total U.S. Natural Gas Delivered to Consumers

    Annual Energy Outlook

    Commercial 9.3 9.2 9.3 9.1 9.2 9.7 1993-2015 Industrial 1.1 1.1 1.0 1.1 1.1 1.1 1993-2015 Vehicle Fuel 12.5 12.9 12.9 11.0 10.4 10.4 1993-2015 Electric Power 5.8 5.7 5.5 5.6 5.6 ...

  5. Wyoming Share of Total U.S. Natural Gas Delivered to Consumers

    Annual Energy Outlook

    Commercial 0.4 0.4 0.4 0.4 0.4 0.4 1993-2015 Industrial 0.6 0.7 0.7 0.7 0.6 0.6 1993-2015 Vehicle Fuel 0.1 0.1 0.1 0.1 0.1 0.1 1993-2015 Electric Power 0.0 0.0 0.0 0.0 0.0 0.0

  6. Ohio Share of Total U.S. Natural Gas Delivered to Consumers

    Annual Energy Outlook

    Commercial 5.0 5.1 5.0 5.1 5.3 5.2 1993-2015 Industrial 3.9 3.8 3.7 3.7 4.0 3.7 1993-2015 Vehicle Fuel 0.5 0.3 0.3 1.0 1.4 1.4 1993-2015 Electric Power 0.8 1.2 1.9 2.0 2.2 2.2

  7. Missouri Share of Total U.S. Natural Gas Delivered to Consumers

    Annual Energy Outlook

    Commercial 2.0 2.0 1.9 2.0 2.1 1.9 1993-2015 Industrial 1.0 0.9 0.9 0.9 0.9 0.9 1993-2015 Vehicle Fuel 0.0 0.0 0.0 0.1 0.3 0.3 1994-2015 Electric Power 0.5 0.5 0.6 0.5 0.4 0.4

  8. Nevada Share of Total U.S. Natural Gas Delivered to Consumers

    Annual Energy Outlook

    Commercial 1.0 1.0 1.0 0.9 0.8 0.9 1993-2015 Industrial 0.2 0.2 0.2 0.2 0.2 0.2 1993-2015 Vehicle Fuel 2.9 2.0 2.0 2.0 2.8 2.8 1993-2015 Electric Power 2.4 2.1 2.1 2.2 2.0 2.1

  9. Alabama Share of Total U.S. Natural Gas Delivered to Consumers

    Annual Energy Outlook

    Commercial 0.9 0.8 0.7 0.8 0.8 0.8 1993-2015 Industrial 2.1 2.2 2.4 2.4 2.5 2.5 1993-2015 Vehicle Fuel 0.4 0.6 0.6 0.6 1.1 1.1 1993-2015 Electric Power 3.8 4.5 4.4 4.1 4.2 4.1

  10. Montana Share of Total U.S. Natural Gas Delivered to Consumers

    Annual Energy Outlook

    Commercial 0.7 0.7 0.7 0.6 0.6 0.6 1993-2015 Industrial 0.3 0.3 0.3 0.3 0.3 0.3 1993-2015 Vehicle Fuel 0.0 0.0 0.0 0.0 0.0 0.0 1993-2015 Electric Power 0.0 0.1 0.1 0.1 0.1 0.1

  11. New Mexico Share of Total U.S. Natural Gas Delivered to Consumers

    Annual Energy Outlook

    Commercial 0.8 0.8 0.9 0.8 0.7 0.8 1993-2015 Industrial 0.2 0.3 0.3 0.3 0.2 0.2 1993-2015 Vehicle Fuel 1.0 0.8 0.8 0.5 0.4 0.4 1993-2015 Electric Power 1.0 1.0 0.8 0.9 0.9 0.8

  12. North Dakota Share of Total U.S. Natural Gas Delivered to Consumers

    Annual Energy Outlook

    Commercial 0.3 0.3 0.4 0.4 0.4 0.4 1993-2015 Industrial 0.3 0.4 0.4 0.4 0.4 0.4 1993-2015 Vehicle Fuel 0.0 0.0 0.0 0.0 0.0 0.0 1993-2015 Electric Power 0.0 -- 0.0 0.0 0.0 0.0 1999

  13. New Hampshire Share of Total U.S. Natural Gas Delivered to Consumers

    Annual Energy Outlook

    Commercial 0.3 0.3 0.3 0.3 0.3 0.3 1993-2015 Industrial 0.1 0.1 0.1 0.1 0.1 0.1 1993-2015 Vehicle Fuel 0.1 0.1 0.1 0.2 0.2 0.2 1994-2015 Electric Power 0.5 0.6 0.6 0.4 0.4 0.4

  14. Minnesota Share of Total U.S. Natural Gas Delivered to Consumers

    Annual Energy Outlook

    Commercial 2.9 3.0 2.9 3.2 3.2 2.9 1993-2015 Industrial 2.3 2.3 2.2 2.2 2.3 2.1 1993-2015 Vehicle Fuel 0.0 0.0 0.0 0.1 0.2 0.2 1993-2015 Electric Power 0.5 0.4 0.6 0.6 0.4 0.6

  15. U.S. Share of Total U.S. Natural Gas Delivered to Consumers

    Annual Energy Outlook

    1999-2015 Industrial 100.0 100.0 100.0 100.0 100.0 100.0 1999-2015 Vehicle Fuel 100.0 100.0 100.0 100.0 100.0 100.0 1993-2015 Electric Power 100.0 100.0 100.0 100.0 100.0 100.0

  16. Virginia Share of Total U.S. Natural Gas Delivered to Consumers

    Annual Energy Outlook

    Commercial 2.2 2.0 2.1 2.1 2.1 2.2 1993-2015 Industrial 0.9 0.9 1.0 1.0 1.1 1.2 1993-2015 Vehicle Fuel 0.5 0.9 0.9 0.7 0.6 0.6 1993-2015 Electric Power 1.9 1.9 2.1 2.1 2.0 2.5

  17. Utah Share of Total U.S. Natural Gas Delivered to Consumers

    Annual Energy Outlook

    Commercial 1.2 1.3 1.2 1.3 1.1 1.1 1993-2015 Industrial 0.5 0.5 0.5 0.5 0.5 0.5 1993-2015 Vehicle Fuel 0.7 1.0 1.0 0.7 0.7 0.7 1993-2015 Electric Power 0.7 0.5 0.5 0.6 0.7 0.6

  18. Oklahoma Share of Total U.S. Natural Gas Delivered to Consumers

    Annual Energy Outlook

    Commercial 1.3 1.3 1.2 1.3 1.4 1.3 1993-2015 Industrial 2.7 2.8 2.5 2.4 2.4 2.5 1993-2015 Vehicle Fuel 0.8 0.9 0.9 1.1 1.3 1.3 1993-2015 Electric Power 3.9 3.5 3.5 3.0 2.5 2.6

  19. Michigan Share of Total U.S. Natural Gas Delivered to Consumers

    Annual Energy Outlook

    Commercial 4.9 5.2 5.0 5.2 5.4 5.3 1993-2015 Industrial 2.1 2.2 2.2 2.3 2.4 2.3 1993-2015 Vehicle Fuel 0.9 1.1 1.1 1.1 1.3 1.3 1993-2015 Electric Power 1.5 1.5 2.0 1.4 1.4 1.8

  20. New Jersey Share of Total U.S. Natural Gas Delivered to Consumers

    Annual Energy Outlook

    Commercial 5.8 6.1 6.0 5.2 5.8 5.1 1993-2015 Industrial 0.7 0.7 0.8 0.8 0.8 0.7 1993-2015 Vehicle Fuel 0.5 0.6 0.6 0.6 0.6 0.6 1994-2015 Electric Power 2.7 2.6 2.5 2.6 3.1 3.0

  1. North Carolina Share of Total U.S. Natural Gas Delivered to Consumers

    Annual Energy Outlook

    Commercial 1.8 1.6 1.7 1.7 1.7 1.7 1993-2015 Industrial 1.4 1.4 1.4 1.5 1.4 1.4 1993-2015 Vehicle Fuel 0.1 0.1 0.1 0.2 0.3 0.3 1993-2015 Electric Power 1.0 1.2 1.7 2.5 2.5 2.8

  2. Mississippi Share of Total U.S. Natural Gas Delivered to Consumers

    Annual Energy Outlook

    Commercial 0.7 0.6 0.6 0.6 0.6 0.6 1993-2015 Industrial 1.7 1.6 1.5 1.5 1.5 1.6 1993-2015 Vehicle Fuel 0.0 0.0 0.0 0.1 0.2 0.2 1994-2015 Electric Power 3.2 3.2 3.2 2.9 2.9 3

  3. Oregon Share of Total U.S. Natural Gas Delivered to Consumers

    Gasoline and Diesel Fuel Update

    682,737 688,681 693,507 700,211 707,010 717,999 1987-2015 Sales 682,737 688,681 693,507 700,211 707,010 717,999 1997-2015 Commercial Number of Consumers 77,370 77,822 78,237 79,276 80,480 80,877 1987-2015 Sales 77,351 77,793 78,197 79,227 80,422 80,772 1998-2015 Transported 19 29 40 49 58 105 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 352 390 368 386 353 319 1967-2015 Industrial Number of Consumers 1,053 1,066 1,076 1,085 1,099 1,117 1987-2015 Sales 821 828 817 821 839 853

  4. Pennsylvania Share of Total U.S. Natural Gas Delivered to Consumers

    Gasoline and Diesel Fuel Update

    Feet) Base Gas) (Million Cubic Feet) Pennsylvania Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 352,686 352,686 352,686 351,920 352,686 352,686 353,407 353,407 353,407 353,407 359,236 358,860 1991 349,459 348,204 334,029 335,229 353,405 349,188 350,902 352,314 353,617 354,010 353,179 355,754 1992 358,198 353,313 347,361 341,498 344,318 347,751 357,498 358,432 359,300 359,504 359,321 362,275 1993 362,222 358,438

  5. Rhode Island Share of Total U.S. Natural Gas Delivered to Consumers

    Gasoline and Diesel Fuel Update

    25,204 225,828 228,487 231,763 233,786 236,323 1987-2015 Sales 225,204 225,828 228,487 231,763 233,786 236,323 1997-2015 Commercial Number of Consumers 23,049 23,177 23,359 23,742 23,934 24,088 1987-2015 Sales 21,507 21,421 21,442 21,731 21,947 22,084 1998-2015 Transported 1,542 1,756 1,917 2,011 1,987 2,004 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 454 468 432 490 551 499 1967-2015 Industrial Number of Consumers 249 245 248 271 266 260 1987-2015 Sales 57 53 56 62 62 48

  6. South Carolina Share of Total U.S. Natural Gas Delivered to Consumers

    Gasoline and Diesel Fuel Update

    570,797 576,594 583,633 593,286 605,644 620,555 1987-2015 Sales 570,797 576,594 583,633 593,286 605,644 620,555 1997-2015 Commercial Number of Consumers 55,853 55,846 55,908 55,997 56,323 56,871 1987-2015 Sales 55,776 55,760 55,815 55,902 56,225 56,768 1998-2015 Transported 77 86 93 95 98 103 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 432 396 383 426 451 413 1967-2015 Industrial Number of Consumers 1,325 1,329 1,435 1,452 1,442 1,438 1987-2015 Sales 1,139 1,137 1,215 1,223

  7. Tennessee Share of Total U.S. Natural Gas Delivered to Consumers

    Gasoline and Diesel Fuel Update

    Feet) Base Gas) (Million Cubic Feet) Tennessee Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 340 340 340 340 340 340 340 340 340 340 340 340 1999 340 340 340 340 340 340 340 340 340 340 340 340 2000 340 340 340 340 340 340 340 340 340 340 340 340 2001 340 340 340 340 340 340 340 340 340 340 340 340 2002 340 340 340 340 340 340 340 340 340 340 340 340 2003 340 340 340 340 340 340 340

  8. Vermont Share of Total U.S. Natural Gas Delivered to Consumers

    Gasoline and Diesel Fuel Update

    38,047 38,839 39,917 41,152 42,231 43,267 1987-2015 Sales 38,047 38,839 39,917 41,152 42,231 43,267 1997-2015 Commercial Number of Consumers 5,137 5,256 5,535 5,441 5,589 5,696 1987-2015 Sales 5,137 5,256 5,535 5,441 5,589 5,696 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 464 472 418 873 864 1,039 1967-2015 Industrial Number of Consumers 38 36 38 13 13 14 1987-2015 Sales 37 35 38 13 13 14 1998-2015 Transported 1 1 0 0 0 0 1999-2015 Average Consumption per Consumer (Thousand

  9. Washington Share of Total U.S. Natural Gas Delivered to Consumers

    Gasoline and Diesel Fuel Update

    Feet) Base Gas) (Million Cubic Feet) Washington Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 21,300 21,300 21,300 21,300 0 21,300 21,300 21,300 21,300 21,300 21,300 1991 21,300 21,300 21,300 21,300 21,300 21,300 21,300 21,300 21,300 18,800 18,800 18,800 1992 18,800 18,800 18,800 18,800 18,800 18,800 18,800 18,800 18,800 18,800 18,800 18,800 1993 18,800 18,800 18,800 18,800 18,800 18,800 18,800 18,800 18,800

  10. West Virginia Share of Total U.S. Natural Gas Delivered to Consumers

    Gasoline and Diesel Fuel Update

    344,131 342,069 340,256 340,102 338,652 337,643 1987-2015 Sales 344,125 342,063 340,251 340,098 338,649 337,642 1997-2015 Transported 6 6 5 4 3 1 1997-2015 Commercial Number of Consumers 34,063 34,041 34,078 34,283 34,339 34,448 1987-2015 Sales 33,258 33,228 33,257 33,466 33,574 33,706 1998-2015 Transported 805 813 821 817 765 742 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 731 708 664 707 702 656 1967-2015 Industrial Number of Consumers 102 94 97 95 92 101 1987-2015 Sales 32

  11. Wisconsin Share of Total U.S. Natural Gas Delivered to Consumers

    Gasoline and Diesel Fuel Update

    663,583 1,671,834 1,681,001 1,692,891 1,705,907 1,721,640 1987-2015 Sales 1,663,583 1,671,834 1,681,001 1,692,891 1,705,907 1,721,640 1997-2015 Transported 0 0 0 0 0 0 1997-2015 Commercial Number of Consumers 164,173 165,002 165,657 166,845 167,901 169,271 1987-2015 Sales 163,060 163,905 164,575 165,718 166,750 168,097 1998-2015 Transported 1,113 1,097 1,082 1,127 1,151 1,174 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 501 528 465 596 637 533 1967-2015 Industrial Number of

  12. Arizona Share of Total U.S. Natural Gas Delivered to Consumers

    Gasoline and Diesel Fuel Update

    ,138,448 1,146,286 1,157,688 1,172,003 1,186,794 1,200,783 1986-2015 Sales 1,138,448 1,146,280 1,157,682 1,171,997 1,186,788 1,200,777 1997-2015 Transported 0 6 6 6 6 6 1997-2015 Commercial Number of Consumers 56,676 56,547 56,532 56,585 56,649 56,793 1986-2015 Sales 56,510 56,349 56,252 56,270 56,331 56,451 1998-2015 Transported 166 198 280 315 318 342 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 564 577 558 581 538 538 1967-2015 Industrial Number of Consumers 368 371 379 383

  13. Arkansas Share of Total U.S. Natural Gas Delivered to Consumers

    Gasoline and Diesel Fuel Update

    Base Gas) (Million Cubic Feet) Arkansas Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 19,202 19,202 19,202 19,202 19,202 19,202 19,202 19,202 19,202 19,202 19,202 19,202 1991 19,202 19,202 19,202 19,202 19,202 19,202 19,202 19,202 19,202 19,202 19,202 19,202 1992 19,202 19,202 19,112 19,021 19,007 19,007 19,007 19,007 19,007 18,887 18,748 18,615 1993 18,607 18,523 18,484 18,472 18,156 17,897 17,888 17,888 17,888

  14. Colorado Share of Total U.S. Natural Gas Delivered to Consumers

    Gasoline and Diesel Fuel Update

    ,634,587 1,645,716 1,659,808 1,672,312 1,690,581 1,712,153 1986-2015 Sales 1,634,582 1,645,711 1,659,803 1,672,307 1,690,576 1,712,150 1997-2015 Transported 5 5 5 5 5 3 1997-2015 Commercial Number of Consumers 145,460 145,837 145,960 150,145 150,235 150,545 1986-2015 Sales 145,236 145,557 145,563 149,826 149,921 150,230 1998-2015 Transported 224 280 397 319 314 315 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 396 383 355 392 386 359 1967-2015 Industrial Number of Consumers

  15. Connecticut Share of Total U.S. Natural Gas Delivered to Consumers

    Gasoline and Diesel Fuel Update

    490,185 494,970 504,138 513,492 522,658 531,380 1986-2015 Sales 489,380 494,065 503,241 512,110 521,460 530,309 1997-2015 Transported 805 905 897 1,382 1,198 1,071 1997-2015 Commercial Number of Consumers 54,842 55,028 55,407 55,500 56,591 57,403 1986-2015 Sales 50,132 50,170 50,312 48,976 51,613 54,165 1998-2015 Transported 4,710 4,858 5,095 6,524 4,978 3,238 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 741 815 764 836 905 914 1967-2015 Industrial Number of Consumers 3,063

  16. Delaware Share of Total U.S. Natural Gas Delivered to Consumers

    Gasoline and Diesel Fuel Update

    50,458 152,005 153,307 155,627 158,502 161,607 1986-2015 Sales 150,458 152,005 153,307 155,627 158,502 161,607 1997-2015 Commercial Number of Consumers 12,861 12,931 12,997 13,163 13,352 13,430 1986-2015 Sales 12,706 12,656 12,644 12,777 12,902 12,967 1998-2015 Transported 155 275 353 386 450 463 1999-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 948 810 772 849 890 873 1967-2015 Industrial Number of Consumers 114 129 134 138 141 144 1987-2015 Sales 40 35 29 28 28 29 1998-2015

  17. District of Columbia Share of Total U.S. Natural Gas Delivered to Consumers

    Gasoline and Diesel Fuel Update

    44,151 145,524 145,938 146,712 147,877 147,895 1986-2015 Sales 130,048 130,888 129,674 129,641 129,942 130,798 1997-2015 Transported 14,103 14,636 16,264 17,071 17,935 17,097 1997-2015 Commercial Number of Consumers 9,879 10,050 9,771 9,963 10,049 9,975 1986-2015 Sales 6,429 6,494 6,478 6,636 6,665 6,612 1998-2015 Transported 3,450 3,556 3,293 3,327 3,384 3,363 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 1,877 1,681 1,572 1,730 1,741 1,716 1967-2015 Industrial Average

  18. Florida Share of Total U.S. Natural Gas Delivered to Consumers

    Gasoline and Diesel Fuel Update

    675,551 679,199 686,994 694,210 703,535 701,981 1986-2015 Sales 661,768 664,564 672,133 679,191 687,766 685,828 1997-2015 Transported 13,783 14,635 14,861 15,019 15,769 16,153 1997-2015 Commercial Number of Consumers 60,854 61,582 63,477 64,772 67,461 65,313 1986-2015 Sales 41,750 41,068 41,102 40,434 41,303 37,647 1998-2015 Transported 19,104 20,514 22,375 24,338 26,158 27,666 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 888 869 861 926 928 961 1967-2015 Industrial Number of

  19. Georgia Share of Total U.S. Natural Gas Delivered to Consumers

    Gasoline and Diesel Fuel Update

    1,740,587 1,740,006 1,739,543 1,805,425 1,759,394 1,777,558 1986-2015 Sales 321,290 321,515 319,179 377,652 319,109 320,228 1997-2015 Transported 1,419,297 1,418,491 1,420,364 1,427,773 1,440,285 1,457,330 1997-2015 Commercial Number of Consumers 124,759 123,454 121,243 126,060 122,578 123,307 1986-2015 Sales 32,318 32,162 31,755 36,556 31,850 31,850 1998-2015 Transported 92,441 91,292 89,488 89,504 90,728 91,457 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 482 458 428 454 482

  20. Hawaii Share of Total U.S. Natural Gas Delivered to Consumers

    Gasoline and Diesel Fuel Update

    25,389 25,305 25,184 26,374 28,919 28,952 1987-2015 Sales 25,389 25,305 25,184 26,374 28,919 28,952 1998-2015 Commercial Number of Consumers 2,551 2,560 2,545 2,627 2,789 2,815 1987-2015 Sales 2,551 2,560 2,545 2,627 2,789 2,815 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 697 691 727 713 692 678 1980-2015 Industrial Number of Consumers 24 24 22 22 23 25 1997-2015 Sales 24 24 22 22 23 25 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 14,111 15,087 16,126

  1. Idaho Share of Total U.S. Natural Gas Delivered to Consumers

    Gasoline and Diesel Fuel Update

    46,602 350,871 353,963 359,889 367,394 374,557 1987-2015 Sales 346,602 350,871 353,963 359,889 367,394 374,557 1997-2015 Commercial Number of Consumers 38,506 38,912 39,202 39,722 40,229 40,744 1987-2015 Sales 38,468 38,872 39,160 39,681 40,188 40,704 1998-2015 Transported 38 40 42 41 41 40 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 390 433 404 465 422 410 1967-2015 Industrial Number of Consumers 184 178 179 183 189 187 1987-2015 Sales 108 103 105 109 115 117 1998-2015

  2. Illinois Share of Total U.S. Natural Gas Delivered to Consumers

    Gasoline and Diesel Fuel Update

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2010 25 23 25 24 25 24 25 25 24 25 24 25 2011 22 20 22 21 22 21 22 22 21 22 21 22 2012 22 21 22 21 22 21 22 22 21 22 21 22 2013 24 22 24 24 24 24 24 24 24 24 24 24 2014 35 31 35 33 35 33 35 35 33 35 33 35 2015 39 35 39 37 39 37 39 39 37 39 37 39 2016 32 29 32 31 38 37 42 42

    Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Illinois Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4

  3. Indiana Share of Total U.S. Natural Gas Delivered to Consumers

    Gasoline and Diesel Fuel Update

    Base Gas) (Million Cubic Feet) Indiana Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 74,572 74,572 74,558 74,558 74,558 74,565 74,572 74,572 74,572 74,572 74,572 74,729 1991 74,588 70,962 70,956 70,856 70,892 70,956 70,957 70,962 70,962 81,536 71,050 71,050 1992 71,050 71,050 71,005 70,920 71,043 71,050 71,050 71,050 71,050 71,139 71,139 71,139 1993 71,407 71,390 71,377 71,255 71,338 71,407 71,407 71,407 71,407 71,453

  4. Iowa Share of Total U.S. Natural Gas Delivered to Consumers

    Gasoline and Diesel Fuel Update

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0 2012 0 0 0 0 0 0 0 0 0 0 0 0 2013 1 1 1 1 1 1 1 1 1 1 1 1 2014 2 2 2 2 2 2 2 2 2 2 2 2 2015 2 2 2 2 2 2 2 2 2 2 2 2 2016 2 2 2 2 2 2 2 2

    Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Iowa Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 6.48 3.11 3.99 3.84 3.51 2.98 2.70 5.41

  5. Kansas Share of Total U.S. Natural Gas Delivered to Consumers

    Gasoline and Diesel Fuel Update

    853,842 854,730 854,800 858,572 860,441 861,419 1987-2015 Sales 853,842 854,730 854,779 858,546 860,415 861,377 1997-2015 Transported 0 0 21 26 26 42 2004-2015 Commercial Number of Consumers 84,446 84,874 84,673 84,969 85,654 86,034 1987-2015 Sales 78,310 78,559 78,230 78,441 79,018 79,430 1998-2015 Transported 6,136 6,315 6,443 6,528 6,636 6,604 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 377 378 301 391 422 360 1967-2015 Industrial Number of Consumers 7,664 7,954 7,970

  6. Kentucky Share of Total U.S. Natural Gas Delivered to Consumers

    Gasoline and Diesel Fuel Update

    758,129 759,584 757,790 761,575 761,935 764,946 1987-2015 Sales 728,940 730,602 730,184 736,011 737,290 742,011 1997-2015 Transported 29,189 28,982 27,606 25,564 24,645 22,935 1997-2015 Commercial Number of Consumers 84,707 84,977 85,129 85,999 85,630 85,961 1987-2015 Sales 80,541 80,392 80,644 81,579 81,338 81,834 1998-2015 Transported 4,166 4,585 4,485 4,420 4,292 4,127 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 435 407 361 435 467 412 1967-2015 Industrial Number of

  7. Maine Share of Total U.S. Natural Gas Delivered to Consumers

    Gasoline and Diesel Fuel Update

    21,142 22,461 23,555 24,765 27,047 31,011 1987-2015 Sales 21,141 22,461 23,555 24,765 27,047 31,011 1997-2015 Transported 1 0 0 0 0 0 2010-2015 Commercial Number of Consumers 9,084 9,681 10,179 11,415 11,810 11,888 1987-2015 Sales 7,583 8,081 8,388 9,481 9,859 10,216 1998-2015 Transported 1,501 1,600 1,791 1,934 1,951 1,672 1999-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 642 681 718 714 765 847 1967-2015 Industrial Number of Consumers 94 102 108 120 126 136 1987-2015 Sales 26 29

  8. Maryland Share of Total U.S. Natural Gas Delivered to Consumers

    Gasoline and Diesel Fuel Update

    071,566 1,077,168 1,078,978 1,099,272 1,101,292 1,113,342 1987-2015 Sales 923,870 892,844 867,627 852,555 858,352 875,150 1997-2015 Transported 147,696 184,324 211,351 246,717 242,940 238,192 1997-2015 Commercial Number of Consumers 75,192 75,788 75,799 77,117 77,846 78,138 1987-2015 Sales 54,966 53,778 52,383 52,763 53,961 53,651 1998-2015 Transported 20,226 22,010 23,416 24,354 23,885 24,487 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 898 891 846 923 961 898 1967-2015

  9. Massachusetts Share of Total U.S. Natural Gas Delivered to Consumers

    Gasoline and Diesel Fuel Update

    389,592 1,408,314 1,447,947 1,467,578 1,461,350 1,478,072 1987-2015 Sales 1,387,842 1,406,447 1,445,934 1,464,120 1,457,055 1,471,658 1997-2015 Transported 1,750 1,867 2,013 3,458 4,295 6,414 1997-2015 Commercial Number of Consumers 144,487 138,225 142,825 144,246 139,556 140,533 1987-2015 Sales 128,256 121,065 124,099 124,963 120,803 121,754 1998-2015 Transported 16,231 17,160 18,726 19,283 18,753 18,779 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 499 586 511 692 758 750

  10. DARHT Delivers Cibola Takes Flight Plutonium Superconductivity

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    663 DARHT Delivers Cibola Takes Flight Plutonium Superconductivity Not for the Birds l o S a l a m o S N a T i o N a l l a B o r a T o r y loS alamoS SCieNCe aND TeChNology magaziNe may 2007 1 663 From Terry Wallace About Our Name: During World War II, all that the outside world knew of Los Alamos and its top-secret laboratory was the mailing address-P . O. Box 1663, Santa Fe, New Mexico. That box number, still part of our address, symbolizes our historic role in the nation's service. Located on

  11. First Trinity supercomputer test beds delivered to Los Alamos...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    First Trinity supercomputer test beds delivered to Los Alamos, Sandia Tuesday, February ... Test beds for Trinity were delivered (two to Los Alamos and one to Sandia) as part of the ...

  12. Alternative Fuels Data Center: Golden Eagle Delivers Beer With...

    Alternative Fuels and Advanced Vehicles Data Center

    Golden Eagle Delivers Beer With Natural Gas Trucks to someone by E-mail Share Alternative Fuels Data Center: Golden Eagle Delivers Beer With Natural Gas Trucks on Facebook Tweet ...

  13. New Sustainability Manager Delivers Savings for Delray Beach...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Manager Delivers Savings for Delray Beach New Sustainability Manager Delivers Savings for Delray Beach July 30, 2010 - 3:13pm Addthis Metal halide light fixtures at Pompey Park are...

  14. Alternative Fuels Data Center: Schwan's Home Service Delivers With

    Alternative Fuels and Advanced Vehicles Data Center

    Propane-Powered Trucks Schwan's Home Service Delivers With Propane-Powered Trucks to someone by E-mail Share Alternative Fuels Data Center: Schwan's Home Service Delivers With Propane-Powered Trucks on Facebook Tweet about Alternative Fuels Data Center: Schwan's Home Service Delivers With Propane-Powered Trucks on Twitter Bookmark Alternative Fuels Data Center: Schwan's Home Service Delivers With Propane-Powered Trucks on Google Bookmark Alternative Fuels Data Center: Schwan's Home Service

  15. Working With PNNL Mentorees, Engineering Students Deliver Prototype...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    With PNNL Mentorees, Engineering Students Deliver Prototype Safeguards Fixtures | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission...

  16. Improving the Way We Harvest & Deliver Biofuels Crops

    Office of Energy Efficiency and Renewable Energy (EERE)

    Sharing the innovative solutions companies are developing to simplify the way we harvest and deliver biofuel crops.

  17. Million Cu. Feet Percent of National Total

    Energy Information Administration (EIA) (indexed site)

    0 Alabama - Natural Gas 2015 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S1. Summary statistics for natural gas - Alabama, 2011-2015 2011 2012 2013 2014 2015 Number of Wells Producing Natural Gas at End of Year Oil Wells 346 367 402 436 414 Gas Wells R 6,243 R 6,203 R 6,174 R 6,117 6,044 Production

  18. Million Cu. Feet Percent of National Total

    Energy Information Administration (EIA) (indexed site)

    2 Alaska - Natural Gas 2015 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S2. Summary statistics for natural gas - Alaska, 2011-2015 2011 2012 2013 2014 2015 Number of Wells Producing Natural Gas at End of Year Oil Wells 2,040 1,981 2,006 2,042 2,096 Gas Wells R 274 R 281 R 300 R 338 329 Production

  19. Million Cu. Feet Percent of National Total

    Energy Information Administration (EIA) (indexed site)

    0 Colorado - Natural Gas 2015 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S6. Summary statistics for natural gas - Colorado, 2011-2015 2011 2012 2013 2014 2015 Number of Wells Producing Natural Gas at End of Year Oil Wells 5,963 6,456 6,799 7,771 7,733 Gas Wells R 43,792 R 46,141 R 46,883 R 46,876

  20. Million Cu. Feet Percent of National Total

    Energy Information Administration (EIA) (indexed site)

    6 District of Columbia - Natural Gas 2015 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S9. Summary statistics for natural gas - District of Columbia, 2011-2015 2011 2012 2013 2014 2015 Number of Wells Producing Natural Gas at End of Year Oil Wells 0 0 0 0 0 Gas Wells 0 0 0 0 0 Production (million cubic

  1. Million Cu. Feet Percent of National Total

    Energy Information Administration (EIA) (indexed site)

    4 Hawaii - Natural Gas 2015 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S13. Summary statistics for natural gas - Hawaii, 2011-2015 2011 2012 2013 2014 2015 Number of Wells Producing Natural Gas at End of Year Oil Wells 0 0 0 0 0 Gas Wells 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From

  2. Million Cu. Feet Percent of National Total

    Energy Information Administration (EIA) (indexed site)

    6 Idaho - Natural Gas 2015 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S14. Summary statistics for natural gas - Idaho, 2011-2015 2011 2012 2013 2014 2015 Number of Wells Producing Natural Gas at End of Year Oil Wells 0 0 0 0 0 Gas Wells 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From

  3. Million Cu. Feet Percent of National Total

    Energy Information Administration (EIA) (indexed site)

    20 Maine - Natural Gas 2015 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S21. Summary statistics for natural gas - Maine, 2011-2015 2011 2012 2013 2014 2015 Number of Wells Producing Natural Gas at End of Year Oil Wells 0 0 0 0 0 Gas Wells 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From

  4. Million Cu. Feet Percent of National Total

    Energy Information Administration (EIA) (indexed site)

    0 Mississippi - Natural Gas 2015 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S26. Summary statistics for natural gas - Mississippi, 2011-2015 2011 2012 2013 2014 2015 Number of Wells Producing Natural Gas at End of Year Oil Wells 561 618 581 540 501 Gas Wells R 1,703 R 1,666 R 1,632 R 1,594 1,560

  5. Million Cu. Feet Percent of National Total

    Energy Information Administration (EIA) (indexed site)

    4 Montana - Natural Gas 2015 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S28. Summary statistics for natural gas - Montana, 2011-2015 2011 2012 2013 2014 2015 Number of Wells Producing Natural Gas at End of Year Oil Wells 1,956 2,147 2,268 2,377 2,277 Gas Wells R 6,615 R 6,366 R 5,870 R 5,682 5,655

  6. Million Cu. Feet Percent of National Total

    Energy Information Administration (EIA) (indexed site)

    4 New Mexico - Natural Gas 2015 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S33. Summary statistics for natural gas - New Mexico, 2011-2015 2011 2012 2013 2014 2015 Number of Wells Producing Natural Gas at End of Year Oil Wells 12,887 13,791 14,171 14,814 14,580 Gas Wells R 40,231 R 40,441 R 40,119 R

  7. Million Cu. Feet Percent of National Total

    Energy Information Administration (EIA) (indexed site)

    6 New York - Natural Gas 2015 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S34. Summary statistics for natural gas - New York, 2011-2015 2011 2012 2013 2014 2015 Number of Wells Producing Natural Gas at End of Year Oil Wells 988 1,170 1,589 1,731 1,697 Gas Wells R 7,372 R 7,731 R 7,553 R 7,619 7,605

  8. Million Cu. Feet Percent of National Total

    Energy Information Administration (EIA) (indexed site)

    0 North Dakota - Natural Gas 2015 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S36. Summary statistics for natural gas - North Dakota, 2011-2015 2011 2012 2013 2014 2015 Number of Wells Producing Natural Gas at End of Year Oil Wells 5,561 7,379 9,363 11,532 12,799 Gas Wells R 526 R 451 R 423 R 398 462

  9. Million Cu. Feet Percent of National Total

    Energy Information Administration (EIA) (indexed site)

    2 Ohio - Natural Gas 2015 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S37. Summary statistics for natural gas - Ohio, 2011-2015 2011 2012 2013 2014 2015 Number of Wells Producing Natural Gas at End of Year Oil Wells 6,775 6,745 7,038 7,257 5,941 Gas Wells R 31,966 R 31,647 R 30,804 R 31,060 26,599

  10. Million Cu. Feet Percent of National Total

    Energy Information Administration (EIA) (indexed site)

    4 Oklahoma - Natural Gas 2015 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S38. Summary statistics for natural gas - Oklahoma, 2011-2015 2011 2012 2013 2014 2015 Number of Wells Producing Natural Gas at End of Year Oil Wells 6,723 7,360 8,744 7,105 8,368 Gas Wells R 51,712 R 51,472 R 50,606 R 50,044

  11. Million Cu. Feet Percent of National Total

    Energy Information Administration (EIA) (indexed site)

    6 Oregon - Natural Gas 2015 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S39. Summary statistics for natural gas - Oregon, 2011-2015 2011 2012 2013 2014 2015 Number of Wells Producing Natural Gas at End of Year Oil Wells 0 0 0 0 0 Gas Wells R 28 R 24 R 24 R 12 14 Production (million cubic feet) Gross

  12. Million Cu. Feet Percent of National Total

    Energy Information Administration (EIA) (indexed site)

    8 Pennsylvania - Natural Gas 2015 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S40. Summary statistics for natural gas - Pennsylvania, 2011-2015 2011 2012 2013 2014 2015 Number of Wells Producing Natural Gas at End of Year Oil Wells 7,046 7,627 7,164 8,481 7,557 Gas Wells R 61,815 R 62,922 R 61,838 R

  13. Million Cu. Feet Percent of National Total

    Energy Information Administration (EIA) (indexed site)

    6 Tennessee - Natural Gas 2015 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S44. Summary statistics for natural gas - Tennessee, 2011-2015 2011 2012 2013 2014 2015 Number of Wells Producing Natural Gas at End of Year Oil Wells 52 75 NA NA NA Gas Wells R 1,027 R 1,027 1,089 NA NA Production (million cubic

  14. Million Cu. Feet Percent of National Total

    Energy Information Administration (EIA) (indexed site)

    8 Texas - Natural Gas 2015 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S45. Summary statistics for natural gas - Texas, 2011-2015 2011 2012 2013 2014 2015 Number of Wells Producing Natural Gas at End of Year Oil Wells 85,030 94,203 96,949 104,205 105,159 Gas Wells R 139,368 R 140,087 R 140,964 R 142,292

  15. Million Cu. Feet Percent of National Total

    Energy Information Administration (EIA) (indexed site)

    0 Utah - Natural Gas 2015 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S46. Summary statistics for natural gas - Utah, 2011-2015 2011 2012 2013 2014 2015 Number of Wells Producing Natural Gas at End of Year Oil Wells 3,119 3,520 3,946 4,249 3,966 Gas Wells R 7,603 R 8,121 R 8,300 R 8,537 8,739 Production

  16. Million Cu. Feet Percent of National Total

    Energy Information Administration (EIA) (indexed site)

    4 Virginia - Natural Gas 2015 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S48. Summary statistics for natural gas - Virginia, 2011-2015 2011 2012 2013 2014 2015 Number of Wells Producing Natural Gas at End of Year Oil Wells 2 1 1 2 2 Gas Wells R 7,781 R 7,874 7,956 R 8,061 8,111 Production (million

  17. Operating Costs

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    1997-03-28

    This chapter is focused on capital costs for conventional construction and environmental restoration and waste management projects and examines operating cost estimates to verify that all elements of the project have been considered and properly estimated.

  18. AMO Director Delivers Keynote at Copper Development Association Spring

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Meeting | Department of Energy Delivers Keynote at Copper Development Association Spring Meeting AMO Director Delivers Keynote at Copper Development Association Spring Meeting June 29, 2016 - 4:40pm Addthis AMO Director Delivers Keynote at Copper Development Association Spring Meeting Industry plays a large role in the work that the Advanced Manufacturing Office (AMO) undertakes. The relationship between AMO, academia, national labs, and industry partners is symbiotic - we each bring

  19. Natural Gas Delivered to Consumers in California (Including Vehicle...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    California (Including Vehicle Fuel) (Million Cubic Feet) Natural Gas Delivered to Consumers in California (Including Vehicle Fuel) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun ...

  20. Geophysical monitoring of foam used to deliver remediation treatments...

    Office of Scientific and Technical Information (OSTI)

    Geophysical monitoring of foam used to deliver remediation treatments within the vadose zone Citation Details In-Document Search Title: Geophysical monitoring of foam used to ...

  1. New York Price of Natural Gas Delivered to Residential Consumers...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Pages: Average Residential Price New York Average Price of Natural Gas Delivered to Residential and Commercial Consumers by Local Distribution and Market Average Residential...

  2. Famur delivers longwall system to Russian coal mine

    SciTech Connect

    2008-08-15

    The first complete Polish longwall system that was recently delivered to Russia for mining coal seams with a thickness exceeding 5 m is described. 2 photos.

  3. Secretary Moniz to Deliver Keynote at Washington Auto Show

    Energy.gov [DOE]

    On Wednesday, January 22, 2014, Energy Secretary Ernest Moniz will deliver the government keynote address at the Washington Auto Show’s Public Policy Day.

  4. Senator Dorgan and Under Secretary Orr to Deliver Remarks at...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Senator Dorgan and Under Secretary Orr to Deliver Remarks at 2015 Fuel Cell Technologies and Vehicle Technologies Annual Merit Review Senator Dorgan and Under Secretary Orr to ...

  5. Delivering Renewable Hydrogen: A Focus on Near-Term Applications

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Delivering Renewable Hydrogen A Focus on Near-Term Applications A One-Day Workshop Presented by the National Renewable Energy Laboratory and the California Fuel Cell Partnership ...

  6. DOE Delivers More than $354 Million for Energy Efficiency and...

    Energy Saver

    More than 354 Million for Energy Efficiency and Conservation Projects in 22 States DOE Delivers More than 354 Million for Energy Efficiency and Conservation Projects in 22 States ...

  7. Obama Administration Delivers More than $106 Million for Energy...

    Energy Saver

    for Energy Efficiency and Conservation Projects in 9 States Obama Administration Delivers More than 106 Million for Energy Efficiency and Conservation Projects in 9 States ...

  8. Obama Administration Delivers Nearly $72 Million for Energy Efficiency...

    Office of Environmental Management (EM)

    Energy Efficiency and Conservation Projects in 7 States and Territories Obama Administration Delivers Nearly 72 Million for Energy Efficiency and Conservation Projects in 7 States ...

  9. Recovery Act Investment Wraps Up, Delivering Major Benefits to...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Delivering Major Benefits to the Nation October 5, 2015 - 3:21pm Addthis Patricia A. Hoffman Patricia A. Hoffman Assistant Secretary, Office of Electricity Delivery & Energy...

  10. President Eisenhower Delivers Atoms for Peace Speech | National...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Eisenhower Delivers Atoms for Peace Speech | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

  11. District of Columbia Price of Natural Gas Delivered to Commercial...

    Energy Information Administration (EIA) (indexed site)

    Local Distributor Companies (Dollars per Thousand Cubic Feet) District of Columbia Price of Natural Gas Delivered to Commercial Sectors by Local Distributor Companies (Dollars per ...

  12. Minnesota Price of Natural Gas Delivered to Residential Consumers...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Delivered to Residential Consumers (Dollars per Thousand Cubic Feet) Minnesota Price of ... Referring Pages: Average Residential Price Minnesota Natural Gas Prices Average ...

  13. Natural Gas Delivered to Consumers in Minnesota (Including Vehicle...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Minnesota (Including Vehicle Fuel) (Million Cubic Feet) Natural Gas Delivered to Consumers in Minnesota (Including Vehicle Fuel) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun ...

  14. Future oil and gas: Can Iran deliver?

    SciTech Connect

    Takin, M.

    1996-11-01

    Iran`s oil and gas production and exports constitute the country`s main source of foreign exchange earnings. The future level of these earnings will depend on oil prices, global demand for Iranian exports, the country`s productive capability and domestic consumption. The size of Iranian oil reserves suggests that, in principle, present productive capacity could be maintained and expanded. However, the greatest share of production in coming years still will come from fields that already have produced for several decades. In spite of significant remaining reserves, these fields are not nearly as prolific as they were in their early years. The operations required for further development are now more complicated and, in particular, more costly. These fields` size also implies that improving production, and instituting secondary and tertiary recovery methods (such as gas injection), will require mega-scale operations. This article discusses future oil and gas export revenues from the Islamic Republic of Iran, emphasizing the country`s future production and commenting on the effects of proposed US sanctions.

  15. Soft Costs Fact Sheet

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy SunShot Initiative is a collaborative national effort to make solar energy technologies cost-competitive with conventional forms of energy by the end of the decade. Reducing the total installed cost for utility-scale solar electricity to roughly 6 cents per kilowatt hour without subsidies will result in rapid, large-scale adoption of solar electricity across the United States. Reaching this goal will re-establish American technological leadership, improve the nation's energy security,

  16. Independent Cost Estimate (ICE)

    Energy.gov [DOE]

    Independent Cost Estimate (ICE). On August 8-12, the Office of Project Management Oversight and Assessments (PM) will conduct an ICE on the NNSA Albuquerque Complex Project (NACP) at Albuquerque, NM. This estimate will support the Critical Decision (CD) for establishing the performance baseline and approval to start construction (CD-2/3). This project is at CD-1, with a total project cost range of $183M to $251M.

  17. Levelized Power Generation Cost Codes

    Energy Science and Technology Software Center

    1996-04-30

    LPGC is a set of nine microcomputer programs for estimating power generation costs for large steam-electric power plants. These programs permit rapid evaluation using various sets of economic and technical ground rules. The levelized power generation costs calculated may be used to compare the relative economics of nuclear and coal-fired plants based on life-cycle costs. Cost calculations include capital investment cost, operation and maintenance cost, fuel cycle cost, decommissioning cost, and total levelized power generationmore » cost. These programs can be used for quick analyses of power generation costs using alternative economic parameters, such as interest rate, escalation rate, inflation rate, plant lead times, capacity factor, fuel prices, etc. The two major types of electric generating plants considered are pressurized water reactor (PWR) and pulverized coal-fired plants. Data are also provided for the Large Scale Prototype Breeder (LSPB) type liquid metal reactor.« less

  18. Direct Thin Film Path to Low Cost, Large Area III-V Photovoltaics...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    The photovoltaics achieve 25% power conversion efficiency at ... Under one-sun equivalent illumination, an open circuit ... limitations to deliver a promising low cost solar cell. ...

  19. Pump-and-Treat Systems Prove Effective, Deliver Cost Savings in Groundwater Cleanup

    Energy.gov [DOE]

    RICHLAND, Wash. – In conjunction with Washington Closure Hanford removing sources of contamination, including soil and facilities, the primary line of defense protecting the Columbia River is an extensive groundwater treatment system. The system includes five pump-and-treat facilities and a network of more than 2,000 wells to extract, inject and monitor groundwater.

  20. Cost analysis guidelines

    SciTech Connect

    Strait, R.S.

    1996-01-10

    The first phase of the Depleted Uranium Hexafluoride Management Program (Program)--management strategy selection--consists of several program elements: Technology Assessment, Engineering Analysis, Cost Analysis, and preparation of an Environmental Impact Statement (EIS). Cost Analysis will estimate the life-cycle costs associated with each of the long-term management strategy alternatives for depleted uranium hexafluoride (UF6). The scope of Cost Analysis will include all major expenditures, from the planning and design stages through decontamination and decommissioning. The costs will be estimated at a scoping or preconceptual design level and are intended to assist decision makers in comparing alternatives for further consideration. They will not be absolute costs or bid-document costs. The purpose of the Cost Analysis Guidelines is to establish a consistent approach to analyzing of cost alternatives for managing Department of Energy`s (DOE`s) stocks of depleted uranium hexafluoride (DUF6). The component modules that make up the DUF6 management program differ substantially in operational maintenance, process-options, requirements for R and D, equipment, facilities, regulatory compliance, (O and M), and operations risk. To facilitate a consistent and equitable comparison of costs, the guidelines offer common definitions, assumptions or basis, and limitations integrated with a standard approach to the analysis. Further, the goal is to evaluate total net life-cycle costs and display them in a way that gives DOE the capability to evaluate a variety of overall DUF6 management strategies, including commercial potential. The cost estimates reflect the preconceptual level of the designs. They will be appropriate for distinguishing among management strategies.

  1. BPA's Costs

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases BP-18 Rate Case Related Publications Meetings and Workshops Customer...

  2. The Impact of Biomass Feedstock Supply Variability on the Delivered Price to a Biorefinery in the Peace River Region of Alberta, Canada

    SciTech Connect

    Stephen, Jamie; Sokhansanj, Shahabaddine; Bi, X.T.; Sowlati, T.; Kloeck, T.; Townley-Smith, Lawrence; Stumborg, Mark

    2010-01-01

    Agricultural residue feedstock availability in a given region can vary significantly over the 20 25 year lifetime of a biorefinery. Since delivered price of biomass feedstock to a biorefinery is related to the distance travelled and equipment optimization, and transportation distance increases as productivity decreases, productivity is a primary determinant of feedstock price. Using the Integrated Biomass Supply Analysis and Logistics (IBSAL) modeling environment and a standard round bale harvest and delivery scenario, harvest and delivery price were modelled for minimum, average, and maximum yields at four potential biorefinery sites in the Peace River region of Alberta, Canada. Biorefinery capacities ranged from 50,000 to 500,000 tonnes per year. Delivery cost is a linear function of transportation distance and can be combined with a polynomial harvest function to create a generalized delivered cost function for agricultural residues. The range in delivered cost is substantial and is an important consideration for the operating costs of a biorefinery.

  3. First wind turbine blade delivered to Pantex | National Nuclear...

    National Nuclear Security Administration (NNSA)

    owned wind farm in the country and will provide approximately 60 percent of the average annual electricity need for the Pantex Plant. First wind turbine blade delivered to Pantex

  4. Natural Gas Delivered to Consumers in New Mexico (Including Vehicle...

    Energy Information Administration (EIA) (indexed site)

    Mexico (Including Vehicle Fuel) (Million Cubic Feet) Natural Gas Delivered to Consumers in New Mexico (Including Vehicle Fuel) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul ...

  5. Natural Gas Delivered to Consumers in Ohio (Including Vehicle...

    Energy Information Administration (EIA) (indexed site)

    Natural Gas Delivered to Consumers in Ohio (Including Vehicle Fuel) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 136,340 110,078 102,451 66,525 ...

  6. Portsmouth, Paducah Project Leaps Past Shipment Milestone, Delivering

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Economic Benefit to U.S. | Department of Energy Portsmouth, Paducah Project Leaps Past Shipment Milestone, Delivering Economic Benefit to U.S. Portsmouth, Paducah Project Leaps Past Shipment Milestone, Delivering Economic Benefit to U.S. September 1, 2012 - 12:00pm Addthis Pictured here are railcars carrying tanks of hydrofluoric acid for shipment from the Portsmouth site to Solvay Fluorides for industrial use. Pictured here are railcars carrying tanks of hydrofluoric acid for shipment from

  7. Energy Systems Integration Facility Delivering on Promise to Strengthen

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    America's Clean Energy Innovation | Department of Energy Systems Integration Facility Delivering on Promise to Strengthen America's Clean Energy Innovation Energy Systems Integration Facility Delivering on Promise to Strengthen America's Clean Energy Innovation September 11, 2015 - 1:42pm Addthis NREL Senior Engineering Project Manager, Pat Moriarty, left and NREL Senior Engineer , Paul Fleming, review velocity (blue) and turbulence (yellow) in a simulation of the Lillgrund Wind Farm in

  8. Delivering Renewable Hydrogen: A Focus on Near-Term Applications |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Delivering Renewable Hydrogen: A Focus on Near-Term Applications Delivering Renewable Hydrogen: A Focus on Near-Term Applications Agenda for the Delvering Renewable Hydrogen Workshop held Nov. 16, 2010, in Palm Springs, CA renewable_hydrogen_workshop_nov16_agenda.pdf (80.14 KB) More Documents & Publications Transportation and Stationary Power Integration Workshop Agenda, October 27, 2008, Phoenix, Arizonia Hydrogen Infrastructure Market Readiness Workshop Agenda

  9. 2005 CHP Action Agenda: Innovating, Advocating, and Delivering Solutions,

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    October 2005 | Department of Energy 5 CHP Action Agenda: Innovating, Advocating, and Delivering Solutions, October 2005 2005 CHP Action Agenda: Innovating, Advocating, and Delivering Solutions, October 2005 More than five years since the CHP Challenge and Industry Roadmap was released, this document is intended to provide the situational context in which the annual roadmap workshop will set its priorities for the upcoming year and complete its goals. 2005_nyc.pdf (449.69 KB) More Documents

  10. Pantexans deliver 'sunshine' to single parents | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) deliver 'sunshine' to single parents Friday, December 11, 2015 - 4:47pm NNSA Blog Pantexans Caleb Rejino, left, and Danny Caverly, right, and Colin Caverly, Caverly's son deliver meals to the Eveline Rivers Sunshine Cottages in Amarillo. A team of Pantex volunteers provided support to families in the Eveline Rivers' Sunshine Cottages to put healthy meals on the table while the single parents prepared for finals. The cottages are housing for low-income or

  11. Delivering Innovations That Create Jobs: National Lab Ignites Business for

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Entrepreneurs | Department of Energy Delivering Innovations That Create Jobs: National Lab Ignites Business for Entrepreneurs Delivering Innovations That Create Jobs: National Lab Ignites Business for Entrepreneurs November 17, 2011 - 1:59pm Addthis DEP Shape Memory Therapeutics, Inc. is working to treat aneurysms with exclusively licensed LLNL-developed polymer materials that "remember" their shape. LLNL is a leader in the development of shape memory polymers, for use in medical

  12. Delivering Renewable Hydrogen: A Focus on Near-Term Applications |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Delivering Renewable Hydrogen: A Focus on Near-Term Applications Delivering Renewable Hydrogen: A Focus on Near-Term Applications On November 16, 2009, the National Renewable Energy Laboratory and the California Fuel Cell Partnership conducted a workshop on near-term applications of renewable hydrogen. Held in Palm Springs, California, the workshop consisted of several presentations in addition to a special show-and-tell session on hydrogen systems analysis models.

  13. Building America Expert Meeting: Delivering Better, Cheaper, and Faster

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Retrofits through Stakeholder-focused Research | Department of Energy Delivering Better, Cheaper, and Faster Retrofits through Stakeholder-focused Research Building America Expert Meeting: Delivering Better, Cheaper, and Faster Retrofits through Stakeholder-focused Research This expert meeting was conducted by Building America Industrialized Housing Partnership and Gas Technology Institute on November 16, 2010, in Chicago, Illinois. Meeting objectives included: * Review Building America's

  14. Working With PNNL Mentors, Engineering Students Deliver Prototype

    National Nuclear Security Administration (NNSA)

    Safeguards Fixtures | National Nuclear Security Administration | (NNSA) Working With PNNL Mentors, Engineering Students Deliver Prototype Safeguards Fixtures Friday, December 18, 2015 - 12:00am NNSA Blog Earlier this month, Washington State University mechanical engineering students delivered two prototypes developed as part of their senior design projects to their Pacific Northwest National Laboratory mentors. The design projects were supported by the Next Generation Safeguards Initiative

  15. Total Crude by Pipeline

    Energy Information Administration (EIA) (indexed site)

    Product: Total Crude by All Transport Methods Domestic Crude by All Transport Methods Foreign Crude by All Transport Methods Total Crude by Pipeline Domestic Crude by Pipeline Foreign Crude by Pipeline Total Crude by Tanker Domestic Crude by Tanker Foreign Crude by Tanker Total Crude by Barge Domestic Crude by Barge Foreign Crude by Barge Total Crude by Tank Cars (Rail) Domestic Crude by Tank Cars (Rail) Foreign Crude by Tank Cars (Rail) Total Crude by Trucks Domestic Crude by Trucks Foreign

  16. ,"Total Natural Gas Consumption

    Energy Information Administration (EIA) (indexed site)

    Gas Consumption (billion cubic feet)",,,,,"Natural Gas Energy Intensity (cubic feetsquare foot)" ,"Total ","Space Heating","Water Heating","Cook- ing","Other","Total ","Space...

  17. U.S. Total Refiner Acquisition Cost of Crude Oil

    Energy Information Administration (EIA) (indexed site)

    2010 2011 2012 2013 2014 2015 View History Composite 76.69 101.87 100.93 100.49 92.02 48.40 1968-2015 Domestic 78.01 100.71 100.72 102.91 94.05 49.95 1968-2015 Imported 75.86 ...

  18. Property:Geothermal/TotalProjectCost | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Churchill Co., NV Geothermal Project + 14,571,873 + A Demonstration System for Capturing Geothermal Energy from Mine Waters beneath Butte, MT Geothermal Project + 2,155,497 + A...

  19. Solar Basics for Homebuilders: Reducing the Total Cost of Ownership

    Energy.gov [DOE]

    Solar photovoltaic (PV) energy systems are new in many residential real estate markets, and a growing number of homebuilders are integrating PV into new homes to attract customers and increase...

  20. Total Estimated Contract Cost: Contract Option Period: Performance

    Office of Environmental Management (EM)

    Energy Title 49 United States Code (USC) Section 40118 01/03/05 Title 49 United States Code (USC) Section 40118 01/03/05 Title 49 United States Code (USC) Section 40118 01/03/05 (20.07 KB) More Documents & Publications Appendix B Patent and copyright cases Guidance_Application_Federal_Vacancies_Reform_Act_1998.pdf

    I Disposal Sites Annual Report Title I Disposal Sites Annual Report 2015 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title I

  1. ,"U.S. Total Refiner Acquisition Cost of Crude Oil"

    Energy Information Administration (EIA) (indexed site)

    ...12016" ,"Excel File Name:","petprirac2dcunusa.xls" ,"Available from Web Page:","http:www.eia.govdnavpetpetprirac2dcunusa.htm" ,"Source:","Energy Information ...

  2. Liquefaction and Pipeline Costs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Liquefaction and Pipeline Costs Liquefaction and Pipeline Costs Presentation by Bruce Kelly of Nexant at the Joint Meeting on Hydrogen Delivery Modeling and Analysis, May 8-9, 2007 deliv_analysis_kelly_lh2.pdf (66.99 KB) More Documents & Publications Forecourt and Gas Infrastructure Optimization Joint Meeting on Hydrogen Delivery Modeling and Analysis Meeting Agenda H2A Delivery Components Model and Analysis

  3. NREL Reports Soft Costs Now Largest Piece of Solar Installation...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Reports Soft Costs Now Largest Piece of Solar Installation Total Cost December 2, 2013 Two detailed reports from the Energy Department's National Renewable Energy Laboratory (NREL) ...

  4. Secretary Moniz's Remarks at the EE Global Forum -- As Delivered |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy EE Global Forum -- As Delivered Secretary Moniz's Remarks at the EE Global Forum -- As Delivered May 21, 2014 - 2:19pm Addthis Dr. Ernest Moniz Dr. Ernest Moniz Secretary of Energy Well, thank you, Kateri. And, A, it's true that I was here within a few hours of being sworn in last year, but perhaps you've forgotten the date. It was May 21st, 2013. So today is also the one-year anniversary and I'm back. And you, I guess you always have meetings on May 21st so it's

  5. Secretary Moniz's Remarks at the Washington Auto Show -- As Delivered |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Washington Auto Show -- As Delivered Secretary Moniz's Remarks at the Washington Auto Show -- As Delivered January 22, 2015 - 1:12pm Addthis Dr. Ernest Moniz Dr. Ernest Moniz Secretary of Energy It's a pleasure to be back again this year, as last year was terrific. And as I'll say later on, last year I saw my very first fuel-cell vehicle here. And, as we'll talk about, it was a pretty big year for progress in the fuel-cell world. I was thinking of my own earliest

  6. Secretary Moniz Remarks to the National Coal Council -- As Delivered |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy to the National Coal Council -- As Delivered Secretary Moniz Remarks to the National Coal Council -- As Delivered April 20, 2016 - 10:01am Addthis Dr. Ernest Moniz Dr. Ernest Moniz Secretary of Energy It's good to be here. Let me actually start by just introducing people you probably know who are in the coal chain of command. Lynn Orr. As you know, Lynn came from Stanford. He is well-known to reside in the subsurface as an expert in that realm, and has the responsibility

  7. An examination of the costs and critical characteristics of electric utility distribution system capacity enhancement projects

    SciTech Connect

    Balducci, Patrick J.; Schienbein, Lawrence A.; Nguyen, Tony B.; Brown, Daryl R.; Fathelrahman, Eihab M.

    2004-06-01

    This report classifies and analyzes the capital and total costs (e.g., income tax, property tax, depreciation, centralized power generation, insurance premiums, and capital financing) associated with 130 electricity distribution system capacity enhancement projects undertaken during 1995-2002 or planned in the 2003-2011 time period by three electric power utilities operating in the Pacific Northwest. The Pacific Northwest National Laboratory (PNNL), in cooperation with participating utilities, has developed a large database of over 3,000 distribution system projects. The database includes brief project descriptions, capital cost estimates, the stated need for each project, and engineering data. The database was augmented by additional technical (e.g., line loss, existing substation capacities, and forecast peak demand for power in the area served by each project), cost (e.g., operations, maintenance, and centralized power generation costs), and financial (e.g., cost of capital, insurance premiums, depreciations, and tax rates) data. Though there are roughly 3,000 projects in the database, the vast majority were not included in this analysis because they either did not clearly enhance capacity or more information was needed, and not available, to adequately conduct the cost analyses. For the 130 projects identified for this analysis, capital cost frequency distributions were constructed, and expressed in terms of dollars per kVA of additional capacity. The capital cost frequency distributions identify how the projects contained within the database are distributed across a broad cost spectrum. Furthermore, the PNNL Energy Cost Analysis Model (ECAM) was used to determine the full costs (e.g., capital, operations and maintenance, property tax, income tax, depreciation, centralized power generation costs, insurance premiums and capital financing) associated with delivering electricity to customers, once again expressed in terms of costs per kVA of additional capacity

  8. Total Natural Gas Consumption (Summary)

    Gasoline and Diesel Fuel Update

    & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual Download Series History Download Series History ...

  9. ,"Total Fuel Oil Expenditures

    Energy Information Administration (EIA) (indexed site)

    . Fuel Oil Expenditures by Census Region for Non-Mall Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per...

  10. ,"Total Fuel Oil Consumption

    Energy Information Administration (EIA) (indexed site)

    0. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for Non-Mall Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  11. ,"Total Fuel Oil Expenditures

    Energy Information Administration (EIA) (indexed site)

    4. Fuel Oil Expenditures by Census Region, 1999" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per Square Foot"...

  12. Total Space Heat-

    Gasoline and Diesel Fuel Update

    Commercial Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration...

  13. ,"Total Fuel Oil Expenditures

    Energy Information Administration (EIA) (indexed site)

    A. Fuel Oil Expenditures by Census Region for All Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per...

  14. ,"Total Fuel Oil Consumption

    Energy Information Administration (EIA) (indexed site)

    A. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  15. Total Space Heat-

    Gasoline and Diesel Fuel Update

    Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

  16. Total Space Heat-

    Gasoline and Diesel Fuel Update

    Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings*...

  17. Massachusetts Natural Gas Delivered to Commercial Consumers for the Account

    Energy Information Administration (EIA) (indexed site)

    of Others (Million Cubic Feet) Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) Massachusetts Natural Gas Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 36 14 1990's 32 96 140 1,625 20,132 12,453 24,311 39,539 37,931 26,186 2000's 23,577 23,386 27,605 19,588 16,331 16,693 15,377 21,341 30,435 30,850 2010's 34,058 40,562 37,545 60,474 61,073

  18. Mississippi Natural Gas Delivered to Commercial Consumers for the Account

    Energy Information Administration (EIA) (indexed site)

    of Others (Million Cubic Feet) Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) Mississippi Natural Gas Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 0 0 1990's 777 731 645 647 647 615 585 1,148 1,101 807 2000's 954 935 707 937 943 895 993 2,327 1,942 1,715 2010's 1,983 2,067 1,958 2,123 2,772 2,806 - = No Data Reported; -- = Not Applicable;

  19. Pennsylvania Natural Gas Delivered to Commercial Consumers for the Account

    Energy Information Administration (EIA) (indexed site)

    of Others (Million Cubic Feet) Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) Pennsylvania Natural Gas Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 7,787 12,476 19,406 1990's 27,144 28,528 32,481 29,758 35,514 45,481 45,809 52,464 56,528 61,752 2000's 57,397 50,476 53,048 56,590 52,546 55,148 52,334 60,506 62,616 67,105 2010's 70,514 72,719

  20. South Carolina Natural Gas Delivered to Commercial Consumers for the

    Energy Information Administration (EIA) (indexed site)

    Account of Others (Million Cubic Feet) Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) South Carolina Natural Gas Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 153 302 1990's 341 278 239 132 265 688 199 235 412 589 2000's 280 517 310 762 799 843 1,027 1,067 1,137 1,429 2010's 1,748 1,973 2,007 1,969 1,832 1,933 - = No Data Reported; -- =

  1. Nebraska Natural Gas Delivered for the Account of Others

    Gasoline and Diesel Fuel Update

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,004 1,011 1,019 1,036 1,042 1,057 2007-2015

    Mar-16 Apr-16 May-16 Jun-16 Jul-16 Aug-16 View History Delivered to Consumers 1,048 1,062 1,064 1,064 1,070 1,073 2013-2016

    2011 2012 2013 2014 View History Proved Reserves as of Dec. 31 7 7 8 6 2011-2014 Adjustments 4 1 2 -1 2011-2014 Revision Increases 0 0 0 0 2011-2014 Revision Decreases 0 0 0 0 2011-2014 Sales 0 0 0 0 2011-2014 Acquisitions 0 0 0 0 2011-2014 Extensions 0

  2. Nevada Natural Gas Delivered for the Account of Others

    Gasoline and Diesel Fuel Update

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,033 1,024 1,029 1,034 1,034 1,042 2007-2015

    Mar-16 Apr-16 May-16 Jun-16 Jul-16 Aug-16 View History Delivered to Consumers 1,037 1,042 1,039 1,038 1,044 1,045 2013-2016

    -69 -42 -63 -57 16 1 1982-2015 Additions 125 112 82 153 227 101 1982-2015 Withdrawals 195 154 146 210 211 100 1982

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 100.0 1990's 100.0 100.0 100.0 100.0 100.0 100.0

  3. Oregon Natural Gas Delivered for the Account of Others

    Gasoline and Diesel Fuel Update

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,015 1,021 1,022 1,016 1,029 1,036 2007-2015

    Mar-16 Apr-16 May-16 Jun-16 Jul-16 Aug-16 View History Delivered to Consumers 1,036 1,038 1,043 1,044 1,045 1,046 2013-2016

    -53 -25 -16 -50 111 -170 1980-2015 Additions 343 336 299 276 822 151 1980-2015 Withdrawals 396 361 315 326 711 321

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 100.0 1990's 100.0 100.0 100.0 100.0 100.0 100.0

  4. South Carolina Natural Gas Delivered for the Account of Others

    Gasoline and Diesel Fuel Update

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,026 1,026 1,023 1,020 1,024 1,030 2007-2015

    Mar-16 Apr-16 May-16 Jun-16 Jul-16 Aug-16 View History Delivered to Consumers 1,029 1,031 1,030 1,029 1,029 1,030 2013-2016

    Storage

    14 204 -100 -35 119 -14 1980-2015 Additions 1,360 1,386 391 879 1,371 902 1980-2015 Withdrawals 1,574 1,183 491 914 1,252 916

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 100.0 1990's 100.0 100.0

  5. South Dakota Natural Gas Delivered for the Account of Others

    Gasoline and Diesel Fuel Update

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,005 1,005 1,018 1,031 1,041 1,054 2007-2015

    Mar-16 Apr-16 May-16 Jun-16 Jul-16 Aug-16 View History Delivered to Consumers 1,053 1,052 1,054 1,058 1,060 1,057 2013-2016

    Storage

    1984-1998 Additions 0 0 0 0 0 0 1984-2015 Withdrawals 0 0 0 0 0 0 1984

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 100.0 1990's 100.0 100.0 100.0 100.0 100.0 100.0 99.9 100.0 1.0 100.0 2000's

  6. Tennessee Natural Gas Delivered for the Account of Others

    Gasoline and Diesel Fuel Update

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,023 1,014 1,014 1,019 1,027 1,029 2007-2015

    Mar-16 Apr-16 May-16 Jun-16 Jul-16 Aug-16 View History Delivered to Consumers 1,034 1,031 1,031 1,024 1,025 1,025 2013-2016

    -1,563 189 65 -1,262 -532 648 1980-2015 Additions 1,175 1,688 3,028 2,243 7,227 8,112 1980-2015 Withdrawals 2,738 1,499 2,963 3,505 7,759 7,463 1980

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 100.0 1990's

  7. Connecticut Natural Gas Delivered to Commercial Consumers for the Account

    Energy Information Administration (EIA) (indexed site)

    of Others (Million Cubic Feet) Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) Connecticut Natural Gas Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 533 513 2,680 1990's 1,169 1,887 1,037 602 7,455 6,836 5,193 7,709 13,270 17,692 2000's 10,509 9,953 11,188 12,350 11,013 10,606 9,458 10,252 11,032 12,324 2010's 14,068 15,519 14,774 19,561

  8. Idaho Natural Gas Delivered for the Account of Others

    Gasoline and Diesel Fuel Update

    Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's -- 4.16 1.68 Thousand Cubic Feet)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 4.29 4.25 3.82 2.98 2015 2.10 2.28 2.30 2.17 2.04 1.72 1.57 1.58 1.69 1.66 1.40 1.04 2016 0.97

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,021 1,017 1,015 1,022 1,017 1,030 2007-2015

    Mar-16 Apr-16 May-16 Jun-16 Jul-16 Aug-16 View History Delivered to

  9. Illinois Natural Gas Delivered for the Account of Others

    Gasoline and Diesel Fuel Update

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,008 1,011 1,011 1,016 1,023 1,029 2007-2015

    Mar-16 Apr-16 May-16 Jun-16 Jul-16 Aug-16 View History Delivered to Consumers 1,030 1,032 1,032 1,027 1,029 1,030 2013-2016

    74 127 419 -322 -442 437 1980-2015 Additions 398 657 750 40 61 667 1980-2015 Withdrawals 325 530 331 362 503 2

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 99.3 1990's 94.9 94.1 93.7 93.5 93.4 93.0 93.5 93.0

  10. Indiana Natural Gas Delivered for the Account of Others

    Gasoline and Diesel Fuel Update

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,012 1,012 1,012 1,015 1,019 1,027 2007-2015

    Mar-16 Apr-16 May-16 Jun-16 Jul-16 Aug-16 View History Delivered to Consumers 1,032 1,034 1,038 1,042 1,035 1,047 2013-2016

    835 -380 -977 -81 771 205 1980-2015 Additions 1,983 609 0 925 2,193 1,035 1980-2015 Withdrawals 1,148 989 977 1,005 1,422 8

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 100.0 1990's 100.0 100.0 100.0 100.0

  11. Iowa Natural Gas Delivered for the Account of Others

    Gasoline and Diesel Fuel Update

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,006 1,009 1,014 1,029 1,040 1,053 2007-2015

    Mar-16 Apr-16 May-16 Jun-16 Jul-16 Aug-16 View History Delivered to Consumers 1,052 1,053 1,057 1,058 1,057 1,061 2013-2016

    146 14 428 -151 -647 546 1980-2015 Additions 1,458 1,858 1,408 2,252 2,054 1,827 1980-2015 Withdrawals 1,312 1,844 980 2,403 2,701 1,280

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 100.0 1990's 100.0 100.0

  12. Maine Natural Gas Delivered for the Account of Others

    Gasoline and Diesel Fuel Update

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,044 1,047 1,032 1,028 1,029 1,027 2007-2015

    Mar-16 Apr-16 May-16 Jun-16 Jul-16 Aug-16 View History Delivered to Consumers 1,030 1,024 1,019 1,023 1,023 1,026 2013-2016

    25 -18 2 1 4 1981-2014 Additions 0 0 36 46 39 56 1981-2015 Withdrawals 25 18 34 45 35 55 1981

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 100.0 1990's 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1.0

  13. Maryland Natural Gas Delivered for the Account of Others

    Gasoline and Diesel Fuel Update

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,027 1,027 1,037 1,045 1,053 1,055 2007-2015

    Mar-16 Apr-16 May-16 Jun-16 Jul-16 Aug-16 View History Delivered to Consumers 1,050 1,048 1,047 1,046 1,052 1,051 2013-2016

    13 42 27 -5 41 4 1980-2015 Additions 366 394 386 461 604 467 1980-2015 Withdrawals 378 352 359 466 563 46

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 100.0 1990's 100.0 100.0 100.0 100.0 100.0 100.0 98.4

  14. Parallel Total Energy

    Energy Science and Technology Software Center

    2004-10-21

    This is a total energy electronic structure code using Local Density Approximation (LDA) of the density funtional theory. It uses the plane wave as the wave function basis set. It can sue both the norm conserving pseudopotentials and the ultra soft pseudopotentials. It can relax the atomic positions according to the total energy. It is a parallel code using MP1.

  15. Obama Administration Delivers More than $101 Million for Weatherization

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Programs in Guam and Pennsylvania | Department of Energy 1 Million for Weatherization Programs in Guam and Pennsylvania Obama Administration Delivers More than $101 Million for Weatherization Programs in Guam and Pennsylvania August 25, 2009 - 12:00am Addthis WASHINGTON, DC - U.S. Department of Energy Secretary Steven Chu today announced that the Department of Energy is providing more than $101 million in funding from the American Recovery and Reinvestment Act to expand weatherization

  16. Obama Administration Delivers More than $106 Million for Energy Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    and Conservation Projects in 9 States | Department of Energy 6 Million for Energy Efficiency and Conservation Projects in 9 States Obama Administration Delivers More than $106 Million for Energy Efficiency and Conservation Projects in 9 States September 24, 2009 - 12:00am Addthis Washington, DC - Energy Secretary Steven Chu announced today that more than $106 million in funding from the American Recovery and Reinvestment Act is being awarded to 9 states to support energy efficiency and

  17. Obama Administration Delivers More than $36 Million to Pennsylvania

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Communities for Energy Efficiency Projects | Department of Energy 6 Million to Pennsylvania Communities for Energy Efficiency Projects Obama Administration Delivers More than $36 Million to Pennsylvania Communities for Energy Efficiency Projects September 17, 2009 - 12:00am Addthis Bensalem, PA - At a Clean Energy Economy Forum with Governor Rendell in Bensalem today, U.S. Energy Secretary Steven Chu announced that DOE is awarding more than $36 million in funding from the American Recovery

  18. NNSA Delivers Annual Reports to Congress on Progress for Stockpile

    National Nuclear Security Administration (NNSA)

    Stewardship and Nuclear Nonproliferation | National Nuclear Security Administration | (NNSA) Delivers Annual Reports to Congress on Progress for Stockpile Stewardship and Nuclear Nonproliferation April 01, 2016 WASHINGTON, D.C.-The Department of Energy's National Nuclear Security Administration (DOE/NNSA) today released the annual reports outlining the strategic direction for two of its vital and enduring missions-maintaining a safe, secure and effective nuclear deterrent and reducing the

  19. Cloud-Based Transportation Management System Delivers Savings...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    reduce transportation costs. The Department of Energy (DOE) Office of Packaging & Transportation (OPT) implemented ATLAS (Automated Transportation Logistics & Analysis System), a ...

  20. EECBG Success Story: New Sustainability Manager Delivers Savings...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    EECBG Success Story: Ormond Beach Triples Energy Cost Savings Projections Ajani Stewart was close to losing his job as environmental coordinator for the city of Miami before...

  1. Year STB EIA STB EIA

    Gasoline and Diesel Fuel Update

    Release Date: November 16, 2012 Barge Truck Total delivered cost per short ton Shipments with transportation rates over total shipments Total delivered cost per short ton Shipments...

  2. Estimating Specialty Costs

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    1997-03-28

    Specialty costs are those nonstandard, unusual costs that are not typically estimated. Costs for research and development (R&D) projects involving new technologies, costs associated with future regulations, and specialty equipment costs are examples of specialty costs. This chapter discusses those factors that are significant contributors to project specialty costs and methods of estimating costs for specialty projects.

  3. Cost Study Manual

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    2 Cost Study Manual Executive Summary This Cost Study Manual documents the procedures for preparing a Cost Study to compare the cost of a contractor's employee benefits to the industry average from a broad-based national benefit cost survey. The annual Employee Benefits Cost Study Comparison (Cost Study) assists with the analysis of contractors' employee benefits costs. The Contracting Officer (CO) may require corrective action when the average benefit per capita cost or the benefit cost as a

  4. Total Space Heat-

    Gasoline and Diesel Fuel Update

    Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other...

  5. ARM - Measurement - Total carbon

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    carbon ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Total carbon The total concentration of carbon in all its organic and non-organic forms. Categories Atmospheric Carbon, Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including

  6. Alternative Fuels Data Center: Frito-Lay Delivers With Electric Truck Fleet

    Alternative Fuels and Advanced Vehicles Data Center

    Frito-Lay Delivers With Electric Truck Fleet to someone by E-mail Share Alternative Fuels Data Center: Frito-Lay Delivers With Electric Truck Fleet on Facebook Tweet about Alternative Fuels Data Center: Frito-Lay Delivers With Electric Truck Fleet on Twitter Bookmark Alternative Fuels Data Center: Frito-Lay Delivers With Electric Truck Fleet on Google Bookmark Alternative Fuels Data Center: Frito-Lay Delivers With Electric Truck Fleet on Delicious Rank Alternative Fuels Data Center: Frito-Lay

  7. Apparatus and method for delivering a fluid to a container

    DOEpatents

    Turner, Terry D.

    2002-01-01

    An apparatus for delivering a fluid into a container has a carriage movably associated with a holding mechanism along an axis. A piston is attached to the carriage and a cylinder is slidably attached to the piston along the axis. The cylinder has a hole formed therein that extends along the axis. A needle extending along the axis is attached to the piston and passes through the cylinder hole. The needle has a first operative position relative to the piston when the needle is retracted within the cylinder and a second operative position relative to the piston when the needle extends from the cylinder.

  8. Total DOE/NNSA

    National Nuclear Security Administration (NNSA)

    8 Actuals 2009 Actuals 2010 Actuals 2011 Actuals 2012 Actuals 2013 Actuals 2014 Actuals 2015 Actuals Total DOE/NNSA 4,385 4,151 4,240 4,862 5,154 5,476 7,170 7,593 Total non-NNSA 3,925 4,017 4,005 3,821 3,875 3,974 3,826 3765 Total Facility 8,310 8,168 8,245 8,683 9,029 9,450 10,996 11,358 non-NNSA includes DOE offices and Strategic Parternship Projects (SPP) employees NNSA M&O Employee Reporting

  9. Smart Grid Update: Delivering More Reliable and Efficient Power...

    Energy Saver

    Customers can control when and how they use electricity to save money. New pricing programs offer lower energy costs to customers who shift consumption to off-peak periods. ...

  10. Table 16. Natural gas delivered to consumers by sector, 2011-2015, and by state and sector, 2015

    Energy Information Administration (EIA) (indexed site)

    1 Table 16. Natural gas delivered to consumers by sector, 2011-2015, and by state and sector, 2015 2011 Total 4,713,777 65,940,522 3,155,319 5,319,817 6,994,120 189,301 2012 Total 4,149,519 66,375,134 2,894,926 5,356,397 7,226,215 189,372 2013 Total 4,897,372 66,812,393 3,295,301 5,372,522 7,425,452 192,288 2014 Total R 5,087,471 R 67,196,751 R 3,466,308 R 5,413,546 R 7,646,039 R 192,139 2015 Total 4,609,670 67,873,861 3,198,797 5,449,180 7,534,589 188,585 Alabama 32,709 768,568 24,915 67,746

  11. SU-E-T-371: Validation of Organ Doses Delivered During Craniospinal Irradiation with Helical Tomotherapy

    SciTech Connect

    Perez-Andujar, A; Chen, J; Garcia, A; Haas-Kogan, D

    2014-06-01

    Purpose: New techniques have been developed to deliver more conformal treatments to the craniospinal axis. One concern, however, is the widespread low dose delivered and implications for possible late effects. The purpose of this work is for the first time to validate the organ doses calculated by the treatment planning system (TPS), including out-of-field doses for a pediatric craniospinal treatment (CSI). Methods: A CSI plan prescribed to 23.4 Gy and a posterior fossa boost plan to 30.6 Gy (total dose 54.0 Gy) was developed for a pediatric anthropomorphic phantom representing a 13 yearold- child. For the CSI plan, the planning target volumes (PTV) consisted of the brain and spinal cord with 2 mm and 5 mm expansions, respectively. Organs at risk (OAR) were contoured and included in the plan optimization. The plans were delivered on a helical tomotherapy unit. Thermoluminescent dosimeters (TLDs) were used to measure the dose at 54 positions within the PTV and OARs. Results: For the CSI treatment, the mean percent difference between TPS dose calculations and measurements was 5% for the PTV and 10% for the OARs. For the boost, the average was 3% for the PTV. The percent difference for the OARs, which lie outside the field and received a small fraction of the prescription dose, varied from 15% to 200%. However in terms of absolute dose, the average difference between measurement and TPS per treatment Gy was 2 cGy/Gy and 3 mGy/Gy for the CSI and boost plans, respectively. Conclusion: There was good agreement between doses calculated by the TPS and measurements for the CSI treatment. Higher percent differences were observed for out-of-field doses in the boost plan, but absolute dose differences were very small compared to the prescription dose. These findings can help in the estimation of late effects after radiotherapy for pediatric patients.

  12. Missouri Natural Gas Delivered for the Account of Others

    Gasoline and Diesel Fuel Update

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,007 1,010 1,012 1,016 1,015 1,012 2007-2015

    Mar-16 Apr-16 May-16 Jun-16 Jul-16 Aug-16 View History Delivered to Consumers 1,024 1,024 1,021 1,022 1,022 1,024 2013-2016

    0 0 0 1980-2015 Additions 0 0 0 0 0 0 1980-2015 Withdrawals 0 0 0 0 0 0

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 100.0 1990's 99.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1.0 100.0 2000's 100.0 100.0

  13. Arizona Natural Gas Delivered for the Account of Others

    Gasoline and Diesel Fuel Update

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,016 1,015 1,021 1,025 1,030 1,040 2007-2015

    Mar-16 Apr-16 May-16 Jun-16 Jul-16 Aug-16 View History Delivered to Consumers 1,050 1,042 1,037 1,031 1,031 1,035 2013-2016

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 100.0 1990's 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1.0 100.0 2000's 100.0 100.0 100.0 98.9 100.0 100.0 100.0 100.0 100.0 100.0 2010's

    Year Jan Feb Mar

  14. Research and Development of a Low Cost Solar Collector

    SciTech Connect

    Ansari, Asif; Philip, Lee; Thouppuarachchi, Chirath

    2012-08-01

    conventional Fresnel collector. The noteworthy design features of the BPFC architecture include the use of relatively cheaper flat mirrors and a design which allows the mirror support beam sections to act as load-bearing structural elements resulting in more than a 36% reduction in the overall structural weight compared to an optimized parabolic trough. Also, it was shown that the utilization of small mass-produced elements significantly lowers mass-production and logistics costs that can more quickly deliver economies of scale, even for smaller installations while also reducing shipping and installation costs. Moreover, unlike the traditional Fresnel trough the BPFC architecture does not require complex articulating drive mechanisms but instead utilizes a standard parabolic trough hydraulic drive mechanism. In addition to the development of the Bi-Planar Fresnel Collector, an optimized conventional space-frame type parabolic trough was also designed, built, analyzed and field-tested during the first phase of this award. The design of the conventional space-frame parabolic collector was refined with extensive FEA and CFD analysis to reduce material costs and re-designed for simpler fabrication and more accurate lower-cost field assembly. This optimized parabolic trough represented an improvement over the state-of-the art of the traditional parabolic trough architecture and also served as a more rigorous and less subjective benchmark that was used for comparison of new candidate design architectures. The results of the expanded 1st phase of the DOE award project showed that both the Optimized Parabolic Trough and the new Bi-Planar Fresnel Collector design concepts failed to meet the primary objectives for the project of achieving a 50% cost reduction from the industry reference total installed cost of $350/m2. Results showed that the BPFC came in at projected total installed cost of $237/m2 representing a 32% savings compared to the industry benchmark conventional parabolic

  15. PAFC Cost Challenges

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    PAFC Cost Challenges Sridhar Kanuri Manager, PAFC Technology *Sridhar.Kanuri@utcpower.com 2 AGENDA Purecell® 400 cost challenge Cost reduction opportunities Summary 3 PURECELL ® FUEL CELL SYSTEM First cost 2010 cost reduction is being accomplished by incremental changes in technology & low cost sourcing Technology advances are required to reduce further cost and attain UTC Power's commercialization targets 2010 First unit 2010 Last unit Commercialization target Powerplant cost 4

  16. 21 briefing pages total

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    briefing pages total p. 1 Reservist Differential Briefing U.S. Office of Personnel Management December 11, 2009 p. 2 Agenda - Introduction of Speakers - Background - References/Tools - Overview of Reservist Differential Authority - Qualifying Active Duty Service and Military Orders - Understanding Military Leave and Earnings Statements p. 3 Background 5 U.S.C. 5538 (Section 751 of the Omnibus Appropriations Act, 2009, March 11, 2009) (Public Law 111-8) Law requires OPM to consult with DOD Law

  17. 3D delivered dose assessment using a 4DCT-based motion model

    SciTech Connect

    Cai, Weixing; Hurwitz, Martina H.; Williams, Christopher L.; Dhou, Salam; Berbeco, Ross I.; Mishra, Pankaj E-mail: jhlewis@lroc.harvard.edu; Lewis, John H. E-mail: jhlewis@lroc.harvard.edu; Seco, Joao

    2015-06-15

    Purpose: The purpose of this work is to develop a clinically feasible method of calculating actual delivered dose distributions for patients who have significant respiratory motion during the course of stereotactic body radiation therapy (SBRT). Methods: A novel approach was proposed to calculate the actual delivered dose distribution for SBRT lung treatment. This approach can be specified in three steps. (1) At the treatment planning stage, a patient-specific motion model is created from planning 4DCT data. This model assumes that the displacement vector field (DVF) of any respiratory motion deformation can be described as a linear combination of some basis DVFs. (2) During the treatment procedure, 2D time-varying projection images (either kV or MV projections) are acquired, from which time-varying “fluoroscopic” 3D images of the patient are reconstructed using the motion model. The DVF of each timepoint in the time-varying reconstruction is an optimized linear combination of basis DVFs such that the 2D projection of the 3D volume at this timepoint matches the projection image. (3) 3D dose distribution is computed for each timepoint in the set of 3D reconstructed fluoroscopic images, from which the total effective 3D delivered dose is calculated by accumulating deformed dose distributions. This approach was first validated using two modified digital extended cardio-torso (XCAT) phantoms with lung tumors and different respiratory motions. The estimated doses were compared to the dose that would be calculated for routine 4DCT-based planning and to the actual delivered dose that was calculated using “ground truth” XCAT phantoms at all timepoints. The approach was also tested using one set of patient data, which demonstrated the application of our method in a clinical scenario. Results: For the first XCAT phantom that has a mostly regular breathing pattern, the errors in 95% volume dose (D95) are 0.11% and 0.83%, respectively for 3D fluoroscopic images

  18. Mississippi Natural Gas Delivered for the Account of Others

    Gasoline and Diesel Fuel Update

    917 853 860 607 595 558 1977-2014 Adjustments 26 1 109 65 29 -15 1977-2014 Revision Increases 92 77 105 91 39 82 1977-2014 Revision Decreases 250 70 156 300 75 29 1977-2014 Sales 17 31 11 159 39 115 2000-2014 Acquisitions 2 13 10 109 90 82 2000-2014 Extensions 132 33 24 4 5 9 1977-2014 New Field Discoveries 2 0 1 1 0 1 1977-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 2 1977-2014 Estimated Production 100 87 75 64 61 5

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers

  19. Montana Natural Gas Delivered for the Account of Others

    Gasoline and Diesel Fuel Update

    76 944 778 602 575 667 1977-2014 Adjustments 135 -19 -59 38 3 39 1977-2014 Revision Increases 132 103 43 31 113 89 1977-2014 Revision Decreases 210 100 97 191 49 54 1977-2014 Sales 3 40 44 30 72 2 2000-2014 Acquisitions 3 30 44 4 4 1 2000-2014 Extensions 32 86 14 37 36 77 1977-2014 New Field Discoveries 0 0 7 0 0 0 1977-2014 New Reservoir Discoveries in Old Fields 0 1 1 0 0 0 1977-2014 Estimated Production 113 93 75 65 62 58

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers

  20. New York Natural Gas Delivered for the Account of Others

    Gasoline and Diesel Fuel Update

    96 281 253 184 144 143 1977-2014 Adjustments -84 104 -22 76 -32 38 1977-2014 Revision Increases 39 35 48 12 35 16 1977-2014 Revision Decreases 59 83 50 108 12 31 1977-2014 Sales 54 2 0 43 8 4 2000-2014 Acquisitions 0 11 0 0 0 0 2000-2014 Extensions 0 0 0 21 0 0 1977-2014 New Field Discoveries 0 56 0 0 0 0 1977-2014 New Reservoir Discoveries in Old Fields 0 0 27 0 0 0 1977-2014 Estimated Production 35 36 31 27 23 20

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,022 1,025

  1. Florida Natural Gas Delivered for the Account of Others

    Gasoline and Diesel Fuel Update

    7 56 6 16 15 0 1977-2014 Adjustments 6 64 -54 -2 1 -2 1977-2014 Revision Increases 0 0 13 16 0 39 1977-2014 Revision Decreases 0 0 9 4 2 52 1977-2014 Sales 0 0 0 0 0 0 2000-2014 Acquisitions 0 0 0 0 0 0 2000-2014 Extensions 0 0 0 0 0 0 1977-2014 New Field Discoveries 0 0 0 0 0 0 1977-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 0 1977-2014 Estimated Production 0 15 0 0 0 0

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,019 1,015 1,015 1,016 1,022 1,024

  2. Energy Management in Small Commercial Buildings: A Look at How HVAC Contractors Can Deliver Energy Efficiency to this Segment

    SciTech Connect

    Hult, Erin; Granderson, Jessica; Mathew, Paul

    2014-07-01

    While buildings smaller than 50,000 sq ft account for nearly half of the energy used in US commercial buildings, energy efficiency programs to-date have primarily focused on larger buildings. Interviews with stakeholders and a review of the literature indicate interest in energy efficiency from the small commercial building sector, provided solutions are simple and low-cost. An approach to deliver energy management to small commercial buildings via HVAC contractors and preliminary demonstration findings are presented. The energy management package (EMP) developed includes five technical elements: benchmarking and analysis of monthly energy use; analysis of interval electricity data (if available), a one-hour onsite walkthrough, communication with the building owner, and checking of results. This data-driven approach tracks performance and identifies low-cost opportunities, using guidelines and worksheets for each element to streamline the delivery process and minimize the formal training required. This energy management approach is unique from, but often complementary to conventional quality maintenance or retrofit-focused programs targeting the small commercial segment. Because HVAC contractors already serve these clients, the transaction cost to market and deliver energy management services can be reduced to the order of hundreds of dollars per year. This business model, outlined briefly in this report, enables the offering to benefit the contractor and client even at the modest expected energy savings in small buildings. Results from a small-scale pilot of this approach validated that the EMP could be delivered by contractors in 4-8 hours per building per year, and that energy savings of 3-5percent are feasible through this approach.

  3. Natural Gas Delivered to Consumers in the U.S. (Million Cubic...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Delivered to Consumers in the U.S. (Million Cubic Feet) Natural Gas Delivered to Consumers in the U.S. (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec ...

  4. EERE Success Story-Department of Energy Delivers on R&D Targets...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Delivers on R&D Targets around Cellulosic Ethanol EERE Success Story-Department of Energy Delivers on R&D Targets around Cellulosic Ethanol April 19, 2013 - 11:24am Addthis In ...

  5. Yearly Energy Costs for Buildings

    Energy Science and Technology Software Center

    1991-03-20

    COSTSAFR3.0 generates a set of compliance forms which will be attached to housing Requests for Proposals (RFPs) issued by Departments or Agencies of the Federal Government. The compliance forms provide a uniform method for estimating the total yearly energy cost for each proposal. COSTSAFR3.0 analyzes specific housing projects at a given site, using alternative fuel types, and considering alternative housing types. The program is designed around the concept of minimizing overall costs through energy conservationmore » design, including first cost and future utility costs, and estabilishes a standard design to which proposed housing designs are compared. It provides a point table for each housing type that can be used to determine whether a proposed design meets the standard and how a design can be modified to meet the standard.« less

  6. Secretary Moniz's Remarks at he 2014 National Science Bowl-- As Delivered

    Energy.gov [DOE]

    The Secretary's remarks, as delivered, at the National Science Bowl in Washington, D.C. on April 28, 2014.

  7. Secretary Moniz's Remarks at the AWEA WINDPOWER 2015 Conference and Exhibition-- As Delivered

    Energy.gov [DOE]

    Secretary Moniz's remarks -- as delivered -- at the AWEA WINDPOWER 2015 Conference and Exhibition on May 19, 2015.

  8. Development of surface mine cost estimating equations

    SciTech Connect

    Not Available

    1980-09-26

    Cost estimating equations were developed to determine capital and operating costs for five surface coal mine models in Central Appalachia, Northern Appalachia, Mid-West, Far-West, and Campbell County, Wyoming. Engineering equations were used to estimate equipment costs for the stripping function and for the coal loading and hauling function for the base case mine and for several mines with different annual production levels and/or different overburden removal requirements. Deferred costs were then determined through application of the base case depreciation schedules, and direct labor costs were easily established once the equipment quantities (and, hence, manpower requirements) were determined. The data points were then fit with appropriate functional forms, and these were then multiplied by appropriate adjustment factors so that the resulting equations yielded the model mine costs for initial and deferred capital and annual operating cost. (The validity of this scaling process is based on the assumption that total initial and deferred capital costs are proportional to the initial and deferred costs for the primary equipment types that were considered and that annual operating cost is proportional to the direct labor costs that were determined based on primary equipment quantities.) Initial capital costs ranged from $3,910,470 in Central Appalachia to $49,296,785; deferred capital costs ranged from $3,220,000 in Central Appalachia to $30,735,000 in Campbell County, Wyoming; and annual operating costs ranged from $2,924,148 in Central Appalachia to $32,708,591 in Campbell County, Wyoming. (DMC)

  9. Cost Model and Cost Estimating Software

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    1997-03-28

    This chapter discusses a formalized methodology is basically a cost model, which forms the basis for estimating software.

  10. Generation cost unbundling: Untangling the gordian knot

    SciTech Connect

    Conkling, R.L.

    1997-03-01

    One useful byproduct of California`s efforts to restructure its electricity industry comes in the form of Southern California Edison`s proposal to facilitate unbundling by adopting a superior cost allocation method. Utilities and regulators elsewhere should take notice. Clearing the deck for generating competition is the urgent order of the day in electric restructuring. The critical question is: What are the generation costs to be unbundled? Schemes for restructuring, both in California and elsewhere, have called for the stranded component of utility generating costs to be recovered through customer payments of a non-bypassable competition transition charge (CTC). The stranded cost component of generation is the difference between total costs and the revenues received from future market-based prices. This makes a total cost determination for the calculation of the CTC essential, not optional.

  11. Activity Based Costing

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    1997-03-28

    Activity Based Costing (ABC) is method for developing cost estimates in which the project is subdivided into discrete, quantifiable activities or a work unit. This chapter outlines the Activity Based Costing method and discusses applicable uses of ABC.

  12. New geothermal heat extraction process to deliver clean power generation

    ScienceCinema

    Pete McGrail

    2012-12-31

    A new method for capturing significantly more heat from low-temperature geothermal resources holds promise for generating virtually pollution-free electrical energy. Scientists at the Department of Energys Pacific Northwest National Laboratory will determine if their innovative approach can safely and economically extract and convert heat from vast untapped geothermal resources. The goal is to enable power generation from low-temperature geothermal resources at an economical cost. In addition to being a clean energy source without any greenhouse gas emissions, geothermal is also a steady and dependable source of power.

  13. Clean Cities Case Study: UPS delivers with Alternative Fuels

    SciTech Connect

    Frailey, M.

    1999-08-30

    In the fall of 1994, the UPS fleet in Landover, Maryland, began operating 20 vehicles on CNG. UPS selected CNG because natural gas is an abundant domestic resource that is available in almost every city in the US, and it also generally costs less than other fuels. The UPS project, funded by DOE through NREL and managed by TRI, was designed to test the feasibility of using CNG in a medium-duty pick-up and delivery fleet. This study is intended only to illustrate approaches that organizations could use in adopting AFVs into their fleets.

  14. Final Scientific and Technical Report - Practical Fiber Delivered Laser Ignition Systems for Vehicles

    SciTech Connect

    Yalin, Azer

    2014-03-30

    Research has characterized advanced kagome fiber optics for their use in laser ignition systems. In comparison to past fibers used in laser ignition, these fibers have the important advantage of being relatively bend-insensitivity, so that they can be bent and coiled without degradation of output energy or beam quality. The results are very promising for practical systems. For pulse durations of ~12 ns, the fibers could deliver >~10 mJ pulses before damage onset. A study of pulse duration showed that by using longer pulse duration (~20 – 30 ns), it is possible to carry even higher pulse energy (by factor of ~2-3) which also provides future opportunities to implement longer duration sources. Beam quality measurements showed nearly single-mode output from the kagome fibers (i.e. M2 close to 1) which is the optimum possible value and, combined with their high pulse energy, shows the suitability of the fibers for laser ignition. Research has also demonstrated laser ignition of an engine including reliable (100%) ignition of a single-cylinder gasoline engine using the laser ignition system with bent and coiled kagome fiber. The COV of IMEP was <2% which is favorable for stable engine operation. These research results, along with the continued reduction in cost of laser sources, support our commercial development of practical laser ignition systems.

  15. Life Cycle Cost Estimate

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    1997-03-28

    Life-cycle costs (LCCs) are all the anticipated costs associated with a project or program alternative throughout its life. This includes costs from pre-operations through operations or to the end of the alternative.This chapter discusses life cycle costs and the role they play in planning.

  16. Cost Estimation Package

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    1997-03-28

    This chapter focuses on the components (or elements) of the cost estimation package and their documentation.

  17. A chronicle of costs

    SciTech Connect

    Elioff, T.

    1994-04-01

    This report contains the history of all estimated costs associated with the superconducting super collider.

  18. U.S. Total Exports

    Energy Information Administration (EIA) (indexed site)

    Total To Barbados Total To Brazil Freeport, TX Sabine Pass, LA Total to Canada Eastport, ID Calais, ME Detroit, MI Marysville, MI Port Huron, MI Crosby, ND Portal, ND Sault St. Marie, MI St. Clair, MI Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Morgan, MT Sherwood, ND Pittsburg, NH Buffalo, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to Egypt Freeport, TX Total to

  19. U.S. Total Exports

    Energy Information Administration (EIA) (indexed site)

    Sabine Pass, LA Total To Barbados Miami, FL Total To Brazil Freeport, TX Sabine Pass, LA Total to Canada Eastport, ID Calais, ME Detroit, MI Marysville, MI Port Huron, MI Portal, ND Sault St. Marie, MI St. Clair, MI Noyes, MN Babb, MT Havre, MT Port of Morgan, MT Sherwood, ND Pittsburg, NH Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to Dominican Republic Sabine Pass, LA Total

  20. Hydrogen Threshold Cost Calculation

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Program Record (Offices of Fuel Cell Technologies) Record #: 11007 Date: March 25, 2011 Title: Hydrogen Threshold Cost Calculation Originator: Mark Ruth & Fred Joseck Approved by: Sunita Satyapal Date: March 24, 2011 Description: The hydrogen threshold cost is defined as the hydrogen cost in the range of $2.00-$4.00/gge (2007$) which represents the cost at which hydrogen fuel cell electric vehicles (FCEVs) are projected to become competitive on a cost per mile basis with the competing

  1. OOTW COST TOOLS

    SciTech Connect

    HARTLEY, D.S.III; PACKARD, S.L.

    1998-09-01

    This document reports the results of a study of cost tools to support the analysis of Operations Other Than War (OOTW). It recommends the continued development of the Department of Defense (DoD) Contingency Operational Support Tool (COST) as the basic cost analysis tool for 00TWS. It also recommends modifications to be included in future versions of COST and the development of an 00TW mission planning tool to supply valid input for costing.

  2. Hydrogen Pathway Cost Distributions

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Pathway Cost Distributions Jim Uihlein Fuel Pathways Integration Tech Team January 25, 2006 2 Outline * Pathway-Independent Cost Goal * Cost Distribution Objective * Overview * H2A Influence * Approach * Implementation * Results * Discussion Process * Summary 3 Hydrogen R&D Cost Goal * Goal is pathway independent * Developed through a well defined, transparent process * Consumer fueling costs are equivalent or less on a cents per mile basis * Evolved gasoline ICE and gasoline-electric

  3. Secretary Chu to Deliver Keynote on EV Everywhere Grand Challenge at Washington Auto Show

    Office of Energy Efficiency and Renewable Energy (EERE)

    Thursday, January 31, 2013, Secretary Chu will deliver the government keynote address at the Washington Auto Show’s Public Policy Day

  4. Sandia-Developed LED Pulser Delivers Laser-Like Performance at...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy Frontier Research Centers: Solid-State Lighting Science Center for Frontiers of ... diode (LED) driver delivers lighting performance that exceeds that of ...

  5. Delivered Energy Consumption Projections by Industry in the Annual Energy Outlook 2002

    Reports and Publications

    2002-01-01

    This paper presents delivered energy consumption and intensity projections for the industries included in the industrial sector of the National Energy Modeling System.

  6. Secretary Moniz's Remarks at the White House Tribal Nations Conference-- As Delivered

    Energy.gov [DOE]

    Secretary Moniz's remarks, as delivered, at the White House Tribal Nations Conference on the panel on White House Council on Native American Affairs Energy and Climate Work Groups.

  7. Secretary Moniz's Remarks on Project Management Reform at the National Academy of Public Administration-- As Delivered

    Energy.gov [DOE]

    Secretary Moniz's remarks, as delivered, on Project Management at the National Academy of Public Administration in Washington, DC on January 15, 2015.

  8. Energy Secretary Moniz to Deliver Keynote Remarks at Powering Africa Summit

    Energy.gov [DOE]

    U.S. Energy Secretary Ernest Moniz will deliver keynote remarks at the Powering Africa Summit in Washington, D.C.

  9. ASPEN costing manual

    SciTech Connect

    Schwint, K.J.

    1986-07-25

    The ASPEN program contains within it a Cost Estimation System (CES) which estimates the purchase cost and utility consumption rates for major pieces of equipment in a process flowsheet as well as installed equipment costs. These estimates are ''preliminary-study grade'' with an accuracy of plus or minus 30%. The ASPEN program also contains within it an Economic Evaluation System (EES) which estimates overall capital investment costs, annual operating expenses and profitability indices for a chemical plant. This ASPEN costing manual has been written as a guide for those inexperienced in the use of ASPEN and unfamiliar with standard cost estimating techniques who want to use the ASPEN CES and EES. The ASPEN Costing Manual is comprised of the following sections: (1) Introduction, (2) ASPEN Input Language, (3) ASPEN Cost Estimation System (CES), (4) ASPEN Cost Blocks; and (5) ASPEN Economic Evaluation System (EES).

  10. The Globus Galaxies Platform. Delivering Science Gateways as a Service

    SciTech Connect

    Madduri, Ravi; Chard, Kyle; Chard, Ryan; Lacinski, Lukasz; Rodriguez, Alex; Sulakhe, Dinanath; Kelly, David; Dave, Utpal; Foster, Ian

    2015-04-29

    We use public cloud computers to host sophisticated scientific data; software is then used to transform scientific practice by enabling broad access to capabilities previously available only to the few. The primary obstacle to more widespread use of public clouds to host scientific software (‘cloud-based science gateways’) has thus far been the considerable gap between the specialized needs of science applications and the capabilities provided by cloud infrastructures. We describe here a domain-independent, cloud-based science gateway platform, the Globus Galaxies platform, which overcomes this gap by providing a set of hosted services that directly address the needs of science gateway developers. The design and implementation of this platform leverages our several years of experience with Globus Genomics, a cloud-based science gateway that has served more than 200 genomics researchers across 30 institutions. Building on that foundation, we have also implemented a platform that leverages the popular Galaxy system for application hosting and workflow execution; Globus services for data transfer, user and group management, and authentication; and a cost-aware elastic provisioning model specialized for public cloud resources. We describe here the capabilities and architecture of this platform, present six scientific domains in which we have successfully applied it, report on user experiences, and analyze the economics of our deployments. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  11. Heat Content of Natural Gas Delivered to Consumers

    Energy Information Administration (EIA) (indexed site)

    Total Consumption Electric Power Other Sectors Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2010 2011 2012 2013 2014 2015 View History U.S. 1,023 1,022 1,024 1,027 1,032 1,037 2003-2015 Alabama 1,018 1,018 1,016 1,017 1,024 1,030 2007-2015 Alaska 1,005 1,013 1,012 1,001 1,001 1,001 2007-2015 Arizona 1,016 1,015 1,021 1,025 1,030 1,040 2007-2015 Arkansas 1,012 1,017 1,015

  12. Total Eolica | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Eolica Jump to: navigation, search Name: Total Eolica Place: Spain Product: Project developer References: Total Eolica1 This article is a stub. You can help OpenEI by expanding...

  13. Total

    Energy Information Administration (EIA) (indexed site)

    1,001 to 5,000 2,777 8,041 10,232 2.9 786 56 5,001 to 10,000 1,229 8,900 9,225 7.2 965 62 10,001 to 25,000 884 14,105 14,189 16.0 994 65 25,001 to 50,000 332 11,917 11,327 35.9 1,052 72 50,001 to 100,000 199 13,918 12,345 69.9 1,127 80 100,001 to 200,000 90 12,415 11,310 137.9 1,098 89 200,001 to 500,000 38 10,724 10,356 284.2 1,035 99 Over 500,000 8 7,074 9,196 885.0 769 117 Principal building activity Education 389 12,239 10,885 31.5 1,124 53 Food sales 177 1,252 1,172 7.1 1,067 121 Food

  14. Total

    Energy Information Administration (EIA) (indexed site)

    1,001 to 5,000 2,777 8,041 10,232 2.9 786 56 5,001 to 10,000 1,229 8,900 9,225 7.2 965 62 10,001 to 25,000 884 14,105 14,189 16.0 994 65 25,001 to 50,000 332 11,917 11,327 35.9 1,052 72 50,001 to 100,000 199 13,918 12,345 69.9 1,127 80 100,001 to 200,000 90 12,415 11,310 137.9 1,098 89 200,001 to 500,000 38 10,724 10,356 284.2 1,035 99 Over 500,000 8 7,074 9,196 885.0 769 117 Principal building activity Education 389 12,239 10,885 31.5 1,124 53 Food sales 177 1,252 1,172 7.1 1,067 121 Food

  15. Total

    Energy Information Administration (EIA) (indexed site)

    Median square feet per building (thousand) Median square feet per worker Median operating hours per week Median age of buildings (years) All buildings 5,557 87,093 88,182 5.0 1,029 50 32 Building floorspace (square feet) 1,001 to 5,000 2,777 8,041 10,232 2.8 821 49 37 5,001 to 10,000 1,229 8,900 9,225 7.0 1,167 50 31 10,001 to 25,000 884 14,105 14,189 15.0 1,444 56 32 25,001 to 50,000 332 11,917 11,327 35.0 1,461 60 29 50,001 to 100,000 199 13,918 12,345 67.0 1,442 60 26 100,001 to 200,000 90

  16. Total

    Gasoline and Diesel Fuel Update

    Fuel Oil, Greater than 500 ppm Sulfur Residual Fuel Oil Lubricants Asphalt and Road Oil Other Products Period: Annual (as of January 1) Download Series History Download ...

  17. Total

    Gasoline and Diesel Fuel Update

    of photovoltaic module shipments, 2015 (peak kilowatts) Source Disposition Source: U.S. Energy Information Administration, Form EIA-63B, 'Annual Photovoltaic CellModule ...

  18. Total..........................................................

    Energy Information Administration (EIA) (indexed site)

    ... Housing Units (millions) UrbanRural Location (as Self-Reported) Living Space ... Housing Units (millions) UrbanRural Location (as Self-Reported) Living Space ...

  19. Total..........................................................

    Energy Information Administration (EIA) (indexed site)

    ... Housing Units (millions) UrbanRural Location (as Self-Reported) City Town Suburbs Rural ... Housing Units (millions) UrbanRural Location (as Self-Reported) City Town Suburbs Rural ...

  20. Total..........................................................

    Annual Energy Outlook

    Living Space Characteristics Detached Attached Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC3.2 ...

  1. Total..........................................................

    Energy Information Administration (EIA) (indexed site)

    ... 111.1 20.6 15.1 5.5 Do Not Have Cooling Equipment...... 17.8 4.0 2.4 1.7 Have Cooling Equipment...... 93.3 ...

  2. Total..........................................................

    Annual Energy Outlook

    ... Average Square Feet per Apartment in a -- Apartments (millions) Major Outside Wall Construction Siding (Aluminum, Vinyl, Steel)...... 35.3 3.5 1,286 1,090 325 852 786 461 ...

  3. Total

    Gasoline and Diesel Fuel Update

    ... District heat 48 5,964 8,230 124.9 725 87 District chilled water 54 4,608 5,742 85.4 803 ... Natural gas 12 732 1,048 61.5 699 67 District chilled water 54 4,608 5,742 85.4 803 87 ...

  4. Total..............................................

    Energy Information Administration (EIA) (indexed site)

    111.1 86.6 2,720 1,970 1,310 1,941 1,475 821 1,059 944 554 Census Region and Division Northeast.................................... 20.6 13.9 3,224 2,173 836 2,219 1,619 583 903 830 Q New England.......................... 5.5 3.6 3,365 2,154 313 2,634 1,826 Q 951 940 Q Middle Atlantic........................ 15.1 10.3 3,167 2,181 1,049 2,188 1,603 582 Q Q Q Midwest...................................... 25.6 21.0 2,823 2,239 1,624 2,356 1,669 1,336 1,081 961 778 East North

  5. Total...........................................................

    Energy Information Administration (EIA) (indexed site)

    Q Million U.S. Housing Units Renter- Occupied Housing Units (millions) Type of Renter-Occupied Housing Unit U.S. Housing Units (millions Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Table HC4.2 Living Space Characteristics by Renter-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing

  6. Total............................................................

    Energy Information Administration (EIA) (indexed site)

  7. Total.............................................................

    Energy Information Administration (EIA) (indexed site)

    26.7 28.8 20.6 13.1 22.0 16.6 38.6 Personal Computers Do Not Use a Personal Computer........... 35.5 17.1 10.8 4.2 1.8 1.6 10.3 20.6 Use a Personal Computer....................... 75.6 9.6 18.0 16.4 11.3 20.3 6.4 17.9 Most-Used Personal Computer Type of PC Desk-top Model.................................. 58.6 7.6 14.2 13.1 9.2 14.6 5.0 14.5 Laptop Model...................................... 16.9 2.0 3.8 3.3 2.1 5.7 1.3 3.5 Hours Turned on Per Week Less than 2 Hours..............................

  8. Total..............................................................

    Energy Information Administration (EIA) (indexed site)

    ,171 1,618 1,031 845 630 401 Census Region and Division Northeast................................................... 20.6 2,334 1,664 562 911 649 220 New England.......................................... 5.5 2,472 1,680 265 1,057 719 113 Middle Atlantic........................................ 15.1 2,284 1,658 670 864 627 254 Midwest...................................................... 25.6 2,421 1,927 1,360 981 781 551 East North Central.................................. 17.7 2,483 1,926 1,269

  9. Total..............................................................

    Energy Information Administration (EIA) (indexed site)

    Do Not Have Cooling Equipment................ 17.8 5.3 4.7 2.8 1.9 3.1 3.6 7.5 Have Cooling Equipment............................. 93.3 21.5 24.1 17.8 11.2 18.8 13.0 31.1 Use Cooling Equipment.............................. 91.4 21.0 23.5 17.4 11.0 18.6 12.6 30.3 Have Equipment But Do Not Use it............. 1.9 0.5 0.6 0.4 Q Q 0.5 0.8 Type of Air-Conditioning Equipment 1, 2 Central System.......................................... 65.9 11.0 16.5 13.5 8.7 16.1 6.4 17.2 Without a Heat

  10. Total...............................................................

    Energy Information Administration (EIA) (indexed site)

    20.6 25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer ........... 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer......................... 75.6 13.7 17.5 26.6 17.8 Number of Desktop PCs 1.......................................................... 50.3 9.3 11.9 18.2 11.0 2.......................................................... 16.2 2.9 3.5 5.5 4.4 3 or More............................................. 9.0 1.5 2.1 2.9 2.5 Number of Laptop PCs

  11. Total...............................................................

    Energy Information Administration (EIA) (indexed site)

    0.7 21.7 6.9 12.1 Personal Computers Do Not Use a Personal Computer ........... 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer......................... 75.6 26.6 14.5 4.1 7.9 Number of Desktop PCs 1.......................................................... 50.3 18.2 10.0 2.9 5.3 2.......................................................... 16.2 5.5 3.0 0.7 1.8 3 or More............................................. 9.0 2.9 1.5 0.5 0.8 Number of Laptop PCs

  12. Total...............................................................

    Energy Information Administration (EIA) (indexed site)

    26.7 28.8 20.6 13.1 22.0 16.6 38.6 Personal Computers Do Not Use a Personal Computer ........... 35.5 17.1 10.8 4.2 1.8 1.6 10.3 20.6 Use a Personal Computer......................... 75.6 9.6 18.0 16.4 11.3 20.3 6.4 17.9 Number of Desktop PCs 1.......................................................... 50.3 8.3 14.2 11.4 7.2 9.2 5.3 14.2 2.......................................................... 16.2 0.9 2.6 3.7 2.9 6.2 0.8 2.6 3 or More............................................. 9.0 0.4 1.2

  13. Total...............................................................

    Energy Information Administration (EIA) (indexed site)

    Do Not Have Cooling Equipment................. 17.8 5.3 4.7 2.8 1.9 3.1 3.6 7.5 Have Cooling Equipment.............................. 93.3 21.5 24.1 17.8 11.2 18.8 13.0 31.1 Use Cooling Equipment............................... 91.4 21.0 23.5 17.4 11.0 18.6 12.6 30.3 Have Equipment But Do Not Use it............. 1.9 0.5 0.6 0.4 Q Q 0.5 0.8 Air-Conditioning Equipment 1, 2 Central System............................................ 65.9 11.0 16.5 13.5 8.7 16.1 6.4 17.2 Without a Heat

  14. Total...............................................................

    Energy Information Administration (EIA) (indexed site)

    47.1 19.0 22.7 22.3 Personal Computers Do Not Use a Personal Computer ........... 35.5 16.9 6.5 4.6 7.6 Use a Personal Computer......................... 75.6 30.3 12.5 18.1 14.7 Number of Desktop PCs 1.......................................................... 50.3 21.1 8.3 10.7 10.1 2.......................................................... 16.2 6.2 2.8 4.1 3.0 3 or More............................................. 9.0 2.9 1.4 3.2 1.6 Number of Laptop PCs

  15. Total................................................................

    Energy Information Administration (EIA) (indexed site)

    111.1 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Do Not Have Space Heating Equipment....... 1.2 0.5 0.3 0.2 Q 0.2 0.3 0.6 Have Main Space Heating Equipment.......... 109.8 26.2 28.5 20.4 13.0 21.8 16.3 37.9 Use Main Space Heating Equipment............ 109.1 25.9 28.1 20.3 12.9 21.8 16.0 37.3 Have Equipment But Do Not Use It.............. 0.8 0.3 0.3 Q Q N 0.4 0.6 Main Heating Fuel and Equipment Natural Gas.................................................. 58.2 12.2 14.4 11.3 7.1 13.2 7.6 18.3 Central

  16. Total.................................................................

    Energy Information Administration (EIA) (indexed site)

    49.2 15.1 15.6 11.1 7.0 5.2 8.0 Have Cooling Equipment............................... 93.3 31.3 15.1 15.6 11.1 7.0 5.2 8.0 Use Cooling Equipment................................ 91.4 30.4 14.6 15.4 11.1 6.9 5.2 7.9 Have Equipment But Do Not Use it............... 1.9 1.0 0.5 Q Q Q Q Q Do Not Have Cooling Equipment................... 17.8 17.8 N N N N N N Air-Conditioning Equipment 1, 2 Central System............................................. 65.9 3.9 15.1 15.6 11.1 7.0 5.2 8.0 Without a Heat

  17. Total.................................................................

    Energy Information Administration (EIA) (indexed site)

    14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Do Not Have Space Heating Equipment........ 1.2 N Q Q 0.2 0.4 0.2 0.2 Q Have Main Space Heating Equipment........... 109.8 14.7 7.4 12.4 12.2 18.5 18.3 17.1 9.2 Use Main Space Heating Equipment............. 109.1 14.6 7.3 12.4 12.2 18.2 18.2 17.1 9.1 Have Equipment But Do Not Use It............... 0.8 Q Q Q Q 0.3 Q N Q Main Heating Fuel and Equipment Natural Gas................................................... 58.2 9.2 4.9 7.8 7.1 8.8 8.4 7.8 4.2 Central

  18. Total.................................................................

    Energy Information Administration (EIA) (indexed site)

    26.7 28.8 20.6 13.1 22.0 16.6 38.6 Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day.............................. 8.2 2.9 2.5 1.3 0.5 1.0 2.4 4.6 2 Times A Day........................................... 24.6 6.5 7.0 4.3 3.2 3.6 4.8 10.3 Once a Day................................................ 42.3 8.8 9.8 8.7 5.1 10.0 5.0 12.9 A Few Times Each Week........................... 27.2 5.6 7.2 4.7 3.3 6.3 3.2 7.5 About Once a Week................................... 3.9 1.1 1.1

  19. Total..................................................................

    Energy Information Administration (EIA) (indexed site)

    78.1 64.1 4.2 1.8 2.3 5.7 Do Not Have Cooling Equipment..................... 17.8 11.3 9.3 0.6 Q 0.4 0.9 Have Cooling Equipment................................. 93.3 66.8 54.7 3.6 1.7 1.9 4.8 Use Cooling Equipment.................................. 91.4 65.8 54.0 3.6 1.7 1.9 4.7 Have Equipment But Do Not Use it................. 1.9 1.1 0.8 Q N Q Q Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 51.7 43.9 2.5 0.7 1.6 3.1 Without a Heat

  20. Total..................................................................

    Energy Information Administration (EIA) (indexed site)

    33.0 8.0 3.4 5.9 14.4 1.2 Do Not Have Cooling Equipment..................... 17.8 6.5 1.6 0.9 1.3 2.4 0.2 Have Cooling Equipment................................. 93.3 26.5 6.5 2.5 4.6 12.0 1.0 Use Cooling Equipment.................................. 91.4 25.7 6.3 2.5 4.4 11.7 0.8 Have Equipment But Do Not Use it................. 1.9 0.8 Q Q 0.2 0.3 Q Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 14.1 3.6 1.5 2.1 6.4 0.6 Without a Heat

  1. Total..................................................................

    Energy Information Administration (EIA) (indexed site)

    . 111.1 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Do Not Have Cooling Equipment..................... 17.8 3.9 1.8 2.2 2.1 3.1 2.6 1.7 0.4 Have Cooling Equipment................................. 93.3 10.8 5.6 10.3 10.4 15.8 16.0 15.6 8.8 Use Cooling Equipment.................................. 91.4 10.6 5.5 10.3 10.3 15.3 15.7 15.3 8.6 Have Equipment But Do Not Use it................. 1.9 Q Q Q Q 0.6 0.4 0.3 Q Type of Air-Conditioning Equipment 1, 2 Central

  2. Total...................................................................

    Energy Information Administration (EIA) (indexed site)

    15.2 7.8 1.0 1.2 3.3 1.9 For Two Housing Units............................. 0.9 Q N Q 0.6 N Heat Pump.................................................. 9.2 7.4 0.3 Q 0.7 0.5 Portable Electric Heater............................... 1.6 0.8 Q Q Q 0.3 Other Equipment......................................... 1.9 0.7 Q Q 0.7 Q Fuel Oil........................................................... 7.7 5.5 0.4 0.8 0.9 0.2 Steam or Hot Water System........................ 4.7 2.9 Q 0.7 0.8 N For One Housing

  3. Total...................................................................

    Energy Information Administration (EIA) (indexed site)

    Air-Conditioning Equipment 1, 2 Central System............................................... 65.9 47.5 4.0 2.8 7.9 3.7 Without a Heat Pump.................................. 53.5 37.8 3.4 2.2 7.0 3.1 With a Heat Pump....................................... 12.3 9.7 0.6 0.5 1.0 0.6 Window/Wall Units.......................................... 28.9 14.9 2.3 3.5 6.0 2.1 1 Unit........................................................... 14.5 6.6 1.0 1.6 4.2 1.2 2

  4. Total...................................................................

    Energy Information Administration (EIA) (indexed site)

    Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 47.5 4.0 2.8 7.9 3.7 Without a Heat Pump.................................. 53.5 37.8 3.4 2.2 7.0 3.1 With a Heat Pump....................................... 12.3 9.7 0.6 0.5 1.0 0.6 Window/Wall Units........................................ 28.9 14.9 2.3 3.5 6.0 2.1 1 Unit........................................................... 14.5 6.6 1.0 1.6 4.2 1.2 2

  5. Total....................................................................

    Energy Information Administration (EIA) (indexed site)

    14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Household Size 1 Person.......................................................... 30.0 4.6 2.5 3.7 3.2 5.4 5.5 3.7 1.6 2 Persons......................................................... 34.8 4.3 1.9 4.4 4.1 5.9 5.3 5.5 3.4 3 Persons......................................................... 18.4 2.5 1.3 1.7 1.9 2.9 3.5 2.8 1.6 4 Persons......................................................... 15.9 1.9 0.8 1.5 1.6 3.0 2.5 3.1 1.4 5

  6. Total.......................................................................

    Energy Information Administration (EIA) (indexed site)

    0.6 15.1 5.5 Personal Computers Do Not Use a Personal Computer ................... 35.5 6.9 5.3 1.6 Use a Personal Computer................................ 75.6 13.7 9.8 3.9 Number of Desktop PCs 1.................................................................. 50.3 9.3 6.8 2.5 2.................................................................. 16.2 2.9 1.9 1.0 3 or More..................................................... 9.0 1.5 1.1 0.4 Number of Laptop PCs

  7. Total.......................................................................

    Energy Information Administration (EIA) (indexed site)

    5.6 17.7 7.9 Personal Computers Do Not Use a Personal Computer ................... 35.5 8.1 5.6 2.5 Use a Personal Computer................................ 75.6 17.5 12.1 5.4 Number of Desktop PCs 1.................................................................. 50.3 11.9 8.4 3.4 2.................................................................. 16.2 3.5 2.2 1.3 3 or More..................................................... 9.0 2.1 1.5 0.6 Number of Laptop PCs

  8. Total.......................................................................

    Energy Information Administration (EIA) (indexed site)

    4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer ................... 35.5 6.4 2.2 4.2 Use a Personal Computer................................ 75.6 17.8 5.3 12.5 Number of Desktop PCs 1.................................................................. 50.3 11.0 3.4 7.6 2.................................................................. 16.2 4.4 1.3 3.1 3 or More..................................................... 9.0 2.5 0.7 1.8 Number of Laptop PCs

  9. Total........................................................................

    Energy Information Administration (EIA) (indexed site)

    25.6 40.7 24.2 Do Not Have Space Heating Equipment............... 1.2 Q Q Q 0.7 Have Main Space Heating Equipment.................. 109.8 20.5 25.6 40.3 23.4 Use Main Space Heating Equipment.................... 109.1 20.5 25.6 40.1 22.9 Have Equipment But Do Not Use It...................... 0.8 N N Q 0.6 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 11.4 18.4 13.6 14.7 Central Warm-Air Furnace................................ 44.7 6.1

  10. Total........................................................................

    Energy Information Administration (EIA) (indexed site)

    5.6 17.7 7.9 Do Not Have Space Heating Equipment............... 1.2 Q Q N Have Main Space Heating Equipment.................. 109.8 25.6 17.7 7.9 Use Main Space Heating Equipment.................... 109.1 25.6 17.7 7.9 Have Equipment But Do Not Use It...................... 0.8 N N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 18.4 13.1 5.3 Central Warm-Air Furnace................................ 44.7 16.2 11.6 4.7 For One Housing

  11. Total........................................................................

    Energy Information Administration (EIA) (indexed site)

    0.7 21.7 6.9 12.1 Do Not Have Space Heating Equipment............... 1.2 Q Q N Q Have Main Space Heating Equipment.................. 109.8 40.3 21.4 6.9 12.0 Use Main Space Heating Equipment.................... 109.1 40.1 21.2 6.9 12.0 Have Equipment But Do Not Use It...................... 0.8 Q Q N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 13.6 5.6 2.3 5.7 Central Warm-Air Furnace................................ 44.7 11.0 4.4

  12. Total........................................................................

    Energy Information Administration (EIA) (indexed site)

    7.1 7.0 8.0 12.1 Do Not Have Space Heating Equipment............... 1.2 Q Q Q 0.2 Have Main Space Heating Equipment.................. 109.8 7.1 6.8 7.9 11.9 Use Main Space Heating Equipment.................... 109.1 7.1 6.6 7.9 11.4 Have Equipment But Do Not Use It...................... 0.8 N Q N 0.5 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 3.8 0.4 3.8 8.4 Central Warm-Air Furnace................................ 44.7 1.8 Q 3.1 6.0

  13. Total...........................................................................

    Energy Information Administration (EIA) (indexed site)

    0.6 15.1 5.5 Do Not Have Cooling Equipment............................. 17.8 4.0 2.4 1.7 Have Cooling Equipment.......................................... 93.3 16.5 12.8 3.8 Use Cooling Equipment........................................... 91.4 16.3 12.6 3.7 Have Equipment But Do Not Use it.......................... 1.9 0.3 Q Q Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 6.0 5.2 0.8 Without a Heat

  14. Total...........................................................................

    Energy Information Administration (EIA) (indexed site)

    5.6 17.7 7.9 Do Not Have Cooling Equipment............................. 17.8 2.1 1.8 0.3 Have Cooling Equipment.......................................... 93.3 23.5 16.0 7.5 Use Cooling Equipment........................................... 91.4 23.4 15.9 7.5 Have Equipment But Do Not Use it.......................... 1.9 Q Q Q Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 17.3 11.3 6.0 Without a Heat

  15. Total...........................................................................

    Energy Information Administration (EIA) (indexed site)

    4.2 7.6 16.6 Do Not Have Cooling Equipment............................. 17.8 10.3 3.1 7.3 Have Cooling Equipment.......................................... 93.3 13.9 4.5 9.4 Use Cooling Equipment........................................... 91.4 12.9 4.3 8.5 Have Equipment But Do Not Use it.......................... 1.9 1.0 Q 0.8 Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 10.5 3.9 6.5 Without a Heat

  16. Total.............................................................................

    Energy Information Administration (EIA) (indexed site)

    Do Not Have Cooling Equipment............................... 17.8 4.0 2.1 1.4 10.3 Have Cooling Equipment............................................ 93.3 16.5 23.5 39.3 13.9 Use Cooling Equipment............................................. 91.4 16.3 23.4 38.9 12.9 Have Equipment But Do Not Use it............................ 1.9 0.3 Q 0.5 1.0 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 6.0 17.3 32.1 10.5 Without a Heat

  17. Total.............................................................................

    Energy Information Administration (EIA) (indexed site)

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 1.2 1.0 0.2 2 Times A Day...................................................... 24.6 4.0 2.7 1.2 Once a Day........................................................... 42.3 7.9 5.4 2.5 A Few Times Each Week...................................... 27.2 6.0 4.8 1.2 About Once a Week.............................................. 3.9 0.6 0.5 Q Less Than Once a

  18. Total.............................................................................

    Energy Information Administration (EIA) (indexed site)

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 1.4 1.0 0.4 2 Times A Day...................................................... 24.6 5.8 3.5 2.3 Once a Day........................................................... 42.3 10.7 7.8 2.9 A Few Times Each Week...................................... 27.2 5.6 4.0 1.6 About Once a Week.............................................. 3.9 0.9 0.6 0.3 Less Than Once a

  19. Total.............................................................................

    Energy Information Administration (EIA) (indexed site)

    Do Not Have Cooling Equipment............................... 17.8 2.1 1.8 0.3 Have Cooling Equipment............................................ 93.3 23.5 16.0 7.5 Use Cooling Equipment............................................. 91.4 23.4 15.9 7.5 Have Equipment But Do Not Use it............................ 1.9 Q Q Q Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 17.3 11.3 6.0 Without a Heat

  20. Total.............................................................................

    Energy Information Administration (EIA) (indexed site)

    Do Not Have Cooling Equipment............................... 17.8 1.4 0.8 0.2 0.3 Have Cooling Equipment............................................ 93.3 39.3 20.9 6.7 11.8 Use Cooling Equipment............................................. 91.4 38.9 20.7 6.6 11.7 Have Equipment But Do Not Use it............................ 1.9 0.5 Q Q Q Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 32.1 17.6 5.2 9.3 Without a Heat

  1. Total.............................................................................

    Energy Information Administration (EIA) (indexed site)

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 2.6 0.7 1.9 2 Times A Day...................................................... 24.6 6.6 2.0 4.6 Once a Day........................................................... 42.3 8.8 2.9 5.8 A Few Times Each Week...................................... 27.2 4.7 1.5 3.1 About Once a Week.............................................. 3.9 0.7 Q 0.6 Less Than Once a

  2. Total.............................................................................

    Energy Information Administration (EIA) (indexed site)

    Do Not Have Cooling Equipment............................... 17.8 10.3 3.1 7.3 Have Cooling Equipment............................................ 93.3 13.9 4.5 9.4 Use Cooling Equipment............................................. 91.4 12.9 4.3 8.5 Have Equipment But Do Not Use it............................ 1.9 1.0 Q 0.8 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 10.5 3.9 6.5 Without a Heat

  3. Total.............................................................................

    Energy Information Administration (EIA) (indexed site)

    Do Not Have Cooling Equipment............................... 17.8 8.5 2.7 2.6 4.0 Have Cooling Equipment............................................ 93.3 38.6 16.2 20.1 18.4 Use Cooling Equipment............................................. 91.4 37.8 15.9 19.8 18.0 Have Equipment But Do Not Use it............................ 1.9 0.9 0.3 0.3 0.4 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 25.8 10.9 16.6 12.5 Without a Heat

  4. Total..............................................................................

    Energy Information Administration (EIA) (indexed site)

    20.6 25.6 40.7 24.2 Do Not Have Cooling Equipment................................ 17.8 4.0 2.1 1.4 10.3 Have Cooling Equipment............................................. 93.3 16.5 23.5 39.3 13.9 Use Cooling Equipment.............................................. 91.4 16.3 23.4 38.9 12.9 Have Equipment But Do Not Use it............................. 1.9 0.3 Q 0.5 1.0 Air-Conditioning Equipment 1, 2 Central System........................................................... 65.9 6.0 17.3 32.1 10.5

  5. Total..............................................................................

    Energy Information Administration (EIA) (indexed site)

    0.7 21.7 6.9 12.1 Do Not Have Cooling Equipment................................ 17.8 1.4 0.8 0.2 0.3 Have Cooling Equipment............................................. 93.3 39.3 20.9 6.7 11.8 Use Cooling Equipment.............................................. 91.4 38.9 20.7 6.6 11.7 Have Equipment But Do Not Use it............................. 1.9 0.5 Q Q Q Air-Conditioning Equipment 1, 2 Central System........................................................... 65.9 32.1 17.6 5.2 9.3 Without a

  6. Total..............................................................................

    Energy Information Administration (EIA) (indexed site)

    111.1 7.1 7.0 8.0 12.1 Personal Computers Do Not Use a Personal Computer .......................... 35.5 3.0 2.0 2.7 3.1 Use a Personal Computer....................................... 75.6 4.2 5.0 5.3 9.0 Number of Desktop PCs 1......................................................................... 50.3 3.1 3.4 3.4 5.4 2......................................................................... 16.2 0.7 1.1 1.2 2.2 3 or More............................................................ 9.0 0.3

  7. Total..............................................................................

    Energy Information Administration (EIA) (indexed site)

    7.1 19.0 22.7 22.3 Do Not Have Cooling Equipment................................ 17.8 8.5 2.7 2.6 4.0 Have Cooling Equipment............................................. 93.3 38.6 16.2 20.1 18.4 Use Cooling Equipment.............................................. 91.4 37.8 15.9 19.8 18.0 Have Equipment But Do Not Use it............................. 1.9 0.9 0.3 0.3 0.4 Air-Conditioning Equipment 1, 2 Central System........................................................... 65.9 25.8 10.9 16.6 12.5

  8. Total.................................................................................

    Energy Information Administration (EIA) (indexed site)

    7.1 7.0 8.0 12.1 Do Not Have Cooling Equipment................................... 17.8 1.8 Q Q 4.9 Have Cooling Equipment................................................ 93.3 5.3 7.0 7.8 7.2 Use Cooling Equipment................................................. 91.4 5.3 7.0 7.7 6.6 Have Equipment But Do Not Use it............................... 1.9 Q N Q 0.6 Air-Conditioning Equipment 1, 2 Central System.............................................................. 65.9 1.1 6.4 6.4 5.4 Without a

  9. Total....................................................................................

    Energy Information Administration (EIA) (indexed site)

    25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer.................................. 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer.............................................. 75.6 13.7 17.5 26.6 17.8 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 10.4 14.1 20.5 13.7 Laptop Model............................................................. 16.9 3.3 3.4 6.1 4.1 Hours Turned on Per Week Less than 2

  10. Total....................................................................................

    Energy Information Administration (EIA) (indexed site)

    5.6 17.7 7.9 Personal Computers Do Not Use a Personal Computer.................................. 35.5 8.1 5.6 2.5 Use a Personal Computer.............................................. 75.6 17.5 12.1 5.4 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 14.1 10.0 4.0 Laptop Model............................................................. 16.9 3.4 2.1 1.3 Hours Turned on Per Week Less than 2

  11. Total....................................................................................

    Energy Information Administration (EIA) (indexed site)

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day................................................. 8.2 3.0 1.6 0.3 1.1 2 Times A Day.............................................................. 24.6 8.3 4.2 1.3 2.7 Once a Day................................................................... 42.3 15.0 8.1 2.7 4.2 A Few Times Each Week............................................. 27.2 10.9 6.0 1.8 3.1 About Once a Week..................................................... 3.9

  12. Total....................................................................................

    Energy Information Administration (EIA) (indexed site)

    Personal Computers Do Not Use a Personal Computer.................................. 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer.............................................. 75.6 26.6 14.5 4.1 7.9 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 20.5 11.0 3.4 6.1 Laptop Model............................................................. 16.9 6.1 3.5 0.7 1.9 Hours Turned on Per Week Less than 2

  13. Total....................................................................................

    Energy Information Administration (EIA) (indexed site)

    4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer.................................. 35.5 6.4 2.2 4.2 Use a Personal Computer.............................................. 75.6 17.8 5.3 12.5 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 13.7 4.2 9.5 Laptop Model............................................................. 16.9 4.1 1.1 3.0 Hours Turned on Per Week Less than 2

  14. Total....................................................................................

    Energy Information Administration (EIA) (indexed site)

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day................................................. 8.2 3.7 1.6 1.4 1.5 2 Times A Day.............................................................. 24.6 10.8 4.1 4.3 5.5 Once a Day................................................................... 42.3 17.0 7.2 8.7 9.3 A Few Times Each Week............................................. 27.2 11.4 4.7 6.4 4.8 About Once a Week.....................................................

  15. Total....................................................................................

    Energy Information Administration (EIA) (indexed site)

    111.1 47.1 19.0 22.7 22.3 Personal Computers Do Not Use a Personal Computer.................................. 35.5 16.9 6.5 4.6 7.6 Use a Personal Computer.............................................. 75.6 30.3 12.5 18.1 14.7 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 22.9 9.8 14.1 11.9 Laptop Model............................................................. 16.9 7.4 2.7 4.0 2.9 Hours Turned on Per Week Less than 2

  16. Total.........................................................................................

    Energy Information Administration (EIA) (indexed site)

    ..... 111.1 7.1 7.0 8.0 12.1 Personal Computers Do Not Use a Personal Computer...................................... 35.5 3.0 2.0 2.7 3.1 Use a Personal Computer.................................................. 75.6 4.2 5.0 5.3 9.0 Most-Used Personal Computer Type of PC Desk-top Model............................................................. 58.6 3.2 3.9 4.0 6.7 Laptop Model................................................................. 16.9 1.0 1.1 1.3 2.4 Hours Turned on Per Week Less

  17. Direct/Indirect Costs

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    1997-03-28

    This chapter provides recommended categories for direct and indirect elements developed by the Committee for Cost Methods Development (CCMD) and describes various estimating techniques for direct and indirect costs.

  18. Vehicle Cost Calculator

    Alternative Fuels and Advanced Vehicles Data Center

    Annual Fuel Cost gal Annual GHG Emissions (lbs of CO2) Vehicle Cost Calculator See Assumptions and Methodology Back Next U.S. Department of Energy Energy Efficiency and ...

  19. Cree's High-Power White LED Delivers 121 lm/W

    Energy.gov [DOE]

    Cree's commercial high-power white LEDs can now deliver 121 lm/W at 35A/cm2 current density. These particular Cree XLamp® XP-G LEDs deliver 267 lumens at a drive current of 700 mA and an operating...

  20. PHENIX WBS notes. Cost and schedule review copy

    SciTech Connect

    Not Available

    1994-02-01

    The Work Breakdown Structure (WBS) Book begins with this Overview section, which contains the high-level summary cost estimate, the cost profile, and the global construction schedule. The summary cost estimate shows the total US cost and the cost in terms of PHENIX construction funds for building the PHENIX detector. All costs in the WBS book are shown in FY 1993 dollars. Also shown are the institutional and foreign contributions, the level of pre-operations funding, and the cost of deferred items. Pie charts are presented at PHENIX WBS level 1 and 2 that show this information. The PHENIX construction funds are shown broken down to PHENIX WBS level 3 items per fiscal year, and the resulting profile is compared to the RHIC target profile. An accumulated difference of the two profiles is also shown. The PHENIX global construction schedule is presented at the end of the Overview section. Following the Overview are sections for each subsystem. Each subsystem section begins with a summary cost estimate, cost profile, and critical path. The total level 3 cost is broken down into fixed costs (M&S), engineering costs (EDIA) and labor costs. Costs are further broken down in terms of PHENIX construction funds, institutional and foreign contributions, pre-operations funding, and deferred items. Also shown is the contingency at level 3 and the level 4 breakdown of the total cost. The cost profile in fiscal years is shown at level 3. The subsystem summaries are followed by the full cost estimate and schedule sheets for that subsystem. These detailed sheets are typically carried down to level 7 or 8. The cost estimate Total, M&S, EDIA, and Labor breakdowns, as well as contingency, for each WBS entry.

  1. PHENIX Work Breakdown Structure. Cost and schedule review copy

    SciTech Connect

    Not Available

    1994-02-01

    The Work Breakdown Structure (WBS) Book begins with this Overview section, which contains the high-level summary cost estimate, the cost profile, and the global construction schedule. The summary cost estimate shows the total US cost and the cost in terms of PHENIX construction funds for building the PHENIX detector. All costs in the WBS book are shown in FY 1993 dollars. Also shown are the institutional and foreign contributions, the level of pre-operations funding, and the cost of deferred items. Pie charts are presented at PHENIX WBS level 1 and 2 that show this information. The PHENIX construction funds are shown broken down to PHENIX WBS level 3 items per fiscal year, and the resulting profile is compared to the RHIC target profile. An accumulated difference of the two profiles is also shown. The PHENIX global construction schedule is presented at the end of the Overview section. Following the Overview are sections for each subsystem. Each subsystem section begins with a summary cost estimate, cost profile, and critical path. The total level 3 cost is broken down into fixed costs (M&S), engineering costs (EDIA) and labor costs. Costs are further broken down in terms of PHENIX construction funds, institutional and foreign contributions, pre-operations funding, and deferred items. Also shown is the contingency at level 3 and the level 4 breakdown of the total cost. The cost profile in fiscal years is shown at level 3. The subsystem summaries are followed by the full cost estimate and schedule sheets for that subsystem. These detailed sheets are typically carried down to level 7 or 8. The cost estimate shows Total, M&S, EDIA, and Labor breakdowns, as well as contingency, for each WBS entry.

  2. COST OF ADDRESSING TARGETS OF UNEQUAL VALUE

    SciTech Connect

    G.H. CANAVAN

    2001-08-01

    The formalism for evaluating first strike costs and incentives for military targeting generalize to include higher value targets. That introduces two new allocations to the usual allocation between missiles and military targets, but they can be performed analytically. As the number of weapons on each side decreases, the optimal fraction of second strike weapons allocated to military values falls. The shift to high value targets is more pronounced below about 1,000 weapons for nominal parameters. Below 500 weapons the first striker's cost of action drops below its cost of inaction. A strike would induce a second strike of about 250 weapons on high value targets. An increase in the first striker's preference for damage to the other's high value targets increases or a decrease in its preference for preventing damage to its own high value targets decreases first strike costs and stability margins. Including defenses complicates allocations slightly. The main effect is increased attrition of second strikes, particularly at larger defenses, which makes it possible to significantly reduce damage to high value targets. At 1,000 weapons, by 300 to 400 interceptors the first striker's costs are reduced to 30% below that of inaction and the number of weapons delivered on the first striker's high value targets is reduced to about 100.

  3. Low Cost, Durable Seal

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Cost, Durable Seal George M. Roberts UTC Power Corporation February 14, 2007 This presentation does not contain any proprietary or confidential information 1 LOW COST, DURABLE SEAL Outline * Project Objective * Technical Approach * Timeline * Team Roles * Budget * Q&A 2 LOW COST, DURABLE SEAL Project Objective Develop advanced, low cost, durable seal materials and sealing techniques amenable to high volume manufacture of PEM cell stacks. DOE Targets/Goals/Objectives Project Goal Durability

  4. Power Plant Cycling Costs

    SciTech Connect

    Kumar, N.; Besuner, P.; Lefton, S.; Agan, D.; Hilleman, D.

    2012-07-01

    This report provides a detailed review of the most up to date data available on power plant cycling costs. The primary objective of this report is to increase awareness of power plant cycling cost, the use of these costs in renewable integration studies and to stimulate debate between policymakers, system dispatchers, plant personnel and power utilities.

  5. Total Natural Gas Gross Withdrawals (Summary)

    Gasoline and Diesel Fuel Update

    & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual Download Series History Download Series History ...

  6. Pollution prevention cost savings potential

    SciTech Connect

    Celeste, J.

    1994-12-01

    The waste generated by DOE facilities is a serious problem that significantly impacts current operations, increases future waste management costs, and creates future environmental liabilities. Pollution Prevention (P2) emphasizes source reduction through improved manufacturing and process control technologies. This concept must be incorporated into DOE`s overall operating philosophy and should be an integral part of Total Quality Management (TQM) program. P2 reduces the amount of waste generated, the cost of environmental compliance and future liabilities, waste treatment, and transportation and disposal costs. To be effective, P2 must contribute to the bottom fine in reducing the cost of work performed. P2 activities at LLNL include: researching and developing innovative manufacturing; evaluating new technologies, products, and chemistries; using alternative cleaning and sensor technologies; performing Pollution Prevention Opportunity Assessments (PPOAs); and developing outreach programs with small business. Examples of industrial outreach are: innovative electroplating operations, printed circuit board manufacturing, and painting operations. LLNL can provide the infrastructure and technical expertise to address a wide variety of industrial concerns.

  7. DOE Fuel Cell Technologies Office Record 13013: H2 Delivery Cost

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Projections - 2013 | Department of Energy 3013: H2 Delivery Cost Projections - 2013 DOE Fuel Cell Technologies Office Record 13013: H2 Delivery Cost Projections - 2013 This program record from the U.S. Department of Energy's Fuel Cell Technologies Office provides information about past, current, and projected costs for delivering and dispensing hydrogen. DOE Hydrogen and Fuel Cells Program Record # 13013 (329.18 KB) More Documents & Publications Hydrogen Delivery Roadmap US DRIVE

  8. The Cost of Transmission for Wind Energy: A Review of Transmission Planning Studies

    SciTech Connect

    Mills, Andrew D.; Wiser, Ryan; Porter, Kevin

    2009-02-02

    The rapid development of wind power that the United States has experienced over the last several years has been coupled with a growing concern that wind development will require substantial additions to the nation's transmission infrastructure. Transmission is particularly important for wind power due to the locational dependence of wind resources, the relatively low capacity factor of wind plants, and the mismatch between the short lead time to build a new wind project and the longer lead time often needed to plan, permit, and construct transmission. It is clear that institutional issues related to transmission planning, siting, and cost allocation will pose major obstacles to accelerated wind power deployment, but also of concern is the potential cost of this infrastructure build out. Simply put, how much extra cost will society bear to deliver wind power to load centers? Without an answer to this question, there can be no consensus on whether or not the cost of developing transmission for wind will be a major barrier to further wind deployment, or whether the institutional barriers to transmission expansion are likely to be of more immediate concern. In this report, we review a sample of 40 detailed transmission studies that have included wind power. These studies cover a broad geographic area, and were completed from 2001-2008. Our primary goal in reviewing these studies is to develop a better understanding of the transmission costs needed to access growing quantities of wind generation. A secondary goal is to gain a better appreciation of the differences in transmission planning approaches in order to identify those methodologies that seem most able to estimate the incremental transmission costs associated with wind development. Finally, we hope that the resulting dataset and discussion might be used to inform the assumptions, methods, and results of higher-level assessment models that are sometimes used to estimate the cost of wind deployment (e.g. NEMS and

  9. COST BREAKDOWN AWARD NO: START DATE: EXPIRATION DATE: FISCAL YEAR BREAKDOWN OF FUNDS

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    COST BREAKDOWN AWARD NO: START DATE: EXPIRATION DATE: FISCAL YEAR BREAKDOWN OF FUNDS ELEMENTS FY FY FY FY FY TOTAL Direct Labor Overhead Materials Supplies Travel Other Direct Costs Subcontractors Total Direct Costs G&A Expense Total All Costs DOE Share* Awardee Share* Overhead Rate G&A Rate 1. The cost elements indicated are provided as an example only. Your firm should indicate the costs elements you have used on your invoices. 2. You should indicate the cost incurred for each of your

  10. NNSA Delivers All Scheduled W76-1 Units to Navy for 2012 | Y-12 National

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Security Complex Delivers All Scheduled ... NNSA Delivers All Scheduled W76-1 Units to Navy for 2012 Posted: November 19, 2012 - 2:28pm The National Nuclear Security Administration (NNSA) today announced that it delivered all of its scheduled W76-1 Submarine Launched Ballistic Missile warhead units to United States Navy in FY 2012. "As our stockpile ages, we have to put ourselves in a position where the president can be certain that it is safe, secure and effective," said NNSA

  11. Jefferson Lab Accelerator Delivers Its First 12 GeV Electrons | Jefferson

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Lab Accelerator Delivers Its First 12 GeV Electrons On December 14, full-energy 12 GeV electron beam was provided for the first time, to the Experimental Hall D complex, located in the upper, left corner of this aerial photo of the Continuous Electron Beam Accelerator Facility. Hall D is the new experimental research facility - added to CEBAF as part of the 12 GeV Upgrade project. Beam was also delivered to Hall A (dome in the lower left). Jefferson Lab Accelerator Delivers Its First 12 GeV

  12. Syngas Mixed Alcohol Cost Validation

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Techno-economic analysis (TEA) - Feedback to the research efforts Specific objective in 2012: Provide TEA and validate DOE BETO's goal to demonstrate technologies capable of producing cost competitive ethanol from biomass by the year 2012. 2 Quad Chart Overview 3 Start Date Oct 1, 2006 End Date Sept 30, 2012 % Complete 100% Timeline for Mixed Alcohols Year Total [Gasification/Pyrolysis] FY12 $860k [$700k/$160k] FY13 $1,000k [$250k/$750k] FY14 $1,050k [$350k/$700k] projected Years 10 (FY04 to

  13. Application of air classification and formulation to manage feedstock cost, quality and availability for bioenergy

    DOE PAGES [OSTI]

    Thompson, Vicki S.; Lacey, Jeffrey A.; Hartley, Damon; Jindra, Michael A.; Aston, John E.; Thompson, David N.

    2016-04-22

    Biomass such as agricultural residues, energy crops and yard waste has significant potential to be used as renewable feedstocks for production of fuels, chemicals and energy. However, in a given location, biomass availability, cost and quality can vary markedly. Strategies to manage these traits must be identified and implemented so that consistent low-cost and high-quality feedstocks can be delivered to biorefineries year round. In this study, we examine air classification as a method to mitigate high ash concentrations in corn stover, switchgrass, and grass clippings. Formulation techniques were then used to produce blends that met ash quality and biomass quantitymore » specifications at the lowest possible cost for biopower and biochemical conversion applications. It was found that air classification can separate the biomass into light fractions which contain concentrated amounts of elemental ash components introduced through soil contamination such as sodium, alumina, silica, iron and titania; and heavy fractions that are depleted in these components and have relatively lower total ash content. Light fractions of corn stover and grass clippings were found to be suitable for combustion applications since they had less propensity to slag than the whole biomass material. The remaining heavy fractions of corn stover or grass clippings could then be blended with switchgrass to produce blends that met the 5% total ash specifications suggested for biochemical conversions. However, ternary blends of the three feedstocks were not possible due to the high ash content of grass clippings. Lastly, it was determined that air classification by itself was not suitable to prepare these feedstocks for pyrolysis due to high ash content.« less

  14. Country Total Percent of U.S. Total Canada

    Annual Energy Outlook

    Taiwan 60,155 1% Vietnam 361,184 4% All others 1,861,971 19% Total 9,755,831 100% Table 7 . Photovoltaic module import shipments by country, 2015 Note: All Others includes Czech ...

  15. Determination of Total Solids in Biomass and Total Dissolved...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... The published moisture loss on drying for sodium tartrate is 15.62% (84.38% total solids). 14.6 Sample size: Determined by sample matrix. 14.7 Sample storage: Samples should be ...

  16. substantially reduced production costs

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    production costs - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy ...

  17. SOFT COST GRAND CHALLENGE

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    energycenter.org California Center for Sustainable Energy Soft Cost Grand Challenge May 22, 2014 Accelerating the transition to a sustainable world powered by clean energy 2...

  18. Workplace Charging Installation Costs

    Office of Energy Efficiency and Renewable Energy (EERE)

    Installation costs and services vary considerably, so employers are encouraged to obtain a number of quotes before moving forward with any installation. An initial site investigation should include:

  19. PPPL delivers a plasma source that will enable high-power beam...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    PPPL delivers a plasma source that will enable high-power beam pulses in a new Berkeley ... Gallery: Interior views of a plasma-source module. (Photo by Elle Starkman, PPPL Office of ...

  20. TotalView Training 2015

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    TotalView Training 2015 TotalView Training 2015 NERSC will host an in-depth training course on TotalView, a graphical parallel debugger developed by Rogue Wave Software, on Thursday, March 26, 2015. This will be provided by Rogue Wave Software staff members. The training will include a lecture and demo sessions in the morning, followed by a hands-on parallel debugging session in the afternoon. Location This event will be presented online using WebEx technology and in person at NERSC Oakland

  1. Assistant Secretary Patricia Hoffman to Deliver Keynote Address at IEEE PES

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Conference on Innovative Smart Grid Technologies | Department of Energy Patricia Hoffman to Deliver Keynote Address at IEEE PES Conference on Innovative Smart Grid Technologies Assistant Secretary Patricia Hoffman to Deliver Keynote Address at IEEE PES Conference on Innovative Smart Grid Technologies January 25, 2013 - 3:10pm Addthis Assistant Secretary Patricia Hoffman will give the keynote address at the 4th annual IEEE PES Conference on Innovative Smart Grid Technologies (ISGT 2013) on

  2. Electric Blanket Delivers K.O. to Space Heater During #EnergyFaceoff Round

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Three | Department of Energy Electric Blanket Delivers K.O. to Space Heater During #EnergyFaceoff Round Three Electric Blanket Delivers K.O. to Space Heater During #EnergyFaceoff Round Three November 19, 2014 - 10:08am Addthis The electric blanket takes round three of #EnergyFaceoff! | Graphic by Stacy Buchanan, National Renewable Energy Laboratory The electric blanket takes round three of #EnergyFaceoff! | Graphic by Stacy Buchanan, National Renewable Energy Laboratory Allison Casey Senior

  3. Expanded standards and codes case limits combined buildings delivered energy to 21 quadrillion Btu by 2035

    Gasoline and Diesel Fuel Update

    Erin Boedecker, Session Moderator April 27, 2011 | Washington, DC Energy Demand. Efficiency, and Consumer Behavior 16 17 18 19 20 21 22 23 24 25 2005 2010 2015 2020 2025 2030 2035 2010 Technology Reference Expanded Standards Expanded Standards + Codes -7.6% ≈ 0 Expanded standards and codes case limits combined buildings delivered energy to 21 quadrillion Btu by 2035 2 Erin Boedecker, EIA Energy Conference, April 27, 2011 delivered energy quadrillion Btu Source: EIA, Annual Energy Outlook 2011

  4. Under Secretary Klotz delivers remarks at PREP ribbon-cutting | National

    National Nuclear Security Administration (NNSA)

    Nuclear Security Administration | (NNSA) Under Secretary Klotz delivers remarks at PREP ribbon-cutting Wednesday, June 18, 2014 - 1:23pm Under Secretary Klotz delivered remarks at the Pantex Renewable Energy Project (PREP) ribbon-cutting this week. PREP establishes the largest federally-owned wind farm in the country and will generate approximately 47 million kilowatt-hours of electricity annually, more than 60 percent of the electricity needed for Pantex. The project will reduce CO2

  5. U.S. Nuclear Weapons Strategy Delivered to Congress | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Nuclear Weapons Strategy Delivered to Congress U.S. Nuclear Weapons Strategy Delivered to Congress July 24, 2007 - 2:55pm Addthis WASHINGTON, DC -U.S. Secretary of Energy Samuel W. Bodman joined the U.S. Secretaries of Defense and State in sending to Congress the Bush Administration's nuclear weapons strategy. This document not only describes the history of nuclear deterrence during the Cold War, but reinforces how deterrence applies to present and future security threats, and what a nuclear

  6. Delivering the Department of Energy's Next--Generation High-Resolution

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Entrepreneurs | Department of Energy Delivering Innovations That Create Jobs: National Lab Ignites Business for Entrepreneurs Delivering Innovations That Create Jobs: National Lab Ignites Business for Entrepreneurs November 17, 2011 - 1:59pm Addthis DEP Shape Memory Therapeutics, Inc. is working to treat aneurysms with exclusively licensed LLNL-developed polymer materials that "remember" their shape. LLNL is a leader in the development of shape memory polymers, for use in medical

  7. Building Commissioning: A Golden Opportunity for Reducing Energy Costs and Greenhouse-gas Emissions

    SciTech Connect

    Mills, Evan

    2009-07-16

    The aim of commissioning new buildings is to ensure that they deliver, if not exceed, the performance and energy savings promised by their design. When applied to existing buildings, commissioning identifies the almost inevitable 'drift' from where things should be and puts the building back on course. In both contexts, commissioning is a systematic, forensic approach to quality assurance, rather than a technology per se. Although commissioning has earned increased recognition in recent years - even a toehold in Wikipedia - it remains an enigmatic practice whose visibility severely lags its potential. Over the past decade, Lawrence Berkeley National Laboratory has built the world's largest compilation and meta-analysis of commissioning experience in commercial buildings. Since our last report (Mills et al. 2004) the database has grown from 224 to 643 buildings (all located in the United States, and spanning 26 states), from 30 to 100 million square feet of floorspace, and from $17 million to $43 million in commissioning expenditures. The recorded cases of new-construction commissioning took place in buildings representing $2.2 billion in total construction costs (up from 1.5 billion). The work of many more commissioning providers (18 versus 37) is represented in this study, as is more evidence of energy and peak-power savings as well as cost-effectiveness. We now translate these impacts into avoided greenhouse gases and provide new indicators of cost-effectiveness. We also draw attention to the specific challenges and opportunities for high-tech facilities such as labs, cleanrooms, data centers, and healthcare facilities. The results are compelling. We developed an array of benchmarks for characterizing project performance and cost-effectiveness. The median normalized cost to deliver commissioning was $0.30/ft2 for existing buildings and $1.16/ft2 for new construction (or 0.4% of the overall construction cost). The commissioning projects for which data are

  8. Characteristics RSE Column Factor: Total

    Energy Information Administration (EIA) (indexed site)

    and 1994 Vehicle Characteristics RSE Column Factor: Total 1993 Family Income Below Poverty Line Eli- gible for Fed- eral Assist- ance 1 RSE Row Factor: Less than 5,000 5,000...

  9. ARM - Measurement - Total cloud water

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    cloud water ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Total cloud water The total concentration (mass/vol) of ice and liquid water particles in a cloud; this includes condensed water content (CWC). Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a

  10. Transmission line capital costs

    SciTech Connect

    Hughes, K.R.; Brown, D.R.

    1995-05-01

    The displacement or deferral of conventional AC transmission line installation is a key benefit associated with several technologies being developed with the support of the U.S. Department of Energy`s Office of Energy Management (OEM). Previous benefits assessments conducted within OEM have been based on significantly different assumptions for the average cost per mile of AC transmission line. In response to this uncertainty, an investigation of transmission line capital cost data was initiated. The objective of this study was to develop a database for preparing preliminary estimates of transmission line costs. An extensive search of potential data sources identified databases maintained by the Bonneville Power Administration (BPA) and the Western Area Power Administration (WAPA) as superior sources of transmission line cost data. The BPA and WAPA data were adjusted to a common basis and combined together. The composite database covers voltage levels from 13.8 to 765 W, with cost estimates for a given voltage level varying depending on conductor size, tower material type, tower frame type, and number of circuits. Reported transmission line costs vary significantly, even for a given voltage level. This can usually be explained by variation in the design factors noted above and variation in environmental and land (right-of-way) costs, which are extremely site-specific. Cost estimates prepared from the composite database were compared to cost data collected by the Federal Energy Regulatory Commission (FERC) for investor-owned utilities from across the United States. The comparison was hampered because the only design specifications included with the FERC data were voltage level and line length. Working within this limitation, the FERC data were not found to differ significantly from the composite database. Therefore, the composite database was judged to be a reasonable proxy for estimating national average costs.

  11. Decommissioning Unit Cost Data

    SciTech Connect

    Sanford, P. C.; Stevens, J. L.; Brandt, R.

    2002-02-26

    The Rocky Flats Closure Site (Site) is in the process of stabilizing residual nuclear materials, decommissioning nuclear facilities, and remediating environmental media. A number of contaminated facilities have been decommissioned, including one building, Building 779, that contained gloveboxes used for plutonium process development but did little actual plutonium processing. The actual costs incurred to decommission this facility formed much of the basis or standards used to estimate the decommissioning of the remaining plutonium-processing buildings. Recent decommissioning activities in the first actual production facility, Building 771, implemented a number of process and procedural improvements. These include methods for handling plutonium contaminated equipment, including size reduction, decontamination, and waste packaging, as well as management improvements to streamline planning and work control. These improvements resulted in a safer working environment and reduced project cost, as demonstrated in the overall project efficiency. The topic of this paper is the analysis of how this improved efficiency is reflected in recent unit costs for activities specific to the decommissioning of plutonium facilities. This analysis will allow the Site to quantify the impacts on future Rocky Flats decommissioning activities, and to develop data for planning and cost estimating the decommissioning of future facilities. The paper discusses the methods used to collect and arrange the project data from the individual work areas within Building 771. Regression and data correlation techniques were used to quantify values for different types of decommissioning activities. The discussion includes the approach to identify and allocate overall project support, waste management, and Site support costs based on the overall Site and project costs to provide a ''burdened'' unit cost. The paper ultimately provides a unit cost basis that can be used to support cost estimates for

  12. Cost Estimating Handbook for Environmental Restoration

    SciTech Connect

    1990-09-01

    Environmental restoration (ER) projects have presented the DOE and cost estimators with a number of properties that are not comparable to the normal estimating climate within DOE. These properties include: An entirely new set of specialized expressions and terminology. A higher than normal exposure to cost and schedule risk, as compared to most other DOE projects, due to changing regulations, public involvement, resource shortages, and scope of work. A higher than normal percentage of indirect costs to the total estimated cost due primarily to record keeping, special training, liability, and indemnification. More than one estimate for a project, particularly in the assessment phase, in order to provide input into the evaluation of alternatives for the cleanup action. While some aspects of existing guidance for cost estimators will be applicable to environmental restoration projects, some components of the present guidelines will have to be modified to reflect the unique elements of these projects. The purpose of this Handbook is to assist cost estimators in the preparation of environmental restoration estimates for Environmental Restoration and Waste Management (EM) projects undertaken by DOE. The DOE has, in recent years, seen a significant increase in the number, size, and frequency of environmental restoration projects that must be costed by the various DOE offices. The coming years will show the EM program to be the largest non-weapons program undertaken by DOE. These projects create new and unique estimating requirements since historical cost and estimating precedents are meager at best. It is anticipated that this Handbook will enhance the quality of cost data within DOE in several ways by providing: The basis for accurate, consistent, and traceable baselines. Sound methodologies, guidelines, and estimating formats. Sources of cost data/databases and estimating tools and techniques available at DOE cost professionals.

  13. CRADA final report: Technical assessment of roll-to-roll operation of lamination process, thermal treatment, and alternative carbon fiber precursors for low-cost, high-efficiency manufacturing of flow battery stacks and other energy devices

    SciTech Connect

    Daniel, Claus; Madden, Thomas; Wood, III, David L; Muth, Thomas R.; Warrington, Curtis; Ozcan, Soydan; Manson, Hunter; Tekinalp, Halil L.; Smith, Mark A.; Lu, Yuan; Loretz, Jeremy

    2015-09-23

    Among the various stationary-storage technologies under development, redox flow batteries (RFBs) offer the greatest potential to deliver inexpensive, scalable, and efficient grid-scale electrical-energy storage. Unlike traditional sealed batteries, in a flow battery power and energy are decoupled. Cell area and cell count in the stack determine the device power, and the chemical storage volume determines the total energy. Grid-scale energy-storage applications require megawatt-scale devices, which require the assembly of hundreds of large-area, bipolar cells per power plant. The cell-stack is the single system component with the largest impact on capital cost (due to the large number of highly engineered components) and operating costs (determined by overall round-trip efficiency).

  14. Estimating Renewable Energy Costs

    Office of Energy Efficiency and Renewable Energy (EERE)

    Some renewable energy measures, such as daylighting, passive solar heating, and cooling load avoidance, do not add much to the cost of a building. However, renewable energy technologies typically...

  15. Vehicle Cost Calculator

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Select FuelTechnology Electric Hybrid Electric Plug-in Hybrid Electric Natural Gas (CNG) Flex Fuel (E85) Biodiesel (B20) Next Vehicle Cost Calculator Update Your Widget Code This ...

  16. Vehicle Cost Calculator

    Alternative Fuels and Advanced Vehicles Data Center

    Select FuelTechnology Electric Hybrid Electric Plug-in Hybrid Electric Natural Gas (CNG) Flex Fuel (E85) Biodiesel (B20) Propane (LPG) Next Vehicle Cost Calculator Vehicle 0 City ...

  17. Cost Estimating Guide

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    2011-05-09

    This Guide provides uniform guidance and best practices that describe the methods and procedures that could be used in all programs and projects at DOE for preparing cost estimates. No cancellations.

  18. Cost Estimating Guide

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    2011-05-09

    This Guide provides uniform guidance and best practices that describe the methods and procedures that could be used in all programs and projects at DOE for preparing cost estimates.

  19. Cost Estimating Guide

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    1997-03-28

    The objective of this Guide is to improve the quality of cost estimates and further strengthen the DOE program/project management system. The original 25 separate chapters and three appendices have been combined to create a single document.

  20. System Cost Model

    Energy Science and Technology Software Center

    1996-03-27

    SCM is used for estimation of the life-cycle impacts (costs, health and safety risks) of waste management facilities for mixed low-level, low-level, and transuranic waste. SCM uses parametric cost functions to estimate life-cycle costs for various treatment, storage, and disposal modules which reflect planned and existing waste management facilities at Department of Energy (DOE) installations. SCM also provides transportation costs for intersite transfer of DOE wastes. SCM covers the entire DOE waste management complex tomore » allow system sensitivity analysis including: treatment, storage, and disposal configuration options; treatment technology selection; scheduling options; transportation options; waste stream and volume changes; and site specific conditions.« less

  1. (Coordinated research on fuel cycle cost)

    SciTech Connect

    Cantor, R.A.; Shelton, R.B.; Krupnick, A.J.

    1990-11-05

    The Department of Energy (DOE) and the Commission of the European Communities (CEC) have been exploring the possibility of parallel studies on the externals costs of employing fuel cycles to deliver energy services. These studies are of particular importance following the activities of the US National Energy Strategy (NES), where the potential discrepancies between market prices and the social costs of energy services were raised as significant policy concerns. To respond to these concerns, Oak Ridge National Laboratory (ORNL) and Resources for the Future (RFF) have begun a collaborative effort for the DOE to investigate the external costs, or externalities, generated by cradle to grave fuel cycle activities. Upon initiating this project, the CEC expressed an interest to the DOE that Europe should conduct a parallel study and that the two studies should be highly coordinated for consistency in the results. This series of meetings with members of the CEC was undertaken to resolve some issues implied by pursuing parallel, coordinated studies; issues that were previously defined by the August meetings. In addition, it was an opportunity for some members of the US research team and the DOE sponsor to meet with their European counterparts for the study, as well as persons in charge of research areas that ultimately would play a key role in the European study.

  2. Strategic supply system design - a holistic evaluation of operational and production cost for a biorefinery supply chain

    DOE PAGES [OSTI]

    Lamers, Patrick; Tan, Eric C.D.; Searcy, Erin M.; Scarlata, Christopher J.; Cafferty, Kara G.; Jacobson, Jacob J.

    2015-08-20

    Pioneer cellulosic biorefineries across the United States rely on a conventional feedstock supply system based on one-year contracts with local growers, who harvest, locally store, and deliver feed-stock in low-density format to the conversion facility. While the conventional system is designed for high biomass yield areas, pilot scale operations have experienced feedstock supply shortages and price volatilities due to reduced harvests and competition from other industries. Regional supply dependency and the inability to actively manage feedstock stability and quality, provide operational risks to the biorefinery, which translate into higher investment risk. The advanced feedstock supply system based on a networkmore » of depots can mitigate many of these risks and enable wider supply system benefits. This paper compares the two concepts from a system-level perspective beyond mere logistic costs. It shows that while processing operations at the depot increase feedstock supply costs initially, they enable wider system benefits including supply risk reduction (leading to lower interest rates on loans), industry scale-up, conversion yield improvements, and reduced handling equipment and storage costs at the biorefinery. When translating these benefits into cost reductions per liter of gasoline equivalent (LGE), we find that total cost reductions between -$0.46 to -$0.21 per LGE for biochemical and -$0.32 to -$0.12 per LGE for thermochemical conversion pathways are possible. Naturally, these system level benefits will differ between individual actors along the feedstock supply chain. Further research is required with respect to depot sizing, location, and ownership structures.« less

  3. Strategic supply system design - a holistic evaluation of operational and production cost for a biorefinery supply chain

    SciTech Connect

    Lamers, Patrick; Tan, Eric C.D.; Searcy, Erin M.; Scarlata, Christopher J.; Cafferty, Kara G.; Jacobson, Jacob J.

    2015-08-20

    Pioneer cellulosic biorefineries across the United States rely on a conventional feedstock supply system based on one-year contracts with local growers, who harvest, locally store, and deliver feed-stock in low-density format to the conversion facility. While the conventional system is designed for high biomass yield areas, pilot scale operations have experienced feedstock supply shortages and price volatilities due to reduced harvests and competition from other industries. Regional supply dependency and the inability to actively manage feedstock stability and quality, provide operational risks to the biorefinery, which translate into higher investment risk. The advanced feedstock supply system based on a network of depots can mitigate many of these risks and enable wider supply system benefits. This paper compares the two concepts from a system-level perspective beyond mere logistic costs. It shows that while processing operations at the depot increase feedstock supply costs initially, they enable wider system benefits including supply risk reduction (leading to lower interest rates on loans), industry scale-up, conversion yield improvements, and reduced handling equipment and storage costs at the biorefinery. When translating these benefits into cost reductions per liter of gasoline equivalent (LGE), we find that total cost reductions between -$0.46 to -$0.21 per LGE for biochemical and -$0.32 to -$0.12 per LGE for thermochemical conversion pathways are possible. Naturally, these system level benefits will differ between individual actors along the feedstock supply chain. Further research is required with respect to depot sizing, location, and ownership structures.

  4. CATEGORY Total Procurement Total Small Business Small Disadvantaged

    National Nuclear Security Administration (NNSA)

    CATEGORY Total Procurement Total Small Business Small Disadvantaged Business Woman Owned Small Business HubZone Small Business Veteran-Owned Small Business Service Disabled Veteran Owned Small Business FY 2013 Dollars Accomplished $1,049,087,940 $562,676,028 $136,485,766 $106,515,229 $12,080,258 $63,473,852 $28,080,960 FY 2013 % Accomplishment 54.40% 13.00% 10.20% 1.20% 6.60% 2.70% FY 2014 Dollars Accomplished $868,961,755 $443,711,175 $92,478,522 $88,633,031 $29,867,820 $43,719,452 $26,826,374

  5. Soft Costs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Soft Costs » Soft Costs Soft Costs The U.S. Department of Energy (DOE) SunShot Initiative's soft costs program works to lower the non-hardware costs of solar and accelerate the adoption of solar energy technologies throughout the United States. In support of the SunShot Initiative goals, the soft costs program works in the following strategic areas: networking and technical assistance, data analysis, business innovation, and training. Soft Costs Activity Areas, Business Innovation, Networking

  6. Costs of strikes between vulnerable missile forces

    SciTech Connect

    Canavan, G.H.

    1997-02-01

    This note derives the first and second strike magnitudes and costs for strikes between vulnerable missile forces with multiple warheads. The extension to mixes with invulnerable missiles is performed in a companion note. Stability increases as the number of weapons per missile is reduced. The optimal allocation of weapons between missiles and value is significant in predicting the stability impact of the reduction of the number of weapons per missile at large numbers of missiles, less significant in reducing the number of missiles for fixed weapons per missile. At low numbers of missiles, the stability indices for singlet and triplet configurations are comparable, as are the number of weapons each would deliver on value targets.

  7. Economic Competitiveness of U.S. Utility-Scale Photovoltaics Systems in 2015: Regional Cost Modeling of Installed Cost ($/W) and LCOE ($/kWh)

    SciTech Connect

    Fu, Ran; James, Ted L.; Chung, Donald; Gagne, Douglas; Lopez, Anthony; Dobos, Aron

    2015-06-14

    Utility-scale photovoltaics (PV) system growth is largely driven by the economic metrics of total installed costs and levelized cost of electricity (LCOE), which differ by region. This study details regional cost factors, including environment (wind speed and snow loads), labor costs, material costs, sales taxes, and permitting costs using a new system-level bottom-up cost modeling approach. We use this model to identify regional all-in PV installed costs for fixed-tilt and one-axis tracker systems in the United States with consideration of union and non-union labor costs in 2015. LCOEs using those regional installed costs are then modeled and spatially presented. Finally, we assess the cost reduction opportunities of increasing module conversion efficiencies on PV system costs in order to indicate the possible economic impacts of module technology advancements and help future research and development (R&D) effects in the context of U.S. SunShot targets.

  8. New OpenStudio-Standards Gem Delivers One Two Punch | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    OpenStudio-Standards Gem Delivers One Two Punch New OpenStudio-Standards Gem Delivers One Two Punch September 15, 2016 - 10:54am Addthis The new OpenStudio-Standards Measure “Create Performance Rating Method Baseline Building” takes a model along with three arguments—code version, building type, and climate zone—and produces the corresponding ASHRAE 90.1 “Appendix G” baseline model. In this case, visible changes include removal of exterior shading and small changes

  9. Secretary Moniz's Remarks at National Lab Day on the Hill -- As Delivered |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy National Lab Day on the Hill -- As Delivered Secretary Moniz's Remarks at National Lab Day on the Hill -- As Delivered September 16, 2014 - 5:08pm Addthis Dr. Ernest Moniz Dr. Ernest Moniz Secretary of Energy Welcome to everyone here. It's just - it was remarkable to walk in here to this jammed and very kind of buzzing room with our first Lab Day on the Hill. I see at least a couple of our lab directors - oh, I see more of our lab directors here. That's right. That's

  10. Oregon Natural Gas Delivered to Commercial Consumers for the Account of

    Energy Information Administration (EIA) (indexed site)

    Others (Million Cubic Feet) Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) Oregon Natural Gas Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 14 221 353 1990's 464 477 433 504 430 419 431 378 254 337 2000's 336 201 366 428 372 391 418 445 443 479 2010's 707 790 895 1,044 1,129 1,253 - = No Data Reported; -- = Not Applicable; NA = Not

  11. Discover and Deliver: The Big Picture on Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Discover and Deliver: The Big Picture on Energy Discover and Deliver: The Big Picture on Energy January 20, 2011 - 1:49pm Addthis Secretary Chu Secretary Chu Former Secretary of Energy What does this mean for me? We are changing the way the Department of Energy works -- creating new jobs, investing in the clean energy economy, and helping consumers save money while saving energy. Our work has strengthened nuclear safety and security in the U.S. and internationally. Sometimes when one gets so

  12. CEBAF Beam Goes Over the Hump Highest-Energy Beam Ever Delivered at

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Jefferson Lab | Jefferson Lab Beam Goes Over the Hump Highest-Energy Beam Ever Delivered at Jefferson Lab CEBAF Beam Goes Over the Hump Highest-Energy Beam Ever Delivered at Jefferson Lab Late in the evening on May 7, Jefferson Lab staff successfully threaded the electron beam up the new beamline toward Hall D for the first time Late in the evening on May 7, Jefferson Lab staff successfully threaded the electron beam up the new beamline toward Hall D for the first time. NEWPORT NEWS, VA, May

  13. Million Cu. Feet Percent of National Total

    Energy Information Administration (EIA) (indexed site)

    0 New Hampshire - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle ...

  14. Total Number of Operable Refineries

    Energy Information Administration (EIA) (indexed site)

    Data Series: Total Number of Operable Refineries Number of Operating Refineries Number of Idle Refineries Atmospheric Crude Oil Distillation Operable Capacity (B/CD) Atmospheric Crude Oil Distillation Operating Capacity (B/CD) Atmospheric Crude Oil Distillation Idle Capacity (B/CD) Atmospheric Crude Oil Distillation Operable Capacity (B/SD) Atmospheric Crude Oil Distillation Operating Capacity (B/SD) Atmospheric Crude Oil Distillation Idle Capacity (B/SD) Vacuum Distillation Downstream Charge

  15. Innovative High-Performance Deposition Technology for Low-Cost...

    Energy.gov [DOE] (indexed site)

    OLEDWorks, LLC - Rochester, NY DOE Total Funding: 1,046,452 Cost Share: 1,046,452 Project Term: October 1, 2013 - December 31, 2015 Funding Opportunity: SSL Manufacturing R&D ...

  16. Direct Hydrogen PEMFC Manufacturing Cost Estimation for Automotive...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... Forecast: SYS-Total Cost BOM Bill of Materials Approach ... of PEM Fuel Cell Systems for Transportation, Sep 30, 2005, NRELSR-560-39104 We assumed a Pt price of 1,100...

  17. Factory Cost Model

    Energy Science and Technology Software Center

    1996-12-17

    The Factory Cost Model (FCM) is an economic analysis tool intended to provide flat panel display (FPD) and other similar discrete component manufacturers with the ability to make first-order estimates of the cost of unit production. This software has several intended uses. Primary among these is the ability to provide first-order economic analysis for future factories. Consequently, the model requires a minimal level of input detail, and accomodates situations where actual production data are notmore » available. This software is designed to be activity based such that most of the calculated direct costs are associated with the steps of a manufacturibg process. The FCM architecture has the ability to accomodate the analysis of existing manufacturing facilities. The FCM can provide assistance with strategic economic decisions surrounding production related matters. For instance, the program can project the effect on costs and resources of a new product''s introduction, or it can assess the potential cost reduction produced by step yield improvements in the manufacturing process.« less

  18. EERE Success Story—Department of Energy Delivers on R&D Targets around Cellulosic Ethanol

    Office of Energy Efficiency and Renewable Energy (EERE)

    Scientists at DOE national laboratories successfully demonstrated technical advances required to produce cellulosic ethanol that is cost competitive with petroleum.

  19. Department of Energy Delivers on R&D Targets around Cellulosic Ethanol

    Energy.gov [DOE]

    Scientists at DOE national laboratories successfully demonstrated technical advances required to produce cellulosic ethanol that is cost competitive with petroleum.

  20. H2A Delivery: Miscellaneous Cost and H2 Losses | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Miscellaneous Cost and H2 Losses H2A Delivery: Miscellaneous Cost and H2 Losses Presentation by Matt Ringer of the National Renewable Energy Laboratory at the Joint Meeting on Hydrogen Delivery Modeling and Analysis, May 8-9, 2007 deliv_analysis_ringer.pdf (327.03 KB) More Documents & Publications H2A Delivery Models and Results Hydrogen Delivery Analysis Models H2A Delivery Components Model and Analysis

  1. Waste management facilities cost information for hazardous waste. Revision 1

    SciTech Connect

    Shropshire, D.; Sherick, M.; Biagi, C.

    1995-06-01

    This report contains preconceptual designs and planning level life-cycle cost estimates for managing hazardous waste. The report`s information on treatment, storage, and disposal modules can be integrated to develop total life-cycle costs for various waste management options. A procedure to guide the US Department of Energy and its contractor personnel in the use of cost estimation data is also summarized in this report.

  2. Costs Associated With Compressed Natural Gas Vehicle Fueling Infrastructure

    SciTech Connect

    Smith, M.; Gonzales, J.

    2014-09-01

    This document is designed to help fleets understand the cost factors associated with fueling infrastructure for compressed natural gas (CNG) vehicles. It provides estimated cost ranges for various sizes and types of CNG fueling stations and an overview of factors that contribute to the total cost of an installed station. The information presented is based on input from professionals in the natural gas industry who design, sell equipment for, and/or own and operate CNG stations.

  3. Technical approaches for reducing cost of power support

    SciTech Connect

    Not Available

    1984-03-01

    Methods for reducing the cost of Chinese-made power supports are discussed. A reasonable selection of functions is proposed, including protection from side collapse, anti-sliding and anti-toppling, prop extension, loading capacity and hydraulic pressure. Material costs constitute 34-44% of the total cost, and so optimisation of design and materials is required. Standardisation of hydraulic components is recommended; and the use of appropriate and effective technological and managerial techniques is advocated. (In Chinese)

  4. Innovative High-Performance Deposition Technology for Low-Cost

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Manufacturing of OLED Lighting | Department of Energy High-Performance Deposition Technology for Low-Cost Manufacturing of OLED Lighting Innovative High-Performance Deposition Technology for Low-Cost Manufacturing of OLED Lighting Lead Performer: OLEDWorks, LLC - Rochester, NY DOE Total Funding: $1,046,452 Cost Share: $1,046,452 Project Term: October 1, 2013 - March 31, 2017 Funding Opportunity: SSL Manufacturing R&D Funding Opportunity Announcement (FOA) DE-FOA-000079 Project Objective

  5. Low-Cost Illumination-Grade LEDs

    SciTech Connect

    Epler, John

    2013-08-31

    Solid State Lighting is a cost-effective, energy-conserving technology serving a rapidly expand- ing multi-billion dollar market. This program was designed to accelerate this lighting revolution by reducing the manufacturing cost of Illumination-Grade LEDs. The technical strategy was to investigate growth substrate alternatives to standard planar sapphire, select the most effective and compatible option, and demonstrate a significant increase in Lumen/$ with a marketable LED. The most obvious alternate substrate, silicon, was extensively studied in the first two years of the program. The superior thermal and mechanical properties of Si were expected to improve wavelength uniformity and hence color yield in the manufacture of high-power illumination- grade LEDs. However, improvements in efficiency and epitaxy uniformity on standard c-plane sapphire diminished the advantages of switching to Si. Furthermore, the cost of sapphire decreased significantly and the cost of processing Si devices using our thin film process was higher than expected. We concluded that GaN on Si was a viable technology but not a practical option for Philips Lumileds. Therefore in 2012 and 2013, we sought and received amendments which broadened the scope to include other substrates and extended the time of execution. Proprietary engineered substrates, off-axis (non-c-plane) sapphire, and c-plane patterned sapphire substrates (PSS) were all investigated in the final 18 months of this program. Excellent epitaxy quality was achieved on all three candidates; however we eliminated engineered substrates and non-c-plane sapphire because of their higher combined cost of substrate, device fabrication and packaging. Ultimately, by fabricating a flip-chip (FC) LED based upon c-plane PSS we attained a 42% reduction in LED manufacturing cost relative to our LUXEON Rebel product (Q1-2012). Combined with a flux gain from 85 to 102 Lm, the LUXEON Q delivered a 210% increase in Lm/$ over this time period. The

  6. QGESS: Capital Cost Scaling Methodology

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    the tonnes of CO2 utilized. The costs of the process are to include infrastructure, raw materials, processing, byproduct disposal, and utilities costs, as well as any other costs....

  7. Factors Impacting Decommissioning Costs - 13576

    SciTech Connect

    Kim, Karen; McGrath, Richard

    2013-07-01

    The Electric Power Research Institute (EPRI) studied United States experience with decommissioning cost estimates and the factors that impact the actual cost of decommissioning projects. This study gathered available estimated and actual decommissioning costs from eight nuclear power plants in the United States to understand the major components of decommissioning costs. Major costs categories for decommissioning a nuclear power plant are removal costs, radioactive waste costs, staffing costs, and other costs. The technical factors that impact the costs were analyzed based on the plants' decommissioning experiences. Detailed cost breakdowns by major projects and other cost categories from actual power plant decommissioning experiences will be presented. Such information will be useful in planning future decommissioning and designing new plants. (authors)

  8. Low Cost, Durable Seal

    SciTech Connect

    Roberts, George; Parsons, Jason; Friedman, Jake

    2010-12-17

    Seal durability is critical to achieving the 2010 DOE operational life goals for both stationary and transportation PEM fuel cell stacks. The seal material must be chemically and mechanically stable in an environment consisting of aggressive operating temperatures, humidified gases, and acidic membranes. The seal must also be producible at low cost. Currentlyused seal materials do not meet all these requirements. This project developed and demonstrated a high consistency hydrocarbon rubber seal material that was able to meet the DOE technical and cost targets. Significant emphasis was placed on characterization of the material and full scale molding demonstrations.

  9. West Valley Demonstration Project Food Drive Delivers Food for 700 Families

    Office of Energy Efficiency and Renewable Energy (EERE)

    WEST VALLEY, N.Y. – EM employees at West Valley Demonstration Project (WVDP) helped collect and deliver 114,843 pounds of food, including 360 turkeys, to nine food pantries in the West Valley area, just in time to benefit about 700 families in need during the holidays.

  10. Design Storm for Total Retention.pdf

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Title: Design Storm for "Total Retention" under Individual Permit, Poster, Individual ... International. Environmental Programs Design Storm for "Total Retention" under ...

  11. U.S. Total Imports

    Energy Information Administration (EIA) (indexed site)

    St. Clair, MI International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake

  12. Cost estimate for muddy water palladium production facility at Mound

    SciTech Connect

    McAdams, R.K.

    1988-11-30

    An economic feasibility study was performed on the ''Muddy Water'' low-chlorine content palladium powder production process developed by Mound. The total capital investment and total operating costs (dollars per gram) were determined for production batch sizes of 1--10 kg in 1-kg increments. The report includes a brief description of the Muddy Water process, the process flow diagram, and material balances for the various production batch sizes. Two types of facilities were evaluated--one for production of new, ''virgin'' palladium powder, and one for recycling existing material. The total capital investment for virgin facilities ranged from $600,000 --$1.3 million for production batch sizes of 1--10 kg, respectively. The range for recycle facilities was $1--$2.3 million. The total operating cost for 100% acceptable powder production in the virgin facilities ranged from $23 per gram for a 1-kg production batch size to $8 per gram for a 10-kg batch size. Similarly for recycle facilities, the total operating cost ranged from $34 per gram to $5 per gram. The total operating cost versus product acceptability (ranging from 50%--100% acceptability) was also evaluated for both virgin and recycle facilities. Because production sizes studied vary widely and because scale-up factors are unknown for batch sizes greater than 1 kg, all costs are ''order-of-magnitude'' estimates. All costs reported are in 1987 dollars.

  13. Two Peer Review Processes Help EM Achieve Cost, Schedule Targets in Environmental Cleanup Mission

    Energy.gov [DOE]

    WASHINGTON, D.C. – EM revamped and expanded peer reviews for its contracts and projects in the past year with a goal of improving performance and delivering results in the world’s largest nuclear cleanup on time and within cost.

  14. DOE Issues 2 Requests for Information on Low-Cost Hydrogen Production and Delivery

    Energy.gov [DOE]

    The US DOE's FCTO has issued two RFIs seeking feedback from the research community and relevant stakeholders about hydrogen production and hydrogen delivery RD&D activities aimed at developing technologies that can ultimately produce and deliver low-cost hydrogen.

  15. DEMONSTRATION OF THE VIABILITY AND EVALUATION OF PRODUCTION COSTS FOR BIOMASS-INFUSED COAL BRIQUETTES

    SciTech Connect

    Kamshad, Kourosh

    2013-12-31

    This report is the final reporting installment of the DOE project titled DEMONSTRATION OF THE VIABILITY AND EVALUATION OF PRODUCTION COSTS FOR BIOMASS-INFUSED COAL BRIQUETTES. This rerport includes a summary of the work completed to date including the experimental methods used to acheive the results, discussions, conclusions and implications of the final product delivered by the project.

  16. Turbine Cost Systems Engineering Model

    Energy Science and Technology Software Center

    2012-09-30

    turb_costSE is a set of models that link wind turbine component masses (and a few other key variables) to component costs.

  17. Solar total energy project Shenandoah

    SciTech Connect

    1980-01-10

    This document presents the description of the final design for the Solar Total Energy System (STES) to be installed at the Shenandoah, Georgia, site for utilization by the Bleyle knitwear plant. The system is a fully cascaded total energy system design featuring high temperature paraboloidal dish solar collectors with a 235 concentration ratio, a steam Rankine cycle power conversion system capable of supplying 100 to 400 kW(e) output with an intermediate process steam take-off point, and a back pressure condenser for heating and cooling. The design also includes an integrated control system employing the supervisory control concept to allow maximum experimental flexibility. The system design criteria and requirements are presented including the performance criteria and operating requirements, environmental conditions of operation; interface requirements with the Bleyle plant and the Georgia Power Company lines; maintenance, reliability, and testing requirements; health and safety requirements; and other applicable ordinances and codes. The major subsystems of the STES are described including the Solar Collection Subysystem (SCS), the Power Conversion Subsystem (PCS), the Thermal Utilization Subsystem (TUS), the Control and Instrumentation Subsystem (CAIS), and the Electrical Subsystem (ES). Each of these sections include design criteria and operational requirements specific to the subsystem, including interface requirements with the other subsystems, maintenance and reliability requirements, and testing and acceptance criteria. (WHK)

  18. Heliostat cost reduction study.

    SciTech Connect

    Jones, Scott A.; Lumia, Ronald. (University of New Mexico, Albuquerque, NM); Davenport, Roger (Science Applications International Corporation, San Diego, CA); Thomas, Robert C. (Advanced Thermal Systems, Centennial, CO); Gorman, David; Kolb, Gregory J.; Donnelly, Matthew W.

    2007-06-01

    Power towers are capable of producing solar-generated electricity and hydrogen on a large scale. Heliostats are the most important cost element of a solar power tower plant. Since they constitute {approx} 50% of the capital cost of the plant it is important to reduce heliostat cost as much as possible to improve the economic performance of power towers. In this study we evaluate current heliostat technology and estimate a price of $126/m{sup 2} given year-2006 materials and labor costs for a deployment of {approx}600 MW of power towers per year. This 2006 price yields electricity at $0.067/kWh and hydrogen at $3.20/kg. We propose research and development that should ultimately lead to a price as low as $90/m{sup 2}, which equates to $0.056/kWh and $2.75/kg H{sup 2}. Approximately 30 heliostat and manufacturing experts from the United States, Europe, and Australia contributed to the content of this report during two separate workshops conducted at the National Solar Thermal Test Facility.

  19. Total quality management implementation guidelines

    SciTech Connect

    Not Available

    1993-12-01

    These Guidelines were designed by the Energy Quality Council to help managers and supervisors in the Department of Energy Complex bring Total Quality Management to their organizations. Because the Department is composed of a rich mixture of diverse organizations, each with its own distinctive culture and quality history, these Guidelines are intended to be adapted by users to meet the particular needs of their organizations. For example, for organizations that are well along on their quality journeys and may already have achieved quality results, these Guidelines will provide a consistent methodology and terminology reference to foster their alignment with the overall Energy quality initiative. For organizations that are just beginning their quality journeys, these Guidelines will serve as a startup manual on quality principles applied in the Energy context.

  20. Total Imports of Residual Fuel

    Energy Information Administration (EIA) (indexed site)

    2010 2011 2012 2013 2014 2015 View History U.S. Total 133,646 119,888 93,672 82,173 63,294 69,914 1936-2015 PAD District 1 88,999 79,188 59,594 33,566 30,944 34,524 1981-2015 Connecticut 220 129 1995-2015 Delaware 748 1,704 510 1,604 2,479 1995-2015 Florida 15,713 11,654 10,589 8,331 5,055 7,198 1995-2015 Georgia 5,648 7,668 6,370 4,038 2,037 1,629 1995-2015 Maine 1,304 651 419 75 317 135 1995-2015 Maryland 3,638 1,779 1,238 433 938 589 1995-2015 Massachusetts 123 50 78 542 88 1995-2015 New

  1. Total Imports of Residual Fuel

    Energy Information Administration (EIA) (indexed site)

    Mar-16 Apr-16 May-16 Jun-16 Jul-16 Aug-16 View History U.S. Total 8,596 6,340 4,707 8,092 8,512 8,017 1936-2016 PAD District 1 2,694 1,250 1,327 2,980 2,074 3,566 1981-2016 Connecticut 1995-2015 Delaware 280 231 385 1995-2016 Florida 800 200 531 499 765 1995-2016 Georgia 149 106 1995-2016 Maine 1995-2015 Maryland 84 66 1995-2016 Massachusetts 1995-2015 New Hampshire 1995-2015 New Jersey 1,073 734 355 1,984 399 1,501 1995-2016 New York 210 196 175 1,223 653 1995-2016 North Carolina 1995-2011

  2. Total quality management program planning

    SciTech Connect

    Thornton, P.T.; Spence, K.

    1994-05-01

    As government funding grows scarce, competition between the national laboratories is increasing dramatically. In this era of tougher competition, there is no for resistance to change. There must instead be a uniform commitment to improving the overall quality of our products (research and technology) and an increased focus on our customers` needs. There has been an ongoing effort to bring the principles of total quality management (TQM) to all Energy Systems employees to help them better prepare for future changes while responding to the pressures on federal budgets. The need exists for instituting a vigorous program of education and training to an understanding of the techniques needed to improve and initiate a change in organizational culture. The TQM facilitator is responsible for educating the work force on the benefits of self-managed work teams, designing a program of instruction for implementation, and thus getting TQM off the ground at the worker and first-line supervisory levels so that the benefits can flow back up. This program plan presents a conceptual model for TQM in the form of a hot air balloon. In this model, there are numerous factors which can individually and collectively impede the progress of TQM within the division and the Laboratory. When these factors are addressed and corrected, the benefits of TQM become more visible. As this occurs, it is hoped that workers and management alike will grasp the ``total quality`` concept as an acceptable agent for change and continual improvement. TQM can then rise to the occasion and take its rightful place as an integral and valid step in the Laboratory`s formula for survival.

  3. Independent Cost Review (ICR) and Independent Cost Estimate (ICE) Standard

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Operating Procedures, Revision 2 | Department of Energy Independent Cost Review (ICR) and Independent Cost Estimate (ICE) Standard Operating Procedures, Revision 2 Independent Cost Review (ICR) and Independent Cost Estimate (ICE) Standard Operating Procedures, Revision 2 This Standard Operating Procedures (SOP) provides guidance for Department of Energy (DOE) Project Management Oversight and Assessment (PM) staff and contractors performing either an Independent Cost Estimate (ICE) or an

  4. Technology advances keeping LNG cost-competitive

    SciTech Connect

    Bellow, E.J. Jr.; Ghazal, F.P.; Silverman, A.J.; Myers, S.D.

    1997-06-02

    LNG plants, often very expensive in the past, will in the future need to cost less to build and operate and yet maintain high safety and reliability standards, both during construction and operation. Technical advancements, both in the process and in equipment scaling, manufacturing, and metallurgy, will provide much of the impetus for the improved economics. Although world energy demand is predicted to grow on average of about 2% annually over the next decade, LNG is expected to contribute an increasing portion of this growth with annual growth rates averaging about 7%. This steep growth increase will be propelled mainly by the environmentally friendlier burning characteristics of natural gas and the strong industrial growth in Asian and pacific Rim countries. While LNG is emerging as the fuel of choice for developing economies, its delivered cost to consumers will need to stay competitive with alternate energy supplies if it is to remain in front. The paper discusses LNG process development, treating process, equipment developments (man heat exchanger, compressors, drivers, and pressure vessels), and economy of scale.

  5. U.S. Department of Energy Releases Revised Total System Life...

    Energy Saver

    U.S. Department of Energy Releases Revised Total System Life Cycle Cost Estimate and Fee Adequacy Report ... U.S. Department of Energy Awards Contracts for Waste Storage Canisters for ...

  6. Improved InGaN LED System Efficacy and Cost via Droop Reduction...

    Energy.gov [DOE] (indexed site)

    Lumileds, LLC - San Jose, CA Partners: Sandia National Laboratories - Albuquerque, NM DOE Total Funding: 1,495,990 Cost Share: 374,000 Project Term: 912015 - 8312017 Funding ...

  7. FY 2009 Progress Report for Lightweighting Materials- 7. Low-Cost Carbon Fiber

    Energy.gov [DOE]

    The primary Lightweight Materials activity goal is to validate a cost-effective weight reduction in total vehicle weight while maintaining safety, performance, and reliability.

  8. Considering the total cost of electricity from sunlight and the alternatives

    SciTech Connect

    none,

    2015-04-15

    Photovoltaic (PV) electricity generation has grown to about 17 GW in the United States, corresponding to one tenth of the global capacity. Most deployment in the country has happened during the last 6 years. Reflecting back in time, in early 2008 this author and his collaborators James Mason and Ken Zweibel, published in Scientific American and in Energy Policy a Solar Grand Plan demonstrating the feasibility of renewable energy in providing 69% of the U.S. electricity demand by 2050, while reducing CO2 emissions by 60% from 2005 levels; the PV contribution to this plan was assessed to be 250 GW by 2030, and 2,900 GW by 2050 [1]. The DOEs more detailed SunShot vision study, released in 2012, showed the possibility of having 300 GW of PV installed in the United States by 2030, and 630 GW by 2050.

  9. Considering the total cost of electricity from sunlight and the alternatives

    DOE PAGES [OSTI]

    none,

    2015-04-15

    Photovoltaic (PV) electricity generation has grown to about 17 GW in the United States, corresponding to one tenth of the global capacity. Most deployment in the country has happened during the last 6 years. Reflecting back in time, in early 2008 this author and his collaborators James Mason and Ken Zweibel, published in Scientific American and in Energy Policy a Solar Grand Plan demonstrating the feasibility of renewable energy in providing 69% of the U.S. electricity demand by 2050, while reducing CO2 emissions by 60% from 2005 levels; the PV contribution to this plan was assessed to be 250 GWmore » by 2030, and 2,900 GW by 2050 [1]. The DOE’s more detailed SunShot vision study, released in 2012, showed the possibility of having 300 GW of PV installed in the United States by 2030, and 630 GW by 2050.« less

  10. Considering the total cost of electricity from sunlight and the alternatives

    SciTech Connect

    none,

    2015-04-15

    Photovoltaic (PV) electricity generation has grown to about 17 GW in the United States, corresponding to one tenth of the global capacity. Most deployment in the country has happened during the last 6 years. Reflecting back in time, in early 2008 this author and his collaborators James Mason and Ken Zweibel, published in Scientific American and in Energy Policy a Solar Grand Plan demonstrating the feasibility of renewable energy in providing 69% of the U.S. electricity demand by 2050, while reducing CO2 emissions by 60% from 2005 levels; the PV contribution to this plan was assessed to be 250 GW by 2030, and 2,900 GW by 2050 [1]. The DOE’s more detailed SunShot vision study, released in 2012, showed the possibility of having 300 GW of PV installed in the United States by 2030, and 630 GW by 2050.

  11. A Total Cost of Ownership Model for Low Temperature PEM Fuel...

    Energy.gov [DOE] (indexed site)

    considers low temperature proton exchange membrane systems for use in combined heat and power applications from 1 to 250 kWe and backup power applications from 1 to 50 kWe. ...

  12. Project Profile: Transformational Approach to Reducing the Total System Costs of Building-Integrated Photovoltaics

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Dow Chemical Company, under the BOS-X funding opportunity, has launched a transformational product in the building-integrated photovoltaics (BIPV) industry: the Dow POWERHOUSE Solar Shingle.

  13. Remarks by Secretary Ernest Moniz at a U.S.-China Business Council Issues Luncheon-- As Delivered

    Energy.gov [DOE]

    Remarks, as delivered, by Secretary Moniz at a U.S.-China Business Council Issues Luncheon on April 7, 2015 in Washington, D.C.

  14. Cost Estimating, Analysis, and Standardization

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    1984-11-02

    To establish policy and responsibilities for: (a) developing and reviewing project cost estimates; (b) preparing independent cost estimates and analysis; (c) standardizing cost estimating procedures; and (d) improving overall cost estimating and analytical techniques, cost data bases, cost and economic escalation models, and cost estimating systems. Cancels DOE O 5700.2B, dated 8-5-1983; DOE O 5700.8, dated 5-27-1981; and HQ 1130.1A, dated 12-30-1981. Canceled by DOE O 5700.2D, dated 6-12-1992

  15. Geothermal probabilistic cost study

    SciTech Connect

    Orren, L.H.; Ziman, G.M.; Jones, S.C.; Lee, T.K.; Noll, R.; Wilde, L.; Sadanand, V.

    1981-08-01

    A tool is presented to quantify the risks of geothermal projects, the Geothermal Probabilistic Cost Model (GPCM). The GPCM model is used to evaluate a geothermal reservoir for a binary-cycle electric plant at Heber, California. Three institutional aspects of the geothermal risk which can shift the risk among different agents are analyzed. The leasing of geothermal land, contracting between the producer and the user of the geothermal heat, and insurance against faulty performance are examined. (MHR)

  16. Power Plant Cycling Costs

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Power Plant Cycling Costs April 2012 N. Kumar, P. Besuner, S. Lefton, D. Agan, and D. Hilleman Intertek APTECH Sunnyvale, California NREL Technical Monitor: Debra Lew Subcontract Report NREL/SR-5500-55433 July 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov

  17. Reducing Power Factor Cost

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Low power factor is expensive and inefficient. Many utility companies charge you an additional fee if your power factor is less than 0.95. Low power factor also reduces your electrical system's distribu- tion capacity by increasing current flow and causing voltage drops. This fact sheet describes power factor and explains how you can improve your power factor to reduce electric bills and enhance your electrical system's capacity. REDUCING POWER FACTOR COST To understand power factor, visualize a

  18. Hydrogen and Infrastructure Costs

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    FUEL CELL TECHNOLOGIES PROGRAM Hydrogen and Infrastructure Costs Hydrogen Infrastructure Market Readiness Workshop Washington D.C. February 17, 2011 Fred Joseck U.S. Department of Energy Fuel Cell Technologies Program Fuel Cells: Diverse Fuels and Applications More than $40 million from the 2009 American Recovery and Reinvestment Act to fund 12 projects to deploy up to 1,000 fuel cells Recovery Act Funding for Fuel Cells COMPANY AWARD APPLICATION Delphi Automotive $2.4 M Auxiliary Power FedEx

  19. Section L Attachment G - Management Team Cost Sheet.xlsx

    National Nuclear Security Administration (NNSA)

    G Management Team Cost Sheet Definitions of items to be included in the worksheet Name Title Reimbursable* Annual Base Salary Reimbursable* Incentive Pay and bonuses Reimbursable* Deferred compensation Reimbursable* Employer contributions to Employee Stock Ownership Plans (ESOPs) Reimbursable* Employer Contributions to Defined Contribution Pension Plans Total Reimbursable* Annual Compensation Current Annual Base Salary Current Total Annual Compensation Benchmark job title/level Median Annual

  20. Monitored Geologic Repository Life Cycle Cost Estimate Assumptions Document

    SciTech Connect

    R. Sweeney

    2000-03-08

    The purpose of this assumptions document is to provide general scope, strategy, technical basis, schedule and cost assumptions for the Monitored Geologic Repository (MGR) life cycle cost estimate and schedule update incorporating information from the Viability Assessment (VA), License Application Design Selection (LADS), 1999 Update to the Total System Life Cycle Cost (TSLCC) estimate and from other related and updated information. This document is intended to generally follow the assumptions outlined in the previous MGR cost estimates and as further prescribed by DOE guidance.