National Library of Energy BETA

Sample records for time grid reliability

  1. Real Time Grid Reliability Management 2005

    SciTech Connect

    Eto, Joe; Eto, Joe; Lesieutre, Bernard; Lewis, Nancy Jo; Parashar, Manu

    2008-07-07

    The increased need to manage California?s electricity grid in real time is a result of the ongoing transition from a system operated by vertically-integrated utilities serving native loads to one operated by an independent system operator supporting competitive energy markets. During this transition period, the traditional approach to reliability management -- construction of new transmission lines -- has not been pursued due to unresolved issues related to the financing and recovery of transmission project costs. In the absence of investments in new transmission infrastructure, the best strategy for managing reliability is to equip system operators with better real-time information about actual operating margins so that they can better understand and manage the risk of operating closer to the edge. A companion strategy is to address known deficiencies in offline modeling tools that are needed to ground the use of improved real-time tools. This project: (1) developed and conducted first-ever demonstrations of two prototype real-time software tools for voltage security assessment and phasor monitoring; and (2) prepared a scoping study on improving load and generator response models. Additional funding through two separate subsequent work authorizations has already been provided to build upon the work initiated in this project.

  2. Smart Grid Investments Improve Grid Reliability, Resilience,...

    Energy.gov [DOE] (indexed site)

    reliability to reduce customer losses from power disruptions. This report presents findings on smart grid improvements in outage management from OE's Smart Grid Investment ...

  3. Now Available: Smart Grid Investments Improve Grid Reliability...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Improve Grid Reliability, Resilience, and Storm Responses (November 2014) Now Available: Smart Grid Investments Improve Grid Reliability, Resilience, and Storm Responses ...

  4. POWER GRID RELIABILITY AND SECURITY

    SciTech Connect

    Bose, Anjan; Venkatasubramanian, Vaithianathan; Hauser, Carl; Bakken, David; Anderson, David; Zhao, Chuanlin; Liu, Dong; Yang, Tao; Meng, Ming; Zhang, Lin; Ning, Jiawei; Tashman, Zaid

    2014-09-30

    This project has led to the development of a real-time simulation platform for electric power grids called Grid Simulator or GridSim for simulating the dynamic and information network interactions of large- scale power systems. The platform consists of physical models of power system components including synchronous generators, loads and control, which are simulated using a modified commercial power simulator namely Transient Stability Analysis Tool (TSAT) [1] together with data cleanup components, as well as an emulated substation level and wide-area power analysis components. The platform also includes realistic representations of communication network middleware that can emulate the real-time information flow back and forth between substations and control centers in wide-area power systems. The platform has been validated on a realistic 6000-bus model of the western American power system. The simulator GridSim developed in this project is the first of its kind in its ability to simulate real-time response of large-scale power grids, and serves as a cost effective real-time stability and control simulation platform for power industry.

  5. Smart Grid Investments Improve Grid Reliability, Resilience, and Storm

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Responses (November 2014) | Department of Energy Investments Improve Grid Reliability, Resilience, and Storm Responses (November 2014) Smart Grid Investments Improve Grid Reliability, Resilience, and Storm Responses (November 2014) Smart grid technologies are helping utilities to speed outage restoration following major storm events, reduce the total number of affected customers, and improve overall service reliability to reduce customer losses from power disruptions. This report presents

  6. Grid Performance and Reliability | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Systems Integration » Grid Performance and Reliability Grid Performance and Reliability 2 way power flow orange2.png As the solar industry moves towards achieving the SunShot Initiative goals, the nation's electricity grid must evolve to accommodate increasing amounts of distributed photovoltaic (PV) systems. Effectively interconnecting variable PV generation requires forward thinking and dynamic solutions to ensure compatibility with the existing grid. Projects in the Grid Performance and

  7. Reliability Considerations from Integration of Smart Grid

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Reliability Considerations from the Integration of Smart Grid 116-390 Village Blvd., Princeton, NJ 08540 609.452.8060 | 609.452.9550 fax www.nerc.com the reliability of the to ensure bulk power system December 2010 (This page intentionally left blank) to ensure the reliability of the bulk power system Reliability Considerations of Integration of Smart Grid i December 2010 N N E E R R C C ' ' s s M M i i s s s s i i o o n n The North American Electric Reliability Corporation (NERC) is an

  8. Coming Full Circle in Florida: Improving Electric Grid Reliability...

    Energy Saver

    Coming Full Circle in Florida: Improving Electric Grid Reliability and Resiliency Coming Full Circle in Florida: Improving Electric Grid Reliability and Resiliency May 2, 2013 - ...

  9. NREL's Controllable Grid Interface Saves Time and Resources, Improves Reliability of Renewable Energy Technologies (Fact Sheet), NREL (National Renewable Energy Laboratory)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Researchers at the National Renewable Energy Laboratory (NREL) developed a controllable grid interface (CGI) test system that can significantly reduce certification testing time and costs. The CGI also provides system engineers with a better understanding of how wind turbines, photovoltaic (PV) inverters, and energy storage systems interact with the grid and react to grid disturbances. For the energy industry, this will save time and resources while minimizing integration issues, improve

  10. The Relationship between Competitive Power Markets and Grid Reliability. |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy The Relationship between Competitive Power Markets and Grid Reliability. The Relationship between Competitive Power Markets and Grid Reliability. The U.S. Department of Energy and Natural Resources Canada should commission an independent study of the relationships among industry restructuring, competition in power markets, and grid reliability, and how those relationships should be managed to best serve the public interest. The Relationship between Competitive Power

  11. Now Available: Smart Grid Investments Improve Grid Reliability...

    Energy Saver

    Department of Energy in Washington, D.C., May 8, 2013. | Official White House Photo by Pete Souza. Smart Grid Week: Hurricane Season and the Department's Efforts to Make the Grid ...

  12. Smart Grid: Creating Jobs while Delivering Reliable,Environmentally...

    OpenEI (Open Energy Information) [EERE & EIA]

    Department of Energy was planning to develop a stronger, more reliable energy grid. The plan would allocate 3.4 billion in funds to be distributed across the nation, aiding...

  13. Coming Full Circle in Florida: Improving Electric Grid Reliability and

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Resiliency | Department of Energy Coming Full Circle in Florida: Improving Electric Grid Reliability and Resiliency Coming Full Circle in Florida: Improving Electric Grid Reliability and Resiliency May 2, 2013 - 11:16am Addthis Inside Florida Power & Light's Transmission Performance Diagnostic Center. | Photo courtesy of Florida Power & Light. Inside Florida Power & Light's Transmission Performance Diagnostic Center. | Photo courtesy of Florida Power & Light. In 2009, at the

  14. NREL’s Controllable Grid Interface Saves Time and Resources, Improves Reliability of Renewable Energy Technologies; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    2015-07-01

    The National Renewable Energy Laboratory's (NREL) controllable grid interface (CGI) test system at the National Wind Technology Center (NWTC) is one of two user facilities at NREL capable of testing and analyzing the integration of megawatt-scale renewable energy systems. The CGI specializes in testing of multimegawatt-scale wind and photovoltaic (PV) technologies as well as energy storage devices, transformers, control and protection equipment at medium-voltage levels, allowing the determination of the grid impacts of the tested technology.

  15. New York Completes Smart Grid Project to Build a More Reliable, Resilient

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Power Grid | Department of Energy York Completes Smart Grid Project to Build a More Reliable, Resilient Power Grid New York Completes Smart Grid Project to Build a More Reliable, Resilient Power Grid April 15, 2014 - 11:49am Addthis News Media Contact (202) 586-4940 WASHINGTON - As part of the Obama Administration's broader efforts to strengthen critical energy infrastructure and build a stronger, more reliable power grid, the Energy Department today recognized the completion of New York

  16. Vehicle to Micro-Grid: Leveraging Existing Assets for Reliable...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... events (such as those seen on Sunday and Monday), they can buffer the effect, leaving time for generators to catch up without creating a disastrous drop in micro-grid voltage. ...

  17. Scalable Real Time Data Management for Smart Grid

    SciTech Connect

    Yin, Jian; Kulkarni, Anand V.; Purohit, Sumit; Gorton, Ian; Akyol, Bora A.

    2011-12-16

    This paper presents GridMW, a scalable and reliable data middleware for smart grids. Smart grids promise to improve the efficiency of power grid systems and reduce green house emissions through incorporating power generation from renewable sources and shaping demand to match the supply. As a result, power grid systems will become much more dynamic and require constant adjustments, which requires analysis and decision making applications to improve the efficiency and reliability of smart grid systems.

  18. Time-Dependent Reliability Analysis

    Energy Science and Technology Software Center

    1999-10-27

    FRANTIC-3 was developed to evaluate system unreliability using time-dependent techniques. The code provides two major options: to evaluate standby system unavailability or, in addition to the unavailability to calculate the total system failure probability by including both the unavailability of the system on demand as well as the probability that it will operate for an arbitrary time period following the demand. The FRANTIC-3 time dependent reliability models provide a large selection of repair and testingmore » policies applicable to standby or continously operating systems consisting of periodically tested, monitored, and non-repairable (non-testable) components. Time-dependent and test frequency dependent failures, as well as demand stress related failure, test-caused degradation and wear-out, test associated human errors, test deficiencies, test override, unscheduled and scheduled maintenance, component renewal and replacement policies, and test strategies can be prescribed. The conditional system unavailabilities associated with the downtimes of the user specified failed component are also evaluated. Optionally, the code can perform a sensitivity study for system unavailability or total failure probability to the failure characteristics of the standby components.« less

  19. New York Completes Smart Grid Project to Build a More Reliable...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    and respond to potential disturbances quickly and effectively - improving overall grid reliability, safeguarding against power outages and enabling faster restoration of power. ...

  20. U.S.-India Collaboration Expands Indian Market for U.S. Technologies, Improves Grid Reliability

    Energy.gov [DOE]

    The Energy Department and several corporate partners are working with the nation of India to improve its electrical grid's efficiency and reliability through Demand Response management technologies.

  1. Reliable, high repetition rate thyratron grid driver used with a magnetic modulator

    SciTech Connect

    Hill, J.V.; Ball, D.G.; Garrett, D.N.

    1991-06-14

    The Atomic Vapor Laser Isotope Separation (AVLIS) Program at Lawrence Livermore National Laboratory uses a magnetic modulator switched by a high voltage thyratron to drive a gas discharge laser. The thyratron trigger source must provide an extremely reliable, low jitter, high- rep-rate grid pulse. This paper describes a thyratron grid driver which delivers a 1.2 kV, 80 ns rise time grid pulse into a 50 ohm load at up to 4.5 kHz repetition rate and has demonstrated approximately 10,000 hours MTBF. Since the thyratron is used with a magnetic compression circuit having a delay time of 1.4 ms this grid driver incorporates a jitter compensation circuit to adjust the trigger timing of the thyratron to provide overall modulator/laser jitter of less than {plus minus} 2 ns. The specific grid driver requirements will be discussed followed by a description of the circuit design and theory of operation. Construction comments will be followed by performance data (for a specific thyratron and magnetic compression circuit), including pulse shape, jitter, and lifetime. 1 ref., 10 figs.

  2. Energy Department Invests Over $10 Million to Improve Grid Reliability and Resiliency

    Energy.gov [DOE]

    As part of the Obama Administration’s commitment to a strong and secure power grid, the Energy Department today announced more than $10 million for projects that will improve the reliability and resiliency of the U.S. electric grid and facilitate quick and effective response to grid conditions.

  3. Real Time Simulation of Power Grid Disruptions

    SciTech Connect

    Chinthavali, Supriya; Dimitrovski, Aleksandar D; Fernandez, Steven J; Groer, Christopher S; Nutaro, James J; Olama, Mohammed M; Omitaomu, Olufemi A; Shankar, Mallikarjun; Spafford, Kyle L; Vacaliuc, Bogdan

    2012-11-01

    DOE-OE and DOE-SC workshops (Reference 1-3) identified the key power grid problem that requires insight addressable by the next generation of exascale computing is coupling of real-time data streams (1-2 TB per hour) as the streams are ingested to dynamic models. These models would then identify predicted disruptions in time (2-4 seconds) to trigger the smart grid s self healing functions. This project attempted to establish the feasibility of this approach and defined the scientific issues, and demonstrated example solutions to important smart grid simulation problems. These objectives were accomplished by 1) using the existing frequency recorders on the national grid to establish a representative and scalable real-time data stream; 2) invoking ORNL signature identification algorithms; 3) modeling dynamically a representative region of the Eastern interconnect using an institutional cluster, measuring the scalability and computational benchmarks for a national capability; and 4) constructing a prototype simulation for the system s concept of smart grid deployment. The delivered ORNL enduring capability included: 1) data processing and simulation metrics to design a national capability justifying exascale applications; 2) Software and intellectual property built around the example solutions; 3) demonstrated dynamic models to design few second self-healing.

  4. Improving the Reliability and Resiliency of the US Electric Grid...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    The quarterly magazine Metering International is a resource for information on trends and developments in the industry. Issue 1 2012 (March) featured an article on DOE's Smart Grid ...

  5. Energy Department Invests Over $10 Million to Improve Grid Reliability...

    Office of Environmental Management (EM)

    "Through advanced sensors and monitoring devices, U.S. utilities now have unprecedented insight into the power grid - helping industry make decisions that may prevent power outages ...

  6. OE Announces Investment in New Research to Improve Grid Reliability through

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Enhanced Visibility | Department of Energy OE Announces Investment in New Research to Improve Grid Reliability through Enhanced Visibility OE Announces Investment in New Research to Improve Grid Reliability through Enhanced Visibility October 19, 2016 - 12:00pm Addthis Patricia A. Hoffman Patricia A. Hoffman Assistant Secretary, Office of Electricity Delivery & Energy Reliability Today, at the North American SynchroPhasor Initiative (NASPI) meeting in Seattle, I announced over $5 million

  7. Now Available: Smart Grid Investments Improve Grid Reliability, Resilience, and Storm Responses (November 2014)

    Energy.gov [DOE]

    A new report from OE's Smart Grid Investment Grant (SGIG) program presents findings on smart grid improvements in outage management, based on the recent experiences of three SGIG projects.

  8. Advancing Visibility of Grid Operations to Improve Reliability...

    Energy Saver

    and tripped, causing many power plants to shut down as well. ... into conditions on the grid contributed to this outage. ... and current and other data on a transmission line and ...

  9. Toward Real Time Data Analysis for Smart Grids

    SciTech Connect

    Yin, Jian; Gorton, Ian; Sharma, Poorva

    2012-11-10

    This paper describes the architecture and design of a novel system for supporting large-scale real-time data analysis for future power grid systems. The widespread deployment of renewable generation, smart grid controls, energy storage, plug-in hybrids, and new conducting materials will require fundamental changes in the operational concepts and principal components of the grid. As a result, the whole system becomes highly dynamic and requires constant adjusting based on real time data. Even though millions of sensors such as phase measurement units (PMU) and smart meters are being widely deployed, a data layer that can analyze this amount of data in real time is needed. Unlike the data fabric in other cloud services, the data layer for smart grids has some unique design requirements. First, this layer must provide real time guarantees. Second, this layer must be scalable to allow a large number of applications to access the data from millions of sensors in real time. Third, reliability is critical and this layer must be able to continue to provide service in face of failures. Fourth, this layer must be secure. We address these challenges though a scalable system architecture that integrates the I/O and data processing capability in a devise set of devices. Data process operations can be placed anywhere from sensors, data storage devices, to control centers. We further employ compression to improve performance. We design a lightweight compression customized for power grid data. Our system can reduce end-to-end response time by reduce I/O overhead through compression and overlap compression operations with I/O. The initial prototype of our system was demonstrated with several use cases from PNNL’s FPGI and show that our system can provide real time guarantees to a diverse set of applications.

  10. Funding Opportunity Announcement: Enabling Extreme Real-Time Grid

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Integration of Solar Energy (ENERGISE) | Department of Energy Enabling Extreme Real-Time Grid Integration of Solar Energy (ENERGISE) Funding Opportunity Announcement: Enabling Extreme Real-Time Grid Integration of Solar Energy (ENERGISE) Funding Opportunity Announcement: Enabling Extreme Real-Time Grid Integration of Solar Energy (ENERGISE) Funding Number: DE-FOA-0001495 Funding Amount: $25,000,000 Description The Enabling Extreme Real-Time Grid Integration of Solar Energy (ENERGISE) funding

  11. New Article on Cybersecurity Discusses DOE’s Partnership with the Energy Sector to Keep the Grid Reliable and Secure

    Energy.gov [DOE]

    An article by OE’s Carol Hawk and Akhlesh Kaushiva in The Electricity Journal discusses cybersecurity for the power grid and how DOE and the energy sector are partnering to keep the smart grid reliable and secure.

  12. Utility-scale grid-tied PV inverter reliability workshop summary report.

    SciTech Connect

    Granata, Jennifer E.; Quintana, Michael A.; Tasca, Coryne Adelle; Atcitty, Stanley

    2011-07-01

    A key to the long-term success of the photovoltaic (PV) industry is confidence in the reliability of PV systems. Inverters are the most commonly noted cause of PV system incidents triggered in the field. While not all of these incidents are reliability-related or even necessarily failures, they still result in a loss of generated power. With support from the U.S. Department of Energy's Solar Energy Technologies Program, Sandia National Laboratories organized a Utility-Scale Grid-Tied Inverter Reliability Workshop in Albuquerque, New Mexico, January 27-28, 2011. The workshop addressed the reliability of large (100-kilowatt+) grid-tied inverters and the implications when such inverters fail, evaluated inverter codes and standards, and provided discussion about opportunities to enhance inverter reliability. This report summarizes discussions and presentations from the workshop and identifies opportunities for future efforts.

  13. Case Study - Florida Power & Light - Smart Grid Solutions Strengthen Reliability and Services - July 2012.pdf

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Florida Power & Light July 2012 1 Smart devices have been installed on 78 substation transformer banks. Smart Grid Solutions Strengthen Electric Reliability and Customer Services in Florida With 4.6 million customers, nearly 70,000 miles of power lines and 16 power plants, Florida Power and Light Company (FPL) is one of the nation's largest electric utilities. FPL says maintaining reliable service while keeping rates affordable is "Job One." While pursuing its mission, FPL is

  14. Towards a Scalable and Reliable Real Time In-Network Data Analysis Infrastructure

    SciTech Connect

    Ciraci, Selim; Yin, Jian

    2011-12-01

    The smart grid applications requires real time analysis, response within the order of milliseconds and high-reliability because of the mission critical structure of the power grid system. The only way to satisfy these requirements is in network data analysis and build-in redundancy routing for failures. To achieve this, we propose a data dissemination system that builds routes using network flow algorithms, have in network processing of the data and utilize data encoding to cope with high latencies.

  15. High-Performance Computing for Real-Time Grid Analysis and Operation

    SciTech Connect

    Huang, Zhenyu; Chen, Yousu; Chavarría-Miranda, Daniel

    2013-10-31

    comprehensive and real time. An even bigger challenge is how to incorporate dynamic information into real-time grid operation. Today’s online grid operation is based on a static grid model and can only provide a static snapshot of current system operation status, while dynamic analysis is conducted offline because of low computational efficiency. The offline analysis uses a worst-case scenario to determine transmission limits, resulting in under-utilization of grid assets. This conservative approach does not necessarily lead to reliability. Many times, actual power grid scenarios are not studied, and they will push the grid over the edge and resulting in outages and blackouts. This chapter addresses the HPC needs in power grid analysis and operations. Example applications such as state estimation and contingency analysis are given to demonstrate the value of HPC in power grid applications. Future research directions are suggested for high performance computing applications in power grids to improve the transparency, efficiency, and reliability of power grids.

  16. Provably secure time distribution for the electric grid

    SciTech Connect

    Smith IV, Amos M; Evans, Philip G; Williams, Brian P; Grice, Warren P

    2015-01-01

    We demonstrate a quantum time distribution (QTD) method that combines the precision of optical timing techniques with the integrity of quantum key distribution (QKD). Critical infrastructure is dependent on microprocessor- and programmable logic-based monitoring and control systems. The distribution of timing information across the electric grid is accomplished by GPS signals which are known to be vulnerable to spoofing. We demonstrate a method for synchronizing remote clocks based on the arrival time of photons in a modifed QKD system. This has the advantage that the signal can be veried by examining the quantum states of the photons similar to QKD.

  17. Final Scientific/ Technical Report. Playas Grid Reliability and Distributed Energy Research

    SciTech Connect

    Romero, Van; Weinkauf, Don; Khan, Mushtaq; Helgeson, Wes; Weedeward, Kevin; LeClerc, Corey; Fuierer, Paul

    2012-06-30

    The future looks bright for solar and renewable energies in the United States. Recent studies claim that by 2050, solar power could supply a third of all electricity demand in the country’s western states. Technology advances, soft policy changes, and increased energy consciousness will all have to happen to achieve this goal. But the larger question is, what would it take to do more throughout the United States? The studies tie future solar and renewable growth in the United States to programs that aim to lower the soft costs of solar adoption, streamline utility interconnections, and increase technology advances through research and development. At the state and local levels, the most important steps are; Net metering: Net metering policies lets customers offset their electric bills with onsite solar and receive reliable and fair compensation for the excess electricity they provide to the grid. Not surprisingly, what utilities consider fair is not necessarily a rate that’s favorable to solar customers; Renewable portfolio standards (RPS): RPS policies require utilities to provide a certain amount of their power from renewable sources; some set specific targets for solar and other renewables. California’s aggressive RPS of 33% renewable energy by 2020 is not bankrupting the state, or its residents; Strong statewide interconnection policies: Solar projects can experience significant delays and hassles just to get connected to the grid. Streamlined feasibility and impact analysis are needed. Good interconnection policies are crucial to the success of solar or renewable energy development; Financing options: Financing is often the biggest obstacle to solar adoption. Those obstacles can be surmounted with policies that support creative financing options like third-party ownership (TPO) and property assessed clean energy (PACE). Attesting to the significance of TPO is the fact that in Arizona, it accounted for 86% of all residential photovoltaic (PV

  18. Vehicle to Micro-Grid: Leveraging Existing Assets for Reliable Energy Management (Poster)

    SciTech Connect

    Simpson, M.; Markel, T.; O'Keefe, M.

    2010-12-01

    Fort Carson, a United States Army installation located south of Colorado Springs, Colorado, is seeking to be a net-zero energy facility. As part of this initiative, the base will be constructing a micro-grid that ties to various forms of renewable energy. To reduce petroleum consumption, Fort Carson is considering grid-connected vehicles (GCVs) such as pure electric trucks to replace some of its on-base truck fleet. As the availability and affordability of distributed renewable energy generation options increase, so will the GCV options (currently, three all-electric trucks are available on the GSA schedule). The presence of GCVs on-base opens up the possibility to utilize these vehicles to provide stability to the base micro-grid. This poster summarizes work to estimate the potential impacts of three electric vehicle grid interactions between the electric truck fleet and the Fort Carson micro-grid: 1) full-power charging without management, 2) full-power charging capability controlled by the local grid authority, and 3) full-power charge and discharge capability controlled by the local grid authority. We found that even at relatively small adoption rates, the control of electric vehicle charging at Fort Carson will aid in regulation of variable renewable generation loads and help stabilize the micro-grid.

  19. Smart Grid Update: Delivering More Reliable and Efficient Power to the Nation’s Capital

    Energy.gov [DOE]

    Smart grid investments are transforming power delivery in the nation's Capital and nearby states. Ryan Egidi saw this first-hand when he visited Pepco Holdings Inc. (PHI) last month to mark the recent completion of three Recovery Act-funded Smart Grid Investment Grant (SGIG) projects.

  20. Autonomous, Decentralized Grid Architecture: Prosumer-Based Distributed Autonomous Cyber-Physical Architecture for Ultra-Reliable Green Electricity Networks

    SciTech Connect

    2012-01-11

    GENI Project: Georgia Tech is developing a decentralized, autonomous, internet-like control architecture and control software system for the electric power grid. Georgia Tech’s new architecture is based on the emerging concept of electricity prosumers—economically motivated actors that can produce, consume, or store electricity. Under Georgia Tech’s architecture, all of the actors in an energy system are empowered to offer associated energy services based on their capabilities. The actors achieve their sustainability, efficiency, reliability, and economic objectives, while contributing to system-wide reliability and efficiency goals. This is in marked contrast to the current one-way, centralized control paradigm.

  1. Design and Implementation of Real-Time Off-Grid Detection Tool Based on FNET/GridEye

    SciTech Connect

    Guo, Jiahui; Zhang, Ye; Liu, Yilu; Young II, Marcus Aaron; Irminger, Philip; Dimitrovski, Aleksandar D; Willging, Patrick

    2014-01-01

    Real-time situational awareness tools are of critical importance to power system operators, especially during emergencies. The availability of electric power has become a linchpin of most post disaster response efforts as it is the primary dependency for public and private sector services, as well as individuals. Knowledge of the scope and extent of facilities impacted, as well as the duration of their dependence on backup power, enables emergency response officials to plan for contingencies and provide better overall response. Based on real-time data acquired by Frequency Disturbance Recorders (FDRs) deployed in the North American power grid, a real-time detection method is proposed. This method monitors critical electrical loads and detects the transition of these loads from an on-grid state, where the loads are fed by the power grid to an off-grid state, where the loads are fed by an Uninterrupted Power Supply (UPS) or a backup generation system. The details of the proposed detection algorithm are presented, and some case studies and off-grid detection scenarios are also provided to verify the effectiveness and robustness. Meanwhile, the algorithm has already been implemented based on the Grid Solutions Framework (GSF) and has effectively detected several off-grid situations.

  2. Maui Smart Grid Demonstration Project Managing Distribution System Resources for Improved Service Quality and Reliability, Transmission Congestion Relief, and Grid Support Functions

    SciTech Connect

    none,

    2014-09-30

    The Maui Smart Grid Project (MSGP) is under the leadership of the Hawaii Natural Energy Institute (HNEI) of the University of Hawaii at Manoa. The project team includes Maui Electric Company, Ltd. (MECO), Hawaiian Electric Company, Inc. (HECO), Sentech (a division of SRA International, Inc.), Silver Spring Networks (SSN), Alstom Grid, Maui Economic Development Board (MEDB), University of Hawaii-Maui College (UHMC), and the County of Maui. MSGP was supported by the U.S. Department of Energy (DOE) under Cooperative Agreement Number DE-FC26-08NT02871, with approximately 50% co-funding supplied by MECO. The project was designed to develop and demonstrate an integrated monitoring, communications, database, applications, and decision support solution that aggregates renewable energy (RE), other distributed generation (DG), energy storage, and demand response technologies in a distribution system to achieve both distribution and transmission-level benefits. The application of these new technologies and procedures will increase MECO’s visibility into system conditions, with the expected benefits of enabling more renewable energy resources to be integrated into the grid, improving service quality, increasing overall reliability of the power system, and ultimately reducing costs to both MECO and its customers.

  3. Department of Energy Announces 12 New Projects to Accelerate Technologies that Improve the Efficiency and Reliability of the U.S. Electric Grid

    Energy.gov [DOE]

    ARPA-E Awards $33 Million to Fund Innovative Technologies for Real-time Management of the Electric Grid

  4. Reliability Testing Beyond Qualification as a Key Component in Photovoltaic's Progress Toward Grid Parity: Preprint

    SciTech Connect

    Wohlgemuth, J. H.; Kurtz, S.

    2011-02-01

    This paper discusses why it is necessary for new lower cost PV modules to be tested using a reliability test sequence that goes beyond the Qualification test sequence now utilized for modules. Today most PV modules are warranted for 25 years, but the Qualification Test Sequence does not test for 25-year life. There is no accepted test protocol to validate a 25-year lifetime. This paper recommends the use of long term accelerated testing to compare now designs directly with older designs that have achieved long lifetimes in outdoor exposure. If the new designs do as well or better than the older ones, then it is likely that they will survive an equivalent length of time in the field.

  5. Principal Characteristics of a Modern Grid

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... Energy Reliability MODERN GRID S T R A T E G Y The Grid - Today vs. Tomorrow Characteristic Today Tomorrow MotivatesIncludes Consumer No price visibility, time-of- day pricing ...

  6. Grid Architecture 2

    SciTech Connect

    Taft, Jeffrey D.

    2016-01-01

    The report describes work done on Grid Architecture under the auspices of the Department of Electricity Office of Electricity Delivery and Reliability in 2015. As described in the first Grid Architecture report, the primary purpose of this work is to provide stakeholder insight about grid issues so as to enable superior decision making on their part. Doing this requires the creation of various work products, including oft-times complex diagrams, analyses, and explanations. This report provides architectural insights into several important grid topics and also describes work done to advance the science of Grid Architecture as well.

  7. Smart Grid

    Energy.gov [DOE]

    The Energy Department is investing in strategic partnerships to accelerate the Smart Grid -- a two-way, intuitive system that will result in more efficient and reliable electricity for all grid users.

  8. Smart Grid Investment Grant Recipient Information

    Energy.gov [DOE]

    The Department of Energys Office of Electricity Delivery and Energy Reliabilitys goal was to expeditiously negotiate the Smart Grid Investment Grant awards so each recipient could begin implementing their project in a timely fashion.

  9. NREL: Performance and Reliability R&D - Real-Time Reliability...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Failure Analysis for Photovoltaic Reliability NREL has equipment and expertise for failure analysis of modules and components. Primary techniques for analyzing modules include ...

  10. Time-dependent reliability analysis and condition assessment of structures

    SciTech Connect

    Ellingwood, B.R.

    1997-01-01

    Structures generally play a passive role in assurance of safety in nuclear plant operation, but are important if the plant is to withstand the effect of extreme environmental or abnormal events. Relative to mechanical and electrical components, structural systems and components would be difficult and costly to replace. While the performance of steel or reinforced concrete structures in service generally has been very good, their strengths may deteriorate during an extended service life as a result of changes brought on by an aggressive environment, excessive loading, or accidental loading. Quantitative tools for condition assessment of aging structures can be developed using time-dependent structural reliability analysis methods. Such methods provide a framework for addressing the uncertainties attendant to aging in the decision process.

  11. North American Electric Reliability Corporation (NERC): Reliability

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Considerations from the Integration of Smart Grid | Department of Energy (NERC): Reliability Considerations from the Integration of Smart Grid North American Electric Reliability Corporation (NERC): Reliability Considerations from the Integration of Smart Grid North American Electric Reliability Corporation (NERC): Reliability Considerations from the Integration of Smart Grid. NERC develops and enforces Reliability Standards; assesses adequacy annually via a ten-year forcast and winter and

  12. Mastering Uncertainty and Risk at Multiple Time Scales in the Future Electrical Grid

    SciTech Connect

    Chertkov, Michael; Bent, Russell W.; Backhaus, Scott N.

    2012-07-10

    Today's electrical grids enjoy a relatively clean separation of spatio-temporal scales yielding a compartmentalization of grid design, optimization, control and risk assessment allowing for the use of conventional mathematical tools within each area. In contrast, the future grid will incorporate time-intermittent renewable generation, operate via faster electrical markets, and tap the latent control capability at finer grid modeling scales; creating a fundamentally new set of couplings across spatiotemporal scales and requiring revolutionary advances in mathematics techniques to bridge these scales. One example is found in decade-scale grid expansion planning in which today's algorithms assume accurate load forecasts and well-controlled generation. Incorporating intermittent renewable generation creates fluctuating network flows at the hourly time scale, inherently linking the ability of a transmission line to deliver electrical power to hourly operational decisions. New operations-based planning algorithms are required, creating new mathematical challenges. Spatio-temporal scales are also crossed when the future grid's minute-scale fluctuations in network flows (due to intermittent generation) create a disordered state upon which second-scale transient grid dynamics propagate effectively invalidating today's on-line dynamic stability analyses. Addressing this challenge requires new on-line algorithms that use large data streams from new grid sensing technologies to physically aggregate across many spatial scales to create responsive, data-driven dynamic models. Here, we sketch the mathematical foundations of these problems and potential solutions.

  13. 2010 Transmission Reliability Program Peer Review | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Transmission Reliability Program Peer Review 2010 Transmission Reliability Program Peer Review The Transmission Reliability research area focuses on two key areas: 1) Real-Time Grid Reliability Management and 2) Reliability and Markets. The first area develops monitoring and analysis tools that process synchrophasor data to enable real-time assessment of grid status and stability margins, with the goal of improving power system reliability and visibility through wide-area measurement and

  14. Memphis Light, Gas and Water Division Smart Grid Project | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    restoration times and the need for truck rolls for grid maintenance, improving reliability and reducing operating costs and pollutant emissions.3 Equipment Distribution...

  15. The National Opportunity for Interoperability and its Benefits for a Reliable, Robust, and Future Grid Realized through Buildings

    Office of Energy Efficiency and Renewable Energy (EERE)

    In this report, the Building Technologies Office (BTO) discusses interoperability as it applies to buildings and building interactions with the grid and other systems, its impact and opportunity...

  16. Pilot evaluation of electricity-reliability and power-quality monitoring in California's Silicon Valley with the I-Grid(R) system

    SciTech Connect

    Eto, Joseph; Divan, Deepak; Brumsickle, William

    2004-02-01

    Power-quality events are of increasing concern for the economy because today's equipment, particularly computers and automated manufacturing devices, is susceptible to these imperceptible voltage changes. A small variation in voltage can cause this equipment to shut down for long periods, resulting in significant business losses. Tiny variations in power quality are difficult to detect except with expensive monitoring equipment used by trained technicians, so many electricity customers are unaware of the role of power-quality events in equipment malfunctioning. This report describes the findings from a pilot study coordinated through the Silicon Valley Manufacturers Group in California to explore the capabilities of I-Grid(R), a new power-quality monitoring system. This system is designed to improve the accessibility of power-quality in formation and to increase understanding of the growing importance of electricity reliability and power quality to the economy. The study used data collected by I-Grid sensors at seven Silicon Valley firms to investigate the impacts of power quality on individual study participants as well as to explore the capabilities of the I-Grid system to detect events on the larger electricity grid by means of correlation of data from the sensors at the different sites. In addition, study participants were interviewed about the value they place on power quality, and their efforts to address electricity-reliability and power-quality problems. Issues were identified that should be taken into consideration in developing a larger, potentially nationwide, network of power-quality sensors.

  17. Grid Cyber Vulnerability & Assessments

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... to increase power grid reliability and resilience, but also provides adversaries with the ... in industrial control systems for electricity generationtransmissiondistribution ...

  18. Improving the Reliability and Resiliency of the US Electric Grid: SGIG Article in Metering International, March 2012

    Energy.gov [DOE]

    The quarterly magazine Metering International is a resource for information on trends and developments in the industry. Issue 1 2012 (March) featured an article on DOE's Smart Grid Investment Grant...

  19. Strategies and Decision Support Systems for Integrating Variable Energy Resources in Control Centers for Reliable Grid Operations. Executive Summary

    SciTech Connect

    Jones, Lawrence E.

    2011-11-01

    This is the executive summary for a report that provides findings from the field regarding the best ways in which to guide operational strategies, business processes and control room tools to support the integration of renewable energy into electrical grids.

  20. Strategies and Decision Support Systems for Integrating Variable Energy Resources in Control Centers for Reliable Grid Operations

    SciTech Connect

    Jones, Lawrence E.

    2011-11-01

    This report provides findings from the field regarding the best ways in which to guide operational strategies, business processes and control room tools to support the integration of renewable energy into electrical grids.

  1. Principal Characteristics of a Modern Grid

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Electricity Delivery and Energy Reliability Joe Miller, Modern Grid Strategy Team Lead Grid Econ - The Economics of a Smarter Electric Grid March 16, 2009 Office of Electricity ...

  2. Principal Characteristics of a Modern Grid

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    and Energy Reliability Steve Pullins, Modern Grid Strategy Team Utility Field Services 2009 29 April 2009 Office of Electricity Delivery and Energy Reliability MODERN GRID S T ...

  3. ARRA Grid Modernization Investment Highlights - Fact Sheet |...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    were successfully managed by the Office of Electricity Delivery and Energy Reliability. ... Smart Grid Investments Improve Grid Reliability, Resilience, and Storm Responses (November ...

  4. High-Performance Computing for Real-Time Grid Analysis and Operation...

    Office of Scientific and Technical Information (OSTI)

    The grid evolution is largely driven by the desire for green energy. Emerging grid technologies such as renewable generation, smart loads, plug-in hybrid vehicles, and distributed ...

  5. AEP Ohio gridSMART Demonstration Project Real-Time Pricing Demonstration Analysis

    SciTech Connect

    Widergren, Steven E.; Subbarao, Krishnappa; Fuller, Jason C.; Chassin, David P.; Somani, Abhishek; Marinovici, Maria C.; Hammerstrom, Janelle L.

    2014-02-01

    This report contributes initial findings from an analysis of significant aspects of the gridSMART® Real-Time Pricing (RTP) – Double Auction demonstration project. Over the course of four years, Pacific Northwest National Laboratory (PNNL) worked with American Electric Power (AEP), Ohio and Battelle Memorial Institute to design, build, and operate an innovative system to engage residential consumers and their end-use resources in a participatory approach to electric system operations, an incentive-based approach that has the promise of providing greater efficiency under normal operating conditions and greater flexibility to react under situations of system stress. The material contained in this report supplements the findings documented by AEP Ohio in the main body of the gridSMART report. It delves into three main areas: impacts on system operations, impacts on households, and observations about the sensitivity of load to price changes.

  6. GridWise Alliance: Smart Grid RFI: Addressing Policy and Logistical...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    reliability, flexibility, and efficiency of our electric grid. PDF icon GridWise Alliance: Smart Grid RFI: Addressing Policy and Logistical Challenges More Documents & ...

  7. Smart Grid Primer (Smart Grid Books) | Department of Energy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    sponsored by DOE's Office of Electricity Delivery and Energy Reliability that ... Investments Improve Grid Reliability, Resilience, and Storm Responses (November 2014) ...

  8. Grid Modernization Research | Grid Modernization | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Grid Modernization Research NREL addresses the challenges of modernizing the electric grid through high-impact research and development in power systems engineering and resource assessment. The future electric grid must deliver reliable, affordable, and clean electricity to consumers where they want it, when they want it, and how they want it. As part of NREL's energy systems integration activities, grid modernization researchers work with the electricity industry, academia, and other research

  9. Bayesian Modeling of Time Trends in Component Reliability Data via Markov Chain Monte Carlo Simulation

    SciTech Connect

    D. L. Kelly

    2007-06-01

    Markov chain Monte Carlo (MCMC) techniques represent an extremely flexible and powerful approach to Bayesian modeling. This work illustrates the application of such techniques to time-dependent reliability of components with repair. The WinBUGS package is used to illustrate, via examples, how Bayesian techniques can be used for parametric statistical modeling of time-dependent component reliability. Additionally, the crucial, but often overlooked subject of model validation is discussed, and summary statistics for judging the model’s ability to replicate the observed data are developed, based on the posterior predictive distribution for the parameters of interest.

  10. Towards Real-Time High Performance Computing For Power Grid Analysis

    SciTech Connect

    Hui, Peter SY; Lee, Barry; Chikkagoudar, Satish

    2012-11-16

    Real-time computing has traditionally been considered largely in the context of single-processor and embedded systems, and indeed, the terms real-time computing, embedded systems, and control systems are often mentioned in closely related contexts. However, real-time computing in the context of multinode systems, specifically high-performance, cluster-computing systems, remains relatively unexplored. Imposing real-time constraints on a parallel (cluster) computing environment introduces a variety of challenges with respect to the formal verification of the system's timing properties. In this paper, we give a motivating example to demonstrate the need for such a system--- an application to estimate the electromechanical states of the power grid--- and we introduce a formal method for performing verification of certain temporal properties within a system of parallel processes. We describe our work towards a full real-time implementation of the target application--- namely, our progress towards extracting a key mathematical kernel from the application, the formal process by which we analyze the intricate timing behavior of the processes on the cluster, as well as timing measurements taken on our test cluster to demonstrate use of these concepts.

  11. A Run-Time Verification Framework for Smart Grid Applications Implemented on Simulation Frameworks

    SciTech Connect

    Ciraci, Selim; Sozer, Hasan; Tekinerdogan, Bedir

    2013-05-18

    Smart grid applications are implemented and tested with simulation frameworks as the developers usually do not have access to large sensor networks to be used as a test bed. The developers are forced to map the implementation onto these frameworks which results in a deviation between the architecture and the code. On its turn this deviation makes it hard to verify behavioral constraints that are de- scribed at the architectural level. We have developed the ConArch toolset to support the automated verification of architecture-level behavioral constraints. A key feature of ConArch is programmable mapping for architecture to the implementation. Here, developers implement queries to identify the points in the target program that correspond to architectural interactions. ConArch generates run- time observers that monitor the flow of execution between these points and verifies whether this flow conforms to the behavioral constraints. We illustrate how the programmable mappings can be exploited for verifying behavioral constraints of a smart grid appli- cation that is implemented with two simulation frameworks.

  12. Electricity Delivery and Energy Reliability

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Delivery and Energy Reliability The Office of Electricity Delivery and Energy Reliability ... to energy supply disruptions, such as electricity and fuel outages. * Smart Grid (14.4 ...

  13. Smart Grid RFI: Addressing Policy and Logistical Challenges,...

    Energy.gov [DOE] (indexed site)

    Reliability and Resiliency of the US Electric Grid: SGIG Article in Metering International, March 2012 Smart Grid Consortium, Response of New York State Smart Grid Addressing ...

  14. PROJECT PROFILE: An Integrated Tool for Improving Grid Performance and Reliability of Combined Transmission-Distribution with High Solar Penetration (SuNLaMP)

    Energy.gov [DOE]

    High penetration of solar photovoltaics (PV) in electric power grids has created a need for changes to power system planning and operations analysis. Important technical issues such as two-way power flow, coordination of protection devices, transmission-distribution interaction, and reduction in inertia need to be resolved to enable a greater deployment of solar generation. To overcome these technical barriers, this project will develop a suite of software tools that creates a holistic understanding of the steady-state and transient behavior of transmission-distribution networks’ interaction under high PV penetration levels, along with the capability of real-time monitoring of the distribution systems and integration of system protection.

  15. Grid Edge Control - Extracting Value from the Distribution System

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    The grid is the largest machine built by man, delivering reliable affordable power for ... * The grid is the largest machine built by man, delivering reliable affordable power for ...

  16. GROWDERS Demonstration of Grid Connected Electricity Systems...

    OpenEI (Open Energy Information) [EERE & EIA]

    2011 References EU Smart Grid Projects Map1 Overview The GROWDERS project (Grid Reliability and Operability with Distributed Generation using Flexible Storage) investigates...

  17. Waukesha Electric Systems Smart Grid Demonstration Project |...

    OpenEI (Open Energy Information) [EERE & EIA]

    transformer, lower power consumption through reduction of losses, and increase the reliability of the electrical grid. References ARRA Smart Grid Demonstration Projects...

  18. Smart Grid System Report

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    August 2014 2014 Smart Grid System Report Report to Congress August 2014 United States Department of Energy Washington, DC 20585 Department of Energy | August 2014 THIS PAGE INTENTIONALLY LEFT BLANK 2014 Smart Grid System Report Department of Energy | August 2014 Message from the Assistant Secretary Office of Electricity Delivery and Energy Reliability I am pleased to present the 2014 Smart Grid System Report, which is intended to provide an update on the status of smart grid deployment

  19. Field Experience with and Potential for Multi-time Scale Grid Transactions from Responsive Commercial Buildings

    SciTech Connect

    Piette, Mary Ann; Kiliccote, Sila; Ghatikar, Girish

    2014-08-01

    The need for and concepts behind demand response are evolving. As the electric system changes with more intermittent renewable electric supply systems, there is a need to allow buildings to provide more flexible demand. This paper presents results from field studies and pilots, as well as engineering estimates of the potential capabilities of fast load responsiveness in commercial buildings. We present a sector wide analysis of flexible loads in commercial buildings, which was conducted to improve resource planning and determine which loads to evaluate in future demonstrations. These systems provide important capabilities for future transactional systems. The field analysis is based on results from California, plus projects in the northwest and east coast. End-uses considered include heating, ventilation, air conditioning and lighting. The timescales of control include day-ahead, as well as day-of, 10-minute ahead and even faster response. This technology can provide DR signals on different times scales to interact with responsive building loads. We describe the latency of the control systems in the building and the round trip communications with the wholesale grid operators.

  20. Redefining Customer Service is Essential to Modernizing Grid | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Redefining Customer Service is Essential to Modernizing Grid Redefining Customer Service is Essential to Modernizing Grid December 13, 2010 - 2:44pm Addthis Patricia A. Hoffman Patricia A. Hoffman Assistant Secretary, Office of Electricity Delivery & Energy Reliability What does this mean for me? Utilities should be communicating to you about projects to modernize the grid that are effecting you. When was the last time you talked to your electricity provider about something

  1. Sandia Energy - North American Electric Reliability Corporation...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    North American Electric Reliability Corporation (NERC) Report Posted Home Energy Assurance Infrastructure Security Grid Integration News News & Events Transmission Grid Integration...

  2. Time-Varying, Multi-Scale Adaptive System Reliability Analysis of Lifeline Infrastructure Networks

    SciTech Connect

    Gearhart, Jared Lee; Kurtz, Nolan Scot

    2014-09-01

    The majority of current societal and economic needs world-wide are met by the existing networked, civil infrastructure. Because the cost of managing such infrastructure is high and increases with time, risk-informed decision making is essential for those with management responsibilities for these systems. To address such concerns, a methodology that accounts for new information, deterioration, component models, component importance, group importance, network reliability, hierarchical structure organization, and efficiency concerns has been developed. This methodology analyzes the use of new information through the lens of adaptive Importance Sampling for structural reliability problems. Deterioration, multi-scale bridge models, and time-variant component importance are investigated for a specific network. Furthermore, both bridge and pipeline networks are studied for group and component importance, as well as for hierarchical structures in the context of specific networks. Efficiency is the primary driver throughout this study. With this risk-informed approach, those responsible for management can address deteriorating infrastructure networks in an organized manner.

  3. Post-event human decision errors: operator action tree/time reliability correlation

    SciTech Connect

    Hall, R E; Fragola, J; Wreathall, J

    1982-11-01

    This report documents an interim framework for the quantification of the probability of errors of decision on the part of nuclear power plant operators after the initiation of an accident. The framework can easily be incorporated into an event tree/fault tree analysis. The method presented consists of a structure called the operator action tree and a time reliability correlation which assumes the time available for making a decision to be the dominating factor in situations requiring cognitive human response. This limited approach decreases the magnitude and complexity of the decision modeling task. Specifically, in the past, some human performance models have attempted prediction by trying to emulate sequences of human actions, or by identifying and modeling the information processing approach applicable to the task. The model developed here is directed at describing the statistical performance of a representative group of hypothetical individuals responding to generalized situations.

  4. GRIDS: Grid-Scale Rampable Intermittent Dispatchable Storage

    SciTech Connect

    2010-09-01

    GRIDS Project: The 12 projects that comprise ARPA-Es GRIDS Project, short for Grid-Scale Rampable Intermittent Dispatchable Storage, are developing storage technologies that can store renewable energy for use at any location on the grid at an investment cost less than $100 per kilowatt hour. Flexible, large-scale storage would create a stronger and more robust electric grid by enabling renewables to contribute to reliable power generation.

  5. Grid Certificates

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Grid Certificates Grid Certificates Grid certificates allow you to access NERSC (and other Grid enabled computing facilities) via grid interfaces. Grid certificates are credentials that must be initialized for use with grid tools. Once a certificate is initialized it is automatically used by the grid tools to authenticate the user to the grid resource. Getting a Short Lived NERSC CA Certificate The NERSC Online CA now offers a quick and painless way to obtain grid certificates. You can obtain a

  6. Obama Administration Announces Job-Creating Grid Modernization Pilot Projects

    Energy.gov [DOE]

    Seven Transmission Projects Across 12 States Will Increase Grid Reliability and Integrate Renewable Energies

  7. Grid Integration | Water Power | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Research & Development » Grid Integration Grid Integration Grid Integration The Wind Program works with electric grid operators, utilities, regulators, and industry to create new strategies for incorporating increasing amounts of wind energy into the power system while maintaining economic and reliable operation of the grid. Utilities have been increasingly deploying wind power to provide larger portions of electricity generation. However, many utilities also express concerns about wind

  8. Grid Integration | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Research & Development » Grid Integration Grid Integration Grid Integration The Wind Program works with electric grid operators, utilities, regulators, and industry to create new strategies for incorporating increasing amounts of wind energy into the power system while maintaining economic and reliable operation of the grid. Utilities have been increasingly deploying wind power to provide larger portions of electricity generation. However, many utilities also express concerns about wind

  9. PhotoVoltaic distributed generation for Lanai power grid real-time simulation and control integration scenario.

    SciTech Connect

    Robinett, Rush D., III; Kukolich, Keith; Wilson, David Gerald; Schenkman, Benjamin L.

    2010-06-01

    This paper discusses the modeling, analysis, and testing in a real-time simulation environment of the Lanai power grid system for the integration and control of PhotoVoltaic (PV) distributed generation. The Lanai Island in Hawaii is part of the Hawaii Clean Energy Initiative (HCEI) to transition to 30% renewable green energy penetration by 2030. In Lanai the primary loads come from two Castle and Cook Resorts, in addition to residential needs. The total peak load profile is 12470 V, 5.5 MW. Currently there are several diesel generators that meet these loading requirements. As part of the HCEI, Lanai has initially installed 1.2 MW of PV generation. The goal of this study has been to evaluate the impact of the PV with respect to the conventional carbon-based diesel generation in real time simulation. For intermittent PV distributed generation, the overall stability and transient responses are investigated. A simple Lanai 'like' model has been developed in the Matlab/Simulink environment (see Fig. 1) and to accommodate real-time simulation of the hybrid power grid system the Opal-RT Technologies RT-Lab environment is used. The diesel generators have been modelled using the SimPowerSystems toolbox swing equations and a custom Simulink module has been developed for the High level PV generation. All of the loads have been characterized primarily as distribution lines with series resistive load banks with one VAR load bank. Three-phase faults are implemented for each bus. Both conventional and advanced control architectures will be used to evaluate the integration of the PV onto the current power grid system. The baseline numerical results include the stable performance of the power grid during varying cloud cover (PV generation ramping up/down) scenarios. The importance of assessing the real-time scenario is included.

  10. Renewable Energy and a Smart Grid

    Energy.gov [DOE]

    A diagram of how smarter technologies enable more reliable, renewable energy sources to be integrated onto our electrical grid.

  11. Electricity Advisory Committee Smart Grid Subcommittee

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Electricity Advisory Committee Smart Grid Subcommittee Update to the 2008 EAC Report Smart Grid: Enabler of the New Energy Economy Report Recommendations May 10, 2011 Recommendations from the 2008 EAC Smart Grid Report (http://www.oe.energy.gov/DocumentsandMedia/final-smart-grid-report.pdf) 1. Create a Smart Grid Program office within DOE. Update: Completed. DOE's Office of Electricity Delivery and Energy Reliability (OE) has an active Smart Grid Program, which includes the Smart Grid Investment

  12. Grid Integration

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Centers Grid Integration HomeTag:Grid Integration Matt ... Research & Capabilities, Solar Sandia Labs Presents Grid ... Engineers convenes the Power Energy Society to address ...

  13. Comments of North American Electric Reliability Corporation ...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    North American Electric Reliability Corporation (NERC) to DOE Smart Grid RFI: Addressing Policy and Logistical Challenges Comments of North American Electric Reliability Corporation ...

  14. CERTS: Consortium for Electric Reliability Technology Solutions - Research Highlights

    SciTech Connect

    Eto, Joseph

    2003-07-30

    Historically, the U.S. electric power industry was vertically integrated, and utilities were responsible for system planning, operations, and reliability management. As the nation moves to a competitive market structure, these functions have been disaggregated, and no single entity is responsible for reliability management. As a result, new tools, technologies, systems, and management processes are needed to manage the reliability of the electricity grid. However, a number of simultaneous trends prevent electricity market participants from pursuing development of these reliability tools: utilities are preoccupied with restructuring their businesses, research funding has declined, and the formation of Independent System Operators (ISOs) and Regional Transmission Organizations (RTOs) to operate the grid means that control of transmission assets is separate from ownership of these assets; at the same time, business uncertainty, and changing regulatory policies have created a climate in which needed investment for transmission infrastructure and tools for reliability management has dried up. To address the resulting emerging gaps in reliability R&D, CERTS has undertaken much-needed public interest research on reliability technologies for the electricity grid. CERTS' vision is to: (1) Transform the electricity grid into an intelligent network that can sense and respond automatically to changing flows of power and emerging problems; (2) Enhance reliability management through market mechanisms, including transparency of real-time information on the status of the grid; (3) Empower customers to manage their energy use and reliability needs in response to real-time market price signals; and (4) Seamlessly integrate distributed technologies--including those for generation, storage, controls, and communications--to support the reliability needs of both the grid and individual customers.

  15. The Modern Grid Strategy THE TRANSMISSION SMART GRID IMPERATIVE

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Modern Grid Strategy THE TRANSMISSION SMART GRID IMPERATIVE Developed for the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability by the National Energy Technology Laboratory September 2009 Office of Electricity Delivery and Energy Reliability Transmission Smart Grid Imperative 1 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their

  16. Technical Assistance to ISO's and Grid Operators For Loads Providing

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Ancillary Services To Enhance Grid Reliability | Department of Energy Technical Assistance to ISO's and Grid Operators For Loads Providing Ancillary Services To Enhance Grid Reliability Technical Assistance to ISO's and Grid Operators For Loads Providing Ancillary Services To Enhance Grid Reliability Project demonstrates and promotes the use of responsive load to provide ancillary services; helps ISOsand grid operators understand the resource and how best to apply it. Technical Assistance to

  17. Automated Grid Disruption Response System: Robust Adaptive Topology Control (RATC)

    SciTech Connect

    2012-03-01

    GENI Project: The RATC research team is using topology control as a mechanism to improve system operations and manage disruptions within the electric grid. The grid is subject to interruption from cascading faults caused by extreme operating conditions, malicious external attacks, and intermittent electricity generation from renewable energy sources. The RATC system is capable of detecting, classifying, and responding to grid disturbances by reconfiguring the grid in order to maintain economically efficient operations while guaranteeing reliability. The RATC system would help prevent future power outages, which account for roughly $80 billion in losses for businesses and consumers each year. Minimizing the time it takes for the grid to respond to expensive interruptions will also make it easier to integrate intermittent renewable energy sources into the grid.

  18. Grid Modeling | Argonne National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Grid Modeling Grid Modeling The smart grid - an updated, futuristic electric power grid - will employ real-time, two-way communication technologies that allow consumers to connect directly with power suppliers. Customers will be able to choose where their electricity comes from and when they want it delivered. The smart grid is a key element in the national plan to lower energy costs for consumers, achieve energy independence and reduce greenhouse gases. Argonne's Advanced Power Grid Modeling

  19. Duke Energy Carolinas, LLC Smart Grid Project | Open Energy Informatio...

    OpenEI (Open Energy Information) [EERE & EIA]

    grid operators' ability to visualize and manage the transmission system, improving reliability and grid operations. Equipment Synchrophasor...

  20. Cloud Computing for the Grid: GridControl: A Software Platform to Support the Smart Grid

    SciTech Connect

    2012-02-08

    GENI Project: Cornell University is creating a new software platform for grid operators called GridControl that will utilize cloud computing to more efficiently control the grid. In a cloud computing system, there are minimal hardware and software demands on users. The user can tap into a network of computers that is housed elsewhere (the cloud) and the network runs computer applications for the user. The user only needs interface software to access all of the cloud’s data resources, which can be as simple as a web browser. Cloud computing can reduce costs, facilitate innovation through sharing, empower users, and improve the overall reliability of a dispersed system. Cornell’s GridControl will focus on 4 elements: delivering the state of the grid to users quickly and reliably; building networked, scalable grid-control software; tailoring services to emerging smart grid uses; and simulating smart grid behavior under various conditions.

  1. Transmission Reliability | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Transmission Reliability Transmission Reliability Modernizing America's electricity infrastructure is one of the U.S. Department of Energy's top priorities. The DOE Strategic Plan states that today's electric grid needs to be more efficient, reliable, and secure. A modern, smarter electric grid may save consumers money, help our economy run more efficiently, allow rapid growth in renewable energy sources, and enhance energy reliability. The Department's research into a variety of tools that will

  2. Principal Characteristics of a Modern Grid

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    FERC - NARUC Smart Grid Collaborative Meeting Joe Miller - Modern Grid Strategy Team July 23, 2008 Conducted by the National Energy Technology Laboratory Funded by the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability 2 Office of Electricity Delivery and Energy Reliability MODERN GRID S T R A T E G Y 2 Today's topics Smart Grid Background What is the Smart Grid? Some closing thoughts Questions 3 MODERN GRID S T R A T E G Y Smart Grid Background 4 Office of

  3. Principal Characteristics of a Modern Grid

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Smart Grid - What's so Smart About It? An Educational Forum on Smart Grids Joe Miller - Modern Grid Strategy Team June 24, 2008 1 Conducted by the National Energy Technology Laboratory Funded by the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability 2 Office of Electricity Delivery and Energy Reliability MODERN GRID S T R A T E G Y 2 Agenda What is the Smart Grid? EISA 2007 Highlights DOE Activities Questions MODERN GRID S T R A T E G Y What is the Smart Grid? 4

  4. Principal Characteristics of a Modern Grid

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Grid: Features, Benefits and Costs Illinois Smart Grid Initiative Joe Miller - Modern Grid Strategy Team July 8, 2008 Conducted by the National Energy Technology Laboratory Funded by the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability 2 Office of Electricity Delivery and Energy Reliability MODERN GRID S T R A T E G Y 2 Today's topics Why modernize the grid? What is the Smart Grid? What is the value proposition? Questions 3 MODERN GRID S T R A T E G Y Why modernize

  5. Effect of UV curing time on physical and electrical properties and reliability of low dielectric constant materials

    SciTech Connect

    Kao, Kai-Chieh; Cheng, Yi-Lung; Chang, Wei-Yuan; Chang, Yu-Min; Leu, Jihperng

    2014-11-01

    This study comprehensively investigates the effect of ultraviolet (UV) curing time on the physical, electrical, and reliability characteristics of porous low-k materials. Following UV irradiation for various periods, the depth profiles of the chemical composition in the low-k dielectrics were homogeneous. Initially, the UV curing process preferentially removed porogen-related CH{sub x} groups and then modified Si-CH{sub 3} and cage Si-O bonds to form network Si-O bonds. The lowest dielectric constant (k value) was thus obtained at a UV curing time of 300?s. Additionally, UV irradiation made porogen-based low-k materials hydrophobic and to an extent that increased with UV curing time. With a short curing time (<300?s), porogen was not completely removed and the residues degraded reliability performance. A long curing time (>300?s) was associated with improved mechanical strength, electrical performance, and reliability of the low-k materials, but none of these increased linearly with UV curing time. Therefore, UV curing is necessary, but the process time must be optimized for porous low-k materials on back-end of line integration in 45?nm or below technology nodes.

  6. Grid Integration

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Grid Integration HomeGrid Integration epri-presentations-av... and the Electric Power Research Institute (EPRI) ... Events, Renewable Energy, Solar Newsletter|Comments Off on ...

  7. Grid Architecture

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... happen to be connected to the grid, ... of aspirational requirements in the form of desired system (grid) qualities. ... 2. Scalability 3. Minimum environmental ...

  8. Staggered-grid finite-difference acoustic modeling with the Time-Domain Atmospheric Acoustic Propagation Suite (TDAAPS).

    SciTech Connect

    Aldridge, David Franklin; Collier, Sandra L.; Marlin, David H.; Ostashev, Vladimir E.; Symons, Neill Phillip; Wilson, D. Keith

    2005-05-01

    This document is intended to serve as a users guide for the time-domain atmospheric acoustic propagation suite (TDAAPS) program developed as part of the Department of Defense High-Performance Modernization Office (HPCMP) Common High-Performance Computing Scalable Software Initiative (CHSSI). TDAAPS performs staggered-grid finite-difference modeling of the acoustic velocity-pressure system with the incorporation of spatially inhomogeneous winds. Wherever practical the control structure of the codes are written in C++ using an object oriented design. Sections of code where a large number of calculations are required are written in C or F77 in order to enable better compiler optimization of these sections. The TDAAPS program conforms to a UNIX style calling interface. Most of the actions of the codes are controlled by adding flags to the invoking command line. This document presents a large number of examples and provides new users with the necessary background to perform acoustic modeling with TDAAPS.

  9. A new approach to power quality and electricity reliability monitoring-case study illustrations of the capabilities of the I-GridTM system

    SciTech Connect

    Divan, Deepak; Brumsickle, William; Eto, Joseph

    2003-04-01

    This report describes a new approach for collecting information on power quality and reliability and making it available in the public domain. Making this information readily available in a form that is meaningful to electricity consumers is necessary for enabling more informed private and public decisions regarding electricity reliability. The system dramatically reduces the cost (and expertise) needed for customers to obtain information on the most significant power quality events, called voltage sags and interruptions. The system also offers widespread access to information on power quality collected from multiple sites and the potential for capturing information on the impacts of power quality problems, together enabling a wide variety of analysis and benchmarking to improve system reliability. Six case studies demonstrate selected functionality and capabilities of the system, including: Linking measured power quality events to process interruption and downtime; Demonstrating the ability to correlate events recorded by multiple monitors to narrow and confirm the causes of power quality events; and Benchmarking power quality and reliability on a firm and regional basis.

  10. Sharing Smart Grid Experiences

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Sharing Smart Grid Experiences through Performance Feedback March 31, 2011 DOE/NETL- DE-FE0004001 U.S. Department of Energy Office of Electricity Delivery and Energy Reliability Prepared by: National Energy Technology Laboratory Sharing Smart Grid Experiences through Performance Feedback v1.0 Page ii Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their

  11. Principal Characteristics of a Modern Grid

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Joe Miller - Modern Grid Team October 6, 2008 1 Conducted by the National Energy Technology Laboratory Funded by the U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability Office of Electricity Delivery and Energy Reliability MODERN GRID S T R A T E G Y 2 Agenda The Smart Grid - a refresher "Push" drivers - a case for action "Pull" drivers - Smart Grid opportunities Some Smart Grid impacts Office of Electricity Delivery and Energy Reliability MODERN

  12. Principal Characteristics of a Modern Grid

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Grid Wabash Valley Power Joe Miller - Modern Grid Strategy Team July 15, 2008 Conducted by the National Energy Technology Laboratory Funded by the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability 2 Office of Electricity Delivery and Energy Reliability MODERN GRID S T R A T E G Y 2 Today's topics Smart Grid background Why modernize the grid? What is the Smart Grid? What is the value proposition? How do we get there? What are some of the barriers? Questions 3 MODERN

  13. Protecting the Grid from All Hazards | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    & Energy Reliability The Energy Department takes the security and reliability of our power grid very seriously. We work closely with our federal, state and industry partners...

  14. Materials Research for Smart Grid Applications Steven J Bossart

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    management, automated feeder reconfiguration, improved maintenance by monitoring equipment health, and providing ancillary services to enhance grid stability and reliability. ...

  15. Principal Characteristics of a Modern Grid

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    of Energy, Office of Electricity Delivery and Energy Reliability Steve Pullins, Modern Grid Strategy Team Morgantown, WV March 20, 2009 Office of Electricity Delivery and Energy ...

  16. Principal Characteristics of a Modern Grid

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    And are powered by: Clean nuclear and coal with carbon capture Renewables and other ... in peak loads - lowering prices for consumers Improved grid reliability - decreasing ...

  17. Securing the Nation's Grid | Department of Energy

    Energy.gov [DOE] (indexed site)

    Assistant Secretary for the Office of Electricity Delivery and Energy Reliability Our ... Grid resilience encompasses an all-hazard approach that involves protecting the energy ...

  18. Reinventing the National Power Grid

    Energy.gov [DOE]

    America’s power grid – while reliable today – needs a 21st century facelift, not only to accommodate the nation’s unfolding economic and security needs, but to achieve U.S. clean energy goals for a...

  19. Grid Integration

    SciTech Connect

    Not Available

    2008-09-01

    Summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its grid integration subprogram.

  20. Controllable Grid Interface | Wind | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Controllable Grid Interface Engineers have developed a cross-cutting approach to testing grid integration using the Controllable Grid Interface (CGI) that provides grid operators with the performance information they need for a fraction of the time and cost it would take to test a turbine in the field. Photo of a long gray building surrounded by energy boxes and gravel with a man approahing it from the left. NREL's 7-megavolt amperes CGI test system can reduce certification testing time and

  1. Wide-area situation awareness in electric power grid

    SciTech Connect

    Greitzer, Frank L.

    2010-04-28

    Two primary elements of the US energy policy are demand management and efficiency and renewable sources. Major objectives are clean energy transmission and integration, reliable energy transmission, and grid cyber security. Development of the Smart Grid seeks to achieve these goals by lowering energy costs for consumers, achieving energy independence and reducing greenhouse gas emissions. The Smart Grid is expected to enable real time wide-area situation awareness (SA) for operators. Requirements for wide-area SA have been identified among interoperability standards proposed by the Federal Energy Regulatory Commission and the National Institute of Standards and Technology to ensure smart-grid functionality. Wide-area SA and enhanced decision support and visualization tools are key elements in the transformation to the Smart Grid. This paper discusses human factors research to promote SA in the electric power grid and the Smart Grid. Topics that will be discussed include the role of human factors in meeting US energy policy goals, the impact and challenges for Smart Grid development, and cyber security challenges.

  2. High-Performance Computing for Advanced Smart Grid Applications

    SciTech Connect

    Huang, Zhenyu; Chen, Yousu

    2012-07-06

    The power grid is becoming far more complex as a result of the grid evolution meeting an information revolution. Due to the penetration of smart grid technologies, the grid is evolving as an unprecedented speed and the information infrastructure is fundamentally improved with a large number of smart meters and sensors that produce several orders of magnitude larger amounts of data. How to pull data in, perform analysis, and put information out in a real-time manner is a fundamental challenge in smart grid operation and planning. The future power grid requires high performance computing to be one of the foundational technologies in developing the algorithms and tools for the significantly increased complexity. New techniques and computational capabilities are required to meet the demands for higher reliability and better asset utilization, including advanced algorithms and computing hardware for large-scale modeling, simulation, and analysis. This chapter summarizes the computational challenges in smart grid and the need for high performance computing, and present examples of how high performance computing might be used for future smart grid operation and planning.

  3. Principal Characteristics of a Modern Grid

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    What is the Smart Grid? Illinois Smart Grid Initiative Joe Miller - Modern Grid Strategy Team June 3, 2008 1 Conducted by the National Energy Technology Laboratory Funded by the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability 2 Office of Electricity Delivery and Energy Reliability MODERN GRID S T R A T E G Y 2 What is the role of the MGS? Define a vision for the Modern Grid Reach out to stakeholders to gain consensus Assist in the identification and resolution of

  4. Principal Characteristics of a Modern Grid

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    PSC Missouri - Utility Meeting Joe Miller, Steve Pullins - Modern Grid Team January 9, 2008 1 Conducted by the National Energy Technology Laboratory Funded by the U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability 2 Office of Electricity Delivery and Energy Reliability MODERN GRID S T R A T E G Y Agenda Topics What is the Modern Grid Strategy? What is the Modern Grid? Why do we need to modernize the grid? What are some of the benefits? How do we achieve a Modern

  5. Principal Characteristics of a Modern Grid

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Modern Grid Wisconsin Public Utility Institute and UW Energy Institute Joe Miller, Steve Pullins, Steve Bossart - Modern Grid Team April 29, 2008 1 Conducted by the National Energy Technology Laboratory Funded by the U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability 2 Office of Electricity Delivery and Energy Reliability MODERN GRID S T R A T E G Y Today's Objectives To share our views on several Modern Grid concepts: What is the Modern Grid Strategy? What is the

  6. Load Control System Reliability

    SciTech Connect

    Trudnowski, Daniel

    2015-04-03

    This report summarizes the results of the Load Control System Reliability project (DOE Award DE-FC26-06NT42750). The original grant was awarded to Montana Tech April 2006. Follow-on DOE awards and expansions to the project scope occurred August 2007, January 2009, April 2011, and April 2013. In addition to the DOE monies, the project also consisted of matching funds from the states of Montana and Wyoming. Project participants included Montana Tech; the University of Wyoming; Montana State University; NorthWestern Energy, Inc., and MSE. Research focused on two areas: real-time power-system load control methodologies; and, power-system measurement-based stability-assessment operation and control tools. The majority of effort was focused on area 2. Results from the research includes: development of fundamental power-system dynamic concepts, control schemes, and signal-processing algorithms; many papers (including two prize papers) in leading journals and conferences and leadership of IEEE activities; one patent; participation in major actual-system testing in the western North American power system; prototype power-system operation and control software installed and tested at three major North American control centers; and, the incubation of a new commercial-grade operation and control software tool. Work under this grant certainly supported the DOE-OE goals in the area of “Real Time Grid Reliability Management.”

  7. NREL Smart Grid Projects

    SciTech Connect

    Hambrick, J.

    2012-01-01

    Although implementing Smart Grid projects at the distribution level provides many advantages and opportunities for advanced operation and control, a number of significant challenges must be overcome to maintain the high level of safety and reliability that the modern grid must provide. For example, while distributed generation (DG) promises to provide opportunities to increase reliability and efficiency and may provide grid support services such as volt/var control, the presence of DG can impact distribution operation and protection schemes. Additionally, the intermittent nature of many DG energy sources such as photovoltaics (PV) can present a number of challenges to voltage regulation, etc. This presentation provides an overview a number of Smart Grid projects being performed by the National Renewable Energy Laboratory (NREL) along with utility, industry, and academic partners. These projects include modeling and analysis of high penetration PV scenarios (with and without energy storage), development and testing of interconnection and microgrid equipment, as well as the development and implementation of advanced instrumentation and data acquisition used to analyze the impacts of intermittent renewable resources. Additionally, standards development associated with DG interconnection and analysis as well as Smart Grid interoperability will be discussed.

  8. Principal Characteristics of a Modern Grid

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Structuring the Smart Grid Framework: Application of Complex Systems Engineering Joe Miller - DOE / NETL Modern Grid Team Lead Committee on Science, Engineering, and Public Policy May 15, 2009 1 Conducted by the National Energy Technology Laboratory Funded by the U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability Office of Electricity Delivery and Energy Reliability MODERN GRID S T R A T E G Y This material is based upon work supported by the Department of Energy

  9. smart grid | netl.doe.gov

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    smart grid smart-grid.jpg The U.S. electric power grid provides electricity to over three hundred million people every day. This electricity powers some of the most advanced technologies in the world but is surprisingly delivered through a mostly aging, outmoded and over-stressed network. A need exists for greater consumer participation, greater reliability and power quality, and affordability-all critical components for the stable, secure electric power grid of the future. Currently, NETL is

  10. Cybersecurity and the Smarter Grid (October 2014) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    and the Smarter Grid (October 2014) Cybersecurity and the Smarter Grid (October 2014) An article by OE's Carol Hawk and Akhlesh Kaushiva in The Electricity Journal discusses cybersecurity for the power grid and how DOE and the energy sector are partnering to keep the smart grid reliable and secure. The article also presents insights of four Smart Grid Investment Grant (SGIG) recipients that are advancing state of the art of power grid security by designing cybersecurity into the foundation of

  11. Grid Integration

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... Sandia, DOE Energy Storage Program, GeneSiC Semiconductor, U.S. Army ARDEC: Ultra-High-Voltage Silicon Carbide Thyristors Capabilities, Distribution Grid Integration, Energy, ...

  12. Grid Architecture

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report describes the discipline of grid architecture and shows how it has been adapted from the combination of system architecture, network theory, and control engineering to apply to the issues of grid modernization. It shows how grid architecture aids in managing complexity, supports stakeholder communication about the grid, supplies methods to identify gaps and constraints, and provides the ability to compare architectural choices analytically. This approach views the grid as a network of structures, including electrical structure, industry, regulatory, and market structure, information systems and communications, and control and coordination structures and provides the means to understand and plan their interactions. The report then provides architectural views of the existing US power grid structures, with regional and other specializations. It illustrates how organized central wholesale markets are integrated with bulk system control, how distribution level changes related to penetration of Distributed Energy Resources impact both distribution and bulk systems operations, and how certain existing grid structures limit the ability to implement forward-looking changes to the grid. Finally the report provides selected forward looking architectural views for advanced distribution, integrated storage, and wide scale coordination via layered decomposition. The report contains a number of explicitly labeled architectural insights to aid in managing the complexity of grid modernization.

  13. Grid Modernization

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management ...

  14. Grid Integration

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    CO2 Geothermal Natural Gas Safety, Security & ... Hydrogen Production Market Transformation Fuel Cells ... Google + Vimeo Newsletter Signup SlideShare Grid Integration ...

  15. SMART GRID:

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    the SMART GRID: an introduction. Exploring the imperative of revitalizing America's electric infrastructure. How a smarter grid works as an enabling engine for our economy, our environment and our future. prepared for the U.S. Department of Energy by Litos Strategic Communication under contract No. DE-AC26-04NT41817, Subtask 560.01.04 the SMART GRID: an introduction. the SMART GRID: an introduction. DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United

  16. Smart Grid Investments Improve Grid reliability, Resilience and...

    Office of Environmental Management (EM)

    (EPB), headquartered in Chattanooga, Tennessee Florida Power and Light Company (FPL), headquartered in Juno Beach, Florida PECO, headquartered in Philadelphia, ...

  17. Interactive Grid | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Interactive Grid Interactive Grid Each time you flick a light switch or press a power button, you enjoy the benefits of the nation's incredible electric grid. The grid is a complex network of people and machinery working around the clock to produce and deliver electricity to millions of homes across the nation. The electric grid works so well, Americans often think about it only when they receive their electric bills, or in those rare instances when there is a power outage. By taking the time to

  18. Reliability Engineering

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    LA-UR 15-27450 This document is approved for public release; further dissemination unlimited Reliability Engineering Reliability Engineering Current practice in reliability is ...

  19. Overture: The grid classes

    SciTech Connect

    Brislawn, K.; Brown, D.; Chesshire, G.; Henshaw, W.

    1997-01-01

    Overture is a library containing classes for grids, overlapping grid generation and the discretization and solution of PDEs on overlapping grids. This document describes the Overture grid classes, including classes for single grids and classes for collections of grids.

  20. Grid Software and Services

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    allow you to access NERSC (and other Grid enabled computing facilities) via grid interfaces. Grid certificates are credentials that must be initialized for use with grid tools. ...

  1. Providing Grid Flexibility in

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Providing Grid Flexibility in Wyoming and Montana Introduction Powder River Energy Corporation (PRECorp) is an electric cooperative serving approximately 11,900 customers in a 16,200 square-mile area of rural Wyoming and Montana. PRECorp's customers frequently experience harsh weather conditions. Severe weather conditions in PRECorp's rural and remote service territory present unique challenges in providing reliable electric service to PRECorp's customers. PRECorp's customers include coal mining

  2. Elforsk Smart grid programme (Smart Grid Project) | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    in Europe Smart Grid Projects - Smart Meter and AMI Smart Grid Projects - Grid Automation Transmission Smart Grid Projects - Grid Automation Distribution Smart Grid Projects...

  3. Electrical vehicles impacts on the grids (Smart Grid Project...

    OpenEI (Open Energy Information) [EERE & EIA]

    Smart Grid Projects Smart Grid Projects in Europe Smart Grid Projects - Grid Automation Distribution Smart Grid Projects - Home application Smart Grid Projects - Customer...

  4. Owner/Operator Perspective on Reliability Customer Needs and...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    SERVICES AS RELIABLE AS THE SUN OwnerOperator Perspective on Reliability Customer Needs and Field Data Sandia National Laboratories Utility-Scale Grid-Tied PV Inverter Reliability...

  5. Enhanced INL Power Grid Test Bed Infrastructure – Phase I

    SciTech Connect

    Reid, Carol Ann; West, Grayson Shawn; McBride, Scott Alan

    2014-06-01

    Idaho National Laboratory (INL), a Department of Energy (DOE) laboratory, owns, operates, and maintains transmission and distribution power grid infrastructure to support the INL multi program mission. Sections of this power infrastructure, known as the INL Power Grid Test Bed, have been and are being used by government and industry to develop, demonstrate, and validate technologies for the modern grid, including smart grid, on a full scale utility test bed. INL’s power grid includes 61 miles of 140 MW, 138 kV rated electrical power transmission supplying seven main substations, each feeding a separate facility complex (or ‘city’) within the INL’s 890 square mile Site. This power grid is fed by three commercial utilities into the INL’s main control substation, but is operated independently from the commercial utility through its primary substation and command and control center. Within the INL complex, one of the seven complexes, the Critical Infrastructure Test Range Complex (CITRC), has been designated as the INL complex for supporting critical infrastructure research and testing. This complex includes its own substation and 13.8kV distribution network, all configurable and controlled by the INL research and development programs. Through investment partnership with the DOE Office of Electricity Delivery and Energy Reliability (DOE OE), INL is enhancing its existing distribution infrastructure to expand the types of testing that can be conducted and increase flexibility for testing configurations. The enhancement of the INL Power Grid Test Bed will enable development and full scale testing of smart-grid-related technologies and smart devices including testing interoperability, operational performance, reliability, and resiliency contribution at multiple distribution voltage classes, specifically 15kV, 25kV, and 35kV. The expected time frame for completion of the Phase I portion of the enhancement would be 4th quarter fiscal year (FY) 2015.

  6. Grid Integration Studies: Data Requirements, Greening the Grid

    SciTech Connect

    Katz, Jessica

    2015-06-01

    A grid integration study is an analytical framework used to evaluate a power system with high penetration levels of variable renewable energy (VRE). A grid integration study simulates the operation of the power system under different VRE scenarios, identifying reliability constraints and evaluating the cost of actions to alleviate those constraints. These VRE scenarios establish where, how much, and over what timeframe to build generation and transmission capacity, ideally capturing the spatial diversity benefits of wind and solar resources. The results help build confidence among policymakers, system operators, and investors to move forward with plans to increase the amount of VRE on the grid.

  7. TITLE XIII- SMART GRID SEC. 1301- 1308 STATEMENT OF POLICY ON MODERNIZATION OF ELECTRICITY GRID

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    XIII--SMART GRID SEC. 1301. STATEMENT OF POLICY ON MODERNIZATION OF ELECTRICITY GRID. It is the policy of the United States to support the modernization of the Nation's electricity transmission and distribution system to maintain a reliable and secure electricity infrastructure that can meet future demand growth and to achieve each of the following, which together characterize a Smart Grid: (1) Increased use of digital information and controls technology to improve reliability, security, and

  8. Principal Characteristics of a Modern Grid

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    NETL Modern Grid Strategy Overview ABB 2008 Power World Conference Bruce Renz January 14, 2008 1 Conducted by the National Energy Technology Laboratory Funded by the U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability 2 Office of Electricity Delivery and Energy Reliability MODERN GRID S T R A T E G Y The Modern Grid Strategy (MGS) President Bush has asked the U.S. Department of Energy to lead a national effort to modernize and expand the electric grid. The Office of

  9. Principal Characteristics of a Modern Grid

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Basics 1 Conducted by the National Energy Technology Laboratory Funded by the U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability Joe Miller, Modern Grid Strategy Team Lead Grid Econ - The Economics of a Smarter Electric Grid March 16, 2009 Office of Electricity Delivery and Energy Reliability MODERN GRID S T R A T E G Y This material is based upon work supported by the Department of Energy under Award Number DE-AC26- 04NT41817 This presentation was prepared as an

  10. "Grid Resilience to Natural Disasters: Challenges and Opportunities...

    Energy.gov [DOE] (indexed site)

    Dan Ton, Program Manager of Smart Grid R&D in the Office of Electricity Delivery and Energy Reliability, has co-authored an article entitled "Grid Resilience to Natural Disasters: ...

  11. Smart Grid Ready PV Inverters with Utility Communication | Department of

    Energy Saver

    November 2014 Smart Grid Investments Improve Grid Reliability, Resilience, and Storm Responses Page ii Table of Contents Executive Summary ...................................................................................................................................... iii 1. Introduction .............................................................................................................................................. 1 2. Overview of the Featured SGIG Projects

  12. Reliability and Markets Program Information | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Reliability and Markets Program Information Reliability and Markets Program Information Summary of the Tranmission Reliability program's Reliability and Markets activity area. The program helps to increase grid reliability and reduce costs for customers using integrated market and engineering tools. Reliability and Markets Program Factsheet.pdf (2.86 MB) More Documents & Publications 2014 Reliability & Markets Peer Review 2013 Reliability & Markets Peer Review 2012 Reliability &

  13. Solar energy grid integration systems "SEGIS"

    SciTech Connect

    None, None

    2007-10-01

    The inevitable transformation of the electrical grid to a more distributed generation configuration requires solar system capabilities well beyond simple net-metered, grid-connected approaches. Time-of-use and peak-demand rate structures will require more sophisticated systems designs that integrate energy management and/or energy storage into the system architecture. Controlling power flow into and from the utility grid will be required to ensure grid reliability and power quality. Alternative protection strategies will also be required to accommodate large numbers of distributed energy sources. This document provides an overview of the R&D needs and describes some pathways to promising solutions. The solutions will, in many cases, require R&D of new components, innovative inverter/controllers, energy management systems, innovative energy storage and a suite of advanced control algorithms, technical methodologies, protocols and the associated communications. It is expected that these solutions will help to push the “advanced integrated system” and “smart grid” evolutionary processes forward in a faster but focused manner.

  14. Principal Characteristics of a Modern Grid

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    An Emerging Option Joe Miller - Modern Grid Team IRPS Conference December 10, 2008 1 Conducted by the National Energy Technology Laboratory Funded by the U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability Office of Electricity Delivery and Energy Reliability MODERN GRID S T R A T E G Y 2 Agenda What is it? Where's the value? What does it mean for consumers? Some current activities Office of Electricity Delivery and Energy Reliability MODERN GRID S T R A T E G Y 3

  15. Principal Characteristics of a Modern Grid

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Barriers to Smart Grid Implementation - Is There Light at the End of the Tunnel? Utility Field Service Conference Steve Pullins - Modern Grid Team May 29, 2008 1 Conducted by the National Energy Technology Laboratory Funded by the U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability 2 Office of Electricity Delivery and Energy Reliability MODERN GRID S T R A T E G Y Call for Change - Drivers and Trends to Watch The national average in reliability metrics over the last

  16. Utility-Scale Power Router: Dynamic Control of Grid Assets Using Direct AC Converter Cells

    SciTech Connect

    2010-09-01

    ADEPT Project: Georgia Tech is developing a cost-effective, utility-scale power router that uses an enhanced transformer to more efficiently direct power on the grid. Existing power routing technologies are too expensive for widespread use, but the ability to route grid power to match real-time demand and power outages would significantly reduce energy costs for utilities, municipalities, and consumers. Georgia Tech is adding a power converter to an existing grid transformer to better control power flows at about 1/10th the cost of existing power routing solutions. Transformers convert the high-voltage electricity that is transmitted through the grid into the low-voltage electricity that is used by homes and businesses. The added converter uses fewer steps to convert some types of power and eliminates unnecessary power storage, among other improvements. The enhanced transformer is more efficient, and it would still work even if the converter fails, ensuring grid reliability.

  17. About the Grid Modernization Initiative | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    GMI Home » About the Grid Modernization Initiative About the Grid Modernization Initiative Transmissions lines in the sunset. Transmissions lines in the sunset. The Grid Modernization Initiative (GMI) works across the U.S. Department of Energy (DOE) to create the modern grid of the future. A modern grid must have: Greater RESILIENCE to hazards of all types Improved RELIABILITY for everyday operations Enhanced SECURITY from an increasing and evolving number of threats Additional AFFORDABILITY to

  18. Buildings-to-Grid Publications | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Emerging Technologies » Buildings-to-Grid » Buildings-to-Grid Publications Buildings-to-Grid Publications Below you will find a full listing of all Buildings-to-Grid Integration publications. Framework Documents Valuation of Transactive Systems The National Opportunity for Interoperability and its Benefits for a Reliable, Robust, and Future Grid Realized Through Buildings Buildings Interoperability Landscape Transaction-Based Building Controls Framework, Volume 1: Reference Guide

  19. Grid Modernization - A View from Abroad | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Grid Modernization - A View from Abroad Grid Modernization - A View from Abroad November 21, 2014 - 4:58pm Addthis Thanks for joining us for #GridWeek! | Graphic by Sarah Gerrity, Energy Department. Thanks for joining us for #GridWeek! | Graphic by Sarah Gerrity, Energy Department. Patricia A. Hoffman Patricia A. Hoffman Assistant Secretary, Office of Electricity Delivery & Energy Reliability While Energy.gov was celebrating #GridWeek this week, I traveled to Japan for the 6th International

  20. Reports on the Impact of the Smart Grid Investment Grant Program...

    Energy Saver

    Addthis The Department of Energy's Office of Electricity Delivery and Energy Reliability ... the electric grid's flexibility, reliability, efficiency, affordability, and resilience. ...

  1. Department of Energy Announces $8.5 Million to Advance Solar Energy Grid Integration Systems

    Energy.gov [DOE]

    Stage III awards through DOE's Sandia National Laboratories to help advance solar energy deployment and grid reliability

  2. Sandia Energy - Transmission Grid Integration

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Transmission Grid Integration Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Grid Integration Transmission Grid Integration Transmission Grid...

  3. Sandia Energy - Distribution Grid Integration

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Distribution Grid Integration Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Grid Integration Distribution Grid Integration Distribution Grid...

  4. Hawaii electric system reliability.

    SciTech Connect

    Silva Monroy, Cesar Augusto; Loose, Verne William

    2012-09-01

    This report addresses Hawaii electric system reliability issues; greater emphasis is placed on short-term reliability but resource adequacy is reviewed in reference to electric consumers' views of reliability %E2%80%9Cworth%E2%80%9D and the reserve capacity required to deliver that value. The report begins with a description of the Hawaii electric system to the extent permitted by publicly available data. Electrical engineering literature in the area of electric reliability is researched and briefly reviewed. North American Electric Reliability Corporation standards and measures for generation and transmission are reviewed and identified as to their appropriateness for various portions of the electric grid and for application in Hawaii. Analysis of frequency data supplied by the State of Hawaii Public Utilities Commission is presented together with comparison and contrast of performance of each of the systems for two years, 2010 and 2011. Literature tracing the development of reliability economics is reviewed and referenced. A method is explained for integrating system cost with outage cost to determine the optimal resource adequacy given customers' views of the value contributed by reliable electric supply. The report concludes with findings and recommendations for reliability in the State of Hawaii.

  5. Prepares Overset Grids for Processing

    Energy Science and Technology Software Center

    1998-04-22

    Many large and complex computational problems require multiple, structured, generically overlapped (overset) grids to obtain numerical solutions in a timely manner. BREAKUP significantly reduces required compute times by preparing overset grids for processing on massively parallel computers. BREAKUP subdivides the original grids for use on a user-specified number of parallel processors. Grid-to-grid and intragrid communications are maintained in the parallel environment via connectivity tables generated by BREAKUP. The subgrids are formed to be statically loadmore » balanced and to incur a minimum of communication between the subgrids. When the output of BREAKUP is submitted to an appropriately modified flow solver, subgrid solutions will be updated simultaneously. This contrasts to the much less efficient solution method of updating each original grid sequentially as done in the past.« less

  6. 2014 Advanced Grid Modeling Peer Review Presentations - Day Two...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Modeling Peer Review Presentations - Day Two Afternoon Session The Office of Electricity Delivery and Energy Reliability held a peer review of the Advanced Grid Modeling ...

  7. DOE Science Showcase - DOE's Smart Grid Research | OSTI, US Dept...

    Office of Scientific and Technical Information (OSTI)

    & Energy Reliability A modernized electrical smart grid is needed to handle the ... and security of the country's electrical system; encourage consumers to manage ...

  8. Case Study - Florida Power & Light - Smart Grid Solutions Strengthen...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Florida Power & Light July 2012 1 Smart devices have been installed on 78 substation ... Smart Grid Solutions Strengthen Electric Reliability and Customer Services in Florida With ...

  9. Consolidated Edison Company of New York, Inc. Smart Grid Demonstration...

    OpenEI (Open Energy Information) [EERE & EIA]

    cyber security, reduces electricity demand and peak energy use, and increases reliability and energy efficiency. The system will include renewable energy generation, grid...

  10. Powder River Energy Corporation Smart Grid Project | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    monitor and respond to grid disturbances, PRECorp expects improvements in electric reliability and reductions in operating costs and emissions from truck rolls for site...

  11. American Transmission Company LLC Smart Grid Project | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    and collection networks. Targeted benefits include improved communications reliability and reduced operations and maintenance costs.3 Dictionary.png Smart Grid...

  12. NSTAR Electric & Gas Corporation Smart Grid Demonstration Project...

    OpenEI (Open Energy Information) [EERE & EIA]

    on low voltage (secondary) networks in downtown Boston to improve grid reliability and safety. The project will provide additional visibility for operators, which...

  13. ISO New England, Incorporated Smart Grid Project | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    in conjunction with a set of new applications, enable further improvements of the reliability of the transmission grid and prevent the spread of local disturbances to the...

  14. El Paso Electric Smart Grid Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    distribution management software platform. El Paso expects these upgrades to improve reliability and power quality and reduce truck rolls for grid maintenance, operating costs, and...

  15. New York Independent System Operator, Inc. Smart Grid Project...

    OpenEI (Open Energy Information) [EERE & EIA]

    capacitors across the New York transmission system. The project aims to improve the reliability of the transmission grid and prevent the spread of local outages to neighboring...

  16. Midwest Energy Inc. Smart Grid Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    allows Midwest to improve power system models and analysis tools, increasing reliability of grid operations.3 Equipment 9 Relay-based Phasor Measurement Units...

  17. Talquin Electric Cooperative, Inc. Smart Grid Project | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    also installs automated distribution grid equipment expected to: (1) enhance the reliability and quality of electric delivery, and (2) reduce operations and maintenance...

  18. Energy Department Announces Funding to Improve Grid Resiliency...

    Office of Environmental Management (EM)

    for communities to deploy smart grid tools and technologies to advance climate ... Reliability Patricia Hoffman. "Deploying tools and technologies that can help prevent ...

  19. City of Auburn, IN Smart Grid Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    system, including installing a smart meter network, enhancing reliable and fast communication capabilities, upgrading cyber security technologies, expanding grid monitoring and...

  20. Launch of the Grid Modernization Laboratory Consortium | Department...

    Office of Environmental Management (EM)

    A modern electric grid must deliver reliable, affordable and clean electricity to ... efficiency, and resilience against disruptions due to natural disaster or attack. ...

  1. GRID Alternatives

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    w w w. g r i d a l t e r n a t i v e s . o r g GRID Alternatives Tribal Program Project Development for Long-term Tribal Energy July 27, 2016 Tim Willink, Tribal Program Director 303-968-1633 twillink@gridalternatives.org Vision and Mission Mission: Make renewable energy technology and job training accessible to underserved communities Vision: A successful transition to clean energy that includes everyone People. Planet. Employment. GRID Alternatives History 2001: Founded by Erica Mackie and Tim

  2. Comments of North American Electric Reliability Corporation (NERC) to DOE

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Smart Grid RFI: Addressing Policy and Logistical Challenges | Department of Energy North American Electric Reliability Corporation (NERC) to DOE Smart Grid RFI: Addressing Policy and Logistical Challenges Comments of North American Electric Reliability Corporation (NERC) to DOE Smart Grid RFI: Addressing Policy and Logistical Challenges Response to the Department of Energy's ("DOE") Request for Information (RFI) regarding the "Smart Grid RFI: Addressing Policy and Logistical

  3. Principal Characteristics of a Modern Grid

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    equipment that makes up the North American grid is reaching the end of its design life. EnergyBiz Magazine, Sept. 2005 6 Office of Electricity Delivery and Energy Reliability ...

  4. Principal Characteristics of a Modern Grid

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... equipment that makes up the North American grid is reaching the end of its design life. EnergyBiz Magazine, Sept. 2005 12 Office of Electricity Delivery and Energy Reliability ...

  5. Principal Characteristics of a Modern Grid

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... Office of Electricity Delivery and Energy Reliability MODERN GRID S T R A T E G Y 8 ... grades of power quality at different pricing levels Greatly reduces consumer losses ...

  6. Principal Characteristics of a Modern Grid

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Office of Electricity Delivery and Energy Reliability MODERN GRID S T R A T E G Y 8 ... grades of power quality at different pricing levels Greatly reduces consumer losses ...

  7. 2014 Advanced Grid Modeling Program Peer Review

    Energy.gov [DOE]

    The Office of Electricity Delivery and Energy Reliability held a peer review of the Advanced Grid Modeling Program on June 17-18, 2014 in Alexandria, VA. This page lists the four sessions of the Peer Review.

  8. Customer Value Proposition Smart Grid (KEL) (Smart Grid Project...

    OpenEI (Open Energy Information) [EERE & EIA]

    Smart Grid Projects Smart Grid Projects in Europe Smart Grid Projects - Smart Meter and AMI Smart Grid Projects - Home application Smart Grid Projects - Customer Behavior...

  9. Wide-area, real-time monitoring and visualization system

    DOEpatents

    Budhraja, Vikram S.; Dyer, James D.; Martinez Morales, Carlos A.

    2011-11-15

    A real-time performance monitoring system for monitoring an electric power grid. The electric power grid has a plurality of grid portions, each grid portion corresponding to one of a plurality of control areas. The real-time performance monitoring system includes a monitor computer for monitoring at least one of reliability metrics, generation metrics, transmission metrics, suppliers metrics, grid infrastructure security metrics, and markets metrics for the electric power grid. The data for metrics being monitored by the monitor computer are stored in a data base, and a visualization of the metrics is displayed on at least one display computer having a monitor. The at least one display computer in one said control area enables an operator to monitor the grid portion corresponding to a different said control area.

  10. Wide-area, real-time monitoring and visualization system

    DOEpatents

    Budhraja, Vikram S.; Dyer, James D.; Martinez Morales, Carlos A.

    2013-03-19

    A real-time performance monitoring system for monitoring an electric power grid. The electric power grid has a plurality of grid portions, each grid portion corresponding to one of a plurality of control areas. The real-time performance monitoring system includes a monitor computer for monitoring at least one of reliability metrics, generation metrics, transmission metrics, suppliers metrics, grid infrastructure security metrics, and markets metrics for the electric power grid. The data for metrics being monitored by the monitor computer are stored in a data base, and a visualization of the metrics is displayed on at least one display computer having a monitor. The at least one display computer in one said control area enables an operator to monitor the grid portion corresponding to a different said control area.

  11. Real-time performance monitoring and management system

    DOEpatents

    Budhraja, Vikram S.; Dyer, James D.; Martinez Morales, Carlos A.

    2007-06-19

    A real-time performance monitoring system for monitoring an electric power grid. The electric power grid has a plurality of grid portions, each grid portion corresponding to one of a plurality of control areas. The real-time performance monitoring system includes a monitor computer for monitoring at least one of reliability metrics, generation metrics, transmission metrics, suppliers metrics, grid infrastructure security metrics, and markets metrics for the electric power grid. The data for metrics being monitored by the monitor computer are stored in a data base, and a visualization of the metrics is displayed on at least one display computer having a monitor. The at least one display computer in one said control area enables an operator to monitor the grid portion corresponding to a different said control area.

  12. ,"Year",,"Summer",,,"Eastern Power Grid",,,,,,,,,,,,,,,,,,,,,,,,"Texas Power Grid",,,"Western Power Grid"

    Energy Information Administration (EIA) (indexed site)

    4a. Summer Historic Net Internal Demand, Capacity Resources, and Capacity Margins by North American Electric Reliability Council Region, 1990 through 2004 " ,"(Megawatts and Percent)" ,"Year",,"Summer",,,"Eastern Power Grid",,,,,,,,,,,,,,,,,,,,,,,,"Texas Power Grid",,,"Western Power Grid" ,,,"Contiguous U.S."

  13. Principal Characteristics of a Modern Grid

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    2030 Distributed Electricity Environment - independent, sustainable, and sassy International Student Energy Summit Presented by Steve Pullins, Modern Grid Team June 2009 Funded by the U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability Conducted by the National Energy Technology Laboratory Office of Electricity Delivery and Energy Reliability MODERN GRID S T R A T E G Y 2 Powering the 21 st Century Economy This material is based upon work supported by the Department

  14. Grid Friendly Appliance(tm) Controller - Energy Innovation Portal

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    The Grid Friendly Appliance controller developed at PNNL senses grid conditions by monitoring the frequency of the system and provides automatic demand response in times of ...

  15. Modal Analysis for Grid Operation

    Energy Science and Technology Software Center

    2011-03-03

    MANGO software is to provide a solution for improving small signal stability of power systems through adjusting operator-controllable variables using PMU measurement. System oscillation problems are one of the major threats to the grid stability and reliability in California and the Western Interconnection. These problems result in power fluctuations, lower grid operation efficiency, and may even lead to large-scale grid breakup and outages. This MANGO software aims to solve this problem by automatically generating recommendedmore » operation procedures termed Modal Analysis for Grid Operation (MANGO) to improve damping of inter-area oscillation modes. The MANGO procedure includes three steps: recognizing small signal stability problems, implementing operating point adjustment using modal sensitivity, and evaluating the effectiveness of the adjustment. The MANGO software package is designed to help implement the MANGO procedure.« less

  16. Smart Grid Integration Laboratory

    SciTech Connect

    Troxell, Wade

    2011-12-22

    The initial federal funding for the Colorado State University Smart Grid Integration Laboratory is through a Congressionally Directed Project (CDP), DE-OE0000070 Smart Grid Integration Laboratory. The original program requested in three one-year increments for staff acquisition, curriculum development, and instrumentation all which will benefit the Laboratory. This report focuses on the initial phase of staff acquisition which was directed and administered by DOE NETL/ West Virginia under Project Officer Tom George. Using this CDP funding, we have developed the leadership and intellectual capacity for the SGIC. This was accomplished by investing (hiring) a core team of Smart Grid Systems engineering faculty focused on education, research, and innovation of a secure and smart grid infrastructure. The Smart Grid Integration Laboratory will be housed with the separately funded Integrid Laboratory as part of CSU's overall Smart Grid Integration Center (SGIC). The period of performance of this grant was 10/1/2009 to 9/30/2011 which included one no cost extension due to time delays in faculty hiring. The Smart Grid Integration Laboratory's focus is to build foundations to help graduate and undergraduates acquire systems engineering knowledge; conduct innovative research; and team externally with grid smart organizations. Using the results of the separately funded Smart Grid Workforce Education Workshop (May 2009) sponsored by the City of Fort Collins, Northern Colorado Clean Energy Cluster, Colorado State University Continuing Education, Spirae, and Siemens has been used to guide the hiring of faculty, program curriculum and education plan. This project develops faculty leaders with the intellectual capacity to inspire its students to become leaders that substantially contribute to the development and maintenance of Smart Grid infrastructure through topics such as: (1) Distributed energy systems modeling and control; (2) Energy and power conversion; (3) Simulation of

  17. 2012 Smart Grid Peer Review Presentations - Day 2 Smart Grid Panel

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Discussion | Department of Energy Smart Grid Panel Discussion 2012 Smart Grid Peer Review Presentations - Day 2 Smart Grid Panel Discussion The Office of Electricity Delivery and Energy Reliability held its bi-annual peer review of the Smart Grid Research and Development Program on June 7-8, 2012. More than 30 projects were presented at San Diego Gas & Electric's Energy Innovation Center. Presentations from the Day 2 Smart Grid panel discussion are below. Moderator: Lee Kreval, SDG&E

  18. Joint transmission system projects to improve system reliability

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    County PUD, 425-783-8444 Joint transmission system projects to improve system reliability First major regional electric grid improvements in decades prepare the area for the...

  19. Office of Electricity Delivery and Energy Reliability Cyber Security...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Office of Electricity Delivery and Energy Reliability Cyber Security Project Selections On September 23, 2010, speaking at the inaugural GridWise Global Forum, U.S. Energy ...

  20. Proposed EPA Rules Will Cut Carbon Pollution While Maintaining Reliability

    Energy.gov [DOE]

    The Energy Department is committed to supporting successful implementation of EPA’s Clean Power Plan while maintaining electric grid reliability.

  1. Addressing Security and Reliability Concerns of Large Power Transforme...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    With the nation's security and economy dependent on the reliable delivery of electricity, ... a Joint Electromagnetic Pulse (EMP) Resilience Strategy for the grid and are now ...

  2. Competition and Reliability in North American Energy Markets...

    Energy Saver

    ... are mutually beneficial to the extent that a reliable grid is necessary to ... He reviews three industry trends that are causes for concern: 1) Increased organizational ...

  3. Unlocking the smart grid

    SciTech Connect

    Rokach, Joshua Z.

    2010-10-15

    The country has progressed in a relatively short time from rotary dial phones to computers, cell phones, and iPads. With proper planning and orderly policy implementation, the same will happen with the Smart Grid. Here are some suggestions on how to proceed. (author)

  4. Principal Characteristics of a Modern Grid

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Revolution? ACI Revolutionizing the Smart Grid Presented by Steve Pullins, Modern Grid Team May 2009 1 Funded by the U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability Conducted by the National Energy Technology Laboratory Office of Electricity Delivery and Energy Reliability MODERN GRID S T R A T E G Y This material is based upon work supported by the Department of Energy under Award Number DE-AC26-04NT41817 This presentation was prepared as an account of work

  5. Principal Characteristics of a Modern Grid

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Viability and Business Case of Alternative Smart Grid Scenarios 1 Conducted by the National Energy Technology Laboratory Funded by the U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability Steve Pullins, Modern Grid Strategy Team April 27, 2009 Office of Electricity Delivery and Energy Reliability MODERN GRID S T R A T E G Y 2 This material is based upon work supported by the Department of Energy under Award Number DE-AC26- 04NT41817 This presentation was prepared as

  6. Principal Characteristics of a Modern Grid

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Taiwan Power Briefing on the Smart Grid 1 Conducted by the National Energy Technology Laboratory Funded by the U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability Steve Pullins, Modern Grid Strategy Team Morgantown, WV March 20, 2009 Office of Electricity Delivery and Energy Reliability MODERN GRID S T R A T E G Y 2 This material is based upon work supported by the Department of Energy under Award Number DE-AC26- 04NT41817 This presentation was prepared as an account

  7. Principal Characteristics of a Modern Grid

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Building the Smart Grid Team Conducted by the National Energy Technology Laboratory Funded by the U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability Steve Pullins, Modern Grid Strategy Team Utility Field Services 2009 29 April 2009 Office of Electricity Delivery and Energy Reliability MODERN GRID S T R A T E G Y 2 This material is based upon work supported by the Department of Energy under Award Number DE-AC26- 04NT41817 This presentation was prepared as an account

  8. Fact Sheet: Protecting Intelligent Distributed Power Grids Against Cyber Attacks

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Protecting Intelligent Distributed Power Grids Against Cyber Attacks Development of a novel distributed and hierarchical security layer specific to intelligent grid design Intelligent power grids are interdependent energy management systems- encompassing generation, distribution, IT networks, and control systems-that use automated data analysis and demand response capabilities to increase system functionality, effciency, and reliability. But increased interconnection and automation over a large

  9. Large-Scale Data Challenges in Future Power Grids

    SciTech Connect

    Yin, Jian; Sharma, Poorva; Gorton, Ian; Akyol, Bora A.

    2013-03-25

    This paper describes technical challenges in supporting large-scale real-time data analysis for future power grid systems and discusses various design options to address these challenges. Even though the existing U.S. power grid has served the nation remarkably well over the last 120 years, big changes are in the horizon. The widespread deployment of renewable generation, smart grid controls, energy storage, plug-in hybrids, and new conducting materials will require fundamental changes in the operational concepts and principal components. The whole system becomes highly dynamic and needs constant adjustments based on real time data. Even though millions of sensors such as phase measurement units (PMUs) and smart meters are being widely deployed, a data layer that can support this amount of data in real time is needed. Unlike the data fabric in cloud services, the data layer for smart grids must address some unique challenges. This layer must be scalable to support millions of sensors and a large number of diverse applications and still provide real time guarantees. Moreover, the system needs to be highly reliable and highly secure because the power grid is a critical piece of infrastructure. No existing systems can satisfy all the requirements at the same time. We examine various design options. In particular, we explore the special characteristics of power grid data to meet both scalability and quality of service requirements. Our initial prototype can improve performance by orders of magnitude over existing general-purpose systems. The prototype was demonstrated with several use cases from PNNL’s FPGI and was shown to be able to integrate huge amount of data from a large number of sensors and a diverse set of applications.

  10. GENI: Grid Hardware and Software

    SciTech Connect

    2012-01-09

    GENI Project: The 15 projects in ARPA-E’s GENI program, short for “Green Electricity Network Integration,” aim to modernize the way electricity is transmitted in the U.S. through advances in hardware and software for the electric grid. These advances will improve the efficiency and reliability of electricity transmission, increase the amount of renewable energy the grid can utilize, and provide energy suppliers and consumers with greater control over their power flows in order to better manage peak power demand and cost.

  11. Sensing, Measurement, and Forecasting | Grid Modernization | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Sensing, Measurement, and Forecasting NREL measures weather resources and power systems, forecasts renewable resources and grid conditions, and converts measurements into operational intelligence to support a modern grid. Photo of solar resource monitoring equipment Modernizing the grid involves assessing its health in real time, predicting its behavior and potential disruptions, and quickly responding to events-which requires understanding vital parameters throughout the electric

  12. NSTAR Smart Grid Pilot

    SciTech Connect

    Rabari, Anil; Fadipe, Oloruntomi

    2014-03-31

    NSTAR Electric & Gas Corporation (“the Company”, or “NSTAR”) developed and implemented a Smart Grid pilot program beginning in 2010 to demonstrate the viability of leveraging existing automated meter reading (“AMR”) deployments to provide much of the Smart Grid functionality of advanced metering infrastructure (“AMI”), but without the large capital investment that AMI rollouts typically entail. In particular, a central objective of the Smart Energy Pilot was to enable residential dynamic pricing (time-of-use “TOU” and critical peak rates and rebates) and two-way direct load control (“DLC”) by continually capturing AMR meter data transmissions and communicating through customer-sited broadband connections in conjunction with a standardsbased home area network (“HAN”). The pilot was supported by the U.S. Department of Energy’s (“DOE”) through the Smart Grid Demonstration program. NSTAR was very pleased to not only receive the funding support from DOE, but the guidance and support of the DOE throughout the pilot. NSTAR is also pleased to report to the DOE that it was able to execute and deliver a successful pilot on time and on budget. NSTAR looks for future opportunities to work with the DOE and others in future smart grid projects.

  13. Protecting the Grid from All Hazards | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Protecting the Grid from All Hazards Protecting the Grid from All Hazards October 31, 2014 - 2:10pm Addthis Patricia A. Hoffman Patricia A. Hoffman Assistant Secretary, Office of Electricity Delivery & Energy Reliability The Energy Department takes the security and reliability of our power grid very seriously. We work closely with our federal, state and industry partners around the clock to protect the nation's energy infrastructure from all hazards, including cyber incidents. As this year's

  14. A Stochastic Power Network Calculus for Integrating Renewable Energy Sources into the Power Grid

    SciTech Connect

    Wang, K; Ciucu, F; Lin, C; Low, SH

    2012-07-01

    Renewable energy such as solar and wind generation will constitute an important part of the future grid. As the availability of renewable sources may not match the load, energy storage is essential for grid stability. In this paper we investigate the feasibility of integrating solar photovoltaic (PV) panels and wind turbines into the grid by also accounting for energy storage. To deal with the fluctuation in both the power supply and demand, we extend and apply stochastic network calculus to analyze the power supply reliability with various renewable energy configurations. To illustrate the validity of the model, we conduct a case study for the integration of renewable energy sources into the power system of an island off the coast of Southern California. In particular, we asses the power supply reliability in terms of the average Fraction of Time that energy is Not-Served (FTNS).

  15. 2014 Advanced Grid Modeling Peer Review Presentations - Day One Afternoon

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Session | Department of Energy Afternoon Session 2014 Advanced Grid Modeling Peer Review Presentations - Day One Afternoon Session The Office of Electricity Delivery and Energy Reliability held a peer review of the Advanced Grid Modeling Program on June 17-18, 2014 in Alexandria, VA. The Advanced Grid Modeling Research Program leverages scientific research in mathematics for application to power system models and software tools. More than 17 projects were presented at the 2014 Advanced Grid

  16. 2014 Advanced Grid Modeling Peer Review Presentations - Day One Morning

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Session | Department of Energy Morning Session 2014 Advanced Grid Modeling Peer Review Presentations - Day One Morning Session The Office of Electricity Delivery and Energy Reliability held a peer review of the Advanced Grid Modeling Program on June 17-18, 2014 in Alexandria, VA. The Advanced Grid Modeling Research Program leverages scientific research in mathematics for application to power system models and software tools. More than 17 projects were presented at the 2014 Advanced Grid

  17. 2014 Advanced Grid Modeling Peer Review Presentations - Day Two Afternoon

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Session | Department of Energy Afternoon Session 2014 Advanced Grid Modeling Peer Review Presentations - Day Two Afternoon Session The Office of Electricity Delivery and Energy Reliability held a peer review of the Advanced Grid Modeling Program on June 17-18, 2014 in Alexandria, VA. The Advanced Grid Modeling Research Program leverages scientific research in mathematics for application to power system models and software tools. More than 17 projects were presented at the 2014 Advanced Grid

  18. 2014 Advanced Grid Modeling Program Peer Review Presentations Now Available

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    | Department of Energy 4 Advanced Grid Modeling Program Peer Review Presentations Now Available 2014 Advanced Grid Modeling Program Peer Review Presentations Now Available July 10, 2014 - 6:01pm Addthis The Office of Electricity Delivery and Energy Reliability held a peer review of the Advanced Grid Modeling Program on June 17-18, 2014 in Alexandria, VA. The Advanced Grid Modeling Research Program leverages scientific research in mathematics for application to power system models and

  19. Now Available - Customer Participation in the Smart Grid: Lessons Learned |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Available - Customer Participation in the Smart Grid: Lessons Learned Now Available - Customer Participation in the Smart Grid: Lessons Learned October 15, 2014 - 1:18pm Addthis The Office of Electricity Delivery and Energy Reliability has released a new report titled "Customer Participation in the Smart Grid: Lessons Learned." The report highlights the experiences of four Recovery Act Smart Grid Investment Grant projects with customer education and outreach

  20. EAC Recommendations on Smart Grid Research and Development Needs |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy on Smart Grid Research and Development Needs EAC Recommendations on Smart Grid Research and Development Needs The Smart Grid is envisioned to provide the enhancements needed to improve the security, reliability, and availability of electricity, improve economic productivity and quality of life, reduce environmental impacts, improve system efficiency and asset utilization, and facilitate the integration of renewable resources onto the electric grid. The attached

  1. A staggered-grid finite-difference scheme optimized in the timespace domain for modeling scalar-wave propagation in geophysical problems

    SciTech Connect

    Tan, Sirui; Huang, Lianjie

    2014-11-01

    For modeling scalar-wave propagation in geophysical problems using finite-difference schemes, optimizing the coefficients of the finite-difference operators can reduce numerical dispersion. Most optimized finite-difference schemes for modeling seismic-wave propagation suppress only spatial but not temporal dispersion errors. We develop a novel optimized finite-difference scheme for numerical scalar-wave modeling to control dispersion errors not only in space but also in time. Our optimized scheme is based on a new stencil that contains a few more grid points than the standard stencil. We design an objective function for minimizing relative errors of phase velocities of waves propagating in all directions within a given range of wavenumbers. Dispersion analysis and numerical examples demonstrate that our optimized finite-difference scheme is computationally up to 2.5 times faster than the optimized schemes using the standard stencil to achieve the similar modeling accuracy for a given 2D or 3D problem. Compared with the high-order finite-difference scheme using the same new stencil, our optimized scheme reduces 50 percent of the computational cost to achieve the similar modeling accuracy. This new optimized finite-difference scheme is particularly useful for large-scale 3D scalar-wave modeling and inversion.

  2. Sandia Energy - Grid Modernization Consortium

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Grid Modernization Consortium Home Stationary Power Safety, Security & Resilience of Energy Infrastructure Grid Modernization Renewable Energy Integration Grid Modernization...

  3. Software-Based Challenges of Developing the Future Distribution Grid

    SciTech Connect

    Stewart, Emma; Kiliccote, Sila; McParland, Charles

    2014-06-01

    The software that the utility industry currently uses may be insufficient to analyze the distribution grid as it rapidly modernizes to include active resources such as distributed generation, switch and voltage control, automation, and increasingly complex loads. Although planners and operators have traditionally viewed the distribution grid as a passive load, utilities and consultants increasingly need enhanced analysis that incorporates active distribution grid loads in order to ensure grid reliability. Numerous commercial and open-source tools are available for analyzing distribution grid systems. These tools vary in complexity from providing basic load-flow and capacity analysis under steady-state conditions to time-series analysis and even geographical representations of dynamic and transient events. The need for each type of analysis is not well understood in the industry, nor are the reasons that distribution analysis requires different techniques and tools both from those now available and from those used for transmission analysis. In addition, there is limited understanding of basic capability of the tools and how they should be practically applied to the evolving distribution system. The study reviews the features and state of the art capability of current tools, including usability and visualization, basic analysis functionality, advanced analysis including inverters, and renewable generation and load modeling. We also discuss the need for each type of distribution grid system analysis. In addition to reviewing basic functionality current models, we discuss dynamics and transient simulation in detail and draw conclusions about existing software?s ability to address the needs of the future distribution grid as well as the barriers to modernization of the distribution grid that are posed by the current state of software and model development. Among our conclusions are that accuracy, data transfer, and data processing abilities are key to future

  4. Competition and Reliability in North American Electricity Markets Technical

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Workshop | Department of Energy Electricity Markets Technical Workshop Competition and Reliability in North American Electricity Markets Technical Workshop Competition and Reliability in North American Electricity Markets Technical Workshop Competition and Reliability in North American Electricity Markets Technical Workshop (481.75 KB) More Documents & Publications The Relationship between Competitive Power Markets and Grid Reliability. Blackout 2003: Electric System Working Group

  5. Smart Grid Demonstration Project

    SciTech Connect

    Miller, Craig; Carroll, Paul; Bell, Abigail

    2015-03-11

    The National Rural Electric Cooperative Association (NRECA) organized the NRECA-U.S. Department of Energy (DOE) Smart Grid Demonstration Project (DE-OE0000222) to install and study a broad range of advanced smart grid technologies in a demonstration that spanned 23 electric cooperatives in 12 states. More than 205,444 pieces of electronic equipment and more than 100,000 minor items (bracket, labels, mounting hardware, fiber optic cable, etc.) were installed to upgrade and enhance the efficiency, reliability, and resiliency of the power networks at the participating co-ops. The objective of this project was to build a path for other electric utilities, and particularly electrical cooperatives, to adopt emerging smart grid technology when it can improve utility operations, thus advancing the co-ops’ familiarity and comfort with such technology. Specifically, the project executed multiple subprojects employing a range of emerging smart grid technologies to test their cost-effectiveness and, where the technology demonstrated value, provided case studies that will enable other electric utilities—particularly electric cooperatives— to use these technologies. NRECA structured the project according to the following three areas: Demonstration of smart grid technology; Advancement of standards to enable the interoperability of components; and Improvement of grid cyber security. We termed these three areas Technology Deployment Study, Interoperability, and Cyber Security. Although the deployment of technology and studying the demonstration projects at coops accounted for the largest portion of the project budget by far, we see our accomplishments in each of the areas as critical to advancing the smart grid. All project deliverables have been published. Technology Deployment Study: The deliverable was a set of 11 single-topic technical reports in areas related to the listed technologies. Each of these reports has already been submitted to DOE, distributed to co-ops, and

  6. Wind and Solar on the Power Grid: Myths and Misperceptions, Greening the Grid

    SciTech Connect

    Katz, Jessica; Denholm, Paul; Pless, Jacquelyn

    2015-05-01

    Wind and solar are inherently more variable and uncertain than the traditional dispatchable thermal and hydro generators that have historically provided a majority of grid-supplied electricity. The unique characteristics of variable renewable energy (VRE) resources have resulted in many misperceptions regarding their contribution to a low-cost and reliable power grid. Common areas of concern include: 1) The potential need for increased operating reserves, 2) The impact of variability and uncertainty on operating costs and pollutant emissions of thermal plants, and 3) The technical limits of VRE penetration rates to maintain grid stability and reliability. This fact sheet corrects misperceptions in these areas.

  7. Grid-based Production

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Grid-based Production Grid-based Production PDSF is a Tier 2 site for ALICE and as such has the infrastructure in place to run automated grid-based ALICE production jobs. The main...

  8. Nurbs and grid generation

    SciTech Connect

    Barnhill, R.E.; Farin, G.; Hamann, B.

    1995-12-31

    This paper provides a basic overview of NURBS and their application to numerical grid generation. Curve/surface smoothing, accelerated grid generation, and the use of NURBS in a practical grid generation system are discussed.

  9. National Transmission Grid Study

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Grid Study U.S. Department of Energy The Honorable Spencer Abraham Secretary of Energy May 2002 ii National Transmission Grid Study National Transmission Grid Study i ii National Transmission Grid Study National Transmission Grid Study iii How This Study Was Conducted The National Energy Policy Plan directed the U.S. Department of Energy (DOE) to conduct a study to examine the benefits of establishing a national electricity transmission grid and to identify transmission bottlenecks and measures

  10. Distribution Grid Integration

    Energy.gov [DOE]

    The DOE Systems Integration team funds distribution grid integration research and development (R&D) activities to address the technical issues that surround distribution grid planning,...

  11. Grid Integration & Advanced Inverters

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... PV output to facilitate analysis of PV impacts on grid planning and operations Engaging stakeholders on grid interconnection to encourage the adoption of new ...

  12. The BNL Smarter Grid Research Strategy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    BNL Smarter Grid Research Strategy: Plans and Status Brookhaven National Laboratory Dr. Gerald Stokes, Global & Regional Solutions STEAB October 10,2012 Building the Smarter Grid R&D Vision  The heart of BNL's approach to grid R&D for a Smarter Grid is begins with a geospatially referenced model with access to historical and real time data and measurements.  Next, as a federal enclave, BNL has the ability to perform certain experiments and test new equipment on its grid prior

  13. Security and Resilience | Grid Modernization | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Security and Resilience NREL develops tools and solutions to enable a more resilient, reliable, and secure electric grid. Photo of researchers working on a computer setup. The security and resilience of the electric grid is an increasingly high-priority topic in the United States. It's largely driven by the increasing volume of new distributed generation-including renewable energy-and storage coming online at the transmission, distribution, and consumer premises levels. As part of the U.S.

  14. DOE Grid Tech Team | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Tech Team DOE Grid Tech Team DOE Grid Tech Team Overview Access to reliable, cost-effective electricity is critical for economic growth and continued American prosperity. But our electric infrastructure is facing new stresses as a result of aging assets, environmental sustainability requirements, consumers adding energy back into the electric system, increasing global temperatures, extreme weather events, and growing cybersecurity concerns. We are moving towards a more digitized economy with a

  15. Eprice (Smart Grid Project) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Cancel Submit Categories: Smart Grid Projects Smart Grid Projects in Europe Smart Grid Projects - Grid Automation Transmission Smart Grid Projects - Grid Automation Distribution...

  16. Smart Grid Status and Metrics Report Appendices

    SciTech Connect

    Balducci, Patrick J.; Antonopoulos, Chrissi A.; Clements, Samuel L.; Gorrissen, Willy J.; Kirkham, Harold; Ruiz, Kathleen A.; Smith, David L.; Weimar, Mark R.; Gardner, Chris; Varney, Jeff

    2014-07-01

    A smart grid uses digital power control and communication technology to improve the reliability, security, flexibility, and efficiency of the electric system, from large generation through the delivery systems to electricity consumers and a growing number of distributed generation and storage resources. To convey progress made in achieving the vision of a smart grid, this report uses a set of six characteristics derived from the National Energy Technology Laboratory Modern Grid Strategy. The Smart Grid Status and Metrics Report defines and examines 21 metrics that collectively provide insight into the grid’s capacity to embody these characteristics. This appendix presents papers covering each of the 21 metrics identified in Section 2.1 of the Smart Grid Status and Metrics Report. These metric papers were prepared in advance of the main body of the report and collectively form its informational backbone.

  17. FINAL REPORT - CENTER FOR GRID MODERNIZATION

    SciTech Connect

    Markiewicz, Daniel R

    2008-06-30

    The objective of the CGM was to develop high-priority grid modernization technologies in advanced sensors, communications, controls and smart systems to enable use of real-time or near real-time information for monitoring, analyzing and managing distribution and transmission grid conditions. The key strategic approach to carry out individual CGM research and development (R&D) projects was through partnerships, primarily with the GridApp™ Consortium utility members.

  18. Value of a Smart Grid System | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Value of a Smart Grid System Value of a Smart Grid System Implementing a Smart Grid is the effort to move the electric grid from a "static" to a "dynamic" state. Doing so improves the efficiency, reliability and cost-effectiveness of the electrical system's operations, planning and maintenance and creates a system that is interactive with consumers and markets, allowing better energy and dollar savings. Below we summarize the value of the Smart Grid from six perspectives.

  19. Principal Characteristics of a Modern Grid

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Activities 1 Conducted by the National Energy Technology Laboratory Funded by the U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability Joe Miller, Modern Grid Strategy Team Lead ACSessions 2009 April 27, 2009 Office of Electricity Delivery and Energy Reliability MODERN GRID S T R A T E G Y This material is based upon work supported by the Department of Energy under Award Number DE-AC26- 04NT41817 This presentation was prepared as an account of work sponsored by an

  20. Principal Characteristics of a Modern Grid

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Hawaii Clean Energy Initiative Joe Miller - Modern Grid Team Lead April 21, 2009 1 Conducted by the National Energy Technology Laboratory Funded by the U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability Office of Electricity Delivery and Energy Reliability MODERN GRID S T R A T E G Y This material is based upon work supported by the Department of Energy under Award Number DE-AC26-04NT41817 This presentation was prepared as an account of work sponsored by an agency

  1. Principal Characteristics of a Modern Grid

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Mid-America Regulatory Conference Joe Miller - DOE / NETL Modern Grid Team Lead June 15, 2009 1 Conducted by the National Energy Technology Laboratory Funded by the U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability Office of Electricity Delivery and Energy Reliability MODERN GRID S T R A T E G Y This material is based upon work supported by the Department of Energy under Award Number DE-AC26-04NT41817 This presentation was prepared as an account of work sponsored

  2. Principal Characteristics of a Modern Grid

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Some Technical Challenges Symposium on Modeling & Control of Alternative Energy Systems Joe Miller - Modern Grid Team Lead April 2, 2009 1 Conducted by the National Energy Technology Laboratory Funded by the U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability Office of Electricity Delivery and Energy Reliability MODERN GRID S T R A T E G Y This material is based upon work supported by the Department of Energy under Award Number DE-AC26-04NT41817 This presentation

  3. Principal Characteristics of a Modern Grid

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Bruce Renz - Modern Grid Team December 9, 2008 1 Conducted by the National Energy Technology Laboratory Funded by the U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability Office of Electricity Delivery and Energy Reliability MODERN GRID S T R A T E G Y This material is based upon work supported by the Department of Energy under Award Number DE- AC26-04NT41817 This presentation was prepared as an account of work sponsored by an agency of the United States Government.

  4. Natural Gas Industry Comments on Smart Grid RFI: Addressing Policy and

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Logistical Challenges to Smart Grid | Department of Energy Natural Gas Industry Comments on Smart Grid RFI: Addressing Policy and Logistical Challenges to Smart Grid Natural Gas Industry Comments on Smart Grid RFI: Addressing Policy and Logistical Challenges to Smart Grid The undersigned members of the natural gas industry are pleased to submit for your consideration the following comments in response to the U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability's

  5. Transmission Reliability Program 2015 Reliability & Markets Peer...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Program 2015 Reliability & Markets Peer Review Materials Available Transmission Reliability Program 2015 Reliability & Markets Peer Review Materials Available September 16, 2015 -...

  6. Parallel grid population

    DOEpatents

    Wald, Ingo; Ize, Santiago

    2015-07-28

    Parallel population of a grid with a plurality of objects using a plurality of processors. One example embodiment is a method for parallel population of a grid with a plurality of objects using a plurality of processors. The method includes a first act of dividing a grid into n distinct grid portions, where n is the number of processors available for populating the grid. The method also includes acts of dividing a plurality of objects into n distinct sets of objects, assigning a distinct set of objects to each processor such that each processor determines by which distinct grid portion(s) each object in its distinct set of objects is at least partially bounded, and assigning a distinct grid portion to each processor such that each processor populates its distinct grid portion with any objects that were previously determined to be at least partially bounded by its distinct grid portion.

  7. Wind Power Reliability: Breaking Down a Barrier

    Energy.gov [DOE]

    The steady increase of wind power on the grid presents new challenges for power system operators charged with making sure the grid stays up and running. "We need to ensure that we are going down a path that will lead to better reliability [with wind power]," said Bob Zavadil, an executive vice president at EnerNex Corporation in Knoxville, Tenn., a firm specializing in renewable energy grid interconnection and integration. "If this piece isn't done, there will be problems." EnerNex has spent the last decade perfecting wind turbine and plant models that test a wind plant's influence on the grid and its ability to provide grid support. In its latest effort, the company is using American Recovery and Reinvestment Act funds worth $750,000 to develop documentation and validations of computer wind turbine models.

  8. Microsoft Word - A Systems View of the Modern Grid_Final_v2_0...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... intelligent, but by first building the construct of a modern ... to optimize grid performance from reliability, ... problem alerts are sent to human or automated asset managers ...

  9. Update to Large Power Transformers and the U.S. Electric Grid Report Now Available

    Energy.gov [DOE]

    The Office of Electricity Delivery and Energy Reliability has released an update to its 2012 Large Power Transformers and the U.S. Electric Grid report.

  10. Microsoft Word - BUGS_The Next Smart Grid Peak Resource Final...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... The generators within the emergency power are predominately diesel fueled ... Environmental Metrics. Reliability. Backup Generators (BUGS): The Next Smart Grid Peak ...

  11. Update to Large Power Transformers and the U.S. Electric Grid...

    Energy.gov [DOE] (indexed site)

    Delivery and Energy Reliability has released an update to its 2012 Large Power Transformers and the U.S. Electric Grid report. The new report includes updated information...

  12. Large Power Transformers and the U.S. Electric Grid Report Update (April 2014)

    Energy.gov [DOE]

    The Office of Electricity Delivery and Energy Reliability has released an update to its 2012 Large Power Transformers and the U.S. Electric Grid report.

  13. Grid Interaction Tech Team, and International Smart Grid Collaboration...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Team, and International Smart Grid Collaboration Grid Interaction Tech Team, and International Smart Grid Collaboration 2012 DOE Hydrogen and Fuel Cells Program and Vehicle ...

  14. Smart Grid Environmental Benefits … Part 2

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Smart Grid Environmental Benefits Toolkit Can a Smart Grid deliver real environmental benefits in a time when they are sorely needed? Yes! According to recent studies, it can even reduce emissions at a lower cost than many of the newest clean energy technologies. In this article, we give you four tools to help inform your utility, ratepayers, regulators, or legislators that a Smart Grid offers huge environmental benefits: * An outline of where these benefits are likely to come from * An

  15. Systems Engineering Building Advances Power Grid Research

    SciTech Connect

    Virden, Jud; Huang, Henry; Skare, Paul; Dagle, Jeff; Imhoff, Carl; Stoustrup, Jakob; Melton, Ron; Stiles, Dennis; Pratt, Rob

    2015-08-19

    Researchers and industry are now better equipped to tackle the nation’s most pressing energy challenges through PNNL’s new Systems Engineering Building – including challenges in grid modernization, buildings efficiency and renewable energy integration. This lab links real-time grid data, software platforms, specialized laboratories and advanced computing resources for the design and demonstration of new tools to modernize the grid and increase buildings energy efficiency.

  16. Controllable Grid Interface | Water Power | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Controllable Grid Interface NREL's controllable grid interface (CGI) test system at the National Wind Technology Center significantly reduces the time and cost of evaluating and refining energy system response. Photo of a man walking towards several long buildings. The CGI can simulate faults and allows manufacturers and system operators to conduct certification tests in a controlled laboratory environment. Capabilities The CGI test system is central to NREL's grid integration research, and it

  17. Graphical Contingency Analysis for the Nation's Electric Grid

    ScienceCinema

    Zhenyu (Henry) Huang

    2016-07-12

    PNNL has developed a new tool to manage the electric grid more effectively, helping prevent blackouts and brownouts--and possibly avoiding millions of dollars in fines for system violations. The Graphical Contingency Analysis tool monitors grid performance, shows prioritized lists of problems, provides visualizations of potential consequences, and helps operators identify the most effective courses of action. This technology yields faster, better decisions and a more stable and reliable power grid.

  18. 2012 Smart Grid Peer Review Presentations - Day 1 Afternoon Session |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Afternoon Session 2012 Smart Grid Peer Review Presentations - Day 1 Afternoon Session The Office of Electricity Delivery and Energy Reliability held its bi-annual peer review of the Smart Grid Research and Development Program on June 7-8, 2012. More than 30 projects were presented at San Diego Gas & Electric's Energy Innovation Center. Presentations from Day 1 afternoon sessions are below. Moderators: Eric Lightner and Merrill Smith 2012 SG Peer Review - GridWise

  19. Flywheel Project Escalates Grid Efficiency | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Flywheel Project Escalates Grid Efficiency Flywheel Project Escalates Grid Efficiency August 9, 2010 - 1:18pm Addthis Elizabeth Meckes Elizabeth Meckes Director of User Experience & Digital Technologies, Office of Public Affairs What does this project do? It's estimated to create 60 jobs in New York and Massachusetts (where Beacon Power is headquartered) and help bring clean technologies to market by improving the stability and reliability of the state's electric grid. More good news for New

  20. Recovery Act Funds at Work: Smart Grid Investment Grant Profiles |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Funds at Work: Smart Grid Investment Grant Profiles Recovery Act Funds at Work: Smart Grid Investment Grant Profiles DOE is partnering with regional and local utilities and co-ops across the Nation to improve the reliability of the grid and helping communities recover faster when disruptions occur. Case studies profiling some of the SGIG and SGDP grant recipients and the impact of the funding are available below for downloading. For more information about how funds from

  1. Smart Grid System Report U.S. Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Smart Grid System Report U.S. Department of Energy July 2009 SEC. 1302. SMART GRID SYSTEM REPORT The Secretary, acting through the Assistant Secretary of the Office of Electricity Delivery and Energy Reliability (referred to in this section as the "OEDER") and through the Smart Grid Task Force established in section 1303, shall, after consulting with any interested individual or entity as appropriate, no later than one year after enactment and every two years thereafter, report to

  2. Graphical Contingency Analysis for the Nation's Electric Grid

    SciTech Connect

    Zhenyu Huang

    2011-04-01

    PNNL has developed a new tool to manage the electric grid more effectively, helping prevent blackouts and brownouts--and possibly avoiding millions of dollars in fines for system violations. The Graphical Contingency Analysis tool monitors grid performance, shows prioritized lists of problems, provides visualizations of potential consequences, and helps operators identify the most effective courses of action. This technology yields faster, better decisions and a more stable and reliable power grid.

  3. Federal Smart Grid Task Force | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Federal Smart Grid Task Force Federal Smart Grid Task Force Task Force Background The Federal Smart Grid Task Force was established under Title XIII of the Energy Independence and Security Act of 2007 (EISA) and includes experts from numerous Federal agencies. The Office of Electricity Delivery and Energy Reliability leads the Task Force which includes members from the Department's Office of Energy Efficiency and Renewable Energy, and the National Energy Technology Laboratory. Task Force Mission

  4. Vice President Biden Outlines Funding for Smart Grid Initiatives |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Outlines Funding for Smart Grid Initiatives Vice President Biden Outlines Funding for Smart Grid Initiatives April 16, 2009 - 12:00am Addthis Washington, DC - Vice President Joe Biden, on a visit to Jefferson City, Missouri, today with Commerce Secretary Gary Locke, detailed plans by the Department of Energy to develop a smart, strong and secure electrical grid, which will create new jobs and help deliver reliable power more effectively with less impact on the

  5. gridFTP

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    gridFTP gridFTP Currently only the archive.nersc.gov system is capable of handling GridFTP transfers to HPSS. It accomplishes this by using a special GSI enabled pftp server. Data transfers are multi-threaded but are handled with a single FTP server. Improvements are planned for the future. The pftp server handling GridFTP transfers is garchive.nersc.gov. GridFTP clients must authenticate/transfer to this server to send data to archive.nersc.gov. There are numerous GridFTP clients available that

  6. TWENTIES (Smart Grid Project) (Brussels, Belgium) | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    share of renewables in its energy mix by 2020 and beyond, while keeping its present reliability. References "EU Smart Grid Projects Map" Retrieved from "http:en.openei.org...

  7. Cyber Security Summer School: Lessons for the Modern Grid

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Energy Department has partnered with a university-based project performing cutting-edge research to improve the way electric infrastructure is built, increasing the security and reliability of the grid.

  8. What the Smart Grid Means to America's Future

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Energy (DOE) is charged under the Energy Independence and Security Act of 2007 (EISA 2007) with modernizing the nation’s electricity grid to improve its reliability and...

  9. SMART FUEL CELL OPERATED RESIDENTIAL MICRO-GRID COMMUNITY

    SciTech Connect

    Dr. Mohammad S. Alam University of South Alabama ECE Department, EEB 75 Mobile, AL 36688-0002 Phone: 251-460-6117 Fax: 251-460-6028

    2005-04-13

    To build on the work of year one by expanding the smart control algorithm developed to a micro-grid of ten houses; to perform a cost analysis; to evaluate alternate energy sources; to study system reliability; to develop the energy management algorithm, and to perform micro-grid software and hardware simulations.

  10. Western Grid Can Handle High Renewables in Challenging Conditions

    SciTech Connect

    2015-11-01

    Fact sheet outlining the key findings of Phase 3 of the Western Wind and Solar Integration Study (WWSIS-3). NREL and GE find that with good system planning, sound engineering practices, and commercially available technologies, the Western grid can maintain reliability and stability during the crucial first minute after grid disturbances with high penetrations of wind and solar power.

  11. DG Demonet Smart LV Grid (Smart Grid Project) | Open Energy Informatio...

    OpenEI (Open Energy Information) [EERE & EIA]

    Grid Projects Smart Grid Projects in Europe Smart Grid Projects - Integrated System Smart Grid Projects - Grid Automation Distribution Smart Grid Projects - Smart Meter and AMI...

  12. Unmanned Aerial Vehicle (UAV) Dynamic-Tracking Directional Wireless Antennas for Low Powered Applications that Require Reliable Extended Range Operations in Time Critical Scenarios

    SciTech Connect

    Scott G. Bauer; Matthew O. Anderson; James R. Hanneman

    2005-10-01

    The proven value of DOD Unmanned Aerial Vehicles (UAVs) will ultimately transition to National and Homeland Security missions that require real-time aerial surveillance, situation awareness, force protection, and sensor placement. Public services first responders who routinely risk personal safety to assess and report a situation for emergency actions will likely be the first to benefit from these new unmanned technologies. ‘Packable’ or ‘Portable’ small class UAVs will be particularly useful to the first responder. They require the least amount of training, no fixed infrastructure, and are capable of being launched and recovered from the point of emergency. All UAVs require wireless communication technologies for real- time applications. Typically on a small UAV, a low bandwidth telemetry link is required for command and control (C2), and systems health monitoring. If the UAV is equipped with a real-time Electro-Optical or Infrared (EO/Ir) video camera payload, a dedicated high bandwidth analog/digital link is usually required for reliable high-resolution imagery. In most cases, both the wireless telemetry and real-time video links will be integrated into the UAV with unity gain omni-directional antennas. With limited on-board power and payload capacity, a small UAV will be limited with the amount of radio-frequency (RF) energy it transmits to the users. Therefore, ‘packable’ and ‘portable’ UAVs will have limited useful operational ranges for first responders. This paper will discuss the limitations of small UAV wireless communications. The discussion will present an approach of utilizing a dynamic ground based real-time tracking high gain directional antenna to provide extend range stand-off operation, potential RF channel reuse, and assured telemetry and data communications from low-powered UAV deployed wireless assets.

  13. Smart Grid | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Recovery Act Smart Grid Projects Data Collected from the US Recovery Act Smart Grid Investment Grant Projects US Recovery Act Smart Grid Investment Grant Projects (98) The Smart...

  14. Grid Partners | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Grid Partners Jump to: navigation, search Name: Grid Partners Place: Los Angeles, California Zip: 90025 Product: String representation "GRID Partners i ... duct selection." is too...

  15. The Emerging Interdependence of the Electric Power Grid & Information and Communication Technology

    SciTech Connect

    Taft, Jeffrey D.; Becker-Dippmann, Angela S.

    2015-08-01

    This paper examines the implications of emerging interdependencies between the electric power grid and Information and Communication Technology (ICT). Over the past two decades, electricity and ICT infrastructure have become increasingly interdependent, driven by a combination of factors including advances in sensor, network and software technologies and progress in their deployment, the need to provide increasing levels of wide-area situational awareness regarding grid conditions, and the promise of enhanced operational efficiencies. Grid operators’ ability to utilize new and closer-to-real-time data generated by sensors throughout the system is providing early returns, particularly with respect to management of the transmission system for purposes of reliability, coordination, congestion management, and integration of variable electricity resources such as wind generation.

  16. Energy Storage for the Power Grid

    SciTech Connect

    Imhoff, Carl; Vaishnav, Dave

    2014-07-01

    The iron vanadium redox flow battery was developed by researchers at Pacific Northwest National Laboratory as a solution to large-scale energy storage for the power grid. This technology provides the energy industry and the nation with a reliable, stable, safe, and low-cost storage alternative for a cleaner, efficient energy future.

  17. ARPA-E: Advancing the Electric Grid

    ScienceCinema

    Lemmon, John; Ruiz, Pablo; Sommerer, Tim; Aziz, Michael

    2016-07-12

    The electric grid was designed with the assumption that all energy generation sources would be relatively controllable, and grid operators would always be able to predict when and where those sources would be located. With the addition of renewable energy sources like wind and solar, which can be installed faster than traditional generation technologies, this is no longer the case. Furthermore, the fact that renewable energy sources are imperfectly predictable means that the grid has to adapt in real-time to changing patterns of power flow. We need a dynamic grid that is far more flexible. This video highlights three ARPA-E-funded approaches to improving the grid's flexibility: topology control software from Boston University that optimizes power flow, gas tube switches from General Electric that provide efficient power conversion, and flow batteries from Harvard University that offer grid-scale energy storage.

  18. ARPA-E: Advancing the Electric Grid

    SciTech Connect

    Lemmon, John; Ruiz, Pablo; Sommerer, Tim; Aziz, Michael

    2014-02-24

    The electric grid was designed with the assumption that all energy generation sources would be relatively controllable, and grid operators would always be able to predict when and where those sources would be located. With the addition of renewable energy sources like wind and solar, which can be installed faster than traditional generation technologies, this is no longer the case. Furthermore, the fact that renewable energy sources are imperfectly predictable means that the grid has to adapt in real-time to changing patterns of power flow. We need a dynamic grid that is far more flexible. This video highlights three ARPA-E-funded approaches to improving the grid's flexibility: topology control software from Boston University that optimizes power flow, gas tube switches from General Electric that provide efficient power conversion, and flow batteries from Harvard University that offer grid-scale energy storage.

  19. gridFTP

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    The major benefits of GridFTP clients over other HPSS clients are their ability to accept grid credentials that you may already have along with their multi-threaded transfer ...

  20. Dynamic Power Grid Simulation

    Energy Science and Technology Software Center

    2015-09-14

    GridDyn is a part of power grid simulation toolkit. The code is designed using modern object oriented C++ methods utilizing C++11 and recent Boost libraries to ensure compatibility with multiple operating systems and environments.

  1. Method of grid generation

    DOEpatents

    Barnette, Daniel W.

    2002-01-01

    The present invention provides a method of grid generation that uses the geometry of the problem space and the governing relations to generate a grid. The method can generate a grid with minimized discretization errors, and with minimal user interaction. The method of the present invention comprises assigning grid cell locations so that, when the governing relations are discretized using the grid, at least some of the discretization errors are substantially zero. Conventional grid generation is driven by the problem space geometry; grid generation according to the present invention is driven by problem space geometry and by governing relations. The present invention accordingly can provide two significant benefits: more efficient and accurate modeling since discretization errors are minimized, and reduced cost grid generation since less human interaction is required.

  2. Fuel rod support grid

    DOEpatents

    Downs, Robert E.; Schwallie, Ambrose L.

    1985-01-01

    A grid for the support of nuclear fuel rods arranged in a triangular array. The grid is formed by concentric rings of strap joined by radially arranged web sections.

  3. Address (Smart Grid Project) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Categories: Smart Grid Projects Smart Grid Projects in Europe Smart Grid Projects - Integrated System Smart Grid Projects - Home application Smart Grid Projects - Customer Behavior...

  4. EDISON (Smart Grid Project) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Comments Cancel Submit Categories: Smart Grid Projects Smart Grid Projects in Europe Smart Grid Projects - Grid Automation Distribution Smart Grid Projects - Smart Meter and AMI...

  5. Running Grid Jobs

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Running Grid Jobs Running Grid Jobs How to submit a grid job to NERSC The following NERSC resources support job submission via Grid interfaces. Remote job submission is based on Globus GRAM. Jobs can be submitted either to the fork jobmanager (default) which will fork and execute the job immediately, or to the batch system jobmanager which interfaces with the underlying batch queue. Hostname Available Jobmanagers Software Configuration GRAM Resource Endpoints pdsfgrid.nersc.gov Fork, SGE OSG CE

  6. Optimization of X-ray tomography through a cooperative computing system in grid

    SciTech Connect

    Hasan, Moin Goraya, Major Singh

    2015-08-28

    Cooperative Computing implemented as Cooperative Computing System (CCS) in grid has been proved a considerably reliable technique to execute the tasks with real time constraints in a grid environment. This technique can be applied in many high performance distributed computing applications. HPC has a large number of applications in various fields of physics. One such application in radiation physics is X-ray tomography. X-Ray tomography contains numerous applications in various fields of science, technology and research. As the technology is changing from analog to digital in almost all the scenarios, this paper presents an idea towards the attachment of X-ray tomography assembly to HPC environment so as to obtain the highly reliable optimization.

  7. Decision-Support Software for Grid Operators: Transmission Topology Control for Infrastructure Resilience to the Integration of Renewable Generation

    SciTech Connect

    2012-03-16

    GENI Project: The CRA team is developing control technology to help grid operators more actively manage power flows and integrate renewables by optimally turning on and off entire power lines in coordination with traditional control of generation and load resources. The control technology being developed would provide grid operators with tools to help manage transmission congestion by identifying the facilities whose on/off status must change to lower generation costs, increase utilization of renewable resources and improve system reliability. The technology is based on fast optimization algorithms for the near to real-time change in the on/off status of transmission facilities and their software implementation.

  8. Office of Electricity Delivery and Energy Reliability

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Comments of Cisco Systems to Office of Electricity Delivery and Energy Reliability Department of Energy in Response to Request for Information: Addressing Policy and Logistical Challenges to Smart Grid Implementation Issued September 13, 2010 FR Doc. 2010-23251 November 30, 2010 Cisco Systems provides these Comments in response to the Request for Information ("RFI") issued by the Office of Electricity Delivery and Energy Reliability of the Department of Energy ("DOE") on

  9. Applications for Coal and Natural Gas Power Plants in a Smart Grid Future

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Smart Grid Policies, Regulations & Standards Steve Bossart Project Management Center February 15, 2011 2 2 Discussion Topics Smart Grid Policies, Regulations, & Standards Stakeholders U.S. Department of Energy National Institute of Standards and Testing Federal Energy Regulatory Commission National Association of Regulatory Utility Commissioners National Electricity Reliability Corporation Other Thoughts, Other Organizations, Other Efforts Foreign Smart Grid Policy, Regulations,

  10. West Virginia Smart Grid Implementation Plan (WV SGIP) Project

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    West Virginia Smart Grid Implementation Plan (WV SGIP) Project APERC Report on Assessment of As-Is Grid by Non-Utility Stakeholders Introduction One goal of this grid modernization project is to assess the current status of the electric power grid in West Virginia in order to define the potential to implement smart grid technologies. Thus, an initial task of this project was to define the current state or "As-Is" grid in West Virginia. Financial and time constraints prohibited the

  11. NREL: Transmission Grid Integration - Grid Simulation

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... at the Center for Advanced Power Systems on the Florida State University Campus in Tallahassee, Florida on November 5-6, 2015. NWTC Controllable Grid Interface This fact sheet ...

  12. Understanding The Smart Grid

    SciTech Connect

    2007-11-15

    The report provides an overview of what the Smart Grid is and what is being done to define and implement it. The electric industry is preparing to undergo a transition from a centralized, producer-controlled network to a decentralized, user-interactive one. Not only will the technology involved in the electric grid change, but the entire business model of the industry will change too. A major objective of the report is to identify the changes that the Smart Grid will bring about so that industry participants can be prepared to face them. A concise overview of the development of the Smart Grid is provided. It presents an understanding of what the Smart Grid is, what new business opportunities or risks might come about due to its introduction, and what activities are already taking place regarding defining or implementing the Smart Grid. This report will be of interest to the utility industry, energy service providers, aggregators, and regulators. It will also be of interest to home/building automation vendors, information technology vendors, academics, consultants, and analysts. The scope of the report includes an overview of the Smart Grid which identifies the main components of the Smart Grid, describes its characteristics, and describes how the Smart Grid differs from the current electric grid. The overview also identifies the key concepts involved in the transition to the Smart Grid and explains why a Smart Grid is needed by identifying the deficiencies of the current grid and the need for new investment. The report also looks at the impact of the Smart Grid, identifying other industries which have gone through a similar transition, identifying the overall benefits of the Smart Grid, and discussing the impact of the Smart Grid on industry participants. Furthermore, the report looks at current activities to implement the Smart Grid including utility projects, industry collaborations, and government initiatives. Finally, the report takes a look at key technology

  13. Bus.py: A GridLAB-D Communication Interface for Smart Distribution Grid Simulations

    SciTech Connect

    Hansen, Timothy M.; Palmintier, Bryan; Suryanarayanan, Siddharth; Maciejewski, Anthony A.; Siegel, Howard Jay

    2015-07-03

    As more Smart Grid technologies (e.g., distributed photovoltaic, spatially distributed electric vehicle charging) are integrated into distribution grids, static distribution simulations are no longer sufficient for performing modeling and analysis. GridLAB-D is an agent-based distribution system simulation environment that allows fine-grained end-user models, including geospatial and network topology detail. A problem exists in that, without outside intervention, once the GridLAB-D simulation begins execution, it will run to completion without allowing the real-time interaction of Smart Grid controls, such as home energy management systems and aggregator control. We address this lack of runtime interaction by designing a flexible communication interface, Bus.py (pronounced bus-dot-pie), that uses Python to pass messages between one or more GridLAB-D instances and a Smart Grid simulator. This work describes the design and implementation of Bus.py, discusses its usefulness in terms of some Smart Grid scenarios, and provides an example of an aggregator-based residential demand response system interacting with GridLAB-D through Bus.py. The small scale example demonstrates the validity of the interface and shows that an aggregator using said interface is able to control residential loads in GridLAB-D during runtime to cause a reduction in the peak load on the distribution system in (a) peak reduction and (b) time-of-use pricing cases.

  14. Addressing Security and Reliability Concerns of Large Power Transformers |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Services » Addressing Security and Reliability Concerns of Large Power Transformers Addressing Security and Reliability Concerns of Large Power Transformers Large power transformers (LPTs) are critical to the nation's power grid, with more than 90 percent of consumed power passing through high-voltage transformers at some point. LPTs, however, face a number of challenges that make them one of the most vulnerable components on the grid. They are expensive, difficult to

  15. Office of Electricity Delivery and Energy Reliability Cyber Security

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Project Selections | Department of Energy and Energy Reliability Cyber Security Project Selections Office of Electricity Delivery and Energy Reliability Cyber Security Project Selections On September 23, 2010, speaking at the inaugural GridWise Global Forum, U.S. Energy Secretary Steven Chu today announced the investment of more than $30 million for ten projects that will address cybersecurity issues facing the nation's electric grid. Together, these projects represent a significant

  16. North American Electric Reliability Corporation (NERC): Reliability...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications Smart Grid R&D Multi-Year Program Plan (2010-2014) - September 2011 Update Statement of Patricia Hoffman, Assistant Secretary for Electricity Delivery ...

  17. 2012 Smart Grid Peer Review - Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Electricity Delivery and Energy Reliability Page 1 of 3 U.S. Department of Energy Smart Grid R&D Peer Review San Diego Gas & Electric Energy Innovation Center 4760 Clairemont Mesa Blvd San Diego, California June 7-8, 2012 AGENDA Thursday, June 7, 2012 8:00 am Registration and Continental Breakfast 8:30 am - 8:40 am Welcome David Geier, Vice President Electric Operations, San Diego Gas & Electric 8:40 am - 9:00 am OE's R&D Division/Smart Grid R&D Program Hank Kenchington/Dan

  18. PNNL Data-Intensive Computing for a Smarter Energy Grid

    ScienceCinema

    Carol Imhoff; Zhenyu (Henry) Huang; Daniel Chavarria

    2016-07-12

    The Middleware for Data-Intensive Computing (MeDICi) Integration Framework, an integrated platform to solve data analysis and processing needs, supports PNNL research on the U.S. electric power grid. MeDICi is enabling development of visualizations of grid operations and vulnerabilities, with goal of near real-time analysis to aid operators in preventing and mitigating grid failures.

  19. Grid Applications for Energy Storage

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Applications for Energy Storage Flow Cells for Energy Storage Workshop Washington DC 7-8 March 2012 Joe Eto jheto@lbl.gov (510) 486-7284 Referencing a Recent Sandia Study,* This Talk Will: Describe and illustrate selected grid applications for energy storage Time-of-use energy cost management Demand charge management Load following Area Regulation Renewables energy time shift Renewables capacity firming Compare Sandia's estimates of the economic value of these applications to the Electricity

  20. Smart Energy Management and Control for Fuel Cell Based Micro-Grid Connected Neighborhoods

    SciTech Connect

    Dr. Mohammad S. Alam

    2006-03-15

    Fuel cell power generation promises to be an efficient, pollution-free, reliable power source in both large scale and small scale, remote applications. DOE formed the Solid State Energy Conversion Alliance with the intention of breaking one of the last barriers remaining for cost effective fuel cell power generation. The Alliance’s goal is to produce a core solid-state fuel cell module at a cost of no more than $400 per kilowatt and ready for commercial application by 2010. With their inherently high, 60-70% conversion efficiencies, significantly reduced carbon dioxide emissions, and negligible emissions of other pollutants, fuel cells will be the obvious choice for a broad variety of commercial and residential applications when their cost effectiveness is improved. In a research program funded by the Department of Energy, the research team has been investigating smart fuel cell-operated residential micro-grid communities. This research has focused on using smart control systems in conjunction with fuel cell power plants, with the goal to reduce energy consumption, reduce demand peaks and still meet the energy requirements of any household in a micro-grid community environment. In Phases I and II, a SEMaC was developed and extended to a micro-grid community. In addition, an optimal configuration was determined for a single fuel cell power plant supplying power to a ten-home micro-grid community. In Phase III, the plan is to expand this work to fuel cell based micro-grid connected neighborhoods (mini-grid). The economic implications of hydrogen cogeneration will be investigated. These efforts are consistent with DOE’s mission to decentralize domestic electric power generation and to accelerate the onset of the hydrogen economy. A major challenge facing the routine implementation and use of a fuel cell based mini-grid is the varying electrical demand of the individual micro-grids, and, therefore, analyzing these issues is vital. Efforts are needed to determine

  1. Microsoft Word - A Systems View of the Modern Grid_Final_v2_0.doc

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    V2.0 The NETL Modern Grid Initiative A SYSTEMS VIEW OF THE MODERN GRID Conducted by the National Energy Technology Laboratory for the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability January 2007 Office of Electricity Delivery and Energy Reliability Page 1 v2.0 A Systems View of the Modern Grid TABLE OF CONTENTS Table of Contents ..................................................................................... 1 Executive Summary

  2. Microsoft Word - Smart Grid Certification and Labeling Program 09-11-2009 _3_.docx

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    NETL Modern Grid Strategy Powering our 21st-Century Economy SMART GRID CERTIFICATION AND LABELING Conducted by National Energy Technology Laboratory for the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability September 2009 Office of Electricity Delivery and Energy Reliability Smart Grid Certification and Labeling 1 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor

  3. Smart Grid Legislative and Regulatory Policies and Case Studies

    Reports and Publications

    2011-01-01

    In recent years, a number of U.S. states have adopted or are considering smart grid related laws, regulations, and voluntary or mandatory requirements. At the same time, the number of smart grid pilot projects has been increasing rapidly. The Energy Information Administration (EIA) commissioned SAIC to research the development of smart grid in the United States and abroad. The research produced several documents that will help guide EIA as it considers how best to track smart grid developments.

  4. Production of single-walled carbon nanotube grids

    DOEpatents

    Hauge, Robert H; Xu, Ya-Qiong; Pheasant, Sean

    2013-12-03

    A method of forming a nanotube grid includes placing a plurality of catalyst nanoparticles on a grid framework, contacting the catalyst nanoparticles with a gas mixture that includes hydrogen and a carbon source in a reaction chamber, forming an activated gas from the gas mixture, heating the grid framework and activated gas, and controlling a growth time to generate a single-wall carbon nanotube array radially about the grid framework. A filter membrane may be produced by this method.

  5. Grid Technologies | GE Global Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Grid Modernization Initiative Grid Modernization Initiative Through the Grid Modernization Multi-Year Program Plan, the U.S. Department of Energy will coordinate a portfolio of activities to advance the grid. Photo courtesy of Berkeley Lab. Through the Grid Modernization Multi-Year Program Plan, the U.S. Department of Energy will coordinate a portfolio of activities to advance the grid. Photo courtesy of Berkeley Lab. What We Do The Grid Modernization Initiative (GMI) works across the U.S.

  6. Grid Modernization | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Photo of an engineer working with grid hardware in a laboratory NREL conducts high-impact research and development of technologies and strategies to modernize the nation's electrical infrastructure, making it more flexible, resilient, and sustainable. The 21st century needs a 21st-century grid. As part of the U.S. Department of Energy's Grid Modernization Initiative, NREL researchers work with industry, government, and academia to solve the challenges of integrating renewable power sources and

  7. Economic Impact of Recovery Act Investments in the Smart Grid Report (April

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    2013) | Department of Energy Impact of Recovery Act Investments in the Smart Grid Report (April 2013) Economic Impact of Recovery Act Investments in the Smart Grid Report (April 2013) The Economic Impact of Recovery Act Investments in the Smart Grid report analyzes the economy-wide impacts of the Recovery Act funding for smart grid project deployment in the United States, administered by Office of Electricity Delivery and Energy Reliability. Key findings include: ARRA funding and matching

  8. Grid Modernization Multi-Year Program Plan (MYPP) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Grid Modernization Multi-Year Program Plan (MYPP) Grid Modernization Multi-Year Program Plan (MYPP) Our extensive, reliable power grid has fueled the nation's growth since the early 1900s. Access to electricity is such a fundamental enabler for the economy that the National Academy of Engineering named "electrification" the greatest engineering achievement of the 20th century. However, the grid we have today does not have the attributes necessary to meet the demands of the 21st century

  9. Distribution Grid Integration

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... Sandia, DOE Energy Storage Program, GeneSiC Semiconductor, U.S. Army ARDEC: Ultra-High-Voltage Silicon Carbide Thyristors Capabilities, Distribution Grid Integration, Energy, ...

  10. Sharing Smart Grid Experiences

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... industry-wide repository, such as the Smart Grid Information Clearinghouse (SGIC) 3, is needed to house the history of reportable events for future reference by all stakeholders. ...

  11. Sandia Energy - Grid Integration

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    of Sandia's larger portfolio of renewable energy technology programs (Wind, Solar Power, Geothermal, and Energy Systems Analysis). Transmission Grid Integration The goal of...

  12. Challenges facing production grids

    SciTech Connect

    Pordes, Ruth; /Fermilab

    2007-06-01

    Today's global communities of users expect quality of service from distributed Grid systems equivalent to that their local data centers. This must be coupled to ubiquitous access to the ensemble of processing and storage resources across multiple Grid infrastructures. We are still facing significant challenges in meeting these expectations, especially in the underlying security, a sustainable and successful economic model, and smoothing the boundaries between administrative and technical domains. Using the Open Science Grid as an example, I examine the status and challenges of Grids operating in production today.

  13. Providing Grid Flexibility in

    Energy Saver

    ... what happens on the "last mile" and isolate substations ... than Connecticut, Rhode Island, and Hawaii combined. ... of the Smart Grid Project three months ahead of schedule ...

  14. Adaptive Energy Grid

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Control of a Flexible, Adaptive Energy Grid "%"&%'&"&()*+%,-.-"(&*"0.-"+.-1&.,2-"+2&01&"%"&3.-,.-"+%.4&"&5.67822& 9"-+%&3.(,"14&:.-&+82&;%+2&+"+2'&<2,"-+(2+&.:&2-...

  15. Building the Distribution Grid

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    2013 * Industry leader in renewable energy procurement, electric transportation, demand response, energy efficiency and Smart Grid * Significant system investments 2014 - 2017 ...

  16. Smart Grid: Transforming the Electric System

    SciTech Connect

    Widergren, Steven E.

    2010-04-13

    This paper introduces smart grid concepts, summarizes the status of current smart grid related efforts, and explains smart grid priorities.

  17. Smart Grid Update: Delivering More Reliable and Efficient Power...

    Energy Saver

    Customers can control when and how they use electricity to save money. New pricing programs offer lower energy costs to customers who shift consumption to off-peak periods. ...

  18. Security for grids

    SciTech Connect

    Humphrey, Marty; Thompson, Mary R.; Jackson, Keith R.

    2005-08-14

    Securing a Grid environment presents a distinctive set of challenges. This paper groups the activities that need to be secured into four categories: naming and authentication; secure communication; trust, policy, and authorization; and enforcement of access control. It examines the current state of the art in securing these processes and introduces new technologies that promise to meet the security requirements of Grids more completely.

  19. GAD (Smart Grid Project) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Projects in Europe Smart Grid Projects - Smart Meter and AMI Smart Grid Projects - Integrated System Smart Grid Projects - Home application Smart Grid Projects - Customer Behavior...

  20. OpenEI Community - Smart Grid

    OpenEI (Open Energy Information) [EERE & EIA]

    p> http:en.openei.orgcommunityblogwhat-do-you-know-about-gridcomments black out brown out bulk power system electricity grid future grid grid history security Smart Grid...

  1. Buildings-to-Grid Technical Opportunities: From the Grid Perspective |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Grid Perspective Buildings-to-Grid Technical Opportunities: From the Grid Perspective To successfully operate and deliver its promise of a seamlessly integrated buildings-grid infrastructure, a transactive energy ecosystem requires new approaches to planning and operating the power grid. This report outlines the nature of the power grid, lists challenges and barriers to the implementation of a transactive energy ecosystem, and provides concept solutions to current

  2. Smart Grid Week: Working to Modernize the Nation's Electric Grid |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Working to Modernize the Nation's Electric Grid Smart Grid Week: Working to Modernize the Nation's Electric Grid June 3, 2013 - 11:00am Addthis Introducing Smart Grid Week. | Photo courtesy of Pacific Northwest National Laboratory. Introducing Smart Grid Week. | Photo courtesy of Pacific Northwest National Laboratory. Erin R. Pierce Erin R. Pierce Former Digital Communications Specialist, Office of Public Affairs Learn More about the Smart Grid Visit smartgrid.gov for

  3. Grid Interaction Tech Team, and International Smart Grid Collaboration |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Grid Interaction Tech Team, and International Smart Grid Collaboration Grid Interaction Tech Team, and International Smart Grid Collaboration 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting vss067_hardy_2012_o.pdf (1.77 MB) More Documents & Publications Grid Connectivity Research, Development & Demonstration Projects Grid Interaction Tech Team Codes and Standards to Support Vehicle

  4. Human Factors for Situation Assessment in Grid Operations

    SciTech Connect

    Guttromson, Ross T.; Schur, Anne; Greitzer, Frank L.; Paget, Mia L.

    2007-08-08

    literature review, we advocate a new perspective on SA in terms of sensemaking, also called situated or ecological decision making, where the focus of the investigation is to understand why the decision maker(s) experienced the situation the way they did, or why what they saw made sense to them at the time. This perspective is distinct from the traditional branch of human factors research in the field which focuses more on ergonomics and the transactional relationship between the human operator and the systems. Consistent with our findings from the literature review, we recognized an over-arching need to focus SA research on issues surrounding the concept of shared knowledge; e.g., awareness of what is happening in adjacent areas as well as ones own area of responsibility. Major findings were: a) Inadequate communication/information sharing is pervasive, b) Information is available, but not used. Many tools and mechanisms exist for operators to build awareness of the physical grid system, yet the transcripts reveal that they still need to call and exchange information with operators of neighboring areas to improve or validate their SA. The specific types of information that they request are quite predictable and, in most cases, cover information that could be available to both operators and reliability coordinators through readily available displays or other data sources, c) Shared Knowledge is Required on Operations/Actions as Well as Physical Status. In an ideal, technologically and organizationally perfect world, every control room and every reliability coordinator may have access to complete data across all regional control areas and yet, there would still be reason for the operators to call each other to gain and improve their SA of power grid operations, and d) Situation Awareness as sensemaking and shared knowledge.

  5. Sandia Energy - Inverter Reliability Program

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Inverter Reliability Program Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics PV Systems Reliability Inverter Reliability Program Inverter Reliability...

  6. Smart Grid Consortium, Response of New York State Smart Grid...

    Office of Environmental Management (EM)

    Smart Grid Consortium, Response of New York State Smart Grid Addressing Policy and Logistical Challenges It represents a unique public-private partnership of largely New York State ...

  7. NREL: Distributed Grid Integration - Solar Distributed Grid Integratio...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    (IEA PVPS) Task 11 - PV hybrid and mini-grids Support IEA PVPS Task 14 - high ... Utility District, Anatolia Project Southern California Edison Hawaii Smart Grid projects. ...

  8. EcoGrid EU (Smart Grid Project) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    EU (Smart Grid Project) Jump to: navigation, search Project Name EcoGrid EU Country Denmark Headquarters Location Bornholm, Denmark Coordinates 55.160427, 14.866884 Loading...

  9. Open Science Grid at NERSC

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Open Science Grid Open Science Grid at NERSC NERSC provides computing to Open Science Grid (OSG) users through a special allocation. OSG Users must submit an OSG new user request ...

  10. Photovoltaic performance and reliability workshop

    SciTech Connect

    Kroposki, B

    1996-10-01

    This proceedings is the compilation of papers presented at the ninth PV Performance and Reliability Workshop held at the Sheraton Denver West Hotel on September 4--6, 1996. This years workshop included presentations from 25 speakers and had over 100 attendees. All of the presentations that were given are included in this proceedings. Topics of the papers included: defining service lifetime and developing models for PV module lifetime; examining and determining failure and degradation mechanisms in PV modules; combining IEEE/IEC/UL testing procedures; AC module performance and reliability testing; inverter reliability/qualification testing; standardization of utility interconnect requirements for PV systems; need activities to separate variables by testing individual components of PV systems (e.g. cells, modules, batteries, inverters,charge controllers) for individual reliability and then test them in actual system configurations; more results reported from field experience on modules, inverters, batteries, and charge controllers from field deployed PV systems; and system certification and standardized testing for stand-alone and grid-tied systems.

  11. US Recovery Act Smart Grid Energy Storage Demonstration Projects...

    OpenEI (Open Energy Information) [EERE & EIA]

    consumers. The projects include streamlined communication technologies that will allow different parts of the grid to "talk" to each other in real time; sensing and control...

  12. Comments on Smart Grid data access | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    OF ENERGY Smart Grid RFI: Addressing Policy and Logistical Challenges The Need for Essential Consumer Protections: Smart Metering Proposals and the Move to Time-Based Pricing The ...

  13. Grids, virtualization, and clouds at Fermilab

    DOE PAGES [OSTI]

    Timm, S.; Chadwick, K.; Garzoglio, G.; Noh, S.

    2014-06-11

    Fermilab supports a scientific program that includes experiments and scientists located across the globe. To better serve this community, in 2004, the (then) Computing Division undertook the strategy of placing all of the High Throughput Computing (HTC) resources in a Campus Grid known as FermiGrid, supported by common shared services. In 2007, the FermiGrid Services group deployed a service infrastructure that utilized Xen virtualization, LVS network routing and MySQL circular replication to deliver highly available services that offered significant performance, reliability and serviceability improvements. This deployment was further enhanced through the deployment of a distributed redundant network core architecture andmore » the physical distribution of the systems that host the virtual machines across multiple buildings on the Fermilab Campus. In 2010, building on the experience pioneered by FermiGrid in delivering production services in a virtual infrastructure, the Computing Sector commissioned the FermiCloud, General Physics Computing Facility and Virtual Services projects to serve as platforms for support of scientific computing (FermiCloud 6 GPCF) and core computing (Virtual Services). Lastly, this work will present the evolution of the Fermilab Campus Grid, Virtualization and Cloud Computing infrastructure together with plans for the future.« less

  14. Smart Grid - Transforming Power System Operations

    SciTech Connect

    Widergren, Steven E.; Kirkham, Harold

    2010-04-28

    AbstractElectric power systems are entering a new realm of operations. Large amounts of variable generation tax our ability to reliably operate the system. Couple this with a greater reliance on the electricity network to serve consumer demand that is likely to rise significantly even as we drive for greater efficiency. Trade-offs between energy and environmental needs will be constantly negotiated, while a reliable supply of electricity needs even greater assurance in a world where threats of disruption have risen. Smart grid capabilities are being proposed to help address the challenges confronting system operations. This paper reviews the impact of smart grid functionality on transforming power system operations. It explores models for distributed energy resources (DER generation, storage, and load) that are appearing on the system. It reviews the evolving nature of electricity markets to deal with this complexity and a change of emphasis on signals from these markets to affect power system control. Smart grid capabilities will also impact reliable operations, while cyber security issues must be addressed as a culture change that influences all system design, implementation, and maintenance. Lastly, the paper explores significant questions for further research and the need for a simulation environment that supports such investigation and informs deployments to mitigate operational issues as they arise.

  15. Grid Net | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Grid Net Jump to: navigation, search Name: Grid Net Address: 340 Brannan St Place: San Francisco, California Zip: 94107 Region: Bay Area Sector: Efficiency Product: Sells open,...

  16. The Smart Grid: An Introduction

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Smart Grid: An Introduction. How a smarter grid works as an enabling engine for our economy, our environment and our future.

  17. ,"Month","Year","Contiguous U.S.","Eastern Power Grid",,,,,,,,"Texas Power Grid","Western Power Grid"

    Energy Information Administration (EIA) (indexed site)

    " ","Next Update: October 2007" ,"Table 3a. January Monthly Peak Hour Demand, Actual by North American Electric Reliability Council Region, 1996 through 2004 " ,"(Megawatts)" ,"Month","Year","Contiguous U.S.","Eastern Power Grid",,,,,,,,"Texas Power Grid","Western Power Grid"

  18. ,"Net Energy For Load (Annual)",,"Contiguous U.S. ","Eastern Power Grid",,,,,,,,"Texas Power Grid","Western Power Grid"

    Energy Information Administration (EIA) (indexed site)

    7, 2008" ,"Next Update: Not applicable for this table format" ,"Table 1a. Historical Net Energy For Load, Actual by North American Electric Reliability Council Region, 1990 through 2004. " ,"(Thousands of Megawatthours)" ,"Net Energy For Load (Annual)",,"Contiguous U.S. ","Eastern Power Grid",,,,,,,,"Texas Power Grid","Western Power Grid"

  19. ,"Projected Monthly Base","Year","Contiguous U.S.","Eastern Power Grid",,,,,,,,"Texas Power Grid","Western Power Grid"

    Energy Information Administration (EIA) (indexed site)

    ","Table 3a. January Monthly Peak Hour Demand, Actual and Projected by North American Electric Reliability Council Region, " ,"1996 through 2004 and Projected 2005 through 2006 " ,"(Megawatts and 2004 Base Year)" ,"Projected Monthly Base","Year","Contiguous U.S.","Eastern Power Grid",,,,,,,,"Texas Power Grid","Western Power Grid"

  20. ,"Projected Year Base","Year","Summer",,,"Eastern Power Grid",,,,,,,,,,,,,,,,,,"Texas Power Grid",,,"Western Power Grid"

    Energy Information Administration (EIA) (indexed site)

    4. Summer Historic and Projected Net Internal Demand, Capacity Resources, and Capacity Margins by North American Electric Reliability Corporation Region, 2006 and 2007 through 2011 " " ","(Megawatts and Percent)" ,"Projected Year Base","Year","Summer",,,"Eastern Power Grid",,,,,,,,,,,,,,,,,,"Texas Power Grid",,,"Western Power Grid" ,,,"Contiguous U.S."

  1. ,"Projected Year Base","Year","Summer",,,"Eastern Power Grid",,,,,,,,,,,,,,,,,,"Texas Power Grid",,,"Western Power Grid"

    Energy Information Administration (EIA) (indexed site)

    March 2009" ,"Next Update: October 2009" ,"Table 4. Summer Historic and Projected Net Internal Demand, Capacity Resources, and Capacity Margins by North American Electric Reliability Corporation Region, 2007 and 2008 through 2012 " " ","(Megawatts and Percent)" ,"Projected Year Base","Year","Summer",,,"Eastern Power Grid",,,,,,,,,,,,,,,,,,"Texas Power Grid",,,"Western Power Grid"

  2. ,"Projected Year Base","Year","Summer",,,"Eastern Power Grid",,,,,,,,,,,,,,,,,,"Texas Power Grid",,,"Western Power Grid"

    Energy Information Administration (EIA) (indexed site)

    4. Summer Historic and Projected Net Internal Demand, Capacity Resources, and Capacity Margins by North American Electric Reliability Corporation Region, 2008 and 2009 through 2013 " " ","(Megawatts and Percent)" ,"Projected Year Base","Year","Summer",,,"Eastern Power Grid",,,,,,,,,,,,,,,,,,"Texas Power Grid",,,"Western Power Grid" ,,,"Contiguous U.S." ,,,,,,"FRCC",,,"MRO

  3. ,"Summer Noncoincident Peak Load",,"Contiguous U.S. ","Eastern Power Grid",,,,,,,,"Texas Power Grid","Western Power Grid"

    Energy Information Administration (EIA) (indexed site)

    7, 2008" ,"Next Update: Not applicable for this table format" ,"Table 2c. Historical Noncoincident Summer Peak Load, Actual by North American Electric Reliability Council Region, 1990 through 2004 " ,"(Megawatts)" ,,,,," " ,"Summer Noncoincident Peak Load",,"Contiguous U.S. ","Eastern Power Grid",,,,,,,,"Texas Power Grid","Western Power Grid"

  4. Grid Connected Functionality

    DOE Data Explorer

    Baker, Kyri; Jin, Xin; Vaidynathan, Deepthi; Jones, Wesley; Christensen, Dane; Sparn, Bethany; Woods, Jason; Sorensen, Harry; Lunacek, Monte

    2016-08-04

    Dataset demonstrating the potential benefits that residential buildings can provide for frequency regulation services in the electric power grid. In a hardware-in-the-loop (HIL) implementation, simulated homes along with a physical laboratory home are coordinated via a grid aggregator, and it is shown that their aggregate response has the potential to follow the regulation signal on a timescale of seconds. Connected (communication-enabled), devices in the National Renewable Energy Laboratory's (NREL's) Energy Systems Integration Facility (ESIF) received demand response (DR) requests from a grid aggregator, and the devices responded accordingly to meet the signal while satisfying user comfort bounds and physical hardware limitations.

  5. Building Tomorrow's Smart Grid Workforce Today | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Tomorrow's Smart Grid Workforce Today Building Tomorrow's Smart Grid Workforce Today May 1, 2012 - 11:22am Addthis A student gets hands-on experience in the electric sector during an internship and mentoring program with Northeast Utilities, through ARRA workforce development funding. | Photo courtesy of Office of Electricity Delivery and Energy Reliability. A student gets hands-on experience in the electric sector during an internship and mentoring program with Northeast Utilities, through ARRA

  6. 2012 Smart Grid Peer Review Presentations - Day 1 Morning Session |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Morning Session 2012 Smart Grid Peer Review Presentations - Day 1 Morning Session The Office of Electricity Delivery and Energy Reliability held its bi-annual peer review of the Smart Grid Research and Development Program on June 7-8, 2012. More than 30 projects were presented at San Diego Gas & Electric's Energy Innovation Center. Presentations from the Day 1 morning session are below. Moderator: Dan Ton, DOE 2012 SG Peer Review - Smart Inverter Controls and

  7. Department of Energy Seeks Information on Smart Grid Challenges

    Energy.gov [DOE]

    The Department of Energy’s Office of Electricity Delivery and Energy Reliability has issued a Request For Information (RFI) seeking information from stakeholders on the policy and logistical challenges that confront smart grid implementation. Responses to this RFI will also help inform the Administration’s analysis of policy challenges and possible solutions being developed by the Smart Grid Subcommittee of the National Science and Technology Council’s Committee on Technology.

  8. Smart Grid RFI: Addressing Policy and Logistical Challenges

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Electricity Delivery and Energy Reliability 1000 Independence Avenue, SW Room 8H033 Washington, DC 20585 Submitted electronically via smartgridpolicy@hq.doe.gov Smart Grid Request for Information: Addressing Policy and Logistical Challenges Comments of the Alliance to Save Energy The Alliance to Save Energy (the Alliance) thanks the Department of Energy for the opportunity to comment on broad issues of policy and logistical challenges faced in smart grid implementation. The Alliance to Save

  9. Moving Forward in Protecting the Nation's Electric Grid | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Moving Forward in Protecting the Nation's Electric Grid Moving Forward in Protecting the Nation's Electric Grid January 16, 2015 - 2:10pm Addthis Patricia A. Hoffman Patricia A. Hoffman Assistant Secretary, Office of Electricity Delivery & Energy Reliability Over the past week, the Energy Department has unveiled several new measures, including funding, newly-commercialized technology, and practical guidance, that will further strengthen the cybersecurity of the nation's energy

  10. The Smart Grid Experience: Applying Results, Reaching Beyond - Summary of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Conference Proceedings (December 2014) | Department of Energy Grid Experience: Applying Results, Reaching Beyond - Summary of Conference Proceedings (December 2014) The Smart Grid Experience: Applying Results, Reaching Beyond - Summary of Conference Proceedings (December 2014) In October 2014, the Electric Power Research Institute (EPRI) and the U.S. Department of Energy's (DOE's) Office of Electricity Delivery and Energy Reliability (OE) held a conference to assess progress, impacts,

  11. Demonstration project Smart Charging (Smart Grid Project) | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Smart Grid Projects Smart Grid Projects in Europe Smart Grid Projects - Grid Automation Distribution Smart Grid Projects - Integrated System Smart Grid Projects - Home...

  12. EMPORA 1 + 2 EMobile Power Austria (Smart Grid Project) | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Smart Grid Projects Smart Grid Projects in Europe Smart Grid Projects - Grid Automation Distribution Smart Grid Projects - Integrated System Smart Grid Projects - Specific...

  13. Belgium east loop active network management (Smart Grid Project...

    OpenEI (Open Energy Information) [EERE & EIA]

    Cancel Submit Categories: Smart Grid Projects Smart Grid Projects in Europe Smart Grid Projects - Grid Automation Distribution Smart Grid Projects - Grid Automation Transmission...

  14. Distributed Smart Grid Asset Control Strategies for Providing Ancillary Services

    SciTech Connect

    Kalsi, Karanjit; Zhang, Wei; Lian, Jianming; Marinovici, Laurentiu D.; Moya, Christian; Dagle, Jeffery E.

    2013-10-30

    implementing real load control programs. The promise of autonomous, Grid Friendly response by smart appliances in the form of under-frequency load shedding was demonstrated in the GridWise Olympic Peninsula Demonstration in 2006. Each controller monitored the power grid voltage signal and requested that electrical load be shed by its appliance whenever electric power-grid frequency fell below 59.95 Hz. The controllers and their appliances responded reliably to each shallow under-frequency event, which was an average of one event per day and shed their loads for the durations of these events. Another objective of this project was to perform extensive simulation studies to investigate the impact of a population of Grid Friendly Appliances (GFAs) on the bulk power system frequency stability. The GFAs considered in this report are represented as demonstration units with water heaters individually modeled.

  15. Transmission Grid Integration

    Energy.gov [DOE]

    The levels of solar energy penetration envisioned by the DOE SunShot Initiative must be interconnected effectively onto the transmission grid. This interconnection requires an in-depth...

  16. Grid Data Transfer

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    2. uberftp UberFTP provides a rich interactive client for GridFTP. It mimics standard ftp clients in behavior, along with providing some additional features. To initialize your...

  17. Random array grid collimator

    DOEpatents

    Fenimore, E.E.

    1980-08-22

    A hexagonally shaped quasi-random no-two-holes touching grid collimator. The quasi-random array grid collimator eliminates contamination from small angle off-axis rays by using a no-two-holes-touching pattern which simultaneously provides for a self-supporting array increasng throughput by elimination of a substrate. The presentation invention also provides maximum throughput using hexagonally shaped holes in a hexagonal lattice pattern for diffraction limited applications. Mosaicking is also disclosed for reducing fabrication effort.

  18. QER- Comment of GridWise Alliance 1

    Office of Energy Efficiency and Renewable Energy (EERE)

    Please find attached the GridWise Alliance's Improving Electric Grid Reliability and Resilience report and my comments from today's workshop. Thank to the QER Task Force and the DOE for engaging the stakeholders in your efforts to develop our Federal energy policy objectives. The GridWise Alliance stands ready to assist with this major undertaking. Our members represent the ecosystem of players that must come together to collaborate and participate in the development of innovative solutions to evolve from the system of today to the system of the future.

  19. GridLAB-D: An Agent-Based Simulation Framework for Smart Grids

    SciTech Connect

    Chassin, David P.; Fuller, Jason C.; Djilali, Ned

    2014-06-23

    Simulation of smart grid technologies requires a fundamentally new approach to integrated modeling of power systems, energy markets, building technologies, and the plethora of other resources and assets that are becoming part of modern electricity production, delivery, and consumption systems. As a result, the US Department of Energy’s Office of Electricity commissioned the development of a new type of power system simulation tool called GridLAB-D that uses an agent-based approach to simulating smart grids. This paper presents the numerical methods and approach to time-series simulation used by GridLAB-D and reviews applications in power system studies, market design, building control system design, and integration of wind power in a smart grid.

  20. GridLAB-D: An Agent-Based Simulation Framework for Smart Grids

    DOE PAGES [OSTI]

    Chassin, David P.; Fuller, Jason C.; Djilali, Ned

    2014-01-01

    Simulation of smart grid technologies requires a fundamentally new approach to integrated modeling of power systems, energy markets, building technologies, and the plethora of other resources and assets that are becoming part of modern electricity production, delivery, and consumption systems. As a result, the US Department of Energy’s Office of Electricity commissioned the development of a new type of power system simulation tool called GridLAB-D that uses an agent-based approach to simulating smart grids. This paper presents the numerical methods and approach to time-series simulation used by GridLAB-D and reviews applications in power system studies, market design, building control systemmore » design, and integration of wind power in a smart grid.« less

  1. grid history | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    Dc(266) Contributor 31 October, 2014 - 10:58 What do you know about the grid? black out brown out bulk power system electricity grid future grid grid history security Smart Grid...

  2. electricity grid | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    Dc(266) Contributor 31 October, 2014 - 10:58 What do you know about the grid? black out brown out bulk power system electricity grid future grid grid history security Smart Grid...

  3. future grid | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    Dc(266) Contributor 31 October, 2014 - 10:58 What do you know about the grid? black out brown out bulk power system electricity grid future grid grid history security Smart Grid...

  4. Smart Grid | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    Dc(266) Contributor 31 October, 2014 - 10:58 What do you know about the grid? black out brown out bulk power system electricity grid future grid grid history security Smart Grid...

  5. Methodology to determine the technical performance and value proposition for grid-scale energy storage systems :

    SciTech Connect

    Byrne, Raymond Harry; Loose, Verne William; Donnelly, Matthew K.; Trudnowski, Daniel J.

    2012-12-01

    As the amount of renewable generation increases, the inherent variability of wind and photovoltaic systems must be addressed in order to ensure the continued safe and reliable operation of the nation's electricity grid. Grid-scale energy storage systems are uniquely suited to address the variability of renewable generation and to provide other valuable grid services. The goal of this report is to quantify the technical performance required to provide di erent grid bene ts and to specify the proper techniques for estimating the value of grid-scale energy storage systems.

  6. “Future of the Grid: Evolving to Meet America’s Needs” Report Now Available

    Energy.gov [DOE]

    The Office of Electricity Delivery and Energy Reliability (OE) and the GridWise Alliance (GWA) partnered to facilitate a series of four regional workshops and a National Summit entitled “Future of the Grid: Evolving to Meet America’s Needs” to create an industry-driven vision of the electric grid in 2030 and to begin forging a path to realizing that vision. The resulting “Future of the Grid: Evolving to Meet America’s Needs” report captures the vision of the future electric grid and the associated potential changes in the utility business and regulatory models, as articulated by regional workshop and National Summit participants.

  7. WHAT THE SMART GRID MEANS TO YOU AND THE PEOPLE YOU REPRESENT. | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy THE SMART GRID MEANS TO YOU AND THE PEOPLE YOU REPRESENT. WHAT THE SMART GRID MEANS TO YOU AND THE PEOPLE YOU REPRESENT. The U.S. Department of Energy (DOE) is charged under the Energy Independence and Security Act of 2007 (EISA 2007) with modernizing the nation's electricity grid to improve its reliability and efficiency. As part of this effort, DOE is also responsible for increasing awareness of our nation's Smart Grid. Building upon The Smart Grid: An Introduction, a

  8. The Future of the Grid: Evolving to Meet America's Needs (December 2014)

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    | Department of Energy The Future of the Grid: Evolving to Meet America's Needs (December 2014) The Future of the Grid: Evolving to Meet America's Needs (December 2014) The Office of Electricity Delivery and Energy Reliability (OE) and the GridWise Alliance (GWA) partnered to facilitate a series of four regional workshops and a National Summit entitled "Future of the Grid: Evolving to Meet America's Needs" to create an industry-driven vision of the electric grid in 2030 and to

  9. shared Smart Grid Investment Grant

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Under the American Recovery and Reinvestment Act of 2009, the U.S. Department of Energy and the electricity industry have jointly invested about $7.9 billion in 99 cost- shared Smart Grid Investment Grant projects and about $1.6 billion in 32 Smart Grid Demonstration Program projects to modernize the electric grid, strengthen cyber security, improve interoperability, and collect an unprecedented level of data on smart grid and customer operations. The Smart Grid Experience: Applying Results,

  10. GridLAB-D/SG

    Energy Science and Technology Software Center

    2011-08-30

    GridLAB-D is a new power system simulation tool that provides valuable information to users who design and operate electric power transmission and distribution systems, and to utilities that wish to take advantage of the latest smart grid technology. This special release of GridLAB-D was developed to study the proposed Smart Grid technology that is used by Battelle Memorial Institute in the AEP gridSMART demonstration project in Northeast Columbus, Ohio.

  11. Real-Time Dynamics Monitoring System with Synchronized Phasor Measurements

    Energy Science and Technology Software Center

    2005-01-01

    The Real-Time Dynamics Monitoring System is designed to monitor the dynamics within the power grid and assess the system behavior during normal and disturbance conditions. The RTDMS application was built on the Grid-3P technology platform and takes real-time information collected by Synchronized Phasor Measurement Units (PMU5) or other collection devices and transmitted to a central Phasor Data Concentrator (PDC) for monitoring grid dynamics. The data is sampled 30 times per second and is time-synchronized. Thismore » data is processed to create graphical and geographical displays to provide visualization for frequency/frequency response, voltage magnitudes and angles, voltage angle differences across critical paths as well as real and reactive power-flows on a sub-second and second basis. Software allows for monitoring, tracking, historical data archiving and electric system troubleshooting for reliability management.« less

  12. Integrating Variable Renewable Energy into the Grid: Key Issues, Greening the Grid

    SciTech Connect

    Katz, Jessica; Cochran, Jaquelin

    2015-05-01

    To foster sustainable, low-emission development, many countries are establishing ambitious renewable energy targets for their electricity supply. Because solar and wind tend to be more variable and uncertain than conventional sources, meeting these targets will involve changes to power system planning and operations. Grid integration is the practice of developing efficient ways to deliver variable renewable energy (VRE) to the grid. Good integration methods maximize the cost-effectiveness of incorporating VRE into the power system while maintaining or increasing system stability and reliability. When considering grid integration, policy makers, regulators, and system operators consider a variety of issues, which can be organized into four broad topics: New Renewable Energy Generation, New Transmission, Increased System Flexibility, Planning for a High RE Future.

  13. Microsoft Word - Whitepaper_Building A Smart Grid Business Case_APPROVED_2009_09_04.doc

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Modern Grid Strategy BUILDING A SMART GRID BUSINESS CASE Developed for the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability by the National Energy Technology Laboratory August 2009 Office of Electricity Delivery and Energy Reliability Building a Smart Grid Business Case 1 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their

  14. AN INTELLIGENT SENSOR FRAMEWORK FOR THE POWER GRID

    SciTech Connect

    Akyol, Bora A.; Haack, Jereme N.; Tews, Cody W.; Carpenter, Brandon J.; Kulkarni, Anand V.; Craig, Philip A.

    2011-08-10

    The number of sensors connected to the electric power system is expected to grow by several orders of magnitude by 2020. However, the information networks which will transmit and analyze the resulting data are ill-equipped to handle the resulting volume with reliable real-time delivery. Without the ability to manage and use this data, deploying sensors such as phasor measurement units in the transmission system and smart meters in the distribution system will not result in the desired improvements in the power grid. The ability to exploit the massive data being generated by new sensors would allow for more efficient flow of power and increased survivability of the grid. Additionally, the power systems of today are not capable of managing two-way power flow to accommodate distributed generation capabilities due to concerns about system stability and lack of system flexibility. The research that we are performing creates a framework to add 'intelligence' to the sensors and actuators being used today in the electric power system. Sensors that use our framework will be capable of sharing information through the various layers of the electric power system to enable two-way information flow to help facilitate integration of distributed resources. Several techniques are considered including use of peer-to-peer communication as well as distributed agents.

  15. Use of fine gridding in full field simulation

    SciTech Connect

    Greaser, G.R.; Doerr, T.C.; Chea, C.; Parvez, N.

    1995-10-01

    A full field 3D simulation study was completed for a large Saudi Arabian oilfield located in the Arabian Gulf. The subject field produced from a highly layered Arab D carbonate reservoir which exhibited a strong water drive. The objective of the study was to determine future platform locations and timing with respect to water encroachment. The large areal extent (13{times}23 km) and highly layered nature of this reservoir necessitated use of coarse grids in order to obtain a reasonable model size. The coarse grid model was constructed with 86,000 grid cells. Using the coarse model, prediction studies showed an advantage to future platform development with horizontal wells. However, these results were suspect since it was thought that the coarse cell model may not properly model water coning and encroachment around the horizontal wellbores. To improve the modeling of water movement, fine grid numerical simulation techniques were investigated. This paper discusses the use of sector and local grid refinement modeling techniques with commercially available software. Fine grid simulation studies were conducted for a proposed new platform. The fine grid simulation studies showed significantly different results compared with the coarse model predictions. The fine grid simulation results will be discussed, the two fine grid simulation techniques will be compared, and reasons presented why performance differences exist. Performance of the fine grid models on an Unix RISC based workstation is included.

  16. Reliability of IGBT in a STATCOM for Harmonic Compensation and Power Factor Correction

    SciTech Connect

    Gopi Reddy, Lakshmi Reddy; Tolbert, Leon M; Ozpineci, Burak; Xu, Yan; Rizy, D Tom

    2012-01-01

    With smart grid integration, there is a need to characterize reliability of a power system by including reliability of power semiconductors in grid related applications. In this paper, the reliability of IGBTs in a STATCOM application is presented for two different applications, power factor correction and harmonic elimination. The STATCOM model is developed in EMTP, and analytical equations for average conduction losses in an IGBT and a diode are derived and compared with experimental data. A commonly used reliability model is used to predict reliability of IGBT.

  17. Gearbox Reliability Collaborative | Wind | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Gearbox Reliability Collaborative Premature gearbox failures have a significant impact on the cost of wind farm operations. In 2007, NREL initiated the Gearbox Reliability Collaborative (GRC). The project combines analysis, field testing, dynamometer testing, condition monitoring, and the development and population of a gearbox failure database in a multi-pronged approach to determine why many wind turbine gearboxes do not achieve their expected design life-the time period that manufacturers

  18. MANGO – Modal Analysis for Grid Operation: A Method for Damping Improvement through Operating Point Adjustment

    SciTech Connect

    Huang, Zhenyu; Zhou, Ning; Tuffner, Francis K.; Chen, Yousu; Trudnowski, Daniel J.; Diao, Ruisheng; Fuller, Jason C.; Mittelstadt, William A.; Hauer, John F.; Dagle, Jeffery E.

    2010-10-18

    Small signal stability problems are one of the major threats to grid stability and reliability in the U.S. power grid. An undamped mode can cause large-amplitude oscillations and may result in system breakups and large-scale blackouts. There have been several incidents of system-wide oscillations. Of those incidents, the most notable is the August 10, 1996 western system breakup, a result of undamped system-wide oscillations. Significant efforts have been devoted to monitoring system oscillatory behaviors from measurements in the past 20 years. The deployment of phasor measurement units (PMU) provides high-precision, time-synchronized data needed for detecting oscillation modes. Measurement-based modal analysis, also known as ModeMeter, uses real-time phasor measurements to identify system oscillation modes and their damping. Low damping indicates potential system stability issues. Modal analysis has been demonstrated with phasor measurements to have the capability of estimating system modes from both oscillation signals and ambient data. With more and more phasor measurements available and ModeMeter techniques maturing, there is yet a need for methods to bring modal analysis from monitoring to actions. The methods should be able to associate low damping with grid operating conditions, so operators or automated operation schemes can respond when low damping is observed. The work presented in this report aims to develop such a method and establish a Modal Analysis for Grid Operation (MANGO) procedure to aid grid operation decision making to increase inter-area modal damping. The procedure can provide operation suggestions (such as increasing generation or decreasing load) for mitigating inter-area oscillations.

  19. NREL: Performance and Reliability R&D - Webmaster

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Your email address: Your message: Send Message Printable Version Performance & Reliability Home Capabilities Real-Time Reliability Accelerated Testing Standards Development ...

  20. Office of Electricity Delivery and Energy Reliability | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Office of Electricity Delivery and Energy Reliability Shedding Light on the Power Grid Shedding Light on the Power Grid How does power get to the people who use it? The latest episode of the DOE podcast focuses on one of the greatest engineering accomplishments of the 20th century that we use every day, but often take for granted -- the electric grid. Read more Preparing for Energy Emergencies: Learn Today What You Can Do to Be Prepared Preparing for Energy Emergencies: Learn Today

  1. GridPV Toolbox

    SciTech Connect

    Broderick, Robert; Quiroz, Jimmy; Grijalva, Santiago; Reno, Matthew; Coogan, Kyle

    2014-07-15

    Matlab Toolbox for simulating the impact of solar energy on the distribution grid. The majority of the functions are useful for interfacing OpenDSS and MATLAB, and they are of generic use for commanding OpenDSS from MATLAB and retrieving GridPV Toolbox information from simulations. A set of functions is also included for modeling PV plant output and setting up the PV plant in the OpenDSS simulation. The toolbox contains functions for modeling the OpenDSS distribution feeder on satellite images with GPS coordinates. Finally, example simulations functions are included to show potential uses of the toolbox functions.

  2. GridPV Toolbox

    Energy Science and Technology Software Center

    2014-07-15

    Matlab Toolbox for simulating the impact of solar energy on the distribution grid. The majority of the functions are useful for interfacing OpenDSS and MATLAB, and they are of generic use for commanding OpenDSS from MATLAB and retrieving GridPV Toolbox information from simulations. A set of functions is also included for modeling PV plant output and setting up the PV plant in the OpenDSS simulation. The toolbox contains functions for modeling the OpenDSS distribution feedermore » on satellite images with GPS coordinates. Finally, example simulations functions are included to show potential uses of the toolbox functions.« less

  3. Controllable Grid Interface Test System | Energy Systems Integration | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Controllable Grid Interface Test System NREL's controllable grid interface (CGI) test system can reduce certification testing time and costs while providing system engineers with a better understanding of how wind turbines, photovoltaic inverters, and energy storage systems react to disturbances on the electric power system. The controllable grid interface is the first test facility in the United States that has fault simulation capabilities. It allows manufacturers and system operators to

  4. Applied Resiliency for More Trustworthy Grid Operation (ARMORE)

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Applied Resiliency for More Trustworthy Grid Operation (ARMORE) Secure communications, inspection, and data analysis platform that enhances the security posture for legacy and modern grid devices Background The electric grid increasingly relies on the secure transfer of real-time data between substations to maintain control of system operations. Traditional cybersecurity practices primarily employ perimeter-level protections, such as firewalls or end-point gateways. Additionally, substation

  5. Case Study - National Rural Electric Cooperative Association Smart Grid Investment Grant

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    National Rural Electric Cooperative Association Smart Grid Investment Grant 1 Helping America's Electric Cooperatives Build a Smarter Grid to Streamline Operations and Improve Service Electric cooperatives play an important role in the U.S. energy infrastructure, delivering electricity to 44 million consumers across over 70% of the geography of the country every day. Implementing smart grid technology is seen by co-ops as a cost-effective way to improve reliability, streamline the restoration of

  6. Recommendations on U. S. Grid Security - EAC 2011 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    on U. S. Grid Security - EAC 2011 Recommendations on U. S. Grid Security - EAC 2011 Recommendations from the Electricity Advisory Committee on actions to be taken by the Department of Energy to compliment the North American Electric Reliability Corporation's (NERC's) Critical Infrastructure Strategic Roadmap developed by the Electricity Sub-Sector Coordinating Council and approved by the NERC Board of Trustees in November 2010. EAC Recommendations on U. S. Grid Security Oct 2011.pdf (110.71 KB)

  7. Vids4Grids - Controls, Connectors & Surge Protectors | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Vids4Grids - Controls, Connectors & Surge Protectors Vids4Grids - Controls, Connectors & Surge Protectors April 6, 2011 - 4:20pm Addthis Take a trip to Melville, New York, home of Leviton Manufacturing, and learn about lighting controls and how they effect the Smart Grid. Deborah J. Buterbaugh Energy Project Specialist at National Energy Technology Laboratory What does this mean for me? These devices are helping deliver the reliable, secure electricity that powers American life. The

  8. EIA's Energy in Brief: What is the electric power grid and what are some

    Gasoline and Diesel Fuel Update

    challenges it faces? is the electric power grid and what are some challenges it faces? Last Updated: December 22, 2015 The U.S. power grid is the electrical system that connects electricity producers and consumers by transmission and distribution lines and related facilities. The U.S. power grid has evolved into three large interconnected systems that move electricity around the country. Mandatory reliability standards have been developed by the electric power industry and have been approved

  9. Smart Grid Newsletter …TheRegulators Role in Grid ModernizationŽ or Leadership from State Regulators can make the Smart G

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    The Smart Grid - How do we get there? One step at a time - the path to the Smart Grid is a long and complex journey that needs to be broken down into manageable and understandable steps. Step 1: Understand what the Smart Grid is Some say the Smart Grid has not yet been defined, others say it is "too hard" to define. To help with this, the Modern Grid Strategy (MGS) team initiated a process to define the Smart Grid in terms of its most fundamental characteristics rather than in terms of

  10. Java Parallel Secure Stream for Grid Computing

    SciTech Connect

    Chen, Jie; Akers, Walter; Chen, Ying; Watson, William

    2001-09-01

    The emergence of high speed wide area networks makes grid computing a reality. However grid applications that need reliable data transfer still have difficulties to achieve optimal TCP performance due to network tuning of TCP window size to improve the bandwidth and to reduce latency on a high speed wide area network. This paper presents a pure Java package called JPARSS (Java Par-allel Secure Stream) that divides data into partitions that are sent over several parallel Java streams simultaneously and allows Java or Web applications to achieve optimal TCP performance in a gird environment without the necessity of tuning the TCP window size. Several experimental results are provided to show that using parallel stream is more effective than tuning TCP window size. In addi-tion X.509 certificate based single sign-on mechanism and SSL based connection establishment are integrated into this package. Finally a few applications using this package will be discussed.

  11. Grid Modernization Laboratory Consortium

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... be needed to mitigate the impacts of high penetrations of variable and DER such as voltage violations, equipment failures, thermal overloads, and safety and reliability issues. ...

  12. NREL: Distributed Grid Integration - Vehicle-to-Grid Project

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    NREL engineers test and analyze electrical vehicle charging and discharging to the electric grid, known as Vehicle-to-Grid (V2G). Testing is conducted at NREL's Distributed Energy ...

  13. DOE Announces Funding Opportunity to Develop the Smart Grid Information Clearinghouse

    Energy.gov [DOE]

    The U.S. Department of Energys Office of Electricity Delivery and Energy Reliability (OE) issued a Funding Opportunity Announcement (FOA) for developing, populating, managing, and maintaining a Web-based Smart Grid Information Clearinghouse.

  14. Advanced Grid Modeling Program Peer Review June 17-18, 2014

    Energy.gov [DOE]

    The Office of Electricity Delivery and Energy Reliability will hold a peer review of the Advanced Grid Modeling Program on June 17-18, 2014, at the Hilton Alexandria Old Town in Alexandria, VA.

  15. "Large Power Transformers and the U.S. Electric Grid" Report (June 2012)

    Energy.gov [DOE]

    The Office of Electricity Delivery and Energy Reliability has released the "Large Power Transformers and the U.S. Electric Grid" report, an assessment of the procurement and supply environment of...

  16. 2014 Advanced Grid Modeling Peer Review Presentations- Day Two Morning Session

    Energy.gov [DOE]

    The Office of Electricity Delivery and Energy Reliability held a peer review of the Advanced Grid Modeling Program on June 17-18, 2014 in Alexandria, VA. This page lists the morning presentations from Day Two of the Peer Review.

  17. GridZone | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search Name: GridZone Sector: Efficiency, Services, Transmission Technology: Smart Grid, Energy Storage, Energy Security ParentHolding Organization: GridZone Limited Company...

  18. Smart Grid Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Grid Resources Jump to: navigation, search Us.jpg US Resources The Smart Grid: An Introduction US Department of Energy Smart Grid Information Clearinghouse EIA Smartgrid.gov...

  19. APEC Smart Grid Initiative

    SciTech Connect

    Bloyd, Cary N.

    2012-03-01

    This brief paper describes the activities of the Asia Pacific Economic Cooperation (APEC) Smart Grid Initiative (ASGI) which is being led by the U.S. and developed by the APEC Energy Working Group. In the paper, I describe the origin of the initiative and briefly mention the four major elements of the initiative along with existing APEC projects which support it.

  20. Microsoft Word - Smart Grid Workshop Report Final Draft 07 21 09.doc

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Metrics for Measuring Progress Toward Implementation of the Smart Grid RESULTS OF THE BREAKOUT SESSION DISCUSSIONS at the Smart Grid Implementation Workshop Office of Electricity Delivery and Energy Reliability June 19-20, 2008 Washington, DC Prepared by Energetics Incorporated July 31, 2008 Energetics Incorporated i July 2008 Executive Summary On June 19-20, 2008, the U.S. Department of Energy's (DOE) Office of Electricity Delivery and Energy Reliability (OE) held a technical workshop on

  1. Microsoft Word - Barriers to Achieving the Modern Grid_Final_v1_0.doc

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    THE NETL Modern Grid Initiative Powering our 21st-Century Economy BARRIERS TO ACHIEVING THE MODERN GRID Conducted by the National Energy Technology Laboratory for the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability July 2007 Office of Electricity Delivery and Energy Reliability V1.0 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any

  2. Microsoft Word - Modern Grid Benefits_Final_v1_0.doc

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    The NETL Modern Grid Initiative Powering our 21st-Century Economy MODERN GRID BENEFITS Conducted by National Energy Technology Laboratory for the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability August 2007 Office of Electricity Delivery and Energy Reliability V1.0 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees,

  3. Secure Interoperable Open Smart Grid Demonstration Project

    SciTech Connect

    Magee, Thoman

    2014-12-31

    The Consolidated Edison, Inc., of New York (Con Edison) Secure Interoperable Open Smart Grid Demonstration Project (SGDP), sponsored by the United States (US) Department of Energy (DOE), demonstrated that the reliability, efficiency, and flexibility of the grid can be improved through a combination of enhanced monitoring and control capabilities using systems and resources that interoperate within a secure services framework. The project demonstrated the capability to shift, balance, and reduce load where and when needed in response to system contingencies or emergencies by leveraging controllable field assets. The range of field assets includes curtailable customer loads, distributed generation (DG), battery storage, electric vehicle (EV) charging stations, building management systems (BMS), home area networks (HANs), high-voltage monitoring, and advanced metering infrastructure (AMI). The SGDP enables the seamless integration and control of these field assets through a common, cyber-secure, interoperable control platform, which integrates a number of existing legacy control and data systems, as well as new smart grid (SG) systems and applications. By integrating advanced technologies for monitoring and control, the SGDP helps target and reduce peak load growth, improves the reliability and efficiency of Con Edison’s grid, and increases the ability to accommodate the growing use of distributed resources. Con Edison is dedicated to lowering costs, improving reliability and customer service, and reducing its impact on the environment for its customers. These objectives also align with the policy objectives of New York State as a whole. To help meet these objectives, Con Edison’s long-term vision for the distribution grid relies on the successful integration and control of a growing penetration of distributed resources, including demand response (DR) resources, battery storage units, and DG. For example, Con Edison is expecting significant long-term growth of DG

  4. Smart Grid | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Electric Power Smart Grid Smart Grid Rows of battery racks at the Salem Smart Power Center in Salem, Oregon. The Battelle-led Pacific Northwest Smart ...

  5. Locke, Chu Announce Significant Steps in Smart Grid Development |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Locke, Chu Announce Significant Steps in Smart Grid Development Locke, Chu Announce Significant Steps in Smart Grid Development May 18, 2009 - 12:00am Addthis WASHINGTON - U.S. Commerce Secretary Gary Locke and U.S. Energy Secretary Steven Chu today announced significant progress that will help expedite development of a nationwide "smart" electric power grid. A Smart Grid would replace the current, outdated system and employ real-time, two-way communication

  6. Market-Based Indian Grid Integration Study Options: Preprint

    SciTech Connect

    Stoltenberg, B.; Clark, K.; Negi, S. K.

    2012-03-01

    The Indian state of Gujarat is forecasting solar and wind generation expansion from 16% to 32% of installed generation capacity by 2015. Some states in India are already experiencing heavy wind power curtailment. Understanding how to integrate variable generation (VG) into the grid is of great interest to local transmission companies and India's Ministry of New and Renewable Energy. This paper describes the nature of a market-based integration study and how this approach, while new to Indian grid operation and planning, is necessary to understand how to operate and expand the grid to best accommodate the expansion of VG. Second, it discusses options in defining a study's scope, such as data granularity, generation modeling, and geographic scope. The paper also explores how Gujarat's method of grid operation and current system reliability will affect how an integration study can be performed.

  7. Easy Street (Smart Grid Project) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Categories: Smart Grid Projects Smart Grid Projects in Europe Smart Grid Projects - Integrated System Smart Grid Projects - Home application Smart Grid Projects - Customer Behavior...

  8. CET2001 Customer Led Network Revolution (Smart Grid Project)...

    OpenEI (Open Energy Information) [EERE & EIA]

    in Europe Smart Grid Projects - Smart Meter and AMI Smart Grid Projects - Grid Automation Distribution Smart Grid Projects - Home application Smart Grid Projects - Customer...

  9. Stockholm Royal seaport prestudy phase (Smart Grid Project) ...

    OpenEI (Open Energy Information) [EERE & EIA]

    in Europe Smart Grid Projects - Smart Meter and AMI Smart Grid Projects - Grid Automation Distribution Smart Grid Projects - Integrated System Smart Grid Projects - Home...

  10. Human Reliability Program Overview

    SciTech Connect

    Bodin, Michael

    2012-09-25

    This presentation covers the high points of the Human Reliability Program, including certification/decertification, critical positions, due process, organizational structure, program components, personnel security, an overview of the US DOE reliability program, retirees and academia, and security program integration.

  11. Power electronics reliability analysis.

    SciTech Connect

    Smith, Mark A.; Atcitty, Stanley

    2009-12-01

    This report provides the DOE and industry with a general process for analyzing power electronics reliability. The analysis can help with understanding the main causes of failures, downtime, and cost and how to reduce them. One approach is to collect field maintenance data and use it directly to calculate reliability metrics related to each cause. Another approach is to model the functional structure of the equipment using a fault tree to derive system reliability from component reliability. Analysis of a fictitious device demonstrates the latter process. Optimization can use the resulting baseline model to decide how to improve reliability and/or lower costs. It is recommended that both electric utilities and equipment manufacturers make provisions to collect and share data in order to lay the groundwork for improving reliability into the future. Reliability analysis helps guide reliability improvements in hardware and software technology including condition monitoring and prognostics and health management.

  12. Grid Innovation | Argonne National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Grid Innovation Chicago city lights at dusk Chicago city lights at dusk Dramatic changes are under way in grid technologies that will have huge impacts on the operation and business of the grid. Argonne already enjoys a large and diverse portfolio of power grid-relevant projects. Going forward, the Energy and Global Security directorate will pursue projects that integrate relevant data and computer models into operational tools for planning and operations, identification and mitigation of

  13. Sandia Energy - Transmission Grid Integration

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy, Energy Assurance, Energy Surety, Grid Integration, Infrastructure Security, Microgrid, News, News & Events, Renewable Energy, Systems Analysis, Systems Engineering,...

  14. 2014 News | Grid Modernization | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    available technologies, the Western Interconnection can withstand the crucial first ... New Report Characterizes Existing Offshore Wind Grid Interconnection Capabilities The ...

  15. NREL: Transmission Grid Integration - Publications

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Publications Want updates about future transmission grid integration webinars and ... and Transmission Study Flexible Energy Scheduling Tool for Integration of ...

  16. SGIP Smart Grid Interoperabilty Panel

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    SGIP Smart Grid Interoperability Panel Building2Grid Integration Dave Hardin David Holmberg ∗ The SGIP was explicitly established to support NIST in fulfilling its responsibilities pursuant to the Energy Independence and Security Act of 2007 ("EISA"). SGIP 1.0: NIST-funded, SGIP 2.0: Member-funded ∗ SGIP's mission is to provide a framework for coordinating all Smart Grid stakeholders in an effort to accelerate standards harmonization and advance the Interoperability of Smart Grid

  17. Method and system for managing power grid data (Patent) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Citation Details In-Document Search Title: Method and system for managing power grid data A system and method of managing time-series data for smart grids is disclosed. Data is ...

  18. Grid Interaction Technical Team Roadmap

    SciTech Connect

    2013-06-01

    The mission of the Grid Interaction Technical Team (GITT) is to support a transition scenario to large scale grid-connected vehicle charging with transformational technology, proof of concept and information dissemination. The GITT facilitates technical coordination and collaboration between vehicle-grid connectivity and communication activities among U.S. DRIVE government and industry partners.

  19. Smart Grid | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    all rely on it but what do you really know about our electricity grid? Tags: black out, brown out, bulk power system, electricity grid, future grid, grid history, security, Smart...

  20. Assistant Secretary Patricia Hoffman's Remarks at the 2011 FERC Reliability Technical Conference-- As Prepared for Delivery

    Energy.gov [DOE]

    Thank you for the opportunity to join you today.  Everyone in this room shares a commitment to ensuring the reliability of our nation’s electric grid.  Together, we are committed to ensuring the...

  1. Office of Electricity Delivery and Energy Reliability Recovery Program Plan

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    | Department of Energy Electricity Delivery and Energy Reliability Recovery Program Plan Office of Electricity Delivery and Energy Reliability Recovery Program Plan Microsoft Word - OE PSRP June 5 2009 _OE_ Final.doc (105.88 KB) More Documents & Publications Microsoft Word - PSRP Updates 6-25-10_v2 Update to the 2008 EAC Report: "Smart Grid: Enabler of the New Energy Economy Report Recommendations" EAC Presentation: How DOE is Organized to Provide Leadership on Electricity

  2. Energy Storage: The Key to a Reliable, Clean Electricity Supply |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Storage: The Key to a Reliable, Clean Electricity Supply Energy Storage: The Key to a Reliable, Clean Electricity Supply February 22, 2012 - 4:52pm Addthis Improved energy storage technology offers a number of economic and environmental benefits. Improved energy storage technology offers a number of economic and environmental benefits. Matthew Loveless Matthew Loveless Data Integration Specialist, Office of Public Affairs What does this project do? ARPA-E's GRIDS program

  3. Transient impedance of GIS grounding grid

    SciTech Connect

    Karaki, S.; Yamazaki, T.; Nojima, K.; Yokota, T.; Murase, H.; Takahashi, H.; Kojima, S.

    1995-04-01

    The transient impedance of a grounding grid for a commercial 550kV GIS was measured on site using steep front currents with rise time from 100ns to 2{mu}s. From the measured results, it was found that the transient impedance of the measured grid for those currents is simulated by a series circuit with an inductance 1{mu}H and a resistance 3{Omega}. Applying the obtained impedance to the lighting surge analysis, it is pointed out that the grounding condition at an arrester tank end has a remarkable influence on the protecting performance of a surge arrester.

  4. Grid Integration of Solar Energy Workshop

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    2 Grid Integration of Solar Energy Workshop Important: The bullets below are an attempt to represent the opinions and input shared by workshop attendees. They are not a statement of the opinions of the U.S. Department of Energy. Breakout Session 1 What grid architectural objectives are required to achieve seamless, real-time integration of hundreds of GW of solar at the $0.06/kWh SunShot goal?  Need a clear definition of architectural objectives o Consider services that architecture needs to

  5. Visual Analytics for Power Grid Contingency Analysis

    SciTech Connect

    Wong, Pak C.; Huang, Zhenyu; Chen, Yousu; Mackey, Patrick S.; Jin, Shuangshuang

    2014-01-20

    Contingency analysis is the process of employing different measures to model scenarios, analyze them, and then derive the best response to remove the threats. This application paper focuses on a class of contingency analysis problems found in the power grid management system. A power grid is a geographically distributed interconnected transmission network that transmits and delivers electricity from generators to end users. The power grid contingency analysis problem is increasingly important because of both the growing size of the underlying raw data that need to be analyzed and the urgency to deliver working solutions in an aggressive timeframe. Failure to do so may bring significant financial, economic, and security impacts to all parties involved and the society at large. The paper presents a scalable visual analytics pipeline that transforms about 100 million contingency scenarios to a manageable size and form for grid operators to examine different scenarios and come up with preventive or mitigation strategies to address the problems in a predictive and timely manner. Great attention is given to the computational scalability, information scalability, visual scalability, and display scalability issues surrounding the data analytics pipeline. Most of the large-scale computation requirements of our work are conducted on a Cray XMT multi-threaded parallel computer. The paper demonstrates a number of examples using western North American power grid models and data.

  6. Microsoft Word - Whitepaper_The Modern Grid Vision_APPROVED_2009_06_18_DISCLAIMER.docx

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    A Vision for the Smart Grid The Modern Grid Strategy A VISION FOR THE SMART GRID Developed for the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability by the National Energy Technology Laboratory June 2009 Office of Electricity Delivery and Energy Reliability Page 1 v2.0 A Vision for the Smart Grid DISLCAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency

  7. Constructing the ASCI computational grid

    SciTech Connect

    BEIRIGER,JUDY I.; BIVENS,HUGH P.; HUMPHREYS,STEVEN L.; JOHNSON,WILBUR R.; RHEA,RONALD E.

    2000-06-01

    The Accelerated Strategic Computing Initiative (ASCI) computational grid is being constructed to interconnect the high performance computing resources of the nuclear weapons complex. The grid will simplify access to the diverse computing, storage, network, and visualization resources, and will enable the coordinated use of shared resources regardless of location. To match existing hardware platforms, required security services, and current simulation practices, the Globus MetaComputing Toolkit was selected to provide core grid services. The ASCI grid extends Globus functionality by operating as an independent grid, incorporating Kerberos-based security, interfacing to Sandia's Cplant{trademark},and extending job monitoring services. To fully meet ASCI's needs, the architecture layers distributed work management and criteria-driven resource selection services on top of Globus. These services simplify the grid interface by allowing users to simply request ''run code X anywhere''. This paper describes the initial design and prototype of the ASCI grid.

  8. Transforming Power Grid Operations via High Performance Computing

    SciTech Connect

    Huang, Zhenyu; Nieplocha, Jarek

    2008-07-31

    Past power grid blackout events revealed the adequacy of grid operations in responding to adverse situations partially due to low computational efficiency in grid operation functions. High performance computing (HPC) provides a promising solution to this problem. HPC applications in power grid computation also become necessary to take advantage of parallel computing platforms as the computer industry is undergoing a significant change from the traditional single-processor environment to an era for multi-processor computing platforms. HPC applications to power grid operations are multi-fold. HPC can improve todays grid operation functions like state estimation and contingency analysis and reduce the solution time from minutes to seconds, comparable to SCADA measurement cycles. HPC also enables the integration of dynamic analysis into real-time grid operations. Dynamic state estimation, look-ahead dynamic simulation and real-time dynamic contingency analysis can be implemented and would be three key dynamic functions in future control centers. HPC applications call for better decision support tools, which also need HPC support to handle large volume of data and large number of cases. Given the complexity of the grid and the sheer number of possible configurations, HPC is considered to be an indispensible element in the next generation control centers.

  9. ARPA-E Project Takes an Innovative Approach to the Electrical Grid |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Project Takes an Innovative Approach to the Electrical Grid ARPA-E Project Takes an Innovative Approach to the Electrical Grid September 10, 2014 - 4:38pm Addthis With support from ARPA-E, AutoGrid Systems developed software to monitor the flow of power through the electric grid and help utilities better meet real-time electricity demands. | Graphic courtesy of AutoGrids. With support from ARPA-E, AutoGrid Systems developed software to monitor the flow of power through

  10. Smart Grid: Powering Our Way to a Greener Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Grid: Powering Our Way to a Greener Future Smart Grid: Powering Our Way to a Greener Future April 25, 2013 - 9:28am Addthis Eric Lightner Eric Lightner Director of the Federal Smart Grid Task Force in the Office of Electricity Delivery and Energy Reliability Learning how to be smarter and more efficient about reducing our energy consumption is on the minds of everyone this week. The smart grid, with its improved efficiency and performance, is helping consumers conserve energy and save money

  11. 2014 Smart Grid R&D Peer Review - Day One, Session One | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy One 2014 Smart Grid R&D Peer Review - Day One, Session One The Office of Electricity Delivery and Energy Reliability held a peer review of the Smart Grid R&D Program on June 11-12, 2014 at the Brookhaven National Laboratory in Upton, NY. Twenty three projects were presented at the 2014 Smart Grid R&D Peer Review. The presentations from the first session of Day One of the Peer Review are below: 2014 SG R&D Peer Review - Overview of Smart Grid Program - Dan Ton, DOE

  12. 2014 Smart Grid R&D Peer Review - Day Two, Session Two | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Two 2014 Smart Grid R&D Peer Review - Day Two, Session Two The Office of Electricity Delivery and Energy Reliability held a peer review of the Smart Grid R&D Program on June 11-12, 2014 at the Brookhaven National Laboratory in Upton, NY. Twenty three projects were presented at the 2014 Smart Grid R&D Peer Review. The presentations from the second session of Day Two of the Peer Review are below: 2014 SG R&D Peer Review - Smart Grid Pre-Standard Testing Support

  13. WHAT THE SMART GRID MEANS TO YOU AND THE PEOPLE YOU SERVE | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy SERVE WHAT THE SMART GRID MEANS TO YOU AND THE PEOPLE YOU SERVE The U.S. Department of Energy (DOE) is charged under the Energy Independence and Security Act of 2007 (EISA 2007) with modernizing the nation's electricity grid to improve its reliability and efficiency. As part of this effort, DOE is also responsible for increasing awareness of our nation's Smart Grid. Building upon The Smart Grid: An Introduction, a DOE-sponsored publication released in 2008 and available online at

  14. "Grid Resilience to Natural Disasters: Challenges and Opportunities Lie

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Ahead" Article Now Available | Department of Energy "Grid Resilience to Natural Disasters: Challenges and Opportunities Lie Ahead" Article Now Available "Grid Resilience to Natural Disasters: Challenges and Opportunities Lie Ahead" Article Now Available June 22, 2016 - 12:37pm Addthis Dan Ton, Program Manager of Smart Grid R&D in the Office of Electricity Delivery and Energy Reliability, has co-authored an article entitled "Grid Resilience to Natural

  15. Office of Electricity Delivery & Energy Reliability FY 2012 Budget Request

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Presentation | Department of Energy & Energy Reliability FY 2012 Budget Request Presentation Office of Electricity Delivery & Energy Reliability FY 2012 Budget Request Presentation Presentation by Patricia Hoffman of the Office of Electricity Delivery & Energy Reliability FY 2012 Budget Request. OE's FY 2012 budget request represents a strong commitment to modernizing the grid and providing the reliable, affordable, and secure electric power needed to expand economic recovery

  16. Assistant Secretary Hoffman Discusses Grid Modernization with the New York

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Times and E&E TV | Department of Energy Discusses Grid Modernization with the New York Times and E&E TV Assistant Secretary Hoffman Discusses Grid Modernization with the New York Times and E&E TV May 10, 2013 - 4:15pm Addthis Assistant Secretary Patricia Hoffman recently discussed the progress being made with modernization of the nation's electric grid and the benefits that consumers, businesses, and communities across the nation are seeing, including fewer outages, more

  17. NREL: Performance and Reliability R&D - Photovoltaic Reliability...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Photovoltaic Reliability Publications Sign up for NREL PV Reliability and Performance updates today NREL publishes photovoltaic (PV) reliability journal articles, technical ...

  18. Dynamic Line Rating Oncor Electric Delivery Smart Grid Program

    SciTech Connect

    Johnson, Justin; Smith, Cale; Young, Mike; Donohoo, Ken; Owen, Ross; Clark, Eddit; Espejo, Raul; Aivaliotis, Sandy; Stelmak, Ron; Mohr, Ron; Barba, Cristian; Gonzalez, Guillermo; Malkin, Stuart; Dimitrova, Vessela; Ragsdale, Gary; Mitchem, Sean; Jeirath, Nakul; Loomis, Joe; Trevino, Gerardo; Syracuse, Steve; Hurst, Neil; Mereness, Matt; Johnson, Chad; Bivens, Carrie

    2013-05-04

    Electric transmission lines are the lifeline of the electric utility industry, delivering its product from source to consumer. This critical infrastructure is often constrained such that there is inadequate capacity on existing transmission lines to efficiently deliver the power to meet demand in certain areas or to transport energy from high-generation areas to high-consumption regions. When this happens, the cost of the energy rises; more costly sources of power are used to meet the demand or the system operates less reliably. These economic impacts are known as congestion, and they can amount to substantial dollars for any time frame of reference: hour, day or year. There are several solutions to the transmission constraint problem, including: construction of new generation, construction of new transmission facilities, rebuilding and reconductoring of existing transmission assets, and Dynamic Line Rating (DLR). All of these options except DLR are capital intensive, have long lead times and often experience strong public and regulatory opposition. The Smart Grid Demonstration Program (SGDP) project co-funded by the Department of Energy (DOE) and Oncor Electric Delivery Company developed and deployed the most extensive and advanced DLR installation to demonstrate that DLR technology is capable of resolving many transmission capacity constraint problems with a system that is reliable, safe and very cost competitive. The SGDP DLR deployment is the first application of DLR technology to feed transmission line real-time dynamic ratings directly into the system operation’s State Estimator and load dispatch program, which optimizes the matching of generation with load demand on a security, reliability and economic basis. The integrated Dynamic Line Rating (iDLR)1 collects transmission line parameters at remote locations on the lines, calculates the real-time line rating based on the equivalent conductor temperature, ambient temperature and influence of wind and solar

  19. Enhanced Short-Term Wind Power Forecasting and Value to Grid Operations: Preprint

    SciTech Connect

    Orwig, K.; Clark, C.; Cline, J.; Benjamin, S.; Wilczak, J.; Marquis, M.; Finley, C.; Stern, A.; Freedman, J.

    2012-09-01

    The current state of the art of wind power forecasting in the 0- to 6-hour time frame has levels of uncertainty that are adding increased costs and risk on the U.S. electrical grid. It is widely recognized within the electrical grid community that improvements to these forecasts could greatly reduce the costs and risks associated with integrating higher penetrations of wind energy. The U.S. Department of Energy has sponsored a research campaign in partnership with the National Oceanic and Atmospheric Administration (NOAA) and private industry to foster improvements in wind power forecasting. The research campaign involves a three-pronged approach: 1) a 1-year field measurement campaign within two regions; 2) enhancement of NOAA's experimental 3-km High-Resolution Rapid Refresh (HRRR) model by assimilating the data from the field campaign; and 3) evaluation of the economic and reliability benefits of improved forecasts to grid operators. This paper and presentation provides an overview of the regions selected, instrumentation deployed, data quality and control, assimilation of data into HRRR, and preliminary results of HRRR performance analysis.

  20. GridWise Transactive Energy Framework (DRAFT Version)

    SciTech Connect

    Melton, Ronald B.

    2013-11-06

    Over the past decade, the use of demand response and other flexible distributed resources for market efficiency and grid reliability has grown dramatically. Federal and state policy objectives point to an important role for customers loads, generation and storage in the management of an increasingly unpredictable power system. As we consider the need to substantially scale the use of flexible distributed energy resources, there has been growing attention to the need to address not only the economics, but also the control system implications to ensure grid reliability. This has led to a focus on an area of activity called Transactive Energy. Transactive Energy refers to the combination of economic and control techniques to improve grid reliability and efficiency. These techniques may also be used to optimize operations within a customers facility. The Department of Energy has supported the GridWise Architecture Council (the Council) in developing a conceptual framework that can be used in developing architectures, and designing solutions related to transactive energy. The goal of this effort is to encourage and facilitate collaboration among the many stakeholders involved in the transformation of the power system and thereby advance the practical implementation of transactive energy.

  1. Lifetime and Reliability

    SciTech Connect

    2013-08-01

    Solid-state lighting program technology fact sheet that discusses failure, lifetime, and reliability as they relate to LED-based products.

  2. Medical Aspects of Reliability

    SciTech Connect

    Atencio, Julian J.

    2014-05-05

    This presentation covers the medical evaluation as part of a human reliability program, particularly the various medical qualifications and potential disqualifiers.

  3. Reliability Question Comment

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Reliability-Question-Comment Sign In About | Careers | Contact | Investors | bpa.gov Search News & Us Expand News & Us Projects & Initiatives Expand Projects & Initiatives...

  4. Lifetime and Reliability

    Energy.gov [DOE]

    A DOE Solid-State Lighting Program technology fact sheet on lifetime, reliability, and failure as related to LED-based products.

  5. Smart Grid Savings and Grid Integration of Renewables in Idaho

    Energy Saver

    IPC is vertically-integrated and manages power generation, transmission, distribution, and demand-side resources. Faced with grid modernization challenges from new wind power ...

  6. Buildings-to-Grid Technical Opportunities: From the Grid Perspective

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    This paper outlines the nature of the power grid, lists challenges and barriers to the implementation of a transactive energy ecosystem, and provides concept solutions to current ...

  7. Case Study - Con Edison Smart Grid Investment Grant

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Con Edison Smart Grid Investment Grant 1 Bright Lights, Big City: A Smarter Grid in New York The Consolidated Edison Company of New York, Inc. (Con Edison) operates the world's largest underground electric distribution system and serves more than 3.3 million customers in New York City and neighboring Westchester County. 86% of its system is underground, with 94,000 miles of underground electric cables and 36,000 miles of overhead electric wires. To provide New York City with more reliable and

  8. The power grid of the future is a platform that

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    power grid of the future is a platform that delivers reliable, affordable, and clean electricity to American consumers where they want it, when they want it, and how they want it. To jump start the modernization of our nation's aging energy infrastructure, the American Recovery and Reinvestment Act invested $4.5 billion in the electric sector -matched by private funding to reach a total of about $9.5 billion- so that Americans could start experiencing the benefits of the future grid sooner. Over

  9. Comments of National Grid to the Smart Grid RFI | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    National Grid to the Smart Grid RFI Comments of National Grid to the Smart Grid RFI National Grid's Response to the Department of Energy Smart Grid RFI: Addressing Policy and Logistical Challenges of Smart Grid Implementation National Grid's comments (117.88 KB) More Documents & Publications NBP RFI-Addressing Policy and Logistical Challenges to Smart Grid Implementation. September 10, 2009 Re: NBP RFI-Implementing the National Broadband Plan by Studying the Communications Requirements of

  10. Pacific Northwest GridWise™ Testbed Demonstration Projects; Part II. Grid Friendly™ Appliance Project

    SciTech Connect

    Hammerstrom, Donald J.; Brous, Jerry; Chassin, David P.; Horst, Gale R.; Kajfasz, Robert; Michie, Preston; Oliver, Terry V.; Carlon, Teresa A.; Eustis, Conrad; Jarvegren, Olof M.; Marek, W.; Munson, Ryan L.; Pratt, Robert G.

    2007-10-01

    Fifty residential electric water heaters and 150 new residential clothes dryers were modified to respond to signals received from underfrequency, load-shedding appliance controllers. Each controller monitored the power-grid voltage signal and requested that electrical load be shed by its appliance whenever electric power-grid frequency fell below 59.95 Hz. The controllers and their appliances were installed and monitored for more than a year at residential sites at three locations in Washington and Oregon. The controllers and their appliances responded reliably to each shallow underfrequency event—an average of one event per day—and shed their loads for the durations of these events. Appliance owners reported that the appliance responses were unnoticed and caused little or no inconvenience for the homes’ occupants.

  11. Market Trial: Selling Off-Grid Lighting Products in Rural Kenya

    SciTech Connect

    Tracy, Jennifer; Alstone, Peter; Jacobson, Arne; Mills, Evan

    2010-06-21

    In this study, we performed a market trial of off-grid LED lighting products in Maai Mahiu, arural Kenyan town. Our goals were to assess consumer demand and consumer preferences with respect to off-grid lighting systems and to gain feedback from off-grid lighting users at the point of purchase and after they have used to products for some time.

  12. Grid Client Tools

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Client Tools Grid Client Tools Using OSG and Globus client software You can either run the OSG/Globus client software directly on the NERSC systems via "modules" or by downloading it to your workstation. On your workstation: Download and install the OSG client software. Then run the following to setup your environment: % . $INSTALL_DIR/setup.sh or % source $INSTALL_DIR/setup.csh On NERSC Compute Systems: Use the module command to load the OSG or Globus toolkit. Where possible, you

  13. TASMANIAN Sparse Grids Module

    SciTech Connect

    and Drayton Munster, Miroslav Stoyanov

    2013-09-20

    Sparse Grids are the family of methods of choice for multidimensional integration and interpolation in low to moderate number of dimensions. The method is to select extend a one dimensional set of abscissas, weights and basis functions by taking a subset of all possible tensor products. The module provides the ability to create global and local approximations based on polynomials and wavelets. The software has three components, a library, a wrapper for the library that provides a command line interface via text files ad a MATLAB interface via the command line tool.

  14. TASMANIAN Sparse Grids Module

    Energy Science and Technology Software Center

    2013-09-20

    Sparse Grids are the family of methods of choice for multidimensional integration and interpolation in low to moderate number of dimensions. The method is to select extend a one dimensional set of abscissas, weights and basis functions by taking a subset of all possible tensor products. The module provides the ability to create global and local approximations based on polynomials and wavelets. The software has three components, a library, a wrapper for the library thatmore » provides a command line interface via text files ad a MATLAB interface via the command line tool.« less

  15. 2016 Reliability & Markets Peer Review - Day 2 Presentations | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy 2 Presentations 2016 Reliability & Markets Peer Review - Day 2 Presentations The Transmission Reliability R&D Reliability & Markets Peer Review included 6 sessions over 2 days on June 9 - 10, 2016. Presentations from Day 2 (Sessions V through VI) are available below. Session V: Zhifang Wang, Lang Ton, Tom Overbye Session VI: HyungSeon Oh, Kory Hedman 11. Wang Random Topology Power Grid Modeling.pdf (1.2 MB) 12. Tong Probablistic Forecasting.pdf (3.19 MB) 14. Oh Global

  16. INL and NREL Demonstrate Power Grid Simulation at a Distance - News

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Releases | NREL INL and NREL Demonstrate Power Grid Simulation at a Distance Capability makes national laboratory assets accessible to grid researchers worldwide May 4, 2015 The Energy Department's National Renewable Energy Laboratory (NREL) and Idaho National Laboratory (INL) have successfully demonstrated the capability to connect grid simulations at their two labs for real time interaction via the Internet. This new inter-lab capability enables the modeling of power grids in greater

  17. Consumer to Grid (C2G) (Smart Grid Project) (Schwarzach, Austria...

    OpenEI (Open Energy Information) [EERE & EIA]

    Consumer to Grid (C2G) (Smart Grid Project) (Schwarzach, Austria) Jump to: navigation, search Project Name Consumer to Grid (C2G) Country Austria Headquarters Location Schwarzach,...

  18. Consumer to Grid (C2G) (Smart Grid Project) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Consumer to Grid (C2G) (Smart Grid Project) Jump to: navigation, search Project Name Consumer to Grid (C2G) Country Austria Headquarters Location Salzburg, Austria Coordinates...

  19. Consumer to Grid (C2G) (Smart Grid Project) (Hallein, Austria...

    OpenEI (Open Energy Information) [EERE & EIA]

    Consumer to Grid (C2G) (Smart Grid Project) (Hallein, Austria) Jump to: navigation, search Project Name Consumer to Grid (C2G) Country Austria Headquarters Location Hallein,...

  20. Technical and Economic Assessment of Off-grid, Mini-grid and...

    OpenEI (Open Energy Information) [EERE & EIA]

    and Economic Assessment of Off-grid, Mini-grid and Grid Electrification Technologies Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Technical and Economic Assessment of...

  1. Grid Modernization Initiative | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Grid Modernization Initiative Grid Modernization Initiative Through the Grid Modernization Multi-Year Program Plan, the U.S. Department of Energy will coordinate a portfolio of activities to advance the grid. Photo courtesy of Berkeley Lab. Through the Grid Modernization Multi-Year Program Plan, the U.S. Department of Energy will coordinate a portfolio of activities to advance the grid. Photo courtesy of Berkeley Lab. What We Do The Grid Modernization Initiative (GMI) works across the U.S.

  2. Institutional Support | Grid Modernization | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Institutional Support NREL delivers high-quality technical assistance and objective information to policy makers, regulatory agencies, and regional planning organizations to address the challenges posed by grid modernization. Photo of two people standing in front of a display showing results from a grid study. The demand for objective technical assistance and information on grid modernization is high. State policy makers, regulators, and regional planners must address the complex issues related

  3. Electrolysis on an Island Grid

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Electrolysis on an Island Grid Mitch Ewan Hydrogen Systems Program Manager Hawaii Natural Energy Institute School of Ocean Earth Science and Technology University of Hawaii at Manoa 28 February 2014 High Percentages of As-Available Renewable Resources Creates Problems for Grid Systems 1300MW 75MW 5MW 200MW  Good renewable resource mix;  High electricity costs; and  Grid issues.  Provide unique opportunity for validation and deployment of new renewable and enabling technologies. 200MW

  4. 2016 News | Grid Modernization | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    2016 News Below are news stories related to Grid Modernization. RSS Learn about RSS. October 21, 2016 IEEE Spectrum: Can Smarter Solar Inverters Save the Grid? NREL's Ben Kroposki writes about how smart solar inverters and a new technique called virtual oscillator control can help stabilize the power grid in a new article. October 11, 2016 NREL's Solar Radiation Research Laboratory Offers a Mesa-Top Home for Global Measurement Accuracy The NREL Pyrheliometer Comparisons help ensure that the

  5. Microsoft Word - Smart Grid Certification and Labeling Program...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... may be required to use the voluntary smart grid standards put in place by NIST. By ... 142 At the time of this writing, this bill had passed the House but not the Senate. ...

  6. Advancing the State of the Grid in Tennessee | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    that will allow EPB to unlock the power of its smart grid data to improve operations, and use ... EPB saved thousands of hours of outage time for their consumers. | DoE ...

  7. Smart Grid Enabled EVSE

    SciTech Connect

    None, None

    2014-10-15

    The combined team of GE Global Research, Federal Express, National Renewable Energy Laboratory, and Consolidated Edison has successfully achieved the established goals contained within the Department of Energy’s Smart Grid Capable Electric Vehicle Supply Equipment funding opportunity. The final program product, shown charging two vehicles in Figure 1, reduces by nearly 50% the total installed system cost of the electric vehicle supply equipment (EVSE) as well as enabling a host of new Smart Grid enabled features. These include bi-directional communications, load control, utility message exchange and transaction management information. Using the new charging system, Utilities or energy service providers will now be able to monitor transportation related electrical loads on their distribution networks, send load control commands or preferences to individual systems, and then see measured responses. Installation owners will be able to authorize usage of the stations, monitor operations, and optimally control their electricity consumption. These features and cost reductions have been developed through a total system design solution.

  8. 2014 Modern Power Grid Video

    SciTech Connect

    2014-06-02

    A video from NETL that describes the details of a modern power grid and how it can help our nation save on energy costs.

  9. Buildings to Grid Technical Meeting

    SciTech Connect

    none,

    2012-12-01

    A meeting book created for the Buildings to Grid Technical Meeting that includes speaker and attendee bios, as well as white papers and discussion questions.

  10. Getting Our Grid Report Card

    Energy.gov [DOE]

    Overwhelming turnout at peer reviews shows the growing recognition that a modern grid is integral to developing a clean energy economy.

  11. Smart-Grid Security Issues

    SciTech Connect

    Khurana, Himanshu; Hadley, Mark D.; Lu, Ning; Frincke, Deborah A.

    2010-01-29

    TITLE: Smart-Grid Security Issues (Editorial Material, English) IEEE SECURITY & PRIVACY 8 (1). JAN-FEB 2010. p.81-85 IEEE COMPUTER SOC, LOS ALAMITOS

  12. Environmental Impacts of Smart Grid

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... The Smart Grid can enable reduction of line losses in the distribution networks through adaptive voltage control at substations and line drop compensation on voltage regulators. ...

  13. 2014 Modern Power Grid Video

    ScienceCinema

    None

    2016-07-12

    A video from NETL that describes the details of a modern power grid and how it can help our nation save on energy costs.

  14. NREL: Transmission Grid Integration - News

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    The National Renewable Energy Laboratory (NREL) will be strongly supporting this ... Archives 2015 | 2014 Printable Version Transmission Grid Integration Home Issues Projects ...

  15. NREL: Transmission Grid Integration - Webmaster

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Your message: Send Message Printable Version Transmission Grid Integration Home Issues ... NREL is a national laboratory of the U.S. Department of Energy, Office of Energy ...

  16. NREL: Distributed Grid Integration - Projects

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    NREL's distributed energy projects support the integration of new technologies into the electric power grid. This work involves industry, academia, other national laboratories, and ...

  17. PRESENTATION: TRANSFORMATION OF THE GRID

    Energy.gov [DOE]

    A briefing to the Secretary's Energy Advisory Board on the transformation of the grid delivered by Patricia Hoffman, U.S. Department of Energy.

  18. NREL: Distributed Grid Integration - Capabilities

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Capabilities Photo of a man in safety glasses working with laboratory equipment. NREL's distributed grid integration researchers conduct testing and evaluation at the one-of-a-kind ...

  19. Smart Grid | Department of Energy

    Energy.gov [DOE] (indexed site)

    ... November is National Critical Infrastructure Security and Resilience Month, and our Office of Electricity (OE) is hard at work safeguarding the power grid. April 20, 2015 Quiz: ...

  20. National Grid | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    MA Website: www.nationalgrid.com References: National Grid Website1 EIA Form 861 Data Information About Partnership with NREL Partnership with NREL Yes Partnership Type...

  1. ,"Winter Noncoincident Peak Load",,"Contiguous U.S. ","Eastern Power Grid",,,,,,"Texas Power Grid","Western Power Grid"

    Energy Information Administration (EIA) (indexed site)

    f. Historical Noncoincident Winter Peak Load, Actual by North American Electric Reliability Corporation Region, 2005 through 2010 " ,"(Megawatts)" ,"Winter Noncoincident Peak Load",,"Contiguous U.S. ","Eastern Power Grid",,,,,,"Texas Power Grid","Western Power Grid" ,,"Year",,"FRCC","MRO (U.S.) ","NPCC (U.S.) ","RFC","SERC","SPP","TRE ","WECC

  2. ,"Winter Noncoincident Peak Load",,"Contiguous U.S. ","Eastern Power Grid",,,,,,,,"Texas Power Grid","Western Power Grid"

    Energy Information Administration (EIA) (indexed site)

    d. Historical Noncoincident Winter Peak Load, Actual by North American Electric Reliability Council Region, 1990 through 2004 " ,"(Megawatts)" ,"Winter Noncoincident Peak Load",,"Contiguous U.S. ","Eastern Power Grid",,,,,,,,"Texas Power Grid","Western Power Grid" ,,"Year",,"ECAR","FRCC","MAAC","MAIN","MAPP/MRO (U.S.) ","NPCC (U.S.)

  3. ,"Month","Year","Contiguous U.S.","Eastern Power Grid",,,,,,"Texas Power Grid","Western Power Grid"

    Energy Information Administration (EIA) (indexed site)

    3a. January Monthly Peak Hour Demand, Actual by North American Electric Reliability Corporation Region, 2005 through 2009 " ,"(Megawatts)",,," " " " ,"Month","Year","Contiguous U.S.","Eastern Power Grid",,,,,,"Texas Power Grid","Western Power Grid" ,,,,"FRCC"," MRO (U.S.)","NPCC (U.S.)","RFC","SERC","SPP","TRE (ERCOT)","WECC

  4. ,"Net Energy For Load (Annual)",,"Contiguous U.S. ","Eastern Power Grid",,,,,,"Texas Power Grid","Western Power Grid"

    Energy Information Administration (EIA) (indexed site)

    b. Historical Net Energy For Load, Actual by North American Electric Reliability Corporation Region, 2005 through 2009. " ,"(Thousands of Megawatthours)" ,"Net Energy For Load (Annual)",,"Contiguous U.S. ","Eastern Power Grid",,,,,,"Texas Power Grid","Western Power Grid" ,,"Year",,"FRCC","MRO (U.S.) ","NPCC (U.S.) ","RFC","SERC","SPP","TRE","WECC

  5. ,"Summer Noncoincident Peak Load",,"Contiguous U.S. ","Eastern Power Grid",,,,,,"Texas Power Grid","Western Power Grid"

    Energy Information Administration (EIA) (indexed site)

    e. Historical Noncoincident Summer Peak Load, Actual by North American Electric Reliability Corporation Region, 2005 through 2009 " ,"(Megawatts)" ,,,,," " ,"Summer Noncoincident Peak Load",,"Contiguous U.S. ","Eastern Power Grid",,,,,,"Texas Power Grid","Western Power Grid" ,,"Year",,"FRCC"," MRO (U.S.) ","NPCC (U.S.) ","RFC","SERC","SPP","TRE

  6. Interpolated Sounding and Gridded Sounding Value-Added Products (Technical

    Office of Scientific and Technical Information (OSTI)

    Report) | SciTech Connect Interpolated Sounding and Gridded Sounding Value-Added Products Citation Details In-Document Search Title: Interpolated Sounding and Gridded Sounding Value-Added Products Standard Atmospheric Radiation Measurement (ARM) Climate Research Facility sounding files provide atmospheric state data in one dimension of increasing time and height per sonde launch. Many applications require a quick estimate of the atmospheric state at higher time resolution. The

  7. IEEE Spectrum: Can Smarter Solar Inverters Save the Grid? | Grid

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Modernization | NREL IEEE Spectrum: Can Smarter Solar Inverters Save the Grid? October 21, 2016 NREL's Ben Kroposki writes about how smart solar inverters and a new technique called virtual oscillator control can help stabilize the power grid in an article for IEEE Spectrum. Read the full article.

  8. Reliable Viscosity Calculation from Equilibrium Molecular Dynamics

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Simulations: A Time Decomposition Method - Joint Center for Energy Storage Research July 7, 2015, Research Highlights Reliable Viscosity Calculation from Equilibrium Molecular Dynamics Simulations: A Time Decomposition Method Schematic demonstration of the time decomposition method Scientific Achievement An equilibrium molecular dynamics-based computational method is developed and tested for the reliable calculation of viscosity. Significance and Impact Viscosity is one of the key properties

  9. Creating a Transactive Energy Framework: Improving Reliability and Efficiency

    SciTech Connect

    Melton, Ronald B.

    2013-11-01

    The use of demand response and other flexible distributed resources over the past decade for market efficiency and grid reliability has grown dramatically. Federal and state policy objectives point to an important role for customer loads, generation and storage in the management of an increasingly unpredictable power system. As we consider the need to substantially scale the use of flexible distributed energy resources, there has been growing attention to the need to address not only the economics, but also the control system implications to ensure grid reliability. This has led to a focus on an area of activity called “Transactive Energy.” Transactive Energy refers to the combination of economic and control techniques that improve grid reliability and efficiency. These techniques may also be used to optimize operations within a customer’s facility. The Department of Energy has supported the GridWise® Architecture Council (“the Council”) to develop a framework to provide opportunity for collaboration among the many stakeholders involved in the transformation of the power system.

  10. NREL Publishes Gearbox Reliability Collaborative Findings Report

    Energy.gov [DOE]

    DOE's National Renewable Energy Laboratory (NREL) published the first formal report on the efforts of the Gearbox Reliability Collaborative (GRC) to address a major challenge for the wind energy industry—gearbox reliability. Gearbox failures require expensive and time-consuming replacement, significantly increasing the cost of wind plant operation while reducing the plant's power output and revenue.

  11. Time

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    3 4 5 6 7 8 9 10 Time with respect to the BNB Trigger Time [µs] 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 Fractional Flash Count per 0.15 µs with respect to Cosmic Background Measured Cosmic Rate (Beam-Off) BNB Trigger Data (Beam-On) [4.51E18 POT]

  12. Time

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    10 15 20 Time with respect to the NuMI Trigger Time [µs] 0.9 1.0 1.1 1.2 1.3 1.4 1.5 Fractional Flash Count per 0.5 µs with respect to Cosmic Background Measured Cosmic Rate (Beam-Off) NuMI Trigger Data (Beam-On) [4.83E18 POT]

  13. SmartGrid Consortium: Smart Grid Roadmap for the State of New...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    SmartGrid Consortium: Smart Grid Roadmap for the State of New York SmartGrid Consortium: Smart Grid Roadmap for the State of New York Throughout its history, New York State has ...

  14. JPARSS: A Java Parallel Network Package for Grid Computing

    SciTech Connect

    Chen, Jie; Akers, Walter; Chen, Ying; Watson, William

    2002-03-01

    The emergence of high speed wide area networks makes grid computinga reality. However grid applications that need reliable data transfer still have difficulties to achieve optimal TCP performance due to network tuning of TCP window size to improve bandwidth and to reduce latency on a high speed wide area network. This paper presents a Java package called JPARSS (Java Parallel Secure Stream (Socket)) that divides data into partitions that are sent over several parallel Java streams simultaneously and allows Java or Web applications to achieve optimal TCP performance in a grid environment without the necessity of tuning TCP window size. This package enables single sign-on, certificate delegation and secure or plain-text data transfer using several security components based on X.509 certificate and SSL. Several experiments will be presented to show that using Java parallelstreams is more effective than tuning TCP window size. In addition a simple architecture using Web services

  15. Secretary of Energy Announces New Office of Electricity Delivery & Energy Reliability

    Energy.gov [DOE]

    Secretary of Energy Samuel Bodman today announced the completion of the merger of the former Office of Electric Transmission and Distribution and Office of Energy Assurance into the new Office of Electricity Delivery & Energy Reliability (OE) whose goal is to lead national efforts to modernize the electric grid, enhance security and reliability of the energy infrastructure, and facilitate recovery from disruptions to energy supply.

  16. The Open Science Grid

    SciTech Connect

    Pordes, Ruth; Kramer, Bill; Olson, Doug; Livny, Miron; Roy, Alain; Avery, Paul; Blackburn, Kent; Wenaus, Torre; Wurthwein, Frank; Gardner, Rob; Wilde, Mike; /Chicago U. /Indiana U.

    2007-06-01

    The Open Science Grid (OSG) provides a distributed facility where the Consortium members provide guaranteed and opportunistic access to shared computing and storage resources. OSG provides support for and evolution of the infrastructure through activities that cover operations, security, software, troubleshooting, addition of new capabilities, and support for existing and engagement with new communities. The OSG SciDAC-2 project provides specific activities to manage and evolve the distributed infrastructure and support its use. The innovative aspects of the project are the maintenance and performance of a collaborative (shared & common) petascale national facility over tens of autonomous computing sites, for many hundreds of users, transferring terabytes of data a day, executing tens of thousands of jobs a day, and providing robust and usable resources for scientific groups of all types and sizes. More information can be found at the OSG web site: www.opensciencegrid.org.

  17. Understanding the Benefits of Dispersed Grid-Connected Photovoltaics: From Avoiding the Next Major Outage to Taming Wholesale Power Markets

    SciTech Connect

    Letendre, Steven E.; Perez, Richard

    2006-07-15

    Thanks to new solar resource assessment techniques using cloud cover data available from geostationary satellites, it is apparent that grid-connected PV installations can serve to enhance electric grid reliability, preventing or hastening recovery from major power outages and serving to mitigate extreme price spikes in wholesale energy markets. (author)

  18. Public Service Company of New Mexico Smart Grid Demonstration...

    OpenEI (Open Energy Information) [EERE & EIA]

    Cancel Submit Categories: Smart Grid Projects Smart Grid Projects in United States Stubs Smart Grid Demonstration Projects Smart Grid Projects - Energy Storage Demonstrations...

  19. Amber Kinetics, Inc. Smart Grid Demonstration Project | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Comments Cancel Submit Categories: Smart Grid Projects Smart Grid Projects in United States Smart Grid Demonstration Projects Smart Grid Projects - Energy Storage Demonstrations...

  20. City of Painesville Smart Grid Demonstration Project | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Cancel Submit Categories: Smart Grid Projects Smart Grid Projects in United States Stubs Smart Grid Demonstration Projects Smart Grid Projects - Energy Storage Demonstrations...