National Library of Energy BETA

Sample records for thirty-four end-use technologies

  1. Realizing Building End-Use Efficiency with Ermerging Technologies

    Energy.gov [DOE]

    Information about the implementation of emerging technologies to maximize end-use efficiency in buildings.

  2. Engineer End Uses for Maximum Efficiency; Industrial Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    0 * August 2004 Industrial Technologies Program Suggested Actions * Review compressed air end uses and determine the required level of air pressure. * Review the compressed air end ...

  3. Vehicle Technologies Office: Biofuels End-Use Research | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Alternative Fuels » Vehicle Technologies Office: Biofuels End-Use Research Vehicle Technologies Office: Biofuels End-Use Research Biofuels offer Americans viable domestic, environmentally sustainable alternatives to gasoline and diesel. Learn about the basics, benefits, and issues to consider related to biodiesel and ethanol on the Alternative Fuels Data Center. The Vehicle Technologies Office supports research to increase our knowledge of the effects of biofuels on engines and

  4. Electricity end-use efficiency: Experience with technologies, markets, and policies throughout the world

    SciTech Connect

    Levine, M.D.; Koomey, J.; Price, L.; Geller, H.; Nadel, S.

    1992-03-01

    In its August meeting in Geneva, the Energy and Industry Subcommittee (EIS) of the Policy Response Panel of the Intergovernmental Panel on Climate Change (IPCC) identified a series of reports to be produced. One of these reports was to be a synthesis of available information on global electricity end-use efficiency, with emphasis on developing nations. The report will be reviewed by the IPCC and approved prior to the UN Conference on Environment and Development (UNCED), Brazil, June 1992. A draft outline for the report was submitted for review at the November 1991 meeting of the EIS. This outline, which was accepted by the EIS, identified three main topics to be addressed in the report: status of available technologies for increasing electricity end-use efficiency; review of factors currently limiting application of end-use efficiency technologies; and review of policies available to increase electricity end-use efficiency. The United States delegation to the EIS agreed to make arrangements for the writing of the report.

  5. Technology data characterizing water heating in commercial buildings: Application to end-use forecasting

    SciTech Connect

    Sezgen, O.; Koomey, J.G.

    1995-12-01

    Commercial-sector conservation analyses have traditionally focused on lighting and space conditioning because of their relatively-large shares of electricity and fuel consumption in commercial buildings. In this report we focus on water heating, which is one of the neglected end uses in the commercial sector. The share of the water-heating end use in commercial-sector electricity consumption is 3%, which corresponds to 0.3 quadrillion Btu (quads) of primary energy consumption. Water heating accounts for 15% of commercial-sector fuel use, which corresponds to 1.6 quads of primary energy consumption. Although smaller in absolute size than the savings associated with lighting and space conditioning, the potential cost-effective energy savings from water heaters are large enough in percentage terms to warrant closer attention. In addition, water heating is much more important in particular building types than in the commercial sector as a whole. Fuel consumption for water heating is highest in lodging establishments, hospitals, and restaurants (0.27, 0.22, and 0.19 quads, respectively); water heating`s share of fuel consumption for these building types is 35%, 18% and 32%, respectively. At the Lawrence Berkeley National Laboratory, we have developed and refined a base-year data set characterizing water heating technologies in commercial buildings as well as a modeling framework. We present the data and modeling framework in this report. The present commercial floorstock is characterized in terms of water heating requirements and technology saturations. Cost-efficiency data for water heating technologies are also developed. These data are intended to support models used for forecasting energy use of water heating in the commercial sector.

  6. Understanding Superconducting Magnetic Energy Storage (SMES) technology, applications, and economics, for end-use workshop

    SciTech Connect

    Ferraro, R.J.; McConnell, B.W.

    1993-06-01

    The overall objective of this project was to determine the state-of-the-art and to what extent existing SMES is a viable option in meeting the needs of utilities and their customers for improving electric service power quality. By defining and analyzing SMES electrical/mechanical performance characteristics, and comparing SMES application benefits with competitive stored energy systems, industry will be able to determine SMES unique applications and potential market penetration. Building on this information base, it would also be possible to evaluate the impact of high temperature superconductors (77 K and 20-35 K) on SMES technology applications. The authors of this report constructed a network of industry contacts and research consultants that were used to collect, update, and analyze ongoing SMES R&D and marketing activities in industries, utilities, and equipment manufacturers. These key resources were utilized to assemble performance characteristics on existing SMES, battery, capacitor, flywheel, and high temperature superconductor (HTS) stored energy technologies. From this information, preliminary stored energy system comparisons were accomplished. In this way, the electric load needs would be readily comparable to the potential solutions and applications offered by each aforementioned energy storage technology.

  7. The examination of pretreatment and end use technologies for dirty fuels produced from coal gasification, coal pyrolysis, oil shale processing, and heavy oil recovery: Final technology status report

    SciTech Connect

    Raden, D.P.; Page, G.C.

    1987-01-01

    The objective of this study was to identify pretreatment (upgrading) and end use technologies which: (1) reduce environmental, health and safety impacts, (2) reduce pollution control costs, or (3) reduce upgrading costs of ''dirty fuels'' while producing higher value energy products. A comprehensive list of technologies was developed for upgrading the various dirty fuels to higher value and products. Fifty-two process flow concepts were examined and from these four process flow concepts were chosen for further development. These are: heavy oil recovery and in situ hydrotreating; wet air oxidation in a downhole reactor; total raw gas shift; and high density fuels via vacuum devolatilization. Each of these four process flow concepts described exhibit the potential for reducing environmental, health and safety impacts and/or pollution control costs. In addition these concepts utilize dirty fuels to produce an upgraded or higher value energy product. These concepts should be developed and evaluated in greater detail to assess their technical and economical viability. Therefore, it is recommended that a program plan be formulated and a proof-of-concept research program be performed for each process concept. 3 refs., 5 figs., 11 tabs.

  8. End Use and Fuel Certification

    Office of Energy Efficiency and Renewable Energy (EERE)

    Breakout Session 2: Frontiers and Horizons Session 2–B: End Use and Fuel Certification John Eichberger, Vice President of Government Relations, National Association for Convenience Stores

  9. Healthcare Energy: Using End-Use Data to Inform Decisions | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Using End-Use Data to Inform Decisions Healthcare Energy: Using End-Use Data to Inform Decisions The Building Technologies Office conducted a healthcare energy end-use monitoring project in partnership with two hospitals. See below for ideas about how to use end-use data to inform decisions in your facility. The relative magnitude of the energy consumption of different end uses can be a starting point for prioritizing energy investments and action, whether the scope under

  10. ,"California Natural Gas Consumption by End Use"

    Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","California Natural Gas Consumption by End ... AM" "Back to Contents","Data 1: California Natural Gas Consumption by End Use" ...

  11. ,"Virginia Natural Gas Consumption by End Use"

    Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","Virginia Natural Gas Consumption by End ... 11:05:20 AM" "Back to Contents","Data 1: Virginia Natural Gas Consumption by End Use" ...

  12. ,"Texas Natural Gas Consumption by End Use"

    Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","Texas Natural Gas Consumption by End ... 6:36:11 AM" "Back to Contents","Data 1: Texas Natural Gas Consumption by End Use" ...

  13. Alternative Strategies for Low Pressure End Uses

    Energy.gov [DOE]

    This tip sheet outlines alternative strategies for low-pressure end uses as a pathway to reduced compressed air energy costs.

  14. " Row: End Uses within NAICS Codes;"

    Energy Information Administration (EIA) (indexed site)

    Sources, including Net Demand for Electricity;" " Unit: Trillion Btu." " "," ",," ... Coal" "Code(a)","End Use","for Electricity(b)","Fuel Oil","Diesel ...

  15. " Row: End Uses within NAICS Codes;"

    Energy Information Administration (EIA) (indexed site)

    Sources, including Net Demand for Electricity;" " Unit: Trillion Btu." " "," ",," ... Coal","Row" "Code(a)","End Use","Electricity(b)","Fuel Oil","Diesel ...

  16. " Row: End Uses within NAICS Codes;"

    Energy Information Administration (EIA) (indexed site)

    Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," "," ",," ... ","Row" "Code(a)","End Use","Total","Electricity(b)","Fuel Oil","Diesel ...

  17. " Row: End Uses within NAICS Codes;"

    Energy Information Administration (EIA) (indexed site)

    Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." ... Coal" "Code(a)","End Use","Total","Electricity(b)","Fuel Oil","Diesel ...

  18. " Row: End Uses within NAICS Codes;"

    Energy Information Administration (EIA) (indexed site)

    Sources, including Net Demand for Electricity;" " Unit: Trillion Btu." " "," ",," ... Coal","Row" "Code(a)","End Use","for Electricity(b)","Fuel Oil","Diesel ...

  19. End-use taxes: Current EIA practices

    SciTech Connect

    Not Available

    1994-08-17

    There are inconsistencies in the EIA published end-use price data with respect to Federal, state, and local government sales and excise taxes; some publications include end-use taxes and others do not. The reason for including these taxes in end-use energy prices is to provide consistent and accurate information on the total cost of energy purchased by the final consumer. Preliminary estimates are made of the effect on prices (bias) reported in SEPER (State Energy Price and Expenditure Report) resulting from the inconsistent treatment of taxes. EIA has undertaken several actions to enhance the reporting of end-use energy prices.

  20. ,"Oklahoma Natural Gas Consumption by End Use"

    Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","Oklahoma Natural Gas Consumption by End ... 11:05:14 AM" "Back to Contents","Data 1: Oklahoma Natural Gas Consumption by End Use" ...

  1. " Row: End Uses;"

    Energy Information Administration (EIA) (indexed site)

    8 End Uses of Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Trillion Btu." ,,,"Distillate" ,,,"Fuel Oil",,,"Coal" ,"Net Demand","Residual","and",,"LPG and","(excluding Coal" "End Use","for Electricity(a)","Fuel Oil","Diesel

  2. " Row: End Uses;"

    Energy Information Administration (EIA) (indexed site)

    8 End Uses of Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Trillion Btu." ,,,"Distillate" ,,,"Fuel Oil",,,"Coal" ,"Net Demand","Residual","and",,"LPG and","(excluding Coal" "End Use","for Electricity(a)","Fuel Oil","Diesel

  3. Preliminary CBECS End-Use Estimates

    Energy Information Administration (EIA) (indexed site)

    For the past three CBECS (1989, 1992, and 1995), we used a statistically-adjusted engineering (SAE) methodology to estimate end-use consumption. The core of the SAE methodology...

  4. ,"Alabama Natural Gas Consumption by End Use"

    Energy Information Administration (EIA) (indexed site)

    Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas ...

  5. " Row: End Uses;"

    Energy Information Administration (EIA) (indexed site)

    3. End Uses of Fuel Consumption, 1998;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Physical Units or Btu." " ",," ","Distillate"," "," ","Coal"," " " ",,,"Fuel Oil",,,"(excluding Coal" " ","Net

  6. Energy End-Use Intensities in Commercial Buildings 1989 -- Executive...

    Energy Information Administration (EIA) (indexed site)

    9 Energy End-Use Intensities > Executive Summary Executive Summary Energy End Uses Ranked by Energy Consumption, 1989 Energy End Uses Ranked by Energy Consumption, 1989 Source:...

  7. " Row: End Uses;"

    Energy Information Administration (EIA) (indexed site)

    7 End Uses of Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Physical Units or Btu." " ",," ","Distillate"," "," ",," " " ","Net Demand",,"Fuel Oil",,,"Coal" " ","for ","Residual","and","Natural

  8. " Row: End Uses;"

    Energy Information Administration (EIA) (indexed site)

    8 End Uses of Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Trillion Btu." " ",," ","Distillate"," "," ",," " " ","Net Demand",,"Fuel Oil",,,"Coal","RSE" " ","for ","Residual","and","Natural

  9. " Row: End Uses;"

    Energy Information Administration (EIA) (indexed site)

    7 End Uses of Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Physical Units or Btu." ,,,"Distillate",,,"Coal" ,,,"Fuel Oil",,,"(excluding Coal" ,"Net Demand","Residual","and","Natural Gas(c)","LPG and","Coke and Breeze)" ,"for

  10. " Row: End Uses;"

    Energy Information Administration (EIA) (indexed site)

    7 End Uses of Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Physical Units or Btu." ,,,"Distillate",,,"Coal" ,,,"Fuel Oil",,,"(excluding Coal" ,"Net Demand","Residual","and","Natural Gas(c)","LPG and","Coke and Breeze)" ,"for

  11. Biomass Resource Allocation among Competing End Uses

    SciTech Connect

    Newes, E.; Bush, B.; Inman, D.; Lin, Y.; Mai, T.; Martinez, A.; Mulcahy, D.; Short, W.; Simpkins, T.; Uriarte, C.; Peck, C.

    2012-05-01

    The Biomass Scenario Model (BSM) is a system dynamics model developed by the U.S. Department of Energy as a tool to better understand the interaction of complex policies and their potential effects on the biofuels industry in the United States. However, it does not currently have the capability to account for allocation of biomass resources among the various end uses, which limits its utilization in analysis of policies that target biomass uses outside the biofuels industry. This report provides a more holistic understanding of the dynamics surrounding the allocation of biomass among uses that include traditional use, wood pellet exports, bio-based products and bioproducts, biopower, and biofuels by (1) highlighting the methods used in existing models' treatments of competition for biomass resources; (2) identifying coverage and gaps in industry data regarding the competing end uses; and (3) exploring options for developing models of biomass allocation that could be integrated with the BSM to actively exchange and incorporate relevant information.

  12. Healthcare Energy End-Use Monitoring

    SciTech Connect

    Sheppy, M.; Pless, S.; Kung, F.

    2014-08-01

    NREL partnered with two hospitals (MGH and SUNY UMU) to collect data on the energy used for multiple thermal and electrical end-use categories, including preheat, heating, and reheat; humidification; service water heating; cooling; fans; pumps; lighting; and select plug and process loads. Additional data from medical office buildings were provided for an analysis focused on plug loads. Facility managers, energy managers, and engineers in the healthcare sector will be able to use these results to more effectively prioritize and refine the scope of investments in new metering and energy audits.

  13. End-Use Working Group Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    End-Use Working Group Report End-Use Working Group Report The Oak Ridge Reservation End Use Working Group, a broadly-based voluntary citizens group, was formed in January 1997 to develop and evaluate guidelines and recommendations for future uses of contaminated areas following the Environmental Management program's remediation of the Oak Ridge Reservation. The purposes of this Final Report of the End Use Working Group are to: Document the history and purpose of the End Use Working Group Outline

  14. Estimating Methods for Determining End-Use Water Consumption | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Facilities » Water Efficiency » Estimating Methods for Determining End-Use Water Consumption Estimating Methods for Determining End-Use Water Consumption The Federal Building Metering Guidance specifies buildings with water using processes and whole building water consumption that exceeds 1,000 gallons per day must have a water meter installed. Below are methods for estimating daily water use for typical end-uses that drive building-level, end-use water consumption. Plumbing

  15. End-use Breakdown: The Building Energy Modeling Blog | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    End-use Breakdown: The Building Energy Modeling Blog End-use Breakdown: The Building Energy Modeling Blog RSS Welcome to the Building Technologies Office's Building Energy Modeling blog. October 5, 2016 Autodesk Insight360 allows architects to explore the energy impacts of different design choices as they design. Insight360 uses EnergyPlus to calculate heating and cooling loads and now provides the option of using EnergyPlus to evaluate annual energy impacts. Credit: Autodesk. Autodesk Upgrades

  16. India Energy Outlook: End Use Demand in India to 2020

    SciTech Connect

    de la Rue du Can, Stephane; McNeil, Michael; Sathaye, Jayant

    2009-03-30

    Integrated economic models have been used to project both baseline and mitigation greenhouse gas emissions scenarios at the country and the global level. Results of these scenarios are typically presented at the sectoral level such as industry, transport, and buildings without further disaggregation. Recently, a keen interest has emerged on constructing bottom up scenarios where technical energy saving potentials can be displayed in detail (IEA, 2006b; IPCC, 2007; McKinsey, 2007). Analysts interested in particular technologies and policies, require detailed information to understand specific mitigation options in relation to business-as-usual trends. However, the limit of information available for developing countries often poses a problem. In this report, we have focus on analyzing energy use in India in greater detail. Results shown for the residential and transport sectors are taken from a previous report (de la Rue du Can, 2008). A complete picture of energy use with disaggregated levels is drawn to understand how energy is used in India and to offer the possibility to put in perspective the different sources of end use energy consumption. For each sector, drivers of energy and technology are indentified. Trends are then analyzed and used to project future growth. Results of this report provide valuable inputs to the elaboration of realistic energy efficiency scenarios.

  17. Residential Lighting End-Use Consumption | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Information Resources » Publications » Market Studies » Residential Lighting End-Use Consumption Residential Lighting End-Use Consumption The U.S. DOE Residential Lighting End-Use Consumption Study aims to improve the understanding of lighting energy usage in U.S. residential dwellings using a regional estimation framework. The framework allows for the estimation of lamp usage and energy consumption 1) nationally and by region of the United States, 2) by certain household characteristics, 3)

  18. Healthcare Energy End-Use Monitoring | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Healthcare Energy End-Use Monitoring Healthcare Energy End-Use Monitoring NREL partnered with two hospitals (MGH and SUNY UMU) to collect data on the energy used for multiple thermal and electrical end-use categories, including preheat, heating, and reheat; humidification; service water heating; cooling; fans; pumps; lighting; and select plug and process loads. Additional data from medical office buildings were provided for an analysis focused on plug loads. Facility managers, energy managers,

  19. Energy End-Use Intensities in Commercial Buildings

    Energy Information Administration (EIA) (indexed site)

    Estimates The end-use estimates had two main sources: the 1989 Commercial Buildings Energy Consumption Survey (CBECS) and the Facility Energy Decision Screening (FEDS) system....

  20. Energy End-Use Intensities in Commercial Buildings 1995 - Index...

    Energy Information Administration (EIA) (indexed site)

    End-Use Analyst Contact: Joelle Michaels joelle.michaels@eia.doe.gov CBECS Manager URL: http:www.eia.govconsumptioncommercialdataarchivecbecscbec-eu1.html separater bar If...

  1. ,"West Virginia Natural Gas Consumption by End Use"

    Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","West Virginia Natural Gas Consumption by End ... AM" "Back to Contents","Data 1: West Virginia Natural Gas Consumption by End Use" ...

  2. Energy End-Use Intensities in Commercial Buildings 1989

    Energy Information Administration (EIA) (indexed site)

    1989 Energy End-Use Intensities Overview Full Report Tables National estimates and analysis of energy consumption by fuel (electricity, natural gas, fuel oil, and district...

  3. ,"New Hampshire Natural Gas Consumption by End Use"

    Energy Information Administration (EIA) (indexed site)

    Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Hampshire ...

  4. ,"Rhode Island Natural Gas Consumption by End Use"

    Energy Information Administration (EIA) (indexed site)

    Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Rhode Island ...

  5. Energy End-Use Intensities in Commercial Buildings1992 -- Overview...

    Energy Information Administration (EIA) (indexed site)

    in the way that variables such as building age and employment density could interact with the engineering estimates of end-use consumption. The SAE equations were...

  6. Level: National and Regional Data; Row: End Uses; Column: Energy...

    Gasoline and Diesel Fuel Update

    Data; Row: End Uses; Column: Energy Sources, including Net Electricity; Unit: Trillion Btu. ... from noncombustible renewable resources, minus quantities sold and transferred out. ...

  7. Level: National and Regional Data; Row: End Uses; Column: Energy...

    Gasoline and Diesel Fuel Update

    Row: End Uses; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. ... from noncombustible renewable resources, minus quantities sold and transferred out. ...

  8. Engineer End Uses for Maximum Efficiency | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    for Maximum Efficiency (August 2004) More Documents & Publications Maintaining System Air Quality Compressed Air Storage Strategies Alternative Strategies for Low Pressure End Uses

  9. ,"New Mexico Natural Gas Consumption by End Use"

    Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","New Mexico Natural Gas Consumption by End ... AM" "Back to Contents","Data 1: New Mexico Natural Gas Consumption by End Use" ...

  10. Table 5.1 End Uses of Fuel Consumption, 2010;

    Energy Information Administration (EIA) (indexed site)

    5.1 End Uses of Fuel Consumption, 2010; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Residual and Natural Gas(d) LPG and Coke and Breeze) NAICS Total Electricity(b) Fuel Oil Diesel Fuel(c) (billion NGL(e) (million Other(f) Code(a) End Use (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) (trillion Btu) Total United States

  11. Table 5.3 End Uses of Fuel Consumption, 2010;

    Energy Information Administration (EIA) (indexed site)

    3 End Uses of Fuel Consumption, 2010; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Demand Residual and Natural Gas(d) LPG and Coke and Breeze) NAICS for Electricity(b) Fuel Oil Diesel Fuel(c) (billion NGL(e) (million Code(a) End Use (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) Total United States 311 - 339 ALL

  12. Table 5.5 End Uses of Fuel Consumption, 2010;

    Energy Information Administration (EIA) (indexed site)

    5 End Uses of Fuel Consumption, 2010; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Residual and Natural Gas(c) LPG and Coke and Breeze) Total Electricity(a) Fuel Oil Diesel Fuel(b) (billion NGL(d) (million Other(e) End Use (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) (trillion Btu) Total United States TOTAL FUEL CONSUMPTION

  13. Table 5.6 End Uses of Fuel Consumption, 2010;

    Energy Information Administration (EIA) (indexed site)

    6 End Uses of Fuel Consumption, 2010; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal Net Residual and LPG and (excluding Coal End Use Total Electricity(a) Fuel Oil Diesel Fuel(b) Natural Gas(c) NGL(d) Coke and Breeze) Other(e) Total United States TOTAL FUEL CONSUMPTION 14,228 2,437 79 130 5,211 69 868 5,435 Indirect Uses-Boiler Fuel -- 27 46 19 2,134 10 572 -- Conventional Boiler Use -- 27 20 4 733

  14. Table 5.7 End Uses of Fuel Consumption, 2010;

    Energy Information Administration (EIA) (indexed site)

    7 End Uses of Fuel Consumption, 2010; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Demand Residual and Natural Gas(c) LPG and Coke and Breeze) for Electricity(a) Fuel Oil Diesel Fuel(b) (billion NGL(d) (million End Use (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) Total United States TOTAL FUEL CONSUMPTION 845,727 13 22 5,064 18

  15. Table 5.8 End Uses of Fuel Consumption, 2010;

    Energy Information Administration (EIA) (indexed site)

    8 End Uses of Fuel Consumption, 2010; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal Net Demand Residual and LPG and (excluding Coal End Use for Electricity(a) Fuel Oil Diesel Fuel(b) Natural Gas(c) NGL(d) Coke and Breeze) Total United States TOTAL FUEL CONSUMPTION 2,886 79 130 5,211 69 868 Indirect Uses-Boiler Fuel 44 46 19 2,134 10 572 Conventional Boiler Use 44 20 4 733 3 72 CHP

  16. Energy End-Use Intensities in Commercial Buildings

    Energy Information Administration (EIA) (indexed site)

    as buildings of the 1980's. In this section, intensities are based upon the entire building stock, not just those buildings using a particular fuel for a given end use. This...

  17. Level: National and Regional Data; Row: End Uses; Column: Energy...

    Annual Energy Outlook

    including Net Demand for Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal Net Demand Residual and LPG and (excluding Coal End Use for Electricity(a) Fuel Oil Diesel ...

  18. ,"North Dakota Natural Gas Consumption by End Use"

    Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","North Dakota Natural Gas Consumption by End ... 10:31:27 AM" "Back to Contents","Data 1: North Dakota Natural Gas Consumption by End Use" ...

  19. Table 5.4 End Uses of Fuel Consumption, 2010;

    Annual Energy Outlook

    Coal Code(a) End Use for Electricity(b) Fuel Oil Diesel Fuel(c) Natural Gas(d) NGL(e) Coke and Breeze) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL ...

  20. Table 5.2 End Uses of Fuel Consumption, 2010;

    Energy Information Administration (EIA) (indexed site)

    Coal Code(a) End Use Total Electricity(b) Fuel Oil Diesel Fuel(c) Natural Gas(d) NGL(e) Coke and Breeze) Other(f) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL ...

  1. Level: National Data; Row: End Uses within NAICS Codes; Column...

    Energy Information Administration (EIA) (indexed site)

    Coal Code(a) End Use for Electricity(b) Fuel Oil Diesel Fuel(c) Natural Gas(d) NGL(e) Coke and Breeze) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL ...

  2. " Row: End Uses within NAICS Codes;"

    Energy Information Administration (EIA) (indexed site)

    4 End Uses of Fuel Consumption, 2006;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," " " "," ",,,"Fuel Oil",,,"Coal" "NAICS"," ","Net

  3. " Row: End Uses within NAICS Codes;"

    Energy Information Administration (EIA) (indexed site)

    2 End Uses of Fuel Consumption, 2010;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." ,,,,,"Distillate" ,,,,,"Fuel Oil",,,"Coal" "NAICS",,,"Net","Residual","and",,"LPG and","(excluding Coal" "Code(a)","End

  4. Distribution Infrastructure and End Use | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Research & Development » Demonstration & Market Transformation » Distribution Infrastructure and End Use Distribution Infrastructure and End Use The expanded Renewable Fuel Standard (RFS2) created under the Energy Independence and Security Act (EISA) of 2007 requires 36 billion gallons of biofuels to be blended into transportation fuel by 2022. Meeting the RFS2 target introduces new challenges for U.S. infrastructure, as modifications will be needed to transport and deliver renewable

  5. " Row: End Uses within NAICS Codes;"

    Energy Information Administration (EIA) (indexed site)

    3. End Uses of Fuel Consumption, 1998;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Physical Units or Btu." " "," ",," ","Distillate"," "," ","Coal"," " " "," ",,,"Fuel Oil",,,"(excluding Coal" " "," ","Net

  6. " Row: End Uses within NAICS Codes;"

    Energy Information Administration (EIA) (indexed site)

    1 End Uses of Fuel Consumption, 2002;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." " "," "," ",," ","Distillate"," "," ",," "," " " "," ",,,,"Fuel Oil",,,"Coal" " "," ","

  7. " Row: End Uses within NAICS Codes;"

    Energy Information Administration (EIA) (indexed site)

    2 End Uses of Fuel Consumption, 2002;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," "," ",," ","Distillate"," "," ",," "," " " "," ",,,,"Fuel Oil",,,"Coal",,"RSE" "NAICS"," ","

  8. " Row: End Uses within NAICS Codes;"

    Energy Information Administration (EIA) (indexed site)

    3 End Uses of Fuel Consumption, 2002;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Physical Units or Btu." " "," ",," ","Distillate"," "," ",," " " "," ","Net Demand",,"Fuel Oil",,,"Coal" " "," ","for

  9. " Row: End Uses within NAICS Codes;"

    Energy Information Administration (EIA) (indexed site)

    1 End Uses of Fuel Consumption, 2006;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." ,,,,,"Distillate",,,"Coal" ,,,,,"Fuel Oil",,,"(excluding Coal" ,,,"Net","Residual","and","Natural Gas(d)","LPG and","Coke and Breeze)"

  10. " Row: End Uses within NAICS Codes;"

    Energy Information Administration (EIA) (indexed site)

    3 End Uses of Fuel Consumption, 2006;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Physical Units or Btu." " "," ",," ","Distillate"," "," ","Coal" " "," ",,,"Fuel Oil",,,"(excluding Coal" " "," ","Net

  11. " Row: End Uses within NAICS Codes;"

    Energy Information Administration (EIA) (indexed site)

    1 End Uses of Fuel Consumption, 2010;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." ,,,,,"Distillate",,,"Coal" ,,,,,"Fuel Oil",,,"(excluding Coal" ,,,"Net","Residual","and","Natural Gas(d)","LPG and","Coke and Breeze)"

  12. Refining and End Use Study of Coal Liquids

    SciTech Connect

    1997-10-01

    This report summarizes revisions to the design basis for the linear programing refining model that is being used in the Refining and End Use Study of Coal Liquids. This revision primarily reflects the addition of data for the upgrading of direct coal liquids.

  13. Energy end-use intensities in commercial buildings

    SciTech Connect

    Not Available

    1994-09-01

    This report examines energy intensities in commercial buildings for nine end uses: space heating, cooling, ventilation, lighting, water heating, cooking, refrigeration, office equipment, and other. The objective of this analysis was to increase understanding of how energy is used in commercial buildings and to identify targets for greater energy efficiency which could moderate future growth in demand. The source of data for the analysis is the 1989 Commercial Buildings Energy Consumption survey (CBECS), which collected detailed data on energy-related characteristics and energy consumption for a nationally representative sample of approximately 6,000 commercial buildings. The analysis used 1989 CBECS data because the 1992 CBECS data were not yet available at the time the study was initiated. The CBECS data were fed into the Facility Energy Decision Screening (FEDS) system, a building energy simulation program developed by the US Department of Energy`s Pacific Northwest Laboratory, to derive engineering estimates of end-use consumption for each building in the sample. The FEDS estimates were then statistically adjusted to match the total energy consumption for each building. This is the Energy Information Administration`s (EIA) first report on energy end-use consumption in commercial buildings. This report is part of an effort to address customer requests for more information on how energy is used in buildings, which was an overall theme of the 1992 user needs study. The end-use data presented in this report were not available for publication in Commercial Buildings Energy Consumption and Expenditures 1989 (DOE/EIA-0318(89), Washington, DC, April 1992). However, subsequent reports on end-use energy consumption will be part of the Commercial Buildings Energy Consumption and Expenditures series, beginning with a 1992 data report to be published in early 1995.

  14. Driving Biofuels End Use: BETO/VTO Collaborations

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Conventional Engine + Realistic Fuels GEFORCE - Near term technology exploration 6 6 | Vehicle Technologies Program Efficiency Through Biofuels Biofuel blends enhance ...

  15. REFINING AND END USE STUDY OF COAL LIQUIDS

    SciTech Connect

    Unknown

    2002-01-01

    This document summarizes all of the work conducted as part of the Refining and End Use Study of Coal Liquids. There were several distinct objectives set, as the study developed over time: (1) Demonstration of a Refinery Accepting Coal Liquids; (2) Emissions Screening of Indirect Diesel; (3) Biomass Gasification F-T Modeling; and (4) Updated Gas to Liquids (GTL) Baseline Design/Economic Study.

  16. Residential applliance data, assumptions and methodology for end-use forecasting with EPRI-REEPS 2.1

    SciTech Connect

    Hwang, R.J,; Johnson, F.X.; Brown, R.E.; Hanford, J.W.; Kommey, J.G.

    1994-05-01

    This report details the data, assumptions and methodology for end-use forecasting of appliance energy use in the US residential sector. Our analysis uses the modeling framework provided by the Appliance Model in the Residential End-Use Energy Planning System (REEPS), which was developed by the Electric Power Research Institute. In this modeling framework, appliances include essentially all residential end-uses other than space conditioning end-uses. We have defined a distinct appliance model for each end-use based on a common modeling framework provided in the REEPS software. This report details our development of the following appliance models: refrigerator, freezer, dryer, water heater, clothes washer, dishwasher, lighting, cooking and miscellaneous. Taken together, appliances account for approximately 70% of electricity consumption and 30% of natural gas consumption in the US residential sector. Appliances are thus important to those residential sector policies or programs aimed at improving the efficiency of electricity and natural gas consumption. This report is primarily methodological in nature, taking the reader through the entire process of developing the baseline for residential appliance end-uses. Analysis steps documented in this report include: gathering technology and market data for each appliance end-use and specific technologies within those end-uses, developing cost data for the various technologies, and specifying decision models to forecast future purchase decisions by households. Our implementation of the REEPS 2.1 modeling framework draws on the extensive technology, cost and market data assembled by LBL for the purpose of analyzing federal energy conservation standards. The resulting residential appliance forecasting model offers a flexible and accurate tool for analyzing the effect of policies at the national level.

  17. United States Industrial Sector Energy End Use Analysis

    SciTech Connect

    Shehabi, Arman; Morrow, William R.; Masanet, Eric

    2012-05-11

    The United States Department of Energy’s (DOE) Energy Information Administration (EIA) conducts the Manufacturing Energy Consumption Survey (MECS) to provide detailed data on energy consumption in the manufacturing sector. The survey is a sample of approximately 15,000 manufacturing establishments selected from the Economic Census - Manufacturing Sector. MECS provides statistics on the consumption of energy by end uses (e.g., boilers, process, electric drives, etc.) disaggregated by North American Industry Classification System (NAICS) categories. The manufacturing sector (NAICS Sector 31-33) consists of all manufacturing establishments in the 50 States and the District of Columbia. According to the NAICS, the manufacturing sector comprises establishments engaged in the mechanical, physical, or chemical transformation of materials, substances, or components into new products. The establishments are physical facilities such as plants, factories, or mills. For many of the sectors in the MECS datasets, information is missing because the reported energy use is less than 0.5 units or BTUs, or is withheld to avoid disclosing data for individual establishments, or is withheld because the standard error is greater than 50%. We infer what the missing information likely are using several approximations techniques. First, much of the missing data can be easily calculated by adding or subtracting other values reported by MECS. If this is not possible (e.g. two data are missing), we look at historic MECS reports to help identify the breakdown of energy use in the past and assume it remained the same for the current MECS. Lastly, if historic data is also missing, we assume that 3 digit NAICS classifications predict energy use in their 4, 5, or 6 digit NAICS sub-classifications, or vice versa. Along with addressing data gaps, end use energy is disaggregated beyond the specified MECS allocations using additional industry specific energy consumption data. The result is a

  18. Detailed End Use Load Modeling for Distribution System Analysis

    SciTech Connect

    Schneider, Kevin P.; Fuller, Jason C.

    2010-04-09

    The field of distribution system analysis has made significant advances in the past ten years. It is now standard practice when performing a power flow simulation to use an algorithm that is capable of unbalanced per-phase analysis. Recent work has also focused on examining the need for time-series simulations instead of examining a single time period, i.e., peak loading. One area that still requires a significant amount of work is the proper modeling of end use loads. Currently it is common practice to use a simple load model consisting of a combination of constant power, constant impedance, and constant current elements. While this simple form of end use load modeling is sufficient for a single point in time, the exact model values are difficult to determine and it is inadequate for some time-series simulations. This paper will examine how to improve simple time invariant load models as well as develop multi-state time variant models.

  19. The Value of End-Use Energy Efficiency in Mitigation of U.S. Carbon Emissions

    SciTech Connect

    Kyle, G. Page; Smith, Steven J.; Clarke, Leon E.; Kim, Son H.; Wise, Marshall A.

    2007-11-27

    This report documents a scenario analysis exploring the value of advanced technologies in the U.S. buildings, industrial, and transportation sectors in stabilizing atmospheric greenhouse gas concentrations. The analysis was conducted by staff members of Pacific Northwest National Laboratory (PNNL), working at the Joint Global Change Research Institute (JGCRI) in support of the strategic planning process of the U.S. Department of Energy (U.S. DOE) Office of Energy Efficiency and Renewable Energy (EERE). The conceptual framework for the analysis is an integration of detailed buildings, industrial, and transportation modules into MiniCAM, a global integrated assessment model. The analysis is based on three technology scenarios, which differ in their assumed rates of deployment of new or presently available energy-saving technologies in the end-use sectors. These technology scenarios are explored with no carbon policy, and under two CO2 stabilization policies, in which an economic price on carbon is applied such that emissions follow prescribed trajectories leading to long-term stabilization of CO2 at roughly 450 and 550 parts per million by volume (ppmv). The costs of meeting the emissions targets prescribed by these policies are examined, and compared between technology scenarios. Relative to the reference technology scenario, advanced technologies in all three sectors reduce costs by 50% and 85% for the 450 and 550 ppmv policies, respectively. The 450 ppmv policy is more stringent and imposes higher costs than the 550 ppmv policy; as a result, the magnitude of the economic value of energy efficiency is four times greater for the 450 ppmv policy than the 550 ppmv policy. While they substantially reduce the costs of meeting emissions requirements, advanced end-use technologies do not lead to greenhouse gas stabilization without a carbon policy. This is due mostly to the effects of increasing service demands over time, the high consumption of fossil fuels in the

  20. Renewable Electricity Futures Study Volume 3: End-Use Electricity Demand

    Office of Energy Efficiency and Renewable Energy (EERE)

    This volume details the end-use electricity demand and efficiency assumptions. The projection of electricity demand is an important consideration in determining the extent to which a predominantly renewable electricity future is feasible. Any scenario regarding future electricity use must consider many factors, including technological, sociological, demographic, political, and economic changes (e.g., the introduction of new energy-using devices; gains in energy efficiency and process improvements; changes in energy prices, income, and user behavior; population growth; and the potential for carbon mitigation).

  1. Alternative Strategies for Low-Pressure End Uses; Industrial...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    1 * August 2004 Industrial Technologies Program Suggested Actions * Review the compressed air applications to determine which ones are valid high-pressure and which ones can ...

  2. End use energy consumption data base: transportation sector

    SciTech Connect

    Hooker, J.N.; Rose, A.B.; Greene, D.L.

    1980-02-01

    The transportation fuel and energy use estimates developed a Oak Ridge National Laboratory (ORNL) for the End Use Energy Consumption Data Base are documented. The total data base contains estimates of energy use in the United States broken down into many categories within all sectors of the economy: agriculture, mining, construction, manufacturing, commerce, the household, electric utilities, and transportation. The transportation data provided by ORNL generally cover each of the 10 years from 1967 through 1976 (occasionally 1977 and 1978), with omissions in some models. The estimtes are broken down by mode of transport, fuel, region and State, sector of the economy providing transportation, and by the use to which it is put, and, in the case of automobile and bus travel, by the income of the traveler. Fuel types include natural gas, motor and aviation gasoline, residual and diesel oil, liuqefied propane, liquefied butane, and naphtha- and kerosene-type jet engine fuels. Electricity use is also estimated. The mode, fuel, sector, and use categories themselves subsume one, two, or three levels of subcategories, resulting in a very detailed categorization and definitive accounting.

  3. End-Use Sector Flowcharts, Energy Intensity Indicators

    Energy.gov [DOE] (indexed site)

    Controls for Economic Dispatch of Combined Cooling, Heating and Power (CHP) Systems ADVANCED MANUFACTURING OFFICE Enabling More Widespread Use of CHP in Light Industrial, Commercial, and Institutional Applications This project developed and demonstrated novel algorithms and dynamic control technology for optimal economic use of CHP systems under 15 MW. Combined cooling, heating and power (CHP) technologies have successfully entered the market for larger (over 20 MW) applications. Smaller

  4. Table 3.4 Consumer Price Estimates for Energy by End-Use Sector...

    Energy Information Administration (EIA) (indexed site)

    Price Estimates for Energy by End-Use Sector, 1970-2010 (Dollars 1 per Million Btu) Year Residential Commercial Industrial Transportation Natural Gas 2 Petroleum Retail Electricity ...

  5. "End Use","for Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural...

    Energy Information Administration (EIA) (indexed site)

    Errors for Table 5.8;" " Unit: Percents." ,,,"Distillate" ,,,"Fuel Oil",,,"Coal" ,"Net Demand","Residual","and",,"LPG and","(excluding Coal" "End Use","for ...

  6. "Code(a)","End Use","for Electricity(b)","Fuel Oil","Diesel Fuel...

    Energy Information Administration (EIA) (indexed site)

    Unit: Percents." " "," ",," ","Distillate"," "," " " "," ",,,"Fuel Oil",,,"Coal" "NAICS"," ","Net Demand","Residual","and",,"LPG and","(excluding Coal" "Code(a)","End Use","for ...

  7. Residential sector end-use forecasting with EPRI-Reeps 2.1: Summary input assumptions and results

    SciTech Connect

    Koomey, J.G.; Brown, R.E.; Richey, R.

    1995-12-01

    This paper describes current and projected future energy use by end-use and fuel for the U.S. residential sector, and assesses which end-uses are growing most rapidly over time. The inputs to this forecast are based on a multi-year data compilation effort funded by the U.S. Department of Energy. We use the Electric Power Research Institute`s (EPRI`s) REEPS model, as reconfigured to reflect the latest end-use technology data. Residential primary energy use is expected to grow 0.3% per year between 1995 and 2010, while electricity demand is projected to grow at about 0.7% per year over this period. The number of households is expected to grow at about 0.8% per year, which implies that the overall primary energy intensity per household of the residential sector is declining, and the electricity intensity per household is remaining roughly constant over the forecast period. These relatively low growth rates are dependent on the assumed growth rate for miscellaneous electricity, which is the single largest contributor to demand growth in many recent forecasts.

  8. Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity;

    Energy Information Administration (EIA) (indexed site)

    7 End Uses of Fuel Consumption, 2006; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Demand Residual and Natural Gas(c) LPG and Coke and Breeze) for Electricity(a) Fuel Oil Diesel Fuel(b) (billion NGL(d) (million End Use (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) Total United States TOTAL FUEL CONSUMPTION 977,338 40 22 5,357 21

  9. Community energy systems and the law of public utilities. Volume thirty-four. New York

    SciTech Connect

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is presented of the laws and programs of the State of New York governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  10. ,"U.S. Distillate Fuel Oil and Kerosene Sales by End Use"

    Energy Information Administration (EIA) (indexed site)

    Distillate Fuel Oil and Kerosene Sales by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  11. "Code(a)","End Use","Electricity(b)","Fuel Oil","Diesel Fuel...

    Energy Information Administration (EIA) (indexed site)

    Coal" "Code(a)","End Use","Electricity(b)","Fuel Oil","Diesel Fuel(c)"," ...rtation",5,0,11,13,4,0 ," Conventional Electricity Generation",0,0,53,5,2,0 ," Other ...

  12. " Row: End Uses;" " Column: Energy Sources, including Net Electricity;"

    Energy Information Administration (EIA) (indexed site)

    1. End Uses of Fuel Consumption, 1998;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." " "," ",," ","Distillate"," "," ","Coal"," "," " " ",,,,"Fuel Oil",,,"(excluding Coal" " ","

  13. " Row: End Uses;" " Column: Energy Sources, including Net Electricity;"

    Energy Information Administration (EIA) (indexed site)

    2. End Uses of Fuel Consumption, 1998;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," ",," "," " " ",,,,"Fuel Oil",,,"Coal",,"RSE" " ","

  14. " Row: End Uses;" " Column: Energy Sources, including Net Electricity;"

    Energy Information Administration (EIA) (indexed site)

    5 End Uses of Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." " "," ",," ","Distillate"," "," ",," "," " " ",,,,"Fuel Oil",,,"Coal" " ","

  15. " Row: End Uses;" " Column: Energy Sources, including Net Electricity;"

    Energy Information Administration (EIA) (indexed site)

    6 End Uses of Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," ",," "," " " ",,,,"Fuel Oil",,,"Coal",,"RSE" " ","

  16. " Row: End Uses;" " Column: Energy Sources, including Net Electricity;"

    Energy Information Administration (EIA) (indexed site)

    5 End Uses of Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." " "," ",," ","Distillate"," "," ","Coal"," " " ",,,,"Fuel Oil",,,"(excluding Coal" " ","

  17. " Row: End Uses;" " Column: Energy Sources, including Net Electricity;"

    Energy Information Administration (EIA) (indexed site)

    5 End Uses of Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." " "," ",," ","Distillate"," "," ","Coal"," " " ",,,,"Fuel Oil",,,"(excluding Coal" " ","

  18. GridLAB-D Technical Support Document: Residential End-Use Module Version 1.0

    SciTech Connect

    Taylor, Zachary T.; Gowri, Krishnan; Katipamula, Srinivas

    2008-07-31

    1.0 Introduction The residential module implements the following end uses and characteristics to simulate the power demand in a single family home: • Water heater • Lights • Dishwasher • Range • Microwave • Refrigerator • Internal gains (plug loads) • House (heating/cooling loads) The house model considers the following four major heat gains/losses that contribute to the building heating/cooling load: 1. Conduction through exterior walls, roof and fenestration (based on envelope UA) 2. Air infiltration (based on specified air change rate) 3. Solar radiation (based on CLTD model and using tmy data) 4. Internal gains from lighting, people, equipment and other end use objects. The Equivalent Thermal Parameter (ETP) approach is used to model the residential loads and energy consumption. The following sections describe the modeling assumptions for each of the above end uses and the details of power demand calculations in the residential module.

  19. " Row: End Uses;" " Column: Energy Sources, including Net Electricity;"

    Energy Information Administration (EIA) (indexed site)

    6 End Uses of Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," ",," " " ",,,,"Fuel Oil",,,"Coal" " "," ","Net","Residual","and",,"LPG

  20. " Row: End Uses;" " Column: Energy Sources, including Net Electricity;"

    Energy Information Administration (EIA) (indexed site)

    6 End Uses of Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," ",," " " ",,,,"Fuel Oil",,,"Coal" " "," ","Net","Residual","and",,"LPG

  1. Table 2.11 Commercial Buildings Electricity Consumption by End Use, 2003 (Trillion Btu)

    Energy Information Administration (EIA) (indexed site)

    1 Commercial Buildings Electricity Consumption by End Use, 2003 (Trillion Btu) End Use Space Heating Cooling Ventilation Water Heating Lighting Cooking Refrigeration Office Equipment Computers Other 1 Total All Buildings 167 481 436 88 1,340 24 381 69 156 418 3,559 Principal Building Activity Education 15 74 83 11 113 2 16 4 32 21 371 Food Sales 6 12 7 Q 46 2 119 2 2 10 208 Food Service 10 28 24 10 42 13 70 2 2 15 217 Health Care 6 34 42 2 105 1 8 4 10 36 248 Inpatient 3 25 38 2 76 1 4 2 7 21

  2. ,"New Mexico Sales of Distillate Fuel Oil by End Use"

    Energy Information Administration (EIA) (indexed site)

    Sales of Distillate Fuel Oil by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Sales of Distillate Fuel Oil by End Use",13,"Annual",2014,"6/30/1984" ,"Release Date:","12/22/2015" ,"Next Release Date:","Last Week of November 2016" ,"Excel

  3. ,"U.S. Adjusted Sales of Distillate Fuel Oil by End Use"

    Energy Information Administration (EIA) (indexed site)

    Distillate Fuel Oil by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Adjusted Sales of Distillate Fuel Oil by End Use",13,"Annual",2014,"6/30/1984" ,"Release Date:","12/22/2015" ,"Next Release Date:","Last Week of November 2016" ,"Excel File

  4. ,"U.S. Adjusted Sales of Residual Fuel Oil by End Use"

    Energy Information Administration (EIA) (indexed site)

    Residual Fuel Oil by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Adjusted Sales of Residual Fuel Oil by End Use",8,"Annual",2014,"6/30/1984" ,"Release Date:","12/22/2015" ,"Next Release Date:","Last Week of November 2016" ,"Excel File

  5. U.S. Adjusted Distillate Fuel Oil and Kerosene Sales by End Use

    Energy Information Administration (EIA) (indexed site)

    Show Data By: End Use Product Area 2009 2010 2011 2012 2013 2014 View History Residential Distillate Fuel Oil 4,328,840 3,897,937 3,713,883 3,223,851 3,714,150 4,041,766 1984-2014 ...

  6. U.S. Distillate Fuel Oil and Kerosene Sales by End Use

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Distillate Fuel Oil and Kerosene Sales by End Use (Thousand Gallons) Area: U.S. East Coast ... Residential Distillate Fuel Oil 4,103,881 3,930,517 3,625,747 3,473,310 3,536,111 ...

  7. Table B19. Energy End Uses, Number of Buildings and Floorspace, 1999

    Energy Information Administration (EIA) (indexed site)

    9. Energy End Uses, Number of Buildings and Floorspace, 1999" ,"Number of Buildings (thousand)",,,,,,"Total Floorspace (million square feet)" ,"All Buildings","Energy Used For (more than one may apply)",,,,,"All Buildings","Energy Used For (more than one may apply)" ,,"Space Heating","Cooling","Water Heating","Cooking","Manufact-uring",,"Space

  8. End-Use Opportunity Analysis from Progress Indicator Results for ASHRAE Standard 90.1-2013

    SciTech Connect

    Hart, Philip R.; Xie, YuLong

    2015-02-05

    This report and an accompanying spreadsheet (PNNL 2014a) compile the end use building simulation results for prototype buildings throughout the United States. The results represent he energy use of each edition of ASHRAE Standard 90.1, Energy Standard for Buildings Except Low-Rise Residential Buildings (ASHRAE 2004, 2007, 2010, 2013). PNNL examined the simulation results to determine how the remaining energy was used.

  9. Table 2.3 Manufacturing Energy Consumption for Heat, Power, and Electricity Generation by End Use, 2006

    Energy Information Administration (EIA) (indexed site)

    Manufacturing Energy Consumption for Heat, Power, and Electricity Generation by End Use, 2006 End-Use Category Net Electricity 1 Residual Fuel Oil Distillate Fuel Oil LPG 2 and NGL 3 Natural Gas Coal 4 Total 5 Million Kilowatthours Million Barrels Billion Cubic Feet Million Short Tons Indirect End Use (Boiler Fuel) 12,109 21 4 2 2,059 25 – – Conventional Boiler Use 12,109 11 3 2 1,245 6 – – CHP 6 and/or Cogeneration Process – – 10 1 (s) 814 19 – – Direct End Use All Process Uses 657,810

  10. Table 3. Top Five Retailers of Electricity, with End Use Sectors, 2014

    Energy Information Administration (EIA) (indexed site)

    Five Retailers of Electricity, with End Use Sectors, 2014" "Alaska" "megawatthours" ,"Entity","Type of Provider","All Sectors","Residential","Commercial","Industrial","Transportation" 1,"Golden Valley Elec Assn Inc","Cooperative",1219363,276627,129773,812963,0 2,"Chugach Electric Assn Inc","Cooperative",1134527,513748,563581,57198,0 3,"Anchorage Municipal

  11. "Table B25. Energy End Uses, Floorspace for Non-Mall Buildings, 2003"

    Energy Information Administration (EIA) (indexed site)

    5. Energy End Uses, Floorspace for Non-Mall Buildings, 2003" ,"Total Floorspace (million square feet)" ,"All Buildings*","Energy Used For (more than one may apply)" ,,"Space Heating","Cooling","Water Heating","Cooking","Manu- facturing" "All Buildings* ...............",64783,60028,56940,56478,22237,3138 "Building Floorspace" "(Square Feet)" "1,001 to 5,000

  12. ,"U.S. Adjusted Distillate Fuel Oil and Kerosene Sales by End Use"

    Energy Information Administration (EIA) (indexed site)

    Distillate Fuel Oil and Kerosene Sales by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Residential",4,"Annual",2014,"6/30/1984" ,"Data 2","Commercial",10,"Annual",2014,"6/30/1984" ,"Data

  13. ,"U.S. Distillate Fuel Oil and Kerosene Sales by End Use"

    Energy Information Administration (EIA) (indexed site)

    Distillate Fuel Oil and Kerosene Sales by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Residential",4,"Annual",2014,"6/30/1984" ,"Data 2","Commercial",10,"Annual",2014,"6/30/1984" ,"Data

  14. Residential Lighting End-Use Consumption Study: Estimation Framework and Initial Estimates

    SciTech Connect

    Gifford, Will R.; Goldberg, Miriam L.; Tanimoto, Paulo M.; Celnicker, Dane R.; Poplawski, Michael E.

    2012-12-01

    The U.S. DOE Residential Lighting End-Use Consumption Study is an initiative of the U.S. Department of Energy’s (DOE’s) Solid-State Lighting Program that aims to improve the understanding of lighting energy usage in residential dwellings. The study has developed a regional estimation framework within a national sample design that allows for the estimation of lamp usage and energy consumption 1) nationally and by region of the United States, 2) by certain household characteristics, 3) by location within the home, 4) by certain lamp characteristics, and 5) by certain categorical cross-classifications (e.g., by dwelling type AND lamp type or fixture type AND control type).

  15. Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity;

    Energy Information Administration (EIA) (indexed site)

    Next MECS will be conducted in 2010 Table 5.3 End Uses of Fuel Consumption, 2006; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Demand Residual and Natural Gas(d) LPG and Coke and Breeze) NAICS for Electricity(b) Fuel Oil Diesel Fuel(c) (billion NGL(e) (million Code(a) End Use (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons)

  16. 1980 survey and evaluation of utility conservation, load management, and solar end-use projects. Volume 3: utility load management projects. Final report

    SciTech Connect

    Not Available

    1982-01-01

    The results of the 1980 survey of electric utility-sponsored energy conservation, load management, and end-use solar energy conversion projects are described. The work is an expansion of a previous survey and evaluation and has been jointly sponsored by EPRI and DOE through the Oak Ridge National Laboratory. There are three volumes and a summary document. Each volume presents the results of an extensive survey to determine electric utility involvement in customer-side projects related to the particular technology (i.e., conservation, solar, or load management), selected descriptions of utility projects and results, and first-level technical and economic evaluations.

  17. July 11 Public Meeting: Physical Characterization of Grid-Connected Commercial And Residential Building End-Use Equipment And Appliances

    Office of Energy Efficiency and Renewable Energy (EERE)

    These documents contain the three slide decks presented at the public meeting on the Physical Characterization of Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances, held on July 11, 2014 in Washington, DC.

  18. Public Meeting: Physical Characterization of Smart and Grid-Connected Commercial and Residential Building End-Use Equipment and Appliances

    Office of Energy Efficiency and Renewable Energy (EERE)

    These documents contain slide decks presented at the Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances public meeting held on April 30, 2014.

  19. Microsoft Word - Major end uses front page v2 2015-03-31.docx

    Energy Information Administration (EIA) (indexed site)

    3 APPENDIX B FINAL EIA - Technology Forecast Updates - Residential and Commercial Building Technologies - Advanced Case Presented to: U.S. Energy Information Administration Prepared by Navigant Consulting, Inc. 1200 19 St. NW, Suite 700 Washington, D.C. 20036 With SAIC 8301 Greensboro Drive McLean, VA 22102 March 2014 Final DISCLAIMER This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency

  20. Public Health Benefits of End-Use Electrical Energy Efficiency in California: An Exploratory Study

    SciTech Connect

    McKone, Thomas E.; Lobscheid, A.B.

    2006-06-01

    This study assesses for California how increasing end-use electrical energy efficiency from installing residential insulation impacts exposures and disease burden from power-plant pollutant emissions. Installation of fiberglass attic insulation in the nearly 3 million electricity-heated homes throughout California is used as a case study. The pollutants nitrous oxides (NO{sub x}), sulfur dioxide (SO{sub 2}), fine particulate matter (PM2.5), benzo(a)pyrene, benzene, and naphthalene are selected for the assessment. Exposure is characterized separately for rural and urban environments using the CalTOX model, which is a key input to the US Environmental Protection Agency (EPA) Tool for the Reduction and Assessment of Chemicals and other environmental Impacts (TRACI). The output of CalTOX provides for urban and rural populations emissions-to-intake factors, which are expressed as an individual intake fraction (iFi). The typical iFi from power plant emissions are on the order of 10{sup -13} (g intake per g emitted) in urban and rural regions. The cumulative (rural and urban) product of emissions, population, and iFi is combined with toxic effects factors to determine human damage factors (HDFs). HDF are expressed as disability adjusted life years (DALYs) per kilogram pollutant emitted. The HDF approach is applied to the insulation case study. Upgrading existing residential insulation to US Department of Energy (DOE) recommended levels eliminates over the assmned 50-year lifetime of the insulation an estimated 1000 DALYs from power-plant emissions per million tonne (Mt) of insulation installed, mostly from the elimination of PM2.5 emissions. In comparison, the estimated burden from the manufacture of this insulation in DALYs per Mt is roughly four orders of magnitude lower than that avoided.

  1. Technologies

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Technologies Technologies Scientists and engineers at Los Alamos have developed a variety of advanced technologies that anticipate-affect, detect, and neutralize & mitigate all types of explosive threats. v Technologies Since its inception in 1943, Los Alamos National Laboratory has been a driving force in explosives science. Scientists and engineers at Los Alamos have developed a variety of advanced technologies that anticipate, detect, and mitigate all types of explosive threats. ANDE:

  2. End-use load control for power system dynamic stability enhancement

    SciTech Connect

    Dagle, J.E.; Winiarski, D.W.; Donnelly, M.K.

    1997-02-01

    Faced with the prospect of increasing utilization of the transmission and distribution infrastructure without significant upgrade, the domestic electric power utility industry is investing heavily in technologies to improve network dynamic performance through a program loosely referred to as Flexible AC Transmission System (FACTS). Devices exploiting recent advances in power electronics are being installed in the power system to offset the need to construct new transmission lines. These devices collectively represent investment potential of several billion dollars over the next decade. A similar development, designed to curtail the peak loads and thus defer new transmission, distribution, and generation investment, falls under a category of technologies referred to as demand side management (DSM). A subset of broader conservation measures, DSM acts directly on the load to reduce peak consumption. DSM techniques include direct load control, in which a utility has the ability to curtail specific loads as conditions warrant. A novel approach has been conceived by Pacific Northwest National Laboratory (PNNL) to combine the objectives of FACTS and the technologies inherent in DSM to provide a distributed power system dynamic controller. This technology has the potential to dramatically offset major investments in FACTS devices by using direct load control to achieve dynamic stability objectives. The potential value of distributed versus centralized grid modulation has been examined by simulating the western power grid under extreme loading conditions. In these simulations, a scenario is analyzed in which active grid stabilization enables power imports into the southern California region to be increased several hundred megawatts beyond present limitations. Modeling results show distributed load control is up to 30 percent more effective than traditional centralized control schemes in achieving grid stability.

  3. Technolog

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Research in Science and Technolog y Sandia pushes frontiers of knowledge to meet the nation's needs, today and tomorrow Sandia National Laboratories' fundamental science and technology research leads to greater understanding of how and why things work and is intrinsic to technological advances. Basic research that challenges scientific assumptions enables the nation to push scientific boundaries. Innovations and breakthroughs produced at Sandia allow it to tackle critical issues, from

  4. Technology

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Technology Technology Delivering science to the marketplace through commercialization, spinoffs and industry partnerships. News Releases Science Briefs Photos Picture of the Week Publications Social Media Videos Fact Sheets Gary Grider (second from right) with the 2015 Richard P. Feynman Innovation Prize. Also pictured (left to right): Duncan McBranch, Chief Technology Officer of Los Alamos National Laboratory; Terry Wallace, Program Associate Director for Global Security at Los Alamos; and Lee

  5. Technolog

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Research in Science and Technolog y Sandia pushes frontiers of knowledge to meet the nation's needs, today and tomorrow ... Basic research that challenges scientific assumptions ...

  6. Renewable Electricity Futures Study. Volume 3: End-Use Electricity Demand

    SciTech Connect

    Hostick, D.; Belzer, D.B.; Hadley, S.W.; Markel, T.; Marnay, C.; Kintner-Meyer, M.

    2012-06-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  7. Renewable Electricity Futures Study. Volume 3. End-Use Electricity Demand

    SciTech Connect

    Hostick, Donna; Belzer, David B.; Hadley, Stanton W.; Markel, Tony; Marnay, Chris; Kintner-Meyer, Michael

    2012-06-15

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%–90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Learn more at the RE Futures website. http://www.nrel.gov/analysis/re_futures/

  8. Energy Demand: Limits on the Response to Higher Energy Prices in the End-Use Sectors (released in AEO2007)

    Reports and Publications

    2007-01-01

    Energy consumption in the end-use demand sectorsresidential, commercial, industrial, and transportationgenerally shows only limited change when energy prices increase. Several factors that limit the sensitivity of end-use energy demand to price signals are common across the end-use sectors. For example, because energy generally is consumed in long-lived capital equipment, short-run consumer responses to changes in energy prices are limited to reductions in the use of energy services or, in a few cases, fuel switching; and because energy services affect such critical lifestyle areas as personal comfort, medical services, and travel, end-use consumers often are willing to absorb price increases rather than cut back on energy use, especially when they are uncertain whether price increases will be long-lasting. Manufacturers, on the other hand, often are able to pass along higher energy costs, especially in cases where energy inputs are a relatively minor component of production costs. In economic terms, short-run energy demand typically is inelastic, and long-run energy demand is less inelastic or moderately elastic at best.

  9. Refining and end use study of coal liquids. Quarterly report, July - September 1996

    SciTech Connect

    1996-12-31

    Bechtel, with Southwest Research Institute, Amoco Oil R&D, and the M. W. Kellogg Co. as subcontractors, initiated a study on November 1, 1993, for the U.S. Department of Energy`s (DOE`s) Pittsburgh Energy Technology Center (PETC) to determine the most cost effective and suitable combination of existing petroleum refinery processes needed to make specification transportation fuels or blending stocks, from direct and indirect coal liquefaction product liquids. This 47-month study, with an approved budget of $4.4 million dollars, is being performed under DOE Contract Number DE-AC22-93PC91029. A key objective is to determine the most desirable ways of integrating coal liquefaction liquids into existing petroleum refineries to produce transportation fuels meeting current and future, e.g. year 2000, Clean Air Act Amendment (CAAA) standards. An integral part of the above objectives is to test the fuels or blends produced and compare them with established ASTM fuels. The comparison will include engine tests to ascertain compliance of the fuels produced with CAAA and other applicable fuel quality and performance standards. The final part of the project includes a detailed economic evaluation of the cost of processing the coal liquids to their optimum products. The cost analyses is for the incremental processing cost; in other words, the feed is priced at zero dollars. The study reflects costs for operations using state of the art refinery technology; no capital costs for building new refineries is considered. Some modifications to the existing refinery may be required. Economy of scale dictates the minimum amount of feedstock that should be processed. The major efforts conducted during the third quarter of 1996 were in the areas of hydrotreating production runs and FCC production run. 3 figs., 8 tabs.

  10. Refining and end use study of coal liquids. Quarterly report, January--March 1996

    SciTech Connect

    1996-09-01

    Bechtel, with Southwest Research Institute, Amoco Oil R&D, and the M. W. Kellogg Co. as subcontractors, initiated a study on November 1, 1993, for the US Department of Energy`s (DOE`s) Pittsburgh Energy Technology Center (PETC) to determine the most cost effective and suitable combination of existing petroleum refinery processes needed to make specification transportation fuels or blending stocks, from direct and indirect coal liquefaction product liquids. A key objective is to determine the most desirable ways of integrating coal liquefaction liquids into existing petroleum refineries to produce transportation fuels meeting current and future, e.g. year 2000, Clean Air Act Amendment (CAAA) standards. An integral part of the above objectives is to test the fuels or blends produced and compare them with established ASTM fuels. The comparison will include engine tests to ascertain compliance of the fuels produced with CAAA and other applicable fuel quality and performance standards. The final part of the project includes a detailed economic evaluation of the cost of processing the coal liquids to their optimum products. The cost analyses is for the incremental processing cost; in other words, the feed is priced at zero dollars. The study reflects costs for operations using state of the art refinery technology; no capital costs for building new refineries is considered. Some modifications to the existing refinery may be required. Economy of scale dictates the minimum amount of feedstock that should be processed. The major efforts conducted during the first quarter of 1996 were in the areas of: DL2 light distillate hydrotreating; and DL2 heave distillate catalytic cracking.

  11. Refining and end use study of coal liquids I - pilot plant studies

    SciTech Connect

    Erwin, J.; Moulton, D.S.

    1995-12-31

    The Office of Fossil Energy, Pittsburgh Energy Technology Center is examining the ways in which coal liquids may best be integrated into the refinery of the 2000-2015 time frame and what performance and emission properties will prevail among the slate of fuels produced. The study consists of a Basic Program administered by Bechtel Group, Inc. to build a linear programming refinery model and provide processing and fuel properties data through subcontractors Southwest Research Institute, Amoco Oil R&D, and M.W. Kellogg Company. The model will be used in an Option 1 to devise a slate of test fuels meeting advanced specifications, which will be produced and tested for physical ASTM-type properties, engine performance, and vehicle emissions. Three coal liquids will be included: a direct liquid from bituminous coal, another from subbituminous, and a Fischer-Tropsch indirect liquefaction product. This paper reports the work to date on fractions of the first direct liquid including naphtha hydrotreating, heavy distillate hydrotreating, FCC of the heavy distillate hydrotreater products. Also reported are the first stages of work on the indirect liquefaction wax including feed preparation and FCC tests of blends with petroleum FCC feed.

  12. Refining and end use study of coal liquids. Quarterly report, October--December 1996

    SciTech Connect

    1996-12-31

    Bechtel, with Southwest Research Institute, Amoco Oil R&D, and the M.W. Kellog Co. as subcontractors, initiated a study on November 1, 1993 for the US Department of Energy`s (DOE`s) Pittsburgh Energy Technology Center (PETC) to determine the most cost effective and suitable combination of existing petroleum refinery processes needed to make specification transportation fuels or blending stocks, from direct and indirect coal liquefaction product liquids. The work has been divided into two parts, the Basic Program and Option 1. The objectives of the Basic Program are to characterize the coal liquids, develop an optimized refinery configuration for processing indirect and direct coal liquids, and develop a LP refinery model with the Process Industry Modeling System (PIMS) software. The objectives of Option 1 are to confirm the validity of the optimization work of the Basic Program, produce large quantities of liquid transportation fuel blending stocks, conduct engine emission tests, and determine the value and the processing costs of the coal liquids. The major efforts during the reporting period, October through December 1996, were in the areas of Option 1 blending and Option 1 FCC production run.

  13. Industrial end-use forecasting that incorporates DSM and air quality

    SciTech Connect

    Tutt, T.; Flory, J.

    1995-05-01

    The California Energy Commission (CEC) and major enregy utilities in California have generally depended on simple aggregate intensity or economic models to forecast energy use in the process industry sector (which covers large industries employing basic processes to transform raw materials, such as paper mills, glass plants, and cement plants). Two recent trends suggests that the time has come to develop a more disaggregate process industry forecasting model. First, recent efforts to improve air quality, especially by the South Coast Air Quality Management District (SCAQMD), could significantly affect energy use by the process industry by altering the technologies and processes employed in order to reduce emissions. Second, there is a renewed interest in Demand-Side Management (DSM), not only for utility least-cost planning, but also for improving the economic competitiveness and environmental compliance of the pro{minus}cess industries. A disaggregate forecasting model is critical to help the CEC and utilities evaluate both the air quality and DSM impacts on energy use. A crucial obstacle to the development and use of these detailed process industry forecasting models is the lack of good data about disaggregate energy use in the sector. The CEC is nearing completion of a project to begin to overcome this lack of data. The project is testing methds of developing detailed energy use data, collecting an initial database for a large portion of southern California, and providing recommendations and direction for further data collection efforts.

  14. Refining and end use study of coal liquids. Quarterly report, October--December 1995

    SciTech Connect

    1995-12-31

    Bechtel, with South west research Institute, Amoco Oil R&D, and the M. W. Kellogg Co. as subcontractors, initiated a study on November 1, 1993, for the US Department of Energy`s Pittsburgh Energy Technology Center to determine the most cost effective and suitable combination of existing petroleum refinery processes needed to make specification transportation fuels or blending stocks, from direct and indirect coal liquefaction product liquids. A key objective is to determine the most desirable ways of integrating coal liquefaction liquids into existing petroleum refineries to produce transportation fuels meeting current and future, e.g. year 2000, Clean Air Act Amendment (CAAA) standards. An integral part of the above objectives is to test the fuels or blends produced and compare them with established ASTM fuels. The comparison will include engine tests to ascertain compliance of the fuels produced with CAAA and other applicable fuel quality and performance standards. To enhance management of the study, the work has been divided into two parts, the Basic Program and Option 1. The objectives of the Basic Program are to: characterize the coal liquids; develop an optimized refinery configuration for processing indirect and direct coal liquids; and develop a LP refinery model with Process Industry Modeling System software. The objective of Option 1 are to: confirm the validity of the optimization work of the Basic Program; produce large quantities of liquid transportation fuel blending stocks; conduct engine emission tests; and determine the value and the processing costs of the coal liquids. The major effort conducted during the fourth quarter of 1995 were in the areas of: IL catalytic cracking--microactivity tests were conducted on various wax blends; IL wax hydrocracking--a pilot plant run was conducted on a wax/petroleum blend; and DL2 characterization and fractionation.

  15. Refining and end use of coal liquids. Quarterly report, January--March 1994

    SciTech Connect

    Not Available

    1994-08-01

    A key objective is to determine the most desirable ways of integrating coal liquefaction liquids into existing petroleum refineries to produce transportation fuels meeting current and future, e.g. year 2000, Clean Air Act Amendment (CAAA) standards. An intregral part of the above objectives is to test the fuels or blends produced and compare them with established ASTM fuels. The comparison will include engine tests to ascertain compliance of the fuels produced with CAAA and other applicable fuel quality and performance standards. The final part of the project includes a detailed economic evaluation of the cost of processing the coal liquids to their optimum products. The cost analyses is for the incremental processing cost; in other words, the feed is priced at zero dollars. The study reflects costs for operations using state of the art refinery technology; no capital costs for building new refineries is considered. Some modifications to the existing refinery may be required. Economy of scale dictates the minimum amount of feedstock that should be processed. To enhance management of the study, the work has been divided into two parts, the Basic Program and Option 1. The objectives of the Basic Program are to: characterize the coal liquids; develop, an optimized refinery configuration for processing indirect and direct coal liquids; and develop a LP refinery model with the Process Industry Modeling System (PICS) software. The objectives of Option 1 are to: confirm the validity of the optimization work of the Basic Program; produce large quantities of liquid transportation fuel blending stocks; conduct engine emission tests; and determine the value and the processing costs of the coal liquids. The major efforts conducted during the first quarter of 1994 were in the areas of: subcontract preparation and negotiation; and linear programming modeling.

  16. Technology

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Technology A research team at the University of Colorado has developed a novel heat exchanger design and accompanying manufacturing technique for creating low-cost microchannel heat exchangers from plastics, metals, or ceramics. The prototype used laser welding (upper red lines at right). Expansion makes "chessboard" counter flow pattern (lower right). The figure below shows mass production, where sheets are added one at a time and welded with a mask and filament (left) or laser

  17. Developing an industrial end-use forecast: A case study at the Los Angeles department of water and power

    SciTech Connect

    Mureau, T.H.; Francis, D.M.

    1995-05-01

    The Los Angeles Department of Water and Power (LADWP) uses INFORM 1.0 to forecast industrial sector energy. INFORM 1.0 provides an end-use framework that can be used to forecast electricity, natural gas or other fuels consumption. Included with INFORM 1.0 is a default date set including the input data and equations necessary to solve each model. LADWP has substituted service area specific data for the default data wherever possible. This paper briefly describes the steps LADWP follows in developing those inputs and application in INFORM 1.0.

  18. Table 2.5 Household Energy Consumption and Expenditures by End Use, Selected Years, 1978-2005

    Energy Information Administration (EIA) (indexed site)

    5 Household 1 Energy Consumption and Expenditures by End Use, Selected Years, 1978-2005 Year Space Heating Air Conditioning Water Heating Appliances, 2 Electronics, and Lighting Natural Gas Elec- tricity 3 Fuel Oil 4 LPG 5 Total Electricity 3 Natural Gas Elec- tricity 3 Fuel Oil 4 LPG 5 Total Natural Gas Elec- tricity 3 LPG 5 Total Consumption (quadrillion Btu)<//td> 1978 4.26 0.40 2.05 0.23 6.94 0.31 1.04 0.29 0.14 0.06 1.53 0.28 1.46 0.03 1.77 1980 3.41 .27 1.30 .23 5.21 .36 1.15 .30 .22

  19. Table 3.6 Consumer Expenditure Estimates for Energy by End-Use Sector, 1970-2010 (Million Dollars )

    Energy Information Administration (EIA) (indexed site)

    Consumer Expenditure Estimates for Energy by End-Use Sector, 1970-2010 (Million Dollars 1) Year Residential Commercial Industrial Transportation Natural Gas 2 Petroleum Retail Electricity 3 Total 4 Natural Gas 2 Petroleum 5 Retail Electricity 3 Total 6,7 Coal Natural Gas 2 Petroleum 5 Biomass 8 Retail Electricity 3 Total 7,9 Petroleum 5 Total 7,10 1970 5,272 4,186 10,352 20,112 1,844 1,440 7,319 10,678 2,082 2,625 6,069 366 5,624 16,691 35,327 35,379 1971 5,702 4,367 11,589 21,934 2,060 1,574

  20. Technology Development, Evaluation, and Application (TDEA) FY 1999 Progress Report, Environment, Safety, and Health (ESH) Division

    SciTech Connect

    Larry G. Hoffman

    2000-12-01

    This progress report presents the results of 10 projects funded ($500K) in FY99 by the Technology Development, Evaluation, and Application (TDEA) Committee of the Environment, Safety, and Health Division. Five are new projects for this year; seven projects have been completed in their third and final TDEA-funded year. As a result of their TDEA-funded projects, investigators have published thirty-four papers in professional journals, proceedings, or Los Alamos reports and presented their work at professional meetings. Supplemental funds and in-kind contributions, such as staff time, instrument use, and work space, were also provided to TDEA-funded projects by organizations external to ESH Division.

  1. Measured electric hot water standby and demand loads from Pacific Northwest homes. End-Use Load and Consumer Assessment Program

    SciTech Connect

    Pratt, R.G.; Ross, B.A.

    1991-11-01

    The Bonneville Power Administration began the End-Use Load and Consumer Assessment Program (ELCAP) in 1983 to obtain metered hourly end-use consumption data for a large sample of new and existing residential and commercial buildings in the Pacific Northwest. Loads and load shapes from the first 3 years of data fro each of several ELCAP residential studies representing various segments of the housing population have been summarized by Pratt et al. The analysis reported here uses the ELCAP data to investigate in much greater detail the relationship of key occupant and tank characteristics to the consumption of electricity for water heating. The hourly data collected provides opportunities to understand electricity consumption for heating water and to examine assumptions about water heating that are critical to load forecasting and conservation resource assessments. Specific objectives of this analysis are to: (A) determine the current baseline for standby heat losses by determining the standby heat loss of each hot water tank in the sample, (B) examine key assumptions affecting standby heat losses such as hot water temperatures and tank sizes and locations, (C) estimate, where possible, impacts on standby heat losses by conservation measures such as insulating tank wraps, pipe wraps, anticonvection valves or traps, and insulating bottom boards, (D) estimate the EF-factors used by the federal efficiency standards and the nominal R-values of the tanks in the sample, (E) develop estimates of demand for hot water for each home in the sample by subtracting the standby load from the total hot water load, (F) examine the relationship between the ages and number of occupants and the hot water demand, (G) place the standby and demand components of water heating electricity consumption in perspective with the total hot water load and load shape.

  2. 2014-04-30 Public Meeting Presentation Slides: Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances

    Office of Energy Efficiency and Renewable Energy (EERE)

    These documents contain slide decks presented at the Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances public meeting held on April 30, 2014.

  3. 2014-04-30 Public Meeting Agenda: Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances

    Energy.gov [DOE]

    This document is the agenda for the Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances public meeting being held on April 30, 2014.

  4. Agenda for Public Meeting on the Physical Characterization of Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances

    Energy.gov [DOE]

    Download the agenda below for the July 11 Public Meeting on the Physical Characterization of Grid-Connected Commercial and  Residential Buildings End-Use Equipment and Appliances.

  5. Hot Water Electric Energy Use in Single-Family Residences in the Pacific Northwest : Regional End-Use Metering Project (REMP).

    SciTech Connect

    Taylor, Megan E., Ritland, Keith G., Pratt, R.G.

    1991-09-01

    The Office of Energy Resources of the Bonneville Power Administration carriers out generation and conservation resource planning. The analysis of historical trends in and determinants of energy consumption is carried out by the office's End-Use Research Section. The End-Use Research Section operates a comprehensive data collection program to provide pertinent information to support demand-side conservation planning, load forecasting, and conservation program development and delivery. Part of this on-going program, commonly known as the End-Use Load and Consumer Assessment Program (ELCAP), was recently renamed the Regional End-Use Metering Project (REMP) to reflect an emphasis on metering rather than analytical activities. REMP is designed to collect electricity usage data through direct monitoring of end-use loads in buildings in the residential and commercial sectors and is conducted for Bonneville by Pacific Northwest Laboratories (Battelle). The detailed summary information in this report is on energy used for water heaters in the residential sector and is based on data collected from September 1985 through December 1990 for 336 of the 499 REMP metered homes. Specific information is provided on annual loads averaged over the years and their variation across residences. Descriptions are given of use as associated with demographic and energy-related characteristics. Summaries are also provided for electricity use by each year, month, and daytype, as well as at peak hot water load and peak system times. This is the second residential report. This report focuses on a specific end use and adds detail to the first report. Subsequent reports are planned on other individual end uses or sets of end uses. 15 refs., 29 figs., 10 tabs.

  6. The use of negotiated agreements to improve efficiency of end-use appliances: First results from the European experience

    SciTech Connect

    Bertoldi, P.; Bowie, R.; Hagen, L.

    1998-07-01

    The European Union is pursuing measures to improve end-use equipment efficiency through a variety of policy instruments, in particular for domestic appliances. One of the most effective methods to achieve market transformation is through minimum efficiency performance standards (MEPS). However, after the difficulties and controversy following the adoption of legislation for MEPS for domestic refrigerators/freezers, a new policy instrument, i.e. negotiated agreements by manufacturers, has been investigated and tested for two type of appliances: domestic washing machines and TVs and VCRs. Based on the positive experience of the above two agreements, other products (e.g. dryers, dishwasher, electric water heaters, etc.) will be the subject of future negotiated agreements. Based on the results of the two negotiated agreements, this paper describes the energy efficiency potential, the procedures, and the advantages and disadvantages of negotiated agreements compared to legislated mandatory for MEPS, as developed in the European context. The paper concludes that negotiated agreements are a viable policy option, which allow flexibility in the implementation of the efficiency targets and therefore the adoption of cost-effective solutions for manufacturers. In addition, negotiated agreements can be implemented more quickly compared to mandatory MEPS and they allow a closer monitoring of the results. The main question asked in the paper is whether the negotiated agreements can deliver the results in the long term compared to what could be achieved through legislation. The European experience indicates that this instrument can deliver the results and that it offer a number of advantages compared to MEPS.

  7. Table 10.7 Solar Thermal Collector Shipments by Market Sector, End Use, and Type, 2001-2009 (Thousand Square Feet)

    Energy Information Administration (EIA) (indexed site)

    Solar Thermal Collector Shipments by Market Sector, End Use, and Type, 2001-2009 (Thousand Square Feet) Year and Type By Market Sector By End Use Total Residential Commercial 1 Industrial 2 Electric Power 3 Other 4 Pool Heating Water Heating Space Heating Space Cooling Combined Heating 5 Process Heating Electricity Generation Total Shipments 6<//td> 2001 Total 10,125 1,012 17 1 35 10,797 274 70 0 12 34 2 11,189 Low 7 9,885 987 12 0 34 10,782 42 61 0 0 34 0 10,919 Medium 8 240 24 5 0 1 16

  8. Power applications of high-temperature superconductivity: Variable speed motors, current switches, and energy storage for end use

    SciTech Connect

    Hawsey, R.A. [Oak Ridge National Lab., TN (United States); Banerjee, B.B.; Grant, P.M. [Electric Power Research Inst., Palo Alto, CA (United States)

    1996-08-01

    The objective of this project is to conduct joint research and development activities related to certain electric power applications of high-temperature superconductivity (HTS). The new superconductors may allow development of an energy-efficient switch to control current to variable speed motors, superconducting magnetic energy storage (SMES) systems, and other power conversion equipment. Motor types that were considered include induction, permanent magnet, and superconducting ac motors. Because it is impractical to experimentally alter certain key design elements in radial-gap motors, experiments were conducted on an axial field superconducting motor prototype using 4 NbTi magnets. Superconducting magnetic energy storage technology with 0.25--5 kWh stored energy was studied as a viable solution to short duration voltage sag problems on the customer side of the electric meter. The technical performance characteristics of the device wee assembled, along with competing technologies such as active power line conditioners with storage, battery-based uninterruptible power supplies, and supercapacitors, and the market potential for SMES was defined. Four reports were prepared summarizing the results of the project.

  9. The effect of efficiency standards on water use and water heating energy use in the US: A detailed end-use treatment

    SciTech Connect

    Koomey, J.G.; Dunham, C.; Lutz, J.D.

    1994-05-01

    Water heating is an important end-use, accounting for roughly 16% of total primary energy consumption in the US residential sector. Recently enacted efficiency standards on water heaters and hot water-using equipment (e.g., dishwashers, clothes washers, showerheads, and faucets) will substantially affect the energy use of water heaters in the future. Assessment of current and future utility programs and government policies requires that regulators, resource planners, and forecasters understand the effects of these regulations. In order to quantify these impacts, this paper presents a detailed end-use breakdown of household hot and cold water use developed for the US Department of Energy. This breakdown is based on both previous studies and new data and analysis. It is implemented in a spreadsheet forecasting framework, which allows significant flexibility in specifying end-use demands and linkages between water heaters and hot water-using appliances. We disaggregate total hot and cold water use (gallons per day) into their component parts: showers, baths, faucets (flow dominated and volume dominated), toilets, landscaping/other, dishwashers, and clotheswashers. We then use the end-use breakdown and data on equipment characteristics to assess the impacts of current efficiency standards on hot water use and water heater energy consumption.

  10. April 30 Public Meeting: Physical Characterization of Smart and Grid-Connected Commercial and Residential Building End-Use Equipment and Appliances

    Energy.gov [DOE]

    These documents contain slide decks presented at the Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances public meeting held on April 30, 2014. The first document includes the first presentation from the meeting: DOE Vision and Objectives. The second document includes all other presentations from the meeting: Terminology and Definitions; End-User and Grid Services; Physical Characterization Framework; Value, Benefits & Metrics.

  11. Energy balances in the production and end use of alcohols derived from biomass. A fuels-specific comparative analysis of alternate ethanol production cycles

    SciTech Connect

    Not Available

    1980-10-01

    Considerable public interest and debate have been focused on the so-called energy balance issue involved in the conversion of biomass materials into ethanol for fuel use. This report addresses questions of net gains in premium fuels that can be derived from the production and use of ethanol from biomass, and shows that for the US alcohol fuel program, energy balance need not be a concern. Three categories of fuel gain are discussed in the report: (1) Net petroleum gain; (2) Net premium fuel gain (petroleum and natural gas); and (3) Net energy gain (for all fuels). In this study the investment of energy (in the form of premium fuels) in alcohol production includes all investment from cultivating, harvesting, or gathering the feedstock and raw materials, through conversion of the feedstock to alcohol, to the delivery to the end-user. To determine the fuel gains in ethanol production, six cases, encompassing three feedstocks, five process fuels, and three process variations, have been examined. For each case, two end-uses (automotive fuel use and replacement of petrochemical feedstocks) were scrutinized. The end-uses were further divided into three variations in fuel economy and two different routes for production of ethanol from petrochemicals. Energy requirements calculated for the six process cycles accounted for fuels used directly and indirectly in all stages of alcohol production, from agriculture through distribution of product to the end-user. Energy credits were computed for byproducts according to the most appropriate current use.

  12. Direct Conversion Technology

    SciTech Connect

    Back, L.H.; Fabris, G.; Ryan, M.A.

    1992-07-01

    The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct conversion systems that have potential application for energy conservation in the end-use sectors. Initially, two systems were selected for exploratory research and advanced development. These are Alkali Metal Thermal-to-Electric Converter (AMTEC) and Two-Phase Liquid Metal MD Generator (LMMHD). This report describes progress that has been made during the first six months of 1992 on research activities associated with these two systems. (GHH)

  13. The National Fuel End-Use Efficiency Field Test: Energy Savings and Performance of an Improved Energy Conservation Measure Selection Technique

    SciTech Connect

    Ternes, M.P.

    1991-01-01

    The performance of an advanced residential energy conservation measure (ECM) selection technique was tested in Buffalo, New York, to verify the energy savings and program improvements achieved from use of the technique in conservation programs and provide input into determining whether utility investments in residential gas end-use conservation are cost effective. The technique analyzes a house to identify all ECMs that are cost effective in the building envelope, space-heating system, and water-heating system. The benefit-to-cost ratio (BCR) for each ECM is determined and cost-effective ECMs (BCR > 1.0) are selected once interactions between ECMs are taken into account. Eighty-nine houses with the following characteristics were monitored for the duration of the field test: occupants were low-income, houses were single-family detached houses but not mobile homes, and primary space- and water-heating systems were gas-fired. Forty-five houses received a mix of ECMs as selected by the measure selection technique (audit houses) and 44 served as a control group. Pre-weatherization data were collected from January to April 1988 and post-weatherization data were collected from December 1988 to April 1989. Space- and waterheating gas consumption and indoor temperature were monitored weekly during the two winters. A house energy consumption model and regression analysis were employed to normalize the space-heating energy savings to average outdoor temperature conditions and a 68 F indoor temperature. Space and water-heating energy savings for the audit houses were adjusted by the savings for the control houses. The average savings of 257 therms/year for the audit houses was 17% of the average pre-weatherization house gas consumption and 78% of that predicted. Average space-heating energy savings was 252 therms/year (25% of pre-weatherization space-heating energy consumption and 85% of the predicted value) and average water-heating savings was 5 therms/year (2% of pre

  14. Direct conversion technology

    SciTech Connect

    Massier, P.F.; Back, L.H.; Ryan, M.A.; Fabris, G.

    1992-01-07

    The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct conversion systems that have potential application for energy conservation in the end-use sectors. This report contains progress of research on the Alkali Metal Thermal-to-Electric Converter (AMTEC) and on the Two-Phase Liquid-Metal MHD Electrical Generator (LMMHD) for the period January 1, 1991 through December 31, 1991. Research on AMTEC and on LMMHD was initiated during October 1987. Reports prepared on previous occasions (Refs. 1--5) contain descriptive and performance discussions of the following direct conversion concepts: thermoelectric, pyroelectric, thermionic, thermophotovoltaic, thermoacoustic, thermomagnetic, thermoelastic (Nitionol heat engine); and also, more complete descriptive discussions of AMTEC and LMMHD systems.

  15. SUSTAINABLE DEVELOPMENT IN KAZAKHASTAN: USING OIL AND GAS PRODUCTION BY-PRODUCT SULFUR FOR COST-EFFECTIVE SECONDARY END-USE PRODUCTS.

    SciTech Connect

    KALB, P.D.; VAGIN, S.; BEALL, P.W.; LEVINTOV, B.L.

    2004-09-25

    /l in the Toxicity Characteristic Leaching Procedure). The research and development to deploy Kazakhstan recycled sulfur for secondary applications described in this paper is being conducted with support from the International Science and Technology Center (ISTC) and the U.S. Department of Energy Initiatives for Proliferation Prevention (DOE IPP).

  16. Vehicle Technologies Office: Technologies

    Office of Energy Efficiency and Renewable Energy (EERE)

    To support DOE's goal to provide clean and secure energy, the Vehicle Technologies Office (VTO) invests in research and development that:

  17. ,"Delaware Natural Gas Consumption by End Use"

    Energy Information Administration (EIA) (indexed site)

    8817,1663,1627,2865,0,2661 41654,9350,2463,2128,2676,0,2083 41685,8446,2138,1696,2644,0,1968 41713,9361,1858,1502,2871,0,3129 41744,6829,825,740,2340,0,2924 41774,6637,496,615,2477...

  18. Michigan Natural Gas Consumption by End Use

    Annual Energy Outlook

    Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New...

  19. Oregon Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update

    Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New...

  20. Minnesota Natural Gas Consumption by End Use

    Annual Energy Outlook

    Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New...

  1. Montana Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update

    Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New...

  2. Ohio Natural Gas Consumption by End Use

    Annual Energy Outlook

    Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New...

  3. Vermont Natural Gas Consumption by End Use

    Annual Energy Outlook

    Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New...

  4. Alaska Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update

    Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New...

  5. Wisconsin Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update

    Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New...

  6. Maryland Natural Gas Consumption by End Use

    Energy Information Administration (EIA) (indexed site)

    Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New...

  7. Massachusetts Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update

    Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New...

  8. Virginia Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update

    Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New...

  9. Tennessee Natural Gas Consumption by End Use

    Annual Energy Outlook

    Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New...

  10. Nevada Natural Gas Consumption by End Use

    Energy Information Administration (EIA) (indexed site)

    Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New...

  11. Mississippi Natural Gas Consumption by End Use

    Annual Energy Outlook

    Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New...

  12. Nebraska Natural Gas Consumption by End Use

    Energy Information Administration (EIA) (indexed site)

    Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New...

  13. Utah Natural Gas Consumption by End Use

    Annual Energy Outlook

    Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New...

  14. ,"Missouri Natural Gas Consumption by End Use"

    Energy Information Administration (EIA) (indexed site)

    ... 39979,13144,2270,2201,4272,,4401 40009,12199,1930,1901,4243,,4126 40040,12779,1884,1920,4390,,4585 40071,10268,2000,2321,4322,,1626 40101,13672,4317,3170,4983,,1203 ...

  15. ,"Maryland Natural Gas Consumption by End Use"

    Energy Information Administration (EIA) (indexed site)

    ...8,3440,1884,,1201 38883,9251,1972,3084,1899,,2296 38913,11438,1654,2479,1813,,5490 38944,11236,1617,2784,1978,,4856 38975,8042,2121,3434,1374,,1114 39005,11895,4315,4622,1884,,1074 ...

  16. ,"Utah Natural Gas Consumption by End Use"

    Energy Information Administration (EIA) (indexed site)

    ...7787,5612,1540,1026,1902,,1145 37817,6174,1358,902,1911,,2002 37848,6166,1355,973,1955,,1884 37879,6229,1856,1243,1950,,1181 37909,7898,2988,1718,2117,,1076 37940,13299,6914,3783,2...

  17. Colorado Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update

    Show Data By: Data Series Area 2010 2011 2012 2013 2014 2015 View History Total ... Commercial 57,658 55,843 51,795 58,787 58,008 54,004 1967-2015 Industrial 114,295 74,407 ...

  18. Pennsylvania Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update

    Show Data By: Data Series Area 2010 2011 2012 2013 2014 2015 View History Total ... Pipeline & Distribution Use 47,470 51,220 37,176 37,825 42,093 43,059 1997-2015 ...

  19. Louisiana Natural Gas Consumption by End Use

    Annual Energy Outlook

    Show Data By: Data Series Area 2010 2011 2012 2013 2014 2015 View History Total ... Pipeline & Distribution Use 46,892 51,897 49,235 36,737 50,524 34,141 1997-2015 ...

  20. Washington Natural Gas Consumption by End Use

    Energy Information Administration (EIA) (indexed site)

    Show Data By: Data Series Area 2010 2011 2012 2013 2014 2015 View History Total ... Residential 75,554 85,393 79,892 83,365 78,750 71,952 1967-2015 Commercial 51,335 56,487 ...

  1. Oklahoma Natural Gas Consumption by End Use

    Energy Information Administration (EIA) (indexed site)

    Show Data By: Data Series Area 2010 2011 2012 2013 2014 2015 View History Total ... Lease and Plant Fuel 1967-1998 Lease Fuel 39,489 40,819 43,727 45,581 51,127 54,823 ...

  2. Maine Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update

    Show Data By: Data Series Area 2010 2011 2012 2013 2014 2015 View History Total ... Volumes Delivered to Consumers 75,821 69,291 67,504 63,247 59,356 51,191 1997-2015 ...

  3. California Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update

    Show Data By: Data Series Area 2010 2011 2012 2013 2014 2015 View History Total ... Lease and Plant Fuel 1967-1998 Lease Fuel 64,931 44,379 51,154 49,846 42,989 42,643 ...

  4. Wyoming Natural Gas Consumption by End Use

    Energy Information Administration (EIA) (indexed site)

    Show Data By: Data Series Area 2010 2011 2012 2013 2014 2015 View History Total ... Commercial 11,153 11,680 10,482 12,013 12,188 12,937 1967-2015 Industrial 43,059 45,462 51...

  5. Missouri Natural Gas Consumption by End Use

    Energy Information Administration (EIA) (indexed site)

    Lease and Plant Fuel 1967-1998 Lease Fuel 0 0 0 0 * 1984-2014 Pipeline & Distribution Use 5,820 7,049 4,973 5,626 6,184 1997-2014 Volumes Delivered to Consumers 274,361 265,534 ...

  6. Texas Natural Gas Consumption by End Use

    Energy Information Administration (EIA) (indexed site)

    85,549 138,429 294,316 274,451 1997-2014 Volumes Delivered to Consumers 2,947,542 3,185,011 3,305,730 3,377,217 3,350,645 3,415,789 1997-2014 Residential 192,153 226,445 199,958...

  7. ,"Kentucky Natural Gas Consumption by End Use"

    Energy Information Administration (EIA) (indexed site)

    ,"Excel File Name:","ngconssumdcuskym.xls" ,"Available from Web Page:","http:www.eia.govdnavngngconssumdcuskym.htm" ,"Source:","Energy Information ...

  8. End-Use Taxes: Current EIA Practices

    Energy Information Administration (EIA) (indexed site)

    However, many States levy taxes on aviation fuel, as shown in Table B3 in Appendix B, based on information obtained from State TaxationRevenue Offices. The use of the national...

  9. ,"Wisconsin Natural Gas Consumption by End Use"

    Energy Information Administration (EIA) (indexed site)

    67,2429,2389,7792,5,7152 40405,20798,2472,2385,8311,5,7624 40436,16423,2833,2891,8505,5,2189 40466,21523,5597,4616,9601,5,1704 40497,33652,12885,8423,10973,5,1366...

  10. ,"Louisiana Natural Gas Consumption by End Use"

    Energy Information Administration (EIA) (indexed site)

    32582,,8377,3462 32613,,4724,2362 32643,,2816,1790 32674,,2321,1479 32704,,2189,1399 32735,,2026,1340 32766,,2035,1433 32796,,2513,1568 32827,,4166,2035...

  11. Arizona Natural Gas Consumption by End Use

    Energy Information Administration (EIA) (indexed site)

    Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources &

  12. Arkansas Natural Gas Consumption by End Use

    Energy Information Administration (EIA) (indexed site)

    Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources &

  13. California Natural Gas Consumption by End Use

    Energy Information Administration (EIA) (indexed site)

    Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions,

  14. Alabama Natural Gas Consumption by End Use

    Energy Information Administration (EIA) (indexed site)

    454,456 534,779 598,514 666,712 615,407 634,678 1997-2014 Lease and Plant Fuel 1967-1998 Lease Fuel 10,460 10,163 10,367 12,389 12,456 10,055 1983-2014 Plant Fuel 6,470 6,441 6,939...

  15. ,"Pennsylvania Natural Gas Consumption by End Use"

    Energy Information Administration (EIA) (indexed site)

    ,"Excel File Name:","ngconssumdcuspam.xls" ,"Available from Web Page:","http:www.eia.govdnavngngconssumdcuspam.htm" ,"Source:","Energy Information ...

  16. " Row: End Uses within NAICS Codes;"

    Energy Information Administration (EIA) (indexed site)

    Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." " "," ... ","RSE" "NAICS"," ","Total","Electricity(b)","Fuel Oil","Diesel ...

  17. " Row: End Uses within NAICS Codes;"

    Energy Information Administration (EIA) (indexed site)

    Sources, including Net Demand for Electricity;" " Unit: Physical Units or Btu." " "," ... and Breeze)" "NAICS"," ","for Electricity(b)","Fuel Oil","Diesel ...

  18. ,"Wyoming Natural Gas Consumption by End Use"

    Energy Information Administration (EIA) (indexed site)

    ... 39736,4922,738,610,3480,,94 39767,5595,1207,908,3394,,86 39797,7419,1929,1386,4005,,100 39828,7385,2040,1589,3639,,117 39859,6193,1754,1416,2927,,96 ...

  19. ,"Idaho Natural Gas Consumption by End Use"

    Energy Information Administration (EIA) (indexed site)

    34196,,251,360 34227,,310,381 34257,,481,507 34288,,1159,947 34318,,2057,1543 34349,,1929,1510 34380,,1926,1457 34408,,1432,1121 34439,,1001,771 34469,,568,480 34500,,367,377 ...

  20. ,"Indiana Natural Gas Consumption by End Use"

    Energy Information Administration (EIA) (indexed site)

    Date:","1292016" ,"Next Release Date:","2292016" ,"Excel File Name:","ngconssumdcusinm.xls" ,"Available from Web Page:","http:www.eia.govdnavng...

  1. ,"Ohio Natural Gas Consumption by End Use"

    Energy Information Administration (EIA) (indexed site)

    Date:","1292016" ,"Next Release Date:","2292016" ,"Excel File Name:","ngconssumdcusohm.xls" ,"Available from Web Page:","http:www.eia.govdnavng...

  2. ,"Michigan Natural Gas Consumption by End Use"

    Energy Information Administration (EIA) (indexed site)

    Date:","1292016" ,"Next Release Date:","2292016" ,"Excel File Name:","ngconssumdcusmim.xls" ,"Available from Web Page:","http:www.eia.govdnavng...

  3. ,"Massachusetts Natural Gas Consumption by End Use"

    Energy Information Administration (EIA) (indexed site)

    Date:","1292016" ,"Next Release Date:","2292016" ,"Excel File Name:","ngconssumdcusmam.xls" ,"Available from Web Page:","http:www.eia.govdnavng...

  4. ,"Vermont Natural Gas Consumption by End Use"

    Energy Information Administration (EIA) (indexed site)

    Date:","1292016" ,"Next Release Date:","2292016" ,"Excel File Name:","ngconssumdcusvtm.xls" ,"Available from Web Page:","http:www.eia.govdnavng...

  5. ,"Arkansas Natural Gas Consumption by End Use"

    Energy Information Administration (EIA) (indexed site)

    Date:","1292016" ,"Next Release Date:","2292016" ,"Excel File Name:","ngconssumdcusarm.xls" ,"Available from Web Page:","http:www.eia.govdnavng...

  6. ,"Iowa Natural Gas Consumption by End Use"

    Energy Information Administration (EIA) (indexed site)

    Date:","1292016" ,"Next Release Date:","2292016" ,"Excel File Name:","ngconssumdcusiam.xls" ,"Available from Web Page:","http:www.eia.govdnavng...

  7. ,"Florida Natural Gas Consumption by End Use"

    Energy Information Administration (EIA) (indexed site)

    Date:","1292016" ,"Next Release Date:","2292016" ,"Excel File Name:","ngconssumdcusflm.xls" ,"Available from Web Page:","http:www.eia.govdnavng...

  8. ,"Minnesota Natural Gas Consumption by End Use"

    Energy Information Administration (EIA) (indexed site)

    Date:","1292016" ,"Next Release Date:","2292016" ,"Excel File Name:","ngconssumdcusmnm.xls" ,"Available from Web Page:","http:www.eia.govdnavng...

  9. ,"Illinois Natural Gas Consumption by End Use"

    Energy Information Administration (EIA) (indexed site)

    Date:","1292016" ,"Next Release Date:","2292016" ,"Excel File Name:","ngconssumdcusilm.xls" ,"Available from Web Page:","http:www.eia.govdnavng...

  10. ,"Hawaii Natural Gas Consumption by End Use"

    Energy Information Administration (EIA) (indexed site)

    Date:","1292016" ,"Next Release Date:","2292016" ,"Excel File Name:","ngconssumdcushim.xls" ,"Available from Web Page:","http:www.eia.govdnavng...

  11. ,"Oregon Natural Gas Consumption by End Use"

    Energy Information Administration (EIA) (indexed site)

    32978,,1820,1550 33008,,1476,1268 33039,,1206,1157 33069,,704,821 33100,,560,769 ... 37726,13784,3838,2544,5408,,1994 37756,12066,3058,2088,5382,,1537 ...

  12. ,"Alaska Natural Gas Consumption by End Use"

    Energy Information Administration (EIA) (indexed site)

    33649,,1933,2372 33678,,1764,2319 33709,,1346,1935 33739,,1012,1597 33770,,628,1206 33800,,474,1084 33831,,438,1013 33862,,643,1252 33892,,1209,1790 33923,,1442,1928 ...

  13. ,"Montana Natural Gas Consumption by End Use"

    Energy Information Administration (EIA) (indexed site)

    33131,,450,347 33161,,1040,782 33192,,1694,1206 33222,,2673,1889 33253,,3533,2425 ...,3279,1081,737,1444,,16 38153,2725,856,647,1206,,16 38183,2154,553,456,1129,,16 ...

  14. ,"Maine Natural Gas Consumption by End Use"

    Energy Information Administration (EIA) (indexed site)

    ... 38671,4236,102,416,513,,3205 38701,2234,170,664,563,,836 38732,3888,153,605,1206,,1923 38763,4850,166,636,1426,,2622 38791,5239,142,620,2121,,2355 38822,4090,87,355,124...

  15. ,"Mississippi Natural Gas Consumption by End Use"

    Energy Information Administration (EIA) (indexed site)

    ... 35504,,3058,2114 35535,,1916,1532 35565,,1472,1305 35596,,926,1174 35626,,815,1206 35657,,761,1309 35688,,778,924 35718,,902,1224 35749,,2561,2027 35779,,4355,2937 ...

  16. ,"Tennessee Natural Gas Consumption by End Use"

    Energy Information Administration (EIA) (indexed site)

    ... 40283,14937,4022,3553,7241,1,119 40313,11682,1468,2245,7020,1,948 40344,12260,1206,2041,6804,1,2209 40374,14350,1036,1878,6882,1,4553 40405,13862,956,1725,7350,1,3829 ...

  17. ,"Nevada Natural Gas Consumption by End Use"

    Energy Information Administration (EIA) (indexed site)

    ... 37118,14023,996,1238,910,,10878 37149,12067,1034,1655,858,,8520 37179,12854,1245,1383... 40954,22161,5815,3266,972,47,12062 40983,20389,4325,2888,1019,50,12107 ...

  18. Wisconsin Natural Gas Consumption by End Use

    Energy Information Administration (EIA) (indexed site)

    Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions,

  19. Mississippi Natural Gas Consumption by End Use

    Energy Information Administration (EIA) (indexed site)

    Commercial 2,237 1,453 1,032 1,207 1,173 930 1989-2016 Industrial 10,101 9,093 9,641 9,766 9,833 9,583 2001-2016 Vehicle Fuel 2 2 2 7 7 8 2010-2016 Electric Power 29,722 26,595 ...

  20. Vermont Natural Gas Consumption by End Use

    Energy Information Administration (EIA) (indexed site)

    Residential 541 380 357 196 109 89 1989-2016 Commercial 714 516 NA 286 306 345 1989-2016 Industrial 204 204 192 167 151 140 2001-2016 Vehicle Fuel 0 0 0 0 0 0 2010-2016 Electric ...

  1. Michigan Natural Gas Consumption by End Use

    Energy Information Administration (EIA) (indexed site)

    Commercial 24,800 18,781 14,623 8,703 5,515 5,093 1989-2016 Industrial 18,218 16,587 14,685 12,111 11,431 10,796 2001-2016 Vehicle Fuel 35 38 37 42 40 46 2010-2016 Electric Power ...

  2. Texas Natural Gas Consumption by End Use

    Energy Information Administration (EIA) (indexed site)

    Commercial 19,038 14,740 13,184 10,611 NA 10,294 1989-2016 Industrial 133,542 139,966 128,883 130,670 130,406 NA 2001-2016 Vehicle Fuel 301 333 322 393 380 432 2010-2016 Electric ...

  3. Missouri Natural Gas Consumption by End Use

    Energy Information Administration (EIA) (indexed site)

    Commercial 8,887 5,327 3,314 2,735 2,066 2,159 1989-2016 Industrial 7,176 6,041 5,272 5,146 4,574 4,413 2001-2016 Vehicle Fuel 4 5 4 10 10 11 2010-2016 Electric Power 2,679 2,628 ...

  4. Massachusetts Natural Gas Consumption by End Use

    Energy Information Administration (EIA) (indexed site)

    Commercial 13,214 10,080 8,350 5,404 3,621 3,715 1989-2016 Industrial 5,187 4,478 4,072 3,111 2,790 2,431 2001-2016 Vehicle Fuel 70 77 75 68 66 75 2010-2016 Electric Power 9,783 ...

  5. Alaska Natural Gas Consumption by End Use

    Energy Information Administration (EIA) (indexed site)

    Commercial 1,752 1,664 1,195 825 664 566 1989-2016 Industrial 243 237 183 261 363 307 2001-2016 Vehicle Fuel 1 1 1 1 1 1 2010-2016 Electric Power 1,992 1,911 1,710 1,852 1,895 ...

  6. Louisiana Natural Gas Consumption by End Use

    Energy Information Administration (EIA) (indexed site)

    Commercial 2,921 2,364 2,247 2,219 1,909 1,882 1989-2016 Industrial 81,450 87,558 85,108 87,285 84,591 87,948 2001-2016 Vehicle Fuel 5 5 5 5 5 6 2010-2016 Electric Power 24,771 ...

  7. Colorado Natural Gas Consumption by End Use

    Energy Information Administration (EIA) (indexed site)

    Commercial 7,263 6,179 4,598 3,121 1,838 1,647 1989-2016 Industrial 7,760 7,599 6,680 6,193 5,034 5,168 2001-2016 Vehicle Fuel 27 30 29 31 30 34 2010-2016 Electric Power 6,288 ...

  8. Alabama Natural Gas Consumption by End Use

    Energy Information Administration (EIA) (indexed site)

    Commercial 3,160 1,825 1,497 1,244 1,250 975 1989-2016 Industrial 16,396 16,568 15,753 16,613 15,147 14,695 2001-2016 Vehicle Fuel 19 21 20 36 34 39 2010-2016 Electric Power 29,307 ...

  9. Nebraska Natural Gas Consumption by End Use

    Energy Information Administration (EIA) (indexed site)

    Commercial 3,783 2,546 1,756 1,327 1,020 940 1989-2016 Industrial 6,695 6,718 6,524 6,354 NA 8,194 2001-2016 Vehicle Fuel 5 5 5 5 5 5 2010-2016 Electric Power 112 W 522 W 1,442 ...

  10. Virginia Natural Gas Consumption by End Use

    Energy Information Administration (EIA) (indexed site)

    Commercial 9,234 6,289 5,145 3,556 3,132 2,646 1989-2016 Industrial 7,185 7,482 7,181 NA NA 7,398 2001-2016 Vehicle Fuel 21 23 22 20 19 21 2010-2016 Electric Power 22,761 20,295 ...

  11. Washington Natural Gas Consumption by End Use

    Energy Information Administration (EIA) (indexed site)

    Commercial 5,807 5,496 3,094 2,828 2,441 2,268 1989-2016 Industrial 6,792 6,605 6,305 5,760 5,732 6,014 2001-2016 Vehicle Fuel 42 46 45 46 44 50 2010-2016 Electric Power 7,407 ...

  12. Minnesota Natural Gas Consumption by End Use

    Energy Information Administration (EIA) (indexed site)

    Commercial 14,790 10,266 7,146 4,040 2,736 2,742 1989-2016 Industrial NA 17,566 NA 11,634 11,627 12,285 2001-2016 Vehicle Fuel 4 5 4 6 6 6 2010-2016 Electric Power 5,321 5,397 ...

  13. Maine Natural Gas Consumption by End Use

    Energy Information Administration (EIA) (indexed site)

    Residential 401 342 258 143 63 52 1989-2016 Commercial 1,199 1,048 789 493 324 294 1989-2016 Industrial NA NA NA NA NA 1,511 2001-2016 Vehicle Fuel 0 0 0 0 0 0 2010-2016 Electric ...

  14. Oklahoma Natural Gas Consumption by End Use

    Energy Information Administration (EIA) (indexed site)

    Commercial 5,075 3,442 2,215 2,092 1,565 1,495 1989-2016 Industrial 15,430 16,456 16,366 17,335 15,702 15,809 2001-2016 Vehicle Fuel 35 38 37 44 43 49 2010-2016 Electric Power ...

  15. Tennessee Natural Gas Consumption by End Use

    Energy Information Administration (EIA) (indexed site)

    Commercial 7,608 4,369 2,983 2,652 2,032 2,035 1989-2016 Industrial 11,145 10,126 9,521 9,340 9,467 9,264 2001-2016 Vehicle Fuel 9 10 9 21 20 23 2010-2016 Electric Power 6,331 ...

  16. Oregon Natural Gas Consumption by End Use

    Energy Information Administration (EIA) (indexed site)

    Commercial 3,194 2,973 1,839 1,438 1,093 1,026 1989-2016 Industrial 4,859 4,996 4,545 4,518 4,216 4,198 2001-2016 Vehicle Fuel 15 17 17 16 15 17 2010-2016 Electric Power 9,351 ...

  17. Utah Natural Gas Consumption by End Use

    Energy Information Administration (EIA) (indexed site)

    Commercial 5,319 3,970 2,773 2,010 1,075 1,235 1989-2016 Industrial 3,600 3,376 3,569 3,073 3,036 2,822 2001-2016 Vehicle Fuel 22 25 24 24 23 27 2010-2016 Electric Power 4,079 ...

  18. Maryland Natural Gas Consumption by End Use

    Energy Information Administration (EIA) (indexed site)

    Commercial 9,509 6,392 5,411 4,081 3,188 2,823 1989-2016 Industrial 1,428 1,519 1,239 1,179 NA 1,196 2001-2016 Vehicle Fuel 20 22 22 22 22 24 2010-2016 Electric Power 2,318 4,202 ...

  19. Wyoming Natural Gas Consumption by End Use

    Energy Information Administration (EIA) (indexed site)

    257 209 1989-2016 Commercial 1,423 NA 1,054 782 441 NA 1989-2016 Industrial 4,438 NA NA 4,595 4,262 4,064 2001-2016 Vehicle Fuel 2 2 2 2 2 3 2010-2016 Electric Power W W W W W W

  20. Ohio Natural Gas Consumption by End Use

    Energy Information Administration (EIA) (indexed site)

    Commercial 23,559 14,966 12,115 6,674 4,182 4,220 1989-2016 Industrial 27,438 25,038 23,038 21,570 19,851 19,309 2001-2016 Vehicle Fuel 30 33 32 47 46 52 2010-2016 Electric Power ...

  1. Arizona Natural Gas Consumption by End Use

    Energy Information Administration (EIA) (indexed site)

    Commercial 3,398 2,770 2,460 2,165 1,910 1,771 1989-2016 Industrial 1,793 1,709 1,577 1,591 1,542 1,335 2001-2016 Vehicle Fuel 173 192 186 206 199 226 2010-2016 Electric Power ...

  2. Arkansas Natural Gas Consumption by End Use

    Energy Information Administration (EIA) (indexed site)

    Commercial 5,497 4,174 3,099 2,837 2,529 2,433 1989-2016 Industrial 7,081 6,968 6,512 6,420 6,028 6,029 2001-2016 Vehicle Fuel 3 3 3 3 3 3 2010-2016 Electric Power 5,839 6,041 ...

  3. Nevada Natural Gas Consumption by End Use

    Energy Information Administration (EIA) (indexed site)

    Commercial 3,365 2,766 2,390 2,155 1,760 1,748 1989-2016 Industrial 1,448 1,562 1,518 1,483 1,433 NA 2001-2016 Vehicle Fuel 60 66 64 92 89 101 2010-2016 Electric Power 14,466 ...

  4. Pennsylvania Natural Gas Consumption by End Use

    Energy Information Administration (EIA) (indexed site)

    Commercial 22,320 13,699 11,041 7,146 4,967 4,553 1989-2016 Industrial 23,458 22,615 21,166 19,626 19,397 NA 2001-2016 Vehicle Fuel 31 35 33 37 36 41 2010-2016 Electric Power ...

  5. Montana Natural Gas Consumption by End Use

    Energy Information Administration (EIA) (indexed site)

    1989-2016 Commercial 2,434 2,272 1,488 1,158 778 745 1989-2016 Industrial 1,918 NA NA 1,723 NA NA 2001-2016 Vehicle Fuel 0 0 0 0 0 0 2010-2016 Electric Power 732 699 W W 798 1,010

  6. ,"Nebraska Natural Gas Consumption by End Use"

    Energy Information Administration (EIA) (indexed site)

    ... 38426,11440,5151,3311,2623,,355 38457,8360,3023,1975,2975,,389 38487,6579,1947,1592,2545,,496 38518,5853,990,999,2597,,1268 38548,7874,830,1046,4393,,1606 ...

  7. ,"Washington Natural Gas Consumption by End Use"

    Energy Information Administration (EIA) (indexed site)

    ... 35869,,8950,5824 35900,,5827,4236 35930,,3221,2738 35961,,2312,2291 35991,,1765,1947 36022,,1574,1818 36053,,1667,1869 36083,,2427,2102 36114,,4731,3442 36144,,7989,5595 ...

  8. ,"Kansas Natural Gas Consumption by End Use"

    Energy Information Administration (EIA) (indexed site)

    ... 36326,,2065,1427 36356,,1479,1628 36387,,1617,1905 36418,,1489,1820 36448,,2658,1947 36479,,3997,2395 36509,,9040,4553 36540,,13149,6732 36571,,11829,6091 36600,,8180,4404 ...

  9. ,"Connecticut Natural Gas Consumption by End Use"

    Energy Information Administration (EIA) (indexed site)

    34043,,6255,4461 34074,,4043,3038 34104,,1947,1583 34135,,1274,1161 34165,,1040,1122 ...836,987,1723,1623,3,10500 40405,13482,1004,1947,1632,3,8895 40436,12628,951,1787,1591,3,82...

  10. ,"Arizona Natural Gas Consumption by End Use"

    Energy Information Administration (EIA) (indexed site)

    ...113,1904,2289,1975,,14944 37057,17703,1272,1947,1872,,12611 37087,18312,1060,1763,1853,,13... 40831,22244,1504,2125,1629,145,16841 40862,19475,2839,2848,2021,141,11627 ...

  11. Connecticut Natural Gas Consumption by End Use

    Energy Information Administration (EIA) (indexed site)

    Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources &

  12. Connecticut Natural Gas Consumption by End Use

    Energy Information Administration (EIA) (indexed site)

    Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions,

  13. Delaware Natural Gas Consumption by End Use

    Energy Information Administration (EIA) (indexed site)

    Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources &

  14. Delaware Natural Gas Consumption by End Use

    Energy Information Administration (EIA) (indexed site)

    Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions,

  15. Florida Natural Gas Consumption by End Use

    Energy Information Administration (EIA) (indexed site)

    Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources &

  16. Florida Natural Gas Consumption by End Use

    Energy Information Administration (EIA) (indexed site)

    Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions,

  17. Georgia Natural Gas Consumption by End Use

    Energy Information Administration (EIA) (indexed site)

    Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources &

  18. Georgia Natural Gas Consumption by End Use

    Energy Information Administration (EIA) (indexed site)

    Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions,

  19. Hawaii Natural Gas Consumption by End Use

    Energy Information Administration (EIA) (indexed site)

    Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources &

  20. Hawaii Natural Gas Consumption by End Use

    Energy Information Administration (EIA) (indexed site)

    48 256 243 240 255 264 2001-2016 Residential 49 51 44 45 45 45 1989-2016 Commercial 157 162 151 154 155 163 1989-2016 Industrial 41 42 47 41 54 56 2001-2016 Vehicle Fuel 1 1 0 0 0 0 2010-2016 Electric Power -- -- -- -- -- --

  1. Idaho Natural Gas Consumption by End Use

    Energy Information Administration (EIA) (indexed site)

    Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources &

  2. Idaho Natural Gas Consumption by End Use

    Energy Information Administration (EIA) (indexed site)

    ,200 4,791 5,641 5,396 6,284 7,183 2001-2016 Residential 2,532 1,290 881 580 518 492 1989-2016 Commercial 1,706 993 851 653 657 701 1989-2016 Industrial 3,186 2,494 2,463 2,137 2,525 2,253 2001-2016 Vehicle Fuel 15 14 14 14 15 15 2010-2016 Electric Power 1,763 W 1,431 2,013 2,568 3,722

  3. Illinois Natural Gas Consumption by End Use

    Energy Information Administration (EIA) (indexed site)

    6,996 75,916 54,482 NA NA 53,400 2001-2016 Residential 41,109 30,185 15,751 9,472 7,782 7,419 1989-2016 Commercial 21,382 15,803 10,496 7,251 7,882 7,896 1989-2016 Industrial 23,292 20,311 18,796 NA NA 17,648 2001-2016 Vehicle Fuel 32 31 38 37 42 42 2010-2016 Electric Power 11,181 9,587 9,400 13,205 22,701 20,395

  4. Indiana Natural Gas Consumption by End Use

    Energy Information Administration (EIA) (indexed site)

    Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources &

  5. Indiana Natural Gas Consumption by End Use

    Energy Information Administration (EIA) (indexed site)

    Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions,

  6. Iowa Natural Gas Consumption by End Use

    Energy Information Administration (EIA) (indexed site)

    8,876 22,989 21,205 19,444 20,538 21,081 2001-2016 Residential 6,558 4,400 2,098 1,115 1,116 1,042 1989-2016 Commercial 4,891 3,413 2,075 1,575 1,707 1,830 1989-2016 Industrial 15,885 14,227 14,405 14,471 14,379 14,383 2001-2016 Vehicle Fuel 2 2 2 2 2 2 2010-2016 Electric Power 1,541 948 2,624 2,281 3,333 3,823

  7. Kansas Natural Gas Consumption by End Use

    Energy Information Administration (EIA) (indexed site)

    Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions,

  8. Kentucky Natural Gas Consumption by End Use

    Energy Information Administration (EIA) (indexed site)

    Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources &

  9. Kentucky Natural Gas Consumption by End Use

    Energy Information Administration (EIA) (indexed site)

    Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions,

  10. Kansas Natural Gas Consumption by End Use

    Energy Information Administration (EIA) (indexed site)

    86,973 275,184 279,724 262,316 283,177 285,969 1997-2014 Lease and Plant Fuel 1967-1998 Lease Fuel 15,169 13,461 12,781 17,017 17,110 14,851 1983-2014 Plant Fuel 2,126 2,102 2,246...

  11. ,"Georgia Natural Gas Consumption by End Use"

    Energy Information Administration (EIA) (indexed site)

    ...,5851,3726,10622,93,22727 41228,52299,12989,6200,12742,90,20277 41258,61950,16188,6843,13500,93,25326 41289,62324,18331,7191,13879,85,22838 41320,63455,19031,7667,12703,77,23978 ...

  12. ,"Colorado Natural Gas Consumption by End Use"

    Energy Information Administration (EIA) (indexed site)

    34288,,8984,6080 34318,,14527,9396 34349,,16252,10134 34380,,15391,9633 34408,,13500,8295 34439,,9732,6300 34469,,6819,4573 34500,,3474,2745 34530,,2546,2268 ...

  13. Office Buildings - End-Use Equipment

    Annual Energy Outlook

    Information Administration, 2003 Commercial Buildings Energy Consumption Survey. More computers, dedicated servers, printers, and photocopiers were used in office buildings than in...

  14. Biomass Resource Allocation among Competing End Uses

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Research & Development » Biomass Feedstocks Biomass Feedstocks An alternate text version of this video is available online. A feedstock is defined as any renewable, biological material that can be used directly as a fuel, or converted to another form of fuel or energy product. Biomass feedstocks are the plant and algal materials used to derive fuels like ethanol, butanol, biodiesel, and other hydrocarbon fuels. Examples of biomass feedstocks include corn starch, sugarcane juice, crop

  15. Engineering analysis of biomass gasifier product gas cleaning technology

    SciTech Connect

    Baker, E.G.; Brown, M.D.; Moore, R.H.; Mudge, L.K.; Elliott, D.C.

    1986-08-01

    For biomass gasification to make a significant contribution to the energy picture in the next decade, emphasis must be placed on the generation of clean, pollutant-free gas products. This reports attempts to quantify levels of particulated, tars, oils, and various other pollutants generated by biomass gasifiers of all types. End uses for biomass gases and appropriate gas cleaning technologies are examined. Complete systems analysis is used to predit the performance of various gasifier/gas cleanup/end use combinations. Further research needs are identified. 128 refs., 20 figs., 19 tabs.

  16. Best Practices: Policies for Building Efficiency and Emerging Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    | Department of Energy Best Practices: Policies for Building Efficiency and Emerging Technologies Best Practices: Policies for Building Efficiency and Emerging Technologies Information about appliance standards, building energy codes, ENERGY STAR program and tax incentives for building efficiency. session_2_buildings_track_digert_en.pdf (3.06 MB) session_2_buildings_track_digert_cn.pdf (3.2 MB) More Documents & Publications Realizing Building End-Use Efficiency with Ermerging

  17. 2014 Wind Technologies Market Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    4 Wind Technologies Market Report 2014 Wind Technologies Market Report A photo of the cover of the 2014 Wind Technologies Market Report. According to the 2014 Wind Technologies Market Report, total installed wind power capacity in the United States grew at a rate of eight percent in 2014, bringing the United States total installed capacity to nearly 66 gigawatts (GW), which ranks second in the world and meets 4.9 percent of U.S. end-use electricity demand in an average year. In total, 4,854 MW

  18. Energy Technologies

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Our Vision National User Facilities Research Areas In Focus Global Solutions Energy Technologies Area (ETA) Building Technology & Urban Systems Energy Analysis & Environmental...

  19. Exploration Technologies - Technology Needs Assessment

    SciTech Connect

    Greene, Amanda I.; Thorsteinsson, Hildigunnur; Reinhardt, Tim; Solomon, Samantha; James, Mallory

    2011-06-01

    This assessment is a critical component of ongoing technology roadmapping efforts, and will be used to guide the Geothermal Technology Program's research and development.

  20. High Impact Technology Catalyst: Technology Deployment Strategies...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Catalyst: Technology Deployment Strategies High Impact Technology Catalyst: Technology Deployment Strategies The Energy Department released the High Impact Technology Catalyst: ...

  1. Vehicle Technologies Office: Graduate Automotive Technology Education...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Education & Workforce Development Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) Vehicle Technologies Office: Graduate Automotive Technology ...

  2. NREL: Technology Transfer - Technology Partnership Agreements

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Ombuds. Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Agreements for Commercializing Technology CRADAs Work for...

  3. NREL: Technology Transfer - Technologies Available for Licensing

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Ombuds. Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Licensing Agreements Technologies Available for Licensing...

  4. Vehicle Technologies Office - Materials Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Vehicle Technologies Office Materials Technologies Ed Owens Jerry Gibbs Will Joost eere.energy.gov 2 | Vehicle Technologies Program Materials Technologies Materials Technologies $36.9 M Lightweight Materials $28.0 M Values are FY14 enacted Propulsion Materials $8.9 M Properties and Manufacturing Multi-Material Enabling Modeling & Computational Mat. Sci. Engine Materials, Cast Al & Fe High Temp Alloys Exhaust Sys. Materials, Low T Catalysts Lightweight Propulsion FY13 Enacted $27.5 M

  5. Available Technologies

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    application. Search Our Technologies submit Advanced Materials Advanced Materials Biotechnology Biotechnology Chemistry Chemistry Energy Energy High Performance Computing:...

  6. Technology Opportunities

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Intellectual Property » Technology Opportunities Technology Opportunities We deliver innovation through an integrated portfolio of R&D work across our key national security sponsoring agencies, enhanced by the ideas developed through our strategic internal investments. Contact Business Development Team Richard P. Feynman Center for Innovation (505) 665-9090 Email Periodically, the Laboratory notifies the public of technologies and capabilities that may be of interest. These technologies may

  7. Licensing Technology

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Licensing Technology Licensing Technology The primary function of Los Alamos Licensing Program is to move Los Alamos technology to the marketplace for the benefit of the U.S. economy. Our intellectual property may be licensed for commercial use, research applications, and U.S. government use. Contact thumbnail of Marcus Lucero Head of Licensing Marcus Lucero Richard P. Feynman Center for Innovation (505) 665-6569 Email Although Los Alamos's primary mission is national security, our technologies

  8. Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    - FOR OFFICIAL USE ONLY - DRAFT 1 Advanced Composites Materials and their Manufacture 1 Technology Assessment 2 Contents 3 1. Introduction to the Technology/System ................................................................................................ 2 4 2. Technology Potential and Assessment .................................................................................................. 4 5 2.1 The Potential for Advanced Composites for Clean Energy Application Areas

  9. Technology '90

    SciTech Connect

    Not Available

    1991-01-01

    The US Department of Energy (DOE) laboratories have a long history of excellence in performing research and development in a number of areas, including the basic sciences, applied-energy technology, and weapons-related technology. Although technology transfer has always been an element of DOE and laboratory activities, it has received increasing emphasis in recent years as US industrial competitiveness has eroded and efforts have increased to better utilize the research and development resources the laboratories provide. This document, Technology '90, is the latest in a series that is intended to communicate some of the many opportunities available for US industry and universities to work with the DOE and its laboratories in the vital activity of improving technology transfer to meet national needs. Technology '90 is divided into three sections: Overview, Technologies, and Laboratories. The Overview section describes the activities and accomplishments of the DOE research and development program offices. The Technologies section provides descriptions of new technologies developed at the DOE laboratories. The Laboratories section presents information on the missions, programs, and facilities of each laboratory, along with a name and telephone number of a technology transfer contact for additional information. Separate papers were prepared for appropriate sections of this report.

  10. 2014 Wind Technologies Market Report

    SciTech Connect

    Wiser, R.; Bolinger, M.

    2015-08-01

    According to the 2014 Wind Technologies Market Report, total installed wind power capacity in the United States grew at a rate of eight percent in 2014, bringing the United States total installed capacity to nearly 66 gigawatts (GW), which ranks second in the world and meets 4.9 percent of U.S. end-use electricity demand in an average year. In total, 4,854 MW of new wind energy capacity were installed in the United States in 2014. The 2014 Wind Technologies Market Report also finds that wind energy prices are at an all-time low and are competitive with wholesale power prices and traditional power sources across many areas of the United States. Additionally, a new trend identified by the 2014 Wind Technologies Market Report shows utility-scale turbines with larger rotors designed for lower wind speeds have been increasingly deployed across the country in 2014. The findings also suggest that the success of the U.S. wind industry has had a ripple effect on the American economy, supporting 73,000 jobs related to development, siting, manufacturing, transportation, and other industries.

  11. NREL: Technology Transfer - Agreements for Commercializing Technology

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    303-384-7353. Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Agreements for Commercializing Technology CRADAs Work for...

  12. Vehicle Technologies Office: 2015 Electric Drive Technologies...

    Office of Environmental Management (EM)

    Electric Drive Technologies Annual R&D Progress Report Vehicle Technologies Office: 2015 Electric Drive Technologies Annual R&D Progress Report The Electric Drive Technologies ...

  13. Huazhong Science Technology University Yongtai Science Technology...

    OpenEI (Open Energy Information) [EERE & EIA]

    Huazhong Science Technology University Yongtai Science Technology Co Ltd Jump to: navigation, search Name: Huazhong Science & Technology University Yongtai Science & Technology Co...

  14. Technology Transfer

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    technology transfer Technology Transfer Since 1974, the Federal Laboratory Consortium (FLC) Award for Excellence in Technology Transfer has recognized scientists and engineers at federal government and research centers for their "uncommon creativity and initiative in conveying innovations from their facilities to industry and local government." Scientists and engineers from more than 650 federal government laboratories and research centers compete for the 30 awards presented each year.

  15. Technology Partnering

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Transfer and Related Technology Partnering Activities at the National Laboratories and Other Facilities Fiscal Years 2009-2013 Report to Congress May 2015 United States Department of Energy Washington, DC 20585 Message from the Secretary The Report on Technology Transfer and Related Partnering Activities at the National Laboratories and Other Facilities for Fiscal Year 2009-2013 is prepared in accordance with the requirements of the Technology Transfer and Commercialization Act of 2000: It is

  16. Technology Opportunities

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    by the U.S. Department of Energy and Office of Science - ... feedstock-to-fuel conversion, coproduct production, ... Patents Software Tools Technology Opportunities Penta Charts

  17. Technology Validation

    Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  18. CSP technology

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    technology - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy ...

  19. TECHNOLOGY FORUM

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    TECHNOLOGY FORUM The 2014 SunShot Grand Challenge Summit and Peer Review is hosting a Technology Forum showcasing innovative and cutting-edge technologies that are helping to drive down the cost of solar energy. The Forum features a wide range of solar industry exhibitors showcasing software and hardware products and solutions, as well as nearly 300 SunShot awardees displaying their work and answering questions about their projects. TECHNOLOGY FORUM HOURS * May 19 from 4:00-7:00 PM * May 20

  20. Thermally activated technologies: Technology Roadmap

    SciTech Connect

    None, None

    2003-05-01

    The purpose of this Technology Roadmap is to outline a set of actions for government and industry to develop thermally activated technologies for converting America’s wasted heat resources into a reservoir of pollution-free energy for electric power, heating, cooling, refrigeration, and humidity control. Fuel flexibility is important. The actions also cover thermally activated technologies that use fossil fuels, biomass, and ultimately hydrogen, along with waste heat.

  1. NREL: Technology Deployment - Technology Acceleration

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Technology Acceleration NREL offers technology-specific assistance to federal and private industry to help address market barriers to sustainable energy technologies. Learn more about NREL's work in the following areas: Biopower and Waste-to-Energy Biopower and Waste-to-Energy Buildings Buildings Fuels, Vehicles, & Transportation Fuels, Vehicles, and Transportation Microgrid Design Microgrid Design Solar Solar Wind Wind Contact Us For more information on NREL's market transformation work,

  2. Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Roll to Roll (R2R) Processing 1 Technology Assessment 2 3 Contents 4 1. Introduction to the Technology/System ............................................................................................... 2 5 1.1. Introduction to R2R Processing..................................................................................................... 2 6 1.2. R2R Processing Mechanisms ......................................................................................................... 3 7 2.

  3. Advanced Building Technologies: Toward a New Generation of Net-Zero Energy, Carbon-Neutral Buildings

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Meeting, Berkeley CA August 14, 2007 Advanced Building Technologies Toward a New Generation of Net-Zero Energy, Carbon-Neutral Buildings Stephen Selkowitz Department Head, Building Technologies Department Lawrence Berkeley National Laboratory seselkowitz@lbl.gov 510/486-5064 Lawrence Berkeley National Laboratory Building Energy Demand Challenge: End Use Energy Consumption Buildings consume 39% of total U.S. energy * 71% of electricity and 54% of natural gas Lawrence Berkeley National Laboratory

  4. Technology Commercialization Showcase 2008 Vehicle Technologies Program

    SciTech Connect

    Davis, Patrick B.

    2009-06-19

    Presentation illustrating various technology commercialization opportunities and unexploited investment gaps for the Vehicle Technologies Program.

  5. Tag: technology

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Tags

    technology<...

  6. Technology Validation

    Energy.gov [DOE]

    To reduce solar technology risks, DOE and its partners evaluate the performance and reliability of novel photovoltaic (PV) hardware and systems through laboratory and field testing. The focus of...

  7. Technology Roadmap Analysis 2013: Assessing Automotive Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Roadmap Analysis 2013: Assessing Automotive Technology R&D Relevant to DOE Power Electronics Cost Targets Technology Roadmap Analysis 2013: Assessing Automotive Technology R&D ...

  8. Building Technologies Office Overview

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Roland Risser Director, Building Technologies Office Building Technologies Office Energy Efficiency Starts Here. 2 Building Technologies Office Integrated Approach: Improving ...

  9. Manufacturing technologies

    SciTech Connect

    1995-09-01

    The Manufacturing Technologies Center is an integral part of Sandia National Laboratories, a multiprogram engineering and science laboratory, operated for the Department of Energy (DOE) with major facilities at Albuquerque, New Mexico, and Livermore, California. Our Center is at the core of Sandia`s Advanced Manufacturing effort which spans the entire product realization process.

  10. (Environmental technology)

    SciTech Connect

    Boston, H.L.

    1990-10-12

    The traveler participated in a conference on environmental technology in Paris, sponsored by the US Embassy-Paris, US Environmental Protection Agency (EPA), the French Environmental Ministry, and others. The traveler sat on a panel for environmental aspects of energy technology and made a presentation on the potential contributions of Oak Ridge National Laboratory (ORNL) to a planned French-American Environmental Technologies Institute in Chattanooga, Tennessee, and Evry, France. This institute would provide opportunities for international cooperation on environmental issues and technology transfer related to environmental protection, monitoring, and restoration at US Department of Energy (DOE) facilities. The traveler also attended the Fourth International Conference on Environmental Contamination in Barcelona. Conference topics included environmental chemistry, land disposal of wastes, treatment of toxic wastes, micropollutants, trace organics, artificial radionuclides in the environment, and the use biomonitoring and biosystems for environmental assessment. The traveler presented a paper on The Fate of Radionuclides in Sewage Sludge Applied to Land.'' Those findings corresponded well with results from studies addressing the fate of fallout radionuclides from the Chernobyl nuclear accident. There was an exchange of new information on a number of topics of interest to DOE waste management and environmental restoration needs.

  11. Plasma technology

    SciTech Connect

    Herlitz, H.G.

    1986-11-01

    This paper describes the uses of plasma technology for the thermal destruction of hazardous wastes such as PCBs, dioxins, hydrocarbons, military chemicals and biological materials; for metals recovery from steel making dusts. One advantage of the process is that destruction of wastes can be carried out on site. Systems in several countries use the excess thermal energy for district heating.

  12. Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Cement Sector

    SciTech Connect

    Sathaye, J.; Xu, T.; Galitsky, C.

    2010-08-15

    Adoption of efficient end-use technologies is one of the key measures for reducing greenhouse gas (GHG) emissions. How to effectively analyze and manage the costs associated with GHG reductions becomes extremely important for the industry and policy makers around the world. Energy-climate (EC) models are often used for analyzing the costs of reducing GHG emissions for various emission-reduction measures, because an accurate estimation of these costs is critical for identifying and choosing optimal emission reduction measures, and for developing related policy options to accelerate market adoption and technology implementation. However, accuracies of assessing of GHG-emission reduction costs by taking into account the adoption of energy efficiency technologies will depend on how well these end-use technologies are represented in integrated assessment models (IAM) and other energy-climate models.

  13. Software Technology

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Software Software Technology Enabling a new era of computational and scientific capabilities by advancing high-performance computing on an exponential scale. Contacts Galen Shipman Applied Computer Science (505) 665-4021 Email Michael Lang Computer, Computational, and Statistical Sciences (505) 500-2993 Email James Ahrens Applied Computer Science (505) 667-5797 Email Video thumbnail image for ExaSky software 3:21 ExaSky: Next-generation dark matter cosmology simulations (demonstration) The

  14. Building Technologies Office Overview

    SciTech Connect

    2013-04-01

    Building Technologies Office Overview Presentation for the 2013 Building Technologies Office's Program Peer Review

  15. Emerging technologies

    SciTech Connect

    Lu, Shin-yee

    1993-03-01

    The mission of the Emerging Technologies thrust area at Lawrence Livermore National Laboratory is to help individuals establish technology areas that have national and commercial impact, and are outside the scope of the existing thrust areas. We continue to encourage innovative ideas that bring quality results to existing programs. We also take as our mission the encouragement of investment in new technology areas that are important to the economic competitiveness of this nation. In fiscal year 1992, we have focused on nine projects, summarized in this report: (1) Tire, Accident, Handling, and Roadway Safety; (2) EXTRANSYT: An Expert System for Advanced Traffic Management; (3) Odin: A High-Power, Underwater, Acoustic Transmitter for Surveillance Applications; (4) Passive Seismic Reservoir Monitoring: Signal Processing Innovations; (5) Paste Extrudable Explosive Aft Charge for Multi-Stage Munitions; (6) A Continuum Model for Reinforced Concrete at High Pressures and Strain Rates: Interim Report; (7) Benchmarking of the Criticality Evaluation Code COG; (8) Fast Algorithm for Large-Scale Consensus DNA Sequence Assembly; and (9) Using Electrical Heating to Enhance the Extraction of Volatile Organic Compounds from Soil.

  16. Technology disrupted

    SciTech Connect

    Papatheodorou, Y.

    2007-02-15

    Three years ago, the author presented a report on power generation technologies which in summary said 'no technology available today has the potential of becoming transformational or disruptive in the next five to ten years'. In 2006 the company completed another strategic view research report covering the electric power, oil, gas and unconventional energy industries and manufacturing industry. This article summarises the strategic view findings and then revisits some of the scenarios presented in 2003. The cost per megawatt-hour of the alternatives is given for plants ordered in 2005 and then in 2025. The issue of greenhouse gas regulation is dealt with through carbon sequestration and carbon allowances or an equivalent carbon tax. Results reveal substantial variability through nuclear power, hydro, wind, geothermal and biomass remain competitive through every scenario. Greenhouse gas scenario analysis shows coal still be viable, albeit less competitive against nuclear and renewable technologies. A carbon tax or allowance at $24 per metric ton has the same effect on IGCC cost as a sequestration mandate. However, the latter would hurt gas plants much more than a tax or allowance. Sequestering CO{sub 2} from a gas plant is almost as costly per megawatt-hour as for coal. 5 refs., 5 figs., 5 tabs.

  17. Testing technology

    SciTech Connect

    Not Available

    1993-10-01

    This bulletin from Sandia National Laboratories presents current research highlights in testing technology. Ion microscopy offers new nondestructive testing technique that detects high resolution invisible defects. An inexpensive thin-film gauge checks detonators on centrifuge. Laser trackers ride the range and track helicopters at low-level flights that could not be detected by radar. Radiation transport software predicts electron/photon effects via cascade simulation. Acoustic research in noise abatement will lead to quieter travelling for Bay Area Rapid Transport (BART) commuters.

  18. TECHNOLOGY TRANSFER

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    404-NOV. 1, 2000 TECHNOLOGY TRANSFER COMMERCIALIZATION ACT OF 2000 VerDate 11-MAY-2000 04:52 Nov 16, 2000 Jkt 089139 PO 00000 Frm 00001 Fmt 6579 Sfmt 6579 E:\PUBLAW\PUBL404.106 APPS27 PsN: PUBL404 114 STAT. 1742 PUBLIC LAW 106-404-NOV. 1, 2000 Public Law 106-404 106th Congress An Act To improve the ability of Federal agencies to license federally owned inventions. Be it enacted by the Senate and House of Representatives of the United States of America in Congress assembled, SECTION 1. SHORT

  19. Technology Name

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Tech Fact Sheet Site Project & Identifier Tech Stage: Development DE-EM0000598 D&D KM-IT For the deployment of Information Technology for D&D knowledge management Page 1 of 2 Florida International University Florida D&D Knowledge Management Information Tool Challenge Deactivation and decommissioning (D&D) work is a high priority across the DOE Complex. The D&D community associated with the various DOE sites has gained extensive knowledge and experience over the years. To

  20. Building Technologies Office Window and Envelope Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Building Technologies Office Window and Envelope Technologies Emerging Technologies R&D Program Karma Sawyer, Ph.D. karma.sawyer@ee.doe.gov BTO Goal Reduce building energy use by ...

  1. NETL Technologies Recognized for Technology Development, Transfer |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Recognized for Technology Development, Transfer NETL Technologies Recognized for Technology Development, Transfer October 25, 2013 - 1:31pm Addthis Did you know? The Federal Laboratory Consortium for Technology Transfer is the nationwide network of federal laboratories that provides the forum to develop strategies and opportunities for linking laboratory mission technologies and expertise with the marketplace. In consonance with the Federal Technology Transfer Act of

  2. High Impact Technology Catalyst: Technology Deployment Strategies |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Catalyst: Technology Deployment Strategies High Impact Technology Catalyst: Technology Deployment Strategies The Energy Department released the High Impact Technology Catalyst: Technology Deployment Strategies to serve as an overview of the HIT Catalyst program activities, including a summary of the selection process undertaken to identify, evaluate and prioritize the current HITs, descriptions of the technologies and markets for each HIT, and plans for deployment. High

  3. Nuclear Science & Technology

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Nuclear Science & Technology Nuclear Science & Technology1354608000000Nuclear Science & TechnologySome of these resources are LANL-only and will require Remote Access. No...

  4. NREL: Technology Transfer - Ombuds

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Technology Transfer Ombuds NREL's Technology Transfer Ombuds offers an informal process to help resolve issues and concerns regarding the laboratory's technology partnership,...

  5. Hydrogen Technologies Group

    SciTech Connect

    Not Available

    2008-03-01

    The Hydrogen Technologies Group at the National Renewable Energy Laboratory advances the Hydrogen Technologies and Systems Center's mission by researching a variety of hydrogen technologies.

  6. Distributed Energy Technology Characterization (Desiccant Technologies...

    Energy.gov [DOE] (indexed site)

    desiccant technology and applications, and to show how these technologies can be designed to utilize the available thermal energy from a combined heat and power (CHP) system. ...

  7. Vehicle Technologies Office: 2009 Advanced Vehicle Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Vehicle Technologies Office: 2008 Advanced Vehicle Technology Analysis and ...

  8. Vehicle Technologies Office: 2014 Electric Drive Technologies...

    Energy.gov [DOE] (indexed site)

    Electric Drive Technologies research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge ...

  9. 2016 Annual Technology Baseline

    DOE Data Explorer

    Hand, Maureen; Kurup, Parthiv

    2016-09-15

    Current and future cost and performance data for electricity generating technologies, including both renewable and conventional technologies.

  10. Technology Partnership Agreements | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Technology Investment Agreements Technology Investment Agreements Guidance Policy Flash 2006-31 - Technology Investment Agreements Financial Assistance Letter 2006-03 - Guidance for Awarding Technology Investment Agreements Final Rule - Financial Assistance Regulations - Technology Investment Agreements Templates Company Template (Expenditure-Based) Consortium Template (Expenditure-Based) Company Template (Fixed Support) Consortium Support (Fixed Support) Training Technology Investment

  11. "Code(a)","End Use","Total","Electricity(b)","Fuel Oil","Diesel Fuel(c)","Natural Gas(d)","NGL(e)","Coke and Breeze)","Other(f)"

    Energy Information Administration (EIA) (indexed site)

    2 Relative Standard Errors for Table 5.2;" " Unit: Percents." ,,,,,"Distillate" ,,,,,"Fuel Oil",,,"Coal" "NAICS",,,"Net","Residual","and",,"LPG and","(excluding Coal" "Code(a)","End Use","Total","Electricity(b)","Fuel Oil","Diesel Fuel(c)","Natural Gas(d)","NGL(e)","Coke and Breeze)&

  12. "End Use","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural Gas(c)","NGL(d)","Coke and Breeze)","Other(e)"

    Energy Information Administration (EIA) (indexed site)

    6 Relative Standard Errors for Table 5.6;" " Unit: Percents." " "," ",," ","Distillate"," "," ",," " " ",,,,"Fuel Oil",,,"Coal" " "," ","Net","Residual","and",,"LPG and","(excluding Coal"," " "End Use","Total","Electricity(a)","Fuel Oil","Diesel

  13. Texas Sales of Distillate Fuel Oil by End Use

    Energy Information Administration (EIA) (indexed site)

    ,329,790 5,693,270 6,373,078 6,688,629 6,914,481 7,837,118 1984-2014 Residential 67 28 127 102 16 59 1984-2014 Commercial 136,419 100,886 184,312 173,303 142,268 132,601 1984-2014 Industrial 189,981 197,024 233,292 241,601 240,179 270,760 1984-2014 Oil Company 210,865 316,523 541,640 736,186 679,737 886,957 1984-2014 Farm 201,769 207,183 243,170 216,915 190,572 222,849 1984-2014 Electric Power 19,495 15,646 23,156 20,022 20,706 24,700 1984-2014 Railroad 429,026 467,128 498,006 483,096 504,823

  14. U.S. Adjusted Sales of Kerosene by End Use

    Energy Information Administration (EIA) (indexed site)

    Area: U.S. East Coast (PADD 1) New England (PADD 1A) Connecticut Maine Massachusetts New Hampshire Rhode Island Vermont Central Atlantic (PADD 1B) Delaware District of Columbia Maryland New Jersey New York Pennsylvania Lower Atlantic (PADD 1C) Florida Georgia North Carolina South Carolina Virginia West Virginia Midwest (PADD 2) Illinois Indiana Iowa Kansas Kentucky Michigan Minnesota Missouri Nebraska North Dakota Ohio Oklahoma South Dakota Tennessee Wisconsin Gulf Coast (PADD 3) Alabama

  15. U.S. Sales of Kerosene by End Use

    Energy Information Administration (EIA) (indexed site)

    Area: U.S. East Coast (PADD 1) New England (PADD 1A) Connecticut Maine Massachusetts New Hampshire Rhode Island Vermont Central Atlantic (PADD 1B) Delaware District of Columbia Maryland New Jersey New York Pennsylvania Lower Atlantic (PADD 1C) Florida Georgia North Carolina South Carolina Virginia West Virginia Midwest (PADD 2) Illinois Indiana Iowa Kansas Kentucky Michigan Minnesota Missouri Nebraska North Dakota Ohio Oklahoma South Dakota Tennessee Wisconsin Gulf Coast (PADD 3) Alabama

  16. Energy End-Use Intensities in Commercial Buildings

    Energy Information Administration (EIA) (indexed site)

    Intensities The purpose of this section is to provide information on how energy was used for space conditioning--heating, cooling, and ventilation--in commercial...

  17. Energy End-Use Intensities in Commercial Buildings

    Energy Information Administration (EIA) (indexed site)

    Active Solar: As an energy source, energy from the sun collected and stored using mechanical pumps or fans to circulate heat-laden fluids or air between solar collectors and the...

  18. Energy End-Use Intensities in Commercial Buildings

    Energy Information Administration (EIA) (indexed site)

    2. Energy Use in Commercial Buildings The purpose of this section is to provide an overview of how energy was used in commercial buildings. Focusing on 1989 buildings, the section...

  19. Energy End-Use Intensities in Commercial Buildings1995 -- Overview...

    Energy Information Administration (EIA) (indexed site)

    by the Commercial Buildings Energy Consumption Survey (CBECS) and (2) building energy simulations provided by the Facility Energy Decision Screening (FEDS) system. The...

  20. Energy End-Use Intensities in Commercial Buildings1995 -- Tables

    Energy Information Administration (EIA) (indexed site)

    model using survey data from the 1995 commercial buildings energy consumption survey and building energy simulations provided by the Facility Energy Decision Screening system....

  1. South Dakota Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update

    Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New...

  2. New York Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update

    Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New...

  3. Rhode Island Natural Gas Consumption by End Use

    Annual Energy Outlook

    Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New...

  4. West Virginia Natural Gas Consumption by End Use

    Annual Energy Outlook

    Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New...

  5. North Dakota Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update

    Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New...

  6. North Carolina Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update

    Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New...

  7. New Hampshire Natural Gas Consumption by End Use

    Annual Energy Outlook

    Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New...

  8. ,"South Carolina Natural Gas Consumption by End Use"

    Energy Information Administration (EIA) (indexed site)

    ... 35139,,3741,2190 35170,,2996,1884 35200,,954,1154 35231,,547,997 ... 35626,,517,989 35657,,449,1004 35688,,471,1884 35718,,637,1167 35749,,2424,1757 ...

  9. Energy End-Use Intensities in Commercial Buildings 1992 - Index...

    Energy Information Administration (EIA) (indexed site)

    Author Contact: Joelle.Michaels@eia.doe.gov Joelle Michaels CBECS Survey Manager URL: http:www.eia.govconsumptioncommercialdataarchivecbecscbecs1d.html separater bar...

  10. Florida Sales of Distillate Fuel Oil by End Use

    Energy Information Administration (EIA) (indexed site)

    840,100 2,027,012 1,914,621 1,918,039 2,023,650 2,038,923 1984-2014 Residential 1,551 1,820 1,085 572 451 728 1984-2014 Commercial 126,292 113,313 100,791 104,860 113,873 110,082 ...

  11. West Virginia Natural Gas Consumption by End Use

    Energy Information Administration (EIA) (indexed site)

    6,180 6,835 NA 12,049 10,209 8,676 2001-2016 Residential 1,242 2,132 2,485 5,340 4,215 2,679 1989-2016 Commercial 1,547 1,923 2,034 3,648 3,015 2,308 1989-2016 Industrial 1,849 ...

  12. Louisiana Sales of Distillate Fuel Oil by End Use

    Energy Information Administration (EIA) (indexed site)

    514,474 1,744,771 1,873,769 1,488,986 1,405,392 1,375,580 1984-2014 Residential 1,036 140 34 53 84 89 1984-2014 Commercial 59,689 38,695 39,659 36,840 17,590 21,197 1984-2014 Industrial 21,826 26,063 20,770 33,052 31,744 33,670 1984-2014 Oil Company 243,789 319,394 364,261 245,303 183,801 178,810 1984-2014 Farm 42,624 44,027 49,985 48,462 40,785 46,134 1984-2014 Electric Power 4,321 4,775 5,464 2,733 4,610 4,826 1984-2014 Railroad 18,345 25,425 32,515 28,110 39,578 45,790 1984-2014 Vessel

  13. Mississippi Sales of Distillate Fuel Oil by End Use

    Energy Information Administration (EIA) (indexed site)

    835,855 800,065 771,577 830,756 806,396 819,763 1984-2014 Residential 5 5 4 7 7 8 1984-2014 Commercial 26,641 23,713 26,383 26,386 24,019 28,803 1984-2014 Industrial 21,853 18,362 15,450 20,153 21,186 19,595 1984-2014 Oil Company 3,955 4,262 4,058 6,226 7,450 6,419 1984-2014 Farm 41,080 57,087 52,559 81,878 84,753 79,443 1984-2014 Electric Power 3,796 3,393 2,019 1,674 2,223 1,921 1984-2014 Railroad 24,727 17,936 37,741 29,848 32,550 35,578 1984-2014 Vessel Bunkering 141,302 93,384 58,285 58,505

  14. New Jersey Natural Gas Consumption by End Use

    Energy Information Administration (EIA) (indexed site)

    Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources &

  15. Distribution Category UC-98 Consumption End-Use A Comparison...

    Energy Information Administration (EIA) (indexed site)

    buildings) as well as a list of large buildings in each metropolitan area. MECS is based upon a comprehensive list of manufactures that is maintained by the Census Bureau for...

  16. End-use Breakdown: The Building Energy Modeling Blog

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Modeling Blog en EnergyPlus Logo Debuts on Revit Toolbar http:energy.goveerebuildingsarticlesenergyplus-logo-debuts-revit-toolbar

  17. Gulf of Mexico Natural Gas Consumption by End Use

    Energy Information Administration (EIA) (indexed site)

    Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2009 2010 2011 2012 2013 2014 View ...

  18. CBECS 1989 - Energy End-use Intensities in Commercial Buildings...

    Energy Information Administration (EIA) (indexed site)

    the sampling error is nonzero and unknown for the particular sample chosen, the sample design permits sampling errors to be estimated. Due to the complexity of the sample design,...

  19. Renewable Electricity Futures Study. Volume 3: End-Use Electricity...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... logically be expected to have an impact on the way in which energy is generated, delivered, and used, whether by specific controls or through pricing incentives or disincentives. ...

  20. Energy Information Administration - Table 2. End Uses of Fuel...

    Gasoline and Diesel Fuel Update

    -- -- -- Net Electricity 74 79 76 Residual Fuel Oil 19 * 11 Natural Gas 369 329 272 Machine Drive -- -- -- Net Electricity 68 86 77 Notes 1. The North American Industry...

  1. New Mexico Sales of Distillate Fuel Oil by End Use

    Gasoline and Diesel Fuel Update

    Vessel Bunkering 0 0 0 0 0 0 1984-2014 On-Highway 432,794 472,924 495,600 495,026 484,394 504,615 1984-2014 Military 582 306 859 572 405 682 1984-2014 Off-Highway 5,729 24,907 ...

  2. Alabama Sales of Distillate Fuel Oil by End Use

    Gasoline and Diesel Fuel Update

    Vessel Bunkering 61,852 65,017 41,339 25,542 24,650 20,222 1984-2014 On-Highway 657,070 711,371 717,466 705,904 754,337 768,994 1984-2014 Military 2,014 2,203 2,135 1,649 1,326 ...

  3. 1999 Commercial Buildings Characteristics--End-Use Equipment

    Energy Information Administration (EIA) (indexed site)

    586-8800. Energy Information Administration Commercial Buildings Energy Consumption Survey Cooling Equipment Packaged air conditioning units were the predominant type of cooling...

  4. End-Use Intensity in Commercial Buildings 1992 (TABLES)

    Energy Information Administration (EIA) (indexed site)

    3 9 21 5 64 1 9 Food Service . . . . . . . . . . . . . . 307 43 53 9 37 28 116 17 1 5 Health Care . . . . . . . . . . . . . . . 403 88 32 11 128 52 30 6 15 41 Lodging . . . . . ....

  5. Energy End-Use Intensities in Commercial Buildings

    Energy Information Administration (EIA) (indexed site)

    lighting intensities per lighted square foot-hour (Figure 23). * Food service and health care buildings had the highest water-heating intensities per square foot--more than...

  6. Energy End-Use Intensities in Commercial Buildings

    Gasoline and Diesel Fuel Update

    and stored using mechanical pumps or fans to circulate heat-laden fluids or air between solar collectors and the building. Examples include the use of solar collectors for water...

  7. Biogas end-use in the European community

    SciTech Connect

    Constant, M.; Naveau, H.; Nyns, E.J. ); Ferrero, G.L.

    1989-01-01

    In Europe over the past few years the generation of biogas for energy and environmental purposes has been gaining in importance. Industrial wastewaters, cattle manure, sewage sludges, urban wastes, crop residues, algae and aquatic biomass are all typical of the materials being utilized. In contrast to the extensive inventory of biomethanation processes which has been carried out within the EEC, until recently a detailed, up-to-date investigation of the end-sues of biogas had not been undertaken. To supply the necessary information, the Commission of the European Communities and the Belgian Science Policy Office jointly entrusted a study to the Unit of Bioengineering at the Catholic University of Louvain, Belgium. This book is record of the study and has the following key features: it gives a broad overview of the ongoing use of biogas in Europe; it summarizes available data on storage, purification and engines using biogas; it draws several conclusions concerning the technical and economic viability of the processes; it discusses the problems of using biogas; and it outlines recommendations and future R and D and demonstration projects in the field.

  8. End-Use Sector Flowchart | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    to Industrial Energy Efficiency - Study (Appendix A), June 2015 LARGE INDUSTRIAL FACILITIES BY STATE Energy Use Loss and Opportunities Analysis: U.S. Manufacturing & Mining

  9. Refining and end use study of coal liquids

    SciTech Connect

    Choi, G.

    1998-05-01

    A conceptual design and ASPEN Plus process flowsheet simulation model was developed for a Battelle biomass-based gasification, Fischer-Tropsch (F-T) liquefaction and combined-cycle power plant. This model was developed in a similar manner to those coal liquefaction models that were developed under DOE contract DE-AC22-91PC90027. As such, this process flowsheet simulation model was designed to be a research guidance tool and not a detailed process design tool. However, it does contain some process design features, such as sizing the F-T synthesis reactors. This model was designed only to predict the effects of various process and operating changes on the overall plant heat and material balances, utilities, capital and operating costs.

  10. South Carolina Natural Gas Consumption by End Use

    Energy Information Administration (EIA) (indexed site)

    Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources &

  11. Level: National Data; Row: End Uses within NAICS Codes; Column...

    Gasoline and Diesel Fuel Update

    within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Trillion Btu. ... from noncombustible renewable resources, minus quantities sold and transferred out. ...

  12. Level: National Data; Row: End Uses within NAICS Codes; Column...

    Gasoline and Diesel Fuel Update

    NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. ... from noncombustible renewable resources, minus quantities sold and transferred out. ...

  13. Energy End-Use Intensities in Commercial Buildings 1989 data...

    Energy Information Administration (EIA) (indexed site)

    Buildings Energy Consumption Survey. Divider Bar To View andor Print Reports (requires Adobe Acrobat Reader) - Download Adobe Acrobat Reader If you experience any difficulties,...

  14. Energy End-Use Intensities in Commercial Buildings 1992

    Energy Information Administration (EIA) (indexed site)

    Energy Consumption Survey. divider line To View andor Print Reports (requires Adobe Acrobat Reader) - Download Adobe Acrobat Reader If you experience any difficulties,...

  15. New York Natural Gas Consumption by End Use

    Energy Information Administration (EIA) (indexed site)

    Commercial 40,326 29,003 23,655 17,114 15,142 16,016 1989-2016 Industrial 8,316 7,886 7,536 NA NA NA 2001-2016 Vehicle Fuel 332 367 356 347 336 382 2010-2016 Electric Power 30,569 ...

  16. New Hampshire Natural Gas Consumption by End Use

    Energy Information Administration (EIA) (indexed site)

    Residential 1,136 831 626 307 173 134 1989-2016 Commercial 1,320 991 738 398 255 206 1989-2016 Industrial NA NA NA NA NA 558 2001-2016 Vehicle Fuel 6 7 7 7 6 7 2010-2016 Electric ...

  17. North Dakota Natural Gas Consumption by End Use

    Energy Information Administration (EIA) (indexed site)

    Commercial 1,659 1,211 1,044 430 302 308 1989-2016 Industrial 2,278 2,668 2,094 2,800 2,773 2,197 2001-2016 Vehicle Fuel 0 0 0 0 0 0 2010-2016 Electric Power 407 W W W 605 817

  18. South Carolina Natural Gas Consumption by End Use

    Energy Information Administration (EIA) (indexed site)

    Commercial 3,039 1,881 2,004 1,422 1,279 1,157 1989-2016 Industrial 7,198 7,449 7,168 7,360 6,927 6,691 2001-2016 Vehicle Fuel 2 2 2 4 4 4 2010-2016 Electric Power 7,772 9,878 ...

  19. North Carolina Natural Gas Consumption by End Use

    Energy Information Administration (EIA) (indexed site)

    Commercial 8,013 4,335 3,791 2,915 2,615 2,617 1989-2016 Industrial 10,069 9,211 8,646 8,450 7,678 7,751 2001-2016 Vehicle Fuel 7 8 8 11 11 13 2010-2016 Electric Power 24,806 ...

  20. South Dakota Natural Gas Consumption by End Use

    Energy Information Administration (EIA) (indexed site)

    Commercial 1,405 1,061 826 485 304 301 1989-2016 Industrial 3,932 3,785 3,644 3,479 3,385 3,400 2001-2016 Vehicle Fuel 0 0 0 0 0 0 2010-2016 Electric Power 625 605 779 714 847 ...

  1. New Jersey Natural Gas Consumption by End Use

    Energy Information Administration (EIA) (indexed site)

    Commercial 20,511 15,436 11,773 9,176 8,184 8,016 1989-2016 Industrial 4,867 4,286 4,618 4,195 4,420 4,647 2001-2016 Vehicle Fuel 20 22 21 20 20 22 2010-2016 Electric Power 21,592 ...

  2. New Mexico Natural Gas Consumption by End Use

    Energy Information Administration (EIA) (indexed site)

    Commercial 2,913 2,300 1,654 1,340 1,091 NA 1989-2016 Industrial 1,441 1,409 NA NA NA NA 2001-2016 Vehicle Fuel 16 17 17 15 14 16 2010-2016 Electric Power 5,881 6,156 6,424 6,452 ...

  3. Rhode Island Natural Gas Consumption by End Use

    Energy Information Administration (EIA) (indexed site)

    Commercial 1,767 1,261 988 555 237 176 1989-2016 Industrial 799 760 728 691 652 605 2001-2016 Vehicle Fuel 7 8 8 8 8 9 2010-2016 Electric Power 2,533 4,496 2,943 5,008 4,767 5,976

  4. ,"South Dakota Natural Gas Consumption by End Use"

    Energy Information Administration (EIA) (indexed site)

    ... 37271,4603,2030,1519,1045,,9 37302,4036,1730,1309,851,,145 37330,4766,1947,1414,1343,,61 37361,3060,1235,968,795,,62 37391,2078,759,555,706,,58 ...

  5. ,"North Carolina Natural Gas Consumption by End Use"

    Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","North Carolina Natural Gas Consumption by End ... 10:31:26 AM" "Back to Contents","Data 1: North Carolina Natural Gas Consumption by End ...

  6. U.S. Natural Gas Consumption by End Use

    Energy Information Administration (EIA) (indexed site)

    Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland ... Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio ...

  7. District of Columbia Natural Gas Consumption by End Use

    Energy Information Administration (EIA) (indexed site)

    Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources &

  8. District of Columbia Natural Gas Consumption by End Use

    Energy Information Administration (EIA) (indexed site)

    Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions,

  9. ,"New Jersey Natural Gas Consumption by End Use"

    Energy Information Administration (EIA) (indexed site)

    ...,20576,14730,6914,,10275 38122,39871,8867,9693,5860,,15451 38153,33708,6026,8360,5823,,13500 38183,33345,5433,7004,5549,,15358 38214,34799,5428,7656,5364,,16351 ...

  10. New Mexico Natural Gas Consumption by End Use

    Energy Information Administration (EIA) (indexed site)

    41,194 241,137 246,418 243,961 245,502 246,178 1997-2014 Lease and Plant Fuel 1967-1998 Lease Fuel 49,655 49,070 47,556 47,696 47,018 49,406 1983-2014 Plant Fuel 36,827 35,289...

  11. U.S. Natural Gas Consumption by End Use

    Energy Information Administration (EIA) (indexed site)

    Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources &

  12. U.S. Natural Gas Consumption by End Use

    Energy Information Administration (EIA) (indexed site)

    Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions,

  13. Vehicle Technologies Office Propulsion Materials Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Vehicle Technologies Office Propulsion Materials Technologies Jerry Gibbs eere.energy.gov 2 | Vehicle Technologies Program Materials Technologies Materials Technologies $35.6 M Lightweight Materials $28.5 M Values are FY15 enacted Propulsion Materials $7.1 M Properties and Manufacturing Multi-Material Enabling Modeling & Computational Mat. Sci. Engine Materials, Cast Al & Fe High Temp Alloys Exhaust Sys. Materials, Low T Catalysts Lightweight Propulsion FY13 Enacted $27.5 M $11.9 M FY14

  14. Direct Conversion Technology. Progress report, January 1, 1992--June 30, 1992

    SciTech Connect

    Back, L.H.; Fabris, G.; Ryan, M.A.

    1992-07-01

    The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct conversion systems that have potential application for energy conservation in the end-use sectors. Initially, two systems were selected for exploratory research and advanced development. These are Alkali Metal Thermal-to-Electric Converter (AMTEC) and Two-Phase Liquid Metal MD Generator (LMMHD). This report describes progress that has been made during the first six months of 1992 on research activities associated with these two systems. (GHH)

  15. Innovative Technologies for Bioenergy Technologies Incubator...

    Energy.gov [DOE] (indexed site)

    00PM EDT Online The Innovative Technologies for Bioenergy Technologies Incubator 2 FOA Informational Webinar will be held Wednesday, September 2, 1:00 p.m.-2:00 p.m. ET. Standard...

  16. Plasma technology directory

    SciTech Connect

    Ward, P.P.; Dybwad, G.L.

    1995-03-01

    The Plasma Technology Directory has two main goals: (1) promote, coordinate, and share plasma technology experience and equipment within the Department of Energy; and (2) facilitate technology transfer to the commercial sector where appropriate. Personnel are averaged first by Laboratory and next by technology area. The technology areas are accelerators, cleaning and etching deposition, diagnostics, and modeling.

  17. Forest products technologies

    SciTech Connect

    None, None

    2006-07-18

    Report highlights DOE Industrial Technology Program co-funded R&D resulting in commercial energy-efficient technologies and emerging technologies helping the forest products industry save energy.

  18. Jefferson Lab - Technology Transfer

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Welcome to Technology Transfer What is Technology Transfer at Jefferson Lab? Technology transfer and technology partnering are significant mechanisms for DOE laboratories and facilities to engage non-Federal entities to advance technology development and commercialization. Fundamental and applied research at the DOE laboratories have been conduits for technology transfer, collaborating with university and industry colleagues to develop and commercialize products and processes for commercial use.

  19. NETL: SOFC Core Technology

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Core Technology Core Technology-This key technology conducts applied research and development on technologies - exclusive of the cell components - that improve the cost, performance, robustness, reliability, and endurance of SOFC stack or balance-of-plant (BOP) technology. Projects in the Core Technology portfolio focus on interconnects and seals, identify and mitigate stack-related degradation, develop computational tools and models, and conduct laboratory- and bench-scale testing to improve

  20. Morgantown Energy Technology Center, technology summary

    SciTech Connect

    Not Available

    1994-06-01

    This document has been prepared by the DOE Environmental Management (EM) Office of Technology Development (OTD) to highlight its research, development, demonstration, testing, and evaluation activities funded through the Morgantown Energy Technology Center (METC). Technologies and processes described have the potential to enhance DOE`s cleanup and waste management efforts, as well as improve US industry`s competitiveness in global environmental markets. METC`s R&D programs are focused on commercialization of technologies that will be carried out in the private sector. META has solicited two PRDAs for EM. The first, in the area of groundwater and soil technologies, resulted in twenty-one contact awards to private sector and university technology developers. The second PRDA solicited novel decontamination and decommissioning technologies and resulted in eighteen contract awards. In addition to the PRDAs, METC solicited the first EM ROA in 1993. The ROA solicited research in a broad range of EM-related topics including in situ remediation, characterization, sensors, and monitoring technologies, efficient separation technologies, mixed waste treatment technologies, and robotics. This document describes these technology development activities.

  1. Green Purchasing & Green Technology

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Purchasing & Technology Goals 6 & 7: Green Purchasing & Green Technology Our goal is to purchase and use environmentally sustainable products whenever possible and to implement...

  2. CBI Technology Impact Framework

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    CBI Technology Impact Framework 2014 Building Technologies Office Peer Review Images courtesy CREE, True Manufacturing, A.O. Smith, Bernstein Associates, Cambridge Engineering, ...

  3. Promising Technologies List

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    about promising new and underutilized energy-saving technologies available for Federal and commercial building sector deployment. To identify promising technologies,...

  4. NREL: Technology Transfer - Contacts

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    you may have about NREL's technology transfer opportunities. Partnering with NREL Anne Miller, 303-384-7353 Licensing NREL Technologies Eric Payne, 303-275-3166 Printable Version...

  5. Technology Selection Process

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    technologies, including Technical Advisory Groups and the Energy Efficiency Technology Roadmap. Technical Advisory Groups E3T engages stakeholders of electric power industries in...

  6. Hydropower Program Technology Overview

    SciTech Connect

    Not Available

    2001-10-01

    New fact sheets for the DOE Office of Power Technologies (OPT) that provide technology overviews, description of DOE programs, and market potential for each OPT program area.

  7. Science & Technology - 2016

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    technology 2016 july Science & Technology - 2016 July 3D Printing Could Revolutionize ... Talk about being responsive to the needs of your customers. The NIF & Photon Science team ...

  8. Vehicle Technologies Office: News

    Energy.gov [DOE]

    EERE intends to issue, on behalf of its Fuel Cell Technologies Office, a Funding Opportunity Announcement (FOA) entitled "Fuel Cell Technologies Incubator: Innovations in Fuel Cell and Hydrogen...

  9. Fuel Cell Technologies Overview

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fuel Cell Technologies Overview Flow Cell Workshop Washington, DC Dr. Sunita Satyapal & Dr. Dimitrios Papageorgopoulos U.S. Department of Energy Fuel Cell Technologies Program 37...

  10. Fuel Cell Technologies Overview

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fuel Cell Seminar Orlando, FL Dr. Sunita Satyapal U.S. Department of Energy Fuel Cell Technologies Program Program Manager 1112011 2 | Fuel Cell Technologies Program Source: US ...

  11. Fuel Cell Technologies Overview

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fuel Cell Technologies Overview States Energy Advisory Board (STEAB) Washington, DC Dr. Sunita Satyapal U.S. Department of Energy Fuel Cell Technologies Program Program Manager 3...

  12. Sun Materials Technology aka Shanyang Technology | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Technology aka Shanyang Technology Jump to: navigation, search Name: Sun Materials Technology (aka Shanyang Technology) Place: Yilan County, Taiwan Product: A US-Taiwan JV company...

  13. GT Solar Technologies formerly GT Equipment Technologies | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Technologies formerly GT Equipment Technologies Jump to: navigation, search Name: GT Solar Technologies (formerly GT Equipment Technologies) Place: Merrimack, New Hampshire...

  14. Quantum Fuel Systems Technologies Worldwide Inc Quantum Technologies...

    OpenEI (Open Energy Information) [EERE & EIA]

    Fuel Systems Technologies Worldwide Inc Quantum Technologies Jump to: navigation, search Name: Quantum Fuel Systems Technologies Worldwide Inc (Quantum Technologies) Place: Irvine,...

  15. Blue Spark Technologies formerly Thin Battery Technologies Inc...

    OpenEI (Open Energy Information) [EERE & EIA]

    Spark Technologies formerly Thin Battery Technologies Inc Jump to: navigation, search Name: Blue Spark Technologies (formerly Thin Battery Technologies Inc.) Place: Westlake, Ohio...

  16. DOE Vehicle Technologies Program 2009 Merit Review Report - Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Technology Integration and Education DOE Vehicle Technologies Program 2009 Merit Review Report - Technology Integration and Education Merit review of DOE Vehicle Technologies ...

  17. 2010 DOE EERE Vehicle Technologies Program Merit Review … Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Technology Integration 2010 DOE EERE Vehicle Technologies Program Merit Review Technology Integration Technology integration merit review results PDF icon 2010amr08.pdf ...

  18. NREL: Technology Transfer - Commercialization Programs

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    303-275-3051. Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Licensing Agreements Nondisclosure Agreements...

  19. Hydrogen delivery technology roadmap

    SciTech Connect

    None, None

    2005-11-15

    Document describing plan for research into and development of hydrogen delivery technology for transportation applications.

  20. Innovative Process Technologies

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Innovative Process Technologies Research Team Members Key Contacts Innovative Process Technologies Innovative Process Technologies is concerned with the development of innovative costeffective technologies that promote efficiency, environmental performance, availability of advanced energy systems, and the development of computational tools that shorten development timelines of advanced energy systems. NETL, working with members of the NETL-Regional University Alliance (NETL-RUA), will focus on

  1. Soil washing technology evaluation

    SciTech Connect

    Suer, A.

    1995-04-01

    Environmental Restoration Engineering (ERE) continues to review innovative, efficient, and cost effective technologies for SRS soil and/or groundwater remediation. As part of this effort, this technical evaluation provides review and the latest information on the technology for SRS soil remediation. Additional technology evaluation reports will be issued periodically to update these reports. The purpose of this report is to review the soil washing technology and its potential application to SRS soil remediation. To assess whether the Soil Washing technology is a viable option for SRS soil remediation, it is necessary to review the technology/process, technology advantages/limitations, performance, applications, and cost analysis.

  2. NATIONAL ENERGY TECHNOLOGY LABORATORY Technology Transfer

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    The unique technology allows operators to optimize the processing to improve material yield, decrease energy use, and improve safety systems. Specialty metals, such as titanium or ...

  3. Thermally Activated Technologies Technology Roadmap, May 2003...

    Energy.gov [DOE] (indexed site)

    technologies for converting America's wasted heat resources into a reservoir of pollution-free energy for electric power, heating, cooling, refrigeration, and humidity control. ...

  4. NATIONAL ENERGY TECHNOLOGY LABORATORY Technology Transfer Novel...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Novel PlatinumChromium Alloy for the Manufacture of Improved Coronary Stents Success Story NETL Technology Transfer Group techtransfer@netl.doe.gov Contact Partners A coronary...

  5. National Energy Technology Laboratory Technologies Available...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels ...

  6. TECHNOLOGY TRANSFER COORDINATORS

    Office of Energy Efficiency and Renewable Energy (EERE)

    Mark Hartney, Director of the Office of Strategic Planning, SLAC, discussed technology transfer at SLAC. Bob Hwang, Director, Transportation Energy Center, Combustion Research Facility, SNL presented on technology transfer at SNL. Elsie Quaite-Randall, Chief Technology Transfer Officer, Innovation and Partnerships Office, LBNL, presented on technology transfer at LBNL. Richard A. Rankin, Director, Industrial Partnerships Office and Economic Development Office (Interim), LLNL, presented on technology transfer at LLNL.

  7. Materials Science and Technology

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    PADSTE » ADEPS » MST Materials Science and Technology Providing world-leading, innovative, and agile materials science and technology solutions for national security missions. MST is metallurgy. The Materials Science and Technology Division provides scientific and technical leadership in materials science and technology for Los Alamos National Laboratory. READ MORE MST is engineered materials. The Materials Science and Technology Division provides scientific and technical leadership in

  8. NATIONAL ENERGY TECHNOLOGY LABORATORY Technology Transfer NETL Technology for Safer,

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Technology for Safer, Cleaner Corrosion-Protecting Metal Coatings Licensed by Pittsburgh Start-Up Success Story Corrosion-related issues cost the U.S. economy $276 billion a year. The Energy Department's National Energy Technology Laboratory (NETL) teamed up with Carnegie Mellon University (CMU) to create a revolutionary, cost-effective technology to reduce that impact-work that resulted in the creation of a new CMU/NETL spin-off that signed a licensing agreement with the laboratory in June. The

  9. Advanced technologies for decontamination and conversion of scrap metal

    SciTech Connect

    MacNair, V.; Muth, T.; Shasteen, K.; Liby, A.; Hradil, G.; Mishra, B.

    1996-12-31

    In October 1993, Manufacturing Sciences Corporation was awarded DOE contract DE-AC21-93MC30170 to develop and test recycling of radioactive scrap metal (RSM) to high value and intermediate and final product forms. This work was conducted to help solve the problems associated with decontamination and reuse of the diffusion plant barrier nickel and other radioactively contaminated scrap metals present in the diffusion plants. Options available for disposition of the nickel include decontamination and subsequent release or recycled product manufacture for restricted end use. Both of these options are evaluated during the course of this research effort. work during phase I of this project successfully demonstrated the ability to make stainless steel from barrier nickel feed. This paved the way for restricted end use products made from stainless steel. Also, after repeated trials and studies, the inducto-slag nickel decontamination process was eliminated as a suitable alternative. Electro-refining appeared to be a promising technology for decontamination of the diffusion plant barrier material. Goals for phase II included conducting experiments to facilitate the development of an electro-refining process to separate technetium from nickel. In parallel with those activities, phase II efforts were to include the development of the necessary processes to make useful products from radioactive scrap metal. Nickel from the diffusion plants as well as stainless steel and carbon steel could be used as feed material for these products.

  10. SHARED TECHNOLOGY TRANSFER PROGRAM

    SciTech Connect

    GRIFFIN, JOHN M. HAUT, RICHARD C.

    2008-03-07

    The program established a collaborative process with domestic industries for the purpose of sharing Navy-developed technology. Private sector businesses were educated so as to increase their awareness of the vast amount of technologies that are available, with an initial focus on technology applications that are related to the Hydrogen, Fuel Cells and Infrastructure Technologies (Hydrogen) Program of the U.S. Department of Energy. Specifically, the project worked to increase industry awareness of the vast technology resources available to them that have been developed with taxpayer funding. NAVSEA-Carderock and the Houston Advanced Research Center teamed with Nicholls State University to catalog NAVSEA-Carderock unclassified technologies, rated the level of readiness of the technologies and established a web based catalog of the technologies. In particular, the catalog contains technology descriptions, including testing summaries and overviews of related presentations.

  11. The Role of Technology for Achieving Climate Policy Objectives: Overview of the EMF 27 Study on Technology Strategies and Climate Policy Scenarios

    SciTech Connect

    Kriegler, Elmar; Weyant, John; Blanford, Geoffrey J.; Krey, Volker; Clarke, Leon E.; Edmonds, James A.; Fawcett, Allen A.; Luderer, Gunnar; Riahi, Keywan; Richels, Richard G.; Rose, Steven; Tavoni, Massimo; Van Vuuren, Detlef

    2014-04-01

    This article presents the synthesis of results from the Stanford Energy Modeling Forum Study 27, an inter-comparison of 19 energy-economy and integrated assessment models. The study investigated the value of individual mitigation technologies such as energy intensity improvements, carbon capture and sequestration (CCS), nuclear power, solar and wind power and bioenergy for climate mitigation. Achieving atmospheric greenhouse gas concentration targets at 450 and 550 ppm CO2 equivalent requires massive greenhouse gas emissions reductions. A fragmented policy approach at the level of current ambition is inconsistent with these targets. The availability of a negative emissions technology, in most models biofuels with CCS, proved to be a key element for achieving the climate targets. Robust characteristics of the transformation of the energy system are increased energy intensity improvements and the electrification of energy end use coupled with a fast decarbonization of the electricity sector. Non-electric energy end use is hardest to decarbonize, particularly in the transport sector. Technology is a key element of climate mitigation. Versatile technologies such as CCS and bioenergy have largest value, due in part to their combined ability to produce negative emissions. The individual value of low-carbon power technologies is more limited due to the many alternatives in the sector. The scale of the energy transformation is larger for the 450 ppm than for the 550 ppm CO2e target. As a result, the achievability and the costs of the 450 ppm target are more sensitive to variations in technology variability. Mitigation costs roughly double when moving from 550 ppm to 450 ppm CO2e, but remain below 3% of GDP for most models.

  12. Marine and Hydrokinetic Technology Glossary

    Office of Energy Efficiency and Renewable Energy (EERE)

    Learn about the basic technologies and key terms used to describe marine and hydrokinetic technologies.

  13. FY04 Engineering Technology Reports Technology Base

    SciTech Connect

    Sharpe, R M

    2005-01-27

    Lawrence Livermore National Laboratory's Engineering Directorate has two primary discretionary avenues for its investment in technologies: the Laboratory Directed Research and Development (LDRD) program and the ''Tech Base'' program. This volume summarizes progress on the projects funded for technology-base efforts in FY2004. The Engineering Technical Reports exemplify Engineering's more than 50-year history of researching and developing (LDRD), and reducing to practice (technology-base) the engineering technologies needed to support the Laboratory's missions. Engineering has been a partner in every major program and project at the Laboratory throughout its existence, and has prepared for this role with a skilled workforce and technical resources. This accomplishment is well summarized by Engineering's mission: ''Enable program success today and ensure the Laboratory's vitality tomorrow''. LDRD is the vehicle for creating those technologies and competencies that are cutting edge. These require a significant level of research or contain some unknown that needs to be fully understood. Tech Base is used to apply those technologies, or adapt them to a Laboratory need. The term commonly used for Tech Base projects is ''reduction to practice''. Tech Base projects effect the natural transition to reduction-to-practice of scientific or engineering methods that are well understood and established. They represent discipline-oriented, core competency activities that are multi-programmatic in application, nature, and scope. The objectives of technology-base funding include: (1) the development and enhancement of tools and processes to provide Engineering support capability, such as code maintenance and improved fabrication methods; (2) support of Engineering science and technology infrastructure, such as the installation or integration of a new capability; (3) support for technical and administrative leadership through our technology Centers; and (4) the initial scoping and

  14. Vehicle Technologies Program Implementation

    SciTech Connect

    none,

    2009-06-19

    The Vehicle Technologies Program takes a systematic approach to Program implementation. Elements of this approach include the evaluation of new technologies, competitive selection of projects and partners, review of Program and project improvement, project tracking, and portfolio management and adjustment.

  15. Photovoltaics: A Diverse Technology

    Office of Energy Efficiency and Renewable Energy (EERE)

    This video illustrates the diversity of photovoltaic (PV) technology, which is due to innovations in PV materials, reductions in manufacturing costs, and expanding uses of the technology. A brief...

  16. SSL TECHNOLOGY DEVELOPMENT WORKSHOP

    Energy.gov [DOE]

    Rapid advances in SSL technology make it easy to forget that this technology is still at a relatively early stage of development, and much of its potential remains untapped. The 10th annual DOE SSL...

  17. SSL Technology Development Workshop

    Energy.gov [DOE]

    Rapid advances make it easy to forget that SSL technology is still at a relatively early stage of development, and much of its potential remains untapped. The 10th annual DOE SSL Technology...

  18. Technology Readiness Assessment Guide

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    2011-09-15

    The Guide assists individuals and teams involved in conducting Technology Readiness Assessments (TRAs) and developing Technology Maturation Plans (TMPs) for the DOE capital asset projects subject to DOE O 413.3B. Supersedes DOE G 413.3-4.

  19. Technology Deployment Case Studies

    Energy.gov [DOE]

    Find technology deployment case studies below. Click on each individual project link to see the full case study. You can also view a map of technology deployment case studies.

  20. Technology Transfer Ombudsman Program

    Energy.gov [DOE]

    The Technology Transfer Commercialization Act of 2000, Public Law 106-404 (PDF) was enacted in November 2000.  Pursuant to Section 11, Technology Partnerships Ombudsman, each DOE national...

  1. Tag: technology transfer

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    17all en CNS, UT chemical sensing technology wins R&D 100 Award http:www.y12.doe.govnewspress-releasescns-ut-chemical-sensing-technology-wins-rd-100-award

  2. Benchmarking of Competitive Technologies

    Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  3. Information Technology | Jefferson Lab

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Information Technology The Information Technology Division uses cutting-edge technology to provide high-quality services and capabilities that enable the lab to pursue its research mission in support of the nation's scientific agenda. Leading the division is the chief information officer. The CIO is responsible for providing information from the labs information technology systems to Jefferson Lab management, the overall IT vision, the information architecture for computing and IT, and oversight

  4. TECHNOLOGY READINESS ASSESSMENT

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    DECEMBER 2012 Pathway for readying the next generation of affordable clean energy technology -Carbon Capture, Utilization, and Storage (CCUS) 2012 TECHNOLOGY READINESS ASSESSMENT -OVERVIEW 2 2012 TECHNOLOGY READINESS ASSESSMENT-OVERVIEW 2012 TECHNOLOGY READINESS ASSESSMENT-OVERVIEW 3 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any

  5. Robert Jilek: Pellion Technologies

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Robert Jilek: Pellion Technologies Alumni Link: Opportunities, News and Resources for Former Employees Latest Issue:September 2015 all issues All Issues » submit Robert Jilek: Pellion Technologies Senior research scientist at eastern energy storage startup September 3, 2014 Robert Jilek Robert Jilek Contact Linda Anderman Email Robert Jilek Jilek is currently with Pellion Technologies Bob Jilek is currently spending part of his time in a management role at Pellion Technologies in the Cambridge

  6. Technology Integration Overview

    Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  7. Technology Transfer | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Technology Transfer Through partnerships and licensing of its intellectual property rights, NREL seeks to reduce private sector risk in early stage technologies, enable investment in the adoption of renewable energy and energy efficiency technologies, reduce U.S. reliance on foreign energy sources, reduce carbon emissions, and increase U.S. industrial competitiveness. Text Version View a summary of our Fiscal Year 2015 technology partnership agreements. Learn more about our partnership

  8. Consumer Vehicle Technology Data

    Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  9. Advanced Propulsion Technology Strategy

    Energy.gov [DOE]

    GM is also developing new classes of electrically driven vehicles, leveraging technology first used in their hybrids.

  10. Membrane Technology Workshop

    Energy.gov [DOE]

    Presentation by Charles Page (Air Products & Chemicals, Inc.) for the Membrane Technology Workshop held July 24, 2012

  11. Benchmarking of Competitive Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Laboratory * National Renewable Energy Laboratory * ORNL Team Members - Steve Campbell, Chester Coomer - Andy Wereszczak, Materials Science and Technology Division Partners ...

  12. Geothermal Energy & Drilling Technology

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy & Drilling Technology - Sandia Energy Energy Search Icon Sandia Home Locations ... Atmospheric Radiation Measurement Climate Reasearch Facility Geomechanics and Drilling ...

  13. Building Technologies Program Presentation

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Renewable Energy Building Technologies Program Jerry Dion Acting Program Manager Building Technologies Program State Energy Advisory Board Meeting October 17, 2007 The investment in Buildings R&D yielded an ROI of 15:1 from 1978 to 2000 The Buildings Technologies Program researches and Energy Efficiency & deploys new technologies to make homes and Renewable Energy commercial buildings more affordable, energy efficient, and better performing The investment in Buildings R&D yielded an

  14. Technology Performance Exchange

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... Meeting * Open invitation for peer review 12 | Building Technologies Office ... data flows with Building Component Library * Seamless information flow from ...

  15. Geothermal Technologies Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Jay Nathwani Acting Program Manager Geothermal Technologies Program Office of Energy Efficiency and Renewable Energy The Geothermal Technologies Program Overview May 18 2010 Energy Efficiency & Renewable Energy eere.energy.gov Geothermal Technologies Program (GTP) Program Topic Areas *Low Temperature, Geopressured and Coproduced Resources *Innovative Exploration Technologies National Goals *Economy Putting people to work in the near- term, and in the future *Security Developing and expanding

  16. Carbon Fiber Technology Facility

    Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  17. Biogas Production Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Production Technologies Ruihong Zhang, Professor Biological and Agricultural Engineering University of California, Davis Email: rhzhang@ucdavis.edu Biogas and Fuel Cell Workshop National Renewable Energy Laboratory June 12, 2012 Presentation Outline * Status of anaerobic digestion technologies and opportunities for further development * New UC Davis solid waste digestion technologies applied to commercial projects Anaerobic Digestion Biogas Digester Effluent (residual solids and water) Organic

  18. Technology Performance Exchange

    SciTech Connect

    2015-09-01

    To address the need for accessible, high-quality data, the Department of Energy has developed the Technology Performance Exchange (TPEx). TPEx enables technology suppliers, third-party testing laboratories, and other entities to share product performance data. These data are automatically transformed into a format that technology evaluators can easily use in their energy modeling assessments to inform procurement decisions.

  19. Compression Technology and Needs

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    M ohawk Innovative Technology, Inc. HYDROGEN TRANSMISSION AND DISTRIBUTION WORKSHOP NATIONAL RENEWABLE ENERGY LABORATORY GOLDEN, COLORADO COMPRESSION TECHNOLOGY AND NEEDS Hooshang Heshmat, PH.D. February 25 TH , 2014 ® M ohawk Innovative Technology, Inc. * Overall pipeline delivery steps, production to file up * Different types of compressors * Pipeline compressor development steps and accomplishments * Need for Forecourt Compression system * Other major components: drive, sealing, pipeline,

  20. High Impact Technology Hub

    Energy.gov [DOE]

    The High Impact Technology Hub is a one stop shop for information associated with technology demonstrations in occupied, operational buildings. Resources posted to Hub should accelerate the selection and evaluation of technology demonstration projects and enable transparency into DOEs market stimulation and tech to market activities.

  1. Vehicle Technologies Office

    Energy.gov [DOE]

    The Vehicle Technologies Office is developing more energy efficient and environmentally friendly highway transportation technologies that will enable America to use less petroleum. The long-term aim is to develop "leap frog" technologies that will provide Americans with greater freedom of mobility and energy security, while lowering costs and reducing impacts on the environment.

  2. Vehicle Technologies Office: 2008 Advanced Vehicle Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Vehicle Technologies Office: 2010 Vehicle and Systems Simulation and Testing R&D Annual Progress Report

  3. Vehicle Technologies Office Merit Review 2014: Carbon Fiber Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Carbon Fiber Technology Facility Vehicle Technologies Office Merit Review 2014: Carbon Fiber Technology Facility Presentation given by Oak Ridge National Laboratory at 2014 DOE ...

  4. Fuel Cell Technologies Office: Technology Validation Fact Sheet

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    The Fuel Cell Technologies (FCT) Office, through its Technology Validation program, provides a crucial step in the transition of a technology from the lab to commercialization. ...

  5. Technology Readiness Assessment (TRA)/Technology Maturation Plan...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Readiness Assessment (TRA)Technology Maturation Plan (TMP) Process Guide Technology Readiness ... More Documents & Publications Technology Readiness Assessment Report Small Column Ion ...

  6. Vehicle Technologies Office Merit Review 2015: Vehicle Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Vehicle Technologies Office Overview Vehicle Technologies Office Merit Review 2015: Vehicle Technologies Office Overview Presentation given by U.S. Department of Energy at 2015 DOE ...

  7. Vehicle Technologies Office Merit Review 2015: Advanced Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Advanced Technology Vehicle Lab Benchmarking (L1&L2) Vehicle Technologies Office Merit Review 2015: Advanced Technology Vehicle Lab Benchmarking (L1&L2) Presentation given by Argonne ...

  8. Vehicle Technologies Office: 2008 Oak Ridge Transportation Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Oak Ridge Transportation Technology Program Annual Report Vehicle Technologies Office: 2008 Oak Ridge Transportation Technology Program Annual Report ornlttpreportfy08.pdf (4.58 ...

  9. Technology reviews: Shading systems

    SciTech Connect

    Schuman, J.; Rubinstein, F.; Papamichael, K.; Beltran, L.; Lee, E.S.; Selkowitz, S.

    1992-09-01

    We present a representative review of existing, emerging, and future technology options in each of five hardware and systems areas in envelope and lighting technologies: lighting systems, glazing systems, shading systems, daylighting optical systems, and dynamic curtain wall systems. The term technology is used here to describe any design choice for energy efficiency, ranging from individual components to more complex systems to general design strategies. The purpose of this task is to characterize the state of the art in envelope and lighting technologies in order to identify those with promise for advanced integrated systems, with an emphasis on California commercial buildings. For each technology category, the following activities have been attempted to the extent possible: Identify key performance characteristics and criteria for each technology. Determine the performance range of available technologies. Identify the most promising technologies and promising trends in technology advances. Examine market forces and market trends. Develop a continuously growing in-house database to be used throughout the project. A variety of information sources have been used in these technology characterizations, including miscellaneous periodicals, manufacturer catalogs and cut sheets, other research documents, and data from previous computer simulations. We include these different sources in order to best show the type and variety of data available, however publication here does not imply our guarantee of these data. Within each category, several broad classes are identified, and within each class we examine the generic individual technologies that fall into that class.

  10. Gerar Technology | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Gerar Technology Jump to: navigation, search Name: Gerar Technology Place: Rio de Janeiro, Brazil Product: Developer of new technology for production of biodiesel from vegetable...

  11. EKB Technology | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    EKB Technology Jump to: navigation, search Name: EKB Technology Place: Oxfordshire, United Kingdom Product: Developer of a new bioprocessing technology. Coordinates: 51.813938,...

  12. Rubicon Technology | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Rubicon Technology Jump to: navigation, search Name: Rubicon Technology Place: Franklin Park, Illinois Zip: 60131 Product: Rubicon Technology makes a sapphire substrates for use in...

  13. High Impact Technology Hub- Results

    Energy.gov [DOE]

    Highlights, outcomes and activities to support the adoption of High Impact Technologies. Technology Highlights preview early results from current technology demonstrations. Case Studies overview...

  14. Shorepower Technologies | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Shorepower Technologies Jump to: navigation, search Logo: Shorepower Technologies Name: Shorepower Technologies Address: 2351 NW York St. Place: Portland, Oregon Zip: 97210 Region:...

  15. PCN Technology | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    PCN Technology Jump to: navigation, search Name: PCN Technology Place: San Diego, California Zip: CA 92127 Product: California-based smart grid technology developer. References:...

  16. Briza Technologies | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Briza Technologies Jump to: navigation, search Name: Briza Technologies Place: Hillsborough, New Jersey Zip: 8844 Sector: Wind energy Product: Developing wind turbine technology....

  17. Konarka Technologies | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Technologies Jump to: navigation, search Name: Konarka Technologies Place: Lowell, MA Website: www.konarkatechnologies.com References: Konarka Technologies1 Information About...

  18. Minerals Technologies | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Technologies Jump to: navigation, search Name: Minerals Technologies Place: Bethlehem, PA Website: www.mineralstechnologies.com References: Minerals Technologies1 Information...

  19. Topanga Technologies | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Technologies Place: Canoga Park, California Zip: 91303 Product: Stealth-mode high-intensity discharge (HID) lighting technology developer. References: Topanga Technologies1...

  20. Technology transfer 1994

    SciTech Connect

    Not Available

    1994-01-01

    This document, Technology Transfer 94, is intended to communicate that there are many opportunities available to US industry and academic institutions to work with DOE and its laboratories and facilities in the vital activity of improving technology transfer to meet national needs. It has seven major sections: Introduction, Technology Transfer Activities, Access to Laboratories and Facilities, Laboratories and Facilities, DOE Office, Technologies, and an Index. Technology Transfer Activities highlights DOE`s recent developments in technology transfer and describes plans for the future. Access to Laboratories and Facilities describes the many avenues for cooperative interaction between DOE laboratories or facilities and industry, academia, and other government agencies. Laboratories and Facilities profiles the DOE laboratories and facilities involved in technology transfer and presents information on their missions, programs, expertise, facilities, and equipment, along with data on whom to contact for additional information on technology transfer. DOE Offices summarizes the major research and development programs within DOE. It also contains information on how to access DOE scientific and technical information. Technologies provides descriptions of some of the new technologies developed at DOE laboratories and facilities.

  1. Exploration Technologies Technology Needs Assessment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Technologies Technology Needs Assessment Exploration Technologies Technology Needs Assessment The Exploration Technologies Needs Assessment is a critical component of ongoing technology roadmapping efforts, and will be used to guide the program's research and development. iet_needs_assessment_06-2011.pdf (5.04 MB) More Documents & Publications Draft Innovative Exploration Technologies Needs Assessment Geothermal Technologies Program Annual Peer Review Presentation By Doug Hollett

  2. Environmental Technology Verification of Mobile Sources Control...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Environmental Technology Verification of Mobile Sources Control Technologies Environmental Technology Verification of Mobile Sources Control Technologies 2005 Diesel Engine...

  3. Vehicle Technologies Office: Laboratory Facilities and Collaborative...

    Energy Saver

    Electric Drive Technologies Vehicle Technologies Office: Laboratory Facilities and Collaborative Research for Electric Drive Technologies The Vehicle Technologies Office (VTO) ...

  4. Geothermal Technologies Office - Webmaster | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    - Webmaster Geothermal Technologies Office - Webmaster

  5. Geothermal innovative technologies catalog

    SciTech Connect

    Kenkeremath, D.

    1988-09-01

    The technology items in this report were selected on the basis of technological readiness and applicability to current technology transfer thrusts. The items include technologies that are considered to be within 2 to 3 years of being transferred. While the catalog does not profess to be entirely complete, it does represent an initial attempt at archiving innovative geothermal technologies with ample room for additions as they occur. The catalog itself is divided into five major functional areas: Exploration; Drilling, Well Completion, and Reservoir Production; Materials and Brine Chemistry; Direct Use; and Economics. Within these major divisions are sub-categories identifying specific types of technological advances: Hardware; Software; Data Base; Process/Procedure; Test Facility; and Handbook.

  6. Completed Deepwater Technology Projects

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Deepwater Technology Projects Active Projects | Completed Projects Completed Offshore Deepwater Technology Projects Project Number Project Name Primary Performer 12121-6503-01 Development of Best Practices and Risk Mitigation Measures for Deepwater Cementing in SBM and OBM CSI Technologies 11121-5101-01 Trident: A Human Factors Decision Aid Integrating Deepwater Drilling Tasks, Incidents, and Literature Review Pacific Science & Engineering Group 11121-5503-01 Intelligent BOP RAM Actuation

  7. TECHNOLOGY READINESS ASSESSMENT

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ASSESSMENT JANUARY 2015 -A CHECKPOINT ALONG A CHALLENGING JOURNEY DOE/NETL-2015/1710 U.S. Department of Energy 2014 TECHNOLOGY READINESS ASSESSMENT-CLEAN COAL RESEARCH PROGRAM 2 2014 TECHNOLOGY READINESS ASSESSMENT-CLEAN COAL RESEARCH PROGRAM Office of Fossil Energy | National Energy Technology Laboratory DISCLAIMER 3 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor

  8. 2013 DOE Bioenergy Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Bioenergy Technologies Office (BETO) Project Peer Review Catalytic Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels (2 3 1 12) Technology Area Review: Biochemical Conversion 1 | Bioenergy Technologies Office eere.energy.gov Hydrocarbon Fuels (2.3.1.12) May 22, 2013 Mike Lilga This presentation does not contain any proprietary, confidential, or otherwise restricted information Conversion Organization: PNNL Goal Statement Goals: * There is a need to make a balanced f el composition

  9. Technologies | Argonne National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Technologies Available for Licensing Energy Storage Industrial & Manufacturing Processes Instrumentation & Devices Licensable Software Life Sciences Materials Transportation Fact Sheets and Forms Licensable Technologies Argonne's researchers have developed a wide and diverse range of technologies that have worldwide impact in a variety of fields. Argonne grants licenses for lab-developed intellectual property to existing and start-up companies that are technically and financially capable

  10. Digital Sensor Technology

    SciTech Connect

    Ted Quinn; Jerry Mauck; Richard Bockhorst; Ken Thomas

    2013-07-01

    The nuclear industry has been slow to incorporate digital sensor technology into nuclear plant designs due to concerns with digital qualification issues. However, the benefits of digital sensor technology for nuclear plant instrumentation are substantial in terms of accuracy, reliability, availability, and maintainability. This report demonstrates these benefits in direct comparisons of digital and analog sensor applications. It also addresses the qualification issues that must be addressed in the application of digital sensor technology.

  11. Bioenergy Technologies Presentation

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Technologies State Energy Advisory Board Meeting October 18, 2007 ORNL Jonathan R, Mielenz ORNL Biomass Program Manager & Bioconversion Science and Technology President's State of the Union Address January 2006 Keeping America competitive requires affordable energy. And here we have a serious problem: America is addicted to oil, which is often imported from unstable parts of the world. The best way to break this addiction is through technology.... and we are on the threshold of incredible

  12. Technology Transfer Execution Plan

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Transfer Execution Plan 2016 - 2018 Report to Congress October 2016 United States Department of Energy Washington, DC 20585 Department of Energy | October 2016 Technology Transfer Execution Plan 2016-2018 | Page ii Message from the Secretary On behalf of the U.S. Department of Energy (DOE), I am pleased to present the Department's Technology Transfer Execution Plan (TTEP). This plan is intended to guide DOE, particularly it's Office of Technology Transitions (OTT), in promoting scientific and

  13. Technology Transfer - JCAP

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    PAZ0004_v2.jpg Technology Transfer Who We Are JCAP Mission JCAP At A Glance Fact Sheets Organizational Chart Recent Science Technology Transfer Awards & Honors Senior Management Scientific Leadership Researchers Governance & Advisory Boards Operations & Administration Who we are Overview JCAP Mission JCAP At A Glance Fact Sheets Organizational Chart Our Achievements Recent Science Technology Transfer Awards & Honors Our People Senior Management Scientific Leadership Researchers

  14. Technology Transfer Partnership Ombuds

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Tech Transfer Ombuds Technology Transfer Partnership Ombuds The mission of the Ombuds Office is to enhance communication and mitigate conflict at the Laboratory. Contact (505) 665-2837 Email Anonymous Helpline (505) 667-9370 Technology transfer dispute resolution The Ombuds Program offers dispute resolution assistance to the Laboratory's external stakeholders in areas of technology transfer and other community-based affairs that is consistent with Ombuds Standards of practice. Scope To serve as

  15. Jefferson Lab - Technology Transfer

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Technology Review Committee The Technology Review Committee was established by Jefferson Lab's Director's Council to oversee the intellectual property of the Laboratory. The Committee, composed of representatives of all Divisions, is charged with facilitating the transfer of technology and inventions, developed at the Laboratory, to the private sector. This activity takes on a variety of forms, from establishing Memoranda of Understanding (MOUs), Cooperative Research and Development Agreements

  16. Technology Pathway Selection Effort

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    BIOMASS PROGRAM Technology Pathway Selection Effort Alicia Lindauer 27 November 2012 2 | Biomass Program eere.energy.gov * Setting R&D priorities * Benchmarking * Informing multi-sectoral analytical activities * Track Program R&D progress against goals * Identify technology process routes and prioritize funding * Program direction decisions: * Are we spending our money on the right technology pathways? * Within a pathway: Are we focusing our funding on the highest priority activities?

  17. Geothermal Technologies Office March

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Report Geothermal Technologies Office March 2015 The 2014 Annual Report of the Geothermal Technologies Office is a product of the United States Department of Energy, Office of Energy Efficiency and Renewable Energy. DOE/EERE-1160 * March 2015 This report spans calendar year 2014 achievements. Photographs are accredited herein. back cover photo: Geothermal heat at Pilgrim Hot Springs, Alaska. Source: C. Pike at the Alaska Center for Energy and Power 2014 Annual Report Geothermal Technologies

  18. Marine & Hydrokinetic Technologies

    SciTech Connect

    2011-07-01

    This fact sheet describes the Wind and Water Power Program's current approach to supporting the development and deployment of marine and hydrokinetic technologies.

  19. Benchmarking of Competitive Technologies

    Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  20. Fuel Cell Technologies Budget

    SciTech Connect

    EERE

    2012-03-16

    The Fuel Cell Technologies Office receives appropriations from Energy and Water Development. The offices's major activities and budget are outlined in this Web page.