National Library of Energy BETA

Sample records for thermoelectric energy conversion

  1. Challenges and Opportunities in Thermoelectric Energy Conversion...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Conversion Challenges and Opportunities in Thermoelectric Energy Conversion 2004 ... Recent Device Developments with Advanced Bulk Thermoelectric Materials at RTI

  2. Solar Thermoelectric Energy Conversion | Department of Energy

    Energy.gov [DOE] (indexed site)

    Efficiencies of different types of solar thermoelectric generators were predicted using ... More Documents & Publications Solar Thermoelectric Energy Conversion Progress from DOE EF ...

  3. Nanostructured High Temperature Bulk Thermoelectric Energy Conversion...

    Energy.gov [DOE] (indexed site)

    Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion for Efficient Automotive Waste Heat Recovery Multi-physics modeling of thermoelectric generators for waste ...

  4. Solar Thermoelectric Energy Conversion

    Office of Energy Efficiency and Renewable Energy (EERE)

    Efficiencies of different types of solar thermoelectric generators were predicted using theoretical modeling and validated with measurements using constructed prototypes under different solar intensities

  5. Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion...

    Energy.gov [DOE] (indexed site)

    Nanostructured High Temperature Bulk Thermoelectric Energy Conversion for Efficient Waste Heat Recovery Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion for ...

  6. Thermoelectrics | Solid State Solar Thermal Energy Conversion

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Thermoelectrics One of the central themes of S3TEC is to develop more efficient thermoelectric materials to directly convert heat into electricity via the Seebeck effect, or provide cooling via the Peltier effect. Their ability to harvest waste heat and deliver cooling power through solid-state devices without moving parts makes them important candidates of sustainable energy technologies in the future. Despite the benefits, the current bottleneck of thermoelectric technology is its relatively

  7. Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion for

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Efficient Automotive Waste Heat Recovery | Department of Energy High-Temperature Bulk Thermoelectric Energy Conversion for Efficient Automotive Waste Heat Recovery Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion for Efficient Automotive Waste Heat Recovery 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting ace082_caylor_2012_o.pdf (866.98 KB) More Documents & Publications Nanostructured High

  8. Complex oxides useful for thermoelectric energy conversion

    SciTech Connect

    Majumdar, Arunava; Ramesh, Ramamoorthy; Yu, Choongho; Scullin, Matthew L.; Huijben, Mark

    2012-07-17

    The invention provides for a thermoelectric system comprising a substrate comprising a first complex oxide, wherein the substrate is optionally embedded with a second complex oxide. The thermoelectric system can be used for thermoelectric power generation or thermoelectric cooling.

  9. Modeling Energy Recovery Using Thermoelectric Conversion Integrated with an Organic Rankine Bottoming Cycle

    SciTech Connect

    Miller, Erik W.; Hendricks, Terry J.; Peterson, Richard B.

    2009-07-01

    Hot engine exhaust represents a resource that is often rejected to the environment without further utilization. This resource is most prevalent in the transportation sector, but stationary engine-generator systems also typically do not utilize this resource. Engine exhaust is a source of high grade thermal energy that can potentially be utilized by various approaches to produce electricity or to drive heating and cooling systems. This paper describes a model system that employs thermoelectric conversion as a topping cycle integrated with an organic Rankine bottoming cycle for waste heat utilization. This approach is being developed to fully utilize the thermal energy contained in hot exhaust streams. The model is composed of a high temperature heat exchanger which extracts thermal energy for driving the thermoelectric conversion elements. However, substantial sensible heat remains in the exhaust stream after emerging from the heat exchanger. The model incorporates a closely integrated bottoming cycle to utilize this remaining thermal energy in the exhaust stream. The model has many interacting parameters that define combined system quantities such as overall output power, efficiency, and total energy utilization factors. In addition, the model identifies a maximum power operating point for the system. That is, the model can identify the optimal amount of heat to remove from the exhaust flow to run through the thermoelectric elements. Removing too much or too little heat from the exhaust stream in this stage will reduce overall cycle performance. The model has been developed such that heat exchanger UAh values, thermal resistances, ZT values, and multiple thermoelectric elements can be investigated in the context of system operation. The model also has the ability to simultaneously determine the effect of each cycle design parameter on the performance of the overall system, thus giving the ability to utilize as much waste heat as possible. Key analysis results are

  10. Sandia Energy thermo-electric power conversion technology

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Sandia's Supercritical Carbon-DioxideBrayton-Cycle Laboratory Signs Important MOU with Industry Partners http:energy.sandia.govsandias-supercritical-carbon-dioxidebrayton-cycle...

  11. Upscaling Nanowires for Thermoelectric power conversion

    SciTech Connect

    Mishra, Nimai; Hollingsworth, Jennifer Ann

    2015-01-12

    This report presents an overview of doctoral research pertaining to thermoelectric power conversion.

  12. Progress from DOE EF RC: Solid-State Solar-Thermal Energy Conversion...

    Energy.gov [DOE] (indexed site)

    on phonon transport and solar thermoelectric energy conversion chen.pdf (2.01 MB) More Documents & Publications Solar Thermoelectric Energy Conversion Solar Thermoelectric ...

  13. Thermoelectric Conversion of Waste Heat to Electricity in an...

    Energy.gov [DOE] (indexed site)

    used as an energy recovery system auxiliary power unit in an over-the-road truck system. schock.pdf (2.64 MB) More Documents & Publications Thermoelectric Conversion of Wate

  14. Thermoelectric Conversion of Waste Heat to Electricity in an...

    Energy.gov [DOE] (indexed site)

    truck schock.pdf (2.38 MB) More Documents & Publications Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle Thermoelectric Conversion of Wate

  15. Thermoelectric Conversion of Waste Heat to Electricity in an...

    Energy.gov [DOE] (indexed site)

    Waste Heat to Electricity in an IC Engine-Powered Vehicle Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle Thermoelectric Conversion of Wate

  16. Thermoelectric Conversion of Waste Heat to Electricity in an...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    MB) More Documents & Publications Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle Thermoelectric Conversion of Waste Heat to Electricity ...

  17. Thermoelectric Conversion of Waste Heat to Electricity in an...

    Energy.gov [DOE] (indexed site)

    (1.82 MB) More Documents & Publications Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle Thermoelectric Conversion of Wate

  18. S3TEC Thermoelectrics Meeting | Solid State Solar Thermal Energy Conversion

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Thermoelectrics Meeting Meeting Tuesday Dec 13, 2016 1:00pm Location: 3-434 Event Contact: zhoujw20@MIT.EDU

  19. Correlation Between Structure and Thermoelectric Properties of Bulk High Performance Materials for Energy Conversion

    Energy.gov [DOE]

    Rapid solidified precursor converted into crystalline bulks under pressure produced thermoelectric materials of nano-sized grains with strongly coupled grain boundaries, achieving reduced lattice thermal conductivity and increased power factor

  20. Thermal to Electrical Energy Conversion of Skutterudite-Based Thermoelectric Modules

    SciTech Connect

    Salvador, James R.; Cho, Jung Y; Ye, Zuxin; Moczygemba, Joshua E.; Thompson, Alan; Sharp, Jeff W.; Konig, Jan; Maloney, Ryan; Thompson, Travis; Sakamoto, Jeff; Wang, Hsin; Wereszczak, Andrew A; Meisner, G P

    2013-01-01

    The performance of thermoelectric (TE) materials has improved tremendously over the past decade. The intrinsic thermal and electrical properties of state-of-the-art TE materials demonstrate that the potential for widespread practical TE applications is very large and includes TE generators (TEGs) for automotive waste heat recovery. TE materials for automotive TEG applications must have good intrinsic performance, be thermomechanically compatible, and be chemically stable in the 400 K to 850 K temperature range. Both n-type and p-type varieties must be available at low cost, easily fabricated, and durable. They must also form robust junctions and develop good interfaces with other materials to permit efficient flows of electrical and thermal energy. Among the TE materials of interest for automotive waste heat recovery systems are the skutterudite compounds, which are the antimony-based transition-metal compounds RTE4Sb12, where R can be an alkali metal (e.g., Na, K), alkaline earth (e.g., Ba), or rare earth (e.g., La, Ce, Yb), and TE can be a transition metal (e.g., Co, Fe). We synthesized a considerable quantity of n-type and p-type skutterudites, fabricated TE modules, incorporated these modules into a prototype TEG, and tested the TEG on a production General Motors (GM) vehicle. We discuss our progress on skutterudite TE module fabrication and present module performance data for electrical power output under simulated operating conditions for automotive waste heat recovery systems. We also present preliminary durability results on our skutterudite modules.

  1. Thermoelectrics and Photovoltaics - Center for Solar and Thermal Energy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Conversion Thermoelectrics and Photovoltaics Thermoelectrics A significant amount of heat is wasted from industrial processes, home heating and vehicle exhausts that could otherwise be converted to electricity through the use of thermoelectric devices. The interconversion between heat and electricity, through the use of thermoelectrics, is environmentally friendly and highly reliable. With improved efficiency, thermoelectrics could have a significant impact on the energy consumption

  2. Thermoelectric Conversion of Waste Heat to Electricity in an...

    Energy.gov [DOE] (indexed site)

    ace46schock.pdf (1.94 MB) More Documents & Publications Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle Thermoelectric Conversion of Waste

  3. thermo-electric power conversion technology

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal ... carbon dioxide (sCO2)Brayton-cycle power conversion as ... By ...

  4. Evaluation of Thermal to Electrical Energy Conversion of High...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Thermal to Electrical Energy Conversion of High Temperature Skutterudite-Based Thermoelectric Modules Evaluation of Thermal to Electrical Energy Conversion of High Temperature ...

  5. Thermoelectric Conversion of Wate Heat to Electricity in an IC...

    Energy.gov [DOE] (indexed site)

    and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010. deer10schock.pdf (2.44 MB) More Documents & Publications Thermoelectric Conversion of Waste

  6. Solid-State Energy Conversion Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Solid-State Energy Conversion Overview Solid-State Energy Conversion Overview 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. ace00e_fairbanks_2010_o.pdf (2.14 MB) More Documents & Publications Vehicular Thermoelectrics: The New Green Technology Thermoelectrics: The New Green Automotive Technology Automotive Thermoelectric Generators and HVAC

  7. Progress in Thermoelectrical Energy Recovery from a Light Truck...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    The Effects of an Exhaust Thermoelectric Generator of a GM Sierra Pickup Truck Thermoelectrical Energy Recovery From the Exhaust of a Light Truck Automotive Thermoelectric ...

  8. Thermoelectric Ambient Energy Harvester - Energy Innovation Portal

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Industrial Technologies Industrial Technologies Energy Storage Energy Storage Electricity Transmission Electricity Transmission Building Energy Efficiency Building Energy Efficiency Find More Like This Return to Search Thermoelectric Ambient Energy Harvester Pacific Northwest National Laboratory Contact PNNL About This Technology Environments where natural temperature differences exist (above/below ground and either side of ductwork that delivers heating, ventilation and air conditioning in

  9. Progress from DOE EF RC: Solid-State Solar-Thermal Energy Conversion Center (S3TEC)

    Office of Energy Efficiency and Renewable Energy (EERE)

    Introduction to the solid-state solar-thermal energy conversion center plus discussion on phonon transport and solar thermoelectric energy conversion

  10. BTO Partners Develop Novel, Energy-efficient Thermoelectric Clothes...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Develop Novel, Energy-efficient Thermoelectric Clothes Dryer Prototype BTO Partners Develop Novel, Energy-efficient Thermoelectric Clothes Dryer Prototype April 18, 2016 - 1:29pm ...

  11. Modular Low Cost High Energy Exhaust Heat Thermoelectric Generator...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Modular Low Cost High Energy Exhaust Heat Thermoelectric Generator with Closed-Loop Exhaust By-Pass System Modular Low Cost High Energy Exhaust Heat Thermoelectric Generator with ...

  12. Vehicle Technologies Office Merit Review 2014: Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion for Efficient Waste Heat Recovery

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by GMZ Energy Inc. at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about nanostructured high...

  13. Novel Energy-Efficient Thermoelectric Clothes Dryer | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Novel Energy-Efficient Thermoelectric Clothes Dryer Novel Energy-Efficient Thermoelectric Clothes Dryer A new thermoelectric clothes dryer being developed by Oak Ridge National Lab and Sheetak, Inc. could yield a 38% reduction in energy use compared to current dryers, which could save 356 TBtu of energy per year. Credit: Oak Ridge National Laboratory. A new thermoelectric clothes dryer being developed by Oak Ridge National Lab and Sheetak, Inc. could yield a 38% reduction in energy use compared

  14. Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Develop Thermoelectric Technology for Automotive Waste Heat Recovery ...

  15. Thermoelectrical Energy Recovery From the Exhaust of a Light...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    More Documents & Publications The Effects of an Exhaust Thermoelectric Generator of a GM Sierra Pickup Truck Progress in Thermoelectrical Energy Recovery from a Light Truck Exhaust ...

  16. Thermoelectric energy converter for generation of electricity from low-grade heat

    DOEpatents

    Jayadev, T.S.; Benson, D.K.

    1980-05-27

    A thermoelectric energy conversion device which includes a plurality of thermoelectric elements is described. A hot liquid is supplied to one side of each element and a cold liquid is supplied to the other side of each element. The thermoelectric generator may be utilized to produce power from low-grade heat sources such as ocean thermal gradients, solar ponds, and low-grade geothermal resources. (WHK)

  17. Thermoelectric Conversion of Waste Heat to Electricity in an...

    Energy.gov [DOE] (indexed site)

    Efficiency Improvement in an Over the Road Diesel Powered Engine System by the Application of Advanced Thermoelectric Systems Implemented in a Hybrid Configuration Thermoelectric ...

  18. Energy Conversion Efficiency

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Conversion Efficiency - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power ...

  19. BTO Partners Develop Novel, Energy-efficient Thermoelectric Clothes Dryer

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Prototype | Department of Energy Partners Develop Novel, Energy-efficient Thermoelectric Clothes Dryer Prototype BTO Partners Develop Novel, Energy-efficient Thermoelectric Clothes Dryer Prototype April 18, 2016 - 1:29pm Addthis A new thermoelectric clothes dryer being developed by Oak Ridge National Lab and Sheetak, Inc. could yield a 38% reduction in energy use compared to current dryers, which could save 356 TBtu of energy per year. A new thermoelectric clothes dryer being developed by

  20. Thermoelectric Mechanical Reliability | Department of Energy

    Energy.gov [DOE] (indexed site)

    0wereszczak.pdf (1.52 MB) More Documents & Publications Thermoelectric Mechanical Reliability Thermoelectric Mechanical Reliability Thermoelectrics Theory and Structure

  1. Research Program - Center for Solar and Thermal Energy Conversion

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    The Thermoelectric thrust of CSTEC focuses on fundamental transport processes that govern solid state energy conversion, i.e., how the charge and energy flow through the atomic lattice or an array of assembled molecules. The CSTEC team tackles the challenges of thermoelectricity comprehensively by studying transport phenomena from a multi-dimensional perspective that spans charge and energy transport in molecular junctions, conduction processes in two-dimensional films, and the role the

  2. Thermoelectrics Theory and Structure | Department of Energy

    Energy.gov [DOE] (indexed site)

    More Documents & Publications Thermoelectric Mechanical Reliability Transport Properties, Thermal Response, and Mechanical Reliability of Thermoelectric Materials and Devices for ...

  3. Thermoelectric Mechanical Reliability | Department of Energy

    Energy.gov [DOE] (indexed site)

    Transport Properties, Thermal Response, and Mechanical Reliability of Thermoelectric Materials and Devices for Automotive Waste Heat Recovery Thermoelectric Mechanical Reliability

  4. Modular Isotopic Thermoelectric Generator (MITG) Design and Development, Part A-E. Original was presented at 1983 Intersociety Energy Conversion Engineering Conference (IECEC)

    SciTech Connect

    Schock, A.

    1983-04-29

    Advanced RTG concepts utilizing improved thermoelectric materials and converter concepts are under study at Fairchild for DOE. The design described here is based on DOE's newly developed radioisotope heat source, and on an improved silicon-germanium material and a multicouple converter module under development at Syncal. Fairchild's assignment was to combine the above into an attractive power system for use in space, and to assess the specific power and other attributes of that design. The resultant design is highly modular, consisting of standard RTG slices, each producing 24 watts at the desired output voltage of 28 volt. Thus, the design could be adapted to various space missions over a wide range of power levels, with little or no redesign. Each RTG slice consists of a 250-watt heat source module, eight multicouple thermoelectric modules, and standard sections of insulator, housing, radiator fins, and electrical circuit. The design makes it possible to check each thermoelectric module for electrical performance, thermal contact, leaktightness, and performance stability, after the generator is fully assembled; and to replace any deficient modules without disassembling the generator or perturbing the others. The RTG end sections provide the spring-loaded supports required to hold the free-standing heat source stack together during launch vibration. Detailed analysis indicates that the present generation of RTGs, using the same heat source modules. There is a duplicate copy of this document. OSTI has a copy of this paper.

  5. Concentrated Solar Thermoelectric Power | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Concentrated Solar Thermoelectric Power Concentrated Solar Thermoelectric Power This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, ...

  6. Vehicular Applications of Thermoelectrics | Department of Energy

    Energy.gov [DOE] (indexed site)

    Overivew of DOE projects developing thermoelectric generators for engine waste heat utilization and vehiclular thermoelectric heatingcooling. deer08fairbanks.pdf (5.58 MB) More ...

  7. Thermoelectric Mechanical Reliability | Department of Energy

    Energy.gov [DOE] (indexed site)

    Properties for Bulk Thermoelectrics Transport Properties, Thermal Response, and Mechanical Reliability of Thermoelectric Materials and Devices for Automotive Waste Heat Recovery

  8. DOE/NSF Thermoelectric Partnership Project SEEBECK Saving Energy...

    Energy.gov [DOE] (indexed site)

    ace068heremans2011o.pdf (883.79 KB) More Documents & Publications DOENSF Thermoelectric Partnership Project SEEBECK Saving Energy Effectively By Engaging in Collaborative ...

  9. DOE/NSF Thermoelectric Partnership Project SEEBECK Saving Energy...

    Energy.gov [DOE] (indexed site)

    Meeting ace068heremans2012o.pdf (1.84 MB) More Documents & Publications DOENSF Thermoelectric Partnership Project SEEBECK Saving Energy Effectively By Engaging in Collaborative ...

  10. Ocean thermal energy conversion

    SciTech Connect

    Avery, W.H.

    1983-03-17

    A brief explanation of the Ocean Thermal Energy Conversion (OTEC) concept and an estimate of the amount of energy that can be produced from the ocean resource without introducing environmental concerns are presented. Use of the OTEC system to generate electric power and products which can replace fossil fuels is shown. The OTEC program status and its prospects for the future are discussed.

  11. Energy harvesting using a thermoelectric material

    DOEpatents

    Nersessian, Nersesse; Carman, Gregory P.; Radousky, Harry B.

    2008-07-08

    A novel energy harvesting system and method utilizing a thermoelectric having a material exhibiting a large thermally induced strain (TIS) due to a phase transformation and a material exhibiting a stress induced electric field is introduced. A material that exhibits such a phase transformation exhibits a large increase in the coefficient of thermal expansion over an incremental temperature range (typically several degrees Kelvin). When such a material is arranged in a geometric configuration, such as, for a example, a laminate with a material that exhibits a stress induced electric field (e.g. a piezoelectric material) the thermally induced strain is converted to an electric field.

  12. High Temperature Thermoelectric Materials | Department of Energy

    Energy.gov [DOE] (indexed site)

    acep04elsner.pdf (3.07 MB) More Documents & Publications Quantum Well Thermoelectrics and Waste Heat Recovery High-Efficiency Quantum-Well Thermoelectrics for Waste Heat Power ...

  13. Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle

    SciTech Connect

    2012-01-31

    The thermoelectric generator shorting system provides the capability to monitor and short-out individual thermoelectric couples in the event of failure. This makes the series configured thermoelectric generator robust to individual thermoelectric couple failure. Open circuit detection of the thermoelectric couples and the associated short control is a key technique to ensure normal functionality of the TE generator under failure of individual TE couples. This report describes a five-year effort whose goal was the understanding the issues related to the development of a thermoelectric energy recovery device for a Class-8 truck. Likely materials and important issues related to the utility of this generator were identified. Several prototype generators were constructed and demonstrated. The generators developed demonstrated several new concepts including advanced insulation, couple bypass technology and the first implementation of skutterudite thermoelectric material in a generator design. Additional work will be required to bring this system to fruition. However, such generators offer the possibility of converting energy that is otherwise wasted to useful electric power. Uur studies indicate that this can be accomplished in a cost-effective manner for this application.

  14. Science Highlights- Center for Solar and Thermal Energy Conversion

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    1 - Abstracts and Highlight Slides Efficiency of Thermoelectric Energy Conversion in Biphenyl-dithiol Junctions: Effect of Electron-Phonon Interactions Plasmonic Backscattering Enhanced Inverted Photovoltaics Femtosecond Laser-induced Nanostructure Formation in Sb2Te3 Ideal Diode Equation For Organic Heterojunctions. I and II

  15. Oriented Nanostructures for Energy Conversion and Storage

    SciTech Connect

    Liu, Jun; Cao, Guozhong H.; Yang, Zhenguo; Wang, Donghai; DuBois, Daniel L.; Zhou, Xiao Dong; Graff, Gordon L.; Pederson, Larry R.; Zhang, Jiguang

    2008-08-28

    Recently the role of nanostructured materials in addressing the challenges in energy and natural resources has attracted wide attention. In particular, oriented nanostructures have demonstrated promising properties for energy harvesting, conversion and storage. The purpose of the paper is to review the synthesis and application of oriented nanostructures in a few key areas of energy technologies, namely photovoltaics, batteries, supercapacitors and thermoelectrics. Although the applications differ from field to field, one of the fundamental challenges is to improve the generation and transport of electrons and ions. We will first briefly review the several major approaches to attain oriented nanostructured films that are applicable for energy applications. We will then discuss how such controlled nanostructures can be used in photovoltaics, batteries, capacitors, thermoelectrics, and other unconventional ways of energy conversion. We will highlight the role of high surface area to maximize the surface activity, and the importance of optimum dimension and architecture, controlled pore channels and alignment of the nanocrystalline phase to optimize the electrons and ion transport. Finally, the paper will discuss the challenges in attaining integrated architectures to achieve the desired performance. Brief background information will be provided for the relevant technologies, but the emphasis is focused mainly on the nanoeffects of mostly inorganic based materials and devices.

  16. EFRC Teleconference- Concentrated Solar Thermoelectric Generators | Solid

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    State Solar Thermal Energy Conversion Concentrated Solar Thermoelectric Generators Seminar Thursday Oct 6, 2016 2:00pm Location: 3-258 Speaker: Gang Chen

  17. Wind energy conversion system

    DOEpatents

    Longrigg, Paul

    1987-01-01

    The wind energy conversion system includes a wind machine having a propeller connected to a generator of electric power, the propeller rotating the generator in response to force of an incident wind. The generator converts the power of the wind to electric power for use by an electric load. Circuitry for varying the duty factor of the generator output power is connected between the generator and the load to thereby alter a loading of the generator and the propeller by the electric load. Wind speed is sensed electro-optically to provide data of wind speed upwind of the propeller, to thereby permit tip speed ratio circuitry to operate the power control circuitry and thereby optimize the tip speed ratio by varying the loading of the propeller. Accordingly, the efficiency of the wind energy conversion system is maximized.

  18. Novel Nanostructured Thermoelectrics | Center for Energy Efficient...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    and using the important physics of the electrical transport, thermoelectric potentials ... increase the Seebeck coefficient and electrical conductivity, and reduce the electronic ...

  19. Thermoelectric Nanocarbon Ensembles | Department of Energy

    Energy.gov [DOE] (indexed site)

    Diamond Based TE Materials DOE Vehicle Technologies Program 2009 Merit Review Report - Propulsion Materials Integrated Design and Manufacturing of Thermoelectric Generator Using ...

  20. Enhancement of automotive exhaust heat recovery by thermoelectric...

    Office of Scientific and Technical Information (OSTI)

    exists between the gas and solid surface temperature due ... practice in thermoelectric waste energy harvesting ... Energy Conversion and Management; Journal Volume: 224; ...

  1. Compositional ordering and stability in nanostructured, bulk thermoelectric alloys.

    SciTech Connect

    Hekmaty, Michelle A.; Faleev, S.; Medlin, Douglas L.; Leonard, F.; Lensch-Falk, J.; Sharma, Peter Anand; Sugar, J. D.

    2009-09-01

    Thermoelectric materials have many applications in the conversion of thermal energy to electrical power and in solid-state cooling. One route to improving thermoelectric energy conversion efficiency in bulk material is to embed nanoscale inclusions. This report summarize key results from a recently completed LDRD project exploring the science underpinning the formation and stability of nanostructures in bulk thermoelectric and the quantitative relationships between such structures and thermoelectric properties.

  2. Energy conversion system

    DOEpatents

    Murphy, Lawrence M.

    1987-01-01

    The energy conversion system includes a photo-voltaic array for receiving solar radiation and converting such radiation to electrical energy. The photo-voltaic array is mounted on a stretched membrane that is held by a frame. Tracking means for orienting the photo-voltaic array in predetermined positions that provide optimal exposure to solar radiation cooperate with the frame. An enclosure formed of a radiation transmissible material includes an inside containment space that accommodates the photo-voltaic array on the stretched membrane, the frame and the tracking means, and forms a protective shield for all such components. The enclosure is preferably formed of a flexible inflatable material and maintains its preferred form, such as a dome, under the influence of a low air pressure furnished to the dome. Under this arrangement the energy conversion system is streamlined for minimizing wind resistance, sufficiently weatherproof for providing protection against weather hazards such as hail, capable of using diffused light, lightweight for low-cost construction, and operational with a minimal power draw.

  3. Energy conversion system

    DOEpatents

    Murphy, L.M.

    1985-09-16

    The energy conversion system includes a photo-voltaic array for receiving solar radiation and converting such radiation to electrical energy. The photo-voltaic array is mounted on a stretched membrane that is held by a frame. Tracking means for orienting the photo-voltaic array in predetermined positions that provide optimal exposure to solar radiation cooperate with the frame. An enclosure formed of a radiation transmissible material includes an inside containment space that accommodates the photo-voltaic array on the stretched membrane, the frame and the tracking means, and forms a protective shield for all such components. The enclosure is preferably formed of a flexible inflatable material and maintains its preferred form, such as a dome, under the influence of a low air pressure furnished to the dome. Under this arrangement the energy conversion system is streamlined for minimizing wind resistance, sufficiently weathproof for providing protection against weather hazards such as hail, capable of using diffused light, lightweight for low-cost construction and operational with a minimal power draw.

  4. The potential impact of ZT=4 thermoelectric materials on solar...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: The potential impact of ZT4 thermoelectric materials on solar thermal energy conversion ... B; Journal Volume: 114; Journal Issue: Mar. 2, 2010 Research Org: ...

  5. Geothermal energy conversion facility

    SciTech Connect

    Kutscher, C.F.

    1997-12-31

    With the termination of favorable electricity generation pricing policies, the geothermal industry is exploring ways to improve the efficiency of existing plants and make them more cost-competitive with natural gas. The Geothermal Energy Conversion Facility (GECF) at NREL will allow researchers to study various means for increasing the thermodynamic efficiency of binary cycle geothermal plants. This work has received considerable support from the US geothermal industry and will be done in collaboration with industry members and utilities. The GECF is being constructed on NREL property at the top of South Table Mountain in Golden, Colorado. As shown in Figure 1, it consists of an electrically heated hot water loop that provides heating to a heater/vaporizer in which the working fluid vaporizes at supercritical or subcritical pressures as high as 700 psia. Both an air-cooled and water-cooled condenser will be available for condensing the working fluid. In order to minimize construction costs, available equipment from the similar INEL Heat Cycle Research Facility is being utilized.

  6. Ocean energy conversion systems annual research report

    SciTech Connect

    Not Available

    1981-03-01

    Alternative power cycle concepts to the closed-cycle Rankine are evaluated and those that show potential for delivering power in a cost-effective and environmentally acceptable fashion are explored. Concepts are classified according to the ocean energy resource: thermal, waves, currents, and salinity gradient. Research projects have been funded and reported in each of these areas. The lift of seawater entrained in a vertical steam flow can provide potential energy for a conventional hydraulic turbine conversion system. Quantification of the process and assessment of potential costs must be completed to support concept evaluation. Exploratory development is being completed in thermoelectricity and 2-phase nozzles for other thermal concepts. Wave energy concepts are being evaluated by analysis and model testing with present emphasis on pneumatic turbines and wave focussing. Likewise, several conversion approaches to ocean current energy are being evaluated. The use of salinity resources requires further research in membranes or the development of membraneless processes. Using the thermal resource in a Claude cycle process as a power converter is promising, and a program of R and D and subsystem development has been initiated to provide confirmation of the preliminary conclusion.

  7. Review of pyroelectric thermal energy harvesting and new MEMs based resonant energy conversion techniques

    SciTech Connect

    Hunter, Scott Robert; Lavrik, Nickolay V; Mostafa, Salwa; Rajic, Slobodan; Datskos, Panos G

    2012-01-01

    Harvesting electrical energy from thermal energy sources using pyroelectric conversion techniques has been under investigation for over 50 years, but it has not received the attention that thermoelectric energy harvesting techniques have during this time period. This lack of interest stems from early studies which found that the energy conversion efficiencies achievable using pyroelectric materials were several times less than those potentially achievable with thermoelectrics. More recent modeling and experimental studies have shown that pyroelectric techniques can be cost competitive with thermoelectrics and, using new temperature cycling techniques, has the potential to be several times as efficient as thermoelectrics under comparable operating conditions. This paper will review the recent history in this field and describe the techniques that are being developed to increase the opportunities for pyroelectric energy harvesting. The development of a new thermal energy harvester concept, based on temperature cycled pyroelectric thermal-to-electrical energy conversion, are also outlined. The approach uses a resonantly driven, pyroelectric capacitive bimorph cantilever structure that can be used to rapidly cycle the temperature in the energy harvester. The device has been modeled using a finite element multi-physics based method, where the effect of the structure material properties and system parameters on the frequency and magnitude of temperature cycling, and the efficiency of energy recycling using the proposed structure, have been modeled. Results show that thermal contact conductance and heat source temperature differences play key roles in dominating the cantilever resonant frequency and efficiency of the energy conversion technique. This paper outlines the modeling, fabrication and testing of cantilever and pyroelectric structures and single element devices that demonstrate the potential of this technology for the development of high efficiency thermal

  8. Thermoelectric devices and applications for the same - Energy Innovation

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Portal 70125413 Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories Return to Search Thermoelectric devices and applications for the

  9. Thermoelectric devices and applications for the same - Energy Innovation

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Portal 15601 Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories Find More Like This Return to Search Thermoelectric devices and

  10. Thermoelectric devices and applications for the same - Energy Innovation

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Portal 39250 Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories Find More Like This Return to Search Thermoelectric devices and

  11. Thermoelectric devices and applications for the same - Energy Innovation

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Portal 281,461 Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories Find More Like This Return to Search Thermoelectric devices and

  12. Energy Conversion Devices | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Type Test & Evaluation Partner Partnering Center within NREL National Center for Photovoltaics Partnership Year 2003 Energy Conversion Devices is a company located in Rochester...

  13. thermal energy power conversion

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    National Solar Thermal Test Facility Nuclear ... Climate & Earth Systems Climate Measurement & Modeling ... Tribal Energy Program Intellectual Property Current EC ...

  14. Energy Conversion and Storage Program

    SciTech Connect

    Cairns, E.J.

    1992-03-01

    The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in (1) production of new synthetic fuels, (2) development of high-performance rechargeable batteries and fuel cells, (3) development of advanced thermochemical processes for energy conversion, (4) characterization of complex chemical processes, and (5) application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Topics include identification of new electrochemical couples for advanced rechargeable batteries, improvements in battery and fuel-cell materials, and the establishment of engineering principles applicable to electrochemical energy storage and conversion. Chemical Applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing waste streams from synfuel plants and coal gasifiers. Other research projects seek to identify and characterize the constituents of liquid fuel-system streams and to devise energy-efficient means for their separation. Materials Applications research includes the evaluation of the properties of advanced materials, as well as the development of novel preparation techniques. For example, the use of advanced techniques, such as sputtering and laser ablation, are being used to produce high-temperature superconducting films.

  15. Ocean thermal energy conversion (OTEC)

    SciTech Connect

    Lockerby, R.W.

    1981-01-01

    Ocean thermal energy conversion (OTEC) is reviewed briefly. The two types of OTEC system (open and closed) are described and limitations are pointed out. A bibliography of 148 references on OTEC is given for the time period 1975 to 1980. Entries are arranged alphabetically according to the author's name. (MJJ)

  16. Thermoelectric power source utilizing ambient energy harvesting...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Program Website Abstract: A method and apparatus for providing electrical energy to an electrical device wherein the electrical energy is originally generated from ...

  17. "Fundamental Challenges in Solar Energy Conversion" workshop...

    Office of Science (SC)

    Fundamental Challenges in Solar Energy Conversion" workshop hosted by LMI-EFRC Energy ... Publications History Contact BES Home 06.02.10 "Fundamental Challenges in Solar Energy ...

  18. Potential of Thermoelectrics forOccupant Comfort and Fuel Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    More Documents & Publications Vehicle Fuel Economy Improvement through Thermoelectric Waste Heat Recovery Caterpillar Diesel Racing: Yesterday & Today Thermoelectric Conversion of ...

  19. Light-Material Interactions in Energy Conversion - Energy Frontier...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    New approaches to full spectrum solar energy conversion California Institute of Technology ... offer this free public webinar on New Approaches to Full Spectrum Solar Energy Conversion. ...

  20. Global Waste to Energy Conversion Company GWECC | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Waste to Energy Conversion Company GWECC Jump to: navigation, search Name: Global Waste to Energy Conversion Company (GWECC) Place: Washington, DC Product: GWECC is a global...

  1. SCE Societe de Conversion d Energie | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Societe de Conversion d Energie Jump to: navigation, search Name: SCE Societe de Conversion d'Energie Place: Reunion Island, France Product: PV project developer on Reunion Island,...

  2. Biochemical Conversion | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Conversion Biochemical Conversion This area focuses on the research, development and demonstration of biological processes that convert biomass to biofuels, chemicals, and power. Biochemical processes also complement thermochemical conversion by providing residual materials for further processing. Biochemical conversion will advance in the future by enhancing fuel yields in integrated biorefineries which combine conversion types with heat and power efficiencies to produce fuel and products.

  3. Energy Conversion, an Energy Frontier Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Research ............................. 3 New Investigators ............ 10 2011 CSTEC Workshop .... 11 CSTEC Colloquium ........... 11 Awards .............................. 12 S U M M E R 2 0 1 2 Letter from the Center Director The global demand for clean, sustainable energy is currently one of society's most pressing problems. Indeed, our success at discovering new paradigms for efficient energy conversion, with minimal environmental impact, will largely determine humankind's quality of life

  4. "Approaches to Ultrahigh Efficiency Solar Energy Conversion"...

    Office of Science (SC)

    "Approaches to Ultrahigh Efficiency Solar Energy Conversion" Webinar Energy Frontier ... Publications History Contact BES Home 03.07.13 "Approaches to Ultrahigh Efficiency Solar ...

  5. Novel Energy Conversion Equipment for Low Temperatures Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Conversion Equipment for Low Temperatures Geothermal Resources Novel Energy Conversion Equipment for Low Temperatures Geothermal Resources Novel Energy Conversion Equipment ...

  6. Biomass conversion processes for energy and fuels

    SciTech Connect

    Sofer, S.S.; Zaborsky, O.R.

    1981-01-01

    The book treats biomass sources, promising processes for the conversion of biomass into energy and fuels, and the technical and economic considerations in biomass conversion. Sources of biomass examined include crop residues and municipal, animal and industrial wastes, agricultural and forestry residues, aquatic biomass, marine biomass and silvicultural energy farms. Processes for biomass energy and fuel conversion by direct combustion (the Andco-Torrax system), thermochemical conversion (flash pyrolysis, carboxylolysis, pyrolysis, Purox process, gasification and syngas recycling) and biochemical conversion (anaerobic digestion, methanogenesis and ethanol fermentation) are discussed, and mass and energy balances are presented for each system.

  7. Light-Material Interactions in Energy Conversion - Energy Frontier...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    2: Solar Spectrum Control and Conversion RG Leader: John Rogers Affiliated PIs: Paul ... in solar energy conversion efficiency is via exploitation of the full solar spectrum. ...

  8. Development of Cost-Competitive Advanced Thermoelectric Generators for

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Direct Conversion of Vehicle Waste Heat into Useful Electrical Power | Department of Energy Cost-Competitive Advanced Thermoelectric Generators for Direct Conversion of Vehicle Waste Heat into Useful Electrical Power Development of Cost-Competitive Advanced Thermoelectric Generators for Direct Conversion of Vehicle Waste Heat into Useful Electrical Power 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  9. Sandia Energy - The Quest for Efficiency in Thermoelectric Nanowires

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Efficiency in Thermoelectric Nanowires Sandia researchers say better materials and manufacturing techniques for nanowires could allow car makers to harvest power from the heat...

  10. Thermochemical Conversion | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Conversion Thermochemical Conversion The Bioenergy Technologies Office conducts research on heat-, pressure-, and catalyst-based conversion of various biomass feedstocks to biofuels, chemicals, and power. These conversion processes, most notably fast pyrolysis (as well as other forms of direct liquefaction) and gasification, are described in detail in the links on the left. The Thermochemical Platform aims to efficiently produce biobased fuels and co-products via liquefaction and pyrolysis,

  11. Conversion Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Conversion Technologies Conversion Technologies The strategic goal of Conversion Research and Development (R&D) is to develop technologies for converting feedstocks into commercially viable liquid transportation fuels, as well as bioproducts and biopower. The diversity of the biomass resource requires the development of multiple conversion technologies that can efficiently deal with the broad range of feedstock materials, as well as their physical and chemical characteristics. The Office

  12. S3TEC Cross Cutting Meeting- New possibilities with thermoelectric

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    materials | Solid State Solar Thermal Energy Conversion Cross Cutting Meeting- New possibilities with thermoelectric materials Seminar Tuesday Oct 4, 2016 12:00pm Location: 5-314 New possibilities with thermoelectric materials Half-Heusler and Zintl are two broad material families where people have continuously discovered good thermoelectric materials. However, their transport properties are not all well understood, and more importantly, simulating the transport properties of these materials

  13. Molecular and Hybrid Solution Processable Thermoelectrics | MIT-Harvard

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Center for Excitonics and Hybrid Solution Processable Thermoelectrics February 15, 2011 at 3pm/36-428 Rachel Segalman University of California, Berkeley segalman_001 abstract: Thermoelectric materials for energy generation have several advantages over conventional power cycles including lack of moving parts, silent operation, miniaturizability, and CO2 free conversion of heat to electricity. Excellent thermoelectric efficiency requires a combination of high thermopower (S, V/K), high

  14. Center on Nanostructuring for Efficient Energy Conversion

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    is to engineer catalysts with atomic scale precision for two key electrochemical energy conversion reactions for water splitting, namely, water oxidation (oxygen evolution),...

  15. BETO Conversion Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    BETO Conversion Program BETO Conversion Program Breakout Session 2A-Conversion Technologies II: Bio-Oils, Sugar Intermediates, Precursors, Distributed Models, and Refinery Co-Processing BETO Conversion Program Bryna Berendzen, Technology Manager, Bioenergy Technologies Office, U.S. Department of Energy berendzen_biomass_2014.pdf (1010.99 KB) More Documents & Publications Opportunities for Biomass-Based Fuels and Products in a Refinery 2013 Peer Review Presentations-Bio-oil 2013 Peer Review

  16. New Perspectives in Thermoelectric Energy Recovery System Design Optimization

    SciTech Connect

    Hendricks, Terry J.; Karri, Naveen K.; Hogan, Tim; Cauchy, Charles J.

    2013-02-12

    Abstract: Large amounts of waste heat are generated worldwide in industrial processes, automotive transportation, diesel engine exhaust, military generators, and incinerators because 60-70% of the fuel energy is typically lost in these processes. There is a strong need to develop technologies that recover this waste heat to increase fuel efficiency and minimize fuel requirements in these industrial processes, automotive and heavy vehicle engines, diesel generators, and incinerators. There are additional requirements to reduce CO2 production and environmental footprints in many of these applications. Recent work with the Strategic Environmental Research and Development Program office has investigated new thermoelectric (TE) materials and systems that can operate at higher performance levels and show a viable pathway to lightweight, small form-factor, advanced thermoelectric generator (TEG) systems to recover waste heat in many of these applications. New TE materials include nano-composite materials such as lead-antimony-silver-telluride (LAST) and lead-antimony-silver-tin-telluride (LASTT) compounds. These new materials have created opportunities for high-performance, segmented-element TE devices. New higher-performance TE devices segmenting LAST/LASTT materials with bismuth telluride have been designed and fabricated. Sectioned TEG systems using these new TE devices and materials have been designed. Integrated heat exchanger/TE device system analyses of sectioned TE system designs have been performed creating unique efficiency-power maps that provide better understandings and comparisons of design tradeoffs and nominal and off-nominal system performance conditions. New design perspectives in optimization of sectioned TE design approaches are discussed that provide insight on how to optimize such sectioned TE systems. System performance analyses using ANSYS TE modeling capabilities have integrated heat exchanger performance models with ANSYS TE models to extend

  17. NREL-Ocean Energy Thermal Conversion | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Energy Laboratory Sector: Energy Topics: Resource assessment Website: www.nrel.govotec NREL-Ocean Energy Thermal Conversion Screenshot References: OTEC1 Logo: NREL-Ocean...

  18. Light-Material Interactions in Energy Conversion - Energy Frontier...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Interactions in Energy Conversion (LMI) Energy Frontier Research Center (EFRC), the Resnick Sustainability Institute, and the Quantum Energy and Sustainable Solar Technologies...

  19. Advanced energy conversion methods for cold fusion

    SciTech Connect

    Prelas, M.A. )

    1989-09-01

    If cold fusion is verified, then the next important question deals with how it can be used to produce energy. Several direct energy conversion concepts for use with cold fusion are discussed.

  20. Thermoelectric energy recovery at ionic-liquid/electrode interface

    SciTech Connect

    Bonetti, Marco; Nakamae, Sawako; Huang, Bo Tao; Wiertel-Gasquet, Cécile; Roger, Michel; Salez, Thomas J.

    2015-06-28

    A thermally chargeable capacitor containing a binary solution of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)-imide in acetonitrile is electrically charged by applying a temperature gradient to two ideally polarisable electrodes. The corresponding thermoelectric coefficient is −1.7 mV/K for platinum foil electrodes and −0.3 mV/K for nanoporous carbon electrodes. Stored electrical energy is extracted by discharging the capacitor through a resistor. The measured capacitance of the electrode/ionic-liquid interface is 5 μF for each platinum electrode while it becomes four orders of magnitude larger, ≈36 mF, for a single nanoporous carbon electrode. Reproducibility of the effect through repeated charging-discharging cycles under a steady-state temperature gradient demonstrates the robustness of the electrical charging process at the liquid/electrode interface. The acceleration of the charging by convective flows is also observed. This offers the possibility to convert waste-heat into electric energy without exchanging electrons between ions and electrodes, in contrast to what occurs in most thermogalvanic cells.

  1. Water Based Process for Fabricating Thermoelectric Materials - Energy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Innovation Portal Solar Thermal Solar Thermal Find More Like This Return to Search Water Based Process for Fabricating Thermoelectric Materials Lawrence Berkeley National Laboratory Contact LBL About This Technology Publications: PDF Document Publication LBNL Commercial Analysis Report (1,391 KB) Technology Marketing Summary Berkeley Lab scientists Rachel Segalman, Jeffrey Urban and Kevin See have invented a water based process to make thermoelectric films. The resulting composite film

  2. Light-Material Interactions in Energy Conversion - Energy Frontier...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    At minimum, please use this wording: "This work was supported by the DOE 'Light-Material Interactions in Energy Conversion' Energy Frontier Research Center under grant...

  3. Light-Material Interactions in Energy Conversion - Energy Frontier...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    in Energy Conversion (LMI) Energy Frontier Research Center this one-day workshop brings ... We welcome workshop participants to submit abstracts for the poster session ...

  4. Solar Energy Conversion | Argonne National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Research Atomic, Molecular, and Optical Physics Catalysis Discovery Acceleration Electrochemical Energy Storage Gas-Phase Chemical Dynamics Heavy Elements and Separation Sciences Hydrogen and Fuel Cell Materials Interfacial Processes Solar Energy Conversion Solar Energy Conversion Top panel: images showing photosynthetic oxygen evolution (bubbles) in artificial and natural leaves. Bottom panel: Examples of components of natural and artificial leaves that are investigated in this research theme,

  5. Start Your Energy Conversion Devices

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    | Department of Energy Start 2015 with an #EnergyResolution to Save Money and Energy All Year Long Start 2015 with an #EnergyResolution to Save Money and Energy All Year Long January 19, 2015 - 9:52am Addthis Create an #EnergyResolution to share how you plan to save money and energy in the New Year. | Graphic courtesy of Joelynn Schroeder, National Renewable Energy Laboratory Create an #EnergyResolution to share how you plan to save money and energy in the New Year. | Graphic courtesy of

  6. Energy conversion & storage program. 1994 annual report

    SciTech Connect

    Cairns, E.J.

    1995-04-01

    The Energy Conversion and Storage Program investigates state-of-the-art electrochemistry, chemistry, and materials science technologies for: (1) development of high-performance rechargeable batteries and fuel cells; (2) development of high-efficiency thermochemical processes for energy conversion; (3) characterization of complex chemical processes and chemical species; (4) study and application of novel materials for energy conversion and transmission. Research projects focus on transport process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis.

  7. Energy Conversion & Storage Program, 1993 annual report

    SciTech Connect

    Cairns, E.J.

    1994-06-01

    The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in: production of new synthetic fuels; development of high-performance rechargeable batteries and fuel cells; development of high-efficiency thermochemical processes for energy conversion; characterization of complex chemical processes and chemical species; and the study and application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis.

  8. Thermoelectrics Partnership: Automotive Thermoelectric Modules...

    Energy.gov [DOE] (indexed site)

    Novel Nanostructured Interface Solution for Automotive Thermoelectric Modules Application Thermoelectrics Partnership: Automotive Thermoelectric Modules with Scalable Thermo- and ...

  9. Science Highlights- Center for Solar and Thermal Energy Conversion

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    2 - Abstracts and Highlight Slides Energy Level Modulation in Conjugated Polymers for Organic Photovoltaic Applications Aligning Carbon Nanotubes (CNTs) Using Ultrafast Laser Irradiation Disordered Interfaces Improve Organic Photovoltaics New Way of Reducing Thermal Conductivity in Thermoelectric Materials Phase-field Simulations of GaN/InGaN Quantum Dot Growth by Selective Area Epitaxy High Performance Thermoelectricity in Earth-Abundant Compounds Based on Natural Mineral Tetrahedrites Effect

  10. Hybrid staging of geothermal energy conversion process

    SciTech Connect

    Steidel, R.F. Jr.

    1984-05-07

    Progress in the demonstration of the feasibility of hybrid staging in geothermal energy conversion is described, particularly processes involving the Lysholm engine. The performance limitations of the Lysholm engine were studied. (MHR)

  11. Utilizing Nature's Designs for Solar Energy Conversion

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Nature's Designs for Solar Energy Conversion Create new materials that: capture, convert, store sunlight Learn from Nature... ...build with chemistry ANL Photosynthesis Group Fundamental Studies  Solar energy conversion in natural and artificial photosynthesis Resolve mechanisms, design principles  Unique capabilities Time-resolved, multi-frequency EPR Time-resolved synchrotron X-ray Ultrafast spectroscopy Multi-molecular: Artificial systems for H 2 photocatalysis  Limitations: 

  12. Thermoelectric power source utilizing ambient energy harvesting for remote sensing and transmitting

    DOEpatents

    DeSteese, John G

    2010-11-16

    A method and apparatus for providing electrical energy to an electrical device wherein the electrical energy is originally generated from temperature differences in an environment having a first and a second temperature region. A thermoelectric device having a first side and a second side wherein the first side is in communication with a means for transmitting ambient thermal energy collected or rejected in the first temperature region and the second side is in communication with the second temperature region thereby producing a temperature gradient across the thermoelectric device and in turn generating an electrical current.

  13. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Center (LMI-EFRC) New approaches to full spectrum solar energy conversion California Institute of Technology Hall Auditorium, Gates-Thomas Laboratory [map] LIVE Internet Broadcast [download flyer] watch now The recorded presentations and panel discussion are now available for online viewing. The Light-Material Interactions in Energy Conversion Energy Frontier Research Center (LMI-EFRC) is excited to offer this free public webinar on New Approaches to Full Spectrum Solar Energy Conversion.

  14. Home | Solid State Solar Thermal Energy Conversion

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    The S3TEC Center aims at advancing fundamental science and developing materials to harness heat from the sun and convert this heat into electricity via thermoelectric, ...

  15. Novel Energy Conversion Equipment for Low Temperature Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Novel Energy Conversion Equipment for Low Temperature Geothermal Resources Novel Energy Conversion Equipment for Low Temperature Geothermal Resources Project objective: Develop ...

  16. MHK Technologies/Mobil Stabilized Energy Conversion Platform...

    OpenEI (Open Energy Information) [EERE & EIA]

    Mobil Stabilized Energy Conversion Platform < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Mobil Stabilized Energy Conversion Platform.jpg...

  17. University of Delaware Institute of Energy Conversion | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Institute of Energy Conversion Jump to: navigation, search Name: University of Delaware Institute of Energy Conversion Place: Delaware Product: String representation "University...

  18. Potential Impacts of Hydrokinetic and Wave Energy Conversion...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Potential Impacts of Hydrokinetic and Wave Energy Conversion Technologies on Aquatic Environments Potential Impacts of Hydrokinetic and Wave Energy Conversion Technologies on ...

  19. Pin stack array for thermoacoustic energy conversion (Patent...

    Office of Scientific and Technical Information (OSTI)

    Pin stack array for thermoacoustic energy conversion Title: Pin stack array for thermoacoustic energy conversion A thermoacoustic stack for connecting two heat exchangers in a ...

  20. Engineering Nanocrystals for Energy Conversion and Storage, and...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Engineering Nanocrystals for Energy Conversion and Storage, and Sensors Citation Details In-Document Search Title: Engineering Nanocrystals for Energy Conversion and ...

  1. Light-Material Interactions in Energy Conversion - Energy Frontier...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    New approaches to full spectrum solar energy conversion California Institute of Technology ... Detailed abstracts for the presentations can be found here. Paul Alivisatos Quantum Dot ...

  2. Synchronous generator wind energy conversion control system

    SciTech Connect

    Medeiros, A.L.R.; Lima, A.M.N.; Jacobina, C.B.; Simoes, F.J.

    1996-12-31

    This paper presents the performance evaluation and the design of the control system of a WECS (Wind Energy Conversion System) that employs a synchronous generator based on its digital simulation. The WECS discussed in this paper is connected to the utility grid through two Pulse Width Modulated (PWM) power converters. The structure of the proposed WECS enables us to achieve high performance energy conversion by: (i) maximizing the wind energy capture and (ii) minimizing the reactive power flowing between the grid and the synchronous generator. 8 refs., 19 figs.

  3. Impact of energy filtering and carrier localization on the thermoelectric properties of granular semiconductors

    SciTech Connect

    Narducci, Dario; Selezneva, Ekaterina; Cerofolini, Gianfranco; Frabboni, Stefano; Ottaviani, Giampiero

    2012-09-15

    Energy filtering has been widely considered as a suitable tool to increase the thermoelectric performances of several classes of materials. In its essence, energy filtering provides a way to increase the Seebeck coefficient by introducing a strongly energy-dependent scattering mechanism. Under certain conditions, however, potential barriers may lead to carrier localization, that may also affect the thermoelectric properties of a material. A model is proposed, actually showing that randomly distributed potential barriers (as those found, e.g., in polycrystalline films) may lead to the simultaneous occurrence of energy filtering and carrier localization. Localization is shown to cause a decrease of the actual carrier density that, along with the quantum tunneling of carriers, may result in an unexpected increase of the power factor with the doping level. The model is corroborated toward experimental data gathered by several authors on degenerate polycrystalline silicon and lead telluride. - Graphical abstract: In heavily doped semiconductors potential barriers may lead to both carrier energy filtering and localization. This may lead to an enhancement of the thermoelectric properties of the material, resulting in an unexpected increase of the power factor with the doping level. Highlights: Black-Right-Pointing-Pointer Potential barriers are shown to lead to carrier localization in thermoelectric materials. Black-Right-Pointing-Pointer Evidence is put forward of the formation of a mobility edge. Black-Right-Pointing-Pointer Energy filtering and localization may explain the enhancement of power factor in degenerate semiconductors.

  4. Energy conversion & storage program. 1995 annual report

    SciTech Connect

    Cairns, E.J.

    1996-06-01

    The 1995 annual report discusses laboratory activities in the Energy Conversion and Storage (EC&S) Program. The report is divided into three categories: electrochemistry, chemical applications, and material applications. Research performed in each category during 1995 is described. Specific research topics relate to the development of high-performance rechargeable batteries and fuel cells, the development of high-efficiency thermochemical processes for energy conversion, the characterization of new chemical processes and complex chemical species, and the study and application of novel materials related to energy conversion and transmission. Research projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials and deposition technologies, and advanced methods of analysis.

  5. Superconducting thermoelectric generator

    DOEpatents

    Metzger, J.D.; El-Genk, M.S.

    1996-01-01

    An apparatus and method for producing electricity from heat. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses. The elimination of resistive losses significantly increases the conversion efficiency of the thermoelectric device.

  6. Superconducting thermoelectric generator

    DOEpatents

    Metzger, J.D.; El-Genk, M.S.

    1998-05-05

    An apparatus and method for producing electricity from heat is disclosed. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses. The elimination of resistive losses significantly increases the conversion efficiency of the thermoelectric device. 4 figs.

  7. Superconducting thermoelectric generator

    DOEpatents

    Metzger, John D.; El-Genk, Mohamed S.

    1998-01-01

    An apparatus and method for producing electricity from heat. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses. The elimination of resistive losses significantly increases the conversion efficiency of the thermoelectric device.

  8. Ocean Thermal Energy Conversion Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Renewable Energy » Ocean » Ocean Thermal Energy Conversion Basics Ocean Thermal Energy Conversion Basics August 16, 2013 - 4:22pm Addthis A process called ocean thermal energy conversion (OTEC) uses the heat energy stored in the Earth's oceans to generate electricity. OTEC works best when the temperature difference between the warmer, top layer of the ocean and the colder, deep ocean water is about 36°F (20°C). These conditions exist in tropical coastal areas, roughly between the Tropic of

  9. Develop Thermoelectric Technology for Automotive Waste Heat Recovery...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable Electricity ...

  10. Low and high Temperature Dual Thermoelectric Generation Waste...

    Energy.gov [DOE] (indexed site)

    Developing a low and high temperature dual thermoelectric generation waste heat recovery ... Development of Cost-Competitive Advanced Thermoelectric Generators for Direct Conversion ...

  11. WEC up! Energy Department Announces Wave Energy Conversion Prize Administrator

    Energy.gov [DOE]

    The Water Power Program today awarded $6.5 million to a Prize Administration Team for the development and execution of the Energy Department’s Wave Energy Conversion (WEC) Prize Competition. The WEC Prize will continue to advance marine and hydrokinetic (MHK) technology as a viable source for America’s clean energy future, in part by providing an opportunity for developers to test their innovative wave energy conversion (WEC) devices in a wave generating basin.

  12. Parametric modeling of energy filtering by energy barriers in thermoelectric nanocomposites

    SciTech Connect

    Zianni, Xanthippi E-mail: xzianni@gmail.com; Narducci, Dario

    2015-01-21

    We present a parametric modeling of the thermoelectric transport coefficients based on a model previously used to interpret experimental measurements on the conductivity, σ, and Seebeck coefficient, S, in highly Boron-doped polycrystalline Si, where a very significant thermoelectric power factor (TPF) enhancement was observed. We have derived analytical formalism for the transport coefficients in the presence of an energy barrier assuming thermionic emission over the barrier for (i) non-degenerate and (ii) degenerate one-band semiconductor. Simple generic parametric equations are found that are in agreement with the exact Boltzmann transport formalism in a wide range of parameters. Moreover, we explore the effect of energy barriers in 1-d composite semiconductors in the presence of two phases: (a) the bulk-like phase and (b) the barrier phase. It is pointed out that significant TPF enhancement can be achieved in the composite structure of two phases with different thermal conductivities. The TPF enhancement is estimated as a function of temperature, the Fermi energy position, the type of scattering, and the barrier height. The derived modeling provides guidance for experiments and device design.

  13. Conversion and Resource Evaluation Ltd CARE | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    is an independent company providing specialist technical and economic services in the bio-energy and waste conversion sector. References: Conversion and Resource Evaluation Ltd...

  14. Ocean Thermal Energy Conversion: An overview

    SciTech Connect

    Not Available

    1989-11-01

    Ocean thermal energy conversion, or OTEC is a technology that extracts power from the ocean's natural thermal gradient. This technology is being pursued by researchers from many nations; in the United States, OTEC research is funded by the US Department of Energy's Ocean Energy Technology program. The program's goal is to develop the technology so that industry can make a competent assessment of its potential -- either as an alternative or as a supplement to conventional energy sources. Federally funded research in components and systems will help OTEC to the threshold of commercialization. This publication provides an overview of the OTEC technology. 47 refs., 25 figs.

  15. Energy Conversion, an Energy Frontier Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    the globe, the consumption rate of energy promises to be more rapid than in prior decades. ... Solar energy will play an important role in the future, due its natural abundance. ...

  16. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Center (LMI-EFRC) Refractive Index Design via Porous Etched Si as part of RG-3 research efforts (Chris Gladden, LBNL) The Scientific Vision of the "Light-Material Interactions in Energy Conversion Energy Frontier Research Center" (LMI-EFRC) is to tailor the morphology, complex dielectric structure, and electronic properties of matter so as to sculpt the flow of sunlight and heat, enabling light conversion to electrical and chemical energy with unprecedented efficiency. The

  17. Screening method for wind energy conversion systems

    SciTech Connect

    McConnell, R.D.

    1980-03-01

    A screening method is presented for evaluating wind energy conversion systems (WECS) logically and consistently. It is a set of procedures supported by a data base for large conventional WECS. The procedures are flexible enough to accommodate concepts lacking cost and engineering detail, as is the case with many innovative wind energy conversion systems (IWECS). The method uses both value indicators and simplified cost estimating procedures. Value indicators are selected ratios of engineering parameters involving energy, mass, area, and power. Cost mass ratios and cost estimating relationships were determined from the conventional WECS data base to estimate or verify installation cost estimates for IWECS. These value indicators and cost estimating procedures are shown for conventional WECS. An application of the method to a tracked-vehicle airfoil concept is presented.

  18. Novel Nuclear Powered Photocatalytic Energy Conversion

    SciTech Connect

    White,John R.; Kinsmen,Douglas; Regan,Thomas M.; Bobek,Leo M.

    2005-08-29

    The University of Massachusetts Lowell Radiation Laboratory (UMLRL) is involved in a comprehensive project to investigate a unique radiation sensing and energy conversion technology with applications for in-situ monitoring of spent nuclear fuel (SNF) during cask transport and storage. The technology makes use of the gamma photons emitted from the SNF as an inherent power source for driving a GPS-class transceiver that has the ability to verify the position and contents of the SNF cask. The power conversion process, which converts the gamma photon energy into electrical power, is based on a variation of the successful dye-sensitized solar cell (DSSC) design developed by Konarka Technologies, Inc. (KTI). In particular, the focus of the current research is to make direct use of the high-energy gamma photons emitted from SNF, coupled with a scintillator material to convert some of the incident gamma photons into photons having wavelengths within the visible region of the electromagnetic spectrum. The high-energy gammas from the SNF will generate some power directly via Compton scattering and the photoelectric effect, and the generated visible photons output from the scintillator material can also be converted to electrical power in a manner similar to that of a standard solar cell. Upon successful implementation of an energy conversion device based on this new gammavoltaic principle, this inherent power source could then be utilized within SNF storage casks to drive a tamper-proof, low-power, electronic detection/security monitoring system for the spent fuel. The current project has addressed several aspects associated with this new energy conversion concept, including the development of a base conceptual design for an inherent gamma-induced power conversion unit for SNF monitoring, the characterization of the radiation environment that can be expected within a typical SNF storage system, the initial evaluation of Konarka's base solar cell design, the design and

  19. NSF/DOE Thermoelectrics Partnership: Purdue … GM Partnership on Thermoelectrics for Automotive Waste Heat Recovery

    Office of Energy Efficiency and Renewable Energy (EERE)

    Reviews results in developing commercially viable thermoelectric generators for efficient conversion of automotive exhaust waste heat to electricity

  20. Energy Conversion, an Energy Frontier Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    In order for solar energy to become cost-competitive with fossil fuels, technological breakthroughs are needed to both improve solar cell efficiency and reduce module cost. ...

  1. Concentrated Thermoelectric Power

    Office of Energy Efficiency and Renewable Energy (EERE)

    This fact sheet describes a concentrated solar hydroelectric power project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The team, led by MIT, is working to demonstrate concentrating solar thermoelectric generators with >10% solar-to-electrical energy conversion efficiency while limiting optical concentration to less than a factor of 10 and potentially less than 4. When combined with thermal storage, CSTEGs have the potential to provide electricity day and night using no moving parts at both the utility and distributed scale.

  2. Overview of Japanese Activities in Thermoelectrics | Department...

    Energy.gov [DOE] (indexed site)

    R&D projects on thermoelectric power generation technology. kajikawa.pdf (5.34 MB) More Documents & Publications Nanostructured High-Temperature Bulk Thermoelectric Energy ...

  3. Atlantic Biomass Conversions Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Biomass Conversions Inc Jump to: navigation, search Name: Atlantic Biomass Conversions Inc Place: Frederick, Maryland Sector: Biomass Product: Atlantic Biomass Conversions is...

  4. Light-Material Interactions in Energy Conversion - Energy Frontier...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    one-day workshop focused on new materials and processes for overcoming the Shockley-Queisser limit of solar energy conversion efficiency. event website download flyer 05.23.12...

  5. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Center (LMI-EFRC) Approaches to ultrahigh efficiency solar energy conversion webinar watch now The recorded presentations and panel discussion are now available for online viewing. Sign up is now closed

  6. January 2013 Most Viewed Documents for Energy Storage, Conversion...

    Office of Scientific and Technical Information (OSTI)

    January 2013 Most Viewed Documents for Energy Storage, Conversion, And Utilization Energy Technology Perspectives 2012: Executive Summary Portuguese version NONE Energy ...

  7. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Center (LMI-EFRC) Scientific Grand Challenge LMI researchers brainstorm spectrum splitting, Annual Meeting November 2011 The LMI-EFRC is dedicated to expanding the scientific knowledge base for fundamentally photonic principles and mechanisms in solar energy conversion. An important set of requirements of photonic materials for solar energy conversion are related to the characteristics of the sun as a light source - it is a broadband and unpolarized light source, and the achievable

  8. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Center (LMI-EFRC) Lectures from the LMI-EFRC "Fundamental Challenges in Solar Energy Conversion" Workshop, July 7, 2010, Caltech Harry Atwater Introduction to the Workshop on Fundamental Challenges in Solar Energy Conversion Harry A. Atwater, Caltech Eli Yablonovitch Fundamental Limits to Light Absorption and Efficiency in Photovoltaics Eli Yablonovitch, University of California, Berkeley Richard Swanson Efficiency Limits and Cost Challenges in Photovoltaics Richard Swanson,

  9. Novel Energy Conversion Equipment for Low Temperature Geothermal Resources

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    | Department of Energy Energy Conversion Equipment for Low Temperature Geothermal Resources Novel Energy Conversion Equipment for Low Temperature Geothermal Resources Project objective: Develop equipment that generates electricity from low temperature geothermal resources at a cost at least 20% below that of the currently available technology. low_kohler_energy_conversion.pdf (218.32 KB) More Documents & Publications Novel Energy Conversion Equipment for Low Temperatures Geothermal

  10. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Center (LMI-EFRC) Contact Secretary of Energy Steven Chu visits Caltech labs For more information or questions about the Light-Material Interactions in Energy Conversion Energy Frontier Research Center, please email lmi-efrc@caltech.edu or call LMI Administrator Lyann Lau at 626-395-3330.

  11. Thermoelectrics Partnership: Automotive Thermoelectric Modules...

    Energy.gov [DOE] (indexed site)

    Partnership: Automotive Thermoelectric Modules with Scalable Thermo- and Electro-Mechanical Interfaces Novel Nanostructured Interface Solution for Automotive Thermoelectric ...

  12. Environmental impacts of ocean thermal energy conversion

    SciTech Connect

    Not Available

    1986-04-01

    Ocean thermal energy conversion (OTEC) is a promising technology for production of energy and usable by-products from solar-generated temperature gradients in the world's oceans. Although considered benign compared to alternative forms of energy generation, deployment of OTEC plants will result in interactions with marine, terrestrial, and atmospheric environments and in socioeconomic interactions with surrounding areas. The Ocean Energy Technology Program of the Department of Energy has funded research to improve the understanding of these interactions. No insurmountable environmental obstacle to OTEC deployment has been uncovered. This document contains a summary of that research for entrepreneurs, utility engineers, and others interested in pursuing OTEC's potential. In addition, it provides a guide to permits, regulations, and licenses applicable to construction of an OTEC plant.

  13. High Energy Utilization, Co-Generation Nuclear power Plants With Static Energy Conversion

    SciTech Connect

    El-Genk, Mohamed S.; Tournier, Jean-Michel P.

    2002-07-01

    In addition to being cost effective, very small nuclear power plants with static energy conversion could meet the needs and the energy mix in underdeveloped countries and remote communities, which may include electricity, residential and industrial space heating, seawater desalination, and/or high temperature process heat or steam for industrial uses. These plants are also an attractive option in naval, marine, and undersea applications, when the absence of a sound signature is highly desirable. An Analysis is performed of Gas Cooled Reactor (CGR) and Liquid Metal Cooled Reactor (LMR), very small nuclear power plants with static energy conversion, using a combination of options. These include Alkali Metal Thermal-to-Electric Converters (AMTECs) and both single segment and segmented thermoelectric converters. The total energy utilization of these plants exceeds 88%. It includes the fraction of the reactor's thermal power converted into electricity and delivered to the Grid at 6.6 kVA and those used for residential and industrial space heating at {approx}370 K, seawater desalination at 400 K, and/or high temperature process heat or steam at {approx}850 K. In addition to its inherently high reliability, modularity, low maintenance and redundancy, static energy conversion used in the present study could deliver electricity to the Grid at a net efficiency of 29.5%. A LMR plant delivers 2-3 times the fraction of the reactor thermal power converted into electricity in a GCR plant, but could not provide for both seawater desalination and high temperature process heat/steam concurrently, which is possible in GCR plants. The fraction of the reactor's thermal power used for non-electrical power generation in a GCR plant is {approx} 10 - 15% higher than in a LMR plant. (authors)

  14. Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle

    Energy.gov [DOE]

    Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  15. Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle

    Office of Energy Efficiency and Renewable Energy (EERE)

    Describes TEG systems built at MSU to mitigate couple failures and a cost-benefit analysis for a system used as an energy recovery system … auxiliary power unit in an over-the-road truck system.

  16. Next-Generation Thermionic Solar Energy Conversion

    Energy.gov [DOE]

    This fact sheet describes a next-generation thermionic solar energy conversion project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The team, led by Stanford University, seeks to demonstrate the feasibility of photon-enhanced, microfabricated thermionic energy converters as a high-efficiency topping cycle for CSP electricity generation. With the potential to double the electricity output efficiency of solar-thermal power stations, this topping cycle application can significantly reduce the cost of solar-thermal electricity below that of the lowest-cost, fossil-fuel generated electricity.

  17. Thermoelectrici Conversion of Waste Heat to Electricity in an...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle Thermoelectric Conversion of Waste Heat to Electricity in an IC ...

  18. Nanoscale Materials and Architectures for Energy Conversion

    SciTech Connect

    Grulke, Eric A.; Sunkara, Mahendra K.

    2011-05-25

    The Kentucky EPSCoR Program supported an inter-university, multidisciplinary energy-related research cluster studying nanomaterials for converting solar radiation and residual thermal energy to electrical energy and hydrogen. It created a collaborative center of excellence based on research expertise in nanomaterials, architectures, and their synthesis. The project strengthened and improved the collaboration between the University of Louisville, the University of Kentucky, and NREL. The cluster hired a new faculty member for ultra-fast transient spectroscopy, and enabled the mentoring of one research scientist, two postdoctoral scholars and ten graduate students. Work was accomplished with three focused cluster projects: organic and photoelectrochemical solar cells, solar fuels, and thermionic energy conversion.

  19. Biofuel Conversion Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Biofuel Conversion Basics Biofuel Conversion Basics August 14, 2013 - 12:31pm Addthis The conversion of biomass solids into liquid or gaseous biofuels is a complex process. Today, the most common conversion processes are biochemical- and thermochemical-based. However, researchers are also exploring photobiological conversion processes. Biochemical Conversion Processes In biochemical conversion processes, enzymes and microorganisms are used as biocatalysts to convert biomass or biomass-derived

  20. Energy conversion device with improved seal

    DOEpatents

    Miller, Gerald R.; Virkar, Anil V.

    1980-01-01

    An energy conversion device comprising an improved sealing member adapted to seal a cation-permeable casing to the remainder of the device. The sealing member comprises a metal substrate which (i) bears a nonconductive and corrosion resistant coating on the major surface to which said casing is sealed, and (ii) is corrugated so as to render it flexible, thereby allowing said member to move relative to said casing without cracking the seal therebetween. Corrugations may be circumferential, radial, or both radial and circumferential so as to form dimples. The corrugated member may be in form of a bellows or in a substantially flat form, such as a disc.

  1. Carbon aerogel electrodes for direct energy conversion

    DOEpatents

    Mayer, Steven T. (San Leandro, CA); Kaschmitter, James L. (Pleasanton, CA); Pekala, Richard W. (Pleasant Hill, CA)

    1997-01-01

    A direct energy conversion device, such as a fuel cell, using carbon aerogel electrodes, wherein the carbon aerogel is loaded with a noble catalyst, such as platinum or rhodium and soaked with phosphoric acid, for example. A separator is located between the electrodes, which are placed in a cylinder having plate current collectors positioned adjacent the electrodes and connected to a power supply, and a pair of gas manifolds, containing hydrogen and oxygen positioned adjacent the current collectors. Due to the high surface area and excellent electrical conductivity of carbon aerogels, the problems relative to high polarization resistance of carbon composite electrodes conventionally used in fuel cells are overcome.

  2. Carbon aerogel electrodes for direct energy conversion

    DOEpatents

    Mayer, S.T.; Kaschmitter, J.L.; Pekala, R.W.

    1997-02-11

    A direct energy conversion device, such as a fuel cell, using carbon aerogel electrodes is described, wherein the carbon aerogel is loaded with a noble catalyst, such as platinum or rhodium and soaked with phosphoric acid, for example. A separator is located between the electrodes, which are placed in a cylinder having plate current collectors positioned adjacent the electrodes and connected to a power supply, and a pair of gas manifolds, containing hydrogen and oxygen positioned adjacent the current collectors. Due to the high surface area and excellent electrical conductivity of carbon aerogels, the problems relative to high polarization resistance of carbon composite electrodes conventionally used in fuel cells are overcome. 1 fig.

  3. Novel Energy Conversion Equipment for Low Temperature Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Novel Energy Conversion Equipment for Low Temperature Geothermal Resources Jay Kohler Eric Minor Johnson Controls, Inc. Geothermal Energy Production from Low Temperature Resources ...

  4. Currency Conversion and Energy Projections: Some Questions and...

    Energy Information Administration (EIA) (indexed site)

    Currency Conversion and Energy Projections: Some Questions and Answers Vipin Arora November 2015 Independent Statistics & Analysis www.eia.gov U.S. Energy Information ...

  5. Most Viewed Documents - Energy Storage, Conversion, and Utilization...

    Office of Scientific and Technical Information (OSTI)

    Energy Storage, Conversion, and Utilization Process Equipment Cost Estimation, Final ... with IPST, now at Cargill. Inc) (2008) Energy Saving Potentials and Air Quality ...

  6. Most Viewed Documents - Energy Storage, Conversion, and Utilization...

    Office of Scientific and Technical Information (OSTI)

    - Energy Storage, Conversion, and Utilization Process Equipment Cost Estimation, Final ... with IPST, now at Cargill. Inc) (2008) Energy Saving Potentials and Air Quality ...

  7. Conversation with Paul Brown | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Conversation with Paul Brown Jump to: navigation, search OpenEI Reference LibraryAdd to library Personal Communication: Conversation with Paul Brown Author Paul Brown Recipient...

  8. Advanced Conversion Roadmap Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    More Documents & Publications Conversion Technologies for Advanced Biofuels - Bio-Oil Production Conversion Technologies for Advanced Biofuels - Bio-Oil Upgrading 2013 Peer Review ...

  9. Welcome - Center for Solar and Thermal Energy Conversion

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    high efficiency photovoltaic (PV) and thermoelectric (TE) devices, predicated on new ... high figures of merit in thermoelectric (inorganic, hybrid or molecular) materials. ...

  10. OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC ENVIRONMENTAL ASSESSMENT

    SciTech Connect

    Sands, M.Dale

    1980-08-01

    Significant achievements in Ocean Thermal Energy Conversion (OTEC) technology have increased the probability of producing OTEC-derived power in this decade with subsequent large-scale commercialization to follow by the turn of the century. Under U.S. Department of Energy funding, Interstate Electronics has prepared an OTEC Programmatic Environmental Assessment (EA) that considers tne development, demonstration, and commercialization of OTEC power systems. The EA considers several tecnnological designs (open cycle and closed cycle), plant configurations (land-based, moored, and plantship), and power usages (baseload electricity and production of ammonia and aluminum). Potencial environmental impacts, health and safety issues, and a status update of international, federal, and state plans and policies, as they may influence OTEC deployments, are included.

  11. Biochemical Conversion - Biorefinery Integration | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Research & Development » Conversion Technologies » Biochemical Conversion » Biochemical Conversion - Biorefinery Integration Biochemical Conversion - Biorefinery Integration One of the essential elements in the economical and efficient production of cellulosic biofuels is the development of biorefineries. Similar in concept to traditional petroleum refineries, biorefineries convert various types of biomass feedstock into marketable chemicals, fuels, and products. By taking advantage of

  12. Home | Solid State Solar Thermal Energy Conversion

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Sponge creates steam using ambient sunlight MIT engineers have invented a bubble-wrapped, sponge-like device that... Read the full story The S3TEC Center aims at advancing fundamental science and developing materials to harness heat from the sun and convert this heat into electricity via thermoelectric, thermogalvanic and thermophotovoltaic technologies. Home Physicists predict previously unseen phenomena in exotic materials MIT News highlighted work in the S3TEC center led by Liang Fu... Read

  13. Thermogalvanics | Solid State Solar Thermal Energy Conversion

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Thermogalvanics Thermogalvanic (TG) cells refer to electrochemical cells that convert heat into electricity in a device configuration similar to that of thermoelectric (TE) devices. It is well-known that the potentials of electrochemical reactions have temperature coefficients (often called thermogalvanic coefficient a) on the order of 1 mV/K, much higher than that of typical TE materials. However, the electrical conductivity of electrolytes is low, and thus the achieved efficiencies have been

  14. Nanoscale Fluid Mechanics and Energy Conversion

    SciTech Connect

    Chen, X; Xu, BX; Liu, L

    2014-05-29

    Under nanoconfinement, fluid molecules and ions exhibit radically different configurations, properties, and energetics from those of their bulk counterparts. These unique characteristics of nanoconfined fluids, along with the unconventional interactions with solids at the nanoscale, have provided many opportunities for engineering innovation. With properly designed nanoconfinement, several nanofluidic systems have been devised in our group in the past several years to achieve energy conversion functions with high efficiencies. This review is dedicated to elucidating the unique characteristics of nanofluidics, introducing several novel nanofluidic systems combining nanoporous materials with functional fluids, and to unveiling their working mechanisms. In all these systems, the ultra-large surface area available in nanoporous materials provides an ideal platform for seamlessly interfacing with nanoconfined fluids, and efficiently converting energy between the mechanical, thermal, and electrical forms. These systems have been demonstrated to have great potentials for applications including energy dissipation/absorption, energy trapping, actuation, and energy harvesting. Their efficiencies can be further enhanced by designing efforts based upon improved understanding of nanofluidics, which represents an important addition to classical fluid mechanics. Through the few systems exemplified in this review, the emerging research field of nanoscale fluid mechanics may promote more exciting nanofluidic phenomena and mechanisms, with increasing applications by encompassing aspects of mechanics, materials, physics, chemistry, biology, etc.

  15. Technology assessment of wind energy conversion systems

    SciTech Connect

    Meier, B. W.; Merson, T. J.

    1980-09-01

    Environmental data for wind energy conversion systems (WECSs) have been generated in support of the Technology Assessment of Solar Energy (TASE) program. Two candidates have been chosen to characterize the WECS that might be deployed if this technology makes a significant contribution to the national energy requirements. One WECS is a large machine of 1.5-MW-rated capacity that can be used by utilities. The other WECS is a small machine that is characteristic of units that might be used to meet residential or small business energy requirements. Energy storage systems are discussed for each machine to address the intermittent nature of wind power. Many types of WECSs are being studied and a brief review of the technology is included to give background for choosing horizontal axis designs for this study. Cost estimates have been made for both large and small systems as required for input to the Strategic Environmental Assessment Simulation (SEAS) computer program. Material requirements, based on current generation WECSs, are discussed and a general discussion of environmental impacts associated with WECS deployment is presented.

  16. Thermochemical Conversion Related Links | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Conversion » Thermochemical Conversion Related Links Thermochemical Conversion Related Links Further reading about current Bioenergy Technologies Office R&D in the Thermochemical Platform can be found in this website's Information Resources section. Some key publications are: Biomass Conversion: From Feedstocks to Final Products (July 2016) Thermochemical Conversion 2009 Peer Review Design Case Summary: Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating, and

  17. Thermoelectric power source utilizing ambient energy harvesting for remote

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    sensing and transmitting - Energy Innovation Portal 4,263 Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories Find More Like This

  18. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Center (LMI-EFRC) Lectures & Tutorials Lectures from the LMI-EFRC "New Approaches to Full Spectrum Solar Energy Conversion" Webinar, September 3, 2015, Caltech Harry A. Atwater Quantum Dot Luminescent Concentrators Paul Alivisatos, Lawrence Berkeley National Laboratory John Rogers Control of Thermal Radiation Using Photonic Structures for Energy Applications Shanhui Fan, Stanford University Eli Yablonovitch Printing Functional Materials Jennifer Lewis, Harvard lmi logo Panel

  19. Ocean Thermal Energy Conversion Act of 1980

    SciTech Connect

    Not Available

    1980-01-01

    A legislative proposal to develop ocean thermal energy conversion (OTEC) facilities for power generation was the subject of hearings held on April 10 and May 1, 1980. Following the test of S. 2492 are the statements of 20 witnesses and additional materials submitted for consideration. The need for a large-scale demonstration of OTEC and the need for a Federal regulatory, siting, and financial-assistance framework are the major commercialization issues. S. 2492 provides one-stop licensing by treating the facilities as vessels and making them eligible for loan guarantees. The bill complements S. 1430, which deals with the demonstration program. OTEC development in Hawaii has progressed to a second pilot project. (DCK)

  20. 3rd Thermoelectrics Applications Workshop 2012 | Department of Energy

    Energy Saver

    9 TABLE 10 COSTS OF FOREIGN TRAVEL TRIP DATES OF PARTICIPANTS* NUMBER TRIP COUNTRY PURPOSE FEDS NON-FEDS COST** 1993 1 June 1-5 France International Energy Agency Ministerial Meeting 8 0 $43,645 2 Sept 24-Oct 2 Austria International Atomic Energy Agency General Conference 35 0 $186,025 Russia Gore-Chernomyrdin Commission on Energy and Space Energy Policy Committee 3 Oct 22-26 England Keynote address to the "Oil & Money" Conference 13 0 $67,591 4 Dec 12-17 Russia Gore-Chernomyrdin

  1. Theoretical efficiency limits for thermoradiative energy conversion

    SciTech Connect

    Strandberg, Rune

    2015-02-07

    A new method to produce electricity from heat called thermoradiative energy conversion is analyzed. The method is based on sustaining a difference in the chemical potential for electron populations above and below an energy gap and let this difference drive a current through an electric circuit. The difference in chemical potential originates from an imbalance in the excitation and de-excitation of electrons across the energy gap. The method has similarities to thermophotovoltaics and conventional photovoltaics. While photovoltaic cells absorb thermal radiation from a body with higher temperature than the cell itself, thermoradiative cells are hot during operation and emit a net outflow of photons to colder surroundings. A thermoradiative cell with an energy gap of 0.25 eV at a temperature of 500 K in surroundings at 300 K is found to have a theoretical efficiency limit of 33.2%. For a high-temperature thermoradiative cell with an energy gap of 0.4 eV, a theoretical efficiency close to 50% is found while the cell produces 1000 W/m{sup 2} has a temperature of 1000 K and is placed in surroundings with a temperature of 300 K. Some aspects related to the practical implementation of the concept are discussed and some challenges are addressed. It is, for example, obvious that there is an upper boundary for the temperature under which solid state devices can work properly over time. No conclusions are drawn with regard to such practical boundaries, because the work is aimed at establishing upper limits for ideal thermoradiative devices.

  2. Events | Solid State Solar Thermal Energy Conversion

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Events Seminar S3TEC Cross Cutting Meeting- Tentative Date Tuesday, Dec 6, 2016 12:00 pm 5-314 Seminar S3TEC seminar, Prof David Clarke Wednesday, Dec 7, 2016 12:00 pm 5-134 Seminar EFRC Teleconference Thursday, Dec 8, 2016 2:00 pm 3-258 Meeting S3TEC Thermoelectrics Meeting Tuesday, Dec 13, 2016 1:00 pm 3-434 Meeting S3TEC Executive Committee Meeting- Executive Committee Only Wednesday, Dec 14, 2016 9:00 am 3-258 or by conference call Meeting S3TEC TPV Meeting- December Friday, Dec 16, 2016

  3. Publications | Solid State Solar Thermal Energy Conversion

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Publications Publications supported by S3TEC: 386 Zhu, Z.M.; Li, M.D.; Li, J., Topological semimetal to insulator quantum phase transition in the Zintl compounds Ba2X(X = Si,Ge), Physical Review B, 94, (2016). [DOI: 10.1103/PhysRevB.94.155121] 385 Zhou, J.W.; Liao, B.L.; Chen, G., First-principles calculations of thermal, electrical, and thermoelectric transport properties of semiconductors, Semiconductor Science and Technology, 31, (2016). [DOI: 10.1088/0268-1242/31/4/043001] 384 Zhang, Q.;

  4. Ocean thermal energy conversion: Perspective and status

    SciTech Connect

    Thomas, A.; Hillis, D.L.

    1990-01-01

    The use of the thermal gradient between the warm surface waters and the deep cold waters of tropical oceans was first proposed by J. A. d'Arsonval in 1881 and tried unsuccessfully be George Claude in 1930. Interest in Ocean Thermal Energy Conversion (OTEC) and other renewable energy sources revived in the 1970s as a result of oil embargoes. At that time, the emphasis was on large floating plants miles from shore producing 250--400 MW for maintained grids. When the problems of such plants became better understood and the price of oil reversed its upward trend, the emphasis shifted to smaller (10 MW) shore-based plants on tropical islands. Such plants would be especially attractive if they produce fresh water as a by-product. During the past 15 years, major progress has been made in converting OTEC unknowns into knowns. Mini-OTEC proved the closed-cycle concept. Cost-effective heat-exchanger concepts were identified. An effective biofouling control technique was discovered. Aluminum was determined to be promising for OTEC heat exchangers. Heat-transfer augmentation techniques were identified, which promised a reduction on heat-exchanger size and cost. Fresh water was produced by an OTEC open-cycle flash evaporator, using the heat energy in the seawater itself. The current R D emphasis is on the design and construction of a test facility to demonstrate the technical feasibility of the open-cycle process. The 10 MW shore-based, closed-cycle plant can be built with today's technology; with the incorporation of a flash evaporator, it will produce fresh water as well as electrical power -- both valuable commodities on many tropical islands. The open-cycle process has unknowns that require solution before the technical feasibility can be demonstrated. The economic viability of either cycle depends on reducing the capital costs of OTEC plants and on future trends in the costs of conventional energy sources. 7 refs.

  5. Photonic Crystals for Enhancing Thermophotovoltaic Energy Conversion

    SciTech Connect

    LIN, SHAWN-YU; FLEMING, JAMES G.; MORENO, JOSEPH A.

    2003-03-01

    Thermophotovoltaics (TPV) converts the radiant energy of a thermal source into electrical energy using photovoltaic cells. TPV has a number of attractive features, including: fuel versatility (nuclear, fossil, solar, etc.), quiet operation, low maintenance, low emissions, light weight, high power density, modularity, and possibility for cogeneration of heat and electricity. Some of these features are highly attractive for military applications (Navy and Army). TPV could also be used for distributed power and automotive applications wherever fuel cells, microturbines, or cogeneration are presently being considered if the efficiencies could be raised to around 30%. This proposal primarily examine approaches to improving the radiative efficiency. The ideal irradiance for the PV cell is monochromatic illumination at the bandgap. The photonic crystal approach allows for the tailoring of thermal emission spectral bandwidth at specific wavelengths of interest. The experimental realization of metallic photonic crystal structures, the optical transmission, reflection and absorption characterization of it have all been carried out in detail and will be presented next. Additionally, comprehensive models of TPV conversion has been developed and applied to the metallic photonic crystal system.

  6. Symposium on the Physical Chemistry of Solar Energy Conversion...

    Office of Scientific and Technical Information (OSTI)

    for Solar Energy Conversion (2 half-day sessions); (2) Artificial Photosynthesis: Water Oxidation; (3) Artificial Photosynthesis: Solar Fuels (2 half-day sessions); (4) ...

  7. Novel Energy Conversion Equipment for Low Temperatures Geothermal Resources

    Energy.gov [DOE]

    Novel Energy Conversion Equipment for Low Temperatures Geothermal Resources presentation at the April 2013 peer review meeting held in Denver, Colorado.

  8. MHK Technologies/Wave Energy Conversion Activator WECA | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Wave Energy Conversion Activator WECA.jpg Technology Profile Primary Organization Daedalus...

  9. June 2015 Most Viewed Documents for Energy Storage, Conversion...

    Office of Scientific and Technical Information (OSTI)

    June 2015 Most Viewed Documents for Energy Storage, Conversion, And Utilization Process Equipment Cost Estimation, Final Report H.P. Loh; Jennifer Lyons; Charles W. White, III ...

  10. April 2013 Most Viewed Documents for Energy Storage, Conversion...

    Office of Scientific and Technical Information (OSTI)

    April 2013 Most Viewed Documents for Energy Storage, Conversion, And Utilization Seventh Edition Fuel Cell Handbook NETL (2004) 628 Continuously variable transmissions: theory and ...

  11. March 2015 Most Viewed Documents for Energy Storage, Conversion...

    Office of Scientific and Technical Information (OSTI)

    March 2015 Most Viewed Documents for Energy Storage, Conversion, And Utilization Process Equipment Cost Estimation, Final Report H.P. Loh; Jennifer Lyons; Charles W. White, III ...

  12. 2009 Biochemical Conversion Platform Review Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    09 Biochemical Conversion Platform Review Report 2009 Biochemical Conversion Platform Review Report This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the U.S. Department of Energy Biomass Program's Biochemical Conversion platform review meeting, held on April 14-16, 2009, at the Sheraton Denver Downtown, Denver, Colorado. obp_biochem_conversion_platform_review_2009.pdf (4.32 MB) More Documents & Publications 2009

  13. Thermoelectric converter

    DOEpatents

    Kim, C.K.

    1974-02-26

    This invention relates in general to thermoelectric units and more particularly to a tubular thermoelectric unit which includes an array of tandemly arranged radially tapered annular thermoelectric pellets having insulation material of a lower density than the thermoelectric pellets positioned between each pellet. (Official Gazette)

  14. Plasma-Hydrocarbon conversion - Energy Innovation Portal

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Hydrocarbon conversion Idaho National Laboratory Contact INL About This Technology Technology Marketing Summary INL's Plasma-Hydrocarbon Conversion process enables conversion of heavy hydrocarbons, such as heavy crude oil and hydrocarbon gases like natural gas, into lighter hydrocarbon materials (e.g. synthetic light oil). Description It can convert hydrocarbon gases to liquid fuels/chemicals. The dielectric barrier discharge plasma process that adds carbon and hydrogen simultaneously to heavy

  15. Biochemical Conversion Related Links | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Conversion 2009 Peer Review Biochemical Production of Ethanol from Corn Stover: 2007 State of Technology Model For more publications, see the Bioenergy Publication Library

  16. The Effective Thermoelectric Properties of Composite Materials

    Energy.gov [DOE]

    Rigorous mathematical analysis of electric conduction and heat transfer in heterogeneous thermoelectric composites, showing higher conversion efficiency than all its constituents is possible

  17. Vehicle Fuel Economy Improvement through Thermoelectric Waste...

    Energy.gov [DOE] (indexed site)

    Gains in Vehicle Applications Automotive Waste Heat Conversion to Electric Power using Skutterudites, TAGS, PbTe and Bi2Te3 Vehicular Thermoelectric Applications Session DEER 2009

  18. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Center (LMI-EFRC) Get Involved The LMI-EFRC is a synergistic, engaged team of researchers devoted to light management for solar energy conversion. If you are interested in learning more about the LMI-EFRC and opportunities to get involved, please contact lmi-efrc@caltech.edu. Former governor Arnold Schwarzenegger and Austrian Chancellor Werner Faymann visit Caltech. Hollywood film director James Cameron visits Caltech

  19. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Center (LMI-EFRC) Events image Perovskite Solar Cells: Towards New Materials and New Applications Nripan Mathews, Nanyang Technological University, Singapore November 3, 2014, 11:15 am 101 Guggenheim Lab, Lees-Kubota Hall 2013 workshop Approaches to Ultrahight Efficiency Solar Energy Conversion We are excited to offer this FREE public webinar featuring presentations and an interactive panel discussion with LMI-EFRC photovoltaic experts! March 7, 2013, 8:30-10:30 am PST Hameetman Auditorium,

  20. Assessment of dynamic energy conversion systems for radioisotope heat sources

    SciTech Connect

    Thayer, G.R.; Mangeng, C.A.

    1985-06-01

    The use of dynamic conversion systems to convert the heat generated in a 7500 W(t) 90 Sr radioisotopic heat source to electricity is examined. The systems studies were Stirling; Brayton Cycle; three organic Rankines (ORCs) (Barber-Nichols/ORMAT, Sundstrand, and TRW); and an organic Rankine plus thermoelectrics. The systems were ranked for a North Warning System mission using a Los Alamos Multiattribute Decision Theory code. Three different heat source designs were used: case I with a beginning of life (BOL) source temperature of 640 C, case II with a BOL source temperature of 745/sup 0/C, and case III with a BOL source temperature of 945/sup 0/C. The Stirling engine system was the top-ranked system of cases I and II, closely followed by the ORC systems in case I and ORC plus thermoelectrics in case II. The Brayton cycle system was top-ranked for case III, with the Stirling engine system a close second. The use of /sup 238/Pu in heat source sizes of 7500 W(t) was examined and found to be questionable because of cost and material availability and because of additional requirements for analysis of safeguards and critical mass.

  1. Utilizing Nature's Designs for Solar Energy Conversion | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Utilizing Nature's Designs for Solar Energy Conversion Utilizing Nature's Designs for Solar Energy Conversion Presentation by Lisa Utschig, Argonne National Laboratory, at the Biological Hydrogen Production Workshop held September 24-25, 2013, at the National Renewable Energy Laboratory in Golden, Colorado. bio_h2_workshop_utschig.pdf (1.24 MB) More Documents & Publications 2013 Biological Hydrogen Production Workshop Summary Report Basic Research Needs for Solar Energy

  2. 2nd Thermoelectrics Applications Workshop 2011 | Department of Energy

    Energy Saver

    Conditions | Department of Energy 1960.28: Employee Reports of Unsafe or Unhealthful Working Conditions 29 C.F.R. 1960.28: Employee Reports of Unsafe or Unhealthful Working Conditions Stakeholders: DOE employees and other federal employees Scope: The Occupational Safety and Health Administration's 29 C.F.R. 1960.28 details the appropriate procedure for employees seeking to file employee reports regarding hazardous and/or unhealthful working conditions to the appropriate authorities. Summary:

  3. Determination of Thermoelectric Module Efficiency A Survey

    SciTech Connect

    Wang, Hsin; McCarty, Robin; Salvador, James R.; Yamamoto, Atsushi; Konig, Jan

    2014-01-01

    The development of thermoelectrics (TE) for energy conversion is in the transition phase from laboratory research to device development. There is an increasing demand to accurately determine the module efficiency, especially for the power generation mode. For many thermoelectrics, the figure of merit, ZT, of the material sometimes cannot be fully realized at the device level. Reliable efficiency testing of thermoelectric modules is important to assess the device ZT and provide the end-users with realistic values on how much power can be generated under specific conditions. We conducted a general survey of efficiency testing devices and their performance. The results indicated the lack of industry standards and test procedures. This study included a commercial test system and several laboratory systems. Most systems are based on the heat flow meter method and some are based on the Harman method. They are usually reproducible in evaluating thermoelectric modules. However, cross-checking among different systems often showed large errors that are likely caused by unaccounted heat loss and thermal resistance. Efficiency testing is an important area for the thermoelectric community to focus on. A follow-up international standardization effort is planned.

  4. Development of a 500 Watt High Temperature Thermoelectric Generator...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications Development of a 100-Watt High Temperature Thermoelectric Generator Automotive Waste Heat Conversion to Power Program Automotive Waste Heat Conversion ...

  5. High Energy Density Thermal Batteries: Thermoelectric Reactors for Efficient Automotive Thermal Storage

    SciTech Connect

    2011-11-15

    HEATS Project: Sheetak is developing a new HVAC system to store the energy required for heating and cooling in EVs. This system will replace the traditional refrigerant-based vapor compressors and inefficient heaters used in today’s EVs with efficient, light, and rechargeable hot-and-cold thermal batteries. The high energy density thermal battery—which does not use any hazardous substances—can be recharged by an integrated solid-state thermoelectric energy converter while the vehicle is parked and its electrical battery is being charged. Sheetak’s converters can also run on the electric battery if needed and provide the required cooling and heating to the passengers—eliminating the space constraint and reducing the weight of EVs that use more traditional compressors and heaters.

  6. Solar to Chemical Energy Conversion with Photocatalytic Heterostructur...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Solar to Chemical Energy Conversion with Photocatalytic Heterostructures made of Earth Abundant Materials Cu2ZnSnS4 (CZTS) is one of the most promising materials for solar energy...

  7. Tailoring Nanostructures for Energy Conversion Devices | Solid State Solar

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Thermal Energy Conversion Tailoring Nanostructures for Energy Conversion Devices Seminar Thursday Oct 20, 2016 12:00pm Location: 4-163 Speaker: Prof. Jia Zhu, Nanjing University Event Contact: sborisk@mit.edu Supplying the world with sustainable energy is one of the most pressing issues in modern society. Nanomaterials with carefully tailored properties (such as interface, impurities) can be used to manipulate the flow of phonons, electrons and photons, to enable novel energy devices in an

  8. Open cycle ocean thermal energy conversion system

    DOEpatents

    Wittig, J. Michael

    1980-01-01

    An improved open cycle ocean thermal energy conversion system including a flash evaporator for vaporizing relatively warm ocean surface water and an axial flow, elastic fluid turbine having a vertical shaft and axis of rotation. The warm ocean water is transmitted to the evaporator through a first prestressed concrete skirt-conduit structure circumferentially situated about the axis of rotation. The unflashed warm ocean water exits the evaporator through a second prestressed concrete skirt-conduit structure located circumferentially about and radially within the first skirt-conduit structure. The radially inner surface of the second skirt conduit structure constitutes a cylinder which functions as the turbine's outer casing and obviates the need for a conventional outer housing. The turbine includes a radially enlarged disc element attached to the shaft for supporting at least one axial row of radially directed blades through which the steam is expanded. A prestressed concrete inner casing structure of the turbine has upstream and downstream portions respectively situated upstream and downstream from the disc element. The radially outer surfaces of the inner casing portions and radially outer periphery of the axially interposed disc cooperatively form a downwardly radially inwardly tapered surface. An annular steam flowpath of increasing flow area in the downward axial direction is radially bounded by the inner and outer prestressed concrete casing structures. The inner casing portions each include a transversely situated prestressed concrete circular wall for rotatably supporting the turbine shaft and associated structure. The turbine blades are substantially radially coextensive with the steam flowpath and receive steam from the evaporator through an annular array of prestressed concrete stationary vanes which extend between the inner and outer casings to provide structural support therefor and impart a desired flow direction to the steam.

  9. Thermochemical Conversion - Biorefinery Integration | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    - Biorefinery Integration Thermochemical Conversion - Biorefinery Integration Fuels Synthesis Fuels can be produced from bio-oils using processes similar to those found in a petroleum refinery, including hydrotreating and hydrocracking to create green gasoline, an alternative to alcohol-based ethanol fuels. Some types of bio-oils can even be fully integrated into petroleum refining stream and infrastructure. The conversion of biomass derived syngas to products is typically an exothermic process,

  10. Thermochemical Conversion Processes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Processes Thermochemical Conversion Processes Gasification In gasification conversion, lignocellulosic feedstocks such as wood and forest products are broken down to synthesis gas, primarily carbon monoxide and hydrogen, using heat. The feedstock is then partially oxidized, or reformed with a gasifying agent (air, oxygen, or steam), which produces synthesis gas (syngas). The makeup of syngas will vary due to the different types of feedstocks, their moisture content, the type of gasifier used,

  11. OSTIblog Articles in the Radioisotope Thermoelectric Generator Topic |

    Office of Scientific and Technical Information (OSTI)

    OSTI, US Dept of Energy Office of Scientific and Technical Information Radioisotope Thermoelectric Generator

  12. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Center (LMI-EFRC) 3 LMI-EFRC Team Meeting March 7-8, 2013 California Institute of Technology Pasadena, CA [map] Our 2013 Annual Meeting will be at Caltech on Thursday-Friday, March 7-8, 2013. This year, we will kick off the meeting with our first-ever free public webinar on Approaches to Ultrahigh Efficiency Solar Energy Conversion featuring presentations and a panel discussion with some of our expert faculty investigators. The remainder of the meeting will be devoted primarily to student-

  13. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Center (LMI-EFRC) Fall Meeting September 3-4, 2015 California Institute of Technology Pasadena, CA [map] Our 2015 LMI-EFRC Fall Meeting will be at Caltech on Thursday-Friday, September 3-4, 2015. Our meeting this year will start with a public webinar on New Approaches to Full Spectrum Solar Energy Conversion featuring some of our LMI experts. This meeting will gather the PIs, students, and postdocs from the five institutions (Caltech, Harvard, LBL, Stanford, and UIUC) for a combination of

  14. Automotive Waste Heat Conversion to Power Program | Department...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications Development of a 500 Watt High Temperature Thermoelectric Generator Automotive Waste Heat Conversion to Power Program Thermoelectric Waste Heat ...

  15. DUF6 Conversion | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Services » PPPO Cleanup Projects - Portsmouth, Paducah, & DUF6 » DUF6 Conversion DUF6 Conversion DUF6 Facility at the Paducah Site DUF6 Facility at the Paducah Site DUF6 Facility at the Portsmouth Site DUF6 Facility at the Portsmouth Site There are more than 63,000 cylinders filled with DUF6 stored in cylinder yards at the Paducah and Portsmouth Sites. There are more than 63,000 cylinders filled with DUF6 stored in cylinder yards at the Paducah and Portsmouth Sites. DUF6 cylinder

  16. January 2013 Most Viewed Documents for Energy Storage, Conversion, And

    Office of Scientific and Technical Information (OSTI)

    Utilization | OSTI, US Dept of Energy Office of Scientific and Technical Information January 2013 Most Viewed Documents for Energy Storage, Conversion, And Utilization Energy Technology Perspectives 2012: Executive Summary [Portuguese version] NONE Energy indicators for electricity production : comparing technologies and the nature of the indicators Energy Payback Ratio (EPR), Net Energy Ratio (NER) and Cumulative Energy Demand (CED). [Oestfoldforskning AS] Raadal, Hanne Lerche [Ostfold

  17. Tandem filters using frequency selective surfaces for enhanced conversion efficiency in a thermophotovoltaic energy conversion system

    DOEpatents

    Dziendziel, Randolph J.; DePoy, David Moore; Baldasaro, Paul Francis

    2007-01-23

    This invention relates to the field of thermophotovoltaic (TPV) direct energy conversion. In particular, TPV systems use filters to minimize parasitic absorption of below bandgap energy. This invention constitutes a novel combination of front surface filters to increase TPV conversion efficiency by reflecting useless below bandgap energy while transmitting a very high percentage of the useful above bandgap energy. In particular, a frequency selective surface is used in combination with an interference filter. The frequency selective surface provides high transmission of above bandgap energy and high reflection of long wavelength below bandgap energy. The interference filter maintains high transmission of above bandgap energy and provides high reflection of short wavelength below bandgap energy and a sharp transition from high transmission to high reflection.

  18. Tandem filters using frequency selective surfaces for enhanced conversion efficiency in a thermophotovoltaic energy conversion system

    DOEpatents

    Dziendziel, Randolph J.; Baldasaro, Paul F.; DePoy, David M.

    2010-09-07

    This invention relates to the field of thermophotovoltaic (TPV) direct energy conversion. In particular, TPV systems use filters to minimize parasitic absorption of below bandgap energy. This invention constitutes a novel combination of front surface filters to increase TPV conversion efficiency by reflecting useless below bandgap energy while transmitting a very high percentage of the useful above bandgap energy. In particular, a frequency selective surface is used in combination with an interference filter. The frequency selective surface provides high transmission of above bandgap energy and high reflection of long wavelength below bandgap energy. The interference filter maintains high transmission of above bandgap energy and provides high reflection of short wavelength below bandgap energy and a sharp transition from high transmission to high reflection.

  19. Standardization of Transport Properties Measurements: Internal Energy Agency (IEA-AMT) Annex on Thermoelectric

    Energy.gov [DOE]

    Thermoelectric materials transport properties measurements improvement and standardization is undertaken by new IEA annex under the Advanced Materials for Transportation implementing agreement

  20. Semiconductor nanowires for photovoltaic and photoelectrochemical energy conversion

    SciTech Connect

    Dasgupta, Neil; Yang, Peidong

    2013-01-23

    Semiconductor nanowires (NW) possess several beneficial properties for efficient conversion of solar energy into electricity and chemical energy. Due to their efficient absorption of light, short distances for minority carriers to travel, high surface-to-volume ratios, and the availability of scalable synthesis methods, they provide a pathway to address the low cost-to-power requirements for wide-scale adaptation of solar energy conversion technologies. Here we highlight recent progress in our group towards implementation of NW components as photovoltaic and photoelectrochemical energy conversion devices. An emphasis is placed on the unique properties of these one-dimensional (1D) structures, which enable the use of abundant, low-cost materials and improved energy conversion efficiency compared to bulk devices.

  1. Streetlight conversion may save energy, not money

    SciTech Connect

    Not Available

    1982-12-01

    An analysis of converting a mercury-vapor streetlighting system to high-pressure sodium shows that the cost of conversion at one utility must not exceed $150 per unit, and that the decision to convert is very sensitive to the fixed-charge rate but not to time. 1 figure.

  2. Energy Conversion and Thermal Efficiency Sales Tax Exemption

    Energy.gov [DOE]

    Qualifying energy conversion facilities are those that are used for the primary purpose of converting natural gas or fuel oil to an alternate fuel or power source excluding propane, butane, napht...

  3. Mitochondrial complex I - energy conversion by a giant proton...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Mitochondrial complex I - energy conversion by a giant proton pump Wednesday, November 4, 2015 - 3:00pm SLAC, Redtail Hawk Conference Room 108A Speaker: Volker Zickermann, Goethe...

  4. Energy conversion device with support member having pore channels

    DOEpatents

    Routkevitch, Dmitri [Longmont, CO; Wind, Rikard A [Johnstown, CO

    2014-01-07

    Energy devices such as energy conversion devices and energy storage devices and methods for the manufacture of such devices. The devices include a support member having an array of pore channels having a small average pore channel diameter and having a pore channel length. Material layers that may include energy conversion materials and conductive materials are coaxially disposed within the pore channels to form material rods having a relatively small cross-section and a relatively long length. By varying the structure of the materials in the pore channels, various energy devices can be fabricated, such as photovoltaic (PV) devices, radiation detectors, capacitors, batteries and the like.

  5. Research Overview | Solid State Solar Thermal Energy Conversion

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Research Overview Despite great progress in developing efficient thermal energy conversion technologies since the industrial revolution, heat-to-electricity conversion has been primarily based on thermal-mechanical systems such as steam and gas turbines and internal combustion engines. Such engines are most suitable for power generation at large scales with high power density energy sources, but their efficiency suffers when they are used for small-scale installations with low power density

  6. Research Program - Center for Solar and Thermal Energy Conversion

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    In the Inorganic PV thrust, we develop nanostructured materials architectures for solar energy conversion by engineering absorption and transport properties not available in the bulk. In particular, we aim to exploit unique quantum effects at the nanoscale which are promising for the realization of new paradigms in solar energy conversion such as intermediate band or hot carrier solar cells. Thrust Leaders: Prof. Rachel Goldman (MSE)&nbspand Prof. Jamie Phillips (EECS) Recent Publications -

  7. Sunfuels--Solar potential energy conversion

    SciTech Connect

    King, R.J.; Kochman, N.M.

    1980-12-01

    The major obstacle preventing the full utilization of solar energy is the kind of energy that it is being converted into. Wind, solar thermal and photovoltaic systems all convert solar energy into kinetic energy. Kinetic energy, or energy of movement, is very difficult to store and cannot be accumulated over long periods of time so unused or excess energy is wasted. The solution to this problem, in the long run, is not to find more elaborate storage systems but to convert the solar energy into a form which is inherently more storable, namely potential energy. Chemical energy, which is energy stored between the molecular bonds of a substance, is an excellent example of potential energy. If more processes could be developed to produce fuels, or other chemical reactions, from solar energy the benefits would be enormous. First, the problem of inadequate storage would be solved. This in turn would eliminate the need for back-up systems because excess energy accumulated during the long summer days could be ''stored up'' for use during the shorter winter days. Second, the right fuels could also be used for transportation which would decrease our dependency on gasoline.

  8. Alternative energy conversion demonstration laboratory at U. S. Naval Academy

    SciTech Connect

    Wu, C.

    1983-12-01

    This paper describes an alternative energy conversion demonstration laboratory which supplements classroom theory in a senior engineering elective course in energy conversion in the Department of Mechanical Engineering at the U.S. Naval Academy. Oil, nuclear energy, and other conventional sources of power have been the dominant sources for industrial society and the U.S. Navy, and will continue to be so for the foreseeable future. There are other possibilities, however, including wind power, solar power, ocean thermal power and tidal power. A need for alternative sources of energy for the Navy was recognized at the time of the Arab oil embargo in 1973, and an academic program in alternative energy has been developed to help satisfy that need. Specific demonstrations included in this paper are as follows: Mechanical modeling of the depletion of energy reserve, Computer graphic simulation of energy consumption and energy resource exhaust, Wind model, Thermax helius rotor wind machine, Solar breeze - an electric sailboat project, Vertical axis wind turbine, Helicopter, airplane propeller and windmill models test in wind tunnel, Ocean Thermal Energy Conversion Device Demonstration, Pneumatic Wave Energy Conversion Device Demonstration, Chemical Energy Storage Device Demonstration, Solar Energy Demonstration.

  9. NWTC Researchers Develop Wave Energy Conversion Technology | Water | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    NWTC Researchers Develop Wave Energy Conversion Technology April 1, 2016 Robert Thresher may be considered the wizard of wind at the National Renewable Energy Laboratory (NREL), having worked in the field since 1973. At the laboratory since 1984, Thresher's credited with the buildup of what is now the National Wind Technology Center and the startup of the Energy Department's Water Energy Program. His longtime efforts at turning wind and water into renewable energy has now yielded a record of

  10. Energy Conversion and Storage Program: 1992 Annual report

    SciTech Connect

    Cairns, E.J.

    1993-06-01

    This report is the 1992 annual progress report for the Energy Conversion and Storage Program, a part of the Energy and Environment Division of the Lawrence Berkeley Laboratory. Work described falls into three broad areas: electrochemistry; chemical applications; and materials applications. The Energy Conversion and Storage Program applies principles of chemistry and materials science to solve problems in several areas: (1) production of new synthetic fuels, (2) development of high-performance rechargeable batteries and fuel cells, (3) development of advanced thermochemical processes for energy conversion, (4) characterization of complex chemical processes and chemical species, and (5) study and application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Chemical applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing product and waste streams from synfuel plants, coal gasifiers, and biomass conversion processes. Materials applications research includes evaluation of the properties of advanced materials, as well as development of novel preparation techniques. For example, techniques such as sputtering, laser ablation, and poised laser deposition are being used to produce high-temperature superconducting films.

  11. Pin stack array for thermoacoustic energy conversion

    DOEpatents

    Keolian, Robert M.; Swift, Gregory W.

    1995-01-01

    A thermoacoustic stack for connecting two heat exchangers in a thermoacoustic energy converter provides a convex fluid-solid interface in a plane perpendicular to an axis for acoustic oscillation of fluid between the two heat exchangers. The convex surfaces increase the ratio of the fluid volume in the effective thermoacoustic volume that is displaced from the convex surface to the fluid volume that is adjacent the surface within which viscous energy losses occur. Increasing the volume ratio results in an increase in the ratio of transferred thermal energy to viscous energy losses, with a concomitant increase in operating efficiency of the thermoacoustic converter. The convex surfaces may be easily provided by a pin array having elements arranged parallel to the direction of acoustic oscillations and with effective radial dimensions much smaller than the thicknesses of the viscous energy loss and thermoacoustic energy transfer volumes.

  12. Advisors | Solid State Solar Thermal Energy Conversion

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Advisors Robert Armstrong Director, MIT Energy Initiative Visit Website George W. Crabtree Senior Scientist, Argonne National Laboratory Argonne Distinguished Fellow Visit Website ...

  13. Center on Nanostructuring for Efficient Energy Conversion - Outside

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Inquiries Contact Us Outside Inquiries If you have a specific question regarding CNEEC or the work it does, please contact Elizabeth Mattson at emattson(at)stanford.edu. Center on Nanostructuring for Efficient Energy Conversion is an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science and Office of Basic Energy Sciences Stanford Home | Engineering Home | CNEEC Home | Contact Us © 1997-2015 Stanford University. All Rights Reserved. CNEEC Research

  14. Center on Nanostructuring for Efficient Energy Conversion - Team & Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Slideshow Staff Team & Research Slideshow Center on Nanostructuring for Efficient Energy Conversion is an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science and Office of Basic Energy Sciences Stanford Home | Engineering Home | CNEEC Home | Contact Us © 1997-2015 Stanford University. All Rights Reserved. CNEEC Research Faculty Directors & PI's Partners Team & Research Slideshow

  15. Staff | Solid State Solar Thermal Energy Conversion

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Staff and Contractors Staff and Contractors Watch the video above to hear a message from Secretary Moniz, highlighting the FY 2016 budget request for the Department of Energy and his appreciation for the vital mission and dedicated employees of the Department. As referenced in the video, employees are encouraged to visit the Department's website to view the full FY 2016 budget presentation, which proposes approximately $30 billion to support nuclear security, clean energy, environmental cleanup,

  16. Department of Energy Cites BWXT Conversion Services, LLC for

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    BWXT Conversion Services, LLC for Worker Safety and Health Program Violations July 13, 2016 - 4:43pm NEWS MEDIA CONTACT  202-586-4940  DOENews@hq.doe.gov WASHINGTON - The U.S. Department of Energy (DOE) today issued a Preliminary Notice of Violation (PNOV) to BWXT Conversion Services, LLC (BWCS) for violations of DOE worker safety and health requirements. DOE's enforcement program holds contractors accountable for meeting regulatory requirements and maintaining a safe and healthy

  17. Ocean thermal energy conversion: report to congress - fiscal year 1982

    SciTech Connect

    Not Available

    1983-03-31

    National Oceanic and Atmospheric Administration (NOAA) activities related to ocean thermal energy conversion (OTEC) during fiscal year 1982 are described. The agency focus has been in the areas of providing ocean engineering and technical assistance to the Department of Energy (DOE), in streamlining the administration of the Federal OTEC licensing system, and in environmental assistance.

  18. Direct Energy Conversion Nano-hybrid Fuel

    SciTech Connect

    Popa-Simil, Liviu

    2008-07-01

    Most of the exothermic nuclear reactions transfer the mass defect or binding and surplus energy into kinetic energy of the resulting particles. These particles are traveling through material lattices, interacting by ionization and nuclear collisions. Placing an assembly of conductive-insulating layers in the path of such radiation, the ionization energy is transformed into charge accumulation by polarization. The result is a super-capacitor charged by the moving particles and discharged electrically. Another more promising solution is to use bi-material nanoparticles organized such as to act like a serial connection and add the voltage. A spherical symmetry fission products source coated in several nano-layers is desired for such structures. The system may operate as dry or liquid-immersed battery, removing the fission products from the fissile material. There is a tremendous advantage over the current heat flow based thermal stabilization system allowing a power density up to 1000 times higher. (author)

  19. Nanostructured Bulk Thermoelectric Generator for Efficient Power Harvesting for Self-powered Sensor Networks

    SciTech Connect

    Zhang, Yanliang; Butt, Darryl; Agarwal, Vivek

    2015-07-01

    The objective of this Nuclear Energy Enabling Technology research project is to develop high-efficiency and reliable thermoelectric generators for self-powered wireless sensors nodes utilizing thermal energy from nuclear plant or fuel cycle. The power harvesting technology has crosscutting significance to address critical technology gaps in monitoring nuclear plants and fuel cycle. The outcomes of the project will lead to significant advancement in sensors and instrumentation technology, reducing cost, improving monitoring reliability and therefore enhancing safety. The self-powered wireless sensor networks could support the long-term safe and economical operation of all the reactor designs and fuel cycle concepts, as well as spent fuel storage and many other nuclear science and engineering applications. The research is based on recent breakthroughs in high-performance nanostructured bulk (nanobulk) thermoelectric materials that enable high-efficiency direct heat-to-electricity conversion over a wide temperature range. The nanobulk thermoelectric materials that the research team at Boise State University and University of Houston has developed yield up to a 50% increase in the thermoelectric figure of merit, ZT, compared with state-of-the-art bulk counterparts. This report focuses on the selection of optimal thermoelectric materials for this project. The team has performed extensive study on two thermoelectric materials systems, i.e. the half-Heusler materials, and the Bismuth-Telluride materials. The report contains our recent research results on the fabrication, characterization and thermoelectric property measurements of these two materials.

  20. Overview of Thermoelectric Power Generation Technologies in Japan

    Energy.gov [DOE]

    Discusses thermoelectric power generation technologies as applied to waste heat recovery, renewable thermal energy sources, and energy harvesting

  1. Energy Conversion and Storage Program. 1990 annual report

    SciTech Connect

    Cairns, E.J.

    1992-03-01

    The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in (1) production of new synthetic fuels, (2) development of high-performance rechargeable batteries and fuel cells, (3) development of advanced thermochemical processes for energy conversion, (4) characterization of complex chemical processes, and (5) application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Topics include identification of new electrochemical couples for advanced rechargeable batteries, improvements in battery and fuel-cell materials, and the establishment of engineering principles applicable to electrochemical energy storage and conversion. Chemical Applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing waste streams from synfuel plants and coal gasifiers. Other research projects seek to identify and characterize the constituents of liquid fuel-system streams and to devise energy-efficient means for their separation. Materials Applications research includes the evaluation of the properties of advanced materials, as well as the development of novel preparation techniques. For example, the use of advanced techniques, such as sputtering and laser ablation, are being used to produce high-temperature superconducting films.

  2. Thermoelectric module

    DOEpatents

    Kortier, William E.; Mueller, John J.; Eggers, Philip E.

    1980-07-08

    A thermoelectric module containing lead telluride as the thermoelectric mrial is encapsulated as tightly as possible in a stainless steel canister to provide minimum void volume in the canister. The lead telluride thermoelectric elements are pressure-contacted to a tungsten hot strap and metallurgically bonded at the cold junction to iron shoes with a barrier layer of tin telluride between the iron shoe and the p-type lead telluride element.

  3. A unified site evaluation system for wind energy conversion

    SciTech Connect

    Biro, G.G.

    1980-12-01

    The described evaluation system includes all field and office engineering work needed for proper site selections and for writing the environmental impact statement. Meteorological measurements with collapsible towers trucked to the site, the needed instrumentation, and data transmission with satellite telemetry for storing the meteorological data on a magnetic tape for direct input into the computer are described. A computer program WESES was developed to calculate the energy output of WECSs using the meteorological data on the magnetic tapes. A test site analysis using 7 years of wind velocity measurements is performed, and two 500-kW power wind energy conversion systems have been evaluated. The calculational results give the hourly fluctuations of energy output for any day of the measurements, which also can be used for comparing with load demands. It also calculates and shows in graphs the daily and monthly cumulative energy outputs and compares the energy outputs of different wind energy conversion systems for any desired time period.

  4. Event Archives | Solid State Solar Thermal Energy Conversion

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Event Archives Seminar EFRC Teleconference Thursday, Nov 10, 2016 2:00 pm 3-258 Seminar Tailoring Nanostructures for Energy Conversion Devices Thursday, Oct 20, 2016 12:00 pm 4-163 Supplying the world with sustainable energy is one of the most pressing issues in modern society. Nanomaterials with carefully tailored properties (such as interface, impurities) can be used to manipulate the flow of phonons, electrons and photons, to enable novel energy devices in an... more Seminar EFRC

  5. News - Center for Solar and Thermal Energy Conversion

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Archives Events/News Archives 1st Annual CSTEC External Workshop: August 4, 2010 2nd Annual CSTEC External Workshop: May 3, 2011 3rd Annual CSTEC External Workshop: October 2, 2012 DOE to establish Energy Frontier Research Center in solar energy at U-M CSTEC investigators co-chair ICEL2010 Forcing mismatched elements together could yield better solar cells Recycling waste heat into energy: Researchers take a step toward more efficient conversion Multi-EFRC Collaborative Effort on TE in

  6. June 2014 Most Viewed Documents for Energy Storage, Conversion, And

    Office of Scientific and Technical Information (OSTI)

    Utilization | OSTI, US Dept of Energy Office of Scientific and Technical Information June 2014 Most Viewed Documents for Energy Storage, Conversion, And Utilization Process Equipment Cost Estimation, Final Report H.P. Loh; Jennifer Lyons; Charles W. White, III (2002) 337 Seventh Edition Fuel Cell Handbook NETL (2004) 118 Energy Saving Potentials and Air Quality Benefits of Urban HeatIslandMitigation Akbari, Hashem (2005) 76 Evaluation of 2004 Toyota Prius Hybrid Electric Drive System

  7. March 2014 Most Viewed Documents for Energy Storage, Conversion, And

    Office of Scientific and Technical Information (OSTI)

    Utilization | OSTI, US Dept of Energy Office of Scientific and Technical Information March 2014 Most Viewed Documents for Energy Storage, Conversion, And Utilization Process Equipment Cost Estimation, Final Report H.P. Loh; Jennifer Lyons; Charles W. White, III (2002) 291 Energy Saving Potentials and Air Quality Benefits of Urban HeatIslandMitigation Akbari, Hashem (2005) 85 Seventh Edition Fuel Cell Handbook NETL (2004) 68 Separation of heavy metals: Removal from industrial wastewaters and

  8. March 2015 Most Viewed Documents for Energy Storage, Conversion, And

    Office of Scientific and Technical Information (OSTI)

    Utilization | OSTI, US Dept of Energy Office of Scientific and Technical Information March 2015 Most Viewed Documents for Energy Storage, Conversion, And Utilization Process Equipment Cost Estimation, Final Report H.P. Loh; Jennifer Lyons; Charles W. White, III (2002) 1019 Separation of heavy metals: Removal from industrial wastewaters and contaminated soil Peters, R.W.; Shem, L. (1993) 229 Energy Saving Potentials and Air Quality Benefits of Urban HeatIslandMitigation Akbari, Hashem (2005)

  9. Most Viewed Documents for Energy Storage, Conversion, and Utilization:

    Office of Scientific and Technical Information (OSTI)

    December 2014 | OSTI, US Dept of Energy Office of Scientific and Technical Information Most Viewed Documents for Energy Storage, Conversion, and Utilization: December 2014 Process Equipment Cost Estimation, Final Report H.P. Loh; Jennifer Lyons; Charles W. White, III (2002) 322 Energy Saving Potentials and Air Quality Benefits of Urban HeatIslandMitigation Akbari, Hashem (2005) 107 Separation of heavy metals: Removal from industrial wastewaters and contaminated soil Peters, R.W.; Shem, L.

  10. Most Viewed Documents for Energy Storage, Conversion, and Utilization:

    Office of Scientific and Technical Information (OSTI)

    September 2014 | OSTI, US Dept of Energy Office of Scientific and Technical Information Most Viewed Documents for Energy Storage, Conversion, and Utilization: September 2014 Process Equipment Cost Estimation, Final Report H.P. Loh; Jennifer Lyons; Charles W. White, III (2002) 193 An Improved Method of Manufacturing Corrugated Boxes: Lateral Corrugator Frank C. Murray Ph.D.; , Roman Popil Ph.D.; Michael Shaepe (formerly with IPST, now at Cargill. Inc) (2008) 79 Energy Saving Potentials and

  11. Novel Energy Conversion Equipment for Low Temperatures Geothermal Resources

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Technologies Program 2013 Peer Review Novel Energy Conversion Equipment for Low Temperature Geothermal Resources April 22, 2013 This presentation does not contain any proprietary 1 | US DOE Geothermal Program confidential, or otherwise restricted information. Public Service of Colorado Ponnequin Wind Farm Jay Kohler Frank Baumgardt Johnson Controls, Inc. Geothermal Energy Production from Low Temperature Resources eere.energy.gov Overview Timeline: This project was awarded on April 30, 2010.

  12. Efficient electrochemical CO2 conversion powered by renewable energy

    DOE PAGES [OSTI]

    Kauffman, Douglas R.; Thakkar, Jay; Siva, Rajan; Matranga, Christopher; Ohodnicki, Paul R.; Zeng, Chenjie; Jin, Rongchao

    2015-06-29

    Here, the catalytic conversion of CO2 into industrially relevant chemicals is one strategy for mitigating greenhouse gas emissions. Along these lines, electrochemical CO2 conversion technologies are attractive because they can operate with high reaction rates at ambient conditions. However, electrochemical systems require electricity, and CO2 conversion processes must integrate with carbon-free, renewable-energy sources to be viable on larger scales. We utilize Au25 nanoclusters as renewably powered CO2 conversion electrocatalysts with CO2 → CO reaction rates between 400 and 800 L of CO2 per gram of catalytic metal per hour and product selectivities between 80 and 95%. These performance metrics correspondmore » to conversion rates approaching 0.8–1.6 kg of CO2 per gram of catalytic metal per hour. We also present data showing CO2 conversion rates and product selectivity strongly depend on catalyst loading. Optimized systems demonstrate stable operation and reaction turnover numbers (TONs) approaching 6 × 106 mol CO2 molcatalyst–1 during a multiday (36 hours total hours) CO2electrolysis experiment containing multiple start/stop cycles. TONs between 1 × 106 and 4 × 106 molCO2 molcatalyst–1 were obtained when our system was powered by consumer-grade renewable-energy sources. Daytime photovoltaic-powered CO2 conversion was demonstrated for 12 h and we mimicked low-light or nighttime operation for 24 h with a solar-rechargeable battery. This proof-of-principle study provides some of the initial performance data necessary for assessing the scalability and technical viability of electrochemical CO2 conversion technologies. Specifically, we show the following: (1) all electrochemical CO2 conversion systems will produce a net increase in CO2 emissions if they do not integrate with renewable-energy sources, (2) catalyst loading vs activity trends can be used to tune process rates and product distributions, and (3) state-of-the-art renewable-energy technologies

  13. Proceedings of the 25th intersociety energy conversion engineering conference

    SciTech Connect

    Nelson, P.A.; Schertz, W.W.; Till, R.H.

    1990-01-01

    This book contains the proceedings of the 25th Intersociety Energy Conversion Engineering Conference. Volume 5 is organized under the following headings: Photovoltaics I, Photovoltaics II, Geothermal power, Thermochemical conversion of biomass, Energy from waste and biomass, Solar thermal systems for environmental applications, Solar thermal low temperature systems and components, Solar thermal high temperature systems and components, Wind systems, Space power sterling technology Stirling cooler developments, Stirling solar terrestrial I, Stirling solar terrestrial II, Stirling engine generator sets, Stirling models and simulations, Stirling engine analysis, Stirling models and simulations, Stirling engine analysis, Stirling engine loss understanding, Novel engine concepts, Coal conversion and utilization, Power cycles, MHD water propulsion I, Underwater vehicle powerplants - performance, MHD underwater propulsion II, Nuclear power, Update of advanced nuclear power reactor concepts.

  14. SOLID STATE ENERGY CONVERSION ALLIANCE DELPHI SOFC

    SciTech Connect

    Steven Shaffer; Sean Kelly; Subhasish Mukerjee; David Schumann; H. Skip Mieney

    2003-06-09

    The objective of Phase I under this project is to develop a 5 kW Solid Oxide Fuel Cell power system for a range of fuels and applications. During Phase I, the following will be accomplished: Develop and demonstrate technology transfer efforts on a 5 kW stationary distributed power generation system that incorporates steam reforming of natural gas with piped-in water (Demonstration System A); and Initiate development of a 5 kW system for later mass-market automotive auxiliary power unit application, which will incorporate Catalytic Partial Oxidation (CPO) reforming of gasoline, with anode exhaust gas injected into an ultra-lean burn internal combustion engine. This technical progress report covers work performed by Delphi from July through December 2002 under Department of Energy Cooperative Agreement DE-FC-02NT41246 for the 5 kW mass-market automotive (gasoline) auxiliary power unit. This report highlights technical results of the work performed under the following tasks for the automotive 5 kW system: Task 1--System Design and Integration; Task 2--Solid Oxide Fuel Cell Stack Developments; Task 3--Reformer Developments; Task 4--Development of Balance of Plant (BOP) Components; Task 5--Manufacturing Development (Privately Funded); Task 6--System Fabrication; and Task 7--System Testing.

  15. Ocean Thermal Energy Conversion Program Management Plan

    SciTech Connect

    Combs, R E

    1980-01-01

    The Office of the Associate Laboratory Director for Energy and Environmental Technology has established the OTEC Program Management Office to be responsible for the ANL-assigned tasks of the OTEC Program under DOE's Chicago Operations and Regional Office (DOE/CORO). The ANL OTEC Program Management Plan is essentially a management-by-objective plan. The principal objective of the program is to provide lead technical support to CORO in its capacity as manager of the DOE power-system program. The Argonne OTEC Program is divided into three components: the first deals with development of heat exchangers and other components of OTEC power systems, the second with development of biofouling counter-measures and corrosion-resistant materials for these components in seawater service, and the third with environmental and climatic impacts of OTEC power-system operation. The essential points of the Management Plan are summarized, and the OTEC Program is described. The organization of the OTEC Program at ANL is described including the functions, responsibilities, and authorities of the organizational groupings. The system and policies necessary for the support and control functions within the organization are discussed. These functions cross organizational lines, in that they are common to all of the organization groups. Also included are requirements for internal and external reports.

  16. Ocean thermal energy conversion: a review

    SciTech Connect

    Yuen, P.C.

    1981-10-01

    The OTEC principle is discussed along with general system and cycle types, specific OTEC designs, OTEC applications, and the ocean thermal resource. The historic development of OTEC is briefly reviewed, and the status of French, Japanese, EUROCEAN, and US programs is assessed. US efforts are detailed and DOE's strategy outlined with OTEC-1 and Mini-OTEC information. Power system components of the more technically advanced closed-cycle OTEC concept are discussed. These include: heat exchangers, corrosion and biofouling countermeasures, working fluids, ammonia power systems, and on-platform seawater systems. Several open-cycle features are also discussed. A critical review is presented of the ocean engineering aspects of OTEC power systems. Major subsystems such as platform, cold water pipe, mooring system, dynamic positioning system, power transmission cable system are assessed for their relationships with the ocean environment and with each other. Nine available studies of OTEC costs are reviewed. Tentative comparisons are made between OTEC and traditional fuel costs, and OTEC products and markets are considered. Possible environmental and social effects of OTEC development are discussed. International, national, and local laws regulating OTEC plants and OTEC energy products are reviewed. Tax incentives, attitudes of the utilities, and additional legislative needs are considered. (LEW)

  17. Development of Cost-Competitive Advanced Thermoelectric Generators...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    into Useful Electrical Power Development of Cost-Competitive Advanced Thermoelectric Generators for Direct Conversion of Vehicle Waste Heat into Useful Electrical Power 2012 DOE ...

  18. Quantitative evaluation of ocean thermal energy conversion (OTEC): executive briefing

    SciTech Connect

    Gritton, E.C.; Pei, R.Y.; Hess, R.W.

    1980-08-01

    Documentation is provided of a briefing summarizing the results of an independent quantitative evaluation of Ocean Thermal Energy Conversion (OTEC) for central station applications. The study concentrated on a central station power plant located in the Gulf of Mexico and delivering power to the mainland United States. The evaluation of OTEC is based on three important issues: resource availability, technical feasibility, and cost.

  19. Lignin conversion to fuels, chemicals and materials - Energy Innovation

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Portal Lignin conversion to fuels, chemicals and materials National Renewable Energy Laboratory Contact NREL About This Technology Technology Marketing Summary There has been vast research in developing cost effective processes to convert the polysaccharide components of plants, mainly cellulose and hemicellulose, into fuels and chemicals. However, the lignin component of biomass, which is an energy-dense polymer and the second most abundant biopolymer on Earth, is vastly underutilized in

  20. June 2016 Most Viewed Documents for Energy Storage, Conversion, And

    Office of Scientific and Technical Information (OSTI)

    Utilization | OSTI, US Dept of Energy Office of Scientific and Technical Information Energy Storage, Conversion, And Utilization Process Equipment Cost Estimation, Final Report H.P. Loh; Jennifer Lyons; Charles W. White, III (2002) 2242 Separation of heavy metals: Removal from industrial wastewaters and contaminated soil Peters, R.W.; Shem, L. (1993) 582 Automotive vehicle sensors Sheen, S.H.; Raptis, A.C.; Moscynski, M.J. (1995) 496 Building a secondary containment system Broder, M.F.

  1. September 2016 Most Viewed Documents for Energy Storage, Conversion, And

    Office of Scientific and Technical Information (OSTI)

    Utilization | OSTI, US Dept of Energy Office of Scientific and Technical Information Energy Storage, Conversion, And Utilization Process Equipment Cost Estimation, Final Report H.P. Loh; Jennifer Lyons; Charles W. White, III (2002) 1757 Separation of heavy metals: Removal from industrial wastewaters and contaminated soil Peters, R.W.; Shem, L. (1993) 455 Automotive vehicle sensors Sheen, S.H.; Raptis, A.C.; Moscynski, M.J. (1995) 369 Building a secondary containment system Broder, M.F.

  2. December 2015 Most Viewed Documents for Energy Storage, Conversion, And

    Office of Scientific and Technical Information (OSTI)

    Utilization | OSTI, US Dept of Energy Office of Scientific and Technical Information December 2015 Most Viewed Documents for Energy Storage, Conversion, And Utilization Process Equipment Cost Estimation, Final Report H.P. Loh; Jennifer Lyons; Charles W. White, III (2002) 1446 Separation of heavy metals: Removal from industrial wastewaters and contaminated soil Peters, R.W.; Shem, L. (1993) 452 Automotive vehicle sensors Sheen, S.H.; Raptis, A.C.; Moscynski, M.J. (1995) 373 An Improved Method

  3. June 2015 Most Viewed Documents for Energy Storage, Conversion, And

    Office of Scientific and Technical Information (OSTI)

    Utilization | OSTI, US Dept of Energy Office of Scientific and Technical Information June 2015 Most Viewed Documents for Energy Storage, Conversion, And Utilization Process Equipment Cost Estimation, Final Report H.P. Loh; Jennifer Lyons; Charles W. White, III (2002) 833 Separation of heavy metals: Removal from industrial wastewaters and contaminated soil Peters, R.W.; Shem, L. (1993) 234 An Improved Method of Manufacturing Corrugated Boxes: Lateral Corrugator Frank C. Murray Ph.D.; , Roman

  4. Most Viewed Documents - Energy Storage, Conversion, and Utilization | OSTI,

    Office of Scientific and Technical Information (OSTI)

    US Dept of Energy Office of Scientific and Technical Information - Energy Storage, Conversion, and Utilization Process Equipment Cost Estimation, Final Report H.P. Loh; Jennifer Lyons; Charles W. White, III (2002) Continuously variable transmissions: theory and practice Beachley, N.H.; Frank, A.A. () Review of air flow measurement techniques McWilliams, Jennifer (2002) Building a secondary containment system Broder, M.F. (1994) Cost benefit analysis of the night-time ventilative cooling in

  5. Research and development on ocean thermal energy conversion in Japan

    SciTech Connect

    Uehara, H.

    1982-08-01

    The study of Ocean Thermal Energy Conversion (OTEC) in Japan has been conducted under the leadership of a team of the ''Sunshine Project'', a national new energy development project promoted by the Ministry of International Trade and Industries (MITI) since 1974. At present, two experimental OTEC power plants -Nauru's OTEC plant and Imari's OTEC plant are operating. In this paper, the review of research and development activity of these two OTEC plants in Japan is made.

  6. September 2013 Most Viewed Documents for Energy Storage, Conversion, And

    Office of Scientific and Technical Information (OSTI)

    Utilization | OSTI, US Dept of Energy Office of Scientific and Technical Information September 2013 Most Viewed Documents for Energy Storage, Conversion, And Utilization Process Equipment Cost Estimation, Final Report H.P. Loh; Jennifer Lyons; Charles W. White, III (2002) 169 Evaluation of the 2010 Toyota Prius Hybrid Synergy Drive System Burress, Timothy A [ORNL]; Campbell, Steven L [ORNL]; Coomer, Chester [ORNL]; Ayers, Curtis William [ORNL]; Wereszczak, Andrew A [ORNL]; Cunningham, Joseph

  7. September 2015 Most Viewed Documents for Energy Storage, Conversion, And

    Office of Scientific and Technical Information (OSTI)

    Utilization | OSTI, US Dept of Energy Office of Scientific and Technical Information September 2015 Most Viewed Documents for Energy Storage, Conversion, And Utilization Process Equipment Cost Estimation, Final Report H.P. Loh; Jennifer Lyons; Charles W. White, III (2002) 1049 Separation of heavy metals: Removal from industrial wastewaters and contaminated soil Peters, R.W.; Shem, L. (1993) 285 An Improved Method of Manufacturing Corrugated Boxes: Lateral Corrugator Frank C. Murray Ph.D.; ,

  8. Center on Nanostructuring for Efficient Energy Conversion - Contact

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Information CNEEC logo-large Contact Information If you have questions or comments regarding Center programs, please contact: Elizabeth Mattson 440 Escondido Mall, 02-530 Building 530, Room 226 Stanford, CA 94305-3030 Tel 650.723.6488 Fax 650.723.5034 emattson(at)stanford.edu Center on Nanostructuring for Efficient Energy Conversion is an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science and Office of Basic Energy Sciences Stanford Home | Engineering

  9. High Temperature Thermoelectric Oxides Engineered At Multiple Length Scales For Energy Harvesting

    SciTech Connect

    Ohuchi, Fumio; Bordia, Rajendra

    2014-12-20

    Thermoelectric aspects of the processing parameters the n-type relaxors, including SrxBa1-xNb2O6 (SBN100x), Sr2Nb2O7 (SN) and SrBi2Nb2O9 (SBiN), were investigated. A solution combustion synthesis (SCS) route was devised to fabricate SBN, SN and SBiN nanoparticles with excellent phase purity. X-ray photoelectron spectroscopy (XPS) was used to deduce the local cation site occupancy, and detailed thermoelectric transport processes were investigated. Based on the identified behavior, effectiveness of pore formers on the thermoelectric performance was investigated with the goal of decreasing κ through enhanced phonon scattering while preserving the electron transport characteristics.

  10. The Research and Development of the Radioisotope Energy Conversion System

    SciTech Connect

    Steinfelds, E.V.; Ghosh, T.K.; Prelas, M.A.; Tompson, R.V.; Loyalka, S.K.

    2001-06-17

    The project of developing radioisotope energy conversion system (RECS) involves analytical computational assisted design and modeling and also laboratory research. The computational analysis consists of selecting various geometries and materials for the main RECS container and the internally located radioisotope, computing the fluxes of the beta{sup (-)} particles and of the visible (or ultraviolet) photons produced by the beta{sup (-)}s, computing the transport of these photons to the photovoltaic cells, and computing the overall efficiency of useful conversion of the radioisotope power.

  11. SPS energy conversion and power management workshop. Final report

    SciTech Connect

    Not Available

    1980-06-01

    In 1977 a four year study, the concept Development and Evaluation Program, was initiated by the US Department of Energy and the National Aeronautics and Space Administration. As part of this program, a series of peer reviews were carried out within the technical community to allow available information on SPS to be sifted, examined and, if need be, challenged. The SPS Energy Conversion and Power Management Workshop, held in Huntsville, Alabama, February 5 to 7, 1980, was one of these reviews. The results of studies in this particular field were presented to an audience of carefully selected scientists and engineers. This first report summarizes the results of that peer review. It is not intended to be an exhaustive treatment of the subject. Rather, it is designed to look at the SPS energy conversion and power management options in breadth, not depth, to try to foresee any troublesome and/or potentially unresolvable problems and to identify the most promising areas for future research and development. Topics include photovoltaic conversion, solar thermal conversion, and electric power distribution processing and power management. (WHK)

  12. Superconducting thermoelectric generator

    DOEpatents

    Metzger, J.D.; El-Genk, M.S.

    1994-01-01

    Thermoelectricity is produced by applying a temperature differential to dissimilar electrically conducting or semiconducting materials, thereby producing a voltage that is proportional to the temperature difference. Thermoelectric generators use this effect to directly convert heat into electricity; however, presently-known generators have low efficiencies due to the production of high currents which in turn cause large resistive heating losses. Some thermoelectric generators operate at efficiencies between 4% and 7% in the 800{degrees} to 1200{degrees}C range. According to its major aspects and bradly stated, the present invention is an apparatus and method for producing electricity from heat. In particular, the invention is a thermoelectric generator that juxtaposes a superconducting material and a semiconducting material - so that the superconducting and the semiconducting materials touch - to convert heat energy into electrical energy without resistive losses in the temperature range below the critical temperature of the superconducting material. Preferably, an array of superconducting material is encased in one of several possible configurations within a second material having a high thermal conductivity, preferably a semiconductor, to form a thermoelectric generator.

  13. Thermoelectric system

    DOEpatents

    Reiners, Eric A.; Taher, Mahmoud A.; Fei, Dong; McGilvray, Andrew N.

    2007-10-30

    In one particular embodiment, an internal combustion engine is provided. The engine comprises a block, a head, a piston, a combustion chamber defined by the block, the piston, and the head, and at least one thermoelectric device positioned between the combustion chamber and the head. In this particular embodiment, the thermoelectric device is in direct contact with the combustion chamber. In another particular embodiment, a cylinder head configured to sit atop a cylinder bank of an internal combustion engine is provided. The cylinder head comprises a cooling channel configured to receive cooling fluid, valve seats configured for receiving intake and exhaust valves, and thermoelectric devices positioned around the valve seats.

  14. April 2013 Most Viewed Documents for Energy Storage, Conversion, And

    Office of Scientific and Technical Information (OSTI)

    Utilization | OSTI, US Dept of Energy Office of Scientific and Technical Information April 2013 Most Viewed Documents for Energy Storage, Conversion, And Utilization Seventh Edition Fuel Cell Handbook NETL (2004) 628 Continuously variable transmissions: theory and practice Beachley, N.H.; Frank, A.A. (null) 205 A study of lead-acid battery efficiency near top-of-charge and the impact on PV system design Stevens, J.W.; Corey, G.P. (1996) 173 Energy Saving Potentials and Air Quality Benefits

  15. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Center (LMI-EFRC) Research Group 1 Research Group 2 Research Group 3 Research Group 4 Research Highlights Facilities Publications Lectures & Tutorials Authorship Tools Research Groups Research efforts in the LMI-EFRC are aligned with one or more of the following Research Groups (RGs): Complex Architecture and Self-Architected Absorbers Optics for Spontaneous Emission and Absorption Enhancement Full Spectrum Photon Conversion Transformation Optics for Photovoltaics

  16. An apparatus for concurrent measurement of thermoelectric material parameters

    SciTech Connect

    Kallaher, R. L.; Latham, C. A.; Sharifi, F.

    2013-01-15

    We describe an apparatus which concurrently and independently measures the parameters determining thermoelectric material conversion efficiency: the Seebeck coefficient, thermal conductivity, and electrical resistivity. The apparatus is designed to characterize thermoelectric materials which are technologically relevant for waste heat energy conversion, and may operate from room temperature to 400 Degree-Sign C. It is configured so the heat flux is axially confined along two boron nitride rods of known thermal conductance. The Seebeck coefficient and thermal conductivity are obtained in steady-state using a differential technique, while the electrical resistivity is obtained using a four-point lock-in amplification method. Measurements on the newly developed NIST Seebeck standard reference material are presented in the temperature range from 50 Degree-Sign C to 250 Degree-Sign C.

  17. Design of nitride semiconductors for solar energy conversion

    SciTech Connect

    Zakutayev, Andriy

    2016-01-01

    Nitride semiconductors are a promising class of materials for solar energy conversion applications, such as photovoltaic and photoelectrochemical cells. Nitrides can have better solar absorption and electrical transport properties than the more widely studied oxides, as well as the potential for better scalability than other pnictides or chalcogenides. In addition, nitrides are also relatively unexplored compared to other chemistries, so they provide a great opportunity for new materials discovery. This paper reviews the recent advances in the design of novel semiconducting nitrides for solar energy conversion technologies. Both binary and multinary nitrides are discussed, with a range of metal chemistries (Cu3N, ZnSnN2, Sn3N4, etc.) and crystal structures (delafossite, perovskite, spinel, etc.), including a brief overview of wurtzite III-N materials and devices. The current scientific challenges and promising future directions in the field are also highlighted.

  18. Evaluation of Thermal to Electrical Energy Conversion of High Temperature Skutterudite-Based Thermoelectric Modules

    Energy.gov [DOE]

    Discusses progress toward the fabrication of a skutterudite-based TE module and provides module performance data under operating conditions similar to those for automotive applications

  19. Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion for Efficient Automotive Waste Heat Recovery

    Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  20. Nanostructured High Temperature Bulk Thermoelectric Energy Conversion for Efficient Waste Heat Recovery

    Office of Energy Efficiency and Renewable Energy (EERE)

    Proposed two-stage TEG system with half-heusler as the first stage, and Bi2Te3 as the low temperature stage expected to show a 5% fuel efficiency improvement in vehicle platform under US06 drive cycle

  1. Nanomesh phononic structures for low thermal conductivity and thermoelectric energy conversion materials

    DOEpatents

    Yu, Jen-Kan; Mitrovic, Slobodan; Heath, James R.

    2016-08-16

    A nanomesh phononic structure includes: a sheet including a first material, the sheet having a plurality of phononic-sized features spaced apart at a phononic pitch, the phononic pitch being smaller than or equal to twice a maximum phonon mean free path of the first material and the phononic size being smaller than or equal to the maximum phonon mean free path of the first material.

  2. Research Program - Center for Solar and Thermal Energy Conversion

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    We investigate the molecular and structural origins of energy conversion (absorption, carrier generation and recombination processes, transport) phenomena in organic and hybrid material systems with the goal of producing highly efficient materials and morphological structures for OPVs. Our efforts to develop and to maximize the performance/efficiency of OPVs include: (1) a combined experimental/ computational approach to the molecular design and synthesis of new materials; (2) design and develop

  3. Thermophotovoltaic energy conversion using photonic bandgap selective emitters

    DOEpatents

    Gee, James M.; Lin, Shawn-Yu; Fleming, James G.; Moreno, James B.

    2003-06-24

    A method for thermophotovoltaic generation of electricity comprises heating a metallic photonic crystal to provide selective emission of radiation that is matched to the peak spectral response of a photovoltaic cell that converts the radiation to electricity. The use of a refractory metal, such as tungsten, for the photonic crystal enables high temperature operation for high radiant flux and high dielectric contrast for a full 3D photonic bandgap, preferable for efficient thermophotovoltaic energy conversion.

  4. Center on Nanostructuring for Efficient Energy Conversion - Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Research Concept of the integrated Center CNEEC's integrated center concept The overarching goal of the Center is to increase the efficiency of energy conversion devices by manipulating materials at the nanometer scale. We advance scientific concepts and develop fabrication and characterization methodologies to understand how nanostructuring can optimize transport, light absorption, and reaction kinetics and thermodynamics in materials. Our research aims to provide a scientific foundation of

  5. July 2013 Most Viewed Documents for Energy Storage, Conversion, And

    Office of Scientific and Technical Information (OSTI)

    Utilization | OSTI, US Dept of Energy Office of Scientific and Technical Information July 2013 Most Viewed Documents for Energy Storage, Conversion, And Utilization Process Equipment Cost Estimation, Final Report H.P. Loh; Jennifer Lyons; Charles W. White, III (2002) 567 A study of lead-acid battery efficiency near top-of-charge and the impact on PV system design Stevens, J.W.; Corey, G.P. (1996) 142 Seventh Edition Fuel Cell Handbook NETL (2004) 133 An Improved Method of Manufacturing

  6. Advanced Energy Conversion LLC AEC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    LLC (AEC) Place: New York Zip: 12020 Product: R&D company focused on power electronics, motion control systems and embedded control. References: Advanced Energy...

  7. Light-Material Interactions in Energy Conversion - Energy Frontier...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    into multijunction solar cell architectures can boost efficiency is highlighted in the current ... to Make the Most Energy from the Sun: In the spirit of xkcd's "Up Goer ...

  8. Direct conversion technology

    SciTech Connect

    Massier, P.F.; Back, L.H.; Ryan, M.A.; Fabris, G.

    1992-01-07

    The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct conversion systems that have potential application for energy conservation in the end-use sectors. This report contains progress of research on the Alkali Metal Thermal-to-Electric Converter (AMTEC) and on the Two-Phase Liquid-Metal MHD Electrical Generator (LMMHD) for the period January 1, 1991 through December 31, 1991. Research on AMTEC and on LMMHD was initiated during October 1987. Reports prepared on previous occasions (Refs. 1--5) contain descriptive and performance discussions of the following direct conversion concepts: thermoelectric, pyroelectric, thermionic, thermophotovoltaic, thermoacoustic, thermomagnetic, thermoelastic (Nitionol heat engine); and also, more complete descriptive discussions of AMTEC and LMMHD systems.

  9. Novel Nanostructured Interface Solution for Automotive Thermoelectric...

    Energy.gov [DOE] (indexed site)

    Thermoelectrics Partnership: Automotive Thermoelectric Modules with Scalable Thermo- and Electro-Mechanical Interfaces Thermoelectrics Partnership: Automotive Thermoelectric ...

  10. DIRECT ENERGY CONVERSION FISSION REACTOR FOR THE PERIOD JUNE 1, 2001 THROUGH SEPTEMBER 30, 2001

    SciTech Connect

    L.C. BROWN

    2001-09-30

    OAK-B135 DIRECT ENERGY CONVERSION FISSION REACTOR FOR THE PERIOD JUNE 1, 2001 THROUGH SEPTEMBER 30, 2001

  11. Biochemical Conversion Pilot Plant (Fact Sheet), NREL (National Renewable Energy Laboratory)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Biochemical Conversion Pilot Plant A pilot-scale conversion plant for researchers, industry partners, and stakeholders to test a variety of biochemical conversion processes and technologies. NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. In the biochemical conversion pilot plant, NREL's engineers and scientists focus on all aspects of the efficiency and cost reduction of

  12. WEC up! Energy Department Announces Wave Energy Conversion Prize...

    Energy.gov [DOE] (indexed site)

    This basin will allow WEC Prize participants to put their WEC devices to the test to see how much energy they can extract from waves in real-life wave scenarios. Information about ...

  13. Phonon self-energy and origin of anomalous neutron scattering spectra in SnTe and PbTe thermoelectrics

    SciTech Connect

    Li, Chen [ORNL] [ORNL; Ma, Jie [ORNL] [ORNL; May, Andrew F [ORNL] [ORNL; Cao, Huibo [ORNL] [ORNL; Christianson, Andrew D [ORNL] [ORNL; Ehlers, Georg [ORNL] [ORNL; Singh, David J [ORNL] [ORNL; Sales, Brian C [ORNL] [ORNL; Delaire, Olivier A [ORNL] [ORNL

    2014-01-01

    The anharmonic lattice dynamics of rock-salt thermoelectric compounds SnTe and PbTe are investigated with inelastic neutron scattering (INS) and first-principles calculations. The experiments show that, surprisingly, although SnTe is closer to the ferroelectric instability, phonon spectra in PbTe exhibit a more anharmonic character. This behavior is reproduced in first-principles calculations of the temperature-dependent phonon self-energy. Our simulations reveal how the nesting of phonon dispersions induces prominent features in the self-energy, which account for the measured INS spectra and their temperature dependence. We establish that the phase-space for three-phonon scattering processes, rather than just the proximity to the lattice instability, is the mechanism determining the complex spectrum of the transverse-optical ferroelectric mode.

  14. Transition Metal Oxide Alloys as Potential Solar Energy Conversion Materials

    SciTech Connect

    Toroker, Maytal; Carter, Emily A.

    2013-02-21

    First-row transition metal oxides (TMOs) are inexpensive potentia alternative materials for solar energy conversion devices. However, some TMOs, such as manganese(II) oxide, have band gaps that are too large for efficiently absorbing solar energy. Other TMOs, such as iron(II) oxide, have conduction and valence band edges with the same orbital character that may lead to unfavorably high electronhole recombination rates. Another limitation of iron(II) oxide is that the calculated valence band edge is not positioned well for oxidizing water. We predict that key properties, including band gaps, band edge positions, and possibly electronhole recombination rates, may be improved by alloying TMOs that have different band alignments. A new metric, the band gap center offset, is introduced for simple screening of potential parent materials. The concept is illustrated by calculating the electronic structure of binary oxide alloys that contain manganese, nickel, iron, zinc, and/or magnesium, within density functional theory (DFT)+U and hybrid DFT theories. We conclude that alloys of iron(II) oxide are worth evaluating further as solar energy conversion materials.

  15. Carbon dioxide release from ocean thermal energy conversion (OTEC) cycles

    SciTech Connect

    Green, H.J. ); Guenther, P.R. )

    1990-09-01

    This paper presents the results of recent measurements of CO{sub 2} release from an open-cycle ocean thermal energy conversion (OTEC) experiment. Based on these data, the rate of short-term CO{sub 2} release from future open-cycle OTEC plants is projected to be 15 to 25 times smaller than that from fossil-fueled electric power plants. OTEC system that incorporate subsurface mixed discharge are expected to result in no long-term release. OTEC plants can significantly reduce CO{sub 2} emissions when substituted for fossil-fueled power generation. 12 refs., 4 figs., 3 tabs.

  16. Heat transfer research for ocean thermal energy conversion

    SciTech Connect

    Kreith, F.; Bharathan, D.

    1988-02-01

    In this lecture an overview of the heat and mass-transfer phenomena of importance in ocean thermal energy conversion (OTEC) is presented with particular emphasis on open-cycle OTEC systems. Also included is a short historical review of OTEC developments in the past century and a comparison of open and closed-cycle thermodynamics. Finally, results of system analyses, showing the effect of plant size on cost and the near-term potential of using OTEC for combined power production and desalination systems, are briefly discussed.

  17. Heat transfer research for ocean thermal energy conversion

    SciTech Connect

    Kreith, F.; Bharathan, D.

    1987-03-01

    In this lecture an overview of the heat- and mass-transfer phenomena of importance in ocean thermal energy conversion (OTEC) is presented with particular emphasis on open-cycle OTEC systems. Also included is a short historical review of OTEC developments in the past century and a comparison of open- and closed-cycle thermodynamics. Finally, results of system analyses, showing the effect of plant size on cost and the near-term potential of using OTEC for combined power production and desalination systems are briefly discussed.

  18. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Center (LMI-EFRC) Workshop Agenda 7:30-8:30am On-Site Registration and Check-In Cahill Lobby 8:30-9:00am Welcome and Introduction Harry Atwater, California Institute of Technology Hameetman Auditorium 9:00-9:40am The DOE SunShot Initiative: Revitalizing American Competitiveness in Solar Energy Minh Le, U.S. Department of Energy Hameetman Auditorium 9:40-10:20am Advancing Efficiency and Scale in Concentrating Photovoltaics Geoffrey Kinsey, Fraunhofer CSE Hameetman Auditorium 10:20-10:40am

  19. New Approaches to Full Spectrum Solar Energy Conversion | U.S...

    Office of Science (SC)

    New Approaches to Full Spectrum Solar Energy Conversion Energy Frontier Research Centers ... Publications History Contact BES Home 08.11.15 New Approaches to Full Spectrum Solar ...

  20. Penrose Landfill Gas Conversion LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Page Edit with form History Penrose Landfill Gas Conversion LLC Jump to: navigation, search Name: Penrose Landfill Gas Conversion LLC Place: Los Angeles, California Product: Owner...

  1. Golden Fuel Systems formerly Greasel Conversions Inc | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Fuel Systems formerly Greasel Conversions Inc Jump to: navigation, search Name: Golden Fuel Systems (formerly Greasel Conversions Inc) Place: Drury, Montana Zip: 65638 Sector:...

  2. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Center (LMI-EFRC) Light Matters Video The LMI-EFRC Video "Light Matters" was the winner of the "Life at the Frontiers of Energy Research" video contest for striking photography and visual impact.

  3. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Center (LMI-EFRC) Facilities Facilities, Capabilities, and Techniques of the LMI-EFRC These are available for use by all LMI researchers At Caltech Large-area vapor-liquid-solid microwire growth Cambridge Nanotech Atomic Layer Deposition Integrating sphere Ultrafast Pump-Probe System At LBL Nanocrystal synthesis Photoelectrochemical etching At UIUC Proximity field nano-patterning Direct ink writing Malvern Nano Zetasizer AJA e-beam evaporator DOE Center facilities National Energy Research

  4. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Center (LMI-EFRC) Recent Research Highlights nature materials cover advanced energy materials cover nature materials cover advanced materials cover nature materials cover Laser-Assisted Direct Ink Writing of Metallic Architectures (Jennifer Lewis group, Harvard) May 2016 Conformal Flexible Dielectric Metasurfaces (Andrei Faraon group, Caltech) April 2016 Active Thermal Extraction of Near-Field Thermal Radiation (Austin Minnich group, Caltech) March 2016 Active Mixing of Complex Fluids at the

  5. Thermoelectric Alloys and Devices for Radioisotope Space Power Systems: State of the Art and Current Developments

    SciTech Connect

    Barnett, W.; Dick, P.; Beaudry, B.; Gorsuch, P.; Skrabek, E.

    1989-01-01

    Lead telluride and silicon germanium type alloys have served over the past several decades as the preferred thermoelectric conversion materials for U. S. radioisotope thermoelectric generator (RTG) power systems for planetary deep space exploration missions. The Pioneer missions to Jupiter and Jupiter/Saturn and the Viking Mars Lander missions employed TAGS-2N (lead and germanium telluride derivatives) power conversion devices. Since 1976, silicon germanium (SiGe) alloys, incorporated into the unicouple device, have evolved as the thermoelectric materials of choice for U. S. RTG powered space missions. These include the U. S. Air Force Lincoln Experimental Satellites 8 & 9 for communications, in 1976, followed in 1977 by the National Aeronautics and Space Administration Voyager 1 and 2 planetary missions. In 1989, advanced SiGe RTGs were used to power the Galileo exploration of Jupiter and, in 1990, will be used to power the Ulysses investigation of the Sun. In addition, SiGe technology has been chosen to provide RTG power for the 1995 Comet Rendezvous and Asteroid Flyby mission and the 1996 Cassini Saturn orbiter mission. Summaries of the flight performance data for these systems are presented.; Current U. S. Department of Energy thermoelectric development activities include (1) the development of conversion devices based on hi-density, close packed couple arrays and (2) the development of improved performance silicon germanium type thermoelectric materials. The silicon germanium type "multicouple", being developed in conjunction with the Modular RTG program, is discussed in a companion paper. A lead telluride type close-packed module, discussed herein, offers the promise of withstanding high velocity impacts and, thus, is a candidate for a Mars Penetrator application.; Recent projects sponsored by the U. S. Department of Energy, including the Improved Thermoelectric Materials and Modular Radioisotope Thermoelectric Generator programs, have shown that improvements

  6. Wind energy conversion system analysis model (WECSAM) computer program documentation

    SciTech Connect

    Downey, W T; Hendrick, P L

    1982-07-01

    Described is a computer-based wind energy conversion system analysis model (WECSAM) developed to predict the technical and economic performance of wind energy conversion systems (WECS). The model is written in CDC FORTRAN V. The version described accesses a data base containing wind resource data, application loads, WECS performance characteristics, utility rates, state taxes, and state subsidies for a six state region (Minnesota, Michigan, Wisconsin, Illinois, Ohio, and Indiana). The model is designed for analysis at the county level. The computer model includes a technical performance module and an economic evaluation module. The modules can be run separately or together. The model can be run for any single user-selected county within the region or looped automatically through all counties within the region. In addition, the model has a restart capability that allows the user to modify any data-base value written to a scratch file prior to the technical or economic evaluation. Thus, any user-supplied data for WECS performance, application load, utility rates, or wind resource may be entered into the scratch file to override the default data-base value. After the model and the inputs required from the user and derived from the data base are described, the model output and the various output options that can be exercised by the user are detailed. The general operation is set forth and suggestions are made for efficient modes of operation. Sample listings of various input, output, and data-base files are appended. (LEW)

  7. Proceedings of the Chornobyl phytoremediation and biomass energy conversion workshop

    SciTech Connect

    Hartley, J.; Tokarevsky, V.

    1998-06-01

    Many concepts, systems, technical approaches, technologies, ideas, agreements, and disagreements were vigorously discussed during the course of the 2-day workshop. The workshop was successful in generating intensive discussions on the merits of the proposed concept that includes removal of radionuclides by plants and trees (phytoremediation) to clean up soil in the Chornobyl Exclusion Zone (CEZ), use of the resultant biomass (plants and trees) to generate electrical power, and incorporation of ash in concrete casks to be used as storage containers in a licensed repository for low-level waste. Twelve years after the Chornobyl Nuclear Power Plant (ChNPP) Unit 4 accident, which occurred on April 26, 1986, the primary 4radioactive contamination of concern is from radioactive cesium ({sup 137}Cs) and strontium ({sup 90}Sr). The {sup 137}Cs and {sup 90}Sr were widely distributed throughout the CEZ. The attendees from Ukraine, Russia, Belarus, Denmark and the US provided information, discussed and debated the following issues considerably: distribution and characteristics of radionuclides in CEZ; efficacy of using trees and plants to extract radioactive cesium (Cs) and strontium (Sr) from contaminated soil; selection of energy conversion systems and technologies; necessary infrastructure for biomass harvesting, handling, transportation, and energy conversion; radioactive ash and emission management; occupational health and safety concerns for the personnel involved in this work; and economics. The attendees concluded that the overall concept has technical and possibly economic merits. However, many issues (technical, economic, risk) remain to be resolved before a viable commercial-scale implementation could take place.

  8. OCEAN THERMAL ENERGY CONVERSION: AN OVERALL ENVIRONMENTAL ASSESSMENT

    SciTech Connect

    Sands, M.Dale

    1980-08-01

    Significant acccrmplishments in Ocean Thermal Energy Conversion (OTEC) technology have increased the probability of producing OTEC-derived power within this decade with subsequent large scale commercialization following by the turn of the century. Under U.S. Department of Energy funding, the Oceanic Engineering Operations of Interstate Electronics Corporation has prepared several OTEC Environmental Assessments over the past years, in particular, the OTEC Programmatic Environmental Assessment. The Programmatic EA considers several technological designs (open- and closed-cycle), plant configuratlons (land-based, moored, and plant-ship), and power usages (baseload electricity, ammonia and aluminum production). Potential environmental impacts, health and safetv issues and a status update of the institutional issues as they influence OTEC deployments, are included.

  9. Solid State Energy Conversion Alliance 2nd Annual Workshop Proceedings

    SciTech Connect

    National Energy Technology Laboratory

    2001-03-30

    The National Energy Technology Laboratory (NETL) and the Pacific Northwest National Laboratory (PNNL) are pleased to provide the proceedings of the second annual Solid State Energy Conversion Alliance (SECA) Workshop held on March 29-30, 2001 in Arlington. The package includes the presentations made during the workshop, a list of participants, and the results of the breakout sessions. Those sessions covered stack materials and processes, power electronics, balance of plant and thermal integration, fuel processing technologies, and stack and system performance modeling. The breakout sessions have been reported as accurately as possible; however, due to the recording and transcription process errors may have occurred. If you note any significant omissions or wish to provide additional information, we welcome your comments and hope that all stakeholder groups will use the enclosed information in their planning endeavors.

  10. Science Highlights- Center for Solar and Thermal Energy Conversion

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    3 - Abstracts and Highlight Slides Improving Thermoelectric Efficiency via Low Thermal Boundary Conductance Reduction of Open Circuit Voltage Loss in a Polymer Photovoltaic Cell via Interfacial Molecular Design Mechanisms of Quantum Dot Formation During Annealing of Metallic Islands Improved Measurements of Ultrafast Pulses of Light Recovering Lost Excitons in Organic Photovoltaics using a Transparent Dissociation Layer A Predictive approach for Calculating Electron Charge Transfer within

  11. Research Program - Center for Solar and Thermal Energy Conversion

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Cross-Cutting Collaborations and Research The synergistic interactions between the three thrust areas have been responsible for the development of hybrid organic/inorganic materials for TE and PV devices. In addition, research in thrust areas 1 and 2 has led to the development of inorganic materials that serve a dual purpose, for both TE and PV applications. A number of these cross-cutting projects are highlighted below. Organic and Hybrid Systems for TE Improving Thermoelectric Efficiency via

  12. Proceedings of the 31. intersociety energy conversion engineering conference. Volume 2: Conversion technologies, electro-chemical technologies, Stirling engines, thermal management

    SciTech Connect

    Chetty, P.R.K.; Jackson, W.D.; Dicks, E.B.

    1996-12-31

    The 148 papers contained in Volume 2 are arranged topically as follows -- (A) Conversion Technologies: Superconductivity applications; Advanced cycles; Heat engines; Heat pumps; Combustion and cogeneration; Advanced nuclear reactors; Fusion Power reactors; Magnetohydrodynamics; Alkali metal thermal to electric conversion; Thermoelectrics; Thermionic conversion; Thermophotovoltaics; Advances in electric machinery; and Sorption technologies; (B) Electrochemical Technologies: Terrestrial fuel cell technology; and Batteries for terrestrial power; (C) Stirling Engines: Stirling machine analysis; Stirling machine development and testing; and Stirling component analysis and testing; (D) Thermal Management: Cryogenic heat transfer; Electronic components and power systems; Environmental control systems; Heat pipes; Numeric analysis and code verification; and Two phase heat and mass transfer. Papers within the scope of the data base have been processed separately.

  13. High temperature thermoelectrics

    DOEpatents

    Moczygemba, Joshua E.; Biershcenk, James L.; Sharp, Jeffrey W.

    2014-09-23

    In accordance with one embodiment of the present disclosure, a thermoelectric device includes a plurality of thermoelectric elements that each include a diffusion barrier. The diffusion barrier includes a refractory metal. The thermoelectric device also includes a plurality of conductors coupled to the plurality of thermoelectric elements. The plurality of conductors include aluminum. In addition, the thermoelectric device includes at least one plate coupled to the plurality of thermoelectric elements using a braze. The braze includes aluminum.

  14. Composite Thermoelectric Devices

    Office of Energy Efficiency and Renewable Energy (EERE)

    Composite thermoelectric devices incorporating common conductors laminated between P- and N-type thermoelectric plates demonstrate internal ohmic loss reduction and enhanced performance

  15. Segregated tandem filter for enhanced conversion efficiency in a thermophotovoltaic energy conversion system

    SciTech Connect

    Brown, E.J.; Baldasaro, P.F.; Dziendziel, R.J.

    1996-12-31

    A filter system to transmit short wavelength radiation and reflect long wavelength radiation for a thermophotovoltaic energy conversion cell comprises an optically transparent substrate segregation layer with at least one coherent wavelength in optical thickness; a dielectric interference filter deposited on one side of the substrate segregation layer, the interference filter being disposed toward the source of radiation, the interference filter including a plurality of alternating layers of high and low optical index materials adapted to change from transmitting to reflecting at a nominal wavelength {lambda}{sub IF} approximately equal to the bandgap wavelength {lambda}{sub g} of the thermophotovoltaic cell, the interference filter being adapted to transmit incident radiation from about 0.5{lambda}{sub IF} to {lambda}{sub IF} and reflect from {lambda}{sub IF} to about 2{lambda}{sub IF}; and a high mobility plasma filter deposited on the opposite side of the substrate segregation layer, the plasma filter being adapted to start to become reflecting at a wavelength of about 1.5{lambda}{sub IF}.

  16. Segregated tandem filter for enhanced conversion efficiency in a thermophotovoltaic energy conversion system

    DOEpatents

    Brown, Edward J.; Baldasaro, Paul F.; Dziendziel, Randolph J.

    1997-01-01

    A filter system to transmit short wavelength radiation and reflect long wavelength radiation for a thermophotovoltaic energy conversion cell comprises an optically transparent substrate segregation layer with at least one coherent wavelength in optical thickness; a dielectric interference filter deposited on one side of the substrate segregation layer, the interference filter being disposed toward the source of radiation, the interference filter including a plurality of alternating layers of high and low optical index materials adapted to change from transmitting to reflecting at a nominal wavelength .lambda..sub.IF approximately equal to the bandgap wavelength .lambda..sub.g of the thermophotovoltaic cell, the interference filter being adapted to transmit incident radiation from about 0.5.lambda..sub.IF to .lambda..sub.IF and reflect from .lambda..sub.IF to about 2.lambda..sub.IF ; and a high mobility plasma filter deposited on the opposite side of the substrate segregation layer, the plasma filter being adapted to start to become reflecting at a wavelength of about 1.5.lambda..sub.IF.

  17. Segregated tandem filter for enhanced conversion efficiency in a thermophotovoltaic energy conversion system

    DOEpatents

    Brown, E.J.; Baldasaro, P.F.; Dziendziel, R.J.

    1997-12-23

    A filter system to transmit short wavelength radiation and reflect long wavelength radiation for a thermophotovoltaic energy conversion cell comprises an optically transparent substrate segregation layer with at least one coherent wavelength in optical thickness; a dielectric interference filter deposited on one side of the substrate segregation layer, the interference filter being disposed toward the source of radiation, the interference filter including a plurality of alternating layers of high and low optical index materials adapted to change from transmitting to reflecting at a nominal wavelength {lambda}{sub IF} approximately equal to the bandgap wavelength {lambda}{sub g} of the thermophotovoltaic cell, the interference filter being adapted to transmit incident radiation from about 0.5{lambda}{sub IF} to {lambda}{sub IF} and reflect from {lambda}{sub IF} to about 2{lambda}{sub IF}; and a high mobility plasma filter deposited on the opposite side of the substrate segregation layer, the plasma filter being adapted to start to become reflecting at a wavelength of about 1.5{lambda}{sub IF}. 10 figs.

  18. Biomass energy conversion and utilization in the developing countries

    SciTech Connect

    Bush, M.

    1985-05-01

    Information on the conversion and use of biomass energy is summarized and pictorially illustrated in this manual. Section I presents the basic principles of anaerobic digestion and shows how to design and construct biogas plants. Topics covered include: the digestion process; carbon-nitrogen ratio; temperature dependency; Indian- and Chinese-type and horizontal digesters; alternative designs; manure production; gas production and use; cooking; lighting; refrigeration; shaft power; power generation; waste heat recovery; sludge use. Health, economic/financial, policy, and socio-economic aspects are also noted, and the construction details, design, and cost of a 4-cubic-meter Chinese-type digester are included. Subsequent sections treat biomass gasification (covering gasifier types, systems, fuels, sizing; uses in stationary engines, process heat, electrical power, and vehicle propulsion; economic and deforestation issues) and the production of fuel alcohol (raw materials, production technology, stillage digestion, ethanol fuel, costs).

  19. Siting handbook for small wind energy conversion systems

    SciTech Connect

    Wegley, H.L.; Ramsdell, J.V.; Orgill, M.M.; Drake, R.L.

    1980-03-01

    This handbook was written to serve as a siting guide for individuals wishing to install small wind energy conversion systems (WECS); that is, machines having a rated capacity of less than 100 kilowatts. It incorporates half a century of siting experience gained by WECS owners and manufacturers, as well as recently developed siting techniques. The user needs no technical background in meteorology or engineering to understand and apply the siting principles discussed; he needs only a knowledge of basic arithmetic and the ability to understand simple graphs and tables. By properly using the siting techniques, an owner can select a site that will yield the most power at the least installation cost, the least maintenance cost, and the least risk of damage or accidental injury.

  20. Conversion of Biomass Sugars via Fermentation - Energy Innovation Portal

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Conversion Technologies Conversion Technologies The strategic goal of Conversion Research and Development (R&D) is to develop technologies for converting feedstocks into commercially viable liquid transportation fuels, as well as bioproducts and biopower. The diversity of the biomass resource requires the development of multiple conversion technologies that can efficiently deal with the broad range of feedstock materials, as well as their physical and chemical characteristics. The Office

  1. Waterborne noise due to ocean thermal energy conversion plants

    SciTech Connect

    Janota, C.P.; Thompson, D.E.

    1983-07-01

    Public law reflects a United States national commitment to the rapid development of Ocean Thermal Energy Conversion (OTEC) as an alternate energy source. OTEC plants extract the stored solar energy from the world's tropical seas and in so doing pose a potential for altering the character of the ambient noise there. The sources of noise from an OTEC plant are analyzed in the context of four configurations, two of which were built and tested, and two which are concepts for future full-scale moored facilities. The analysis indicates that the noise resulting from the interaction of turbulence with the seawater pumps is expected to dominate in the frequency range 10 Hz to 1 kHz. Measured radiated noise data from the OTEC-I research plant, located near the island of Hawaii, are compared with the analysis. The measured data diverge from the predicted levels at frequencies above about 60 Hz because of dominant non-OTEC noise sources on this platform. However, at low frequency, the measured broadband noise is comparable to that predicted.

  2. Biological Conversion of Sugars To Hydrocarbons | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    To Hydrocarbons Biological Conversion of Sugars To Hydrocarbons PDF explaining the biological process of bioenergy Biological Conversion of Sugars To Hydrocarbons (190.69 KB) More Documents & Publications Catalytic Upgrading Sugars To Hydrocarbons Catalytic Upgrading of Sugars to Hydrocarbons Technology Pathway Biological Conversion of Sugars to Hydrocarbons Technology Pathway

  3. Methods for locating ground faults and insulation degradation condition in energy conversion systems

    DOEpatents

    Agamy, Mohamed; Elasser, Ahmed; Galbraith, Anthony William; Harfman Todorovic, Maja

    2015-08-11

    Methods for determining a ground fault or insulation degradation condition within energy conversion systems are described. A method for determining a ground fault within an energy conversion system may include, in part, a comparison of baseline waveform of differential current to a waveform of differential current during operation for a plurality of DC current carrying conductors in an energy conversion system. A method for determining insulation degradation within an energy conversion system may include, in part, a comparison of baseline frequency spectra of differential current to a frequency spectra of differential current transient at start-up for a plurality of DC current carrying conductors in an energy conversion system. In one embodiment, the energy conversion system may be a photovoltaic system.

  4. Thermoelectric generator

    DOEpatents

    Pryslak, N.E.

    1974-02-26

    A thermoelectric generator having a rigid coupling or stack'' between the heat source and the hot strap joining the thermoelements is described. The stack includes a member of an insulating material, such as ceramic, for electrically isolating the thermoelements from the heat source, and a pair of members of a ductile material, such as gold, one each on each side of the insulating member, to absorb thermal differential expansion stresses in the stack. (Official Gazette)

  5. Ocean thermal energy conversion: Historical highlights, status, and forecast

    SciTech Connect

    Dugger, G.L.; Avery, W.H.; Francis, E.J.; Richards, D.

    1983-07-01

    In 1881, d'Arsonval conceived the closed-Rankine-cycle ocean thermal energy conversion (OTEC) system in which a working fluid is vaporized by heat exchange with cold water drawn from a 700-1200 m depth. In 1930, Claude demonstrated an open-cycle process in Cuba. Surface water was flash-vaporized at 3 kPa to drive a turbine directly (no secondary working fluid) and then was condensed by direct contact with water drawn from a 700-m depth through a 1.6m-diam, 1.75-km-long cold-water pipe (CWP). From a delta T of 14/sup 0/C his undersized turbine generated 22 kW. In 1956 a French team designed a 3.5-MW (net) open-cycle plant for installation off Abidjan on the Ivory Coast of Africa and demonstrated the necessary CWP deployment. The at-sea demonstrations by Mini-OTEC and OTEC-1 and other recent advances in OTEC technology summarized herein represent great progress. All of the types of plants proposed for the DOE's PON program may be worthy of development; certainly work on a grazing plant is needed. Our estimates indicate that the U.S. goals established by Public Law 96-310 leading to 10 GW of OTEC power and energy product equivalents by 1999 are achievable, provided that adequate federal financial incentives are retained to assure the building of the first few plants.

  6. Designing New Alloys to be Used in New Energy Conversion Technologies

    ScienceCinema

    Dr. Omer Dogan

    2010-09-01

    Dr. Omer Dogan of NETL Albany discusses using computer simulation and modeling to design new alloys to be used in new energy conversion technologies.

  7. Symposium on the Physical Chemistry of Solar Energy Conversion, Indianapolis American Chemical Society Meetings, Fall 2013

    SciTech Connect

    Lian, Tianquan

    2013-09-20

    The Symposium on the Physical Chemistry of Solar Energy Conversion at the Fall ACS Meeting in Indianapolis, IN (Sept. 8-12) featured the following sessions (approx. 6 speakers per session): (1) Quantum Dots and Nanorods for Solar Energy Conversion (2 half-day sessions); (2) Artificial Photosynthesis: Water Oxidation; (3) Artificial Photosynthesis: Solar Fuels (2 half-day sessions); (4) Organic Solar Cells; (5) Novel Concepts for Solar Energy Conversion (2 half-day sessions); (6) Emerging Techniques for Solar Energy Conversion; (7) Interfacial Electron Transfer

  8. Hydrogen Production: Microbial Biomass Conversion | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Microbial Biomass Conversion Hydrogen Production: Microbial Biomass Conversion Photo of a fermentation reactor Microbial biomass conversion processes take advantage of the ability of microorganisms to consume and digest biomass and release hydrogen. Depending on the pathway, this research could result in commercial-scale systems in the mid- to long-term timeframe that could be suitable for distributed, semi-central, or central hydrogen production scales, depending on the feedstock used. How

  9. Electro-mechanical energy conversion system having a permanent magnet machine with stator, resonant transfer link and energy converter controls

    DOEpatents

    Skeist, S. Merrill; Baker, Richard H.

    2006-01-10

    An electro-mechanical energy conversion system coupled between an energy source and an energy load comprising an energy converter device including a permanent magnet induction machine coupled between the energy source and the energy load to convert the energy from the energy source and to transfer the converted energy to the energy load and an energy transfer multiplexer to control the flow of power or energy through the permanent magnetic induction machine.

  10. Left Coast Electric Formerly Left Coast Conversions | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Services Product: California-based company that provides services and products for electric cars. References: Left Coast Electric (Formerly Left Coast Conversions)1 This...

  11. Project Profile: Next-Generation Thermionic Solar Energy Conversion...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    high-temperature power cycle for CSP systems that ... conversion technology based on microfabricated and ... When used as a topping cycle in concentrated solar thermal ...

  12. Draft environmental assessment: Ocean Thermal Energy Conversion (OTEC) Pilot Plants

    SciTech Connect

    Sullivan, S.M.; Sands, M.D.; Donat, J.R.; Jepsen, P.; Smookler, M.; Villa, J.F.

    1981-02-01

    This Environmental Assessment (EA) has been prepared, in accordance with the National Environmental Policy Act of 1969, for the deployment and operation of a commercial 40-Megawatt (MW) Ocean Thermal Energy Conversion (OTEC) Pilot Plant (hereafter called the Pilot Plant). A description of the proposed action is presented, and a generic environment typical of the candidate Pilot Plant siting regions is described. An assessment of the potential environmental impacts associated with the proposed action is given, and the risk of credible accidents and mitigating measures to reduce these risks are considered. The Federal and State plans and policies the proposed action will encompass are described. Alternatives to the proposed action are presented. Appendix A presents the navigation and environmental information contained in the US Coast Pilot for each of the candidate sites; Appendix B provides a brief description of the methods and calculations used in the EA. It is concluded that environmental disturbances associated with Pilot Plant activities could potentially cause significant environmental impacts; however, the magnitude of these potential impacts cannot presently be assessed, due to insufficient engineering and environmental information. A site- and design-specific OTEC Pilot Plant Environmental Impact Statement (EIS) is required to resolve the potentially significant environmental effects associated with Pilot Plant deployment and operation. (WHK)

  13. Photochemical conversion of solar energy in the environment. Book chapter

    SciTech Connect

    Zepp, R.G.

    1991-01-01

    Past research on photochemistry in the environment has focused on gas phase reactions in the atmosphere. Recently, however, environmentally significant photoreactions have been discovered in natural waters (i.e., the sea, lakes, and rivers), on soil surfaces, and in atmospheric condensed phases. These new investigations have been stimulated in part by interest in developing a scientific understanding of the role of photochemical processes in the biogeochemical cycles of various elements. In addition, other studies have explored the role of natural photochemical processes in cleansing the environemnt of various waste materials or, in some cases, in converting the wastes to more toxic substances. In the paper, current research results on the photochemical conversion of solar energy in aquatic environments and on soil and metal oxide surfaces are presented. Rate equations and products for selected homogeneous and heterogeneous photoreactions that occur in these systems are described. Data are presented for direct and sensitized photoreactions and for sunlight-initiated free radical reactions. (Copyright (c) 1991 Kluwer Academic Publishers.)

  14. Ocean Thermal Energy Conversion (OTEC) Programmatic Environmental Analysis--Appendices

    SciTech Connect

    Authors, Various

    1980-01-01

    The programmatic environmental analysis is an initial assessment of Ocean Thermal Energy Conversion (OTEC) technology considering development, demonstration and commercialization. It is concluded that the OTEC development program should continue because the development, demonstration, and commercialization on a single-plant deployment basis should not present significant environmental impacts. However, several areas within the OTEC program require further investigation in order to assess the potential for environmental impacts from OTEC operation, particularly in large-scale deployments and in defining alternatives to closed-cycle biofouling control: (1) Larger-scale deployments of OTEC clusters or parks require further investigations in order to assess optimal platform siting distances necessary to minimize adverse environmental impacts. (2) The deployment and operation of the preoperational platform (OTEC-1) and future demonstration platforms must be carefully monitored to refine environmental assessment predictions, and to provide design modifications which may mitigate or reduce environmental impacts for larger-scale operations. These platforms will provide a valuable opportunity to fully evaluate the intake and discharge configurations, biofouling control methods, and both short-term and long-term environmental effects associated with platform operations. (3) Successful development of OTEC technology to use the maximal resource capabilities and to minimize environmental effects will require a concerted environmental management program, encompassing many different disciplines and environmental specialties. This volume contains these appendices: Appendix A -- Deployment Scenario; Appendix B -- OTEC Regional Characterization; and Appendix C -- Impact and Related Calculations.

  15. NSF/DOE Thermoelectrics Partnership: Thermoelectrics for Automotive...

    Energy.gov [DOE] (indexed site)

    Development for commercialization of automotive thermoelectric generators from high-ZT TE ... Partnership: Automotive Thermoelectric Modules with Scalable Thermo- and ...

  16. Efficiency evaluation of oxygen enrichment in energy conversion processes

    SciTech Connect

    Bomelburg, H.J.

    1983-12-01

    The extent to which energy conversion efficiencies can be increased by using oxygen or oxygen-enriched air for combustion was studied. Combustion of most fuels with oxygen instead of air was found to have five advantages: increases combustion temperature and efficiency, improves heat transfer at high temperatures, reduces nitrous oxide emissions, permits a high ration of exhaust gas recirculation and allows combustion of certain materials not combustible in air. The same advantages, although to a lesser degree, are apparent with oxygen-enriched air. The cost-effectiveness of the process must necessarily be improved by about 10% when using oxygen instead of air before such use could become justifiable on purely economic terms. Although such a modest increase appears to be attainable in real situations, this study ascertained that it is not possible to generally assess the economic gains. Rather, each case requires its own evaluation. For certain processes industry has already proven that the use of oxygen leads to more efficient plant operation. Several ideas for essentially new applications are described. Specifically, when oxygen is used with exhaust gas recirculation in external or internal combustion engines. It appears also that the advantages of pulse combustion can be amplified further if oxygen is used. When burning wet fuels with oxygen, direct steam generation becomes possible. Oxygen combustion could also improve processes for in situ gasification of coals, oil shales, peats, and other wet fuels. Enhanced oil recovery by fire flooding methods might also become more effective if oxygen is used. The cold energy contained in liquid oxygen can be substantially recovered in the low end of certain thermodynamic cycles. Further efforts to develop certain schemes for using oxygen for combustion appear to be justified from both the technical and economic viewpoints.

  17. 30 DIRECT ENERGY CONVERSION; 20 FOSSIL-FUELED POWER PLANTS; 32...

    Office of Scientific and Technical Information (OSTI)

    Lee, G.T.; Sudhoff, F.A. 30 DIRECT ENERGY CONVERSION; 20 FOSSIL-FUELED POWER PLANTS; 32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION; FUEL CELL POWER PLANTS; GAS TURBINE...

  18. Potential Thermoelectric Applications in Diesel Vehicles | Department...

    Energy.gov [DOE] (indexed site)

    Vehicle Fuel Economy Improvement through Thermoelectric Waste Heat Recovery Thermoelectrics: The New Green Automotive Technology Challenges and Opportunities in Thermoelectric ...

  19. The Industrialization of Thermoelectric Power Generation Technology...

    Energy.gov [DOE] (indexed site)

    with thermoelectrics such desirable thermoelectric properties, low material toxicity, ... relevant to the Industrialization of Thermoelectric Devices An integrated approach ...

  20. New Approaches to Full Spectrum Solar Energy Conversion | U.S. DOE Office

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    of Science (SC) New Approaches to Full Spectrum Solar Energy Conversion Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events EFRC News EFRC Events DOE Announcements Publications History Contact BES Home 08.11.15 New Approaches to Full Spectrum Solar Energy Conversion Print Text Size: A A A Subscribe FeedbackShare Page On September 3, 2015 from 8:30 - 10:30 am (PDT) the Light-Materials Interactions in Energy Conversion EFRC at Caltech

  1. Wavelength Conversion Materials

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wavelength Conversion Materials - Sandia Energy Energy Search Icon Sandia Home Locations Contact ... Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ...

  2. Summary of State-of-the-Art Power Conversion Systems for Energy Storage Applications

    SciTech Connect

    Atcitty, S.; Gray-Fenner, A.; Ranade, S.

    1998-09-01

    The power conversion system (PCS) is a vital part of many energy storage systems. It serves as the interface between the storage device, an energy source, and an AC load. This report summarizes the results of an extensive study of state-of-the-art power conversion systems used for energy storage applications. The purpose of the study was to investigate the potential for cost reduction and performance improvement in these power conversion systems and to provide recommendations for fiture research and development. This report provides an overview of PCS technology, a description of several state-of-the-art power conversion systems and how they are used in specific applications, a summary of four basic configurations for l:he power conversion systems used in energy storage applications, a discussion of PCS costs and potential cost reductions, a summary of the stancku-ds and codes relevant to the technology, and recommendations for future research and development.

  3. Light-Material Interactions in Energy Conversion (LMI) | U.S. DOE Office of

    Office of Science (SC)

    Science (SC) Light-Material Interactions in Energy Conversion (LMI) Energy Frontier Research Centers (EFRCs) EFRCs Home Centers EFRC External Websites Research Science Highlights News & Events Publications History Contact BES Home Centers Light-Material Interactions in Energy Conversion (LMI) Print Text Size: A A A FeedbackShare Page LMI Header Director Ralph Nuzzo Lead Institution California Institute of Technology Year Established 2009 Mission To tailor the morphology, complex

  4. Department of Energy Cites BWXT Conversion Services, LLC for Worker Safety

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    and Health Program Violations | Department of Energy BWXT Conversion Services, LLC for Worker Safety and Health Program Violations Department of Energy Cites BWXT Conversion Services, LLC for Worker Safety and Health Program Violations July 13, 2016 - 4:43pm Addthis News Media Contact 202-586-4940 DOENews@hq.doe.gov WASHINGTON - The U.S. Department of Energy (DOE) today issued a Preliminary Notice of Violation (PNOV) to BWXT Conversion Services, LLC (BWCS) for violations of DOE worker safety

  5. Component for thermoelectric generator

    DOEpatents

    Purdy, David L.

    1977-01-01

    In a thermoelectric generator, a component comprises a ceramic insulator, having over limited areas thereof, each area corresponding to a terminal end of thermoelectric wires, a coating of a first metal which adheres to the insulator, and an electrical thermoelectric junction including a second metal which wets said first metal and adheres to said terminal ends but does not wet said insulator, and a cloth composed of electrically insulating threads interlaced with thermoelectric wires.

  6. Modeling the Physical and Biochemical Influence of Ocean Thermal Energy Conversion Plant Discharges into their Adjacent Waters

    Energy.gov [DOE]

    Modeling the Physical and Biochemical Influence of Ocean Thermal Energy Conversion Plant Discharges into their Adjacent Waters

  7. June 2016 Most Viewed Documents for Energy Storage, Conversion...

    Office of Scientific and Technical Information (OSTI)

    Mark (2009) 113 Seventh Edition Fuel Cell Handbook NETL (2004) 110 Energy use and ... Thermal Energy Storage for Concentrating Solar Power Generation Reddy, Ramana G. The ...

  8. First-Principles Simulations of Functional Materials for Energy Conversion

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Revolution for Energy Sector | Department of Energy First-Ever Energy Open Data Roundtable Catalyzes Value of Big Data Revolution for Energy Sector First-Ever Energy Open Data Roundtable Catalyzes Value of Big Data Revolution for Energy Sector May 1, 2015 - 3:10pm Addthis Jon Weers (left), Debbie Brodt-Giles (center), and Kristen Honey were among the 16 recipients of Energy Innovation Awards at the networking breakfast before the first-ever Energy Open Data Roundtable on April 29 in

  9. January 2013 Most Viewed Documents for Energy Storage, Conversion...

    Office of Scientific and Technical Information (OSTI)

    Energy Technology Perspectives 2012: Executive Summary Portuguese version NONE Energy indicators for electricity production : comparing technologies and the nature of the ...

  10. Analysis of energy conversion systems, including material and global warming aspects

    SciTech Connect

    Zhang, M.; Reistad, G.M.

    1998-12-31

    This paper addresses a method for the overall evaluation of energy conversion systems, including material and global environmental aspects. To limit the scope of the work reported here, the global environmental aspects have been limited to global warming aspects. A method is presented that uses exergy as an overall evaluation measure of energy conversion systems for their lifetime. The method takes the direct exergy consumption (fuel consumption) of the conventional exergy analyses and adds (1) the exergy of the energy conversion system equipment materials, (2) the fuel production exergy and material exergy, and (3) the exergy needed to recover the total global warming gases (equivalent) of the energy conversion system. This total, termed Total Equivalent Resource Exergy (TERE), provides a measure of the effectiveness of the energy conversion system in its use of natural resources. The results presented here for several example systems illustrate how the method can be used to screen candidate energy conversion systems and perhaps, as data become more available, to optimize systems. It appears that this concept may be particularly useful for comparing systems that have quite different direct energy and/or environmental impacts. This work should be viewed in the context of being primarily a concept paper in that the lack of detailed data available to the authors at this time limits the accuracy of the overall results. The authors are working on refinements to data used in the evaluation.

  11. S3TEC Annual Workship | Solid State Solar Thermal Energy Conversion

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Saturday Feb 13, 2016 9:00am to 8:00pm Location: MIT Faculty Club Annual Workshop - Solid State Solar Thermal Energy Conversion February 13, 2016 9:00 am-8:00 pm Location: MIT ...

  12. Funding Opportunity Announcement: Recovery Act … Energy Efficiency and Conversation Block Grants … Formula Grants

    Office of Energy Efficiency and Renewable Energy (EERE)

    Funding opportunity announcement for the Energy Efficiency and Conversation Block Grants, an opportunity open from March 26, 2009 to May 26, 2009 for state applicants and June 25, 2009 for local government and tribal applicants.

  13. power conversion efficiency

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    power conversion efficiency - Sandia Energy Energy Search Icon Sandia Home Locations ... Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar ...

  14. Better Biomass Conversion with Recyclable GVL Solvent - Energy Innovation

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Portal Better Biomass Conversion with Recyclable GVL Solvent Great Lakes Bioenergy Research Center Contact GLBRC About This Technology Technology Marketing Summary To recover useful carbohydrates locked in biomass, molecular bonds must be broken while avoiding further reaction of the resulting glucose and xylose sugars. This is a challenge because glucose can degrade quicker than it is produced. Fast, hot reactions try to minimize such degradation, but are impractical. Expensive catalysts

  15. Catalytic Conversion of Bioethanol to Hydrocarbons - Energy Innovation

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Portal Vehicles and Fuels Vehicles and Fuels Startup America Startup America Biomass and Biofuels Biomass and Biofuels Advanced Materials Advanced Materials Find More Like This Return to Search Catalytic Conversion of Bioethanol to Hydrocarbons Oak Ridge National Laboratory Contact ORNL About This Technology Publications: PDF Document Publication 11-G00219_ID2414.pdf (629 KB) Technology Marketing SummaryA method for catalytically converting an alcohol to a hydrocarbon without requiring

  16. Taofang Zeng | Solid State Solar Thermal Energy Conversion

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Taofang Zeng Alumni Taofang Zeng Director of Center of Thermal Energy Systems, Huaneng Group Corporation, China

  17. DOE-EFRC Center on Nanostructuring for Efficient Energy Conversion (CNEEC)

    SciTech Connect

    Prinz, Friedrich B.; Bent, Stacey F.

    2015-10-22

    CNEEC’s mission has been to understand how nanostructuring of materials can enhance efficiency for solar energy conversion to produce hydrogen fuel and to solve fundamental cross-cutting problems. The overarching hypothesis underlying CNEEC research was that controlling, synthesizing and modifying materials at the nanometer scale increases the efficiency of energy conversion and storage devices and systems. In this pursuit, we emphasized the development of functional nanostructures that are based primarily on earth abundant and inexpensive materials.

  18. Thermophotovoltaic energy conversion system having a heavily doped n-type region

    DOEpatents

    DePoy, David M.; Charache, Greg W.; Baldasaro, Paul F.

    2000-01-01

    A thermophotovoltaic (TPV) energy conversion semiconductor device is provided which incorporates a heavily doped n-type region and which, as a consequence, has improved TPV conversion efficiency. The thermophotovoltaic energy conversion device includes an emitter layer having first and second opposed sides and a base layer in contact with the first side of the emitter layer. A highly doped n-type cap layer is formed on the second side of the emitter layer or, in another embodiment, a heavily doped n-type emitter layer takes the place of the cap layer.

  19. Reliable Nanomanufacturing of Ge-Sn Alloys for Solar Energy Conversion |

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    The Ames Laboratory Reliable Nanomanufacturing of Ge-Sn Alloys for Solar Energy Conversion Based on the US Department of Energy's International Energy Outlook 2014 report, global consumption of energy is estimated to rise by more than 50% between 2004 and 2030. One of the biggest scientific challenges is finding a clean renewable energy resource that will replace fossil fuels and avoid adverse effects on climate, environment, and health. This project aims to advance our understanding of the

  20. Powering Curiosity: Multi-Mission Radioisotope Thermoelectric Generators |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Powering Curiosity: Multi-Mission Radioisotope Thermoelectric Generators Powering Curiosity: Multi-Mission Radioisotope Thermoelectric Generators January 29, 2008 - 7:06pm Addthis Mars Science Laboratory, aka Curiosity, is part of NASA's Mars Exploration Program, a long-term program of robotic exploration of the Red Planet. It's powered by the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG). Photo courtesy of NASA/JPL-Caltech. Mars Science Laboratory, aka

  1. Design of Bulk Nanocomposites as High Efficiency Thermoelectric Materials |

    Office of Science (SC)

    U.S. DOE Office of Science (SC) Design of Bulk Nanocomposites as High Efficiency Thermoelectric Materials Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights Highlight Archives News & Events Publications History Contact BES Home 04.27.12 Design of Bulk Nanocomposites as High Efficiency Thermoelectric Materials Print Text Size: A A A FeedbackShare Page Scientific Achievement A newly synthesized bulk thermoelectric material that contains nanocrystals

  2. Solar energy conversion via hot electron internal photoemission in metallic nanostructures: Efficiency estimates

    SciTech Connect

    Leenheer, Andrew J.; Narang, Prineha; Atwater, Harry A.; Lewis, Nathan S.

    2014-04-07

    Collection of hot electrons generated by the efficient absorption of light in metallic nanostructures, in contact with semiconductor substrates can provide a basis for the construction of solar energy-conversion devices. Herein, we evaluate theoretically the energy-conversion efficiency of systems that rely on internal photoemission processes at metal-semiconductor Schottky-barrier diodes. In this theory, the current-voltage characteristics are given by the internal photoemission yield as well as by the thermionic dark current over a varied-energy barrier height. The Fowler model, in all cases, predicts solar energy-conversion efficiencies of <1% for such systems. However, relaxation of the assumptions regarding constraints on the escape cone and momentum conservation at the interface yields solar energy-conversion efficiencies as high as 1%10%, under some assumed (albeit optimistic) operating conditions. Under these conditions, the energy-conversion efficiency is mainly limited by the thermionic dark current, the distribution of hot electron energies, and hot-electron momentum considerations.

  3. Summer 2011 Intern Project- Eric Ling | Center for Energy Efficient

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Materials Eric Ling THERMOELECTRIC PROPERTIES OF DOPED InGaAs Eric Ling Physics and Mathamatics UC Santa Barbara Mentor: Borzoyeh Shojaei Faculty Advisor: Chris Pamlstrom Department: Electrical and Computer Engineering In recent history, thermeoelectrics have shown to be promising materials for energy conversion via wasted heat to electricity. One such material, indium gallium arsenide (InGaAs), may possess a high electrical conductivity term in the thermoelectric figure of merit when doped

  4. Development of Feedforward Control Strategies for Wave Energy Conversion Technologies

    Energy Innovation Portal

    2015-12-29

      The future of wave energy will depend on developing a new generation of wave energy converters (WECs) that maximize energy extraction and mitigate critical loads while reducing costs. Today’s WECs are relatively inefficient compared to their theoretical upper limit and lack the ability to concurrently maximize power capture and minimize structural loads.  The majority of existing WECs consist of fixed geometrical bodies relying predominantly on control of the power...

  5. Composites for Multi-energy conversion & waste heat recovery

    Energy.gov [DOE]

    Discusses development of a composite that transfers energy between thermal, electrical, magnetic, and mechanical types and a composite material that improves performance through in situ strengthening

  6. Direct Conversion of Light into Work - Energy Innovation Portal

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    concentrated sunlight or laser light focused on a highly absorptive material capable of converting light energy into heat generates thermal surface tension gradients that move ...

  7. Novel Energy Conversion Equipment for Low Temperature Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    1 Recovery Act: Geothermal Technologies Program Project Type Topic 2 Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and...

  8. Guangzhou Institute of Energy Conversion Chinese Academy of Sciences...

    OpenEI (Open Energy Information) [EERE & EIA]

    and renewable energy utilisation technology and seeking solutions to environmental pollution. Coordinates: 23.107389, 113.267616 Show Map Loading map......

  9. June 2014 Most Viewed Documents for Energy Storage, Conversion...

    Office of Scientific and Technical Information (OSTI)

    White, III (2002) 337 Seventh Edition Fuel Cell Handbook NETL (2004) 118 Energy Saving ... HEAT STORAGE FOR CONCENTRATED SOLAR POWER PROJECT STAFF (2011) 34 Evaluation ...

  10. Proceedings of the 31. intersociety energy conversion engineering...

    Office of Scientific and Technical Information (OSTI)

    Terrestrial fuel cell technology; and Batteries for terrestrial power; (C) Stirling ... MAGNETIC ENERGY STORAGE; ELECTRIC BATTERIES; HEAT PUMPS; DUAL-PURPOSE POWER PLANTS; ...

  11. December 2015 Most Viewed Documents for Energy Storage, Conversion...

    Office of Scientific and Technical Information (OSTI)

    Akbari, H. (1992) 150 Coagulation chemistries for silica removal from cooling tower water. ... P (2008) 101 Energy use and domestic hot water consumption - Phase 1. Final report ...

  12. March 2016 Most Viewed Documents for Energy Storage, Conversion...

    Office of Scientific and Technical Information (OSTI)

    (2013) 198 Energy use and domestic hot water consumption - Phase 1. Final report ... States) (1994) 167 Coagulation chemistries for silica removal from cooling tower water. ...

  13. Contact - Center for Solar and Thermal Energy Conversion

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Contact Prof. Peter Green, CSTEC Director Research Group Leader for Thrust 3 - Energy transport in organic and hybrid systems Materials Science & Engineering Dept. H H Dow ...

  14. Optical materials technology for energy efficiency and solar energy conversion XIV

    SciTech Connect

    Lampert, C.M.; Deb, S.K.; Grandqvist, C.G.

    1995-12-31

    This volume gives the reader an update on the progress in the field of optical materials research for energy efficiency and solar energy conversion applications. The field covers a wide range of technology for the control, modification, and conversion of radiant energy. Currently, there is very strong activity in the development of materials for the modification of energy-propagating through glazings. These ``smart windows`` are presently given increased interest by industry, while the basic understanding of materials and devices is improving. The technology of device fabrication is gaining maturity as better thin film layers are developed. Thermotropic glazing appears to be gaining commercial interest again with new hydrogel formulations. Thermotropic glazing changes strongly from transparent to opaque with temperature. Other developments are in nanocrystalline materials where dye-modified TiO{sub 2} films have been shown to be electrochromic. Other work in this volume includes results on photovoltaic work on fullerenes, C{sub 60}. This material is of keen interest for a variety of optical applications. Other photovoltaic progress is reported for nanocrystalline, porous silicon, and thin film Cu(In, Ga)Se devices. Further advances are reported on solar absorber lifetime testing. Testing procedures are presented covering several years of study by a group of European institutes. Also continuing progress on wavelength-selective paints is presented. This coating represents a high-performance/low-cost solution to expensive selective absorbers for low and medium temperature collectors. Finally, interesting results are given on angle selective low-emittance coatings. By modification of microstructure, an angle, dependency can be produced. Separate abstracts were prepared for most papers.

  15. Thermoelectric materials having porosity

    DOEpatents

    Heremans, Joseph P.; Jaworski, Christopher M.; Jovovic, Vladimir; Harris, Fred

    2014-08-05

    A thermoelectric material and a method of making a thermoelectric material are provided. In certain embodiments, the thermoelectric material comprises at least 10 volume percent porosity. In some embodiments, the thermoelectric material has a zT greater than about 1.2 at a temperature of about 375 K. In some embodiments, the thermoelectric material comprises a topological thermoelectric material. In some embodiments, the thermoelectric material comprises a general composition of (Bi.sub.1-xSb.sub.x).sub.u(Te.sub.1-ySe.sub.y).sub.w, wherein 0.ltoreq.x.ltoreq.1, 0.ltoreq.y.ltoreq.1, 1.8.ltoreq.u.ltoreq.2.2, 2.8.ltoreq.w.ltoreq.3.2. In further embodiments, the thermoelectric material includes a compound having at least one group IV element and at least one group VI element. In certain embodiments, the method includes providing a powder comprising a thermoelectric composition, pressing the powder, and sintering the powder to form the thermoelectric material.

  16. NSF/DOE Thermoelectric Partnership: High-Performance Thermoelectric...

    Energy.gov [DOE] (indexed site)

    scalable, and low cost thermoelectric waste heat recovery devices for vehicles An integrated approach towards efficient, scalable, and low cost thermoelectric waste heat recovery ...

  17. Effect of biomass feedstock chemical and physical properties on energy conversion processes: Volume 2, Appendices

    SciTech Connect

    Butner, R.S.; Elliott, D.C.; Sealock, L.J., Jr.; Pyne, J.W.

    1988-12-01

    This report presents an exploration of the relationships between biomass feedstocks and the conversion processes that utilize them. Specifically, it discusses the effect of the physical and chemical structure of biomass on conversion yields, rates, and efficiencies in a wide variety of available or experimental conversion processes. A greater understanding of the complex relationships between these conversion systems and the production of biomass for energy uses is required to help optimize the complex network of biomass production, collection, transportation, and conversion to useful energy products. The review of the literature confirmed the scarcity of research aimed specifically at identifying the effect of feedstock properties on conversion. In most cases, any mention of feedstock-related effects was limited to a few brief remarks (usually in qualitative terms) in the conclusions, or as a topic for further research. Attempts to determine the importance of feedstock parameters from published data were further hampered by the lack of consistent feedstock characterization and the difficulty of comparing results between different experimental systems. Further research will be required to establish quantitative relationships between feedstocks and performance criteria in conversion. 127 refs., 4 figs., 7 tabs.

  18. Scaling the energy conversion rate from magnetic field reconnection to different bodies

    SciTech Connect

    Mozer, F. S.; Hull, A.

    2010-10-15

    Magnetic field reconnection is often invoked to explain electromagnetic energy conversion in planetary magnetospheres, stellar coronae, and other astrophysical objects. Because of the huge dynamic range of magnetic fields in these bodies, it is important to understand energy conversion as a function of magnetic field strength and related parameters. It is conjectured theoretically and shown experimentally that the energy conversion rate per unit area in reconnection scales as the cube of an appropriately weighted magnetic field strength divided by the square root of an appropriately weighted density. With this functional dependence, the energy release in flares on the Sun, the large and rapid variation of the magnetic flux in the tail of Mercury, and the apparent absence of reconnection on Jupiter and Saturn, may be understood. Electric fields at the perihelion of the Solar Probe Plus mission may be tens of V/m.

  19. Solid-State Solar-Thermal Energy Conversion Center (S3TEC) | U.S. DOE

    Office of Science (SC)

    Office of Science (SC) Solid-State Solar-Thermal Energy Conversion Center (S3TEC) Energy Frontier Research Centers (EFRCs) EFRCs Home Centers EFRC External Websites Research Science Highlights News & Events Publications History Contact BES Home Centers Solid-State Solar-Thermal Energy Conversion Center (S3TEC) Print Text Size: A A A FeedbackShare Page S<sup>3</sup>TEC Header Director Gang Chen Lead Institution Massachusetts Institute of Technology Year Established 2009

  20. "Fundamental Challenges in Solar Energy Conversion" workshop hosted by

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    LMI-EFRC | U.S. DOE Office of Science (SC) Fundamental Challenges in Solar Energy Conversion" workshop hosted by LMI-EFRC Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events EFRC News EFRC Events DOE Announcements Publications History Contact BES Home 06.02.10 "Fundamental Challenges in Solar Energy Conversion" workshop hosted by LMI-EFRC Print Text Size: A A A Subscribe FeedbackShare Page July 7, 2010 :: The Light-Material

  1. Ocean Thermal Energy Conversion (OTEC) | Seawater Cooling - Depth...

    OpenEI (Open Energy Information) [EERE & EIA]

    Author National Renewable Energy Laboratory Maintainer Nicholas Langle bureaucode 019:20 Catalog DOE harvestobjectid 3ba3acfd-d54a-4a3d-a971-1cf4ac97fcb0 harvestsourceid...

  2. September 2015 Most Viewed Documents for Energy Storage, Conversion...

    Office of Scientific and Technical Information (OSTI)

    A.A. (1979) 192 Coagulation chemistries for silica removal from cooling tower water. ... J P (2008) 87 Energy use and domestic hot water consumption - Phase 1. Final report ...

  3. December 2015 Most Viewed Documents for Energy Storage, Conversion...

    Office of Scientific and Technical Information (OSTI)

    of the 2007 Toyota Camry Hybrid Synergy Drive System Burress, T A; Coomer, C L; Campbell, S L; Seiber, L E; Marlino, L D; Staunton, R H; Cunningham, J P (2008) 101 Energy use ...

  4. September 2015 Most Viewed Documents for Energy Storage, Conversion...

    Office of Scientific and Technical Information (OSTI)

    of the 2007 Toyota Camry Hybrid Synergy Drive System Burress, T A; Coomer, C L; Campbell, S L; Seiber, L E; Marlino, L D; Staunton, R H; Cunningham, J P (2008) 87 Energy use ...

  5. Light-harvesting materials: Soft support for energy conversion

    SciTech Connect

    Stolley, Ryan M.; Helm, Monte L.

    2014-11-10

    To convert solar energy into viable fuel sources, coupling light-harvesting materials to catalysts is a critical challenge. Now, coupling between an organic supramolecular hydrogel and a non precious metal catalyst has been demonstrated to be effective for photocatalytic H2 production. Ryan M. Stolley and Monte L. Helm are at Pacific Northwest National Laboratory (PNNL), Richland, WA, USA 99352. PNNL is operated by Battelle for the US Department of Energy. e-mail: Monte.Helm@pnnl.gov

  6. Thermoelectric Materials, Devices and Systems:

    Energy.gov [DOE] (indexed site)

    DRAFT - PRE-DECISIONAL -DRAFT - FOR OFFICIAL USE ONLY - DRAFT Thermoelectric Materials, Devices and Systems: 1 Technology Assessment 2 Contents 3 1. Thermoelectric Generation ...

  7. A Single Multi-Functional Enzyme for Efficient Biomass Conversion - Energy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Innovation Portal Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search A Single Multi-Functional Enzyme for Efficient Biomass Conversion National Renewable Energy Laboratory Contact NREL About This Technology Technology Marketing Summary Lignocellulosic biomass is an abundant source of fermentable sugars, and biofuels derived from these renewable sources represent one of the best alternatives to petroleum-based fuels. Efficient conversion of lignocellulosic biomass,

  8. Thermoelectric heat exchange element

    DOEpatents

    Callas, James J.; Taher, Mahmoud A.

    2007-08-14

    A thermoelectric heat exchange module includes a first substrate including a heat receptive side and a heat donative side and a series of undulatory pleats. The module may also include a thermoelectric material layer having a ZT value of 1.0 or more disposed on at least one of the heat receptive side and the heat donative side, and an electrical contact may be in electrical communication with the thermoelectric material layer.

  9. Heat to electricity conversion by cold carrier emissive energy harvesters

    SciTech Connect

    Strandberg, Rune

    2015-12-07

    This paper suggests a method to convert heat to electricity by the use of devices called cold carrier emissive energy harvesters (cold carrier EEHs). The working principle of such converters is explained and theoretical power densities and efficiencies are calculated for ideal devices. Cold carrier EEHs are based on the same device structure as hot carrier solar cells, but works in an opposite way. Whereas a hot carrier solar cell receives net radiation from the sun and converts some of this radiative heat flow into electricity, a cold carrier EEH sustains a net outflux of radiation to the surroundings while converting some of the energy supplied to it into electricity. It is shown that the most basic type of cold carrier EEHs have the same theoretical efficiency as the ideal emissive energy harvesters described earlier by Byrnes et al. In the present work, it is also shown that if the emission from the cold carrier EEH originates from electron transitions across an energy gap where a difference in the chemical potential of the electrons above and below the energy gap is sustained, power densities slightly higher than those given by Byrnes et al. can be achieved.

  10. Radiant energy collection and conversion apparatus and method

    DOEpatents

    Hunt, Arlon J.

    1982-01-01

    The apparatus for collecting radiant energy and converting same to alternate energy form includes a housing having an interior space and a radiation transparent window allowing, for example, solar radiation to be received in the interior space of the housing. Means are provided for passing a stream of fluid past said window and for injecting radiation absorbent particles in said fluid stream. The particles absorb the radiation and because of their very large surface area, quickly release the heat to the surrounding fluid stream. The fluid stream particle mixture is heated until the particles vaporize. The fluid stream is then allowed to expand in, for example, a gas turbine to produce mechanical energy. In an aspect of the present invention properly sized particles need not be vaporized prior to the entrance of the fluid stream into the turbine, as the particles will not damage the turbine blades. In yet another aspect of the invention, conventional fuel injectors are provided to inject fuel into the fluid stream to maintain the proper temperature and pressure of the fluid stream should the source of radiant energy be interrupted. In yet another aspect of the invention, an apparatus is provided which includes means for providing a hot fluid stream having hot particles disbursed therein which can radiate energy, means for providing a cooler fluid stream having cooler particles disbursed therein, which particles can absorb radiant energy and means for passing the hot fluid stream adjacent the cooler fluid stream to warm the cooler fluid and cooler particles by the radiation from the hot fluid and hot particles.

  11. Radiant energy collection and conversion apparatus and method

    DOEpatents

    Hunt, A.J.

    The apparatus for collecting radiant energy and converting to alternate energy forms includes a housing having an interior space and a radiation transparent window allowing solar radiation to be received in the interior space of the housing. Means are provided for passing a stream of fluid past the window and for injecting radiation absorbent particles in said fluid stream. The particles absorb the radiation and because of their very large surface area, quickly release the heat to the surrounding fluid stream. The fluid stream particle mixture is heated until the particles vaporize. The fluid stream is then allowed to expand in, for example, a gas turbine to produce mechanical energy. In an aspect of the present invention properly sized particles need not be vaporized prior to the entrance of the fluid stream into the turbine, as the particles will not damage the turbine blades. In yet another aspect of the invention, conventional fuel injectors are provided to inject fuel into the fluid stream to maintain the proper temperature and pressure of the fluid stream should the source of radiant energy be interrupted. In yet another aspect of the invention, an apparatus is provided which includes means for providing a hot fluid stream having hot particles disbursed therein which can radiate energy, means for providing a cooler fluid stream having cooler particles disbursed therein, which particles can absorb radiant energy and means for passing the hot fluid stream adjacent the cooler fluid stream to warm the cooler fluid and cooler particles by the radiation from the hot fluid and hot particles.

  12. Solar energy collection, concentration, and thermal conversion; A review

    SciTech Connect

    Haddock, C.; McKee, J.S.C. )

    1991-01-01

    The efficiency with which solar energy can be converted into more useful forms is one of the most important parameters concerning its utilization as a viable alternate source of energy. High efficiencies can be obtained by utilizing higher temperature working fluids. This in turn implies concentrating the intensity of sunlight using focusing type collector systems is discussed. Potential applications of concentrated solar intensity are presented in this article. A description of a new and potentially highly efficient solar thermal to electric converter based on a solar sustained cesium plasma is presented. Photovoltaics are not discussed in any detail in this article.

  13. Rankine cycle condenser pressure control using an energy conversion device bypass valve

    DOEpatents

    Ernst, Timothy C; Nelson, Christopher R; Zigan, James A

    2014-04-01

    The disclosure provides a waste heat recovery system and method in which pressure in a Rankine cycle (RC) system of the WHR system is regulated by diverting working fluid from entering an inlet of an energy conversion device of the RC system. In the system, an inlet of a controllable bypass valve is fluidly coupled to a working fluid path upstream of an energy conversion device of the RC system, and an outlet of the bypass valve is fluidly coupled to the working fluid path upstream of the condenser of the RC system such that working fluid passing through the bypass valve bypasses the energy conversion device and increases the pressure in a condenser. A controller determines the temperature and pressure of the working fluid and controls the bypass valve to regulate pressure in the condenser.

  14. Conversion of magnetic energy in the magnetic reconnection layer of a laboratory plasma

    SciTech Connect

    Yamada, Masaaki; Yoo, Jongsoo; Jara-Almonte, Jonathan; Ji, Hantao; Kulsrud, Russell M.; Myers, Clayton E.

    2014-09-10

    Magnetic reconnection, in which magnetic field lines break and reconnect to change their topology, occurs throughout the universe. The essential feature of reconnection is that it energizes plasma particles by converting magnetic energy. Despite the long history of reconnection research, how this energy conversion occurs remains a major unresolved problem in plasma physics. Here we report that the energy conversion in a laboratory reconnection layer occurs in a much larger region than previously considered. The mechanisms for energizing plasma particles in the reconnection layer are identified, and a quantitative inventory of the converted energy is presented for the first time in a well defined reconnection layer; 50% of the magnetic energy is converted to particle energy, 2/3 of which transferred to ions and 1/3 to electrons. Our results are compared with simulations and space measurements, for a key step toward resolving one of the most important problems in plasma physics.

  15. Conversion of magnetic energy in the magnetic reconnection layer of a laboratory plasma

    DOE PAGES [OSTI]

    Yamada, Masaaki; Yoo, Jongsoo; Jara-Almonte, Jonathan; Ji, Hantao; Kulsrud, Russell M.; Myers, Clayton E.

    2014-09-10

    Magnetic reconnection, in which magnetic field lines break and reconnect to change their topology, occurs throughout the universe. The essential feature of reconnection is that it energizes plasma particles by converting magnetic energy. Despite the long history of reconnection research, how this energy conversion occurs remains a major unresolved problem in plasma physics. Here we report that the energy conversion in a laboratory reconnection layer occurs in a much larger region than previously considered. The mechanisms for energizing plasma particles in the reconnection layer are identified, and a quantitative inventory of the converted energy is presented for the first timemore » in a well defined reconnection layer; 50% of the magnetic energy is converted to particle energy, 2/3 of which transferred to ions and 1/3 to electrons. Our results are compared with simulations and space measurements, for a key step toward resolving one of the most important problems in plasma physics.« less

  16. Center on Nanostructuring for Efficient Energy Conversion - Partners

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Partners External Partners CNEEC's partners are an important element in our research in that they complement our scientific program. Our relationship with them not only provides complementary expertise and resources to the proposed program, but also offers opportunities to interact with industry for effective transfer of new concepts and technologies in energy sciences. We interact and collaborate with researchers from our partner institutions frequently: 1. The Technical University of Denmark

  17. Center on Nanostructuring for Efficient Energy Conversion - Seed Programs

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Seed Research Program CNEEC plans to award several SEED projects to Stanford faculty every year on a competitive basis. The duration for SEED projects is normally for 12 months, with possibility of extension into the second year under exceptional circumstances and in case of major breakthroughs. The SEED projects are expected to involve new concepts, directions and risky ideas with potentially big returns that add to Center's programs, and impact energy science and technology in a significant

  18. Open cycle ocean thermal energy conversion system structure

    DOEpatents

    Wittig, J. Michael

    1980-01-01

    A generally mushroom-shaped, open cycle OTEC system and distilled water producer which has a skirt-conduit structure extending from the enlarged portion of the mushroom to the ocean. The enlarged part of the mushroom houses a toroidal casing flash evaporator which produces steam which expands through a vertical rotor turbine, partially situated in the center of the blossom portion and partially situated in the mushroom's stem portion. Upon expansion through the turbine, the motive steam enters a shell and tube condenser annularly disposed about the rotor axis and axially situated beneath the turbine in the stem portion. Relatively warm ocean water is circulated up through the radially outer skirt-conduit structure entering the evaporator through a radially outer portion thereof, flashing a portion thereof into motive steam, and draining the unflashed portion from the evaporator through a radially inner skirt-conduit structure. Relatively cold cooling water enters the annular condenser through the radially inner edge and travels radially outwardly into a channel situated along the radially outer edge of the condenser. The channel is also included in the radially inner skirt-conduit structure. The cooling water is segregated from the potable, motive steam condensate which can be used for human consumption or other processes requiring high purity water. The expansion energy of the motive steam is partially converted into rotational mechanical energy of the turbine rotor when the steam is expanded through the shaft attached blades. Such mechanical energy drives a generator also included in the enlarged mushroom portion for producing electrical energy. Such power generation equipment arrangement provides a compact power system from which additional benefits may be obtained by fabricating the enclosing equipment, housings and component casings from low density materials, such as prestressed concrete, to permit those casings and housings to also function as a floating

  19. Advanced, High Power, Next Scale, Wave Energy Conversion Device

    SciTech Connect

    Mekhiche, Mike; Dufera, Hiz; Montagna, Deb

    2012-10-29

    The project conducted under DOE contract DE‐EE0002649 is defined as the Advanced, High Power, Next Scale, Wave Energy Converter. The overall project is split into a seven‐stage, gated development program. The work conducted under the DOE contract is OPT Stage Gate III work and a portion of Stage Gate IV work of the seven stage product development process. The project effort includes Full Concept Design & Prototype Assembly Testing building on our existing PowerBuoy� technology to deliver a device with much increased power delivery. Scaling‐up from 150kW to 500kW power generating capacity required changes in the PowerBuoy design that addressed cost reduction and mass manufacturing by implementing a Design for Manufacturing (DFM) approach. The design changes also focused on reducing PowerBuoy Installation, Operation and Maintenance (IO&M) costs which are essential to reducing the overall cost of energy. In this design, changes to the core PowerBuoy technology were implemented to increase capability and reduce both CAPEX and OPEX costs. OPT conceptually envisaged moving from a floating structure to a seabed structure. The design change from a floating structure to seabed structure would provide the implementation of stroke‐ unlimited Power Take‐Off (PTO) which has a potential to provide significant power delivery improvement and transform the wave energy industry if proven feasible.

  20. Numerical models analysis of energy conversion process in air-breathing laser propulsion

    SciTech Connect

    Hong Yanji; Song Junling; Cui Cunyan; Li Qian

    2011-11-10

    Energy source was considered as a key essential in this paper to describe energy conversion process in air-breathing laser propulsion. Some secondary factors were ignored when three independent modules, ray transmission module, energy source term module and fluid dynamic module, were established by simultaneous laser radiation transportation equation and fluid mechanics equation. The incidence laser beam was simulated based on ray tracing method. The calculated results were in good agreement with those of theoretical analysis and experiments.

  1. Unraveling Silent Owl Flight to Develop Ultra--Quiet Energy Conversion

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Machines | Argonne Leadership Computing Facility Unraveling Silent Owl Flight to Develop Ultra--Quiet Energy Conversion Machines PI Name: Anupam Sharma PI Email: sharma@astate.edu Institution: Iowa State University Allocation Program: ALCC Allocation Hours at ALCF: 25 Million Year: 2016 Research Domain: Engineering Acoustic emission (noise) from wind turbines is curtailing the growth of wind energy, which is currently the primary renewable energy source in the US and in the world. A majority

  2. High-Yield Feedstock and Biomass Conversion Technology for Renewable Energy and Economic Development

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Andrew Hashimoto University of Hawaii This presentation does not contain any proprietary, confidential, or otherwise restricted information Develop sustainable, renewable energy systems for Hawaii and the tropics through: * Biomass feedstocks that grow year-round. * Feedstock characteristics that impact conversion processes. * Renewable energy projects that reduce dependence on fossil fuels. * Impact of renewable energy projects on rural communities. This project addresses the BETO goal to

  3. A History of Geothermal Energy Research and Development in the United States. Energy Conversion 1976-2006

    SciTech Connect

    Mines, Gregory L.

    2010-09-01

    This report, the last in a four-part series, summarizes significant research projects performed by the U.S. Department of Energy (DOE) over 30 years to overcome challenges in energy conversion and to make generation of electricity from geothermal resources more cost-competitive.

  4. Tailored semiconducting carbon nanotube networks with enhanced thermoelectric properties

    DOE PAGES [OSTI]

    Avery, Azure D.; Zhou, Ben H.; Lee, Jounghee; Lee, Eui -Sup; Miller, Elisa M.; Ihly, Rachelle; Wesenberg, Devin; Mistry, Kevin S.; Guillot, Sarah L.; Zink, Barry L.; et al

    2016-04-04

    Thermoelectric power generation, allowing recovery of part of the energy wasted as heat, is emerging as an important component of renewable energy and energy efficiency portfolios. Although inorganic semiconductors have traditionally been employed in thermoelectric applications, organic semiconductors garner increasing attention as versatile thermoelectric materials. Here we present a combined theoretical and experimental study suggesting that semiconducting single-walled carbon nanotubes with carefully controlled chirality distribution and carrier density are capable of large thermoelectric power factors, higher than 340 μW m-1 K-2, comparable to the best-performing conducting polymers and larger than previously observed for carbon nanotube films. Furthermore, we demonstrate thatmore » phonons are the dominant source of thermal conductivity in the networks, and that our carrier doping process significantly reduces the thermal conductivity relative to undoped networks. As a result, these findings provide the scientific underpinning for improved functional organic thermoelectric composites with carbon nanotube inclusions.« less

  5. Bulk single crystal ternary substrates for a thermophotovoltaic energy conversion system

    DOEpatents

    Charache, G.W.; Baldasaro, P.F.; Nichols, G.J.

    1998-06-23

    A thermophotovoltaic energy conversion device and a method for making the device are disclosed. The device includes a substrate formed from a bulk single crystal material having a bandgap (E{sub g}) of 0.4 eV < E{sub g} < 0.7 eV and an emitter fabricated on the substrate formed from one of a p-type or an n-type material. Another thermophotovoltaic energy conversion device includes a host substrate formed from a bulk single crystal material and lattice-matched ternary or quaternary III-V semiconductor active layers. 12 figs.

  6. Bulk single crystal ternary substrates for a thermophotovoltaic energy conversion system

    DOEpatents

    Charache, Greg W.; Baldasaro, Paul F.; Nichols, Greg J.

    1998-01-01

    A thermophotovoltaic energy conversion device and a method for making the device. The device includes a substrate formed from a bulk single crystal material having a bandgap (E.sub.g) of 0.4 eVenergy conversion device includes a host substrate formed from a bulk single crystal material and lattice-matched ternary or quaternary III-V semiconductor active layers.

  7. Low Cost Solar Energy Conversion (Carbon Cycle 2.0)

    SciTech Connect

    Ramesh, Ramamoorthy

    2010-02-04

    Ramamoorthy Ramesh from LBNL's Materials Science Division speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 2, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

  8. Low Cost Solar Energy Conversion (Carbon Cycle 2.0)

    ScienceCinema

    Ramesh, Ramamoorthy

    2016-07-12

    Ramamoorthy Ramesh from LBNL's Materials Science Division speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 2, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

  9. Efficient electrochemical CO2 conversion powered by renewable energy

    SciTech Connect

    Kauffman, Douglas R.; Thakkar, Jay; Siva, Rajan; Matranga, Christopher; Ohodnicki, Paul R.; Zeng, Chenjie; Jin, Rongchao

    2015-06-29

    The catalytic conversion of CO2 into industrially relevant chemicals is one strategy for mitigating greenhouse gas emissions. Along these lines, electrochemical CO2 conversion technologies are attractive because they can operate with high reaction rates at ambient conditions. However, electrochemical systems require electricity, and CO2 conversion processes must integrate with carbon-free, renewable-energy sources to be viable on larger scales. We utilize Au25 nanoclusters as renewably powered CO2 conversion electrocatalysts with CO2 → CO reaction rates between 400 and 800 L of CO2 per gram of catalytic metal per hour and product selectivities between 80 and 95%. These performance metrics correspond to conversion rates approaching 0.8–1.6 kg of CO2 per gram of catalytic metal per hour. We also present data showing CO2 conversion rates and product selectivity strongly depend on catalyst loading. Optimized systems demonstrate stable operation and reaction turnover numbers (TONs) approaching 6 × 106 mol CO2 molcatalyst–1 during a multiday (36 hours total hours) CO2electrolysis experiment containing multiple start/stop cycles. TONs between 1 × 106 and 4 × 106 molCO2 molcatalyst–1 were obtained when our system was powered by consumer-grade renewable-energy sources. Daytime photovoltaic-powered CO2 conversion was demonstrated for 12 h and we mimicked low-light or nighttime operation for 24 h with a solar-rechargeable battery. This proof-of-principle study provides some of the initial performance data necessary for assessing the scalability and technical viability of electrochemical CO2 conversion technologies. Specifically, we show the following: (1) all electrochemical CO2 conversion systems will produce a net increase in CO2 emissions if they do not

  10. Efficient electrochemical CO2 conversion powered by renewable energy

    SciTech Connect

    Kauffman, Douglas R.; Thakkar, Jay; Siva, Rajan; Matranga, Christopher; Ohodnicki, Paul R.; Zeng, Chenjie; Jin, Rongchao

    2015-06-29

    Here, the catalytic conversion of CO2 into industrially relevant chemicals is one strategy for mitigating greenhouse gas emissions. Along these lines, electrochemical CO2 conversion technologies are attractive because they can operate with high reaction rates at ambient conditions. However, electrochemical systems require electricity, and CO2 conversion processes must integrate with carbon-free, renewable-energy sources to be viable on larger scales. We utilize Au25 nanoclusters as renewably powered CO2 conversion electrocatalysts with CO2 → CO reaction rates between 400 and 800 L of CO2 per gram of catalytic metal per hour and product selectivities between 80 and 95%. These performance metrics correspond to conversion rates approaching 0.8–1.6 kg of CO2 per gram of catalytic metal per hour. We also present data showing CO2 conversion rates and product selectivity strongly depend on catalyst loading. Optimized systems demonstrate stable operation and reaction turnover numbers (TONs) approaching 6 × 106 mol CO2 molcatalyst–1 during a multiday (36 hours total hours) CO2electrolysis experiment containing multiple start/stop cycles. TONs between 1 × 106 and 4 × 106 molCO2 molcatalyst–1 were obtained when our system was powered by consumer-grade renewable-energy sources. Daytime photovoltaic-powered CO2 conversion was demonstrated for 12 h and we mimicked low-light or nighttime operation for 24 h with a solar-rechargeable battery. This proof-of-principle study provides some of the initial performance data necessary for assessing the scalability and technical viability of electrochemical CO2 conversion technologies. Specifically, we show the following: (1) all electrochemical CO2 conversion systems will produce a net increase in CO2 emissions if they do

  11. Dynamic breakwater and wave energy recovery and conversion system

    SciTech Connect

    Boros, L.J.

    1983-05-24

    A dynamic breakwater system includes at least one and preferably a plurality of dynamic breakwater assemblies, each of which includes a baffle wall member which is pivotally mounted in a body of water about an axis which extends substantially transverse to the direction of wave motion and so that a lower portion thereof is submerged below the water surface while an upper portion thereof extends above the water surface, each baffle wall member being biased such that it has a tendency to move in a direction opposite to the direction of wave motion and wherein apparatus for damping the movement of the baffle wall member when the same moves in the direction of wave motion under the force of waves impinging thereon are provided. Apparatus is provided for recovering at least a portion of the energy imparted to the baffle wall member by the waves impinging thereon and for converting the same to useful energy and generally comprises a fluid circuit supported on a stationary platform assembly and a device operatively interconnecting the baffle wall member and fluid circuit for elevating the pressure of the fluid circulating therein in response to movement of the baffle wall member caused by the waves impinging thereon.

  12. Automotive Thermoelectric Generators and HVAC | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Thermoelectric Generators and HVAC Automotive Thermoelectric Generators and HVAC Provides overview of DOE-supported projects in automotive thermoelectric generators and heatersair ...

  13. Challenges and Opportunities in Thermoelectric Materials Research...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications The Bottom-Up Approach forThermoelectric Nanocomposites, plus NSFDOE Thermoelectric Partnership: Inorganic-Organic Hybrid Thermoelectrics ...

  14. Thermoelectric Developments for Vehicular Applications | Department...

    Energy.gov [DOE] (indexed site)

    High-Efficiency Quantum-Well Thermoelectrics for Waste Heat Power Generation Quantum Well Thermoelectrics and Waste Heat Recovery High Temperature Thermoelectric Materials

  15. Vehicular Thermoelectric Applications Session DEER 2009 | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Thermoelectric Applications Session DEER 2009 Vehicular Thermoelectric Applications Session DEER 2009 This presentation is an overview of the DOE thermoelectric program. ...

  16. Thermoelectrics: The New Green Automotive Technology | Department...

    Energy.gov [DOE] (indexed site)

    (2.09 MB) More Documents & Publications Vehicular Thermoelectrics: A New Green Technology Vehicular Thermoelectrics: A New Green Technology Vehicular Thermoelectrics: The New Green

  17. Vehicular Thermoelectrics: A New Green Technology | Department...

    Energy.gov [DOE] (indexed site)

    (3.68 MB) More Documents & Publications Thermoelectrics: The New Green Automotive Technology Vehicular Thermoelectrics: A New Green Technology Vehicular Thermoelectrics: The

  18. Energy conversion device and method of reducing friction therein

    DOEpatents

    Solovyeva, Lyudmila Mikhaylovna; Jansson, Kyle S; Elmoursi, Alaa AbdelAzim; Zhu, Dong; Milner, Robert; Daughterty, Early Eugene; Higdon, Clifton Baxter; Elagamy, Kamel Abdel-Khalik; Hicks, Aaron Michael

    2013-10-08

    A device configured for converting energy includes a first surface, a second surface configured for moving with respect to the first surface during operation of the device, and a coating disposed on at least one of the first surface and the second surface. The coating includes a first layer of a ceramic alloy represented by the general formula AlMgB.sub.14--X, wherein X is present in an amount of from 0 to 70 parts by weight based on 100 parts by weight of the ceramic alloy and is a doping agent selected from the group of Group IV elements and borides and nitrides thereof, and a second layer disposed on the first layer and including carbon in a gradient concentration. The coating has a hardness of from 10 to 20 GPa and a coefficient of friction of less than or equal to 0.12.

  19. DIRECT ENERGY CONVERSION FISSION REACTOR ANNUAL REPORT FOR THE PERIOD AUGUST 15,2000 THROUGH SEPTEMBER 30,2001

    SciTech Connect

    L.C. BROWN

    2002-02-01

    OAK-B135 DIRECT ENERGY CONVERSION FISSION REACTOR ANNUAL REPORT FOR THE PERIOD AUGUST 15,2000 THROUGH SEPTEMBER 30,2001

  20. SOLID STATE ENERGY CONVERSION ALLIANCE DELPHI SOLID OXIDE FUEL CELL

    SciTech Connect

    Steven Shaffer; Sean Kelly; Subhasish Mukerjee; David Schumann; Gail Geiger; Kevin Keegan; John Noetzel; Larry Chick

    2003-12-08

    The objective of Phase I under this project is to develop a 5 kW Solid Oxide Fuel Cell power system for a range of fuels and applications. During Phase I, the following will be accomplished: Develop and demonstrate technology transfer efforts on a 5 kW stationary distributed power generation system that incorporates steam reforming of natural gas with the option of piped-in water (Demonstration System A). Initiate development of a 5 kW system for later mass-market automotive auxiliary power unit application, which will incorporate Catalytic Partial Oxidation (CPO) reforming of gasoline, with anode exhaust gas injected into an ultra-lean burn internal combustion engine. This technical progress report covers work performed by Delphi from January 1, 2003 to June 30, 2003, under Department of Energy Cooperative Agreement DE-FC-02NT41246. This report highlights technical results of the work performed under the following tasks: Task 1 System Design and Integration; Task 2 Solid Oxide Fuel Cell Stack Developments; Task 3 Reformer Developments; Task 4 Development of Balance of Plant (BOP) Components; Task 5 Manufacturing Development (Privately Funded); Task 6 System Fabrication; Task 7 System Testing; Task 8 Program Management; and Task 9 Stack Testing with Coal-Based Reformate.

  1. SOLID STATE ENERGY CONVERSION ALLIANCE DELPHI SOLID OXIDE FUEL CELL

    SciTech Connect

    Steven Shaffer; Sean Kelly; Subhasish Mukerjee; David Schumann; Gail Geiger; Kevin Keegan; Larry Chick

    2004-05-07

    The objective of this project is to develop a 5 kW Solid Oxide Fuel Cell power system for a range of fuels and applications. During Phase I, the following will be accomplished: Develop and demonstrate technology transfer efforts on a 5 kW stationary distributed power generation system that incorporates steam reforming of natural gas with the option of piped-in water (Demonstration System A). Initiate development of a 5 kW system for later mass-market automotive auxiliary power unit application, which will incorporate Catalytic Partial Oxidation (CPO) reforming of gasoline, with anode exhaust gas injected into an ultra-lean burn internal combustion engine. This technical progress report covers work performed by Delphi from July 1, 2003 to December 31, 2003, under Department of Energy Cooperative Agreement DE-FC-02NT41246. This report highlights technical results of the work performed under the following tasks: Task 1 System Design and Integration; Task 2 Solid Oxide Fuel Cell Stack Developments; Task 3 Reformer Developments; Task 4 Development of Balance of Plant (BOP) Components; Task 5 Manufacturing Development (Privately Funded); Task 6 System Fabrication; Task 7 System Testing; Task 8 Program Management; Task 9 Stack Testing with Coal-Based Reformate; and Task 10 Technology Transfer from SECA CORE Technology Program. In this reporting period, unless otherwise noted Task 6--System Fabrication and Task 7--System Testing will be reported within Task 1 System Design and Integration. Task 8--Program Management, Task 9--Stack Testing with Coal Based Reformate, and Task 10--Technology Transfer from SECA CORE Technology Program will be reported on in the Executive Summary section of this report.

  2. Bioelectrochemical Integration of Waste Heat Recovery, Waste-to-Energy Conversion, and Waste-to-Chemical Conversion with Industrial Gas and Chemical Manufacturing Processes

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    MHRC System Concept ADVANCED MANUFACTURING OFFICE Bioelectrochemical Integration of Waste Heat Recovery, Waste-to-Energy Conversion, and Waste-to-Chemical Conversion with Industrial Gas and Chemical Manufacturing Processes Advancing a Novel Microbial Reverse Electrodialysis Electrolytic System. Many current manufacturing processes produce both low-grade waste heat and wastewater effuents which contain organic materials. A microbial reverse electrodialysis electrolytic cell, designed to integrate

  3. Feasibility of Thermoelectrics for Waste Heat Recovery in Hybrid Vehicles: Preprint

    SciTech Connect

    Smith, K.; Thornton, M.

    2007-12-01

    Using advanced materials, thermoelectric conversion of efficiencies on the order of 20% may be possible in the near future. Thermoelectric generators offer potential to increase vehicle fuel economy by recapturing a portion of the waste heat from the engine exhaust and generating electricity to power vehicle accessory or traction loads.

  4. Compilation of Failure Data and Fault Tree Analysis for Geothermal Energy Conversion Systems

    SciTech Connect

    Miller, F.L., Jr.; Zimmerman, D.E.

    1990-11-01

    The failure data for geothermal energy conversion facilities collected to date are compiled and tabled. These facilities have not accumulated sufficient production history to reliably estimated component failure rates. In addition, the improvements made in drilling technology in recent years may have made less pertinent the accumulation of data on well failures.

  5. High Temperature Integrated Thermoelectric Ststem and Materials

    SciTech Connect

    Mike S. H. Chu

    2011-06-06

    The final goal of this project is to produce, by the end of Phase II, an all ceramic high temperature thermoelectric module. Such a module design integrates oxide ceramic n-type, oxide ceramic p-type materials as thermoelectric legs and oxide ceramic conductive material as metalizing connection between n-type and p-type legs. The benefits of this all ceramic module are that it can function at higher temperatures (> 700 C), it is mechanically and functionally more reliable and it can be scaled up to production at lower cost. With this all ceramic module, millions of dollars in savings or in new opportunities recovering waste heat from high temperature processes could be made available. A very attractive application will be to convert exhaust heat from a vehicle to reusable electric energy by a thermoelectric generator (TEG). Phase I activities were focused on evaluating potential n-type and p-type oxide compositions as the thermoelectric legs. More than 40 oxide ceramic powder compositions were made and studied in the laboratory. The compositions were divided into 6 groups representing different material systems. Basic ceramic properties and thermoelectric properties of discs sintered from these powders were measured. Powders with different particles sizes were made to evaluate the effects of particle size reduction on thermoelectric properties. Several powders were submitted to a leading thermoelectric company for complete thermoelectric evaluation. Initial evaluation showed that when samples were sintered by conventional method, they had reasonable values of Seebeck coefficient but very low values of electrical conductivity. Therefore, their power factors (PF) and figure of merits (ZT) were too low to be useful for high temperature thermoelectric applications. An unconventional sintering method, Spark Plasma Sintering (SPS) was determined to produce better thermoelectric properties. Particle size reduction of powders also was found to have some positive benefits

  6. Solar energy conversion: Technological forecasting. (Latest citations from the Aerospace database). Published Search

    SciTech Connect

    Not Available

    1993-12-01

    The bibliography contains citations concerning current forecasting of Earth surface-bound solar energy conversion technology. Topics consider research, development and utilization of this technology in relation to electric power generation, heat pumps, bioconversion, process heat and the production of renewable gaseous, liquid, and solid fuels for industrial, commercial, and domestic applications. Some citations concern forecasts which compare solar technology with other energy technologies. (Contains 250 citations and includes a subject term index and title list.)

  7. Solar energy conversion: Technological forecasting. (Latest citations from the Aerospace database). Published Search

    SciTech Connect

    1995-01-01

    The bibliography contains citations concerning current forecasting of Earth surface-bound solar energy conversion technology. Topics consider research, development and utilization of this technology in relation to electric power generation, heat pumps, bioconversion, process heat and the production of renewable gaseous, liquid, and solid fuels for industrial, commercial, and domestic applications. Some citations concern forecasts which compare solar technology with other energy technologies. (Contains 250 citations and includes a subject term index and title list.)

  8. Improved Dye-Sensitized Solar Cell (DSSC) for Higher Energy Conversion

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Efficiency - Energy Innovation Portal Dye-Sensitized Solar Cell (DSSC) for Higher Energy Conversion Efficiency University of Colorado Contact CU About This Technology Publications: PDF Document Publication CU2480B (Improved DSSC) Marketing Summary.pdf (213 KB) <em>DSSC schematic.</em> DSSC schematic. Technology Marketing Summary A University of Colorado research group led by Rich Noble has developed a novel approach to dye-sensitized solar cells that increases solar-to-electrical

  9. Analytical Modeling and Simulation of Thermoelectric Devices...

    Energy.gov [DOE] (indexed site)

    and Technologies Micro- & Nano-Technologies Enabling More Compact, Lightweight Thermoelectric Power Generation & Cooling Systems Automotive Thermoelectric Generators and HVAC

  10. Commercialization of Bulk Thermoelectric Materials for Power...

    Energy.gov [DOE] (indexed site)

    of preproduction high performance thermoelectric materials available for device ... More Documents & Publications Commercialization of Bulk Thermoelectric Materials for Power ...

  11. Recent Theoretical Results for Advanced Thermoelectric Materials...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications Recent Theoretical Results for Advanced Thermoelectric Materials Thermoelectric Materials by Design, Computational Theory and Structure ...

  12. Ferecrystals: Thermoelectric Materials Poised Between the Crystalline...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications Trends in Thermoelectric Properties with Nanostructure: Ferecrystals with Designed Nanoarchitecture DOENSF Thermoelectric Partnership Project SEEBECK ...

  13. Thermoelectric Generator Development for Automotive Waste Heat...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Generator Development for Automotive Waste Heat Recovery Thermoelectric Generator ... More Documents & Publications Develop Thermoelectric Technology for Automotive Waste Heat ...

  14. Trends in Thermoelectric Properties with Nanostructure: Ferecrystals...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications Ferecrystals: Thermoelectric Materials Poised Between the Crystalline and Amorphous States Thermoelectric Materials for Automotive Applications ...

  15. Thermoelectric Technology for Automotive Waste Heat Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Technology for Automotive Waste Heat Recovery Thermoelectric Technology for Automotive ... More Documents & Publications Develop Thermoelectric Technology for Automotive Waste Heat ...

  16. Compressed Natural Gas and Liquefied Petroleum Gas Conversions: The National Renewable Energy Laboratory's Experience

    Alternative Fuels and Advanced Vehicles Data Center

    Compressed Natural Gas and Liquefied Petroleum Gas Conversions: The National Renewable Energy Laboratory's Experience N T Y A U E O F E N E R G D E P A R T M E N I T E D S T A T S O F A E R I C M Compressed Natural Gas and Liquefied Petroleum Gas Conversions: The National Renewable Energy Laboratory's Experience N T Y A U E O F E N E R G D E P A R T M E N I T E D S T A T S O F A E R I C M Robert C. Motta Kenneth J. Kelly William W. Warnock Executive Summary The National Renewable Energy

  17. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing | Direct Thermal Energy Conversion Materials, Devices, and Systems Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    and Modeling for Manufacturing Combined Heat and Power Systems Composite Materials Critical Materials Direct Thermal Energy Conversion Materials, Devices, and Systems Materials for Harsh Service Conditions Process Heating Process Intensification Roll-to-Roll Processing Sustainable Manufacturing - Flow of Materials through Industry Waste Heat Recovery Systems Wide Bandgap Semiconductors for Power Electronics ENERGY U.S. DEPARTMENT OF Quadrennial Technology Review 2015 1 Quadrennial Technology

  18. Improving Energy Efficiency by Developing Components for Distributed...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Based on Thermal Comfort Modeling Thermoelectric (TE) HVAC Energy Efficient HVAC System for Distributed CoolingHeating with Thermoelectric Devices Energy Efficient HVAC System ...

  19. Study of energy conversion and partitioning in the magnetic reconnection layer of a laboratory plasma

    SciTech Connect

    Yamada, Masaaki; Yoo, Jongsoo; Jara-Almonte, Jonathan; Daughton, William; Ji, Hantao; Kulsrud, Russell M.; Myers, Clayton E.

    2015-05-15

    The most important feature of magnetic reconnection is that it energizes plasma particles by converting magnetic energy to particle energy, the exact mechanisms by which this happens are yet to be determined despite a long history of reconnection research. Recently, we have reported our results on the energy conversion and partitioning in a laboratory reconnection layer in a short communication [Yamada et al., Nat. Commun. 5, 4474 (2014)]. The present paper is a detailed elaboration of this report together with an additional dataset with different boundary sizes. Our experimental study of the reconnection layer is carried out in the two-fluid physics regime where ions and electrons move quite differently. We have observed that the conversion of magnetic energy occurs across a region significantly larger than the narrow electron diffusion region. A saddle shaped electrostatic potential profile exists in the reconnection plane, and ions are accelerated by the resulting electric field at the separatrices. These accelerated ions are then thermalized by re-magnetization in the downstream region. A quantitative inventory of the converted energy is presented in a reconnection layer with a well-defined, variable boundary. We also carried out a systematic study of the effects of boundary conditions on the energy inventory. This study concludes that about 50% of the inflowing magnetic energy is converted to particle energy, 2/3 of which is ultimately transferred to ions and 1/3 to electrons. When assisted by another set of magnetic reconnection experiment data and numerical simulations with different sizes of monitoring box, it is also observed that the observed features of energy conversion and partitioning do not depend on the size of monitoring boundary across the range of sizes tested from 1.5 to 4 ion skin depths.

  20. Study of energy conversion and partitioning in the magnetic reconnection layer of a laboratory plasma

    DOE PAGES [OSTI]

    Yamada, Masaaki; Yoo, Jongsoo; Jara-Almonte, Jonathan; Daughton, William; Ji, Hantao; Kulsrud, Russell M.; Myers, Clayton E.

    2015-05-15

    The most important feature of magnetic reconnection is that it energizes plasma particles by converting magnetic energy to particle energy, the exact mechanisms by which this happens are yet to be determined despite a long history of reconnection research. Recently, we have reported our results on the energy conversion and partitioning in a laboratory reconnection layer in a short communication [Yamada et al., Nat. Commun. 5, 4474 (2014)]. The present paper is a detailed elaboration of this report together with an additional dataset with different boundary sizes. Our experimental study of the reconnection layer is carried out in the two-fluidmore » physics regime where ions and electrons move quite differently. We have observed that the conversion of magnetic energy occurs across a region significantly larger than the narrow electron diffusion region. A saddle shaped electrostatic potential profile exists in the reconnection plane, and ions are accelerated by the resulting electric field at the separatrices. These accelerated ions are then thermalized by re-magnetization in the downstream region. A quantitative inventory of the converted energy is presented in a reconnection layer with a well-defined, variable boundary. We also carried out a systematic study of the effects of boundary conditions on the energy inventory. This study concludes that about 50% of the inflowing magnetic energy is converted to particle energy, 2/3 of which is ultimately transferred to ions and 1/3 to electrons. When assisted by another set of magnetic reconnection experiment data and numerical simulations with different sizes of monitoring box, it is also observed that the observed features of energy conversion and partitioning do not depend on the size of monitoring boundary across the range of sizes tested from 1.5 to 4 ion skin depths.« less

  1. Automotive Thermoelectric Moduleswith Scalable Thermo- andElectro...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications Automotive Thermoelectric Moduleswith Scalable Thermo- and Electro-Mechanical Interfaces Thermoelectrics Partnership: Automotive Thermoelectric ...

  2. Compressed natural gas and liquefied petroleum gas conversions: The National Renewable Energy Laboratory`s experience

    SciTech Connect

    Motta, R.C.; Kelly, K.J.; Warnock, W.W.

    1996-04-01

    The National Renewable Energy Laboratory (NREL) contracted with conversion companies in six states to convert approximately 900 light-duty Federal fleet vehicles to operate on compressed natural gas (CNG) or liquefied petroleum gas (LPG). The contracts were initiated in order to help the Federal government meet the vehicle acquisition requirements of the Energy Policy Act of 1992 (EPACT) during a period of limited original equipment manufacturer (OEM) model availability. Approximately 90% of all conversions were performed on compact of full-size vans and pickups, and 90% of the conversions were to bi-fuel operation. With a positive response from the fleet managers, this program helped the Federal government meet the vehicle acquisition requirements of EPACT for fiscal years 1993 and 1994, despite limited OEM model availability. The conversions also helped to establish the infrastructure needed to support further growth in the use of alternative fuel vehicles. In conclusion, the program has been successful in helping the Federal government meet the vehicle acquisition requirements of EPACT, establishing infrastructure, increasing the displacement of imported oil, and evaluating the emissions performance of converted vehicles. With the relatively widespread availability of OEM vehicles in the 1996 model year, the program is now being phased out.

  3. Current Research on Thermochemical Conversion of Biomass at the National Renewable Energy Laboratory

    SciTech Connect

    Baldwin, R. M.; Magrini-Bair, K. A.; Nimlos, M. R.; Pepiot, P.; Donohoe, B. S.; Hensley, J. E.; Phillips, S. D.

    2012-04-05

    The thermochemical research platform at the National Bioenergy Center, National Renewable Energy Laboratory (NREL) is primarily focused on conversion of biomass to transportation fuels using non-biological techniques. Research is conducted in three general areas relating to fuels synthesis via thermochemical conversion by gasification: (1) Biomass gasification fundamentals, chemistry and mechanisms of tar formation; (2) Catalytic tar reforming and syngas cleaning; and (3) Syngas conversion to mixed alcohols. In addition, the platform supports activities in both technoeconomic analysis (TEA) and life cycle assessment (LCA) of thermochemical conversion processes. Results from the TEA and LCA are used to inform and guide laboratory research for alternative biomass-to-fuels strategies. Detailed process models are developed using the best available material and energy balance information and unit operations models created at NREL and elsewhere. These models are used to identify cost drivers which then form the basis for research programs aimed at reducing costs and improving process efficiency while maintaining sustainability and an overall net reduction in greenhouse gases.

  4. The Status of Thermophotovoltaic Energy Conversion Technology at Lockheed Martin Corp.

    SciTech Connect

    E.J. Brown; P.F. Baldasaro; S.R. Burger; L.R. Danielson; D.M. DePoy; G.J. Nichols; W.F. Topper; T.D. Rahmlow

    2003-01-31

    In a thermophotovoltaic (TPV) energy conversion system, a heated surface radiates in the mid-infrared range onto photodiodes which are sensitive at these energies. Part of the absorbed energy is converted into electric output. Conversion efficiency is maximized by reducing the absorption of non-convertible energy with some form of spectral control. In a TPV system, many technology options exist. The development efforts have concentrated on flat-plate geometries with greybody radiators, low bandgap quaternary diodes, front surface tandem filters and a multi-chip module (MCM) approach that allows selective fabrication processes to match diode performance. Recently, the authors achieved conversion efficiencies of about 20% (radiator 950 C, diodes 22 C) for a module in a prototypic cavity test environment. These tests employed InGaAsSb diodes with 0.52 eV bandgap and front surface filters for spectral control. This paper provides details of the individual system components and describes the measurement technique used to record these efficiencies.

  5. Advancing the Frontiers in Nanocatalysis, Biointerfaces, and Renewable Energy Conversion by Innovations of Surface Techniques

    SciTech Connect

    Somorjai, G.A.; Frei, H.; Park, J.Y.

    2009-07-23

    The challenge of chemistry in the 21st century is to achieve 100% selectivity of the desired product molecule in multipath reactions ('green chemistry') and develop renewable energy based processes. Surface chemistry and catalysis play key roles in this enterprise. Development of in situ surface techniques such as high-pressure scanning tunneling microscopy, sum frequency generation (SFG) vibrational spectroscopy, time-resolved Fourier transform infrared methods, and ambient pressure X-ray photoelectron spectroscopy enabled the rapid advancement of three fields: nanocatalysts, biointerfaces, and renewable energy conversion chemistry. In materials nanoscience, synthetic methods have been developed to produce monodisperse metal and oxide nanoparticles (NPs) in the 0.8-10 nm range with controlled shape, oxidation states, and composition; these NPs can be used as selective catalysts since chemical selectivity appears to be dependent on all of these experimental parameters. New spectroscopic and microscopic techniques have been developed that operate under reaction conditions and reveal the dynamic change of molecular structure of catalysts and adsorbed molecules as the reactions proceed with changes in reaction intermediates, catalyst composition, and oxidation states. SFG vibrational spectroscopy detects amino acids, peptides, and proteins adsorbed at hydrophobic and hydrophilic interfaces and monitors the change of surface structure and interactions with coadsorbed water. Exothermic reactions and photons generate hot electrons in metal NPs that may be utilized in chemical energy conversion. The photosplitting of water and carbon dioxide, an important research direction in renewable energy conversion, is discussed.

  6. System for thermal energy storage, space heating and cooling and power conversion

    DOEpatents

    Gruen, Dieter M.; Fields, Paul R.

    1981-04-21

    An integrated system for storing thermal energy, for space heating and cong and for power conversion is described which utilizes the reversible thermal decomposition characteristics of two hydrides having different decomposition pressures at the same temperature for energy storage and space conditioning and the expansion of high-pressure hydrogen for power conversion. The system consists of a plurality of reaction vessels, at least one containing each of the different hydrides, three loops of circulating heat transfer fluid which can be selectively coupled to the vessels for supplying the heat of decomposition from any appropriate source of thermal energy from the outside ambient environment or from the spaces to be cooled and for removing the heat of reaction to the outside ambient environment or to the spaces to be heated, and a hydrogen loop for directing the flow of hydrogen gas between the vessels. When used for power conversion, at least two vessels contain the same hydride and the hydrogen loop contains an expansion engine. The system is particularly suitable for the utilization of thermal energy supplied by solar collectors and concentrators, but may be used with any source of heat, including a source of low-grade heat.

  7. Solar thermoelectric generator

    DOEpatents

    Toberer, Eric S.; Baranowski, Lauryn L.; Warren, Emily L.

    2016-05-03

    Solar thermoelectric generators (STEGs) are solid state heat engines that generate electricity from concentrated sunlight. A novel detailed balance model for STEGs is provided and applied to both state-of-the-art and idealized materials. STEGs can produce electricity by using sunlight to heat one side of a thermoelectric generator. While concentrated sunlight can be used to achieve extremely high temperatures (and thus improved generator efficiency), the solar absorber also emits a significant amount of black body radiation. This emitted light is the dominant loss mechanism in these generators. In this invention, we propose a solution to this problem that eliminates virtually all of the emitted black body radiation. This enables solar thermoelectric generators to operate at higher efficiency and achieve said efficient with lower levels of optical concentration. The solution is suitable for both single and dual axis solar thermoelectric generators.

  8. Micro- & Nano-Technologies Enabling More Compact, Lightweight Thermoelectric Power Generation & Cooling Systems

    Energy.gov [DOE]

    Advanced thermoelectric energy recovery and cooling system weight and volume improvements with low-cost microtechnology heat and mass transfer devices are presented

  9. Thermoelectrics: From Space Power Systems to Terrestrial Waste Heat Recovery Applications

    Energy.gov [DOE]

    Progress in reliable high temperature segmented thermoelectric devices and potential for producing electricity from waste heat from energy intensive industrial processes and transportation vehicles exhaust are discussed

  10. Sandia National Laboratories: Fresh water for energy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    consumed to produce energy -including thermoelectric and hydroelectric power production; ... The US alone has more than 1,200 thermoelectric power plants, more than 500 refineries, ...

  11. WASTE HEAT RECOVERY USING THERMOELECTRIC DEVICES IN THE LIGHT METALS INDUSTRY

    SciTech Connect

    Choate, William T.; Hendricks, Terry J.; Majumdar, Rajita

    2007-05-01

    Recently discovered thermoelectric materials and associated manufacturing techniques (nanostructures, thin-film super lattice, quantum wells...) have been characterized with thermal to electric energy conversion efficiencies of 12-25+%. These advances allow the manufacture of small-area, high-energy flux (350 W/cm2 input) thermoelectric generating (TEG) devices that operate at high temperatures (~750C). TEG technology offers the potential for large-scale conversion of waste heat from the exhaust gases of electrolytic cells (e.g., Hall-Hroult cells) and from aluminum, magnesium, metal and glass melting furnaces. This paper provides an analysis of the potential energy recovery and of the engineering issues that are expected when integrating TEG systems into existing manufacturing processes. The TEG module must be engineered for low-cost, easy insertion and simple operation in order to be incorporated into existing manufacturing operations. Heat transfer on both the hot and cold-side of these devices will require new materials, surface treatments and design concepts for their efficient operation.

  12. The Status of Thermophotovoltaic Energy Conversion Technology at Lockheed Martin Corporation

    SciTech Connect

    EJ Brown; PF Baldasaro; SR Burger; LR Danielson; DM DePoy; JM Dolatowski; PM Fourspring; GJ Nichols; WF Topper; TD Rahmlow

    2004-07-29

    In a thermophotovoltaic (TPV) energy conversion system, a heated surface radiates in the mid-infrared range onto photocells which are sensitive at these energies. Part of the absorbed energy is converted into electric output. Conversion efficiency is maximized by reducing the absorption of non-convertible energy with some form of spectral control. In a TPV system, many technology options exist. Our development efforts have concentrated on flat-plate geometries with greybody radiators, front surface tandem filters and a multi-chip module (MCM) approach that allows selective fabrication processes to match cell performance. Recently, we discontinued development of GaInAsSb quaternary cell semiconductor material in favor of ternary GaInAs material. In our last publication (Ref. 1), the authors reported conversion efficiencies of about 20% (radiator 950 C, cells 22 C) for small modules (1-4 cm{sup 2}) tested in a prototypic cavity test environment. Recently, we have achieved measured conversion efficiencies of about 12.5% in larger ({approx}100 cm{sup 2}) test arrays. The efficiency reduction in the larger arrays was probably due to quality and variation of the cells as well as non-uniform illumination from the hot radiator to the cold plate. Modules in these tests used GaInAsSb cells with 0.52 eV bandgap and front surface filters for spectral control. This paper provides details of the individual system components and the rationale for our technical decisions. It also describes the measurement techniques used to record these efficiencies.

  13. Energy conversion system optimization study for multimegawatt space nuclear power applications

    SciTech Connect

    Parlos, A.G.; El-Genk, M.S.; McGhee, J.M.; Buden, D.; Mims, J.

    1988-06-01

    The major objective of this paper is to present a detailed description of the energy conversion system analysis and optimization procedures that were part of a broader preliminary study aimed at designing a multimegawatt (MMW) space nuclear power system. In optimizing the energy conversion system it is assumed that the most massive component of the system is the radiator and therefore the subject of optimization is the radiator mass. The closed loop Brayton and the liquid metal Rankine cycles are analyzed for a 165 MWe system. The radiator mass optimized systems based on both cycles are compared for a wide range of operating conditions. In addition, for a 165 MWe power output, the MMW power system mass is calculated using an open loop Brayton cycle. For the desired electric output, results show that the hydrogen cooled/potassium Rankine cycle is the recommended energy conversion system since it is superior to any closed loop Brayton cycle. Additionally, results show that the open loop Brayton cycle system with hydrogen working fluid has mass comparable to the selected Rankine cycle system.

  14. Hybrid chromophore/template nanostructures: A customizable platform material for solar energy storage and conversion

    SciTech Connect

    Kolpak, AM; Grossman, JC

    2013-01-21

    Challenges with cost, cyclability, and/or low energy density have largely prevented the development of solar thermal fuels, a potentially attractive alternative energy technology based on molecules that can capture and store solar energy as latent heat in a closed cycle. In this paper, we present a set of novel hybrid photoisomer/template solar thermal fuels that can potentially circumvent these challenges. Using first-principles computations, we demonstrate that these fuels, composed of organic photoisomers bound to inexpensive carbon-based templates, can reversibly store solar energy at densities comparable to Li-ion batteries. Furthermore, we show that variation of the template material in combination with the photoisomer can be used to optimize many of the key performance metrics of the fuel-i.e., the energy density, the storage lifetime, the temperature of the output heat, and the efficiency of the solar-to-heat conversion. Our work suggests that the solar thermal fuels concept can be translated into a practical and highly customizable energy storage and conversion technology. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4773306

  15. Potential Impacts of Hydrokinetic and Wave Energy Conversion Technologies on Aquatic Environments

    SciTech Connect

    Čada, Glenn F.

    2007-04-01

    A new generation of hydropower technologies, the kinetic hydro and wave energy conversion devices, offers the possibility of generating electricity from the movements of water, without the need for dams and diversions. The Energy Policy Act of 2005 encouraged the development of these sources of renewable energy in the United States, and there is growing interest in deploying them globally. The technologies that would extract electricity from free-flowing streams, estuaries, and oceans have not been widely tested. Consequently, the U.S. Department of Energy convened a workshop to (1) identify the varieties of hydrokinetic energy and wave energy conversion devices and their stages of development, (2) identify where these technologies can best operate, (3) identify the potential environmental issues associated with these technologies and possible mitigation measures, and (4) develop a list of research needs and/or practical solutions to address unresolved environmental issues. The article reviews the results of that workshop, focusing on potential effects on freshwater, estuarine, and marine ecosystems, and we describe recent national and international developments.

  16. Thermoelectric Materials, Devices and Systems:

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    DRAFT - PRE-DECISIONAL -DRAFT - FOR OFFICIAL USE ONLY - DRAFT Thermoelectric Materials, Devices and Systems: 1 Technology Assessment 2 Contents 3 1. Thermoelectric Generation ................................................................................................................... 2 4 2. Technology Assessment and Potential ................................................................................................. 3 5 2.1 Performance Advances

  17. PowerPoint Presentation

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Critical Materials Direct Energy Conversion Materials (Magnetocaloric, Thermoelectric, ... Conversion Materials (Magnetocaloric, Thermoelectric, etc) Wide Bandgap Power Electronics ...

  18. Graphene-based Electrochemical Energy Conversion and Storage: Fuel cells, Supercapacitors and Lithium Ion Batteries

    SciTech Connect

    Hou, Junbo; Shao, Yuyan; Ellis, Michael A.; Moore, Robert; Yi, Baolian

    2011-09-14

    Graphene has attracted extensive research interest due to its strictly 2-dimensional (2D) structure, which results in its unique electronic, thermal, mechanical, and chemical properties and potential technical applications. These remarkable characteristics of graphene, along with the inherent benefits of a carbon material, make it a promising candidate for application in electrochemical energy devices. This article reviews the methods of graphene preparation, introduces the unique electrochemical behavior of graphene, and summarizes the recent research and development on graphene-based fuel cells, supercapacitors and lithium ion batteries. In addition, promising areas are identified for the future development of graphene-based materials in electrochemical energy conversion and storage systems.

  19. Chapter 1.12: Solar Radiation Resource Assessment for Renewable Energy Conversion

    SciTech Connect

    Myers, D. R.

    2012-01-01

    This chapter addresses measurements, modeling, and databases of solar energy potential that may serve as fuel for solar energy conversion systems. Developing innovative designs for capturing and converting solar radiation is only one part of the equation for solar system deployment. Identifying, locating, and prospecting for the appropriate quantity and quality of solar resources to fuel these systems is critical to system designers, investors, financial backers, utilities, governments, and owner/operators. This chapter addresses the fundamentals and state of the art for measuring, modeling, and applying solar radiation resource data to meet decision-making needs.

  20. Synthesis and characterization of Bi-doped Mg{sub 2}Si thermoelectric materials

    SciTech Connect

    Fiameni, S.; Battiston, S.; Boldrini, S.; Famengo, A.; Agresti, F.; Barison, S.; Fabrizio, M.

    2012-09-15

    The Mg{sub 2}Si-based alloys are promising candidates for thermoelectric energy conversion for the middle high range of temperature. They are very attractive as they could replace lead-based compounds due to their low cost and non toxicity. They could also result in thermoelectric generator weight reduction (a key feature for the automotive application field). The high value of thermal conductivity of the silicide-based materials could be reduced by increasing the phonon scattering in the presence of nanosized crystalline grains without heavily interfering with the electrical conductivity of the thermoelectric material. Nanostructured materials were obtained under inert atmosphere through ball milling, thermal treatment and spark plasma sintering processes. In particular, the role of several bismuth doping amounts in Mg{sub 2}Si were investigated (Mg{sub 2}Si:Bi=1:x for x=0.01, 0.02 and 0.04 M ratio). The morphology, the composition and the structure of the samples were characterized by FE-SEM, EDS and XRD analyses after each process step. Moreover, the Seebeck coefficient analyses at high temperature and the electrical and thermal conductivity of the samples are presented in this work. The nanostructuring processes were affect by the MgO amount increase which influenced the thermoelectric properties of the samples mainly by reducing the electrical conductivity. With the aim of further increasing the scattering phenomena by interface or boundary effect, carbon nanostructures named Single Wall Carbon Nanohorns were added to the Mg{sub 2}Si in order to produce a nanocomposite material. The influence of the nanostructured filler on the thermoelectric material properties is also discussed. - Graphical abstract: Figure of merit (ZT) of Bi-doped samples and undoped Mg{sub 2}Si. A maximum ZT value of 0.39 at 600 Degree-Sign C was obtained for the nanocomposite material obtained adding Single Wall Carbon Nanohorns to the Bi 0.02 at% doped silicide. Highlights: Black

  1. Nanolubricants to Improve Chiller Performance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Nanolubricants to Improve Chiller Performance Nanolubricants to Improve Chiller Performance Emerging Technologies Project for the 2013 Building Technologies Office's Program Peer Review emrgtech14_kedzierski_040313.pdf (902.2 KB) More Documents & Publications Solid-State Energy Conversion Overview Vehicular Thermoelectrics: The New Green Technology Working Fluids Low Global Warming Potential Refrigerants - 2013 Peer Review

  2. Nuclear Energy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Nuclear Energy Curiosity's multi-mission radioisotope thermoelectric generator on Mars. ... Analysis, Capabilities, Energy, Highlights - Energy Research, News, News & Events, Nuclear ...

  3. Design and cost of near-term OTEC (Ocean Thermal Energy Conversion) plants for the production of desalinated water and electric power. [Ocean Thermal Energy Conversion (OTEC)

    SciTech Connect

    Rabas, T.; Panchal, C.; Genens, L.

    1990-01-01

    There currently is an increasing need for both potable water and power for many islands in the Pacific and Caribbean. The Ocean Thermal Energy Conversion (OTEC) technology fills these needs and is a viable option because of the unlimited supply of ocean thermal energy for the production of both desalinated water and electricity. The OTEC plant design must be flexible to meet the product-mix demands that can be very different from site to site. This paper describes different OTEC plants that can supply various mixes of desalinated water and vapor -- the extremes being either all water and no power or no water and all power. The economics for these plants are also presented. The same flow rates and pipe sizes for both the warm and cold seawater streams are used for different plant designs. The OTEC plant designs are characterized as near-term because no major technical issues need to be resolved or demonstrated. The plant concepts are based on DOE-sponsored experiments dealing with power systems, advanced heat exchanger designs, corrosion and fouling of heat exchange surfaces, and flash evaporation and moisture removal from the vapor using multiple spouts. In addition, the mature multistage flash evaporator technology is incorporated into the plant designs were appropriate. For the supply and discharge warm and cold uncertainties do exist because the required pipe sizes are larger than the maximum currently deployed -- 40-inch high-density polyethylene pipe at Keahole Point in Hawaii. 30 refs., 6 figs., 8 tabs.

  4. Recovery Act, EFRC Project: Solar Energy Conversion in Complex Materials (SECCM)

    SciTech Connect

    Green, Peter F.

    2015-06-25

    The goal of the Center was to design and to synthesize new materials for high efficiency photovoltaic (PV) and thermoelectric (TE) devices, predicated on new fundamental insights into equilibrium and non-equilibrium processes, including quantum phenomena, that occur in materials over various spatial and temporal scales.

  5. Thermoelectrically cooled water trap

    DOEpatents

    Micheels, Ronald H.

    2006-02-21

    A water trap system based on a thermoelectric cooling device is employed to remove a major fraction of the water from air samples, prior to analysis of these samples for chemical composition, by a variety of analytical techniques where water vapor interferes with the measurement process. These analytical techniques include infrared spectroscopy, mass spectrometry, ion mobility spectrometry and gas chromatography. The thermoelectric system for trapping water present in air samples can substantially improve detection sensitivity in these analytical techniques when it is necessary to measure trace analytes with concentrations in the ppm (parts per million) or ppb (parts per billion) partial pressure range. The thermoelectric trap design is compact and amenable to use in a portable gas monitoring instrumentation.

  6. Novel, Integrated Reactor / Power Conversion System (LMR-AMTEC)

    SciTech Connect

    Pablo Rubiolo, Principal Investigator

    2003-03-21

    The main features of this project were the development of a long life (up to 10 years) Liquid Metal Reactor (LMR) and a static conversion subsystem comprising an Alkali Metal Thermal-to-Electric (AMTEC) topping cycle and a ThermoElectric (TE) Bottom cycle. Various coupling options of the LMR with the energy conversion subsystem were explored and, base in the performances found in this analysis, an Indirect Coupling (IC) between the LMR and the AMTEC/TE converters with Alkali Metal Boilers (AMB) was chosen as the reference design. The performance model of the fully integrated sodium-and potassium-AMTEC/TE converters shows that a combined conversion efficiency in excess of 30% could be achieved by the plant. (B204)

  7. Quantum interference in thermoelectric molecular junctions: A toy model perspective

    SciTech Connect

    Nozaki, Daijiro E-mail: research@nano.tu-dresden.de; Avdoshenko, Stas M.; Sevinçli, Hâldun; Cuniberti, Gianaurelio

    2014-08-21

    Quantum interference (QI) phenomena between electronic states in molecular circuits offer a new opportunity to design new types of molecular devices such as molecular sensors, interferometers, and thermoelectric devices. Controlling the QI effect is a key challenge for such applications. For the development of single molecular devices employing QI effects, a systematic study of the relationship between electronic structure and the quantum interference is needed. In order to uncover the essential topological requirements for the appearance of QI effects and the relationship between the QI-affected line shape of the transmission spectra and the electronic structures, we consider a homogeneous toy model where all on-site energies are identical and model four types of molecular junctions due to their topological connectivities. We systematically analyze their transmission spectra, density of states, and thermoelectric properties. Even without the degree of freedom for on-site energies an asymmetric Fano peak could be realized in the homogeneous systems with the cyclic configuration. We also calculate the thermoelectric properties of the model systems with and without fluctuation of on-site energies. Even under the fluctuation of the on-site energies, the finite thermoelectrics are preserved for the Fano resonance, thus cyclic configuration is promising for thermoelectric applications. This result also suggests the possibility to detect the cyclic configuration in the homogeneous systems and the presence of the QI features from thermoelectric measurements.

  8. Municipal solid waste energy conversion study on Guam and American Samoa

    SciTech Connect

    Not Available

    1984-03-31

    In the Pacific Islands of Guam and Tutuila in American Samoa, conversion of municipal solid waste to useable energy forms - principally electricity but possibly steam - may hold promise for reducing economic dependence on imported petroleum. A secondary benefit may be derived from reduction of solid waste landfill requirements. At the preliminary planning stage, waste-to-energy facilities producing electricity appear technically and environmentally feasible. Economically, the projects appear marginal but could be viable under specific conditions related to capital costs, revenue from garbage collection and revenue from the sale of the energy generated. Grant funding for the projects would considerably enhance the economic viability of the proposed facilities. The projects appear sufficiently viable to proceed to the detailed planning stage. Such projects are not viable for the islands now emerging from the US Trust Territory of the Pacific Islands.

  9. Synthetic thermoelectric materials comprising phononic crystals

    DOEpatents

    El-Kady, Ihab F; Olsson, Roy H; Hopkins, Patrick; Reinke, Charles; Kim, Bongsang

    2013-08-13

    Synthetic thermoelectric materials comprising phononic crystals can simultaneously have a large Seebeck coefficient, high electrical conductivity, and low thermal conductivity. Such synthetic thermoelectric materials can enable improved thermoelectric devices, such as thermoelectric generators and coolers, with improved performance. Such synthetic thermoelectric materials and devices can be fabricated using techniques that are compatible with standard microelectronics.

  10. Lapped substrate for enhanced backsurface reflectivity in a thermophotovoltaic energy conversion system

    DOEpatents

    Baldasaro, Paul F; Brown, Edward J; Charache, Greg W; DePoy, David M

    2000-09-05

    A method for fabricating a thermophotovoltaic energy conversion cell including a thin semiconductor wafer substrate (10) having a thickness (.beta.) calculated to decrease the free carrier absorption on a heavily doped substrate; wherein the top surface of the semiconductor wafer substrate is provided with a thermophotovoltaic device (11), a metallized grid (12) and optionally an antireflective (AR) overcoating; and, the bottom surface (10') of the semiconductor wafer substrate (10) is provided with a highly reflecting coating which may comprise a metal coating (14) or a combined dielectric/metal coating (17).

  11. Kinematic Stirling engine as an energy conversion subsystem for paraboloidal dish solar thermal power plants

    SciTech Connect

    Bowyer, J.M.

    1984-04-15

    The potential of a suitably designed and economically manufactured Stirling engine as the energy conversion subsystem of a paraboloidal dish-Stirling solar thermal power module has been estimated. Results obtained by elementary cycle analyses have been shown to match quite well the performance characteristics of an advanced kinematic Stirling engine, the United Stirling P-40, as established by current prototypes of the engine and by a more sophisticated analytic model of its advanced derivative. In addition to performance, brief consideration has been given to other Stirling engine criteria such as durability, reliability, and serviceability. Production costs have not been considered here.

  12. Lapped substrate for enhanced backsurface reflectivity in a thermophotovoltaic energy conversion system

    DOEpatents

    Baldasaro, Paul F; Brown, Edward J; Charache, Greg W; DePoy, David M

    2000-01-01

    A method for fabricating a thermophotovoltaic energy conversion cell including a thin semiconductor wafer substrate (10) having a thickness (.beta.) calculated to decrease the free carrier absorption on a heavily doped substrate; wherein the top surface of the semiconductor wafer substrate is provided with a thermophotovoltaic device (11), a metallized grid (12) and optionally an antireflective (AR) overcoating; and, the bottom surface (10') of the semiconductor wafer substrate (10) is provided with a highly reflecting coating which may comprise a metal coating (14) or a combined dielectric/metal coating (17).

  13. Ocean thermal energy conversion: environmental effects assessment program plan, 1981-85. [Monograph

    SciTech Connect

    Not Available

    1982-01-01

    The Ocean Thermal Energy Conversion (OTEC) Act of 1980 calls for a legal regime to encourage commercial OTEC while protecting the oceanic and coastal environments. The Act also requires a generic plan for assessing the environmental effects of OTEC development. The plan outlined in this report establishes a priority list of nine environmental effects and a research strategy for reducing uncertainties, with an emphasis on large-scale and long-term ecosystem implications and on the impacts of multiple facilities. 70 references, 4 figures, 4 tables. (DCK)

  14. Ocean thermal energy conversion report to congress: fiscal year 1981. public law 96-320

    SciTech Connect

    Not Available

    1982-02-01

    After a section on the background of Ocean Thermal Energy Conversion, which deals with the national interest and the nature of the industry, this report discusses OTEC technology, the legal regime, environmental considerations and the international impact and future of OTEC. At the current time no amendments to the ACT are recommended. NOAA is analyzing several areas in which technical amendments would clarify the original intent of the Act. The most significant of these relates to the specific requirements for issuance of OTEC licenses for facilities that are located partly on land and partly in ocean waters.

  15. Definitional mission: Ocean Thermal Energy Conversion, Republic of the Marshall Islands. Export trade information

    SciTech Connect

    Dean, S.R.; Ross, J.M.

    1990-09-01

    The objective of the study was to determine the commercial viability of an Ocean Thermal Energy Conversion (OTEC) electric power plant at the Majuro Atoll in the Marshall Islands. It was concluded that various technology improvements and economic factors have converged to present a feasible opportunity. United States industrial and research organizations are technically capable of developing a commercial OTEC industry for domestic and export markets. It is estimated that 100% of OTEC equipment and services could be supplied by United States firms. However, Japan has aggressively pursued OTEC development with an apparent goal of dominating the export market.

  16. Thermoelectric generator and method for the fabrication thereof

    DOEpatents

    Benson, D.K.; Tracy, C.E.

    1984-08-01

    A thermoelectric generator using semiconductor elements for responding to a temperature gradient to produce electrical energy with all of the semiconductor elements being of the same type is disclosed. A continuous process for forming substrates on which the semiconductor elements and superstrates are deposited and a process for forming the semiconductor elements on the substrates are also disclosed. The substrates with the semiconductor elements thereon are combined with superstrates to form modules for use as thermoelectric generators.

  17. Thermoelectric generator and method for the fabrication thereof

    DOEpatents

    Benson, David K.; Tracy, C. Edwin

    1987-01-01

    A thermoelectric generator using semiconductor elements for responding to a temperature gradient to produce electrical energy with all of the semiconductor elements being of the same type is disclosed. A continuous process for forming substrates on which the semiconductor elements and superstrates are deposited and a process for forming the semiconductor elements on the substrates are also disclosed. The substrates with the semiconductor elements thereon are combined with superstrates to form modules for use thermoelectric generators.

  18. Energy Efficient HVAC System for Distributed Cooling/Heating...

    Energy.gov [DOE] (indexed site)

    ...Heating with Thermoelectric Devices Improving Energy Efficiency by Developing Components for Distributed Cooling and Heating Based on Thermal Comfort Modeling Thermoelectric ...

  19. Novel Ultra-Low-Energy Consumption Ultrasonic Clothes Dryer ...

    Office of Environmental Management (EM)

    ... More Documents & Publications A new thermoelectric clothes dryer being developed by Oak ... Credit: Oak Ridge National Laboratory. Novel Energy-Efficient Thermoelectric Clothes Dryer ...

  20. Improving Energy Efficiency by Developing Components for Distributed...

    Energy.gov [DOE] (indexed site)

    ...Heating with Thermoelectric Devices Improving Energy Efficiency by Developing Components for Distributed Cooling and Heating Based on Thermal Comfort Modeling Thermoelectric ...

  1. THERMO-ELECTRIC GENERATOR

    DOEpatents

    Jordan, K.C.

    1958-07-22

    The conversion of heat energy into electrical energy by a small compact device is descrtbed. Where the heat energy is supplied by a radioactive material and thermopIIes convert the heat to electrical energy. The particular battery construction includes two insulating discs with conductive rods disposed between them to form a circular cage. In the center of the cage is disposed a cup in which the sealed radioactive source is located. Each thermopile is formed by connecting wires from two adjacent rods to a potnt on an annular ring fastened to the outside of the cup, the ring having insulation on its surface to prevent electrica1 contact with the thermopiles. One advantage of this battery construction is that the radioactive source may be inserted after the device is fabricated, reducing the radiation hazard to personnel assembling the battery.

  2. Interference enhanced thermoelectricity in quinoid type structures

    SciTech Connect

    Strange, M. Solomon, G. C.; Seldenthuis, J. S.; Verzijl, C. J. O.; Thijssen, J. M.

    2015-02-28

    Quantum interference (QI) effects in molecular junctions may be used to obtain large thermoelectric responses. We study the electrical conductance G and the thermoelectric response of a series of molecules featuring a quinoid core using density functional theory, as well as a semi-empirical interacting model Hamiltonian describing the π-system of the molecule which we treat in the GW approximation. Molecules with a quinoid type structure are shown to have two distinct destructive QI features close to the frontier orbital energies. These manifest themselves as two dips in the transmission, that remain separated, even when either electron donating or withdrawing side groups are added. We find that the position of the dips in the transmission and the frontier molecular levels can be chemically controlled by varying the electron donating or withdrawing character of the side groups as well as the conjugation length inside the molecule. This feature results in a very high thermoelectric power factor S{sup 2}G and figure of merit ZT, where S is the Seebeck coefficient, making quinoid type molecules potential candidates for efficient thermoelectric devices.

  3. Specification for strontium-90 500-watt(e) radioisotopic thermoelectric generator. Final report

    SciTech Connect

    Hammel, T.; Himes, J.; Lieberman, A.; McGrew, J.; Owings, D.; Schumann, F.

    1983-04-01

    A conceptual design for a demonstration 500-watt(e) radioisotopic thermoelectric generator has been created for the Department of Energy. The design effort was divided into two tasks, viz., create a design specification for a capsule strength member that utilizes a standard Strontium-90 fluoride-filled WESF inner liner, and create a conceptual design for a 500-watt(e) RTG. Both tasks have been accomplished. The strength-member specification was designed to survive an external pressure of 24,500 psi and meet the requirements of special-form radioisotope heat sources. Therefore the capsule can, if desired, be licensed for domestic and international transport. The design for the RTG features a radioisotopic heat source, an array of nine capsules in a tungsten biological shield, four current-technology series-connected thermoelectric-conversion modules, low-conductivity thermal insulation, and a passive finned-housing radiator for waste-heat dissipation. The preliminary RTG specification formulated previous to contract award has been met or exceeded. The power source will generate the required power for the required service period at 28 volts dc with a conversion efficiency of 8%, provided the existing in-pool capsules at WESF meet the assumed thermal-inventory requirements.

  4. Spin-crossover molecule based thermoelectric junction

    SciTech Connect

    Ghosh, Dibyajyoti; Parida, Prakash; Pati, Swapan K.

    2015-05-11

    Using ab-initio numerical methods, we explore the spin-dependent transport and thermoelectric properties of a spin-crossover molecule (i.e., iron complex of 2-(1H-pyrazol-1-yl)-6-(1H-tetrazole-5-yl)pyridine) based nano-junction. We demonstrate a large magnetoresistance, efficient conductance-switching, and spin-filter activity in this molecule-based two-terminal device. The spin-crossover process also modulates the thermoelectric entities. It can efficiently switch the magnitude as well as spin-polarization of the thermocurrent. We find that thermocurrent is changed by ∼4 orders of magnitude upon spin-crossover. Moreover, it also substantially affects the thermopower and consequently, the device shows extremely efficient spin-crossover magnetothermopower generation. Furthermore, by tuning the chemical potential of electrodes into a certain range, a pure spin-thermopower can be achieved for the high-spin state. Finally, the reasonably large values of figure-of-merit in the presence and absence of phonon demonstrate a large heat-to-voltage conversion efficiency of the device. We believe that our study will pave an alternative way of tuning the transport and thermoelectric properties through the spin-crossover process and can have potential applications in generation of spin-dependent current, information storage, and processing.

  5. Strategies to Suppress Cation Vacancies in Metal Oxide Alloys: Consequences for Solar Energy Conversion

    SciTech Connect

    Toroker, Maytal; Carter, Emily A.

    2015-09-01

    First-row transition metal oxides (TMOs) are promising alternative materials for inexpensive and efficient solar energy conversion. However, their conversion efficiency can be deleteriously affected by material imperfections, such as atomic vacancies. In this work, we provide examples showing that in some iron-containing TMOs, iron cation vacancy formation can be suppressed via alloying. We calculate within density functional theory+U theory the iron vacancy formation energy in binary rock-salt oxide alloys that contain iron, manganese, nickel, zinc, and/or magnesium. We demonstrate that formation of iron vacancies is less favorable if we choose to alloy iron(II) oxide with metals that cannot readily accept vacancy-generated holes, e.g., magnesium, manganese, nickel, or zinc. Since there are less available sites for holes and the holes are forced to reside on iron cations, the driving force for iron vacancy formation decreases. These results are consistent with an experiment observing a sharp drop in cation vacancy concentration upon alloying iron(II) oxide with manganese.

  6. Novel Solar Energy Conversion Materials by Design of Mn(II) Oxides

    SciTech Connect

    Lany, S.; Peng, H.; Ndione, P.; Zakutayev, A.; Ginley, D. S.

    2013-01-01

    Solar energy conversion materials need to fulfill simultaneously a number of requirements in regard of their band-structure, optical properties, carrier transport, and doping. Despite their desirable chemical properties, e.g., for photo-electrocatalysis, transition-metal oxides usually do not have desirable semiconducting properties. Instead, oxides with open cation d-shells are typically Mott or charge-transfer insulators with notoriously poor transport properties, resulting from large effective electron/hole masses or from carrier self-trapping. Based on the notion that the electronic structure features (p-d interaction) supporting the p-type conductivity in d10 oxides like Cu2O and CuAlO2 occurs in a similar fashion also in the d5 (high-spin) oxides, we recently studied theoretically the band-structure and transport properties of the prototypical binary d5 oxides MnO and Fe2O3 [PRB 85, 201202(R)]. We found that MnO tends to self-trap holes by forming Mn+III, whereas Fe2O3 self-traps electrons by forming Fe+II. However, the self-trapping of holes is suppressed by when Mn is tetrahedrally coordinated, which suggests specific routes to design novel solar conversion materials by considering ternary Mn(II) oxides or oxide alloys. We are presenting theory, synthesis, and initial characterization for these novel energy materials.

  7. Plasmonic hot carrier dynamics in solid-state and chemical systems for energy conversion

    DOE PAGES [OSTI]

    Narang, Prineha; Sundararaman, Ravishankar; Atwater, Harry A.

    2016-06-11

    Surface plasmons provide a pathway to efficiently absorb and confine light in metallic nanostructures, thereby bridging photonics to the nano scale. The decay of surface plasmons generates energetic ‘hot’ carriers, which can drive chemical reactions or be injected into semiconductors for nano-scale photochemical or photovoltaic energy conversion. Novel plasmonic hot carrier devices and architectures continue to be demonstrated, but the complexity of the underlying processes make a complete microscopic understanding of all the mechanisms and design considerations for such devices extremely challenging.Here,we review the theoretical and computational efforts to understand and model plasmonic hot carrier devices.We split the problem intomore » three steps: hot carrier generation, transport and collection, and review theoretical approaches with the appropriate level of detail for each step along with their predictions. As a result, we identify the key advances necessary to complete the microscopic mechanistic picture and facilitate the design of the next generation of devices and materials for plasmonic energy conversion.« less

  8. LDRD final report : energy conversion using chromophore-functionalized carbon nanotubes.

    SciTech Connect

    Vance, Andrew L.; Zifer, Thomas; Zhou, Xinjian; Leonard, Francois Leonard; Wong, Bryan Matthew; Kane, Alexander; Katzenmeyer, Aaron Michael; Krafcik, Karen Lee

    2010-09-01

    With the goal of studying the conversion of optical energy to electrical energy at the nanoscale, we developed and tested devices based on single-walled carbon nanotubes functionalized with azobenzene chromophores, where the chromophores serve as photoabsorbers and the nanotube as the electronic read-out. By synthesizing chromophores with specific absorption windows in the visible spectrum and anchoring them to the nanotube surface, we demonstrated the controlled detection of visible light of low intensity in narrow ranges of wavelengths. Our measurements suggested that upon photoabsorption, the chromophores isomerize to give a large change in dipole moment, changing the electrostatic environment of the nanotube. All-electron ab initio calculations were used to study the chromophore-nanotube hybrids, and show that the chromophores bind strongly to the nanotubes without disturbing the electronic structure of either species. Calculated values of the dipole moments supported the notion of dipole changes as the optical detection mechanism.

  9. Vehicular Thermoelectrics: A New Green Technology | Department...

    Energy.gov [DOE] (indexed site)

    Overview of DOE-funded R&D on vehicular application of thermoelectric s - thermoelectric generators and thermoelectric heating and cooling, and a jointly funded TE R&D program with ...

  10. A small-form-factor piezoelectric vibration energy harvester using a resonant frequency-down conversion

    SciTech Connect

    Sun, Kyung Ho; Kim, Young-Cheol; Kim, Jae Eun

    2014-10-15

    While environmental vibrations are usually in the range of a few hundred Hertz, small-form-factor piezoelectric vibration energy harvesters will have higher resonant frequencies due to the structural size effect. To address this issue, we propose a resonant frequency-down conversion based on the theory of dynamic vibration absorber for the design of a small-form-factor piezoelectric vibration energy harvester. The proposed energy harvester consists of two frequency-tuned elastic components for lowering the first resonant frequency of an integrated system but is so configured that an energy harvesting beam component is inverted with respect to the other supporting beam component for a small form factor. Furthermore, in order to change the unwanted modal characteristic of small separation of resonant frequencies, as is the case with an inverted configuration, a proof mass on the supporting beam component is slightly shifted toward a second proof mass on the tip of the energy harvesting beam component. The proposed small-form-factor design capability was experimentally verified using a fabricated prototype with an occupation volume of 20 × 39 × 6.9 mm{sup 3}, which was designed for a target frequency of as low as 100 Hz.

  11. Ocean Thermal Energy Conversion Life Cycle Cost Assessment, Final Technical Report, 30 May 2012

    SciTech Connect

    Martel, Laura; Smith, Paul; Rizea, Steven; Van Ryzin, Joe; Morgan, Charles; Noland, Gary; Pavlosky, Rick; Thomas, Michael; Halkyard, John

    2012-05-30

    The Ocean Thermal Energy Conversion (OTEC) Life Cycle Cost Assessment (OLCCA) is a study performed by members of the Lockheed Martin (LM) OTEC Team under funding from the Department of Energy (DOE), Award No. DE-EE0002663, dated 01/01/2010. OLCCA objectives are to estimate procurement, operations and maintenance, and overhaul costs for two types of OTEC plants: -Plants moored to the sea floor where the electricity produced by the OTEC plant is directly connected to the grid ashore via a marine power cable (Grid Connected OTEC plants) -Open-ocean grazing OTEC plant-ships producing an energy carrier that is transported to designated ports (Energy Carrier OTEC plants) Costs are developed using the concept of levelized cost of energy established by DOE for use in comparing electricity costs from various generating systems. One area of system costs that had not been developed in detail prior to this analysis was the operations and sustainment (O&S) cost for both types of OTEC plants. Procurement costs, generally referred to as capital expense and O&S costs (operations and maintenance (O&M) costs plus overhaul and replacement costs), are assessed over the 30 year operational life of the plants and an annual annuity calculated to achieve a levelized cost (constant across entire plant life). Dividing this levelized cost by the average annual energy production results in a levelized cost of electricity, or LCOE, for the OTEC plants. Technical and production efficiency enhancements that could result in a lower value of the OTEC LCOE were also explored. The thermal OTEC resource for Oahu, Hawaii and projected build out plan were developed. The estimate of the OTEC resource and LCOE values for the planned OTEC systems enable this information to be displayed as energy supplied versus levelized cost of the supplied energy; this curve is referred to as an Energy Supply Curve. The Oahu Energy Supply Curve represents initial OTEC deployment starting in 2018 and demonstrates the

  12. Computational identification of promising thermoelectric materials among known quasi-2D binary compounds

    SciTech Connect

    Gorai, Prashun; Toberer, Eric S.; Stevanović, Vladan

    2016-01-01

    Quasi low-dimensional structures are abundant among known thermoelectric materials, primarily because of their low lattice thermal conductivities. In this work, we have computationally assessed the potential of 427 known binary quasi-2D structures in 272 different chemistries for thermoelectric performance. To assess the thermoelectric performance, we employ an improved version of our previously developed descriptor for thermoelectric performance [Yan et al., Energy Environ. Sci., 2015, 8, 983]. The improvement is in the explicit treatment of van der Waals interactions in quasi-2D materials, which leads to significantly better predictions of their crystal structures and lattice thermal conductivities. The improved methodology correctly identifies known binary quasi-2D thermoelectric materials such as Sb2Te3, Bi2Te3, SnSe, SnS, InSe, and In2Se3. As a result, we propose candidate quasi-2D binary materials, a number of which have not been previously considered for thermoelectric applications.

  13. Proactive Strategies for Designing Thermoelectric Materials for...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    More Documents & Publications Proactive Strategies for Designing Thermoelectric Materials for Power Generation Thermoelectric Couple Demonstration of (In, Ce)-based Skutterudite ...

  14. Thermoelectric Generator Performance for Passenger Vehicles ...

    Energy.gov [DOE] (indexed site)

    Presents bench, dynamometer, in-vehicle tests of thermoelectric generators in BMW X6 and ... of a 100-Watt High Temperature Thermoelectric Generator Status of Segmented Element ...

  15. Automotive Thermoelectric Generator (TEG) Controls | Department...

    Energy.gov [DOE] (indexed site)

    and an efficient, cost-effective thermoelectric generator(TEG) stabler.pdf (889.02 KB) More Documents & Publications Thermoelectric Generator (TEG) Fuel Displacement ...

  16. Thermoelectric Bulk Materials from the Explosive Consolidation...

    Energy.gov [DOE] (indexed site)

    dense, consolidated, nanostructured thermoelectric material nemir.pdf (3.11 MB) More ... Correlation Between Structure and Thermoelectric Properties of Bulk High Performance ...

  17. ThermoElectric Power System Simulator (TEPSS)

    Energy.gov [DOE]

    It describes the tool ThermoElectric Power System Simulator (TEPSS) which enables feasibility evaluation for thermoelectrics with various heat resources and optimizing design for specific uses.

  18. Thermoelectric Power Generation System with Loop Thermosyphon...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications Low and high Temperature Dual Thermoelectric Generation Waste Heat Recovery System for Light-Duty Vehicles A Thermoelectric Generator with an ...

  19. Skutterudite Thermoelectric Generator For Automotive Waste Heat...

    Energy.gov [DOE] (indexed site)

    thermoelectric generators (TEGs), then installed on a standard GM production vehicle and tested for performance meisner.pdf (1.73 MB) More Documents & Publications Thermoelectric ...

  20. Development of Thermoelectric Technology for Automotive Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Thermoelectric Technology for Automotive Waste Heat Recovery Development of Thermoelectric Technology for Automotive Waste Heat Recovery Overview and status of project to develop ...