National Library of Energy BETA

Sample records for thermal electric photovoltaics

  1. Thermal and Electrical Effects of Partial Shade in Monolithic Thin-Film Photovoltaic Modules

    SciTech Connect (OSTI)

    Silverman, Timothy J.; Deceglie, Michael G.; Sun, Xingshu; Garris, Rebekah L.; Alam, Muhammad Ashraful; Deline, Chris; Kurtz, Sarah

    2015-06-14

    Photovoltaic cells can be damaged by reverse bias stress, which arises during service when a monolithically integrated thin-film module is partially shaded. We introduce a model for describing a module's internal thermal and electrical state, which cannot normally be measured. Using this model and experimental measurements, we present several results with relevance for reliability testing and module engineering: Modules with a small breakdown voltage experience less stress than those with a large breakdown voltage, with some exceptions for modules having light-enhanced reverse breakdown. Masks leaving a small part of the masked cells illuminated can lead to very high temperature and current density compared to masks covering entire cells.

  2. Thermal and Electrical Effects of Partial Shade in Monolithic Thin-Film Photovoltaic Modules: Preprint

    SciTech Connect (OSTI)

    Silverman, Timothy J.; Deceglie, Michael G.; Sun, Xingshu; Garris, Rebekah L.; Alam, Muhammad Ashraful; Deline, Chris; Kurtz, Sarah

    2015-09-02

    Photovoltaic cells can be damaged by reverse bias stress, which arises during service when a monolithically integrated thin-film module is partially shaded. We introduce a model for describing a module's internal thermal and electrical state, which cannot normally be measured. Using this model and experimental measurements, we present several results with relevance for reliability testing and module engineering: Modules with a small breakdown voltage experience less stress than those with a large breakdown voltage, with some exceptions for modules having light-enhanced reverse breakdown. Masks leaving a small part of the masked cells illuminated can lead to very high temperature and current density compared to masks covering entire cells.

  3. Electrical and thermal finite element modeling of arc faults in photovoltaic bypass diodes.

    SciTech Connect (OSTI)

    Bower, Ward Isaac; Quintana, Michael A.; Johnson, Jay

    2012-01-01

    Arc faults in photovoltaic (PV) modules have caused multiple rooftop fires. The arc generates a high-temperature plasma that ignites surrounding materials and subsequently spreads the fire to the building structure. While there are many possible locations in PV systems and PV modules where arcs could initiate, bypass diodes have been suspected of triggering arc faults in some modules. In order to understand the electrical and thermal phenomena associated with these events, a finite element model of a busbar and diode was created. Thermoelectrical simulations found Joule and internal diode heating from normal operation would not normally cause bypass diode or solder failures. However, if corrosion increased the contact resistance in the solder connection between the busbar and the diode leads, enough voltage potentially would be established to arc across micron-scale electrode gaps. Lastly, an analytical arc radiation model based on observed data was employed to predicted polymer ignition times. The model predicted polymer materials in the adjacent area of the diode and junction box ignite in less than 0.1 seconds.

  4. Photovoltaic-thermal collectors

    DOE Patents [OSTI]

    Cox, III, Charles H.

    1984-04-24

    A photovoltaic-thermal solar cell including a semiconductor body having antireflective top and bottom surfaces and coated on each said surface with a patterned electrode covering less than 10% of the surface area. A thermal-absorbing surface is spaced apart from the bottom surface of the semiconductor and a heat-exchange fluid is passed between the bottom surface and the heat-absorbing surface.

  5. Salem Electric- Photovoltaic Rebate Program

    Energy.gov [DOE]

    Salem Electric offers a rebate to residential customers who install solar photovoltaic (PV) systems. The rebate offered is $600 for the first three kilowatts (kWs) installed and $300/kW for any...

  6. Photovoltaic-Thermal New Technology Demonstration

    SciTech Connect (OSTI)

    Dean, Jesse; McNutt, Peter; Lisell, Lars; Burch, Jay; Jones, Dennis; Heinicke, David

    2015-01-01

    Photovoltaic-thermal (PV-T) hybrid solar systems offer increased electricity production by cooling the PV panel, and using the removed thermal energy to heat water - all in the same footprint as a standard PV system. GPG's assessment of the nation's first large-scale PV-T system installed at the Thomas P. O'Neill, Jr. Federal Building in Boston, MA, provided numerous lessons learned in system design, and identified a target market of locations with high utility costs and electric hot water backup.

  7. Ashland Electric Utility - Photovoltaic Rebate Program | Department...

    Energy.gov (indexed) [DOE]

    The City of Ashland Conservation Division offers electric customers installing photovoltaic systems a rebate of either 0.50 per watt (residential) or 0.75 per watt...

  8. High-Performance Home Technologies: Solar Thermal & Photovoltaic...

    Energy Savers

    Solar Thermal & Photovoltaic Systems; Volume 6 Building America Best Practices Series High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems; Volume 6 ...

  9. Low Capital Photovoltaic Panel Electrical Output-Booster System...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Low Capital Photovoltaic Panel Electrical Output-Booster System Low Capital Photovoltaic Panel Electrical Output-Booster System This presentation summarizes the information given ...

  10. Cixi Renhe Photovoltaic Electrical Appliance Co Ltd | Open Energy...

    Open Energy Information (Open El) [EERE & EIA]

    Cixi Renhe Photovoltaic Electrical Appliance Co Ltd Jump to: navigation, search Name: Cixi Renhe Photovoltaic Electrical Appliance Co Ltd Place: Cixi, Zhejiang Province, China Zip:...

  11. Photovoltaic Electrical Contact and Cell Coating Basics | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Electrical Contact and Cell Coating Basics Photovoltaic Electrical Contact and Cell Coating Basics August 19, 2013 - 4:12pm Addthis The outermost layers of photovoltaic (PV) cell, ...

  12. Cost Competitive Electricity from Photovoltaic Concentrators Called

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    'Imminent' - News Releases | NREL Cost Competitive Electricity from Photovoltaic Concentrators Called 'Imminent' July 13, 2005 Golden, Colo. - Solar concentrators using highly efficient photovoltaic solar cells will reduce the cost of electricity from sunlight to competitive levels soon, attendees were told at a recent international conference on the subject. Herb Hayden of Arizona Public Service (APS) and Robert McConnell and Martha Symko-Davies of the U.S. Department of Energy's National

  13. Photovoltaics: solar electric power systems

    SciTech Connect (OSTI)

    1980-02-01

    The operation and uses of solar cells and the National Photovoltaic Program are briefly described. Eleven DOE photovoltaic application projects are described including forest lookout towers; Wilcox Memorial Hospital in Hawaii; WBNO daytime AM radio station; Schuchuli Indian Village; Meade, Nebraska, agricultural experiment; Mt. Laguna Air Force Station; public schools and colleges; residential applications; and Sea World of Florida. (WHK)

  14. A prototype photovoltaic/thermal system integrated with transpired collector

    SciTech Connect (OSTI)

    Athienitis, Andreas K.; Bambara, James; O'Neill, Brendan; Faille, Jonathan

    2011-01-15

    Building-integrated photovoltaic/thermal (BIPV/T) systems may be utilized to produce useful heat while simultaneously generating electricity from the same building envelope surface. A well known highly efficient collector is the open-loop unglazed transpired collector (UTC) which consists of dark porous cladding through which outdoor air is drawn and heated by absorbed solar radiation. Commercially available photovoltaic systems typically produce electricity with efficiencies up to about 18%. Thus, it is beneficial to obtain much of the normally wasted heat from the systems, possibly by combining UTC with photovoltaics. Combination of BIPV/T and UTC systems for building facades is considered in this paper - specifically, the design of a prototype facade-integrated photovoltaic/thermal system with transpired collector (BIPV/T). A full scale prototype is constructed with 70% of UTC area covered with PV modules specially designed to enhance heat recovery and compared to a UTC of the same area under outdoor sunny conditions with low wind. The orientation of the corrugations in the UTC is horizontal and the black-framed modules are attached so as to facilitate flow into the UTC plenum. While the overall combined thermal efficiency of the UTC is higher than that of the BIPV/T system, the value of the generated energy - assuming that electricity is at least four times more valuable than heat - is between 7% and 17% higher. Also, the electricity is always useful while the heat is usually utilized only in the heating season. The BIPV/T concept is applied to a full scale office building demonstration project in Montreal, Canada. The ratio of photovoltaic area coverage of the UTC may be selected based on the fresh air heating needs of the building, the value of the electricity generated and the available building surfaces. (author)

  15. Photovoltaics and Electricity - Energy Explained, Your Guide To

    U.S. Energy Information Administration (EIA) (indexed site)

    Understanding Energy - Energy Information Administration Photovoltaics and Electricity Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on the Climate Where

  16. High-Performance Home Technologies: Solar Thermal & Photovoltaic...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems; Volume 6 Building America Best Practices Series High-Performance Home Technologies: Solar Thermal &...

  17. Analytical predictions of liquid and air photovoltaic/thermal flat-plate collector performance

    SciTech Connect (OSTI)

    Raghuraman, P.; Hendrie, S.D.

    1980-01-01

    Two separate one-dimensional analyses have been developed for the prediction of the thermal and electrical performance of both liquid and air flat-plate photovoltaic/thermal (PV/T) collectors. The analyses account for the temperature difference between the primary insolation absorber (the photovoltaic cells) and the secondary absorber (a thermal absorber flat plate). The results of the analyses are compared with test measurements, and therefrom, design recommendations are made to maximize the total energy extracted from the collectors.

  18. New proposal for photovoltaic-thermal solar energy utilization method

    SciTech Connect (OSTI)

    Takashima, Takumi; Tanaka, Tadayoshi; Doi, Takuya ); Kamoshida, Junji ); Tani, Tatsuo ); Horigome, Takashi )

    1994-03-01

    One of the most effective methods of utilizing solar energy is to use the sunlight and solar thermal energy such as a photovoltaic-thermal panel (PV/T panel) simultaneously. From such a viewpoint, systems using various kinds of PV panels were constructed in the world. In these panels, solar cells are set up at an absorber collecting solar thermal energy. Therefore, temperature of solar cell increases up to the prescribed temperature of thermal energy use, although it is lower than the cell temperature when using only solar cell panel. For maintaining cell conversion efficiency at the standard conditions, it is necessary to keep the cell at lower temperature. In this paper, electric and thermal energy obtained form a PV/T panel is evaluated in terms of energy. BAsed on this evaluation, the method of not to decrease cell conversion efficiency with collecting solar thermal energy was proposed.

  19. Development of an Innovative Plug and Play Photovoltaic Electric System |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Development of an Innovative Plug and Play Photovoltaic Electric System Development of an Innovative Plug and Play Photovoltaic Electric System logo_freedm.jpg North Carolina State University FREEDM Systems Engineering Center and its partners, under the Plug-and-Play Photovoltaics FOA, are performing analysis, design, and innovation to address each stage in the value chain of grid-interactive residential photovoltaic (PV) systems, while taking a broader systems

  20. Oncor Electric Delivery - Solar Photovoltaic Standard Offer Program...

    Energy.gov (indexed) [DOE]

    Summary Oncor Electric Delivery offers rebates to its customers that install photovoltaic (PV) systems on homes or other buildings.* Oncor customers of all rate classes...

  1. Liquid metal thermal electric converter

    DOE Patents [OSTI]

    Abbin, Joseph P.; Andraka, Charles E.; Lukens, Laurance L.; Moreno, James B.

    1989-01-01

    A liquid metal thermal electric converter which converts heat energy to electrical energy. The design of the liquid metal thermal electric converter incorporates a unique configuration which directs the metal fluid pressure to the outside of the tube which results in the structural loads in the tube to be compressive. A liquid metal thermal electric converter refluxing boiler with series connection of tubes and a multiple cell liquid metal thermal electric converter are also provided.

  2. Two earth sheltered passive solar residences with photovoltaic electricity

    SciTech Connect (OSTI)

    Strong, S.J.; Osten, R.J. Jr.

    1980-01-01

    The design and construction of two earth sheltered passive solar residence with photovoltaic electricity are described. The sizing and design of the P.V. system as well as the module fabrication and array integration are also discussed.

  3. New Hampshire Electric Co-op- Solar Photovoltaic Incentive Program

    Energy.gov [DOE]

    New Hampshire Electric Co-op (NHEC) is offering rebates for residential and commercial/government grid-tied solar photovoltaic (PV) systems up to one megawatt (MW) in capacity. The rebate is equal...

  4. High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems;

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Volume 6 Building America Best Practices Series | Department of Energy Home Technologies: Solar Thermal & Photovoltaic Systems; Volume 6 Building America Best Practices Series High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems; Volume 6 Building America Best Practices Series The sixth volume of the Building America Best Practices Series presents information that is useful throughout the United States for enhancing the energy efficiency practices in the specific

  5. Thermal Reliability Study of Bypass Diodes in Photovoltaic Modules |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Thermal Reliability Study of Bypass Diodes in Photovoltaic Modules Thermal Reliability Study of Bypass Diodes in Photovoltaic Modules Presented at the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado pvmrw13_ps3_nrel_zhang.pdf (530.07 KB) More Documents & Publications US TG 4 Activities of QA Forum US & Japan TG 4 Activities of QA Forum High Temperature Reverse By-Pass Diodes Bias and Failures

  6. Low Capital Photovoltaic Panel Electrical Output-Booster System |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Low Capital Photovoltaic Panel Electrical Output-Booster System Low Capital Photovoltaic Panel Electrical Output-Booster System This presentation summarizes the information given during the DOE SunShot Grand Challenge: Summit and Technology Forum, June 13-14, 2012. ssgrandchallenge_finance_schrag.pdf (63.07 KB) More Documents & Publications The SunShot Vision Study SunShot Vision Study: February 2012 (Book), SunShot, Energy Efficiency & Renewable Energy (EERE)

  7. Photovoltaic power systems and the National Electrical Code: Suggested practices

    SciTech Connect (OSTI)

    Wiles, J.

    1996-12-01

    This guide provides information on how the National Electrical Code (NEC) applies to photovoltaic systems. The guide is not intended to supplant or replace the NEC; it paraphrases the NEC where it pertains to photovoltaic systems and should be used with the full text of the NEC. Users of this guide should be thoroughly familiar with the NEC and know the engineering principles and hazards associated with electrical and photovoltaic power systems. The information in this guide is the best available at the time of publication and is believed to be technically accurate; it will be updated frequently. Application of this information and results obtained are the responsibility of the user.

  8. Design of solar cells for use in photovoltaic/thermal collectors

    SciTech Connect (OSTI)

    Cox, C.H. III

    1980-01-01

    A promising design development for combined photovoltaic/thermal (PV/T) collectors is one in which the photovoltaic cell is both the conversion device for electrical energy and the absorber of thermal energy. To accomplish this, the PV cell design is modified to use the approximately 25 percent of the air mass 1 spectrum at lambda > 1.1 ..mu..m that is currently rejected by the cell. The parameters investigated are: cell back metallization, back surface field, texture etching and anti-reflective coating. A model indicating the increase in absorptance as a function of these parameters is presented, together with the results of experimental measurements. Discussion closes with the presentation of a PV/T collector design that incorporates the improved cells, has 10 percent greater thermal output than current PV/T collectors, and exhibits no degradation in electrical output.

  9. Photovoltaic module electrical termination design requirement study. Final report

    SciTech Connect (OSTI)

    Mosna, F.J. Jr.; Donlinger, J.

    1980-07-01

    Motorola Inc., in conjunction with ITT Cannon, has conducted a study to develop information to facilitate the selection of existing, commercial, electrical termination hardware for photovoltaic modules and arrays. Details of the study are presented in this volume. Module and array design parameters were investigated and recommendations were developed for use in surveying, evaluating, and comparing electrical termination hardware. Electrical termination selection criteria factors were developed and applied to nine generic termination types in each of the four application sectors. Remote, residential, intermediate and industrial. Existing terminations best suited for photovoltaic modules and arrays were identified. Cost information was developed to identify cost drivers and/or requirements which might lead to cost reductions. The general conclusion is that there is no single generic termination that is best suited for photovoltaic application, but that the appropriate termination is strongly dependent upon the module construction and its support structure as well as the specific application sector.

  10. Solar Thermal Electric | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Thermal Electric Jump to: navigation, search TODO: Add description List of Solar Thermal Electric Incentives Retrieved from "http:en.openei.orgwindex.php?titleSolarThermalEl...

  11. High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems

    SciTech Connect (OSTI)

    Baechler, M.; Gilbride, T.; Ruiz, K.; Steward, H.; Love, P.

    2007-06-01

    This document is the sixth volume of the Building America Best Practices Series. It presents information that is useful throughout the United States for enhancing the energy efficiency practices in the specific climate zones that are presented in the first five Best Practices volumes. It provides an introduction to current photovoltaic and solar thermal building practices. Information about window selection and shading is included.

  12. Thermoelectrics and Photovoltaics - Center for Solar and Thermal Energy

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Conversion Thermoelectrics and Photovoltaics Thermoelectrics A significant amount of heat is wasted from industrial processes, home heating and vehicle exhausts that could otherwise be converted to electricity through the use of thermoelectric devices. The interconversion between heat and electricity, through the use of thermoelectrics, is environmentally friendly and highly reliable. With improved efficiency, thermoelectrics could have a significant impact on the energy consumption

  13. Proposed Changes to Electricity and Renewable (Photovoltaic)...

    Gasoline and Diesel Fuel Update

    ... U.S. Energy Information Administration | 2017 Proposed Solar & Electricity Survey Form ... Fuel receipts and costs EIA-923: Natural gas receipts would no longer be reported by ...

  14. Conjugated ionomers for photovoltaic applications: electric field driven charge separation in organic photovoltaics. Final Technical report

    SciTech Connect (OSTI)

    Lonergan, Mark

    2015-05-29

    Final technical report for Conjugated ionomers for photovoltaic applications, electric field driven charge separation in organic photovoltaics. The central goal of the work we completed was been to understand the photochemical and photovoltaic properties of ionically functionalized conjugated polymers (conjugated ionomers or polyelectrolytes) and energy conversion systems based on them. We primarily studied two classes of conjugated polymer interfaces that we developed based either upon undoped conjugated polymers with an asymmetry in ionic composition (the ionic junction) or doped conjugated polymers with an asymmetry in doping type (the p-n junction). The materials used for these studies have primarily been the polyacetylene ionomers. We completed a detailed study of p-n junctions with systematically varying dopant density, photochemical creation of doped junctions, and experimental and theoretical work on charge transport and injection in polyacetylene ionomers. We have also completed related work on the use of conjugated ionomers as interlayers that improve the efficiency or organic photovoltaic systems and studied several important aspects of the chemistry of ionically functionalized semiconductors, including mechanisms of so-called "anion-doping", the formation of charge transfer complexes with oxygen, and the synthesis of new polyfluorene polyelectrolytes. We also worked worked with the Haley group at the University of Oregon on new indenofluorene-based organic acceptors.

  15. Sandia-Electric Power Research Institute Partnership Publishes Photovoltaic

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Reliability Report Electric Power Research Institute Partnership Publishes Photovoltaic Reliability Report - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid

  16. Thermal Batteries for Electric Vehicles

    SciTech Connect (OSTI)

    2011-11-21

    HEATS Project: UT Austin will demonstrate a high-energy density and low-cost thermal storage system that will provide efficient cabin heating and cooling for EVs. Compared to existing HVAC systems powered by electric batteries in EVs, the innovative hot-and-cold thermal batteries-based technology is expected to decrease the manufacturing cost and increase the driving range of next-generation EVs. These thermal batteries can be charged with off-peak electric power together with the electric batteries. Based on innovations in composite materials offering twice the energy density of ice and 10 times the thermal conductivity of water, these thermal batteries are expected to achieve a comparable energy density at 25% of the cost of electric batteries. Moreover, because UT Austin’s thermal energy storage systems are modular, they may be incorporated into the heating and cooling systems in buildings, providing further energy efficiencies and positively impacting the emissions of current building heating/cooling systems.

  17. Electric thermal storage demonstration program

    SciTech Connect (OSTI)

    Not Available

    1992-02-01

    In early 1989, MMWEC, a joint action agency comprised of 30 municipal light departments in Massachusetts and one affiliate in Rhode Island, responded to a Department of Energy request to proposal for the Least Cost Utility Planning program. The MMWEC submission was for the development of a program, focused on small rural electric utilities, to promote the use of electric thermal storage heating systems in residential applications. In this progress report, cost savings at Bolyston light department is discussed. (JL)

  18. Electric thermal storage demonstration program

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    In early 1989, MMWEC, a joint action agency comprised of 30 municipal light departments in Massachusetts and one affiliate in Rhode Island, responded to a Department of Energy request to proposal for the Least Cost Utility Planning program. The MMWEC submission was for the development of a program, focused on small rural electric utilities, to promote the use of electric thermal storage heating systems in residential applications. In this progress report, cost savings at Bolyston light department is discussed. (JL)

  19. NREL: Transportation Research - Electric Motor Thermal Management

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Electric Motor Thermal Management A photo of a piece of laboratory testing equipment. NREL ... motors is helping to improve the performance and reliability of electric-drive vehicles. ...

  20. Hybrid photovoltaic/thermal (PV/T) solar systems simulation with Simulink/Matlab

    SciTech Connect (OSTI)

    da Silva, R.M.; Fernandes, J.L.M.

    2010-12-15

    The purpose of this work consists in thermodynamic modeling of hybrid photovoltaic-thermal (PV/T) solar systems, pursuing a modular strategy approach provided by Simulink/Matlab. PV/T solar systems are a recently emerging solar technology that allows for the simultaneous conversion of solar energy into both electricity and heat. This type of technology present some interesting advantages over the conventional ''side-by-side'' thermal and PV solar systems, such as higher combined electrical/thermal energy outputs per unit area, and a more uniform and aesthetical pleasant roof area. Despite the fact that early research on PV/T systems can be traced back to the seventies, only recently it has gained a renewed impetus. In this work, parametric studies and annual transient simulations of PV/T systems are undertaken in Simulink/Matlab. The obtained results show an average annual solar fraction of 67%, and a global overall efficiency of 24% (i.e. 15% thermal and 9% electrical), for a typical four-person single-family residence in Lisbon, with p-Si cells, and a collector area of 6 m{sup 2}. A sensitivity analysis performed on the PV/T collector suggests that the most important variable that should be addressed to improve thermal performance is the photovoltaic (PV) module emittance. Based on those results, some additional improvements are proposed, such as the use of vacuum, or a noble gas at low-pressure, to allow for the removal of PV cells encapsulation without air oxidation and degradation, and thus reducing the PV module emittance. Preliminary results show that this option allows for an 8% increase on optical thermal efficiency, and a substantial reduction of thermal losses, suggesting the possibility of working at higher fluid temperatures. The higher working temperatures negative effect in electrical efficiency was negligible, due to compensation by improved optical properties. The simulation results are compared with experimental data obtained from other authors

  1. Photovoltaics for municipal planners. Cost-effective municipal applications of photovoltaics for electric power

    SciTech Connect (OSTI)

    Not Available

    1993-04-01

    This booklet is intended for city and county government personnel, as well as community organizations, who deal with supplying, regulating, or recommending electric power resources. Specifically, this document deals with photovoltaic (PV) power, or power from solar cells, which is currently the most cost-effective energy source for electricity requirements that are relatively small, located in isolated areas, or difficult to serve with conventional technology. Recently, PV has been documented to be more cost-effective than conventional alternatives (such as line extensions or engine generators) in dozens of applications within the service territories of electric, gas, and communications utilities. Here, we document numerous cost-effective urban applications, chosen by planners and utilities because they were the most cost-effective option or because they were appropriate for environmental or logistical reasons. These applications occur within various municipal departments, including utility, parks and recreation, traffic engineering, transportation, and planning, and they include lighting applications, communications equipment, corrosion protection, irrigation control equipment, remote monitoring, and even portable power supplies for emergency situations.

  2. Photovoltaics

    SciTech Connect (OSTI)

    Solar Energy Technologies Program

    2010-09-28

    The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its photovoltaics subprogram.

  3. Photovoltaics

    SciTech Connect (OSTI)

    Not Available

    2008-09-01

    Summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its photovoltaics subprogram.

  4. Lincoln Electric System - Renewable Generation Rate (Nebraska...

    Open Energy Information (Open El) [EERE & EIA]

    Applicable Sector Commercial, Industrial Eligible Technologies Solar Thermal Electric, Photovoltaics, Landfill Gas, Wind, Biomass, Hydroelectric, Anaerobic Digestion, Small...

  5. Simulation of a photovoltaic/thermal heat pump system having a modified collector/evaporator

    SciTech Connect (OSTI)

    Xu, Guoying; Deng, Shiming; Zhang, Xiaosong; Yang, Lei; Zhang, Yuehong

    2009-11-15

    A new photovoltaic/thermal heat pump (PV/T-HP) system having a modified collector/evaporator (C/E) has been developed and numerically studied. Multi-port flat extruded aluminum tubes were used in the modified C/E, as compared to round copper tubes used in a conventional C/E. Simulation results suggested that a better operating performance can be achieved for a PV/T-HP system having such a modified C/E. In addition, using the meteorological data in both Nanjing and Hong Kong, China, the simulation results showed that this new PV/T-HP system could efficiently generate electricity and thermal energy simultaneously in both cities all-year-round. Furthermore, improved operation by using variable speed compressor has been designed and discussed. (author)

  6. Organic Photovoltaic Cells with an Electric Field Integrally-Formed at the

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Heterojunction Interface - Energy Innovation Portal Solar Photovoltaic Solar Photovoltaic Find More Like This Return to Search Organic Photovoltaic Cells with an Electric Field Integrally-Formed at the Heterojunction Interface National Renewable Energy Laboratory Brookhaven National Laboratory Contact NREL About This Technology Figure 4 Figure 4 Figure 6 Figure 6 Technology Marketing SummaryStandard solar cells made from inorganic semiconductors, such as silicon cells, have dominated the

  7. CNEEC - Photovoltaics Tutorial by Prof. Clemens

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Photovoltaics

  8. Photovoltaic electric power applied to Unmanned Aerial Vehicles (UAV)

    SciTech Connect (OSTI)

    Geis, J.; Arnold, J.H.

    1994-09-01

    Photovoltaic electric-powered flight is receiving a great deal of attention in the context of the United States` Unmanned Aerial Vehicle (UAV) program. This paper addresses some of the enabling technical areas and their potential solutions. Of particular interest are the long-duration, high-altitude class of UAV`s whose mission it is to achieve altitudes between 60,000 and 100,000 feet, and to remain at those altitudes for prolonged periods performing various mapping and surveillance activities. Addressed herein are studies which reveal the need for extremely light-weight and efficient solar cells, high-efficiency electric motor-driven propeller modules, and power management and distribution control elements. Since the potential payloads vary dramatically in their power consumption and duty cycles, a typical load profile has been selected to provide commonality for the propulsion power comparisons. Since missions vary widely with respect to ground coverage requirements, from repeated orbiting over a localized target to long-distance routes over irregular terrain, the authors have also averaged the power requirements for on-board guidance and control power, as well as ground control and communication link utilization. In the context of the national technology reinvestment program, wherever possible they modeled components and materials which have been qualified for space and defense applications, yet are compatible with civilian UAV activities. These include, but are not limited to, solar cell developments, electric storage technology for diurnal operation, local and ground communications, power management and distribution, and control servo design. And finally, the results of tests conducted by Wright Laboratory on ultralight, highly efficient MOCVD GaAs solar cells purchased from EPI Materials Ltd. (EML) of the UK are presented. These cells were also used for modeling the flight characteristics of UAV aircraft.

  9. Electric Vehicle Battery Thermal Issues and Thermal Management Techniques (Presentation)

    SciTech Connect (OSTI)

    Rugh, J. P.; Pesaran, A.; Smith, K.

    2013-07-01

    This presentation examines the issues concerning thermal management in electric drive vehicles and management techniques for improving the life of a Li-ion battery in an EDV.

  10. Thermal to electricity conversion using thermal magnetic properties

    DOE Patents [OSTI]

    West, Phillip B [Idaho Falls, ID; Svoboda, John [Idaho Falls, ID

    2010-04-27

    A system for the generation of Electricity from Thermal Energy using the thermal magnetic properties of a Ferromagnetic, Electrically Conductive Material (FECM) in one or more Magnetic Fields. A FECM is exposed to one or more Magnetic Fields. Thermal Energy is applied to a portion of the FECM heating the FECM above its Curie Point. The FECM, now partially paramagnetic, moves under the force of the one or more Magnetic Fields. The movement of the FECM induces an electrical current through the FECM, generating Electricity.

  11. The DOE Solar Thermal Electric Program

    SciTech Connect (OSTI)

    Mancini, T.R.

    1994-06-01

    The Department of Energy`s Solar Thermal Electric Program is managed by the Solar thermal and biomass Power division which is part of the Office of utility Technologies. The focus of the Program is to commercialize solar electric technologies. In this regard, three major projects are currently being pursued in trough, central receiver, and dish/Stirling electric power generation. This paper describes these three projects and the activities at the National laboratories that support them.

  12. Photovoltaics

    SciTech Connect (OSTI)

    Ebisch, R.

    1981-07-01

    Applications of photovoltaics to non-residential buildings are discussed. Most of the projects underway represent a joint effort by DOE and fifteen manufacturing companies now offering or developing photovoltaics. The systems are either flat-plate arrays, in which the sunlight is received directly on the photocells, or concentrating systems, in which the sunlight is focused on the photocells by mirrors or lenses. The DOE price goal for 1986 is to have photovoltaic systems capable of supplying shopping centers, apartment complexes, and industries with modules costing 70 cents/W and systems costing $1.60 to $2.60/W with the price of power to the user at 7 cents to 11 cents/kWh. New technologies discussed include the use of silicon with no crystal structure and the use of ribbons of silicon. (MJF)

  13. Electrical and thermal conductivities in dense plasmas

    SciTech Connect (OSTI)

    Faussurier, G. Blancard, C.; Combis, P.; Videau, L.

    2014-09-15

    Expressions for the electrical and thermal conductivities in dense plasmas are derived combining the Chester-Thellung-Kubo-Greenwood approach and the Kramers approximation. The infrared divergence is removed assuming a Drude-like behaviour. An analytical expression is obtained for the Lorenz number that interpolates between the cold solid-state and the hot plasma phases. An expression for the electrical resistivity is proposed using the Ziman-Evans formula, from which the thermal conductivity can be deduced using the analytical expression for the Lorenz number. The present method can be used to estimate electrical and thermal conductivities of mixtures. Comparisons with experiment and quantum molecular dynamics simulations are done.

  14. Performance Modeling of an Air-Based Photovoltaic/Thermal (PV/T) Collector

    SciTech Connect (OSTI)

    Casey, R. D.; Brandemuehl, M. J.; Merrigan, T.; Burch, J.

    2010-01-01

    This paper studies a collector design that utilizes unglazed photovoltaic/thermal (PV/T) collectors preheating air for glazed air heating modules. The performance modeling of these collectors is examined both individually and in series. For each collector type, a dynamic, finite difference, first-law model has been created using literature correlations for friction. The models were compared to performance data, calibrating the models by scaling of friction terms for best fit. The calibrated models generally agree well with the experimental data; even during sudden changes to ambient conditions. The root mean square error between the unglazed PV/T model and experiment results for the useful thermal energy gain and the outlet air temperature are 7.12 W/m{sup 2} and 1.07 C, respectively. The annual source energy performance of the building-integrated PV/T (BIPV/T) array is then simulated for residential applications in seven climate zones of the United States of America. The performance of the BIPV/T array is characterized by the amount of net electrical energy and useful thermal energy produced. The useful thermal energy is defined as the amount of energy offset by the BIPV/T system for water heating and space conditioning. A BIPV/T system composed 87.5% of PV modules, and 12.5% of glazed air heating modules, offsets the same amount of source energy as a roof-mounted PV system of the same area. This array composition increases the thermal energy gain by 47% over a BIPV/T array composed solely of PV modules.

  15. Electrical and thermal transport properties of iron and iron...

    Office of Scientific and Technical Information (OSTI)

    Electrical and thermal transport properties of iron and iron-silicon alloy at high pressure Citation Details In-Document Search Title: Electrical and thermal transport properties ...

  16. Electrical and Thermal Transport Optimization of High Efficient...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Electrical and Thermal Transport Optimization of High Efficient n-type Skutterudites Electrical and Thermal Transport Optimization of High Efficient n-type Skutterudites Work on ...

  17. Effect of molecular electrical doping on polyfuran based photovoltaic cells

    SciTech Connect (OSTI)

    Yu, Shuwen; Opitz, Andreas; Salzmann, Ingo; Frisch, Johannes; Cohen, Erez; Bendikov, Michael; Koch, Norbert

    2015-05-18

    The electronic, optical, and morphological properties of molecularly p-doped polyfuran (PF) films were investigated over a wide range of doping ratio in order to explore the impact of doping in photovoltaic applications. We find evidence for integer-charge transfer between PF and the prototypical molecular p-dopant tetrafluoro-tetracyanoquinodimethane (F4TCNQ) and employed the doped polymer in bilayer organic solar cells using fullerene as acceptor. The conductivity increase in the PF films at dopant loadings ?2% significantly enhances the short-circuit current of photovoltaic devices. For higher doping ratios, however, F4TCNQ is found to precipitate at the heterojunction between the doped donor polymer and the fullerene acceptor. Ultraviolet photoelectron spectroscopy reveals that its presence acts beneficial to the energy-level alignment by doubling the open-circuit voltage of solar cells from 0.2?V to ca. 0.4?V, as compared to pristine PF.

  18. Impacts of Regional Electricity Prices and Building Type on the Economics of Commercial Photovoltaic Systems

    SciTech Connect (OSTI)

    Ong, S.; Campbell, C.; Clark, N.

    2012-12-01

    To identify the impacts of regional electricity prices and building type on the economics of solar photovoltaic (PV) systems, 207 rate structures across 77 locations and 16 commercial building types were evaluated. Results for expected solar value are reported for each location and building type. Aggregated results are also reported, showing general trends across various impact categories.

  19. Electric Motor Thermal Management for Electric Traction Drives (Presentation)

    SciTech Connect (OSTI)

    Bennion, K.; Cousineau, J.; Moreno, G.

    2014-09-01

    Thermal constraints place significant limitations on how electric motors ultimately perform. Finite element analysis and computational fluid dynamics modeling approaches are being increasingly utilized in the design and analysis of electric motors. As the models become more sophisticated, it is important to have detailed and accurate knowledge of material thermal properties and convective heat transfer coefficients. In this work, the thermal properties and inter-lamination thermal contact resistances were measured for different stator lamination materials. Also, convective heat transfer coefficients of automatic transmission fluid (ATF) jets were measured to better understand the heat transfer of ATF impinging on motor copper windings. Experiments were carried out at various ATF temperatures and jet velocities to quantify the influence of these parameters on heat transfer coefficients.

  20. Photovoltaic device having light transmitting electrically conductive stacked films

    DOE Patents [OSTI]

    Weber, Michael F.; Tran, Nang T.; Jeffrey, Frank R.; Gilbert, James R.; Aspen, Frank E.

    1990-07-10

    A light transmitting electrically conductive stacked film, useful as a light transmitting electrode, including a first light transmitting electrically conductive layer, having a first optical thickness, a second light transmitting layer, having a second optical thickness different from the optical thickness of the first layer, and an electrically conductive metallic layer interposed between and in initimate contact with the first and second layers.

  1. Effects of Active Layer Thickness and Thermal Annealing on Polythiophene: Fullerene Bulk Heterojunction Photovoltaic Devices

    SciTech Connect (OSTI)

    Zeng, L.; Tang, C.W.; Chen, S.H.

    2010-08-10

    The effect of thermal annealing on photovoltaic devices comprising poly(3-hexylthiophene):[6,6]-phenyl C61 butyric acid methyl ester (P3HT:PCBM) with thicknesses up to 1200 nm was investigated. Without thermal annealing, the efficiency of the as-prepared devices decreased with increasing active layer thickness, reflecting largely a reduction in the short-circuit current density and an inverse photocurrent spectral response. Thermal annealing of the full devices was found to substantially recover thick-film device efficiencies while reducing the thin-film device efficiencies. The profound variations in photovoltaic characteristics were interpreted in terms of vertical phase separation in the P3HT:PCBM blend film and Li+ diffusion from the LiF/Al contact.

  2. Thermal Reliability Study of Bypass Diodes in Photovoltaic Modules (Poster)

    SciTech Connect (OSTI)

    Zhang, Z.; Wohlgemuth, J.; Kurtz, S.

    2013-05-01

    This paper presents the result of high-temperature durability and thermal cycling testing and analysis for the selected diodes to study the detail of the thermal design and relative long-term reliability of the bypass diodes used to limit the detrimental effects of module hot-spot susceptibility.

  3. Experimental investigation on the photovoltaic-thermal solar heat pump air-conditioning system on water-heating mode

    SciTech Connect (OSTI)

    Fang, Guiyin; Hu, Hainan; Liu, Xu

    2010-09-15

    An experimental study on operation performance of photovoltaic-thermal solar heat pump air-conditioning system was conducted in this paper. The experimental system of photovoltaic-thermal solar heat pump air-conditioning system was set up. The performance parameters such as the evaporation pressure, the condensation pressure and the coefficient of performance (COP) of heat pump air-conditioning system, the water temperature and receiving heat capacity in water heater, the photovoltaic (PV) module temperature and the photovoltaic efficiency were investigated. The experimental results show that the mean photovoltaic efficiency of photovoltaic-thermal (PV/T) solar heat pump air-conditioning system reaches 10.4%, and can improve 23.8% in comparison with that of the conventional photovoltaic module, the mean COP of heat pump air-conditioning system may attain 2.88 and the water temperature in water heater can increase to 42 C. These results indicate that the photovoltaic-thermal solar heat pump air-conditioning system has better performances and can stably work. (author)

  4. Second Annual Electric Power Research Institute/Sandia Photovoltaic Systems

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Chu Travels to Houston Sec. Chu Travels to Houston February 2, 2012 - 5:19pm Addthis The Houston Medical Center Thermal Energy Corporation Control Room. | Photo Courtesy of the Texas Medical Center The Houston Medical Center Thermal Energy Corporation Control Room. | Photo Courtesy of the Texas Medical Center Ginny Simmons Ginny Simmons Former Managing Editor for Energy.gov, Office of Public Affairs Secretary Chu traveled to Houston, Texas, today to meet with executives from various oil and gas

  5. Evaluation of phase change materials for thermal regulation enhancement of building integrated photovoltaics

    SciTech Connect (OSTI)

    Hasan, A.; Norton, B.; McCormack, S.J.; Huang, M.J.

    2010-09-15

    Regulating the temperature of building integrated photovoltaics (BIPV) using phase change materials (PCMs) reduces the loss of temperature dependent photovoltaic (PV) efficiency. Five PCMs were selected for evaluation all with melting temperatures {proportional_to}25 {+-} 4 C and heat of fusion between 140 and 213 kJ/kg. Experiments were conducted at three insolation intensities to evaluate the performance of each PCM in four different PV/PCM systems. The effect on thermal regulation of PV was determined by changing the (i) mass of PCM and (ii) thermal conductivities of the PCM and PV/PCM system. A maximum temperature reduction of 18 C was achieved for 30 min while 10 C temperature reduction was maintained for 5 h at -1000 W/m{sup 2} insolation. (author)

  6. Residential photovoltaics

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The photovoltaics overview section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  7. List of Solar Thermal Electric Incentives | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    List of Solar Thermal Electric Incentives Jump to: navigation, search The following contains the list of 562 Solar Thermal Electric Incentives. CSV (rows 1-500) CSV (rows 501-562)...

  8. Maximizing the Value of Photovoltaic Installations on Schools in California: Choosing the Best Electricity Rates

    SciTech Connect (OSTI)

    Ong, S.; Denholm, P.

    2011-07-01

    Schools in California often have a choice between multiple electricity rate options. For schools with photovoltaic (PV) installations, choosing the right rate is essential to maximize the value of PV generation. The rate option that minimizes a school?s electricity expenses often does not remain the most economical choice after the school installs a PV system. The complex interaction between PV generation, building load, and rate structure makes determining the best rate a challenging task. This report evaluates 22 rate structures across three of California?s largest electric utilities--Pacific Gas and Electric Co. (PG&E), Southern California Edison (SCE), and San Diego Gas and Electric (SDG&E)--in order to identify common rate structure attributes that are favorable to PV installations.

  9. Electricity storage using a thermal storage scheme

    SciTech Connect (OSTI)

    White, Alexander

    2015-01-22

    The increasing use of renewable energy technologies for electricity generation, many of which have an unpredictably intermittent nature, will inevitably lead to a greater demand for large-scale electricity storage schemes. For example, the expanding fraction of electricity produced by wind turbines will require either backup or storage capacity to cover extended periods of wind lull. This paper describes a recently proposed storage scheme, referred to here as Pumped Thermal Storage (PTS), and which is based on “sensible heat” storage in large thermal reservoirs. During the charging phase, the system effectively operates as a high temperature-ratio heat pump, extracting heat from a cold reservoir and delivering heat to a hot one. In the discharge phase the processes are reversed and it operates as a heat engine. The round-trip efficiency is limited only by process irreversibilities (as opposed to Second Law limitations on the coefficient of performance and the thermal efficiency of the heat pump and heat engine respectively). PTS is currently being developed in both France and England. In both cases, the schemes operate on the Joule-Brayton (gas turbine) cycle, using argon as the working fluid. However, the French scheme proposes the use of turbomachinery for compression and expansion, whereas for that being developed in England reciprocating devices are proposed. The current paper focuses on the impact of the various process irreversibilities on the thermodynamic round-trip efficiency of the scheme. Consideration is given to compression and expansion losses and pressure losses (in pipe-work, valves and thermal reservoirs); heat transfer related irreversibility in the thermal reservoirs is discussed but not included in the analysis. Results are presented demonstrating how the various loss parameters and operating conditions influence the overall performance.

  10. Delaware Electric Cooperative- Green Energy Program Incentives

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Delaware Electric Cooperative (DEC) provides incentives for solar photovoltaic (PV), solar thermal, wind, fuel cells, and geothermal installed by DEC member-owners. Eligibility is limited to ...

  11. Effect of simultaneous electrical and thermal treatment on the performance of bulk heterojunction organic solar cell blended with organic salt

    SciTech Connect (OSTI)

    Sabri, Nasehah Syamin; Yap, Chi Chin; Yahaya, Muhammad; Salleh, Muhamad Mat

    2013-11-27

    This work presents the influence of simultaneous electrical and thermal treatment on the performance of organic solar cell blended with organic salt. The organic solar cells were composed of indium tin oxide as anode, poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene]: (6,6)-phenyl-C61 butyric acid methyl ester: tetrabutylammonium hexafluorophosphate blend as organic active layer and aluminium as cathode. The devices underwent a simultaneous fixed-voltage electrical and thermal treatment at different temperatures of 25, 50 and 75 °C. It was found that photovoltaic performance improved with the thermal treatment temperature. Accumulation of more organic salt ions in the active layer leads to broadening of p-n doped regions and hence higher built-in electric field across thin intrinsic layer. The simultaneous electrical and thermal treatment has been shown to be able to reduce the electrical treatment voltage.

  12. Building America Best Practices Series, Volume 6: High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems

    SciTech Connect (OSTI)

    Baechler, Michael C.; Gilbride, Theresa L.; Ruiz, Kathleen A.; Steward, Heidi E.; Love, Pat M.

    2007-06-04

    This guide is was written by PNNL for the US Department of Energy's Building America program to provide information for residential production builders interested in building near zero energy homes. The guide provides indepth descriptions of various roof-top photovoltaic power generating systems for homes. The guide also provides extensive information on various designs of solar thermal water heating systems for homes. The guide also provides construction company owners and managers with an understanding of how solar technologies can be added to their homes in a way that is cost effective, practical, and marketable. Twelve case studies provide examples of production builders across the United States who are building energy-efficient homes with photovoltaic or solar water heating systems.

  13. Thermal electric vapor trap arrangement and method

    DOE Patents [OSTI]

    Alger, Terry (Tracy, CA)

    1988-01-01

    A technique for trapping vapor within a section of a tube is disclosed herein. This technique utilizes a conventional, readily providable thermal electric device having a hot side and a cold side and means for powering the device to accomplish this. The cold side of this device is positioned sufficiently close to a predetermined section of the tube and is made sufficiently cold so that any condensable vapor passing through the predetermined tube section is condensed and trapped, preferably within the predetermined tube section itself.

  14. Thermal electric vapor trap arrangement and method

    DOE Patents [OSTI]

    Alger, T.

    1988-03-15

    A technique for trapping vapor within a section of a tube is disclosed herein. This technique utilizes a conventional, readily providable thermal electric device having a hot side and a cold side and means for powering the device to accomplish this. The cold side of this device is positioned sufficiently close to a predetermined section of the tube and is made sufficiently cold so that any condensable vapor passing through the predetermined tube section is condensed and trapped, preferably within the predetermined tube section itself. 4 figs.

  15. Geographic Variation in Potential of Rooftop Residential Photovoltaic Electric Power Production in the United States

    Energy.gov [DOE]

    This paper describes a geographic evaluation of Zero Energy Home (ZEH) potential, specifically an assessment of residential roof-top solar electric photovoltaic (PV) performance around the United States and how energy produced would match up with very-efficient and super-efficient home designs. We performed annual simulations for 236 TMY2 data locations throughout the United States on two highly-efficient one-story 3-bedroom homes with a generic grid-tied solar electric 2kW PV system. These annual simulations show how potential annual solar electric power generation (kWh) and potential energy savings from PV power vary geographically around the U.S. giving the user in a specific region an indication of their expected PV system performance.

  16. Energy 101: Solar Photovoltaics | Department of Energy

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Solar Photovoltaics Energy 101: Solar Photovoltaics February 10, 2011 - 5:29pm Addthis Learn more about photovoltaic systems that convert light energy into electricity. Andy Oare ...

  17. Solar Photovoltaic Technology Basics | Department of Energy

    Energy Savers

    Solar Solar Photovoltaic Technology Basics Solar Photovoltaic Technology Basics August ... Photovoltaic (PV) materials and devices convert sunlight into electrical energy. A single ...

  18. Electrical and photovoltaic characteristics of MoS{sub 2}/Si p-n junctions

    SciTech Connect (OSTI)

    Hao, Lanzhong Liu, Yunjie Gao, Wei; Han, Zhide; Xue, Qingzhong; Zeng, Huizhong; Wu, Zhipeng; Zhu, Jun; Zhang, Wanli

    2015-03-21

    Bulk-like molybdenum disulfide (MoS{sub 2}) thin films were deposited on the surface of p-type Si substrates using dc magnetron sputtering technique and MoS{sub 2}/Si p-n junctions were formed. The vibrating modes of E{sup 1}{sub 2g} and A{sub 1g} were observed from the Raman spectrum of the MoS{sub 2} films. The current density versus voltage (J-V) characteristics of the junction were investigated. A typical J-V rectifying effect with a turn-on voltage of 0.2 V was shown. In different voltage range, the electrical transporting of the junction was dominated by diffusion current and recombination current, respectively. Under the light illumination of 15 mW cm{sup −2}, the p-n junction exhibited obvious photovoltaic characteristics with a short-circuit current density of 3.2 mA cm{sup −2} and open-circuit voltage of 0.14 V. The fill factor and energy conversion efficiency were 42.4% and 1.3%, respectively. According to the determination of the Fermi-energy level (∼4.65 eV) and energy-band gap (∼1.45 eV) of the MoS{sub 2} films by capacitance-voltage curve and ultraviolet-visible transmission spectra, the mechanisms of the electrical and photovoltaic characteristics were discussed in terms of the energy-band structure of the MoS{sub 2}/Si p-n junctions. The results hold the promise for the integration of MoS{sub 2} thin films with commercially available Si-based electronics in high-efficient photovoltaic devices.

  19. List of Ocean Thermal Incentives | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Cells Fuel Cells using Renewable Fuels Geothermal Electric Ground Source Heat Pumps Hydrogen Landfill Gas Methanol Ocean Thermal Photovoltaics Renewable Fuels Small Hydroelectric...

  20. What Changed in Article 690-Solar Photovoltaic Systems- of the 1999 National Electrical Code?

    SciTech Connect (OSTI)

    Bower, W.; Wiles, J.

    1999-01-12

    Article 690, Solar Photovoltaic Power Systems, has been in the National Electrical Code (NEC) since 1984. An NFPA-appointed Task Group for Article 690 proposed changes to Article 690 for both the 1996 and 1999 codes. The Task Group, supported by more than 50 professionals from throughout the photovoltaic (PV) industry, met seven times during the 1999 code cycle to integrate the needs of the industry with the needs of electrical inspectors and end users to ensure the safety of PV systems. The Task Group proposed 57 changes to Article 690, and all the changes were accepted in the review process. The performance and cost of PV installations were always a consideration as these changes were formed but safety was the number-one priority. All of the proposals were well substantiated and coordinated throughout the PV industry and with representatives of Underwriters Laboratories, Inc (UL). The most significant changes that were made in Article 690 for the 1999 NEC along with some of the rationale are discussed in the remainder of this article.

  1. Parabolic Trough Solar Thermal Electric Power Plants (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2006-07-01

    This fact sheet provides an overview of the potential for parabolic trough solar thermal electric power plants, especially in the Southwestern U.S.

  2. Evaluation of Thermal to Electrical Energy Conversion of High...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Skutterudite-Based Thermoelectric Modules Evaluation of Thermal to Electrical Energy Conversion of High Temperature Skutterudite-Based Thermoelectric Modules Discusses ...

  3. Electrical and thermal conductivity of low temperature CVD graphene...

    Office of Scientific and Technical Information (OSTI)

    temperature CVD graphene: the effect of disorder Citation Details In-Document Search Title: Electrical and thermal conductivity of low temperature CVD graphene: the effect of ...

  4. Sandia Energy Photovoltaic

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    feed 0 Sandian Contributes to Western Electricity Coordinating Council Photovoltaic Power Plant Model Validation Guideline http:energy.sandia.gov...

  5. Photovoltaic cell

    DOE Patents [OSTI]

    Gordon, Roy G.; Kurtz, Sarah

    1984-11-27

    In a photovoltaic cell structure containing a visibly transparent, electrically conductive first layer of metal oxide, and a light-absorbing semiconductive photovoltaic second layer, the improvement comprising a thin layer of transition metal nitride, carbide or boride interposed between said first and second layers.

  6. High thermal conductivity connector having high electrical isolation

    DOE Patents [OSTI]

    Nieman, Ralph C.; Gonczy, John D.; Nicol, Thomas H.

    1995-01-01

    A method and article for providing a low-thermal-resistance, high-electrical-isolation heat intercept connection. The connection method involves clamping, by thermal interference fit, an electrically isolating cylinder between an outer metallic ring and an inner metallic disk. The connection provides durable coupling of a heat sink and a heat source.

  7. Solar Photovoltaic Technology Basics | NREL

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Solar Photovoltaic Technology Basics Solar cells, also called photovoltaic (PV) cells by scientists, convert sunlight directly into electricity. PV gets its name from the process ...

  8. Thermal Management of Power Electronics and Electric Motors for Electric-Drive Vehicles (Presentation)

    SciTech Connect (OSTI)

    Narumanchi, S.

    2014-09-01

    This presentation is an overview of the power electronics and electric motor thermal management and reliability activities at NREL. The focus is on activities funded by the Department of Energy Vehicle Technologies Office Advanced Power Electronics and Electric Motors Program.

  9. Electricity Bill Savings from Residential Photovoltaic Systems: Sensitivities to Changes in Future Electricity Market Conditions

    SciTech Connect (OSTI)

    Darghouth, Naim; Barbose, Galen; Wiser, Ryan

    2013-01-09

    This scoping study investigates the impact of, and interactions among, three key sources of uncertainty in the future value of bill savings from customer-sited PV, focusing in particular on residential customers. These three sources of uncertainty are: changes to electricity market conditions that would affect retail electricity prices, changes to the types of retail rate structures available to residential customers with PV, and shifts away from standard net-metering toward other compensation mechanisms for residential PV. We investigate the impact of a range of electricity market scenarios on retail electricity prices and rate structures, and the resulting effects on the value of bill savings from PV. The scenarios include various levels of renewable and solar energy deployment, high and low natural gas prices, the possible introduction of carbon pricing, and greater or lesser reliance on utility-scale storage and demand response. We examine the bill savings from PV with time-invariant, flat residential retail rates, as well as with time-varying retail rates, including time-of-use (TOU) rates and real-time pricing (RTP). In addition, we explore a flat rate with increasing-block pricing (IBP). We evaluate the bill savings from PV with net metering, as currently allowed in many states, as well as scenarios with hourly netting, a partial form of net metering. This scoping study is the first known effort to evaluate these types of interactions in a reasonably comprehensive fashion, though by no means have we considered every possible change to electricity market conditions, retail rate structures, or PV compensation mechanisms. It focuses solely on the private value of bill savings for residential PV and does not seek to quantify the broader social or economic cost or value of solar electricity. Our analysis applies assumptions based loosely on California’s electricity market in a future year (2030); however, it is neither intended to forecast California’s future

  10. Thermally conductive alumina/organic composites for photovoltaic concentrator cell isolation

    SciTech Connect (OSTI)

    Beavis, L.C.; Panitz, J.K.G.; Sharp, D.J.

    1988-01-01

    Electrophoretically deposited styrene-acrylate films were studied. These yield marginally useful thermal conductivities of 0.1--0.2 watts/meter-Kelvin, but have useful dielectric strengths over 2500 volts for 40 micrometer thick coatings. Thin, 25 micrometer, coatings of anodically grown Al/sub 2/O/sub 3/ films were also investigated. These films have thermal conductivities of approximately 6--8 watts/meter-Kelvin. Although these Al/sub 2/O/sub 3/ films have greater thermal conductivity than the polymer films, they exhibit porosity which typically limits their dielectric strength to less than 1000 volts. In the current study we have determined that styrene-acrylate can be electrophoretically deposited in porous anodic aluminum oxide films to form an alumina-organic composite with improved electrical breakdown strengths as well as higher thermal conductivity than styrene-acrylate films. 7 refs., 2 tabs.

  11. Light absorption and electrical transport in Si:O alloys for photovoltaics

    SciTech Connect (OSTI)

    Mirabella, S.; Crupi, I.; Miritello, M.; Simone, F.; Di Martino, G.; Di Stefano, M. A.; Di Marco, S.; Priolo, F.

    2010-11-15

    Thin films (100-500 nm) of the Si:O alloy have been systematically characterized in the optical absorption and electrical transport behavior, by varying the Si content from 43 up to 100 at. %. Magnetron sputtering or plasma enhanced chemical vapor deposition have been used for the Si:O alloy deposition, followed by annealing up to 1250 deg. C. Boron implantation (30 keV, 3-30x10{sup 14} B/cm{sup 2}) on selected samples was performed to vary the electrical sheet resistance measured by the four-point collinear probe method. Transmittance and reflectance spectra have been extracted and combined to estimate the absorption spectra and the optical band gap, by means of the Tauc analysis. Raman spectroscopy was also employed to follow the amorphous-crystalline (a-c) transition of the Si domains contained in the Si:O films. The optical absorption and the electrical transport of Si:O films can be continuously and independently modulated by acting on different parameters. The light absorption increases (by one decade) with the Si content in the 43-100 at. % range, determining an optical band gap which can be continuously modulated into the 2.6-1.6 eV range, respectively. The a-c phase transition in Si:O films, causing a significant reduction in the absorption coefficient, occurs at increasing temperatures (from 600 to 1100 deg. C) as the Si content decreases. The electrical resistivity of Si:O films can be varied among five decades, being essentially dominated by the number of Si grains and by the doping. Si:O alloys with Si content in the 60-90 at. % range (named oxygen rich silicon films), are proved to join an appealing optical gap with a viable conductivity, being a good candidate for increasing the conversion efficiency of thin-film photovoltaic cell.

  12. High density photovoltaic

    SciTech Connect (OSTI)

    Haigh, R.E.; Jacobson, G.F.; Wojtczuk, S.

    1997-10-14

    Photovoltaic technology can directly generate high voltages in a solid state material through the series interconnect of many photovoltaic diodes. We are investigating the feasibility of developing an electrically isolated, high-voltage power supply using miniature photovoltaic devices that convert optical energy to electrical energy.

  13. Clay Electric Cooperative, Inc- Solar Thermal Loans

    Energy.gov [DOE]

    Clay Electric Cooperative (CEC), a Touchstone Energy Cooperative, covers 14 counties in northern Florida, including Gainesville, Keystone Heights, Lake City, Orange Park, Palatka, and Salt Springs....

  14. Generators for Small Electrical and Thermal Systems

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    build and test improved electric-power generators for use in residential Combined Heat and Power (CHP) systems, which capture the generator's heat output for space and water...

  15. Electric Motor Thermal Management R&D: Annual Report

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ... NREL Technical Report NRELTP- 5400-63887, June 2015. 5 K. Bennion. "Electric Motor Thermal Management R&D." 2015 DOE Vehicle Technologies Office (VTO) Annual Merit Review, June ...

  16. Evaluation of Thermal to Electrical Energy Conversion of High Temperature

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Skutterudite-Based Thermoelectric Modules | Department of Energy Thermal to Electrical Energy Conversion of High Temperature Skutterudite-Based Thermoelectric Modules Evaluation of Thermal to Electrical Energy Conversion of High Temperature Skutterudite-Based Thermoelectric Modules Discusses progress toward the fabrication of a skutterudite-based TE module and provides module performance data under operating conditions similar to those for automotive applications deer11_salvador.pdf (2.68

  17. Utilizing Electric Vehicles to Assist Integration of Large Penetrations of Distributed Photovoltaic Generation Capacity

    SciTech Connect (OSTI)

    Tuffner, Francis K.; Chassin, Forrest S.; Kintner-Meyer, Michael CW; Gowri, Krishnan

    2012-11-30

    Executive Summary Introduction and Motivation This analysis provides the first insights into the leveraging potential of distributed photovoltaic (PV) technologies on rooftop and electric vehicle (EV) charging. Either of the two technologies by themselves - at some high penetrations – may cause some voltage control challenges or overloading problems, respectively. But when combined, there – at least intuitively – could be synergistic effects, whereby one technology mitigates the negative impacts of the other. High penetration of EV charging may overload existing distribution system components, most prominently the secondary transformer. If PV technology is installed at residential premises or anywhere downstream of the secondary transformer, it will provide another electricity source thus, relieving the loading on the transformers. Another synergetic or mitigating effect could be envisioned when high PV penetration reverts the power flow upward in the distribution system (from the homes upstream into the distribution system). Protection schemes may then no longer work and voltage violation (exceeding the voltage upper limited of the ANSI voltage range) may occur. In this particular situation, EV charging could absorb the electricity from the PV, such that the reversal of power flow can be reduced or alleviated. Given these potential mutual synergistic behaviors of PV and EV technologies, this project attempted to quantify the benefits of combining the two technologies. Furthermore, of interest was how advanced EV control strategies may influence the outcome of the synergy between EV charging and distributed PV installations. Particularly, Californian utility companies with high penetration of the distributed PV technology, who have experienced voltage control problems, are interested how intelligent EV charging could support or affect the voltage control

  18. Electric characteristics of germanium Vertical Multijunction (VMJ) photovoltaic cells under high intensity illumination

    SciTech Connect (OSTI)

    Unishkov, V.A.

    1997-03-01

    This paper presents the results of the performance evaluation of Vertical Multijunction (VMJ) germanium (Ge) photovoltaic (PV) cells. Vertical Multijunction Germanium Photovoltaic cells offer several advantages for Thermophotovoltaic (TPV) applications such as high intensity light conversion, low series resistance, more efficient coupling to lower temperature sources, high output voltage, simplified heat rejection system as well as potentially simple fabrication technology and low cost photovoltaic converter device. {copyright} {ital 1997 American Institute of Physics.}

  19. Thermal Stress and Reliability for Advanced Power Electronics and Electric

    Energy.gov (indexed) [DOE]

    Machines | Department of Energy 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. ape_14_okeefe.pdf (969.92 KB) More Documents & Publications Thermal Stress and Reliability for Advanced Power Electronics and Electric Machines Power Electronic Thermal System Performance and Integration Thermal Performance and Reliability of Bonded Interfaces

  20. Decreasing Soft Costs for Solar Photovoltaics by Improving the Interconnection Process: A Case Study of Pacific Gas and Electric

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Decreasing Soft Costs for Solar Photovoltaics by Improving the Interconnection Process: A Case Study of Pacific Gas and Electric Kristen Ardani and Robert Margolis National Renewable Energy Laboratory Technical Report NREL/TP-7A40-65066 September 2015 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory

  1. Methods for Analyzing the Benefits and Costs of Distributed Photovoltaic Generation to the U.S. Electric Utility System

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Methods for Analyzing the Benefits and Costs of Distributed Photovoltaic Generation to the U.S. Electric Utility System Paul Denholm, Robert Margolis, Bryan Palmintier, Clayton Barrows, Eduardo Ibanez, and Lori Bird National Renewable Energy Laboratory Jarett Zuboy Independent Consultant Technical Report NREL/TP-6A20-62447 September 2014 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable

  2. 2015,"AK","Total Electric Power Industry","All Sources",18,8...

    U.S. Energy Information Administration (EIA) (indexed site)

    Electric Power Industry","All Sources",1,1,12,12 2015,"AR","Total Electric Power Industry","Solar Thermal and Photovoltaic",1,1,12,12 2015,"AZ","Total Electric Power ...

  3. Impacts of Commercial Electric Utility Rate Structure Elements on the Economics of Photovoltaic Systems

    SciTech Connect (OSTI)

    Ong, S.; Denholm, P.; Doris, E.

    2010-06-01

    This analysis uses simulated building data, simulated solar photovoltaic (PV) data, and actual electric utility tariff data from 25 cities to understand better the impacts of different commercial rate structures on the value of solar PV systems. By analyzing and comparing 55 unique rate structures across the United States, this study seeks to identify the rate components that have the greatest effect on the value of PV systems. Understanding the beneficial components of utility tariffs can both assist decision makers in choosing appropriate rate structures and influence the development of rates that favor the deployment of PV systems. Results from this analysis show that a PV system's value decreases with increasing demand charges. Findings also indicate that time-of-use rate structures with peaks coincident with PV production and wide ranges between on- and off-peak prices most benefit the types of buildings and PV systems simulated. By analyzing a broad set of rate structures from across the United States, this analysis provides an insight into the range of impacts that current U.S. rate structures have on PV systems.

  4. Electric Motor Thermal Management R&D (Presentation)

    SciTech Connect (OSTI)

    Bennion, K.

    2014-11-01

    Thermal constraints place significant limitations on how electric motors ultimately perform. Without the ability to remove heat, the motor cannot operate without sacrificing performance, efficiency, and reliability. Finite element analysis and computational fluid dynamics modeling approaches are being increasingly utilized in the design and analysis of electric motors. As the models become more sophisticated, it is important to have detailed and accurate knowledge of both the passive thermal performance and the active cooling performance. In this work, we provide an overview of research characterizing both passive and active thermal elements related to electric motor thermal management. To better characterize the passive thermal performance, the effective thermal properties and inter-lamination thermal contact resistances were measured for different stator lamination materials. The active cooling performance of automatic transmission fluid (ATF) jets was also measured to better understand the heat transfer coefficients of ATF impinging on motor copper windings. Ford's Mercon LV was the ATF evaluated in this study. The presentation provides an overview of prior work with a focus on describing future plans for research to be performed during FY15.

  5. Photovoltaic device and method

    SciTech Connect (OSTI)

    Cleereman, Robert; Lesniak, Michael J.; Keenihan, James R.; Langmaid, Joe A.; Gaston, Ryan; Eurich, Gerald K.; Boven, Michelle L.

    2015-11-24

    The present invention is premised upon an improved photovoltaic device ("PVD") and method of use, more particularly to an improved photovoltaic device with an integral locator and electrical terminal mechanism for transferring current to or from the improved photovoltaic device and the use as a system.

  6. Photovoltaic device and method

    DOE Patents [OSTI]

    Cleereman, Robert J; Lesniak, Michael J; Keenihan, James R; Langmaid, Joe A; Gaston, Ryan; Eurich, Gerald K; Boven, Michelle L

    2015-01-27

    The present invention is premised upon an improved photovoltaic device ("PVD") and method of use, more particularly to an improved photovoltaic device with an integral locator and electrical terminal mechanism for transferring current to or from the improved photovoltaic device and the use as a system.

  7. Amorphous silicon photovoltaic devices

    DOE Patents [OSTI]

    Carlson, David E.; Lin, Guang H.; Ganguly, Gautam

    2004-08-31

    This invention is a photovoltaic device comprising an intrinsic or i-layer of amorphous silicon and where the photovoltaic device is more efficient at converting light energy to electric energy at high operating temperatures than at low operating temperatures. The photovoltaic devices of this invention are suitable for use in high temperature operating environments.

  8. Solar Photovoltaic Technologies - Energy Innovation Portal

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Technology Marketing Summaries Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Marketing Summaries (132) Success Stories (5) Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories Browse

  9. Photovoltaic Cell Performance Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Performance Basics Photovoltaic Cell Performance Basics August 19, 2013 - 4:55pm Addthis Photovoltaic (PV), or solar cells use the energy in sunlight to produce electricity. ...

  10. Thermal and Electrical Analysis of Mars Rover RTGs

    SciTech Connect (OSTI)

    Schock, Alfred; Or, Chuen T; Skrabek, Emanuel A

    2012-01-19

    The RTG designs described in the preceding paper in these proceedings were analyzed for their thermal and electrical performance. Each analysis consisted of coupled thermal, thermoelectric, and electrical analyses, using Fairchild-generated specialized computer codes. These were supplemented with preliminary structural and mass analyses. For each design, various cases representing different operating conditions (water-cooled/radiation-cooled, BOM/EOM, summer/winter, day/night) and different thermoelectric performance assumptions (from conservative to optimistic) were analyzed; and for every case, the heat flow rates, temperatures and electrical performance of each layer of thermoelectric elements and of the overall RTG were determined. The analyses were performed in great detail, to obtain accurate answers permitting meaningful comparisons between different designs. The results presented show the RTG performance achievable with current technology, and the performance improvements that would be achievable with various technology developments.

  11. Understanding Variability and Uncertainty of Photovoltaics for Integration with the Electric Power System

    SciTech Connect (OSTI)

    Mills, Andrew; Ahlstrom, Mark; Brower, Michael; Ellis, Abraham; George, Ray; Hoff, Tom; Kroposki, Benjamin; Lenox, Carl; Miller, Nicholas; Stein, Joshua; Wan, Yih-huei

    2009-12-07

    Data and analysis are needed to understand the variability of photovoltaic (PV) plants to avoid unnecessary barriers to the interconnection of PV. Several datasets show clouds can cause rapid changes in solar insolation. Smoothing of rapid ramps, however, occurs within PV plants. The degree of smoothing depends on plant size. Smoothing occurs on even longer time-scales between separate plants.

  12. Characterization of plasmonic hole arrays as transparent electrical contacts for organic photovoltaics using high-brightness Fourier transform methods

    DOE PAGES-Beta [OSTI]

    Camino, Fernando E.; Nam, Chang-Yong; Pang, Yutong T.; Hoy, Jessica; Eisaman, Matthew D.; Black, Charles T.; Sfeir, Matthew Y.

    2014-05-15

    Here we present a methodology for probing light-matter interactions in prototype photovoltaic devices consisting of an organic semiconductor active layer with a semitransparent metal electrical contact exhibiting surface plasmon-based enhanced optical transmission. We achieve high-spectral irradiance in a spot size of less than 100 μm using a high-brightness laser-driven light source and appropriate coupling optics. Spatially resolved Fourier transform photocurrent spectroscopy in the visible and near-infrared spectral regions allows us to measure external quantum efficiency with high sensitivity in small-area devices (<1 mm2). Lastly, this allows for rapid fabrication of variable-pitch sub-wavelength hole arrays in metal films for use asmore » transparent electrical contacts, and evaluation of the evanescent and propagating mode coupling to resonances in the active layer.« less

  13. Optimization of Electric Power Systems for Off-Grid Domestic Applications: An Argument for Wind/Photovoltaic Hybrids

    SciTech Connect (OSTI)

    Jennings, W.; Green, J.

    2001-01-01

    The purpose of this research was to determine the optimal configuration of home power systems relevant to different regions in the United States. The hypothesis was that, regardless of region, the optimal system would be a hybrid incorporating wind technology, versus a photovoltaic hybrid system without the use of wind technology. The method used in this research was HOMER, the Hybrid Optimization Model for Electric Renewables. HOMER is a computer program that optimizes electrical configurations under user-defined circumstances. According to HOMER, the optimal system for the four regions studied (Kansas, Massachusetts, Oregon, and Arizona) was a hybrid incorporating wind technology. The cost differences between these regions, however, were dependent upon regional renewable resources. Future studies will be necessary, as it is difficult to estimate meteorological impacts for other regions.

  14. Solar Photovoltaic Technologies Available for Licensing - Energy Innovation

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Portal Photovoltaic Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Marketing Summaries (132) Success Stories (5) Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories Browse Solar

  15. Integrated Vehicle Thermal Management - Combining Fluid Loops in Electric Drive Vehicles (Presentation)

    SciTech Connect (OSTI)

    Rugh, J. P.

    2013-07-01

    Plug-in hybrid electric vehicles and electric vehicles have increased vehicle thermal management complexity, using separate coolant loop for advanced power electronics and electric motors. Additional thermal components result in higher costs. Multiple cooling loops lead to reduced range due to increased weight. Energy is required to meet thermal requirements. This presentation for the 2013 Annual Merit Review discusses integrated vehicle thermal management by combining fluid loops in electric drive vehicles.

  16. Thermal Systems Group; Electricity, Resources, & Building Systems Integration (ERBSI) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-11-01

    Factsheet developed to describe the activites of the Thermal Systems Group within NREL's Electricity, Resources, and Buildings Systems Integration center.

  17. Photovoltaic cell assembly

    DOE Patents [OSTI]

    Beavis, Leonard C.; Panitz, Janda K. G.; Sharp, Donald J.

    1990-01-01

    A photovoltaic assembly for converting high intensity solar radiation into lectrical energy in which a solar cell is separated from a heat sink by a thin layer of a composite material which has excellent dielectric properties and good thermal conductivity. This composite material is a thin film of porous Al.sub.2 O.sub.3 in which the pores have been substantially filled with an electrophoretically-deposited layer of a styrene-acrylate resin. This composite provides electrical breakdown strengths greater than that of a layer consisting essentially of Al.sub.2 O.sub.3 and has a higher thermal conductivity than a layer of styrene-acrylate alone.

  18. Coupled Thermal and Electrical Analysis of Obstructed RTGs

    SciTech Connect (OSTI)

    Schock, Alfred; Noravian, Heros; Or, Chuen T.

    1990-01-01

    A Radioisotope Thermoelectric Generator (RTG) with an unsymmetrically obstructed heat rejection path can have significant axial and circumferential variations in the temperatures, currents, and voltages of its thermoelectric couple network. The present paper describes a methodology for analyzing the thermal and electrical performance of such an RTG, and the development of a computer code for implementing that emthodology. The code derives coupled solutions of the RTG's thermal, thermoelectric, and electrical equations. It accounts for the Peltier effect, Ohmic heating, and the Thomson effect, and treats the electrical power produced in each couple as an effective heat sink. It satisfies the condition that all parallel couples produce the same voltage, and that all series-connected couple groups produce the same current. Finally, the paper illustrates the use of the code by applying it to the detailed analysis of the RTGs for the CRAF and Cassini missions. In each of these, there are two adjacent RTGs which are obstructed by each other and by the nearby spacecraft. The results of the analysis will be used by the spacecraft designers in selecting the location, orientation, and spacing of the two RTGs. There are two copies in the file.

  19. Photovoltaic solar cell

    DOE Patents [OSTI]

    Nielson, Gregory N; Cruz-Campa, Jose Luis; Okandan, Murat; Resnick, Paul J

    2014-05-20

    A photovoltaic solar cell for generating electricity from sunlight is disclosed. The photovoltaic solar cell comprises a plurality of spaced-apart point contact junctions formed in a semiconductor body to receive the sunlight and generate the electricity therefrom, the plurality of spaced-apart point contact junctions having a first plurality of regions having a first doping type and a second plurality of regions having a second doping type. In addition, the photovoltaic solar cell comprises a first electrical contact electrically connected to each of the first plurality of regions and a second electrical contact electrically connected to each of the second plurality of regions, as well as a passivation layer covering major surfaces and sidewalls of the photovoltaic solar cell.

  20. Optical device with low electrical and thermal resistance bragg reflectors

    DOE Patents [OSTI]

    Lear, Kevin L.

    1996-01-01

    A compound-semiconductor optical device and method. The optical device is provided with one or more asymmetrically-graded heterojunctions between compound semiconductor layers for forming a distributed Bragg reflector mirror having an improved electrical and thermal resistance. Efficient light-emitting devices such as light-emitting diodes, resonant-cavity light-emitting diodes, and vertical-cavity surface-emitting lasers may be formed according to the present invention, which may be applied to the formation of resonant-cavity photodetectors.

  1. Optical device with low electrical and thermal resistance Bragg reflectors

    DOE Patents [OSTI]

    Lear, K.L.

    1996-10-22

    A compound-semiconductor optical device and method are disclosed. The optical device is provided with one or more asymmetrically-graded heterojunctions between compound semiconductor layers for forming a distributed Bragg reflector mirror having an improved electrical and thermal resistance. Efficient light-emitting devices such as light-emitting diodes, resonant-cavity light-emitting diodes, and vertical-cavity surface-emitting lasers may be formed according to the present invention, which may be applied to the formation of resonant-cavity photodetectors. 16 figs.

  2. Photovoltaic power generation system free of bypass diodes

    SciTech Connect (OSTI)

    Lentine, Anthony L.; Okandan, Murat; Nielson, Gregory N.

    2015-07-28

    A photovoltaic power generation system that includes a solar panel that is free of bypass diodes is described herein. The solar panel includes a plurality of photovoltaic sub-modules, wherein at least two of photovoltaic sub-modules in the plurality of photovoltaic sub-modules are electrically connected in parallel. A photovoltaic sub-module includes a plurality of groups of electrically connected photovoltaic cells, wherein at least two of the groups are electrically connected in series. A photovoltaic group includes a plurality of strings of photovoltaic cells, wherein a string of photovoltaic cells comprises a plurality of photovoltaic cells electrically connected in series. The strings of photovoltaic cells are electrically connected in parallel, and the photovoltaic cells are microsystem-enabled photovoltaic cells.

  3. Photovoltaic solar cell

    DOE Patents [OSTI]

    Nielson, Gregory N; Okandan, Murat; Cruz-Campa, Jose Luis; Resnick, Paul J

    2013-11-26

    A photovoltaic solar cell for generating electricity from sunlight is disclosed. The photovoltaic solar cell comprises a plurality of spaced-apart point contact junctions formed in a semiconductor body to receive the sunlight and generate the electicity therefrom, the plurality of spaced-apart point contact junctions having a first plurality of regions having a first doping type and a second plurality of regions having a second doping type. In addition, the photovoltaic solar cell comprises a first electrical contact electrically connected to each of the first plurality of regions and a second electrical contact electrically connected to each of the second plurality of regions, as well as a passivation layer covering major surfaces and sidewalls of the photovoltaic solar cell.

  4. Thermal Treatment of Solid Wastes Using the Electric Arc Furnace

    SciTech Connect (OSTI)

    O'Connor, W.K.; Turner, P.C.

    1999-09-01

    A thermal waste treatment facility has been developed at the Albany Research Center (ARC) over the past seven years to process a wide range of heterogeneous mixed wastes, on a scale of 227 to 907 kg/h (500 to 2,000 lb/h). The current system includes a continuous feed system, a 3-phase AC, 0.8 MW graphite electrode arc furnace, and a dedicated air pollution control system (APCS) which includes a close-coupled thermal oxidizer, spray cooler, baghouse, and wet scrubber. The versatility of the complete system has been demonstrated during 5 continuous melting campaigns, ranging from 11 to 25 mt (12 to 28 st) of treated wastes per campaign, which were conducted on waste materials such as (a) municipal incinerator ash, (b) simulated low-level radioactive, high combustible-bearing mixed wastes, (c) simulated low-level radioactive liquid tank wastes, (d) heavy metal contaminated soils, and (e) organic-contaminated dredging spoils. In all cases, the glass or slag products readily passed the U.S. Environmental Protection Agency (EPA) Toxicity Characteristic Leachability Program (TCLP) test. Additional studies are currently under way on electric utility wastes, steel and aluminum industry wastes, as well as zinc smelter residues. Thermal treatment of these solid waste streams is intended to produce a metallic product along with nonhazardous glass or slag products.

  5. Utility-scale photovoltaic concentrators

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The photovoltaics concentrators section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  6. High-efficiency, monolithic, multi-bandgap, tandem photovoltaic...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles ... High-efficiency, monolithic, multi-bandgap, tandem photovoltaic energy converters United ...

  7. Sandia Energy - Photovoltaic (PV) Regional Test Center (RTC)...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Photovoltaic (PV) Regional Test Center (RTC) Website Goes Live Home Renewable Energy Energy Partnership News SunShot News & Events Photovoltaic Solar National Solar Thermal Test...

  8. Grid-Interactive Electric Vehicle DC-Link Photovoltaic Charging System -

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Grid-Connected Renewable Energy Systems Grid-Connected Renewable Energy Systems When connecting a home energy system to the electric grid, research and consider equipment required as well as your power provider’s requirements and agreements. | Photo courtesy of Solar Design Associates, Inc. When connecting a home energy system to the electric grid, research and consider equipment required as well as your power provider's requirements and agreements. | Photo courtesy of Solar Design

  9. Low-cost, Modular, Building-integrated Photovoltaic-Thermal Collector -

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    About the Geothermal Technologies Office » Low-Temperature and Coproduced Low-Temperature and Coproduced A new high efficiency expander design at the Beowawe Flash plant utilizes optimizes low temperature geothermal fluids to generate an additional 2.5 MW of electric power. A new high efficiency expander design at the Beowawe Flash plant utilizes optimizes low temperature geothermal fluids to generate an additional 2.5 MW of electric power. What are Low-Temperature and Coproduced Resources?

  10. Hybrid solar thermal-photovoltaic systems demonstration, Phase I and II. Final technical progress report, July 5, 1979-December 1982

    SciTech Connect (OSTI)

    Loferski, J.J.

    1983-12-01

    The purpose of the project is to investigate a system based on combined photovoltaic/thermal (PV/T) panels to supply the energy needs of a small single family residence. The system finally selected and constructed uses PV/T panels which utilize air as the heat transfer medium. Optimization of thermal performance was accomplished by attaching metal fins to the back surface of each cell which significantly increased the heat transfer coefficient from the solar cells to the air stream. The other major components of the selected system are an air-to-air heat pump, a rock bin thermal energy storage bin, a synchronous dc-to-ac converter, a microprocessor to control the system, a heat exchanger for the domestic hot water system and of course the building itself which is a one story, well insulated structure having a floor area of 1200 ft/sup 2/. A prototype collector was constructed and tested. Based on this experience, twenty collectors, containing 2860 four inch diameter solar cells, were constructed and installed on the building. Performance of the system was simulated using a TRNSYS-derived program, modified to accommodate PV/T panels and to include the particular components included in the selected system. Simulation of the performance showed that about 65 percent of the total annual energy needs of the building would be provided by the PV/T system. Of this total, about one half is produced at a time when it can be used in the building and one half must be sold back to the utility.

  11. Residential Photovoltaic Solar Panels

    Office of Energy Efficiency and Renewable Energy (EERE)

    This b-roll footage shows exteriors of two Colorado residences that use photovoltaic panels to collect renewable solar energy, thereby reducing their dependence on external electric power. Net...

  12. Thermal/Electrical Modeling for Abuse-Tolerant Design of Li-Ion Modules (Presentation)

    SciTech Connect (OSTI)

    Smith, K.; Kim, G.-H.; Pesaran, A.; Darcy, E.

    2008-11-01

    To help design safe, high-performing batteries, NREL and NASA created and verified a new multicell math model capturing electrical-thermal interactions of cells with PTC devices during thermal abuse.

  13. Portable thermo-photovoltaic power source

    DOE Patents [OSTI]

    Zuppero, Anthony C.; Krawetz, Barton; Barklund, C. Rodger; Seifert, Gary D.

    1997-01-14

    A miniature thermo-photovoltaic (TPV) device for generation of electrical power for use in portable electronic devices. A TPV power source is constructed to provide a heat source chemical reactor capable of using various fuels, such as liquid hydrocarbons, including but not limited to propane, LPG, butane, alcohols, oils and diesel fuels to generate a source of photons. A reflector dish guides misdirected photon energy from the photon source toward a photovoltaic array. A thin transparent protector sheet is disposed between the photon source and the array to reflect back thermal energy that cannot be converted to electricity, and protect the array from thermal damage. A microlens disposed between the protector sheet and the array further focuses the tailored band of photon energy from the photon source onto an array of photovoltaic cells, whereby the photon energy is converted to electrical power. A heat recuperator removes thermal energy from reactor chamber exhaust gases, preferably using mini- or micro-bellows to force air and fuel past the exhaust gases, and uses the energy to preheat the fuel and oxidant before it reaches the reactor, increasing system efficiency. Mini- or micro-bellows force ambient air through the system both to supply oxidant and to provide cooling. Finally, an insulator, which is preferably a super insulator, is disposed around the TPV power source to reduce fuel consumption, and to keep the TPV power source cool to the touch so it can be used in hand-held devices.

  14. Solar electric thermal hydronic (SETH) product development project

    SciTech Connect (OSTI)

    Stickney, B.L.; Sindelar, A.

    2000-10-01

    Positive Energy, Inc. received a second Technology Maturation and Commercialization Project Subcontract during the 1999 round of awards. This Subcontract is for the purpose of further aiding Positive Energy, Inc. in preparing its Solar Electric Thermal Hydronic (SETH) control and distribution package for market introduction. All items of this subcontracted project have been successfully completed. This Project Report contains a summary of the progress made during the SETH Development Project (the Project) over the duration of the 1999 Subcontract. It includes a description of the effort performed and the results obtained in the pursuit of intellectual property protection and development of product documentation for the end users. This report also summarizes additional efforts taken by and for the SETH project outside of the Subcontract. It presents a chronology of activities over the duration of the Subcontract, and includes a few selected sample copies of documents offered as evidence of their success.

  15. Electrical and Thermal Transport Optimization of High Efficient n-type Skutterudites

    Energy.gov [DOE]

    Work on optimizing electrical and thermal transport properties of n-type skutterudites via a multiple-element-void-filling approach is presented.

  16. Composition and Manufacturing Effects on Electrical Properties of Li/FeS2 Thermal Battery Cathodes

    SciTech Connect (OSTI)

    Reinholz, Emilee Lolita

    2015-10-01

    The purpose of this thesis was to better understand the relationship between processing, microstructure, and electrical conductivity of LiFeS2 thermal battery cathodes.

  17. Thin film photovoltaic cell

    DOE Patents [OSTI]

    Meakin, John D.; Bragagnolo, Julio

    1982-01-01

    A thin film photovoltaic cell having a transparent electrical contact and an opaque electrical contact with a pair of semiconductors therebetween includes utilizing one of the electrical contacts as a substrate and wherein the inner surface thereof is modified by microroughening while being macro-planar.

  18. Integrated optical and electrical modeling of plasmon-enhanced thin film photovoltaics: A case-study on organic devices

    SciTech Connect (OSTI)

    Rourke, Devin; Ahn, Sungmo; Nardes, Alexandre M.; Lagemaat, Jao van de; Kopidakis, Nikos; Park, Wounjhang

    2014-09-21

    The nanoscale light control for absorption enhancement of organic photovoltaic (OPV) devices inevitably produces strongly non-uniform optical fields. These non-uniformities due to the localized optical modes are a primary route toward absorption enhancement in OPV devices. Therefore, a rigorous modeling tool taking into account the spatial distribution of optical field and carrier generation is necessary. Presented here is a comprehensive numerical model to describe the coupled optical and electrical behavior of plasmon-enhanced polymer:fullerene bulk heterojunction (BHJ) solar cells. In this model, a position-dependent electron-hole pair generation rate that could become highly non-uniform due to photonic nanostructures is directly calculated from the optical simulations. By considering the absorption and plasmonic properties of nanophotonic gratings included in two different popular device architectures, and applying the Poisson, current continuity, and drift/diffusion equations, the model predicts quantum efficiency, short-circuit current density, and desired carrier mobility ratios for bulk heterojunction devices incorporating nanostructures for light management. In particular, the model predicts a significant degradation of device performance when the carrier species with lower mobility are generated far from the collecting electrode. Consequently, an inverted device architecture is preferred for materials with low hole mobility. This is especially true for devices that include plasmonic nanostructures. Additionally, due to the incorporation of a plasmonic nanostructure, we use simulations to theoretically predict absorption band broadening of a BHJ into energies below the band gap, resulting in a 4.8% increase in generated photocurrent.

  19. Distributed Solar Photovoltaics for Electric Vehicle Charging: Regulatory and Policy Considerations (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-09-01

    Increasing demand for electric vehicle (EV) charging provides an opportunity for market expansion of distributed solar technology. A major barrier to the current deployment of solar technology for EV charging is a lack of clear information for policy makers, utilities and potential adopters. This paper introduces the pros and cons of EV charging during the day versus at night, summarizes the benefits and grid implications of combining solar and EV charging technologies, and offers some regulatory and policy options available to policy makers and regulators wanting to incentivize solar EV charging.

  20. Analysis of Large- Capacity Water Heaters in Electric Thermal Storage Programs

    SciTech Connect (OSTI)

    Cooke, Alan L.; Anderson, David M.; Winiarski, David W.; Carmichael, Robert T.; Mayhorn, Ebony T.; Fisher, Andrew R.

    2015-03-17

    This report documents a national impact analysis of large tank heat pump water heaters (HPWH) in electric thermal storage (ETS) programs and conveys the findings related to concerns raised by utilities regarding the ability of large-tank heat pump water heaters to provide electric thermal storage services.

  1. Hybrid Photovoltaic/Thermal Systems with a Solar-Assisted Heat Pump

    SciTech Connect (OSTI)

    Kush, E. A.

    1980-01-01

    An outline of possibilities for effective use of PV/T collectors with a Solar Assisted Heat Pump is given. A quantitative analysis of the performance and cost of the various configurations as a function of regional climates, using up-to-date results from solar heat pump and PV/T collector studies, will be required for more definitive assessment; and it is recommended that these be undertaken in the PV/T Program. Particular attention should be paid to development of high performance PV/T collectors, matching of heat pump electrical system to PV array and power conditioning characteristics, and optimization of storage options for cost effectiveness and utility impact.

  2. The DOE Solar Thermal Electric Program Concentrator Technology Project

    SciTech Connect (OSTI)

    Mancini, T.R.

    1991-01-01

    The project comprises the development of concentrating solar collectors, heliostats and dishes, and the development of optical materials. Because the solar concentrator represents from 40 to 60% of the cost of a solar thermal electric system, the continued development of high-performance concentrators is very important to the commercial viability of these systems. The project is currently testing two large area heliostats, the SPECO 200 m{sup 2} heliostat and the ATS 150 m{sup 2} heliostat and also trying to reduce the cost of the heliostats through the development of stretched-membrane heliostats. Stretched-membrane heliostats are made by attaching thin metal membranes to the two sides of a circular, metal ring. A slight vacuum in the plenum between the two membranes is used to focus the heliostat. The optical surface is provided by a silver-acrylic film, ECP 305. A prototype 100 m{sup 2} commercial unit has been built and is currently being tested. Parabolic dish concentrators are under development for use on dish-Stirling electric systems. The state-of-the-art dish is the McDAC/SCE faceted glass concentrator. Because of the success of stretched-membrane technology for heliostats, the project applied the technology to parabolic dish development and is currently designing a near-term, faceted, stretched-membrane dish. The current thrust of the program in optical materials development is the development of a low-cost, high-performance, silver-acrylic film. 3M's ECP 305 has demonstrated substantial improvement over previous films in its resistance to corrosion, longer life. An experimental film, developed at SERI, has promise for further improving the lifetime of the ECP 305. The project is currently investigating solutions to the problem of separation between the silver and acrylic layers of the film in the presence of water.

  3. Characterization of Contact and Bulk Thermal Resistance of Laminations for Electric Machines

    SciTech Connect (OSTI)

    Cousineau, J. Emily; Bennion, Kevin; DeVoto, Doug; Mihalic, Mark; Narumanchi, Sreekant

    2015-06-30

    The ability to remove heat from an electric machine depends on the passive stack thermal resistances within the machine and the convective cooling performance of the selected cooling technology. This report focuses on the passive thermal design, specifically properties of the stator and rotor lamination stacks. Orthotropic thermal conductivity, specific heat, and density are reported. Four materials commonly used in electric machines were tested, including M19 (29 and 26 gauge), HF10, and Arnon 7 materials.

  4. Electric Motor Thermal Management R&D; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Bennion, Kevin

    2015-06-09

    Thermal constraints place significant limitations on how electric motors ultimately perform. Without the ability to remove heat, the motor cannot operate without sacrificing performance, efficiency, and reliability. Finite element analysis and computational fluid dynamics modeling approaches are being increasingly utilized in the design and analysis of electric motors. As the models become more sophisticated, it is important to have detailed and accurate knowledge of both the passive thermal performance and the active cooling performance. In this work, we provide an overview of research characterizing both passive and active thermal elements related to electric motor thermal management. To better characterize the passive thermal performance, work is being performed to measure motor material thermal properties and thermal contact resistances. The active cooling performance of automatic transmission fluid (ATF) jets is also being measured to better understand the heat transfer coefficients of ATF impinging on motor copper windings.

  5. Photovoltaic Cell Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Cell Basics Photovoltaic Cell Basics August 16, 2013 - 4:53pm Addthis Photovoltaic (PV) cells, or solar cells, take advantage of the photoelectric effect to produce electricity. PV ...

  6. Integrated optical and electrical modeling of plasmon-enhanced thin film photovoltaics: A case-study on organic devices

    SciTech Connect (OSTI)

    Rourke, D; Ahn, S; Nardes, AM; van de Lagemaat, J; Kopidakis, N; Park, W

    2014-09-21

    The nanoscale light control for absorption enhancement of organic photovoltaic (OPV) devices inevitably produces strongly non-uniform optical fields. These non-uniformities due to the localized optical modes are a primary route toward absorption enhancement in OPV devices. Therefore, a rigorous modeling tool taking into account the spatial distribution of optical field and carrier generation is necessary. Presented here is a comprehensive numerical model to describe the coupled optical and electrical behavior of plasmon-enhanced polymer: fullerene bulk heterojunction (BHJ) solar cells. In this model, a position-dependent electron-hole pair generation rate that could become highly non-uniform due to photonic nanostructures is directly calculated from the optical simulations. By considering the absorption and plasmonic properties of nanophotonic gratings included in two different popular device architectures, and applying the Poisson, current continuity, and drift/diffusion equations, the model predicts quantum efficiency, short-circuit current density, and desired carrier mobility ratios for bulk heterojunction devices incorporating nanostructures for light management. In particular, the model predicts a significant degradation of device performance when the carrier species with lower mobility are generated far from the collecting electrode. Consequently, an inverted device architecture is preferred for materials with low hole mobility. This is especially true for devices that include plasmonic nanostructures. Additionally, due to the incorporation of a plasmonic nanostructure, we use simulations to theoretically predict absorption band broadening of a BHJ into energies below the band gap, resulting in a 4.8% increase in generated photocurrent. (C) 2014 AIP Publishing LLC.

  7. Polymer Hybrid Photovoltaics for Inexpensive Electricity Generation: Final Technical Report, 1 September 2001--30 April 2006

    SciTech Connect (OSTI)

    Carter, S. A.

    2006-07-01

    The project goal is to understand the operating mechanisms underlying the performance of polymer hybrid photovoltaics to enable the development of a photovoltaic with a maximum power conversion efficiency over cost ratio that is significantly greater than current PV technologies. Plastic or polymer-based photovoltaics can have significant cost advantages over conventional technologies in that they are compatible with liquid-based plastic processing and can be assembled onto plastic under atmospheric conditions (ambient temperature and pressure) using standard printing technologies, such as reel-to-reel and screen printing. Moreover, polymer-based PVs are lightweight, flexible, and largely unbreakable, which make shipping, installation, and maintenance simpler. Furthermore, a numerical simulation program was developed (in collaboration with IBM) to fully simulate the performance of multicomponent polymer photovoltaic devices, and a manufacturing method was developed (in collaboration with Add-vision) to inexpensively manufacture larger-area devices.

  8. Photovoltaics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Photovoltaics Photovoltaics The SunShot Initiative supports the research and development of photovoltaic (PV) technologies to improve efficiency and reliability and to lower manufacturing costs in order to make solar electricity cost-competitive with other sources of energy by 2020. As of November 2015, four years into the decade-long SunShot Initiative, the solar industry is about 70% of the way to achieving SunShot's cost target of $0.06 per kilowatt-hour for utility-scale PV (based on 2010

  9. Asphaltene based photovoltaic devices

    DOE Patents [OSTI]

    Chianelli, Russell R.; Castillo, Karina; Gupta, Vipin; Qudah, Ali M.; Torres, Brenda; Abujnah, Rajib E.

    2016-03-22

    Photovoltaic devices and methods of making the same, are disclosed herein. The cell comprises a photovoltaic device that comprises a first electrically conductive layer comprising a photo-sensitized electrode; at least one photoelectrochemical layer comprising metal-oxide particles, an electrolyte solution comprising at least one asphaltene fraction, wherein the metal-oxide particles are optionally dispersed in a surfactant; and a second electrically conductive layer comprising a counter-electrode, wherein the second electrically conductive layer comprises one or more conductive elements comprising carbon, graphite, soot, carbon allotropes or any combinations thereof.

  10. Photovoltaics Fact Sheet

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Verde National Park in Colorado is the home of this PV array, where it provides energy for the visitor center. Photo Courtesy: Department of Energy Photovoltaics The U.S. Department of Energy (DOE)'s Solar Energy Technologies Office works with industry, academia, national laboratories, and other government agencies to advance solar photovoltaics (PV), which is the direct conversion of sunlight into electricity by a semiconductor, in support of the goals of the SunShot Initiative. SunShot

  11. Multiple gap photovoltaic device

    DOE Patents [OSTI]

    Dalal, Vikram L.

    1981-01-01

    A multiple gap photovoltaic device having a transparent electrical contact adjacent a first cell which in turn is adjacent a second cell on an opaque electrical contact, includes utilizing an amorphous semiconductor as the first cell and a crystalline semiconductor as the second cell.

  12. Thin film photovoltaic panel and method

    SciTech Connect (OSTI)

    Ackerman, B.; Albright, S.P.; Jordan, J.F.

    1991-06-11

    This patent describes an improved stability photovoltaic panel. It comprises photovoltaic cells each having polycrystalline thin film layers, each of the thin film layers respectively deposited on a common vitreous substrate for allowing light to pass therethrough to reach a photovoltaic heterojunction formed by at least two of the thin film layers, at least one of the film layers forming the photovoltaic heterojunction for each of the photovoltaic cells, each of the photovoltaic cells lying within a plane substantially parallel to an interior planar surface of the vitreous substrate, each of the photovoltaic cells being connected electrically in series to pass electrical current from the photovoltaic panel, a pliable sheet material backcap opposite the vitreous substrate with respect to the photovoltaic cells and spaced from the photovoltaic cells so as to form a substantially planar spacing between the photovoltaic cells and an interior surface of the sheet material backcap, a perimeter portion of the sheet material backcap having a bend for positioning an edge strip of the sheet material backcap spaced from the interior surface of the backcap to form the planar spacing, the edge strip forming a planar surface parallel with a sealingly engaging the vitreous substrate for forming a fluid-tight seal with the vitreous substrate about the perimeter of the photovoltaic cells for protecting the photovoltaic cells from elements exterior of the photovoltaic panel, and a selected desiccant filling substantially the planar spacing for preventing water vapor within the planar spacing from adversely affecting the photovoltaic cells.

  13. NREL Works to Increase Electric Vehicle Efficiency Through Enhanced Thermal Management (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-06-01

    Researchers at NREL are providing new insight into how heating and cooling systems affect the distance that electric vehicles can travel on a single charge. Electric vehicle range can be reduced by as much as 68% per charge because of climate-control demands. NREL engineers are investigating opportunities to change this dynamic and increase driving range by improving vehicle thermal management. NREL experts are collaborating with automotive industry partners to investigate promising thermal management technologies and strategies, including zone-based cabin temperature controls, advanced heating and air conditioning controls, seat-based climate controls, vehicle thermal preconditioning, and thermal load reduction technologies.

  14. Optimizing Carbon Nanotube Contacts for Use in Organic Photovoltaics: Preprint

    SciTech Connect (OSTI)

    Barnes, T. M.; Blackburn, J. L.; Tenent, R. C.; Morfa, A.; Heben, M.; Coutts, T. J.

    2008-05-01

    This report describes research on optimizing carbon nanotube networks for use as transparent electrical contacts (TCs) in organic photovoltaics (OPV).

  15. Method for transferring thermal energy and electrical current in thin-film electrochemical cells

    DOE Patents [OSTI]

    Rouillard, Roger; Domroese, Michael K.; Hoffman, Joseph A.; Lindeman, David D.; Noel, Joseph-Robert-Gaetan; Radewald, Vern E.; Ranger, Michel; Sudano, Anthony; Trice, Jennifer L.; Turgeon, Thomas A.

    2003-05-27

    An improved electrochemical generator is disclosed. The electrochemical generator includes a thin-film electrochemical cell which is maintained in a state of compression through use of an internal or an external pressure apparatus. A thermal conductor, which is connected to at least one of the positive or negative contacts of the cell, conducts current into and out of the cell and also conducts thermal energy between the cell and thermally conductive, electrically resistive material disposed on a vessel wall adjacent the conductor. The thermally conductive, electrically resistive material may include an anodized coating or a thin sheet of a plastic, mineral-based material or conductive polymer material. The thermal conductor is fabricated to include a resilient portion which expands and contracts to maintain mechanical contact between the cell and the thermally conductive material in the presence of relative movement between the cell and the wall structure. The electrochemical generator may be disposed in a hermetically sealed housing.

  16. Graphite-based photovoltaic cells

    DOE Patents [OSTI]

    Lagally, Max; Liu, Feng

    2010-12-28

    The present invention uses lithographically patterned graphite stacks as the basic building elements of an efficient and economical photovoltaic cell. The basic design of the graphite-based photovoltaic cells includes a plurality of spatially separated graphite stacks, each comprising a plurality of vertically stacked, semiconducting graphene sheets (carbon nanoribbons) bridging electrically conductive contacts.

  17. Photovoltaic device

    DOE Patents [OSTI]

    Reese, Jason A.; Keenihan, James R.; Gaston, Ryan S.; Kauffmann, Keith L.; Langmaid, Joseph A.; Lopez, Leonardo C.; Maak, Kevin D.; Mills, Michael E.; Ramesh, Narayan; Teli, Samar R.

    2015-06-02

    The present invention is premised upon an improved photovoltaic device ("PV device"), more particularly to an improved photovoltaic device with a multilayered photovoltaic cell assembly and a body portion joined at an interface region and including an intermediate layer, at least one interconnecting structural member, relieving feature, unique component geometry, or any combination thereof.

  18. Photovoltaic device

    SciTech Connect (OSTI)

    Reese, Jason A.; Keenihan, James R.; Gaston, Ryan S.; Kauffmann, Keith L.; Langmaid, Joseph A.; Lopez, Leonardo C.; Maak, Kevin D.; Mills, Michael E.; Ramesh, Narayan; Teli, Samar R.

    2015-09-01

    The present invention is premised upon an improved photovoltaic device ("PV device"), more particularly to an improved photovoltaic device (10) with a multilayered photovoltaic cell assembly (100) and a body portion (200) joined at an interface region (410) and including an intermediate layer (500), at least one interconnecting structural member (1500), relieving feature (2500), unique component geometry, or any combination thereof.

  19. Characterization of Contact and Bulk Thermal Resistance of Laminations for Electric Machines

    SciTech Connect (OSTI)

    Cousineau, Emily; Bennion, Kevin; Devoto, Douglas; Naramanchi, Sreekant

    2015-07-06

    Thermal management for electric motors is important as the automotive industry continues to transition to more electrically dominant vehicle propulsion systems. The transition to more electrically dominant propulsion systems leads to higher-power duty cycles for electric-drive systems. Thermal constraints place significant limitations on how electric motors ultimately perform. As thermal management improves, there will be a direct trade-off among motor performance, efficiency, cost, and the sizing of electric motors to operate within the thermal constraints. During the development of thermal finite element analysis models and computational fluid dynamics models for electric motors, it was found that there was a lack of open literature detailing the thermal properties of key materials common in electric motors that are significant in terms of heat removal. The lack of available literature, coupled with the strong interest from industry in the passive-stack thermal measurement results, led to experiments to characterize the thermal contact resistance between motor laminations. We examined four lamination materials, including the commonly used 26 gauge and 29 gauge M19 materials, the HF10 and Arnon 7 materials. These latter two materials are thinner and reduce eddy currents responsible for core losses. We measured the thermal conductivity of the lamination materials and the thermal contact resistance between laminations in a stack, as well as investigated factors affecting contact resistance between laminations such as the contact pressure and surface finish. Lamination property data will be provided and we also develop a model to estimate the through-stack thermal conductivity for materials beyond those that were directly tested in this work. For example, at a clamping pressure of 138 kPa, the 29 gauge M19 material has a through-stack thermal conductivity of 1.68 W/m-K, and the contact resistance between laminations was measured to be 193 mm^2-K/W. The measured bulk

  20. Interim performance criteria for photovoltaic energy systems. [Glossary included

    SciTech Connect (OSTI)

    DeBlasio, R.; Forman, S.; Hogan, S.; Nuss, G.; Post, H.; Ross, R.; Schafft, H.

    1980-12-01

    This document is a response to the Photovoltaic Research, Development, and Demonstration Act of 1978 (P.L. 95-590) which required the generation of performance criteria for photovoltaic energy systems. Since the document is evolutionary and will be updated, the term interim is used. More than 50 experts in the photovoltaic field have contributed in the writing and review of the 179 performance criteria listed in this document. The performance criteria address characteristics of present-day photovoltaic systems that are of interest to manufacturers, government agencies, purchasers, and all others interested in various aspects of photovoltaic system performance and safety. The performance criteria apply to the system as a whole and to its possible subsystems: array, power conditioning, monitor and control, storage, cabling, and power distribution. They are further categorized according to the following performance attributes: electrical, thermal, mechanical/structural, safety, durability/reliability, installation/operation/maintenance, and building/site. Each criterion contains a statement of expected performance (nonprescriptive), a method of evaluation, and a commentary with further information or justification. Over 50 references for background information are also given. A glossary with definitions relevant to photovoltaic systems and a section on test methods are presented in the appendices. Twenty test methods are included to measure performance characteristics of the subsystem elements. These test methods and other parts of the document will be expanded or revised as future experience and needs dictate.

  1. Multiband semiconductor compositions for photovoltaic devices...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual...

  2. Electric Drive Vehicle Level Control Development Under Various Thermal

    Energy.gov (indexed) [DOE]

    Conditions | Department of Energy vss070_kim_2012_o.pdf (1.63 MB) More Documents & Publications Vehicle Technologies Office Merit Review 2014: Vehicle Level Model and Control Development and Validation Under Various Thermal Conditions Vehicle Technologies Office Merit Review 2015: Fuel Displacement Potential of Advanced Technologies under Different Thermal Conditions Advanced Technology Vehicle Lab Benchmarking - Level 2 (in-depth)

  3. Photovoltaics | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Photovoltaics (Redirected from Solar Photovoltaics) Jump to: navigation, search (The following text is derived from NREL's description of photovoltaic technology.)1 Photovoltaic...

  4. Photovoltaics | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Photovoltaics (Redirected from Photovoltaic) Jump to: navigation, search (The following text is derived from NREL's description of photovoltaic technology.)1 Photovoltaic Panels...

  5. NREL: Photovoltaics Research - News Release Archives

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    including renewable electricity generation, renewable energy development, clean energy ... that currently cannot host on-site photovoltaic (PV) systems shared solar ...

  6. Photovoltaic Crystalline Silicon Cell Basics | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Crystalline Silicon Cell Basics Photovoltaic Crystalline Silicon Cell Basics August 20, 2013 - 2:00pm Addthis To separate electrical charges, crystalline silicon cells must have a ...

  7. Inverted, semitransparent small molecule photovoltaic cells ...

    Office of Scientific and Technical Information (OSTI)

    small molecule photovoltaic cells Authors: Xiao, Xin 1 ; Lee, Kyusang 1 ; Forrest, Stephen R. 2 + Show Author Affiliations Department of Electrical Engineering and Computer...

  8. Small Solar Electric Systems | Department of Energy

    Energy Savers

    Electricity & Fuel Buying & Making Electricity Small Solar Electric Systems Small Solar Electric Systems A small solar electric or photovoltaic system can be a reliable and ...

  9. Rapid screening buffer layers in photovoltaics

    SciTech Connect (OSTI)

    List, III, Frederick Alyious; Tuncer, Enis

    2014-09-09

    An apparatus and method of testing electrical impedance of a multiplicity of regions of a photovoltaic surface includes providing a multi-tipped impedance sensor with a multiplicity of spaced apart impedance probes separated by an insulating material, wherein each impedance probe includes a first end adapted for contact with a photovoltaic surface and a second end in operable communication with an impedance measuring device. The multi-tipped impedance sensor is used to contact the photovoltaic surface and electrical impedance of the photovoltaic material is measured between individual first ends of the probes to characterize the quality of the photovoltaic surface.

  10. Composition and Manufacturing Effects on Electrical Conductivity of Li/FeS 2 Thermal Battery Cathodes

    DOE PAGES-Beta [OSTI]

    Reinholz, Emilee L.; Roberts, Scott A.; Apblett, Christopher A.; Lechman, Jeremy B.; Schunk, P. Randall

    2016-06-11

    The electrical conductivity is key to the performance of thermal battery cathodes. In this work we present the effects of manufacturing and processing conditions on the electrical conductivity of Li/FeS2 thermal battery cathodes. Finite element simulations were used to compute the conductivity of three-dimensional microcomputed tomography cathode microstructures and compare results to experimental impedance spectroscopy measurements. A regression analysis reveals a predictive relationship between composition, processing conditions, and electrical conductivity; a trend which is largely erased after thermally-induced deformation. Moreover, the trend applies to both experimental and simulation results, although is not as apparent in simulations. This research is amore » step toward a more fundamental understanding of the effects of processing and composition on thermal battery component microstructure, properties, and performance.« less

  11. EA-341 Photovoltaic Technologies, LLC | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    1 Photovoltaic Technologies, LLC EA-341 Photovoltaic Technologies, LLC Order authorizing Photovoltaic Technologies, LLC to export electric energy to Mexico EA- 341 Photovoltaic Technologies, LLC (2.39 MB) More Documents & Publications EA-324 Emera Energy Services Subsidiary No. 4 LLC EA-344 Twin Cities Power-Canada, LLC EA-353 Boralex Ashland

  12. The Third Way of Thermal-Electric Conversion beyond Seebeck and Pyroelectric Effects

    SciTech Connect (OSTI)

    Ren, Jie

    2014-02-14

    Thermal-electric conversion is crucial for smart energy control and harvesting, such as thermal sensing and waste heat recovering. So far, people are aware of only two ways of direct thermal-electric conversion, Seebeck and pyroelectric effects, each with distinct working conditions and limitations. Here, we report the third way of thermal-electric conversion beyond Seebeck and pyroelectric effects. In contrast to Seebeck effect that requires spatial temperature difference, the-third-way converts the time-dependent ambient temperature fluctuation into electricity, similar to the behavior of pyroelectricity. However, the-third-way is also distinct from pyroelectric effect in the sense that it does not require polar materials but applies to general conducting systems. We demonstrate that the-third-way results from the temperature-fluctuation-induced dynamical charge redistribution. It is a consequence of the fundamental nonequilibrium thermodynamics and has a deep connection to the topological phase in quantum mechanics. Our findings expand our knowledge and provide new means of thermal-electric energy harvesting.

  13. Computer modeling of electrical and thermal performance during bipolar pulsed radiofrequency for pain relief

    SciTech Connect (OSTI)

    Pérez, Juan J.; Pérez-Cajaraville, Juan J.; Muñoz, Víctor; Berjano, Enrique

    2014-07-15

    Purpose: Pulsed RF (PRF) is a nonablative technique for treating neuropathic pain. Bipolar PRF application is currently aimed at creating a “strip lesion” to connect the electrode tips; however, the electrical and thermal performance during bipolar PRF is currently unknown. The objective of this paper was to study the temperature and electric field distributions during bipolar PRF. Methods: The authors developed computer models to study temperature and electric field distributions during bipolar PRF and to assess the possible ablative thermal effect caused by the accumulated temperature spikes, along with any possible electroporation effects caused by the electrical field. The authors also modeled the bipolar ablative mode, known as bipolar Continuous Radiofrequency (CRF), in order to compare both techniques. Results: There were important differences between CRF and PRF in terms of electrical and thermal performance. In bipolar CRF: (1) the initial temperature of the tissue impacts on temperature progress and hence on the thermal lesion dimension; and (2) at 37 °C, 6-min of bipolar CRF creates a strip thermal lesion between the electrodes when these are separated by a distance of up to 20 mm. In bipolar PRF: (1) an interelectrode distance shorter than 5 mm produces thermal damage (i.e., ablative effect) in the intervening tissue after 6 min of bipolar RF; and (2) the possible electroporation effect (electric fields higher than 150 kV m{sup −1}) would be exclusively circumscribed to a very small zone of tissue around the electrode tip. Conclusions: The results suggest that (1) the clinical parameters considered to be suitable for bipolar CRF should not necessarily be considered valid for bipolar PRF, and vice versa; and (2) the ablative effect of the CRF mode is mainly due to its much greater level of delivered energy than is the case in PRF, and therefore at same applied energy levels, CRF, and PRF are expected to result in same outcomes in terms of

  14. Photovoltaic product directory and buyers guide

    SciTech Connect (OSTI)

    Watts, R.L.; Smith, S.A.; Mazzucchi, R.P.

    1981-06-01

    Basic information on photovoltaic conversion technology is provided for those unfamiliar with the field. Various types of photovoltaic products and systems currently available off-the-shelf are described. These include products without batteries, battery chargers, power packages, home electric systems, and partial systems. Procedures are given for designing a photovoltaic system from scratch. A few custom photovoltaic systems are described, and a list is compiled of photovoltaic firms which can provide custom systems. Guidance is offered for deciding whether or not to use photovoltaic products. A variety of installations are described and their performance is appraised by the owners. Information is given on various financial incentives available from state and federal governments. Sources of additional information on photovoltaics are listed. A matrix is provided indicating the sources of various types of photovoltaic products. The addresses of suppliers are listed. (LEW)

  15. Customer-Economics of Residential Photovoltaic Systems: The Impact of High Renewable Energy Penetrations on Electricity Bill Savings with Net Metering

    Energy.gov [DOE]

    Residential photovoltaic (PV) systems in the US are often compensated at the customer's underlying retail electricity rate through net metering. There is growing interest in understanding how potential changes in rates may impact the value of bill savings from PV. This article uses a production cost and capacity expansion model to project California hourly wholesale electricity market prices under a reference scenario and a 33% renewables scenario. Second, based on the wholesale electricity market prices generated by the model, the article develops retail rates (i.e., flat, time-of-use, and real-time pricing) for each future scenario based on standard retail rate design principles. Finally, based on these retail rates, the bill savings from PV are estimated for 226 California residential customers under two types of net metering, for each scenario. The article finds that high renewable penetrations can drive substantial changes in residential retail rates and that these changes, together with variations in retail rate structures and PV compensation mechanisms, interact to place substantial uncertainty on the future value of bill savings from residential PV.

  16. EWEB- Solar Electric Program (Rebate)

    Energy.gov [DOE]

    The Eugene Water & Electric Board's (EWEB) Solar Electric Program offers financial incentives for residential, nonprofit, and government customers that generate electricity solar photovoltaic...

  17. Photovoltaic Subcontract Program

    SciTech Connect (OSTI)

    Surek, Thomas; Catalano, Anthony

    1993-03-01

    This report summarizes the fiscal year (FY) 1992 progress of the subcontracted photovoltaic (PV) research and development (R D) performed under the Photovoltaic Advanced Research and Development Project at the National Renewable Energy Laboratory (NREL)-formerly the Solar Energy Research Institute (SERI). The mission of the national PV program is to develop PV technology for large-scale generation of economically competitive electric power in the United States. The technical sections of the report cover the main areas of the subcontract program: the Crystalline Materials and Advanced Concepts project, the Polycrystalline Thin Films project, Amorphous Silicon Research project, the Photovoltaic Manufacturing Technology (PVMaT) project, PV Module and System Performance and Engineering project, and the PV Analysis and Applications Development project. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1992, and future research directions.

  18. Interband Cascade Photovoltaic Cells

    SciTech Connect (OSTI)

    Yang, Rui Q.; Santos, Michael B.; Johnson, Matthew B.

    2014-09-24

    In this project, we are performing basic and applied research to systematically investigate our newly proposed interband cascade (IC) photovoltaic (PV) cells [1]. These cells follow from the great success of infrared IC lasers [2-3] that pioneered the use of quantum-engineered IC structures. This quantum-engineered approach will enable PV cells to efficiently convert infrared radiation from the sun or other heat source, to electricity. Such cells will have important applications for more efficient use of solar energy, waste-heat recovery, and power beaming in combination with mid-infrared lasers. The objectives of our investigations are to: achieve extensive understanding of the fundamental aspects of the proposed PV structures, develop the necessary knowledge for making such IC PV cells, and demonstrate prototype working PV cells. This research will focus on IC PV structures and their segments for utilizing infrared radiation with wavelengths from 2 to 5 μm, a range well suited for emission by heat sources (1,000-2,000 K) that are widely available from combustion systems. The long-term goal of this project is to push PV technology to longer wavelengths, allowing for relatively low-temperature thermal sources. Our investigations address material quality, electrical and optical properties, and their interplay for the different regions of an IC PV structure. The tasks involve: design, modeling and optimization of IC PV structures, molecular beam epitaxial growth of PV structures and relevant segments, material characterization, prototype device fabrication and testing. At the end of this program, we expect to generate new cutting-edge knowledge in the design and understanding of quantum-engineered semiconductor structures, and demonstrate the concepts for IC PV devices with high conversion efficiencies.

  19. Asymptotic regimes for the electrical and thermal conductivities in dense plasmas

    SciTech Connect (OSTI)

    Faussurier, G. Blancard, C.

    2015-04-15

    We study the asymptotic regimes for the electrical and thermal conductivities in dense plasmas obtained by combining the Chester–Thellung–Kubo–Greenwood approach and the Kramers approximation [Faussurier et al., Phys. Plasmas 21, 092706 (2014)]. Non-degenerate and degenerate situations are considered. The Wiedemann–Franz law is obtained in the degenerate case.

  20. Thermal battery. [solid metal halide electrolytes with enhanced electrical conductance after a phase transition

    DOE Patents [OSTI]

    Carlsten, R.W.; Nissen, D.A.

    1973-03-06

    The patent describes an improved thermal battery whose novel design eliminates various disadvantages of previous such devices. Its major features include a halide cathode, a solid metal halide electrolyte which has a substantially greater electrical conductance after a phase transition at some temperature, and a means for heating its electrochemical cells to activation temperature.

  1. Analysis of Off-Board Powered Thermal Preconditioning in Electric Drive Vehicles: Preprint

    SciTech Connect (OSTI)

    Barnitt, R. A.; Brooker, A. D.; Ramroth, L.; Rugh , J.; Smith, K. A.

    2010-12-01

    Following a hot or cold thermal soak, vehicle climate control systems (air conditioning or heat) are required to quickly attain a cabin temperature comfortable to the vehicle occupants. In a plug-in hybrid electric or electric vehicle (PEV) equipped with electric climate control systems, the traction battery is the sole on-board power source. Depleting the battery for immediate climate control results in reduced charge-depleting (CD) range and additional battery wear. PEV cabin and battery thermal preconditioning using off-board power supplied by the grid or a building can mitigate the impacts of climate control. This analysis shows that climate control loads can reduce CD range up to 35%. However, cabin thermal preconditioning can increase CD range up to 19% when compared to no thermal preconditioning. In addition, this analysis shows that while battery capacity loss over time is driven by ambient temperature rather than climate control loads, concurrent battery thermal preconditioning can reduce capacity loss up to 7% by reducing pack temperature in a high ambient temperature scenario.

  2. Photovoltaics | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Photovoltaics Jump to: navigation, search (The following text is derived from NREL's description of photovoltaic technology.)1 Photovoltaic Panels Solar cells, also called...

  3. Photovoltaics | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    to: navigation, search (The following text is derived from NREL's description of photovoltaic technology.)1 Photovoltaic Panels Solar cells, also called photovoltaic (PV)...

  4. Electrical and thermal properties of polycrystalline Si thin films with phononic crystal nanopatterning for thermoelectric applications

    SciTech Connect (OSTI)

    Nomura, Masahiro; Kage, Yuta; Mller, David; Moser, Dominik; Paul, Oliver

    2015-06-01

    Electrical and thermal properties of polycrystalline Si thin films with two-dimensional phononic patterning were investigated at room temperature. Electrical and thermal conductivities for the phononic crystal nanostructures with a variety of radii of the circular holes were measured to systematically investigate the impact of the nanopatterning. The concept of phonon-glass and electron-crystal is valid in the investigated electron and phonon transport systems with the neck size of 80?nm. The thermal conductivity is more sensitive than the electrical conductivity to the nanopatterning due to the longer mean free path of the thermal phonons than that of the charge carriers. The values of the figure of merit ZT were 0.065 and 0.035, and the enhancement factors were 2 and 4 for the p-doped and n-doped phononic crystals compared to the unpatterned thin films, respectively, when the characteristic size of the phononic crystal nanostructure is below 100?nm. The greater enhancement factor of ZT for the n-doped sample seems to result from the strong phonon scattering by heavy phosphorus atoms at the grain boundaries.

  5. Design and Testing of a Thermal Storage System for Electric Vehicle Cabin Heating

    SciTech Connect (OSTI)

    Wang, Mingyu; WolfeIV, Edward; Craig, Timothy; LaClair, Tim J; Gao, Zhiming; Abdelaziz, Omar

    2016-01-01

    Without the waste heat available from the engine of a conventional automobile, electric vehicles (EVs) must provide heat to the cabin for climate control using energy stored in the vehicle. In current EV designs, this energy is typically provided by the traction battery. In very cold climatic conditions, the power required to heat the EV cabin can be of a similar magnitude to that required for propulsion of the vehicle. As a result, the driving range of an EV can be reduced very significantly during winter months, which limits consumer acceptance of EVs and results in increased battery costs to achieve a minimum range while ensuring comfort to the EV driver. To minimize the range penalty associated with EV cabin heating, a novel climate control system that includes thermal energy storage has been designed for use in EVs and plug-in hybrid electric vehicles (PHEVs). The system uses the stored latent heat of an advanced phase change material (PCM) to provide cabin heating. The PCM is melted while the EV is connected to the electric grid for charging of the electric battery, and the stored energy is subsequently transferred to the cabin during driving. To minimize thermal losses when the EV is parked for extended periods, the PCM is encased in a high performance insulation system. The electrical PCM-Assisted Thermal Heating System (ePATHS) was designed to provide enough thermal energy to heat the EV s cabin for approximately 46 minutes, covering the entire daily commute of a typical driver in the U.S.

  6. Tools for Designing Thermal Management of Batteries in Electric Drive Vehicles (Presentation)

    SciTech Connect (OSTI)

    Pesaran, A.; Keyser, M.; Kim, G. H.; Santhanagopalan, S.; Smith, K.

    2013-02-01

    Temperature has a significant impact on life, performance, and safety of lithium-ion battery technology, which is expected to be the energy storage of choice for electric drive vehicles (xEVs). High temperatures degrade Li-ion cells faster while low temperatures reduce power and energy capabilities that could have cost, reliability, range, or drivability implications. Thermal management of battery packs in xEVs is essential to keep the cells in the desired temperature range and also reduce cell-to-cell temperature variations, both of which impact life and performance. The value that the battery thermal management system provides in reducing battery life and improving performance outweighs its additional cost and complexity. Tools that are essential for thermal management of batteries are infrared thermal imaging, isothermal calorimetry, thermal conductivity meter and computer-aided thermal analysis design software. This presentation provides details of these tools that NREL has used and we believe are needed to design right-sized battery thermal management systems.

  7. Calcium/calcium chromate thermal battery and thermal battery assignment at the General Electric Neutron Devices Department

    SciTech Connect (OSTI)

    Neale, J.B.; Walton, R.D.

    1980-10-10

    A nontechnical overview of thermal battery design and fabrication methods is given, along with a description of the role of the General Electric Neutron Devices Department (GEND) in the Department of Energy's battery program. A thermal battery is a primary, reserve electrochemical power source; that is, it can be used only once and then for a relatively short period, measured in minutes. To energize the battery, an external electrical signal ignites a heat source in the battery to melt the electrolyte and initiate an electrochemical reaction. The battery is made up of several series-connected cells, each with an anode, a cathode, and a current collector. A cell's anode is calcium; its cathode is hexavalent chromium. The electrochemical reaction takes place when the electrolyte is melted by heat supplied from ignition of an iron-potassium perchlorate disk. Since no reaction occurs while the electrolyte is in the solid state, the battery does not deteriorate with time and has a shelf life exceeding 20 years. Presented are such critical battery operating characteristics as temperature, rise time, active life, current capacity, etc. Design factors described include size and shape, pellet density, ignition methods, anode construction, etc. These batteries are designed by Sandia National Laboratories, Albuquerque. GEND acts as a procurement agency and provides engineering support to suppliers. 18 figures.

  8. SERC Photovoltaics for Residential Buildings Webinar Transcript |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Photovoltaics for Residential Buildings Webinar Transcript SERC Photovoltaics for Residential Buildings Webinar Transcript A presentation sponsored by the U.S. Department of Energy about using solar photovoltaics (PV) systems to provide electricity for homes. 20110125_pv_webinar.pdf (109.9 KB) More Documents & Publications Sustainable Energy Resources for Consumers (SERC) - Solar Hot Water Solar Webinar Text Version TAP Webcast Transcript July-29, 2009

  9. Fact Sheet: Photovoltaics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Photovoltaics Fact Sheet: Photovoltaics The U.S. Department of Energy (DOE)'s Solar Energy Technologies Office works with industry, academia, national laboratories, and other government agencies to advance solar photovoltaics (PV), which is the direct conversion of sunlight into electricity by a semiconductor, in support of the goals of the SunShot Initiative. SunShot supports research and development to aggressively advance PV technology by improving efficiency and reliability and lowering

  10. Photovoltaics Research and Development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Research and Development Photovoltaics Research and Development PV-Activity areas-final-01.png The Photovoltaics (PV) program supports research and development projects that lower manufacturing costs, increase efficiency and performance, and improve reliability of PV technologies, in order to support the widespread deployment of electricity produced directly from sunlight ("photovoltaics"). The PV portfolio includes research directed toward the SunShot Initiative goals as well as

  11. Thermophotovoltaics | Solid State Solar Thermal Energy Conversion

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Thermophotovoltaics Solar Thermophotovoltaics (STPVs) are solar driven heat engines which extract electrical power from thermal radiation. The overall goal is to absorb and convert the broadband solar radiation spectrum into a narrowband thermal emission spectrum tuned to the spectral response of a photovoltaic cell (PV) [1]. STPVs are of significant interest as they have the potential to overcome the well-known Shockley-Queisser limit for single junction PV given sufficient spectral control.

  12. Reducing Residential Peak Electricity Demand with Mechanical Pre-Cooling of Building Thermal Mass

    SciTech Connect (OSTI)

    Turner, Will; Walker, Iain; Roux, Jordan

    2014-08-01

    This study uses an advanced airflow, energy and humidity modelling tool to evaluate the potential for residential mechanical pre-cooling of building thermal mass to shift electricity loads away from the peak electricity demand period. The focus of this study is residential buildings with low thermal mass, such as timber-frame houses typical to the US. Simulations were performed for homes in 12 US DOE climate zones. The results show that the effectiveness of mechanical pre-cooling is highly dependent on climate zone and the selected pre-cooling strategy. The expected energy trade-off between cooling peak energy savings and increased off-peak energy use is also shown.

  13. Decreasing Soft Costs for Solar Photovoltaics by Improving the Interconnection Process. A Case Study of Pacific Gas and Electric

    SciTech Connect (OSTI)

    Ardani, Kristen; Margolis, Robert

    2015-09-01

    As of the end of 2014, Pacific Gas and Electric (PG&E) had connected over 130,000 DG PV systems in its service territory, more than any other utility in the U.S. In this case study, we examine how PG&E achieved a faster, more efficient interconnection approval process despite rising application volumes.

  14. Solar Thermal Technologies Available for Licensing - Energy Innovation

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Portal Thermal Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Marketing Summaries (40) Success Stories (1) Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories Browse Solar Thermal

  15. Thermal Storage System for Electric Vehicle Cabin Heating Component and System Analysis

    SciTech Connect (OSTI)

    LaClair, Tim J; Gao, Zhiming; Abdelaziz, Omar; Wang, Mingyu; WolfeIV, Edward; Craig, Timothy

    2016-01-01

    Cabin heating of current electric vehicle (EV) designs is typically provided using electrical energy from the traction battery, since waste heat is not available from an engine as in the case of a conventional automobile. In very cold climatic conditions, the power required for space heating of an EV can be of a similar magnitude to that required for propulsion of the vehicle. As a result, its driving range can be reduced very significantly during the winter season, which limits consumer acceptance of EVs and results in increased battery costs to achieve a minimum range while ensuring comfort to the EV driver. To minimize the range penalty associated with EV cabin heating, a novel climate control system that includes thermal energy storage from an advanced phase change material (PCM) has been designed for use in EVs and plug-in hybrid electric vehicles (PHEVs). The present paper focuses on the modeling and analysis of this electrical PCM-Assisted Thermal Heating System (ePATHS) and is a companion to the paper Design and Testing of a Thermal Storage System for Electric Vehicle Cabin Heating. A detailed heat transfer model was developed to simulate the PCM heat exchanger that is at the heart of the ePATHS and was subsequently used to analyze and optimize its design. The results from this analysis were integrated into a MATLAB Simulink system model to simulate the fluid flow, pressure drop and heat transfer in all components of the ePATHS. The system model was then used to predict the performance of the climate control system in the vehicle and to evaluate control strategies needed to achieve the desired temperature control in the cabin. The analysis performed to design the ePATHS is described in detail and the system s predicted performance in a vehicle HVAC system is presented.

  16. Thermo-optically tuned photonic resonators with concurrent electrical connection and thermal isolation

    DOE Patents [OSTI]

    Lentine, Anthony L.; Kekatpure, Rohan Deodatta; Zortman, William A.; Savignon, Daniel J.

    2016-06-14

    A photonic resonator system is designed to use thermal tuning to adjust the resonant wavelength of each resonator in the system, with a separate tuning circuit associated with each resonator so that individual adjustments may be made. The common electrical ground connection between the tuning circuits is particularly formed to provide thermal isolation between adjacent resonators by including a capacitor along each return path to ground, where the presence of the capacitor's dielectric material provides the thermal isolation. The use of capacitively coupling necessarily requires the use of an AC current as an input to the heater element (conductor/resistor) of each resonator, where the RMS value of the AC signal is indicative of the amount of heat that is generated along the element and the degree of wavelength tuning that is obtained.

  17. Methods for Analyzing the Benefits and Costs of Distributed Photovoltaic Generation to the U.S. Electric Utility System

    SciTech Connect (OSTI)

    Denholm, P.; Margolis, R.; Palmintier, B.; Barrows, C.; Ibanez, E.; Bird, L.; Zuboy, J.

    2014-09-01

    This report outlines the methods, data, and tools that could be used at different levels of sophistication and effort to estimate the benefits and costs of DGPV. In so doing, we identify the gaps in current benefit-cost-analysis methods, which we hope will inform the ongoing research agenda in this area. The focus of this report is primarily on benefits and costs from the utility or electricity generation system perspective. It is intended to provide useful background information to utility and regulatory decision makers and their staff, who are often being asked to use or evaluate estimates of the benefits and cost of DGPV in regulatory proceedings. Understanding the technical rigor of the range of methods and how they might need to evolve as DGPV becomes a more significant contributor of energy to the electricity system will help them be better consumers of this type of information. This report is also intended to provide information to utilities, policy makers, PV technology developers, and other stakeholders, which might help them maximize the benefits and minimize the costs of integrating DGPV into a changing electricity system.

  18. Tianda Photovoltaic Co Ltd Yunnan Tianda Photovoltaic | Open...

    Open Energy Information (Open El) [EERE & EIA]

    Tianda Photovoltaic Co Ltd Yunnan Tianda Photovoltaic Jump to: navigation, search Name: Tianda Photovoltaic Co Ltd (Yunnan Tianda Photovoltaic) Place: Kunming, Yunnan Province,...

  19. Photovoltaics Program: utility interface southwest regional workshop proceedings

    SciTech Connect (OSTI)

    1981-04-01

    This was the first of a series of regional workshops that will focus on the photovoltaic and utility interface, and the use of photovoltaics as a cogeneration option by utilities. The needs and constraints of the utilities are defined and an understanding is established of the capabilities and limitations of photovoltaic systems as an alternative electricity generation option by utilities. Utilities' viewpoints regarding large-scale central systems and small-scale, interconnected, distributed systems are given. The Public Utility Regulatory Policies Act and other economic, legislative, and regulatory factors affecting photovoltaic systems are discussed. Current status of photovoltaic systems with respect to the Department of Energy Photovoltaic Program is given. (LEW)

  20. Solar photovoltaic reflective trough collection structure

    SciTech Connect (OSTI)

    Anderson, Benjamin J.; Sweatt, William C.; Okandan, Murat; Nielson, Gregory N.

    2015-11-19

    A photovoltaic (PV) solar concentration structure having at least two troughs encapsulated in a rectangular parallelepiped optical plastic structure, with the troughs filled with an optical plastic material, the troughs each having a reflective internal surface and approximately parabolic geometry, and the troughs each including photovoltaic cells situated so that light impinging on the optical plastic material will be concentrated onto the photovoltaic cells. Multiple structures can be connected to provide a solar photovoltaic collection system that provides portable, efficient, low-cost electrical power.

  1. Photovoltaic module reliability workshop

    SciTech Connect (OSTI)

    Mrig, L.

    1990-01-01

    The paper and presentations compiled in this volume form the Proceedings of the fourth in a series of Workshops sponsored by Solar Energy Research Institute (SERI/DOE) under the general theme of photovoltaic module reliability during the period 1986--1990. The reliability Photo Voltaic (PV) modules/systems is exceedingly important along with the initial cost and efficiency of modules if the PV technology has to make a major impact in the power generation market, and for it to compete with the conventional electricity producing technologies. The reliability of photovoltaic modules has progressed significantly in the last few years as evidenced by warranties available on commercial modules of as long as 12 years. However, there is still need for substantial research and testing required to improve module field reliability to levels of 30 years or more. Several small groups of researchers are involved in this research, development, and monitoring activity around the world. In the US, PV manufacturers, DOE laboratories, electric utilities and others are engaged in the photovoltaic reliability research and testing. This group of researchers and others interested in this field were brought together under SERI/DOE sponsorship to exchange the technical knowledge and field experience as related to current information in this important field. The papers presented here reflect this effort.

  2. Utility-scale flat-plate thin film photovoltaics

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The thin-film photovoltaics section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  3. Project Profile: Evaluating the Causes of Photovoltaics Cost...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Motivation Photovoltaic technologies, including silicon and thin film solar cells, have experienced unprecedented cost reductions among electricity-conversion technologies. A ...

  4. City of San Jose - Photovoltaic Permit Requirements | Department...

    Energy.gov (indexed) [DOE]

    panels is required when applying for a building permit. Electrical Plan Review for photovoltaic systems is required for all multi-family, commercial and industrial installations....

  5. Temperature compensated photovoltaic array

    DOE Patents [OSTI]

    Mosher, D.M.

    1997-11-18

    A temperature compensated photovoltaic module comprises a series of solar cells having a thermally activated switch connected in parallel with several of the cells. The photovoltaic module is adapted to charge conventional batteries having a temperature coefficient differing from the temperature coefficient of the module. The calibration temperatures of the switches are chosen whereby the colder the ambient temperature for the module, the more switches that are on and form a closed circuit to short the associated solar cells. By shorting some of the solar cells as the ambient temperature decreases, the battery being charged by the module is not excessively overcharged at lower temperatures. PV module is an integrated solution that is reliable and inexpensive. 2 figs.

  6. Temperature compensated photovoltaic array

    DOE Patents [OSTI]

    Mosher, Dan Michael

    1997-11-18

    A temperature compensated photovoltaic module (20) comprised of a series of solar cells (22) having a thermally activated switch (24) connected in parallel with several of the cells (22). The photovoltaic module (20) is adapted to charge conventional batteries having a temperature coefficient (TC) differing from the temperature coefficient (TC) of the module (20). The calibration temperatures of the switches (24) are chosen whereby the colder the ambient temperature for the module (20), the more switches that are on and form a closed circuit to short the associated solar cells (22). By shorting some of the solar cells (22) as the ambient temperature decreases, the battery being charged by the module (20) is not excessively overcharged at lower temperatures. PV module (20) is an integrated solution that is reliable and inexpensive.

  7. Mechanical and Electrical Performance of Thermally Stable Au-ZnO films

    SciTech Connect (OSTI)

    Schoeppner, Rachel L.; Goeke, Ronald S.; Moody, Neville R.; Bahr, David F.

    2015-03-28

    The mechanical properties, thermal stability, and electrical performance of AuZnO composite thin films are determined in this work. The co-deposition of ZnO with Au via physical vapor deposition leads to grain refinement over that of pure Au; the addition of 0.1 vol.% ZnO reduces the as-grown grain size by over 30%. The hardness of the as-grown films doubles with 2% ZnO, from 1.8 to 3.6 GPa as measured by nanoindentation. Films with ZnO additions greater than 0.5% show no significant grain growth after annealing at 350 C, while pure gold and smaller additions do exhibit grain growth and subsequent mechanical softening. Films with 1% and 2% ZnO show a decrease of approximately 50% in electrical resistivity and no change in hardness after annealing. A model accounting for both changes in the interface structure between dispersed ZnO particles and the Au matrix captures the changes in mechanical and electrical resistivity. Furthermore, the addition of 12% ZnO co-deposited with Au provides a method to create mechanically hard and thermally stable films with a resistivity less than 80 n?-m. Our results complement previous studies of other alloying systems, suggesting oxide dispersion strengthened (ODS) gold shows a desirable hardnessresistivity relationship that is relatively independent of the particular ODS chemistry.

  8. Mechanical and Electrical Performance of Thermally Stable Au-ZnO films

    DOE PAGES-Beta [OSTI]

    Schoeppner, Rachel L.; Goeke, Ronald S.; Moody, Neville R.; Bahr, David F.

    2015-03-28

    The mechanical properties, thermal stability, and electrical performance of Au–ZnO composite thin films are determined in this work. The co-deposition of ZnO with Au via physical vapor deposition leads to grain refinement over that of pure Au; the addition of 0.1 vol.% ZnO reduces the as-grown grain size by over 30%. The hardness of the as-grown films doubles with 2% ZnO, from 1.8 to 3.6 GPa as measured by nanoindentation. Films with ZnO additions greater than 0.5% show no significant grain growth after annealing at 350 °C, while pure gold and smaller additions do exhibit grain growth and subsequent mechanicalmore » softening. Films with 1% and 2% ZnO show a decrease of approximately 50% in electrical resistivity and no change in hardness after annealing. A model accounting for both changes in the interface structure between dispersed ZnO particles and the Au matrix captures the changes in mechanical and electrical resistivity. Furthermore, the addition of 1–2% ZnO co-deposited with Au provides a method to create mechanically hard and thermally stable films with a resistivity less than 80 nΩ-m. Our results complement previous studies of other alloying systems, suggesting oxide dispersion strengthened (ODS) gold shows a desirable hardness–resistivity relationship that is relatively independent of the particular ODS chemistry.« less

  9. Mechanical and Electrical Performance of Thermally Stable Au-ZnO films

    SciTech Connect (OSTI)

    Schoeppner, Rachel L.; Goeke, Ronald S.; Moody, Neville R.; Bahr, David F.

    2015-03-28

    The mechanical properties, thermal stability, and electrical performance of Au–ZnO composite thin films are determined in this work. The co-deposition of ZnO with Au via physical vapor deposition leads to grain refinement over that of pure Au; the addition of 0.1 vol.% ZnO reduces the as-grown grain size by over 30%. The hardness of the as-grown films doubles with 2% ZnO, from 1.8 to 3.6 GPa as measured by nanoindentation. Films with ZnO additions greater than 0.5% show no significant grain growth after annealing at 350 °C, while pure gold and smaller additions do exhibit grain growth and subsequent mechanical softening. Films with 1% and 2% ZnO show a decrease of approximately 50% in electrical resistivity and no change in hardness after annealing. A model accounting for both changes in the interface structure between dispersed ZnO particles and the Au matrix captures the changes in mechanical and electrical resistivity. Furthermore, the addition of 1–2% ZnO co-deposited with Au provides a method to create mechanically hard and thermally stable films with a resistivity less than 80 nΩ-m. Our results complement previous studies of other alloying systems, suggesting oxide dispersion strengthened (ODS) gold shows a desirable hardness–resistivity relationship that is relatively independent of the particular ODS chemistry.

  10. NREL Center for Photovoltaics

    ScienceCinema (OSTI)

    None

    2013-05-29

    Solar cells, also called photovoltaics (PV) by solar cell scientists, convert sunlight directly into electricity. Solar cells are often used to power calculators and watches. The performance of a solar cell is measured in terms of its efficiency at turning sunlight into electricity. Only sunlight of certain energies will work efficiently to create electricity, and much of it is reflected or absorbed by the material that make up the cell. Because of this, a typical commercial solar cell has an efficiency of 15%?about one-sixth of the sunlight striking the cell generates electricity. Low efficiencies mean that larger arrays are needed, and that means higher cost. Improving solar cell efficiencies while holding down the cost per cell is an important goal of the PV industry, researchers at the National Renewable Energy Laboratory (NREL) and other U.S. Department of Energy (DOE) laboratories, and they have made significant progress. The first solar cells, built in the 1950s, had efficiencies of less than 4%. For a text version of this video visit http://www.nrel.gov/learning/re_photovoltaics_video_text.html

  11. NREL Center for Photovoltaics

    SciTech Connect (OSTI)

    2009-01-01

    Solar cells, also called photovoltaics (PV) by solar cell scientists, convert sunlight directly into electricity. Solar cells are often used to power calculators and watches. The performance of a solar cell is measured in terms of its efficiency at turning sunlight into electricity. Only sunlight of certain energies will work efficiently to create electricity, and much of it is reflected or absorbed by the material that make up the cell. Because of this, a typical commercial solar cell has an efficiency of 15%about one-sixth of the sunlight striking the cell generates electricity. Low efficiencies mean that larger arrays are needed, and that means higher cost. Improving solar cell efficiencies while holding down the cost per cell is an important goal of the PV industry, researchers at the National Renewable Energy Laboratory (NREL) and other U.S. Department of Energy (DOE) laboratories, and they have made significant progress. The first solar cells, built in the 1950s, had efficiencies of less than 4%. For a text version of this video visit http://www.nrel.gov/learning/re_photovoltaics_video_text.html

  12. GreyStone Power- Photovoltaic Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    GreyStone Power, an electricity cooperative in Georgia, offers a rebate for solar photovoltaic (PV) systems to members. The one-time rebate is offered for PV installations that are interconnected...

  13. Central Georgia EMC- Photovoltaic Rebate Program

    Energy.gov [DOE]

    In June 2008, Central Georgia Electric Membership Corporation (CGEMC) began offering a rebate of $450 per kilowatt (kW) to residential members who install photovoltaic (PV) systems that are...

  14. Status report on a solar photovoltaic concentrating energy system for a hospital in Hawaii

    SciTech Connect (OSTI)

    Seki, A.; Curtis, G.; Yuen, P.

    1983-06-01

    The largest parabolic concentrating photovoltaic/solar thermal system in the U.S. began producing electricity and hot water for a hospital on the island of Kauai, Hawaii in November 1981. Each of the 80 parabolic collectors is 6 feet by 10 feet and concentrates incident sunlight on photovoltaic cells mounted on two faces of the receiver at the focus. Although the 35 kilowatt system has been designed to produce 22,000 net kilowatt-hours per year of electricity and 620,000 gallons of 180 F water, electrical output (12 to 15 kilowatt-hours per day) is only 20 percent of that expected, primarily because insolation at the site has been only 40 percent of predicted values. A second problem with fungal attack on the receivers has been solved by better sealing. The system has also withstood a hurricane with negligible damage.

  15. The influence of surface functionalisation on the electrical properties and thermal stability of nanodiamonds

    SciTech Connect (OSTI)

    Welch, Joseph O; Li, Pei; Chaudhary, Aysha; Edgington, Robert; Jackman, Richard B.

    2014-10-07

    Detonation nanodiamond (ND) has recently emerged as a useful new class of diamond material. However, to date there has been little investigation of the electrical properties of this material. Due to the nanoscale dimensions, the surface functionalisation of the individual ND is of particular importance to the characteristics of ND films. Here, hydrogen and oxygen termination of ND, verified using Fourier transform infrared spectroscopy, are shown to strongly influence the electronic properties of NDs. Hydrogen terminated ND exhibiting a far greater resilience to thermal decomposition when compared to the oxygen terminated NDs. Moreover, H-NDs also displayed so-called “surface conductivity,” a property displayed by hydrogen-terminated bulk diamond films, whilst O-NDs display properties high resistivity. These results indicate that under the correct conditions ND layers can display similar electrical properties to “bulk” diamond thin films.

  16. Photovoltaic Materials

    SciTech Connect (OSTI)

    Duty, C.; Angelini, J.; Armstrong, B.; Bennett, C.; Evans, B.; Jellison, G. E.; Joshi, P.; List, F.; Paranthaman, P.; Parish, C.; Wereszczak, A.

    2012-10-15

    The goal of the current project was to help make the US solar industry a world leader in the manufacture of thin film photovoltaics. The overall approach was to leverage ORNL’s unique characterization and processing technologies to gain a better understanding of the fundamental challenges for solar cell processing and apply that knowledge to targeted projects with industry members. ORNL has the capabilities in place and the expertise required to understand how basic material properties including defects, impurities, and grain boundaries affect the solar cell performance. ORNL also has unique processing capabilities to optimize the manufacturing process for fabrication of high efficiency and low cost solar cells. ORNL recently established the Center for Advanced Thin-film Systems (CATS), which contains a suite of optical and electrical characterization equipment specifically focused on solar cell research. Under this project, ORNL made these facilities available to industrial partners who were interested in pursuing collaborative research toward the improvement of their product or manufacturing process. Four specific projects were pursued with industrial partners: Global Solar Energy is a solar industry leader in full scale production manufacturing highly-efficient Copper Indium Gallium diSelenide (CIGS) thin film solar material, cells and products. ORNL worked with GSE to develop a scalable, non-vacuum, solution technique to deposit amorphous or nanocrystalline conducting barrier layers on untextured stainless steel substrates for fabricating high efficiency flexible CIGS PV. Ferro Corporation’s Electronic, Color and Glass Materials (“ECGM”) business unit is currently the world’s largest supplier of metallic contact materials in the crystalline solar cell marketplace. Ferro’s ECGM business unit has been the world's leading supplier of thick film metal pastes to the crystalline silicon PV industry for more than 30 years, and has had operational cells and

  17. Design, construction, and startup of a concentrating photovoltaic solar energy system in Hawaii: Phase II. Final report

    SciTech Connect (OSTI)

    Spencer, R.; Harper, R.; Maberry, G.; Bedard, R.; Rafinejad, D.

    1982-10-01

    Acurex Corporation has designed, constructed, and is now operating a 35-kWp concentrating photovoltaic solar system located at the G.N. Wilcox Memorial Hospital in Lihue, Kauai, Hawaii. The facility consists of 446 m/sup 2/ (4800 ft/sup 2/) of parabolic trough photovoltaic collectors, an electrical power generation system which converts the direct current field output into grid-compatible alternating current power, and a thermal power subsystem for heating the hospital potable water. This report summarizes the design, construction, startup, and performance of this solar facility.

  18. Use of GTE-65 gas turbine power units in the thermal configuration of steam-gas systems for the refitting of operating thermal electric power plants

    SciTech Connect (OSTI)

    Lebedev, A. S.; Kovalevskii, V. P.; Getmanov, E. A.; Ermaikina, N. A.

    2008-07-15

    Thermal configurations for condensation, district heating, and discharge steam-gas systems (PGU) based on the GTE-65 gas turbine power unit are described. A comparative multivariant analysis of their thermodynamic efficiency is made. Based on some representative examples, it is shown that steam-gas systems with the GTE-65 and boiler-utilizer units can be effectively used and installed in existing main buildings during technical refitting of operating thermal electric power plants.

  19. Photovoltaic module mounting clip with integral grounding

    DOE Patents [OSTI]

    Lenox, Carl J.

    2010-08-24

    An electrically conductive mounting/grounding clip, usable with a photovoltaic (PV) assembly of the type having an electrically conductive frame, comprises an electrically conductive body. The body has a central portion and first and second spaced-apart arms extending from the central portion. Each arm has first and second outer portions with frame surface-disrupting element at the outer portions.

  20. Synthesis and Magnetic, Thermal, and Electrical Measurements on Complex non-Cuprate Superconductors

    SciTech Connect (OSTI)

    Henry, Laurence L

    2006-02-27

    The project investigated superconductivity in non-cuprate materials with critical temperatures, T{sub c}, in excess of 20 K in order to understand the thermodynamics of several of these materials. The project is a cooperative effort between investigators at Southern University (SU), Louisiana State University (LSU), and Los Alamos National Laboratory (LANL). It involved synthesis of high quality samples, and subsequent detailed magnetic, thermal and electrical measurements on them. The project provided a PhD Thesis research experience and training for a graduate student, Ms. Robin Macaluso. High quality, single crystal samples were synthesized by Ms. Macaluso under the direction of one of the CO-PIS, John Sarao, during the summer while she was a visitor at LANL being supported by this grant. On these samples magnetic measurements were performed at SU, thermal and electrical measurements were made in the LSU Physics and Astronomy Department. The crystallographic properties were determined in the LSU Chemistry Department by Ms. Macaluso under the direction of her dissertation advisor, Dr. Julia Chan. Additional high field magnetic measurements on other samples were performed at the National High Magnetic Field Laboratory (NHMFL) both in Tallahassee and at LANL. These measurements involved another graduate student, Umit Alver, who used some of the measurements as part of his PhD dissertation in Physics at LSU.

  1. A long-term strategic plan for development of solar thermal electric technology

    SciTech Connect (OSTI)

    Williams, T.A.; Burch, G.; Chavez, J.M.; Mancini, T.R.; Tyner, C.E.

    1997-06-01

    Solar thermal electric (STE) technologies--parabolic troughs, power towers, and dish/engine systems--can convert sunlight into electricity efficiently and with minimum effect on the environment. These technologies currently range from developmental to early commercial stages of maturity. This paper summarizes the results of a recent strategic planning effort conducted by the US department of Energy (DOE) to develop a long-term strategy for the development of STE technologies. The planning team led by DOE included representatives from the solar thermal industry, domestic utilities, state energy offices, and Sun{center_dot}Lab (the cooperative Sandia National laboratories/National Renewable Energy Laboratory partnership that supports the STE Program) as well as project developers. The plan was aimed at identifying specific activities necessary to achieve the DOE vision of 20 gigawatts of installed STE capability by the year 2020. The planning team developed five strategies that both build on the strengths of, and opportunities for, STE technology and address weaknesses and threats. These strategies are to: support future commercial opportunities for STE technologies; demonstrate improved performance and reliability of STE components and systems; reduce STE energy costs; develop advanced STE systems and applications; and address nontechnical barriers and champion STE power. The details of each of these strategies are discussed.

  2. Thin film photovoltaic device

    DOE Patents [OSTI]

    Catalano, Anthony W.; Bhushan, Manjul

    1982-01-01

    A thin film photovoltaic solar cell which utilizes a zinc phosphide semiconductor is of the homojunction type comprising an n-type conductivity region forming an electrical junction with a p-type region, both regions consisting essentially of the same semiconductor material. The n-type region is formed by treating zinc phosphide with an extrinsic dopant such as magnesium. The semiconductor is formed on a multilayer substrate which acts as an opaque contact. Various transparent contacts may be used, including a thin metal film of the same chemical composition as the n-type dopant or conductive oxides or metal grids.

  3. Thin film photovoltaic device

    DOE Patents [OSTI]

    Catalano, A.W.; Bhushan, M.

    1982-08-03

    A thin film photovoltaic solar cell which utilizes a zinc phosphide semiconductor is of the homojunction type comprising an n-type conductivity region forming an electrical junction with a p-type region, both regions consisting essentially of the same semiconductor material. The n-type region is formed by treating zinc phosphide with an extrinsic dopant such as magnesium. The semiconductor is formed on a multilayer substrate which acts as an opaque contact. Various transparent contacts may be used, including a thin metal film of the same chemical composition as the n-type dopant or conductive oxides or metal grids. 5 figs.

  4. Thermal to Electrical Energy Conversion of Skutterudite-Based Thermoelectric Modules

    SciTech Connect (OSTI)

    Salvador, James R.; Cho, Jung Y; Ye, Zuxin; Moczygemba, Joshua E.; Thompson, Alan; Sharp, Jeff W.; Konig, Jan; Maloney, Ryan; Thompson, Travis; Sakamoto, Jeff; Wang, Hsin; Wereszczak, Andrew A; Meisner, G P

    2013-01-01

    The performance of thermoelectric (TE) materials has improved tremendously over the past decade. The intrinsic thermal and electrical properties of state-of-the-art TE materials demonstrate that the potential for widespread practical TE applications is very large and includes TE generators (TEGs) for automotive waste heat recovery. TE materials for automotive TEG applications must have good intrinsic performance, be thermomechanically compatible, and be chemically stable in the 400 K to 850 K temperature range. Both n-type and p-type varieties must be available at low cost, easily fabricated, and durable. They must also form robust junctions and develop good interfaces with other materials to permit efficient flows of electrical and thermal energy. Among the TE materials of interest for automotive waste heat recovery systems are the skutterudite compounds, which are the antimony-based transition-metal compounds RTE4Sb12, where R can be an alkali metal (e.g., Na, K), alkaline earth (e.g., Ba), or rare earth (e.g., La, Ce, Yb), and TE can be a transition metal (e.g., Co, Fe). We synthesized a considerable quantity of n-type and p-type skutterudites, fabricated TE modules, incorporated these modules into a prototype TEG, and tested the TEG on a production General Motors (GM) vehicle. We discuss our progress on skutterudite TE module fabrication and present module performance data for electrical power output under simulated operating conditions for automotive waste heat recovery systems. We also present preliminary durability results on our skutterudite modules.

  5. Post-deposition control of ferroelastic stripe domains and internal electric field by thermal treatment

    SciTech Connect (OSTI)

    Feigl, L.; Iwanowska, M.; Sandu, C. S.; Setter, N.; Janolin, P.-E.; Yamada, T.

    2015-01-19

    The dependence of the formation of ferroelastic stripe domain patterns on the thermal history is investigated by detailed piezoresponse force microscopy and X-ray diffraction experiments after and during annealing of tensile strained tetragonal Pb(Ti,Zr)O{sub 3} epitaxial thin films on DyScO{sub 3} substrates. In particular, the ferroelastic pattern is reversibly interchanged between a cross-hatched and a stripe domain pattern if the films are cooled at different rates after annealing above the formation temperature of a-domains. Different types of 180 and non-180 patterns can be created, depending on the thermal treatment. The changes in the 180 domain structure and lattice parameters are attributed to a change of oxygen vacancy concentration, which results in a modification of the internal electric field and unit cell size, causing also a shift of T{sub C}. Thermal treatment is done on rhombohedral La:BiFeO{sub 3} thin films as well. It is observed that also in these films, appropriate heat treatment modifies the domain pattern and films with a stripe domain pattern can be created, confirming the general validity of the developed model.

  6. NREL: Photovoltaics Research - Events

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    success. The following events and meetings are of interest to partners of NREL Photovoltaics (PV) Research and the National Center for Photovoltaics (NCPV). Printable Version...

  7. An assessment of ocean thermal energy conversion as an advanced electric generation methodology

    SciTech Connect (OSTI)

    Heydt, G.T. . School of Electrical Engineering)

    1993-03-01

    Ocean thermal energy conversion (OTEC) is a process that employs the temperature difference between surface and deep ocean water to alternately evaporate and condense a working fluid. In the open-cycle OTEC configuration, the working fluid is seawater. In the closed-cycle configuration, a working fluid such as propane is used. In this paper, OTEC is assessed for its practical merits for electric power generation. The process is not new--and its history is reviewed. Because the OTEC principle operates under a small net temperature difference regime, rather large amounts of seawater and working fluid are required. The energy requirements for pumping these fluids may be greater than the energy recovered from the OTEC engine itself. The concept of net power production is discussed. The components of a typical OTEC plant are discussed with emphasis on the evaporator heat exchanger. Operation of an OTEC electric generating station is discussed, including transient operation. Perhaps the most encouraging aspect of OTEC is the recent experiments and efforts at the Natural Energy Laboratory--Hawaii (NELH). The NELH work is summarized in the paper. Remarks are made on bottlenecks and the future of OTEC as an advanced electric generation methodology.

  8. Basic photovoltaic principles and methods

    SciTech Connect (OSTI)

    Hersch, P.; Zweibel, K.

    1982-02-01

    This book presents a nonmathematical explanation of the theory and design of photovoltaic (PV) solar cells and systems. The basic elements of PV are introduced: the photovoltaic effect, physical aspects of solar cell efficiency, the typical single-crystal silicon solar cell, advances in single-crystal silicon solar cells. This is followed by the designs of systems constructed from individual cells, including possible constructions for putting cells together and the equipment needed for a practical producer of electrical energy. The future of PV is then discussed. (LEW)

  9. Cadmium telluride photovoltaic radiation detector

    DOE Patents [OSTI]

    Agouridis, D.C.; Fox, R.J.

    A dosimetry-type radiation detector is provided which employs a polycrystalline, chlorine-compensated cadmium telluride wafer fabricated to operate as a photovoltaic current generator used as the basic detecting element. A photovoltaic junction is formed in the wafer by painting one face of the cadmium telluride wafer with an n-type semi-conductive material. The opposite face of the wafer is painted with an electrically conductive material to serve as a current collector. The detector is mounted in a hermetically sealed vacuum containment. The detector is operated in a photovoltaic mode (zero bias) while DC coupled to a symmetrical differential current amplifier having a very low input impedance. The amplifier converts the current signal generated by radiation impinging upon the barrier surface face of the wafer to a voltage which is supplied to a voltmeter calibrated to read quantitatively the level of radiation incident upon the detecting wafer.

  10. Cadmium telluride photovoltaic radiation detector

    DOE Patents [OSTI]

    Agouridis, Dimitrios C.; Fox, Richard J.

    1981-01-01

    A dosimetry-type radiation detector is provided which employs a polycrystalline, chlorine-compensated cadmium telluride wafer fabricated to operate as a photovoltaic current generator used as the basic detecting element. A photovoltaic junction is formed in the wafer by painting one face of the cadmium telluride wafer with an n-type semiconductive material. The opposite face of the wafer is painted with an electrically conductive material to serve as a current collector. The detector is mounted in a hermetically sealed vacuum containment. The detector is operated in a photovoltaic mode (zero bias) while DC coupled to a symmetrical differential current amplifier having a very low input impedance. The amplifier converts the current signal generated by radiation impinging upon the barrier surface face of the wafer to a voltage which is supplied to a voltmeter calibrated to read quantitatively the level of radiation incident upon the detecting wafer.

  11. Photovoltaic Subcontract Program, FY 1991

    SciTech Connect (OSTI)

    Not Available

    1992-03-01

    This report summarizes the fiscal year (FY) 1991 (October 1, 1990, through September 30, 1991) progress of the subcontracted photovoltaic (PV) research and development (R D) performed under the Photovoltaic Advanced Research and Development Project at the National Renewable Energy Laboratory (NREL) -- formerly the Solar Energy Research Institute (SERI). The mission of the national PV program is to develop PV technology for large-scale generation of economically competitive electric power in the United States. The technical sections of the report cover the main areas of the subcontract program: the Amorphous Silicon Research Project, Polycrystalline Thin Films, Crystalline Silicon Materials Research, High-Efficiency Concepts, the New Ideas Program, the University Participation Program, and the Photovoltaic Manufacturing Technology (PVMaT) project. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1991, and future research directions.

  12. Photovoltaic building sheathing element with anti-slide features

    SciTech Connect (OSTI)

    Keenihan, James R.; Langmaid, Joseph A.; Lopez, Leonardo C.

    2015-09-08

    The present invention is premised` upon an assembly that includes at least a photovoltaic building sheathing element capable of being affixed on a building structure, the photovoltaic building sheathing element. The element including a photovoltaic cell assembly, a body portion attached to one or more portions of the photovoltaic cell assembly; and at feast a first and a second connector assembly capable of directly or indirectly electrically connecting the photovoltaic cell assembly to one or more adjoining devices; wherein the body portion includes one or more geometric features adapted to engage a vertically adjoining device before installation.

  13. Simulation of spacecraft fuelcell systems including thermal control and electrical interfaces

    SciTech Connect (OSTI)

    Rothmeyer, M.; Simon, R.; Benz, U.

    1987-01-01

    Fuel cell systems will be applied as non-regenerative power source in HERMES and as regenerative power supply in future space stations. To support project development and engineering tasks flexible software is needed for simulation and analysis of such systems. A simulation program, called SANFU (System Analyzer for Fuel cells) for low temperature fuel cells has been developed, which supports a modular model construction. The current configuration of the program includes simulation of transient thermal boundary conditions, transient electrical interface data, several operating options and different control logics. For HERMES fuel cell system simulation three standard fuel cell configurations are currently being simulated: immobile electrolyte fuel cells, mobile electrolyte (KOH) fuel cells and solid polymer electrolyte fuel cells. Test results for different load cases and transient boundary conditions are quoted. The general design, input and output capabilities, future extensions and applications are discussed.

  14. Dish/Stirling systems: Overview of an emerging commercial solar thermal electric technology

    SciTech Connect (OSTI)

    Strachan, J.W.; Diver, R.B.; Estrada, C.

    1995-11-01

    Dish/Stirling is a solar thermal electric technology which couples parabolic, point-focusing solar collectors and heat engines which employ the Stirling thermodynamic cycle. Since the late 1970s, the development of Dish/Stirling systems intended for commercial use has been in progress in Germany, Japan, and the US. In the next several years it is expected that one or more commercial systems will enter the market place. This paper provides a general overview of this emerging technology, including: a description of the fundamental principles of operation of Dish/Stirling systems; a presentation of the major components of the systems (concentrator, receiver, engine/alternator, and controls); an overview of the actual systems under development around the world, with a discussion of some of the technical issues and challenges facing the Dish/Stirling developers. A brief discussion is also presented of potential applications for small Dish/Stirling systems in northern Mexico.

  15. Lenard-Balescu calculations and classical molecular dynamics simulations of electrical and thermal conductivities of hydrogen plasmas

    DOE PAGES-Beta [OSTI]

    Whitley, Heather D.; Scullard, Christian R.; Benedict, Lorin X.; Castor, John I.; Randles, Amanda; Glosli, James N.; Richards, David F.; Desjarlais, Michael P.; Graziani, Frank R.

    2015-12-04

    Here, we present a discussion of kinetic theory treatments of linear electrical and thermal transport in hydrogen plasmas, for a regime of interest to inertial confinement fusion applications. In order to assess the accuracy of one of the more involved of these approaches, classical Lenard-Balescu theory, we perform classical molecular dynamics simulations of hydrogen plasmas using 2-body quantum statistical potentials and compute both electrical and thermal conductivity from out particle trajectories using the Kubo approach. Our classical Lenard-Balescu results employing the identical statistical potentials agree well with the simulations.

  16. Photovoltaic solar cell

    SciTech Connect (OSTI)

    Nielson, Gregory N.; Gupta, Vipin P.; Okandan, Murat; Watts, Michael R.

    2015-09-08

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  17. Photovoltaic solar concentrator

    DOE Patents [OSTI]

    Nielson, Gregory N.; Gupta, Vipin P.; Okandan, Murat; Watts, Michael R.

    2016-03-15

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  18. Photovoltaic solar concentrator

    DOE Patents [OSTI]

    Nielson, Gregory N.; Okandan, Murat; Resnick, Paul J.; Cruz-Campa, Jose Luis

    2012-12-11

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  19. Thermal and Electrical Analysis of MARS Rover RTG, and Performance Comparison of Alternative Design Options.

    SciTech Connect (OSTI)

    Schock, Alfred; Or, Chuen T; Skrabek, Emanuel A

    1989-09-29

    The paper describes the thermal, thermoelectric and electrical analysis of Radioisotope Thermoelectric Generators (RTGs) for powering the MARS Rover vehicle, which is a critical element of the unmanned Mars Rover and Sample Return mission (MRSR). The work described was part of an RTG design study conducted by Fairchild Space Company for the U.S. Department of Energy, in support of the Jet Propulsion Laboratory's MRSR Project.; A companion paper presented at this conference described a reference mission scenario, al illustrative Rover design and activity pattern on Mars, its power system requirements and environmental constraints, a design approach enabling RTG operation in the Martian atmosphere, and the design and the structural and mass analysis of a conservative baseline RTG employing safety-qualified heat source modules and reliability-proven thermoelectric converter elements.; The present paper presents a detailed description of the baseline RTG's thermal, thermoelectric, and electrical analysis. It examines the effect of different operating conditions (beginning versus end of mission, water-cooled versus radiation-cooled, summer day versus winter night) on the RTG's performance. Finally, the paper describes and analyzes a number of alternative RTG designs, to determine the effect of different power levels (250W versus 125W), different thermoelectric element designs (standard versus short unicouples versus multicouples) and different thermoelectric figures of merit (0.00058K(superscript -1) to 0.000140K (superscript -1) on the RTG's specific power.; The results presented show the RTG performance achievable with current technology, and the performance improvements that would be achievable with various technology developments. It provides a basis for selecting the optimum strategy for meeting the Mars Rover design goals with minimal programmatic risk and cost.; There is a duplicate copy and also a duplicate copy in the ESD files.

  20. Electricity Transmission and Distribution Technologies - Energy Innovation

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Portal Technology Marketing Summaries Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Marketing Summaries (74) Success Stories (2) Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success

  1. China Solar Photovoltaic Group CNPV aka Dongying Photovoltaic...

    Open Energy Information (Open El) [EERE & EIA]

    Group CNPV aka Dongying Photovoltaic Power Co Ltd or China Solar PV Jump to: navigation, search Name: China Solar Photovoltaic Group (CNPV, aka Dongying Photovoltaic Power Co Ltd...

  2. Multiple-Filled Skutterudites: High Thermoelectric Figure of Merit through Separately Optimizing Electrical and Thermal Transports

    SciTech Connect (OSTI)

    Zhang, Weiqing; Yang, Jiong; Yang, Jihui; Wang, Hsin; Salvador, James R.; Shi, Xun; Chi, Miaofang; Cho, Jung Y; Bai, Shengqiang; Chen, Lidong

    2011-01-01

    Skutterudites CoSb{sub 3} with multiple cofillers Ba, La, and Yb were synthesized and very high thermoelectric figure of merit ZT = 1.7 at 850 K was realized. X-ray diffraction of the densified multiple-filled bulk samples reveals all samples are phase pure. High-resolution scanning transmission electron microscopy (STEM) and energy dispersive X-ray spectroscopy (EDS) analysis confirm that multiple guest fillers occupy the nanoscale-cages in the skutterudites. The fillers are further shown to be uniformly distributed and the Co-Sb skutterudite framework is virtually unperturbed from atomic scale to a few micrometers. Our results firmly show that high power factors can be realized by adjusting the total filling fraction of fillers with different charge states to reach the optimum carrier density, at the same time, lattice thermal conductivity can also be significantly reduced, to values near the glass limit of these materials, through combining filler species of different rattling frequencies to achieve broad-frequency phonon scattering. Therefore, partially filled skutterudites with multiple fillers of different chemical nature render unique structural characteristics for optimizing electrical and thermal transports in a relatively independent way, leading to continually enhanced ZT values from single- to double-, and finally to multiple-filled skutterudites. The idea of combining multiple fillers with different charge states and rattling frequencies for performance optimization is also expected to be valid for other caged TE compounds.

  3. Photovoltaic solar concentrator

    SciTech Connect (OSTI)

    Nielson, Gregory N.; Cruz-Campa, Jose Luis; Okandan, Murat; Resnick, Paul J.; Sanchez, Carlos Anthony; Clews, Peggy J.; Gupta, Vipin P.

    2015-09-08

    A process including forming a photovoltaic solar cell on a substrate, the photovoltaic solar cell comprising an anchor positioned between the photovoltaic solar cell and the substrate to suspend the photovoltaic solar cell from the substrate. A surface of the photovoltaic solar cell opposite the substrate is attached to a receiving substrate. The receiving substrate may be bonded to the photovoltaic solar cell using an adhesive force or a metal connecting member. The photovoltaic solar cell is then detached from the substrate by lifting the receiving substrate having the photovoltaic solar cell attached thereto and severing the anchor connecting the photovoltaic solar cell to the substrate. Depending upon the type of receiving substrate used, the photovoltaic solar cell may be removed from the receiving substrate or remain on the receiving substrate for use in the final product.

  4. Interdigitated Electrical Contacts for Low Electronic Mobility

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Semiconductor Photovoltaic Devices - Energy Innovation Portal Solar Photovoltaic Solar Photovoltaic Find More Like This Return to Search Interdigitated Electrical Contacts for Low Electronic Mobility Semiconductor Photovoltaic Devices Brookhaven National Laboratory Contact BNL About This Technology Technology Marketing Summary Structures useful for forming contacts to materials having low charge carrier mobility are described. Methods for their formation and use are also described. These

  5. Nanostructured Photovoltaics: - Energy Innovation Portal

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Solar Photovoltaic Solar Photovoltaic Find More Like This Return to Search Nanostructured Photovoltaics: Atomic Layer Deposition Thin Film Technology Enables Cost Effective Solar ...

  6. American Photovoltaics | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Photovoltaics Jump to: navigation, search Logo: American Photovoltaics Name: American Photovoltaics Place: Houston, Texas Zip: 77002 Region: Texas Area Sector: Solar Product: Will...

  7. Basic Research Opportunities in Photovoltaics Workshop: Preprint

    SciTech Connect (OSTI)

    Benner, J.; Deb, S.; McConnell, R. D.

    1999-04-01

    Photovoltaic (PV) technology for conversion of sunlight to electricity is the most cost-effective method for meeting the electric power needs of many consumers around the world today. This document is the preface and executive summary from the workshop to be held in May 1999 in Seattle, Washington.

  8. Apparatus and method for maximizing power delivered by a photovoltaic array

    DOE Patents [OSTI]

    Muljadi, Eduard; Taylor, Roger W.

    1998-01-01

    A method and apparatus for maximizing the electric power output of a photovoltaic array connected to a battery where the voltage across the photovoltaic array is adjusted through a range of voltages to find the voltage across the photovoltaic array that maximizes the electric power generated by the photovoltaic array and then is held constant for a period of time. After the period of time has elapsed, the electric voltage across the photovoltaic array is again adjusted through a range of voltages and the process is repeated. The electric energy and the electric power generated by the photovoltaic array is delivered to the battery which stores the electric energy and the electric power for later delivery to a load.

  9. Apparatus and method for maximizing power delivered by a photovoltaic array

    DOE Patents [OSTI]

    Muljadi, E.; Taylor, R.W.

    1998-05-05

    A method and apparatus for maximizing the electric power output of a photovoltaic array connected to a battery where the voltage across the photovoltaic array is adjusted through a range of voltages to find the voltage across the photovoltaic array that maximizes the electric power generated by the photovoltaic array and then is held constant for a period of time. After the period of time has elapsed, the electric voltage across the photovoltaic array is again adjusted through a range of voltages and the process is repeated. The electric energy and the electric power generated by the photovoltaic array is delivered to the battery which stores the electric energy and the electric power for later delivery to a load. 20 figs.

  10. High voltage photovoltaic power converter

    DOE Patents [OSTI]

    Haigh, Ronald E.; Wojtczuk, Steve; Jacobson, Gerard F.; Hagans, Karla G.

    2001-01-01

    An array of independently connected photovoltaic cells on a semi-insulating substrate contains reflective coatings between the cells to enhance efficiency. A uniform, flat top laser beam profile is illuminated upon the array to produce electrical current having high voltage. An essentially wireless system includes a laser energy source being fed through optic fiber and cast upon the photovoltaic cell array to prevent stray electrical signals prior to use of the current from the array. Direct bandgap, single crystal semiconductor materials, such as GaAs, are commonly used in the array. Useful applications of the system include locations where high voltages are provided to confined spaces such as in explosive detonation, accelerators, photo cathodes and medical appliances.

  11. Project Profile: Evaluating the Causes of Photovoltaics Cost Reduction: Why

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    is PV different? | Department of Energy Soft Costs » Project Profile: Evaluating the Causes of Photovoltaics Cost Reduction: Why is PV different? Project Profile: Evaluating the Causes of Photovoltaics Cost Reduction: Why is PV different? Logo of Massachusetts Institute of Technology. The bar chart below the logo shows the cost reduction in photovoltaics compared to other energy-conversion technologies. PV is performing better than coal, natural gas, nuclear fusion, wind, and solar thermal

  12. Monitoring SERC Technologies - Solar Photovoltaics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Photovoltaics Monitoring SERC Technologies - Solar Photovoltaics On Oct. 20, 2011, Peter McNutt, an electrical engineer with the Market Transformation Center at NREL, presented a webinar about Solar Photovoltaics and how to properly monitor their installation. View the webinar presentation or read the transcript. More Information Some resources and tools mentioned in the presentation include: Field Inspection Guidelines for PV Systems Procuring Solar Energy: A Guide for Federal Facility Decision

  13. Photovoltaic Module Reliability Workshop 2013 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Photovoltaic Module Reliability Workshop 2013 Photovoltaic Module Reliability Workshop 2013 February 26-27, 2013 The Photovoltaic (PV) Module Reliability Workshop was held in Golden, Colorado, on Feb. 26-27, 2013. The objective was to share information to improve PV module reliability because such improvements reduce the cost of solar electricity and give investors confidence in the technology. NREL led the workshop, which was sponsored by the U.S. Department of Energy (DOE) Solar Energy

  14. PROJECT PROFILE: Additively Manufactured Photovoltaic Inverter (SuNLaMP) |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Additively Manufactured Photovoltaic Inverter (SuNLaMP) PROJECT PROFILE: Additively Manufactured Photovoltaic Inverter (SuNLaMP) Funding Program: SuNLaMP SunShot Subprogram: Systems Integration Location: National Renewable Energy Laboratory, Golden, CO SunShot Award Amount: $4,478,288 Awardee Cost Share: $60,000 Integrating hundreds of gigawatts of photovoltaic (PV) solar power onto our country's electric grid requires transformative power conversion system designs that

  15. Photovoltaic Supply Chain and Cross-Cutting Technologies Round 1 |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Technology to Market » Photovoltaic Supply Chain and Cross-Cutting Technologies Round 1 Photovoltaic Supply Chain and Cross-Cutting Technologies Round 1 On June 11, 2009, DOE announced the first round of Photovoltaic (PV) Supply Chain and Cross-Cutting Technologies awardees. The funded projects target manufacturing and product cost reduction with the potential to have a near-term impact on a substantial segment of the PV industry. General Electric Global Research

  16. Case Study: Mobile Photovoltaic System at Bechler Meadows Ranger Station,

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Yellowstone National Park | Department of Energy Mobile Photovoltaic System at Bechler Meadows Ranger Station, Yellowstone National Park Case Study: Mobile Photovoltaic System at Bechler Meadows Ranger Station, Yellowstone National Park Case study describes the performance of a mobile photovoltaic system installed in 2011 to provide power to Bechler Ranger Station in Yellowstone National Park, Wyoming. This small, remote outpost is not served by the electric utility grid and previously

  17. NREL: Photovoltaics Research - Concentrator Photovoltaic (CPV...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Concentrator Photovoltaic (CPV) Report - Fraunhofer ISE and NREL Analyze Status of Market and Technology February 4, 2015 The German Fraunhofer Institute for Solar Energy Systems...

  18. Photovoltaics (Fact Sheet)

    SciTech Connect (OSTI)

    DOE Solar Energy Technologies Program

    2011-06-27

    The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its photovoltaics subprogram.

  19. Photovoltaics (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-06-01

    The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its photovoltaics subprogram.

  20. NREL: Photovoltaics Research - Engineering

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    and Reliability team serves to improve PV technologies. Printable Version Photovoltaics Research Home Silicon Polycrystalline Thin Films Multijunctions New Materials,...

  1. Thermal equation of state and spin transition of magnesiosiderite...

    Office of Scientific and Technical Information (OSTI)

    Citation Details In-Document Search Title: Thermal equation of ... Subject: catalysis (heterogeneous), solar (photovoltaic), phonons, thermoelectric, energy storage (including ...

  2. Convective Heat Transfer Coefficients of Automatic Transmission Fluid Jets with Implications for Electric Machine Thermal Management: Preprint

    SciTech Connect (OSTI)

    Bennion, Kevin; Moreno, Gilberto

    2015-09-29

    Thermal management for electric machines (motors/ generators) is important as the automotive industry continues to transition to more electrically dominant vehicle propulsion systems. Cooling of the electric machine(s) in some electric vehicle traction drive applications is accomplished by impinging automatic transmission fluid (ATF) jets onto the machine's copper windings. In this study, we provide the results of experiments characterizing the thermal performance of ATF jets on surfaces representative of windings, using Ford's Mercon LV ATF. Experiments were carried out at various ATF temperatures and jet velocities to quantify the influence of these parameters on heat transfer coefficients. Fluid temperatures were varied from 50 degrees C to 90 degrees C to encompass potential operating temperatures within an automotive transaxle environment. The jet nozzle velocities were varied from 0.5 to 10 m/s. The experimental ATF heat transfer coefficient results provided in this report are a useful resource for understanding factors that influence the performance of ATF-based cooling systems for electric machines.

  3. Photovoltaics for municipal planners

    SciTech Connect (OSTI)

    Not Available

    1993-04-01

    This booklet is intended for city and county government personnel, as well as community organizations, who deal with supplying, regulating, or recommending electric power resources. Specifically, this document deals with photovoltaic (PV) power, or power from solar cells, which is currently the most cost-effective energy source for electricity requirements that are relatively small, located in isolated areas, or difficult to serve with conventional technology. Recently, PV has been documented to be more cost-effective than conventional alternatives (such as line extensions or engine generators) in dozens of applications within the service territories of electric, gas, and communications utilities. Here, we document numerous cost-effective urban applications, chosen by planners and utilities because they were the most cost-effective option or because they were appropriate for environmental or logistical reasons. These applications occur within various municipal departments, including utility, parks and recreation, traffic engineering, transportation, and planning, and they include lighting applications, communications equipment, corrosion protection, irrigation control equipment, remote monitoring, and even portable power supplies for emergency situations.

  4. High-performance Si microwire photovoltaics

    SciTech Connect (OSTI)

    Kelzenberg, Michael D.; Turner-Evans, Daniel B.; Putnam, Morgan C.; Boettcher, Shannon W.; Briggs, Ryan M.; Baek, Jae Y.; Lewis, Nathan S.; Atwater, Harry A.

    2011-01-07

    Crystalline Si wires, grown by the vaporliquidsolid (VLS) process, have emerged as promising candidate materials for low-cost, thin-film photovoltaics. Here, we demonstrate VLS-grown Si microwires that have suitable electrical properties for high-performance photovoltaic applications, including long minority-carrier diffusion lengths (Ln>> 30 m) and low surface recombination velocities (S << 70 cms-1). Single-wire radial pn junction solar cells were fabricated with amorphous silicon and silicon nitride surface coatings, achieving up to 9.0% apparent photovoltaic efficiency, and exhibiting up to ~600 mV open-circuit voltage with over 80% fill factor. Projective single-wire measurements and optoelectronic simulations suggest that large-area Si wire-array solar cells have the potential to exceed 17% energy-conversion efficiency, offering a promising route toward cost-effective crystalline Si photovoltaics.

  5. Renewable Energy Ready Home Solar Photovoltaic Specifications...

    Energy Savers

    Renewable Energy Ready Home Solar Photovoltaic Specifications Renewable Energy Ready Home Solar Photovoltaic Specifications Solar Photovoltaic Specification, Checklist and Guide, ...

  6. Flexible thermal cycle test equipment for concentrator solar cells

    DOE Patents [OSTI]

    Hebert, Peter H.; Brandt, Randolph J.

    2012-06-19

    A system and method for performing thermal stress testing of photovoltaic solar cells is presented. The system and method allows rapid testing of photovoltaic solar cells under controllable thermal conditions. The system and method presents a means of rapidly applying thermal stresses to one or more photovoltaic solar cells in a consistent and repeatable manner.

  7. Small Solar Electric Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Buying & Making Electricity » Small Solar Electric Systems Small Solar Electric Systems A small solar electric or photovoltaic system can be a reliable and pollution-free producer of electricity for your home or office. A small solar electric or photovoltaic (PV) system can be a reliable and pollution-free producer of electricity for your home or office. Small PV systems also provide a cost-effective power supply in locations where it is expensive or impossible to send electricity through

  8. Initial appraisal of solar thermal electric energy in Tibet and Xinjiang Provinces, People`s Republic of China

    SciTech Connect (OSTI)

    Li Junfeng; Zhu Li; Liu Zhan; Zhang Yuan; Washom, B.; Kolb, G.

    1998-07-01

    At the request of US sponsors Spencer Management Associates (SMA) and Sun{diamond}Lab, China`s Center for Renewable Energy Development and former Ministry of Electric Power conducted an initial appraisal of the issues involved with developing China`s first solar thermal electric power plant in the sunbelt regions of Tibet or Xinjiang provinces. The appraisal concerns development of a large-scale, grid-connected solar trough or tower project capable of producing 30 or more megawatts of electricity. Several of the findings suggest that Tibet could be a niche market for solar thermal power because a solar plant may be the low-cost option relative to other methods of generating electricity. China has studied the concept of a solar thermal power plant for quite some time. In 1992, it completed a pre-feasibility study for a SEGS-type parabolic trough plant with the aid of Israel`s United Development Limited. Because the findings were positive, both parties agreed to conduct a full-scale feasibility study. However, due to funding constraints, the study was postponed. Most recently, Sun{diamond}Lab and SMA asked China to broaden the analysis to include tower as well as trough concepts. The findings of this most recent investigation completed i November of 1997, are the subject of this paper. The main conclusions of all studies conducted to date suggest that a region in the proximity of Lhasa, Tibet, offers the best near-term opportunity within China. The opportunities for solar thermal power plants in other regions of China were also investigated.

  9. Photovoltaic performance and reliability workshop

    SciTech Connect (OSTI)

    Mrig, L.

    1993-12-01

    This workshop was the sixth in a series of workshops sponsored by NREL/DOE under the general subject of photovoltaic testing and reliability during the period 1986--1993. PV performance and PV reliability are at least as important as PV cost, if not more. In the US, PV manufacturers, DOE laboratories, electric utilities, and others are engaged in the photovoltaic reliability research and testing. This group of researchers and others interested in the field were brought together to exchange the technical knowledge and field experience as related to current information in this evolving field of PV reliability. The papers presented here reflect this effort since the last workshop held in September, 1992. The topics covered include: cell and module characterization, module and system testing, durability and reliability, system field experience, and standards and codes.

  10. Apparatus for encapsulating a photovoltaic module

    DOE Patents [OSTI]

    Albright, Scot P.; Dugan, Larry M.

    1995-10-24

    The subject inventions concern various photovoltaic module designs to protect the module from horizontal and vertical impacts and degradation of solar cell efficiency caused by moisture. In one design, a plurality of panel supports that are positioned adjacent to the upper panel in a photovoltaic module absorb vertical forces exerted along an axis perpendicular to the upper panel. Other designs employ layers of glass and tempered glass, respectively, to protect the module from vertical impacts. A plurality of button-shaped channels is used around the edges of the photovoltaic module to absorb forces applied to the module along an axis parallel to the module and direct moisture away from the module that could otherwise penetrate the module and adversely affect the cells within the module. A spacer is employed between the upper and lower panels that has a coefficient of thermal expansion substantially equivalent to the coefficient of thermal expansion of at least one of the panels.

  11. Use of photovoltaics for waste heat recovery

    DOE Patents [OSTI]

    Polcyn, Adam D

    2013-04-16

    A device for recovering waste heat in the form of radiated light, e.g. red visible light and/or infrared light includes a housing having a viewing window, and a photovoltaic cell mounted in the housing in a relationship to the viewing window, wherein rays of radiated light pass through the viewing window and impinge on surface of the photovoltaic cell. The housing and/or the cell are cooled so that the device can be used with a furnace for an industrial process, e.g. mounting the device with a view of the interior of the heating chamber of a glass making furnace. In this manner, the rays of the radiated light generated during the melting of glass batch materials in the heating chamber pass through the viewing window and impinge on the surface of the photovoltaic cells to generate electric current which is passed onto an electric load.

  12. Concord Municipal Light Plant- Solar Photovoltaic Rebate Program

    Energy.gov [DOE]

    Concord Municipal Light Plant (CMLP) offers rebates to customers who install solar photovoltaic (PV) systems that are designed to offset the customer's electrical needs. Systems must be owned by...

  13. Enhanced Reliability of Photovoltaic Systems with Energy Storage and Controls

    SciTech Connect (OSTI)

    Manz, D.; Schelenz, O.; Chandra, R.; Bose, S.; de Rooij, M.; Bebic, J.

    2008-02-01

    This report summarizes efforts to reconfigure loads during outages to allow individual customers the opportunity to enhance the reliability of their electric service through the management of their loads, photovoltaics, and energy storage devices.

  14. Mandatory Photovoltaic System Cost Analysis | Department of Energy

    Energy.gov (indexed) [DOE]

    to compare the cost of line extension with the cost of installing of a stand-alone photovoltaic (PV) system for remote locations with electricity needs. This ruling applies to...

  15. Photovoltaic System Performance

    Energy Science and Technology Software Center (OSTI)

    1989-09-25

    PVFORM4.0 is used to design a photovoltaic (PV) system using a set of design parameters which optimize the system's economic potential for the proposed location and the expected operating conditions. PVFORM3.3 has been used to determine PV system size and optimum mounting configuration. The anticipated electrical load determines the system size and the weather and the mounting configuration affect the system output. PVFORM4.0 uses program-supplied default values or their user-supplied equivalents for each of amore » large number of parameters describing the system and time-series data describing the environment to perform a series of hourly calculations to simulate the physical (photovoltaic) performance of a PV system for a one-year period. These iterative calculations sample the performance of the PV system throughout a simulated 365-day year of system operation. Within any simulated day on which system performance is sampled, the calculations are done hourly. The number of days sampled and the interval between them is determined by an input parameter. The results of these calculations are summarized on a monthly basis in output tables and an optional plot file. The program is applicable to grid interactive or stand-alone flat-plate systems. The grid interactive system is assumed to use power purchased from a local utility to supply that portion of the load not met by the simulated PV array. If the array produces more energy than can be consumed by the load, the excess energy is assumed to be sold back to the utility at a constant energy sellback price. If a stand-alone system is being modeled, the program assumes that all energy produced by the simulated PV array is first applied to the external load, and any excess is then used to charge the battery bank. Energy not consumed by the load or the batteries is considered to be wasted.« less

  16. Thermal Stress and Reliability for Advanced Power Electronics and Electric Machines (Presentation)

    SciTech Connect (OSTI)

    O'Keefe, M. P.

    2009-05-01

    This presentation gives an overview of NREL's Thermal Stress and Reliability Project work from October 2007 to March 2009 with an emphasis on activity during 2008/2009.

  17. NREL Photovoltaic Program FY 1996 Annual Report

    SciTech Connect (OSTI)

    Not Available

    1997-08-01

    This report summarizes the in-house and subcontract research and development (R&D) activities under the National Renewable Energy Laboratory (NREL) Photovoltaics (PV) Program from October 1, 1995 through September 30, 1996 (fiscal year [FY] 1996). The NREL PV Program is part of the U.S. Department of Energy's (DOE) National Photovoltaics Program, as described in the DOE Photovoltaics Program Plan, FY 1991 - FY 1995. The mission of the DOE National Photovoltaics Program is to: "Work in partnership with U.S. industry to develop and deploy photovoltaic technology for generating economically competitive electric power, making photovoltaics an important contributor to the nation's and the world's energy use and environmental improvement. The two primary goals of the national program are to (1) maintain the U.S. PV industry's world leadership in research and technology development and (2) help the U.S. industry remain a major, profitable force in the world market. The NREL PV Program provides leadership and support to the national program toward achieving its mission and goals.

  18. Vehicle Technologies Office Merit Review 2014: Electric PCM Assisted Thermal Heating System

    Energy.gov [DOE]

    Presentation given by Delphi Automotive at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about electric PCM assisted...

  19. Vehicle Technologies Office Merit Review 2015: Electric Motor Thermal Management R&D

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about electric...

  20. NREL: Photovoltaics Research - Awards for Photovoltaic Manufacturing...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Awards for Photovoltaic Manufacturing R&D The following research efforts within the PV Manufacturing R&D Project were honored with prestigious industry awards. 1995-AstroPower (now ...

  1. Solar Photovoltaic System Design Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    System Design Basics Solar Photovoltaic System Design Basics August 20, 2013 - 4:00pm Addthis Solar photovoltaic modules are where the electricity gets generated, but are only one of the many parts in a complete photovoltaic (PV) system. In order for the generated electricity to be useful in a home or business, a number of other technologies must be in place. Mounting Structures PV arrays must be mounted on a stable, durable structure that can support the array and withstand wind, rain, hail,

  2. NREL: Photovoltaics Research - Photovoltaic Energy Ratings Methods

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Validation Photovoltaic Energy Ratings Methods Validation The Photovoltaic (PV) Engineering group at NREL validates energy ratings methods by standards committees to establish an energy rating methodology. We are evaluating techniques to account for the impact on PV performance from variations in the spectral distribution of solar radiation. Two types of methods were evaluated for correcting the short-circuit current of PV modules for variations in the solar spectrum under clear skies: (1)

  3. The design, construction, and monitoring of photovoltaic power system and solar thermal system on the Georgia Institute of Technology Aquatic Center. Volume 1

    SciTech Connect (OSTI)

    Long, R.C.

    1996-12-31

    This is a report on the feasibility study, design, and construction of a PV and solar thermal system for the Georgia Tech Aquatic Center. The topics of the report include a discussion of site selection and system selection, funding, design alternatives, PV module selection, final design, and project costs. Included are appendices describing the solar thermal system, the SAC entrance canopy PV mockup, and the PV feasibility study.

  4. Solar Electric Light Company SELCO | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    photovoltaic products and services targeted especially at end consumers in developing countries who have no access to land electricity. References: Solar Electric Light...

  5. Photovoltaic technology assessment

    SciTech Connect (OSTI)

    Backus, C.E.

    1981-01-01

    After a brief review of the history of photovoltaic devices and a discussion of the cost goals set for photovoltaic modules, the status of photovoltaic technology is assessed. Included are discussions of: current applications, present industrial production, low-cost silicon production techniques, energy payback periods for solar cells, advanced materials research and development, concentrator systems, balance-of-system components. Also discussed are some nontechnical aspects, including foreign markets, US government program approach, and industry attitudes and approaches. (LEW)

  6. Solar Photovoltaic SPECIFICATION, CHECKLIST...

    Energy Savers

    Ready Home SOLAR PHOTOVOLTAIC SPECIFICATION, CHECKLIST AND GUIDE i Table of Contents About the Renewable Energy Ready Home Specifications Assumptions of the RERH Solar ...

  7. National Laboratory Photovoltaics Research

    Office of Energy Efficiency and Renewable Energy (EERE)

    DOE supports photovoltaic (PV) research and development and facilities at its national laboratories to accelerate progress toward achieving the SunShot Initiative's technological and economic...

  8. Photovoltaics Business Models

    SciTech Connect (OSTI)

    Frantzis, L.; Graham, S.; Katofsky, R.; Sawyer, H.

    2008-02-01

    This report summarizes work to better understand the structure of future photovoltaics business models and the research, development, and demonstration required to support their deployment.

  9. Concentrating Photovoltaics (Presentation)

    SciTech Connect (OSTI)

    Kurtz, S.

    2009-01-20

    Solar is growing rapidly, and the concentrating photovoltaics industry-both high- and low-concentration cell approaches-may be ready to ramp production in 2009.

  10. NREL: Photovoltaics Research - News

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    For archived editions of the NCPV Hotline. See also PV events. Printable Version Photovoltaics Research Home Silicon Polycrystalline Thin Films Multijunctions New Materials,...

  11. NREL: Photovoltaics Research - Webmaster

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    reply. Your name: Your email address: Your message: Send Message Printable Version Photovoltaics Research Home Silicon Polycrystalline Thin Films Multijunctions New Materials,...

  12. NREL: Photovoltaics Research - Facilities

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    technologies and applications. These facilities within the National Center for Photovoltaics (NCPV) serve both multi-use and dedicated-use functions. We encourage our research...

  13. Photovoltaic Cell And Manufacturing Process

    DOE Patents [OSTI]

    Albright, Scot P.; Chamberlin, Rhodes R.

    1996-11-26

    Provided is a method for controlling electrical properties and morphology of a p-type material of a photovoltaic device. The p-type material, such as p-type cadmium telluride, is first subjected to heat treatment in an oxidizing environment, followed by recrystallization in an environment substantially free of oxidants. In one embodiment, the heat treatment step comprises first subjecting the p-type material to an oxidizing atmosphere at a first temperature to getter impurities, followed by second subjecting the p-type material to an oxidizing atmosphere at a second temperature, higher than the first temperature, to develop a desired oxidation gradient through the p-type material.

  14. Electrochromic-photovoltaic film for light-sensitive control of optical transmittance

    DOE Patents [OSTI]

    Branz, Howard M.; Crandall, Richard S.; Tracy, C. Edwin

    1994-01-01

    A variable transmittance optical component includes an electrochromic material and a photovoltaic device-type thin film solar cell deposited in a tandem type, monolithic single coating over the component. A bleed resistor of a predetermined value is connected in series across the electrochromic material and photovoltaic device controlling the activation and deactivation of the electrochromic material. The electrical conductivity between the electrochromic material and the photovoltaic device is enhanced by interposing a transparent electrically conductive layer.

  15. Electrochromic-photovoltaic film for light-sensitive control of optical transmittance

    DOE Patents [OSTI]

    Branz, H.M.; Crandall, R.S.; Tracy, C.E.

    1994-12-27

    A variable transmittance optical component includes an electrochromic material and a photovoltaic device-type thin film solar cell deposited in a tandem type, monolithic single coating over the component. A bleed resistor of a predetermined value is connected in series across the electrochromic material and photovoltaic device controlling the activation and deactivation of the electrochromic material. The electrical conductivity between the electrochromic material and the photovoltaic device is enhanced by interposing a transparent electrically conductive layer. 5 figures.

  16. Planar photovoltaic solar concentrator module

    DOE Patents [OSTI]

    Chiang, C.J.

    1992-12-01

    A planar photovoltaic concentrator module for producing an electrical signal from incident solar radiation includes an electrically insulating housing having a front wall, an opposing back wall and a hollow interior. A solar cell having electrical terminals is positioned within the interior of the housing. A planar conductor is connected with a terminal of the solar cell of the same polarity. A lens forming the front wall of the housing is operable to direct solar radiation incident to the lens into the interior of the housing. A refractive optical element in contact with the solar cell and facing the lens receives the solar radiation directed into the interior of the housing by the lens and directs the solar radiation to the solar cell to cause the solar cell to generate an electrical signal. An electrically conductive planar member is positioned in the housing to rest on the housing back wall in supporting relation with the solar cell terminal of opposite polarity. The planar member is operable to dissipate heat radiated by the solar cell as the solar cell generates an electrical signal and further forms a solar cell conductor connected with the solar cell terminal to permit the electrical signal generated by the solar cell to be measured between the planar member and the conductor. 5 figs.

  17. Planar photovoltaic solar concentrator module

    DOE Patents [OSTI]

    Chiang, Clement J.

    1992-01-01

    A planar photovoltaic concentrator module for producing an electrical signal from incident solar radiation includes an electrically insulating housing having a front wall, an opposing back wall and a hollow interior. A solar cell having electrical terminals is positioned within the interior of the housing. A planar conductor is connected with a terminal of the solar cell of the same polarity. A lens forming the front wall of the housing is operable to direct solar radiation incident to the lens into the interior of the housing. A refractive optical element in contact with the solar cell and facing the lens receives the solar radiation directed into the interior of the housing by the lens and directs the solar radiation to the solar cell to cause the solar cell to generate an electrical signal. An electrically conductive planar member is positioned in the housing to rest on the housing back wall in supporting relation with the solar cell terminal of opposite polarity. The planar member is operable to dissipate heat radiated by the solar cell as the solar cell generates an electrical signal and further forms a solar cell conductor connected with the solar cell terminal to permit the electrical signal generated by the solar cell to be measured between the planar member and the conductor.

  18. Thin film photovoltaic device and process of manufacture

    DOE Patents [OSTI]

    Albright, Scot P.; Chamberlin, Rhodes

    1997-10-07

    Provided is a thin film photovoltaic device and a method of manufacturing the device. The thin film photovoltaic device comprises a film layer having particles which are smaller than about 30 microns in size held in an electrically insulating matrix material to reduce the potential for electrical shorting through the film layer. The film layer may be provided by depositing preformed particles onto a surrogate substrate and binding the particles in a film-forming matrix material to form a flexible sheet with the film layer. The flexible sheet may be separated from the surrogate substrate and cut into flexible strips. A plurality of the flexible strips may be located adjacent to and supported by a common supporting substrate to form a photovoltaic module having a plurality of electrically interconnected photovoltaic cells.

  19. Thin film photovoltaic device and process of manufacture

    DOE Patents [OSTI]

    Albright, Scot P.; Chamberlin, Rhodes

    1999-02-09

    Provided is a thin film photovoltaic device and a method of manufacturing the device. The thin film photovoltaic device comprises a film layer having particles which are smaller than about 30 microns in size held in an electrically insulating matrix material to reduce the potential for electrical shorting through the film layer. The film layer may be provided by depositing preformed particles onto a surrogate substrate and binding the particles in a film-forming matrix material to form a flexible sheet with the film layer. The flexible sheet may be separated from the surrogate substrate and cut into flexible strips. A plurality of the flexible strips may be located adjacent to and supported by a common supporting substrate to form a photovoltaic module having a plurality of electrically interconnected photovoltaic cells.

  20. Thin film photovoltaic device and process of manufacture

    DOE Patents [OSTI]

    Albright, S.P.; Chamberlin, R.

    1999-02-09

    Provided is a thin film photovoltaic device and a method of manufacturing the device. The thin film photovoltaic device comprises a film layer having particles which are smaller than about 30 microns in size held in an electrically insulating matrix material to reduce the potential for electrical shorting through the film layer. The film layer may be provided by depositing preformed particles onto a surrogate substrate and binding the particles in a film-forming matrix material to form a flexible sheet with the film layer. The flexible sheet may be separated from the surrogate substrate and cut into flexible strips. A plurality of the flexible strips may be located adjacent to and supported by a common supporting substrate to form a photovoltaic module having a plurality of electrically interconnected photovoltaic cells. 13 figs.

  1. Thin film photovoltaic device and process of manufacture

    DOE Patents [OSTI]

    Albright, S.P.; Chamberlin, R.

    1997-10-07

    Provided is a thin film photovoltaic device and a method of manufacturing the device. The thin film photovoltaic device comprises a film layer having particles which are smaller than about 30 microns in size held in an electrically insulating matrix material to reduce the potential for electrical shorting through the film layer. The film layer may be provided by depositing preformed particles onto a surrogate substrate and binding the particles in a film-forming matrix material to form a flexible sheet with the film layer. The flexible sheet may be separated from the surrogate substrate and cut into flexible strips. A plurality of the flexible strips may be located adjacent to and supported by a common supporting substrate to form a photovoltaic module having a plurality of electrically interconnected photovoltaic cells. 13 figs.

  2. NREL: Photovoltaics Research - Steve Rummel

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Moriarty, Carl Osterwald, Larry Ottoson, Steve Rummel, and Rafell Williams, "Rating Photovoltaics" 39th IEEE Photovoltaic Specialist Conference, Tampa Bay, Florida, June 16-21,...

  3. Integrated Photovoltaics | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Photovoltaics Jump to: navigation, search Name: Integrated Photovoltaics Place: Sunnyvale, California Product: California-based stealth mode PV startup. Coordinates: 32.780338,...

  4. Ligitek Photovoltaic | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Photovoltaic Jump to: navigation, search Name: Ligitek Photovoltaic Place: Taiwan Sector: Solar Product: Ligitek solar is a fully owned subsidiary of Ligitek Electronics, that will...

  5. Vehicle Technologies Office Merit Review 2015: ePATHS- electrical PCM Assisted Thermal Heating System

    Energy.gov [DOE]

    Presentation given by Delphi Automotive at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about ePATHS - electrical PCM...

  6. Electrical and Thermal Transport Optimization of High Efficient n-type

    Energy.gov (indexed) [DOE]

    in Procurement of Electric Vehicle Supply Equipment This Guidance provides a description of the types of requirements to be included in an employer's workplace charging request for proposal (RFP). This Guidance is not intended to be a sample or manual for acquiring electric vehicle supply equipment (EVSE), but rather to serve as a reference for an employer to consider when acquiring EVSE as part of a workplace charging program. Contact the Workplace Charging Challenge at

  7. Thermal Energy Storage for Electricity Peak-demand Mitigation: A Solution in Developing and Developed World Alike

    SciTech Connect (OSTI)

    DeForest, Nicholas; Mendes, Goncalo; Stadler, Michael; Feng, Wei; Lai, Judy; Marnay, Chris

    2013-06-02

    In much of the developed world, air-conditioning in buildings is the dominant driver of summer peak electricity demand. In the developing world a steadily increasing utilization of air-conditioning places additional strain on already-congested grids. This common thread represents a large and growing threat to the reliable delivery of electricity around the world, requiring capital-intensive expansion of capacity and draining available investment resources. Thermal energy storage (TES), in the form of ice or chilled water, may be one of the few technologies currently capable of mitigating this problem cost effectively and at scale. The installation of TES capacity allows a building to meet its on-peak air conditioning load without interruption using electricity purchased off-peak and operating with improved thermodynamic efficiency. In this way, TES has the potential to fundamentally alter consumption dynamics and reduce impacts of air conditioning. This investigation presents a simulation study of a large office building in four distinct geographical contexts: Miami, Lisbon, Shanghai, and Mumbai. The optimization tool DER-CAM (Distributed Energy Resources Customer Adoption Model) is applied to optimally size TES systems for each location. Summer load profiles are investigated to assess the effectiveness and consistency in reducing peak electricity demand. Additionally, annual energy requirements are used to determine system cost feasibility, payback periods and customer savings under local utility tariffs.

  8. Solar Electric Incentive Program

    Energy.gov [DOE]

    Energy Trust of Oregon’s Solar Electric Incentive Program, launched in May 2003, is available to customers of Pacific Power and PGE who install new photovoltaic (PV) systems on new or existing...

  9. Photovoltaics industry profile

    SciTech Connect (OSTI)

    1980-10-01

    A description of the status of the US photovoltaics industry is given. Principal end-user industries are identified, domestic and foreign market trends are discussed, and industry-organized and US government-organized trade promotion events are listed. Trade associations and trade journals are listed, and a photovoltaic product manufacturers list is included. (WHK)

  10. Microsystems Enabled Photovoltaics

    SciTech Connect (OSTI)

    Gupta, Vipin; Nielson, Greg; Okandan, Murat, Granata, Jennifer; Nelson, Jeff; Haney, Mike; Cruz-Campa, Jose Luiz

    2012-07-02

    Sandia's microsystems enabled photovoltaic advances combine mature technology and tools currently used in microsystem production with groundbreaking advances in photovoltaics cell design, decreasing production and system costs while improving energy conversion efficiency. The technology has potential applications in buildings, houses, clothing, portable electronics, vehicles, and other contoured structures.

  11. Microsystems Enabled Photovoltaics

    ScienceCinema (OSTI)

    Gupta, Vipin; Nielson, Greg; Okandan, Murat, Granata, Jennifer; Nelson, Jeff; Haney, Mike; Cruz-Campa, Jose Luiz

    2014-06-23

    Sandia's microsystems enabled photovoltaic advances combine mature technology and tools currently used in microsystem production with groundbreaking advances in photovoltaics cell design, decreasing production and system costs while improving energy conversion efficiency. The technology has potential applications in buildings, houses, clothing, portable electronics, vehicles, and other contoured structures.

  12. An investigation of the electrical behavior of thermally-sprayed aluminum oxide

    SciTech Connect (OSTI)

    Swindeman, C.J.; Seals, R.D.; White, R.L.; Murray, W.P.; Cooper, M.H.

    1996-09-01

    Electrical properties of plasma-sprayed aluminum oxide coatings were measured at temperatures up to 600 C. High purity (> 99.5 wt% pure Al{sub 2}O{sub 3}) alumina powders were plasma-sprayed on stainless steel substrates over a range of power levels, using two gun configurations designed to attain different spray velocities. Key electrical properties were measured to evaluate the resultant coatings as potential insulating materials for electrostatic chucks (ESCs) being developed for semiconductor manufacturing. Electrical resistivity of all coatings was measured under vacuum upon heating and cooling over a temperature range of 20 to 600 C. Dielectric constants were also measured under the same test conditions. X-ray diffraction was performed to examine phase formation in the coatings. Results show the important of powder composition and careful selection and control of spray conditions for optimizing electrical behavior in plasma-sprayed aluminum oxide, and point to the need for further studies to characterize the relationship between high temperature electrical properties, measured plasma-spray variables, and specific microstructural and compositional coating features.

  13. Photovoltaic hydrogen production

    SciTech Connect (OSTI)

    Hiser, H.W.; Memory, S.B.; Veziroglu, T.N.; Padin, J.

    1996-10-01

    This is a new project, which started in June 1995, and involves photovoltaic hydrogen production as a fuel production method for the future. In order to increase the hydrogen yield, it was decided to use hybrid solar collectors to generate D.C. electricity, as well as high temperature steam for input to the electrolyzer. In this way, some of the energy needed to dissociate the water is supplied in the form of heat (or low grade energy), to generate steam, which results in a reduction of electrical energy (or high grade energy) needed. As a result, solar to hydrogen conversion efficiency is increased. In the above stated system, the collector location, the collector tracking sub-system (i.e., orientation/rotation), and the steam temperature have been taken as variables. Five locations selected - in order to consider a variety of latitudes, altitudes, cloud coverage and atmospheric conditions - are Atlanta, Denver, Miami, Phoenix and Salt Lake City. Plain PV and hybrid solar collectors for a stationary south facing system and five different collector rotation systems have been analyzed. Steam temperatures have been varied between 200{degrees}C and 1200{degrees}C. During the first year, solar to hydrogen conversion efficiencies have been considered. The results show that higher steam temperatures, 2 dimensional tracking system, higher elevations and dryer climates causes higher conversion efficiencies. Cost effectiveness of the sub-systems and of the overall system will be analyzed during the second year. Also, initial studies will be made of an advanced high efficiency hybrid solar hydrogen production system.

  14. Design and cost of near-term OTEC (Ocean Thermal Energy Conversion) plants for the production of desalinated water and electric power. [Ocean Thermal Energy Conversion (OTEC)

    SciTech Connect (OSTI)

    Rabas, T.; Panchal, C.; Genens, L.

    1990-01-01

    There currently is an increasing need for both potable water and power for many islands in the Pacific and Caribbean. The Ocean Thermal Energy Conversion (OTEC) technology fills these needs and is a viable option because of the unlimited supply of ocean thermal energy for the production of both desalinated water and electricity. The OTEC plant design must be flexible to meet the product-mix demands that can be very different from site to site. This paper describes different OTEC plants that can supply various mixes of desalinated water and vapor -- the extremes being either all water and no power or no water and all power. The economics for these plants are also presented. The same flow rates and pipe sizes for both the warm and cold seawater streams are used for different plant designs. The OTEC plant designs are characterized as near-term because no major technical issues need to be resolved or demonstrated. The plant concepts are based on DOE-sponsored experiments dealing with power systems, advanced heat exchanger designs, corrosion and fouling of heat exchange surfaces, and flash evaporation and moisture removal from the vapor using multiple spouts. In addition, the mature multistage flash evaporator technology is incorporated into the plant designs were appropriate. For the supply and discharge warm and cold uncertainties do exist because the required pipe sizes are larger than the maximum currently deployed -- 40-inch high-density polyethylene pipe at Keahole Point in Hawaii. 30 refs., 6 figs., 8 tabs.

  15. Photovoltaic module with light reflecting backskin

    DOE Patents [OSTI]

    Gonsiorawski, Ronald C.

    2007-07-03

    A photovoltaic module comprises electrically interconnected and mutually spaced photovoltaic cells that are encapsulated by a light-transmitting encapsulant between a light-transparent front cover and a back cover, with the back cover sheet being an ionomer/nylon alloy embossed with V-shaped grooves running in at least two directions and coated with a light reflecting medium so as to provide light-reflecting facets that are aligned with the spaces between adjacent cells and oriented so as to reflect light falling in those spaces back toward said transparent front cover for further internal reflection onto the solar cells, whereby substantially all of the reflected light will be internally reflected from said cover sheet back to the photovoltaic cells, thereby increasing the current output of the module. The internal reflector improves power output by as much as 67%.

  16. Annual Report: Photovoltaic Subcontract Program FY 1991

    SciTech Connect (OSTI)

    Summers, K. A.

    1992-03-01

    This report summarizes the fiscal year (FY) 1991 (October 1, 1990, through September 30, 1991) progress of the subcontracted photovoltaic (PV) research and development (R&D) performed under the Photovoltaic Advanced Research and Development Project at the National Renewable Energy Laboratory (NREL)-formerly the Solar Energy Research Institute (SERI). The mission of the national PV program is to develop PV technology for large-scale generation of economically competitive electric power in the United States. The technical sections of the report cover the main areas of the subcontract program: the Amorphous Silicon Research Project, Polycrystalline Thin Films, Crystalline Silicon Materials Research, High Efficiency Concepts, the New Ideas Program, the University Participation Program, and the Photovoltaic Manufacturing Technology (PVMaT) project. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1991, and future research directions.

  17. Photovoltaic Subcontract Program. Annual report, FY 1992

    SciTech Connect (OSTI)

    Not Available

    1993-03-01

    This report summarizes the fiscal year (FY) 1992 progress of the subcontracted photovoltaic (PV) research and development (R&D) performed under the Photovoltaic Advanced Research and Development Project at the National Renewable Energy Laboratory (NREL)-formerly the Solar Energy Research Institute (SERI). The mission of the national PV program is to develop PV technology for large-scale generation of economically competitive electric power in the United States. The technical sections of the report cover the main areas of the subcontract program: the Crystalline Materials and Advanced Concepts project, the Polycrystalline Thin Films project, Amorphous Silicon Research project, the Photovoltaic Manufacturing Technology (PVMaT) project, PV Module and System Performance and Engineering project, and the PV Analysis and Applications Development project. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1992, and future research directions.

  18. Antitrust implications of utility participation in the market for remote photovoltaic systems

    SciTech Connect (OSTI)

    Starrs, T.J.

    1994-12-31

    Remote photovoltaic systems are an important niche market in the development of a viable photovoltaics industry. Electric utilities in the US have started offering remote photovoltaic service. Utilities have the potential to use their monopoly power in regulated markets to unfair competitive advantage in competitive markets. Therefore, utility participation in remote photovoltaic markets raises potentially significant issues of antitrust law and policy. This paper describes some of the legal and factual criteria that US courts and regulatory agencies are likely to use in assessing the antitrust implications of utility participation in the market for remote photovoltaic systems.

  19. The path to clean energy: direct coupling of nuclear and renewable technologies for thermal and electrical applications

    SciTech Connect (OSTI)

    Bragg-Sitton, Shannon; Boardman, Richard; Ruth, Mark

    2015-07-01

    The U.S. Department of Energy (DOE) recognizes the need to transform the energy infrastructure of the U.S. and elsewhere to systems that can significantly reduce environmental impacts in an efficient and economically viable manner while utilizing both clean energy generation sources and hydrocarbon resources. Thus, DOE is supporting research and development that could lead to more efficient utilization of clean nuclear and renewable energy generation sources. A concept being advanced by the DOE Offices of Nuclear Energy (NE) and Energy Efficiency and Renewable Energy (EERE) is tighter coupling of nuclear and renewable energy sources in a manner that better optimizes energy use for the combined electricity, industrial manufacturing, and the transportation sectors. This integration concept has been referred to as a “hybrid system” that is capable of providing energy (thermal or electrical) where it is needed, when it is needed. For the purposes of this work, the hybrid system would integrate two or more energy resources to generate two or more products, one of which must be an energy commodity, such as electricity or transportation fuel. This definition requires coupling of subsystems ‘‘behind’’ the electrical transmission bus, where energy flows are dynamically apportioned as necessary to meet demand and the system has a single connection to the grid that provides dispatchable electricity as required while capital intensive generation assets operate at full capacity. Development of integrated energy systems for an “energy park” must carefully consider the intended location and the associated regional resources, traditional industrial processes, energy delivery infrastructure, and markets to identify viable region-specific system configurations. This paper will provide an overview of the current status of regional hybrid energy system design, development and application of dynamic analysis tools to assess technical and economic performance, and

  20. Electricity Monthly Update - Energy Information Administration

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    rapid growth in photovoltaic capacity. Solar electricity output in June is a good indicator of the recent growth of the solar industry, because June has the highest monthly...

  1. Roseville Electric- Residential New Construction Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Roseville Electric provides financial incentives to encourage local builders to construct energy efficient homes which incorporate  photovoltaics (PV). Participating builders can choose from three...

  2. Detailed Photovoltaic Analysis Simulation Spreadsheet

    Energy Science and Technology Software Center (OSTI)

    2008-12-31

    The software calculates photovoltaic system energy and financial performance via the utilization of very detailed parameters.

  3. Local control of reactive power by distributed photovoltaic generators

    SciTech Connect (OSTI)

    Chertkov, Michael; Turitsyn, Konstantin; Sulc, Petr; Backhaus, Scott

    2010-01-01

    High penetration levels of distributed photovoltaic (PV) generation on an electrical distribution circuit may severely degrade power quality due to voltage sags and swells caused by rapidly varying PV generation during cloud transients coupled with the slow response of existing utility compensation and regulation equipment. Although not permitted under current standards for interconnection of distributed generation, fast-reacting, VAR-capable PV inverters may provide the necessary reactive power injection or consumption to maintain voltage regulation under difficult transient conditions. As side benefit, the control of reactive power injection at each PV inverter provides an opportunity and a new tool for distribution utilities to optimize the performance of distribution circuits, e.g. by minimizing thermal losses. We suggest a local control scheme that dispatches reactive power from each PV inverter based on local instantaneous measurements of the real and reactive components of the consumed power and the real power generated by the PVs. Using one adjustable parameter per circuit, we balance the requirements on power quality and desire to minimize thermal losses. Numerical analysis of two exemplary systems, with comparable total PV generation albeit a different spatial distribution, show how to adjust the optimization parameter depending on the goal. Overall, this local scheme shows excellent performance; it's capable of guaranteeing acceptable power quality and achieving significant saving in thermal losses in various situations even when the renewable generation in excess of the circuit own load, i.e. feeding power back to the higher-level system.

  4. Case Study: Mobile Photovoltaic System at Bechler Meadows Ranger Station, Yellowstone National Park (Brochure), Federal Energy Management Program (FEMP)

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Mobile Photovoltaic System at Bechler Meadows Ranger Station, Yellowstone National Park Introduction This report describes the performance of a mobile photovoltaic (PV) system installed in 2011 to provide power to Bechler Ranger Station in Yellowstone National Park, Wyo. This small, remote outpost is not served by the electric utility grid and previously relied on a propane generator as the only source of power. Mobile Photovoltaic Systems Mobile solar systems consist of photovoltaic (PV)

  5. Photovoltaic module mounting clip with integral grounding

    DOE Patents [OSTI]

    Lenox, Carl J.

    2008-10-14

    An electrically conductive mounting/grounding clip, for use with a photovoltaic assembly of the type having an electrically conductive frame, comprises an electrically conductive body. The body has a central portion and first and second spaced-apart arms extending generally perpendicular to the central portion. Each arm has an outer portion with each outer portion having an outer end. At least one frame surface-disrupting element is at each outer end. The central portion defines a plane with the frame surface-disrupting elements pointing towards the plane. In some examples each arm extends from the central portion at an acute angle to the plane.

  6. Photovoltaic module with removable wind deflector (Patent) |...

    Office of Scientific and Technical Information (OSTI)

    Photovoltaic module with removable wind deflector Title: Photovoltaic module with removable wind deflector A photovoltaic (PV) module assembly including a PV module, a deflector, ...

  7. Photovoltaic module with removable wind deflector (Patent) |...

    Office of Scientific and Technical Information (OSTI)

    Patent: Photovoltaic module with removable wind deflector Citation Details In-Document Search Title: Photovoltaic module with removable wind deflector A photovoltaic (PV) module ...

  8. Sputtered Thin Film Photovoltaics - Energy Innovation Portal

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Solar Photovoltaic Solar Photovoltaic Find More Like This Return to Search Sputtered Thin Film Photovoltaics Naval Research Laboratory Contact NRL About This Technology ...

  9. Category:Photovoltaic Incentives | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Photovoltaic Incentives Jump to: navigation, search Category for Photovoltaic Incentives. Pages in category "Photovoltaic Incentives" The following 107 pages are in this category,...

  10. Alternating Current Photovoltaic Building Block - Energy Innovation...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Solar Photovoltaic Solar Photovoltaic Find More Like This Return to Search Alternating Current Photovoltaic Building Block Sandia National Laboratories Contact SNL About This...

  11. Category:Photovoltaic | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Photovoltaic Jump to: navigation, search This is the Photovoltaic category. Pages in category "Photovoltaic" The following 7 pages are in this category, out of 7 total. A American...

  12. Method of manufacturing a large-area segmented photovoltaic module

    DOE Patents [OSTI]

    Lenox, Carl

    2013-11-05

    One embodiment of the invention relates to a segmented photovoltaic (PV) module which is manufactured from laminate segments. The segmented PV module includes rectangular-shaped laminate segments formed from rectangular-shaped PV laminates and further includes non-rectangular-shaped laminate segments formed from rectangular-shaped and approximately-triangular-shaped PV laminates. The laminate segments are mechanically joined and electrically interconnected to form the segmented module. Another embodiment relates to a method of manufacturing a large-area segmented photovoltaic module from laminate segments of various shapes. Other embodiments relate to processes for providing a photovoltaic array for installation at a site. Other embodiments and features are also disclosed.

  13. Photovoltaic Powering And Control System For Electrochromic Windows

    DOE Patents [OSTI]

    Schulz, Stephen C.; Michalski, Lech A.; Volltrauer, Hermann N.; Van Dine, John E.

    2000-04-25

    A sealed insulated glass unit is provided with an electrochromic device for modulating light passing through the unit. The electrochromic device is controlled from outside the unit by a remote control electrically unconnected to the device. Circuitry within the unit may be magnetically controlled from outside. The electrochromic device is powered by a photovoltaic cells. The photovoltaic cells may be positioned so that at least a part of the light incident on the cell passes through the electrochromic device, providing a form of feedback control. A variable resistance placed in parallel with the electrochromic element is used to control the response of the electrochromic element to changes in output of the photovoltaic cell.

  14. Laminated photovoltaic modules using back-contact solar cells

    DOE Patents [OSTI]

    Gee, James M.; Garrett, Stephen E.; Morgan, William P.; Worobey, Walter

    1999-09-14

    Photovoltaic modules which comprise back-contact solar cells, such as back-contact crystalline silicon solar cells, positioned atop electrically conductive circuit elements affixed to a planar support so that a circuit capable of generating electric power is created. The modules are encapsulated using encapsulant materials such as EVA which are commonly used in photovoltaic module manufacture. The module designs allow multiple cells to be electrically connected in a single encapsulation step rather than by sequential soldering which characterizes the currently used commercial practices.

  15. Series interconnected photovoltaic cells and method for making same

    DOE Patents [OSTI]

    Albright, S.P.; Chamberlin, R.R.; Thompson, R.A.

    1995-01-31

    A novel photovoltaic module and method for constructing the same are disclosed. The module includes a plurality of photovoltaic cells formed on a substrate and laterally separated by interconnection regions. Each cell includes a bottom electrode, a photoactive layer and a top electrode layer. Adjacent cells are connected in electrical series by way of a conductive-buffer line. The buffer line is also useful in protecting the bottom electrode against severing during downstream layer cutting processes. 11 figs.

  16. Stand-alone photovoltaic (PV) powered electrochromic window

    DOE Patents [OSTI]

    Benson, D.K.; Crandall, R.S.; Deb, S.K.; Stone, J.L.

    1995-01-24

    A variable transmittance double pane window includes an electrochromic material that has been deposited on one pane of the window in conjunction with an array of photovoltaic cells deposited along an edge of the pane to produce the required electric power necessary to vary the effective transmittance of the window. A battery is placed in a parallel fashion to the array of photovoltaic cells to allow the user the ability to manually override the system when a desired transmittance is desired. 11 figures.

  17. Stand-alone photovoltaic (PV) powered electrochromic window

    DOE Patents [OSTI]

    Benson, David K.; Crandall, Richard S.; Deb, Satyendra K.; Stone, Jack L.

    1995-01-01

    A variable transmittance double pane window includes an electrochromic material that has been deposited on one pane of the window in conjunction with an array of photovoltaic cells deposited along an edge of the pane to produce the required electric power necessary to vary the effective transmittance of the window. A battery is placed in a parallel fashion to the array of photovoltaic cells to allow the user the ability to manually override the system when a desired transmittance is desired.

  18. Encapsulant-based Solution to Potential Induced Degradation of Photovoltaic

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Modules | Department of Energy Encapsulant-based Solution to Potential Induced Degradation of Photovoltaic Modules Encapsulant-based Solution to Potential Induced Degradation of Photovoltaic Modules Presented at the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado pvmrw13_ps4_dow_nanjundiah.pdf (691.02 KB) More Documents & Publications QER - Comment of Edison Electric Institute (EEI) 1 Final Report - Sun Rise New England - Open for Buisness Delamination Failures in

  19. ELECTRIC

    Office of Legacy Management (LM)

    ELECTRIC cdrtrokArJclaeT 3 I+ &i, y$ \I &OF I*- j< t j,fci..- ir )(yiT !E-li, ( \-,v? Cl -p/4.4 RESEARCH LABORATORIES EAST PITTSBURGH, PA. 8ay 22, 1947 Mr. J. Carrel Vrilson General ?!!mager Atomic Qxzgy Commission 1901 Constitution Avenue Kashington, D. C. Dear Sir: In the course of OUT nuclenr research we are planning to study the enc:ri;y threshold anti cross section for fission. For thib program we require a s<>piAroted sample of metallic Uranium 258 of high purity. A

  20. Photovoltaic Module Reliability Workshop 2011: February 16-17, 2011

    SciTech Connect (OSTI)

    Kurtz, S.

    2013-11-01

    NREL's Photovoltaic (PV) Module Reliability Workshop (PVMRW) brings together PV reliability experts to share information, leading to the improvement of PV module reliability. Such improvement reduces the cost of solar electricity and promotes investor confidence in the technology--both critical goals for moving PV technologies deeper into the electricity marketplace.

  1. Photovoltaic Module Reliability Workshop 2010: February 18-19, 2010

    SciTech Connect (OSTI)

    Kurtz, J.

    2013-11-01

    NREL's Photovoltaic (PV) Module Reliability Workshop (PVMRW) brings together PV reliability experts to share information, leading to the improvement of PV module reliability. Such improvement reduces the cost of solar electricity and promotes investor confidence in the technology--both critical goals for moving PV technologies deeper into the electricity marketplace.

  2. Photovoltaic Module Reliability Workshop 2012: February 28 - March 1, 2012

    SciTech Connect (OSTI)

    Kurtz, S.

    2013-11-01

    NREL's Photovoltaic (PV) Module Reliability Workshop (PVMRW) brings together PV reliability experts to share information, leading to the improvement of PV module reliability. Such improvement reduces the cost of solar electricity and promotes investor confidence in the technology--both critical goals for moving PV technologies deeper into the electricity marketplace.

  3. Photovoltaic Module Reliability Workshop 2013: February 26-27, 2013

    SciTech Connect (OSTI)

    Kurtz, S.

    2013-10-01

    NREL's Photovoltaic (PV) Module Reliability Workshop (PVMRW) brings together PV reliability experts to share information, leading to the improvement of PV module reliability. Such improvement reduces the cost of solar electricity and promotes investor confidence in the technology--both critical goals for moving PV technologies deeper into the electricity marketplace.

  4. Photovoltaic Module Reliability Workshop 2014: February 25-26, 2014

    SciTech Connect (OSTI)

    Kurtz, S.

    2014-02-01

    NREL's Photovoltaic (PV) Module Reliability Workshop (PVMRW) brings together PV reliability experts to share information, leading to the improvement of PV module reliability. Such improvement reduces the cost of solar electricity and promotes investor confidence in the technology--both critical goals for moving PV technologies deeper into the electricity marketplace.

  5. High Penetration, Grid Connected Photovoltaic Technology Codes and Standards: Preprint

    SciTech Connect (OSTI)

    Basso, T. S.

    2008-05-01

    This paper reports the interim status in identifying and reviewing photovoltaic (PV) codes and standards (C&S) and related electrical activities for grid-connected, high-penetration PV systems with a focus on U.S. electric utility distribution grid interconnection.

  6. Electrical network method for the thermal or structural characterization of a conducting material sample or structure

    DOE Patents [OSTI]

    Ortiz, M.G.

    1993-06-08

    A method for modeling a conducting material sample or structure system, as an electrical network of resistances in which each resistance of the network is representative of a specific physical region of the system. The method encompasses measuring a resistance between two external leads and using this measurement in a series of equations describing the network to solve for the network resistances for a specified region and temperature. A calibration system is then developed using the calculated resistances at specified temperatures. This allows for the translation of the calculated resistances to a region temperature. The method can also be used to detect and quantify structural defects in the system.

  7. Electrical network method for the thermal or structural characterization of a conducting material sample or structure

    DOE Patents [OSTI]

    Ortiz, Marco G.

    1993-01-01

    A method for modeling a conducting material sample or structure system, as an electrical network of resistances in which each resistance of the network is representative of a specific physical region of the system. The method encompasses measuring a resistance between two external leads and using this measurement in a series of equations describing the network to solve for the network resistances for a specified region and temperature. A calibration system is then developed using the calculated resistances at specified temperatures. This allows for the translation of the calculated resistances to a region temperature. The method can also be used to detect and quantify structural defects in the system.

  8. Three-dimensional fully-coupled electrical and thermal transport model of dynamic switching in oxide memristors

    DOE PAGES-Beta [OSTI]

    Gao, Xujiao; Mamaluy, Denis; Mickel, Patrick R.; Marinella, Matthew

    2015-09-08

    In this paper, we present a fully-coupled electrical and thermal transport model for oxide memristors that solves simultaneously the time-dependent continuity equations for all relevant carriers, together with the time-dependent heat equation including Joule heating sources. The model captures all the important processes that drive memristive switching and is applicable to simulate switching behavior in a wide range of oxide memristors. The model is applied to simulate the ON switching in a 3D filamentary TaOx memristor. Simulation results show that, for uniform vacancy density in the OFF state, vacancies fill in the conduction filament till saturation, and then fill outmore » a gap formed in the Ta electrode during ON switching; furthermore, ON-switching time strongly depends on applied voltage and the ON-to-OFF current ratio is sensitive to the filament vacancy density in the OFF state.« less

  9. Three-dimensional fully-coupled electrical and thermal transport model of dynamic switching in oxide memristors

    SciTech Connect (OSTI)

    Gao, Xujiao; Mamaluy, Denis; Mickel, Patrick R.; Marinella, Matthew

    2015-09-08

    In this paper, we present a fully-coupled electrical and thermal transport model for oxide memristors that solves simultaneously the time-dependent continuity equations for all relevant carriers, together with the time-dependent heat equation including Joule heating sources. The model captures all the important processes that drive memristive switching and is applicable to simulate switching behavior in a wide range of oxide memristors. The model is applied to simulate the ON switching in a 3D filamentary TaOx memristor. Simulation results show that, for uniform vacancy density in the OFF state, vacancies fill in the conduction filament till saturation, and then fill out a gap formed in the Ta electrode during ON switching; furthermore, ON-switching time strongly depends on applied voltage and the ON-to-OFF current ratio is sensitive to the filament vacancy density in the OFF state.

  10. Photovoltaics: Separating Multiple Excitons

    SciTech Connect (OSTI)

    Nozik, A. J.

    2012-05-01

    Scientists have demonstrated an efficient process for generating multiple excitons in adjacent silicon nanocrystals from a single high-energy photon. Their findings could prove useful for a wide range of photovoltaic applications.

  11. Photovoltaics: A Diverse Technology

    Office of Energy Efficiency and Renewable Energy (EERE)

    This video illustrates the diversity of photovoltaic (PV) technology, which is due to innovations in PV materials, reductions in manufacturing costs, and expanding uses of the technology. A brief...

  12. Photonic Design for Photovoltaics

    SciTech Connect (OSTI)

    Kosten, E.; Callahan, D.; Horowitz, K.; Pala, R.; Atwater, H.

    2014-08-28

    We describe photonic design approaches for silicon photovoltaics including i) trapezoidal broadband light trapping structures ii) broadband light trapping with photonic crystal superlattices iii) III-V/Si nanowire arrays designed for broadband light trapping.

  13. Photovoltaic Research Facilities

    Energy.gov [DOE]

    The U.S. Department of Energy (DOE) funds photovoltaic (PV) research and development (R&D) at its national laboratory facilities located throughout the country. To encourage further innovation,...

  14. Photovoltaic systems and applications

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    Abstracts are given of presentations given at a project review meeting held at Albuquerque, NM. The proceedings cover the past accomplishments and current activities of the Photovoltaic Systems Research, Balance-of-System Technology Development and System Application Experiments Projects at Sandia National Laboratories. The status of intermediate system application experiments and residential system analysis is emphasized. Some discussion of the future of the Photovoltaic Program in general, and the Sandia projects in particular is also presented.

  15. Amonix Photovoltaic System

    Office of Energy Efficiency and Renewable Energy (EERE)

    This photograph features the Amonix and Arizona Public Service (APS) partnership to install the world’s largest utility-scale concentrating photovoltaic (CPV) power plant in 2002. Photovoltaic (PV) systems at the APS facility use a combination of technologies. The systems in the foreground are single-axis tracking flat-plate silicon systems. Shown in the upper right are three large (35 kilowatt) Amonix CPV.

  16. Amonix Photovoltaic System

    Energy.gov [DOE]

    This photograph features the Amonix and Arizona Public Service (APS) partnership to install the worlds largest utility-scale concentrating photovoltaic (CPV) power plant in 2002. Photovoltaic (PV) systems at the APS facility use a combination of technologies. The systems in the foreground are single-axis tracking flat-plate silicon systems. Shown in the upper right are three large (35 kilowatt) Amonix CPV.

  17. Photovoltaics: The next generation

    SciTech Connect (OSTI)

    Wilson, A.

    1986-08-01

    The development of photovoltaics in the United States, with a few notable exceptions, has been carried out by the oil industry. Companies such as Arco, Exxon, Mobil and Sohio have played a tremendously important role in bringing photovoltaic technology to its current state of development. Many of these companies are continuing very active programs in pv, including the investigation of new and potentially far-reaching technologies.

  18. Photovoltaic System Fault Detection

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Photovoltaic System Fault Detection and Diagnostics using Laterally Primed Adaptive Resonance Theory Neural Network C. Birk Jones, Joshua S. Stein, Sigifredo Gonzalez, and Bruce H. King Sandia National Laboratories, Albuquerque, NM, 87185, U.S.A Abstract-Cost effective integration of solar photovoltaic (PV) systems requires increased reliability. This can be achieved with a robust fault detection and diagnostic (FDD) tool that auto- matically discovers faults. This paper introduces the Laterally

  19. Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies

    SciTech Connect (OSTI)

    Lacommare, Kristina S H; Stadler, Michael; Aki, Hirohisa; Firestone, Ryan; Lai, Judy; Marnay, Chris; Siddiqui, Afzal

    2008-05-15

    The addition of storage technologies such as flow batteries, conventional batteries, and heat storage can improve the economic as well as environmental attractiveness of on-site generation (e.g., PV, fuel cells, reciprocating engines or microturbines operating with or without CHP) and contribute to enhanced demand response. In order to examine the impact of storage technologies on demand response and carbon emissions, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program that has the minimization of annual energy costs as its objective function. By implementing this approach in the General Algebraic Modeling System (GAMS), the problem is solved for a given test year at representative customer sites, such as schools and nursing homes, to obtain not only the level of technology investment, but also the optimal hourly operating schedules. This paper focuses on analysis of storage technologies in DER optimization on a building level, with example applications for commercial buildings. Preliminary analysis indicates that storage technologies respond effectively to time-varying electricity prices, i.e., by charging batteries during periods of low electricity prices and discharging them during peak hours. The results also indicate that storage technologies significantly alter the residual load profile, which can contribute to lower carbon emissions depending on the test site, its load profile, and its adopted DER technologies.

  20. Photovoltaic module and interlocked stack of photovoltaic modules

    SciTech Connect (OSTI)

    Wares, Brian S.

    2014-09-02

    One embodiment relates to an arrangement of photovoltaic modules configured for transportation. The arrangement includes a plurality of photovoltaic modules, each photovoltaic module including a frame. A plurality of individual male alignment features and a plurality of individual female alignment features are included on each frame. Adjacent photovoltaic modules are interlocked by multiple individual male alignment features on a first module of the adjacent photovoltaic modules fitting into and being surrounded by corresponding individual female alignment features on a second module of the adjacent photovoltaic modules. Other embodiments, features and aspects are also disclosed.

  1. Thermal and plasma enhanced atomic layer deposition of TiO{sub 2}: Comparison of spectroscopic and electric properties

    SciTech Connect (OSTI)

    Das, Chittaranjan Henkel, Karsten; Tallarida, Massimo; Schmeißer, Dieter; Gargouri, Hassan; Kärkkänen, Irina; Schneidewind, Jessica; Gruska, Bernd; Arens, Michael

    2015-01-15

    Titanium oxide (TiO{sub 2}) deposited by atomic layer deposition (ALD) is used as a protective layer in photocatalytic water splitting system as well as a dielectric in resistive memory switching. The way ALD is performed (thermally or plasma-assisted) may change the growth rate as well as the electronic properties of the deposited films. In the present work, the authors verify the influence of the ALD mode on functional parameters, by comparing the growth rate and electronic properties of TiO{sub 2} films deposited by thermal (T-) and plasma-enhanced (PE-) ALD. The authors complete the study with the electrical characterization of selected samples by means of capacitance–voltage and current–voltage measurements. In all samples, the authors found a significant presence of Ti{sup 3+} states, with the lowest content in the PE-ALD grown TiO{sub 2} films. The observation of Ti{sup 3+} states was accompanied by the presence of in-gap states above the valence band maximum. For films thinner than 10 nm, the authors found also a strong leakage current. Also in this case, the PE-ALD films showed the weakest leakage currents, showing a correlation between the presence of Ti{sup 3+} states and leakage current density.

  2. Effects of chemical intermixing on electrical and thermal contact conductances at metallized bismuth and antimony telluride interfaces

    SciTech Connect (OSTI)

    Devender,; Mehta, Rutvik J.; Ramanath, Ganpati; Lofgreen, Kelly; Mahajan, Ravi; Yamaguchi, Masashi; Borca-Tasciuc, Theodorian

    2015-03-15

    Tailoring electrical and thermal contact conductivities (?{sub c} and ?{sub c}) across metallized pnictogen chalcogenide interfaces is key for realizing efficient thermoelectric devices. The authors report that Cu, Ni, Ti, and Ta diffusion and interfacial telluride formation with n-Bi{sub 2}Te{sub 3} and p-Sb{sub 2}Te{sub 3} influence both ?{sub c} and ?{sub c}. Cu metallization yields the highest ?{sub c} and the lowest ?{sub c}, correlating with maximal metal diffusion and copper telluride formation. Ni diffuses less and yields the highest ?{sub c} with Sb{sub 2}Te{sub 3} due to p-type nickel telluride formation, which diminishes ?{sub c} improvement with n-Bi{sub 2}Te{sub 3} interfaces. Ta and Ti contacts yield the lowest properties similar to that in Ni-metallized structures. These correlations between interfacial diffusion and phase formation on electronic and thermal transport properties will be important for devising suitable metallization for thermoelectric devices.

  3. Interdigitated photovoltaic power conversion device

    DOE Patents [OSTI]

    Ward, James Scott (Englewood, CO); Wanlass, Mark Woodbury (Golden, CO); Gessert, Timothy Arthur (Conifer, CO)

    1999-01-01

    A photovoltaic power conversion device has a top surface adapted to receive impinging radiation. The device includes at least two adjacent, serially connected cells. Each cell includes a semi-insulating substrate and a lateral conductivity layer of a first doped electrical conductivity disposed on the substrate. A base layer is disposed on the lateral conductivity layer and has the same electrical charge conductivity thereof. An emitter layer of a second doped electrical conductivity of opposite electrical charge is disposed on the base layer and forms a p-n junction therebetween. A plurality of spaced channels are formed in the emitter and base layers to expose the lateral conductivity layer at the bottoms thereof. A front contact grid is positioned on the top surface of the emitter layer of each cell. A first current collector is positioned along one outside edge of at least one first cell. A back contact grid is positioned in the channels at the top surface of the device for engagement with the lateral conductivity layer. A second current collector is positioned along at least one outside edge of at least one oppositely disposed second cell. Finally, an interdigitation mechanism is provided for serially connecting the front contact grid of one cell to the back contact grid of an adjacent cell at the top surface of the device.

  4. Interdigitated photovoltaic power conversion device

    DOE Patents [OSTI]

    Ward, J.S.; Wanlass, M.W.; Gessert, T.A.

    1999-04-27

    A photovoltaic power conversion device has a top surface adapted to receive impinging radiation. The device includes at least two adjacent, serially connected cells. Each cell includes a semi-insulating substrate and a lateral conductivity layer of a first doped electrical conductivity disposed on the substrate. A base layer is disposed on the lateral conductivity layer and has the same electrical charge conductivity thereof. An emitter layer of a second doped electrical conductivity of opposite electrical charge is disposed on the base layer and forms a p-n junction therebetween. A plurality of spaced channels are formed in the emitter and base layers to expose the lateral conductivity layer at the bottoms thereof. A front contact grid is positioned on the top surface of the emitter layer of each cell. A first current collector is positioned along one outside edge of at least one first cell. A back contact grid is positioned in the channels at the top surface of the device for engagement with the lateral conductivity layer. A second current collector is positioned along at least one outside edge of at least one oppositely disposed second cell. Finally, an interdigitation mechanism is provided for serially connecting the front contact grid of one cell to the back contact grid of an adjacent cell at the top surface of the device. 15 figs.

  5. Connector device for building integrated photovoltaic device

    SciTech Connect (OSTI)

    Keenihan, James R.; Langmaid, Joe A.; Eurich, Gerald K.; Lesniak, Michael J.; Mazor, Michael H.; Cleerman, Robert J.; Gaston, Ryan S.

    2015-11-10

    The present invention is premised upon a connector device and method that can more easily electrically connect a plurality of PV devices or photovoltaic system components and/or locate these devices/components upon a building structure. It also may optionally provide some additional sub-components (e.g. at least one bypass diode and/or an indicator means) and may enhance the serviceability of the device.

  6. Navajo Nation: Native American Photovoltaics- 1999 Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    At the end of the twentieth century there are many tens of thousands of Native American residences in the US without electricity. Most of these residences are in remote locations and to provide service by the grid is either too costly or impossible. Photovoltaics are the best way to provide power to these houses, provided certain barriers can be overcome. These include: system cost and end-user financing, maintenance, and size and quality of the systems.

  7. Performance Assessment of Photovoltaic Attic Ventilator Fans

    Energy.gov [DOE]

    A case study of photovoltaic attic ventilator fans was conducted on an occupied single family home in Central Florida. Two fans were installed at mid-summer in an instrumented home where attic air temperature, meteorological conditions and space cooling electric power were measured. The home already had an attic radiant barrier, but still experienced attic air temperatures in excess of 130oF.

  8. Connector device for building integrated photovoltaic device

    DOE Patents [OSTI]

    Keenihan, James R.; Langmaid, Joseph A.; Eurich, Gerald K.; Lesniak, Michael J.; Mazor, Michael H.; Cleereman, Robert J.; Gaston, Ryan S.

    2014-06-03

    The present invention is premised upon a connector device and method that can more easily electrically connect a plurality of PV devices or photovoltaic system components and/or locate these devices/components upon a building structure. It also may optionally provide some additional sub-components (e.g. at least one bypass diode and/or an indicator means) and may enhance the serviceability of the device.

  9. Photovoltaic Theory and Modeling - Energy Innovation Portal

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Photovoltaic Theory and Modeling Los Alamos National Laboratory Contact LANL About This Technology Effect of Ligands on semiconductor QD DOS (quantum chemistry calculations) Effect of Ligands on semiconductor QD DOS (quantum chemistry calculations) Technology Marketing SummaryThe scientists developing this capability welcome the opportunity to unite with industry and advance its potential.DescriptionAs the solar industry works to build the infrastructure necessary to make electricity from

  10. NREL: Photovoltaics Research - Company Partners in Photovoltaic

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Manufacturing R&D Company Partners in Photovoltaic Manufacturing R&D More than 40 private-sector companies partnered with NREL on successful efforts within the PV Manufacturing R&D Project. They included manufacturers of crystalline silicon, thin-film, and concentrator solar technologies. The companies are listed below. Advanced Energy Systems Alpha Solarco ASE Americas AstroPower/GE Energy Boeing Aerospace BP Solar Cronar Crystal Systems Dow Corning Energy Conversion Devices

  11. Ultrafast Photovoltaic Response in Ferroelectric Nanolayers ...

    Office of Scientific and Technical Information (OSTI)

    Ultrafast Photovoltaic Response in Ferroelectric Nanolayers Citation Details In-Document Search Title: Ultrafast Photovoltaic Response in Ferroelectric Nanolayers Authors:...

  12. The Impacts of Commercial Electric Utility Rate Structure Elements on the

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Economics of Photovoltaic Systems | Department of Energy The Impacts of Commercial Electric Utility Rate Structure Elements on the Economics of Photovoltaic Systems The Impacts of Commercial Electric Utility Rate Structure Elements on the Economics of Photovoltaic Systems This analysis uses simulated building data, simulated solar photovoltaic (PV) data, and actual electric utility tariff data from 25 cities to better understand the impacts of different commercial rate structures on the

  13. Southeast Regional Assessment Study: an assessment of the opportunities of solar electric power generation in the Southeastern United States

    SciTech Connect (OSTI)

    1980-07-01

    The objective of this study was to identify and assess opportunities for demonstration and large scale deployment of solar electric facilities in the southeast region and to define the technical, economic, and institutional factors that can contribute to an accelerated use of solar energy for electric power generation. Graphs and tables are presented indicating the solar resource potential, siting opportunities, energy generation and use, and socioeconomic factors of the region by state. Solar electric technologies considered include both central station and dispersed solar electric generating facilities. Central stations studied include solar thermal electric, wind, photovoltaic, ocean thermal gradient, and biomass; dispersed facilities include solar thermal total energy systems, wind, and photovoltaic. The value of solar electric facilities is determined in terms of the value of conventional facilities and the use of conventional fuels which the solar facilities can replace. Suitable cost and risk sharing mechanisms to accelerate the commercialization of solar electric technologies in the Southeast are identified. The major regulatory and legal factors which could impact on the commercialization of solar facilities are reviewed. The most important factors which affect market penetration are reviewed, ways to accelerate the implementation of these technologies are identified, and market entry paths are identified. Conclusions and recommendations are presented. (WHK)

  14. Solar Energy Technologies Program: Photovoltaics

    SciTech Connect (OSTI)

    2009-10-26

    Fact sheet summarizing the goals and activities of the DOE Solar Energy Technologies Program efforts within its photovoltaics subprogram.

  15. NREL: Photovoltaics Research -Kent Terwilliger

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    for: Troubleshooting and repairing environmental test chambers. Printable Version Photovoltaics Research Home Silicon Polycrystalline Thin Films Multijunctions New Materials,...

  16. NREL: Photovoltaics Research - Greg Perrin

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    maintenance, and repair; machining and other lab support. Printable Version Photovoltaics Research Home Silicon Polycrystalline Thin Films Multijunctions New Materials,...

  17. Direct mounted photovoltaic device with improved adhesion and method thereof

    DOE Patents [OSTI]

    Boven, Michelle L; Keenihan, James R; Lickly, Stan; Brown, Jr., Claude; Cleereman, Robert J; Plum, Timothy C

    2014-12-23

    The present invention is premised upon a photovoltaic device suitable for directly mounting on a structure. The device includes an active portion including a photovoltaic cell assembly having a top surface portion that allows transmission of light energy to a photoactive portion of the photovoltaic device for conversion into electrical energy and a bottom surface having a bottom bonding zone; and an inactive portion immediately adjacent to and connected to the active portion, the inactive portion having a region for receiving a fastener to connect the device to the structure and having on a top surface, a top bonding zone; wherein one of the top and bottom bonding zones comprises a first bonding element and the other comprises a second bonding element, the second bonding element designed to interact with the first bonding element on a vertically overlapped adjacent photovoltaic device to bond the device to such adjacent device or to the structure.

  18. Photovoltaic sheathing element with a flexible connector assembly

    DOE Patents [OSTI]

    Langmaid, Joseph A; Keenihan, James R; Mills, Michael E; Lopez, Leonardo C

    2016-07-12

    The present invention is premised upon an assembly including at least a photovoltaic sheathing element capable of being affixed on a building structure, the sheathing element including at least: a photovoltaic cell assembly, a body portion attached to one or more portions of the photovoltaic cell assembly; at least a first and a second connector assembly disposed on opposing sides of the sheathing element and capable of directly or indirectly electrically connecting the photovoltaic cell assembly to at least two adjoining devices that are affixed to the building structure and wherein at least one of the connector assemblies includes a flexible portion; one or more connector pockets disposed in the body portion the pockets capable of receiving at least a portion of the connector assembly.

  19. Nanowires enabling strained photovoltaics

    SciTech Connect (OSTI)

    Greil, J.; Bertagnolli, E.; Lugstein, A.; Birner, S.

    2014-04-21

    Photovoltaic nano-devices have largely been relying on charge separation in conventional p-n junctions. Junction formation via doping, however, imposes major challenges in process control. Here, we report on a concept for photovoltaic energy conversion at the nano scale without the need for intentional doping. Our approach relies on charge carrier separation in inhomogeneously strained germanium nanowires (Ge NWs). This concept utilizes the strain-induced gradient in bandgap along tapered NWs. Experimental data confirms the feasibility of strain-induced charge separation in individual vapor-liquid-solid grown Ge NW devices with an internal quantum efficiency of ?5%. The charge separation mechanism, though, is not inherently limited to a distinct material. Our work establishes a class of photovoltaic nano-devices with its opto-electronic properties engineered by size, shape, and applied strain.

  20. Method and apparatus for increasing the durability and yield of thin film photovoltaic devices

    DOE Patents [OSTI]

    Phillips, James E.; Lasswell, Patrick G.

    1987-01-01

    Thin film photovoltaic cells having a pair of semiconductor layers between an opaque and a transparent electrical contact are manufactured in a method which includes the step of scanning one of the semiconductor layers to determine the location of any possible shorting defect. Upon the detection of such defect, the defect is eliminated to increase the durability and yield of the photovoltaic device.

  1. High efficiency photovoltaic device

    DOE Patents [OSTI]

    Guha, Subhendu; Yang, Chi C.; Xu, Xi Xiang

    1999-11-02

    An N-I-P type photovoltaic device includes a multi-layered body of N-doped semiconductor material which has an amorphous, N doped layer in contact with the amorphous body of intrinsic semiconductor material, and a microcrystalline, N doped layer overlying the amorphous, N doped material. A tandem device comprising stacked N-I-P cells may further include a second amorphous, N doped layer interposed between the microcrystalline, N doped layer and a microcrystalline P doped layer. Photovoltaic devices thus configured manifest improved performance, particularly when configured as tandem devices.

  2. Concentrating photovoltaic solar panel

    DOE Patents [OSTI]

    Cashion, Steven A; Bowser, Michael R; Farrelly, Mark B; Hines, Braden E; Holmes, Howard C; Johnson, Jr., Richard L; Russell, Richard J; Turk, Michael F

    2014-04-15

    The present invention relates to photovoltaic power systems, photovoltaic concentrator modules, and related methods. In particular, the present invention features concentrator modules having interior points of attachment for an articulating mechanism and/or an articulating mechanism that has a unique arrangement of chassis members so as to isolate bending, etc. from being transferred among the chassis members. The present invention also features adjustable solar panel mounting features and/or mounting features with two or more degrees of freedom. The present invention also features a mechanical fastener for secondary optics in a concentrator module.

  3. Electric vehicles

    SciTech Connect (OSTI)

    Not Available

    1990-03-01

    Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. This paper discusses these concepts.

  4. Electric Drive Dynamic Thermal System Model for Advanced Vehicle Propulsion Technologies: Cooperative Research and Development Final Report, CRADA Number CRD-09-360

    SciTech Connect (OSTI)

    Bennion, K.

    2013-10-01

    Electric drive systems, which include electric machines and power electronics, are a key enabling technology for advanced vehicle propulsion systems that reduce the dependence of the U.S. transportation sector on petroleum. However, to penetrate the market, these electric drive technologies must enable vehicle solutions that are economically viable. The push to make critical electric drivesystems smaller, lighter, and more cost-effective brings respective challenges associated with heat removal and system efficiency. In addition, the wide application of electric drive systems to alternative propulsion technologies ranging from integrated starter generators, to hybrid electric vehicles, to full electric vehicles presents challenges in terms of sizing critical components andthermal management systems over a range of in-use operating conditions. This effort focused on developing a modular modeling methodology to enable multi-scale and multi-physics simulation capabilities leading to generic electric drive system models applicable to alternative vehicle propulsion configurations. The primary benefit for the National Renewable Energy Laboratory (NREL) is the abilityto define operating losses with the respective impact on component sizing, temperature, and thermal management at the component, subsystem, and system level. However, the flexible nature of the model also allows other uses related to evaluating the impacts of alternative component designs or control schemes depending on the interests of other parties.

  5. Assumption to the Annual Energy Outlook 2014 - Electricity Market...

    Annual Energy Outlook

    - Hydraulic Turbine Reversible Geothermal Municipal Solid Waste Biomass - Fluidized Bed Solar Thermal - Central Tower Solar Photovoltaic - Fixed Tilt Wind Wind Offshore 1 The EMM...

  6. Oxidation Behavior of In-Flight Molten Aluminum Droplets in the Twin-Wire Electric Arc Thermal Spray Process

    SciTech Connect (OSTI)

    Donna Post Guillen; Brian G. Williams

    2005-05-01

    This paper examines the in-flight oxidation of molten aluminum sprayed in air using the twin-wire electric arc (TWEA) thermal spray process. The oxidation reaction of aluminum in air is highly exothermic and is represented by a heat generation term in the energy balance. Aerodynamic shear at the droplet surface enhances the amount of in-flight oxidation by: (1) promoting entrainment and mixing of the surface oxides within the droplet, and (2) causing a continuous heat generation effect that increases droplet temperature over that of a droplet without internal circulation. This continual source of heat input keeps the droplets in a liquid state during flight. A linear rate law based on the Mott-Cabrera theory was used to estimate the growth of the surface oxide layer formed during droplet flight. The calculated oxide volume fraction of an average droplet at impact agrees well with the experimentally determined oxide content for a typical TWEA-sprayed aluminum coating, which ranges from 3.3 to 12.7%. An explanation is provided for the elevated, nearly constant surface temperature (~ 2000 oC) of the droplets during flight to the substrate and shows that the majority of oxide content in the coating is produced during flight, rather than after deposition.

  7. Resonant bonding leads to low lattice thermal conductivity (Journal...

    Office of Scientific and Technical Information (OSTI)

    Research Org: Energy Frontier Research Centers (EFRC); Solid-State Solar-Thermal Energy ... Country of Publication: United States Language: English Subject: solar (photovoltaic), ...

  8. Experimental study of the proposed super-thermal-conductor: BAs...

    Office of Scientific and Technical Information (OSTI)

    Research Org: Energy Frontier Research Centers (EFRC); Solid-State Solar-Thermal Energy ... Country of Publication: United States Language: English Subject: solar (photovoltaic), ...

  9. Distributed Solar Photovoltaics for Electric Vehicle Charging...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ... Controlled charging technology can be employed in the absence of solar, as well as when EV charging stations are combined with distributed solar technology. Modeling and limited ...

  10. Microsystem enabled photovoltaic modules and systems

    DOE Patents [OSTI]

    Nielson, Gregory N; Sweatt, William C; Okandan, Murat

    2015-05-12

    A microsystem enabled photovoltaic (MEPV) module including: an absorber layer; a fixed optic layer coupled to the absorber layer; a translatable optic layer; a translation stage coupled between the fixed and translatable optic layers; and a motion processor electrically coupled to the translation stage to controls motion of the translatable optic layer relative to the fixed optic layer. The absorber layer includes an array of photovoltaic (PV) elements. The fixed optic layer includes an array of quasi-collimating (QC) micro-optical elements designed and arranged to couple incident radiation from an intermediate image formed by the translatable optic layer into one of the PV elements such that it is quasi-collimated. The translatable optic layer includes an array of focusing micro-optical elements corresponding to the QC micro-optical element array. Each focusing micro-optical element is designed to produce a quasi-telecentric intermediate image from substantially collimated radiation incident within a predetermined field of view.

  11. Installing and Maintaining a Home Solar Electric System | Department...

    Energy Savers

    Making sure your home solar electric or photovoltaic (PV) system is sized, sited, installed, and maintained correctly is essential for maximizing its energy performance. When...

  12. Photovoltaic radiation detector element

    DOE Patents [OSTI]

    Agouridis, D.C.

    1980-12-17

    A radiation detector element is formed of a body of semiconductor material, a coating on the body which forms a photovoltaic junction therewith, and a current collector consisting of narrow metallic strips, the aforesaid coating having an opening therein in the edge of which closely approaches but is spaced from the current collector strips.

  13. Reticulated Organic Photovoltaics

    SciTech Connect (OSTI)

    Schiros T.; Yager K.; Mannsfeld S.; Chiu C.-Y.; Ciston J.; Gorodetsky A.; Palma M.; Bullard Z.; Kramer T.; Delongchamp D.; Fischer D.; Kymissis I.; Toney M.F.; Nuckolls C.

    2012-03-21

    This paper shows how the self-assembled interlocking of two nanostructured materials can lead to increased photovoltaic performance. A detailed picture of the reticulated 6-DBTTC/C{sub 60} organic photovoltaic (OPV) heterojunction, which produces devices approaching the theoretical maximum for these materials, is presented from near edge X-ray absorption spectroscopy (NEXAFS), X-ray photoelectron spectroscopy (XPS), Grazing Incidence X-ray diffraction (GIXD) and transmission electron microscopy (TEM). The complementary suite of techniques shows how self-assembly can be exploited to engineer the interface and morphology between the cables of donor (6-DBTTC) material and a polycrystalline acceptor (C{sub 60}) to create an interpenetrating network of pure phases expected to be optimal for OPV device design. Moreover, we find that there is also a structural and electronic interaction between the two materials at the molecular interface. The data show how molecular self-assembly can facilitate 3-D nanostructured photovoltaic cells that are made with the simplicity and control of bilayer device fabrication. The significant improvement in photovoltaic performance of the reticulated heterojunction over the flat analog highlights the potential of these strategies to improve the efficiency of organic solar cells.

  14. Formed photovoltaic module busbars

    SciTech Connect (OSTI)

    Rose, Douglas; Daroczi, Shan; Phu, Thomas

    2015-11-10

    A cell connection piece for a photovoltaic module is disclosed herein. The cell connection piece includes an interconnect bus, a plurality of bus tabs unitarily formed with the interconnect bus, and a terminal bus coupled with the interconnect bus. The plurality of bus tabs extend from the interconnect bus. The terminal bus includes a non-linear portion.

  15. Photovoltaic radiation detector element

    DOE Patents [OSTI]

    Agouridis, Dimitrios C.

    1983-01-01

    A radiation detector element is formed of a body of semiconductor material, a coating on the body which forms a photovoltaic junction therewith, and a current collector consisting of narrow metallic strips, the aforesaid coating having an opening therein the edge of which closely approaches but is spaced from the current collector strips.

  16. Photovoltaics (Fact Sheet)

    SciTech Connect (OSTI)

    DOE Solar Energy Technologies Program

    2011-10-13

    DOE works with national labs, academia, and industry to support the domestic photovoltaics (PV) industry and research enterprise. SunShot aims to achieve widespread, unsubsidized cost-competitiveness through an applied research and development (R&D) portfolio spanning PV materials, devices, and manufacturing technologies.

  17. Photovoltaics (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    DOE works with national labs, academia, and industry to support the domestic photovoltaics (PV) industry and research enterprise. SunShot aims to achieve widespread, unsubsidized cost-competitiveness through an applied research and development (R&D) portfolio spanning PV materials, devices, and manufacturing technologies.

  18. Photovoltaics (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-11-01

    The U.S. Department of Energy (DOE) works with industry, academia, national laboratories, and other government agencies to advance solar photovoltaics (PV) domestically. The SunShot Initiative aims to achieve widespread, unsubsidized cost-competitiveness through an applied research and development (R&D) portfolio spanning PV materials, devices, and manufacturing technologies.

  19. Back contact to film silicon on metal for photovoltaic cells

    DOE Patents [OSTI]

    Branz, Howard M.; Teplin, Charles; Stradins, Pauls

    2013-06-18

    A crystal oriented metal back contact for solar cells is disclosed herein. In one embodiment, a photovoltaic device and methods for making the photovoltaic device are disclosed. The photovoltaic device includes a metal substrate with a crystalline orientation and a heteroepitaxial crystal silicon layer having the same crystal orientation of the metal substrate. A heteroepitaxial buffer layer having the crystal orientation of the metal substrate is positioned between the substrate and the crystal silicon layer to reduce diffusion of metal from the metal foil into the crystal silicon layer and provide chemical compatibility with the heteroepitaxial crystal silicon layer. Additionally, the buffer layer includes one or more electrically conductive pathways to electrically couple the crystal silicon layer and the metal substrate.

  20. Controlling of grid connected photovoltaic lighting system with fuzzy logic

    SciTech Connect (OSTI)

    Saglam, Safak; Ekren, Nazmi; Erdal, Hasan

    2010-02-15

    In this study, DC electrical energy produced by photovoltaic panels is converted to AC electrical energy and an indoor area is illuminated using this energy. System is controlled by fuzzy logic algorithm controller designed with 16 rules. Energy is supplied from accumulator which is charged by photovoltaic panels if its energy would be sufficient otherwise it is supplied from grid. During the 1-week usage period at the semester time, 1.968 kWh energy is used from grid but designed system used 0.542 kWh energy from photovoltaic panels at the experiments. Energy saving is determined by calculations and measurements for one education year period (9 months) 70.848 kWh. (author)

  1. Electric Motor Thermal Management

    Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  2. Electric Motor Thermal Management

    Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  3. Electric Motor Thermal Management

    Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  4. Buying and Making Electricity | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Saver » Buying and Making Electricity Buying and Making Electricity You can make your own electricity by installing a small solar electric (photovoltaic) system at your home. | Photo courtesy of Susan Bilo/NREL. You can make your own electricity by installing a small solar electric (photovoltaic) system at your home. | Photo courtesy of Susan Bilo/NREL. You can take advantage of clean, renewable energy by buying "green power" or by making your own electricity with a small home

  5. Solar energy collection, concentration, and thermal conversion; A review

    SciTech Connect (OSTI)

    Haddock, C.; McKee, J.S.C. )

    1991-01-01

    The efficiency with which solar energy can be converted into more useful forms is one of the most important parameters concerning its utilization as a viable alternate source of energy. High efficiencies can be obtained by utilizing higher temperature working fluids. This in turn implies concentrating the intensity of sunlight using focusing type collector systems is discussed. Potential applications of concentrated solar intensity are presented in this article. A description of a new and potentially highly efficient solar thermal to electric converter based on a solar sustained cesium plasma is presented. Photovoltaics are not discussed in any detail in this article.

  6. An overview of worldwide development activity in building-integrated photovoltaics

    SciTech Connect (OSTI)

    Strong, S.J.

    1995-12-31

    The last two decades have brought significant charges to the design profession. Architects with vision have come to understand it is no longer the goal of good design to simply create a building that is pleasing; buildings of the future must be environmentally responsive as well. Increased levels of thermal insulation, healthier interiors, higher-efficiency lighting, better glazings and HVAC equipment, air to air heat exchangers and heat recovery ventilation systems are important steps in the right direction. However, more needs to be done and the area of photovoltaics is one of the most promising renewable energy technologies. This paper is a country by country description of component and system development along with selected examples of Solar Electric architecture. Countries described include Japan, Germany, Switzerland, United Kingdom, Spain, Sweden, Italy, Canada, Norway.

  7. Partial Shade Stress Test for Thin-Film Photovoltaic Modules: Preprint

    SciTech Connect (OSTI)

    Silverman, Timothy J.; Deceglie, Michael G.; Deline, Chris; Kurtz, Sarah

    2015-09-02

    Partial shade of monolithic thin-film PV modules can cause reverse-bias conditions leading to permanent damage. In this work, we propose a partial shade stress test for thin-film PV modules that quantifies permanent performance loss. We designed the test with the aid of a computer model that predicts the local voltage, current and temperature stress that result from partial shade. The model predicts the module-scale interactions among the illumination pattern, the electrical properties of the photovoltaic material and the thermal properties of the module package. The test reproduces shading and loading conditions that may occur in the field. It accounts for reversible light-induced performance changes and for additional stress that may be introduced by light-enhanced reverse breakdown. We present simulated and experimental results from the application of the proposed test.

  8. Photovoltaic module and interlocked stack of photovoltaic modules

    DOE Patents [OSTI]

    Wares, Brian S.

    2012-09-04

    One embodiment relates to an arrangement of photovoltaic modules configured for transportation. The arrangement includes a plurality of photovoltaic modules, each photovoltaic module including a frame having at least a top member and a bottom member. A plurality of alignment features are included on the top member of each frame, and a plurality of alignment features are included on the bottom member of each frame. Adjacent photovoltaic modules are interlocked by the alignment features on the top member of a lower module fitting together with the alignment features on the bottom member of an upper module. Other embodiments, features and aspects are also disclosed.

  9. Building opportunities for photovoltaics in the U.S. Final report [PV BONUS

    SciTech Connect (OSTI)

    Michael Nicklas

    1999-09-08

    The objective of the North Carolina's PV Bonus Team was to develop and demonstrate a commercially viable, building-integrated, photovoltaic system that, in addition to providing electricity, would capture and effectively utilize the thermal energy produced by the photovoltaic array. This project objective was successfully achieved by designing, testing, constructing, and monitoring two roof integrated photovoltaic systems--one on a Applebee's Restaurant in Salisbury, North Carolina and the second on a Central Carolina Bank in Bessemer City, North Carolina. The goal of Innovative Design is to now use these successful demonstrations to facilitate entry of building integrated, pv/thermal systems into the marketplace. The strategy was to develop the two systems that could be utilized in future applications. Both systems were designed and then constructed at the North Carolina Solar Center at North Carolina State University. After extensive testing at the North Carolina Solar Center, the systems were moved to the actual construction sites and implemented. The Applebee's Restaurant system was designed to substitute for the roof assembly of a low sloping, south-facing sunspace roof that typically incorporated clay tile. After monitoring the installed system for one year it was determined that the 1.2 kilowatt (peak) system produces an average peak reduction of 1 kilowatt (rated peak is 1.7 kiloWatts), saves 1,529 kilowatt-hours of electricity, and offsets 11,776 kilowatt-hours of thermal energy savings used to pre-heat water. A DC fan connected directly to eight of the thirty-two amorphous modules moves air through air passages mounted on the backside of the modules and into a closed loop duct system to a heat exchanger. This heat exchanger is, in turn, connected to a pre-heat hot water tank that is used to heat the water for the restaurant. The Central Carolina Bank system was designed to substitute for the roof assembly of the drive-in window area of the bank. The

  10. Bexar County Parking Garage Photovoltaic Panels

    SciTech Connect (OSTI)

    Golda Weir

    2012-01-23

    The main objective of the Bexar County Parking Garage Photovoltaic (PV) Panel project is to install a PV System that will promote the use of renewable energy. This project will also help sustain Bexar County ongoing greenhouse gas emissions reduction and energy efficiency goals. The scope of this project includes the installation of a 100-kW system on the top level of a new 236,285 square feet parking garage. The PV system consists of 420 solar panels that covers 7,200 square feet and is tied into the electric-grid. It provides electricity to the office area located within the garage. The estimated annual electricity production of the PV system is 147,000 kWh per year.

  11. Iron Chalcogenide Photovoltaic Absorbers

    SciTech Connect (OSTI)

    Yu, Liping; Lany, Stephan; Kykyneshi, Robert; Jieratum, Vorranutch; Ravichandran, Ram; Pelatt, Brian; Altschul, Emmeline; Platt, Heather A. S.; Wager, John F.; Keszler, Douglas A.; Zunger, Alex

    2011-08-10

    An integrated computational and experimental study of FeS? pyrite reveals that phase coexistence is an important factor limiting performance as a thin-film solar absorber. This phase coexistence is suppressed with the ternary materials Fe?SiS? and Fe?GeS?, which also exhibit higher band gaps than FeS?. Thus, the ternaries provide a new entry point for development of thin-film absorbers and high-efficiency photovoltaics.

  12. Microsystems Enabled Photovoltaics (MEPV)

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Enabled Photovoltaics (MEPV) - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced

  13. Photovoltaics in the Classroom

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Photovoltaics (PV) in the Classroom Workshop National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 National Renewable Energy Laboratory 2 National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy National Laboratory Operated by Midwest Research Institute * Battelle * Bechtel NREL/PublicationCode June 1999 NOTICE This report was prepared as an account of work sponsored by an agency of the United States

  14. Photovoltaic self-assembly.

    SciTech Connect (OSTI)

    Lavin, Judith; Kemp, Richard Alan; Stewart, Constantine A.

    2010-10-01

    This late-start LDRD was focused on the application of chemical principles of self-assembly on the ordering and placement of photovoltaic cells in a module. The drive for this chemical-based self-assembly stems from the escalating prices in the 'pick-and-place' technology currently used in the MEMS industries as the size of chips decreases. The chemical self-assembly principles are well-known on a molecular scale in other material science systems but to date had not been applied to the assembly of cells in a photovoltaic array or module. We explored several types of chemical-based self-assembly techniques, including gold-thiol interactions, liquid polymer binding, and hydrophobic-hydrophilic interactions designed to array both Si and GaAs PV chips onto a substrate. Additional research was focused on the modification of PV cells in an effort to gain control over the facial directionality of the cells in a solvent-based environment. Despite being a small footprint research project worked on for only a short time, the technical results and scientific accomplishments were significant and could prove to be enabling technology in the disruptive advancement of the microelectronic photovoltaics industry.

  15. NREL: Photovoltaics Research Home Page

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Photovoltaics Research Photo of Photovoltaic Solar Panels. Photovoltaic (PV) research and development (R&D) at the National Renewable Energy Laboratory (NREL) focuses on (1) boosting solar cell conversion efficiencies, (2) lowering the cost of solar cells, modules, and systems, and (3) improving the reliability of PV components and systems. NREL's PV effort contributes to these goals through high-impact successes in fundamental research, advanced materials and devices, and technology

  16. Photovoltaics Team | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Team Photovoltaics Team Dr. Lenny Tinker Headshot Lenny-Tinker.jpg Dr. Lenny Tinker is the acting program manager for the photovoltaics team. He has been at the U.S. Department of Energy Solar Energy Technologies Office (SETO) since September 2011 and started as an AAAS Science and Technology Policy Fellow on the Photovoltaics team working on Incubator Round 6. As a Federal employee, he now manages early-stage applied research and development programs at national labs, universities, and

  17. Photovoltaic Films - Energy Innovation Portal

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Solar Photovoltaic Solar Photovoltaic Find More Like This Return to Search Photovoltaic Films Los Alamos National Laboratory Contact LANL About This Technology LANL&rsquo;s solar power portfolio includes a deposition process known as PAD. PAD eliminates the need for vacuum-based thin film equipment. LANL's solar power portfolio includes a deposition process known as PAD. PAD eliminates the need for vacuum-based thin film equipment. Technology Marketing SummaryThe rising total cost of energy

  18. Substantial bulk photovoltaic effect enhancement via nanolayering

    DOE PAGES-Beta [OSTI]

    Wang, Fenggong; Young, Steve M.; Zheng, Fan; Grinberg, Ilya; Rappe, Andrew M.

    2016-01-21

    Spontaneous polarization and inversion symmetry breaking in ferroelectric materials lead to their use as photovoltaic devices. However, further advancement of their applications are hindered by the paucity of ways of reducing bandgaps and enhancing photocurrent. By unravelling the correlation between ferroelectric materials’ responses to solar irradiation and their local structure and electric polarization landscapes, here we show from first principles that substantial bulk photovoltaic effect enhancement can be achieved by nanolayering PbTiO3 with nickel ions and oxygen vacancies ((PbNiO2)x(PbTiO3)1–x). The enhancement of the total photocurrent for different spacings between the Ni-containing layers can be as high as 43 times duemore » to a smaller bandgap and photocurrent direction alignment for all absorption energies. This is due to the electrostatic effect that arises from nanolayering. Lastly, this opens up the possibility for control of the bulk photovoltaic effect in ferroelectric materials by nanoscale engineering of their structure and composition.« less

  19. Department of Energy: Photovoltaics program - FY 1996

    SciTech Connect (OSTI)

    1996-12-31

    The National Photovoltaic Program supports efforts to make PV an important part of the US economy through three main program elements: Research and Development, Technology Development, and Systems Engineering and Applications. (1) Research and Development activities generate new ideas, test the latest scientific theories, and push the limits of PV efficiencies in laboratory and prototype materials and devices. (2) Technology Development activities apply laboratory innovations to products to improve PV technology and the manufacturing techniques used to produce PV systems for the market. (3) Systems Engineering and Applications activities help improve PV systems and validate these improvements through tests, measurements, and deployment of prototypes. In addition, applications research validates, sales, maintenance, and financing mechanisms worldwide. (4) Environmental, Health, Safety and Resource Characterization activities help to define environmental, health and safety issues for those facilities engaged in the manufacture of PV products and organizations engaged in PV research and development. All PV Program activities are planned and executed in close collaboration and partnership with the U.S. PV industry. The overall PV Program is planned to be a balanced effort of research, manufacturing development, and market development. Critical to the success of this strategy is the National Photovoltaic Program`s effort to reduce the cost of electricity generated by photovoltaic. The program is doing this in three primary ways: by making devices more efficient, by making PV systems less expensive, and by validating the technology through measurements, tests, and prototypes.

  20. Process Development for Nanostructured Photovoltaics

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Low-Cost Nanofabrication Method To Develop Nanostructured, Dye-Sensitized Solar Cells Introduction Photovoltaic (PV) manufacturing is an emerging industry that promises a ...

  1. Photovoltaic Cart Receives Presidential Award

    Energy.gov [DOE]

    This photograph features a photovoltaic (PV)-powerd cart that members of the Facilities Energy Management team and Fleet Services organization at Sandia National Laboratories designed. With the...

  2. Glitter-Sized Solar Photovoltaics

    Energy.gov [DOE]

    Featured in this photograph are tiny glitter-sized photovoltaic cells, developed by Sandia National Laboratories scientists, that could revolutionize the way solar energy is collected and used....

  3. Photovoltaics Inc | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Inc Jump to: navigation, search Name: Photovoltaics Inc Place: Ft. Pierce, Florida Zip: 34981 Product: Makes nano crystalline silicon particles and collides, and has over 22...

  4. NREL: Photovoltaics Research - Bill Sekulic

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Silicon Modules to Qualify Their Resistance to System Voltage Stress." Progress in Photovoltaics: Research and Applications, 22(7): 775-83; Golden, CO: National Renewable Energy...

  5. NREL: Photovoltaics Research - Bill Marion

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    NREL Publications View NREL publications for this staff member. Printable Version Photovoltaics Research Home Silicon Polycrystalline Thin Films Multijunctions New Materials,...

  6. NREL: Photovoltaics Research - NCPV Hotline

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    | April-June | July-September | October-December Annual Index Printable Version Photovoltaics Research Home Silicon Polycrystalline Thin Films Multijunctions New Materials,...

  7. Solar photovoltaics for development applications

    SciTech Connect (OSTI)

    Shepperd, L.W.; Richards, E.H.

    1993-08-01

    This document introduces photovoltaic technology to individuals and groups specializing in development activities. Examples of actual installations illustrate the many services supplied by photovoltaic systems in development applications, including water pumping, lighting, health care, refrigeration, communications, and a variety of productive uses. The various aspects of the technology are explored to help potential users evaluate whether photovoltaics can assist them in achieving their organizational goals. Basic system design, financing techniques, and the importance of infrastructure are included, along with additional sources of information and major US photovoltaic system suppliers.

  8. Microsystems Enabled Photovoltaics (MEPV) - Energy Innovation Portal

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Solar Photovoltaic Solar Photovoltaic Find More Like This Return to Search Microsystems Enabled Photovoltaics (MEPV) Solar Glitter(tm) Photovoltaic Technology Sandia National Laboratories Contact SNL About This Technology Publications: PDF Document Publication Microsystems Enabled Photovoltaics (MEPV) "Solar Glitter" (3,459 KB) Technology Marketing Summary Revolutionary microsolar technology utilizes glitter-sized photovoltaic cells to change how we generate and use solar power. The

  9. Vehicle Technologies Office Merit Review 2015: Thermal Control of Power Electronics of Electric Vehicles with Small Channel Coolant Boiling

    Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about thermal control...

  10. Vehicle Technologies Office Merit Review 2014: Thermal Control of Power Electronics of Electric Vehicles with Small Channel Coolant Boiling

    Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about thermal control...

  11. Advancing Solar Through Photovoltaic Technology Innovations ...

    Energy Savers

    Advancing Solar Through Photovoltaic Technology Innovations Advancing Solar Through Photovoltaic Technology Innovations April 19, 2011 - 5:17pm Addthis At NREL's High-Intensity ...

  12. Aurora Photovoltaics Manufacturing | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Photovoltaics Manufacturing Jump to: navigation, search Name: Aurora Photovoltaics Manufacturing Place: Lawrenceville, New Jersey Zip: 8648 Sector: Solar Product: A subsidiary of...

  13. Sandia Energy Photovoltaic Systems Evaluation Laboratory ...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    feed 0 Sandians Win 'Best Paper' Award at Photovoltaic Conference in Japan http:energy.sandia.govsandians-win-best-paper-award-at-photovoltaic-conference-in-j...

  14. Funding Opportunity Announcement: Photovoltaic Research & Development...

    Energy Savers

    Photovoltaic Research & Development (PVRD) Funding Opportunity Announcement: Photovoltaic Research & Development (PVRD) Funding Number: DE-FOA-0001387 Funding Amount: 20,000,000 ...

  15. Photovoltaic Research and Development - Small Innovative Projects...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Photovoltaic Research and Development - Small Innovative Projects in Solar (PVRD-SIPS) Photovoltaic Research and Development - Small Innovative Projects in Solar (PVRD-SIPS) ...

  16. PROJECT PROFILE: Rapid Development of Disruptive Photovoltaic...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Rapid Development of Disruptive Photovoltaic Technologies PROJECT PROFILE: Rapid Development of Disruptive Photovoltaic Technologies Funding Opportunity: SuNLaMP SunShot ...

  17. Photovoltaic Degradation Rates -- An Analytical Review: Preprint

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Photovoltaic Degradation Rates - An Analytical Review Dirk C. Jordan and Sarah R. Kurtz To ... Abstract As photovoltaic penetration of the power grid increases, accurate predictions of ...

  18. PROJECT PROFILE: Scientific Approach to Reducing Photovoltaic...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Scientific Approach to Reducing Photovoltaic Module Material Costs While Increasing Durability PROJECT PROFILE: Scientific Approach to Reducing Photovoltaic Module Material Costs ...

  19. Advancing Solar Through Photovoltaic Technology Innovations ...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Solar Through Photovoltaic Technology Innovations Advancing Solar Through Photovoltaic Technology Innovations April 19, 2011 - 5:17pm Addthis At NREL's High-Intensity Pulse Solar ...

  20. Solar Leasing for Residential Photovoltaic Systems | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Solar Leasing for Residential Photovoltaic Systems Solar Leasing for Residential Photovoltaic Systems This publication examines the solar lease option for residential PV systems ...

  1. Photovoltaics Value Clearinghouse | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Photovoltaics Value Clearinghouse Jump to: navigation, search The Photovoltaics Value Clearinghouse was developed by NREL and Clean Power Research.1 The PV Value Clearinghouse is...

  2. Earth-abundant semiconductors for photovoltaic applications ...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Earth-abundant semiconductors for photovoltaic applications Thin film photovoltaics (solar cells) has the potential to revolutionize our energy landscape by producing clean,...

  3. Jiaxing Winsaint Photovoltaic | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Winsaint Photovoltaic Jump to: navigation, search Name: Jiaxing Winsaint Photovoltaic Place: Jiashan Town, Zhejiang Province, China Zip: 314100 Product: China-based manufacturer of...

  4. Dazhan Photovoltaic Co | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Dazhan Photovoltaic Co Jump to: navigation, search Name: Dazhan Photovoltaic Co Place: Wenzhou City, Zhejiang Province, China Sector: Solar Product: China-based solar energy cell...

  5. Shaanxi Photovoltaic Co Ltd | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Co Ltd Jump to: navigation, search Name: Shaanxi Photovoltaic Co Ltd Place: Shaanxi Province, China Product: Shaanxi-based intergrated PV company. References: Shaanxi Photovoltaic...

  6. Institute of Concentration Photovoltaic Systems ISFOC | Open...

    Open Energy Information (Open El) [EERE & EIA]

    Photovoltaic Systems ISFOC Jump to: navigation, search Name: Institute of Concentration Photovoltaic Systems (ISFOC) Place: Puertallano, Spain Zip: 13500 Product: Part of the R&D...

  7. British Photovoltaic Association | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Photovoltaic Association Jump to: navigation, search Name: British Photovoltaic Association Place: Milton Keynes, United Kingdom Zip: MK5 8NG Product: Trade body for the PV...

  8. Jinzhou Jinmao Photovoltaic Technology | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Jinmao Photovoltaic Technology Jump to: navigation, search Name: Jinzhou Jinmao Photovoltaic Technology Place: Jinzhou, Liaoning Province, China Product: China-based manufacturer...

  9. American Photovoltaics LP | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Photovoltaics LP Place: Houston, Texas Product: Manufactures and markets thin-film photovoltaic modules. Coordinates: 29.76045, -95.369784 Show Map Loading map......

  10. Photovoltaic Technology Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Addthis Related Articles Quiz: Test Your Solar IQ Energy 101: Solar Photovoltaics Photovoltaic Cell Basics Energy Basics Home Renewable Energy Biomass Geothermal Hydrogen & Fuel ...

  11. Southwest Photovoltaic Systems Inc | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Southwest Photovoltaic Systems Inc Jump to: navigation, search Name: Southwest Photovoltaic Systems Inc Place: Tomball, Texas Zip: 77375 Product: Distributor of small scale PV...

  12. Series interconnected photovoltaic cells and method for making same

    DOE Patents [OSTI]

    Albright, Scot P.; Chamberlin, Rhodes R.; Thompson, Roger A.

    1995-01-01

    A novel photovoltaic module (10) and method for constructing the same are disclosed. The module (10) includes a plurality of photovoltaic cells (12) formed on a substrate (14) and laterally separated by interconnection regions (15). Each cell (12) includes a bottom electrode (16), a photoactive layer (18) and a top electrode layer (20). Adjacent cells (12) are connected in electrical series by way of a conductive-buffer line (22). The buffer line (22) is also useful in protecting the bottom electrode (16) against severing during downstream layer cutting processes.

  13. The state of the art of thin-film photovoltaics

    SciTech Connect (OSTI)

    Surek, T.

    1993-10-01

    Thin-film photovoltaic technologies, based on materials such as amorphous or polycrystalline silicon, copper indium diselenide, cadmium telluride, and gallium arsenide, offer the potential for significantly reducing the cost of electricity generated by photovoltaics. The significant progress in the technologies, from the laboratory to the marketplace, is reviewed. The common concerns and questions raised about thin films are addressed. Based on the progress to date and the potential of these technologies, along with continuing investments by the private sector to commercialize the technologies, one can conclude that thin-film PV will provide a competitive alternative for large-scale power generation in the future.

  14. Giant switchable photovoltaic effect in organometal trihalide perovskite devices

    SciTech Connect (OSTI)

    Xiao, Zhengguo; Yuan, Yongbo; Shao, Yuchuan; Wang, Qi; Dong, Qingfeng; Bi, Cheng; Sharma, Pankaj; Gruverman, Alexei; Huang, Jinsong

    2014-12-08

    Organolead trihalide perovskite (OTP) materials are emerging as naturally abundant materials for low-cost, solution-processed and highly efficient solar cells. Here, we show that, in OTP-based photovoltaic devices with vertical and lateral cell configurations, the photocurrent direction can be switched repeatedly by applying a small electric field of <1 V μm–1. The switchable photocurrent, generally observed in devices based on ferroelectric materials, reached 20.1 mA cm–2 under one sun illumination in OTP devices with a vertical architecture, which is four orders of magnitude larger than that measured in other ferroelectric photovoltaic devices. This field-switchable photovoltaic effect can be explained by the formation of reversible p–i–n structures induced by ion drift in the perovskite layer. Furthermore, the demonstration of switchable OTP photovoltaics and electric-field-manipulated doping paves the way for innovative solar cell designs and for the exploitation of OTP materials in electrically and optically readable memristors and circuits.

  15. Giant switchable photovoltaic effect in organometal trihalide perovskite devices

    DOE PAGES-Beta [OSTI]

    Xiao, Zhengguo; Yuan, Yongbo; Shao, Yuchuan; Wang, Qi; Dong, Qingfeng; Bi, Cheng; Sharma, Pankaj; Gruverman, Alexei; Huang, Jinsong

    2014-12-08

    Organolead trihalide perovskite (OTP) materials are emerging as naturally abundant materials for low-cost, solution-processed and highly efficient solar cells. Here, we show that, in OTP-based photovoltaic devices with vertical and lateral cell configurations, the photocurrent direction can be switched repeatedly by applying a small electric field of <1 V μm–1. The switchable photocurrent, generally observed in devices based on ferroelectric materials, reached 20.1 mA cm–2 under one sun illumination in OTP devices with a vertical architecture, which is four orders of magnitude larger than that measured in other ferroelectric photovoltaic devices. This field-switchable photovoltaic effect can be explained by themore » formation of reversible p–i–n structures induced by ion drift in the perovskite layer. Furthermore, the demonstration of switchable OTP photovoltaics and electric-field-manipulated doping paves the way for innovative solar cell designs and for the exploitation of OTP materials in electrically and optically readable memristors and circuits.« less

  16. Apparatus for making photovoltaic devices

    DOE Patents [OSTI]

    Foote, James B. (Toledo, OH); Kaake, Steven A. F. (Perrysburg, OH); Meyers, Peter V. (Bowling Green, OH); Nolan, James F. (Sylvania, OH)

    1994-12-13

    A process and apparatus (70) for making a large area photovoltaic device (22) that is capable of generating low cost electrical power. The apparatus (70) for performing the process includes an enclosure (126) providing a controlled environment in which an oven (156) is located. At least one and preferably a plurality of deposition stations (74,76,78) provide heated vapors of semiconductor material within the oven (156) for continuous elevated temperature deposition of semiconductor material on a sheet substrate (24) including a glass sheet (26) conveyed within the oven. The sheet substrate (24) is conveyed on a roller conveyor (184) within the oven (156) and the semiconductor material whose main layer (82) is cadmium telluride is deposited on an upwardly facing surface (28) of the substrate by each deposition station from a location within the oven above the roller conveyor. A cooling station (86) rapidly cools the substrate (24) after deposition of the semiconductor material thereon to strengthen the glass sheet of the substrate.

  17. Quantum well multijunction photovoltaic cell

    DOE Patents [OSTI]

    Chaffin, R.J.; Osbourn, G.C.

    1983-07-08

    A monolithic, quantum well, multilayer photovoltaic cell comprises a p-n junction comprising a p-region on one side and an n-region on the other side, each of which regions comprises a series of at least three semiconductor layers, all p-type in the p-region and all n-type in the n-region; each of said series of layers comprising alternating barrier and quantum well layers, each barrier layer comprising a semiconductor material having a first bandgap and each quantum well layer comprising a semiconductor material having a second bandgap when in bulk thickness which is narrower than said first bandgap, the barrier layers sandwiching each quantum well layer and each quantum well layer being sufficiently thin that the width of its bandgap is between said first and second bandgaps, such that radiation incident on said cell and above an energy determined by the bandgap of the quantum well layers will be absorbed and will produce an electrical potential across said junction.

  18. Quantum well multijunction photovoltaic cell

    DOE Patents [OSTI]

    Chaffin, Roger J.; Osbourn, Gordon C.

    1987-01-01

    A monolithic, quantum well, multilayer photovoltaic cell comprises a p-n junction comprising a p-region on one side and an n-region on the other side, each of which regions comprises a series of at least three semiconductor layers, all p-type in the p-region and all n-type in the n-region; each of said series of layers comprising alternating barrier and quantum well layers, each barrier layer comprising a semiconductor material having a first bandgap and each quantum well layer comprising a semiconductor material having a second bandgap when in bulk thickness which is narrower than said first bandgap, the barrier layers sandwiching each quantum well layer and each quantum well layer being sufficiently thin that the width of its bandgap is between said first and second bandgaps, such that radiation incident on said cell and above an energy determined by the bandgap of the quantum well layers will be absorbed and will produce an electrical potential across said junction.

  19. Thin film photovoltaic cells

    DOE Patents [OSTI]

    Rothwarf, Allen

    1981-01-01

    A solar cell has as its transparent electrical contact a grid made from a non-noble metal by providing a layer of copper oxide between the transparent electrical contact and the absorber-generator.

  20. Photovoltaic manufacturing technology

    SciTech Connect (OSTI)

    Wohlgemuth, J.H.; Whitehouse, D.; Wiedeman, S.; Catalano, A.W.; Oswald, R. )

    1991-12-01

    This report identifies steps leading to manufacturing large volumes of low-cost, large-area photovoltaic (PV) modules. Both crystalline silicon and amorphous silicon technologies were studied. Cost reductions for each step were estimated and compared to Solarex Corporation's manufacturing costs. A cost model, a simple version of the SAMICS methodology developed by the Jet Propulsion Laboratory (JPL), projected PV selling prices. Actual costs of materials, labor, product yield, etc., were used in the cost model. The JPL cost model compared potential ways of lowering costs. Solarex identified the most difficult technical challenges that, if overcome, would reduce costs. Preliminary research plans were developed to solve the technical problems. 13 refs.

  1. Photovoltaic panel clamp

    DOE Patents [OSTI]

    Mittan, Margaret Birmingham; Miros, Robert H. J.; Brown, Malcolm P.; Stancel, Robert

    2012-06-05

    A photovoltaic panel clamp includes an upper and lower section. The interface between the assembled clamp halves and the module edge is filled by a flexible gasket material, such as EPDM rubber. The gasket preferably has small, finger like protrusions that allow for easy insertion onto the module edge while being reversed makes it more difficult to remove them from the module once installed. The clamp includes mounting posts or an integral axle to engage a bracket. The clamp also may include a locking tongue to secure the clamp to a bracket.

  2. Photovoltaic panel clamp

    DOE Patents [OSTI]

    Brown, Malcolm P.; Mittan, Margaret Birmingham; Miros, Robert H. J.; Stancel, Robert

    2013-03-19

    A photovoltaic panel clamp includes an upper and lower section. The interface between the assembled clamp halves and the module edge is filled by a flexible gasket material, such as EPDM rubber. The gasket preferably has small, finger like protrusions that allow for easy insertion onto the module edge while being reversed makes it more difficult to remove them from the module once installed. The clamp includes mounting posts or an integral axle to engage a bracket. The clamp also may include a locking tongue to secure the clamp to a bracket.

  3. Photovoltaic Degradation Risk: Preprint

    SciTech Connect (OSTI)

    Jordan, D. C.; Kurtz, S. R.

    2012-04-01

    The ability to accurately predict power delivery over the course of time is of vital importance to the growth of the photovoltaic (PV) industry. Important cost drivers include the efficiency with which sunlight is converted into power, how this relationship changes over time, and the uncertainty in this prediction. An accurate quantification of power decline over time, also known as degradation rate, is essential to all stakeholders - utility companies, integrators, investors, and researchers alike. In this paper we use a statistical approach based on historical data to quantify degradation rates, discern trends and quantify risks related to measurement uncertainties, number of measurements and methodologies.

  4. Bracket for photovoltaic modules

    DOE Patents [OSTI]

    Ciasulli, John; Jones, Jason

    2014-06-24

    Brackets for photovoltaic ("PV") modules are described. In one embodiment, a saddle bracket has a mounting surface to support one or more PV modules over a tube, a gusset coupled to the mounting surface, and a mounting feature coupled to the gusset to couple to the tube. The gusset can have a first leg and a second leg extending at an angle relative to the mounting surface. Saddle brackets can be coupled to a torque tube at predetermined locations. PV modules can be coupled to the saddle brackets. The mounting feature can be coupled to the first gusset and configured to stand the one or more PV modules off the tube.

  5. Performance model assessment for multi-junction concentrating photovoltaic systems.

    SciTech Connect (OSTI)

    Stein, Joshua S.; Riley, Daniel M.; McConnell, Robert.; Sahm, Aaron; Crawford, Clark; King, David L.; Cameron, Christopher P.; Foresi, James S.

    2010-03-01

    Four approaches to modeling multi-junction concentrating photovoltaic system performance are assessed by comparing modeled performance to measured performance. Measured weather, irradiance, and system performance data were collected on two systems over a one month period. Residual analysis is used to assess the models and to identify opportunities for model improvement. Large photovoltaic systems are typically developed as projects which supply electricity to a utility and are owned by independent power producers. Obtaining financing at favorable rates and attracting investors requires confidence in the projected energy yield from the plant. In this paper, various performance models for projecting annual energy yield from Concentrating Photovoltaic (CPV) systems are assessed by comparing measured system output to model predictions based on measured weather and irradiance data. The results are statistically analyzed to identify systematic error sources.

  6. Multijunction Photovoltaic Technologies for High-Performance Concentrators

    SciTech Connect (OSTI)

    McConnell, R.; Symko-Davies, M.

    2006-01-01

    Multijunction solar cells provide high-performance technology pathways leading to potentially low-cost electricity generated from concentrated sunlight. The National Center for Photovoltaics at the National Renewable Energy Laboratory has funded different III-V multijunction solar cell technologies and various solar concentration approaches. Within this group of projects, III-V solar cell efficiencies of 41% are close at hand and will likely be reported in these conference proceedings. Companies with well-developed solar concentrator structures foresee installed system costs of $3/watt--half of today's costs--within the next 2 to 5 years as these high-efficiency photovoltaic technologies are incorporated into their concentrator photovoltaic systems. These technology improvements are timely as new large-scale multi-megawatt markets, appropriate for high performance PV concentrators, open around the world.

  7. Multijunction Photovoltaic Technologies for High-Performance Concentrators: Preprint

    SciTech Connect (OSTI)

    McConnell, R.; Symko-Davies, M.

    2006-05-01

    Multijunction solar cells provide high-performance technology pathways leading to potentially low-cost electricity generated from concentrated sunlight. The National Center for Photovoltaics at the National Renewable Energy Laboratory has funded different III-V multijunction solar cell technologies and various solar concentration approaches. Within this group of projects, III-V solar cell efficiencies of 41% are close at hand and will likely be reported in these conference proceedings. Companies with well-developed solar concentrator structures foresee installed system costs of $3/watt--half of today's costs--within the next 2 to 5 years as these high-efficiency photovoltaic technologies are incorporated into their concentrator photovoltaic systems. These technology improvements are timely as new large-scale multi-megawatt markets, appropriate for high performance PV concentrators, open around the world.

  8. A stochastic method for stand-alone photovoltaic system sizing

    SciTech Connect (OSTI)

    Cabral, Claudia Valeria Tavora; Filho, Delly Oliveira; Martins, Jose Helvecio; Toledo, Olga Moraes

    2010-09-15

    Photovoltaic systems utilize solar energy to generate electrical energy to meet load demands. Optimal sizing of these systems includes the characterization of solar radiation. Solar radiation at the Earth's surface has random characteristics and has been the focus of various academic studies. The objective of this study was to stochastically analyze parameters involved in the sizing of photovoltaic generators and develop a methodology for sizing of stand-alone photovoltaic systems. Energy storage for isolated systems and solar radiation were analyzed stochastically due to their random behavior. For the development of the methodology proposed stochastic analysis were studied including the Markov chain and beta probability density function. The obtained results were compared with those for sizing of stand-alone using from the Sandia method (deterministic), in which the stochastic model presented more reliable values. Both models present advantages and disadvantages; however, the stochastic one is more complex and provides more reliable and realistic results. (author)

  9. Photovoltaic battery charging experience in the Philippines

    SciTech Connect (OSTI)

    Navarro, S.T. Jr.

    1997-12-01

    With the turn of the century, people in remote areas still live without electricity. Conventional electrification will hardly reach the remaining 50% of the population of the Philippines in remote areas. With photovoltaic technology, the delivery of electricity to remote areas can be sustainable. Malalison island was chosen as a project site for electrification using photovoltaic technology. With the fragile balance of ecology and seasonal income in this island, the PV electrification proved to be a better option than conventional fossil based electrification. The Solar Battery Charging Station (SBCS) was used to suit the economic and geographical condition of the island. Results showed that the system can charge as many as three batteries in a day for an average fee of $0.54 per battery. Charging is measured by an ampere-hour counter to determine the exact amount of charge the battery received. The system was highly accepted by the local residents and the demand easily outgrew the system within four months. A technical, economic and social evaluation was done. A recovery period of seven years and five months is expected when competed with the conventional battery charging in the mainland. The technical, economic, institutional and social risks faced by the project were analyzed. Statistics showed that there is a potential of 920,000 households that can benefit from PV electrification in the Philippines. The data and experiences gained in this study are valuable in designing SBCS for remote unelectrified communities in the Philippines and other developing countries.

  10. Renewable Energy Ready Home Solar Photovoltaic Specifications

    Office of Energy Efficiency and Renewable Energy (EERE)

    Solar Photovoltaic Specification, Checklist and Guide, from the U.S. Environmental Protection Agency.

  11. Photovoltaic Product Directory and Buyers Guide

    SciTech Connect (OSTI)

    Watts, R.L.; Smith, S.A.; Dirks, J.A.; Mazzucchi, R.P.; Lee, V.E.

    1984-04-01

    The directory guide explains photovoltaic systems briefly and shows what products are available off-the-shelf. Information is given to assist in designing a photovoltaic system and on financial incentives. Help is given for determining if photovoltaic products can meet a particular buyer's needs, and information is provided on actual photovoltaic user's experiences. Detailed information is appended on various financial incentives available from state and federal governments, sources of additional information on photovoltaics, sources of various photovoltaic products, and a listing of addresses of photovoltaic products suppliers. (LEW)

  12. Bear Valley Electric Service- Solar Initiative Program

    Energy.gov [DOE]

    Bear Valley Electric Service is providing an incentive for their residential customers to install photovoltaic (PV) systems. Systems must be sized to provide no more than 90% of the calculated or...

  13. Chicopee Electric Light- Residential Solar Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Chicopee Electric Light offers rebates to residential customers who install solar photovoltaic (PV) systems on their homes. Customer rebates are $0.50 per watt for a maximum of $2,500 per...

  14. Farmington Electric Utility System- Net Metering

    Energy.gov [DOE]

    Farmington Electric, a municipal utility, offers net metering to residential customers with systems up to 10 kilowatts (kW) in capacity. This option is available for photovoltaic (PV), wind, hydro...

  15. Power Electronic Thermal System Performance and Integration ...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    More Documents & Publications Motor Thermal Control Thermal Stress and Reliability for Advanced Power Electronics and Electric Machines Integrated Vehicle Thermal Management

  16. Photovoltaics for Buildings: New Applications and Lessons Learned: Preprint

    SciTech Connect (OSTI)

    Hayter, S.; Torcellini, P.; Deru, M.

    2002-07-01

    Photovoltaics (PV) for buildings system applications are experiencing exponential growth. This increased activity is the result of building owners becoming more confident with this new technology, designers becoming more comfortable incorporating PV into architectural and building electrical designs, decreasing PV system cost, the heightened public awareness of depleting conventional energy resources, and issues related to power reliability and stability. Usually, these systems meet primary objectives to offset building electrical loads, decrease building electrical demand, or provide continuous power supply during utility grid outages; but because of design flaws, installation errors, or improper maintenance, these systems can perform below the design expectations.

  17. Plasmonic Backscattering Enhanced Inverted Photovoltaics

    SciTech Connect (OSTI)

    Dissanayake, D. M. N. M.; Roberts, B.; Ku, P.C.

    2011-01-01

    A plasmonic nanoparticle incorporated inverted organic photovoltaic structure was demonstrated where a monolayer of Ag nanoparticles acted as a wavelength selective reflector. Enhanced light harvesting via plasmonic backscattering into the photovoltaic absorber was observed, resulting in a two-fold improvement in the photocurrent and increased open-circuit voltage. Further, utilizing an optical spacer, the plasmonic backscattering was spectrally controlled, thereby modulating the external quantum efficiency and the photocurrent. Unlike a regular thin-film metallic back reflector, excellent off-resonance optical transmission in excess of 80% was observed from the Ag nanoparticles, making this structure highly suitable for semi-transparent and multi-junction photovoltaic applications.

  18. Photovoltaic module with adhesion promoter

    DOE Patents [OSTI]

    Xavier, Grace

    2013-10-08

    Photovoltaic modules with adhesion promoters and methods for fabricating photovoltaic modules with adhesion promoters are described. A photovoltaic module includes a solar cell including a first surface and a second surface, the second surface including a plurality of interspaced back-side contacts. A first glass layer is coupled to the first surface by a first encapsulating layer. A second glass layer is coupled to the second surface by a second encapsulating layer. At least a portion of the second encapsulating layer is bonded directly to the plurality of interspaced back-side contacts by an adhesion promoter.

  19. High Performance Photovoltaic Project Overview

    SciTech Connect (OSTI)

    Symko-Davies, M.; McConnell, R.

    2005-01-01

    The High-Performance Photovoltaic (HiPerf PV) Project was initiated by the U.S. Department of Energy to substantially increase the viability of photovoltaics (PV) for cost-competitive applications so that PV can contribute significantly to our energy supply and environment in the 21st century. To accomplish this, the National Center for Photovoltaics (NCPV) directs in-house and subcontracted research in high-performance polycrystalline thin-film and multijunction concentrator devices. In this paper, we describe the recent research accomplishments in the in-house directed efforts and the research efforts under way in the subcontracted area.

  20. Photovoltaic power generation system free of bypass diodes (Patent...

    Office of Scientific and Technical Information (OSTI)

    Photovoltaic power generation system free of bypass diodes Title: Photovoltaic power generation system free of bypass diodes A photovoltaic power generation system that includes a ...

  1. Tax Credits, Rebates & Savings | Department of Energy

    Energy.gov (indexed) [DOE]

    Category: Geothermal Electric, Solar Thermal Electric, Solar Thermal Process Heat, Solar Photovoltaics, Wind (All), Biomass, Geothermal Heat Pumps, Comprehensive Measures...

  2. Tax Credits, Rebates & Savings | Department of Energy

    Energy.gov (indexed) [DOE]

    Electric, Solar Thermal Electric, Solar Thermal Process Heat, Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Geothermal Heat Pumps, Landfill Gas, Comprehensive...

  3. Tax Credits, Rebates & Savings | Department of Energy

    Energy.gov (indexed) [DOE]

    Institutional Savings Category: Geothermal Electric, Solar Thermal Electric, Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Ocean Thermal, Hydroelectric...

  4. Tax Credits, Rebates & Savings | Department of Energy

    Energy.gov (indexed) [DOE]

    Institutional Savings Category: Geothermal Electric, Solar Thermal Electric, Solar Thermal Process Heat, Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Fuel...

  5. Tax Credits, Rebates & Savings | Department of Energy

    Energy.gov (indexed) [DOE]

    Institutional Savings Category: Geothermal Electric, Solar Thermal Electric, Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Ocean Thermal, Wind (Small),...

  6. Tax Credits, Rebates & Savings | Department of Energy

    Energy.gov (indexed) [DOE]

    Savings Category: Geothermal Electric, Solar Thermal Electric, Solar Thermal Process Heat, Solar Photovoltaics, Wind (All), Biomass, Geothermal Heat Pumps, Comprehensive...

  7. Tax Credits, Rebates & Savings | Department of Energy

    Energy.gov (indexed) [DOE]

    State Government, Agricultural, Institutional Savings Category: Geothermal Electric, Solar Thermal Electric, Solar Thermal Process Heat, Solar Photovoltaics, Wind (All),...

  8. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Utilities Savings Category: Geothermal Electric, Solar Thermal Electric, Solar Thermal Process Heat, Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Municipal...

  9. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Savings Category: Solar Water Heat, Geothermal Electric, Solar Thermal Electric, Solar Thermal Process Heat, Solar Photovoltaics, Wind (All), Biomass, Hydroelectric,...

  10. NREL: Photovoltaics Research - Photovoltaic Manufacturing R&D Project

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Photovoltaic Manufacturing R&D Project Photo of blue solar cells being sorted in a production line. A woman works behind the protective glass in the background. BP Solar's manufacturing capabilities include automatic sorting of solar cells after final testing. NREL's Photovoltaic (PV) Manufacturing Research and Development (R&D) Project was a cost-shared partnership between NREL and a number of private-sector solar companies. The primary project goals were to reduce costs for consumers

  11. Solar photovoltaic applications seminar: design, installation and operation of small, stand-alone photovoltaic power systems

    SciTech Connect (OSTI)

    Not Available

    1980-07-01

    This seminar material was developed primarily to provide solar photovoltaic (PV) applied engineering technology to the Federal community. An introduction to photoconductivity, semiconductors, and solar photovoltaic cells is included along with a demonstration of specific applications and application identification. The seminar details general systems design and incorporates most known information from industry, academia, and Government concerning small solar cell power system design engineering, presented in a practical and applied manner. Solar PV power system applications involve classical direct electrical energy conversion and electric power system analysis and synthesis. Presentations and examples involve a variety of disciplines including structural analysis, electric power and load analysis, reliability, sizing and optimization; and, installation, operation and maintenance. Four specific system designs are demonstrated: water pumping, domestic uses, navigational and aircraft aids, and telecommunications. All of the applications discussed are for small power requirement (under 2 kilowatts), stand-alone systems to be used in remote locations. Also presented are practical lessons gained from currently installed and operating systems, problems at sites and their resolution, a logical progression through each major phase of system acquisition, as well as thorough design reviews for each application.

  12. Photovoltaic module mounting system

    DOE Patents [OSTI]

    Miros, Robert H. J.; Mittan, Margaret Birmingham; Seery, Martin N; Holland, Rodney H

    2012-09-18

    A solar array mounting system having unique installation, load distribution, and grounding features, and which is adaptable for mounting solar panels having no external frame. The solar array mounting system includes flexible, pedestal-style feet and structural links connected in a grid formation on the mounting surface. The photovoltaic modules are secured in place via the use of attachment clamps that grip the edge of the typically glass substrate. The panel mounting clamps are then held in place by tilt brackets and/or mid-link brackets that provide fixation for the clamps and align the solar panels at a tilt to the horizontal mounting surface. The tilt brackets are held in place atop the flexible feet and connected link members thus creating a complete mounting structure.

  13. Photovoltaic module mounting system

    DOE Patents [OSTI]

    Miros, Robert H. J.; Mittan, Margaret Birmingham; Seery, Martin N.; Holland, Rodney H.

    2012-04-17

    A solar array mounting system having unique installation, load distribution, and grounding features, and which is adaptable for mounting solar panels having no external frame. The solar array mounting system includes flexible, pedestal-style feet and structural links connected in a grid formation on the mounting surface. The photovoltaic modules are secured in place via the use of attachment clamps that grip the edge of the typically glass substrate. The panel mounting clamps are then held in place by tilt brackets and/or mid-link brackets that provide fixation for the clamps and align the solar panels at a tilt to the horizontal mounting surface. The tilt brackets are held in place atop the flexible feet and connected link members thus creating a complete mounting structure.

  14. Electrical Techniques | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature Dictionary.png Electrical Techniques: Electrical techniques aim to image the...

  15. Photovoltaic Cell Having A P-Type Polycrystalline Layer With Large Crystals

    DOE Patents [OSTI]

    Albright, Scot P.; Chamberlin, Rhodes R.

    1996-03-26

    A photovoltaic cell has an n-type polycrystalline layer and a p-type polycrystalline layer adjoining the n-type polycrystalline layer to form a photovoltaic junction. The p-type polycrystalline layer comprises a substantially planar layer portion having relatively large crystals adjoining the n-type polycrystalline layer. The planar layer portion includes oxidized impurities which contribute to obtainment of p-type electrical properties in the planar layer portion.

  16. Method and apparatus for increasing the durability and yield of thin film photovoltaic devices

    DOE Patents [OSTI]

    Phillips, J.E.; Lasswell, P.G.

    1987-02-03

    Thin film photovoltaic cells having a pair of semiconductor layers between an opaque and a transparent electrical contact are manufactured in a method which includes the step of scanning one of the semiconductor layers to determine the location of any possible shorting defect. Upon the detection of such defect, the defect is eliminated to increase the durability and yield of the photovoltaic device. 10 figs.

  17. Photovoltaic healing of non-uniformities in semiconductor devices

    DOE Patents [OSTI]

    Karpov, Victor G.; Roussillon, Yann; Shvydka, Diana; Compaan, Alvin D.; Giolando, Dean M.

    2006-08-29

    A method of making a photovoltaic device using light energy and a solution to normalize electric potential variations in the device. A semiconductor layer having nonuniformities comprising areas of aberrant electric potential deviating from the electric potential of the top surface of the semiconductor is deposited onto a substrate layer. A solution containing an electrolyte, at least one bonding material, and positive and negative ions is applied over the top surface of the semiconductor. Light energy is applied to generate photovoltage in the semiconductor, causing a redistribution of the ions and the bonding material to the areas of aberrant electric potential. The bonding material selectively bonds to the nonuniformities in a manner such that the electric potential of the nonuniformities is normalized relative to the electric potential of the top surface of the semiconductor layer. A conductive electrode layer is then deposited over the top surface of the semiconductor layer.

  18. Plug-and-Play Photovoltaics

    Energy.gov [DOE]

    On December 7, 2012, DOE announced $21 million in funding for the Plug-and-Play Photovoltaics funding opportunity. Part of the SunShot Systems Integration efforts, the following projects were...

  19. Denver International Airport Photovoltaic System

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Denver International Airport (DIA) features a 2-megawatt (MW) photovoltaic (PV) system. DIA also hosts to a second 1.6-MW system. Denver is a Solar America City.

  20. Rooftop Photovoltaics Market Penetration Scenarios

    SciTech Connect (OSTI)

    Paidipati, J.; Frantzis, L.; Sawyer, H.; Kurrasch, A.

    2008-02-01

    The goal of this study was to model the market penetration of rooftop photovoltaics (PV) in the United States under a variety of scenarios, on a state-by-state basis, from 2007 to 2015.