National Library of Energy BETA

Sample records for temperature high entropy

  1. High-entropy alloys as high-temperature thermoelectric materials

    SciTech Connect (OSTI)

    Shafeie, Samrand; Guo, Sheng; Hu, Qiang; Fahlquist, Henrik; Erhart, Paul; Palmqvist, Anders

    2015-11-14

    Thermoelectric (TE) generators that efficiently recycle a large portion of waste heat will be an important complementary energy technology in the future. While many efficient TE materials exist in the lower temperature region, few are efficient at high temperatures. Here, we present the high temperature properties of high-entropy alloys (HEAs), as a potential new class of high temperature TE materials. We show that their TE properties can be controlled significantly by changing the valence electron concentration (VEC) of the system with appropriate substitutional elements. Both the electrical and thermal transport properties in this system were found to decrease with a lower VEC number. Overall, the large microstructural complexity and lower average VEC in these types of alloys can potentially be used to lower both the total and the lattice thermal conductivity. These findings highlight the possibility to exploit HEAs as a new class of future high temperature TE materials.

  2. Polycrystalline elastic moduli of a high-entropy alloy at cryogenic temperatures

    DOE PAGES-Beta [OSTI]

    Haglund, A.; Koehler, M.; Catoor, D.; George, E. P.; Keppens, V.

    2014-12-05

    A FCC high-entropy alloy (HEA) that exhibits strong temperature dependence of strength at low homologous temperatures in sharp contrast to pure FCC metals like Ni that show weak temperature dependence is CrMnCoFeNi. In order to understand this behavior, elastic constants were determined as a function of temperature. From 300 K down to 55 K, the shear modulus (G) of the HEA changes by only 8%, increasing from 80 to 86 GPa. Moreover, this temperature dependence is weaker than that of FCC Ni, whose G increases by 12% (81–91 GPa). Therefore, the uncharacteristic temperature-dependence of the strength of the HEA ismore » not due to the temperature dependence of its shear modulus.« less

  3. Temperature effects on deformation and serration behavior of high-entropy alloys (HEAs)

    DOE PAGES-Beta [OSTI]

    Antonaglia, J.; Xie, X.; Tang, Z.; Tsai, C. -W.; Qiao, J. W.; Zhang, Y.; Laktionova, M. O.; Tabachnikova, E. D.; Yeh, J. W.; Senkov, O. N.; et al

    2014-09-16

    Many materials are known to deform under shear in an intermittent way with slip avalanches detected as acoustic emission and serrations in the stress–strain curves. Similar serrations have recently been observed in a new class of materials, called high-entropy alloys (HEAs). Here, we discuss the serration behaviors of several HEAs from cryogenic to elevated temperatures. The experimental results of slow compression and tension tests are compared with the predictions of a slip-avalanche model for the deformation of a broad range of solids. The results shed light on the deformation processes in HEAs. Temperature effects on the distributions of stress dropsmore » and the decrease of the cutoff (i.e., of the largest observed slip size) for increasing temperature qualitatively agree with the model predictions. As a result, the model is used to quantify the serration characteristics of HEAs, and pertinent implications are discussed.« less

  4. Temperature effects on deformation and serration behavior of high-entropy alloys (HEAs)

    SciTech Connect (OSTI)

    Antonaglia, J.; Xie, X.; Tang, Z.; Tsai, C. -W.; Qiao, J. W.; Zhang, Y.; Laktionova, M. O.; Tabachnikova, E. D.; Yeh, J. W.; Senkov, O. N.; Gao, M. C.; Uhl, J. T.; Liaw, P. K.; Dahmen, K. A.

    2014-09-16

    Many materials are known to deform under shear in an intermittent way with slip avalanches detected as acoustic emission and serrations in the stress–strain curves. Similar serrations have recently been observed in a new class of materials, called high-entropy alloys (HEAs). Here, we discuss the serration behaviors of several HEAs from cryogenic to elevated temperatures. The experimental results of slow compression and tension tests are compared with the predictions of a slip-avalanche model for the deformation of a broad range of solids. The results shed light on the deformation processes in HEAs. Temperature effects on the distributions of stress drops and the decrease of the cutoff (i.e., of the largest observed slip size) for increasing temperature qualitatively agree with the model predictions. As a result, the model is used to quantify the serration characteristics of HEAs, and pertinent implications are discussed.

  5. Effects of temperature on serrated flows of Al0.5CoCrCuFeNi high-entropy alloy

    DOE PAGES-Beta [OSTI]

    Chen, Shuying; Xie, Xie; Chen, Bilin; Qiao, Junwei; Zhang, Yong; Ren, Yang; Dahmen, Karin A.; Liaw, Peter K.

    2015-08-14

    Compression behavior of the Al0.5CoCrCuFeNi high-entropy alloy (HEA) was studied at different temperatures from 673K to 873K at a low strain rate of 5 x 10-5/s to investigate the temperature effect on the mechanical properties and serration behavior. The face-centered cubic (FCC) structure is confirmed at the lower temperature of 673 K and 773 K, and a structure of mixed FCC and body-centered cubic (BCC) is identified at a higher temperature of 873 K after compression tests using high-energy synchrotron X-ray diffraction. As a result, by comparing the stress-strain curves at different temperatures, two opposite directions of serrations types weremore » found, named upward serrations appearing at 673 K and 773 K and downward serrations at 873 K, which may be due to dynamic strain aging.« less

  6. Effects of temperature on serrated flows of Al0.5CoCrCuFeNi high-entropy alloy

    SciTech Connect (OSTI)

    Chen, Shuying; Xie, Xie; Chen, Bilin; Qiao, Junwei; Zhang, Yong; Ren, Yang; Dahmen, Karin A.; Liaw, Peter K.

    2015-08-14

    Compression behavior of the Al0.5CoCrCuFeNi high-entropy alloy (HEA) was studied at different temperatures from 673K to 873K at a low strain rate of 5 x 10-5/s to investigate the temperature effect on the mechanical properties and serration behavior. The face-centered cubic (FCC) structure is confirmed at the lower temperature of 673 K and 773 K, and a structure of mixed FCC and body-centered cubic (BCC) is identified at a higher temperature of 873 K after compression tests using high-energy synchrotron X-ray diffraction. As a result, by comparing the stress-strain curves at different temperatures, two opposite directions of serrations types were found, named upward serrations appearing at 673 K and 773 K and downward serrations at 873 K, which may be due to dynamic strain aging.

  7. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy

    SciTech Connect (OSTI)

    Otto, Frederik; Dlouhy, A.; Somsen, Ch.; Bei, Hongbin; Eggeler, G.; George, Easo P

    2013-01-01

    An equiatomic CoCrFeMnNi high-entropy alloy, which crystallizes in the face-centered cubic (FCC) crystal structure, was produced by arc melting and drop casting. The drop-cast ingots were homogenized, cold rolled, and recrystallized to obtain single-phase microstructures with three different grain sizes in the range 4~160 m. Quasi-static tensile tests were then performed at temperatures between 77 and 1073 K. Yield strength, ultimate tensile strength and ductility all increased with decreasing temperature. During the initial stages of plasticity (up to ~2% strain), deformation occurs by planar dislocation glide on the normal FCC slip system {111} 110 at all temperatures and grain sizes investigated. Undissociated 1/2 110 dislocations were observed, as were numerous stacking faults, which imply the dissociation of several of these dislocations into 1/6 112 Shockley partials. At later stages ( 20% strain), nanoscale deformation twins were observed after interrupted tests at 77 K, but not in specimens tested at room temperature where plasticity occurred exclusively by dislocations which organized into cells. Deformation twinning, by continually decreasing the mean free path of dislocations during tensile testing, produces a high degree of work hardening and a significant increase in the ultimate tensile strength. This increased work hardening prevents the early onset of necking instability and is a reason for the enhanced ductility observed at 77 K. A second way in which twinning can contribute to ductility is by providing an additional deformation mode to accommodate plasticity. However, it cannot explain the increase in yield strength with decreasing temperature in our high-entropy alloy since twinning was not observed in the early stages of plastic deformation. Since strong temperature dependencies of yield strength are also seen in binary FCC solid solution alloys, it may be an inherent solute effect, which needs further study.

  8. Progress in High-Entropy Alloys

    SciTech Connect (OSTI)

    Gao, Michael C

    2013-12-01

    Strictly speaking, high-entropy alloys (HEAs) refer to single-phase, solid-solution alloys with multiprincipal elements in an equal or a near-equal molar ratio whose configurational entropy is tremendously high. This special topic was organized to reflect the focus and diversity of HEA research topics in the community.

  9. Laser assisted high entropy alloy coating on aluminum: Microstructural evolution

    SciTech Connect (OSTI)

    Katakam, Shravana; Joshi, Sameehan S.; Mridha, Sanghita; Mukherjee, Sundeep; Dahotre, Narendra B.

    2014-09-14

    High entropy alloy (Al-Fe-Co-Cr-Ni) coatings were synthesized using laser surface engineering on aluminum substrate. Electron diffraction analysis confirmed the formation of solid solution of body centered cubic high entropy alloy phase along with phases with long range periodic structures within the coating. Evolution of such type of microstructure was a result of kinetics associated with laser process, which generates higher temperatures and rapid cooling resulting in retention of high entropy alloy phase followed by reheating and/or annealing in subsequent passes of the laser track giving rise to partial decomposition. The partial decomposition resulted in formation of precipitates having layered morphology with a mixture of high entropy alloy rich phases, compounds, and long range ordered phases.

  10. Experiments and Model for Serration Statistics in Low-Entropy, Medium-Entropy, and High-Entropy Alloys

    SciTech Connect (OSTI)

    Carroll, Robert; Lee, Chi; Tsai, Che-Wei; Yeh, Jien-Wei; Antonaglia, James; Brinkman, Braden A.W.; LeBlanc, Michael; Xie, Xie; Chen, Shuying; Liaw, Peter K; Dahmen, Karin A

    2015-11-23

    High-entropy alloys (HEAs) are new alloys that contain five or more elements in roughly equal proportion. We present new experiments and theory on the deformation behavior of HEAs under slow stretching (straining), and observe differences, compared to conventional alloys with fewer elements. For a specific range of temperatures and strain-rates, HEAs deform in a jerky way, with sudden slips that make it difficult to precisely control the deformation. An analytic model explains these slips as avalanches of slipping weak spots and predicts the observed slip statistics, stress-strain curves, and their dependence on temperature, strain-rate, and material composition. The ratio of the weak spots’ healing rate to the strain-rate is the main tuning parameter, reminiscent of the Portevin-LeChatellier effect and time-temperature superposition in polymers. Our model predictions agree with the experimental results. The proposed widely-applicable deformation mechanism is useful for deformation control and alloys design.

  11. Effect of entropy on anomalous transport in electron-temperature-gradient-modes

    SciTech Connect (OSTI)

    Yaqub Khan, M.; Iqbal, J.; Ul Haq, A.

    2014-05-15

    Due to the interconnection of entropy with temperature and density of plasma, it would be interesting to investigate plasma related phenomena with respect to entropy. By employing Braginskii transport equations, it is proved that entropy is proportional to a function of potential and distribution function of entropy is re-defined, ∇S–drift in obtained. New dispersion relation is derived; it is found that the anomalous transport depends on the gradient of the entropy.

  12. Experiments and Model for Serration Statistics in Low-Entropy, Medium-Entropy, and High-Entropy Alloys

    DOE PAGES-Beta [OSTI]

    Carroll, Robert; Lee, Chi; Tsai, Che-Wei; Yeh, Jien-Wei; Antonaglia, James; Brinkman, Braden A.W.; LeBlanc, Michael; Xie, Xie; Chen, Shuying; Liaw, Peter K; et al

    2015-11-23

    High-entropy alloys (HEAs) are new alloys that contain five or more elements in roughly equal proportion. We present new experiments and theory on the deformation behavior of HEAs under slow stretching (straining), and observe differences, compared to conventional alloys with fewer elements. For a specific range of temperatures and strain-rates, HEAs deform in a jerky way, with sudden slips that make it difficult to precisely control the deformation. An analytic model explains these slips as avalanches of slipping weak spots and predicts the observed slip statistics, stress-strain curves, and their dependence on temperature, strain-rate, and material composition. The ratio ofmore » the weak spots’ healing rate to the strain-rate is the main tuning parameter, reminiscent of the Portevin-LeChatellier effect and time-temperature superposition in polymers. Our model predictions agree with the experimental results. The proposed widely-applicable deformation mechanism is useful for deformation control and alloys design.« less

  13. Design of refractory high-entropy alloys

    DOE PAGES-Beta [OSTI]

    Gao, M. C.; Carney, C. S.; Dogan, O. N.; Jablonksi, P. D.; Hawk, J. A.; Alman, D. E.

    2015-09-15

    Here, this report presents a design methodology for refractory high-entropy alloys with a body-centered cubic (bcc) structure using select empirical parameters (i.e., enthalpy of mixing, atomic size difference, Ω-parameter, and electronegativity difference) and CALPHAD approach. Sixteen alloys in equimolar compositions ranging from quinary to ennead systems were designed with experimental verification studies performed on two alloys using x-ray diffraction, energy-dispersive spectroscopy, and scanning electron microscopy. Two bcc phases were identified in the as-cast HfMoNbTaTiVZr, whereas multiple phases formed in the as-cast HfMoNbTaTiVWZr. Observed elemental segregation in the alloys qualitatively agrees with CALPHAD prediction. Comparisons of the thermodynamic mixing properties formore » liquid and bcc phases using the Miedema model and CALPHAD are presented. This study demonstrates that CALPHAD is more effective in predicting HEA formation than empirical parameters, and new single bcc HEAs are suggested: HfMoNbTiZr, HfMoTaTiZr, NbTaTiVZr, HfMoNbTaTiZr, HfMoTaTiVZr, and MoNbTaTiVZr.« less

  14. High-entropy bulk metallic glasses as promising magnetic refrigerants

    SciTech Connect (OSTI)

    Huo, Juntao; Huo, Lishan; Li, Jiawei; Men, He; Wang, Xinmin; Chang, Chuntao E-mail: jqwang@nimte.ac.cn; Wang, Jun-Qiang E-mail: jqwang@nimte.ac.cn; Li, Run-Wei; Inoue, Akihisa

    2015-02-21

    In this paper, the Ho{sub 20}Er{sub 20}Co{sub 20}Al{sub 20}RE{sub 20} (RE = Gd, Dy, and Tm) high-entropy bulk metallic glasses (HE-BMGs) with good magnetocaloric properties are fabricated successfully. The HE-BMGs exhibit a second-order magnetic phase transition. The peak of magnetic entropy change (ΔS{sub M}{sup pk}) and refrigerant capacity (RC) reaches 15.0 J kg{sup −1} K{sup −1} and 627 J kg{sup −1} at 5 T, respectively, which is larger than most rare earth based BMGs. The heterogeneous nature of glasses also contributes to the large ΔS{sub M}{sup pk} and RC. In addition, the magnetic ordering temperature, ΔS{sub M}{sup pk} and RC can be widely tuned by alloying different rare earth elements. These results suggest that the HE-BMGs are promising magnetic refrigerant at low temperatures.

  15. Deviation from high-entropy configurations in the atomic distributions...

    Office of Scientific and Technical Information (OSTI)

    The alloy-design strategy of combining multiple elements in near-equimolar ratios has ... In addition, the results suggest that the high-entropy-alloy-design strategy may be ...

  16. Solid-solution CrCoCuFeNi high-entropy alloy thin films synthesized...

    Office of Scientific and Technical Information (OSTI)

    Solid-solution CrCoCuFeNi high-entropy alloy thin films synthesized by sputter deposition Title: Solid-solution CrCoCuFeNi high-entropy alloy thin films synthesized by sputter ...

  17. Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures

    DOE PAGES-Beta [OSTI]

    Gludovatz, Bernd; Hohenwarter, Anton; Thurston, Keli V. S.; Bei, Hongbin; Wu, Zhenggang; George, Easo P.; Ritchie, Robert O.

    2016-02-02

    The high-entropy alloys are an intriguing new class of metallic materials that derive their properties not from a single dominant constituent, such as iron in steels, nor from the presence of a second phase, such as in nickel-base superalloys, but rather comprise multi-element systems that crystallize as a single phase, despite containing high concentrations (~20 at.%) of five or more elements with different crystal structures. Indeed, we have recently reported on one such single-phase high-entropy alloy, NiCoCrFeMn, which displays exceptional strength and toughness at cryogenic temperatures. Here which displays unprecedented strength-toughness properties that exceed those of all high-entropy alloys andmore » most multi-phase alloys. With roomtemperature tensile strengths of almost 1 GPa and KJIc fracture-toughness values above 200 MPa.m 1/2 (with crack-growth toughnesses exceeding 300 MPa.m 1/2), the strength, ductility and toughness of the NiCoCr alloy actually improve at cryogenic temperatures to unprecedented levels of strengths above 1.3 GPa, failure strains up to 90% and KJIc values of 275 MPa.m 1/2 (with crackgrowth toughnesses above 400 MPa.m 1/2). These properties appear to result from continuous steady strain hardening, which acts to suppress plastic instability, resulting from pronounced dislocation activity and deformation-induced nano-twinning.« less

  18. Local electronic effects and irradiation resistance in high-entropy alloys

    DOE PAGES-Beta [OSTI]

    Egami, Takeshi; Stocks, George Malcolm; Nicholson, Don; Khorgolkhuu, Od; Ojha, Madhusudan

    2015-01-01

    High-entropy alloys are multicomponent solid solutions in which various elements with different chemistries and sizes occupy the same crystallographic lattice sites. Thus, none of the atoms perfectly fit the lattice site, giving rise to considerable local lattice distortions and atomic-level stresses. These characteristics can be beneficial for performance under both radiation and in a high-temperature environment, making them attractive candidates as nuclear materials. We discuss electronic origin of the atomic-level stresses based upon first-principles calculations using a density functional theory approach.

  19. High temperature furnace

    DOE Patents [OSTI]

    Borkowski, Casimer J.

    1976-08-03

    A high temperature furnace for use above 2000.degree.C is provided that features fast initial heating and low power consumption at the operating temperature. The cathode is initially heated by joule heating followed by electron emission heating at the operating temperature. The cathode is designed for routine large temperature excursions without being subjected to high thermal stresses. A further characteristic of the device is the elimination of any ceramic components from the high temperature zone of the furnace.

  20. Multi-component solid solution alloys having high mixing entropy

    SciTech Connect (OSTI)

    Bei, Hongbin

    2015-10-06

    A multi-component high-entropy alloy includes a composition selected from the following group: VNbTaTiMoWRe, VNbTaTiMoW, VNbTaTiMoRe, VNbTaTiWRe, VNbTaMoWRe, VNbTiMoWRe, VTaTiMoWRe, NbTaTiMoWRe, VNbTaTiMo, VNbTaTiW, VNbTaMoW, VNbTiMoW, VTaTiMoW, NbTaTiMoW, VNbTaTiRe, VNbTaMoRe, VNbTiMoRe, VTaTiMoRe, NbTaTiMoRe, VNbTaWRe, VNbTiWRe, VTaTiWRe, NbTaTiWRe, VNbMoWRe, VTaMoWRe, NbTaMoWRe, VTiMoWRe, NbTiMoWRe, TaTiMoWRe, wherein relative amounts of each element vary by no more than .+-.15 atomic %.

  1. Exceptional damage-tolerance of a medium-entropy alloy NiCoCr at cryogenic temperatures

    DOE PAGES-Beta [OSTI]

    Gludovatz, Bernd; Hohenwarter, Anton; Thurston, Keli; Bei, Hongbin; Wu, Zhenggang; George, Easo

    2016-01-01

    High-entropy alloys1 3 are an intriguing new class of metallic materials that derive their properties not from a single dominant constituent, such as iron in steels, nor from the presence of a second phase, such as in nickel-base superalloys, but rather comprise multi-element systems that crystallize as a single phase4 7, despite containing high concentrations (~20 at.%) of five or more elements with different crystal structures5 7. Indeed, we have recently reported on one such single-phase high-entropy alloy, NiCoCrFeMn, which displays exceptional strength and toughness at cryogenic temperatures8. Here which displays unprecedented strength-toughness properties that exceed those of all high-entropymore »alloys and most multi-phase alloys. With roomtemperature tensile strengths of almost 1 GPa and KJIc fracture-toughness values above 200 MPa.m1/2 (with crack-growth toughnesses exceeding 300 MPa.m1/2), the strength, ductility and toughness of the NiCoCr alloy actually improve at cryogenic temperatures to unprecedented levels of strengths above 1.3 GPa, failure strains up to 90% and KJIc values of 275 MPa.m1/2 (with crackgrowth toughnesses above 400 MPa.m1/2). Such properties appear to result from continuous steady strain hardening, which acts to suppress plastic instability, resulting from pronounced dislocation activity and deformation-induced nano-twinning.« less

  2. High temperature sensor

    DOE Patents [OSTI]

    Tokarz, Richard D.

    1982-01-01

    A high temperature sensor includes a pair of electrical conductors separated by a mass of electrical insulating material. The insulating material has a measurable resistivity within the sensor that changes in relation to the temperature of the insulating material within a high temperature range (1,000 to 2,000 K.). When required, the sensor can be encased within a ceramic protective coating.

  3. The redshift evolution of the mean temperature, pressure, and entropy profiles in 80 SPT-selected galaxy clusters

    SciTech Connect (OSTI)

    McDonald, M.; Bautz, M.; Benson, B. A.; Vikhlinin, A.; Bayliss, M.; Forman, W. R.; Aird, K. A.; Allen, S. W.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Crawford, T. M.; Crites, A. T.; Bocquet, S.; Brodwin, M.; Cho, H. M.; Clocchiatti, A.; De Haan, T.; Dobbs, M. A.; Foley, R. J.; and others

    2014-10-10

    We present the results of an X-ray analysis of 80 galaxy clusters selected in the 2500 deg{sup 2} South Pole Telescope survey and observed with the Chandra X-ray Observatory. We divide the full sample into subsamples of ?20 clusters based on redshift and central density, performing a joint X-ray spectral fit to all clusters in a subsample simultaneously, assuming self-similarity of the temperature profile. This approach allows us to constrain the shape of the temperature profile over 0 < r < 1.5R {sub 500}, which would be impossible on a per-cluster basis, since the observations of individual clusters have, on average, 2000 X-ray counts. The results presented here represent the first constraints on the evolution of the average temperature profile from z = 0 to z = 1.2. We find that high-z (0.6 < z < 1.2) clusters are slightly (?30%) cooler both in the inner (r < 0.1R {sub 500}) and outer (r > R {sub 500}) regions than their low-z (0.3 < z < 0.6) counterparts. Combining the average temperature profile with measured gas density profiles from our earlier work, we infer the average pressure and entropy profiles for each subsample. Confirming earlier results from this data set, we find an absence of strong cool cores at high z, manifested in this analysis as a significantly lower observed pressure in the central 0.1R {sub 500} of the high-z cool-core subset of clusters compared to the low-z cool-core subset. Overall, our observed pressure profiles agree well with earlier lower-redshift measurements, suggesting minimal redshift evolution in the pressure profile outside of the core. We find no measurable redshift evolution in the entropy profile at r ? 0.7R {sub 500}this may reflect a long-standing balance between cooling and feedback over long timescales and large physical scales. We observe a slight flattening of the entropy profile at r ? R {sub 500} in our high-z subsample. This flattening is consistent with a temperature bias due to the enhanced (?3) rate at which

  4. High temperature refrigerator

    DOE Patents [OSTI]

    Steyert, Jr., William A.

    1978-01-01

    A high temperature magnetic refrigerator which uses a Stirling-like cycle in which rotating magnetic working material is heated in zero field and adiabatically magnetized, cooled in high field, then adiabatically demagnetized. During this cycle said working material is in heat exchange with a pumped fluid which absorbs heat from a low temperature heat source and deposits heat in a high temperature reservoir. The magnetic refrigeration cycle operates at an efficiency 70% of Carnot.

  5. Weldability of a high entropy CrMnFeCoNi alloy

    DOE PAGES-Beta [OSTI]

    Wu, Zhenggang; David, Stan A.; Feng, Zhili; Bei, Hongbin

    2016-07-19

    We present the high-entropy alloys are unique alloys in which five or more elements are all in high concentrations. In order to determine its potential as a structural alloy, a model face-centered-cubic CrMnFeCoNi alloy was selected to investigate its weldability. Welds produced by electron beam welding show no cracking. The grain structures within the fusion zone (FZ) are controlled by the solidification behavior of the weld pool. The weldment possesses mechanical properties comparable to those of the base metal (BM) at both room and cryogenic temperatures. Finally, compared with the BM, deformation twinning was more pronounced in the FZ ofmore » the tested alloy.« less

  6. High temperature measuring device

    DOE Patents [OSTI]

    Tokarz, Richard D.

    1983-01-01

    A temperature measuring device for very high design temperatures (to 2,000.degree. C.). The device comprises a homogenous base structure preferably in the form of a sphere or cylinder. The base structure contains a large number of individual walled cells. The base structure has a decreasing coefficient of elasticity within the temperature range being monitored. A predetermined quantity of inert gas is confined within each cell. The cells are dimensionally stable at the normal working temperature of the device. Increases in gaseous pressure within the cells will permanently deform the cell walls at temperatures within the high temperature range to be measured. Such deformation can be correlated to temperature by calibrating similarly constructed devices under known time and temperature conditions.

  7. High-temperature Pump Monitoring - High-temperature ESP Monitoring...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    - High-temperature ESP Monitoring; 2010 Geothermal Technology Program Peer Review Report High-temperature Pump Monitoring - High-temperature ESP Monitoring; 2010 Geothermal ...

  8. High-temperature sensor

    DOE Patents [OSTI]

    Not Available

    1981-01-29

    A high temperature sensor is described which includes a pair of electrical conductors separated by a mass of electrical insulating material. The insulating material has a measurable resistivity within the sensor that changes in relation to the temperature of the insulating material within a high temperature range (1000 to 2000/sup 0/K). When required, the sensor can be encased within a ceramic protective coating.

  9. High temperature pressure gauge

    DOE Patents [OSTI]

    Echtler, J. Paul; Scandrol, Roy O.

    1981-01-01

    A high temperature pressure gauge comprising a pressure gauge positioned in fluid communication with one end of a conduit which has a diaphragm mounted in its other end. The conduit is filled with a low melting metal alloy above the diaphragm for a portion of its length with a high temperature fluid being positioned in the remaining length of the conduit and in the pressure gauge.

  10. High temperature probe

    DOE Patents [OSTI]

    Swan, Raymond A.

    1994-01-01

    A high temperature probe for sampling, for example, smokestack fumes, and is able to withstand temperatures of 3000.degree. F. The probe is constructed so as to prevent leakage via the seal by placing the seal inside the water jacket whereby the seal is not exposed to high temperature, which destroys the seal. The sample inlet of the probe is also provided with cooling fins about the area of the seal to provide additional cooling to prevent the seal from being destroyed. Also, a heated jacket is provided for maintaining the temperature of the gas being tested as it passes through the probe. The probe includes pressure sensing means for determining the flow velocity of an efficient being sampled. In addition, thermocouples are located in various places on the probe to monitor the temperature of the gas passing there through.

  11. High Temperature ESP Monitoring

    SciTech Connect (OSTI)

    Jack Booker; Brindesh Dhruva

    2011-06-20

    The objective of the High Temperature ESP Monitoring project was to develop a downhole monitoring system to be used in wells with bottom hole well temperatures up to 300°C for measuring motor temperature, formation pressure, and formation temperature. These measurements are used to monitor the health of the ESP motor, to track the downhole operating conditions, and to optimize the pump operation. A 220 ºC based High Temperature ESP Monitoring system was commercially released for sale with Schlumberger ESP motors April of 2011 and a 250 ºC system with will be commercially released at the end of Q2 2011. The measurement system is now fully qualified, except for the sensor, at 300 °C.

  12. High temperature storage loop :

    SciTech Connect (OSTI)

    Gill, David Dennis; Kolb, William J.

    2013-07-01

    A three year plan for thermal energy storage (TES) research was created at Sandia National Laboratories in the spring of 2012. This plan included a strategic goal of providing test capability for Sandia and for the nation in which to evaluate high temperature storage (>650ÀC) technology. The plan was to scope, design, and build a flow loop that would be compatible with a multitude of high temperature heat transfer/storage fluids. The High Temperature Storage Loop (HTSL) would be reconfigurable so that it was useful for not only storage testing, but also for high temperature receiver testing and high efficiency power cycle testing as well. In that way, HTSL was part of a much larger strategy for Sandia to provide a research and testing platform that would be integral for the evaluation of individual technologies funded under the SunShot program. DOEs SunShot program seeks to reduce the price of solar technologies to 6/kWhr to be cost competitive with carbon-based fuels. The HTSL project sought to provide evaluation capability for these SunShot supported technologies. This report includes the scoping, design, and budgetary costing aspects of this effort

  13. High-Temperature Superconductivity

    ScienceCinema (OSTI)

    Peter Johnson

    2016-07-12

    Like astronomers tweaking images to gain a more detailed glimpse of distant stars, physicists at Brookhaven National Laboratory have found ways to sharpen images of the energy spectra in high-temperature superconductors — materials that carry electrical c

  14. HIGH TEMPERATURE THERMOCOUPLE

    DOE Patents [OSTI]

    Eshayu, A.M.

    1963-02-12

    This invention contemplates a high temperature thermocouple for use in an inert or a reducing atmosphere. The thermocouple limbs are made of rhenium and graphite and these limbs are connected at their hot ends in compressed removable contact. The rhenium and graphite are of high purity and are substantially stable and free from diffusion into each other even without shielding. Also, the graphite may be thick enough to support the thermocouple in a gas stream. (AEC)

  15. High temperature thermometric phosphors

    DOE Patents [OSTI]

    Allison, Stephen W.; Cates, Michael R.; Boatner, Lynn A.; Gillies, George T.

    1999-03-23

    A high temperature phosphor consists essentially of a material having the general formula LuPO.sub.4 :Dy.sub.(x),Eu.sub.y) wherein: 0.1 wt %.ltoreq.x.ltoreq.20 wt % and 0.1 wt %.ltoreq.y.ltoreq.20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopent. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions.

  16. High temperature thermometric phosphors

    DOE Patents [OSTI]

    Allison, S.W.; Cates, M.R.; Boatner, L.A.; Gillies, G.T.

    1999-03-23

    A high temperature phosphor consists essentially of a material having the general formula LuPO{sub 4}:Dy{sub x},Eu{sub y} wherein: 0.1 wt % {<=} x {<=} 20 wt % and 0.1 wt % {<=} y {<=} 20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopant. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions. 2 figs.

  17. Nano-twin Mediated Plasticity in Carbon-containing FeNiCoCrMn High Entropy Alloys

    SciTech Connect (OSTI)

    Wu, Zhenggang; Bei, Hongbin; Parish, Chad M

    2015-06-14

    Equiatomic FeNiCoCrMn alloy has been reported to exhibit promising strength and ductility at cryogenic temperature and deformation mediated by nano-twining appeared to be one of the main reasons. We use the FeNiCoCrMn alloy as a base alloy to seek further improvement of its mechanical properties by alloying additional elements, i.e., interstitial carbon. Moreover, the effects of carbon on microstructures, mechanical properties and twinning activities were investigated in two different temperatures (77 and 293 K). With addition of 0.5 at% C, the high entropy alloy still remains entirely single phase face-centered cubic (FCC) crystal structure. We found that these materials can be cold rolled and recrystallized to produce a microstructure with equiaxed grains. Both strain hardening rate and strength are enhanced while high uniform elongations to fracture (~70% at 77 K and ~40% at 293 K) are still maintained. The increased strain hardening and strength could be caused by the promptness of deformation twinning in C-containing high entropy alloys.

  18. Nano-twin Mediated Plasticity in Carbon-containing FeNiCoCrMn High Entropy Alloys

    DOE PAGES-Beta [OSTI]

    Wu, Zhenggang; Bei, Hongbin; Parish, Chad M

    2015-06-14

    Equiatomic FeNiCoCrMn alloy has been reported to exhibit promising strength and ductility at cryogenic temperature and deformation mediated by nano-twining appeared to be one of the main reasons. We use the FeNiCoCrMn alloy as a base alloy to seek further improvement of its mechanical properties by alloying additional elements, i.e., interstitial carbon. Moreover, the effects of carbon on microstructures, mechanical properties and twinning activities were investigated in two different temperatures (77 and 293 K). With addition of 0.5 at% C, the high entropy alloy still remains entirely single phase face-centered cubic (FCC) crystal structure. We found that these materials canmore » be cold rolled and recrystallized to produce a microstructure with equiaxed grains. Both strain hardening rate and strength are enhanced while high uniform elongations to fracture (~70% at 77 K and ~40% at 293 K) are still maintained. The increased strain hardening and strength could be caused by the promptness of deformation twinning in C-containing high entropy alloys.« less

  19. Understanding phase stability of Al-Co-Cr-Fe-Ni high entropy alloys

    DOE PAGES-Beta [OSTI]

    Zhang, Chuan; Zhang, Fan; Diao, Haoyan; Gao, Michael C.; Tang, Zhi; Poplawsky, Jonathan D.; Liaw, Peter K.

    2016-07-19

    The concept of high entropy alloy (HEA) opens a vast unexplored composition range for alloy design. As a well-studied system, Al-Co-Cr-Fe-Ni has attracted tremendous amount of attention to develop new-generation low-density structural materials for automobile and aerospace applications. In spite of intensive investigations in the past few years, the phase stability within this HEA system is still poorly understood and needs to be clarified, which poses obstacles to the discovery of promising Al-Co-Cr-Fe-Ni HEAs. In the present work, the CALPHAD approach is employed to understand the phase stability and explore the phase transformation within the Al-Co-Cr-Fe-Ni system. As a result,more » the phase-stability mapping coupled with density contours is then constructed within the composition - temperature space, which provides useful guidelines for the design of low-density Al-Co-Cr-Fe-Ni HEAs with desirable properties.« less

  20. High temperature detonator

    DOE Patents [OSTI]

    Johnson, James O.; Dinegar, Robert H.

    1988-01-01

    A detonator assembly is provided which is usable at high temperatures about 300.degree. C. A detonator body is provided with an internal volume defining an anvil surface. A first acceptor explosive is disposed on the anvil surface. A donor assembly having an ignition element, an explosive material, and a flying plate, are placed in the body effective to accelerate the flying plate to impact the first acceptor explosive on the anvil for detonating the first acceptor explosive. A second acceptor explosive is eccentrically located in detonation relationship with the first acceptor explosive to thereafter effect detonation of a main charge.

  1. High temperature interfacial superconductivity

    DOE Patents [OSTI]

    Bozovic, Ivan; Logvenov, Gennady; Gozar, Adrian Mihai

    2012-06-19

    High-temperature superconductivity confined to nanometer-scale interfaces has been a long standing goal because of potential applications in electronic devices. The spontaneous formation of a superconducting interface in bilayers consisting of an insulator (La.sub.2CuO.sub.4) and a metal (La.sub.1-xSr.sub.xCuO.sub.4), neither of which is superconducting per se, is described. Depending upon the layering sequence of the bilayers, T.sub.c may be either .about.15 K or .about.30 K. This highly robust phenomenon is confined to within 2-3 nm around the interface. After exposing the bilayer to ozone, T.sub.c exceeds 50 K and this enhanced superconductivity is also shown to originate from a 1 to 2 unit cell thick interfacial layer. The results demonstrate that engineering artificial heterostructures provides a novel, unconventional way to fabricate stable, quasi two-dimensional high T.sub.c phases and to significantly enhance superconducting properties in other superconductors. The superconducting interface may be implemented, for example, in SIS tunnel junctions or a SuFET.

  2. Local structures of high-entropy alloys (HEAs) on atomic scales: An overview

    SciTech Connect (OSTI)

    Diao, Haoyan; Santodonato, Louis J.; Tang, Zhi; Egami, Takeshi; Liaw, Peter K.

    2015-08-29

    The high-entropy alloys, containing several elements mixed in equimolar or near-equimolar ratios, have shown exceptional engineering properties. Local structures on the atomic level are essential to understand the mechanical behaviors and related mechanisms. This article covers the local structure and stress on the atomic level are reviewed by the pair-distribution function of neutron-diffraction data, ab-initio molecular dynamics simulations, and the atomic probe microscopy.

  3. Local structures of high-entropy alloys (HEAs) on atomic scales: An overview

    DOE PAGES-Beta [OSTI]

    Diao, Haoyan; Santodonato, Louis J.; Tang, Zhi; Egami, Takeshi; Liaw, Peter K.

    2015-01-01

    The high-entropy alloys, containing several elements mixed in equimolar or near-equimolar ratios, have shown exceptional engineering properties. Local structures on the atomic level are essential to understand the mechanical behaviors and related mechanisms. This article covers the local structure and stress on the atomic level are reviewed by the pair-distribution function of neutron-diffraction data, ab-initio molecular dynamics simulations, and the atomic probe microscopy.

  4. Nearly Perfect Fluidity in a High Temperature Superconductor

    DOE PAGES-Beta [OSTI]

    Rameau, J. D.; Reber, T. J.; Yang, H. -B.; Akhanjee, S.; Gu, G. D.; Johnson, P. D.; Campbell, S.

    2014-10-13

    Perfect fluids are characterized as having the smallest ratio of shear viscosity to entropy density, η/s, consistent with quantum uncertainty and causality. So far, nearly perfect fluids have only been observed in the quark-gluon plasma and in unitary atomic Fermi gases, exotic systems that are amongst the hottest and coldest objects in the known universe, respectively. We use angle resolved photoemission spectroscopy to measure the temperature dependence of an electronic analog of η/s in an optimally doped cuprate high-temperature superconductor, finding it too is a nearly perfect fluid around, and above, its superconducting transition temperature Tc.

  5. Nearly Perfect Fluidity in a High Temperature Superconductor

    SciTech Connect (OSTI)

    Rameau, J. D.; Reber, T. J.; Yang, H. -B.; Akhanjee, S.; Gu, G. D.; Johnson, P. D.; Campbell, S.

    2014-10-13

    Perfect fluids are characterized as having the smallest ratio of shear viscosity to entropy density, η/s, consistent with quantum uncertainty and causality. So far, nearly perfect fluids have only been observed in the quark-gluon plasma and in unitary atomic Fermi gases, exotic systems that are amongst the hottest and coldest objects in the known universe, respectively. We use angle resolved photoemission spectroscopy to measure the temperature dependence of an electronic analog of η/s in an optimally doped cuprate high-temperature superconductor, finding it too is a nearly perfect fluid around, and above, its superconducting transition temperature Tc.

  6. High temperature lubricating process

    DOE Patents [OSTI]

    Taylor, R.W.; Shell, T.E.

    1979-10-04

    It has been difficult to provide adequate lubrication for load bearing, engine components when such engines are operating in excess of about 475/sup 0/C. The present invention is a process for providing a solid lubricant on a load bearing, solid surface, such as in an engine being operated at temperatures in excess of about 475/sup 0/C. The process comprises contacting and maintaining the following steps: a gas phase is provided which includes at least one component reactable in a temperature dependent reaction to form a solid lubricant; the gas phase is contacted with the load bearing surface; the load bearing surface is maintained at a temperature which causes reaction of the gas phase component and the formation of the solid lubricant; and the solid lubricant is formed directly on the load bearing surface. The method is particularly suitable for use with ceramic engines.

  7. High temperature lubricating process

    DOE Patents [OSTI]

    Taylor, Robert W.; Shell, Thomas E.

    1982-01-01

    It has been difficult to provide adaquate lubrication for load bearing, engine components when such engines are operating in excess of about 475.degree. C. The present invention is a process for providing a solid lubricant on a load bearing, solid surface (14), such as in an engine (10) being operated at temperatures in excess of about 475.degree. C. The process comprises contacting and maintaining steps. A gas phase (42) is provided which includes at least one component reactable in a temperature dependent reaction to form a solid lubricant. The gas phase is contacted with the load bearing surface. The load bearing surface is maintained at a temperature which causes reaction of the gas phase component and the formation of the solid lubricant. The solid lubricant is formed directly on the load bearing surface. The method is particularly suitable for use with ceramic engines.

  8. Microstructural stability and mechanical behavior of FeNiMnCr high entropy alloy under ion irradiation

    DOE PAGES-Beta [OSTI]

    Leonard, Keith J.; Bei, Hongbin; Zinkle, Steven J.; Kiran Kumar, N. A. P.; Li, C.

    2016-05-13

    In recent years, high entropy alloys (HEAs) have attracted significant attention due to their excellent mechanical properties and good corrosion resistance, making them potential candidates for high temperature fission and fusion structural applications. However there is very little known about their radiation resistance, particularly at elevated temperatures relevant for energy applications. In the present study, a single phase (face centered cubic) concentrated solid solution alloy of composition 27%Fe-28%Ni-27%Mn-18%Cr was irradiated with 3 or 5.8 MeV Ni ions at temperatures ranging from room temperature to 700 °C and midrange doses from 0.03 to 10 displacements per atom (dpa). Transmission electron microscopymore » (TEM), scanning transmission electron microscopy with energy dispersive x-ray spectrometry (STEM/EDS) and X-ray diffraction (XRD) were used to characterize the radiation defects and microstructural changes. Irradiation at higher temperatures showed evidence of relatively sluggish solute diffusion with limited solute depletion or enrichment at grain boundaries. The main microstructural feature at all temperatures was high-density small dislocation loops. Voids were not observed at any irradiation condition. Nano-indentation tests on specimens irradiated at room temperature showed a rapid increase in hardness ~35% and ~80% higher than the unirradiated value at 0.03 and 0.3 dpa midrange doses, respectively. The irradiation-induced hardening was less pronounced for 500 °C irradiations (<20% increase after 3 dpa). Overall, the examined HEA material exhibits superior radiation resistance compared to conventional single phase Fe-Cr-Ni austenitic alloys such as stainless steels. Furthermore, the present study provides insight on the fundamental irradiation behavior of a single phase HEA material over a broad range of irradiation temperatures.« less

  9. High Temperature Fuel Cell Performance High Temperature Fuel Cell

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Performance of of Sulfonated Sulfonated Poly(phenylene Poly(phenylene) Proton) Proton Conducting Conducting Polymers | Department of Energy Cell Performance High Temperature Fuel Cell Performance of of Sulfonated Sulfonated Poly(phenylene Poly(phenylene) Proton) Proton Conducting Conducting Polymers High Temperature Fuel Cell Performance High Temperature Fuel Cell Performance of of Sulfonated Sulfonated Poly(phenylene Poly(phenylene) Proton) Proton Conducting Conducting Polymers Presentation

  10. Spin-driven ordering of Cr in the equiatomic high entropy alloy NiFeCrCo

    SciTech Connect (OSTI)

    Niu, C.; Zaddach, A. J.; Oni, A. A.; Sang, X.; LeBeau, J. M.; Koch, C. C.; Irving, D. L.; Hurt, J. W.

    2015-04-20

    Spin-driven ordering of Cr in an equiatomic fcc NiFeCrCo high entropy alloy (HEA) was predicted by first-principles calculations. Ordering of Cr is driven by the reduction in energy realized by surrounding anti-ferromagnetic Cr with ferromagnetic Ni, Fe, and Co in an alloyed L1{sub 2} structure. The fully Cr-ordered alloyed L1{sub 2} phase was predicted to have a magnetic moment that is 36% of that for the magnetically frustrated random solid solution. Three samples were synthesized by milling or casting/annealing. The cast/annealed sample was found to have a low temperature magnetic moment that is 44% of the moment in the milled sample, which is consistent with theoretical predictions for ordering. Scanning transmission electron microscopy measurements were performed and the presence of ordered nano-domains in cast/annealed samples throughout the equiatomic NiFeCrCo HEA was identified.

  11. High-temperature-measuring device

    DOE Patents [OSTI]

    Not Available

    1981-01-27

    A temperature measuring device for very high design temperatures (to 2000/sup 0/C) is described. The device comprises a homogenous base structure preferably in the form of a sphere or cylinder. The base structure contains a large number of individual walled cells. The base structure has a decreasing coefficient of elasticity within the temperature range being monitored. A predetermined quantity of inert gas is confined within each cell. The cells are dimensonally stable at the normal working temperature of the device. Increases in gaseous pressure within the cells will permanently deform the cell walls at temperatures within the high temperature range to be measured. Such deformation can be correlated to temperature by calibrating similarly constructed devices under known time and temperature conditions.

  12. High temperature interface superconductivity

    DOE PAGES-Beta [OSTI]

    Gozar, A.; Bozovic, I.

    2016-01-20

    High-Tc superconductivity at interfaces has a history of more than a couple of decades. In this review we focus our attention on copper-oxide based heterostructures and multi-layers. We first discuss the technique, atomic layer-by-layer molecular beam epitaxy (ALL-MBE) engineering, that enabled High-Tc Interface Superconductivity (HT-IS), and the challenges associated with the realization of high quality interfaces. Then we turn our attention to the experiments which shed light on the structure and properties of interfacial layers, allowing comparison to those of single-phase films and bulk crystals. Both ‘passive’ hetero-structures as well as surface-induced effects by external gating are discussed. Here, wemore » conclude by comparing HT-IS in cuprates and in other classes of materials, especially Fe-based superconductors, and by examining the grand challenges currently laying ahead for the field.« less

  13. Solid-solution CrCoCuFeNi high-entropy alloy thin films synthesized by sputter deposition

    DOE PAGES-Beta [OSTI]

    An, Zhinan; Jia, Haoling; Wu, Yueying; Rack, Philip D.; Patchen, Allan D.; Liu, Yuzi; Ren, Yang; Li, Nan; Liaw, Peter K.

    2015-05-04

    The concept of high configurational entropy requires that the high-entropy alloys (HEAs) yield single-phase solid solutions. However, phase separations are quite common in bulk HEAs. A five-element alloy, CrCoCuFeNi, was deposited via radio frequency magnetron sputtering and confirmed to be a single-phase solid solution through the high-energy synchrotron X-ray diffraction, energy-dispersive spectroscopy, wavelength-dispersive spectroscopy, and transmission electron microscopy. The formation of the solid-solution phase is presumed to be due to the high cooling rate of the sputter-deposition process.

  14. Manufacturing High Temperature Systems

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Manufacturing and Scale Up Challenges Joseph Hartvigsen Ceramatec, Inc. National Renewable Energy Laboratory Golden, CO February 28, 2014 Antipode Assertions * Electric power generation is not the limitation - To misquote Jay Leno "Use all you want, we'll make more" - http://atomicinsights.com/2013/02/use-all-the-electricity-you-want-well-make-more.html * High electric costs come from working the demand curve from below rather than above * "Grid Storage" is a misleading

  15. Ultra High Temperature | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Ultra High Temperature Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Sanyal Temperature Classification: Ultra High Temperature Dictionary.png Ultra High...

  16. High temperature turbine engine structure

    DOE Patents [OSTI]

    Boyd, Gary L.

    1990-01-01

    A high temperature turbine engine includes a hybrid ceramic/metallic rotor member having ceramic/metal joint structure. The disclosed joint is able to endure higher temperatures than previously possible, and aids in controlling heat transfer in the rotor member.

  17. High-Temperature-High-Volume Lifting for Enhanced Geothermal...

    Energy.gov (indexed) [DOE]

    High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems High-Temperature Motor Windings for Downhole Pumps Used in Geothermal Energy Production High Temperature ESP ...

  18. High temperature structural insulating material

    DOE Patents [OSTI]

    Chen, W.Y.

    1984-07-27

    A high temperature structural insulating material useful as a liner for cylinders of high temperature engines through the favorable combination of high service temperature (above about 800/sup 0/C), low thermal conductivity (below about 0.2 W/m/sup 0/C), and high compressive strength (above about 250 psi). The insulating material is produced by selecting hollow ceramic beads with a softening temperature above about 800/sup 0/C, a diameter within the range of 20-200 ..mu..m, and a wall thickness in the range of about 2 to 4 ..mu..m; compacting the beads and a compatible silicate binder composition under pressure and sintering conditions to provide the desired structural form with the structure having a closed-cell, compact array of bonded beads.

  19. High temperature structural insulating material

    DOE Patents [OSTI]

    Chen, Wayne Y.

    1987-01-01

    A high temperature structural insulating material useful as a liner for cylinders of high temperature engines through the favorable combination of high service temperature (above about 800.degree. C.), low thermal conductivity (below about 0.2 W/m.degree. C.), and high compressive strength (above about 250 psi). The insulating material is produced by selecting hollow ceramic beads with a softening temperature above about 800.degree. C., a diameter within the range of 20-200 .mu.m, and a wall thickness in the range of about 2-4 .mu.m; compacting the beads and a compatible silicate binder composition under pressure and sintering conditions to provide the desired structural form with the structure having a closed-cell, compact array of bonded beads.

  20. Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy

    DOE PAGES-Beta [OSTI]

    Santodonato, Louis J.; Zhang, Yang; Feygenson, Mikhail; Parish, Chad M.; Gao, Michael C.; Weber, Richard J. K.; Neuefeind, Joerg C.; Tang, Zhi; Liaw, Peter K.

    2015-01-20

    The alloy-design strategy of combining multiple elements in near-equimolar ratios has shown great potential for producing exceptional engineering materials, often known as “high-entropy alloys”. Understanding the elemental distribution, and, thus, the evolution of the configurational entropy during solidification, is undertaken in the present study using the Al1.3CoCrCuFeNi model alloy. Here we show that even when the material undergoes elemental segregation, precipitation, chemical ordering, and spinodal decomposition, a significant amount of disorder remains, due to the distributions of multiple elements in the major phases. In addition, the results suggest that the high-entropy-alloy-design strategy may be applied to a wide range ofmore » complex materials, and should not be limited to the goal of creating single-phase solid solutions.« less

  1. Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy

    DOE PAGES-Beta [OSTI]

    Santodonato, Louis J.; Zhang, Yang; Feygenson, Mikhail; Parish, Chad M.; Gao, Michael C.; Weber, Richard J. K.; Neuefeind, Joerg C.; Tang, Zhi; Liaw, Peter K.

    2015-01-20

    The alloy-design strategy of combining multiple elements in near-equimolar ratios has shown great potential for producing exceptional engineering materials, often known as high-entropy alloys . Understanding the elemental distribution, and, thus, the evolution of the configurational entropy during solidification, is undertaken in the present study using the Al1.3CoCrCuFeNi model alloy. Here we show that, even when the material undergoes elemental segregation, precipitation, chemical ordering and spinodal decomposition, a significant amount of disorder remains, due to the distributions of multiple elements in the major phases. The results suggest that the high-entropy alloy-design strategy may be applied to a wide range ofmore » complex materials, and should not be limited to the goal of creating single-phase solid solutions.« less

  2. High temperature current mirror amplifier

    DOE Patents [OSTI]

    Patterson, III, Raymond B.

    1984-05-22

    A high temperature current mirror amplifier having biasing means in the transdiode connection of the input transistor for producing a voltage to maintain the base-collector junction reversed-biased and a current means for maintaining a current through the biasing means at high temperatures so that the base-collector junction of the input transistor remained reversed-biased. For accuracy, a second current mirror is provided with a biasing means and current means on the input leg.

  3. Purple Path toward High Temperature Superconductivity? | The...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Purple Path toward High Temperature Superconductivity? Discovery of an unconventional ... interactions are the likely origin of unconventional, high temperature superconductivity ...

  4. High temperature electronic gain device

    DOE Patents [OSTI]

    McCormick, J. Byron; Depp, Steven W.; Hamilton, Douglas J.; Kerwin, William J.

    1979-01-01

    An integrated thermionic device suitable for use in high temperature, high radiation environments. Cathode and control electrodes are deposited on a first substrate facing an anode on a second substrate. The substrates are sealed to a refractory wall and evacuated to form an integrated triode vacuum tube.

  5. High temperature lightweight foamed cements

    DOE Patents [OSTI]

    Sugama, Toshifumi

    1989-01-01

    Cement slurries are disclosed which are suitable for use in geothermal wells since they can withstand high temperatures and high pressures. The formulation consists of cement, silica flour, water, a retarder, a foaming agent, a foam stabilizer, and a reinforcing agent. A process for producing these cements is also disclosed.

  6. High temperature lightweight foamed cements

    DOE Patents [OSTI]

    Sugama, Toshifumi.

    1989-10-03

    Cement slurries are disclosed which are suitable for use in geothermal wells since they can withstand high temperatures and high pressures. The formulation consists of cement, silica flour, water, a retarder, a foaming agent, a foam stabilizer, and a reinforcing agent. A process for producing these cements is also disclosed. 3 figs.

  7. Temperature controlled high voltage regulator

    DOE Patents [OSTI]

    Chiaro, Jr., Peter J.; Schulze, Gerald K.

    2004-04-20

    A temperature controlled high voltage regulator for automatically adjusting the high voltage applied to a radiation detector is described. The regulator is a solid state device that is independent of the attached radiation detector, enabling the regulator to be used by various models of radiation detectors, such as gas flow proportional radiation detectors.

  8. High temperature Seebeck coefficient metrology

    SciTech Connect (OSTI)

    Martin, J.; Tritt, T.; Uher, C.

    2010-12-15

    We present an overview of the challenges and practices of thermoelectric metrology on bulk materials at high temperature (300 to 1300 K). The Seebeck coefficient, when combined with thermal and electrical conductivity, is an essential property measurement for evaluating the potential performance of novel thermoelectric materials. However, there is some question as to which measurement technique(s) provides the most accurate determination of the Seebeck coefficient at high temperature. This has led to the implementation of nonideal practices that have further complicated the confirmation of reported high ZT materials. To ensure meaningful interlaboratory comparison of data, thermoelectric measurements must be reliable, accurate, and consistent. This article will summarize and compare the relevant measurement techniques and apparatus designs required to effectively manage uncertainty, while also providing a reference resource of previous advances in high temperature thermoelectric metrology.

  9. High temperature superconductor current leads

    DOE Patents [OSTI]

    Hull, John R.; Poeppel, Roger B.

    1995-01-01

    An electrical lead having one end for connection to an apparatus in a cryogenic environment and the other end for connection to an apparatus outside the cryogenic environment. The electrical lead includes a high temperature superconductor wire and an electrically conductive material distributed therein, where the conductive material is present at the one end of the lead at a concentration in the range of from 0 to about 3% by volume, and at the other end of the lead at a concentration of less than about 20% by volume. Various embodiments are shown for groups of high temperature superconductor wires and sheaths.

  10. High temperature superconductor current leads

    DOE Patents [OSTI]

    Hull, J.R.; Poeppel, R.B.

    1995-06-20

    An electrical lead is disclosed having one end for connection to an apparatus in a cryogenic environment and the other end for connection to an apparatus outside the cryogenic environment. The electrical lead includes a high temperature superconductor wire and an electrically conductive material distributed therein, where the conductive material is present at the one end of the lead at a concentration in the range of from 0 to about 3% by volume, and at the other end of the lead at a concentration of less than about 20% by volume. Various embodiments are shown for groups of high temperature superconductor wires and sheaths. 9 figs.

  11. High temperature current mirror amplifier

    DOE Patents [OSTI]

    Patterson, R.B. III.

    1984-05-22

    Disclosed is a high temperature current mirror amplifier having biasing means in the transdiode connection of the input transistor for producing a voltage to maintain the base-collector junction reversed-biased and a current means for maintaining a current through the biasing means at high temperatures so that the base-collector junction of the input transistor remained reversed-biased. For accuracy, a second current mirror is provided with a biasing means and current means on the input leg. 2 figs.

  12. Solid-Solution CrCoCuFeNi High-Entropy Alloy Thin Films Synthesized...

    Office of Scientific and Technical Information (OSTI)

    ... tion up to 800C,1-3 high yield strengths at elevated temperatures,4 high ... lowest surface energy planes are the 111 family of planes, which have been numerically ...

  13. High temperature turbine engine structure

    DOE Patents [OSTI]

    Boyd, Gary L.

    1991-01-01

    A high temperature turbine engine includes a rotor portion having axially stacked adjacent ceramic rotor parts. A ceramic/ceramic joint structure transmits torque between the rotor parts while maintaining coaxial alignment and axially spaced mutually parallel relation thereof despite thermal and centrifugal cycling.

  14. High-pressure, high-temperature plastic deformation of sintered...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: High-pressure, high-temperature plastic deformation of sintered diamonds Citation Details In-Document Search Title: High-pressure, high-temperature plastic ...

  15. Low Cost, High Temperature, High Ripple Current DC Bus Capacitors...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Low Cost, High Temperature, High Ripple Current DC Bus Capacitors Low Cost, High Temperature, High Ripple Current DC Bus Capacitors 2010 DOE Vehicle Technologies and Hydrogen...

  16. High temperature two component explosive

    DOE Patents [OSTI]

    Mars, James E.; Poole, Donald R.; Schmidt, Eckart W.; Wang, Charles

    1981-01-01

    A two component, high temperature, thermally stable explosive composition comprises a liquid or low melting oxidizer and a liquid or low melting organic fuel. The oxidizer and fuel in admixture are incapable of substantial spontaneous exothermic reaction at temperatures on the order of 475.degree. K. At temperatures on the order of 475.degree. K., the oxidizer and fuel in admixture have an activation energy of at least about 40 kcal/mol. As a result of the high activation energy, the preferred explosive compositions are nondetonable as solids at ambient temperature, and become detonable only when heated beyond the melting point. Preferable oxidizers are selected from alkali or alkaline earth metal nitrates, nitrites, perchlorates, and/or mixtures thereof. Preferred fuels are organic compounds having polar hydrophilic groups. The most preferred fuels are guanidinium nitrate, acetamide and mixtures of the two. Most preferred oxidizers are eutectic mixtures of lithium nitrate, potassium nitrate and sodium nitrate, of sodium nitrite, sodium nitrate and potassium nitrate, and of potassium nitrate, calcium nitrate and sodium nitrate.

  17. High Temperature Heat Exchanger Project

    SciTech Connect (OSTI)

    Anthony E. Hechanova, Ph.D.

    2008-09-30

    The UNLV Research Foundation assembled a research consortium for high temperature heat exchanger design and materials compatibility and performance comprised of university and private industry partners under the auspices of the US DOE-NE Nuclear Hydrogen Initiative in October 2003. The objectives of the consortium were to conduct investigations of candidate materials for high temperature heat exchanger componets in hydrogen production processes and design and perform prototypical testing of heat exchangers. The initial research of the consortium focused on the intermediate heat exchanger (located between the nuclear reactor and hydrogen production plan) and the components for the hydrogen iodine decomposition process and sulfuric acid decomposition process. These heat exchanger components were deemed the most challenging from a materials performance and compatibility perspective

  18. High pressure and high temperature apparatus

    DOE Patents [OSTI]

    Voronov, Oleg A.

    2005-09-13

    A design for high pressure/high temperature apparatus and reaction cell to achieve .about.30 GPa pressure in .about.1 cm volume and .about.100 GPa pressure in .about.1 mm volumes and 20-5000.degree. C. temperatures in a static regime. The device includes profiled anvils (28) action on a reaction cell (14, 16) containing the material (26) to be processed. The reaction cell includes a heater (18) surrounded by insulating layers and screens. Surrounding the anvils are cylindrical inserts and supporting rings (30-48) whose hardness increases towards the reaction cell. These volumes may be increased considerably if applications require it, making use of presses that have larger loading force capability, larger frames and using larger anvils.

  19. HIGH TEMPERATURE MICROSCOPE AND FURNACE

    DOE Patents [OSTI]

    Olson, D.M.

    1961-01-31

    A high-temperature microscope is offered. It has a reflecting optic situated above a molten specimen in a furnace and reflecting the image of the same downward through an inert optic member in the floor of the furnace, a plurality of spaced reflecting plane mirrors defining a reflecting path around the furnace, a standard microscope supported in the path of and forming the end terminus of the light path.

  20. High temperature turbine engine structure

    DOE Patents [OSTI]

    Carruthers, William D.; Boyd, Gary L.

    1992-01-01

    A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

  1. High temperature turbine engine structure

    DOE Patents [OSTI]

    Carruthers, William D.; Boyd, Gary L.

    1993-01-01

    A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

  2. High temperature turbine engine structure

    DOE Patents [OSTI]

    Carruthers, William D.; Boyd, Gary L.

    1994-01-01

    A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

  3. Radiation behavior of high-entropy alloys for advanced reactors. Final report

    SciTech Connect (OSTI)

    Liaw, Peter K.; Egami, Takeshi; Zhang, Chuan; Zhang, Fan; Zhang, Yanwen

    2015-04-30

    In the first task, we have demonstrated the radiation damage and the recrystallization behaviors in multicomponent alloys through molecular-dynamics simulations. It is found that by alloying with atoms of different sizes, the atomic-level strain increases, and the propensity of the radiation-induced crystalline to amorphous transition increases as the defects cluster in the cascade body. Recrystallization of the radiation induced supercooled or glass regions show that by tuning the composition and the equilibrium temperature, the multicomponent alloys can be healed. The crystalline-amorphous-crystalline transitions predict the potential high radiation resistance in multicomponent alloys. In the second task, three types of high-entropy alloys (HEAs) were fabricated from AlCoCrFeNi and AlCuCrFeNi quinary alloys. Hardness and reduced contact modulus were measured using nanoindentation tests. Heavy ion irradiation were performed using 10 MeV gold and 5 MeV nickel to study radiation effects. Al0.5CrCuFeNi2 shows phase separation upon the presence of copper. Both hardness and contact modulus exhibit the same trend as increasing the applied load, and it indicates that excessive free volume may alter the growth rate of the plastic zone. The as-cast Al0.1CoCrFeNi specimen undergone the hot isostatic pressing (HIP) process and steady cooling rate which mitigate the quenching effect. The swelling behavior was characterized by the atomic force microscopy (AFM), and the swelling rate is approximately 0.02% dpa. Selected area diffraction (SAD) patters show irradiation-induced amorphization throughout the ion projected range. Within the peak damage region, an amorpous ring is observed, and a mixture of amorphous/ crystalline structure at deeper depth is found. The Al0.3CoCrFeNi HEAs shows good radiation resistance up to 60 peak dpa. No voids or dislocations are observed. The crystal structures remain face-centered-cubic (FCC) before and

  4. High Temperature ESP Monitoring | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Temperature ESP Monitoring High Temperature ESP Monitoring The purpose of the High Temperature ESP Monitoring project is to develop a down-hole monitoring system to be used in wells with bottom hole temperature up to 300 °C for measuring motor temperature; pump discharge pressure; and formation temperature and pressure. high_dhruva_esp_monitoring.pdf (509.12 KB) More Documents & Publications Hotline IV …High Temperature ESP track 3: enhanced geothermal systems (EGS) | geothermal 2015 peer

  5. High-Temperature Thermoelectric Materials Characterization for...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    High-Temperature Thermoelectric Materials Characterization for Automotive Waste Heat Recovery: Success Stories from the High Temperature Materials Laboratory (HTML) User Program...

  6. Acid Doped Membranes for High Temperature PEMFC

    Energy.gov [DOE]

    Presentation on Acid Doped Membranes for High Temperature PEMFC to the High Temperature Membrane Working Group, May 25, 2004 in Philadelphia, PA.

  7. High-Temperature Superconductivity Cable Demonstration Projects...

    Energy Savers

    High-Temperature Superconductivity Cable Demonstration Projects High-Temperature Superconductivity Cable Demonstration Projects A National Effort to Introduce New Technology into ...

  8. Improved Martensitic Steel for High Temperature Applications...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Improved Martensitic Steel for High Temperature Applications A stainless steel composition and heat treatment process for a high-temperature, titanium alloyed 9 Cr-1 molybdenum ...

  9. High Temperature, High Pressure Devices for Zonal Isolation in...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    High Temperature, High Pressure Devices for Zonal Isolation in Geothermal Wells track 3: enhanced geothermal systems (EGS) | geothermal 2015 peer review High Temperature ESP ...

  10. CONFINEMENT OF HIGH TEMPERATURE PLASMA

    DOE Patents [OSTI]

    Koenig, H.R.

    1963-05-01

    The confinement of a high temperature plasma in a stellarator in which the magnetic confinement has tended to shift the plasma from the center of the curved, U-shaped end loops is described. Magnetic means are provided for counteracting this tendency of the plasma to be shifted away from the center of the end loops, and in one embodiment this magnetic means is a longitudinally extending magnetic field such as is provided by two sets of parallel conductors bent to follow the U-shaped curvature of the end loops and energized oppositely on the inside and outside of this curvature. (AEC)

  11. High temperature sealed electrochemical cell

    DOE Patents [OSTI]

    Valentin Chung, Brice Hoani; Burke, Paul J.; Sadoway, Donald R.

    2015-10-06

    A cell for high temperature electrochemical reactions is provided. The cell includes a container, at least a portion of the container acting as a first electrode. An extension tube has a first end and a second end, the extension tube coupled to the container at the second end forming a conduit from the container to said first end. A second electrode is positioned in the container and extends out of the container via the conduit. A seal is positioned proximate the first end of the extension tube, for sealing the cell.

  12. High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems presentation at the April 2013 peer review meeting held in Denver, Colorado. turnquist_high_temp_tools_peer2013.pdf (2.11 MB) More Documents & Publications High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems High-Temperature Motor Windings for

  13. Materials Characterization Capabilities at the High Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Temperature Materials Laboratory (HTML) User Program Materials Characterization Capabilities at the High Temperature Materials Laboratory and HTML User Program Success Stories ...

  14. Faraday imaging at high temperatures

    DOE Patents [OSTI]

    Hackel, L.A.; Reichert, P.

    1997-03-18

    A Faraday filter rejects background light from self-luminous thermal objects, but transmits laser light at the passband wavelength, thus providing an ultra-narrow optical bandpass filter. The filter preserves images so a camera looking through a Faraday filter at a hot target illuminated by a laser will not see the thermal radiation but will see the laser radiation. Faraday filters are useful for monitoring or inspecting the uranium separator chamber in an atomic vapor laser isotope separation process. Other uses include viewing welds, furnaces, plasma jets, combustion chambers, and other high temperature objects. These filters are can be produced at many discrete wavelengths. A Faraday filter consists of a pair of crossed polarizers on either side of a heated vapor cell mounted inside a solenoid. 3 figs.

  15. Faraday imaging at high temperatures

    DOE Patents [OSTI]

    Hackel, Lloyd A.; Reichert, Patrick

    1997-01-01

    A Faraday filter rejects background light from self-luminous thermal objects, but transmits laser light at the passband wavelength, thus providing an ultra-narrow optical bandpass filter. The filter preserves images so a camera looking through a Faraday filter at a hot target illuminated by a laser will not see the thermal radiation but will see the laser radiation. Faraday filters are useful for monitoring or inspecting the uranium separator chamber in an atomic vapor laser isotope separation process. Other uses include viewing welds, furnaces, plasma jets, combustion chambers, and other high temperature objects. These filters are can be produced at many discrete wavelengths. A Faraday filter consists of a pair of crossed polarizers on either side of a heated vapor cell mounted inside a solenoid.

  16. High temperature control rod assembly

    SciTech Connect (OSTI)

    Vollman, Russell E.

    1991-01-01

    A high temperature nuclear control rod assembly comprises a plurality of substantially cylindrical segments flexibly joined together in succession by ball joints. The segments are made of a high temperature graphite or carbon-carbon composite. The segment includes a hollow cylindrical sleeve which has an opening for receiving neutron-absorbing material in the form of pellets or compacted rings. The sleeve has a threaded sleeve bore and outer threaded surface. A cylindrical support post has a threaded shaft at one end which is threadably engaged with the sleeve bore to rigidly couple the support post to the sleeve. The other end of the post is formed with a ball portion. A hollow cylindrical collar has an inner threaded surface engageable with the outer threaded surface of the sleeve to rigidly couple the collar to the sleeve. the collar also has a socket portion which cooperates with the ball portion to flexibly connect segments together to form a ball and socket-type joint. In another embodiment, the segment comprises a support member which has a threaded shaft portion and a ball surface portion. The threaded shaft portion is engageable with an inner threaded surface of a ring for rigidly coupling the support member to the ring. The ring in turn has an outer surface at one end which is threadably engageably with a hollow cylindrical sleeve. The other end of the sleeve is formed with a socket portion for engagement with a ball portion of the support member. In yet another embodiment, a secondary rod is slidably inserted in a hollow channel through the center of the segment to provide additional strength. A method for controlling a nuclear reactor utilizing the control rod assembly is also included.

  17. Thermal disconnect for high-temperature batteries

    DOE Patents [OSTI]

    Jungst, Rudolph George; Armijo, James Rudolph; Frear, Darrel Richard

    2000-01-01

    A new type of high temperature thermal disconnect has been developed to protect electrical and mechanical equipment from damage caused by operation at extreme temperatures. These thermal disconnects allow continuous operation at temperatures ranging from 250.degree. C. to 450.degree. C., while rapidly terminating operation at temperatures 50.degree. C. to 150.degree. C. higher than the continuous operating temperature.

  18. High-Pressure and High-Temperature Powder Diffraction (Journal...

    Office of Scientific and Technical Information (OSTI)

    High-Pressure and High-Temperature Powder Diffraction Citation Details In-Document Search Title: High-Pressure and High-Temperature Powder Diffraction Authors: Fei, Yingwei ; Wang, ...

  19. High Temperature, High Pressure Devices for Zonal Isolation in Geothermal

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Wells | Department of Energy High Temperature, High Pressure Devices for Zonal Isolation in Geothermal Wells High Temperature, High Pressure Devices for Zonal Isolation in Geothermal Wells High Temperature, High Pressure Devices for Zonal Isolation in Geothermal Wells fabian_ctd_ zonal_isolation_peer2013.pdf (809.57 KB) More Documents & Publications High Temperature, High Pressure Devices for Zonal Isolation in Geothermal Wells track 3: enhanced geothermal systems (EGS) | geothermal 2015

  20. High-temperature thermocouples and related methods

    DOE Patents [OSTI]

    Rempe, Joy L.; Knudson, Darrell L.; Condie, Keith G.; Wilkins, S. Curt

    2011-01-18

    A high-temperature thermocouple and methods for fabricating a thermocouple capable of long-term operation in high-temperature, hostile environments without significant signal degradation or shortened thermocouple lifetime due to heat induced brittleness.

  1. High Temperature Superconducting Underground Cable

    SciTech Connect (OSTI)

    Farrell, Roger, A.

    2010-02-28

    The purpose of this Project was to design, build, install and demonstrate the technical feasibility of an underground high temperature superconducting (HTS) power cable installed between two utility substations. In the first phase two HTS cables, 320 m and 30 m in length, were constructed using 1st generation BSCCO wire. The two 34.5 kV, 800 Arms, 48 MVA sections were connected together using a superconducting joint in an underground vault. In the second phase the 30 m BSCCO cable was replaced by one constructed with 2nd generation YBCO wire. 2nd generation wire is needed for commercialization because of inherent cost and performance benefits. Primary objectives of the Project were to build and operate an HTS cable system which demonstrates significant progress towards commercial progress and addresses real world utility concerns such as installation, maintenance, reliability and compatibility with the existing grid. Four key technical areas addressed were the HTS cable and terminations (where the cable connects to the grid), cryogenic refrigeration system, underground cable-to-cable joint (needed for replacement of cable sections) and cost-effective 2nd generation HTS wire. This was the world’s first installation and operation of an HTS cable underground, between two utility substations as well as the first to demonstrate a cable-to-cable joint, remote monitoring system and 2nd generation HTS.

  2. High Temperature Superconductivity Partners | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    High Temperature Superconductivity Partners Map showing DOE's partnersstakeholders in the ... More Documents & Publications DOE Superconductivity Program Stakeholders DOE Provides up ...

  3. Materials Characterization Capabilities at the High Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Lightweighting Materials Materials Characterization Capabilities at the High Temperature Materials Laboratory: Focus Lightweighting Materials 2011 DOE Hydrogen and Fuel Cells ...

  4. Materials Characterization Capabilities at the High Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    More Documents & Publications Materials Characterization Capabilities at the High Temperature Materials Laboratory and HTML User Program Success Stories Materials Characterization ...

  5. High Temperature, High Pressure Devices for Zonal Isolation in Geothermal

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Wells | Department of Energy Temperature, High Pressure Devices for Zonal Isolation in Geothermal Wells High Temperature, High Pressure Devices for Zonal Isolation in Geothermal Wells DOE Geothermal Peer Review 2010 - Presentation. Project objectives: Design, demonstrate, and qualify high-temperature high pressure zonal isolation devices compatible with the high temperature downhole Enhanced Geothermal Systems (EGS) environment. specialized_fabian_zonal_isolation.pdf (440.53 KB) More

  6. High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Temperature-High-Volume Lifting for Enhanced Geothermal Systems High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems Project objective: Advance the technology for well fluids lifting systems to meet the foreseeable pressure; temperature; and longevity needs of the Enhanced Geothermal Systems (EGS) industry. high_turnquist_ht_hv_lifting.pdf (268.9 KB) More Documents & Publications High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems

  7. Measurement of thermodynamic temperature of high temperature fixed points

    SciTech Connect (OSTI)

    Gavrilov, V. R.; Khlevnoy, B. B.; Otryaskin, D. A.; Grigorieva, I. A.; Samoylov, M. L.; Sapritsky, V. I.

    2013-09-11

    The paper is devoted to VNIIOFI's measurements of thermodynamic temperature of the high temperature fixed points Co-C, Pt-C and Re-C within the scope of the international project coordinated by the Consultative Committee for Thermometry working group 5 'Radiation Thermometry'. The melting temperatures of the fixed points were measured by a radiance mode radiation thermometer calibrated against a filter radiometer with known irradiance spectral responsivity via a high temperature black body. This paper describes the facility used for the measurements, the results and estimated uncertainties.

  8. High temperature superconducting fault current limiter

    DOE Patents [OSTI]

    Hull, John R.

    1997-01-01

    A fault current limiter (10) for an electrical circuit (14). The fault current limiter (10) includes a high temperature superconductor (12) in the electrical circuit (14). The high temperature superconductor (12) is cooled below its critical temperature to maintain the superconducting electrical properties during operation as the fault current limiter (10).

  9. High temperature superconducting fault current limiter

    DOE Patents [OSTI]

    Hull, J.R.

    1997-02-04

    A fault current limiter for an electrical circuit is disclosed. The fault current limiter includes a high temperature superconductor in the electrical circuit. The high temperature superconductor is cooled below its critical temperature to maintain the superconducting electrical properties during operation as the fault current limiter. 15 figs.

  10. Deep Trek High Temperature Electronics Project

    SciTech Connect (OSTI)

    Bruce Ohme

    2007-07-31

    This report summarizes technical progress achieved during the cooperative research agreement between Honeywell and U.S. Department of Energy to develop high-temperature electronics. Objects of this development included Silicon-on-Insulator (SOI) wafer process development for high temperature, supporting design tools and libraries, and high temperature integrated circuit component development including FPGA, EEPROM, high-resolution A-to-D converter, and a precision amplifier.

  11. High Temperature Superconductivity Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    High Temperature Superconductivity Program High Temperature Superconductivity Program From 2003 until 2010, OE's High Temperature Superconductivity (HTS) Program worked in partnership with industry to develop HTS wire and supported a broad portfolio of research and development activities leading to the commercialization of HTS-based grid equipment by U.S. companies. High impact applications include advanced transmission and distribution cables and fault current limiters (FCLs). Superconducting

  12. Manufacturing Barriers to High Temperature PEM Commercialization |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Barriers to High Temperature PEM Commercialization Manufacturing Barriers to High Temperature PEM Commercialization Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011. Manufacturing Barriers to High Temperature PEM Commercialization (785.02 KB) More Documents & Publications PBI-Phosphoric Acid Based Membrane Electrode Assemblies: Status Update MCFC and PAFC R&D Workshop Summary Report 2012 Pathways to

  13. Electrolysis - High Temperature - Hydrogen - Energy Innovation Portal

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Electrolysis - High Temperature - Hydrogen Idaho National Laboratory Contact INL About This Technology Technology Marketing Summary INL has developed a high-temperature process the utilizes solid oxide fuel cells that are operated in the electrolytic mode. The first process includes combining a high-temperature heat source (e.g. nuclear reactor) with a hydrogen production facility by taking a stream of water and heating it and then splitting the water into hydrogen and oxygen product streams. A

  14. Quantitative Modeling of High Temperature Magnetization Dynamics

    SciTech Connect (OSTI)

    Zhang, Shufeng

    2009-03-01

    Final Technical Report Project title: Quantitative Modeling of High Temperature Magnetization Dynamics DOE/Office of Science Program Manager Contact: Dr. James Davenport

  15. High Temperature Materials Laboratory (HTML) - PSD Directorate

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    for Collaborative Materials Research The High Temperature Materials Laboratory (HTML) User Program is on hiatus due to federal budget reductions. However, research projects...

  16. Materials Characterization Capabilities at the High Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    -- Washington D.C. PDF icon lm028laracurzio2010o.pdf More Documents & Publications Materials Characterization Capabilities at the High Temperature Materials Laboratory and...

  17. Materials Characterization Capabilities at the High Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Laboratory and HTML User Program Success Stories Materials Characterization Capabilities at the High Temperature Materials Laboratory and HTML User Program Success Stories 2012 DOE ...

  18. Materials Characterization Capabilities at the High Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Materials Laboratory and HTML User Program Success Stories Materials Characterization Capabilities at the High Temperature Materials Laboratory and HTML User Program Success ...

  19. High-temperature superconductivity: A conventional conundrum...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: High-temperature superconductivity: A conventional conundrum Citation ... OSTI Identifier: 1245373 Report Number(s): BNL--111729-2016-JA Journal ID: ISSN 1745-2473; ...

  20. High-temperature brazed ceramic joints

    DOE Patents [OSTI]

    Jarvinen, Philip O.

    1986-01-01

    High-temperature joints formed from metallized ceramics are disclosed wherein the metal coatings on the ceramics are vacuum sputtered thereon.

  1. Nanostructured High Temperature Bulk Thermoelectric Energy Conversion...

    Energy.gov (indexed) [DOE]

    Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion for Efficient Automotive Waste Heat Recovery Multi-physics modeling of thermoelectric generators for waste ...

  2. High Temperature Thermoelectric Materials Characterization for...

    Energy.gov (indexed) [DOE]

    lmp06wang.pdf (952.04 KB) More Documents & Publications High-Temperature Thermoelectric Materials Characterization for Automotive Waste Heat Recovery: Success Stories from the ...

  3. High Temperature, High Voltage Fully Integrated Gate Driver Circuit...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    D.C. PDF icon ape003tolbert2010p.pdf More Documents & Publications High Temperature, High Voltage Fully Integrated Gate Driver Circuit Wide Bandgap Materials Smart ...

  4. High Temperature, High Voltage Fully Integrated Gate Driver Circuit...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    -- Washington D.C. PDF icon ape03marlino.pdf More Documents & Publications High Temperature, High Voltage Fully Integrated Gate Driver Circuit Smart Integrated Power Module ...

  5. High Temperature, High Pressure Devices for Zonal Isolation in...

    Energy.gov (indexed) [DOE]

    High Temperature, High Pressure Devices for Zonal Isolation in Geothermal Wells track 3: enhanced geothermal systems (EGS) | geothermal 2015 peer review Complete FiberCopper Cable ...

  6. Investigations into High Temperature Components and Packaging

    SciTech Connect (OSTI)

    Marlino, L.D.; Seiber, L.E.; Scudiere, M.B.; M.S. Chinthavali, M.S.; McCluskey, F.P.

    2007-12-31

    The purpose of this report is to document the work that was performed at the Oak Ridge National Laboratory (ORNL) in support of the development of high temperature power electronics and components with monies remaining from the Semikron High Temperature Inverter Project managed by the National Energy Technology Laboratory (NETL). High temperature electronic components are needed to allow inverters to operate in more extreme operating conditions as required in advanced traction drive applications. The trend to try to eliminate secondary cooling loops and utilize the internal combustion (IC) cooling system, which operates with approximately 105 C water/ethylene glycol coolant at the output of the radiator, is necessary to further reduce vehicle costs and weight. The activity documented in this report includes development and testing of high temperature components, activities in support of high temperature testing, an assessment of several component packaging methods, and how elevated operating temperatures would impact their reliability. This report is organized with testing of new high temperature capacitors in Section 2 and testing of new 150 C junction temperature trench insulated gate bipolar transistor (IGBTs) in Section 3. Section 4 addresses some operational OPAL-GT information, which was necessary for developing module level tests. Section 5 summarizes calibration of equipment needed for the high temperature testing. Section 6 details some additional work that was funded on silicon carbide (SiC) device testing for high temperature use, and Section 7 is the complete text of a report funded from this effort summarizing packaging methods and their reliability issues for use in high temperature power electronics. Components were tested to evaluate the performance characteristics of the component at different operating temperatures. The temperature of the component is determined by the ambient temperature (i.e., temperature surrounding the device) plus the

  7. High-temperature Pump Monitoring - High-temperature ESP Monitoring; 2010

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Geothermal Technology Program Peer Review Report | Department of Energy temperature Pump Monitoring - High-temperature ESP Monitoring; 2010 Geothermal Technology Program Peer Review Report High-temperature Pump Monitoring - High-temperature ESP Monitoring; 2010 Geothermal Technology Program Peer Review Report DOE 2010 Geothermal Technologies Program Peer Review hightemp_018_dhruva.pdf (188.95 KB) More Documents & Publications Detecting Fractures Using Technology at High Temperatures and

  8. Spin Hall magnetoresistance at high temperatures

    SciTech Connect (OSTI)

    Uchida, Ken-ichi; Qiu, Zhiyong; Kikkawa, Takashi; Iguchi, Ryo; Saitoh, Eiji

    2015-02-02

    The temperature dependence of spin Hall magnetoresistance (SMR) in Pt/Y{sub 3}Fe{sub 5}O{sub 12} (YIG) bilayer films has been investigated in a high temperature range from room temperature to near the Curie temperature of YIG. The experimental results show that the magnitude of the magnetoresistance ratio induced by the SMR monotonically decreases with increasing the temperature and almost disappears near the Curie temperature. We found that, near the Curie temperature, the temperature dependence of the SMR in the Pt/YIG film is steeper than that of a magnetization curve of the YIG; the critical exponent of the magnetoresistance ratio is estimated to be 0.9. This critical behavior of the SMR is attributed mainly to the temperature dependence of the spin-mixing conductance at the Pt/YIG interface.

  9. Origin of Entropy Convergence in Hydrophobic Hydration and Protein Folding

    SciTech Connect (OSTI)

    Garde, S.; Hummer, G.; Garcia, A.E.; Paulaitis, M.E.; Pratt, L.R. [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)] [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); [Center for Molecular and Engineering Thermodynamics, Department of Chemical Engineering, University of Delaware, Newark, Delaware 19716 (United States); [Department of Chemical Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States)

    1996-12-01

    An information theory model of hydrophobic effects is used to construct a molecular explanation why hydrophobic solvation entropies of protein unfolding measured by high sensitivity calorimetry converge to zero at a common convergence temperature. The entropy convergence follows directly from the weak temperature dependence of occupancy fluctuations {l_angle}{delta}{ital n}{sup 2}{r_angle} for molecular-scale volumes in water. The macroscopic expression of the contrasting entropic behavior of water relative to common organic solvents is the {ital relative} temperature insensitivity of the water isothermal compressibility compared to hydrocarbon liquids. The information theory model used provides a quantitative description of small molecule hydration and, in addition, predicts that the value of the entropy at convergence is slightly {ital negative}. Interpretations of entropic contributions to protein folding should account for this result. {copyright} {ital 1996 The American Physical Society.}

  10. High Temperature Downhole Motor - Energy Innovation Portal

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Geothermal Geothermal Find More Like This Return to Search High Temperature Downhole Motor Sandia National Laboratories Contact SNL About This Technology Publications: PDF Document Publication Market Sheet (164 KB) Technology Marketing Summary Drilling costs amount to over half of the total cost of geothermal energy production. To address the high cost of well construction, Sandia engineers are developing a high temperature downhole motor that provides a high-power downhole rotation solution for

  11. High temperature solar selective coatings

    DOE Patents [OSTI]

    Kennedy, Cheryl E

    2014-11-25

    Improved solar collectors (40) comprising glass tubing (42) attached to bellows (44) by airtight seals (56) enclose solar absorber tubes (50) inside an annular evacuated space (54. The exterior surfaces of the solar absorber tubes (50) are coated with improved solar selective coatings {48} which provide higher absorbance, lower emittance and resistance to atmospheric oxidation at elevated temperatures. The coatings are multilayered structures comprising solar absorbent layers (26) applied to the meta surface of the absorber tubes (50), typically stainless steel, topped with antireflective Savers (28) comprising at least two layers 30, 32) of refractory metal or metalloid oxides (such as titania and silica) with substantially differing indices of refraction in adjacent layers. Optionally, at least one layer of a noble metal such as platinum can be included between some of the layers. The absorbent layers cars include cermet materials comprising particles of metal compounds is a matrix, which can contain oxides of refractory metals or metalloids such as silicon. Reflective layers within the coating layers can comprise refractory metal silicides and related compounds characterized by the formulas TiSi. Ti.sub.3SiC.sub.2, TiAlSi, TiAN and similar compounds for Zr and Hf. The titania can be characterized by the formulas TiO.sub.2, Ti.sub.3O.sub.5. TiOx or TiO.sub.xN.sub.1-x with x 0 to 1. The silica can be at least one of SiO.sub.2, SiO.sub.2x or SiO.sub.2xN.sub.1-x with x=0 to 1.

  12. An improved model for the transit entropy of monatomic liquids

    SciTech Connect (OSTI)

    Wallace, Duane C; Chisolm, Eric D; Bock, Nicolas

    2009-01-01

    In the original formulation of V-T theory for monatomic liquid dynamics, the transit contribution to entropy was taken to be a universal constant, calibrated to the constant-volume entropy of melting. This model suffers two deficiencies: (a) it does not account for experimental entropy differences of {+-}2% among elemental liquids, and (b) it implies a value of zero for the transit contribution to internal energy. The purpose of this paper is to correct these deficiencies. To this end, the V-T equation for entropy is fitted to an overall accuracy of {+-}0.1% to the available experimental high temperature entropy data for elemental liquids. The theory contains two nuclear motion contributions: (a) the dominant vibrational contribution S{sub vib}(T/{theta}{sub 0}), where T is temperature and {theta}{sub 0} is the vibrational characteristic temperature, and (b) the transit contribution S{sub tr}(T/{theta}{sub tr}), where {theta}{sub tr} is a scaling temperature for each liquid. The appearance of a common functional form of S{sub tr} for all the liquids studied is a property of the experimental data, when analyzed via the V-T formula. The resulting S{sub tr} implies the correct transit contribution to internal energy. The theoretical entropy of melting is derived, in a single formula applying to normal and anomalous melting alike. An ab initio calculation of {theta}{sub 0}, based on density functional theory, is reported for liquid Na and Cu. Comparison of these calculations with the above analysis of experimental entropy data provides verification of V-T theory. In view of the present results, techniques currently being applied in ab initio simulations of liquid properties can be employed to advantage in the further testing and development of V-T theory.

  13. Sandia_HighTemperatureComponentEvaluation_2015.

    SciTech Connect (OSTI)

    Cashion, Avery T.

    2015-03-01

    The objective of this project is to perform independent evaluation of high temperature components to determine their suitability for use in high temperature geothermal tools. Development of high temperature components has been increasing rapidly due to demand from the high temperature oil and gas exploration and aerospace industries. Many of these new components are at the late prototype or first production stage of development and could benefit from third party evaluation of functionality and lifetime at elevated temperatures. In addition to independent testing of new components, this project recognizes that there is a paucity of commercial-off-the-shelf COTS components rated for geothermal temperatures. As such, high-temperature circuit designers often must dedicate considerable time and resources to determine if a component exists that they may be able to knead performance out of to meet their requirements. This project aids tool developers by characterization of select COTS component performances beyond published temperature specifications. The process for selecting components includes public announcements of project intent (e.g., FedBizOps), direct discussions with candidate manufacturers,and coordination with other DOE funded programs.

  14. High temperature solid state storage cell

    DOE Patents [OSTI]

    Rea, Jesse R.; Kallianidis, Milton; Kelsey, G. Stephen

    1983-01-01

    A completely solid state high temperature storage cell comprised of a solid rechargeable cathode such as TiS.sub.2, a solid electrolyte which remains solid at the high temperature operating conditions of the cell and which exhibits high ionic conductivity at such elevated temperatures such as an electrolyte comprised of lithium iodide, and a solid lithium or other alkali metal alloy anode (such as a lithium-silicon alloy) with 5-50% by weight of said anode being comprised of said solid electrolyte.

  15. Symposium on high temperature and materials chemistry

    SciTech Connect (OSTI)

    Not Available

    1989-10-01

    This volume contains the written proceedings of the Symposium on High Temperature and Materials Chemistry held in Berkeley, California on October 24--25, 1989. The Symposium was sponsored by the Materials and Chemical Sciences Division of Lawrence Berkeley Laboratory and by the College of Chemistry of the University of California at Berkeley to discuss directions, trends, and accomplishments in the field of high temperature and materials chemistry. Its purpose was to provide a snapshot of high temperature and materials chemistry and, in so doing, to define status and directions.

  16. High-Temperature-High-Volume Lifting For Enhanced Geothermal...

    Open Energy Information (Open El) [EERE & EIA]

    include high-temperature drive system materials, journal and thrust bearings, and corrosion and erosion-resistant lifting pump components. Finally, in Phase 3, the overall...

  17. High temperature thermometric phosphors for use in a temperature sensor

    DOE Patents [OSTI]

    Allison, Stephen W.; Cates, Michael R.; Boatner, Lynn A.; Gillies, George T.

    1998-01-01

    A high temperature phosphor consists essentially of a material having the general formula LuPO.sub.4 :Dy.sub.(x),Eu.sub.(y), wherein: 0.1 wt %.ltoreq.x.ltoreq.20 wt % and 0.1 wt %.ltoreq.y.ltoreq.20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopent. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions.

  18. High temperature thermometric phosphors for use in a temperature sensor

    DOE Patents [OSTI]

    Allison, S.W.; Cates, M.R.; Boatner, L.A.; Gillies, G.T.

    1998-03-24

    A high temperature phosphor consists essentially of a material having the general formula LuPO{sub 4}:Dy{sub (x)},Eu{sub (y)}, wherein: 0.1 wt %{<=}x{<=}20 wt % and 0.1 wt %{<=}y{<=}20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopant. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions. 2 figs.

  19. High temperature ceramic/metal joint structure

    DOE Patents [OSTI]

    Boyd, Gary L.

    1991-01-01

    A high temperature turbine engine includes a hybrid ceramic/metallic rotor member having ceramic/metal joint structure. The disclosed joint is able to endure higher temperatures than previously possible, and aids in controlling heat transfer in the rotor member.

  20. High temperature hot water systems: A primer

    SciTech Connect (OSTI)

    Govan, F.A.

    1998-01-01

    The fundamental principles of high temperature water (HTW) system technology and its advantages for thermal energy distribution are presented. Misconceptions of this technology are also addressed. The paper describes design principles, applications, HTW properties, HTW system advantages, selecting the engineer, load diversification, design temperatures, system pressurization, pump considerations, constant vs. VS pumps, HTW generator types, and burners and controls.

  1. High-temperature superconductivity: A conventional conundrum

    DOE PAGES-Beta [OSTI]

    Božović, Ivan

    2016-01-07

    High-temperature superconductivity in ultrathin films of iron selenide deposited on strontium titanate has been attributed to various exotic mechanisms, and new experiments indicate that it may be conventional, with broader implications.

  2. Polyelectrolyte Materials for High Temperature Fuel Cells

    Office of Energy Efficiency and Renewable Energy (EERE)

    This presentation, which focuses on polyelectrolyte materials for high temperature fuel cells, was given by John Kerr of Lawrence Berkeley National Laboratory at a meeting on new fuel cell projects in February 2007.

  3. High Temperature Interfacial Superconductivity - Energy Innovation Portal

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    High Temperature Interfacial Superconductivity Brookhaven National Laboratory Contact BNL About This Technology Publications: PDF Document Publication High-temperature interface superconductivity between metallic and insulating copper oxides (791 KB) <p> (a) Annular dark field image of the structure showing extended defects in the metal layer (marked by white arrows). The black arrow shows the metal-insulator interface (b) A magnified image of one defect which nucleated at the

  4. Apparatus and method for high temperature viscosity and temperature measurements

    DOE Patents [OSTI]

    Balasubramaniam, Krishnan; Shah, Vimal; Costley, R. Daniel; Singh, Jagdish P.

    2001-01-01

    A probe for measuring the viscosity and/or temperature of high temperature liquids, such as molten metals, glass and similar materials comprises a rod which is an acoustical waveguide through which a transducer emits an ultrasonic signal through one end of the probe, and which is reflected from (a) a notch or slit or an interface between two materials of the probe and (b) from the other end of the probe which is in contact with the hot liquid or hot melt, and is detected by the same transducer at the signal emission end. To avoid the harmful effects of introducing a thermally conductive heat sink into the melt, the probe is made of relatively thermally insulative (non-heat-conductive) refractory material. The time between signal emission and reflection, and the amplitude of reflections, are compared against calibration curves to obtain temperature and viscosity values.

  5. High temperature crystalline superconductors from crystallized glasses

    DOE Patents [OSTI]

    Shi, Donglu

    1992-01-01

    A method of preparing a high temperature superconductor from an amorphous phase. The method involves preparing a starting material of a composition of Bi.sub.2 Sr.sub.2 Ca.sub.3 Cu.sub.4 Ox or Bi.sub.2 Sr.sub.2 Ca.sub.4 Cu.sub.5 Ox, forming an amorphous phase of the composition and heat treating the amorphous phase for particular time and temperature ranges to achieve a single phase high temperature superconductor.

  6. Nanoscale origins of the damage tolerance of the high-entropy alloy CrMnFeCoNi

    SciTech Connect (OSTI)

    Zhang, ZiJiao; Mao, M. M.; Wang, Jiangwei; Gludovatz, Bernd; Zhang, Ze; Mao, Scott X.; George, Easo P.; Yu, Qian; Ritchie, Robert O.

    2015-12-09

    Damage tolerance can be an elusive characteristic of structural materials requiring both high strength and ductility, properties that are often mutually exclusive. High-entropy alloys are of interest in this regard. Specifically, the single-phase CrMnFeCoNi alloy displays tensile strength levels of ~1 GPa, excellent ductility (~60–70%) and exceptional fracture toughness (KJIc>200M Pa√m). Here through the use of in situ straining in an aberration-corrected transmission electron microscope, we report on the salient atomistic to micro-scale mechanisms underlying the origin of these properties. We identify a synergy of multiple deformation mechanisms, rarely achieved in metallic alloys, which generates high strength, work hardening and ductility, including the easy motion of Shockley partials, their interactions to form stacking-fault parallelepipeds, and arrest at planar slip bands of undissociated dislocations. In conclusion, we further show that crack propagation is impeded by twinned, nanoscale bridges that form between the near-tip crack faces and delay fracture by shielding the crack tip.

  7. Nanoscale origins of the damage tolerance of the high-entropy alloy CrMnFeCoNi

    DOE PAGES-Beta [OSTI]

    Zhang, ZiJiao; Mao, M. M.; Wang, Jiangwei; Gludovatz, Bernd; Zhang, Ze; Mao, Scott X.; George, Easo P.; Yu, Qian; Ritchie, Robert O.

    2015-12-09

    Damage tolerance can be an elusive characteristic of structural materials requiring both high strength and ductility, properties that are often mutually exclusive. High-entropy alloys are of interest in this regard. Specifically, the single-phase CrMnFeCoNi alloy displays tensile strength levels of ~1 GPa, excellent ductility (~60–70%) and exceptional fracture toughness (KJIc>200M Pa√m). Here through the use of in situ straining in an aberration-corrected transmission electron microscope, we report on the salient atomistic to micro-scale mechanisms underlying the origin of these properties. We identify a synergy of multiple deformation mechanisms, rarely achieved in metallic alloys, which generates high strength, work hardening andmore » ductility, including the easy motion of Shockley partials, their interactions to form stacking-fault parallelepipeds, and arrest at planar slip bands of undissociated dislocations. In conclusion, we further show that crack propagation is impeded by twinned, nanoscale bridges that form between the near-tip crack faces and delay fracture by shielding the crack tip.« less

  8. Thermal activation mechanisms and Labusch-type strengthening analysis for a family of high-entropy and equiatomic solid-solution alloys

    DOE PAGES-Beta [OSTI]

    Wu, Zhenggang; Gao, Yanfei; Bei, Hongbin

    2016-11-01

    To understand the underlying strengthening mechanisms, thermal activation processes are investigated from stress-strain measurements with varying temperatures and strain rates for a family of equiatomic quinary, quaternary, ternary, and binary, face-center-cubic-structured, single phase solid-solution alloys, which are all subsystems of the FeNiCoCrMn high-entropy alloy. Our analysis suggests that the Labusch-type solution strengthening mechanism, rather than the lattice friction (or lattice resistance), governs the deformation behavior in equiatomic alloys. First, upon excluding the Hall-Petch effects, the activation volumes for these alloys are found to range from 10 to 1000 times the cubic power of Burgers vector, which are much larger thanmore » that required for kink pairs (i.e., the thermal activation process for the lattice resistance mechanism in body-center-cubic-structured metals). Second, the Labusch-type analysis for an N-element alloy is conducted by treating M-elements (M < N) as an effective medium and summing the strengthening contributions from the rest of N-M elements as individual solute species. For all equiatomic alloys investigated, a qualitative agreement exists between the measured strengthening effect and the Labusch strengthening factor from arbitrary M to N elements based on the lattice and modulus mismatches. Furthermore, the Labusch strengthening factor provides a practical critique to understand and design such compositionally complex but structurally simple alloys.« less

  9. A Successful Synthesis of the CoCrFeNiAl{sub 0.3} Single-Crystal, High-Entropy Alloy by Bridgman Solidification

    SciTech Connect (OSTI)

    Ma, S. G.; Zhang, S. F.; Gao, M. C.; Liaw, P. K.; Zhang, Y.

    2013-12-01

    For the first time, a face-centered-cubic, single-crystal CoCrFeNiAl{sub 0.3} (designated as Al0.3), high-entropy alloy (HEA) was successfully synthesized by the Bridgman solidification (BS) method, at an extremely low withdrawal velocity through a constant temperature gradient, for which it underwent two BS steps. Specially, at the first BS step, the alloy sample underwent several morphological transitions accompanying the crystal growth from the melt. This microstructure evolves from as-cast dendrites, to equiaxed grains, and then to columnar crystals, and last to the single crystal. In particular, at the equiaxed-grain region, some visible annealing twins were observed, which indicates a low stacking fault energy of the Al0.3 alloy. Although a body-centered- cubic CoCrFeNiAl (Al1) HEA was also prepared under the same conditions, only a single columnar-crystal structure with instinctively preferential crystallographic orientations was obtained by the same procedure. A similar morphological transition from dendrites to equiaxed grains occurred at the equiaxed-grain region in Al1 alloy, but the annealing twins were not observed probably because a higher Al addition leads to a higher stacking fault energy for this alloy.

  10. Vehicle Technologies Office Merit Review 2015: High Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    High Temperature Materials for High Efficiency Engines Vehicle Technologies Office Merit Review 2015: High Temperature Materials for High Efficiency Engines Presentation given by ...

  11. High Temperature/Low Humidity Polymer Electrolytes Derived from...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    High TemperatureLow Humidity Polymer Electrolytes Derived from Ionic Liquids High TemperatureLow Humidity Polymer Electrolytes Derived from Ionic Liquids Presentation on High ...

  12. High Temperature Materials Interim Data Qualification Report

    SciTech Connect (OSTI)

    Nancy Lybeck

    2010-08-01

    ABSTRACT Projects for the very high temperature reactor (VHTR) Technology Development Office provide data in support of Nuclear Regulatory Commission licensing of the VHTR. Fuel and materials to be used in the reactor are tested and characterized to quantify performance in high temperature and high fluence environments. The VHTR program has established the NGNP Data Management and Analysis System (NDMAS) to ensure that VHTR data are qualified for use, stored in a readily accessible electronic form, and analyzed to extract useful results. This document focuses on the first NDMAS objective. It describes the High Temperature Materials characterization data stream, the processing of these data within NDMAS, and reports the interim FY2010 qualification status of the data. Data qualification activities within NDMAS for specific types of data are determined by the data qualification category assigned by the data generator. The High Temperature Materials data are being collected under NQA-1 guidelines, and will be qualified data. For NQA-1 qualified data, the qualification activities include: (1) capture testing, to confirm that the data stored within NDMAS are identical to the raw data supplied, (2) accuracy testing to confirm that the data are an accurate representation of the system or object being measured, and (3) documenting that the data were collected under an NQA-1 or equivalent Quality Assurance program. Currently, data from two test series within the High Temperature Materials data stream have been entered into the NDMAS vault: 1. Tensile Tests for Sm (i.e., Allowable Stress) Confirmatory Testing – 1,403,994 records have been inserted into the NDMAS database. Capture testing is in process. 2. Creep-Fatigue Testing to Support Determination of Creep-Fatigue Interaction Diagram – 918,854 records have been processed and inserted into the NDMAS database. Capture testing is in process.

  13. Life assessment of high temperature headers

    SciTech Connect (OSTI)

    Nakoneczny, G.J.; Schultz, C.C.

    1995-08-01

    High temperature superheater and reheater headers have been a necessary focus of any boiler life extension project done by the electric utilities. These headers operate at high temperatures in excess of 900 F and are subject to thermal stresses and pressure stresses that can lead to cracking and failure. Babcock and Wilcox Company`s investigation of these problems began in 1982 focusing on P11 materials (1{1/4}Cr-{1/2}Mo). Early assessment was limited to dimensional analysis methods which were aimed at quantifying swell due to creep. Condition assessment and remaining useful life analysis methods have evolved since these initial studies. Experience coupled with improved inspection methods and analytical techniques has advanced the life assessment of these high temperature headers. In the discussion that follows the authors provide an overview of B and W`s approach to header life assessment including the location and causes for header failures, inspection techniques and analysis methods which are all directed at determining the remaining useful life of these high temperature headers.

  14. High temperature annealing of ion irradiated tungsten

    SciTech Connect (OSTI)

    Ferroni, Francesco; Yi, Xiaoou; Fitzgerald, Steven P.; Edmondson, Philip D.; Roberts, Steve G.

    2015-03-21

    In this study, transmission electron microscopy of high temperature annealing of pure tungsten irradiated by self-ions was conducted to elucidate microstructural and defect evolution in temperature ranges relevant to fusion reactor applications (500–1200°C). Bulk isochronal and isothermal annealing of ion irradiated pure tungsten (2 MeV W+ ions, 500°C, 1014 W+/cm2) with temperatures of 800, 950, 1100 and 1400°C, from 0.5 to 8 h, was followed by ex situ characterization of defect size, number density, Burgers vector and nature. Loops with diameters larger than 2–3 nm were considered for detailed analysis, among which all loops had View the MathML source and were predominantly of interstitial nature. In situ annealing experiments from 300 up to 1200°C were also carried out, including dynamic temperature ramp-ups. These confirmed an acceleration of loop loss above 900°C. At different temperatures within this range, dislocations exhibited behaviour such as initial isolated loop hopping followed by large-scale rearrangements into loop chains, coalescence and finally line–loop interactions and widespread absorption by free-surfaces at increasing temperatures. An activation energy for the annealing of dislocation length was obtained, finding Ea=1.34±0.2 eV for the 700–1100°C range.

  15. High temperature annealing of ion irradiated tungsten

    DOE PAGES-Beta [OSTI]

    Ferroni, Francesco; Yi, Xiaoou; Arakawa, Kazuto; Fitzgerald, Steven P.; Edmondson, Philip D.; Roberts, Steve G.

    2015-03-21

    In this study, transmission electron microscopy of high temperature annealing of pure tungsten irradiated by self-ions was conducted to elucidate microstructural and defect evolution in temperature ranges relevant to fusion reactor applications (500–1200°C). Bulk isochronal and isothermal annealing of ion irradiated pure tungsten (2 MeV W+ ions, 500°C, 1014 W+/cm2) with temperatures of 800, 950, 1100 and 1400°C, from 0.5 to 8 h, was followed by ex situ characterization of defect size, number density, Burgers vector and nature. Loops with diameters larger than 2–3 nm were considered for detailed analysis, among which all loops had View the MathML source andmore » were predominantly of interstitial nature. In situ annealing experiments from 300 up to 1200°C were also carried out, including dynamic temperature ramp-ups. These confirmed an acceleration of loop loss above 900°C. At different temperatures within this range, dislocations exhibited behaviour such as initial isolated loop hopping followed by large-scale rearrangements into loop chains, coalescence and finally line–loop interactions and widespread absorption by free-surfaces at increasing temperatures. An activation energy for the annealing of dislocation length was obtained, finding Ea=1.34±0.2 eV for the 700–1100°C range.« less

  16. High temperature intermetallic binders for HVOF carbides

    SciTech Connect (OSTI)

    Shaw, K.G.; Gruninger, M.F.; Jarosinski, W.J.

    1994-12-31

    Gas turbines technology has a long history of employing the desirable high temperature physical attributes of ceramic-metallic (cermet) materials. The most commonly used coatings incorporate combinations of WC-Co and Cr{sub 3}C{sub 2}-NiCr, which have also been successfully utilized in other non-turbine coating applications. Increased turbine operating temperatures and other high temperature service conditions have made apparent the attractive notion of increasing the temperature capability and corrosion resistance of these coatings. In this study the intermetallic binder NiAl has been used to replace the cobalt and NiCr constituents of conventional WC and Cr{sub 3}C{sub 2} cermet powders. The composite carbide thermal spray powders were fabricated for use in the HVOF coating process. The structure of HVOF deposited NiAl-carbide coatings are compared directly to the more familiar WC-Co and Cr{sub 3}C{sub 2}-NiCr coatings using X-ray diffraction, back-scattered electron imaging (BEI) and electron dispersive spectroscopy (EDS). Hardness variations with temperature are reported and compared between the NiAl and Co/NiCr binders.

  17. High-Temperature Behavior of Cellulose I

    SciTech Connect (OSTI)

    Matthews, James F.; Bergenstråhle, Malin; Beckham, Gregg T.; Himmel, Michael E.; Nimlos, Mark R.; Brady, John W.; Crowley, Michael F.

    2011-03-17

    We use molecular simulation to elucidate the structural behavior of small hydrated cellulose Iβ microfibrils heated to 227 °C (500 K) with two carbohydrate force fields. In contrast to the characteristic two-dimensional hydrogen-bonded layer sheets present in the cellulose Iβ crystal structure, we show that at high temperature a three-dimensional hydrogen bond network forms, made possible by hydroxymethyl groups changing conformation from trans–gauche (TG) to gauche–gauche (GG) in every second layer corresponding to “center” chains in cellulose Iβ and from TG to gauche–trans (GT) in the “origin” layer. The presence of a regular three-dimensional hydrogen bond network between neighboring sheets eliminates the possibility of twist, whereas two-dimensional hydrogen bonding allows for microfibril twist to occur. Structural features of this high-temperature phase as determined by molecular simulation may explain several experimental observations for which no detailed structural basis has been offered. This includes an explanation for the observed temperature and crystal size dependence for the extent of hydrogen/deuterium exchange, and diffraction patterns of cellulose at high temperature.

  18. High Temperature Fluoride Salt Test Loop

    SciTech Connect (OSTI)

    Aaron, Adam M.; Cunningham, Richard Burns; Fugate, David L.; Holcomb, David Eugene; Kisner, Roger A.; Peretz, Fred J.; Robb, Kevin R.; Wilson, Dane F.; Yoder, Jr, Graydon L.

    2015-12-01

    Effective high-temperature thermal energy exchange and delivery at temperatures over 600°C has the potential of significant impact by reducing both the capital and operating cost of energy conversion and transport systems. It is one of the key technologies necessary for efficient hydrogen production and could potentially enhance efficiencies of high-temperature solar systems. Today, there are no standard commercially available high-performance heat transfer fluids above 600°C. High pressures associated with water and gaseous coolants (such as helium) at elevated temperatures impose limiting design conditions for the materials in most energy systems. Liquid salts offer high-temperature capabilities at low vapor pressures, good heat transport properties, and reasonable costs and are therefore leading candidate fluids for next-generation energy production. Liquid-fluoride-salt-cooled, graphite-moderated reactors, referred to as Fluoride Salt Reactors (FHRs), are specifically designed to exploit the excellent heat transfer properties of liquid fluoride salts while maximizing their thermal efficiency and minimizing cost. The FHR s outstanding heat transfer properties, combined with its fully passive safety, make this reactor the most technologically desirable nuclear power reactor class for next-generation energy production. Multiple FHR designs are presently being considered. These range from the Pebble Bed Advanced High Temperature Reactor (PB-AHTR) [1] design originally developed by UC-Berkeley to the Small Advanced High-Temperature Reactor (SmAHTR) and the large scale FHR both being developed at ORNL [2]. The value of high-temperature, molten-salt-cooled reactors is also recognized internationally, and Czechoslovakia, France, India, and China all have salt-cooled reactor development under way. The liquid salt experiment presently being developed uses the PB-AHTR as its focus. One core design of the PB-AHTR features multiple 20 cm diameter, 3.2 m long fuel channels

  19. Gasification of high ash, high ash fusion temperature bituminous coals

    DOE Patents [OSTI]

    Liu, Guohai; Vimalchand, Pannalal; Peng, WanWang

    2015-11-13

    This invention relates to gasification of high ash bituminous coals that have high ash fusion temperatures. The ash content can be in 15 to 45 weight percent range and ash fusion temperatures can be in 1150.degree. C. to 1500.degree. C. range as well as in excess of 1500.degree. C. In a preferred embodiment, such coals are dealt with a two stage gasification process--a relatively low temperature primary gasification step in a circulating fluidized bed transport gasifier followed by a high temperature partial oxidation step of residual char carbon and small quantities of tar. The system to process such coals further includes an internally circulating fluidized bed to effectively cool the high temperature syngas with the aid of an inert media and without the syngas contacting the heat transfer surfaces. A cyclone downstream of the syngas cooler, operating at relatively low temperatures, effectively reduces loading to a dust filtration unit. Nearly dust- and tar-free syngas for chemicals production or power generation and with over 90%, and preferably over about 98%, overall carbon conversion can be achieved with the preferred process, apparatus and methods outlined in this invention.

  20. Compliant high temperature seals for dissimilar materials

    DOE Patents [OSTI]

    Rynders, Steven Walton; Minford, Eric; Tressler, Richard Ernest; Taylor, Dale M.

    2001-01-01

    A high temperature, gas-tight seal is formed by utilizing one or more compliant metallic toroidal ring sealing elements, where the applied pressure serves to activate the seal, thus improving the quality of the seal. The compliant nature of the sealing element compensates for differences in thermal expansion between the materials to be sealed, and is particularly useful in sealing a metallic member and a ceramic tube art elevated temperatures. The performance of the seal may be improved by coating the sealing element with a soft or flowable coating such as silver or gold and/or by backing the sealing element with a bed of fine powder. The material of the sealing element is chosen such that the element responds to stress elastically, even at elevated temperatures, permitting the seal to operate through multiple thermal cycles.

  1. High Temperature, High Voltage Fully Integrated Gate Driver Circuit |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy 10 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. ape003_tolbert_2010_p.pdf (757.36 KB) More Documents & Publications High Temperature, High Voltage Fully Integrated Gate Driver Circuit Wide Bandgap Materials Smart Integrated Power Module

  2. High Temperature, High Voltage Fully Integrated Gate Driver Circuit |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy 09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. ape_03_marlino.pdf (846.17 KB) More Documents & Publications High Temperature, High Voltage Fully Integrated Gate Driver Circuit Smart Integrated Power Module Wide Bandgap Materials

  3. Thermal fuse for high-temperature batteries

    DOE Patents [OSTI]

    Jungst, Rudolph G.; Armijo, James R.; Frear, Darrel R.

    2000-01-01

    A thermal fuse, preferably for a high-temperature battery, comprising leads and a body therebetween having a melting point between approximately 400.degree. C. and 500.degree. C. The body is preferably an alloy of Ag--Mg, Ag--Sb, Al--Ge, Au--In, Bi--Te, Cd--Sb, Cu--Mg, In--Sb, Mg--Pb, Pb--Pd, Sb--Zn, Sn--Te, or Mg--Al.

  4. Institute of Chemical Engineering and High Temperature Chemical...

    Open Energy Information (Open El) [EERE & EIA]

    Chemical Engineering and High Temperature Chemical Processes ICEHT Jump to: navigation, search Name: Institute of Chemical Engineering and High Temperature Chemical Processes...

  5. Microchannel High-Temperature Recuperator for Fuel Cell Systems...

    Energy Savers

    Microchannel High-Temperature Recuperator for Fuel Cell Systems - Fact Sheet, 2014 Microchannel High-Temperature Recuperator for Fuel Cell Systems - Fact Sheet, 2014 FuelCell ...

  6. High Operating Temperature Liquid Metal Heat Transfer Fluids...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    High Operating Temperature Liquid Metal Heat Transfer Fluids High Operating Temperature Liquid Metal Heat Transfer Fluids This fact sheet describes a UCLA-led solar project to ...

  7. High Temperature Thermal Array for Next Generation Solar Thermal...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    High Temperature Thermal Array for Next Generation Solar Thermal Power Production High Temperature Thermal Array for Next Generation Solar Thermal Power Production This ...

  8. Modoc High School Space Heating Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    High School Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Modoc High School Space Heating Low Temperature Geothermal Facility Facility Modoc...

  9. Henley High School Space Heating Low Temperature Geothermal Facility...

    Open Energy Information (Open El) [EERE & EIA]

    Henley High School Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Henley High School Space Heating Low Temperature Geothermal Facility Facility...

  10. Cotulla High School Space Heating Low Temperature Geothermal...

    Open Energy Information (Open El) [EERE & EIA]

    Cotulla High School Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Cotulla High School Space Heating Low Temperature Geothermal Facility...

  11. Final Report: Ionization chemistry of high temperature molecular...

    Office of Scientific and Technical Information (OSTI)

    Final Report: Ionization chemistry of high temperature molecular fluids Citation Details In-Document Search Title: Final Report: Ionization chemistry of high temperature molecular ...

  12. High Temperature Fuel Cell (Phosphoric Acid) Manufacturing R...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    High Temperature Fuel Cell (Phosphoric Acid) Manufacturing R&D Presented at the NREL ... DC, August 11-12, 2011. PDF icon High Temperature Fuel Cell (Phosphoric Acid) ...

  13. A High Temperature Direct Vehicle Exhaust Flowmeter for Heavy...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    A High Temperature Direct Vehicle Exhaust Flowmeter for Heavy Duty Diesel Emission Measurements. A High Temperature Direct Vehicle Exhaust Flowmeter for Heavy Duty Diesel Emission ...

  14. Topological Hubbard Model and Its High-Temperature Quantum Hall...

    Office of Scientific and Technical Information (OSTI)

    Topological Hubbard Model and Its High-Temperature Quantum Hall Effect Title: Topological Hubbard Model and Its High-Temperature Quantum Hall Effect Authors: Neupert, Titus ; ...

  15. A transient heat transfer model for high temperature solar thermochemi...

    Office of Scientific and Technical Information (OSTI)

    Search Results Journal Article: A transient heat transfer model for high temperature solar ... Title: A transient heat transfer model for high temperature solar thermochemical reactors ...

  16. Enhanced High Temperature Performance of NOx Storage/Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    More Documents & Publications Enhanced High Temperature Performance of NOx StorageReduction (NSR) Materials Enhanced High Temperature Performance of NOx StorageReduction (NSR) ...

  17. Enhanced High Temperature Performance of NOx Storage/Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    More Documents & Publications Enhanced High and Low Temperature Performance of NOx Reduction Materials Enhanced High Temperature Performance of NOx StorageReduction (NSR) ...

  18. High-Speed, Temperature Programmable Gas Chromatography Utilizing...

    Office of Scientific and Technical Information (OSTI)

    High-Speed, Temperature Programmable Gas Chromatography Utilizing a Microfabricated Chip ... Title: High-Speed, Temperature Programmable Gas Chromatography Utilizing a Microfabricated ...

  19. Low Temperature Combustion Demonstrator for High Efficiency Clean...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Demonstrator for High Efficiency Clean Combustion Low Temperature Combustion Demonstrator for High Efficiency Clean Combustion Applied low temperature combustion to the Navistar ...

  20. Syngas Enhanced High Efficiency Low Temperature Combustion for...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Enhanced High Efficiency Low Temperature Combustion for Clean Diesel Engines Syngas Enhanced High Efficiency Low Temperature Combustion for Clean Diesel Engines A significant ...

  1. High Temperature Membrane Working Group Meeting (HTWGM) Agenda...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Meeting (HTWGM) Agenda High Temperature Membrane Working Group Meeting (HTWGM) Agenda Preliminary agenda for the October 10 meeting of the High Temperature Membrane Working Group ...

  2. Lead Research and Development Activity for High Temperature,...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Temperature, Low Relative Humidity Membrane Program Lead Research and Development Activity for High Temperature, Low Relative Humidity Membrane Program A presentation to the High ...

  3. Membrane Development for Medium and High Temperature PEMFC in...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    in Europe (Presentation) Membrane Development for Medium and High Temperature PEMFC in Europe (Presentation) Presented at the High Temperature Membrane Working Group Meeting ...

  4. New Membranes for High Temperature Proton Exchange Membrane Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    High Temperature Proton Exchange Membrane Fuel Cells Based on Heteropoly Acids New Membranes for High Temperature Proton Exchange Membrane Fuel Cells Based on Heteropoly Acids ...

  5. High Temperature Membrane Working Group, Minutes of Meeting on...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    High Temperature Membrane Working Group, Minutes of Meeting on September 14, 2006 These meeting minutes provide information about the High Temperature Membrane Working Group ...

  6. Agenda of the High Temperature Membrane Working Group Meeting...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Agenda of the High Temperature Membrane Working Group Meeting, Monday, June 9, 2008 Agenda of the High Temperature Membrane Working Group Meeting, Monday, June 9, 2008 HTMWG ...

  7. High Temperature Membrane Working Group Meeting, May 14, 2007...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Meeting, May 14, 2007 High Temperature Membrane Working Group Meeting, May 14, 2007 This agenda provides information about the High Temperature Membrane Working Group Meeting on ...

  8. Preliminary Agenda: October 2008 High Temperature Membrane Working...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Preliminary Agenda: October 2008 High Temperature Membrane Working Group Meeting Preliminary Agenda: October 2008 High Temperature Membrane Working Group Meeting Agenda for October ...

  9. High Temperature Membrane with HUmidification-Independent Cluster...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    High Temperature Membrane with HUmidification-Independent Cluster Structure A presentation ... More Documents & Publications High Temperature Membrane Working Group New Proton ...

  10. Development of Advanced High Temperature Fuel Cell Membranes

    Energy.gov [DOE]

    Presentation on Development of Advanced High Temperature Fuel Cell Membranes to the High Temperature Membrane Working Group Meeting held in Arlington, Virginia, May 26,2005.

  11. High Temperature Polymer Membrane Development at Argonne National...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Temperature Polymer Membrane Development at Argonne National Laboratory High Temperature Polymer Membrane Development at Argonne National Laboratory Summary of ANL's high ...

  12. High-Temperature Solar Thermoelectric Generators (STEG) | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    High-Temperature Solar Thermoelectric Generators (STEG) High-Temperature Solar Thermoelectric Generators (STEG) This presentation was delivered at the SunShot Concentrating Solar ...

  13. Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion...

    Energy.gov (indexed) [DOE]

    Nanostructured High Temperature Bulk Thermoelectric Energy Conversion for Efficient Waste Heat Recovery Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion for ...

  14. High Temperature Gas Reactors: Assessment of Applicable Codes...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: High Temperature Gas Reactors: Assessment of Applicable Codes and Standards Citation Details In-Document Search Title: High Temperature Gas Reactors: Assessment ...

  15. Reversible Metal Hydride Thermal Energy Storage for High Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Reversible Metal Hydride Thermal Energy Storage for High Temperature Power Generation Systems Reversible Metal Hydride Thermal Energy Storage for High Temperature Power Generation ...

  16. 2005 High Temperature Membrane Working Group Meeting Archives...

    Energy.gov (indexed) [DOE]

    of Advanced High Temperature Fuel Cell Membranes, Andrew Chafin and Jennifer ... High-Temperature Fuel Cells, Xiao-Guang Sun, Gao Liu, John B. Kerr, Lawrence Berkeley ...

  17. High temperature aqueous stress corrosion testing device

    DOE Patents [OSTI]

    Bornstein, A.N.; Indig, M.E.

    1975-12-01

    A description is given of a device for stressing tensile samples contained within a high temperature, high pressure aqueous environment, thereby permitting determination of stress corrosion susceptibility of materials in a simple way. The stressing device couples an external piston to an internal tensile sample via a pull rod, with stresses being applied to the sample by pressurizing the piston. The device contains a fitting/seal arrangement including Teflon and weld seals which allow sealing of the internal system pressure and the external piston pressure. The fitting/seal arrangement allows free movement of the pull rod and the piston.

  18. Hotline IV …High Temperature ESP | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Hotline IV …High Temperature ESP Hotline IV …High Temperature ESP Project Objective: Increase temperature rating of high temperature ESPs. high_dhruva_hotline_iv.pdf (1.64 MB) More Documents & Publications Creation of an Engineered Geothermal System through Hydraulic and Thermal Stimulation Novel Energy Conversion Equipment for Low Temperature Geothermal Resources High-Temperature Motor Windings for Downhole Pumps Used in Geothermal Energy Production

  19. High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems

    SciTech Connect (OSTI)

    Turnquist, Norman; Qi, Xuele; Raminosoa, Tsarafidy; Salas, Ken; Samudrala, Omprakash; Shah, Manoj; Van Dam, Jeremy; Yin, Weijun; Zia, Jalal

    2013-12-20

    This report summarizes the progress made during the April 01, 2010 – December 30, 2013 period under Cooperative Agreement DE-EE0002752 for the U.S. Department of Energy entitled “High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems.” The overall objective of this program is to advance the technology for well fluids lifting systems to meet the foreseeable pressure, temperature, and longevity needs of the Enhanced Geothermal Systems (EGS) industry for the coming ten years. In this program, lifting system requirements for EGS wells were established via consultation with industry experts and site visits. A number of artificial lift technologies were evaluated with regard to their applicability to EGS applications; it was determined that a system based on electric submersible pump (ESP) technology was best suited to EGS. Technical barriers were identified and a component-level technology development program was undertaken to address each barrier, with the most challenging being the development of a power-dense, small diameter motor that can operate reliably in a 300°C environment for up to three years. Some of the targeted individual component technologies include permanent magnet motor construction, high-temperature insulation, dielectrics, bearings, seals, thrust washers, and pump impellers/diffusers. Advances were also made in thermal management of electric motors. In addition to the overall system design for a full-scale EGS application, a subscale prototype was designed and fabricated. Like the full-scale design, the subscale prototype features a novel “flow-through-the-bore” permanent magnet electric motor that combines the use of high temperature materials with an internal cooling scheme that limits peak internal temperatures to <330°C. While the full-scale high-volume multi-stage pump is designed to lift up to 80 kg/s of process water, the subscale prototype is based on a production design that can pump 20 kg/s and has been modified

  20. High-temperature superconducting current leads

    SciTech Connect (OSTI)

    Niemann, R.C.

    1995-03-01

    Use of high-temperature superconductors (HTSs) for current leads to deliver power to devices at liquid helium temperature can reduce refrigeration requirements to values significantly below those achievable with conventional leads. HTS leads are now near commercial realization. Argonne National Laboratory (ANL) has developed a sinter-forge process to fabricate current leads from bismuth-based superconductors. The current-carrying capacity of these leads is five times better than that of HTS leads made by a conventional fabrication process. ANL along with Superconductivity, Inc., has developed a 1500 ampere current lead for an existing superconducting magnetic energy storage (SMES) device. With Babcock & Wilcox Company, Argonne is creating 16-kiloampere leads for use in a 0.5 MWh SMES. In a third project Argonne performed characterization testing of a existing, proprietary conduction-cooled lead being developed by Zer Res Corp.

  1. High Temperature Battery for Drilling Applications

    SciTech Connect (OSTI)

    Josip Caja

    2009-12-31

    In this project rechargeable cells based on the high temperature electrochemical system Na/beta''-alumina/S(IV) in AlCl3/NaCl were developed for application as an autonomous power source in oil/gas deep drilling wells. The cells operate in the temperature range from 150 C to 250 C. A prototype DD size cell was designed and built based on the results of finite element analysis and vibration testing. The cell consisted of stainless steel case serving as anode compartment with cathode compartment installed in it and a seal closing the cell. Critical element in cell design and fabrication was hermetically sealing the cell. The seal had to be leak tight, thermally and vibration stable and compatible with electrode materials. Cathode compartment was built of beta''-alumina tube which served as an electrolyte, separator and cathode compartment.

  2. Creep resistant high temperature martensitic steel

    DOE Patents [OSTI]

    Hawk, Jeffrey A.; Jablonski, Paul D.; Cowen, Christopher J.

    2015-11-13

    The disclosure provides a creep resistant alloy having an overall composition comprised of iron, chromium, molybdenum, carbon, manganese, silicon, nickel, vanadium, niobium, nitrogen, tungsten, cobalt, tantalum, boron, and potentially additional elements. In an embodiment, the creep resistant alloy has a molybdenum equivalent Mo(eq) from 1.475 to 1.700 wt. % and a quantity (C+N) from 0.145 to 0.205. The overall composition ameliorates sources of microstructural instability such as coarsening of M.sub.23C.sub.6 carbides and MX precipitates, and mitigates or eliminates Laves and Z-phase formation. A creep resistant martensitic steel may be fabricated by preparing a melt comprised of the overall composition followed by at least austenizing and tempering. The creep resistant alloy exhibits improved high-temperature creep strength in the temperature environment of around 650.degree. C.

  3. High Temperature Materials Laboratory third annual report

    SciTech Connect (OSTI)

    Tennery, V.J.; Foust, F.M.

    1990-12-01

    The High Temperature Materials Laboratory has completed its third year of operation as a designated DOE User Facility at the Oak Ridge National Laboratory. Growth of the user program is evidenced by the number of outside institutions who have executed user agreements since the facility began operation in 1987. A total of 88 nonproprietary agreements (40 university and 48 industry) and 20 proprietary agreements (1 university, 19 industry) are now in effect. Sixty-eight nonproprietary research proposals (39 from university, 28 from industry, and 1 other government facility) and 8 proprietary proposals were considered during this reporting period. Research projects active in FY 1990 are summarized.

  4. High temperature regenerable hydrogen sulfide removal agents

    DOE Patents [OSTI]

    Copeland, Robert J.

    1993-01-01

    A system for high temperature desulfurization of coal-derived gases using regenerable sorbents. One sorbent is stannic oxide (tin oxide, SnO.sub.2), the other sorbent is a metal oxide or mixed metal oxide such as zinc ferrite (ZnFe.sub.2 O.sub.4). Certain otherwise undesirable by-products, including hydrogen sulfide (H.sub.2 S) and sulfur dioxide (SO.sub.2) are reused by the system, and elemental sulfur is produced in the regeneration reaction. A system for refabricating the sorbent pellets is also described.

  5. High power densities from high-temperature material interactions

    SciTech Connect (OSTI)

    Morris, J.F.

    1981-01-01

    Thermionic energy conversion (TEC) and metallic-fluid heat pipes (MFHPs) offer important and unique advantages in terrestrial and space energy processing. And they are well suited to serve together synergistically. TEC and MFHPs operate through working-fluid vaporization, condensation cycles that accept great thermal power densities at high temperatures. TEC and MFHPs have apparently simple, isolated performance mechanisms that are somewhat similar. And they also have obviously difficult, complected material problems that again are somewhat similar. Intensive investigation reveals that aspects of their operating cycles and material problems tend to merge: high-temperature material effects determine the level and lifetime of performance. Simplified equations verify the preceding statement for TEC and MFHPs. Material properties and interactions exert primary influences on operational effectiveness. And thermophysicochemical stabilities dictate operating temperatures which regulate the thermoemissive currents of TEC and the vaporization flow rates of MFHPs. Major high-temperature material problems of TEC and MFHPs have been solved. These solutions lead to productive, cost-effective applications of current TEC and MFHPs - and point to significant improvements with anticipated technological gains.

  6. High temperature insulation for ceramic matrix composites

    DOE Patents [OSTI]

    Merrill, Gary B.; Morrison, Jay Alan

    2000-01-01

    A ceramic composition is provided to insulate ceramic matrix composites under high temperature, high heat flux environments. The composite comprises a plurality of hollow oxide-based spheres of varios dimentions, a phosphate binder, and at least one oxide filler powder, whereby the phosphate binder partially fills gaps between the spheres and the filler powders. The spheres are situated in the phosphate binder and the filler powders such that each sphere is in contact with at least one other sphere. The spheres may be any combination of Mullite spheres, Alumina spheres, or stabilized Zirconia spheres. The filler powder may be any combination of Alumina, Mullite, Ceria, or Hafnia. Preferably, the phosphate binder is Aluminum Ortho-Phosphate. A method of manufacturing the ceramic insulating composition and its application to CMC substates are also provided.

  7. High temperature insulation for ceramic matrix composites

    DOE Patents [OSTI]

    Merrill, Gary B.; Morrison, Jay Alan

    2001-01-01

    A ceramic composition is provided to insulate ceramic matrix composites under high temperature, high heat flux environments. The composition comprises a plurality of hollow oxide-based spheres of various dimensions, a phosphate binder, and at least one oxide filler powder, whereby the phosphate binder partially fills gaps between the spheres and the filler powders. The spheres are situated in the phosphate binder and the filler powders such that each sphere is in contact with at least one other sphere. The spheres may be any combination of Mullite spheres, Alumina spheres, or stabilized Zirconia spheres. The filler powder may be any combination of Alumina, Mullite, Ceria, or Hafnia. Preferably, the phosphate binder is Aluminum Ortho-Phosphate. A method of manufacturing the ceramic insulating composition and its application to CMC substrates are also provided.

  8. High temperature insulation for ceramic matrix composites

    DOE Patents [OSTI]

    Merrill, Gary B.; Morrison, Jay Alan

    2004-01-13

    A ceramic composition is provided to insulate ceramic matrix composites under high temperature, high heat flux environments. The composition comprises a plurality of hollow oxide-based spheres of various dimensions, a phosphate binder, and at least one oxide filler powder, whereby the phosphate binder partially fills gaps between the spheres and the filler powders. The spheres are situated in the phosphate binder and the filler powders such that each sphere is in contact with at least one other sphere. The spheres may be any combination of Mullite spheres, Alumina spheres, or stabilized Zirconia spheres. The filler powder may be any combination of Alumina, Mullite, Ceria, or Hafnia. Preferably, the phosphate binder is Aluminum Ortho-Phosphate. A method of manufacturing the ceramic insulating composition and its application to CMC substrates are also provided.

  9. Apparatus for accurately measuring high temperatures

    DOE Patents [OSTI]

    Smith, D.D.

    The present invention is a thermometer used for measuring furnace temperatures in the range of about 1800/sup 0/ to 2700/sup 0/C. The thermometer comprises a broadband multicolor thermal radiation sensor positioned to be in optical alignment with the end of a blackbody sight tube extending into the furnace. A valve-shutter arrangement is positioned between the radiation sensor and the sight tube and a chamber for containing a charge of high pressure gas is positioned between the valve-shutter arrangement and the radiation sensor. A momentary opening of the valve shutter arrangement allows a pulse of the high gas to purge the sight tube of air-borne thermal radiation contaminants which permits the radiation sensor to accurately measure the thermal radiation emanating from the end of the sight tube.

  10. High temperature lined conduits, elbows and tees

    DOE Patents [OSTI]

    De Feo, Angelo (Passaic, NJ); Drewniany, Edward (Bergen, NJ)

    1982-01-01

    A high temperature lined conduit comprising, a liner, a flexible insulating refractory blanket around and in contact with the liner, a pipe member around the blanket and spaced therefrom, and castable rigid refractory material between the pipe member and the blanket. Anchors are connected to the inside diameter of the pipe and extend into the castable material. The liner includes male and female slip joint ends for permitting thermal expansion of the liner with respect to the castable material and the pipe member. Elbows and tees of the lined conduit comprise an elbow liner wrapped with insulating refractory blanket material around which is disposed a spaced elbow pipe member with castable refractory material between the blanket material and the elbow pipe member. A reinforcing band is connected to the elbow liner at an intermediate location thereon from which extend a plurality of hollow tubes or pins which extend into the castable material to anchor the lined elbow and permit thermal expansion. A method of fabricating the high temperature lined conduit, elbows and tees is also disclosed which utilizes a polyethylene layer over the refractory blanket after it has been compressed to maintain the refractory blanket in a compressed condition until the castable material is in place. Hot gases are then directed through the interior of the liner for evaporating the polyethylene and setting the castable material which permits the compressed blanket to come into close contact with the castable material.

  11. Preliminary Agenda: October 2008 High Temperature Membrane Working Group

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Meeting | Department of Energy Preliminary Agenda: October 2008 High Temperature Membrane Working Group Meeting Preliminary Agenda: October 2008 High Temperature Membrane Working Group Meeting Agenda for October 2008 High Temperature Membrane Working Group Meeting in Honolulu, Hawaii. htmwg_agenda_meeting_1008.pdf (27.08 KB) More Documents & Publications Minutes of the October 2008 Meeting of the High Temperature Membrane Working Group Agenda for the High Temperature Membrane Working

  12. Membrane Development for Medium and High Temperature PEMFC in Europe

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    (Presentation) | Department of Energy Development for Medium and High Temperature PEMFC in Europe (Presentation) Membrane Development for Medium and High Temperature PEMFC in Europe (Presentation) Presented at the High Temperature Membrane Working Group Meeting (HTMWG) held October 10, 2007 in Washington, D.C. htwmg_oct07_jones.pdf (3.12 MB) More Documents & Publications CARISMA: A Networking Project for High Temperature PEMFC MEA Activities in Europe Minutes of the High Temperature

  13. Agenda for the High Temperature Membrane Working Group Meeting | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Agenda for the High Temperature Membrane Working Group Meeting Agenda for the High Temperature Membrane Working Group Meeting This agenda provides information about the Agenda for the High Temperature Membrane Working Group Meeting on September 14, 2006. htmwg_sept06_agenda.pdf (48.31 KB) More Documents & Publications Discussion Overview High Temperature Membrane Working Group, Minutes of Meeting on September 14, 2006 High Temperature Membrane Working Group Meeting, May 14,

  14. Agenda: High Temperature Membrane Working Group Meeting | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Agenda: High Temperature Membrane Working Group Meeting Agenda: High Temperature Membrane Working Group Meeting Agenda for the High Temperature Membrane Working Group (HTMWG) meeting on May 18, 2009, in Arlington, Virginia htmwg_may09_agenda.pdf (64 KB) More Documents & Publications HTMWG, May 18, 2009, Welcome! High Temperature Membrane Working Group Meeting, May 14, 2007 Agenda of the High Temperature Membrane Working Group Meeting, Monday, June 9, 2008

  15. High Temperature Membrane Working Group Meeting, May 14, 2007 | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Meeting, May 14, 2007 High Temperature Membrane Working Group Meeting, May 14, 2007 This agenda provides information about the High Temperature Membrane Working Group Meeting on May 14, 2007 in Arlington, Va. htmwg07_agenda.pdf (79.9 KB) More Documents & Publications High Temperature Membrane Working Group High Temperature Membrane Working Group Minutes Agenda: High Temperature Membrane Working Group Meeting

  16. Ceramic membranes for high temperature hydrogen separation

    SciTech Connect (OSTI)

    Fain, D.E.; Roettger, G.E.

    1996-08-01

    Ceramic gas separation membranes can provide very high separation factors if the pore size is sufficiently small to separate gas molecules by molecular sieving and if oversized pores are adequately limited. Ceramic membranes typically have some pores that are substantially larger than the mean pore size and that should be regarded as defects. To assess the effects of such defects on the performance of ceramic membranes, a simple mathematical model has been developed to describe flow through a gas separation membrane that has a primary mode of flow through very small pores but that has a secondary mode of flow through undesirably large pores. This model permits separation factors to be calculated for a specified gas pair as a function of the molecular weights and molecular diameters of the gases, the membrane pore diameter, and the diameter and number of defects. This model will be described, and key results from the model will be presented. The separation factors of the authors membranes continue to be determined using a permeance test system that measures flows of pure gases through a membrane at temperatures up to 275{degrees}C. A primary goal of this project for FY 1996 is to develop a mixed gas separation system for measuring the separation efficiency of membranes at higher temperatures. Performance criteria have been established for the planned mixed gas separation system and design of the system has been completed. The test system is designed to measure the separation efficiency of membranes at temperatures up to 600{degrees}C and pressures up to 100 psi by separating the constituents of a gas mixture containing hydrogen. The system will accommodate the authors typical experimental membrane that is tubular and has a diameter of about 9 mm and a length of about 23 cm. The design of the new test system and its expected performance will be discussed.

  17. Low Temperature Combustion Demonstrator for High Efficiency Clean...

    Energy.gov (indexed) [DOE]

    Low-Temperature Combustion Demonstrator for High-Efficiency Clean Combustion Impact of Variable Valve Timing on Low Temperature Combustion Multicylinder Diesel Engine Design for ...

  18. High Country Rose Greenhouses Greenhouse Low Temperature Geothermal...

    Open Energy Information (Open El) [EERE & EIA]

    Rose Greenhouses Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name High Country Rose Greenhouses Greenhouse Low Temperature Geothermal Facility...

  19. Enhanced High and Low Temperature Performance of NOx Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    and Low Temperature Performance of NOx Reduction Materials Enhanced High and Low Temperature Performance of NOx Reduction Materials 2013 DOE Hydrogen and Fuel Cells Program and ...

  20. Carbon Capture Turned Upside Down: High-Temperature Adsorption...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Carbon Capture Turned Upside Down: High-Temperature Adsorption & Low-Temperature Desorption (HALD) Previous Next List Joos, Lennart; Lejaeghere, Kurt; Huck, Johanna M.; Van...

  1. A potential Rosetta Stone of high temperature superconductivity...

    Office of Science (SC) [DOE]

    for the high temperature superconductivity. Summary Superconductivity enables the flow of electricity without any loss of energy, but this extremely-low temperature...

  2. Pressure sensor for high-temperature liquids

    DOE Patents [OSTI]

    Forster, George A.

    1978-01-01

    A pressure sensor for use in measuring pressures in liquid at high temperatures, especially such as liquid sodium or liquid potassium, comprises a soft diaphragm in contact with the liquid. The soft diaphragm is coupled mechanically to a stiff diaphragm. Pressure is measured by measuring the displacment of both diaphragms, typically by measuring the capacitance between the stiff diaphragm and a fixed plate when the stiff diaphragm is deflected in response to the measured pressure through mechanical coupling from the soft diaphragm. Absolute calibration is achieved by admitting gas under pressure to the region between diaphragms and to the region between the stiff diaphragm and the fixed plate, breaking the coupling between the soft and stiff diaphragms. The apparatus can be calibrated rapidly and absolutely.

  3. Filter unit for use at high temperatures

    DOE Patents [OSTI]

    Ciliberti, David F.; Lippert, Thomas E.

    1988-01-01

    A filtering unit for filtering particulates from high temperature gases uses a spiral ceramic spring to bias a ceramic, tubular filter element into sealing contact with a flange about an aperture of a metallic tube sheet. The ceramic spiral spring may contact the upper edge of the filter element and be restrained by a stop member spaced from one end of the tube sheet, or the spring may contact the bottom of the filter element and be restrained by a support member spaced from the opposite end of the tube sheet. The stop member and support member are adjustably secured to the tube sheet. A filtering system uses the ceramic spiral spring to bias a plurality of ceramic, tubular filter elements in a respective plurality of apertures in a tube sheet which divides a vessel into upper and lower enclosed sections.

  4. High temperature low friction surface coating

    DOE Patents [OSTI]

    Bhushan, Bharat

    1980-01-01

    A high temperature, low friction, flexible coating for metal surfaces which are subject to rubbing contact includes a mixture of three parts graphite and one part cadmium oxide, ball milled in water for four hours, then mixed with thirty percent by weight of sodium silicate in water solution and a few drops of wetting agent. The mixture is sprayed 12-15 microns thick onto an electro-etched metal surface and air dried for thirty minutes, then baked for two hours at 65.degree. C. to remove the water and wetting agent, and baked for an additional eight hours at about 150.degree. C. to produce the optimum bond with the metal surface. The coating is afterwards burnished to a thickness of about 7-10 microns.

  5. High temperature coatings for gas turbines

    DOE Patents [OSTI]

    Zheng, Xiaoci Maggie

    2003-10-21

    Coating for high temperature gas turbine components that include a MCrAlX phase, and an aluminum-rich phase, significantly increase oxidation and cracking resistance of the components, thereby increasing their useful life and reducing operating costs. The aluminum-rich phase includes aluminum at a higher concentration than aluminum concentration in the MCrAlX alloy, and an aluminum diffusion-retarding composition, which may include cobalt, nickel, yttrium, zirconium, niobium, molybdenum, rhodium, cadmium, indium, cerium, iron, chromium, tantalum, silicon, boron, carbon, titanium, tungsten, rhenium, platinum, and combinations thereof, and particularly nickel and/or rhenium. The aluminum-rich phase may be derived from a particulate aluminum composite that has a core comprising aluminum and a shell comprising the aluminum diffusion-retarding composition.

  6. High temperature chemically resistant polymer concrete

    DOE Patents [OSTI]

    Sugama, T.; Kukacka, L.E.

    High temperature chemically resistant, non-aqueous polymer concrete composites consist of about 12 to 20% by weight of a water-insoluble polymer binder. The binder is polymerized in situ from a liquid vinyl-type monomer or mixture of vinyl containing monomers such as triallylcyanurate, styrene, acrylonitrile, acrylamide, methacrylamide, methyl-methacrylate, trimethylolpropane trimethacrylate and divinyl benzene. About 5 to 40% by weight of a reactive inorganic filler selected from the group consisting of tricalcium silicate and dicalcium silicate and mixtures containing less than 2% free lime, and about 48 to 83% by weight of silica sand/ and a free radical initiator such as di-tert-butyl peroxide, azobisisobutyronitrile, benzoyl peroxide, lauryl peroxide, other orgaic peroxides and combinations to initiate polymerization of the monomer in the presence of the inorganic filers are used.

  7. Multilayer ultra-high-temperature ceramic coatings

    DOE Patents [OSTI]

    Loehman, Ronald E.; Corral, Erica L.

    2012-03-20

    A coated carbon-carbon composite material with multiple ceramic layers to provide oxidation protection from ultra-high-temperatures, where if the carbon-carbon composite material is uninhibited with B.sub.4C particles, then the first layer on the composite material is selected from ZrB.sub.2 and HfB.sub.2, onto which is coated a layer of SiC coated and if the carbon-carbon composite material is inhibited with B.sub.4C particles, then protection can be achieved with a layer of SiC and a layer of either ZrB.sub.2 and HfB.sub.2 in any order.

  8. Turbine vane with high temperature capable skins

    DOE Patents [OSTI]

    Morrison, Jay A.

    2012-07-10

    A turbine vane assembly includes an airfoil extending between an inner shroud and an outer shroud. The airfoil can include a substructure having an outer peripheral surface. At least a portion of the outer peripheral surface is covered by an external skin. The external skin can be made of a high temperature capable material, such as oxide dispersion strengthened alloys, intermetallic alloys, ceramic matrix composites or refractory alloys. The external skin can be formed, and the airfoil can be subsequently bi-cast around or onto the skin. The skin and the substructure can be attached by a plurality of attachment members extending between the skin and the substructure. The skin can be spaced from the outer peripheral surface of the substructure such that a cavity is formed therebetween. Coolant can be supplied to the cavity. Skins can also be applied to the gas path faces of the inner and outer shrouds.

  9. 2004 High Temperature Membrane Working Group Meeting Archives | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy 4 High Temperature Membrane Working Group Meeting Archives 2004 High Temperature Membrane Working Group Meeting Archives View 2004 meeting presentations from the High Temperature Membrane Working Group. October 8, 2004, Honolulu, Hawaii High Temperature Fuel Cell Performance of Sulfonated Poly (phenylene) Proton Conducting Polymers, Chris J. Cornelius, Cy H. Fujimoto, Michael A. Hickner, Darin Leonhardt, Sandia National Laboratories Higher Temperature PEM Composite Systems for Fuel

  10. High Temperature Membrane Working Group | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    High Temperature Membrane Working Group High Temperature Membrane Working Group The High Temperature Membrane Working Group consists of government, industry, and university researchers interested in developing high temperature membranes for fuel cells. Description Technical Targets Meetings Contacts Description Polymer electrolyte membrane (PEM) fuel cells typically operate at temperatures no higher than 60°C-80°C due to structural limitations of the membrane. Operating PEM fuel cell stacks at

  11. 2003 High Temperature Membrane Working Group Meeting Archives | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy High Temperature Membrane Working Group Meeting Archives 2003 High Temperature Membrane Working Group Meeting Archives View 2003 meeting presentations from the High Temperature Membrane Working Group. October 17, 2003, Orlando, Florida High T Membrane Development at Foster-Miller, Bindu Nair, Foster-Miller Highly Sulfonated Polymers for High Temperature Applications, Morton Litt, Case Western Reserve University Assessing Transport in New Electrolytes, Bryan Pivovar, LANL

  12. Multi-temperature method for high-pressure sorption measurements on moist shales

    SciTech Connect (OSTI)

    Gasparik, Matus; Ghanizadeh, Amin; Gensterblum, Yves; Krooss, Bernhard M.

    2013-08-15

    A simple and effective experimental approach has been developed and tested to study the temperature dependence of high-pressure methane sorption in moist organic-rich shales. This method, denoted as multi-temperature (short multi-T) method, enables measuring multiple isotherms at varying temperatures in a single run. The measurement of individual sorption isotherms at different temperatures takes place in a closed system ensuring that the moisture content remains constant. The multi-T method was successfully tested for methane sorption on an organic-rich shale sample. Excess sorption isotherms for methane were measured at pressures of up to 25 MPa and at temperatures of 318.1 K, 338.1 K, and 348.1 K on dry and moisture-equilibrated samples. The measured isotherms were parameterized with a 3-parameter Langmuir-based excess sorption function, from which thermodynamic sorption parameters (enthalpy and entropy of adsorption) were obtained. Using these, we show that by taking explicitly into account water vapor as molecular species in the gas phase with temperature-dependent water vapor pressure during the experiment, more meaningful results are obtained with respect to thermodynamical considerations. The proposed method can be applied to any adsorbent system (coals, shales, industrial adsorbents) and any supercritical gas (e.g., CH{sub 4}, CO{sub 2}) and is particularly suitable for sorption measurements using the manometric (volumetric) method.

  13. Relative entropy equals bulk relative entropy

    DOE PAGES-Beta [OSTI]

    Jafferis, Daniel L.; Lewkowycz, Aitor; Maldacena, Juan; Suh, S. Josephine

    2016-06-01

    We consider the gravity dual of the modular Hamiltonian associated to a general subregion of a boundary theory. We use it to argue that the relative entropy of nearby states is given by the relative entropy in the bulk, to leading order in the bulk gravitational coupling. We also argue that the boundary modular flow is dual to the bulk modular flow in the entanglement wedge, with implications for entanglement wedge reconstruction.

  14. High Temperature Integrated Thermoelectric Ststem and Materials

    SciTech Connect (OSTI)

    Mike S. H. Chu

    2011-06-06

    The final goal of this project is to produce, by the end of Phase II, an all ceramic high temperature thermoelectric module. Such a module design integrates oxide ceramic n-type, oxide ceramic p-type materials as thermoelectric legs and oxide ceramic conductive material as metalizing connection between n-type and p-type legs. The benefits of this all ceramic module are that it can function at higher temperatures (> 700 C), it is mechanically and functionally more reliable and it can be scaled up to production at lower cost. With this all ceramic module, millions of dollars in savings or in new opportunities recovering waste heat from high temperature processes could be made available. A very attractive application will be to convert exhaust heat from a vehicle to reusable electric energy by a thermoelectric generator (TEG). Phase I activities were focused on evaluating potential n-type and p-type oxide compositions as the thermoelectric legs. More than 40 oxide ceramic powder compositions were made and studied in the laboratory. The compositions were divided into 6 groups representing different material systems. Basic ceramic properties and thermoelectric properties of discs sintered from these powders were measured. Powders with different particles sizes were made to evaluate the effects of particle size reduction on thermoelectric properties. Several powders were submitted to a leading thermoelectric company for complete thermoelectric evaluation. Initial evaluation showed that when samples were sintered by conventional method, they had reasonable values of Seebeck coefficient but very low values of electrical conductivity. Therefore, their power factors (PF) and figure of merits (ZT) were too low to be useful for high temperature thermoelectric applications. An unconventional sintering method, Spark Plasma Sintering (SPS) was determined to produce better thermoelectric properties. Particle size reduction of powders also was found to have some positive benefits

  15. High-Temperature High-Efficiency Solar Thermoelectric Generators

    SciTech Connect (OSTI)

    Baranowski, LL; Warren, EL; Toberer, ES

    2014-03-01

    Inspired by recent high-efficiency thermoelectric modules, we consider thermoelectrics for terrestrial applications in concentrated solar thermoelectric generators (STEGs). The STEG is modeled as two subsystems: a TEG, and a solar absorber that efficiently captures the concentrated sunlight and limits radiative losses from the system. The TEG subsystem is modeled using thermoelectric compatibility theory; this model does not constrain the material properties to be constant with temperature. Considering a three-stage TEG based on current record modules, this model suggests that 18% efficiency could be experimentally expected with a temperature gradient of 1000A degrees C to 100A degrees C. Achieving 15% overall STEG efficiency thus requires an absorber efficiency above 85%, and we consider two methods to achieve this: solar-selective absorbers and thermally insulating cavities. When the TEG and absorber subsystem models are combined, we expect that the STEG modeled here could achieve 15% efficiency with optical concentration between 250 and 300 suns.

  16. High Temperature Interactions of Antimony with Nickel

    SciTech Connect (OSTI)

    Marina, Olga A.; Pederson, Larry R.

    2012-07-01

    In this chapter, the surface and bulk interactions of antimony with the Ni-based anodes in solid oxide fuel cells (SOFC) will be discussed. High fuel flexibility is a significant advantage of SOFCs, allowing the direct use of fossil and bio fuels without a hydrogen separation unit. Synthesis gas derived from coal and biomass consists of a mixture of hydrogen, carbon monoxide, carbon dioxide, and steam, but finite amounts of tars and trace impurities such as S, Se, P, As, Sb, Cd, Pb, Cl, etc, are also always present. While synthesis gas is commonly treated with a series of chemical processes and scrubbers to remove the impurities, complete purification is not economical. Antimony is widely distributed in coals. During coal gasification antimony is volatilized, such that contact with the SOFC anodes and other SOFC parts, e.g., interconnect, current collecting wires, fuel gas supplying tubing, is most likely. This chapter addresses the following topics: high temperature Ni - Sb interactions; alteration phase, Ni3Sb, Ni5Sb2, NiSb, formation; thermochemical modeling; impact of Sb on the electrocatalytic activity of Ni toward the fuel oxidation and the presence of other impurities (sulfur, in particular); converted anode structural instability during long-term SOFC operation; comparison with nickel heterogeneous catalysts.

  17. Refractory thermowell for continuous high temperature measurement of molten metal

    DOE Patents [OSTI]

    Thiesen, Todd J.

    1992-01-01

    An apparatus for the continuous high temperature measurement of materials in vessels lined with rammed or cast refractory materials. A refractory housing member is integral with the refractory lining of the vessel and contains a plurality of high temperature sensing means, such as thermocouples. A face of the housing is flush with the refractory lining and contacts the high temperature material contained in the vessel. Continuous temperature measurement is achieved by a means which is coupled to the thermocouples for indicating the temperature.

  18. High Temperature Polymer Membrane Development at Argonne National

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Laboratory | Department of Energy Temperature Polymer Membrane Development at Argonne National Laboratory High Temperature Polymer Membrane Development at Argonne National Laboratory Summary of ANL's high temperature polymer membrane work presented to the High Temperature Membrane Working Group Meeting, Orlando FL, October 17, 2003 membrane_wrk_grp_mt.pdf (587.66 KB) More Documents & Publications Polyphenylene Sulfonic Acid: a new PEM Higher Temperature PEM Composite Systems for Fuel

  19. Entropy localization and extensivity in the semiclassical black hole evaporation

    SciTech Connect (OSTI)

    Casini, H.

    2009-01-15

    I aim to quantify the distribution of information in the Hawking radiation and inside the black hole in the semiclassical evaporation process. The structure of relativistic quantum field theory does not allow one to define a localized entropy unambiguously, but rather forces one to consider the shared information (mutual information) between two different regions of space-time. Using this tool, I first show that the entropy of a thermal gas at the Unruh temperature underestimates the actual amount of (shared) information present in a region of the Rindler space. Then, I analyze the mutual information between the black hole and the late time radiation region. A well-known property of the entropy implies that this is monotonically increasing with time. This means that in the semiclassical picture it is not possible to recover the eventual purity of the initial state in the final Hawking radiation through subtle correlations established during the whole evaporation period, no matter the interactions present in the theory. I find extensivity of the entropy as a consequence of a reduction to a two dimensional conformal problem in a simple approximation. However, the extensivity of information in the radiation region in a full four dimensional calculation seems not to be guaranteed on general grounds. I also analyze the localization of shared information inside the black hole finding that a large amount of it is contained in a small, approximately flat region of space-time near the point where the horizon begins. This gives place to large violations of the entropy bounds. I show that this problem is not eased by backscattering effects and argue that a breaking of conformal invariance is necessary to delocalize the entropy. Finally, I indicate that the mutual information could lead to a way to understand the Bekenstein-Hawking black hole entropy which does not require a drastic reduction in degrees of freedom in order to regulate the entanglement entropy. On the contrary

  20. Vehicle Technologies Office Merit Review 2015: High Temperature Materials

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    for High Efficiency Engines | Department of Energy High Temperature Materials for High Efficiency Engines Vehicle Technologies Office Merit Review 2015: High Temperature Materials for High Efficiency Engines Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high temperature materials for high efficiency engines. pm053_muralidharan_2015_o.pdf (1.51 MB) More

  1. High temperature thermoelectric properties of the solid-solution...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: High temperature thermoelectric properties of the solid-solution zintl phase EuCd6-xZnxSb Citation Details In-Document Search Title: High temperature ...

  2. Hydrogen permeation behavior through F82H at high temperature...

    Office of Scientific and Technical Information (OSTI)

    Hydrogen permeation behavior through F82H at high temperature Citation Details In-Document Search Title: Hydrogen permeation behavior through F82H at high temperature F82H is a ...

  3. CARISMA: A Networking Project for High Temperature PEMFC MEA...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    This presentation on high temperature proton exchange membrane fuel cells was given at the High Temperature Membrane Working Group Meeting in May 2007. htmwgcarisma.pdf (1.44 MB) ...

  4. Minutes of the High Temperature Membrane Working Group Meeting...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Minutes of the High Temperature Membrane Working Group Meeting, Monday, May 18, 2009 Summary of the meeting on Monday, May 18, 2009, for the High Temperature Membrane Working Group ...

  5. Development of a 100-Watt High Temperature Thermoelectric Generator

    Energy.gov [DOE]

    Test results for low and high temperature thermoelectric generators (TEG) those for a 530-watt BiTe TEG; design and construction of a 100-watt high temperature TEG currently in fabrication.

  6. Development of a High-Temperature Diagnostics-While-Drilling...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Development of a High-Temperature Diagnostics-While-Drilling Tool Development of a High-Temperature Diagnostics-While-Drilling Tool This report documents work performed in the ...

  7. Atomic processes in high temperature plasmas

    SciTech Connect (OSTI)

    Hahn, Y.

    1991-07-01

    This is the final report on the project Atomic Processes in High Temperature Plasmas', which has been completed in June 30, 1991. The original contract started in 1978. The dielectronic recombination (DR) rate coefficients were calculated for ions with the number of electrons N = 1, 2, 3, 4, 5, 10, 11, and 12. The result was then used to construct a new and improved rate formula. Other important resonant processes, which are closely related to DR, were also studied to interpret experiments and to test the DR theory. The plasma field and the density effects on the rate coefficients was found to be important, and a consistent correction procedure is being developed. The available data on the DR rates and their accuracy do not yet fully meet the requirement for plasma modeling; there are serious gaps in the available data, and the currently adopted theoretical procedure needs improvements. Critical assessment of the current status of the DR problem is presented, and possible future work needed is summarized.

  8. Austenitic stainless steel for high temperature applications

    DOE Patents [OSTI]

    Johnson, Gerald D.; Powell, Roger W.

    1985-01-01

    This invention describes a composition for an austenitic stainless steel which has been found to exhibit improved high temperature stress rupture properties. The composition of this alloy is about (in wt. %): 12.5 to 14.5 Cr; 14.5 to 16.5 Ni; 1.5 to 2.5 Mo; 1.5 to 2.5 Mn; 0.1 to 0.4 Ti; 0.02 to 0.08 C; 0.5 to 1.0 Si; 0.01 maximum, N; 0.02 to 0.08 P; 0.002 to 0.008 B; 0.004-0.010 S; 0.02-0.05 Nb; 0.01-0.05 V; 0.005-0.02 Ta; 0.02-0.05 Al; 0.01-0.04 Cu; 0.02-0.05 Co; 0.03 maximum, As; 0.01 maximum, O; 0.01 maximum, Zr; and with the balance of the alloy being essentially iron. The carbon content of the alloy is adjusted such that wt. % Ti/(wt. % C+wt. % N) is between 4 and 6, and most preferably about 5. In addition the sum of the wt. % P+wt. % B+wt. % S is at least 0.03 wt. %. This alloy is believed to be particularly well suited for use as fast breeder reactor fuel element cladding.

  9. High performance internal reforming unit for high temperature fuel cells

    DOE Patents [OSTI]

    Ma, Zhiwen; Venkataraman, Ramakrishnan; Novacco, Lawrence J.

    2008-10-07

    A fuel reformer having an enclosure with first and second opposing surfaces, a sidewall connecting the first and second opposing surfaces and an inlet port and an outlet port in the sidewall. A plate assembly supporting a catalyst and baffles are also disposed in the enclosure. A main baffle extends into the enclosure from a point of the sidewall between the inlet and outlet ports. The main baffle cooperates with the enclosure and the plate assembly to establish a path for the flow of fuel gas through the reformer from the inlet port to the outlet port. At least a first directing baffle extends in the enclosure from one of the sidewall and the main baffle and cooperates with the plate assembly and the enclosure to alter the gas flow path. Desired graded catalyst loading pattern has been defined for optimized thermal management for the internal reforming high temperature fuel cells so as to achieve high cell performance.

  10. A Discussion of Conductivity Testing in High Temperature Membranes (lessons

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    learned in assessing transport) | Department of Energy of Conductivity Testing in High Temperature Membranes (lessons learned in assessing transport) A Discussion of Conductivity Testing in High Temperature Membranes (lessons learned in assessing transport) Presentation on conductivity testing in high temperature membranes given by Jim Boncella of Los Alamos National Laboratory at the High Temperature Membrane Working Group meeting in October 2005. htmwg05_boncella.pdf (567.61 KB) More

  11. Enhanced High Temperature Performance of NOx Storage/Reduction (NSR)

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Materials | Department of Energy Enhanced High Temperature Performance of NOx Storage/Reduction (NSR) Materials Enhanced High Temperature Performance of NOx Storage/Reduction (NSR) Materials 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting ace026_peden_2012_o.pdf (2.2 MB) More Documents & Publications Enhanced High and Low Temperature Performance of NOx Reduction Materials Enhanced High Temperature Performance of

  12. 2006 DOE Hydrogen Program Dimensionally Stable High Temperature Membranes |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Dimensionally Stable High Temperature Membranes 2006 DOE Hydrogen Program Dimensionally Stable High Temperature Membranes A presentation to the High Temperature Membranes Working Group meeting, May 19, 2006. mittelsteadt.pdf (843.4 KB) More Documents & Publications High Temperature Membrane Working Group, Minutes of Meeting on September 14, 2006 Measuring Physical Properties of Polymer Electrolyte Membranes Membrane Performance and Durability Overview for Automotive

  13. Hydrogen Production from Nuclear Energy via High Temperature Electrolysis

    SciTech Connect (OSTI)

    James E. O'Brien; Carl M. Stoots; J. Stephen Herring; Grant L. Hawkes

    2006-04-01

    This paper presents the technical case for high-temperature nuclear hydrogen production. A general thermodynamic analysis of hydrogen production based on high-temperature thermal water splitting processes is presented. Specific details of hydrogen production based on high-temperature electrolysis are also provided, including results of recent experiments performed at the Idaho National Laboratory. Based on these results, high-temperature electrolysis appears to be a promising technology for efficient large-scale hydrogen production.

  14. Minutes of the High Temperature Membrane Working Group Meeting | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Meeting Minutes of the High Temperature Membrane Working Group Meeting High Temperature Membrane Working Group members meet October 10, 2007 in Washington, DC. minutes_of_htmwg_mtg.pdf (92.47 KB) More Documents & Publications High Temperature Membrane Working Group Meeting (HTWGM) Agenda Strategy for Aging Tests of Fuel Cell Membranes (Presentation) CARISMA: A Networking Project for High Temperature PEMFC MEA Activities in Europe

  15. NanoCapillary Network Proton Conducting Membranes for High Temperature

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Hydrogen/Air Fuel Cells | Department of Energy NanoCapillary Network Proton Conducting Membranes for High Temperature Hydrogen/Air Fuel Cells NanoCapillary Network Proton Conducting Membranes for High Temperature Hydrogen/Air Fuel Cells A presentation to the High Temperature Membranes Working Group meeting, May 19, 2006. pintauro.pdf (276.25 KB) More Documents & Publications High Temperature Membrane Working Group Vehicle Technologies Office Merit Review 2016: Li-Ion Battery Anodes from

  16. High Temperature Membrane Working Group Meeting (HTWGM) Agenda | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Meeting (HTWGM) Agenda High Temperature Membrane Working Group Meeting (HTWGM) Agenda Preliminary agenda for the October 10 meeting of the High Temperature Membrane Working Group htwmg_oct07_agenda.pdf (11.24 KB) More Documents & Publications Strategy for Aging Tests of Fuel Cell Membranes (Presentation) Agenda of the High Temperature Membrane Working Group Meeting, Monday, June 9, 2008 Preliminary Agenda: October 2008 High Temperature Membrane Working Group Meeting

  17. High Temperature Membrane with HUmidification-Independent Cluster Structure

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    | Department of Energy with HUmidification-Independent Cluster Structure High Temperature Membrane with HUmidification-Independent Cluster Structure A presentation to the High Temperature Membranes Working Group meeting, May 19, 2006. lipp.pdf (132.46 KB) More Documents & Publications High Temperature Membrane Working Group New Proton Conductive Composit Materials with Co-continuous Phases Using Functionalized and Crosslinkable TFE/VDF Fluoropolymers High temperature membranes for DMFC

  18. High Temperature Polymer Capacitor Dielectric Films | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Temperature Polymer Capacitor Dielectric Films High Temperature Polymer Capacitor Dielectric Films 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting ape009_dirk_2012_o.pdf (2.28 MB) More Documents & Publications High Temperature Polymer Capacitor Dielectric Films High Temperature Polymer Capacitor Dielectric Films Vehicle Technologies Office Merit Review 2014: High Performance DC Bus Film Capacitor

  19. High Temperature/Low Humidity Polymer Electrolytes Derived from Ionic

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Liquids | Department of Energy High Temperature/Low Humidity Polymer Electrolytes Derived from Ionic Liquids High Temperature/Low Humidity Polymer Electrolytes Derived from Ionic Liquids Presentation on High Temperature/Low Humidity Polymer Electrolytes Derived from Ionic Liquids to the High Temperature Membrane Working Group Meeting held in Arlington, Virginia, May 26,2005. htmwg05_pivovar.pdf (396.97 KB) More Documents & Publications New Polymeric Proton Conductors for Water-free and

  20. High-Temperature Falling-Particle Receiver | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    High-Temperature Falling-Particle Receiver High-Temperature Falling-Particle Receiver This fact sheet summarizes the Sandia National Laboratories (SNL) project for the DOE Solar Program through the 2012 SunShot Concentrating Solar Power R&D awards. 55460.pdf (478.53 KB) More Documents & Publications High-Temperature Falling-Particle Receiver - FY13 Q2 High-Temperature Falling-Particle Receiver - FY13 Q3 SunShot Solar Projects Download

  1. High Temperature Membrane Working Group Minutes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Meeting minutes from the May 14, 2007 meeting of the High Temperature Membrane Working Group. htmwg_minutes_may07.pdf (309.75 KB) More Documents & Publications High Temperature Membrane Working Group Meeting, May 14, 2007 In Plane Conductivity Testing, BekkTech LLC High Temperature Membrane Working Group

  2. High Temperature Membrane Working Group Minutes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Minutes from the High Temperature Membrane Working Group May 19, 2006 meeting. htwg_minutes_051906.pdf (14.47 KB) More Documents & Publications Discussion Overview High Temperature Membrane Working Group, Minutes of Meeting on September 14, 2006 Minutes of the High Temperature Membrane Working Group Meeting, Monday, May 18, 2009

  3. High Temperature Membrane Working Group | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Group High Temperature Membrane Working Group This presentation provides an overview of the High Temperature Membrane Working Group Meeting in May 2007. htmwg_kopasz_intro.pdf (305.34 KB) More Documents & Publications HTMWG, May 18, 2009, Welcome! Universal Membrane Classification Scheme: Maximizing the Return on High Temperature PEM Membrane Research Membranes and MEAs for Dry, Hot Operating Conditions

  4. Casimir energy and entropy in the sphere-sphere geometry

    SciTech Connect (OSTI)

    Rodriguez-Lopez, Pablo

    2011-08-15

    We calculate the Casimir energy and entropy for two spheres described by the perfect-metal model, plasma model, and Drude model in the large-separation limit. We obtain nonmonotonic behavior of the Helmholtz free energy as a function of separation and temperature for the perfect-metal and plasma models, leading to parameter ranges with negative entropy, and also we obtain nonmonotonic behavior of the entropy as a function of temperature and the separation between the spheres. This nonmonotonic behavior has not been found for the Drude model. The appearance of this anomalous behavior of the entropy as well as its thermodynamic consequences are discussed.

  5. Alternative Refrigerant Evaluation for High-Ambient-Temperature

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Environments | Department of Energy Alternative Refrigerant Evaluation for High-Ambient-Temperature Environments Alternative Refrigerant Evaluation for High-Ambient-Temperature Environments Performance of alternative refrigerants compared with R-22 (mineral oil) at extreme test conditions (outdoor temperature 55°C and indoor temperature 29°C). Image: ORNL. Performance of alternative refrigerants compared with R-22 (mineral oil) at extreme test conditions (outdoor temperature 55°C and

  6. Low-Temperature Combustion Demonstrator for High-Efficiency Clean...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    for High-Efficiency Clean Combustion Low-Temperature Combustion Demonstrator for High-Efficiency Clean Combustion 2010 DOE Vehicle Technologies and Hydrogen Programs Annual...

  7. High-Temperature, Air-Cooled Traction Drive Inverter Packaging...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    More Documents & Publications Air-Cooled Traction Drive Inverter Benchmarking of Competitive Technologies High Temperature, High Voltage Fully Integrated Gate Driver Circuit

  8. Cedarville Elementary & High School Space Heating Low Temperature...

    Open Energy Information (Open El) [EERE & EIA]

    Cedarville Elementary & High School Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Cedarville Elementary & High School Space Heating Low...

  9. Ultra-High Temperature Distributed Wireless Sensors

    SciTech Connect (OSTI)

    May, Russell; Rumpf, Raymond; Coggin, John; Davis, Williams; Yang, Taeyoung; O'Donnell, Alan; Bresnahan, Peter

    2013-03-31

    Research was conducted towards the development of a passive wireless sensor for measurement of temperature in coal gasifiers and coal-fired boiler plants. Approaches investigated included metamaterial sensors based on guided mode resonance filters, and temperature-sensitive antennas that modulate the frequency of incident radio waves as they are re-radiated by the antenna. In the guided mode resonant filter metamaterial approach, temperature is encoded as changes in the sharpness of the filter response, which changes with temperature because the dielectric loss of the guided mode resonance filter is temperature-dependent. In the mechanically modulated antenna approach, the resonant frequency of a vibrating cantilever beam attached to the antenna changes with temperature. The vibration of the beam perturbs the electrical impedance of the antenna, so that incident radio waves are phase modulated at a frequency equal to the resonant frequency of the vibrating beam. Since the beam resonant frequency depends on temperature, a Doppler radar can be used to remotely measure the temperature of the antenna. Laboratory testing of the guided mode resonance filter failed to produce the spectral response predicted by simulations. It was concluded that the spectral response was dominated by spectral reflections of radio waves incident on the filter. Laboratory testing of the mechanically modulated antenna demonstrated that the device frequency shifted incident radio waves, and that the frequency of the re-radiated waves varied linearly with temperature. Radio wave propagation tests in the convection pass of a small research boiler plant identified a spectral window between 10 and 13 GHz for low loss propagation of radio waves in the interior of the boiler.

  10. NOvel Refractory Materials for High Alkali, High Temperature Environments

    SciTech Connect (OSTI)

    Hemrick, J.G.; Griffin, R.

    2011-08-30

    Refractory materials can be limited in their application by many factors including chemical reactions between the service environment and the refractory material, mechanical degradation of the refractory material by the service environment, temperature limitations on the use of a particular refractory material, and the inability to install or repair the refractory material in a cost effective manner or while the vessel was in service. The objective of this project was to address the need for new innovative refractory compositions by developing a family of novel MgO-Al2O3 spinel or other similar magnesia/alumina containing unshaped refractory composition (castables, gunnables, shotcretes, etc) utilizing new aggregate materials, bond systems, protective coatings, and phase formation techniques (in-situ phase formation, altered conversion temperatures, accelerated reactions, etc). This family of refractory compositions would then be tailored for use in high-temperature, highalkaline industrial environments like those found in the aluminum, chemical, forest products, glass, and steel industries. A research team was formed to carry out the proposed work led by Oak Ridge National Laboratory (ORNL) and was comprised of the academic institution Missouri University of Science and Technology (MS&T), and the industrial company MINTEQ International, Inc. (MINTEQ), along with representatives from the aluminum, chemical, glass, and forest products industries. The two goals of this project were to produce novel refractory compositions which will allow for improved energy efficiency and to develop new refractory application techniques which would improve the speed of installation. Also methods of hot installation were sought which would allow for hot repairs and on-line maintenance leading to reduced process downtimes and eliminating the need to cool and reheat process vessels.

  11. High temperature, minimally invasive optical sensing modules

    DOE Patents [OSTI]

    Riza, Nabeel Agha; Perez, Frank

    2008-02-05

    A remote temperature sensing system includes a light source selectively producing light at two different wavelengths and a sensor device having an optical path length that varies as a function of temperature. The sensor receives light emitted by the light source and redirects the light along the optical path length. The system also includes a detector receiving redirected light from the sensor device and generating respective signals indicative of respective intensities of received redirected light corresponding to respective wavelengths of light emitted by the light source. The system also includes a processor processing the signals generated by the detector to calculate a temperature of the device.

  12. High temperature pressurized high frequency testing rig and test method

    DOE Patents [OSTI]

    De La Cruz, Jose; Lacey, Paul

    2003-04-15

    An apparatus is described which permits the lubricity of fuel compositions at or near temperatures and pressures experienced by compression ignition fuel injector components during operation in a running engine. The apparatus consists of means to apply a measured force between two surfaces and oscillate them at high frequency while wetted with a sample of the fuel composition heated to an operator selected temperature. Provision is made to permit operation at or near the flash point of the fuel compositions. Additionally a method of using the subject apparatus to simulate ASTM Testing Method D6079 is disclosed, said method involving using the disclosed apparatus to contact the faces of prepared workpieces under a measured load, sealing the workface contact point into the disclosed apparatus while immersing said contact point between said workfaces in a lubricating media to be tested, pressurizing and heating the chamber and thereby the fluid and workfaces therewithin, using the disclosed apparatus to impart a differential linear motion between the workpieces at their contact point until a measurable scar is imparted to at least one workpiece workface, and then evaluating the workface scar.

  13. Design of High Field Solenoids made of High Temperature Superconductors

    SciTech Connect (OSTI)

    Bartalesi, Antonio; /Pisa U.

    2010-12-01

    This thesis starts from the analytical mechanical analysis of a superconducting solenoid, loaded by self generated Lorentz forces. Also, a finite element model is proposed and verified with the analytical results. To study the anisotropic behavior of a coil made by layers of superconductor and insulation, a finite element meso-mechanic model is proposed and designed. The resulting material properties are then used in the main solenoid analysis. In parallel, design work is performed as well: an existing Insert Test Facility (ITF) is adapted and structurally verified to support a coil made of YBa{sub 2}Cu{sub 3}O{sub 7}, a High Temperature Superconductor (HTS). Finally, a technological winding process was proposed and the required tooling is designed.

  14. The Holographic Entropy Cone

    SciTech Connect (OSTI)

    Bao, Ning; Nezami, Sepehr; Ooguri, Hirosi; Stoica, Bogdan; Sully, James; Walter, Michael

    2015-09-21

    We initiate a systematic enumeration and classification of entropy inequalities satisfied by the Ryu-Takayanagi formula for conformal field theory states with smooth holographic dual geometries. For 2, 3, and 4 regions, we prove that the strong subadditivity and the monogamy of mutual information give the complete set of inequalities. This is in contrast to the situation for generic quantum systems, where a complete set of entropy inequalities is not known for 4 or more regions. We also find an infinite new family of inequalities applicable to 5 or more regions. The set of all holographic entropy inequalities bounds the phase space of Ryu-Takayanagi entropies, defining the holographic entropy cone. We characterize this entropy cone by reducing geometries to minimal graph models that encode the possible cutting and gluing relations of minimal surfaces. We find that, for a fixed number of regions, there are only finitely many independent entropy inequalities. To establish new holographic entropy inequalities, we introduce a combinatorial proof technique that may also be of independent interest in Riemannian geometry and graph theory.

  15. The Holographic Entropy Cone

    DOE PAGES-Beta [OSTI]

    Bao, Ning; Nezami, Sepehr; Ooguri, Hirosi; Stoica, Bogdan; Sully, James; Walter, Michael

    2015-09-21

    We initiate a systematic enumeration and classification of entropy inequalities satisfied by the Ryu-Takayanagi formula for conformal field theory states with smooth holographic dual geometries. For 2, 3, and 4 regions, we prove that the strong subadditivity and the monogamy of mutual information give the complete set of inequalities. This is in contrast to the situation for generic quantum systems, where a complete set of entropy inequalities is not known for 4 or more regions. We also find an infinite new family of inequalities applicable to 5 or more regions. The set of all holographic entropy inequalities bounds the phasemore » space of Ryu-Takayanagi entropies, defining the holographic entropy cone. We characterize this entropy cone by reducing geometries to minimal graph models that encode the possible cutting and gluing relations of minimal surfaces. We find that, for a fixed number of regions, there are only finitely many independent entropy inequalities. To establish new holographic entropy inequalities, we introduce a combinatorial proof technique that may also be of independent interest in Riemannian geometry and graph theory.« less

  16. High Temperature Optical Gas Sensing - Energy Innovation Portal

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    High Temperature Optical Gas Sensing Optical sensors integrated with advanced sensing materials for high temperature embedded gas sensing National Energy Technology Laboratory Contact NETL About This Technology Publications: PDF Document Publication Partnership Opportunity Notice for High Temperature Optical Gas Sensing (366 KB) Technology Marketing Summary This series of inventions addresses harsh environment sensing at temperatures above approximately 400-500oC using novel sensing materials

  17. High temperature membranes for DMFC (and PEFC) applications | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy temperature membranes for DMFC (and PEFC) applications High temperature membranes for DMFC (and PEFC) applications Presentation on High temperature membranes for DMFCs (and PEFCs) to the High Temperature Membrane Working Group, May 25, 2004 in Philadelphia, PA. italy_philadelphia.pdf (646.9 KB) More Documents & Publications Introduction to DMFCs - Advanced Materials and Concepts for Portable Power Fuel Cells Advanced Materials and Concepts for Portable Power Fuel Cells

  18. NOVEL REFRACTORY MATERIALS FOR HIGH ALKALI, HIGH TEMPERATURE ENVIRONMENTS

    SciTech Connect (OSTI)

    Hemrick, James Gordon; Smith, Jeffrey D; O'Hara, Kelley; Rodrigues-Schroer, Angela; Colavito,

    2012-08-01

    A project was led by Oak Ridge National Laboratory (ORNL) in collaboration with a research team comprised of the academic institution Missouri University of Science and Technology (MS&T), and the industrial company MINTEQ International, Inc. (MINTEQ), along with representatives from the aluminum, chemical, glass, and forest products industries. The project was to address the need for new innovative refractory compositions by developing a family of novel MgO-Al 2O3, MgAl2O4, or other similar spinel structured or alumina-based unshaped refractory compositions (castables, gunnables, shotcretes, etc.) utilizing new aggregate materials, bond systems, protective coatings, and phase formation techniques (in-situ phase formation, altered conversion temperatures, accelerated reactions, etc). This family of refractory compositions would then be tailored for use in high-temperature, high-alkaline industrial environments like those found in the aluminum, chemical, forest products, glass, and steel industries. Both practical refractory development experience and computer modeling techniques were used to aid in the design of this new family of materials. The newly developed materials were expected to offer alternative material choices for high-temperature, high-alkali environments that were capable of operating at higher temperatures (goal of increasing operating temperature by 100-200oC depending on process) or for longer periods of time (goal of twice the life span of current materials or next process determined service increment). This would lead to less process down time, greater energy efficiency for associated manufacturing processes (more heat kept in process), and materials that could be installed/repaired in a more efficient manner. The overall project goal was a 5% improvement in energy efficiency (brought about through a 20% improvement in thermal efficiency) resulting in a savings of 3.7 TBtu/yr (7.2 billion ft3 natural gas) by the year 2030. Additionally, new

  19. Metallic substrates for high temperature superconductors

    DOE Patents [OSTI]

    Truchan, Thomas G.; Miller, Dean J.; Goretta, Kenneth C.; Balachandran, Uthamalingam; Foley, Robert

    2002-01-01

    A biaxially textured face-centered cubic metal article having grain boundaries with misorientation angles greater than about 8.degree. limited to less than about 1%. A laminate article is also disclosed having a metal substrate first rolled to at least about 95% thickness reduction followed by a first annealing at a temperature less than about 375.degree. C. Then a second rolling operation of not greater than about 6% thickness reduction is provided, followed by a second annealing at a temperature greater than about 400.degree. C. A method of forming the metal and laminate articles is also disclosed.

  20. High temperature bias line stabilized current sources

    DOE Patents [OSTI]

    Patterson, R.B. III.

    1984-09-11

    A compensation device for the base of emitter follower configured bipolar transistors becoming operable at elevated temperatures including a bipolar transistor of a geometry of not more than half the geometry of the bipolar emitter follower having its collector connected to the base of the emitter follower and its base and emitter connected together and to the emitter of the emitter follower. 1 fig.

  1. High temperature bias line stabilized current sources

    DOE Patents [OSTI]

    Patterson, III, Raymond B.

    1984-01-01

    A compensation device for the base of emitter follower configured bipolar transistors becoming operable at elevated temperatures including a bipolar transistor of a geometry of not more than half the geometry of the bipolar emitter follower having its collector connected to the base of the emitter follower and its base and emitter connected together and to the emitter of the emitter follower.

  2. High temperature ceramic composition for hydrogen retention

    DOE Patents [OSTI]

    Webb, R.W.

    1974-01-01

    A ceramic coating for H retention in fuel elements is described. The coating has relatively low thermal neutron cross section, is not readily reduced by H at 1500 deg F, is adherent to the fuel element base metal, and is stable at reactor operating temperatures. (JRD)

  3. Feasibility and Design Studies for a High Temperature Downhole Tool |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Feasibility and Design Studies for a High Temperature Downhole Tool Feasibility and Design Studies for a High Temperature Downhole Tool Project objective: Perform feasibility and design studies for a high temperature downhole tool; which uses nuclear techniques for characterization purposes; using measurements and modeling/simulation. high_akkurt_ht_downhole_tool.pdf (822.11 KB) More Documents & Publications track 3: enhanced geothermal systems (EGS) | geothermal

  4. Particle-hole symmetry broken pseudogap in high temperature superconductors

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Particle-hole symmetry broken pseudogap in high temperature superconductors High-temperature (Tc) superconductivity is one of the most important topics in condensed matter physics. Despite extensive studies over more than two decades, the microscopic mechanism of high temperature superconductivity still remains elusive due to many unconventional properties that are not well understood. Among them, the most mysterious behavior of high-Tc superconductor is the nature of so called

  5. Nanocarbon synthesis by high-temperature oxidation of nanoparticles

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | DOE PAGES Nanocarbon synthesis by high-temperature oxidation of nanoparticles Title: Nanocarbon synthesis by high-temperature oxidation of nanoparticles High-temperature oxidation of silicon-carbide nanoparticles (nSiC) underlies a wide range of technologies from high-power electronic switches for efficient electrical grid and thermal protection of space vehicles to self-healing ceramic nanocomposites. Here, multimillion-atom reactive molecular dynamics simulations

  6. High Temperature Membrane Working Group Meeting Minutes | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Meeting Minutes High Temperature Membrane Working Group Meeting Minutes Minutes of the High Temperature Membrane Working Group Meeting held Oct. 14, 2010, in Las Vegas, NV high_temp_oct_2010_meeting.pdf (71.86 KB) More Documents & Publications Some durability considerations for proton exchange membranes Agenda for the High Temperature Membrane Working Group Meeting Progress and Status on Through-Plane Resistance and Conductivity Measurement of Fuel Cell Membranes

  7. Enhanced Superconducting Gaps in Trilayer High-Temperature Bi...

    Office of Scientific and Technical Information (OSTI)

    ...-Temperature Bi (2) Sr (2) Ca (2) Cu (3) O (10+delta) Cuprate Superconductor Citation Details In-Document Search Title: Enhanced Superconducting Gaps in Trilayer High-Temperature ...

  8. Cryogenic deformation of high temperature superconductive composite structures

    DOE Patents [OSTI]

    Roberts, Peter R.; Michels, William; Bingert, John F.

    2001-01-01

    An improvement in a process of preparing a composite high temperature oxide superconductive wire is provided and involves conducting at least one cross-sectional reduction step in the processing preparation of the wire at sub-ambient temperatures.

  9. High temperature expanding cement composition and use

    DOE Patents [OSTI]

    Nelson, Erik B.; Eilers, Louis H.

    1982-01-01

    A hydratable cement composition useful for preparing a pectolite-containing expanding cement at temperatures above about 150.degree. C. comprising a water soluble sodium salt of a weak acid, a 0.1 molar aqueous solution of which salt has a pH of between about 7.5 and about 11.5, a calcium source, and a silicon source, where the atomic ratio of sodium to calcium to silicon ranges from about 0.3:0.6:1 to about 0.03:1:1; aqueous slurries prepared therefrom and the use of such slurries for plugging subterranean cavities at a temperature of at least about 150.degree. C. The invention composition is useful for preparing a pectolite-containing expansive cement having about 0.2 to about 2 percent expansion, by volume, when cured at at least 150.degree. C.

  10. Surface modification of high temperature iron alloys

    DOE Patents [OSTI]

    Park, J.H.

    1995-06-06

    A method and article of manufacture of a coated iron based alloy are disclosed. The method includes providing an iron based alloy substrate, depositing a silicon containing layer on the alloy surface while maintaining the alloy at a temperature of about 700--1200 C to diffuse silicon into the alloy surface and exposing the alloy surface to an ammonia atmosphere to form a silicon/oxygen/nitrogen containing protective layer on the iron based alloy. 13 figs.

  11. High temperature desulfurization of synthesis gas

    DOE Patents [OSTI]

    Najjar, Mitri S.; Robin, Allen M.

    1989-01-01

    The hot process gas stream from the partial oxidation of sulfur-containing heavy liquid hydrocarbonaceous fuel and/or sulfur-containing solid carbonaceous fuel comprising gaseous mixtures of H.sub.2 +CO, sulfur-containing gases, entrained particulate carbon, and molten slag is passed through the unobstructed central passage of a radiant cooler where the temperature is reduced to a temperature in the range of about 1800.degree. F. to 1200.degree. F. From about 0 to 95 wt. % of the molten slag and/or entrained material may be removed from the hot process gas stream prior to the radiant cooler with substantially no reduction in temperature of the process gas stream. In the radiant cooler, after substantially all of the molten slag has solidified, the sulfur-containing gases are contacted with a calcium-containing material to produce calcium sulfide. A partially cooled stream of synthesis gas, reducing gas, or fuel gas containing entrained calcium sulfide particulate matter, particulate carbon, and solidified slag leaves the radiant cooler containing a greatly reduced amount of sulfur-containing gases.

  12. Rotational viscometer for high-pressure high-temperature fluids

    DOE Patents [OSTI]

    Carr, Kenneth R.

    1985-01-01

    The invention is a novel rotational viscometer which is well adapted for use with fluids at high temperatures and/or pressures. In one embodiment, the viscometer includes a substantially non-magnetic tube having a closed end and having an open end in communication with a fluid whose viscosity is to be determined. An annular drive magnet is mounted for rotation about the tube. The tube encompasses and supports a rotatable shaft assembly which carries a rotor, or bob, for insertion in the fluid. Affixed to the shaft are (a) a second magnet which is magnetically coupled to the drive magnet and (b) a third magnet. In a typical operation, the drive magnet is rotated to turn the shaft assembly while the shaft rotor is immersed in the fluid. The viscous drag on the rotor causes the shaft assembly to lag the rotation of the drive magnet by an amount which is a function of the amount of viscous drag. A first magnetic pickup generates a waveform whose phase is a function of the angular position of the drive magnet. A second magnetic pickup generates a waveform whose phase is a function of the angular position of the third magnet. An output is generated indicative of the phase difference between the two waveforms.

  13. Rotational viscometer for high-pressure, high-temperature fluids

    DOE Patents [OSTI]

    Carr, K.R.

    1983-06-06

    The invention is a novel rotational viscometer which is well adapted for use with fluids at high temperatures and/or pressures. In one embodiment, the viscometer include a substantially non-magnetic tube having a closed end and having an open end in communication with a fluid whose viscosity is to be determined. An annular drive magnet is mounted for rotation about the tube. The tube encompasses and supports a rotatable shaft assembly which carries a rotor, or bob, for insertion in the fluid. Affixed to the shaft are (a) a second magnet which is magnetically coupled to the drive magnet and (b) a third magnet. In a typical operation, the drive magnet is rotated to turn the shaft assembly while the shaft rotor is immersed in the fluid. The viscous drag on the rotor causes the shaft assembly to lag the rotation of the drive magnet by an amount which is a function of the amount of viscous drag. A first magnetic pickup generates a waveform whose phase is a function of the angular position of the drive magnet. A second magnetic pickup generates a waveform whose phase is a function of the angular position of the third magnet. Means are provided to generate an output indicative of the phase difference between the two waveforms. The viscometer is comparatively simple, inexpensive, rugged, and does not require shaft seals.

  14. A summary of high-temperature electronics research and development

    SciTech Connect (OSTI)

    Thome, F.V.; King, D.B.

    1991-10-18

    Current and future needs in automative, aircraft, space, military, and well logging industries require operation of electronics at higher temperatures than today's accepted limit of 395 K. Without the availability of high-temperature electronics, many systems must operate under derated conditions or must accept severe mass penalties required by coolant systems to maintain electronic temperatures below critical levels. This paper presents ongoing research and development in the electronics community to bring high-temperature electronics to commercial realization. Much of this work was recently reviewed at the First International High-Temperature Electronics Conference held 16--20 June 1991 in Albuquerque, New Mexico. 4 refs., 1 tab.

  15. Unusual Capacitance Emission Transients in CIGS Caused by Large Defect Entropy Changes

    SciTech Connect (OSTI)

    Young, D. L.; Ramanathan, K.; Crandall, R. S.

    2005-02-01

    Capacitance transient data from bias-pulse experiments on CdS/CIGS solar cells show an unusual behavior at high temperatures. Above 350 K, a minority-carrier trap, with a larger activation energy than a majority-carrier trap, emits faster than the lower activation-energy minority trap. A simple enthalpy model for trap emission cannot explain this counterintuitive behavior; but the more complete Gibbs free-energy model that includes entropy can explain it. We show that entropy plays a major role in carrier emission from traps in CIGS.

  16. ANALYSIS OF A HIGH TEMPERATURE GAS-COOLED REACTOR POWERED HIGH TEMPERATURE ELECTROLYSIS HYDROGEN PLANT

    SciTech Connect (OSTI)

    M. G. McKellar; E. A. Harvego; A. M. Gandrik

    2010-11-01

    An updated reference design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production has been developed. The HTE plant is powered by a high-temperature gas-cooled reactor (HTGR) whose configuration and operating conditions are based on the latest design parameters planned for the Next Generation Nuclear Plant (NGNP). The current HTGR reference design specifies a reactor power of 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 322°C and 750°C, respectively. The reactor heat is used to produce heat and electric power to the HTE plant. A Rankine steam cycle with a power conversion efficiency of 44.4% was used to provide the electric power. The electrolysis unit used to produce hydrogen includes 1.1 million cells with a per-cell active area of 225 cm2. The reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes a steam-sweep system to remove the excess oxygen that is evolved on the anode (oxygen) side of the electrolyzer. The overall system thermal-to-hydrogen production efficiency (based on the higher heating value of the produced hydrogen) is 42.8% at a hydrogen production rate of 1.85 kg/s (66 million SCFD) and an oxygen production rate of 14.6 kg/s (33 million SCFD). An economic analysis of this plant was performed with realistic financial and cost estimating The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a competitive cost. A cost of $3.03/kg of hydrogen was calculated assuming an internal rate of return of 10% and a debt to equity ratio of 80%/20% for a reactor cost of $2000/kWt and $2.41/kg of hydrogen for a reactor cost of $1400/kWt.

  17. Scaling Studies for High Temperature Test Facility and Modular High Temperature Gas-Cooled Reactor

    SciTech Connect (OSTI)

    Richard R. Schult; Paul D. Bayless; Richard W. Johnson; James R. Wolf; Brian Woods

    2012-02-01

    The Oregon State University (OSU) High Temperature Test Facility (HTTF) is an integral experimental facility that will be constructed on the OSU campus in Corvallis, Oregon. The HTTF project was initiated, by the U.S. Nuclear Regulatory Commission (NRC), on September 5, 2008 as Task 4 of the 5-year High Temperature Gas Reactor Cooperative Agreement via NRC Contract 04-08-138. Until August, 2010, when a DOE contract was initiated to fund additional capabilities for the HTTF project, all of the funding support for the HTTF was provided by the NRC via their cooperative agreement. The U.S. Department of Energy (DOE) began their involvement with the HTTF project in late 2009 via the Next Generation Nuclear Plant (NGNP) project. Because the NRC's interests in HTTF experiments were only centered on the depressurized conduction cooldown (DCC) scenario, NGNP involvement focused on expanding the experimental envelope of the HTTF to include steady-state operations and also the pressurized conduction cooldown (PCC).

  18. High Temperature Electrolysis for Efficient Hydrogen Production from Nuclear Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    High Temperature Electrolysis for Efficient Hydrogen Production from Nuclear Energy - INL Research Program Summary Jim O'Brien Idaho National Laboratory Electrolytic Hydrogen Production Workshop National Renewable Energy Laboratory Golden, CO February 27-28, 2014 NGNP/VHTR Concept for Large-Scale Centralized Nuclear Hydrogen Production based on High-Temperature Steam Electrolysis * Directly coupled to high-temperature gas-cooled reactor for electrical power and process heat * 600 MWth reactor

  19. Lead Research and Development Activity for High Temperature, Low Relative

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Humidity Membrane Program | Department of Energy Lead Research and Development Activity for High Temperature, Low Relative Humidity Membrane Program Lead Research and Development Activity for High Temperature, Low Relative Humidity Membrane Program A presentation to the High Temperature Membranes Working Group meeting, May 19, 2006. fenton.pdf (448.4 KB) More Documents & Publications Discussion Overview In Plane Conductivity Testing, BekkTech LLC Progress and Status on Through-Plane

  20. First high-temperature electronics products survey 2005.

    SciTech Connect (OSTI)

    Normann, Randy Allen

    2006-04-01

    On April 4-5, 2005, a High-Temperature Electronics Products Workshop was held. This workshop engaged a number of governmental and private industry organizations sharing a common interest in the development of commercially available, high-temperature electronics. One of the outcomes of this meeting was an agreement to conduct an industry survey of high-temperature applications. This report covers the basic results of this survey.

  1. 2006 High Temperature Membrane Working Group Meeting Archives | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy 6 High Temperature Membrane Working Group Meeting Archives 2006 High Temperature Membrane Working Group Meeting Archives View 2006 meeting presentations from the High Temperature Membrane Working Group. September 14, 2006, San Francisco, California Agenda Minutes Discussion Overview, James Fenton, University of Central Florida Membrane Performance and Durability Overview for Automotive Fuel Cell Applications, Tom Greszler, GM Measuring Physical Properties of Polymer Electrolyte

  2. 2007 High Temperature Membrane Working Group Meeting Archives | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy 7 High Temperature Membrane Working Group Meeting Archives 2007 High Temperature Membrane Working Group Meeting Archives View 2007 meeting presentations from the High Temperature Membrane Working Group. October 10, 2007, Washington, D.C. This meeting was held in conjunction with the Electrochemical Society's fall meeting. Meeting Agenda Meeting Minutes Structure and Dynamics of Polymer Nanocomposites by Grazing-Incidence X-Ray Techniques, Jin Wang, Argonne National Laboratory

  3. 2009 High Temperature Membrane Working Group Meeting Archives | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy 9 High Temperature Membrane Working Group Meeting Archives 2009 High Temperature Membrane Working Group Meeting Archives View information from meetings of the High Temperature Membrane Working Group held in 2009. November 16, 2009, Palm Springs, California This meeting was held in conjunction with the Fuel Cell Seminar. Minutes U.S. Fuel Cell Council: The Voice of the Fuel Cell Industry Membrane Requirements for Back-up Power Applications, Michael Hicks, IdaTech GenSys Blue: Fuel

  4. 2010 High Temperature Membrane Working Group Meeting Archives | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy 10 High Temperature Membrane Working Group Meeting Archives 2010 High Temperature Membrane Working Group Meeting Archives View information from meetings of the High Temperature Membrane Working Group held in 2010. October 14, 2010, Las Vegas, Nevada Minutes Continuum Modeling of Membrane Properties, Ahmet Kusoglu and Adam Z. Weber, Lawrence Berkeley National Laboratory Some Durability Considerations for Proton Exchange Membranes, Steven Hamrock, 3M Fuel Cell Components Program

  5. Minutes of the Fall 2009 High Temperature Membrane Working Group |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Fall 2009 High Temperature Membrane Working Group Minutes of the Fall 2009 High Temperature Membrane Working Group Minutes of the Fall 2009 High Temperature Membrane Working Group, November 16, 2009 htmwg_nov09_minutes.pdf (41.2 KB) More Documents & Publications GenSys Blue: Fuel Cell Heating Appliance 2009 Fuel Cell Market Report 2008 Fuel Cell Technologies Market Report

  6. New Membranes for High Temperature Proton Exchange Membrane Fuel Cells

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Based on Heteropoly Acids | Department of Energy High Temperature Proton Exchange Membrane Fuel Cells Based on Heteropoly Acids New Membranes for High Temperature Proton Exchange Membrane Fuel Cells Based on Heteropoly Acids "Summary of Colorado School of Mines heteropolyacid research presented to the High Temperature Membrane Working Group Meeting, Orlando FL, October 17, 2003 " htwgf_fall2003.pdf (4.98 MB) More Documents & Publications Novel Approaches to Immobilized

  7. New Polyelectrolyte Materials for High Temperature Fuel Cells | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Polyelectrolyte Materials for High Temperature Fuel Cells New Polyelectrolyte Materials for High Temperature Fuel Cells Part of a $100 million fuel cell award announced by DOE Secretary Bodman on Oct. 25, 2006. 1_lbnl.pdf (20.59 KB) More Documents & Publications Polyelectrolyte Materials for High Temperature Fuel Cells Nitrided Metallic Bipolar Plates Durable Low Cost Improved Fuel Cell Membranes

  8. Aerogel-Based Insulation for High-Temperature Industrial Processes

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Aerogel-Based Insulation for High-Temperature Industrial Processes Citation Details In-Document Search Title: Aerogel-Based Insulation for High-Temperature Industrial Processes Under this program, Aspen Aerogels has developed an industrial insulation called Pyrogel HT, which is 4-5 times more thermally efficient than current non-aerogel technology. Derived from nanoporous silica aerogels, Pyrogel HT was specifically developed to address a high temperature

  9. High temperature interfacial superconductivity (Patent) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Patent: High temperature interfacial superconductivity Citation Details In-Document Search Title: High temperature interfacial superconductivity High-temperature superconductivity confined to nanometer-scale interfaces has been a long standing goal because of potential applications in electronic devices. The spontaneous formation of a superconducting interface in bilayers consisting of an insulator (La.sub.2CuO.sub.4) and a metal (La.sub.1-xSr.sub.xCuO.sub.4), neither of which is superconducting

  10. High Temperature Membrane Working Group, Minutes of Meeting on September

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    14, 2006 | Department of Energy Group, Minutes of Meeting on September 14, 2006 High Temperature Membrane Working Group, Minutes of Meeting on September 14, 2006 These meeting minutes provide information about the High Temperature Membrane Working Group meeting on September 14, 2006 in San Francisco, Ca. htmwg_sept06_minutes.pdf (205.28 KB) More Documents & Publications Membrane Performance and Durability Overview for Automotive Fuel Cell Applications Discussion Overview High Temperature

  11. Gallium Oxide Nanostructures for High Temperature Sensors

    SciTech Connect (OSTI)

    Chintalapalle, Ramana V.

    2015-04-30

    Gallium oxide (Ga2O3) thin films were produced by sputter deposition by varying the substrate temperature (Ts) in a wide range (Ts=25-800 °C). The structural characteristics and electronic properties of Ga2O3 films were evaluated using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDS), Rutherford backscattering spectrometry (RBS) and spectrophotometric measurements. The effect of growth temperature is significant on the chemistry, crystal structure and morphology of Ga2O3 films. XRD and SEM analyses indicate that the Ga2O3 films grown at lower temperatures were amorphous while those grown at Ts≥500 oC were nanocrystalline. RBS measurements indicate the well-maintained stoichiometry of Ga2O3 films at Ts=300-800 °C. The electronic structure determination indicated that the nanocrystalline Ga2O3films exhibit a band gap of ~5 eV. Tungsten (W) incorporated Ga2O3 films were produced by co-sputter deposition. W-concentration was varied by the applied sputtering-power. No secondary phase formation was observed in W-incorporated Ga2O3 films. W-induced effects were significant on the structure and electronic properties of Ga2O3 films. The band gap of Ga2O3 films without W-incorporation was ~5 eV. Oxygen sensor characteristics evaluated using optical and electrical methods indicate a faster response in W-doped Ga2O3 films compared to intrinsic Ga2O3 films. The results demonstrate the applicability of both intrinsic and W-doped Ga-oxide films for oxygen sensor application at temperatures ≥700 °C.

  12. Apparatus for monitoring high temperature ultrasonic characterization

    DOE Patents [OSTI]

    Lanagan, Michael T.; Kupperman, David S.; Yaconi, George A.

    1998-01-01

    A method and an apparatus for nondestructive detecting and evaluating chas in the microstructural properties of a material by employing one or more magnetostrictive transducers linked to the material by means of one or more sonic signal conductors. The magnetostrictive transducer or transducers are connected to a pulser/receiver which in turn is connected to an oscilloscope. The oscilloscope is connected to a computer which employs an algorithm to evaluate changes in the velocity of a signal transmitted to the material sample as function of time and temperature.

  13. Apparatus for monitoring high temperature ultrasonic characterization

    DOE Patents [OSTI]

    Lanagan, M.T.; Kupperman, D.S.; Yaconi, G.A.

    1998-03-24

    A method and an apparatus for nondestructive detecting and evaluating changes in the microstructural properties of a material by employing one or more magnetostrictive transducers linked to the material by means of one or more sonic signal conductors. The magnetostrictive transducer or transducers are connected to a pulser/receiver which in turn is connected to an oscilloscope. The oscilloscope is connected to a computer which employs an algorithm to evaluate changes in the velocity of a signal transmitted to the material sample as function of time and temperature. 6 figs.

  14. High temperature solid oxide fuel development activities

    SciTech Connect (OSTI)

    Ray, E.R.

    1993-11-01

    This paper presents an overview of the Westinghouse tubular SOFC development activities and current program status. Goal is to develop a cell that can operate for 50,000 to 100,000 h. Test results are presented for multiple single cell tests which have now successfully exceeded 40,000 hours of continuous power operation at temperature. Two 25-kW SOFC customer tests units were delivered in 1992; a 20-kW SOFC system is bein manufactured and will be operated by Southern California Edison in 1995. Megawatt class generators are being developed.

  15. TEPIC - A New High Temperature Structural Foam

    SciTech Connect (OSTI)

    Whinner, L L; Goods, S H; Tootle, M L; Neuschwanger, C L

    1998-10-01

    The formulation, processing characteristics, microstructure and mechanical properties of a new structural foam, suitable for use at service temperatures up to 200 degrees C, are reported. In each of the respects, the foam is compared to an existing material, called APO-BMI that is currently in use. When these two foams are directly compared, the new foam, called TEPIC, is found to be superior in its mechanical performance. TEPIC is formulated from a non-carcinogenic isocyanate, a di-functional epoxide, and glass microballoons. Compared to APO-BMI processing, TEPIC processing is facile and economical.

  16. Aerogel-Based Insulation for High-Temperature Industrial Processes...

    Office of Scientific and Technical Information (OSTI)

    Aerogel-Based Insulation for High-Temperature Industrial Processes Dr. Owen Evans 32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION; COMPETITION; ENERGY CONSUMPTION; MARKET;...

  17. High Temperature Gas Reactors: Assessment of Applicable Codes...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: High Temperature Gas Reactors: Assessment of Applicable Codes and ... applicable to HTGR plants, the operating history of past and present HTGR plants, and with ...

  18. Apparatus for preventing high temperatures in a glazed solar collector

    DOE Patents [OSTI]

    Buckley, Bruce S.

    1979-01-01

    Venting the glazing (i.e., transparent cover) of a solar collector can be used to prevent the collector's absorber surface from reaching too high a temperature.

  19. High-Temperature Downhole Tools | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    and Analysis of Geothermal Technologies Albuquerque, NM 941,000 941,000 Feasibility and Design for a High-Temperature Downhole Tool Tennessee Oak Ridge National...

  20. Materials and Process Design for High-Temperature Carburizing...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Materials and Process Design for High-Temperature Carburizing Materials and Process Design ... Case hardening would enable major productivity gains in the forging, forming, and die ...

  1. Alternative Refrigerant Evaluation for High-Ambient-Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    The Oak Ridge National Laboratory High-Ambient-Temperature Evaluation Program for Low Global Warming Potential (Low-GWP) Refrigerants project was aimed to develop an understanding ...

  2. Metallic Composites Phase-Change Materials for High-Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Metallic Composites Phase-Change Materials for High-Temperature Thermal Energy Storage Metallic Composites ... This presentation was delivered at the SunShot Concentrating Solar ...

  3. Project Profile: Advanced High Temperature Trough Collector Developmen...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Project Profile: Advanced High Temperature Trough Collector Development Solar Millennium logo The Solar Millennium Group and its subsidiary Flagsol, under the CSP R&D FOA, are ...

  4. Microchannel High-Temperature Recuperator for Fuel Cell Systems

    SciTech Connect (OSTI)

    2010-02-01

    This factsheet describes a research project whose goal is to build an efficient, microchannel-based waste heat recuperator for a high-temperature fuel cell system.

  5. High Temperature Thin Film Polymer Dielectric Based Capacitors...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Thin Film Polymer Dielectric Based Capacitors for HEV Power Electronic Systems High Temperature Thin Film Polymer Dielectric Based Capacitors for HEV Power Electronic Systems 2009 ...

  6. Project Profile: High-Temperature Falling-Particle Receiver ...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Concentrating Solar Power Project Profile: High-Temperature Falling-Particle Receiver ... research that are in progress. SunShot Home About the SunShot Initiative Concentrating ...

  7. Development of a 100-Watt High Temperature Thermoelectric Generator...

    Energy.gov (indexed) [DOE]

    Test results for low and high temperature thermoelectric generators (TEG) those for a ... More Documents & Publications Status of Segmented Element Thermoelectric Generator for ...

  8. Development of a 500 Watt High Temperature Thermoelectric Generator...

    Energy.gov (indexed) [DOE]

    More Documents & Publications Development of a 100-Watt High Temperature Thermoelectric Generator Automotive Waste Heat Conversion to Power Program Automotive Waste Heat Conversion ...

  9. Low and high Temperature Dual Thermoelectric Generation Waste...

    Energy.gov (indexed) [DOE]

    Developing a low and high temperature dual thermoelectric generation waste heat recovery ... Development of Cost-Competitive Advanced Thermoelectric Generators for Direct Conversion ...

  10. Deep Burn: Development of Transuranic Fuel for High-Temperature...

    Office of Scientific and Technical Information (OSTI)

    discusses: (1) Core and Fuel Analysis; (2) Spent Fuel Management; (3) Fuel Cycle Integration of the HTR (high temperature helium-cooled reactor); (4) TRU (transuranic elements) ...

  11. Enhanced High Temperature Performance of NOx Storage/Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    (LNT) Materials Enhanced High Temperature Performance of NOx StorageReduction (NSR) Materials Deactivation Mechanisms of Base MetalZeolite Urea Selective Catalytic Reduction...

  12. High-Speed, Temperature Programmable Gas Chromatography Utilizing...

    Office of Scientific and Technical Information (OSTI)

    High-Speed, Temperature Programmable Gas Chromatography Utilizing a Microfabricated Chip ... Chromatography Utilizing a Microfabricated Chip with an Improved Carbon Nanotube ...

  13. Seeing Stripes: Competition and Complexity in High-Temperature...

    Office of Scientific and Technical Information (OSTI)

    Seeing Stripes: Competition and Complexity in High-Temperature Superconductors Citation Details In-Document Search Title: Seeing Stripes: Competition and Complexity in...

  14. Two Phase Transitions Make a High-Temperature Superconductor

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Two Phase Transitions Make a High-Temperature Superconductor Print Superconductivity-conceptually remarkable and practically revolutionary-is a quantum phenomenon in which bound...

  15. Detecting Fractures Using Technology at High Temperatures and...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fractures Using Technology at High Temperatures and Depths - Geothermal Ultrasonic Fracture Imager (GUFI); 2010 Geothermal Technology Program Peer Review Report Detecting Fractures ...

  16. High-Throughput Analytical Model to Evaluate Materials for Temperature...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    High-Throughput Analytical Model to Evaluate Materials for Temperature Swing Adsorption Processes Previous Next List mcontent.jpg Julian P. Sculley, Wolfgang M. Verdegaal, Weigang...

  17. 2006 DOE Hydrogen Program Dimensionally Stable High Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    More Documents & Publications High Temperature Membrane Working Group, Minutes of Meeting on September 14, 2006 Measuring Physical Properties of Polymer Electrolyte Membranes ...

  18. High Temperature Thermoelectric Materials | Department of Energy

    Energy.gov (indexed) [DOE]

    acep04elsner.pdf (3.07 MB) More Documents & Publications Quantum Well Thermoelectrics and Waste Heat Recovery High-Efficiency Quantum-Well Thermoelectrics for Waste Heat Power ...

  19. Hydrodynamic equations for electrons in graphene obtained from the maximum entropy principle

    SciTech Connect (OSTI)

    Barletti, Luigi

    2014-08-15

    The maximum entropy principle is applied to the formal derivation of isothermal, Euler-like equations for semiclassical fermions (electrons and holes) in graphene. After proving general mathematical properties of the equations so obtained, their asymptotic form corresponding to significant physical regimes is investigated. In particular, the diffusive regime, the Maxwell-Boltzmann regime (high temperature), the collimation regime and the degenerate gas limit (vanishing temperature) are considered.

  20. The high-pressure-high-temperature behavior of bassanite (Journal...

    Office of Scientific and Technical Information (OSTI)

    The room-temperature cell-volume data, from 0.001 to 33 GPa, were fitted to a third-order ... Sponsoring Org: USDOE Country of Publication: United States Language: ENGLISH Subject: 58 ...

  1. Preparation of thin film high temperature superconductors

    SciTech Connect (OSTI)

    VenKatesan, X.X.T.; Li, Q.; Findikoglu, A.; Hemmick, D. . Dept. of Physics); Wu, X.D. ); Inam, A.; Chang, C.C.; Ramesh, R.; Hwang, D.M.; Ravi, T.S.; Etemad, S.; Martinez, J.A.; Wilkens, B. )

    1991-03-01

    This paper addresses fundamental issues in preparing high quality high T{sub c} YBa{sub 2}Cu{sub 3}O{sub 7{minus}x} thin films. The techniques of inverted cylindrical magnetron sputtering and pulsed laser deposition are chosen as successful examples to illustrate how the key problems can be solved. The fabrication of YBa{sub 2}Cu{sub 3}O{sub 7{minus}x}/PrBa{sub 2}Cu{sub 3}O{sub 7{minus}x} superlattices where superconductivity in a single unit cell layer of YBa{sub 2}Cu{sub 3}O{sub 7{minus}x} was observed demonstrates the state of the art of thin film deposition of high T{sub c} materials. Systematic variations of the deposition parameters result in changes of superconducting and structural properties of the films that correlate with their microwave and infrared characteristics.

  2. Thermodynamics and Transport Phenomena in High Temperature Steam Electrolysis Cells

    SciTech Connect (OSTI)

    James E. O'Brien

    2012-03-01

    Hydrogen can be produced from water splitting with relatively high efficiency using high temperature electrolysis. This technology makes use of solid-oxide cells, running in the electrolysis mode to produce hydrogen from steam, while consuming electricity and high temperature process heat. The overall thermal-to-hydrogen efficiency for high temperature electrolysis can be as high as 50%, which is about double the overall efficiency of conventional low-temperature electrolysis. Current large-scale hydrogen production is based almost exclusively on steam reforming of methane, a method that consumes a precious fossil fuel while emitting carbon dioxide to the atmosphere. An overview of high temperature electrolysis technology will be presented, including basic thermodynamics, experimental methods, heat and mass transfer phenomena, and computational fluid dynamics modeling.

  3. Advancing the technology base for high-temperature membranes

    SciTech Connect (OSTI)

    Dye, R.C.; Birdsell, S.A.; Snow, R.C.

    1997-10-01

    This is the final report of a two-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This project addresses the major issues confronting the implementation of high-temperature membranes for separations and catalysis. We are pursuing high-temperature membrane systems that can have a large impact for DOE and be industrially relevant. A major obstacle for increased use of membranes is that most applications require the membrane material to withstand temperatures above those acceptable for polymer-based systems. Advances made by this project have helped industry and DOE move toward high-temperature membrane applications to improve overall energy efficiency.

  4. Advanced High Temperature Reactor Neutronic Core Design

    SciTech Connect (OSTI)

    Ilas, Dan; Holcomb, David Eugene; Varma, Venugopal Koikal

    2012-01-01

    The AHTR is a 3400 MW(t) FHR class reactor design concept intended to serve as a central generating station type power plant. While significant technology development and demonstration remains, the basic design concept appears sound and tolerant of much of the remaining performance uncertainty. No fundamental impediments have been identified that would prevent widespread deployment of the concept. This paper focuses on the preliminary neutronic design studies performed at ORNL during the fiscal year 2011. After a brief presentation of the AHTR design concept, the paper summarizes several neutronic studies performed at ORNL during 2011. An optimization study for the AHTR core is first presented. The temperature and void coefficients of reactivity are then analyzed for a few configurations of interest. A discussion of the limiting factors due to the fast neutron fluence follows. The neutronic studies conclude with a discussion of the control and shutdown options. The studies presented confirm that sound neutronic alternatives exist for the design of the AHTR to maintain full passive safety features and reasonable operation conditions.

  5. Apparatus for accurately measuring high temperatures

    DOE Patents [OSTI]

    Smith, Douglas D.

    1985-01-01

    The present invention is a thermometer used for measuring furnace temperaes in the range of about 1800.degree. to 2700.degree. C. The thermometer comprises a broadband multicolor thermal radiation sensor positioned to be in optical alignment with the end of a blackbody sight tube extending into the furnace. A valve-shutter arrangement is positioned between the radiation sensor and the sight tube and a chamber for containing a charge of high pressure gas is positioned between the valve-shutter arrangement and the radiation sensor. A momentary opening of the valve shutter arrangement allows a pulse of the high gas to purge the sight tube of air-borne thermal radiation contaminants which permits the radiation sensor to accurately measure the thermal radiation emanating from the end of the sight tube.

  6. High Temperature Evaluation of Tantalum Capacitors - Test 1

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Cieslewski, Grzegorz

    2014-09-28

    Tantalum capacitors can provide much higher capacitance at high-temperatures than the ceramic capacitors. This study evaluates selected tantalum capacitors at high temperatures to determine their suitability for you in geothermal field. This data set contains results of the first test where three different types of capacitors were evaluated at 260C.

  7. High Temperature Evaluation of Tantalum Capacitors - Test 1

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Cieslewski, Grzegorz

    Tantalum capacitors can provide much higher capacitance at high-temperatures than the ceramic capacitors. This study evaluates selected tantalum capacitors at high temperatures to determine their suitability for you in geothermal field. This data set contains results of the first test where three different types of capacitors were evaluated at 260C.

  8. Detecting Fractures Using Technology at High Temperatures and Depths -

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Geothermal Ultrasonic Fracture Imager (GUFI); 2010 Geothermal Technology Program Peer Review Report | Department of Energy Detecting Fractures Using Technology at High Temperatures and Depths - Geothermal Ultrasonic Fracture Imager (GUFI); 2010 Geothermal Technology Program Peer Review Report Detecting Fractures Using Technology at High Temperatures and Depths - Geothermal Ultrasonic Fracture Imager (GUFI); 2010 Geothermal Technology Program Peer Review Report DOE 2010 Geothermal

  9. Dynamics of high temperature plasmas. Final report

    SciTech Connect (OSTI)

    Dialetis, D.; Finn, J.; Freund, H.; Mondelli, A.; Ott, E.

    1985-10-01

    Contents include: envelope model for beam transport and focusing in an induction linac; high-current accelerators; free-electron laser studies; laser beat-wave particle acceleration; orbitron maser design; electron-beam stability in the modified betatron; relativistic electron beam diode design; free electron laser application to xuv production and particle acceleration; high-current betatron with stellarator fields; a bumpy-torus betatron; design and operation of a collective millimeter-wave free-electron laser; study of gain, bandwidth, and tunability of a millimeter-wave free-electron laser operating in the collective regime; nonlinear analysis of free-electron-laser amplifiers with axial guide fields; unstable electrostatic beam modes in free-electron-laser systems; three-dimensional theory of free electron lasers with an axial guide field; three-dimensional theory of the free-electron laser in the collective regime; rapid electron beam accelerators; excitation of the plasma waves in the laser beat wave accelerator; dynamics of space-charge waves in the laser beat wave accelerator; finite larmor radius diocotron instability; one dimensional models for relativistic electron beam diode design; collective instabilities and high-gain regime in a free electron laser; and free electron lasers for the xuv spectral region.

  10. Superconductivity Program Overview High-Temperature Superconductivity

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    SuperconducTiviTy program haS Three FocuS areaS: SuperconducTiviTy applicaTionS Developing HTS-based electric power equipment such as transmission and distribution cables and fault current limiters Second-generaTion Wire developmenT Developing high-performance, low-cost, second- generation HTS wire at long lengths STraTegic reSearch Supporting fundamental research activities to better understand relationships between the microstructure of HTS materials and their ability to carry large electric

  11. Carbon Capture Turned Upside Down: High-Temperature Adsorption...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    at the same time surmounting the negative effect of H2O is therefore an attractive idea. ... a theoretical background for this entropy-driven behavior and demonstrate under ...

  12. Method And Apparatus For Evaluatin Of High Temperature Superconductors

    DOE Patents [OSTI]

    Fishman, Ilya M.; Kino, Gordon S.

    1996-11-12

    A technique for evaluation of high-T.sub.c superconducting films and single crystals is based on measurement of temperature dependence of differential optical reflectivity of high-T.sub.c materials. In the claimed method, specific parameters of the superconducting transition such as the critical temperature, anisotropy of the differential optical reflectivity response, and the part of the optical losses related to sample quality are measured. The apparatus for performing this technique includes pump and probe sources, cooling means for sweeping sample temperature across the critical temperature and polarization controller for controlling a state of polarization of a probe light beam.

  13. Thermocouples For High Temperature In-Pile Testing

    SciTech Connect (OSTI)

    J. L. Rempe

    2005-11-01

    Many advanced nuclear reactor designs require new fuel, cladding and structural materials. Data are needed to characeterize the performance of these new materials in high temperature, oxidizing and radiation conditions. To obtain this data, robust instrumentation is needed htat can survive proposed test conditions. Traditional methods for measuring temperature in-pile degrade at temperatures above 1080 degrees C. Hence, a project was intiated to develop specialized thermocouples for high temperature in-pile applications (see Rempe and Wilkins, 2005). This paper summarizes efforts to develop, fabricate and evaluate these specialized thermocouples.

  14. Maximizing Temperatures of Delivered Heat from the Advanced High-Temperature Reactor

    SciTech Connect (OSTI)

    Forsberg, C. W.; Peterson, P. F.; Pickard, Paul

    2004-07-01

    A new high-temperature reactor concept is being developed for hydrogen (H{sub 2}) and electricity production: the Advanced High-Temperature Reactor (AHTR). The goal is to develop a large economic reactor with passive safety systems that delivers high-temperature heat with the coolant exit temperature as high as 1000 deg. C. The high temperatures enable the production of H{sub 2} using heat and water by efficient thermochemical cycles. The safety is to be equivalent to that of a modular high-temperature gas-cooled reactor (MHTGR). The AHTR fuel is a graphite-matrix coated-particle fuel, the type used in MHTGRs. The coolant is a molten fluoride salt with a boiling point near 1400 deg. C. Because of this low-pressure liquid coolant, the types of passive safety systems proposed for liquid-metal reactors (such as the General Electric S-PRISM) can be used. The use of a low-pressure liquid coolant, rather than high-pressure helium, may reduce the materials and engineering challenges for very high-temperature reactors. Electricity is produced using a multi-reheat helium or nitrogen Brayton cycle. A preliminary preconceptual design of a 2400 MW(t) reactor has been developed with an output of 1300 MW(e) or an equivalent amount of H{sub 2}. (authors)

  15. Aqueous Geochemistry at High Pressures and High Temperatures

    SciTech Connect (OSTI)

    Bass, Jay D.

    2015-05-21

    This project is aimed at experimental characterization of the sound velocities, equations of state (EOS), and derived physical and chemical properties of aqueous solutions and carbon dioxide at extreme pressure and temperature conditions relevant to processes occurring in the interior of the Earth. Chemical transport, phase changes (including melting), fluid-solid reactions, and formation of magmatic liquids at convergent plat boundaries are a key motivation for this project. Research in this area has long been limited by the extreme experimental challenges and lack of data under the appropriate pressure-temperature (P-T) conditions. The vast majority of studies of aqueous geochemistry relevant to terrestrial problems of fluid-rock interactions have been conducted at 0.3 GPa or less, and the widely used Helgeson-Kirkham-Flowers equation of state for aqueous species is applicable only at ~ < 0.5 GPa. These limits are unfortunate because fluid flow and reactions plays a central role in many deeper environments. Recent efforts including our own, have resulted in new experimental techniques that now make it possible to investigate properties of homogeneous and heterogeneous equilibria involving aqueous species and minerals over a much broader range of pressure and temperature appropriate for deep crustal and upper mantle processes involving water-rich fluids. We carried out 1) Brillouin scattering measurements of the equations of state and molar volume of water and carbon dioxide to over 10 GPa and 870K using precise resistance heating of samples under pressure in the diamond anvil cell, and 2) the phase diagrams of the water and CO2, and 3) Exploring new experimental approaches, including CO2 laser heating of samples in a diamond cell, to measurements of sound velocities, EOS, and phase relations by Brillouin scattering to far greater pressures and temperatures.

  16. Pseudogap and Superconducting Gap in High-Temperature Superconductors

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Pseudogap and Superconducting Gap in High-Temperature Superconductors Two decades after the discovery of first high temperature superconductors, the microscopic mechanism of high-Tc superconductivity remains elusive. In conventional superconductors, it has been well established that electrons form so-called "Cooper pairs" to give rise to superconductivity. The pair binding manifests itself as an energy gap in many spectroscopic measurements. This energy gap, known as superconducting

  17. Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion for

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Efficient Automotive Waste Heat Recovery | Department of Energy High-Temperature Bulk Thermoelectric Energy Conversion for Efficient Automotive Waste Heat Recovery Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion for Efficient Automotive Waste Heat Recovery 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting ace082_caylor_2012_o.pdf (866.98 KB) More Documents & Publications Nanostructured High

  18. Microwave characterization of high-temperature superconductors

    SciTech Connect (OSTI)

    Cooke, D.W.; Gray, E.R.; Arendt, P.N.; Beery, J.G.; Bennett, B.L.; Brown, D.R.; Houlton, R.J.; Jahan, M.S.; Klapetzky, A.J.; Maez, M.A.; Raistrick, I.D.; Reeves, G.A.; Rusnak, B.

    1989-01-01

    Thick (10-15 {mu}m) Tl-Ba-Ca-Cu-O films have been deposited onto yttria-stabilized zirconia and Ag substrates by d.c. magnetron sputtering techniques. Direct deposition onto 1'' diameter yttria-stabilized zirconia yields films with typical 22 GHz surface resistance (R{sub s}) values of 5.2 {plus minus} 2 m{Omega} and 52 {plus minus} 2 m{Omega} at 10 K and 77 K, respectively. For comparison, R{sub s} of Cu at this same frequency is 10 m{Omega} at 4 K and 22 m{Omega} at 77 K. Tl-Ba-Ca-Cu-O films have also been deposited onto 1'' diameter Ag substrates using Au/Cu, Cu, and BaF{sub 2} buffer layers. The lowest R{sub s} values were obtained on films with a BaF{sub 2} buffer layer, typical values being 7.8 {plus minus} 2 m{Omega} and 30.6 {plus minus} 2 m{Omega} (measured at 22 GHz) at 10 K and 77 K, respectively. Larger films (1.5'' diameter) with similar R{sub s} values were prepared using this same technique, demonstrating that the fabrication process can be scaled to larger surface areas. These films are promising for radiofrequency cavity applications because they are thick (50-75 times the London penetration depth), have relatively large surface areas, are fabricated on metallic substrates, and have R{sub s} values that are competitive with Cu at 77 K and are lower than Cu at 4 K. Because they are polycrystalline and unoriented, it is anticipated that their R{sub s} values can be lowered by improving the processing technique. High-quality films of YBa{sub 2}Cu{sub 3}O{sub 7} have been electron-beam deposited onto 1'' LaGaO{sub 3} and 1.5'' LaAlO{sub 3} substrates. The 1'' sample is characterized by R{sub s} values of 0.2 {plus minus} 0.1 m{Omega} at 4 K and 18.6 {plus minus} 2 m{Omega} at 77 K. The 4-K value is only 2-4 times higher than Nb. The 1.5'' sample has R{sub s} values (measured at 18 GHz) of 0.93 {plus minus} 2 m{Omega} and 71 {plus minus} 3 m{Omega} at 10 K and 77 K, respectively. 18 refs., 8 figs.

  19. Method for synthesizing extremely high-temperature melting materials

    DOE Patents [OSTI]

    Saboungi, Marie-Louise (Chicago, IL); Glorieux, Benoit (Perpignan, FR)

    2007-11-06

    The invention relates to a method of synthesizing high-temperature melting materials. More specifically the invention relates to a containerless method of synthesizing very high temperature melting materials such as carbides and transition-metal, lanthanide and actinide oxides, using an aerodynamic levitator and a laser. The object of the invention is to provide a method for synthesizing extremely high-temperature melting materials that are otherwise difficult to produce, without the use of containers, allowing the manipulation of the phase (amorphous/crystalline/metastable) and permitting changes of the environment such as different gaseous compositions.

  20. Toward Oxide Scale Behavior Management At High Temperature

    SciTech Connect (OSTI)

    Deltombe, R.; Dubar, M.; Dubois, A.; Dubar, L.

    2011-01-17

    Oxide scales grow freely on bare metallic surface under environmental conditions such as high temperature and oxygen. These act as thermal and mechanical shields, especially during high hot forming processes (>1000 deg. C). But product quality can be impacted by these oxide scales due to scale remaining on product or sticking on tools. Thus the TEMPO laboratory has created an original methodology in order to characterize oxide scale under high temperature, pressure and strain gradients. An experimental device has been developed. The final purpose of this work is to understand the scale behavior as a function of temperature, reduction ratio and steel composition.

  1. Method For Synthesizing Extremely High-Temperature Melting Materials

    DOE Patents [OSTI]

    Saboungi, Marie-Louise; Glorieux, Benoit

    2005-11-22

    The invention relates to a method of synthesizing high-temperature melting materials. More specifically the invention relates to a containerless method of synthesizing very high temperature melting materials such as borides, carbides and transition-metal, lanthanide and actinide oxides, using an Aerodynamic Levitator and a laser. The object of the invention is to provide a method for synthesizing extremely high-temperature melting materials that are otherwise difficult to produce, without the use of containers, allowing the manipulation of the phase (amorphous/crystalline/metastable) and permitting changes of the environment such as different gaseous compositions.

  2. 2008 High Temperature Membrane Working Group Meeting Archives | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy 8 High Temperature Membrane Working Group Meeting Archives 2008 High Temperature Membrane Working Group Meeting Archives View information from meetings of the High Temperature Membrane Working Group held in 2008. October 16, 2008, Honolulu, Hawaii This meeting was held in conjunction with the Pacific Rim Meeting on Electrochemical and Solid-State Science (PRIME). Meeting Agenda Minutes SEC's MEA Test Protocol, M.P. Rodgers, B. Li, P. Choi, D. Slattery, L. Bonville, H.R. Kunz, J.M.

  3. Method for Synthesizing Extremeley High Temperature Melting Materials

    SciTech Connect (OSTI)

    Saboungi, Marie-Louise and Glorieux, Benoit

    2005-11-22

    The invention relates to a method of synthesizing high-temperature melting materials. More specifically the invention relates to a containerless method of synthesizing very high temperature melting materials such as borides, carbides and transition-metal, lanthanide and actinide oxides, using an Aerodynamic Levitator and a laser. The object of the invention is to provide a method for synthesizing extremely high-temperature melting materials that are otherwise difficult to produce, without the use of containers, allowing the manipulation of the phase (amorphous/crystalline/metastable) and permitting changes of the environment such as different gaseous compositions.

  4. Project Profile: High Operating Temperature Liquid Metal Heat Transfer Fluids

    Energy.gov [DOE]

    The University of California, Los Angeles (UCLA), along with partners at the University of California, Berkeley, and Yale University, under the 2012 Multidisciplinary University Research Initiative (MURI): High Operating Temperature (HOT) Fluids funding opportunity, is investigating the use of metal alloys as a heat transfer fluid (HTF) in concentrating solar power (CSP) systems operating at temperatures in excess of 800°C. By allowing higher temperature operation, CSP systems can achieve greater efficiencies and thereby reduce the overall cost of electricity production.

  5. A high-entropy-wind r-process study based on nuclear-structure quantities from the new finite-range droplet model FRDM(2012)

    SciTech Connect (OSTI)

    Kratz, Karl-Ludwig; Farouqi, Khalil; Mller, Peter E-mail: kfarouqi@lsw.uni-heidelberg.de

    2014-09-01

    Attempts to explain the source of r-process elements in our solar system (S.S.) by particular astrophysical sites still face entwined uncertainties, stemming from the extrapolation of nuclear properties far from stability, inconsistent sources of different properties (e.g., nuclear masses and ?-decay properties), and the poor understanding of astrophysical conditions, which are hard to disentangle. In this paper we present results from the investigation of r-process in the high-entropy wind (HEW) of core-collapse supernovae (here chosen as one of the possible scenarios for this nucleosynthesis process), using new nuclear-data input calculated in a consistent approach, for masses and ?-decay properties from the new finite-range droplet model FRDM(2012). The accuracy of the new mass model is 0.56 MeV with respect to AME2003, to which it was adjusted. We compare the new HEW r-process abundance pattern to the latest S.S. r-process residuals and to our earlier calculations with the nuclear-structure quantities based on FRDM(1992). Substantial overall and specific local improvements in the calculated pattern of the r-process between A ? 110 and {sup 209}Bi, as well as remaining deficiencies, are discussed in terms of the underlying spherical and deformed shell structure far from stability.

  6. Liquid Fuel Production from Biomass via High Temperature Steam Electrolysis

    SciTech Connect (OSTI)

    Grant L. Hawkes; Michael G. McKellar

    2009-11-01

    A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Hydrogen from electrolysis allows a high utilization of the biomass carbon for syngas production. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-fed biomass gasifier. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon monoxide and hydrogen). Assuming the thermal efficiency of the power cycle for electricity generation is 50%, (as expected from GEN IV nuclear reactors), the syngas production efficiency ranges from 70% to 73% as the gasifier temperature decreases from 1900 K to 1500 K. Parametric studies of system pressure, biomass moisture content and low temperature alkaline electrolysis are also presented.

  7. Optimization of the Neutronics of the Advanced High Temperature Reactor

    SciTech Connect (OSTI)

    Zakova, Jitka; Talamo, Alberto

    2006-07-01

    In these studies, we have investigated the neutronic and safety performance of the Advanced High Temperature Reactor (AHTR) for plutonium and uranium fuels and we extended the analysis to five different coolants. The AHTR is a graphite-moderated and molten salt-cooled high temperature reactor, which takes advantage of the TRISO particles technology for the fuel utilization. The conceptual design of the core, proposed at the Oak Ridge National Laboratory, aims to provide an alternative to helium as coolant of high-temperature reactors for industrial applications like hydrogen production. We evaluated the influence of the radial reflector on the criticality of the core for the uranium and plutonium fuels and we focused on the void coefficient of 5 different molten salts; since the safety of the reactor is enhanced also by the large and negative coefficient of temperature, we completed our investigation by observing the keff changes when the graphite temperature varies from 300 to 1800 K. (authors)

  8. Sandia Energy - High-Pressure and High-Temperature Neutron Reflectomet...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    High-Pressure and High-Temperature Neutron Reflectometry Cell for Solid-Fluid Interface Studies Home Carbon Capture & Storage Climate News News & Events Carbon Capture Carbon...

  9. High-temperature charge and thermal transport properties of the...

    Office of Scientific and Technical Information (OSTI)

    transport properties of the n -type thermoelectric material PbSe Citation Details In-Document Search Title: High-temperature charge and thermal transport properties of the n ...

  10. Next-generation nuclear fuel withstands high-temperature accident...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Next-generation nuclear fuel withstands high-temperature accident conditions IDAHO FALLS - A safer and more efficient nuclear fuel is on the horizon. A team of researchers at the ...

  11. Assessment of Moderate- and High-Temperature Geothermal Resources...

    Open Energy Information (Open El) [EERE & EIA]

    States Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Assessment of Moderate- and High-Temperature Geothermal Resources of the United States Abstract...

  12. High temperature interfacial superconductivity (Patent) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Patent: High temperature interfacial superconductivity Citation Details In-Document Search ... OSTI Identifier: 1055453 Report Number(s): 8,204,564 US patent applicaiton 12264,742 DOE ...

  13. High Temperature Irradiation Resistant Thermocouple (HTIR-TC)

    ScienceCinema (OSTI)

    None

    2016-07-12

    INL researchers have created a new thermocouple that can resist high temperature and radiation. This device will improve safety and reduce costs associated with unit failures. Learn more about INL research at http://www.facebook.com/idahonationallaboratory

  14. Copper Aluminate as a potential material for high temperature...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Copper Aluminate as a potential material for high temperature thermoelectric power generation Home Author: D. T. Morelli, E. D. Case, B. D. Hall, S. Wang Year: 2008 Abstract: URL:

  15. AB INITIO PHASE STABILITY AT HIGH TEMPERATURES AND PRESSURES...

    Office of Scientific and Technical Information (OSTI)

    AND PRESSURES IN THE V-Cr SYSTEM Citation Details In-Document Search Title: AB INITIO PHASE STABILITY AT HIGH TEMPERATURES AND PRESSURES IN THE V-Cr SYSTEM You are ...

  16. High temperature solid electrolyte fuel cell configurations and interconnections

    DOE Patents [OSTI]

    Isenberg, Arnold O.

    1984-01-01

    High temperature fuel cell configurations and interconnections are made including annular cells having a solid electrolyte sandwiched between thin film electrodes. The cells are electrically interconnected along an elongated axial outer surface.

  17. Multidisciplinary University Research Initiative: High Operating Temperature Fluids

    Energy.gov [DOE]

    In August 2012, DOE announced two awards under the Multidisciplinary University Research Initiative (MURI) to develop high-operating temperature heat-transfer fluids for concentrating solar power (CSP) applications, managed by the SunShot Initiative.

  18. Aqueous solutions database to high temperatures and pressures...

    Office of Scientific and Technical Information (OSTI)

    Title: Aqueous solutions database to high temperatures and pressures: NaCl solutions A survey is made of available experimental data on sodium chloride solutions which are used in ...

  19. High Temperature Irradiation Resistant Thermocouple (HTIR-TC)

    SciTech Connect (OSTI)

    2011-01-01

    INL researchers have created a new thermocouple that can resist high temperature and radiation. This device will improve safety and reduce costs associated with unit failures. Learn more about INL research at http://www.facebook.com/idahonationallaboratory

  20. High Temperature Membrane with Humidification-Independent Cluster Structure

    SciTech Connect (OSTI)

    Lipp, Ludwig

    2015-07-10

    The objective of this project was to develop high temperature membranes to facilitate the wide-spread deployment of hydrogen fuel cells. High temperature membranes offer significant advantages in PEM system operation, overall capital and operating costs. State-of-the-art Nafion-based membranes are inadequate for the high temperature operation. These conventional membranes become unstable at higher temperatures (90-120°C) and lose their conductivity, particularly at low relative humidity. In this program, alternate materials were developed to enable fabrication of novel high performance composite membranes. FCE’s concept for the multi-component composite membrane, named mC2, has been used in the design of more conductive membranes.

  1. High-Temperature Aluminum Alloys | Department of Energy

    Energy.gov (indexed) [DOE]

    and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting pm044smith2012o.pdf (4.99 MB) More Documents & Publications High-Temperature Aluminum Alloys ...

  2. HALLIBURTON SPERRY-SUN DOE HIGH TEMPERATURE LWD PROJECT

    SciTech Connect (OSTI)

    Ronald L. Spross

    2005-03-15

    The objective of this project was to build a high temperature, cost-effective, logging while drilling (HT-LWD) system with the ability to operate at 175 C with more than 100 hours mean time between failures (MTBF). Such a commercial real-time formation evaluation (FE) system would help operators to drill and produce hydrocarbon resources from moderately deep, hot reservoirs which otherwise might be uneconomic to drill. The project plan was to combine the existing Sperry-Sun high temperature directional and gamma logging system with lower temperature FE sensors which were upgraded to higher temperature operation as part of the project. The project was to be completed in two phases. Phase I included the development of the HT system, building two complete systems, demonstrating operational capability at 175 C and survivability at 200 C in the laboratory, and successfully testing the system in two low temperature field tests. Phase II was to test the system in a well with a bottom hole temperature of 175 C. The high temperature FE sensors developed as part of this project include gamma ray (DGR), resistivity (EWR-Phase 4), neutron (CTN), and density (SLD). The existing high temperature pulser and telemetry system was upgraded to accommodate the data and bandwidth requirements of the additional sensors. Environmental and lifetime testing of system components and modules indicates that system life and reliability goals will be substantially exceeded. The system has performed well in domestic and international high temperature wells (to 175 C). In addition to the sensor modules specified in the project contract, Sperry has now upgraded other system components to higher temperature as well. These include a LWD sonic sensor (BAT), pressure while drilling sensor (PWD), and a more powerful central system controller (CIM).

  3. High Temperature BOP and Fuel Processing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    BOP and Fuel Processing High Temperature BOP and Fuel Processing Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011. High Temperature BOP and Fuel Processing (4.07 MB) More Documents & Publications Biogas Impurities and Cleanup for Fuel Cells Workshop on Gas Clean-Up for Fuel Cell Applications Fuel Quality Issues in Stationary Fuel Cell Systems

  4. Alternative Refrigerant Evaluation for High-Ambient-Temperature

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Environments: R-22 and R-410A Alternatives for Mini-Split Air Conditioners | Department of Energy Mini-Split Air Conditioners Alternative Refrigerant Evaluation for High-Ambient-Temperature Environments: R-22 and R-410A Alternatives for Mini-Split Air Conditioners The Oak Ridge National Laboratory High-Ambient-Temperature Evaluation Program for Low Global Warming Potential (Low-GWP) Refrigerants project was aimed to develop an understanding of the performance of low-GWP alternative

  5. Alternative Refrigerant Evaluation for High-Ambient-Temperature

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Environments: R-22 and R-410A Alternatives for Rooftop Air Conditioners | Department of Energy Rooftop Air Conditioners Alternative Refrigerant Evaluation for High-Ambient-Temperature Environments: R-22 and R-410A Alternatives for Rooftop Air Conditioners The Oak Ridge National Laboratory (ORNL) High-Ambient-Temperature Evaluation Program for Low-Global Warming Potential (Low-GWP) Refrigerants aimed to develop an understanding of the performance of low-GWP alternative refrigerants relative

  6. Microchannel High-Temperature Recuperator for Fuel Cell Systems - Fact

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Sheet, 2014 | Department of Energy Microchannel High-Temperature Recuperator for Fuel Cell Systems - Fact Sheet, 2014 Microchannel High-Temperature Recuperator for Fuel Cell Systems - Fact Sheet, 2014 FuelCell Energy, Inc., in collaboration with Pacific Northwest National Laboratory, the Oregon State University Materials Institute, the Microproducts Breakthrough Institute, and the Oregon Nanoscience and Materials Institute, developed an efficient, microchannel-based waste heat recuperator

  7. Purple Path toward High Temperature Superconductivity? | The Ames

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Laboratory Purple Path toward High Temperature Superconductivity? Discovery of an unconventional charge density wave (CDW) in purple bronze, a molybdenum oxide, points to a possible new pathway to high temperature superconductivity. A CDW is a state of matter where electrons bunch together periodically, like a standing wave of light or water. CDWs and superconductivity are frenemies, since they share a common origin and often coexist, yet compete for dominance. Conventional CDWs and

  8. 18th Topical Conference High-Temperature Plasma Diagnostics (HTPD) |

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Princeton Plasma Physics Lab May 16, 2010, 9:00am to May 20, 2010, 5:00pm Conference Wildwood, New Jersey 18th Topical Conference High-Temperature Plasma Diagnostics (HTPD) The 18th Topical Conference on High-Temperature Plasma Diagnostics will be held May 16-20, 2010 in Wildwood, New Jersey. This biennial conference brings together plasma physicists from a variety of fields including magnetic confinement fusion, inertial confinement fusion, space plasmas, astrophysics, and industrial

  9. Testing of a Microfluidic Sampling System for High Temperature

    Office of Scientific and Technical Information (OSTI)

    Electrochemical MC&A (Technical Report) | SciTech Connect Testing of a Microfluidic Sampling System for High Temperature Electrochemical MC&A Citation Details In-Document Search Title: Testing of a Microfluidic Sampling System for High Temperature Electrochemical MC&A Authors: Pereira, C. ; Nichols, K. [1] + Show Author Affiliations (Chemical Sciences and Engineering Division) Publication Date: 2013-11-27 OSTI Identifier: 1121583 Report Number(s): ANL-MPACT-092613 DOE Contract

  10. Advanced Conductor Development with High Temperature Superconductors and

    Office of Scientific and Technical Information (OSTI)

    Carbon Nanotubes (Technical Report) | SciTech Connect Technical Report: Advanced Conductor Development with High Temperature Superconductors and Carbon Nanotubes Citation Details In-Document Search Title: Advanced Conductor Development with High Temperature Superconductors and Carbon Nanotubes This is a report that describes advanced conductor research performed by LANL in preparation for the Colloquia at the University of New Mexico. Authors: Holesinger, Terry George [1] + Show Author

  11. (Neutron scattering studies of the high-temperature superconducting materials)

    SciTech Connect (OSTI)

    Mook, H.A. Jr.

    1991-01-04

    The traveler was given beam time at the ILL to continue neutron scattering work on high-temperature superconductivity. The unique facilities at the ILL for both high-energy and low-energy neutron instrumentation made the experiments possible. The measurements consisted of two basic types. The first of these is the study of the nature of spin fluctuations in high-{Tc} materials. This work is fundamental to the mechanism that is responsible for the high-transition temperatures. The second consisted of experiments on the flux lattice in high-temperature superconductors. The flux lattice has interesting physics in its own right and is important in understanding the current-carrying capability of superconductors.

  12. Non-graphite crucible for high temperature applications

    DOE Patents [OSTI]

    Holcombe, Cressie E.; Pfeiler, William A.

    1996-01-01

    A multi-piece crucible for high temperature applications comprises a tubular side wall member having a lip on the inside surface and a bottom member or members forming a container for containing a melt of a material during a high temperature melt-casting operations. The multi-piece design prevents cracking of the crucible or leakage of the melt from the crucible during the melt-casting operation. The lip of the tubular member supports the bottom member. The contacting surfaces where the lip of the tubular side wall member contacts the bottom member of the multi-piece crucible contains a ceramic sealing material. The ceramic sealing material forms a seal sufficient to prevent the melt of the material from leaking out of the multi-piece crucible during the melt-casting process. The multi-piece crucible is made of a material which is chemically inert to the melt and has structural integrity at the melting point temperature of the melt, or of a material coated with such a material. The multi-piece crucible is contained in a thermal can assembly of a high temperature induction furnace during a high temperature melt-casting operation. One embodiment of the multi-piece crucible comprises a tubular member having a vertical slot filled with a ceramic sealing material to provide expansion of the tubular member without cracking during the high temperature melt-casting operation.

  13. Non-graphite crucible for high temperature applications

    DOE Patents [OSTI]

    Holcombe, C.E.; Pfeiler, W.A.

    1996-01-09

    A multi-piece crucible for high temperature applications comprises a tubular side wall member having a lip on the inside surface and a bottom member or members forming a container for containing a melt of a material during a high temperature melt-casting operations. The multi-piece design prevents cracking of the crucible or leakage of the melt from the crucible during the melt-casting operation. The lip of the tubular member supports the bottom member. The contacting surfaces where the lip of the tubular side wall member contacts the bottom member of the multi-piece crucible contains a ceramic sealing material. The ceramic sealing material forms a seal sufficient to prevent the melt of the material from leaking out of the multi-piece crucible during the melt-casting process. The multi-piece crucible is made of a material which is chemically inert to the melt and has structural integrity at the melting point temperature of the melt, or of a material coated with such a material. The multi-piece crucible is contained in a thermal can assembly of a high temperature induction furnace during a high temperature melt-casting operation. One embodiment of the multi-piece crucible comprises a tubular member having a vertical slot filled with a ceramic sealing material to provide expansion of the tubular member without cracking during the high temperature melt-casting operation. 9 figs.

  14. Diamond anvil cell for spectroscopic investigation of materials at high temperature, high pressure and shear

    DOE Patents [OSTI]

    Westerfield, C.L.; Morris, J.S.; Agnew, S.F.

    1997-01-14

    Diamond anvil cell is described for spectroscopic investigation of materials at high temperature, high pressure and shear. A cell is described which, in combination with Fourier transform IR spectroscopy, permits the spectroscopic investigation of boundary layers under conditions of high temperature, high pressure and shear. 4 figs.

  15. Diamond anvil cell for spectroscopic investigation of materials at high temperature, high pressure and shear

    DOE Patents [OSTI]

    Westerfield, Curtis L.; Morris, John S.; Agnew, Stephen F.

    1997-01-01

    Diamond anvil cell for spectroscopic investigation of materials at high temperature, high pressure and shear. A cell is described which, in combination with Fourier transform IR spectroscopy, permits the spectroscopic investigation of boundary layers under conditions of high temperature, high pressure and shear.

  16. Diffusive mixing and Tsallis entropy

    DOE PAGES-Beta [OSTI]

    O'Malley, Daniel; Vesselinov, Velimir V.; Cushman, John H.

    2015-04-29

    Brownian motion, the classical diffusive process, maximizes the Boltzmann-Gibbs entropy. The Tsallis q-entropy, which is non-additive, was developed as an alternative to the classical entropy for systems which are non-ergodic. A generalization of Brownian motion is provided that maximizes the Tsallis entropy rather than the Boltzmann-Gibbs entropy. This process is driven by a Brownian measure with a random diffusion coefficient. In addition, the distribution of this coefficient is derived as a function of q for 1 < q < 3. Applications to transport in porous media are considered.

  17. High Temperature Compatibility of 60-Watt IHS Materials

    SciTech Connect (OSTI)

    Worley, C. M.; Merten, C. W.

    1995-11-21

    The 60-Watt Isotopic Heat Source (IHS) utilizes a variety of materials which have been selected for their properties at elevated temperatures. These include iridium, molybdenum, and the T-111 alloy which consists of 90 wt% tantalum, 8 wt% tungsten, and 2 wt% hafnium. Properties of interest in radioisotopic heat source applications include high temperature strength, resistance to oxidation, weldability, and ability to act as a diffusion barrier. Iridium is utilized as a clad for fuel pellets because of its high temperature mechanical properties and good compatibility with carbon and plutonium oxide. Molybdenum retains good high temperature strength and has been used as a diffusion barrier in past applications. However, molybdenum also exhibits poor resistance to oxidation. Therefore, it is necessary to enclose molybdenum components so that they are not exposed to the atmosphere. T-111 exhibits moderate oxidation resistance, good high temperature mechanical properties, and good weldability. For these reasons, it is used as the outer containment boundary for the 60-Watt IHS. Because the temperature in GPHS fueled dads is on the order of 1000 degrees Celsius in the 60-W configuration, the potential for diffusion of dissimilar materials from one into another exists. Deleterious effects of diffusion can include degradation of mechanical strength through the formation of brittle intermetallics, degradation of mechanical properties through simple alloying, or formation of voids through the Kirkendall effect. Because of the possibility of these effects, design methodology calls for use of diffusion barriers between materials likely to exhibit interdiffusion at elevated temperatures. The necessity to assure the long term integrity of the 60-Watt IHS dictates that the diffusion behavior of its component materials be known. This report describes the high temperature compatibility studies which were conducted on the component materials of the 60-Watt IHS.

  18. Long Duration Performance of High Temperature Irradiation Resistant Thermocouples

    SciTech Connect (OSTI)

    Rempe, Joy L; Knudson, D. L.; Condie, K. G.; Wilkins, S. C.

    2007-05-01

    Many advanced nuclear reactor designs require new fuel, cladding, and structural materials. Data are needed to characterize the performance of these new materials in high temperature, radiation conditions. However, traditional methods for measuring temperature inpile degrade at temperatures above 1100 ºC. To address this instrumentation need, the Idaho National Laboratory (INL) developed and evaluated the performance of a high temperature irradiation-resistant thermocouple that contains alloys of molybdenum and niobium. To verify the performance of INL’s recommended thermocouple design, a series of high temperature (from 1200 to 1800 ºC) long duration (up to six months) tests has been initiated. This paper summarizes results from the tests that have been completed. Data are presented from 4000 hour tests conducted at 1200 and 1400 ºC that demonstrate the stability of this thermocouple (less than 2% drift). In addition, post test metallographic examinations are discussed which confirm the compatibility of thermocouple materials throughout these long duration, high temperature tests.

  19. Advanced High-Temperature, High-Pressure Transport Reactor Gasification

    SciTech Connect (OSTI)

    Michael L. Swanson

    2005-08-30

    50 hours of gasification on a petroleum coke from the Hunt Oil Refinery and an additional 73 hours of operation on a high-ash coal from India. Data from these tests indicate that while acceptable fuel gas heating value was achieved with these fuels, the transport gasifier performs better on the lower-rank feedstocks because of their higher char reactivity. Comparable carbon conversions have been achieved at similar oxygen/coal ratios for both air-blown and oxygen-blown operation for each fuel; however, carbon conversion was lower for the less reactive feedstocks. While separation of fines from the feed coals is not needed with this technology, some testing has suggested that feedstocks with higher levels of fines have resulted in reduced carbon conversion, presumably due to the inability of the finer carbon particles to be captured by the cyclones. These data show that these low-rank feedstocks provided similar fuel gas heating values; however, even among the high-reactivity low-rank coals, the carbon conversion did appear to be lower for the fuels (brown coal in particular) that contained a significant amount of fines. The fuel gas under oxygen-blown operation has been higher in hydrogen and carbon dioxide concentration since the higher steam injection rate promotes the water-gas shift reaction to produce more CO{sub 2} and H{sub 2} at the expense of the CO and water vapor. However, the high water and CO{sub 2} partial pressures have also significantly reduced the reaction of (Abstract truncated)

  20. Method for high temperature mercury capture from gas streams

    DOE Patents [OSTI]

    Granite, Evan J.; Pennline, Henry W.

    2006-04-25

    A process to facilitate mercury extraction from high temperature flue/fuel gas via the use of metal sorbents which capture mercury at ambient and high temperatures. The spent sorbents can be regenerated after exposure to mercury. The metal sorbents can be used as pure metals (or combinations of metals) or dispersed on an inert support to increase surface area per gram of metal sorbent. Iridium and ruthenium are effective for mercury removal from flue and smelter gases. Palladium and platinum are effective for mercury removal from fuel gas (syngas). An iridium-platinum alloy is suitable for metal capture in many industrial effluent gas streams including highly corrosive gas streams.

  1. Nanocarbon synthesis by high-temperature oxidation of nanoparticles

    Office of Scientific and Technical Information (OSTI)

    0PEN: Nanocarbon synthesis by high- temperature oxidation of nanoparticles Received: 26 November 2015 Ken-ichi Nomura1, Rajiv K. Kalia^Ying Li2, Aiichiro Nakano1, Pankaj Rajak1, Accepted: 21 March 2016 Chunyang Sheng1, Kohei Shimamura1,3,4, Fuyuki Shimojo3 & Priya Vashishta1 Published: 20April 2016 High-temperature oxidation of silicon-carbide nanoparticles (nSIC) underlies a wide range of technologies from high-power electronic switches for efficient electrical grid and thermal protection

  2. Challenges in the Development of High Temperature Reactors

    SciTech Connect (OSTI)

    Piyush Sabharwall; Shannon M. Bragg-Sitton; Carl Stoots

    2013-10-01

    Advanced reactor designs offer potentially significant improvements over currently operating light water reactors including improved fuel utilization, increased efficiency, higher temperature operation (enabling a new suite of non-electric industrial process heat applications), and increased safety. As with most technologies, these potential performance improvements come with a variety of challenges to bringing advanced designs to the marketplace. There are technical challenges in material selection and thermal hydraulic and power conversion design that arise particularly for higher temperature, long life operation (possibly >60 years). The process of licensing a new reactor design is also daunting, requiring significant data collection for model verification and validation to provide confidence in safety margins associated with operating a new reactor design under normal and off-normal conditions. This paper focuses on the key technical challenges associated with two proposed advanced reactor concepts: the helium gas cooled Very High Temperature Reactor (VHTR) and the molten salt cooled Advanced High Temperature Reactor (AHTR).

  3. Use of aluminum nitride to obtain temperature measurements in a high temperature and high radiation environment

    DOE Patents [OSTI]

    Wernsman, Bernard R.; Blasi, Raymond J.; Tittman, Bernhard R.; Parks, David A.

    2016-04-26

    An aluminum nitride piezoelectric ultrasonic transducer successfully operates at temperatures of up to 1000.degree. C. and fast (>1 MeV) neutron fluencies of more than 10.sup.18 n/cm.sup.2. The transducer comprises a transparent, nitrogen rich aluminum nitride (AlN) crystal wafer that is coupled to an aluminum cylinder for pulse-echo measurements. The transducer has the capability to measure in situ gamma heating within the core of a nuclear reactor.

  4. Sealed glass coating of high temperature ceramic superconductors

    DOE Patents [OSTI]

    Wu, Weite; Chu, Cha Y.; Goretta, Kenneth C.; Routbort, Jules L.

    1995-01-01

    A method and article of manufacture of a lead oxide based glass coating on a high temperature superconductor. The method includes preparing a dispersion of glass powders in a solution, applying the dispersion to the superconductor, drying the dispersion before applying another coating and heating the glass powder dispersion at temperatures below oxygen diffusion onset and above the glass melting point to form a continuous glass coating on the superconductor to establish compressive stresses which enhance the fracture strength of the superconductor.

  5. Cryocooler applications for high-temperature superconductor magnetic bearings.

    SciTech Connect (OSTI)

    Niemann, R. C.

    1998-05-22

    The efficiency and stability of rotational magnetic suspension systems are enhanced by the use of high-temperature superconductor (HTS) magnetic bearings. Fundamental aspects of the HTS magnetic bearings and rotational magnetic suspension are presented. HTS cooling can be by liquid cryogen bath immersion or by direct conduction, and thus there are various applications and integration issues for cryocoolers. Among the numerous cryocooler aspects to be considered are installation; operating temperature; losses; and vacuum pumping.

  6. Deposition method for producing silicon carbide high-temperature semiconductors

    DOE Patents [OSTI]

    Hsu, George C.; Rohatgi, Naresh K.

    1987-01-01

    An improved deposition method for producing silicon carbide high-temperature semiconductor material comprising placing a semiconductor substrate composed of silicon carbide in a fluidized bed silicon carbide deposition reactor, fluidizing the bed particles by hydrogen gas in a mildly bubbling mode through a gas distributor and heating the substrate at temperatures around 1200.degree.-1500.degree. C. thereby depositing a layer of silicon carbide on the semiconductor substrate.

  7. High Temperature Materials Overview Richard Wright Idaho National Laboratory

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Temperature Materials Overview Richard Wright Idaho National Laboratory Advanced Reactor Technologies September 17, 2015 Objectives  Provide Technology Development to Support Future Design and Deployment of Very High Temperature Gas Cooled Reactors: - Pressure Vessel - Steam Generator and Intermediate Heat Exchanger (IHX) - Support Codes and Standards Activities for SiC/SiC composites and Materials Handbook  Program Goals - Alloy 617 Code Case Submittal for ASME approval by FY15 allowing

  8. High temperature coefficient of resistance for a ferroelectric tunnel junction

    SciTech Connect (OSTI)

    Zhao, Xiaolin; Tian, Bobo; Liu, Bolu; Wang, Xudong; Huang, Hai; Wang, Jianlu E-mail: xjmeng@mail.sitp.ac.cn; Zou, Yuhong; Sun, Shuo; Lin, Tie; Han, Li; Sun, Jinglan; Meng, Xiangjian E-mail: xjmeng@mail.sitp.ac.cn; Chu, Junhao

    2015-08-10

    An infrared detector is proposed that is based on a ferroelectric tunnel junction (FTJ) working under bolometer-like principles. Electron tunneling, either direct or indirect, through the ferroelectric barrier depends on the temperature of the devices. During tunneling, infrared radiation alters the polarization of the ferroelectric film via pyroelectricity, resulting in a change in the barrier height of the tunnel junction. A high temperature coefficient of resistance of up to −3.86% was observed at room temperature. These results show that the FTJ structure has potential to be adapted for use in uncooled infrared detectors.

  9. Refueling Liquid-Salt-Cooled Very High-Temperature Reactors

    SciTech Connect (OSTI)

    Forsberg, Charles W.; Peterson, Per F.; Cahalan, James E.; Enneking, Jeffrey A.; Phil MacDonald

    2006-07-01

    The liquid-salt-cooled very high-temperature reactor (LS-VHTR), also called the Advanced High-Temperature Reactor (AHTR), is a new reactor concept that combines in a novel way four established technologies: (1) coated-particle graphite-matrix nuclear fuels, (2) Brayton power cycles, (3) passive safety systems and plant designs previously developed for liquid-metal-cooled fast reactors, and (4) low-pressure liquid-salt coolants. Depending upon goals, the peak coolant operating temperatures are between 700 and 1000 deg. C, with reactor outputs between 2400 and 4000 MW(t). Several fluoride salt coolants that are being evaluated have melting points between 350 and 500 deg. C, values that imply minimum refueling temperatures between 400 and 550 deg. C. At operating conditions, the liquid salts are transparent and have physical properties similar to those of water. A series of refueling studies have been initiated to (1) confirm the viability of refueling, (2) define methods for safe rapid refueling, and (3) aid the selection of the preferred AHTR design. Three reactor cores with different fuel element designs (prismatic, pebble bed, and pin-type fuel assembly) are being evaluated. Each is a liquid-salt-cooled variant of a graphite-moderated high-temperature reactor. The refueling studies examined applicable refueling experience from high-temperature reactors (similar fuel element designs) and sodium-cooled fast reactors (similar plant design with liquid coolant, high temperatures, and low pressures). The findings indicate that refueling is viable, and several approaches have been identified. The study results are described in this paper. (authors)

  10. Silicon Carbide Temperature Monitor Measurements at the High Temperature Test Laboratory

    SciTech Connect (OSTI)

    J. L. Rempe; K. G. Condie; D. L. Knudson; L. L. Snead

    2010-01-01

    Silicon carbide (SiC) temperature monitors are now available for use as temperature sensors in Advanced Test Reactor (ATR) irradiation test capsules. Melt wires or paint spots, which are typically used as temperature sensors in ATR static capsules, are limited in that they can only detect whether a single temperature is or is not exceeded. SiC monitors are advantageous because a single monitor can be used to detect for a range of temperatures that may have occurred during irradiation. As part of the efforts initiated by the ATR National Scientific User Facility (NSUF) to make SiC temperature monitors available, a capability was developed to complete post-irradiation evaluations of these monitors. As discussed in this report, the Idaho National Laboratory (INL) selected the resistance measurement approach for detecting peak irradiation temperature from SiC temperature monitors. This document describes the INL efforts to develop the capability to complete these resistance measurements. In addition, the procedure is reported that was developed to assure that high quality measurements are made in a consistent fashion.

  11. Glass Capacitor for High-Temperature Applications - Energy Innovation

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Portal Energy Storage Energy Storage Find More Like This Return to Search Glass Capacitor for High-Temperature Applications Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing SummaryTo meet the demand for smaller, lighter capacitors that have high energy densities, an ORNL researcher developed a capacitor made of glass rods that is constructed like insulated wire. This device can be used for power factor correction, high-voltage capacitors, power electronic

  12. Overview and Status of the Advanced High-Temperature Reactor

    SciTech Connect (OSTI)

    Ingersoll, D.T.; Forsberg, C.W.

    2006-07-01

    A new reactor concept, designated the Advanced High-Temperature Reactor (AHTR), is being developed that uses liquid fluoride salt as a coolant, graphite moderator and high-temperature coated particle fuel. The concept is being supported by the U.S. Department of Energy as part of the Generation IV program as a 'coolant variant' of the Very High-Temperature Reactor because it shares many of the same fuel, moderator and material technologies. The purpose of the AHTR is to provide an advanced design that is sufficiently robust to allow a growth path to higher power output and higher temperatures, and also offering the potential for highly competitive economics. Although it creates some unique technology challenges of its own, the AHTR has many strong advantages, such as: lower reactor fuel temperatures, low-pressure reactor vessel and piping, enhanced safety features, and improved economics. Several analyses have been performed during the past two years to demonstrate the physics viability of the concept and to support the development of a preconceptual design. The evolution of the concept is presented, along with a description of the present design and a summary of key performance analyses. (authors)

  13. Order and correlation contributions to the entropy of hydrophobic solvation

    SciTech Connect (OSTI)

    Liu, Maoyuan; Besford, Quinn Alexander; Mulvaney, Thomas; Gray-Weale, Angus

    2015-03-21

    The entropy of hydrophobic solvation has been explained as the result of ordered solvation structures, of hydrogen bonds, of the small size of the water molecule, of dispersion forces, and of solvent density fluctuations. We report a new approach to the calculation of the entropy of hydrophobic solvation, along with tests of and comparisons to several other methods. The methods are assessed in the light of the available thermodynamic and spectroscopic information on the effects of temperature on hydrophobic solvation. Five model hydrophobes in SPC/E water give benchmark solvation entropies via Widom’s test-particle insertion method, and other methods and models are tested against these particle-insertion results. Entropies associated with distributions of tetrahedral order, of electric field, and of solvent dipole orientations are examined. We find these contributions are small compared to the benchmark particle-insertion entropy. Competitive with or better than other theories in accuracy, but with no free parameters, is the new estimate of the entropy contributed by correlations between dipole moments. Dipole correlations account for most of the hydrophobic solvation entropy for all models studied and capture the distinctive temperature dependence seen in thermodynamic and spectroscopic experiments. Entropies based on pair and many-body correlations in number density approach the correct magnitudes but fail to describe temperature and size dependences, respectively. Hydrogen-bond definitions and free energies that best reproduce entropies from simulations are reported, but it is difficult to choose one hydrogen bond model that fits a variety of experiments. The use of information theory, scaled-particle theory, and related methods is discussed briefly. Our results provide a test of the Frank-Evans hypothesis that the negative solvation entropy is due to structured water near the solute, complement the spectroscopic detection of that solvation structure by

  14. Silver-bearing, high-temperature, superconducting (HTS) paint

    SciTech Connect (OSTI)

    Ferrando, W.A.

    1990-02-15

    A substantial set of device applications awaits development of a workable, durable, high-temperature superconducting (HTS) paint. Such a paint should be truly superconducting with its critical temperature T sub c>77K. For most of these applications, a high critical current (J sub c) is not required, although probably desirable. A process is described which can be used to produce silver-bearing HTS paint coatings on many engineering materials. Preliminary tests have shown good adherence to several ceramics and the ability to meet the superconducting criteria. Moreover, the coatings withstand multiple thermal cycling and stability under laboratory ambient storage conditions for periods of at least several months.

  15. Margins in high temperature leak-before-break assessments

    SciTech Connect (OSTI)

    Budden, P.J.; Hooton, D.G.

    1997-04-01

    Developments in the defect assessment procedure R6 to include high-temperature mechanisms in Leak-before-Break arguments are described. In particular, the effect of creep on the time available to detect a leak and on the crack opening area, and hence leak rate, is discussed. The competing influence of these two effects is emphasized by an example. The application to Leak-before-Break of the time-dependent failure assessment diagram approach for high temperature defect assessment is then outlined. The approach is shown to be of use in assessing the erosion of margins by creep.

  16. Computational and Experimental Development of Novel High Temperature Alloys

    SciTech Connect (OSTI)

    Kramer, M.J.; Ray, P.K.; and Akinc, M.

    2010-06-29

    The work done in this paper is based on our earlier work on developing an extended Miedema model and then using it to downselect potential alloy systems. Our approach is to closely couple the semi-empirical methodologies to more accurate ab initio methods to dentify the best candidates for ternary alloying additions. The architectural framework for our material's design is a refractory base metal with a high temperature intermetallic which provides both high temperature creep strength and a source of oxidatively stable elements. Potential refractory base metals are groups IIIA, IVA and VA. For Fossil applications, Ni-Al appears to be the best choice to provide the source of oxidatively stable elements but this system requires a 'boost' in melting temperatures to be a viable candidate in the ultra-high temperature regime (> 1200C). Some late transition metals and noble elements are known to increase the melting temperature of Ni-Al phases. Such an approach suggested that a Mo-Ni-Al system would be a good base alloy system that could be further improved upon by dding Platinum group metals (PGMs). In this paper, we demonstrate the variety of microstructures that can be synthesized for the base alloy system, its oxidation behavior as well as the oxidation behavior of the PGM substituted oxidation resistant B2 NiAl phase.

  17. Large magnetic entropy change and adiabatic temperature rise of a Gd{sub 55}Al{sub 20}Co{sub 20}Ni{sub 5} bulk metallic glass

    SciTech Connect (OSTI)

    Xia, L.; Tang, M. B.; Chan, K. C.; Dong, Y. D.

    2014-06-14

    Gd{sub 55}Al{sub 20}Co{sub 20}Ni{sub 5} bulk metallic glass (BMG) was synthesized by minor Ni substitution for Co in the Gd{sub 55}Al{sub 20}Co{sub 25} BMG in which excellent glass forming ability (GFA) and magneto-caloric effect were reported previously. The Gd{sub 55}Al{sub 20}Ni{sub 20}Co{sub 5} amorphous rod has a similar GFA to the Gd{sub 55}Al{sub 20}Co{sub 25} BMG but exhibits better magnetic properties. The peak value of magnetic entropy change (−ΔS{sub m}{sup peak}) of the Gd{sub 55}Al{sub 20}Co{sub 20}Ni{sub 5} BMG is 9.8 Jkg{sup −1} K{sup −1}. The field dependence of −ΔS{sub m}{sup peak} follows a −ΔS{sub m}{sup peak}∝H{sup 0.85} relationship. The adiabatic temperature rise of the rod is 4.74 K under 5 T and is larger than of other BMGs previously reported. The improved magnetic properties were supposed to be induced by the enhanced interaction between 4f electron in the rare-earth and 3d electron in the transition metal elements by means of a minor Ni substitution for Co.

  18. Development of High Temperature Capacitor Technology and Manufacturing Capability

    SciTech Connect (OSTI)

    2011-05-15

    The goal of the Development of High Temperature Capacitor Technology and Manufacturing Capability program was to mature a production-ready supply chain for reliable 250°C FPE (fluorinated polyester) film capacitors by 2011. These high-temperature film capacitors enable both the down hole drilling and aerospace industries by enabling a variety of benefits including: − Deeper oil exploration in higher temperature and pressure environments − Enabling power electronic and control equipment to operate in higher temperature environments − Enabling reduced cooling requirements of electronics − Increasing reliability and life of capacitors operating below rated temperature − Enabling capacitors to handle higher electrical losses without overheating. The key challenges to bringing the FPE film capacitors to market have been manufacturing challenges including: − FPE Film is difficult to handle and wind, resulting in poor yields − Voltage breakdown strength decreases when the film is wound into capacitors (~70% decrease) − Encapsulation technologies must be improved to enable higher temperature operation − Manufacturing and test cycle time is very long As a direct result of this program most of the manufacturing challenges have been met. The FPE film production metalization and winding yield has increased to over 82% from 70%, and the voltage breakdown strength of the wound capacitors has increased 270% to 189 V/μm. The high temperature packaging concepts are showing significant progress including promising results for lead attachments and hermetic packages at 200°C and non-hermetic packages at 250°C. Manufacturing and test cycle time will decrease as the market for FPE capacitors develops.

  19. Minutes of the October 2008 Meeting of the High Temperature Membrane...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    October 2008 Meeting of the High Temperature Membrane Working Group Minutes of the October 2008 Meeting of the High Temperature Membrane Working Group Meeting minutes of the High ...

  20. Materials for the scavanging of hydrogen at high temperatures

    DOE Patents [OSTI]

    Shepodd, Timothy J.; Phillip, Bradley L.

    1997-01-01

    A hydrogen getter composition comprising a double or triple bonded hydrocarbon with a high melting point useful for removing hydrogen gas, to partial pressures below 0.01 torr, from enclosed spaces and particularly from vessels used for transporting or containing fluids at elevated temperatures. The hydrogen getter compositions disclosed herein and their reaction products will neither melt nor char at temperatures in excess of 100.degree. C. They possess significant advantages over conventional hydrogen getters, namely low risk of fire or explosion, no requirement for high temperature activation or operation, the ability to absorb hydrogen even in the presence of contaminants such as water, water vapor, common atmospheric gases and oil mists and are designed to be disposed within the confines of the apparatus. These getter materials can be mixed with binders, such as fluropolymers, which permit the getter material to be fabricated into useful shapes and/or impart desirable properties such as water repellency or impermeability to various gases.

  1. Materials for the scavanging of hydrogen at high temperatures

    DOE Patents [OSTI]

    Shepodd, Timothy J.; Phillip, Bradley L.

    1997-01-01

    A hydrogen getter composition comprising a double or triple bonded hydrocarbon with a high melting point useful for removing hydrogen gas, to partial pressures below 0.01 torr, from enclosed spaces and particularly from vessels used for transporting or containing fluids at elevated temperatures. The hydrogen getter compostions disclosed herein and their reaction products will neither melt nor char at temperatures in excess of 100C. They possess significant advantages over conventional hydrogen getters, namely low risk of fire or explosion, no requirement for high temperature activation or operation, the ability to absorb hydrogen even in the presence of contaminants such as water, water vapor, common atmospheric gases and oil mists and are designed to be disposed within the confines of the apparatus. These getter materials can be mixed with binders, such as fluropolymers, which permit the getter material to be fabricated into useful shapes and/or impart desirable properties such as water repellency or impermeability to various gases.

  2. Materials Degradation Studies for High Temperature Steam Electrolysis Systems

    SciTech Connect (OSTI)

    Paul Demkowicz; Pavel Medvedev; Kevin DeWall; Paul Lessing

    2007-06-01

    Experiments are currently in progress to assess the high temperature degradation behavior of materials in solid oxide electrolysis systems. This research includes the investigation of various electrolysis cell components and balance of plant materials under both anodic and cathodic gas atmospheres at temperatures up to 850°C. Current results include corrosion data for a high temperature nickel alloy used for the air-side flow field in electrolysis cells and a commercial ferritic stainless steel used as the metallic interconnect. Three different corrosion inhibiting coatings were also tested on the steel material. The samples were tested at 850ºC for 500 h in both air and H2O/H2 atmospheres. The results of this research will be used to identify degradation mechanisms and demonstrate the suitability of candidate materials for long-term operation in electrolysis cells.

  3. High- and low-temperature-stable thermite composition for producing high-pressure, high-velocity gases

    DOE Patents [OSTI]

    Halcomb, Danny L.; Mohler, Jonathan H.

    1990-10-16

    A high- and low-temperature-stable thermite composition for producing high-pressure and high-velocity gases comprises an oxidizable metal, an oxidizing reagent, and a high-temperature-stable gas-producing additive selected from the group consisting of metal carbides and metal nitrides.

  4. High- and low-temperature-stable thermal composition for producing high-pressure, high-velocity gases

    SciTech Connect (OSTI)

    Halcomb, D.L.; Mohler, J.H.

    1990-03-29

    A high- and low-temperature-stable thermite composition for producing high-pressure and high-velocity gases comprises an oxidizable metal, an oxidizing reagent, and a high-temperature-stable gas-producing additive selected from the group consisting of metal carbides and metal nitrides.

  5. High- and low-temperature-stable thermite composition for producing high-pressure, high-velocity gases

    SciTech Connect (OSTI)

    Halcomb, D.L.; Mohler, J.H.

    1990-10-16

    This patent describes a high- and low-temperature-stable thermite composition for producing high pressure and high-velocity gases. It comprises an oxidizable metal, an oxidizing reagent, and a high-temperature-stable gas producing additive selected from the group consisting of metal carbides and metal nitrides.

  6. High Temperature Materials Interim Data Qualification Report FY 2011

    SciTech Connect (OSTI)

    Nancy Lybeck

    2011-08-01

    Projects for the very high temperature reactor (VHTR) Technology Development Office provide data in support of Nuclear Regulatory Commission licensing of the VHTR. Fuel and materials to be used in the reactor are tested and characterized to quantify performance in high temperature and high fluence environments. The VHTR program has established the Next Generation Nuclear Plant (NGNP) Data Management and Analysis System (NDMAS) to ensure that VHTR data are qualified for use, stored in a readily accessible electronic form, and analyzed to extract useful results. This document focuses on the first NDMAS objective. It describes the High Temperature Materials characterization data stream, the processing of these data within NDMAS, and reports the interim fiscal year (FY) 2011 qualification status of the data. Data qualification activities within NDMAS for specific types of data are determined by the data qualification category assigned by the data generator. The High Temperature Materials data are being collected under the Nuclear Quality Assurance (NQA)-1 guidelines and will be qualified data. For NQA-1 qualified data, the qualification activities include: (1) capture testing to confirm that the data stored within NDMAS are identical to the raw data supplied, (2) accuracy testing to confirm that the data are an accurate representation of the system or object being measured, and (3) documenting that the data were collected under an NQA-1 or equivalent Quality Assurance program. Currently, data from seven test series within the High Temperature Materials data stream have been entered into the NDMAS vault, including tensile tests, creep tests, and cyclic tests. Of the 5,603,682 records currently in the vault, 4,480,444 have been capture passed, and capture testing is in process for the remaining 1,123,238.

  7. Optical Fiber High Temperature Sensor Instrumentation for Energy Intensive Industries

    SciTech Connect (OSTI)

    Cooper, Kristie L.; Wang, Anbo; Pickrell, Gary R.

    2006-11-14

    This report summarizes technical progress during the program “Optical Fiber High Temperature Sensor Instrumentation for Energy Intensive Industries”, performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The objective of this program was to use technology recently invented at Virginia Tech to develop and demonstrate the application of self-calibrating optical fiber temperature and pressure sensors to several key energy-intensive industries where conventional, commercially available sensors exhibit greatly abbreviated lifetimes due primarily to environmental degradation. A number of significant technologies were developed under this program, including • a laser bonded silica high temperature fiber sensor with a high temperature capability up to 700°C and a frequency response up to 150 kHz, • the world’s smallest fiber Fabry-Perot high temperature pressure sensor (125 x 20 μm) with 700°C capability, • UV-induced intrinsic Fabry-Perot interferometric sensors for distributed measurement, • a single crystal sapphire fiber-based sensor with a temperature capability up to 1600°C. These technologies have been well demonstrated and laboratory tested. Our work plan included conducting major field tests of these technologies at EPRI, Corning, Pratt & Whitney, and Global Energy; field validation of the technology is critical to ensuring its usefulness to U.S. industries. Unfortunately, due to budget cuts, DOE was unable to follow through with its funding commitment to support Energy Efficiency Science Initiative projects and this final phase was eliminated.

  8. High temperature absorption heat pump for industrial usage

    SciTech Connect (OSTI)

    Bugarel, R.; Morillon, R.

    1982-01-01

    A theoretical and experimental study has demonstrated that an absorption heat pump with a water-lithium bromide thermodynamic couple has a practical coefficient of performance of 1.4-1.6 when providing a 280/sup 0/F heat source. The ability to serve as a high-temperature heat source makes this heat pump suitable for certain industrial processes such as drying.

  9. High Temperature coatings based on {beta}-NiAI

    SciTech Connect (OSTI)

    Severs, Kevin

    2012-07-10

    High temperature alloys are reviewed, focusing on current superalloys and their coatings. The synthesis, characerization, and oxidation performance of a NiAl–TiB{sub 2} composite are explained. A novel coating process for Mo–Ni–Al alloys for improved oxidation performance is examined. The cyclic oxidation performance of coated and uncoated Mo–Ni–Al alloys is discussed.

  10. High Operating Temperature Liquid Metal Heat Transfer Fluids (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-12-01

    The University of California, Los Angeles, the University of California, Berkeley, and Yale University is one of the 2012 SunShot CSP R&D awardees for their Multidisciplinary University Research Initiative (MURI): High Operating Temperature (HOT) Fluids. This fact sheet explains the motivation, description, and impact of the project.

  11. Electronically conductive ceramics for high temperature oxidizing environments

    DOE Patents [OSTI]

    Kucera, Gene H. (Downers Grove, IL); Smith, James L. (Lemont, IL); Sim, James W. (Evergreen Park, IL)

    1986-01-01

    A high temperature, ceramic composition having electronic conductivity as measured by resistivity below about 500 ohm-cm, chemical stability particularly with respect to cathode conditions in a molten carbonate fuel cell, and composed of an alkali metal, transition metal oxide containing a dopant metal in the crystalline structure to replace a portion of the alkali metal or transition metal.

  12. Circuit for monitoring temperature of high-voltage equipment

    DOE Patents [OSTI]

    Jacobs, Martin E.

    1976-01-01

    This invention relates to an improved circuit for measuring temperature in a region at high electric potential and generating a read-out of the same in a region at lower potential. The circuit is specially designed to combine high sensitivity, stability, and accuracy. A major portion of the circuit situated in the high-potential region can take the form of an integrated circuit. The preferred form of the circuit includes an input section which is situated in the high-potential region and comprises a temperature-compensated thermocouple circuit for sensing temperature, an oscillator circuit for generating a train of ramp voltages whose rise time varies inversely with the thermocouple output, a comparator and switching circuit for converting the oscillator output to pulses whose frequency is proportional to the thermocouple output, and a light-emitting diode which is energized by these pulses. An optical coupling transmits the light pulses generated by the diode to an output section of the circuit, situated in a region at ground. The output section comprises means for converting the transmitted pulses to electrical pulses of corresponding frequency, means for amplifying the electrical pulses, and means for displaying the frequency of the same. The preferred embodiment of the overall circuit is designed so that the frequency of the output signal in hertz and tenths of hertz is equal to the sensed temperature in degrees and tenths of degrees.

  13. Enhancements to High Temperature In-Pile Thermocouple Performance

    SciTech Connect (OSTI)

    J. C. Crepeau; J. L. Rempe; J. E. Daw; D. L. Knudson; K. G. Condie; S. C. Wilkins

    2008-03-01

    A joint University of Idaho (UI) and Idaho National Laboratory (INL) University Nuclear Research Initiative (UNERI) was to initiated to extend initial INL efforts to develop doped lybdenum/niobium alloy High Temperature Irradiation Resistant Thermocouples (HTIR-TCs). The overall objective of this UNERI was to develop recommendations for an optimized thermocouple design for high temperature, long duration, in-pile testing by expanding upon results from initial INL efforts. Tasks to quantify the impact of candidate enhancements, such as alternate alloys, alternate geometries, and alternate thermocouple fabrication techniques, on thermocouple performance were completed at INL's High Temperature Test Laboratory (HTTL), a state of the art facility equipped with specialized equipment and trained staff in the area of high temperature instrumentation development and evaluation. Key results of these evaluations, which are documented in this report, are as follows. The doped molybdenum and Nb-1%Zr, which were proposed in the initial INL HTIR-TC design, were found to retain ductility better than the developmental molybdenum-low niobium alloys and the niobium-low molybdenum alloys evaluated. Hence, the performance and lower cost of the commercially available KW-Mo makes a thermocouple containing KW-Mo and Nb-1%Zr the best option at this time. HTIR-TCs containing larger diameter wires offer the potential to increase HTIR-TC stability and reliability at higher temperatures. HTIR-TC heat treatment temperatures and times should be limited to not more than 100 C above the proposed operating temperatures and to durations of at least 4 to 5 hours. Preliminary investigations suggest that the performance of swaged and loose assembly HTIR-TC designs is similar. However, the swaged designs are less expensive and easier to construct. In addition to optimizing HTIR-TC performance, This UNERI project provided unique opportunities to several University of Idaho students, allowing them to

  14. Enhancements to High Temperature In-Pile Thermocouple Performance

    SciTech Connect (OSTI)

    J.C. Crepeau; J.L. Rempe; J.E. Daw; D.L. Knudson: K.G. Condie; S.C. Wilkins

    2008-03-31

    A joint University of Idaho (UI) and Idaho National Laboratory (INL) University Nuclear Research Initiative (UNERI) was to initiated to extend initial INL efforts to develop doped molybdenum/niobium alloy High Temperature Irradiation Resistant Thermocouples (HTIR-TCs). The overall objective of this UNERI was to develop recommendations for an optimized thermocouple design for high temperature, long duration, in-pile testing by expanding upon results from initial INL efforts. Tasks to quantify the impact of candidate enhancements, such as alternate alloys, alternate geometries, and alternate thermocouple fabrication techniques, on thermocouple performance were completed at INL's High Temperature Test Laboratory (HTTL), a state of the art facility equipped with specialized equipment and trained staff in the area of high temperature instrumentation development and evaluation. Key results of these evaluations, which are documented in this report, are as follows. The doped molybdenum and Nb-1%Zr, which were proposed in the initial INL HTIR-TC design, were found to retain ductility better than the developmental molybdenum-low niobium alloys and the niobium-low molybdenum alloys evaluated. Hence, the performance and lower cost of the commercially available KW-Mo makes a thermocouple containing KW-Mo and Nb-1%Zr the best option at this time. HTIR-TCs containing larger diameter wires offer the potential to increase HTIR-TC stability and reliability at higher temperatures. HTIR-TC heat treatment temperatures and times should be limited to not more than 100 C above the proposed operating temperatures and to durations of at least 4 to 5 hours. Preliminary investigations suggest that the performance of swaged and loose assembly HTIR-TC designs is similar. However, the swaged designs are less expensive and easier to construct. In addition to optimizing HTIR-TC performance, This UNERI project provided unique opportunities to several University of Idaho students, allowing them to

  15. High temperature corrosion problems in waste incineration systems

    SciTech Connect (OSTI)

    Krause, H.H.

    1986-03-01

    Corrosion of high temperature metal surfaces in waste incineration systems results primarily from compounds of chlorine, sulfur, and metals such as lead, zinc, and tin. The presence of such compounds in municipal refuse and chemical wastes can result in severe metal wastage in energy recovery systems. The corrosion mechanism involves interaction of sulfur oxides with chlorides in deposits to generate HCl and chlorine at the metal surface. Metal chlorides also can contribute by forming low melting eutectics. Reducing atmospheres, particularly carbon monoxide, in the combustion gases also appear to be a factor in corrosion. Corrosion rates of carbon and low alloy steels increase significantly with both metal temperature and gas temperature. The rates for stainless steels initially decrease as the metal temperature increases, and are less sensitive to gas temperature. Corrosion by chlorine can be inhibited by maintaining a sufficiently high concentration of sulfur or silica in the fuel. The results of corrosion probe exposures in waste-fueled boilers are presented to illustrate these mechanisms.

  16. Baseline Concept Description of a Small Modular High Temperature Reactor

    SciTech Connect (OSTI)

    Hans Gougar

    2014-05-01

    The objective of this report is to provide a description of generic small modular high temperature reactors (herein denoted as an smHTR), summarize their distinguishing attributes, and lay out the research and development (R&D) required for commercialization. The generic concepts rely heavily on the modular high temperature gas-cooled reactor designs developed in the 1980s which were never built but for which pre-licensing or certification activities were conducted. The concept matured more recently under the Next Generation Nuclear Plant (NGNP) project, specifically in the areas of fuel and material qualification, methods development, and licensing. As all vendor-specific designs proposed under NGNP were all both ‘small’ or medium-sized and ‘modular’ by International Atomic Energy Agency (IAEA) and Department of Energy (DOE) standards, the technical attributes, challenges, and R&D needs identified, addressed, and documented under NGNP are valid and appropriate in the context of Small Modular Reactor (SMR) applications. Although the term High Temperature Reactor (HTR) is commonly used to denote graphite-moderated, thermal spectrum reactors with coolant temperatures in excess of 650oC at the core outlet, in this report the historical term High Temperature Gas-Cooled Reactor (HTGR) will be used to distinguish the gas-cooled technology described herein from its liquid salt-cooled cousin. Moreover, in this report it is to be understood that the outlet temperature of the helium in an HTGR has an upper limit of 950 degrees C which corresponds to the temperature to which certain alloys are currently being qualified under DOE’s ARC program. Although similar to the HTGR in just about every respect, the Very High Temperature Reactor (VHTR) may have an outlet temperature in excess of 950 degrees C and is therefore farther from commercialization because of the challenges posed to materials exposed to these temperatures. The VHTR is the focus of R&D under the

  17. Baseline Concept Description of a Small Modular High Temperature Reactor

    SciTech Connect (OSTI)

    Gougar, Hans D.

    2014-10-01

    The objective of this report is to provide a description of generic small modular high temperature reactors (herein denoted as an smHTR), summarize their distinguishing attributes, and lay out the research and development (R&D) required for commercialization. The generic concepts rely heavily on the modular high temperature gas-cooled reactor designs developed in the 1980s which were never built but for which pre-licensing or certification activities were conducted. The concept matured more recently under the Next Generation Nuclear Plant (NGNP) project, specifically in the areas of fuel and material qualification, methods development, and licensing. As all vendor-specific designs proposed under NGNP were all both ‘small’ or medium-sized and ‘modular’ by International Atomic Energy Agency (IAEA) and Department of Energy (DOE) standards, the technical attributes, challenges, and R&D needs identified, addressed, and documented under NGNP are valid and appropriate in the context of Small Modular Reactor (SMR) applications. Although the term High Temperature Reactor (HTR) is commonly used to denote graphite-moderated, thermal spectrum reactors with coolant temperatures in excess of 650oC at the core outlet, in this report the historical term High Temperature Gas-Cooled Reactor (HTGR) will be used to distinguish the gas-cooled technology described herein from its liquid salt-cooled cousin. Moreover, in this report it is to be understood that the outlet temperature of the helium in an HTGR has an upper limit of 950 degrees C which corresponds to the temperature to which certain alloys are currently being qualified under DOE’s ARC program. Although similar to the HTGR in just about every respect, the Very High Temperature Reactor (VHTR) may have an outlet temperature in excess of 950 degrees C and is therefore farther from commercialization because of the challenges posed to materials exposed to these temperatures. The VHTR is the focus of R&D under the

  18. Baseline Concept Description of a Small Modular High Temperature Reactor

    SciTech Connect (OSTI)

    Hans Gougar

    2014-05-01

    The objective of this report is to provide a description of generic small modular high temperature reactors (herein denoted as an smHTR), summarize their distinguishing attributes, and lay out the research and development (R&D) required for commercialization. The generic concepts rely heavily on the modular high temperature gas-cooled reactor designs developed in the 1980s which were never built but for which pre-licensing or certification activities were conducted. The concept matured more recently under the Next Generation Nuclear Plant (NGNP) project, specifically in the areas of fuel and material qualification, methods development, and licensing. As all vendor-specific designs proposed under NGNP were all both small or medium-sized and modular by International Atomic Energy Agency (IAEA) and Department of Energy (DOE) standards, the technical attributes, challenges, and R&D needs identified, addressed, and documented under NGNP are valid and appropriate in the context of Small Modular Reactor (SMR) applications. Although the term High Temperature Reactor (HTR) is commonly used to denote graphite-moderated, thermal spectrum reactors with coolant temperatures in excess of 650oC at the core outlet, in this report the historical term High Temperature Gas-Cooled Reactor (HTGR) will be used to distinguish the gas-cooled technology described herein from its liquid salt-cooled cousin. Moreover, in this report it is to be understood that the outlet temperature of the helium in an HTGR has an upper limit of 950 degrees C which corresponds to the temperature to which certain alloys are currently being qualified under DOEs ARC program. Although similar to the HTGR in just about every respect, the Very High Temperature Reactor (VHTR) may have an outlet temperature in excess of 950 degrees C and is therefore farther from commercialization because of the challenges posed to materials exposed to these temperatures. The VHTR is the focus of R&D under the Generation IV

  19. An Integrated Study of a Novel Thermal Coating for Nb-Based High Temperature Alloy

    SciTech Connect (OSTI)

    Yang, Shizhong

    2015-01-31

    This report summarizes our recent works of ab initio density functional theory (DFT) method and molecular dynamics (MD) simulation on the interfaces between niobium substrate and coatings at atomic level. Potential oxidation barrier bond coat, Nb₂AlC and high entropy alloys, and top coat candidates were synthesized, characterized, and evaluated in our labs. The simulation methods, experimental validation techniques, achievements already reached, students and postdoc training, and future improvement are briefly introduced.

  20. Optimum Reactor Outlet Temperatures for High Temperature Gas-Cooled Reactors Integrated with Industrial Processes

    SciTech Connect (OSTI)

    Lee O. Nelson

    2011-04-01

    This report summarizes the results of a temperature sensitivity study conducted to identify the optimum reactor operating temperatures for producing the heat and hydrogen required for industrial processes associated with the proposed new high temperature gas-cooled reactor. This study assumed that primary steam outputs of the reactor were delivered at 17 MPa and 540°C and the helium coolant was delivered at 7 MPa at 625–925°C. The secondary outputs of were electricity and hydrogen. For the power generation analysis, it was assumed that the power cycle efficiency was 66% of the maximum theoretical efficiency of the Carnot thermodynamic cycle. Hydrogen was generated via the hightemperature steam electrolysis or the steam methane reforming process. The study indicates that optimum or a range of reactor outlet temperatures could be identified to further refine the process evaluations that were developed for high temperature gas-cooled reactor-integrated production of synthetic transportation fuels, ammonia, and ammonia derivatives, oil from unconventional sources, and substitute natural gas from coal.

  1. Sealed glass coating of high temperature ceramic superconductors

    DOE Patents [OSTI]

    Wu, W.; Chu, C.Y.; Goretta, K.C.; Routbort, J.L.

    1995-05-02

    A method and article of manufacture of a lead oxide based glass coating on a high temperature superconductor is disclosed. The method includes preparing a dispersion of glass powders in a solution, applying the dispersion to the superconductor, drying the dispersion before applying another coating and heating the glass powder dispersion at temperatures below oxygen diffusion onset and above the glass melting point to form a continuous glass coating on the superconductor to establish compressive stresses which enhance the fracture strength of the superconductor. 8 figs.

  2. Articles for high temperature service and methods for their manufacture

    DOE Patents [OSTI]

    Sarrafi-Nour, Reza; Meschter, Peter Joel; Johnson, Curtis Alan; Luthra, Krishan Lal; Rosenzweig, Larry Steven

    2016-06-14

    An article for use in aggressive environments is presented. In one embodiment, the article comprises a substrate and a self-sealing and substantially hermetic sealing layer comprising an alkaline-earth aluminosilicate disposed over the bondcoat. The substrate may be any high-temperature material, including, for instance, silicon-bearing ceramics and ceramic matrix composites. A method for making such articles is also presented. The method comprises providing a substrate; disposing a self-sealing alkaline-earth aluminosilicate layer over the substrate; and heating the sealing layer to a sealing temperature at which at least a portion of the sealing layer will flow.

  3. High temperature tensile properties of V-4Cr-4Ti

    SciTech Connect (OSTI)

    Zinkle, S.J.; Rowcliffe, A.F.; Stevens, C.O.

    1998-09-01

    Tensile tests have been performed on V-4Cr-4Ti at 750 and 800 C in order to extend the data base beyond the current limit of 700 C. From comparison with previous measurements, the yield strength is nearly constant and tensile elongations decrease slightly with increasing temperature between 300 and 800 C. The ultimate strength exhibits an apparent maximum near 600 C (attributable to dynamic strain aging) but adequate strength is maintained up to 800 C. The reduction in area measured on tensile specimens remained high ({approximately}80%) for test temperatures up to 800 C, in contrast to previous reported results.

  4. High Operating Temperature Liquid Metal Heat Transfer Fluids

    Energy.gov [DOE]

    This fact sheet describes a UCLA-led solar project to investigate high operating temperature liquid metal heat transfer fluids, funded by the SunShot initiative. The project team is using a combination of modeling along with a variety of property measurement and validation studies to demonstrate that the metal alloys identified can meet all the needs of a concentrating solar power plant. A successful candidate fluid would allow for the reduction of the levelized cost of energy by increasing the operating temperature for the CSP plant power cycle, which would increase thermal-to-electric conversion efficiency.

  5. Hydrogen Production by High Temperature Electrolysis with Nuclear Reactor

    SciTech Connect (OSTI)

    Ogawa, Takashi; Fujiwara, Seiji; Kasai, Shigeo; Yamada, Kazuya

    2007-07-01

    In this paper, we report our design of high temperature electrolysis plant system and the analysis results. The system efficiency increases with the increase of the steam utilization in the solid oxide electrolysis cell (SOEC) or the decrease of the hydrogen recycle (hydrogen recycle flow to product hydrogen flow) ratio,. The system efficiency is nearly independent of the SOEC operating temperature and pressure, and the air to product O{sub 2} ratio. In this study, the maximum system efficiency is 56.3%. (authors)

  6. Dynamic High-temperature Testing of an Iridium Alloy in Compression at High-strain Rates: Dynamic High-temperature Testing

    DOE PAGES-Beta [OSTI]

    Song, B.; Nelson, K.; Lipinski, R.; Bignell, J.; Ulrich, G.; George, E. P.

    2014-08-21

    Iridium alloys have superior strength and ductility at elevated temperatures, making them useful as structural materials for certain high-temperature applications. However, experimental data on their high-strain -rate performance are needed for understanding high-speed impacts in severe environments. Kolsky bars (also called split Hopkinson bars) have been extensively employed for high-strain -rate characterization of materials at room temperature, but it has been challenging to adapt them for the measurement of dynamic properties at high temperatures. In our study, we analyzed the difficulties encountered in high-temperature Kolsky bar testing of thin iridium alloy specimens in compression. We made appropriate modifications using themore » current high-temperature Kolsky bar technique in order to obtain reliable compressive stress–strain response of an iridium alloy at high-strain rates (300–10 000 s-1) and temperatures (750 and 1030°C). The compressive stress–strain response of the iridium alloy showed significant sensitivity to both strain rate and temperature.« less

  7. Dynamic High-temperature Testing of an Iridium Alloy in Compression at High-strain Rates: Dynamic High-temperature Testing

    SciTech Connect (OSTI)

    Song, B.; Nelson, K.; Lipinski, R.; Bignell, J.; Ulrich, G.; George, E. P.

    2014-08-21

    Iridium alloys have superior strength and ductility at elevated temperatures, making them useful as structural materials for certain high-temperature applications. However, experimental data on their high-strain -rate performance are needed for understanding high-speed impacts in severe environments. Kolsky bars (also called split Hopkinson bars) have been extensively employed for high-strain -rate characterization of materials at room temperature, but it has been challenging to adapt them for the measurement of dynamic properties at high temperatures. In our study, we analyzed the difficulties encountered in high-temperature Kolsky bar testing of thin iridium alloy specimens in compression. We made appropriate modifications using the current high-temperature Kolsky bar technique in order to obtain reliable compressive stress–strain response of an iridium alloy at high-strain rates (300–10 000 s-1) and temperatures (750 and 1030°C). The compressive stress–strain response of the iridium alloy showed significant sensitivity to both strain rate and temperature.

  8. Shock-induced synthesis of high temperature superconducting materials

    DOE Patents [OSTI]

    Ginley, D.S.; Graham, R.A.; Morosin, B.; Venturini, E.L.

    1987-06-18

    It has now been determined that the unique features of the high pressure shock method, especially the shock-induced chemical synthesis technique, are fully applicable to high temperature superconducting materials. Extraordinarily high yields are achievable in accordance with this invention, e.g., generally in the range from about 20% to about 99%, often in the range from about 50% to about 90%, lower and higher yields, of course, also being possible. The method of this invention involves the application of a controlled high pressure shock compression pulse which can be produced in any conventional manner, e.g., by detonation of a high explosive material, the impact of a high speed projectile or the effect of intense pulsed radiation sources such as lasers or electron beams. Examples and a discussion are presented.

  9. 9 Cr-- 1 Mo steel material for high temperature application

    DOE Patents [OSTI]

    Jablonski, Paul D; Alman, David; Dogan, Omer; Holcomb, Gordon; Cowen, Christopher

    2012-11-27

    One or more embodiments relates to a high-temperature, titanium alloyed, 9 Cr-1 Mo steel exhibiting improved creep strength and oxidation resistance at service temperatures up to 650.degree. C. The 9 Cr-1 Mo steel has a tempered martensite microstructure and is comprised of both large (0.5-3 .mu.m) primary titanium carbides and small (5-50 nm) secondary titanium carbides in a ratio of. from about 1:1.5 to about 1.5:1. The 9 Cr-1 Mo steel may be fabricated using exemplary austenizing, rapid cooling, and tempering steps without subsequent hot working requirements. The 9 Cr-1 Mo steel exhibits improvements in total mass gain, yield strength, and time-to-rupture over ASTM P91 and ASTM P92 at the temperature and time conditions examined.

  10. REACTOR PRESSURE VESSEL TEMPERATURE ANALYSIS OF CANDIDATE VERY HIGH TEMPERATURE REACTOR DESIGNS

    SciTech Connect (OSTI)

    Hans D. Gougar; Cliff B. Davis; George Hayner; Kevan Weaver

    2006-10-01

    Analyses were performed to determine maximum temperatures in the reactor pressure vessel for two potential Very-High Temperature Reactor (VHTR) designs during normal operation and during a depressurized conduction cooldown accident. The purpose of the analyses was to aid in the determination of appropriate reactor vessel materials for the VHTR. The designs evaluated utilized both prismatic and pebble-bed cores that generated 600 MW of thermal power. Calculations were performed for fluid outlet temperatures of 900 and 950 °C, corresponding to the expected range for the VHTR. The analyses were performed using the RELAP5-3D and PEBBED-THERMIX computer codes. Results of the calculations were compared with preliminary temperature limits derived from the ASME pressure vessel code. Because PEBBED-THERMIX has not been extensively validated, confirmatory calculations were also performed with RELAP5-3D for the pebble-bed design. During normal operation, the predicted axial profiles in reactor vessel temperature were similar with both codes and the predicted maximum values were within 2 °C. The trends of the calculated vessel temperatures were similar during the depressurized conduction cooldown accident. The maximum value predicted with RELAP5-3D during the depressurized conduction cooldown accident was about 40 °C higher than that predicted with PEBBED. This agreement is considered reasonable based on the expected uncertainty in either calculation. The differences between the PEBBED and RELAP5-3D calculations were not large enough to affect conclusions concerning comparisons between calculated and allowed maximum temperatures during normal operation and the depressurized conduction cooldown accident.

  11. Theory of intertwined orders in high temperature superconductors

    SciTech Connect (OSTI)

    Fradkin, Eduardo; Tranquada, John M.; Kivelson, Steven A.

    2015-03-26

    The electronic phase diagrams of many highly correlated systems, and in particular the cuprate high temperature superconductors, are complex, with many different phases appearing with similarsometimes identicalordering temperatures even as material properties, such as a dopant concentration, are varied over wide ranges. This complexity is sometimes referred to as competing orders. However, since the relation is intimate, and can even lead to the existence of new phases of matter such as the putative pair-density-wave, the general relation is better thought of in terms of intertwined orders. We selectively analyze some of the experiments in the cuprates which suggest that essential aspects of the physics are reflected in the intertwining of multiple ordersnot just in the nature of each order by itself. We also summarize and critique several theoretical ideas concerning the origin and implications of this complexity.

  12. High temperature solar thermal technology: The North Africa Market

    SciTech Connect (OSTI)

    Not Available

    1990-12-01

    High temperature solar thermal (HTST) technology offers an attractive option for both industrialized and non-industrialized countries to generate electricity and industrial process steam. The purpose of this report is to assess the potential market for solar thermal applications in the North African countries of Algeria, Egypt, Morocco and Tunisia. North Africa was selected because of its outstanding solar resource base and the variety of applications to be found there. Diminishing oil and gas resources, coupled with expanding energy needs, opens a large potential market for the US industry. The US high temperature solar trough industry has little competition globally and could build a large market in these areas. The US is already familiar with certain solar markets in North Africa due to the supplying of substantial quantities of US-manufactured flat plate collectors to this region.

  13. Iron aluminide alloys with improved properties for high temperature applications

    DOE Patents [OSTI]

    McKamey, Claudette G.; Liu, Chain T.

    1990-01-01

    An improved iron aluminide alloy of the DO.sub.3 type that has increased room temperature ductility and improved high elevated temperature strength. The alloy system further is resistant to corrosive attack in the environments of advanced energy corrosion systems such as those using fossil fuels. The resultant alloy is relatively inexpensive as contrasted to nickel based and high nickel steels currently utilized for structural components. The alloy system consists essentially of 26-30 at. % aluminum, 0.5-10 at. % chromium, 0.02-0.3 at. % boron plus carbon, up to 2 at. % molybdenum, up to 1 at. % niobium, up to 0.5 at. % zirconium, up to 0.1 at. % yttrium, up to 0.5 at. % vanadium and the balance iron.

  14. Theory of intertwined orders in high temperature superconductors

    DOE PAGES-Beta [OSTI]

    Fradkin, Eduardo; Tranquada, John M.; Kivelson, Steven A.

    2015-03-26

    The electronic phase diagrams of many highly correlated systems, and in particular the cuprate high temperature superconductors, are complex, with many different phases appearing with similar—sometimes identical—ordering temperatures even as material properties, such as a dopant concentration, are varied over wide ranges. This complexity is sometimes referred to as “competing orders.” However, since the relation is intimate, and can even lead to the existence of new phases of matter such as the putative “pair-density-wave,” the general relation is better thought of in terms of “intertwined orders.” We selectively analyze some of the experiments in the cuprates which suggest that essentialmore » aspects of the physics are reflected in the intertwining of multiple orders—not just in the nature of each order by itself. We also summarize and critique several theoretical ideas concerning the origin and implications of this complexity.« less

  15. Theory of intertwined orders in high temperature superconductors

    SciTech Connect (OSTI)

    Fradkin, Eduardo; Tranquada, John M.; Kivelson, Steven A.

    2015-03-26

    The electronic phase diagrams of many highly correlated systems, and in particular the cuprate high temperature superconductors, are complex, with many different phases appearing with similar—sometimes identical—ordering temperatures even as material properties, such as a dopant concentration, are varied over wide ranges. This complexity is sometimes referred to as “competing orders.” However, since the relation is intimate, and can even lead to the existence of new phases of matter such as the putative “pair-density-wave,” the general relation is better thought of in terms of “intertwined orders.” We selectively analyze some of the experiments in the cuprates which suggest that essential aspects of the physics are reflected in the intertwining of multiple orders—not just in the nature of each order by itself. We also summarize and critique several theoretical ideas concerning the origin and implications of this complexity.

  16. Iron aluminide alloys with improved properties for high temperature applications

    DOE Patents [OSTI]

    McKamey, C.G.; Liu, C.T.

    1990-10-09

    An improved iron aluminide alloy of the DO[sub 3] type is described that has increased room temperature ductility and improved high elevated temperature strength. The alloy system further is resistant to corrosive attack in the environments of advanced energy conversion systems such as those using fossil fuels. The resultant alloy is relatively inexpensive as contrasted to nickel based and high nickel steels currently utilized for structural components. The alloy system consists essentially of 26--30 at. % aluminum, 0.5--10 at. % chromium, 0.02--0.3 at. % boron plus carbon, up to 2 at. % molybdenum, up to 1 at. % niobium, up to 0.5 at. % zirconium, up to 0.1 at. % yttrium, up to 0.5 at. % vanadium and the balance iron. 3 figs.

  17. High temperature sodium testing of the CRBR prototype primary pump

    SciTech Connect (OSTI)

    Tessier, M.J.; Grimaldi, J.L.

    1983-01-01

    Qualification testing in sodium of the CRBR primary pump was conducted through 1982. This paper presents an overview of the test program, a description of the Sodium Pump Test Facility (largest of its kind in the world), a brief description of the test article and summary overview of results. Of special interest were the high temperature gas convection tests and the extensive flow/speed control (dynamic) tests. Special innovative test methods were employed to investigate these phenomena.

  18. Protective interlayer for high temperature solid electrolyte electrochemical cells

    DOE Patents [OSTI]

    Isenberg, Arnold O.; Ruka, Roswell J.

    1986-01-01

    A high temperature, solid electrolyte electrochemical cell is made, having a first and second electrode with solid electrolyte between them, where the electrolyte is formed by hot chemical vapor deposition, where a solid, interlayer material, which is electrically conductive, oxygen permeable, and protective of electrode material from hot metal halide vapor attack, is placed between the first electrode and the electrolyte, to protect the first electrode from the hot metal halide vapors during vapor deposition.

  19. Protective interlayer for high temperature solid electrolyte electrochemical cells

    DOE Patents [OSTI]

    Isenberg, Arnold O.; Ruka, Roswell J.

    1987-01-01

    A high temperature, solid electrolyte electrochemical cell is made, having a first and second electrode with solid electrolyte between them, where the electrolyte is formed by hot chemical vapor deposition, where a solid, interlayer material, which is electrically conductive, oxygen permeable, and protective of electrode material from hot metal halide vapor attack, is placed between the first electrode and the electrolyte, to protect the first electrode from the hot metal halide vapors during vapor deposition.

  20. Protective interlayer for high temperature solid electrolyte electrochemical cells

    DOE Patents [OSTI]

    Isenberg, Arnold O.; Ruka, Roswell J.; Zymboly, Gregory E.

    1985-01-01

    A high temperature, solid electrolyte electrochemical cell is made, having a first and second electrode with solid electrolyte between them, where the electrolyte is formed by hot chemical vapor deposition, where a solid, interlayer material, which is electrically conductive, oxygen permeable, and protective of electrode material from hot metal halide vapor attack, is placed between the first electrode and the electrolyte, to protect the first electrode from the hot metal halide vapors during vapor deposition.

  1. Improved Growth of High-Temperature Superconductors with HF Pressure

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Control - Energy Innovation Portal Electricity Transmission Electricity Transmission Find More Like This Return to Search Improved Growth of High-Temperature Superconductors with HF Pressure Control Brookhaven National Laboratory Contact BNL About This Technology Publications: PDF Document Publication A new method of HF control for synthesizing YBCO using the BaF2 ex situ process (83 KB) Graphical representation of the removal of hydrogen fluoride gas by the absorber during growth of

  2. High Temperature Proton Exchange Membrane - Energy Innovation Portal

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Vehicles and Fuels Vehicles and Fuels Hydrogen and Fuel Cell Hydrogen and Fuel Cell Find More Like This Return to Search High Temperature Proton Exchange Membrane Sandia National Laboratories Contact SNL About This Technology Publications: PDF Document Publication Market Sheet (976 KB) Technology Marketing Summary Polymer electrolyte fuel cells (PEFCs) have been identified as an attractive electrical power source due to it having a higher efficiency level and being an environmental friendly

  3. High-temperature reprocessing of petroleum oily sludges

    SciTech Connect (OSTI)

    Hahn, W.J. )

    1994-08-01

    Crude oil tank bottoms and other petroleum oily sludges and emulsions containing paraffins and volatile hydrocarbons can be economically reprocessed with heavy-oil dehydration facilities to recover residual hydrocarbons and to achieve volume reductions. The main factors affecting the use of this alternative are (1) the characteristics of the sludges requiring treatment, (2) the availability of waste heat or existing high temperature (> 350 F) dehydration facilities, (3) air emissions from the process, and (4) effluent criteria for treated residues. This paper discusses operational variables that affect high-temperature reprocessing (HTR) and illustrates an application of the process. The example pilot project evaluated the feasibility of high-temperature reprocessing for tank-bottom sludges and skim oils from Kern County, CA, light- (>30[degree] API) oil-producing leases. The process performance was quantified in terms of general operating parameters (flash point and paraffin, oil, water, and solids content); specific constituent analyses for benzene, toluene, ethylbenzene, and xylene (BTEX); and analyses for total petroleum hydrocarbons (TPH) content. Information on the percent removal of these parameters, characteristics of the treated residues, and the hydrocarbon recovery efficiency of the process are presented.

  4. Microstructure, Processing, Performance Relationships for High Temperature Coatings

    SciTech Connect (OSTI)

    Thomas M. Lillo

    2011-04-01

    This work evaluates the suitability of iron aluminide coatings for use in high temperature fossil fuel combustion environments, such as boiler applications. The coatings are applied using High Velocity Oxy-Fuel (HVOF) thermal spray techniques. Iron aluminide coatings, with the nominal composition of Fe3Al, were applied to various high temperature structural materials (316 Stainless Steel, 9Cr-1Mo steel and Inconel 600) that typically lack inherent resistance to environmental degradation found in fossil fuel combustion atmospheres. Coating/substrate combinations were subjected to thermal cycling to evaluate the effect of HVOF parameters, coating thickness, substrate material and substrate surface roughness on the resistance to coating delamination and cracking. It was found that substrate surface roughness had a profound influence on the performance of a given substrate/coating system and that surface preparation techniques will need to be tailored to the specific substrate material. Also, higher particle velocity during HVOF thermal spray deposition of the iron aluminide coatings tended to result in better-performing coating/substrate systems with less delamination at the coating/substrate interface. Some combinations of HVOF parameters, coating thickness and substrate materials were found to perform extremely well even at temperatures up to 900oC. However, in some cases, substantial reactions at the interface were observed.

  5. Current status of the advanced high temperature reactor

    SciTech Connect (OSTI)

    Holcomb, D. E.; Iias, D.; Quails, A. L.; Peretz, F. J.; Varma, V. K.; Bradley, E. C.; Cisneros, A. T.

    2012-07-01

    The Advanced High Temperature Reactor (AHTR) is a design concept for a central station type [1500 MW(e)] Fluoride salt-cooled High-temperature Reactor (FHR) that is currently under development by Oak Ridge National Laboratory for the U. S. Dept. of Energy, Office of Nuclear Energy's Advanced Reactor Concepts program. FHRs, by definition, feature low-pressure liquid fluoride salt cooling, coated-particle fuel, a high-temperature power cycle, and fully passive decay heat rejection. The overall goal of the AHTR development program is to demonstrate the technical feasibility of FHRs as low-cost, large-size power producers while maintaining full passive safety. The AHTR design option exploration is a multidisciplinary design effort that combines core neutronic and fuel configuration evaluation with structural, thermal, and hydraulic analysis to produce a reactor and vessel concept and place it within a power generation station. The AHTR design remains at the notional level of maturity, as key technologies require further development and a logically complete integrated design has not been finalized. The present design space exploration, however, indicates that reasonable options exist for the AHTR core, primary heat transport path, and fuel cycle provided that materials and systems technologies develop as anticipated. (authors)

  6. Improved Durability of SOEC Stacks for High Temperature Electrolysis

    SciTech Connect (OSTI)

    James E. O'Brien; Robert C. O'Brien; Xiaoyu Zhang; Joseph J. Hartvigsen; Greg Tao

    2013-01-01

    High temperature steam electrolysis is a promising technology for efficient and sustainable large-scale hydrogen production. Solid oxide electrolysis cells (SOECs) are able to utilize high temperature heat and electric power from advanced high-temperature nuclear reactors or renewable sources to generate carbon-free hydrogen at large scale. However, long term durability of SOECs needs to be improved significantly before commercialization of this technology can be realized. A degradation rate of 1%/khr or lower is proposed as a threshold value for commercialization of this technology. Solid oxide electrolysis stack tests have been conducted at Idaho National Laboratory to demonstrate recent improvements in long-term durability of SOECs. Electrolyte-supported and electrode-supported SOEC stacks were provided by Ceramatec Inc. and Materials and Systems Research Inc. (MSRI), respectively, for these tests. Long-term durability tests were generally operated for a duration of 1000 hours or more. Stack tests based on technologies developed at Ceramatec and MSRI have shown significant improvement in durability in the electrolysis mode. Long-term degradation rates of 3.2%/khr and 4.6%/khr were observed for MSRI and Ceramatec stacks, espectively. One recent Ceramatec stack even showed negative degradation (performance improvement) over 1900 hours of operation. Optimization of electrode materials, interconnect coatings, and electrolyte-electrode interface microstructures contribute to better durability of SOEC stacks.

  7. Current Status of the Advanced High Temperature Reactor

    SciTech Connect (OSTI)

    Holcomb, David Eugene; Ilas, Dan; Qualls, A L; Peretz, Fred J; Varma, Venugopal Koikal; Bradley, Eric Craig; Cisneros, Anselmo T.

    2012-01-01

    The Advanced High Temperature Reactor (AHTR) is a design concept for a central station type [1500 MW(e)] Fluoride salt-cooled High-temperature Reactor (FHR) that is currently under development by Oak Ridge National Laboratory for the U. S. Department of Energy, Office of Nuclear Energy's Advanced Reactor Concepts program. FHRs, by definition, feature low-pressure liquid fluoride salt cooling, coated-particle fuel, a high-temperature power cycle, and fully passive decay heat rejection. The overall goal of the AHTR development program is to demonstrate the technical feasibility of FHRs as low-cost, large-size power producers while maintaining full passive safety. The AHTR design option exploration is a multidisciplinary design effort that combines core neutronic and fuel configuration evaluation with structural, thermal, and hydraulic analysis to produce a reactor and vessel concept and place it within a power generation station. The AHTR design remains at the notional level of maturity, as key technologies require further development and a logically complete integrated design has not been finalized. The present design space exploration, however, indicates that reasonable options exist for the AHTR core, primary heat transport path, and fuel cycle provided that materials and systems technologies develop as anticipated.

  8. Innovative Instrumentation and Analysis of the Temperature Measurement for High Temperature Gasification

    SciTech Connect (OSTI)

    Seong W. Lee

    2006-09-30

    The project entitled, ''Innovative Instrumentation and Analysis of the Temperature Measurement for High Temperature Gasification'', was successfully completed by the Principal Investigator, Dr. S. Lee and his research team in the Center for Advanced Energy Systems and Environmental Control Technologies at Morgan State University. The major results and outcomes were presented in semi-annual progress reports and annual project review meetings/presentations. Specifically, the literature survey including the gasifier temperature measurement, the ultrasonic application in cleaning application, and spray coating process and the gasifier simulator (cold model) testing has been successfully conducted during the first year. The results show that four factors (blower voltage, ultrasonic application, injection time intervals, particle weight) were considered as significant factors that affect the temperature measurement. Then the gasifier simulator (hot model) design and the fabrication as well as the systematic tests on hot model were completed to test the significant factors on temperature measurement in the second year. The advanced Industrial analytic methods such as statistics-based experimental design, analysis of variance (ANOVA) and regression methods were applied in the hot model tests. The results show that operational parameters (i.e. air flow rate, water flow rate, fine dust particle amount, ammonia addition) presented significant impact on the temperature measurement inside the gasifier simulator. The experimental design and ANOVA are very efficient way to design and analyze the experiments. The results show that the air flow rate and fine dust particle amount are statistically significant to the temperature measurement. The regression model provided the functional relation between the temperature and these factors with substantial accuracy. In the last year of the project period, the ultrasonic and subsonic cleaning methods and coating materials were tested

  9. R&D Plan for the High Temperature Membrane Working Group

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    R&D Plan for the High Temperature Membrane Working Group IntroductionBackground The High Temperature Membrane Working Group was established to provide a forum for greater ...

  10. High-Temperature Motor Windings for Downhole Pumps Used in Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    High-Temperature Motor Windings for Downhole Pumps Used in Geothermal Energy Production Project objective: Develop and demonstrate high-temperature ESP motor windings for use in ...

  11. Energy Department Announces First-of-its-Kind, High-Temperature...

    Energy Savers

    First-of-its-Kind, High-Temperature, Downhole Rechargeable Energy Storage Device Energy Department Announces First-of-its-Kind, High-Temperature, Downhole Rechargeable Energy ...

  12. High-Temperature Circuit Boards for Use in Geothermal Well Monitoring...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    High-Temperature Circuit Boards for Use in Geothermal Well Monitoring Applications Project objective: Develop and demonstrate high-temperature; multilayer electronic circuits ...

  13. Support for Cost Analyses on Solar-Driven High Temperature Thermochemi...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Support for Cost Analyses on Solar-Driven High Temperature Thermochemical Water-Splitting Cycles Support for Cost Analyses on Solar-Driven High Temperature Thermochemical ...

  14. High Temperature Measurements Of Martensitic transformations Using Digital Holography

    SciTech Connect (OSTI)

    Thiesing, Benjamin; Mann, Christopher J; Dryepondt, Sebastien N

    2013-01-01

    During thermal cycling of nickel-aluminum-platinum (NiAlPt) and single crystal Fe-15Cr-15Ni alloys, the structural changes associated with the martensite to austenite phase transformation were measured using dual-wavelength digital holography. Real-time in-situ measurements reveal the formation of striations within the NiPtAl alloy at 70 C and the FeCrNi alloy at 520 C. The results demonstrate that digital holography is an effective technique for acquiring non-contact, high precision information of the surface evolution of alloys at high temperatures.

  15. Thermal Hydraulics of the Very High Temperature Gas Cooled Reactor

    SciTech Connect (OSTI)

    Chang Oh; Eung Kim; Richard Schultz; Mike Patterson; Davie Petti

    2009-10-01

    The U.S Department of Energy (DOE) is conducting research on the Very High Temperature Reactor (VHTR) design concept for the Next Generation Nuclear Plant (NGNP) Project. The reactor design will be a graphite moderated, thermal neutron spectrum reactor that will produce electricity and hydrogen in a highly efficient manner. The NGNP reactor core will be either a prismatic graphite block type core or a pebble bed core. The NGNP will use very high-burnup, low-enriched uranium, TRISO-coated fuel, and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during reactor core-accidents. The objectives of the NGNP Project are to: Demonstrate a full-scale prototype VHTR that is commercially licensed by the U.S. Nuclear Regulatory Commission, and Demonstrate safe and economical nuclear-assisted production of hydrogen and electricity. The DOE laboratories, led by the INL, perform research and development (R&D) that will be critical to the success of the NGNP, primarily in the areas of: High temperature gas reactor fuels behavior High temperature materials qualification Design methods development and validation Hydrogen production technologies Energy conversion. This paper presents current R&D work that addresses fundamental thermal hydraulics issues that are relevant to a variety of possible NGNP designs.

  16. Radial convection of finite ion temperature, high amplitude plasma blobs

    SciTech Connect (OSTI)

    Wiesenberger, M. Kendl, A.; Madsen, J.

    2014-09-15

    We present results from simulations of seeded blob convection in the scrape-off-layer of magnetically confined fusion plasmas. We consistently incorporate high fluctuation amplitude levels and finite Larmor radius (FLR) effects using a fully nonlinear global gyrofluid model. This is in line with conditions found in tokamak scrape-off-layers (SOL) regions. Varying the ion temperature, the initial blob width, and the initial amplitude, we found an FLR dominated regime where the blob behavior is significantly different from what is predicted by cold-ion models. The transition to this regime is very well described by the ratio of the ion gyroradius to the characteristic gradient scale length of the blob. We compare the global gyrofluid model with a partly linearized local model. For low ion temperatures, we find that simulations of the global model show more coherent blobs with an increased cross-field transport compared to blobs simulated with the local model. The maximal blob amplitude is significantly higher in the global simulations than in the local ones. When the ion temperature is comparable to the electron temperature, global blob simulations show a reduced blob coherence and a decreased cross-field transport in comparison with local blob simulations.

  17. High temperature thermoplastic elastomers synthesized by living anionic polymerization in hydrocarbon solvent at room temperature

    DOE PAGES-Beta [OSTI]

    Schlegel, Ralf; Williams, Katherine; Voyloy, Dimitry; Steren, Carlos A.; Goodwin, Andrew; Coughlin, E. Bryan; Gido, Samuel; Beiner, Mario; Hong, Kunlun; Kang, Nam -Goo; et al

    2016-03-30

    We present the synthesis and characterization of a new class of high temperature thermoplastic elastomers composed of polybenzofulvene–polyisoprene–polybenzofulvene (FIF) triblock copolymers. All copolymers were prepared by living anionic polymerization in benzene at room temperature. Homopolymerization and effects of additives on the glass transition temperature (Tg) of polybenzofulvene (PBF) were also investigated. Among all triblock copolymers studied, FIF with 14 vol % of PBF exhibited a maximum stress of 14.3 ± 1.3 MPa and strain at break of 1390 ± 66% from tensile tests. The stress–strain curves of FIF-10 and 14 were analyzed by a statistical molecular approach using a nonaffinemore » tube model to estimate the thermoplastic elastomer behavior. Dynamic mechanical analysis showed that the softening temperature of PBF in FIF was 145 °C, much higher than that of thermoplastic elastomers with polystyrene hard blocks. Microphase separation of FIF triblock copolymers was observed by small-angle X-ray scattering, even though long-range order was not achieved under the annealing conditions employed. Additionally, the microphase separation of the resulting triblock copolymers was examined by atomic force microscopy.« less

  18. Materials for the scavenging of hydrogen at high temperatures

    DOE Patents [OSTI]

    Shepodd, T.J.; Phillip, B.L.

    1997-12-30

    A hydrogen getter composition is described comprising a double or triple bonded hydrocarbon with a high melting point useful for removing hydrogen gas, to partial pressures below 0.01 torr, from enclosed spaces and particularly from vessels used for transporting or containing fluids at elevated temperatures. The hydrogen getter compositions disclosed herein and their reaction products will neither melt nor char at temperatures in excess of 100 C. They possess significant advantages over conventional hydrogen getters, namely low risk of fire or explosion, no requirement for high temperature activation or operation, the ability to absorb hydrogen even in the presence of contaminants such as water, water vapor, common atmospheric gases and oil mists and are designed to be disposed within the confines of the apparatus. These getter materials can be mixed with binders, such as fluoropolymers, which permit the getter material to be fabricated into useful shapes and/or impart desirable properties such as water repellency or impermeability to various gases. 7 figs.

  19. Materials for the scavenging of hydrogen at high temperatures

    DOE Patents [OSTI]

    Shepodd, T.J.; Phillip, B.L.

    1997-04-29

    A hydrogen getter composition is described comprising a double or triple bonded hydrocarbon with a high melting point useful for removing hydrogen gas, to partial pressures below 0.01 torr, from enclosed spaces and particularly from vessels used for transporting or containing fluids at elevated temperatures. The hydrogen getter compositions disclosed herein and their reaction products will neither melt nor char at temperatures in excess of 100C. They possess significant advantages over conventional hydrogen getters, namely low risk of fire or explosion, no requirement for high temperature activation or operation, the ability to absorb hydrogen even in the presence of contaminants such as water, water vapor, common atmospheric gases and oil mists and are designed to be disposed within the confines of the apparatus. These getter materials can be mixed with binders, such as fluoropolymers, which permit the getter material to be fabricated into useful shapes and/or impart desirable properties such as water repellency or impermeability to various gases. 7 figs.

  20. Metal Hydrides for High-Temperature Power Generation

    DOE PAGES-Beta [OSTI]

    Ronnebro, Ewa; Whyatt, Greg A.; Powell, Michael R.; Westman, Matthew P.; Zheng, Feng; Fang, Zhigang Zak

    2015-08-10

    Metal hydrides can be utilized for hydrogen storage and for thermal energy storage (TES) applications. By using TES with solar technologies, heat can be stored from sun energy to be used later which enables continuous power generation. We are developing a TES technology based on a dual-bed metal hydride system, which has a high-temperature (HT) metal hydride operating reversibly at 600-800°C to generate heat as well as a low-temperature (LT) hydride near room temperature that is used for hydrogen storage during sun hours until there is a need to produce electricity, such as during night time, a cloudy day, ormore » during peak hours. We proceeded from selecting a high-energy density, low-cost HT-hydride based on performance characterization on gram size samples, to scale-up to kilogram quantities and design, fabrication and testing of a 1.5kWh, 200kWh/m3 bench-scale TES prototype based on a HT-bed of titanium hydride and a hydrogen gas storage instead of a LT-hydride. COMSOL Multiphysics was used to make performance predictions for cylindrical hydride beds with varying diameters and thermal conductivities. Based on experimental and modeling results, a bench-scale prototype was designed and fabricated and we successfully showed feasibility to meet or exceed all performance targets.« less

  1. SCALING OF THE SUPERFLUID DENSITY IN HIGH-TEMPERATURE SUPERCONDUCTORS.

    SciTech Connect (OSTI)

    HOMES, C.C.

    2005-10-24

    A scaling relation N{sub c} {approx} 4.4{sigma}{sub dc}T{sub c} has been observed parallel and perpendicular to the copper-oxygen planes in the high-temperature superconductors; N{sub c} is the spectral weight and {sigma}{sub dc} is the dc conductivity just above the critical temperature T{sub c}. In addition, Nb and Pb also fall close to the this scaling line. The application of the Ferrell-Glover-Tinkham sum rule to the BCS optical properties of Nb above and below T{sub c} yields N{sub c} {approx} 8.1{sigma}{sub dc}T{sub c} when the normal-state scattering rate is much greater than the superconducting energy gap (1/{tau} > 2{Delta}, the ''dirty'' limit). This result implies that the high-temperature superconductors may be in the dirty limit. The superconductivity perpendicular to the planes is explained by the Josephson effect, which again yields N{sub c} {approx} 8.1{sigma}{sub dc}T{sub c} in the BCS formalism. The similar forms for the scaling relation in these two directions suggests that in some regime the dirty limit and the Josephson effect may be viewed as equivalent.

  2. Non-graphite crucible for high temperature applications

    DOE Patents [OSTI]

    Holcombe, C.E.; Pfeiler, W.A.

    1994-08-02

    A multi-piece crucible for high temperature applications comprises a tubular side wall member having a lip on the inside surface and a bottom member or members forming a container for containing a melt of a material during a high temperature melt-casting operations. The multi-piece design prevents cracking of the crucible or leakage of the melt from the crucible during the melt-casting operation. The lip of the tubular member supports the bottom member. The contacting surfaces where the lip of the tubular side wall member contacts the bottom member of the multi-piece crucible contains a ceramic sealing material. The ceramic sealing material forms a seal sufficient to prevent the melt of the material from leaking out of the multi-piece crucible during the melt-casting process. The multi-piece crucible is made of a material which is chemically inert to the melt and has structural integrity at the melting point temperature of the melt, or of a material coated with such a material. 6 figs.

  3. Non-graphite crucible for high temperature applications

    DOE Patents [OSTI]

    Holcombe, Cressie E.; Pfeiler, William A.

    1994-01-01

    A multi-piece crucible for high temperature applications comprises a tubular side wall member having a lip on the inside surface and a bottom member or members forming a container for containing a melt of a material during a high temperature melt-casting operations. The multi-piece design prevents cracking of the crucible or leakage of the melt from the crucible during the melt-casting operation. The lip of the tubular member supports the bottom member. The contacting surfaces where the lip of the tubular side wall member contacts the bottom member of the multi-piece crucible contains a ceramic sealing material. The ceramic sealing material forms a seal sufficient to prevent the melt of the material from leaking out of the multi-piece crucible during the melt-casting process. The multi-piece crucible is made of a material which is chemically inert to the melt and has structural integrity at the melting point temperature of the melt, or of a material coated with such a material.

  4. Low temperature high frequency coaxial pulse tube for space application

    SciTech Connect (OSTI)

    Charrier, Aurelia; Charles, Ivan; Rousset, Bernard; Duval, Jean-Marc

    2014-01-29

    The 4K stage is a critical step for space missions. The Hershel mission is using a helium bath, which is consumed day by day (after depletion, the space mission is over) while the Plank mission is equipped with one He4 Joule-Thomson cooler. Cryogenic chain without helium bath is a challenge for space missions and 4.2K Pulse-Tube working at high frequency (around 30Hz) is one option to take it up. A low temperature Pulse-Tube would be suitable for the ESA space mission EChO (Exoplanet Characterisation Observatory, expected launch in 2022), which requires around 30mW cooling power at 6K; and for the ESA space mission ATHENA (Advanced Telescope for High ENergy Astrophysics), to pre-cool the sub-kelvin cooler (few hundreds of mW at 15K). The test bench described in this paper combines a Gifford-McMahon with a coaxial Pulse-Tube. A thermal link is joining the intercept of the Pulse-Tube and the second stage of the Gifford-McMahon. This intercept is a separator between the hot and the cold regenerators of the Pulse-Tube. The work has been focused on the cold part of this cold finger. Coupled with an active phase shifter, this Pulse-Tube has been tested and optimized and temperatures as low as 6K have been obtained at 30Hz with an intercept temperature at 20K.

  5. Metal Hydrides for High-Temperature Power Generation

    SciTech Connect (OSTI)

    Ronnebro, Ewa; Whyatt, Greg A.; Powell, Michael R.; Westman, Matthew P.; Zheng, Feng; Fang, Zhigang Zak

    2015-08-10

    Metal hydrides can be utilized for hydrogen storage and for thermal energy storage (TES) applications. By using TES with solar technologies, heat can be stored from sun energy to be used later which enables continuous power generation. We are developing a TES technology based on a dual-bed metal hydride system, which has a high-temperature (HT) metal hydride operating reversibly at 600-800°C to generate heat as well as a low-temperature (LT) hydride near room temperature that is used for hydrogen storage during sun hours until there is a need to produce electricity, such as during night time, a cloudy day, or during peak hours. We proceeded from selecting a high-energy density, low-cost HT-hydride based on performance characterization on gram size samples, to scale-up to kilogram quantities and design, fabrication and testing of a 1.5kWh, 200kWh/m3 bench-scale TES prototype based on a HT-bed of titanium hydride and a hydrogen gas storage instead of a LT-hydride. COMSOL Multiphysics was used to make performance predictions for cylindrical hydride beds with varying diameters and thermal conductivities. Based on experimental and modeling results, a bench-scale prototype was designed and fabricated and we successfully showed feasibility to meet or exceed all performance targets.

  6. Oxygen Handling and Cooling Options in High Temperature Electrolysis Plants

    SciTech Connect (OSTI)

    Manohar S. Sohal; J. Stephen Herring

    2008-07-01

    Idaho National Laboratory is working on a project to generate hydrogen by high temperature electrolysis (HTE). In such an HTE system, safety precautions need to be taken to handle high temperature oxygen at ~830°C. This report is aimed at addressing oxygen handling in a HTE plant.. Though oxygen itself is not flammable, most engineering material, including many gases and liquids, will burn in the presence of oxygen under some favorable physicochemical conditions. At present, an absolute set of rules does not exist that can cover all aspects of oxygen system design, material selection, and operating practices to avoid subtle hazards related to oxygen. Because most materials, including metals, will burn in an oxygen-enriched environment, hazards are always present when using oxygen. Most materials will ignite in an oxygen-enriched environment at a temperature lower than that in air, and once ignited, combustion rates are greater in the oxygen-enriched environment. Even many metals, if ignited, burn violently in an oxygen-enriched environment. However, these hazards do not preclude the operations and systems involving oxygen. Oxygen can be safely handled and used if all the materials in a system are not flammable in the end-use environment or if ignition sources are identified and controlled. In fact, the incidence of oxygen system fires is reported to be low with a probability of about one in a million. This report is a practical guideline and tutorial for the safe operation and handling of gaseous oxygen in high temperature electrolysis system. The intent is to provide safe, practical guidance that permits the accomplishment of experimental operations at INL, while being restrictive enough to prevent personnel endangerment and to provide reasonable facility protection. Adequate guidelines are provided to govern various aspects of oxygen handling associated with high temperature electrolysis system to generate hydrogen. The intent here is to present acceptable

  7. Controlled Chemistry Helium High Temperature Materials Test Loop

    SciTech Connect (OSTI)

    Richard N. WRight

    2005-08-01

    A system to test aging and environmental effects in flowing helium with impurity content representative of the Next Generation Nuclear Plant (NGNP) has been designed and assembled. The system will be used to expose microstructure analysis coupons and mechanical test specimens for up to 5,000 hours in helium containing potentially oxidizing or carburizing impurities controlled to parts per million levels. Impurity levels in the flowing helium are controlled through a feedback mechanism based on gas chromatography measurements of the gas chemistry at the inlet and exit from a high temperature retort containing the test materials. Initial testing will focus on determining the nature and extent of combined aging and environmental effects on microstructure and elevated temperature mechanical properties of alloys proposed for structural applications in the NGNP, including Inconel 617 and Haynes 230.

  8. High-temperature strain cell for tomographic imaging

    DOE Patents [OSTI]

    MacDowell, Alastair A.; Nasiatka, James; Haboub, Abdel; Ritchie, Robert O.; Bale, Hrishikesh A.

    2015-06-16

    This disclosure provides systems, methods, and apparatus related to the high temperature mechanical testing of materials. In one aspect, a method includes providing an apparatus. The apparatus may include a chamber. The chamber may comprise a top portion and a bottom portion, with the top portion and the bottom portion each joined to a window material. A first cooled fixture and a second cooled fixture may be mounted to the chamber and configured to hold the sample in the chamber. A plurality of heating lamps may be mounted to the chamber and positioned to heat the sample. The sample may be placed in the first and the second cooled fixtures. The sample may be heated to a specific temperature using the heating lamps. Radiation may be directed though the window material, the radiation thereafter interacting with the sample and exiting the chamber through the window material.

  9. Remote high-temperature insulatorless heat-flux gauge

    DOE Patents [OSTI]

    Noel, Bruce W. (Espanola, NM)

    1993-01-01

    A remote optical heat-flux gauge for use in extremely high temperature environments is described. This application is possible because of the use of thermographic phosphors as the sensing media, and the omission of the need for an intervening layer of insulator between phosphor layers. The gauge has no electrical leads, but is interrogated with ultraviolet or laser light. The luminescence emitted by the two phosphor layers, which is indicative of the temperature of the layers, is collected and analyzed in order to determine the heat flux incident on the surface being investigated. The two layers of thermographic phosphor must be of different materials to assure that the spectral lines collected will be distinguishable. Spatial heat-flux measurements can be made by scanning the light across the surface of the gauge.

  10. Remote high-temperature insulatorless heat-flux gauge

    DOE Patents [OSTI]

    Noel, B.W.

    1993-12-28

    A remote optical heat-flux gauge for use in extremely high temperature environments is described. This application is possible because of the use of thermographic phosphors as the sensing media, and the omission of the need for an intervening layer of insulator between phosphor layers. The gauge has no electrical leads, but is interrogated with ultraviolet or laser light. The luminescence emitted by the two phosphor layers, which is indicative of the temperature of the layers, is collected and analyzed in order to determine the heat flux incident on the surface being investigated. The two layers of thermographic phosphor must be of different materials to assure that the spectral lines collected will be distinguishable. Spatial heat-flux measurements can be made by scanning the light across the surface of the gauge. 3 figures.

  11. Cobalt doped lanthanum chromite material suitable for high temperature use

    DOE Patents [OSTI]

    Ruka, Roswell J.

    1986-01-01

    A high temperature, solid electrolyte electrochemical cell, subject to thermal cycling temperatures of between about 25.degree. C. and about 1200.degree. C., capable of electronic interconnection to at least one other electrochemical cell and capable of operating in an environment containing oxygen and a fuel, is made; where the cell has a first and second electrode with solid electrolyte between them, where an improved interconnect material is applied along a portion of a supporting electrode; where the interconnect is made of a chemically modified lanthanum chromite, containing cobalt as the important additive, which interconnect allows for adjustment of the thermal expansion of the interconnect material to more nearly match that of other cell components, such as zirconia electrolyte, and is stable in oxygen containing atmospheres such as air and in fuel environments.

  12. Cobalt doped lanthanum chromite material suitable for high temperature use

    DOE Patents [OSTI]

    Ruka, R.J.

    1986-12-23

    A high temperature, solid electrolyte electrochemical cell, subject to thermal cycling temperatures of between about 25 C and about 1,200 C, capable of electronic interconnection to at least one other electrochemical cell and capable of operating in an environment containing oxygen and a fuel, is made; where the cell has a first and second electrode with solid electrolyte between them, where an improved interconnect material is applied along a portion of a supporting electrode; where the interconnect is made of a chemically modified lanthanum chromite, containing cobalt as the important additive, which interconnect allows for adjustment of the thermal expansion of the interconnect material to more nearly match that of other cell components, such as zirconia electrolyte, and is stable in oxygen containing atmospheres such as air and in fuel environments. 2 figs.

  13. High Temperature 300°C Directional Drilling System

    SciTech Connect (OSTI)

    Chatterjee, Kamalesh; Aaron, Dick; Macpherson, John

    2015-07-31

    Many countries around the world, including the USA, have untapped geothermal energy potential. Enhanced Geothermal Systems (EGS) technology is needed to economically utilize this resource. Temperatures in some EGS reservoirs can exceed 300°C. To effectively utilize EGS resources, an array of injector and production wells must be accurately placed in the formation fracture network. This requires a high temperature directional drilling system. Most commercial services for directional drilling systems are rated for 175°C while geothermal wells require operation at much higher temperatures. Two U.S. Department of Energy (DOE) Geothermal Technologies Program (GTP) projects have been initiated to develop a 300°C capable directional drilling system, the first developing a drill bit, directional motor, and drilling fluid, and the second adding navigation and telemetry systems. This report is for the first project, “High Temperature 300°C Directional Drilling System, including drill bit, directional motor and drilling fluid, for enhanced geothermal systems,” award number DE-EE0002782. The drilling system consists of a drill bit, a directional motor, and drilling fluid. The DOE deliverables are three prototype drilling systems. We have developed three drilling motors; we have developed four roller-cone and five Kymera® bits; and finally, we have developed a 300°C stable drilling fluid, along with a lubricant additive for the metal-to-metal motor. Metal-to-metal directional motors require coatings to the rotor and stator for wear and corrosion resistance, and this coating research has been a significant part of the project. The drill bits performed well in the drill bit simulator test, and the complete drilling system has been tested drilling granite at Baker Hughes’ Experimental Test Facility in Oklahoma. The metal-to-metal motor was additionally subjected to a flow loop test in Baker Hughes’ Celle Technology Center in Germany, where it ran for more than 100

  14. High temperature measurement using very high shutter speed to avoid image saturation

    SciTech Connect (OSTI)

    Ma, Zhen; Zhang, Yang

    2014-04-11

    This paper explores the adaptation of the two-colour principle to develop a high-speed colour temperature correlation system, which is able to cover a range of temperature that is challenging to achieve before. A colour digital camera has built in RGB filters. It is possible to measure the temperature from the ratio of intensity of the green and red pixels using the two-colour principle based on the expansion of the Planks radiation law. In this study, experiments were carried out using a temperature calibrated tungsten ribbon lamp which can be tuned to vary from 1300 to 2200C. Using very high shutter speed and small aperture, the high-speed camera successfully captured the tungsten ribbon without image saturation at the full temperature scale. Tests have been carried out at different temperature and camera settings. The sensitivity and errors have been analysed, and experiment results demonstrate the potential of using very high shutter speed is available for measuring the temperature even beyond 2200C.

  15. Development of high-temperature UV-VIS-NIR spectroscopy for the measurement of free energies of complexation at elevated temperatures

    SciTech Connect (OSTI)

    Robouch, P.; Grant, P.; Torres, R.A.; Baisden, P.A.; Silva, R.J.

    1990-09-26

    We have developed instrumentation capable of measuring optical absorption spectra over a wavelength range of 200--1200 nm and a temperature range of 20--100{degree}C. This fiber-optic based spectrometer generates data which allow the computation of metal-ligand equilibrium constants. Studies at five temperatures have been completed using praseodymium-diglycolate as a model system. Fundamental thermodynamic values (free energies, enthalpies, entropies) were obtained from the experimentally-determined stability constants. Thermodynamic data pertinent to the interactions of actinides and long-lived fission products with groundwater, waste package components, and geologic media are critical input to modeling programs. 9 refs., 1 fig., 2 tabs.

  16. The DARPA manufacturing initiative in high temperature superconductivity

    SciTech Connect (OSTI)

    Adams, K.R. )

    1989-01-01

    The Defense Advanced Research Projects Agency (DARPA) has a very aggressive Technology Base program in high temperature superconductivity. This program is expected to provide the basis for a specialized set of military products - passive microwave and millimeter wave devices - within the next three years. In order to get these high leverage products into military systems, a manufacturing base must be developed for HTSC components. A plan for DARPA in HTSC manufacturing is directly coupled with the ongoing DARPA materials and device oriented R and D program. In essence, this plan recommends a three phased effort: 1. Phase I (two years); Fund companies through R and D contracts for specialized HTSC components; prepare a detailed plan and develop an HTSC consortium. 2. Phase II (six years): Establish an HTSC Sematech initiative for electronic applications, including active devices. 3. Phase III (optional): Continue the HTSC Sematech with emphasis on high power applications.

  17. Advancing the Technology Base for High Temperature Hydrogen Membranes

    SciTech Connect (OSTI)

    Dye, Robert C.; Moss, Thomas S.

    1997-12-31

    High purity hydrogen is a critical component for at least two major industrial processes: 1) the refining of conventional steels and raw pig iron into low carbon steels and high purity iron used for high performance magnets in motors, generators, alternators, transformers, and etc.; and 2) refining metallurgical grade silicon to the high- purity, polycrystalline silicon used in fabricating single crystal silicon wafers for semiconductor manufacturing. In the process of producing low carbon iron products, CO and CO2 impurities prevent efficient removal of the carbon already in the raw iron. In the refining of metallurgical grade silicon, the presence of any impurity above the part-per- million level prevents the ultimate fabrication of the large scale single crystals that are essential to the semiconductor device. In a lesser magnitude role, high quality hydrogen is used in a variety of other processes, including specialty metals refining (e.g., iridium, osmium, palladium, platinum, and ruthenium) and R{ampersand}D in areas such as organic synthesis and development of certain types of fuel cells. In all of these applications, a high-temperature hydrogen membrane can provide a method for achieving a very high purity level of hydrogen in a manner that is more economical and/or more rugged than existing techniques.

  18. Enhanced High Temperature Performance of NOx Reduction Catalyst Materials

    SciTech Connect (OSTI)

    Gao, Feng; Kim, Do Heui; Luo, Jinyong; Muntean, George G.; Peden, Charles HF; Howden, Ken; Currier, Neal; Kamasamudram, Krishna; Kumar, Ashok; Li, Junhui; Stafford, Randy; Yezerets, Aleksey; Castagnola, Mario; Chen, Hai Ying; Hess, Howard ..

    2012-12-31

    Two primary NOx after-treatment technologies have been recognized as the most promising approaches for meeting stringent NOx emission standards for diesel vehicles within the Environmental Protection Agencys (EPAs) 2007/2010 mandated limits, NOx Storage Reduction (NSR) and NH3 selective catalytic reduction (SCR); both are, in fact being commercialized for this application. However, in looking forward to 2015 and beyond with expected more stringent regulations, the continued viability of the NSR technology for controlling NOx emissions from lean-burn engines such as diesels will require at least two specific, significant and inter-related improvements. First, it is important to reduce system costs by, for example, minimizing the precious metal content while maintaining, even improving, performance and long-term stability. A second critical need for future NSR systems, as well as for NH3 SCR, will be significantly improved higher and lower temperature performance and stability. Furthermore, these critically needed improvements will contribute significantly to minimizing the impacts to fuel economy of incorporating these after-treatment technologies on lean-burn vehicles. To meet these objectives will require, at a minimum an improved scientific understanding of the following things: i) the various roles for the precious and coinage metals used in these catalysts; ii) the mechanisms for these various roles; iii) the effects of high temperatures on the active metal performance in their various roles; iv) mechanisms for higher temperature NOx storage performance for modified and/or alternative storage materials; v) the interactions between the precious metals and the storage materials in both optimum NOx storage performance and long term stability; vi) the sulfur adsorption and regeneration mechanisms for NOx reduction materials; vii) materials degradation mechanisms in CHA-based NH3 SCR catalysts. The objective of this CRADA project between PNNL and Cummins, Inc. is

  19. Piezoelectricity above the Curie temperature? Combining flexoelectricity and functional grading to enable high-temperature electromechanical coupling

    SciTech Connect (OSTI)

    Mbarki, R.; Baccam, N.; Dayal, Kaushik; Sharma, P.

    2014-03-24

    Most technologically relevant ferroelectrics typically lose piezoelectricity above the Curie temperature. This limits their use to relatively low temperatures. In this Letter, exploiting a combination of flexoelectricity and simple functional grading, we propose a strategy for high-temperature electromechanical coupling in a standard thin film configuration. We use continuum modeling to quantitatively demonstrate the possibility of achieving apparent piezoelectric materials with large and temperature-stable electromechanical coupling across a wide temperature range that extends significantly above the Curie temperature. With Barium and Strontium Titanate, as example materials, a significant electromechanical coupling that is potentially temperature-stable up to 900 °C is possible.

  20. Advanced High Temperature Reactor Systems and Economic Analysis

    SciTech Connect (OSTI)

    Holcomb, David Eugene; Peretz, Fred J; Qualls, A L

    2011-09-01

    The Advanced High Temperature Reactor (AHTR) is a design concept for a large-output [3400 MW(t)] fluoride-salt-cooled high-temperature reactor (FHR). FHRs, by definition, feature low-pressure liquid fluoride salt cooling, coated-particle fuel, a high-temperature power cycle, and fully passive decay heat rejection. The AHTR's large thermal output enables direct comparison of its performance and requirements with other high output reactor concepts. As high-temperature plants, FHRs can support either high-efficiency electricity generation or industrial process heat production. The AHTR analysis presented in this report is limited to the electricity generation mission. FHRs, in principle, have the potential to be low-cost electricity producers while maintaining full passive safety. However, no FHR has been built, and no FHR design has reached the stage of maturity where realistic economic analysis can be performed. The system design effort described in this report represents early steps along the design path toward being able to predict the cost and performance characteristics of the AHTR as well as toward being able to identify the technology developments necessary to build an FHR power plant. While FHRs represent a distinct reactor class, they inherit desirable attributes from other thermal power plants whose characteristics can be studied to provide general guidance on plant configuration, anticipated performance, and costs. Molten salt reactors provide experience on the materials, procedures, and components necessary to use liquid fluoride salts. Liquid metal reactors provide design experience on using low-pressure liquid coolants, passive decay heat removal, and hot refueling. High temperature gas-cooled reactors provide experience with coated particle fuel and graphite components. Light water reactors (LWRs) show the potentials of transparent, high-heat capacity coolants with low chemical reactivity. Modern coal-fired power plants provide design experience with