National Library of Energy BETA

Sample records for technologies linden vent

  1. Linden, Indiana: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Map This article is a stub. You can help OpenEI by expanding it. Linden is a town in Montgomery County, Indiana. It falls under Indiana's 4th congressional district.12 Utility...

  2. Technology Solutions Case Study: Evaluation of Passive Vents in New-Construction Multifamily Buildings

    SciTech Connect

    S. Puttagunta, S. Maxwell, D. Berger, and M. Zuluaga

    2015-10-01

    The Consortium for Advanced Residential Buildings (CARB) conducted research to gain more insight into passive vents. Because passive vents are meant to operate in a general environment of negative apartment pressure, the research assessed whether these negative pressures prevail through a variety of environmental conditions.

  3. Gas venting

    DOEpatents

    Johnson, Edwin F.

    1976-01-01

    Improved gas venting from radioactive-material containers which utilizes the passageways between interbonded impervious laminae.

  4. Oil heat venting technology and NFPA standard 31 revision year 2000

    SciTech Connect

    Krajewski, R.F.

    1997-09-01

    The revision of National Fire Protection Association (NFPA) Standard 31 for the year 2000 offers an opportunity to update the Appendix which currently offers recommendations for basic metal relining of masonry chimneys up to and including 25 feet. The paper discusses the proposed update of the existing recommendations to include flexible (rough) metal liners. In addition, the discussion addresses the inclusion of additional information for unlined (non-conforming), lined (conforming to NFPA 211) masonary chimneys, insulated metal chimneys, chimney heights beyond what are now published, as well as power venting both forced and induced draft. Included in the paper is a discussion of the existing Oil Heat Vent Analysis Program (OHVAP Version 3.0) and issues that need resolution to make it a better vent system model.

  5. Vented Capacitor

    DOEpatents

    Brubaker, Michael Allen; Hosking, Terry Alan

    2006-04-11

    A technique of increasing the corona inception voltage (CIV), and thereby increasing the operating voltage, of film/foil capacitors is described. Intentional venting of the capacitor encapsulation improves the corona inception voltage by allowing internal voids to equilibrate with the ambient environment.

  6. Gas venting system

    DOEpatents

    Khan, Amjad; Dreier, Ken Wayne; Moulthrop, Lawrence Clinton; White, Erik James

    2010-06-29

    A system to vent a moist gas stream is disclosed. The system includes an enclosure and an electrochemical cell disposed within the enclosure, the electrochemical cell productive of the moist gas stream. A first vent is in fluid communication with the electrochemical cell for venting the moist gas stream to an exterior of the enclosure, and a second vent is in fluid communication with an interior of the enclosure and in thermal communication with the first vent for discharging heated air to the exterior of the enclosure. At least a portion of the discharging heated air is for preventing freezing of the moist gas stream within the first vent.

  7. Battery Vent Mechanism And Method

    SciTech Connect

    Ching, Larry K. W.

    2000-02-15

    Disclosed herein is a venting mechanism for a battery. The venting mechanism includes a battery vent structure which is located on the battery cover and may be integrally formed therewith. The venting mechanism includes an opening extending through the battery cover such that the opening communicates with a plurality of battery cells located within the battery case. The venting mechanism also includes a vent manifold which attaches to the battery vent structure. The vent manifold includes a first opening which communicates with the battery vent structure opening and second and third openings which allow the vent manifold to be connected to two separate conduits. In this manner, a plurality of batteries may be interconnected for venting purposes, thus eliminating the need to provide separate vent lines for each battery. The vent manifold may be attached to the battery vent structure by a spin-welding technique. To facilitate this technique, the vent manifold may be provided with a flange portion which fits into a corresponding groove portion on the battery vent structure. The vent manifold includes an internal chamber which is large enough to completely house a conventional battery flame arrester and overpressure safety valve. In this manner, the vent manifold, when installed, lessens the likelihood of tampering with the flame arrester and safety valve.

  8. Battery venting system and method

    SciTech Connect

    Casale, Thomas J.; Ching, Larry K. W.; Baer, Jose T.; Swan, David H.

    1999-01-05

    Disclosed herein is a venting mechanism for a battery. The venting mechanism includes a battery vent structure which is located on the battery cover and may be integrally formed therewith. The venting mechanism includes an opening extending through the battery cover such that the opening communicates with a plurality of battery cells located within the battery case. The venting mechanism also includes a vent manifold which attaches to the battery vent structure. The vent manifold includes a first opening which communicates with the battery vent structure opening and second and third openings which allow the vent manifold to be connected to two separate conduits. In this manner, a plurality of batteries may be interconnected for venting purposes, thus eliminating the need to provide separate vent lines for each battery. The vent manifold may be attached to the battery vent structure by a spin-welding technique. To facilitate this technique, the vent manifold may be provided with a flange portion which fits into a corresponding groove portion on the battery vent structure. The vent manifold includes an internal chamber which is large enough to completely house a conventional battery flame arrester and overpressure safety valve. In this manner, the vent manifold, when installed, lessens the likelihood of tampering with the flame arrester and safety valve.

  9. Battery venting system and method

    DOEpatents

    Casale, T.J.; Ching, L.K.W.; Baer, J.T.; Swan, D.H.

    1999-01-05

    Disclosed herein is a venting mechanism for a battery. The venting mechanism includes a battery vent structure which is located on the battery cover and may be integrally formed therewith. The venting mechanism includes an opening extending through the battery cover such that the opening communicates with a plurality of battery cells located within the battery case. The venting mechanism also includes a vent manifold which attaches to the battery vent structure. The vent manifold includes a first opening which communicates with the battery vent structure opening and second and third openings which allow the vent manifold to be connected to two separate conduits. In this manner, a plurality of batteries may be interconnected for venting purposes, thus eliminating the need to provide separate vent lines for each battery. The vent manifold may be attached to the battery vent structure by a spin-welding technique. To facilitate this technique, the vent manifold may be provided with a flange portion which fits into a corresponding groove portion on the battery vent structure. The vent manifold includes an internal chamber which is large enough to completely house a conventional battery flame arrester and overpressure safety valve. In this manner, the vent manifold, when installed, lessens the likelihood of tampering with the flame arrester and safety valve. 8 figs.

  10. Use Steam Jet Ejectors or Thermocompressors to Reduce Venting of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Low-Pressure Steam | Department of Energy Steam Jet Ejectors or Thermocompressors to Reduce Venting of Low-Pressure Steam Use Steam Jet Ejectors or Thermocompressors to Reduce Venting of Low-Pressure Steam This tip sheet on steam jet ejectors and thermocompressors provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies. STEAM TIP SHEET #29 Use Steam Jet Ejectors or Thermocompressors to Reduce Venting of Low-Pressure Steam (January 2012)

  11. Use a Vent Condenser to Recover Flash Steam Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    a Vent Condenser to Recover Flash Steam Energy Use a Vent Condenser to Recover Flash Steam Energy This tip sheet on using vent condensers to recover flash steam energy provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies. STEAM TIP SHEET #13 Use a Vent Condenser to Recover Flash Steam Energy (January 2012) (374.64 KB) More Documents & Publications Recover Heat from Boiler Blowdown Deaerators in Industrial Steam Systems Use Steam Jet

  12. Coil spring venting arrangement

    DOEpatents

    McCugh, R.M.

    1975-10-21

    A simple venting device for trapped gas pockets in hydraulic systems is inserted through a small access passages, operated remotely, and removed completely. The device comprises a small diameter, closely wound coil spring which is pushed through a guide temporarily inserted in the access passage. The guide has a central passageway which directs the coil spring radially upward into the pocket, so that, with the guide properly positioned for depth and properly oriented, the coil spring can be pushed up into the top of the pocket to vent it. By positioning a seal around the free end of the guide, the spring and guide are removed and the passage is sealed.

  13. Building America Technology Solutions Case Study: Evaluation...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Evaluation of Passive Vents in New-Construction Multifamily Buildings Building America Technology Solutions Case Study: Evaluation of Passive Vents in New-Construction Multifamily ...

  14. MECHANICAL SYSTEMS - MULTIFAMILY: Venting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    MECHANICAL SYSTEMS - MULTIFAMILY: Venting MECHANICAL SYSTEMS - MULTIFAMILY: Venting 5_venting.zip (2.87 MB) More Documents & Publications MECHANICAL SYSTEMS - MULTIFAMILY: Combustion MECHANICAL SYSTEMS - MULTIFAMILY: Building as a System MECHANICAL SYSTEMS - MULTIFAMILY: Steam System Piping

  15. Building America Technology Solutions Case Study: Design Guidance...

    Energy Saver

    Design Guidance for Passive Vents in New Construction, Multifamily Buildings Building America Technology Solutions Case Study: Design Guidance for Passive Vents in New Construction...

  16. Virginia Natural Gas Vented and Flared (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Vented and Flared (Million Cubic Feet) Virginia Natural Gas Vented and Flared (Million ... Referring Pages: Natural Gas Vented and Flared Virginia Natural Gas Gross Withdrawals and ...

  17. Oklahoma Natural Gas Vented and Flared (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Vented and Flared (Million Cubic Feet) Oklahoma Natural Gas Vented and Flared (Million ... Referring Pages: Natural Gas Vented and Flared Oklahoma Natural Gas Gross Withdrawals and ...

  18. Reactor pressure vessel vented head

    DOEpatents

    Sawabe, James K.

    1994-01-11

    A head for closing a nuclear reactor pressure vessel shell includes an arcuate dome having an integral head flange which includes a mating surface for sealingly mating with the shell upon assembly therewith. The head flange includes an internal passage extending therethrough with a first port being disposed on the head mating surface. A vent line includes a proximal end disposed in flow communication with the head internal passage, and a distal end disposed in flow communication with the inside of the dome for channeling a fluid therethrough. The vent line is fixedly joined to the dome and is carried therewith when the head is assembled to and disassembled from the shell.

  19. Use a Vent Condenser to Recover Flash Steam Energy - Steam Tip Sheet #13

    SciTech Connect

    2012-01-31

    This revised AMO tip sheet on vent condenser to recover flash steam energy provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  20. Reactor pressure vessel vented head

    DOEpatents

    Sawabe, J.K.

    1994-01-11

    A head for closing a nuclear reactor pressure vessel shell includes an arcuate dome having an integral head flange which includes a mating surface for sealingly mating with the shell upon assembly therewith. The head flange includes an internal passage extending therethrough with a first port being disposed on the head mating surface. A vent line includes a proximal end disposed in flow communication with the head internal passage, and a distal end disposed in flow communication with the inside of the dome for channeling a fluid therethrough. The vent line is fixedly joined to the dome and is carried therewith when the head is assembled to and disassembled from the shell. 6 figures.

  1. Virginia Natural Gas Vented and Flared (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Release Date: 03312016 Next Release Date: 04292016 Referring Pages: Natural Gas Vented and Flared Virginia Natural Gas Gross Withdrawals and Production Natural Gas Vented and ...

  2. Arizona Natural Gas Vented and Flared (Million Cubic Feet)

    Gasoline and Diesel Fuel Update

    Date: 12312015 Next Release Date: 01292016 Referring Pages: Natural Gas Vented and Flared Arizona Natural Gas Gross Withdrawals and Production Natural Gas Vented and Flared...

  3. Building America Technology Solutions Case Study: Evaluation of Passive

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Vents in New-Construction Multifamily Buildings | Department of Energy Evaluation of Passive Vents in New-Construction Multifamily Buildings Building America Technology Solutions Case Study: Evaluation of Passive Vents in New-Construction Multifamily Buildings The Consortium for Advanced Residential Buildings (CARB) conducted research to gain more insight into passive vents. Because passive vents are meant to operate in a general environment of negative apartment pressure, the research

  4. Monitoring arrangement for vented nuclear fuel elements

    DOEpatents

    Campana, Robert J.

    1981-01-01

    In a nuclear fuel reactor core, fuel elements are arranged in a closely packed hexagonal configuration, each fuel element having diametrically opposed vents permitting 180.degree. rotation of the fuel elements to counteract bowing. A grid plate engages the fuel elements and forms passages for communicating sets of three, four or six individual vents with respective monitor lines in order to communicate vented radioactive gases from the fuel elements to suitable monitor means in a manner readily permitting detection of leakage in individual fuel elements.

  5. ANALYSIS OF VENTING OF A RESIN SLURRY

    SciTech Connect

    Laurinat, J.; Hensel, S.

    2012-03-27

    A resin slurry venting analysis was conducted to address safety issues associated with overpressurization of ion exchange columns used in the Purex process at the Savannah River Site (SRS). If flow to these columns were inadvertently interrupted, an exothermic runaway reaction could occur between the ion exchange resin and the nitric acid used in the feed stream. The nitric acid-resin reaction generates significant quantities of noncondensable gases, which would pressurize the column. To prevent the column from rupturing during such events, rupture disks are installed on the column vent lines. The venting analysis models accelerating rate calorimeter (ARC) tests and data from tests that were performed in a vented test vessel with a rupture disk. The tests showed that the pressure inside the test vessel continued to increase after the rupture disk opened, though at a slower rate than prior to the rupture. Calculated maximum discharge rates for the resin venting tests exceeded the measured rates of gas generation, so the vent size was sufficient to relieve the pressure in the test vessel if the vent flow rate was constant. The increase in the vessel pressure is modeled as a transient phenomenon associated with expansion of the resin slurry/gas mixture upon rupture of the disk. It is postulated that the maximum pressure at the end of this expansion is limited by energy minimization to approximately 1.5 times the rupture disk burst pressure. The magnitude of this pressure increase is consistent with the measured pressure transients. The results of this analysis demonstrate the need to allow for a margin between the design pressure and the rupture disk burst pressure in similar applications.

  6. Examination of frit vent from Sixty-Watt Heat Source simulant fueled clad vent set

    SciTech Connect

    Ulrich, G.B.

    1995-11-01

    The flow rate and the metallurgical condition of a frit vent from a simulant-fueled clad vent set (CVS) that had been hot isostatically pressed (HIP) for the Sixty-Watt Heat Source program were evaluated. The flow rate form the defueled vent cup subassembly was reduced approximately 25% from the original flow rate. No obstructions were found to account for the reduced flow rate. Measurements indicate that the frit vent powder thickness was reduced about 30%. Most likely, the powder was compressed during the HIP operation, which increased the density of the powder layer and thus reduced the flow rate of the assembly. All other observed manufacturing attributes appeared to be normal, but the vent hole activation technique needs further refinement before it is used in applications requiring maximum CVS integrity.

  7. Pulsed Corona Plasma Technology for Treating VOC Emissions from...

    Office of Scientific and Technical Information (OSTI)

    from Pulp Mills Under the DOE Office of Industrial Technologies Forest Products program ... plasma technology for control of the vent emissions from HVLC Brownstock Washers. ...

  8. Vented Cavity Radiant Barrier Assembly And Method

    DOEpatents

    Dinwoodie, Thomas L.; Jackaway, Adam D.

    2000-05-16

    A vented cavity radiant barrier assembly (2) includes a barrier (12), typically a PV module, having inner and outer surfaces (18, 22). A support assembly (14) is secured to the barrier and extends inwardly from the inner surface of the barrier to a building surface (14) creating a vented cavity (24) between the building surface and the barrier inner surface. A low emissivity element (20) is mounted at or between the building surface and the barrier inner surface. At least part of the cavity exit (30) is higher than the cavity entrance (28) to promote cooling air flow through the cavity.

  9. Arizona Natural Gas Vented and Flared (Million Cubic Feet)

    Gasoline and Diesel Fuel Update

    Vented and Flared (Million Cubic Feet) Arizona Natural Gas Vented and Flared (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 ...

  10. Florida Natural Gas Vented and Flared (Million Cubic Feet)

    Gasoline and Diesel Fuel Update

    Vented and Flared (Million Cubic Feet) Florida Natural Gas Vented and Flared (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 ...

  11. Virginia Natural Gas Vented and Flared (Million Cubic Feet)

    Gasoline and Diesel Fuel Update

    Vented and Flared (Million Cubic Feet) Virginia Natural Gas Vented and Flared (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

  12. Linden Ranch | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    EFAULT","autoinfowindows":false,"kml":,"gkml":,"fusiontables":,"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":,"markercluster":false,"searchmarkers...

  13. Electrochemical cell having improved pressure vent

    DOEpatents

    Dean, Kevin; Holland, Arthur; Fillmore, Donn

    1993-01-01

    The electrochemical cell of the instant invention includes a case having a gas outlet, one or more positive electrodes positioned within the case, one or more negative electrodes positioned within the case electrode separators positioned between the positive and negative electrodes, electrolyte positioned within the case, and a pressure vent for releasing internal pressure occurring in the case to the surrounding atmosphere. The pressure vent is affixed to the case covering the gas outlet, the pressure vent includes a vent housing having a hollow interior area in gaseous communication with the surrounding atmosphere and the interior of the case via the gas outlet, a pressure release piston positioned within the hollow interior area, the pressure release piston sized to surround the gas outlet and having a seal groove configured to encapsulate all but one surface of a seal mounted within the seal groove, leaving the non-encapsulated surface of the seal exposed, and a compression spring positioned to urge the pressure release piston to compress the seal in the seal groove and block the gas outlet in the case.

  14. Building America Technology Solutions Case Study: Design Guidance for

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Passive Vents in New Construction, Multifamily Buildings | Department of Energy Design Guidance for Passive Vents in New Construction, Multifamily Buildings Building America Technology Solutions Case Study: Design Guidance for Passive Vents in New Construction, Multifamily Buildings In an effort to improve indoor air quality in high-performance, new construction, multifamily buildings, dedicated sources of outdoor air are being implemented. Passive vents are being selected by some design

  15. Provisions for containment venting in Germany

    SciTech Connect

    Wilhelm, J.G.

    1997-08-01

    In this short paper an overlook is given of the systems developed in Germany for filtered containment venting and their implementation in nuclear power plants. More information on the development can be found in the Proceedings of the DOE/NRC Aircleaning Conferences. In Germany, 28.8 % of the electric energy is produced by 19 nuclear power reactors. No new power reactor is expected to be built at least within the next ten years, but France and Germany cooperate in the development of a future European Power Reactor (ERP). This reactor type will be fitted with a core catcher and passive cooling in order to avoid serious consequences of a hypothetical core meltdown accident so that provisions for containment venting are not required. 3 refs., 6 figs., 1 tab.

  16. Comparative Study of Vented vs. Unvented Crawlspaces

    SciTech Connect

    Biswas, Kaushik; Christian, Jeffrey E; Gehl, Anthony C

    2011-10-01

    There has been a significant amount of research in the area of building energy efficiency and durability. However, well-documented quantitative information on the impact of crawlspaces on the performance of residential structures is lacking. The objective of this study was to evaluate and compare the effects of two crawlspace strategies on the whole-house performance of a pair of houses in a mixed humid climate. These houses were built with advanced envelope systems to provide energy savings of 50% or more compared to traditional 2010 new construction. One crawlspace contains insulated walls and is sealed and semi-conditioned. The other is a traditional vented crawlspace with insulation in the crawlspace ceiling. The vented (traditional) crawlspace contains fiberglass batts installed in the floor chase cavities above the crawl, while the sealed and insulated crawlspace contains foil-faced polyisocyanurate foam insulation on the interior side of the masonry walls. Various sensors to measure temperatures, heat flux through crawlspace walls and ceiling, and relative humidity were installed in the two crawlspaces. Data from these sensors have been analyzed to compare the performance of the two crawlspace designs. The analysis results indicated that the sealed and insulated crawlspace design is better than the traditional vented crawlspace in the mixed humid climate.

  17. Assessment of Literature Related to Combustion Appliance Venting...

    Office of Scientific and Technical Information (OSTI)

    Assessment of Literature Related to Combustion Appliance Venting Systems Citation Details ... Country of Publication: United States Language: English Subject: 29 ENERGY PLANNING, ...

  18. Modeling Lithium Ion Battery Safety: Venting of Pouch Cells; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Santhanagopalan, Shriram.; Yang, Chuanbo.; Pesaran, Ahmad

    2013-07-01

    This report documents the successful completion of the NREL July milestone entitled “Modeling Lithium-Ion Battery Safety - Complete Case-Studies on Pouch Cell Venting,” as part of the 2013 Vehicle Technologies Annual Operating Plan with the U.S. Department of Energy (DOE). This work aims to bridge the gap between materials modeling, usually carried out at the sub-continuum scale, and the

  19. Feasibility and Safety Assessment for Advanced Reactor Concepts Using Vented Fuel

    SciTech Connect

    Klein, Andrew; Matthews, Topher; Lenhof, Renae; Deason, Wesley; Harter, Jackson

    2015-01-16

    Recent interest in fast reactor technology has led to renewed analysis of past reactor concepts such as Gas Fast Reactors and Sodium Fast Reactors. In an effort to make these reactors more economic, the fuel is required to stay in the reactor for extended periods of time; the longer the fuel stays within the core, the more fertile material is converted into usable fissile material. However, as burnup of the fuel-rod increases, so does the internal pressure buildup due to gaseous fission products. In order to reach the 30 year lifetime requirements of some reactor designs, the fuel pins must have a vented-type design to allow the buildup of fission products to escape. The present work aims to progress the understanding of the feasibility and safety issues related to gas reactors that incorporate vented fuel. The work was separated into three different work-scopes: 1. Quantitatively determine fission gas release from uranium carbide in a representative helium cooled fast reactor; 2. Model the fission gas behavior, transport, and collection in a Fission Product Vent System; and, 3. Perform a safety analysis of the Fission Product Vent System. Each task relied on results from the previous task, culminating in a limited scope Probabilistic Risk Assessment (PRA) of the Fission Product Vent System. Within each task, many key parameters lack the fidelity needed for comprehensive or accurate analysis. In the process of completing each task, the data or methods that were lacking were identified and compiled in a Gap Analysis included at the end of the report.

  20. Staged venting of fuel cell system during rapid shutdown

    DOEpatents

    Keskula, Donald H.; Doan, Tien M.; Clingerman, Bruce J.

    2004-09-14

    A venting methodology and system for rapid shutdown of a fuel cell apparatus of the type used in a vehicle propulsion system. H.sub.2 and air flows to the fuel cell stack are slowly bypassed to the combustor upon receipt of a rapid shutdown command. The bypass occurs over a period of time (for example one to five seconds) using conveniently-sized bypass valves. Upon receipt of the rapid shutdown command, the anode inlet of the fuel cell stack is instantaneously vented to a remote vent to remove all H.sub.2 from the stack. Airflow to the cathode inlet of the fuel cell stack gradually diminishes over the bypass period, and when the airflow bypass is complete the cathode inlet is also instantaneously vented to a remote vent to eliminate pressure differentials across the stack.

  1. Assessment of Literature Related to Combustion Appliance Venting Systems

    SciTech Connect

    Rapp, V. H.; Less, B. D.; Singer, B. C.; Stratton, J. C.; Wray, C. P.

    2015-02-01

    In many residential building retrofit programs, air tightening to increase energy efficiency is often constrained by safety concerns with naturally vented combustion appliances. Tighter residential buildings more readily depressurize when exhaust equipment is operated, making combustion appliances more prone to backdraft or spill combustion exhaust into the living space. Several measures, such as installation guidelines, vent sizing codes, and combustion safety diagnostics, are in place with the intent to prevent backdrafting and combustion spillage, but the diagnostics conflict and the risk mitigation objective is inconsistent. This literature review summarizes the metrics and diagnostics used to assess combustion safety, documents their technical basis, and investigates their risk mitigations. It compiles information from the following: codes for combustion appliance venting and installation; standards and guidelines for combustion safety diagnostics; research evaluating combustion safety diagnostics; research investigating wind effects on building depressurization and venting; and software for simulating vent system performance.

  2. Staged venting of fuel cell system during rapid shutdown

    DOEpatents

    Clingerman, Bruce J.; Doan, Tien M.; Keskula, Donald H.

    2002-01-01

    A venting methodology and system for rapid shutdown of a fuel cell apparatus of the type used in a vehicle propulsion system. H.sub.2 and air flows to the fuel cell stack are slowly bypassed to the combustor upon receipt of a rapid shutdown command. The bypass occurs over a period of time (for example one to five seconds) using conveniently-sized bypass valves. Upon receipt of the rapid shutdown command, the anode inlet of the fuel cell stack is instantaneously vented to a remote vent to remove all H.sub.2 from the stack. Airflow to the cathode inlet of the fuel cell stack gradually diminishes over the bypass period, and when the airflow bypass is complete the cathode inlet is also instantaneously vented to a remote vent to eliminate pressure differentials across the stack.

  3. Validation testing of radioactive waste drum filter vents

    SciTech Connect

    Weber, L.D.; Rahimi, R.S.; Edling, D.

    1997-08-01

    The minimum requirements for Drum Filter Vents (DFVs) can be met by demonstrating conformance with the Waste Isolation Pilot Plant (WIPP) Trupact II Safety Assessment Report (SAR), and conformance with U.S. Federal shipping regulations 49 CFR 178.350, DOT Spec 7A, for Type A packages. These together address a number of safety related performance parameters such as hydrogen diffusivity, flow related pressure drop, filtration efficiency and, separately, mechanical stability and the ability to prevent liquid water in-leakage. In order to make all metal DFV technology (including metallic filter medium) available to DOE sites, Pall launched a product development program to validate an all metal design to meet these requirements. Numerous problems experienced by DOE sites in the past came to light during this development program. They led us to explore enhancements to DFV design and performance testing addressing these difficulties and concerns. The result is a patented all metal DFV certified to all applicable regulatory requirements, which for the first time solves operational and health safety problems reported by DOE site personnel but not addressed by previous DFV`s. The new technology facilitates operations (such as manual, automated and semi-automated drum handling/redrumming), sampling, on-site storage, and shipping. At the same time, it upgrades filtration efficiency in configurations documented to maintain filter efficiency following mechanical stress. 2 refs., 2 figs., 10 tabs.

  4. A NOVEL APPROACH TO DRUM VENTING AND DRUM MONITORINGe/pj

    SciTech Connect

    Ohl, P.C.; Farwick, C.C.; Douglas, D.G.; Cruz, E.J.

    2003-02-27

    This paper describes the details and specifications associated with drum venting and drum monitoring technologies, and discusses the maturity of in-place systems and current applications. Each year, unventilated drums pressurize and develop bulges and/or breaches that can result in potentially hazardous explosions, posing undesirable hazards to workers and the environment. Drum venting is accomplished by the safe and simple installation of ventilated lids at the time of packaging, or by the inherently risky in-situ ventilation (depressurization) of ''bulged'' drums. Drum monitoring employs either a Magnetically Coupled Pressure Gauge (MCPG) Patent Pending and/or a Magnetically Coupled Corrosion Gauge (MCCG) Patent Pending. Through patented magnetic sensor coupling, these devices enable the noninvasive and remote monitoring of the potentially hazardous materials and/or spent nuclear fuel that is contained in 55-gal drums and associated steel overpack containers.

  5. ARM - Campaign Instrument - cm22-pmod-vent

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    pmod-vent Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Kipp & Zonen CM22-PMOD Vent (CM22-PMOD-VENT) Instrument Categories Radiometric Campaigns Diffuse Shortwave IOP [ Download Data ] Southern Great Plains, 2001.09.24 - 2001.10.22 Primary Measurements Taken The following measurements are those considered scientifically relevant. Refer to the datastream (netcdf) file headers for the list of all available measurements,

  6. Building America Case Study - Evaluation of Passive Vents in...

    Energy Saver

    Typical apartments will need 20-45 CFM of outdoor air to meet ASHRAE 62.2-2010 whole-house ... The average airfow through the passive vents fell short of providing the ASHRAE 62.2-2010 ...

  7. Surface Mercury Geochemistry As A Guide To Volcanic Vent Structure...

    OpenEI (Open Energy Information) [EERE & EIA]

    Mercury Geochemistry As A Guide To Volcanic Vent Structure And Zones Of High Heat Flow In The Valley Of Ten Thousand Smokes, Katmai National Park, Alaska Jump to: navigation,...

  8. Monitoring of Unvented Roofs with Diffusion Vents and Interior Vapor

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Control in a Cold Climate | Department of Energy Monitoring of Unvented Roofs with Diffusion Vents and Interior Vapor Control in a Cold Climate Monitoring of Unvented Roofs with Diffusion Vents and Interior Vapor Control in a Cold Climate Lead Performer: Building Science Corporation - Westford, MA Partners: -- Dupont - Wilmington, DE -- Owens Corning - Toledo, OH -- Cosella-Dörken - Beamsville, Ontario, Canada -- K. Hovnanian Homes - Red Bank, NJ DOE Total Funding: $430,000 Cost Share:

  9. Technologies

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Technologies Technologies Scientists and engineers at Los Alamos have developed a variety of advanced technologies that anticipate-affect, detect, and neutralize & mitigate all types of explosive threats. v Technologies Since its inception in 1943, Los Alamos National Laboratory has been a driving force in explosives science. Scientists and engineers at Los Alamos have developed a variety of advanced technologies that anticipate, detect, and mitigate all types of explosive threats. ANDE:

  10. Transport characteristics across drum filter vents and polymer bags

    SciTech Connect

    Liekhus, K.J.

    1994-08-01

    The rate at which hydrogen (H {sub 2}) or a volatile organic compound (VOC) exits a layer of confinement in a vented waste drum is proportional to the concentration difference across the layer. The proportionality constant is the gas transport characteristic. A series of transport experiments were conducted to determine H{sub 2} and VOC transport characteristics across different drum filter vents and polymer bags. This report reviews the methods and results of past investigators in defining transport characteristics across filter vents and polymer bags, describes the apparatus and procedures used in these experiments, compares the reported and estimated transport characteristics with earlier results, and discusses the impact of changing the transport characteristic values used in model calculations.

  11. Technolog

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Research in Science and Technolog y Sandia pushes frontiers of knowledge to meet the nation's needs, today and tomorrow Sandia National Laboratories' fundamental science and technology research leads to greater understanding of how and why things work and is intrinsic to technological advances. Basic research that challenges scientific assumptions enables the nation to push scientific boundaries. Innovations and breakthroughs produced at Sandia allow it to tackle critical issues, from

  12. Technology

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Technology Technology Delivering science to the marketplace through commercialization, spinoffs and industry partnerships. News Releases Science Briefs Photos Picture of the Week Publications Social Media Videos Fact Sheets Gary Grider (second from right) with the 2015 Richard P. Feynman Innovation Prize. Also pictured (left to right): Duncan McBranch, Chief Technology Officer of Los Alamos National Laboratory; Terry Wallace, Program Associate Director for Global Security at Los Alamos; and Lee

  13. Technolog

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Research in Science and Technolog y Sandia pushes frontiers of knowledge to meet the nation's needs, today and tomorrow ... Basic research that challenges scientific assumptions ...

  14. Tennessee Natural Gas Vented and Flared (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Vented and Flared (Million Cubic Feet) Tennessee Natural Gas Vented and Flared (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 408 180 165 376 585 339 156 117 126 1980's 0 0 0 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 2010's 0 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date:

  15. Request for approval, vented container annual release fraction

    SciTech Connect

    HILL, J.S.

    1999-10-12

    In accordance with the approval conditions for Modification to the Central Waste Complex (CWC) Radioactive Air Emissions Notice of Construction (NOC). dated August 24,1998, a new release fraction has been developed for submittal to the Washington State Department of Health (WDOH). The proposed annual release fraction of 2.50 E-14 is proposed for use in future NOCs involving the storage and handling operations associated with vented containers on the Hanford Site. The proposed annual release fraction was the largest release fraction calculated from alpha measurements of the NucFil filters from 10 vented containers consisting of nine 55-gallon drums and one burial box with dimensions of 9.3 x 5.7 x 6.4 feet. An annual release fraction of 2.0 E-09 was used in the modification to the CWC radioactive air emissions NOC. This study confirmed that the release fraction used in the CWC radioactive air emissions NOC was conservative.

  16. Pennsylvania Natural Gas Vented and Flared (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Vented and Flared (Million Cubic Feet) Pennsylvania Natural Gas Vented and Flared (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 98 96 99 75 0 0 1980's 0 0 0 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 2010's 0 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring

  17. Device and method for remotely venting a container

    DOEpatents

    Vodila, James M. (North Huntingdon, PA); Bergersen, Jeffrey A. (Idaho Falls, ID)

    1997-01-01

    A device for venting a container having a bung includes a saddle assembly curable to a container and having a support extending therefrom. A first arm is rotatably secured to the support, and the first arm extends in a first direction. A second arm has a first end portion drivingly engaged with the first arm, so that rotation of the first arm causes rotation of the second arm. A second end portion of the first arm is positionable proximate the bung of the container. A socket is operably associated and rotatable with the second end portion and is drivingly engageable with the bung, so that rotation of the socket causes corresponding rotation of the bung for thereby venting the container.

  18. Ohio Natural Gas Vented and Flared (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Vented and Flared (Million Cubic Feet) Ohio Natural Gas Vented and Flared (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 330 0 0 1980's 0 0 0 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 2010's 0 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages:

  19. Oklahoma Natural Gas Vented and Flared (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Vented and Flared (Million Cubic Feet) Oklahoma Natural Gas Vented and Flared (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 126,629 129,408 130,766 1970's 129,629 39,799 38,797 36,411 34,199 31,802 30,197 29,186 27,489 26,605 1980's 25,555 2000's 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next

  20. Kentucky Natural Gas Vented and Flared (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Vented and Flared (Million Cubic Feet) Kentucky Natural Gas Vented and Flared (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 6 15 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 0 0 0 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 NA 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016

  1. Illinois Natural Gas Vented and Flared (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Vented and Flared (Million Cubic Feet) Illinois Natural Gas Vented and Flared (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 126 102 93 1970's 122 3,997 1,806 0 0 0 0 0 0 0 1980's 0 0 0 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 NA 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date:

  2. TRANSPORT OF WASTE SIMULANTS IN PJM VENT LINES

    SciTech Connect

    Qureshi, Z

    2007-02-21

    The experimental work was conducted to determine whether there is a potential for waste simulant to transport or 'creep' up the air link line and contaminate the pulse jet vent system, and possibly cause long term restriction of the air link line. Additionally, if simulant creep occurred, establish operating parameters for washing down the line. The amount of the addition of flush fluids and mixer downtime must be quantified.

  3. Gaseous fission product management for molten salt reactors and vented fuel systems

    SciTech Connect

    Messenger, S. J.; Forsberg, C.; Massie, M.

    2012-07-01

    Fission gas disposal is one of the unresolved difficulties for Molten Salt Reactors (MSRs) and advanced reactors with vented fuel systems. As these systems operate, they produce many radioactive isotopes of xenon and krypton (e.g. {sup 135}Xe t{sub 1/2} = 9.14 hours and {sup 85}Kr t{sub 1/2}= 10.73 years). Removing these gases proves vital to the success of such reactor designs for two reasons. First, the gases act as large neutron sinks which decrease reactivity and must be counterbalanced by increasing fuel loading. Second, for MSRs, inert fission product gases naturally separate quickly from high temperature salts, thus creating high vapor pressure which poses safety concerns. For advanced reactors with solid vented fuel, the gases are allowed to escape into an off-gas system and thus must be managed. Because of time delays in transport of fission product gases in vented fuel systems, some of the shorter-lived radionuclides will decay away thereby reducing the fission gas source term relative to an MSR. To calculate the fission gas source term of a typical molten salt reactor, we modeled a 1000 MWe graphite moderated thorium MSR similar to that detailed in Mathieu et al. [1]. The fuel salt used in these calculations was LiF (78 mole percent) - (HN)F 4 (22 mole percent) with a heavy nuclide composition of 3.86% {sup 233}U and 96.14% {sup 232}Th by mass. Before we can remove the fission product gases produced by this reactor configuration, we must first develop an appropriate storage mechanism. The gases could be stored in pressurized containers but then one must be concerned about bottle failure. Methods to trap noble gases in matrices are expensive and complex. Alternatively, there are direct storage/disposal options: direct injection into the Earth or injecting a grout-based product into the Earth. Advances in drilling technologies, hydro fracture technologies, and methods for the sequestration of carbon dioxide from fossil fuel plants are creating new options

  4. Technology

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Technology A research team at the University of Colorado has developed a novel heat exchanger design and accompanying manufacturing technique for creating low-cost microchannel heat exchangers from plastics, metals, or ceramics. The prototype used laser welding (upper red lines at right). Expansion makes "chessboard" counter flow pattern (lower right). The figure below shows mass production, where sheets are added one at a time and welded with a mask and filament (left) or laser

  5. Remote-Handled Transuranic Waste Drum Venting - Operational Experience and Lessons Learned

    SciTech Connect

    Clements, Th.L.Jr.; Bhatt, R.N.; Troescher, P.D.; Lattin, W.J.

    2008-07-01

    Remote-handled transuranic (RH TRU) waste drums must be vented to meet transportation and disposal requirement before shipment to the Waste Isolation Pilot Plant. The capability to perform remote venting of drums was developed and implemented at the Idaho National Laboratory. Over 490 drums containing RH TRU waste were successfully vented. Later efforts developed and implemented a long-stem filter to breach inner waste bags, which reduced layers of confinement and mitigated restrictive transportation wattage limits. This paper will provide insight to the technical specifications for the drum venting system, development, and testing activities, startup, operations, and lessons learned. (authors)

  6. Predicting Backdrafting and Spillage for Natural-Draft Gas Combustion Appliances: Validating VENT-II

    SciTech Connect

    Rapp, Vi H.; Pastor-Perez, Albert; Singer, Brett C.; Wray, Craig P.

    2013-04-01

    VENT-II is a computer program designed to provide detailed analysis of natural draft and induced draft combustion appliance vent-systems (i.e., furnace or water heater). This program is capable of predicting house depressurization thresholds that lead to backdrafting and spillage of combustion appliances; however, validation reports of the program being applied for this purpose are not readily available. The purpose of this report is to assess VENT-II’s ability to predict combustion gas spillage events due to house depressurization by comparing VENT-II simulated results with experimental data for four appliance configurations. The results show that VENT-II correctly predicts depressurizations resulting in spillage for natural draft appliances operating in cold and mild outdoor conditions, but not for hot conditions. In the latter case, the predicted depressurizations depend on whether the vent section is defined as part of the vent connector or the common vent when setting up the model. Overall, the VENTII solver requires further investigation before it can be used reliably to predict spillage caused by depressurization over a full year of weather conditions, especially where hot conditions occur.

  7. Effect of pressure vents on the fast cookoff of energetic materials.

    SciTech Connect

    Cooper, Marcia A.; Oliver, Michael S.; Erikson, William Wilding

    2013-10-01

    The effect of vents on the fast cookoff of energetic materials is studied through experimental modifications to the confinement vessel of the Radiant Heat Fast Cookoff Apparatus. Two venting schemes were investigated: 1) machined grooves at the EM-cover plate interface; 2) radial distribution of holes in PEEK confiner. EM materials of PBXN-109 and PBX 9502 were tested. Challenges with the experimental apparatus and EM materials were identified such that studying the effect of vents as an independent parameter was not realized. The experimental methods, data and post-test observations are presented and discussed.

  8. The effect of venting on cookoff of a melt-castable explosive (Comp-B)

    SciTech Connect

    Hobbs, Michael L.; Kaneshige, Michael J.

    2015-03-01

    Occasionally, our well-controlled cookoff experiments with Comp-B give anomalous results when venting conditions are changed. For example, a vented experiment may take longer to ignite than a sealed experiment. In the current work, we show the effect of venting on thermal ignition of Comp-B. We use Sandia’s Instrumented Thermal Ignition (SITI) experiment with various headspace volumes in both vented and sealed geometries to study ignition of Comp-B. In some of these experiments, we have used a boroscope to observe Comp-B as it melts and reacts. We propose that the mechanism for ignition involves TNT melting, dissolution of RDX, and complex bubbly liquid flow. High pressure inhibits bubble formation and flow is significantly reduced. At low pressure, a vigorous dispersed bubble flow was observed.

  9. The effect of venting on cookoff of a melt-castable explosive (Comp-B)

    DOE PAGES [OSTI]

    Hobbs, Michael L.; Kaneshige, Michael J.

    2015-03-01

    Occasionally, our well-controlled cookoff experiments with Comp-B give anomalous results when venting conditions are changed. For example, a vented experiment may take longer to ignite than a sealed experiment. In the current work, we show the effect of venting on thermal ignition of Comp-B. We use Sandia’s Instrumented Thermal Ignition (SITI) experiment with various headspace volumes in both vented and sealed geometries to study ignition of Comp-B. In some of these experiments, we have used a boroscope to observe Comp-B as it melts and reacts. We propose that the mechanism for ignition involves TNT melting, dissolution of RDX, and complexmore » bubbly liquid flow. High pressure inhibits bubble formation and flow is significantly reduced. At low pressure, a vigorous dispersed bubble flow was observed.« less

  10. Improving the System Life of Basic Oxygen and Electric Arc Furnace Hoods, Roofs, and Side Vents

    Energy.gov [DOE]

    This factsheet describes the benefits of a high-performance aluminum bronze alloy to basic oxygen furnace and electric arc furnace components such as hoods, roofs, and side vents.

  11. InnoVent InfraVest GmbH | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    InfraVest GmbH Jump to: navigation, search Name: InnoVentInfraVest GmbH Place: Varel, Germany Zip: 26316 Sector: Wind energy Product: Wind farm project developer based in Germany....

  12. System design description for the SY-101 vent header flow element enclosure upgrades

    SciTech Connect

    Vargo, G.F.

    1995-11-01

    This document describes the design of the High and Low Range Vent Header Flow Element(s) Field Enclosure for the 241-SY-101 High Level Nuclear Waste Underground Storage Tank.

  13. Vented target elements for use in an isotope-production reactor. [LMFBR

    DOEpatents

    Cawley, W.E.; Omberg, R.P.

    1982-08-19

    A method is described for producing tritium gas in a fast breeder reactor cooled with liquid metal. Lithium target material is placed in pins equipped with vents, and tritium gas is recovered from the coolant.

  14. Reactor pressure vessel head vents and methods of using the same

    SciTech Connect

    Gels, John L; Keck, David J; Deaver, Gerald A

    2014-10-28

    Internal head vents are usable in nuclear reactors and include piping inside of the reactor pressure vessel with a vent in the reactor upper head. Piping extends downward from the upper head and passes outside of the reactor to permit the gas to escape or be forcibly vented outside of the reactor without external piping on the upper head. The piping may include upper and lowers section that removably mate where the upper head joins to the reactor pressure vessel. The removable mating may include a compressible bellows and corresponding funnel. The piping is fabricated of nuclear-reactor-safe materials, including carbon steel, stainless steel, and/or a Ni--Cr--Fe alloy. Methods install an internal head vent in a nuclear reactor by securing piping to an internal surface of an upper head of the nuclear reactor and/or securing piping to an internal surface of a reactor pressure vessel.

  15. Google Earth locations of USA and seafloor hydrothermal vents with associated rare earth element data

    DOE Data Explorer

    Andrew Fowler

    2016-02-10

    Google Earth .kmz files that contain the locations of geothermal wells and thermal springs in the USA, and seafloor hydrothermal vents that have associated rare earth element data. The file does not contain the actual data, the actual data is available through the GDR website in two tier 3 data sets entitled "Compilation of Rare Earth Element Analyses from US Geothermal Fields and Mid Ocean Ridge (MOR) Hydrothermal Vents" and "Rare earth element content of thermal fluids from Surprise Valley, California"

  16. Tennessee Natural Gas Vented and Flared (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0

  17. Pennsylvania Natural Gas Vented and Flared (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0

  18. Unit vent airflow measurements using a tracer gas technique

    SciTech Connect

    Adams, D.G.; Lagus, P.L.; Fleming, K.M.

    1997-08-01

    An alternative method for assessing flowrates that does not depend on point measurements of air flow velocity is the constant tracer injection technique. In this method one injects a tracer gas at a constant rate into a duct and measures the resulting concentration downstream of the injection point. A simple equation derived from the conservation of mass allows calculation of the flowrate at the point of injection. Flowrate data obtained using both a pitot tube and a flow measuring station were compared with tracer gas flowrate measurements in the unit vent duct at the Callaway Nuclear Station during late 1995 and early 1996. These data are presented and discussed with an eye toward obtaining precise flowrate data for release rate calculations. The advantages and disadvantages of the technique are also described. In those test situations for which many flowrate combinations are required, or in large area ducts, a tracer flowrate determination requires fewer man-hours than does a conventional traverse-based technique and does not require knowledge of the duct area. 6 refs., 10 figs., 6 tabs.

  19. Ohio Natural Gas Vented and Flared (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0

  20. Oklahoma Natural Gas Vented and Flared (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0

  1. Florida Natural Gas Vented and Flared (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0

  2. Illinois Natural Gas Vented and Flared (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0

  3. Kentucky Natural Gas Vented and Flared (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0

  4. Ohio Natural Gas Vented and Flared (Million Cubic Feet)

    Gasoline and Diesel Fuel Update

    Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0

  5. Oklahoma Natural Gas Vented and Flared (Million Cubic Feet)

    Gasoline and Diesel Fuel Update

    Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0

  6. Pennsylvania Natural Gas Vented and Flared (Million Cubic Feet)

    Gasoline and Diesel Fuel Update

    Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0

  7. Tennessee Natural Gas Vented and Flared (Million Cubic Feet)

    Gasoline and Diesel Fuel Update

    Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0

  8. Virginia Natural Gas Vented and Flared (Million Cubic Feet)

    Gasoline and Diesel Fuel Update

    Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0

  9. Florida Natural Gas Vented and Flared (Million Cubic Feet)

    Gasoline and Diesel Fuel Update

    Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0

  10. Kentucky Natural Gas Vented and Flared (Million Cubic Feet)

    Gasoline and Diesel Fuel Update

    Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0

  11. Hydrogen venting characteristics of commercial carbon-composite filters and applications to TRU waste

    SciTech Connect

    Callis, E.L.; Marshall, R.S.; Cappis, J.H.

    1997-04-01

    The generation of hydrogen (by radiolysis) and of other potentially flammable gases in radioactive wastes which are in contact with hydrogenous materials is a source of concern, both from transportation and on-site storage considerations. Because very little experimental data on the generation and accumulation of hydrogen was available in actual waste materials, work was initiated to experimentally determine factors affecting the concentration of hydrogen in the waste containers, such as the hydrogen generation rate, (G-values) and the rate of loss of hydrogen through packaging and commercial filter-vents, including a new design suitable for plastic bags. This report deals only with the venting aspect of the problem. Hydrogen venting characteristics of two types of commercial carbon-composite filter-vents, and two types of PVC bag closures (heat-sealed and twist-and-tape) were measured. Techniques and equipment were developed to permit measurement of the hydrogen concentration in various layers of actual transuranic (TRU) waste packages, both with and without filter-vents. A test barrel was assembled containing known configuration and amounts of TRU wastes. Measurements of the hydrogen in the headspace verified a hydrogen release model developed by Benchmark Environmental Corporation. These data were used to calculate revised wattage Emits for TRU waste packages incorporating the new bag filter-vent.

  12. Containment venting as a mitigation technique for BWR Mark I plant ATWS

    SciTech Connect

    Harrington, R.M.

    1986-01-01

    Containment venting is studied as a mitigation strategy for preventing or delaying severe fuel damage following hypothetical BWR Anticipated Transient Without SCRAM (ATWS) accidents initiated by MSIV-closure, and compounded by failure of the Standby Liquid Control (SLC) system injection of sodium pentaborate solution and by the failure of manually initiated control rod insertion. The venting of primary containment after reaching 75 psia (0.52 MPa) is found to result in the release of the vented steam inside the reactor building, and to result in inadequate Net Positive Suction Head (NPSH) for any system pumping from the pressure suppression pool. CONTAIN code calculations show that personnel access to large portions of the reactor building would be lost soon after the initiation of venting and that the temperatures reached would be likely to result in independent equipment failures. It is concluded that containment venting would be more likely to cause or to hasten the onset of severe fuel damage than to prevent or to delay it.

  13. Biodegradation of jet fuel in vented columns of water-unsaturated sandy soil. Master's thesis

    SciTech Connect

    Coho, J.W.

    1990-01-01

    The effect of soil water content on the rate of jet fuel (JP-4) biodegradation in air-vented, water-unsaturated columns of sandy soil was investigated. The contaminated soil was obtained from a spill site located on Tyndall AFB, Fla. The initial soil loading was 4590 mg of JP-4/kg of dry soil. Three laboratory columns were packed with the contaminated soil, saturated and drained for periods of 81-89 days. Two columns were continuously vented with air, and the third, intended to provide an anaerobic control, was vented with nitrogen. The venting gas flows were maintained between 1 and 2.5 soil pore volume changeouts per day. The total JP-4 removal in the air-vented columns averaged 44% of the mass originally present. Biodegradation and volatilization accounted for 93% and 7% of the total removal, respectively. A maximum biodegradation rate of 14.3 mg of JP-4/kg of moist soil per day was observed at a soil water content of approximately 72% saturation. Soil drainage characteristics indicated that this water content may have corresponded to 100% of the in situ field capacity water content. Theses.

  14. Potential Flammable Gas Explosion in the TRU Vent and Purge Machine

    SciTech Connect

    Vincent, A

    2006-04-05

    The objective of the analysis was to determine the failure of the Vent and Purge (V&P) Machine due to potential explosion in the Transuranic (TRU) drum during its venting and/or subsequent explosion in the V&P machine from the flammable gases (e.g., hydrogen and Volatile Organic Compounds [VOCs]) vented into the V&P machine from the TRU drum. The analysis considers: (a) increase in the pressure in the V&P cabinet from the original deflagration in the TRU drum including lid ejection, (b) pressure wave impact from TRU drum failure, and (c) secondary burns or deflagrations resulting from excess, unburned gases in the cabinet area. A variety of cases were considered that maximized the pressure produced in the V&P cabinet. Also, cases were analyzed that maximized the shock wave pressure in the cabinet from TRU drum failure. The calculations were performed for various initial drum pressures (e.g., 1.5 and 6 psig) for 55 gallon TRU drum. The calculated peak cabinet pressures ranged from 16 psig to 50 psig for various flammable gas compositions. The blast on top of cabinet and in outlet duct ranged from 50 psig to 63 psig and 12 psig to 16 psig, respectively, for various flammable gas compositions. The failure pressures of the cabinet and the ducts calculated by structural analysis were higher than the pressure calculated from potential flammable gas deflagrations, thus, assuring that V&P cabinet would not fail during this event. National Fire Protection Association (NFPA) 68 calculations showed that for a failure pressure of 20 psig, the available vent area in the V&P cabinet is 1.7 to 2.6 times the required vent area depending on whether hydrogen or VOCs burn in the V&P cabinet. This analysis methodology could be used to design the process equipment needed for venting TRU waste containers at other sites across the Department of Energy (DOE) Complex.

  15. Development of a model for predicting transient hydrogen venting in 55-gallon drums

    SciTech Connect

    Apperson, Jason W; Clemmons, James S; Garcia, Michael D; Sur, John C; Zhang, Duan Z; Romero, Michael J

    2008-01-01

    Remote drum venting was performed on a population of unvented high activity drums (HAD) in the range of 63 to 435 plutonium equivalent Curies (PEC). These 55-gallon Transuranic (TRU) drums will eventually be shipped to the Waste Isolation Pilot Plant (WIPP). As a part of this process, the development of a calculational model was required to predict the transient hydrogen concentration response of the head space and polyethylene liner (if present) within the 55-gallon drum. The drum and liner were vented using a Remote Drum Venting System (RDVS) that provided a vent sampling path for measuring flammable hydrogen vapor concentrations and allow hydrogen to diffuse below lower flammability limit (LFL) concentrations. One key application of the model was to determine the transient behavior of hydrogen in the head space, within the liner, and the sensitivity to the number of holes made in the liner or number of filters. First-order differential mass transport equations were solved using Laplace transformations and numerically to verify the results. the Mathematica 6.0 computing tool was also used as a validation tool and for examining larger than two chamber systems. Results will be shown for a variety of configurations, including 85-gallon and 110-gallon overpack drums. The model was also validated against hydrogen vapor concentration assay measurements.

  16. Passive soil venting at the Chemical Waste Landfill Site at Sandia National Laboratories, Albuquerque, New Mexico

    SciTech Connect

    Phelan, J.M.; Reavis, B.; Cheng, W.C.

    1995-05-01

    Passive Soil Vapor Extraction was tested at the Chemical Waste Landfill (CWL) site at Sandia National Laboratories, New Mexico (SNLIW). Data collected included ambient pressures, differential pressures between soil gas and ambient air, gas flow rates into and out of the soil and concentrations of volatile organic compounds (VOCS) in vented soil gas. From the differential pressure and flow rate data, estimates of permeability were arrived at and compared with estimates from other studies. Flow, differential pressure, and ambient pressure data were collected for nearly 30 days. VOC data were collected for two six-hour periods during this time. Total VOC emissions were calculated and found to be under the limit set by the Resource Conservation and Recovery Act (RCRA). Although a complete process evaluation is not possible with the data gathered, some of the necessary information for designing a passive venting process was determined and the important parameters for designing the process were indicated. More study is required to evaluate long-term VOC removal using passive venting and to establish total remediation costs when passive venting is used as a polishing process following active soil vapor extraction.

  17. Compilation of Rare Earth Element Analyses from US Geothermal Fields and Mid Ocean Ridge Hydrothermal Vents

    SciTech Connect

    Andrew Fowler

    2015-10-01

    Compilation of rare earth element and associated major and minor dissolved constituent analytical data for USA geothermal fields and global seafloor hydrothermal vents. Data is in original units. Reference to and use of this data should be attributed to the original authors and publications according to the provisions outlined therein.

  18. Income Tax Deduction for Solar-Powered Roof Vents or Fans

    Office of Energy Efficiency and Renewable Energy (EERE)

    The taxpayer must provide proof of the taxpayer’s costs for installation of a solar powered roof vent or fan and a list of the persons or corporations that supplied labor or materials for the solar...

  19. Bonded carbon or ceramic fiber composite filter vent for radioactive waste

    DOEpatents

    Brassell, Gilbert W.; Brugger, Ronald P.

    1985-02-19

    Carbon bonded carbon fiber composites as well as ceramic or carbon bonded ceramic fiber composites are very useful as filters which can separate particulate matter from gas streams entraining the same. These filters have particular application to the filtering of radioactive particles, e.g., they can act as vents for containers of radioactive waste material.

  20. Compact fluorescent lamp using horizontal and vertical insulating septums and convective venting geometry

    DOEpatents

    Siminovitch, Michael

    1998-01-01

    A novel design for a compact fluorescent lamp, including a lamp geometry which will increase light output and efficacy of the lamp in a base down operating position by providing horizontal and vertical insulating septums positioned in the ballast compartment of the lamp to provide a cooler coldspot. Selective convective venting provides additional cooling of the ballast compartment.

  1. Compact fluorescent lamp using horizontal and vertical insulating septums and convective venting geometry

    DOEpatents

    Siminovitch, M.

    1998-02-10

    A novel design is described for a compact fluorescent lamp, including a lamp geometry which will increase light output and efficacy of the lamp in a base down operating position by providing horizontal and vertical insulating septums positioned in the ballast compartment of the lamp to provide a cooler coldspot. Selective convective venting provides additional cooling of the ballast compartment. 9 figs.

  2. New mineral occurrences and mineralization processes: Wuda coal-fire gas vents of Inner Mongolia

    SciTech Connect

    Stracher, G.B.; Prakash, A.; Schroeder, P.; McCormack, J.; Zhang, X.M.; Van Dijk, P.; Blake, D.

    2005-12-01

    Five unique mineral assemblages that include the sulfates millosevichite, alunogen, anhydrite, tschermigite, coquimbite, voltaite, and godovikovite, as well as the halide salammoniac and an unidentified phase, according to X-ray diffraction and EDS data, were found as encrustations on quartzofeldspathic sand and sandstone adjacent to coal-fire gas vents associated with underground coal fires in the Wuda coalfield of Inner Mongolia. The mineral assemblage of alunogen, coquimbite, voltaite, and the unidentified phase collected front the same gas vent, is documented for the first time. Observations suggest that the sulfates millosevichite, alunogen, coquimbite, voltaite, godovikovite, and the unidentified phase, crystallized in response to a complex sequence of processes that include condensation, hydrothermal alteration, crystallization from solution, fluctuating vent temperatures, boiling, and dehydration reactions, whereas the halide salammoniac crystallized during the sublimation of coal-fire gas. Tschermigite and anhydrite formed by the reaction of coal-fire gas with quartzofelds pathic rock or by hydrothermal alteration of this rock and crystallization from an acid-rich aqueous solution. These minerals have potentially important environmental significance and may be vectors for the transmission of toxins. Coal fires also provide insight for the recognition in the geologic record of preserved mineral assemblages that are diagnostic of ancient fires.

  3. Characterizing Microbial Community and Geochemical Dynamics at Hydrothermal Vents Using Osmotically Driven Continuous Fluid Samplers

    SciTech Connect

    Robidart, Julie C.; Callister, Stephen J.; Song, Peng F.; Nicora, Carrie D.; Wheat, Charles G.; Girguis, Peter R.

    2013-05-07

    Microbes play a key role in mediating all aquatic biogeochemical cycles, and ongoing efforts are aimed at better understanding the relationships between microbial phylogenetic and physiological diversity, and habitat physical and chemical characteristics. Establishing such relationships is facilitated by sampling and studying microbiology and geochemistry at the appropriate spatial and temporal scales, to access information on the past and current environmental state that contributes to observed microbial abundances and activities. A modest number of sampling systems exist to date, few of which can be used in remote, harsh environments such as hydrothermal vents, where the ephemeral nature of venting underscores the necessity for higher resolution sampling. We have developed a robust, continuous fluid sampling system for co-registered microbial and biogeochemical analyses. The osmosis-powered bio-osmosampling system (BOSS) use no electricity, collects fluids with daily resolution or better, can be deployed in harsh, inaccessible environments and can sample fluids continuously for up to five years. Here we present a series of tests to examine DNA, RNA and protein stability over time, as well as material compatability, via lab experiments. We also conducted two field deployments at deep-sea hydrothermal vents to assess changes in microbial diversity and protein expression as a function of the physico-chemical environment. Our data reveal significant changes in microbial community composition co-occurring with relatively modest changes in the geochemistry. These data additionally provide new insights into the distribution of an enigmatic sulfur oxidizing symbiont in its free-living state. Data from the second deployment reveal differences in the representation of peptides over time, underscoring the utility of the BOSS in meta-proteomic studies. In concert, these data demonstrate the efficacy of this approach, and illustrate the value of using this method to study

  4. An Evaluation of Frangible Materials as Veneers on Vented Structural Member Designs

    SciTech Connect

    Jameson, Kevin Jay

    2015-10-01

    Literature shows there has been extensive research and testing done in the area of wall panels and frangible materials. There is evidence from past research that shows it is possible to vent a structure that has had an accidental internal explosion [1]. The reviewed literature shows that most designs vent the entire wall panel versus a frangible material attached to the wall panel. The frangible material attachment points are important to determine the overall loading of the wall panel structure [2]. The materials used in the reviewed literature were securely attached as well as strong enough to remain intact during the pressure loading to move the entire wall panel. Since the vented wall panel was the weakest part of the overall structure, the other walls of the structure were substantially larger. The structure was usually built from concrete and large amounts of steel with dirt and sand over the top of the structure.The study will be conducted at Sandia National Laboratories located in Albuquerque New Mexico. The skeletal structural design for evaluation is a rectangular frame with a square grid pattern constructed from steel. The skeletal structure has been given to the researcher as a design requirement. The grid pattern will be evaluated strictly on plastic deformation and the loading that is applied from the frangible material. The frangible material tested will either fit into the grid or will be a veneer lightly attached to the structure frame. The frangible material may be required on both sides of the structure to adequately represent the application.

  5. A vent sizing program with particular reference to hybrid runaway reaction systems

    SciTech Connect

    Leung, J.C.; Noronha, J.A.; Torres, A.J.

    1995-12-31

    VSSPH (Vent Sizing Software Program for Hybrid System) is a software program designed to yield rapid evaluation of emergency requirements requirements for a general class of hybrid system runaway reaction - a system which generate both condensable vapor and noncondensable gases. The calculational method is based on transient numerical solutions as well as analytical solutions. This program only requires a few key input parameters as well as physical properties. The program also incorporates the latest two-phase pipe flow model based on the {omega} methodology. This paper describes the model construction and summarizes the results of sample runs. 5 refs., 5 figs.

  6. Biogenicity of silica precipitation around geysers and hot-spring vents, North Island, New Zealand

    SciTech Connect

    Jones, B.; Renaut, R.W.; Rosen, M.R.

    1997-01-01

    Before anthropogenic modifications, Ohaaki Pool (Broadlands-Ohaaki) and Dragon`s Mouth Geyser (Wairakei) emitted waters at temperatures of 93--98 C. The siliceous sinter that precipitated around their vents has the characteristics of geyserite, a dense laminated deposit of presumed abiogenic origin, that was precipitated from waters too hot (>73C) to support microbes other than thermophilic bacteria. Petrographic and SEM examinations of the sinters show that they incorporate columnar stromatolites and silicified, laminated stromatolitic mats that contain well-preserved filamentous microbes. At both localities the microbes lack evidence of desiccation or shrinkage, which implies that they were silicified rapidly at or shortly after their death. Although boiling and very hot (>90 C) waters were discharged, temperatures at many sites surrounding the vents remained sufficiently low and moist to support a microbial community that included thermophilic bacteria and cyanobacteria. In these cooler niches, the microbes and their biofilms served as highly favorable templates for the nucleation and growth of amorphous silica, and collectively provided a microbial framework for the laminated accretionary sinter. Some columnar, spicular, and stratiform geyserites are probably not abiotic precipitates, but are true silica stromatolites.

  7. The Genome of Deep-Sea Vent Chemolithoautotroph Thiomicrospiracrunogena XCL-2

    SciTech Connect

    Scott, Kathleen M.; Sievert, Stefan M.; Abril, Fereniki N.; Ball,Lois A.; Barrett, Chantell J.; Blake, Rodrigo A.; Boller, Amanda J.; Chain, Patrick S.G.; Clark, Justine A.; Davis, Carisa R.; Detter, Chris; Do, Kimberly F.; Dobrinski, Kimberly P.; Faza, BrandonI.; Fitzpatrick,Kelly A.; Freyermuth, Sharyn K.; Harmer, Tara L.; Hauser, Loren J.; Hugler, Michael; Kerfeld, Cheryl A.; Klotz, Martin G.; Kong, William W.; Land, Miriam; Lapidus, Alla; Larimer, Frank W.; Longo, Dana L.; Lucas,Susan; Malfatti, Stephanie A.; Massey, Steven E.; Martin, Darlene D.; McCuddin, Zoe; Meyer, Folker; Moore, Jessica L.; Ocampo, Luis H.; Paul,John H.; Paulsen, Ian T.; Reep, Douglas K.; Ren, Qinghu; Ross, Rachel L.; Sato, Priscila Y.; Thomas, Phaedra; Tinkham, Lance E.; Zeruth, Gary T.

    2006-08-23

    Presented here is the complete genome sequence ofThiomicrospira crunogena XCL-2, representative of ubiquitouschemolithoautotrophic sulfur-oxidizing bacteria isolated from deep-seahydrothermal vents. This gammaproteobacterium has a single chromosome(2,427,734 bp), and its genome illustrates many of the adaptations thathave enabled it to thrive at vents globally. It has 14 methyl-acceptingchemotaxis protein genes, including four that may assist in positioningit in the redoxcline. A relative abundance of CDSs encoding regulatoryproteins likely control the expression of genes encoding carboxysomes,multiple dissolved inorganic nitrogen and phosphate transporters, as wellas a phosphonate operon, which provide this species with a variety ofoptions for acquiring these substrates from the environment. T. crunogenaXCL-2 is unusual among obligate sulfur oxidizing bacteria in relying onthe Sox system for the oxidation of reduced sulfur compounds. A 38 kbprophage is present, and a high level of prophage induction was observed,which may play a role in keeping competing populations of close relativesin check. The genome has characteristics consistent with an obligatelychemolithoautotrophic lifestyle, including few transporters predicted tohave organic allocrits, and Calvin-Benson-Bassham cycle CDSs scatteredthroughout the genome.

  8. Development of a practical training program based on BNL`s input to new NFPA Lined Masonary Chimney Venting Tables

    SciTech Connect

    Potter, G.

    1997-09-01

    This paper describes how we developed a practical training program for technicians and sales personnel from the BNL studies that evolved into the Lined Chimney Venting Tables. One of the topics discussed is our search for solutions to the reoccurring problems associated with flue gas condensation on newly installed oil fired appliances. The paper will also discuss our own experiences in applying the new venting tables and working through the questions that arise when we encounter installations beyond the scope of the present tables.

  9. COMPARISON OF VENTED AND ABSOLUTE PRESSURE TRANSDUCERS FOR WATER-LEVEL MONITORING IN HANFORD SITE CENTRAL PLATEAU WELLS

    SciTech Connect

    MCDONALD JP

    2011-09-08

    Automated water-level data collected using vented pressure transducers deployed in Hanford Site Central Plateau wells commonly display more variability than manual tape measurements in response to barometric pressure fluctuations. To explain this difference, it was hypothesized that vented pressure transducers installed in some wells are subject to barometric pressure effects that reduce water-level measurement accuracy. Vented pressure transducers use a vent tube, which is open to the atmosphere at land surface, to supply air pressure to the transducer housing for barometric compensation so the transducer measurements will represent only the water pressure. When using vented transducers, the assumption is made that the air pressure between land surface and the well bore is in equilibrium. By comparison, absolute pressure transducers directly measure the air pressure within the wellbore. Barometric compensation is achieved by subtracting the well bore air pressure measurement from the total pressure measured by a second transducer submerged in the water. Thus, no assumption of air pressure equilibrium is needed. In this study, water-level measurements were collected from the same Central Plateau wells using both vented and absolute pressure transducers to evaluate the different methods of barometric compensation. Manual tape measurements were also collected to evaluate the transducers. Measurements collected during this study demonstrated that the vented pressure transducers over-responded to barometric pressure fluctuations due to a pressure disequilibrium between the air within the wellbores and the atmosphere at land surface. The disequilibrium is thought to be caused by the relatively long time required for barometric pressure changes to equilibrate between land surface and the deep vadose zone and may be exacerbated by the restriction of air flow between the well bore and the atmosphere due to the presence of sample pump landing plates and well caps. The

  10. Use a Vent Condenser to Recover Flash Steam Energy, Energy Tips: STEAM, Steam Tip Sheet #13 (Fact Sheet), Advanced Manufacturing Office (AMO), Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    3 Use a Vent Condenser to Recover Flash Steam Energy When the pressure of saturated condensate is reduced, a portion of the liquid "fashes" to low-pressure steam. Depending on the pressures involved, the fash steam contains approximately 10% to 40% of the energy content of the original condensate. In most cases, including condensate receivers and deaerators, the fashing steam is vented and its energy content lost. However, a heat exchanger can be placed in the vent to recover this

  11. Building America Technology Solutions for New and Existing Homes...

    Energy.gov [DOE] (indexed site)

    increased main line air venting, radiator vent replacement, and boiler control system upgrades. Steam System Balancing and Tuning for Multifamily Residential Buildings ...

  12. Field-scale investigation of enhanced petroleum hydrocarbon biodegradation in the vadose zone combining soil venting as an oxygen source with moisture and nutrient addition. Appendices. Doctoral thesis

    SciTech Connect

    Miller, R.N.

    1990-01-01

    This document contains appendices regarding a reprint on a field scale investigation of enhanced petroleum hydrocarbon biodegradation in the vadose zone combining soil venting as a oxygen source with moisture and nutrient addition.

  13. The Effects of Infrared-Blocking Pigments and Deck Venting on Stone-Coated Metal Residential Roofs

    SciTech Connect

    Miller, William A

    2006-01-01

    Field data show that stone-coated metal shakes and S-mission tile, which exploit the use of infraredblocking color pigments (IrBCPs), along with underside venting reduce the heat flow penetrating the conditioned space of a residence by 70% compared with the amount of heat flow penetrating roofs with conventional asphalt shingles. Stone-coated metal roof products are typically placed on battens and counter-battens and nailed through the battens to the roof deck. The design provides venting on the underside of the metal roof that reduces the heat flow penetrating a home. The Metal Construction Association (MCA) and its affiliate members installed stone-coated metal roofs with shake and S-mission tile profiles and a painted metal shake roof on a fully instrumented attic test assembly at Oak Ridge National Laboratory (ORNL). Measurements of roof, deck, attic, and ceiling temperatures; heat flows; solar reflectance; thermal emittance; and ambient weather were recorded for each of the test roofs and also for an adjacent attic cavity covered with a conventional pigmented and direct nailed asphalt shingle roof. All attic assemblies had ridge and soffit venting; the ridge was open to the underside of the stone-coated metal roofs. A control assembly with a conventional asphalt shingle roof was used for comparing deck and ceiling heat transfer rates.

  14. Vehicle Technologies Office: Technologies

    Office of Energy Efficiency and Renewable Energy (EERE)

    To support DOE's goal to provide clean and secure energy, the Vehicle Technologies Office (VTO) invests in research and development that:

  15. NATURAL CO2 FLOW FROM THE LOIHI VENT: IMPACT ON MICROBIAL PRODUCTION AND FATE OF THE CO2

    SciTech Connect

    Richard B. Coffin; Thomas J. Boyd; David L. Knies; Kenneth S. Grabowski; John W. Pohlman; Clark S. Mitchell

    2004-02-27

    The program for International Collaboration on CO{sub 2} Ocean Sequestration was initiated December 1997. Preliminary steps involved surveying a suite of biogeochemical parameters off the coast of Kona on the Big Island of Hawaii. The preliminary survey was conducted twice, in 1999 and 2000, to obtain a thorough data set including measurements of pH, current profiles, CO{sub 2} concentrations, microbial activities, and water and sediment chemistries. These data were collected in order to interpret a planned CO{sub 2} injection experiment. After these preliminary surveys were completed, local environment regulation forced moving the project to the coast north east of Bergen, Norway. The preliminary survey along the Norwegian Coast was conducted during 2002. However, Norwegian government revoked a permit, approved by the Norwegian State Pollution Control Authority, for policy reasons regarding the CO{sub 2} injection experiment. As a result the research team decided to monitor the natural CO{sub 2} flow off the southern coast of the Big Island. From December 3rd-13th 2002 scientists from four countries representing the Technical Committee of the International Carbon Dioxide Sequestration Experiment examined the hydrothermal venting at Loihi Seamount (Hawaiian Islands, USA). Work focused on tracing the venting gases, the impacts of the vent fluids on marine organisms, and CO{sub 2} influence on biogeochemical cycles. The cruise on the R/V Ka'imikai-O-Kanaloa (KOK) included 8 dives by the PISCES V submarine, 6 at Loihi and 2 at a nearby site in the lee of the Big Island. Data for this final report is from the last 2 dives on Loihi.

  16. Energy Technologies

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Our Vision National User Facilities Research Areas In Focus Global Solutions Energy Technologies Area (ETA) Building Technology & Urban Systems Energy Analysis & Environmental...

  17. Exploration Technologies - Technology Needs Assessment

    SciTech Connect

    Greene, Amanda I.; Thorsteinsson, Hildigunnur; Reinhardt, Tim; Solomon, Samantha; James, Mallory

    2011-06-01

    This assessment is a critical component of ongoing technology roadmapping efforts, and will be used to guide the Geothermal Technology Program's research and development.

  18. High Impact Technology Catalyst: Technology Deployment Strategies...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Catalyst: Technology Deployment Strategies High Impact Technology Catalyst: Technology Deployment Strategies The Energy Department released the High Impact Technology Catalyst: ...

  19. Vehicle Technologies Office: Graduate Automotive Technology Education...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Education & Workforce Development Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) Vehicle Technologies Office: Graduate Automotive Technology ...

  20. NREL: Technology Transfer - Technology Partnership Agreements

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Ombuds. Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Agreements for Commercializing Technology CRADAs Work for...

  1. NREL: Technology Transfer - Technologies Available for Licensing

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Ombuds. Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Licensing Agreements Technologies Available for Licensing...

  2. Method of characterizing VOC concentration in vented waste drums with multiple layers of confinement using limited sampling data

    SciTech Connect

    Liekhus, K.J.; Vaughn, M.E.; Jensen, B.A.; Connolly, M.J.

    1994-11-01

    Characterization of transuranic waste destined for the Waste Isolation Pilot Plant currently requires detailed characterization of the volatile organic compound (VOC) concentration in the void volume headspaces (drum headspace, the large polymer bag headspace, and the innermost layers of confinement headspace) of the waste drums. A test program is underway at the Idaho National Engineering Laboratory (INEL) to determine if the drum headspace VOC concentration is representative of the concentration in the entire drum void space and demonstrate that the VOC concentration in the innermost layer of confinement can be estimated using a model incorporating diffusion and permeation transport principles and limited waste drum sampling data. A comparison of model predictions of VOC concentration in the innermost layer of confinement with actual measurement from transuranic waste drums demonstrate that this method may be useful in characterizing VOC concentration in a vented waste drum.

  3. Vehicle Technologies Office - Materials Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Vehicle Technologies Office Materials Technologies Ed Owens Jerry Gibbs Will Joost eere.energy.gov 2 | Vehicle Technologies Program Materials Technologies Materials Technologies $36.9 M Lightweight Materials $28.0 M Values are FY14 enacted Propulsion Materials $8.9 M Properties and Manufacturing Multi-Material Enabling Modeling & Computational Mat. Sci. Engine Materials, Cast Al & Fe High Temp Alloys Exhaust Sys. Materials, Low T Catalysts Lightweight Propulsion FY13 Enacted $27.5 M

  4. Available Technologies

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    application. Search Our Technologies submit Advanced Materials Advanced Materials Biotechnology Biotechnology Chemistry Chemistry Energy Energy High Performance Computing:...

  5. Technology Opportunities

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Intellectual Property » Technology Opportunities Technology Opportunities We deliver innovation through an integrated portfolio of R&D work across our key national security sponsoring agencies, enhanced by the ideas developed through our strategic internal investments. Contact Business Development Team Richard P. Feynman Center for Innovation (505) 665-9090 Email Periodically, the Laboratory notifies the public of technologies and capabilities that may be of interest. These technologies may

  6. Licensing Technology

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Licensing Technology Licensing Technology The primary function of Los Alamos Licensing Program is to move Los Alamos technology to the marketplace for the benefit of the U.S. economy. Our intellectual property may be licensed for commercial use, research applications, and U.S. government use. Contact thumbnail of Marcus Lucero Head of Licensing Marcus Lucero Richard P. Feynman Center for Innovation (505) 665-6569 Email Although Los Alamos's primary mission is national security, our technologies

  7. Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    - FOR OFFICIAL USE ONLY - DRAFT 1 Advanced Composites Materials and their Manufacture 1 Technology Assessment 2 Contents 3 1. Introduction to the Technology/System ................................................................................................ 2 4 2. Technology Potential and Assessment .................................................................................................. 4 5 2.1 The Potential for Advanced Composites for Clean Energy Application Areas

  8. RESEARCH AND ENGINEERING COMPANY

    Office of Legacy Management (LM)

    Per our conversation on July 11, 1988, enclosed is a current plot plan of the Linden Technology Center (old Standard Oil Development Company site). I hope this satisfies your in- ...

  9. Technology '90

    SciTech Connect

    Not Available

    1991-01-01

    The US Department of Energy (DOE) laboratories have a long history of excellence in performing research and development in a number of areas, including the basic sciences, applied-energy technology, and weapons-related technology. Although technology transfer has always been an element of DOE and laboratory activities, it has received increasing emphasis in recent years as US industrial competitiveness has eroded and efforts have increased to better utilize the research and development resources the laboratories provide. This document, Technology '90, is the latest in a series that is intended to communicate some of the many opportunities available for US industry and universities to work with the DOE and its laboratories in the vital activity of improving technology transfer to meet national needs. Technology '90 is divided into three sections: Overview, Technologies, and Laboratories. The Overview section describes the activities and accomplishments of the DOE research and development program offices. The Technologies section provides descriptions of new technologies developed at the DOE laboratories. The Laboratories section presents information on the missions, programs, and facilities of each laboratory, along with a name and telephone number of a technology transfer contact for additional information. Separate papers were prepared for appropriate sections of this report.

  10. Laboratory determination of gas-side mass transfer coefficients applicable to soil-venting systems for removing petroleum hydrocarbons from vadose-zone soils. Master's thesis

    SciTech Connect

    Van Valkenburg, M.E.

    1991-01-01

    Contamination of the subsurface environment by organic solvents has become a national problem. The EPA's Superfund list (40 CFR Part 300, 1990) continues to grow, with continual discovery of new hazardous waste sites. Various techniques are employed to remediate these sites, including excavation and removal of the contaminated soil for proper disposal, pumping and treatment of contaminated ground water and an organic phase if present, containment by slurried soil-bentonite cut-off barriers, in situ biological treatment of the organic wastes, and vadose zone soil venting for gas absorption of volatiles. Each technique, or combination, may have merit at a given site. The soil venting process, an inexpensive but relatively successful technique for removal of contaminants from the vadose (unsaturated) zone, is the focus of the research.

  11. NREL: Technology Transfer - Agreements for Commercializing Technology

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    303-384-7353. Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Agreements for Commercializing Technology CRADAs Work for...

  12. Vehicle Technologies Office: 2015 Electric Drive Technologies...

    Office of Environmental Management (EM)

    Electric Drive Technologies Annual R&D Progress Report Vehicle Technologies Office: 2015 Electric Drive Technologies Annual R&D Progress Report The Electric Drive Technologies ...

  13. Huazhong Science Technology University Yongtai Science Technology...

    OpenEI (Open Energy Information) [EERE & EIA]

    Huazhong Science Technology University Yongtai Science Technology Co Ltd Jump to: navigation, search Name: Huazhong Science & Technology University Yongtai Science & Technology Co...

  14. Technology Transfer

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    technology transfer Technology Transfer Since 1974, the Federal Laboratory Consortium (FLC) Award for Excellence in Technology Transfer has recognized scientists and engineers at federal government and research centers for their "uncommon creativity and initiative in conveying innovations from their facilities to industry and local government." Scientists and engineers from more than 650 federal government laboratories and research centers compete for the 30 awards presented each year.

  15. Technology Partnering

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Transfer and Related Technology Partnering Activities at the National Laboratories and Other Facilities Fiscal Years 2009-2013 Report to Congress May 2015 United States Department of Energy Washington, DC 20585 Message from the Secretary The Report on Technology Transfer and Related Partnering Activities at the National Laboratories and Other Facilities for Fiscal Year 2009-2013 is prepared in accordance with the requirements of the Technology Transfer and Commercialization Act of 2000: It is

  16. Use Steam Jet Ejectors or Thermocompressors to Reduce Venting of Low-Pressure Steam, Energy Tips: STEAM, Steam Tip Sheet #29 (Fact Sheet), Advanced Manufacturing Office (AMO), Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    9 Use Steam Jet Ejectors or Thermocompressors to Reduce Venting of Low-Pressure Steam Large industrial plants often vent signifcant quantities of low-pressure steam to the atmosphere, wasting energy, water, and water-treatment chemicals. Recovery of the latent heat content of low-pressure steam reduces the boiler load, resulting in energy and fuel cost savings. Low-pressure steam's potential uses include driving evaporation and distillation processes, producing hot water, space heating,

  17. Technology Opportunities

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    by the U.S. Department of Energy and Office of Science - ... feedstock-to-fuel conversion, coproduct production, ... Patents Software Tools Technology Opportunities Penta Charts

  18. Technology Validation

    Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  19. CSP technology

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    technology - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy ...

  20. TECHNOLOGY FORUM

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    TECHNOLOGY FORUM The 2014 SunShot Grand Challenge Summit and Peer Review is hosting a Technology Forum showcasing innovative and cutting-edge technologies that are helping to drive down the cost of solar energy. The Forum features a wide range of solar industry exhibitors showcasing software and hardware products and solutions, as well as nearly 300 SunShot awardees displaying their work and answering questions about their projects. TECHNOLOGY FORUM HOURS * May 19 from 4:00-7:00 PM * May 20

  1. Nonradioactive Air Emissions Notice of Construction (NOC) Application for the Central Waste Complex (CSC) for Storage of Vented Waste Containers

    SciTech Connect

    KAMBERG, L.D.

    2000-04-01

    This Notice of Construction (NOC) application is submitted for the storage and management of waste containers at the Central Waste Complex (CWC) stationary source. The CWC stationary source consists of multiple sources of diffuse and fugitive emissions, as described herein. This NOC is submitted in accordance with the requirements of Washington Administrative Code (WAC) 173-400-110 (criteria pollutants) and 173-460-040 (toxic air pollutants), and pursuant to guidance provided by the Washington State Department of Ecology (Ecology). Transuranic (TRU) mixed waste containers at CWC are vented to preclude the build up of hydrogen produced as a result of radionuclide decay, not as safety pressure releases. The following activities are conducted within the CWC stationary source: Storage and inspection; Transfer and staging; Packaging; Treatment; and Sampling. This NOC application is intended to cover all existing storage structures within the current CWC treatment, storage, and/or disposal (TSD) boundary, as well as any storage structures, including waste storage pads and staging areas, that might be constructed in the future within the existing CWC boundary.

  2. Aluminum Bronze Alloys to Improve the System Life of Basic Oxygen and Electric Arc Furnace Hoods, Roofs and Side Vents.

    SciTech Connect

    Lawrence C. Boyd Jr.; Dr. Vinod K. Sikka

    2006-12-29

    Energy Industries of Ohio was the lead organization for a consortium that examined the current situation involving the service life of electric arc and basic oxygen furnace hoods, roofs and side vents. Republic Engineered Products (REP), one of the project partners, installed a full-scale Al-Bronze “skirt” in their BOF at their Lorain OH facility, believed to be the first such installation of this alloy in this service. In 24 months of operation, the Al-Bronze skirt has processed a total of 4,563 heats, requiring only 2 shutdowns for maintenance, both related to physical damage to the skirt from operational mishaps. Yearly energy savings related to the REP facility are projected to be ~ 10 billion Btu's with significant additional environmental and productivity benefits. In recognition of the excellent results, this project was selected as the winner of the Ohio’s 2006 Governor’s Award for Excellence in Energy, the state’s award for outstanding achievements in energy efficiency.

  3. Thermally activated technologies: Technology Roadmap

    SciTech Connect

    None, None

    2003-05-01

    The purpose of this Technology Roadmap is to outline a set of actions for government and industry to develop thermally activated technologies for converting America’s wasted heat resources into a reservoir of pollution-free energy for electric power, heating, cooling, refrigeration, and humidity control. Fuel flexibility is important. The actions also cover thermally activated technologies that use fossil fuels, biomass, and ultimately hydrogen, along with waste heat.

  4. NREL: Technology Deployment - Technology Acceleration

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Technology Acceleration NREL offers technology-specific assistance to federal and private industry to help address market barriers to sustainable energy technologies. Learn more about NREL's work in the following areas: Biopower and Waste-to-Energy Biopower and Waste-to-Energy Buildings Buildings Fuels, Vehicles, & Transportation Fuels, Vehicles, and Transportation Microgrid Design Microgrid Design Solar Solar Wind Wind Contact Us For more information on NREL's market transformation work,

  5. Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Roll to Roll (R2R) Processing 1 Technology Assessment 2 3 Contents 4 1. Introduction to the Technology/System ............................................................................................... 2 5 1.1. Introduction to R2R Processing..................................................................................................... 2 6 1.2. R2R Processing Mechanisms ......................................................................................................... 3 7 2.

  6. Steam System Efficiency Optimized After J.R. Simplot Fertilizer Plant Receives Energy Assessment; Industrial Technologies Program (ITP) Save Energy Now (SEN) Case Study

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    J.R. Simplot Don plant in Pocatello, Idaho, repaired boiler feed water pumps such as the one pictured above, and revised boiler operating practices to reduce steam venting by 17 million pounds annually. Steam System Efficiency Optimized After J.R. Simplot Fertilizer Plant Receives Energy Assessment Industrial Technologies Program Case Study Key Findings * Significant energy savings can be achieved without large capital expenditures. * While the J.R. Simplot company had an active energy

  7. Technology Commercialization Showcase 2008 Vehicle Technologies Program

    SciTech Connect

    Davis, Patrick B.

    2009-06-19

    Presentation illustrating various technology commercialization opportunities and unexploited investment gaps for the Vehicle Technologies Program.

  8. Tag: technology

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Tags

    technology<...

  9. Technology Validation

    Energy.gov [DOE]

    To reduce solar technology risks, DOE and its partners evaluate the performance and reliability of novel photovoltaic (PV) hardware and systems through laboratory and field testing. The focus of...

  10. Radioactive Air Emissions Notice of Construction for the 105-KW Basin integrated water treatment system filter vessel sparging vent

    SciTech Connect

    Kamberg, L.D.

    1998-02-23

    This document serves as a notice of construction (NOC), pursuant to the requirements of Washington Administrative Code (WAC) 246-247-060, and as a request for approval to construct, pursuant to 40 Code of Federal Regulations (CFR) 61.07, for the Integrated Water Treatment System (IWTS) Filter Vessel Sparging Vent at 105-KW Basin. Additionally, the following description, and references are provided as the notices of startup, pursuant to 40 CFR 61.09(a)(1) and (2) in accordance with Title 40 Code of Federal Regulations, Part 61, National Emission Standards for Hazardous Air Pollutants. The 105-K West Reactor and its associated spent nuclear fuel (SNF) storage basin were constructed in the early 1950s and are located on the Hanford Site in the 100-K Area about 1,400 feet from the Columbia River. The 105-KW Basin contains 964 Metric Tons of SNF stored under water in approximately 3,800 closed canisters. This SNF has been stored for varying periods of time ranging from 8 to 17 years. The 105-KW Basin is constructed of concrete with an epoxy coating and contains approximately 1.3 million gallons of water with an asphaltic membrane beneath the pool. The IWTS, which has been described in the Radioactive Air Emissions NOC for Fuel Removal for 105-KW Basin (DOE/RL-97-28 and page changes per US Department of Energy, Richland Operations Office letter 97-EAP-814) will be used to remove radionuclides from the basin water during fuel removal operations. The purpose of the modification described herein is to provide operational flexibility for the IWTS at the 105-KW basin. The proposed modification is scheduled to begin in calendar year 1998.

  11. Building America Case Study: Evaluation of Passive Vents in New-Construction Multifamily Buildings, New York, New York

    SciTech Connect

    2015-10-15

    Exhaust ventilation and corresponding outdoor air strategies are being implemented in high-performance new construction multifamily buildings to meet program or code requirements for improved indoor air quality, but a lack of clear design guidance is resulting in poor performance of these systems despite the best intentions of the programs or standards. CARB's 2014 'Evaluation of Ventilation Strategies in New Construction Multifamily Buildings' consistently demonstrated that commonly used outdoor air strategies are not performing as expected. Of the four strategies evaluated in 2014, the exhaust ventilation system that relied on outdoor air from a pressurized corridor was ruled out as a potential best practice due to its conflict with meeting requirements within most fire codes. Outdoor air that is ducted directly to the apartments was a strategy determined to have the highest likelihood of success, but with higher first costs and operating costs. Outdoor air through space conditioning systems was also determined to have good performance potential, with proper design and execution. The fourth strategy, passive systems, was identified as the least expensive option for providing outdoor air directly to apartments, with respect to both first costs and operating costs. However, little is known about how they actually perform in real-world conditions or how to implement them effectively. Based on the lack of data available on the performance of these low-cost systems and their frequent use in the high-performance building programs that require a provision for outdoor air, this research project sought to further evaluate the performance of passive vents.

  12. Technology Roadmap Analysis 2013: Assessing Automotive Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Roadmap Analysis 2013: Assessing Automotive Technology R&D Relevant to DOE Power Electronics Cost Targets Technology Roadmap Analysis 2013: Assessing Automotive Technology R&D ...

  13. Building Technologies Office Overview

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Roland Risser Director, Building Technologies Office Building Technologies Office Energy Efficiency Starts Here. 2 Building Technologies Office Integrated Approach: Improving ...

  14. Proceedings of the 1998 oil heat technology conference

    SciTech Connect

    McDonald, R.J.

    1998-04-01

    The 1998 Oil Heat Technology Conference was held on April 7--8 at Brookhaven National Laboratory (BNL) under sponsorship by the US Department of Energy, Office of Building Technologies, State and Community Programs (DOE/BTS). The meeting was held in cooperation with the Petroleum Marketers Association of America (PMAA). Fourteen technical presentations was made during the two-day program, all related to oil-heat technology and equipment, these will cover a range of research, developmental, and demonstration activities being conducted within the United States and Canada, including: integrated oil heat appliance system development in Canada; a miniature heat-actuated air conditioner for distributed space conditioning; high-flow fan atomized oil burner (HFAB) development; progress in the development of self tuning oil burners; application of HFAB technology to the development of a 500 watt; thermophotovoltaic (TPV) power system; field tests of the Heat Wise Pioneer oil burner and Insight Technologies AFQI; expanded use of residential oil burners to reduce ambient ozone and particulate levels by conversion of electric heated homes to oilheat; PMAA`s Oil Heat Technician`s Manual (third edition); direct venting concept development; evolution of the chimney; combating fuel related problems; the effects of red dye and metal contamination on fuel oil stability; new standard for above ground and basement residential fuel oil storage; plastic and steel composite secondary contained tanks; and money left on the table: an economic analysis of tank cleaning.

  15. Manufacturing technologies

    SciTech Connect

    1995-09-01

    The Manufacturing Technologies Center is an integral part of Sandia National Laboratories, a multiprogram engineering and science laboratory, operated for the Department of Energy (DOE) with major facilities at Albuquerque, New Mexico, and Livermore, California. Our Center is at the core of Sandia`s Advanced Manufacturing effort which spans the entire product realization process.

  16. (Environmental technology)

    SciTech Connect

    Boston, H.L.

    1990-10-12

    The traveler participated in a conference on environmental technology in Paris, sponsored by the US Embassy-Paris, US Environmental Protection Agency (EPA), the French Environmental Ministry, and others. The traveler sat on a panel for environmental aspects of energy technology and made a presentation on the potential contributions of Oak Ridge National Laboratory (ORNL) to a planned French-American Environmental Technologies Institute in Chattanooga, Tennessee, and Evry, France. This institute would provide opportunities for international cooperation on environmental issues and technology transfer related to environmental protection, monitoring, and restoration at US Department of Energy (DOE) facilities. The traveler also attended the Fourth International Conference on Environmental Contamination in Barcelona. Conference topics included environmental chemistry, land disposal of wastes, treatment of toxic wastes, micropollutants, trace organics, artificial radionuclides in the environment, and the use biomonitoring and biosystems for environmental assessment. The traveler presented a paper on The Fate of Radionuclides in Sewage Sludge Applied to Land.'' Those findings corresponded well with results from studies addressing the fate of fallout radionuclides from the Chernobyl nuclear accident. There was an exchange of new information on a number of topics of interest to DOE waste management and environmental restoration needs.

  17. Plasma technology

    SciTech Connect

    Herlitz, H.G.

    1986-11-01

    This paper describes the uses of plasma technology for the thermal destruction of hazardous wastes such as PCBs, dioxins, hydrocarbons, military chemicals and biological materials; for metals recovery from steel making dusts. One advantage of the process is that destruction of wastes can be carried out on site. Systems in several countries use the excess thermal energy for district heating.

  18. wipp _vents.png

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    1) 1 Winter Fuels Outlook: 2001/2002 Introduction Tension in world oil markets, due to anticipated U.S. military action in response to the September 11 terrorist attacks in New York and Washington, has added an obvious dimension of uncertainty to any particular view of winter oil prices. We assume that expressed levels of support and cooperation for U.S. actions by the international community, including members of OPEC, include a willingness to at least maintain the level of oil supply that

  19. Vented nuclear fuel element

    DOEpatents

    Grossman, Leonard N.; Kaznoff, Alexis I.

    1979-01-01

    A nuclear fuel cell for use in a thermionic nuclear reactor in which a small conduit extends from the outside surface of the emitter to the center of the fuel mass of the emitter body to permit escape of volatile and gaseous fission products collected in the center thereof by virtue of molecular migration of the gases to the hotter region of the fuel.

  20. Software Technology

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Software Software Technology Enabling a new era of computational and scientific capabilities by advancing high-performance computing on an exponential scale. Contacts Galen Shipman Applied Computer Science (505) 665-4021 Email Michael Lang Computer, Computational, and Statistical Sciences (505) 500-2993 Email James Ahrens Applied Computer Science (505) 667-5797 Email Video thumbnail image for ExaSky software 3:21 ExaSky: Next-generation dark matter cosmology simulations (demonstration) The

  1. Building Technologies Office Overview

    SciTech Connect

    2013-04-01

    Building Technologies Office Overview Presentation for the 2013 Building Technologies Office's Program Peer Review

  2. Emerging technologies

    SciTech Connect

    Lu, Shin-yee

    1993-03-01

    The mission of the Emerging Technologies thrust area at Lawrence Livermore National Laboratory is to help individuals establish technology areas that have national and commercial impact, and are outside the scope of the existing thrust areas. We continue to encourage innovative ideas that bring quality results to existing programs. We also take as our mission the encouragement of investment in new technology areas that are important to the economic competitiveness of this nation. In fiscal year 1992, we have focused on nine projects, summarized in this report: (1) Tire, Accident, Handling, and Roadway Safety; (2) EXTRANSYT: An Expert System for Advanced Traffic Management; (3) Odin: A High-Power, Underwater, Acoustic Transmitter for Surveillance Applications; (4) Passive Seismic Reservoir Monitoring: Signal Processing Innovations; (5) Paste Extrudable Explosive Aft Charge for Multi-Stage Munitions; (6) A Continuum Model for Reinforced Concrete at High Pressures and Strain Rates: Interim Report; (7) Benchmarking of the Criticality Evaluation Code COG; (8) Fast Algorithm for Large-Scale Consensus DNA Sequence Assembly; and (9) Using Electrical Heating to Enhance the Extraction of Volatile Organic Compounds from Soil.

  3. Technology disrupted

    SciTech Connect

    Papatheodorou, Y.

    2007-02-15

    Three years ago, the author presented a report on power generation technologies which in summary said 'no technology available today has the potential of becoming transformational or disruptive in the next five to ten years'. In 2006 the company completed another strategic view research report covering the electric power, oil, gas and unconventional energy industries and manufacturing industry. This article summarises the strategic view findings and then revisits some of the scenarios presented in 2003. The cost per megawatt-hour of the alternatives is given for plants ordered in 2005 and then in 2025. The issue of greenhouse gas regulation is dealt with through carbon sequestration and carbon allowances or an equivalent carbon tax. Results reveal substantial variability through nuclear power, hydro, wind, geothermal and biomass remain competitive through every scenario. Greenhouse gas scenario analysis shows coal still be viable, albeit less competitive against nuclear and renewable technologies. A carbon tax or allowance at $24 per metric ton has the same effect on IGCC cost as a sequestration mandate. However, the latter would hurt gas plants much more than a tax or allowance. Sequestering CO{sub 2} from a gas plant is almost as costly per megawatt-hour as for coal. 5 refs., 5 figs., 5 tabs.

  4. Use Steam Jet Ejectors or Thermoscompressors to Reduce Venting of Low-Pressure Steam - Steam Tip Sheet #29

    SciTech Connect

    2012-01-01

    This revised AMO tip sheet on steam jet ejectors and thermocompressors provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  5. The Honorable John T. 'Gregorio 301 N. Wood Avenue

    Office of Legacy Management (LM)

    Linden Pilot Plant of the Chemical' Construction Company in your jurisdiction that ... Linden, NJ 07036 Former name at site: Linden Pilot Plant of the Chemical Construction ...

  6. Ekwi&ment Systems Divison Mr. James W. Wagoner II FDSRAP Program...

    Office of Legacy Management (LM)

    Exxon Research and Engineering (Linden Avenue) The property at 1900 Linden Avenue, Linden, NJ, was the site of a laboratory, formerly operated by the Standard Oil Development ...

  7. Testing technology

    SciTech Connect

    Not Available

    1993-10-01

    This bulletin from Sandia National Laboratories presents current research highlights in testing technology. Ion microscopy offers new nondestructive testing technique that detects high resolution invisible defects. An inexpensive thin-film gauge checks detonators on centrifuge. Laser trackers ride the range and track helicopters at low-level flights that could not be detected by radar. Radiation transport software predicts electron/photon effects via cascade simulation. Acoustic research in noise abatement will lead to quieter travelling for Bay Area Rapid Transport (BART) commuters.

  8. TECHNOLOGY TRANSFER

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    404-NOV. 1, 2000 TECHNOLOGY TRANSFER COMMERCIALIZATION ACT OF 2000 VerDate 11-MAY-2000 04:52 Nov 16, 2000 Jkt 089139 PO 00000 Frm 00001 Fmt 6579 Sfmt 6579 E:\PUBLAW\PUBL404.106 APPS27 PsN: PUBL404 114 STAT. 1742 PUBLIC LAW 106-404-NOV. 1, 2000 Public Law 106-404 106th Congress An Act To improve the ability of Federal agencies to license federally owned inventions. Be it enacted by the Senate and House of Representatives of the United States of America in Congress assembled, SECTION 1. SHORT

  9. Technology Name

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Tech Fact Sheet Site Project & Identifier Tech Stage: Development DE-EM0000598 D&D KM-IT For the deployment of Information Technology for D&D knowledge management Page 1 of 2 Florida International University Florida D&D Knowledge Management Information Tool Challenge Deactivation and decommissioning (D&D) work is a high priority across the DOE Complex. The D&D community associated with the various DOE sites has gained extensive knowledge and experience over the years. To

  10. Building Technologies Office Window and Envelope Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Building Technologies Office Window and Envelope Technologies Emerging Technologies R&D Program Karma Sawyer, Ph.D. karma.sawyer@ee.doe.gov BTO Goal Reduce building energy use by ...

  11. NETL Technologies Recognized for Technology Development, Transfer |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Recognized for Technology Development, Transfer NETL Technologies Recognized for Technology Development, Transfer October 25, 2013 - 1:31pm Addthis Did you know? The Federal Laboratory Consortium for Technology Transfer is the nationwide network of federal laboratories that provides the forum to develop strategies and opportunities for linking laboratory mission technologies and expertise with the marketplace. In consonance with the Federal Technology Transfer Act of

  12. High Impact Technology Catalyst: Technology Deployment Strategies |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Catalyst: Technology Deployment Strategies High Impact Technology Catalyst: Technology Deployment Strategies The Energy Department released the High Impact Technology Catalyst: Technology Deployment Strategies to serve as an overview of the HIT Catalyst program activities, including a summary of the selection process undertaken to identify, evaluate and prioritize the current HITs, descriptions of the technologies and markets for each HIT, and plans for deployment. High

  13. Nuclear Science & Technology

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Nuclear Science & Technology Nuclear Science & Technology1354608000000Nuclear Science & TechnologySome of these resources are LANL-only and will require Remote Access. No...

  14. NREL: Technology Transfer - Ombuds

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Technology Transfer Ombuds NREL's Technology Transfer Ombuds offers an informal process to help resolve issues and concerns regarding the laboratory's technology partnership,...

  15. Hydrogen Technologies Group

    SciTech Connect

    Not Available

    2008-03-01

    The Hydrogen Technologies Group at the National Renewable Energy Laboratory advances the Hydrogen Technologies and Systems Center's mission by researching a variety of hydrogen technologies.

  16. Distributed Energy Technology Characterization (Desiccant Technologies...

    Energy.gov [DOE] (indexed site)

    desiccant technology and applications, and to show how these technologies can be designed to utilize the available thermal energy from a combined heat and power (CHP) system. ...

  17. Vehicle Technologies Office: 2009 Advanced Vehicle Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Vehicle Technologies Office: 2008 Advanced Vehicle Technology Analysis and ...

  18. Vehicle Technologies Office: 2014 Electric Drive Technologies...

    Energy.gov [DOE] (indexed site)

    Electric Drive Technologies research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge ...

  19. 2016 Annual Technology Baseline

    DOE Data Explorer

    Hand, Maureen; Kurup, Parthiv

    2016-09-15

    Current and future cost and performance data for electricity generating technologies, including both renewable and conventional technologies.

  20. Technology Partnership Agreements | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Technology Investment Agreements Technology Investment Agreements Guidance Policy Flash 2006-31 - Technology Investment Agreements Financial Assistance Letter 2006-03 - Guidance for Awarding Technology Investment Agreements Final Rule - Financial Assistance Regulations - Technology Investment Agreements Templates Company Template (Expenditure-Based) Consortium Template (Expenditure-Based) Company Template (Fixed Support) Consortium Support (Fixed Support) Training Technology Investment

  1. Vehicle Technologies Office Propulsion Materials Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Vehicle Technologies Office Propulsion Materials Technologies Jerry Gibbs eere.energy.gov 2 | Vehicle Technologies Program Materials Technologies Materials Technologies $35.6 M Lightweight Materials $28.5 M Values are FY15 enacted Propulsion Materials $7.1 M Properties and Manufacturing Multi-Material Enabling Modeling & Computational Mat. Sci. Engine Materials, Cast Al & Fe High Temp Alloys Exhaust Sys. Materials, Low T Catalysts Lightweight Propulsion FY13 Enacted $27.5 M $11.9 M FY14

  2. Innovative Technologies for Bioenergy Technologies Incubator...

    Energy.gov [DOE] (indexed site)

    00PM EDT Online The Innovative Technologies for Bioenergy Technologies Incubator 2 FOA Informational Webinar will be held Wednesday, September 2, 1:00 p.m.-2:00 p.m. ET. Standard...

  3. Pulsed Corona Plasma Technology for Treating VOC Emissions from Pulp Mills

    SciTech Connect

    Fridman, Alexander A.; Gutsol, Alexander; Kennedy, Lawrence A.; Saveliev, Alexei V.; Korobtsev, Sergey V.; Shiryaevsky, Valery L.; Medvedev, Dmitry

    2004-07-28

    Under the DOE Office of Industrial Technologies Forest Products program various plasma technologies were evaluated under project FWP 49885 ''Experimental Assessment of Low-Temperature Plasma Technologies for Treating Volatile Organic Compound Emissions from Pulp Mills and Wood Products Plants''. The heterogeneous pulsed corona discharge was chosen as the best non-equilibrium plasma technology for control of the vent emissions from HVLC Brownstock Washers. The technology for removal of Volatile Organic Compounds (VOCs) from gas emissions with conditions typical of the exhausts of the paper industry by means of pulsed corona plasma techniques presented in this work. For the compounds of interest in this study (methanol, acetone, dimethyl sulfide and ? -pinene), high removal efficiencies were obtained with power levels competitive with the present technologies for the VOCs removal. Laboratory experiments were made using installation with the average power up to 20 W. Pilot plant prepared for on-site test has average plasma power up to 6.4 kW. The model of the Pilot Plant operation is presented.

  4. Plasma technology directory

    SciTech Connect

    Ward, P.P.; Dybwad, G.L.

    1995-03-01

    The Plasma Technology Directory has two main goals: (1) promote, coordinate, and share plasma technology experience and equipment within the Department of Energy; and (2) facilitate technology transfer to the commercial sector where appropriate. Personnel are averaged first by Laboratory and next by technology area. The technology areas are accelerators, cleaning and etching deposition, diagnostics, and modeling.

  5. Building Technologies Office Window and Envelope Technologies Emerging Technologies R&D Program

    Energy.gov [DOE] (indexed site)

    Sacramento, California | Department of Energy Treasure Homes, who worked with SMUD, DOE, NREL, and ConSol to build HERS-54 homes with high-efficiency HVAC, ducts buried in attic insulation, SmartVent cooling, and rooftop PV. Treasure Homes: Fallen Leaf at Riverbend - Sacramento, CA (646.48 KB) More Documents & Publications Building America Whole-House Solutions for New Homes: Grupe, Rocklin, California Vol. 9: Building America Best Practices Series - Builders Challenge Guide to 40%

  6. Forest products technologies

    SciTech Connect

    None, None

    2006-07-18

    Report highlights DOE Industrial Technology Program co-funded R&D resulting in commercial energy-efficient technologies and emerging technologies helping the forest products industry save energy.

  7. Jefferson Lab - Technology Transfer

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Welcome to Technology Transfer What is Technology Transfer at Jefferson Lab? Technology transfer and technology partnering are significant mechanisms for DOE laboratories and facilities to engage non-Federal entities to advance technology development and commercialization. Fundamental and applied research at the DOE laboratories have been conduits for technology transfer, collaborating with university and industry colleagues to develop and commercialize products and processes for commercial use.

  8. NETL: SOFC Core Technology

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Core Technology Core Technology-This key technology conducts applied research and development on technologies - exclusive of the cell components - that improve the cost, performance, robustness, reliability, and endurance of SOFC stack or balance-of-plant (BOP) technology. Projects in the Core Technology portfolio focus on interconnects and seals, identify and mitigate stack-related degradation, develop computational tools and models, and conduct laboratory- and bench-scale testing to improve

  9. Morgantown Energy Technology Center, technology summary

    SciTech Connect

    Not Available

    1994-06-01

    This document has been prepared by the DOE Environmental Management (EM) Office of Technology Development (OTD) to highlight its research, development, demonstration, testing, and evaluation activities funded through the Morgantown Energy Technology Center (METC). Technologies and processes described have the potential to enhance DOE`s cleanup and waste management efforts, as well as improve US industry`s competitiveness in global environmental markets. METC`s R&D programs are focused on commercialization of technologies that will be carried out in the private sector. META has solicited two PRDAs for EM. The first, in the area of groundwater and soil technologies, resulted in twenty-one contact awards to private sector and university technology developers. The second PRDA solicited novel decontamination and decommissioning technologies and resulted in eighteen contract awards. In addition to the PRDAs, METC solicited the first EM ROA in 1993. The ROA solicited research in a broad range of EM-related topics including in situ remediation, characterization, sensors, and monitoring technologies, efficient separation technologies, mixed waste treatment technologies, and robotics. This document describes these technology development activities.

  10. Green Purchasing & Green Technology

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Purchasing & Technology Goals 6 & 7: Green Purchasing & Green Technology Our goal is to purchase and use environmentally sustainable products whenever possible and to implement...

  11. CBI Technology Impact Framework

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    CBI Technology Impact Framework 2014 Building Technologies Office Peer Review Images courtesy CREE, True Manufacturing, A.O. Smith, Bernstein Associates, Cambridge Engineering, ...

  12. Promising Technologies List

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    about promising new and underutilized energy-saving technologies available for Federal and commercial building sector deployment. To identify promising technologies,...

  13. NREL: Technology Transfer - Contacts

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    you may have about NREL's technology transfer opportunities. Partnering with NREL Anne Miller, 303-384-7353 Licensing NREL Technologies Eric Payne, 303-275-3166 Printable Version...

  14. Technology Selection Process

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    technologies, including Technical Advisory Groups and the Energy Efficiency Technology Roadmap. Technical Advisory Groups E3T engages stakeholders of electric power industries in...

  15. Hydropower Program Technology Overview

    SciTech Connect

    Not Available

    2001-10-01

    New fact sheets for the DOE Office of Power Technologies (OPT) that provide technology overviews, description of DOE programs, and market potential for each OPT program area.

  16. Science & Technology - 2016

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    technology 2016 july Science & Technology - 2016 July 3D Printing Could Revolutionize ... Talk about being responsive to the needs of your customers. The NIF & Photon Science team ...

  17. Vehicle Technologies Office: News

    Energy.gov [DOE]

    EERE intends to issue, on behalf of its Fuel Cell Technologies Office, a Funding Opportunity Announcement (FOA) entitled "Fuel Cell Technologies Incubator: Innovations in Fuel Cell and Hydrogen...

  18. Fuel Cell Technologies Overview

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fuel Cell Technologies Overview Flow Cell Workshop Washington, DC Dr. Sunita Satyapal & Dr. Dimitrios Papageorgopoulos U.S. Department of Energy Fuel Cell Technologies Program 37...

  19. Fuel Cell Technologies Overview

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fuel Cell Seminar Orlando, FL Dr. Sunita Satyapal U.S. Department of Energy Fuel Cell Technologies Program Program Manager 1112011 2 | Fuel Cell Technologies Program Source: US ...

  20. Fuel Cell Technologies Overview

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fuel Cell Technologies Overview States Energy Advisory Board (STEAB) Washington, DC Dr. Sunita Satyapal U.S. Department of Energy Fuel Cell Technologies Program Program Manager 3...

  1. Sun Materials Technology aka Shanyang Technology | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Technology aka Shanyang Technology Jump to: navigation, search Name: Sun Materials Technology (aka Shanyang Technology) Place: Yilan County, Taiwan Product: A US-Taiwan JV company...

  2. GT Solar Technologies formerly GT Equipment Technologies | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Technologies formerly GT Equipment Technologies Jump to: navigation, search Name: GT Solar Technologies (formerly GT Equipment Technologies) Place: Merrimack, New Hampshire...

  3. Quantum Fuel Systems Technologies Worldwide Inc Quantum Technologies...

    OpenEI (Open Energy Information) [EERE & EIA]

    Fuel Systems Technologies Worldwide Inc Quantum Technologies Jump to: navigation, search Name: Quantum Fuel Systems Technologies Worldwide Inc (Quantum Technologies) Place: Irvine,...

  4. Blue Spark Technologies formerly Thin Battery Technologies Inc...

    OpenEI (Open Energy Information) [EERE & EIA]

    Spark Technologies formerly Thin Battery Technologies Inc Jump to: navigation, search Name: Blue Spark Technologies (formerly Thin Battery Technologies Inc.) Place: Westlake, Ohio...

  5. DOE Vehicle Technologies Program 2009 Merit Review Report - Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Technology Integration and Education DOE Vehicle Technologies Program 2009 Merit Review Report - Technology Integration and Education Merit review of DOE Vehicle Technologies ...

  6. 2010 DOE EERE Vehicle Technologies Program Merit Review … Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Technology Integration 2010 DOE EERE Vehicle Technologies Program Merit Review Technology Integration Technology integration merit review results PDF icon 2010amr08.pdf ...

  7. SUBMERGED GRAVEL SCRUBBER DEMONSTRATION AS A PASSIVE AIR CLEANER FOR CONTAINMENT VENTING AND PURGING WITH SODIUM AEROSOLS -- CSTF TESTS AC7 - AC10

    SciTech Connect

    HILLIARD, R K.; MCCORMACK, J D.; POSTMA, A K.

    1981-11-01

    Four large-scale air cleaning tests (AC7 - AC10) were performed in the Containment Systems Test Facility (CS'lF) to demonstrate the performance of a Submerged Gravel Scrubber for cleaning the effluent gas from a vented and purged breeder reactor containment vessel. The test article, comprised of a Submerged Gravel Scrubber (SGS) followed by a high efficiency fiber demister, had a design gas flow rate of 0.47 m{sup 3}/s (1000 ft{sup 3}/min) at a pressure drop of 9.0 kPa (36 in. H{sub 2}O). The test aerosol was sodium oxide, sodium hydroxide, or sodium carbonate generated in the 850-m{sup 3} CSTF vessel by continuously spraying sodium into the air-filled vessel while adding steam or carbon dioxide. Approximately 4500 kg (10,000 lb) of sodium was sprayed over a total period of 100 h during the tests. The SGS/Demister system was shown to be highly efficient (removing ~99.98% of the entering sodium aerosol mass), had a high mass loading capacity, and operated in a passive manner, with no electrical requirement. Models for predicting aerosol capture, gas cooling, and pressure drop are developed and compared with experimental results.

  8. NREL: Technology Transfer - Commercialization Programs

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    303-275-3051. Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Licensing Agreements Nondisclosure Agreements...

  9. Hydrogen delivery technology roadmap

    SciTech Connect

    None, None

    2005-11-15

    Document describing plan for research into and development of hydrogen delivery technology for transportation applications.

  10. Innovative Process Technologies

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Innovative Process Technologies Research Team Members Key Contacts Innovative Process Technologies Innovative Process Technologies is concerned with the development of innovative costeffective technologies that promote efficiency, environmental performance, availability of advanced energy systems, and the development of computational tools that shorten development timelines of advanced energy systems. NETL, working with members of the NETL-Regional University Alliance (NETL-RUA), will focus on

  11. Soil washing technology evaluation

    SciTech Connect

    Suer, A.

    1995-04-01

    Environmental Restoration Engineering (ERE) continues to review innovative, efficient, and cost effective technologies for SRS soil and/or groundwater remediation. As part of this effort, this technical evaluation provides review and the latest information on the technology for SRS soil remediation. Additional technology evaluation reports will be issued periodically to update these reports. The purpose of this report is to review the soil washing technology and its potential application to SRS soil remediation. To assess whether the Soil Washing technology is a viable option for SRS soil remediation, it is necessary to review the technology/process, technology advantages/limitations, performance, applications, and cost analysis.

  12. NATIONAL ENERGY TECHNOLOGY LABORATORY Technology Transfer

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    The unique technology allows operators to optimize the processing to improve material yield, decrease energy use, and improve safety systems. Specialty metals, such as titanium or ...

  13. Thermally Activated Technologies Technology Roadmap, May 2003...

    Energy.gov [DOE] (indexed site)

    technologies for converting America's wasted heat resources into a reservoir of pollution-free energy for electric power, heating, cooling, refrigeration, and humidity control. ...

  14. NATIONAL ENERGY TECHNOLOGY LABORATORY Technology Transfer Novel...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Novel PlatinumChromium Alloy for the Manufacture of Improved Coronary Stents Success Story NETL Technology Transfer Group techtransfer@netl.doe.gov Contact Partners A coronary...

  15. National Energy Technology Laboratory Technologies Available...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels ...

  16. TECHNOLOGY TRANSFER COORDINATORS

    Office of Energy Efficiency and Renewable Energy (EERE)

    Mark Hartney, Director of the Office of Strategic Planning, SLAC, discussed technology transfer at SLAC. Bob Hwang, Director, Transportation Energy Center, Combustion Research Facility, SNL presented on technology transfer at SNL. Elsie Quaite-Randall, Chief Technology Transfer Officer, Innovation and Partnerships Office, LBNL, presented on technology transfer at LBNL. Richard A. Rankin, Director, Industrial Partnerships Office and Economic Development Office (Interim), LLNL, presented on technology transfer at LLNL.

  17. Materials Science and Technology

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    PADSTE » ADEPS » MST Materials Science and Technology Providing world-leading, innovative, and agile materials science and technology solutions for national security missions. MST is metallurgy. The Materials Science and Technology Division provides scientific and technical leadership in materials science and technology for Los Alamos National Laboratory. READ MORE MST is engineered materials. The Materials Science and Technology Division provides scientific and technical leadership in

  18. NATIONAL ENERGY TECHNOLOGY LABORATORY Technology Transfer NETL Technology for Safer,

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Technology for Safer, Cleaner Corrosion-Protecting Metal Coatings Licensed by Pittsburgh Start-Up Success Story Corrosion-related issues cost the U.S. economy $276 billion a year. The Energy Department's National Energy Technology Laboratory (NETL) teamed up with Carnegie Mellon University (CMU) to create a revolutionary, cost-effective technology to reduce that impact-work that resulted in the creation of a new CMU/NETL spin-off that signed a licensing agreement with the laboratory in June. The

  19. SHARED TECHNOLOGY TRANSFER PROGRAM

    SciTech Connect

    GRIFFIN, JOHN M. HAUT, RICHARD C.

    2008-03-07

    The program established a collaborative process with domestic industries for the purpose of sharing Navy-developed technology. Private sector businesses were educated so as to increase their awareness of the vast amount of technologies that are available, with an initial focus on technology applications that are related to the Hydrogen, Fuel Cells and Infrastructure Technologies (Hydrogen) Program of the U.S. Department of Energy. Specifically, the project worked to increase industry awareness of the vast technology resources available to them that have been developed with taxpayer funding. NAVSEA-Carderock and the Houston Advanced Research Center teamed with Nicholls State University to catalog NAVSEA-Carderock unclassified technologies, rated the level of readiness of the technologies and established a web based catalog of the technologies. In particular, the catalog contains technology descriptions, including testing summaries and overviews of related presentations.

  20. Marine and Hydrokinetic Technology Glossary

    Office of Energy Efficiency and Renewable Energy (EERE)

    Learn about the basic technologies and key terms used to describe marine and hydrokinetic technologies.

  1. FY04 Engineering Technology Reports Technology Base

    SciTech Connect

    Sharpe, R M

    2005-01-27

    Lawrence Livermore National Laboratory's Engineering Directorate has two primary discretionary avenues for its investment in technologies: the Laboratory Directed Research and Development (LDRD) program and the ''Tech Base'' program. This volume summarizes progress on the projects funded for technology-base efforts in FY2004. The Engineering Technical Reports exemplify Engineering's more than 50-year history of researching and developing (LDRD), and reducing to practice (technology-base) the engineering technologies needed to support the Laboratory's missions. Engineering has been a partner in every major program and project at the Laboratory throughout its existence, and has prepared for this role with a skilled workforce and technical resources. This accomplishment is well summarized by Engineering's mission: ''Enable program success today and ensure the Laboratory's vitality tomorrow''. LDRD is the vehicle for creating those technologies and competencies that are cutting edge. These require a significant level of research or contain some unknown that needs to be fully understood. Tech Base is used to apply those technologies, or adapt them to a Laboratory need. The term commonly used for Tech Base projects is ''reduction to practice''. Tech Base projects effect the natural transition to reduction-to-practice of scientific or engineering methods that are well understood and established. They represent discipline-oriented, core competency activities that are multi-programmatic in application, nature, and scope. The objectives of technology-base funding include: (1) the development and enhancement of tools and processes to provide Engineering support capability, such as code maintenance and improved fabrication methods; (2) support of Engineering science and technology infrastructure, such as the installation or integration of a new capability; (3) support for technical and administrative leadership through our technology Centers; and (4) the initial scoping and

  2. Vehicle Technologies Program Implementation

    SciTech Connect

    none,

    2009-06-19

    The Vehicle Technologies Program takes a systematic approach to Program implementation. Elements of this approach include the evaluation of new technologies, competitive selection of projects and partners, review of Program and project improvement, project tracking, and portfolio management and adjustment.

  3. Photovoltaics: A Diverse Technology

    Office of Energy Efficiency and Renewable Energy (EERE)

    This video illustrates the diversity of photovoltaic (PV) technology, which is due to innovations in PV materials, reductions in manufacturing costs, and expanding uses of the technology. A brief...

  4. SSL TECHNOLOGY DEVELOPMENT WORKSHOP

    Energy.gov [DOE]

    Rapid advances in SSL technology make it easy to forget that this technology is still at a relatively early stage of development, and much of its potential remains untapped. The 10th annual DOE SSL...

  5. SSL Technology Development Workshop

    Energy.gov [DOE]

    Rapid advances make it easy to forget that SSL technology is still at a relatively early stage of development, and much of its potential remains untapped. The 10th annual DOE SSL Technology...

  6. Technology Readiness Assessment Guide

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    2011-09-15

    The Guide assists individuals and teams involved in conducting Technology Readiness Assessments (TRAs) and developing Technology Maturation Plans (TMPs) for the DOE capital asset projects subject to DOE O 413.3B. Supersedes DOE G 413.3-4.

  7. Technology Deployment Case Studies

    Energy.gov [DOE]

    Find technology deployment case studies below. Click on each individual project link to see the full case study. You can also view a map of technology deployment case studies.

  8. Technology Transfer Ombudsman Program

    Energy.gov [DOE]

    The Technology Transfer Commercialization Act of 2000, Public Law 106-404 (PDF) was enacted in November 2000.  Pursuant to Section 11, Technology Partnerships Ombudsman, each DOE national...

  9. Tag: technology transfer

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    17all en CNS, UT chemical sensing technology wins R&D 100 Award http:www.y12.doe.govnewspress-releasescns-ut-chemical-sensing-technology-wins-rd-100-award

  10. Benchmarking of Competitive Technologies

    Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  11. Information Technology | Jefferson Lab

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Information Technology The Information Technology Division uses cutting-edge technology to provide high-quality services and capabilities that enable the lab to pursue its research mission in support of the nation's scientific agenda. Leading the division is the chief information officer. The CIO is responsible for providing information from the labs information technology systems to Jefferson Lab management, the overall IT vision, the information architecture for computing and IT, and oversight

  12. TECHNOLOGY READINESS ASSESSMENT

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    DECEMBER 2012 Pathway for readying the next generation of affordable clean energy technology -Carbon Capture, Utilization, and Storage (CCUS) 2012 TECHNOLOGY READINESS ASSESSMENT -OVERVIEW 2 2012 TECHNOLOGY READINESS ASSESSMENT-OVERVIEW 2012 TECHNOLOGY READINESS ASSESSMENT-OVERVIEW 3 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any

  13. Robert Jilek: Pellion Technologies

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Robert Jilek: Pellion Technologies Alumni Link: Opportunities, News and Resources for Former Employees Latest Issue:September 2015 all issues All Issues » submit Robert Jilek: Pellion Technologies Senior research scientist at eastern energy storage startup September 3, 2014 Robert Jilek Robert Jilek Contact Linda Anderman Email Robert Jilek Jilek is currently with Pellion Technologies Bob Jilek is currently spending part of his time in a management role at Pellion Technologies in the Cambridge

  14. Technology Integration Overview

    Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  15. Technology Transfer | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Technology Transfer Through partnerships and licensing of its intellectual property rights, NREL seeks to reduce private sector risk in early stage technologies, enable investment in the adoption of renewable energy and energy efficiency technologies, reduce U.S. reliance on foreign energy sources, reduce carbon emissions, and increase U.S. industrial competitiveness. Text Version View a summary of our Fiscal Year 2015 technology partnership agreements. Learn more about our partnership

  16. Consumer Vehicle Technology Data

    Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  17. Advanced Propulsion Technology Strategy

    Energy.gov [DOE]

    GM is also developing new classes of electrically driven vehicles, leveraging technology first used in their hybrids.

  18. Membrane Technology Workshop

    Energy.gov [DOE]

    Presentation by Charles Page (Air Products & Chemicals, Inc.) for the Membrane Technology Workshop held July 24, 2012

  19. Benchmarking of Competitive Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Laboratory * National Renewable Energy Laboratory * ORNL Team Members - Steve Campbell, Chester Coomer - Andy Wereszczak, Materials Science and Technology Division Partners ...

  20. Geothermal Energy & Drilling Technology

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy & Drilling Technology - Sandia Energy Energy Search Icon Sandia Home Locations ... Atmospheric Radiation Measurement Climate Reasearch Facility Geomechanics and Drilling ...

  1. Building Technologies Program Presentation

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Renewable Energy Building Technologies Program Jerry Dion Acting Program Manager Building Technologies Program State Energy Advisory Board Meeting October 17, 2007 The investment in Buildings R&D yielded an ROI of 15:1 from 1978 to 2000 The Buildings Technologies Program researches and Energy Efficiency & deploys new technologies to make homes and Renewable Energy commercial buildings more affordable, energy efficient, and better performing The investment in Buildings R&D yielded an

  2. Technology Performance Exchange

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... Meeting * Open invitation for peer review 12 | Building Technologies Office ... data flows with Building Component Library * Seamless information flow from ...

  3. Geothermal Technologies Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Jay Nathwani Acting Program Manager Geothermal Technologies Program Office of Energy Efficiency and Renewable Energy The Geothermal Technologies Program Overview May 18 2010 Energy Efficiency & Renewable Energy eere.energy.gov Geothermal Technologies Program (GTP) Program Topic Areas *Low Temperature, Geopressured and Coproduced Resources *Innovative Exploration Technologies National Goals *Economy Putting people to work in the near- term, and in the future *Security Developing and expanding

  4. Carbon Fiber Technology Facility

    Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  5. Biogas Production Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Production Technologies Ruihong Zhang, Professor Biological and Agricultural Engineering University of California, Davis Email: rhzhang@ucdavis.edu Biogas and Fuel Cell Workshop National Renewable Energy Laboratory June 12, 2012 Presentation Outline * Status of anaerobic digestion technologies and opportunities for further development * New UC Davis solid waste digestion technologies applied to commercial projects Anaerobic Digestion Biogas Digester Effluent (residual solids and water) Organic

  6. Technology Performance Exchange

    SciTech Connect

    2015-09-01

    To address the need for accessible, high-quality data, the Department of Energy has developed the Technology Performance Exchange (TPEx). TPEx enables technology suppliers, third-party testing laboratories, and other entities to share product performance data. These data are automatically transformed into a format that technology evaluators can easily use in their energy modeling assessments to inform procurement decisions.

  7. Compression Technology and Needs

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    M ohawk Innovative Technology, Inc. HYDROGEN TRANSMISSION AND DISTRIBUTION WORKSHOP NATIONAL RENEWABLE ENERGY LABORATORY GOLDEN, COLORADO COMPRESSION TECHNOLOGY AND NEEDS Hooshang Heshmat, PH.D. February 25 TH , 2014 ® M ohawk Innovative Technology, Inc. * Overall pipeline delivery steps, production to file up * Different types of compressors * Pipeline compressor development steps and accomplishments * Need for Forecourt Compression system * Other major components: drive, sealing, pipeline,

  8. High Impact Technology Hub

    Energy.gov [DOE]

    The High Impact Technology Hub is a one stop shop for information associated with technology demonstrations in occupied, operational buildings. Resources posted to Hub should accelerate the selection and evaluation of technology demonstration projects and enable transparency into DOEs market stimulation and tech to market activities.

  9. Vehicle Technologies Office

    Energy.gov [DOE]

    The Vehicle Technologies Office is developing more energy efficient and environmentally friendly highway transportation technologies that will enable America to use less petroleum. The long-term aim is to develop "leap frog" technologies that will provide Americans with greater freedom of mobility and energy security, while lowering costs and reducing impacts on the environment.

  10. Vehicle Technologies Office: 2008 Advanced Vehicle Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Vehicle Technologies Office: 2010 Vehicle and Systems Simulation and Testing R&D Annual Progress Report

  11. 2013 DOE Bioenergy Technologies Office (BETO) Project Peer Review

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... pallets (72 supersacks, roughly 5.4 tons dry weight) were shipped to MBI in mid-December ... charge of ammonia and makeup ammonia Scrubber Removes ammonia vapor from vented fluids ...

  12. Vehicle Technologies Office Merit Review 2014: Carbon Fiber Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Carbon Fiber Technology Facility Vehicle Technologies Office Merit Review 2014: Carbon Fiber Technology Facility Presentation given by Oak Ridge National Laboratory at 2014 DOE ...

  13. Fuel Cell Technologies Office: Technology Validation Fact Sheet

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    The Fuel Cell Technologies (FCT) Office, through its Technology Validation program, provides a crucial step in the transition of a technology from the lab to commercialization. ...

  14. Technology Readiness Assessment (TRA)/Technology Maturation Plan...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Readiness Assessment (TRA)Technology Maturation Plan (TMP) Process Guide Technology Readiness ... More Documents & Publications Technology Readiness Assessment Report Small Column Ion ...

  15. Vehicle Technologies Office Merit Review 2015: Vehicle Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Vehicle Technologies Office Overview Vehicle Technologies Office Merit Review 2015: Vehicle Technologies Office Overview Presentation given by U.S. Department of Energy at 2015 DOE ...

  16. Vehicle Technologies Office Merit Review 2015: Advanced Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Advanced Technology Vehicle Lab Benchmarking (L1&L2) Vehicle Technologies Office Merit Review 2015: Advanced Technology Vehicle Lab Benchmarking (L1&L2) Presentation given by Argonne ...

  17. Vehicle Technologies Office: 2008 Oak Ridge Transportation Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Oak Ridge Transportation Technology Program Annual Report Vehicle Technologies Office: 2008 Oak Ridge Transportation Technology Program Annual Report ornlttpreportfy08.pdf (4.58 ...

  18. Technology reviews: Shading systems

    SciTech Connect

    Schuman, J.; Rubinstein, F.; Papamichael, K.; Beltran, L.; Lee, E.S.; Selkowitz, S.

    1992-09-01

    We present a representative review of existing, emerging, and future technology options in each of five hardware and systems areas in envelope and lighting technologies: lighting systems, glazing systems, shading systems, daylighting optical systems, and dynamic curtain wall systems. The term technology is used here to describe any design choice for energy efficiency, ranging from individual components to more complex systems to general design strategies. The purpose of this task is to characterize the state of the art in envelope and lighting technologies in order to identify those with promise for advanced integrated systems, with an emphasis on California commercial buildings. For each technology category, the following activities have been attempted to the extent possible: Identify key performance characteristics and criteria for each technology. Determine the performance range of available technologies. Identify the most promising technologies and promising trends in technology advances. Examine market forces and market trends. Develop a continuously growing in-house database to be used throughout the project. A variety of information sources have been used in these technology characterizations, including miscellaneous periodicals, manufacturer catalogs and cut sheets, other research documents, and data from previous computer simulations. We include these different sources in order to best show the type and variety of data available, however publication here does not imply our guarantee of these data. Within each category, several broad classes are identified, and within each class we examine the generic individual technologies that fall into that class.

  19. Gerar Technology | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Gerar Technology Jump to: navigation, search Name: Gerar Technology Place: Rio de Janeiro, Brazil Product: Developer of new technology for production of biodiesel from vegetable...

  20. EKB Technology | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    EKB Technology Jump to: navigation, search Name: EKB Technology Place: Oxfordshire, United Kingdom Product: Developer of a new bioprocessing technology. Coordinates: 51.813938,...

  1. Rubicon Technology | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Rubicon Technology Jump to: navigation, search Name: Rubicon Technology Place: Franklin Park, Illinois Zip: 60131 Product: Rubicon Technology makes a sapphire substrates for use in...

  2. High Impact Technology Hub- Results

    Energy.gov [DOE]

    Highlights, outcomes and activities to support the adoption of High Impact Technologies. Technology Highlights preview early results from current technology demonstrations. Case Studies overview...

  3. Shorepower Technologies | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Shorepower Technologies Jump to: navigation, search Logo: Shorepower Technologies Name: Shorepower Technologies Address: 2351 NW York St. Place: Portland, Oregon Zip: 97210 Region:...

  4. PCN Technology | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    PCN Technology Jump to: navigation, search Name: PCN Technology Place: San Diego, California Zip: CA 92127 Product: California-based smart grid technology developer. References:...

  5. Briza Technologies | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Briza Technologies Jump to: navigation, search Name: Briza Technologies Place: Hillsborough, New Jersey Zip: 8844 Sector: Wind energy Product: Developing wind turbine technology....

  6. Konarka Technologies | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Technologies Jump to: navigation, search Name: Konarka Technologies Place: Lowell, MA Website: www.konarkatechnologies.com References: Konarka Technologies1 Information About...

  7. Minerals Technologies | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Technologies Jump to: navigation, search Name: Minerals Technologies Place: Bethlehem, PA Website: www.mineralstechnologies.com References: Minerals Technologies1 Information...

  8. Topanga Technologies | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Technologies Place: Canoga Park, California Zip: 91303 Product: Stealth-mode high-intensity discharge (HID) lighting technology developer. References: Topanga Technologies1...

  9. Technology transfer 1994

    SciTech Connect

    Not Available

    1994-01-01

    This document, Technology Transfer 94, is intended to communicate that there are many opportunities available to US industry and academic institutions to work with DOE and its laboratories and facilities in the vital activity of improving technology transfer to meet national needs. It has seven major sections: Introduction, Technology Transfer Activities, Access to Laboratories and Facilities, Laboratories and Facilities, DOE Office, Technologies, and an Index. Technology Transfer Activities highlights DOE`s recent developments in technology transfer and describes plans for the future. Access to Laboratories and Facilities describes the many avenues for cooperative interaction between DOE laboratories or facilities and industry, academia, and other government agencies. Laboratories and Facilities profiles the DOE laboratories and facilities involved in technology transfer and presents information on their missions, programs, expertise, facilities, and equipment, along with data on whom to contact for additional information on technology transfer. DOE Offices summarizes the major research and development programs within DOE. It also contains information on how to access DOE scientific and technical information. Technologies provides descriptions of some of the new technologies developed at DOE laboratories and facilities.

  10. Natural Gas Vented and Flared

    Energy Information Administration (EIA) (indexed site)

    165,360 165,928 209,439 212,848 260,394 288,743 1936-2014 Alaska 6,481 10,173 10,966 11,769 7,219 6,554 1967-2014 Alaska Onshore 5,271 8,034 9,276 9,244 5,670 5,779 1992-2014 ...

  11. Natural Gas Vented and Flared

    Energy Information Administration (EIA) (indexed site)

    NA NA NA NA NA NA 1991-2015 Montana NA NA NA NA NA NA 1996-2015 New Mexico NA NA NA NA NA NA 1996-2015 North Dakota NA NA NA NA NA NA 1996-2015 Ohio NA NA NA NA NA NA 1991-2015 ...

  12. Natural Gas Vented and Flared

    Energy Information Administration (EIA) (indexed site)

    6-2016 Colorado NA NA NA NA NA NA 1996-2016 Federal Offshore Gulf of Mexico NA NA NA NA NA NA 1997-2016 Kansas NA NA NA NA NA NA 1996-2016 Louisiana NA NA NA NA NA NA 1991-2016 Montana NA NA NA NA NA NA 1996-2016 New Mexico NA NA NA NA NA NA 1996-2016 North Dakota NA NA NA NA NA NA 1996-2016 Ohio NA NA NA NA NA NA 1991-2016 Oklahoma NA NA NA NA NA NA 1996-2016 Pennsylvania NA NA NA NA NA NA 1991-2016 Texas NA NA NA NA NA NA 1991-2016 Utah NA NA NA NA NA NA 1994-2016 West Virginia NA NA NA NA NA

  13. CX_Vent_System.pdf

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

  14. Exploration Technologies Technology Needs Assessment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Technologies Technology Needs Assessment Exploration Technologies Technology Needs Assessment The Exploration Technologies Needs Assessment is a critical component of ongoing technology roadmapping efforts, and will be used to guide the program's research and development. iet_needs_assessment_06-2011.pdf (5.04 MB) More Documents & Publications Draft Innovative Exploration Technologies Needs Assessment Geothermal Technologies Program Annual Peer Review Presentation By Doug Hollett

  15. Environmental Technology Verification of Mobile Sources Control...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Environmental Technology Verification of Mobile Sources Control Technologies Environmental Technology Verification of Mobile Sources Control Technologies 2005 Diesel Engine...

  16. Vehicle Technologies Office: Laboratory Facilities and Collaborative...

    Energy Saver

    Electric Drive Technologies Vehicle Technologies Office: Laboratory Facilities and Collaborative Research for Electric Drive Technologies The Vehicle Technologies Office (VTO) ...

  17. Geothermal Technologies Office - Webmaster | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    - Webmaster Geothermal Technologies Office - Webmaster

  18. Geothermal innovative technologies catalog

    SciTech Connect

    Kenkeremath, D.

    1988-09-01

    The technology items in this report were selected on the basis of technological readiness and applicability to current technology transfer thrusts. The items include technologies that are considered to be within 2 to 3 years of being transferred. While the catalog does not profess to be entirely complete, it does represent an initial attempt at archiving innovative geothermal technologies with ample room for additions as they occur. The catalog itself is divided into five major functional areas: Exploration; Drilling, Well Completion, and Reservoir Production; Materials and Brine Chemistry; Direct Use; and Economics. Within these major divisions are sub-categories identifying specific types of technological advances: Hardware; Software; Data Base; Process/Procedure; Test Facility; and Handbook.

  19. Completed Deepwater Technology Projects

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Deepwater Technology Projects Active Projects | Completed Projects Completed Offshore Deepwater Technology Projects Project Number Project Name Primary Performer 12121-6503-01 Development of Best Practices and Risk Mitigation Measures for Deepwater Cementing in SBM and OBM CSI Technologies 11121-5101-01 Trident: A Human Factors Decision Aid Integrating Deepwater Drilling Tasks, Incidents, and Literature Review Pacific Science & Engineering Group 11121-5503-01 Intelligent BOP RAM Actuation

  20. TECHNOLOGY READINESS ASSESSMENT

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ASSESSMENT JANUARY 2015 -A CHECKPOINT ALONG A CHALLENGING JOURNEY DOE/NETL-2015/1710 U.S. Department of Energy 2014 TECHNOLOGY READINESS ASSESSMENT-CLEAN COAL RESEARCH PROGRAM 2 2014 TECHNOLOGY READINESS ASSESSMENT-CLEAN COAL RESEARCH PROGRAM Office of Fossil Energy | National Energy Technology Laboratory DISCLAIMER 3 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor

  1. 2013 DOE Bioenergy Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Bioenergy Technologies Office (BETO) Project Peer Review Catalytic Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels (2 3 1 12) Technology Area Review: Biochemical Conversion 1 | Bioenergy Technologies Office eere.energy.gov Hydrocarbon Fuels (2.3.1.12) May 22, 2013 Mike Lilga This presentation does not contain any proprietary, confidential, or otherwise restricted information Conversion Organization: PNNL Goal Statement Goals: * There is a need to make a balanced f el composition

  2. Technologies | Argonne National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Technologies Available for Licensing Energy Storage Industrial & Manufacturing Processes Instrumentation & Devices Licensable Software Life Sciences Materials Transportation Fact Sheets and Forms Licensable Technologies Argonne's researchers have developed a wide and diverse range of technologies that have worldwide impact in a variety of fields. Argonne grants licenses for lab-developed intellectual property to existing and start-up companies that are technically and financially capable

  3. Digital Sensor Technology

    SciTech Connect

    Ted Quinn; Jerry Mauck; Richard Bockhorst; Ken Thomas

    2013-07-01

    The nuclear industry has been slow to incorporate digital sensor technology into nuclear plant designs due to concerns with digital qualification issues. However, the benefits of digital sensor technology for nuclear plant instrumentation are substantial in terms of accuracy, reliability, availability, and maintainability. This report demonstrates these benefits in direct comparisons of digital and analog sensor applications. It also addresses the qualification issues that must be addressed in the application of digital sensor technology.

  4. Bioenergy Technologies Presentation

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Technologies State Energy Advisory Board Meeting October 18, 2007 ORNL Jonathan R, Mielenz ORNL Biomass Program Manager & Bioconversion Science and Technology President's State of the Union Address January 2006 Keeping America competitive requires affordable energy. And here we have a serious problem: America is addicted to oil, which is often imported from unstable parts of the world. The best way to break this addiction is through technology.... and we are on the threshold of incredible

  5. Technology Transfer Execution Plan

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Transfer Execution Plan 2016 - 2018 Report to Congress October 2016 United States Department of Energy Washington, DC 20585 Department of Energy | October 2016 Technology Transfer Execution Plan 2016-2018 | Page ii Message from the Secretary On behalf of the U.S. Department of Energy (DOE), I am pleased to present the Department's Technology Transfer Execution Plan (TTEP). This plan is intended to guide DOE, particularly it's Office of Technology Transitions (OTT), in promoting scientific and

  6. Technology Transfer - JCAP

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    PAZ0004_v2.jpg Technology Transfer Who We Are JCAP Mission JCAP At A Glance Fact Sheets Organizational Chart Recent Science Technology Transfer Awards & Honors Senior Management Scientific Leadership Researchers Governance & Advisory Boards Operations & Administration Who we are Overview JCAP Mission JCAP At A Glance Fact Sheets Organizational Chart Our Achievements Recent Science Technology Transfer Awards & Honors Our People Senior Management Scientific Leadership Researchers

  7. Technology Transfer Partnership Ombuds

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Tech Transfer Ombuds Technology Transfer Partnership Ombuds The mission of the Ombuds Office is to enhance communication and mitigate conflict at the Laboratory. Contact (505) 665-2837 Email Anonymous Helpline (505) 667-9370 Technology transfer dispute resolution The Ombuds Program offers dispute resolution assistance to the Laboratory's external stakeholders in areas of technology transfer and other community-based affairs that is consistent with Ombuds Standards of practice. Scope To serve as

  8. Jefferson Lab - Technology Transfer

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Technology Review Committee The Technology Review Committee was established by Jefferson Lab's Director's Council to oversee the intellectual property of the Laboratory. The Committee, composed of representatives of all Divisions, is charged with facilitating the transfer of technology and inventions, developed at the Laboratory, to the private sector. This activity takes on a variety of forms, from establishing Memoranda of Understanding (MOUs), Cooperative Research and Development Agreements

  9. Technology Pathway Selection Effort

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    BIOMASS PROGRAM Technology Pathway Selection Effort Alicia Lindauer 27 November 2012 2 | Biomass Program eere.energy.gov * Setting R&D priorities * Benchmarking * Informing multi-sectoral analytical activities * Track Program R&D progress against goals * Identify technology process routes and prioritize funding * Program direction decisions: * Are we spending our money on the right technology pathways? * Within a pathway: Are we focusing our funding on the highest priority activities?

  10. Geothermal Technologies Office March

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Report Geothermal Technologies Office March 2015 The 2014 Annual Report of the Geothermal Technologies Office is a product of the United States Department of Energy, Office of Energy Efficiency and Renewable Energy. DOE/EERE-1160 * March 2015 This report spans calendar year 2014 achievements. Photographs are accredited herein. back cover photo: Geothermal heat at Pilgrim Hot Springs, Alaska. Source: C. Pike at the Alaska Center for Energy and Power 2014 Annual Report Geothermal Technologies

  11. Marine & Hydrokinetic Technologies

    SciTech Connect

    2011-07-01

    This fact sheet describes the Wind and Water Power Program's current approach to supporting the development and deployment of marine and hydrokinetic technologies.

  12. Benchmarking of Competitive Technologies

    Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  13. Fuel Cell Technologies Budget

    SciTech Connect

    EERE

    2012-03-16

    The Fuel Cell Technologies Office receives appropriations from Energy and Water Development. The offices's major activities and budget are outlined in this Web page.

  14. Overview of biomass technologies

    SciTech Connect

    None, None

    2009-01-18

    The biomass overview of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  15. Information Sciences and Technology

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    file systems Bioinformatics Infectious disease surveillance Climate change and energy security Smart grids Learn more about our Information Science and Technology capabilities

  16. Supervisory Information Technology Specialist

    Energy.gov [DOE]

    A successful candidate in this position will be responsible for providing Information Technology (IT) infrastructure, capabilities and technical support to the Department of Energy (DOE),...

  17. Emerging Technologies (ET)

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... Appliance and Equipment Standards * ENERGY STAR Theory of Impact: Deployment programs utilize reports as technology baseline. Theory of Impact: Supports performance and cost ...

  18. Technology Demonstration Partnership Policy

    Energy.gov [DOE]

    This City Council memorandum establishes a framework for engaging in and evaluating demonstration partnerships with the goal of developing, testing, and demonstrating emerging technologies, product, and service innovations.

  19. Information Technology Specialist (Security)

    Energy.gov [DOE]

    A successful candidate in this position will serve as an Information Technology Specialist (Security) responsible for providing technical support in the information security environment which...

  20. 2016 Technology Innovation Projects

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Projects FY 2016 Technology Innovation Project Briefs Demand Response TIP 292: Advanced Heat Pump Water Heater Research TIP 336: Scaled Deployment and Demonstration of Demand...

  1. Scaled Wind Farm Technology

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Scaled Wind Farm Technology - Sandia Energy Energy Search Icon Sandia Home Locations ... Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ...

  2. Consumer Vehicle Technology Data

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    technologies Relevance: An informed understanding of the consumer allows VTO to achieve petroleum-use reduction goals through: * Robust assumptions for consumer modeling,...

  3. Consumer Vehicle Technology Data

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    technologies. Relevance: An informed understanding of the consumer allows VTO to achieve petroleum-use reduction goals through: * Robust assumptions for consumer modeling,...

  4. TECHNOLOGY PROGRAM PLAN

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... against business environment risk, reducing program dependency on a single developer. ... U.S. DEPARTMENT OF ENERGY TECHNOLOGY PROGRAM PLAN CHAPTER 2: SOLID OXIDE FUEL CELLS ...

  5. ocean energy technologies

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... Tribal Energy Program Intellectual Property Current EC Partnerships How to Partner Small ... SunShot Grand Challenge: Regional Test Centers ocean energy technologies HomeTag:ocean ...

  6. Benchmarking of Competitive Technologies

    Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  7. ENERGY EFFICIENCY TECHNOLOGY ROADMAP

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    managed the overall development and maturation of this Energy Efficiency Technology Roadmap, the effort would not have been possible without the active engagement of a diverse...

  8. Collaborative Transmission Technology Roadmap

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Addendum to the Collaborative Transmission Technology Roadmap March 2014 Bonneville Power Administration Enhanced PDF Functionality Functionality of the PDF version of this...

  9. Sandia Science & Technology Park

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Laboratories. More Info Liquid Common SS&TP welcomes Liquid Common Liquid Common is a digital marketing company now located in the Park. More Info Sandia Science & Technology...

  10. Technology Integration Overview

    Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  11. Renewable energy technology characterizations

    SciTech Connect

    None, None

    1997-12-01

    The Renewable Energy Technology Characterizations describe the technical and economic status of the major emerging renewable energy options for electricity supply.

  12. Information Science & Technology Institute

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ISTI Information Science & Technology Institute Providing connection to program management for capability needs, as well as IS&T integration and support for mission-critical...

  13. Advanced Optical Technologies

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    The Advanced Optical Components and Technologies program develops, creates and provides critical optical components for laser-based missions at LLNL. Past projects focused on ...

  14. Quadrennial Technology Review Glossary

    Office of Environmental Management (EM)

    ... converter A technology based on semiconductor devices ... in hot rock to allow the extraction of heat to drive power generation. enhanced oil recovery Techniques that use water, ...

  15. Window Industry Technology Roadmap

    SciTech Connect

    None, None

    2000-04-01

    The Window Industry Technology Roadmap looks at the trends in window design and installation in 2000 and projects trends for the future.

  16. Information Technology Specialist

    Energy.gov [DOE]

    The Information Technology Services Office (ITSO) is an office within the Office of Business Operations (BO) that provides administrative support to the Office of Energy Efficiency and Renewable...

  17. Solar Energy Technologies Office

    Office of Energy Efficiency and Renewable Energy (EERE)

    In 2011, the Energy Department's Solar Energy Technologies Office (SETO) became the SunShot Initiative, a collaborative national effort that aggressively drives innovation to make solar energy...

  18. Summary - Caustic Recovery Technology

    Office of Environmental Management (EM)

    The Ceramatec Sodium (Na), Super fast Ionic CONductors (NaSICON) membrane has shown ... process utilizes a novel inorganic membrane technology to recover concentrated ...

  19. Director, Geothermal Technologies Office

    Energy.gov [DOE]

    The mission of the Geothermal Technologies Office (GTO) is to accelerate the development and deployment of clean, domestic geothermal resources that will promote a stronger, more productive economy...

  20. Sorption Storage Technology Summary

    Energy.gov [DOE]

    Presented at the R&D Strategies for Compressed, Cryo-Compressed and Cryo-Sorbent Hydrogen Storage Technologies Workshops on February 14 and 15, 2011.

  1. Energy Technology Program Specialist

    Energy.gov [DOE]

    The Office of Energy Efficiency and Renewable Energy is the lead Federal government organization for energy efficiency and renewable energy technology research and development. Its mission is to...

  2. Overview of wind technologies

    SciTech Connect

    None, None

    2009-01-18

    The wind overview section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  3. Recycling Technology Validation

    Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  4. Mobile Technology Management

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    2013-11-21

    The directive will ensure that federal organizations and employees within the Department can use mobile technology to support mission requirements in a safe and secure manner.

  5. Massachusetts Institute of Technology

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    of Technology Short baseline neutrino workshop, Fermilab, Batavia, IL, May 13, 2011 Test of Lorentz and CPT violation with neutrinos Outline 1. Why Lorentz violation is...

  6. Science & Technology Review Articles

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    NIF & Photon Science News Press Releases Experimental Highlights Efficiency Improvements Science & Technology Meetings and Workshops Papers and Presentations NIF&PS People In the ...

  7. Fuel Cell Technologies Overview

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    States Energy Advisory Board (STEAB) Washington, DC Dr. Sunita Satyapal U.S. Department of Energy Fuel Cell Technologies Program Program Manager 3142012 2 | Fuel Cell ...

  8. Appendix C - Industrial technologies

    SciTech Connect

    None, None

    2002-12-20

    This report describes the results, calculations, and assumptions underlying the GPRA 2004 Quality Metrics results for all Planning Units within the Office of Industrial Technologies.

  9. Overview of geothermal technologies

    SciTech Connect

    None, None

    2009-01-18

    The geothermal overview section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  10. Ocean Energy Technology Overview

    SciTech Connect

    none,

    2009-08-05

    Introduction to and overview of ocean renewable energy resources and technologies prepared for the U.S. Department of Energy Federal Energy management Program.

  11. Bioconversion Technologies | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    to: navigation, search Name: Bioconversion Technologies Place: United Kingdom Sector: Biofuels Product: Second-generation biofuels technology developer References: Bioconversion...

  12. Hydrocarbon Technologies | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Technologies Jump to: navigation, search Name: Hydrocarbon Technologies Place: Lawrenceville, New Jersey Zip: 8648 Sector: Efficiency Product: String representation...

  13. National Algal Biofuels Technology Review

    Office of Energy Efficiency and Renewable Energy (EERE)

    Plenary V: National Algal Biofuels Technology Review National Algal Biofuels Technology Review Matthew Posewitz, Professor, Colorado School of Mines

  14. Robotics Technology Crosscutting Program. Technology summary

    SciTech Connect

    1995-06-01

    The Robotics Technology Development Program (RTDP) is a needs-driven effort. A length series of presentations and discussions at DOE sites considered critical to DOE`s Environmental Restoration and Waste Management (EM) Programs resulted in a clear understanding of needed robotics applications toward resolving definitive problems at the sites. A detailed analysis of the resulting robotics needs assessment revealed several common threads running through the sites: Tank Waste Retrieval (TWR), Contaminant Analysis Automation (CAA), Mixed Waste Operations (MWO), and Decontamination and Dismantlement (D and D). The RTDP Group also realized that some of the technology development in these four areas had common (Cross Cutting-CC) needs, for example, computer control and sensor interface protocols. Further, the OTD approach to the Research, Development, Demonstration, Testing, and Evaluation (RDDT and E) process urged an additional organizational breakdown between short-term (1--3 years) and long-term (3--5 years) efforts (Advanced Technology-AT). These factors lead to the formation of the fifth application area for Crosscutting and Advanced Technology (CC and AT) development. The RTDP is thus organized around these application areas -- TWR, CAA, MWO, D and D, and CC and AT -- with the first four developing short-term applied robotics. An RTDP Five-Year Plan was developed for organizing the Program to meet the needs in these application areas.

  15. Emerging Technologies - Capturing Innovation with Technology

    SciTech Connect

    2012-12-01

    ET team research results are critical to achieving 50% energy savings across U.S. buildings within the next two decades. The ET team focuses on supporting research, development, and tech-to-market opportunities of high impact technologies, or those that demonstrate potential for achieving significant energy savings cost effectively.

  16. Assistive Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Assistive Technology Assistive Technology Assistive technology word cloud. Assistive technology word cloud. The DOE Headquarters Accommodation Program was established to provide reasonable computer and related telecommunications accommodations for employees with disabilities. Since implementation of the Assistive Technologies program in 1993, accommodations have increased from an initial 26 to an approximately 700 individual accommodations. The Assistive Technologies program complies with

  17. Digital Actuator Technology

    SciTech Connect

    Ken Thomas; Ted Quinn; Jerry Mauck; Richard Bockhorst

    2014-09-01

    There are significant developments underway in new types of actuators for power plant active components. Many of these make use of digital technology to provide a wide array of benefits in performance of the actuators and in reduced burden to maintain them. These new product offerings have gained considerable acceptance in use in process plants. In addition, they have been used in conventional power generation very successfully. This technology has been proven to deliver the benefits promised and substantiate the claims of improved performance. The nuclear industry has been reluctant to incorporate digital actuator technology into nuclear plant designs due to concerns due to a number of concerns. These could be summarized as cost, regulatory uncertainty, and a certain comfort factor with legacy analog technology. The replacement opportunity for these types of components represents a decision point for whether to invest in more modern technology that would provide superior operational and maintenance benefits. Yet, the application of digital technology has been problematic for the nuclear industry, due to qualification and regulatory issues. With some notable exceptions, the result has been a continuing reluctance to undertake the risks and uncertainties of implementing digital actuator technology when replacement opportunities present themselves. Rather, utilities would typically prefer to accept the performance limitations of the legacy analog actuator technologies to avoid impacts to project costs and schedules. The purpose of this report is to demonstrate that the benefits of digital actuator technology can be significant in terms of plant performance and that it is worthwhile to address the barriers currently holding back the widespread development and use of this technology. It addresses two important objectives in pursuit of the beneficial use of digital actuator technology for nuclear power plants: 1. To demonstrate the benefits of digital actuator

  18. Technology Catalogue. First edition

    SciTech Connect

    Not Available

    1994-02-01

    The Department of Energy`s Office of Environmental Restoration and Waste Management (EM) is responsible for remediating its contaminated sites and managing its waste inventory in a safe and efficient manner. EM`s Office of Technology Development (OTD) supports applied research and demonstration efforts to develop and transfer innovative, cost-effective technologies to its site clean-up and waste management programs within EM`s Office of Environmental Restoration and Office of Waste Management. The purpose of the Technology Catalogue is to provide performance data on OTD-developed technologies to scientists and engineers assessing and recommending technical solutions within the Department`s clean-up and waste management programs, as well as to industry, other federal and state agencies, and the academic community. OTD`s applied research and demonstration activities are conducted in programs referred to as Integrated Demonstrations (IDs) and Integrated Programs (IPs). The IDs test and evaluate.systems, consisting of coupled technologies, at specific sites to address generic problems, such as the sensing, treatment, and disposal of buried waste containers. The IPs support applied research activities in specific applications areas, such as in situ remediation, efficient separations processes, and site characterization. The Technology Catalogue is a means for communicating the status. of the development of these innovative technologies. The FY93 Technology Catalogue features technologies successfully demonstrated in the field through IDs and sufficiently mature to be used in the near-term. Technologies from the following IDs are featured in the FY93 Technology Catalogue: Buried Waste ID (Idaho National Engineering Laboratory, Idaho); Mixed Waste Landfill ID (Sandia National Laboratories, New Mexico); Underground Storage Tank ID (Hanford, Washington); Volatile organic compound (VOC) Arid ID (Richland, Washington); and VOC Non-Arid ID (Savannah River Site, South Carolina).

  19. Advanced uranium enrichment technologies

    SciTech Connect

    Merriman, R.

    1983-03-10

    The Advanced Gas Centrifuge and Atomic Vapor Laser Isotope Separation methods are described. The status and potential of the technologies are summarized, the programs outlined, and the economic incentives are noted. How the advanced technologies, once demonstrated, might be deployed so that SWV costs in the 1990s can be significantly reduced is described.

  20. Gasification: A Cornerstone Technology

    ScienceCinema

    Gary Stiegel

    2016-07-12

    NETL is a leader in the science and technology of gasification - a process for the conversion of carbon-based materials such as coal into synthesis gas (syngas) that can be used to produce clean electrical energy, transportation fuels, and chemicals efficiently and cost-effectively using domestic fuel resources. Gasification is a cornerstone technology of 21st century zero emissions powerplants

  1. Gasification: A Cornerstone Technology

    SciTech Connect

    Gary Stiegel

    2008-03-26

    NETL is a leader in the science and technology of gasification - a process for the conversion of carbon-based materials such as coal into synthesis gas (syngas) that can be used to produce clean electrical energy, transportation fuels, and chemicals efficiently and cost-effectively using domestic fuel resources. Gasification is a cornerstone technology of 21st century zero emissions powerplants

  2. Additive Manufacturing Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Additive Manufacturing 1 Technology Assessment 2 1. Contents 3 1. Introduction to the Technology/System ............................................................................................... 2 4 1.1 Introduction to Additive Manufacturing ....................................................................................... 2 5 1.2 Additive Manufacturing Processes ............................................................................................... 2 6 1.3 Benefits of Additive

  3. Technology Readiness Assessment Guide

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    2011-09-15

    This document was developed to assist individuals and teams that will be involved in conducting Technology Readiness Assessments (TRAs) and developing Technology Maturation Plans (TMPs) for the Department of Energy (DOE) capital acquisition assets subjects to DOE O 413.3B.

  4. Technology Readiness Assessment (TRA)/Technology Maturation Plan (TMP)

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Process Guide | Department of Energy Readiness Assessment (TRA)/Technology Maturation Plan (TMP) Process Guide Technology Readiness Assessment (TRA)/Technology Maturation Plan (TMP) Process Guide This document is a guide for those involved in conducting TRAs and developing TMPs for DOE-EM. Technology Readiness Assessment (TRA)/Technology Maturation Plan (TMP) Process Guide (1.19 MB) More Documents & Publications Technology Readiness Assessment Report Small Column Ion Exchange Technology

  5. Accelerating Spectrum Sharing Technologies

    SciTech Connect

    Juan D. Deaton; Lynda L. Brighton; Rangam Subramanian; Hussein Moradi; Jose Loera

    2013-09-01

    Spectrum sharing potentially holds the promise of solving the emerging spectrum crisis. However, technology innovators face the conundrum of developing spectrum sharing technologies without the ability to experiment and test with real incumbent systems. Interference with operational incumbents can prevent critical services, and the cost of deploying and operating an incumbent system can be prohibitive. Thus, the lack of incumbent systems and frequency authorization for technology incubation and demonstration has stymied spectrum sharing research. To this end, industry, academia, and regulators all require a test facility for validating hypotheses and demonstrating functionality without affecting operational incumbent systems. This article proposes a four-phase program supported by our spectrum accountability architecture. We propose that our comprehensive experimentation and testing approach for technology incubation and demonstration will accelerate the development of spectrum sharing technologies.

  6. Robotics Technology Development Program. Technology summary

    SciTech Connect

    Not Available

    1994-02-01

    The Robotics Technology Development Program (RTDP) is a ``needs-driven`` effort. A lengthy series of presentations and discussions at DOE sites considered critical to DOE`s Environmental Restoration and Waste Management (EM) Programs resulted in a clear understanding of needed robotics applications toward resolving definitive problems at the sites. A detailed analysis of the Tank Waste Retrieval (TWR), Contaminant Analysis Automation (CAA), Mixed Waste Operations (MWO), and Decontamination & Dismantlement (D&D). The RTDP Group realized that much of the technology development was common (Cross Cutting-CC) to each of these robotics application areas, for example, computer control and sensor interface protocols. Further, the OTD approach to the Research, Development, Demonstration, Testing, and Evaluation (RDDT&E) process urged an additional organizational break-out between short-term (1--3 years) and long-term (3--5 years) efforts (Advanced Technology-AT). The RDTP is thus organized around these application areas -- TWR, CAA, MWO, D&D and CC&AT -- with the first four developing short-term applied robotics. An RTDP Five-Year Plan was developed for organizing the Program to meet the needs in these application areas.

  7. Technology Convergence and National Security

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Technology Commercialization Fund Technology Commercialization Fund A core responsibility of the Office of Technology Transitions, and the Technology Transfer Coordinator, is to oversee the expenditure of DOE technology transfer funds. The office is responsible for implementing the Technology Commercialization Fund (TCF) authorized in section 1001 of the Energy Policy Act of 2005. It states, as amended: "The Secretary shall establish an Energy Technology Commercialization Fund, using 0.9%

  8. Taking technology to market

    SciTech Connect

    Ford, D.; Ryan, C.

    1981-03-01

    For many years, the concept of the product life cycle has helped managers maximize their return on product sales. But according to the authors of this article, using a technology solely in product sales is no longer enough. Today, companies face high R and D costs, competitive pressures from low-cost producers, capacity limitations, antitrust laws, financial difficulties, and foreign trade barriers. This means that they must improve the rate of return on their technology investments by marketing their technology as completely as possible during all phases of its life cycle. The technology life cycle - derived from the product life cycle - pinpoints the changing decisions companies face in selling their know-how. The authors also discuss both the competitive dangers of transferring technology to low-cost foreign producers and the growing role of intermediaries in technology sales. They stress the importance of having a highly specialized staff to plan a company's technology marketing, a responsibility that should be assigned neither to the part-time attention of top management nor simply to marketers or strategic planners.

  9. Science & Technology - 2016

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    technology / 2016 / august Science & Technology - 2016 August Take a Virtual Tour of NIF NIF Ultrathin Polymer Film Is an R&D 100 Finalist A robust, scalable method of fabricating freestanding polymer films that are larger, stronger and thinner than conventionally produced films has been named a 2016 R&D 100 finalist. R&D 100 awards recognize the most revolutionary technologies introduced to the market in a given year. This year's R&D 100 winners will be announced at an

  10. Agricultural Equipment Technology Conference

    Energy.gov [DOE]

    The 20th Agricultural Equipment Technology Conference will be held Feb. 8–10, 2016, in Louisville, Kentucky. The conference will bring together professionals and experts in the agricultural and biological engineering fields. Bioenergy Technologies Office (BETO) Terrestrial Feedstocks Technology Manager Sam Tagore will be in attendance. Mr. Tagore will moderate a technical session titled “Ash Reduction Strategies for Improving Biomass Feedstock Quality.” The session will include presentations by researchers from Idaho National Laboratory and Oak Ridge National Laboratory supporting BETO, as well as from university and industry.

  11. OHVT technology roadmap [2000

    SciTech Connect

    Bradley, R.A.

    2000-02-01

    The OHVT Technology Roadmap for 2000 presents the multiyear program plan of the U.S. DOE's Office of Heavy Vehicle Technologies (OHVT). It is an update of the 1997 plan, reflecting changes in regulations and ongoing discussions with DOE's heavy vehicle customers. The technical plan covers three classes of trucks: (1) class 7-8 (large, on-highway trucks); (2) class 3-6 (medium duty trucks); (3) class 1-2 (pickups, vans, and sport utility vehicles) as well as enabling and supporting technologies. The Roadmap documents program goals, schedules, and milestones.

  12. Annual Technology Baseline

    Energy.gov [DOE]

    The National Renewable Energy Laboratory is conducting a study sponsored by the U.S. Department of Energy DOE, Office of Energy Efficiency and Renewable Energy (EERE), that aims to document and implement an annual process designed to identify a realistic and timely set of input assumptions (e.g., technology cost and performance, fuel costs), and a diverse set of potential futures (standard scenarios), initially for electric sector analysis. This primary product of the Annual Technology Baseline (ATB) project component includes detailed cost and performance data (both current and projected) for both renewable and conventional technologies. This data is presented in MS Excel.

  13. Science & Technology - 2014

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    august Science & Technology - 2014 August First Multi-bunch ... for the first time the generation of two nearly-identical ... emission, fuel motion, and mix levels in the hot-spot at ...

  14. Energy Technology Engineering Center

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Energy Technology Engineering Center (ETEC) is located within Area IV of the Santa Susana Field Laboratory. The ETEC occupies 90-acres within the 290 acre site. The Santa Susana Field...

  15. Technologies Taking Us There

    SciTech Connect

    Cotrell, Jason; Veers, Paul

    2015-09-29

    Keynote presentation at the Iowa State Wind Energy Symposium. This presentation examines several cutting-edge technologies and research being performed by the National Renewable Energy Laboratory that is helping achieve the U.S. Department of Energy's Wind Vision.

  16. Desalination technology evaluation

    SciTech Connect

    Del Bene, J.V.; Loh, G.T.; Schleicher, R.W.; Sgammato, T.A.; Sinha, A.K. )

    1992-12-01

    The shortage of potable water has hindered economic development in South Florida and other areas of the United States. This project, cosponsored with Florida Power Light (FPL), examines the economics of colocation of a water desalination plant with an electric power plant to take advantage of shared facilities, personnel, and equipments well as existing intake and outfall structures. In combination, these factors should reduce the cost of desalinated water. The first step in determining the viability of colocation is identification of desalination technologies best suited for dual-purpose applications in retrofits at existing fossil plants. Based on energy efficiency and commercial maturity, reverse osmosis (RO) and low-temperature multieffect distillation (LT-MED) technologies appear to be the best candidates for such application. In fact, RO provides the best economics for the plants and conditions studied. Of the emerging technologies evaluated, sodium molecular pumping and solvent extraction technologies should be further investigated for their potential in significantly reducing desalination costs.

  17. Drilling technology/GDO

    SciTech Connect

    Kelsey, J.R.

    1985-01-01

    The Geothermal Technology Division of the US Department of Energy is sponsoring two programs related to drilling technology. The first is aimed at development of technology that will lead to reduced costs of drilling, completion, and logging of geothermal wells. This program has the official title ''Hard Rock Penetration Mechanics.'' The second program is intended to share with private industry the cost of development of technology that will result in solutions to the near term geothermal well problems. This program is referred to as the ''Geothermal Drilling Organization''. The Hard Rock Penetration Mechanics Program was funded at $2.65M in FY85 and the GDO was funded at $1.0M in FY85. This paper details the past year's activities and accomplishments and projects the plans for FY86 for these two programs.

  18. NREL: Technology Transfer - Webmaster

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Webmaster To report any problems on or ask a question about the NREL Technology Transfer Web site, you may contact the Webmaster using the online form below. If you have a question...

  19. ENERGY EFFICIENCY TECHNOLOGY ROADMAP

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    n E n v e l o p e This document is one component of the Energy Efficiency Technology Roadmap (EE Roadmap), published by the Bonneville Power Administration (BPA) on behalf of...

  20. ENERGY EFFICIENCY TECHNOLOGY ROADMAP

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    3 : L i g h t i n g This document is one component of the Energy Efficiency Technology Roadmap (EE Roadmap), published by the Bonneville Power Administration (BPA) on behalf of...

  1. Quadrennial Technology Review 2015

    Energy.gov [DOE] (indexed site)

    program supported improvements in this technology, such as the use of nano-clay for next-generation HVDC cables. A research emphasis is also needed on superconducting HVDC cables,...

  2. TEAM Technologies, Inc.

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Business Pulsed Power Support TEAM Technologies Inc. opened its doors in 1985 as a one-man operation in support of Sandia's Z Machine, a mainstay of the Lab's Pulsed Power...

  3. Science & Technology - 2015

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    New ARC Front End Proves Its Mettle July Two NIF&PS Technologies Named R&D 100 Finalists ELI Beamlines Officials Tour HAPLS Project June Measuring NIF Implosions with a Bang Dante: ...

  4. Renewable energy technology characterizations

    SciTech Connect

    None, None

    1997-12-01

    The Renewable Energy Technology Characterizations front matter lists the chapters and tables that support this report on the technical and economic status of the major emerging renewable energy options for electricity supply.

  5. Science & Technology - 2015

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    and finally compressed to a short pulse and highest peak power in large compressor vessels. The new front-end technology is based on a short-pulse optical-parametric...

  6. Technology catalogue. Second edition

    SciTech Connect

    1995-04-01

    The Department of Energy`s (DOE`s) Office of Environmental Management (EM) is responsible for remediating DOE contaminated sites and managing the DOE waste inventory in a safe and efficient manner. EM`s Office of Technology Development (OTD) supports applied research and demonstration efforts to develop and transfer innovative, cost-effective technologies to its site clean-up and waste-management programs within EM. The purpose of the Technology Catalogue is to: (a) provide performance data on OTD-developed technologies to scientists and engineers responsible for preparing Remedial Investigation/Feasibility Studies (RI/FSs) and other compliance documents for the DOE`s clean-up and waste-management programs; and (b) identify partnering and commercialization opportunities with industry, other federal and state agencies, and the academic community.

  7. Membrane Technology Workshop

    Energy.gov [DOE]

    At the Membrane Technology Workshop (held July 24, 2012, in Rosemont, IL), stakeholders from industry and academia explored the status of membrane research and development (R&D). Participants ...

  8. Geothermal Technologies Newsletter Archives

    Energy.gov [DOE]

    Here you'll find past issues of the U.S. Department of Energy's (DOE) Geothermal Technologies program newsletter, which features information about its geothermal research and development efforts....

  9. Director, Building Technologies Office

    Energy.gov [DOE]

    This position is located in the Building Technologies Office (BTO) of the Office of Energy Efficiency and Renewable Energy (EERE). The mission of EERE is to create and sustain American leadership...

  10. Massachusetts Institute of Technology

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    of Technology U-Maryland NuclearHEP seminar, College Park, ... 1. Introduction 2. Neutrino beam 3. Events in the detector ... observed excess of anti-electron neutrino events in the ...

  11. Vehicle Technologies Program Overview

    SciTech Connect

    none,

    2006-09-05

    Overview of the Vehicle Technologies Program including external assessment and market view; internal assessment, program history and progress; program justification and federal role; program vision, mission, approach, strategic goals, outputs, and outcomes; and performance goals.

  12. Genome Science/Technologies

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Genome Genome Science/Technologies Los Alamos using cutting-edge sequencing, finishing, and analysis, impact valuable genomic data. Srinivas Iyer Bioscience Group Leader Email Get Expertise David Bruce Bioscience Deputy Group Leader Email Momchilo Vuyisich Scientist Email Rebecca McDonald Bioscience Communications Email State-of-the art technology and extensive genomics expertise Protein research Read caption + Los Alamos National Laboratory graduate student, Patricia Langan, changes the

  13. Technology Commercialization Program 1991

    SciTech Connect

    Not Available

    1991-11-01

    This reference compilation describes the Technology Commercialization Program of the Department of Energy, Defense Programs. The compilation consists of two sections. Section 1, Plans and Procedures, describes the plans and procedures of the Defense Programs Technology Commercialization Program. The second section, Legislation and Policy, identifies legislation and policy related to the Program. The procedures for implementing statutory and regulatory requirements are evolving with time. This document will be periodically updated to reflect changes and new material.

  14. Geothermal Technologies Office April

    Energy Saver

    Geothermal Data Repository Reaches 500 Submissions Geothermal Data Repository Reaches 500 Submissions August 25, 2015 - 2:41pm Addthis Geothermal Data Repository Reaches 500 Submissions Arlene Anderson Technology Development Manager, Geothermal Technologies Program A map of the United States highlighting the locations of GDR users. Critical data about the subsurface is added to the GDR from sites all across the country. Credit: Jon Weers, NREL. July 15 marked an important milestone for the

  15. Science, Technology & Engineering

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Alan Bishop selected to lead LANL Science, Technology & Engineering directorate August 17, 2012 LOS ALAMOS, NEW MEXICO, August 17, 2012-Los Alamos National Laboratory Director Charles McMillan announced today that after a yearlong, nationwide search, Alan Bishop has been selected to be the Laboratory's next Principal Associate Director for Science, Technology, and Engineering (PADSTE). Bishop has been acting in that role - 2 - since Aug. 29, 2011.Over the course of a distinguished 30-year

  16. 1 | Bioenergy Technologies Office

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    11.2.2.4 Techno-Economic Analysis of Innovative Technology Concepts May 20, 2013 Analysis & Sustainability Corinne Valkenburg (PNNL), Guiping Hu (ISU) Pacific Northwest National Laboratory, Iowa State University This presentation does not contain any proprietary, confidential, or otherwise restricted information 2 | Bioenergy Technologies Office eere.energy.gov Goal Statement * Provide analytical basis for BETO's Research and Development Thrusts: - Initial technical and economic screening of

  17. NREL: Geothermal Technologies - Capabilities

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Capabilities The NREL geothermal team leverages its capabilities in several different areas to enhance the visibility of geothermal technologies. These areas include low-temperature resources; enhanced geothermal systems; strategic planning, analysis, and modeling; and project assessment. Low-Temperature Geothermal Resources NREL works to develop and deploy innovative new technologies that will help the geothermal community achieve widespread adoption of under-utilized low-temperature resources

  18. NREL: Geothermal Technologies - Projects

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Projects The NREL geothermal team is involved in various projects to help accelerate the development and deployment of clean, renewable geothermal technologies, including low-temperature resources; enhanced geothermal systems; strategic planning, analysis, and modeling; and project assessment. Low-Temperature Geothermal Resources NREL supports the U.S. Department of Energy's (DOE) Geothermal Technologies Office (GTO) through various collaborations that evaluate the levelized cost of electricity

  19. NREL: Technology Deployment - News

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    News The following news items represent work being done by the National Renewable Energy Laboratory (NREL) to apply renewable energy and energy efficiency technologies worldwide. Subscribe to the RSS feed RSS . Learn about RSS. Market Impact Newsletter Features news on NREL's partnerships and their impact on real-world applications of clean energy technologies Subscribe May 16, 2016 NREL Helping the Bureau of Land Management Dive Further into Hot Water Geothermal program boosted by greater

  20. JLab Cryogenic Technology

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Cryogenic Technology Cryogenic Technology Thomas Jefferson National Accelerator Facility Operated by the Southeastern Universities Research Association for the U.S. Department of Energy Jlab Cryogenic Systems Focus Operated by the Southeastern Universities Research Association for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility Page 2 ILC Presentation Nov 8, 2005 * Provide unsurpassed reliability and availability for 2.1K and 4K multi plant operation. (>99.5%

  1. Jefferson Lab - Technology Transfer

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    General Procedure for Licensing Jefferson Lab Technology Jefferson Lab has a number of inventions in various stages of patenting. Any organization expressing interest in licensing technology developed by Jefferson Lab is required to complete a Jefferson Lab Non-Disclosure Form, after which, more relevant information will be provided. In some cases, Jefferson Lab will host a pre-proposal conference to which interested parties will be invited. If, after reviewing provided information,

  2. Crosscutting Technology Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Crosscutting Technology Research The Crosscutting Technology Research program serves as a bridge between basic and applied research by fostering R&D in sensors and controls, modeling and simulation, and high performance materials. These activities target enhanced availability and cost reduction for advanced power systems. The Crosscutting program facilitates its R&D efforts through collaboration with other government agencies, large and small businesses, and universities. The

  3. Life-cycle Analysis of Geothermal Technologies; 2010 Geothermal Technology

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Program Peer Review Report | Department of Energy cycle Analysis of Geothermal Technologies; 2010 Geothermal Technology Program Peer Review Report Life-cycle Analysis of Geothermal Technologies; 2010 Geothermal Technology Program Peer Review Report DOE 2010 Geothermal Technologies Program Peer Review adse_005_wang.pdf (192.84 KB) More Documents & Publications Detecting Fractures Using Technology at High Temperatures and Depths - Geothermal Ultrasonic Fracture Imager (GUFI); 2010

  4. Vehicle Technologies Office Merit Review 2015: Vehicle Technologies Office

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Overview | Department of Energy Vehicle Technologies Office Overview Vehicle Technologies Office Merit Review 2015: Vehicle Technologies Office Overview Presentation given by U.S. Department of Energy at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation meeting about Vehicle Technologies Office overview. 02_howell_plenary_2015_amr.pdf (3.45 MB) More Documents & Publications Vehicle Technologies Office Merit Review 2016:

  5. Vehicle Technologies Office: 2014 Electric Drive Technologies Annual

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Progress Report | Department of Energy Electric Drive Technologies Annual Progress Report Vehicle Technologies Office: 2014 Electric Drive Technologies Annual Progress Report The Electric Drive Technologies research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research is focused on developing power electronics (PE), electric motor, and traction drive system

  6. Technology Maturation Plan (TMP) Wet Air Oxidation (WAO) Technology for

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Tank 48H Treatment Project (TTP) | Department of Energy Wet Air Oxidation (WAO) Technology for Tank 48H Treatment Project (TTP) Technology Maturation Plan (TMP) Wet Air Oxidation (WAO) Technology for Tank 48H Treatment Project (TTP) This assessment determines the technology maturity level of the candidate Tank 48H treatment technologies that are being considered for implementation at DOE's SRS - specifically Wet Air Oxidation. Technology Maturation Plan (TMP) Wet Air Oxidation (WAO)

  7. Vehicle Technologies Office Merit Review 2015: Consumer Vehicle Technology

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Data | Department of Energy Consumer Vehicle Technology Data Vehicle Technologies Office Merit Review 2015: Consumer Vehicle Technology Data Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about consumer vehicle technology data. van003_singer_2015_o.pdf (546.73 KB) More Documents & Publications Vehicle Technologies Office Merit Review 2014: Consumer

  8. Information technology resources assessment

    SciTech Connect

    Stevens, D.F.

    1992-01-01

    This year`s Information Technology Resources Assessment (ITRA) is something of a departure from traditional practice. Past assessments have concentrated on developments in fundamental technology, particularly with respect to hardware. They form an impressive chronicle of decreasing cycle times, increasing densities, decreasing costs (or, equivalently, increasing capacity and capability per dollar spent), and new system architectures, with a leavening of operating systems and languages. Past assessments have aimed -- and succeeded -- at putting information technology squarely in the spotlight; by contrast, in the first part of this assessment, we would like to move it to the background, and encourage the reader to reflect less on the continuing technological miracles of miniaturization in space and time and more on the second- and third-order implications of some possible workplace applications of these miracles. This Information Technology Resources Assessment is intended to provide a sense of technological direction for planners in projecting the hardware, software, and human resources necessary to support the diverse IT requirements of the various components of the DOE community. It is also intended to provide a sense of our new understanding of the place of IT in our organizations.

  9. Information technology resources assessment

    SciTech Connect

    Stevens, D.F.

    1992-01-01

    This year's Information Technology Resources Assessment (ITRA) is something of a departure from traditional practice. Past assessments have concentrated on developments in fundamental technology, particularly with respect to hardware. They form an impressive chronicle of decreasing cycle times, increasing densities, decreasing costs (or, equivalently, increasing capacity and capability per dollar spent), and new system architectures, with a leavening of operating systems and languages. Past assessments have aimed -- and succeeded -- at putting information technology squarely in the spotlight; by contrast, in the first part of this assessment, we would like to move it to the background, and encourage the reader to reflect less on the continuing technological miracles of miniaturization in space and time and more on the second- and third-order implications of some possible workplace applications of these miracles. This Information Technology Resources Assessment is intended to provide a sense of technological direction for planners in projecting the hardware, software, and human resources necessary to support the diverse IT requirements of the various components of the DOE community. It is also intended to provide a sense of our new understanding of the place of IT in our organizations.

  10. Technology's Impact on Production

    SciTech Connect

    Rachel Amann; Ellis Deweese; Deborah Shipman

    2009-06-30

    As part of a cooperative agreement with the United States Department of Energy (DOE) - entitled Technology's Impact on Production: Developing Environmental Solutions at the State and National Level - the Interstate Oil and Gas Compact Commission (IOGCC) has been tasked with assisting state governments in the effective, efficient, and environmentally sound regulation of the exploration and production of natural gas and crude oil, specifically in relation to orphaned and abandoned wells and wells nearing the end of productive life. Project goals include: (1) Developing (a) a model framework for prioritization and ranking of orphaned or abandoned well sites; (b) a model framework for disbursement of Energy Policy Act of 2005 funding; and (c) a research study regarding the current status of orphaned wells in the nation. (2) Researching the impact of new technologies on environmental protection from a regulatory perspective. Research will identify and document (a) state reactions to changing technology and knowledge; (b) how those reactions support state environmental conservation and public health; and (c) the impact of those reactions on oil and natural gas production. (3) Assessing emergent technology issues associated with wells nearing the end of productive life. Including: (a) location of orphaned and abandoned well sites; (b) well site remediation; (c) plugging materials; (d) plug placement; (e) the current regulatory environment; and (f) the identification of emergent technologies affecting end of life wells. New Energy Technologies - Regulating Change, is the result of research performed for Tasks 2 and 3.

  11. Information technology resources assessment

    SciTech Connect

    Loken, S.C.

    1993-01-01

    The emphasis in Information Technology (IT) development has shifted from technology management to information management, and the tools of information management are increasingly at the disposal of end-users, people who deal with information. Moreover, the interactive capabilities of technologies such as hypertext, scientific visualization, virtual reality, video conferencing, and even database management systems have placed in the hands of users a significant amount of discretion over how these resources will be used. The emergence of high-performance networks, as well as network operating systems, improved interoperability, and platform independence of applications will eliminate technical barriers to the use of data, increase the power and range of resources that can be used cooperatively, and open up a wealth of possibilities for new applications. The very scope of these prospects for the immediate future is a problem for the IT planner or administrator. Technology procurement and implementation, integration of new technologies into the existing infrastructure, cost recovery and usage of networks and networked resources, training issues, and security concerns such as data protection and access to experiments are just some of the issues that need to be considered in the emerging IT environment. As managers we must use technology to improve competitiveness. When procuring new systems, we must take advantage of scalable resources. New resources such as distributed file systems can improve access to and efficiency of existing operating systems. In addition, we must assess opportunities to improve information worker productivity and information management through tedmologies such as distributed computational visualization and teleseminar applications.

  12. Turbine imaging technology assessment

    SciTech Connect

    Moursund, R. A.; Carlson, T. J.

    2004-12-01

    The goal of this project was to identify and evaluate imaging technologies for observing juvenile fish within a Kaplan turbine, and specifically that would enable scientists to determine mechanisms of fish injury within an operating turbine unit. This report documents the opportunities and constraints for observing juvenile fish at specific locations during turbine passage. These observations were used to make modifications to dam structures and operations to improve conditions for fish passage while maintaining or improving hydropower production. The physical and hydraulic environment that fish experience as they pass through the hydroelectric plants were studied and the regions with the greatest potential for injury were defined. Biological response data were also studied to determine the probable types of injuries sustained in the turbine intake and what types of injuries are detectable with imaging technologies. The study grouped injury-causing mechanisms into two categories: fluid (pressure/cavitation, shear, turbulence) and mechanical (strike/collision, grinding/pinching, scraping). The physical constraints of the environment, together with the likely types of injuries to fish, provided the parameters needed for a rigorous imaging technology evaluation. Types of technology evaluated included both tracking and imaging systems using acoustic technologies (such as sonar and acoustic tags) and optic technologies (such as pulsed-laser videography, which is high-speed videography using a laser as the flash). Criteria for determining image data quality such as frame rate, target detectability, and resolution were used to quantify the minimum requirements of an imaging sensor.

  13. Nuclear Reactors and Technology

    SciTech Connect

    Cason, D.L.; Hicks, S.C.

    1992-01-01

    This publication Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency`s Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on the Energy Science and Technology Database and Nuclear Science Abstracts (NSA) database. Current information, added daily to the Energy Science and Technology Database, is available to DOE and its contractors through the DOE Integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user`s needs.

  14. Office of Technology Transitions

    Energy.gov [DOE]

    DOE's Technology Commercialization activities in 2009-13 have involved three broad areas of focus. The primary focus of technology commercialization has continued to be through new technologies developed at the National Laboratories and Facilities. As a second focus, to support and streamline commercialization of these DOE technologies, DOE has carried out a number of new initiatives and pilot projects. Finally, DOE's Department-wide commitment to using commercialization as one mechanism to support U.S. economic growth has led to new cross-cutting programs. U.S. Department of Energy researchers won 31 of the 100 awards in 2014, 36 awards in each of 2013, 2012 and 2011, and 46 in 2010, for a total of 185 over the period of 2009-13. A subset of these awards and other DOE developed technologies are described in Appendix E. These represent a spectrum of commercial areas including DOE mission areas of energy, efficiency, environment and security, as well as spin-off applications in the agricultural, aeronautical, medical, semiconductor and information technology industries, and broad applications in cyber security and sensing/control systems.

  15. Science and Technology in the Physics and Advanced Technologies Directorate

    SciTech Connect

    Wootton, A J

    2004-11-16

    A compendium of LLNL Science and Technology Review articles involving scientist and engineers from the Physics and Advanced Technologies Directorate, from January 2002 to the present.

  16. MHK Technologies/CETO Wave Energy Technology | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Type Click here Point Absorber Technology Readiness Level Click here TRL 78: Open Water System Testing & Demonstration & Operation Technology Description The CETO system...

  17. MHK Technologies/Oregon State University Columbia Power Technologies...

    OpenEI (Open Energy Information) [EERE & EIA]

    here Point Absorber Technology Readiness Level Click here TRL 1-3: Discovery Concept Definition Early Stage Development & Design & Engineering Technology Description When...

  18. Kilowatt Reactor Using Stirling TechnologY (KRUSTY) Demonstration...

    Office of Scientific and Technical Information (OSTI)

    Kilowatt Reactor Using Stirling TechnologY (KRUSTY) Demonstration. CEDT Phase 1 Preliminary Design Documentation Citation Details In-Document Search Title: Kilowatt Reactor Using ...

  19. Vehicle Technologies Office: 2014 Fuel and Lubricant Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Vehicle Technologies Office: 2014 Fuel and Lubricant Technologies R&D Annual Progress Report This report describes the progress made on the research and development projects funded ...

  20. Vehicle Technologies Office: 2013 Fuel and Lubricant Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Vehicle Technologies Office: 2013 Fuel and Lubricant Technologies R&D Annual Progress Report This report describes the progress made on the research and development projects funded ...

  1. New maintenance free nickel-cadmium-traction-batteries in fibre technology

    SciTech Connect

    Warthmann, W. )

    1993-05-01

    DAUG (Deutsche Automobilgesellschaft m.b.H.), which is a subsidiary of Daimler Benz and Volkswagen has developed a fibre plaque technology used in the alkaline Nickel Cadmium battery system known as 'FNC' (Fibre Nickel Cadmium). DAUG-HOPPECKE (DAHO) is the manufacturing and marketing joint venture for the FNC technology. The plaque design has been marked in vented cells by Hoppecke since 1983, with improved performance over prior plaque design. Production of new sealed maintenance free batteries, using the same basic plaque mechanism, has been operating since 1991. Type 'H,' high rate, and Type 'X,' ultra high rate, plate design have been produced for electric and electric/hybrid vehicles since that time. Incorporating the same fibre plaque structure, the new design contains additional fibre plates used as a recombination device for rapid oxygen consumption. The design is called 'FNC - Recom.' The cell operates below ambient pressure, with very high charge efficiency, allowing very quick recharge at very high 'C' rates. Other recent advances extend the range of sealed Ni/Cd cells with low pressure up to more than 100 Ah. The FNC - Recom cell design is explained, performance data and experiences in electric vehicles are reported.

  2. Wind Technologies & Evolving Opportunities (Presentation)

    SciTech Connect

    Robichaud, R.

    2014-07-01

    This presentation covers opportunities for wind technology; wind energy market trends; an overview of the National Wind Technology Center near Boulder, Colorado; wind energy price and cost trends; wind turbine technology improvements; and wind resource characterization improvements.

  3. Industrial Process Heating - Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Industrial Process Heating - Technology Assessment 1 2 Contents 3 4 1. Introduction to the Technology/System ............................................................................................... 2 5 1.1. Industrial Process Heating Overview ............................................................................................ 2 6 2. Technology Assessment and Potential ................................................................................................. 6 7 2.1. Status

  4. Trusted Computing Technologies, Intel Trusted Execution Technology.

    SciTech Connect

    Guise, Max Joseph; Wendt, Jeremy Daniel

    2011-01-01

    We describe the current state-of-the-art in Trusted Computing Technologies - focusing mainly on Intel's Trusted Execution Technology (TXT). This document is based on existing documentation and tests of two existing TXT-based systems: Intel's Trusted Boot and Invisible Things Lab's Qubes OS. We describe what features are lacking in current implementations, describe what a mature system could provide, and present a list of developments to watch. Critical systems perform operation-critical computations on high importance data. In such systems, the inputs, computation steps, and outputs may be highly sensitive. Sensitive components must be protected from both unauthorized release, and unauthorized alteration: Unauthorized users should not access the sensitive input and sensitive output data, nor be able to alter them; the computation contains intermediate data with the same requirements, and executes algorithms that the unauthorized should not be able to know or alter. Due to various system requirements, such critical systems are frequently built from commercial hardware, employ commercial software, and require network access. These hardware, software, and network system components increase the risk that sensitive input data, computation, and output data may be compromised.

  5. Ceramic Technology Project

    SciTech Connect

    Not Available

    1992-03-01

    The Ceramic Technology Project was developed by the USDOE Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the USDOE and NASA advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. These programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. A five-year project plan was developed with extensive input from private industry. In July 1990 the original plan was updated through the estimated completion of development in 1993. The objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities.

  6. Apex Technology | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Technology Jump to: navigation, search Name: Apex Technology Address: 2703 Merrywood Drive Place: Edison, NJ Zip: 08817 Website: www.apextgi.com Coordinates: 40.5288539,...

  7. Danen Technology | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Danen Technology Jump to: navigation, search Name: Danen Technology Place: Guanyin, Taiwan Product: PV ingot and wafer maker based in northern Taiwan. Coordinates: 25.032009,...

  8. Clearpower Technology | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Clearpower Technology Jump to: navigation, search Name: Clearpower Technology Place: Belfast, Northern Ireland, United Kingdom Zip: BT3 9DT Sector: Wind energy Product: Clearpower...

  9. Unimicron Technology | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Unimicron Technology Jump to: navigation, search Name: Unimicron Technology Place: Taoyuan, Taiwan Sector: Solar Product: Unimicron established solar venture jointly with United...

  10. Greenbox Technology | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Greenbox Technology Jump to: navigation, search Name: Greenbox Technology Place: San Bruno, California Zip: 94066 Sector: Carbon Product: California-based, interactive energy...

  11. Shenmao Technology | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Shenmao Technology Jump to: navigation, search Name: Shenmao Technology Place: Taoyuan, Taiwan Zip: 328 Product: Maker of solder paste and PV ribbons. Coordinates: 25.001909,...

  12. Technology Partners | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Partners Jump to: navigation, search Logo: Technology Partners Name: Technology Partners Address: 550 University Avenue Place: Palo Alto, California Zip: 94301 Region: Bay Area...

  13. Evince Technology | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Evince Technology Jump to: navigation, search Name: Evince Technology Place: United Kingdom Sector: Efficiency, Wind energy Product: String representation "Evince has pion ... ing...

  14. Greenward Technologies | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Technologies Jump to: navigation, search Name: Greenward Technologies Address: PO Box 203814 Place: Austin, Texas Zip: 78720 Region: Texas Area Sector: Wind energy Product:...

  15. Video Resources on Geothermal Technologies

    Energy.gov [DOE]

    Geothermal video offerings at the Department of Energy include simple interactive illustrations of geothermal power technologies and interviews on initiatives in the Geothermal Technologies Office.

  16. Budasolar Technologies | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search Name: Budasolar Technologies Place: Budapest, Hungary Zip: H - 1121 Sector: Solar Product: BudaSolar is a developer of thin film technologies and...

  17. Ardica Technologies | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Ardica Technologies Place: San Francisco, California Zip: 94107 Product: Micro fuel cell company focused on customer-centric applications of fuel cell technologies. References:...

  18. Energy Technologies | Department of Energy

    Office of Environmental Management (EM)

    Technologies Image of industrial pipes. District energy technologies-such as combined heat and power and microgrids-can help state, local, and tribal governments effectively...

  19. Technology Reports | Department of Energy

    Energy.gov [DOE] (indexed site)

    with HVAC&R joining technologies for the Building Technologies Office (BTO) to pursue. ... developed at Sandia National Laboratories (SNL), known as the Radial Sandia Cooler. ...

  20. Fuel Cell Technologies Office: Publications

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fuel Cell Technologies Office EERE Fuel Cell Technologies Office Share this resource Publications Advanced Search Browse by Topic Mail Requests Help Feature featured product...

  1. MAK Technologies | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    MAK Technologies Jump to: navigation, search Name: MAK Technologies Place: Lebanon, New Jersey Zip: 8833 Sector: Solar Product: Designs and installs solar electric and solar...

  2. Vehicle Technologies Office: Information Resources

    Energy.gov [DOE]

    From here you can access additional information on advanced transportation technologies; view programmatic publications and technical information; learn the basics of hybrid vehicle technology;...

  3. Geothermal Technologies | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Geothermal Technologies Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Geothermal Technologies Geothermal energy can be utilized for electricity or heating...

  4. Conservation Technologies | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    by expanding it. Conservation Technologies is a company located in Duluth, Minnesota. Conservation Technologies specializes in energy efficiency in building construction, and...

  5. Mears Technology | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Waltham, Massachusetts Zip: 2451 Sector: Solar Product: Waltham-based developer of manufacturing technology for semiconductor chip producers. The firm's MEARS Silicon Technology...

  6. Wakonda Technologies | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Logo: Wakonda Technologies Name: Wakonda Technologies Address: 2A Gill Street Place: Woburn, Massachusetts Zip: 01801 Region: Greater Boston Area Sector: Solar Product: High...

  7. Statpower Technologies | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search Name: Statpower Technologies Place: British Columbia, Canada Zip: V5A 4B5 Product: Statpower Technologies develops and markets mobile and backup...

  8. Fuel Cell Technologies Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    IEA HIA Hydrogen Safety Stakeholder Workshop Bethesda, Maryland Fuel Cell Technologies Program Overview Dr. Sunita Satyapal U.S. Department of Energy Fuel Cell Technologies Program ...

  9. EERE Fuel Cell Technologies Program

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    AudienceEvent Date EERE Fuel Cell Technologies Program Sunita Satyapal Acting Program Manager U.S. Department of Energy Fuel Cell Technologies Program Fuel Cell Project Kickoff ...

  10. DOE Fuel Cell Technologies Office

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    DOE Fuel Cell Technologies Office Fuel Cell Seminar & Energy Exposition Columbus, Ohio Dr. Sunita Satyapal Director Fuel Cell Technologies Office Energy Efficiency and Renewable ...

  11. DOE Fuel Cell Technology Office

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Fuel Cell Technology Office - Sandia Energy Energy Search Icon Sandia Home Locations ... SunShot Grand Challenge: Regional Test Centers DOE Fuel Cell Technology Office Home...

  12. Technology Integration | Department of Energy

    Energy.gov [DOE] (indexed site)

    Program Annual Merit Review and Peer Evaluation Vehicle Technologies Plenary vtpn02smithti2011o.pdf (814.37 KB) More Documents & Publications Technology Integration Overview ...

  13. IPower Technologies | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Place: Andersen, Indiana Zip: 46013 Product: iPower Technologies provides advanced technologies and systems integration capabilities for the distributed generation market....

  14. Stirling technology development status

    SciTech Connect

    Dochat, G.R. ); Dudenhoefer, J.E. )

    1993-01-15

    Free-piston Stirling power converters have the potential to meet the many future space power requirements for a wide variety of applications with less mass, better efficiency, and less total area (collector and radiator) than other power converter options. These benefits result in significant dollar savings over the projected mission lifetime. The National Aeronautics and Space Administration (NASA)---Lewis Research Center (LeRC), which has the responsibility to evaluate and develop power technologies that can satisfy anticipated future space mission power requirements, has been developing free-piston Stirling power converters and is bringing the Stirling technology to readiness. As the principal contractor to NASA-LeRC, Mechanical Technology Incorporated (MTI) is under contract to develop the necessary space Stirling technology but also demonstrate the readiness of the technology in two generations of full-scale power converters. The first generation Stirling power converter, the component test power converter (CTPC), initiated cold end testing at the end of 1991, with hot testing scheduled during 1992. This paper reviews test progress of the CTPC including the initial hot engine test results. Modifications incorporated into the CTPC from the earlier space power demonstrator engine are reviewed as well.

  15. Mobil lube dewaxing technologies

    SciTech Connect

    Baker, C.L.; McGuiness, M.P.

    1995-09-01

    Currently, the lube refining industry is in a period of transition, with both hydroprocessing and catalytic dewaxing gathering momentum as replacements for solvent extraction and solvent dewaxing. In addition, lube product quality requirements have been increasing, both in the US and abroad. Mobil has developed a broad array of dewaxing catalytic technologies which can serve refiners throughout the stages of this transition. In the future, lube feedstocks which vary in source and wax content will become increasingly important, requiring an optimized system for highest performance. The Mobil Lube Dewaxing (MLDW) process is the work-horse of the catalytic dewaxing technologies, being a robust, low cost technology suitable for both solvent extracted and hydrocracked feeds. The Mobil Selective Dewaxing (MSDW) process has been recently introduced in response to the growth of hydroprocessing. MSDW requires either severely hydrotreated or hydrocracked feeds and provides improved lube yields and VI. For refiners with hydrocrackers and solvent dewaxing units, Mobil Wax Isomerization (MWI) technology can make higher VI base stocks to meet the growing demand for very high quality lube products. A review of these three technologies is presented in this paper.

  16. Testing technology. A Sandia Technology Bulletin

    SciTech Connect

    Goetsch, B.; Floyd, H.L.; Doran, L.

    1994-02-01

    This Sandia publication seeks to facilitate technology exchange with industries, universities, and government agencies. It presents brief highlights of four projects. First is a project to simulate the use of airbags to soften the landing of a probe on Mars. Second is the use of a computer simulation system to facilitate the testing of designs for different experiments, both for experimental layout and results analysis. Third is the development of a system for in-house testing of batteries and capacitive energy storage systems, for deployment at the manufacturing sites, as opposed to final use areas. Finally is information on a noncontact measurement system which can be used to determine axes on objects of different shapes, with high precision.

  17. Technology transfer 1995

    SciTech Connect

    Not Available

    1995-01-01

    Technology Transfer 1995 is intended to inform the US industrial and academic sectors about the many opportunities they have to form partnerships with the US Department of Energy (DOE) for the mutual advantage of the individual institutions, DOE, and the nation as a whole. It also describes some of the growing number of remarkable achievements resulting from such partnerships. These partnership success stories offer ample evidence that Americans are learning how to work together to secure major benefits for the nation--by combining the technological, scientific, and human resources resident in national laboratories with those in industry and academia. The benefits include more and better jobs for Americans, improved productivity and global competitiveness for technology-based industries, and a more efficient government laboratory system.

  18. Glovebox decontamination technology comparison

    SciTech Connect

    Quintana, D.M.; Rodriguez, J.B.; Cournoyer, M.E.

    1999-09-26

    Reconfiguration of the CMR Building and TA-55 Plutonium Facility for mission requirements will require the disposal or recycle of 200--300 gloveboxes or open front hoods. These gloveboxes and open front hoods must be decontaminated to meet discharge limits for Low Level Waste. Gloveboxes and open front hoods at CMR have been painted. One of the deliverables on this project is to identify the best method for stripping the paint from large numbers of gloveboxes. Four methods being considered are the following: conventional paint stripping, dry ice pellets, strippable coatings, and high pressure water technology. The advantages of each technology will be discussed. Last, cost comparisons between the technologies will be presented.

  19. Deepwater seismic acquisition technology

    SciTech Connect

    Caldwell, J.

    1996-09-01

    Although truly new technology is not required for successful acquisition of seismic data in deep Gulf of Mexico waters, it is helpful to review some basic aspects of these seismic surveys. Additionally, such surveys are likely to see early use of some emerging new technology which can improve data quality. Because such items as depth imaging, borehole seismic, 4-D and marine 3-component recording were mentioned in the May 1996 issue of World Oil, they are not discussed again here. However, these technologies will also play some role in the deepwater seismic activities. What is covered in this paper are some new considerations for: (1) longer data records needed in deeper water, (2) some pros and cons of very long steamer use, and (3) two new commercial systems for quantifying data quality.

  20. Utilization Technology Institute | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Utilization Technology Institute Jump to: navigation, search Name: Utilization Technology Institute Place: Des Plaines, IL References: Utilization Technology Institute1...

  1. Sandia Energy - Conventional Water Power: Technology Development

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Technology Development Home Stationary Power Energy Conversion Efficiency Water Power Conventional Water Power: Technology Development Conventional Water Power: Technology...

  2. Stanford Geothermal Workshop - Geothermal Technologies Office...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    - Geothermal Technologies Office Stanford Geothermal Workshop - Geothermal Technologies Office Presentation by Geothermal Technologies Director Doug Hollett at the Stanford ...

  3. SMU Geothermal Conference 2011 - Geothermal Technologies Program...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    SMU Geothermal Conference 2011 - Geothermal Technologies Program SMU Geothermal Conference 2011 - Geothermal Technologies Program DOE Geothermal Technologies Program presentation ...

  4. Microearthquake Technology for EGS Fracture Characterization...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Microearthquake Technology for EGS Fracture Characterization; 2010 Geothermal Technology Program Peer Review Report Microearthquake Technology for EGS Fracture Characterization; ...

  5. Quadrennial Technology Review Workshops | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Quadrennial Technology Review Workshops Quadrennial Technology Review Workshops PDF icon Department of Energy Quadrennial Technology Review Building & Industrial Efficiency ...

  6. Thermoelectric Technology for Automotive Waste Heat Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Technology for Automotive Waste Heat Recovery Thermoelectric Technology for Automotive ... More Documents & Publications Develop Thermoelectric Technology for Automotive Waste Heat ...

  7. Implementing Advances in Transport Security Technologies | Department...

    Office of Environmental Management (EM)

    Implementing Advances in Transport Security Technologies Implementing Advances in Transport Security Technologies Implementing Advances in Transport Security Technologies More...

  8. Technology Transfer Reporting Form | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Transfer Reporting Form Technology Transfer Reporting Form PDF icon Technology Transfer Reporting Form More Documents & Publications Technology Partnership Ombudsman - Roles,...

  9. MASSACHUSETTS INSTITUTE OF TECHNOLOGY | Princeton Plasma Physics...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    MASSACHUSETTS INSTITUTE OF TECHNOLOGY American Fusion News Category: Massachusetts Institute of Technology (MIT) Link: MASSACHUSETTS INSTITUTE OF TECHNOLOGY...

  10. Vehicle Technologies Office: Batteries | Department of Energy

    Energy Saver

    Plug-in Electric Vehicles & Batteries Vehicle Technologies Office: Batteries Vehicle Technologies Office: Batteries Vehicle Technologies Office: Batteries Improving the ...

  11. State Technologies Advancement Collaborative

    SciTech Connect

    David S. Terry

    2012-01-30

    The U. S. Department of Energy (DOE), National Association of State Energy Officials (NASEO), and Association of State Energy Research and Technology Transfer Institutions (ASERTTI) signed an intergovernmental agreement on November 14, 2002, that allowed states and territories and the Federal Government to better collaborate on energy research, development, demonstration and deployment (RDD&D) projects. The agreement established the State Technologies Advancement Collaborative (STAC) which allowed the states and DOE to move RDD&D forward using an innovative competitive project selection and funding process. A cooperative agreement between DOE and NASEO served as the contracting instrument for this innovative federal-state partnership obligating funds from DOE's Office of Energy Efficiency and Renewable Energy and Office of Fossil Energy to plan, fund, and implement RDD&D projects that were consistent with the common priorities of the states and DOE. DOE's Golden Field Office provided Federal oversight and guidance for the STAC cooperative agreement. The STAC program was built on the foundation of prior Federal-State efforts to collaborate on and engage in joint planning for RDD&D. Although STAC builds on existing, successful programs, it is important to note that it was not intended to replace other successful joint DOE/State initiatives such as the State Energy Program or EERE Special Projects. Overall the STAC process was used to fund, through three competitive solicitations, 35 successful multi-state research, development, deployment, and demonstration projects with an overall average non-federal cost share of 43%. Twenty-two states were awarded at least one prime contract, and organizations in all 50 states and some territories were involved as subcontractors in at least one STAC project. Projects were funded in seven program areas: (1) Building Technologies, (2) Industrial Technologies, (3) Transportation Technologies, (4) Distributed Energy Resources, (5

  12. Sensor Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Sensor Technology Assessment for Advanced Reactors Kofi Korsah, R.A. Kisner, C.L. Britton Jr., ORNL Pradeep Ramuhalli, D. W. Wootan, N.C. Anheier Jr., A. A. Diaz, E. H. Hirt, PNNL Richard B. Vilim, H. T. Chien, S. Bakhtiari, S. Sheen, S. Gopalsami, A. Heifetz, S.W. Tam, Y. Park, ANL Belle R. Upadhyaya, Austin Stanford, UTK Advanced Sensors and Instrumentation 2016 NE I&C Review (Webinar) October 12 - 13, 2016 2 Sensor Technology Assessment for Advanced Reactors: Project Goals q Identify

  13. Science and Technology Day

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Science and Technology Day Science and Technology Day February 24, 2015 Tuesday, Feb. 24 Berkeley Lab Building 50 Auditorium Attendance is open to anyone. Remote streaming is available at hosting.epresence.tv/lbl (Broadcast only) Time Title Speaker 8:15 Registration 8:55 Welcome Sudip Dosanjh, NERSC Director 9:00 The Year in Science at NERSC Richard Gerber, NERSC Senior Science Advisor 9:30 Science Keynote: Efficient modeling of laser-plasma accelerators using the ponderomotive-based code

  14. Energy and technology review

    SciTech Connect

    Stowers, I.F.; Crawford, R.B.; Esser, M.A.; Lien, P.L.; O'Neal, E.; Van Dyke, P.

    1982-07-01

    The state of the laboratory address by LLNL Director Roger Batzel is summarized, and a breakdown of the laboratory funding is given. The Livermore defense-related committment is described, including the design and development of advanced nuclear weapons as well as research in inertial confinement fusion, nonnuclear ordnance, and particle beam technology. LLNL is also applying its scientific and engineering resources to the dual challenge of meeting future energy needs without degrading the quality of the biosphere. Some representative examples are given of the supporting groups vital for providing the specialized expertise and new technologies required by the laboratory's major research programs. (GHT)

  15. Roof bolting equipment & technology

    SciTech Connect

    Fiscor, S.

    2009-04-15

    Technology provides an evaluator path to improvement for roof bolting machines. Bucyrus offers three different roof bolts models for various mining conditions. The LRB-15 AR is a single-arm boiler recommended for ranges of 32 inches and above; the dual-arm RB2-52A for ranges of 42 inches and above; and the dual-arm RB2-88A for ranges of 54 inches and above. Design features are discussed in the article. Developments in roof bolting technology by Joy Mining Machinery are reported. 4 photos.

  16. Direct Conversion Technology

    SciTech Connect

    Back, L.H.; Fabris, G.; Ryan, M.A.

    1992-07-01

    The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct conversion systems that have potential application for energy conservation in the end-use sectors. Initially, two systems were selected for exploratory research and advanced development. These are Alkali Metal Thermal-to-Electric Converter (AMTEC) and Two-Phase Liquid Metal MD Generator (LMMHD). This report describes progress that has been made during the first six months of 1992 on research activities associated with these two systems. (GHH)

  17. Energy and Technology Review

    SciTech Connect

    Bookless, W.A.; Quirk, W.J.

    1994-06-01

    This report discusses: The Clementine satellite, the first US satellite to the Moon in more than two decades, sent back more than 1.5 million images of the lunar surface using cameras designed and calibrated by LLNL. An LLNL-developed laser ranger provided information that will be used to construct a relief map of the Moon`s surface; and Uncertainty and the Federal Role in Science and Technology, Ralph E. Gomory was a recent participate in the Director`s Distinguished Lecturer Series at LLNL. In his lecture, he addressed some of the tensions, conflicts, and possible goals related to federal support for science and technology.

  18. Transformational Energy Technologies

    SciTech Connect

    None

    2010-09-01

    Broad Funding Opportunity Announcement Project: In 2009, ARPA-E issued an open call for the most revolutionary energy technologies to form the agencys inaugural program. The first open solicitation was open to ideas from all energy areas and focused on funding projects already equipped with strong research and development plans for their potentially high-impact technologies. The 37 projects chosen received a level of financial support that could accelerate technical progress and catalyze additional investment from the private sector. After only 2 months, ARPA-Es investment in these projects catalyzed an additional $33 million in investments.

  19. OTEC mooring technology

    SciTech Connect

    Shields, D.R.; Wendt, R.L.; Johnson, B.A.

    1982-12-01

    This report summarizes existing technology for mooring components which may be suitable for OTEC use. Due to the platform size, depth of water, and length of design life required for an operational OTEC plant, only large and high capacity mooring components were investigated. The report contains engineering, test, and manufacturer's data on wire rope, synthetic rope (nylon, polyester and Kevlar), anchors, deck fittings and machinery, and design concepts for tension leg platform mooring systems. A significant portion of the effort was directed to the assessment of synthetic rope technology and its application to moorings.

  20. Vehicle Technologies Office

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    David Howell Acting Director, Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting VEHICLE TECHNOLOGIES OFFICE June 8, 2015 2  Transportation is responsible for 69% of U.S. petroleum usage  28% of GHG emissions  On-Road vehicles responsible for 85% of transportation petroleum usage Oil Dependency is Dominated by Vehicles  16.4M LDVs sold in 2014  240 million light-duty vehicles on the road in the U.S.  10-15 years for annual sales penetration  10-15

  1. IMPACCT: Carbon Capture Technology

    SciTech Connect

    2012-01-01

    IMPACCT Project: IMPACCT’s 15 projects seek to develop technologies for existing coal-fired power plants that will lower the cost of carbon capture. Short for “Innovative Materials and Processes for Advanced Carbon Capture Technologies,” the IMPACCT Project is geared toward minimizing the cost of removing carbon dioxide (CO2) from coal-fired power plant exhaust by developing materials and processes that have never before been considered for this application. Retrofitting coal-fired power plants to capture the CO2 they produce would enable greenhouse gas reductions without forcing these plants to close, shifting away from the inexpensive and abundant U.S. coal supply.

  2. Vehicle Technologies Office Merit Review 2014: Advanced Technology Vehicle

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Lab Benchmarking - Level 1 | Department of Energy Advanced Technology Vehicle Lab Benchmarking - Level 1 Vehicle Technologies Office Merit Review 2014: Advanced Technology Vehicle Lab Benchmarking - Level 1 Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about level 1 advanced technology vehicle lab benchmarking. vss030_stutenberg_2014_o.pdf (4.04 MB) More Documents

  3. Technology Commercialization Fund | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Technology Commercialization Fund Technology Commercialization Fund A core responsibility of the Office of Technology Transitions, and the Technology Transfer Coordinator, is to ...

  4. NREL: Technology Transfer - Cooperative Research and Development...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    303-275-4410. Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Agreements for Commercializing Technology CRADAs Work for...

  5. Algae Biofuels Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Algae Biofuels Technology Algae Biofuels Technology Algae Biofuels Technology PDF icon Algae Biofuels Technology More Documents & Publications The Promise and Challenge of Algae as...

  6. Solar Manufacturing Technology | Department of Energy

    Office of Environmental Management (EM)

    Technology to Market Solar Manufacturing Technology Solar Manufacturing Technology The SunShot Solar Manufacturing Technology (SolarMat) program funds the development of ...

  7. East Tennessee Technology Park | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    East Tennessee Technology Park East Tennessee Technology Park East Tennessee Technology Park | September 2012 Aerial View East Tennessee Technology Park | September 2012 Aerial ...

  8. Technology Deployment Annual Report 2010

    SciTech Connect

    Keith Arterburn

    2010-12-01

    This report is a catalog of selected INL technology transfer and commercialization transactions during FY-2010.

  9. Composites Technology for Hydrogen Pipelines

    Energy.gov [DOE]

    Investigate application of composite, fiber-reinforced polymer pipeline technology for hydrogen transmission and distribution

  10. Information Technology Project Guide

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    2008-09-12

    This Guide provides Department of Energy recommended guidelines to ensure that the acquisition of information technology capital assets is performed in compliance with DOE O 413.3A, Program and Project Management for the Acquisition of Capital Assets, dated 7-28-06. Canceled by DOE N 251.105.

  11. Vehicle Technologies Program Results

    SciTech Connect

    2009-06-19

    The Vehicle Technologies Program's progress is closely monitored by both internal and external organizations. The Program's results are detailed in a wide range of documents and tools that can be accessed through the PIR website. Descriptions of these materials are provided on this program results page.

  12. Guiding SSL Technology Advances

    Energy.gov [DOE]

    The U.S. Department of Energy's solid-state lighting (SSL) program builds collaborative industry and research community to guise SSL technology innovation. Provides an overview of DOE's SSL program and its comprehensive approach based on long-term relationships with the SSL industry and community. (April 2015)

  13. ABC Technology Development Program

    SciTech Connect

    1994-10-14

    The Accelerator-Based Conversion (ABC) facility will be designed to accomplish the following mission: `Provide a weapon`s grade plutonium disposition capability in a safe, economical, and environmentally sound manner on a prudent schedule for [50] tons of weapon`s grade plutonium to be disposed on in [20] years.` This mission is supported by four major objectives: provide a reliable plutonium disposition capability within the next [15] years; provide a level of safety and of safety assurance that meets or exceeds that afforded to the public by modern commercial nuclear power plants; meet or exceed all applicable federal, state, and local regulations or standards for environmental compliance; manage the program in a cost effective manner. The ABC Technology Development Program defines the technology development activities that are required to accomplish this mission. The technology development tasks are related to the following topics: blanket system; vessel systems; reactivity control systems; heat transport system components; energy conversion systems; shutdown heat transport systems components; auxiliary systems; technology demonstrations - large scale experiments.

  14. Geothermal Technologies Newsletter

    Energy.gov [DOE]

    The U.S. Department of Energy's (DOE) Geothermal Technologies Newsletter features the latest information about its geothermal research and development efforts. The Geothermal Resources Council (GRC)— a tax-exempt, non-profit, geothermal educational association — publishes quarterly as an insert in its GRC Bulletin.

  15. Nuclear Technology Programs

    SciTech Connect

    Harmon, J.E.

    1990-10-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period April--September 1988. These programs involve R D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions, the thermophysical properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. Another effort is concerned with examining the feasibility of substituting low-enriched for high-enriched uranium in the production of fission-product {sup 99}Mo. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation's high-level waste repositories.

  16. Emerging Technologies and MOUT

    SciTech Connect

    YONAS,GEROLD; MOY,TIMOTHY DAVID

    2000-11-15

    Operating in a potentially hostile city is every soldier's nightmare. The staggering complexity of the urban environment means that deadly threats--or non-combatants-may lurk behind every corner, doorway, or window. Urban operations present an almost unparalleled challenge to the modern professional military. The complexity of urban operations is further amplified by the diversity of missions that the military will be called upon to conduct in urban terrain. Peace-making and peace-keeping missions, urban raids to seize airports or WMD sites or to rescue hostages, and extended urban combat operations all present different sorts of challenges for planners and troops on the ground. Technology almost never serves as a magic bullet, and past predictions of technological miracles pile high on the ash heap of history. At the same time, it is a vital element of planning in the modern age to consider and, if possible, take advantage of emerging technologies. We believe that technologies can assist military operations in urbanized terrain (MOUT) in three primary areas, which are discussed.

  17. Alumina Technology Roadmap

    SciTech Connect

    none,

    2002-02-01

    The Alumina Technology Roadmap outlines a comprehensive long-term research and development plan that defines the industry's collective future and establishes a clear pathway forward. It emphasizes twelve high-priority R&D areas deemed most significant in addressing the strategic goals.

  18. Mobile Technology Management

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    2014-05-15

    The order establishes requirements, assigns responsibilities, and provides guidance for federal mobile technology management and employee use of both government furnished and personally-owned mobile devices within DOE and NNSA. Establishes requirements for use of User Agreements to govern mobile devices used for official duties. Does not cancel other directives.

  19. OHVT Technology Roadmap

    SciTech Connect

    Bradley, R.A.

    2001-10-22

    The U.S. Department of Energy (DOE) Office of Heavy Vehicle Technologies (OHVT) was created in March 1996 to address the public-interest transportation-energy aspects of a set of customers who at that time had been largely unrecognized, namely, the manufacturers, suppliers, and users of heavy transport vehicles (trucks, buses, rail, and inland marine). Previously, the DOE had focused its attention on meeting the needs of the personal-transport-vehicle customer (automobile manufacturers, suppliers, and users). Those of us who were of driving age at the time of the 1973 oil embargo and the 1979 oil price escalation vividly recall the inconvenience and irritation of having to wait in long lines for gasoline to fuel our cars. However, most of us, other than professional truck owners or drivers, were unaware of the impacts that these disruptions in the fuel supply had on those whose livelihoods depend upon the transport of goods. Recognizing the importance of heavy vehicles to the national economic health, the DOE created OHVT with a mission to conduct, in collaboration with its industry partners and their suppliers, a customer-focused national program to research and develop technologies that will enable trucks and other heavy vehicles to be more energy-efficient and able to use alternative fuels while reducing emissions. The Office of Heavy Vehicle Technologies convened a workshop in April 1996 to elicit input from DOE's heavy vehicle industry customers, including truck and bus manufacturers, diesel-engine manufacturers, fuel producers, suppliers to these industries, and the trucking industry. The preparation of a ''technology roadmap'' was one of the key recommendations by this customer group. Therefore, the OHVT Technology Roadmap* was developed in 1996 as a first step in crafting a common vision for a government research and development (R and D) partnership in this increasingly important transportation sector. The approach used in developing the OHVT Technology

  20. Marine & hydrokinetic technology development.

    SciTech Connect

    LiVecchi, Al; Jepsen, Richard Alan

    2010-06-01

    The Wind and Water Power Program supports the development of marine and hydrokinetic devices, which capture energy from waves, tides, ocean currents, the natural flow of water in rivers, and marine thermal gradients, without building new dams or diversions. The program works closely with industry and the Department of Energy's national laboratories to advance the development and testing of marine and hydrokinetic devices. In 2008, the program funded projects to develop and test point absorber, oscillating wave column, and tidal turbine technologies. The program also funds component design, such as techniques for manufacturing and installing coldwater pipes critical for ocean thermal energy conversion (OTEC) systems. Rigorous device testing is necessary to validate and optimize prototypes before beginning full-scale demonstration and deployment. The program supports device testing by providing technology developers with information on testing facilities. Technology developers require access to facilities capable of simulating open-water conditions in order to refine and validate device operability. The program has identified more than 20 tank testing operators in the United States with capabilities suited to the marine and hydrokinetic technology industry. This information is available to the public in the program's Hydrodynamic Testing Facilities Database. The program also supports the development of open-water, grid-connected testing facilities, as well as resource assessments that will improve simulations done in dry-dock and closed-water testing facilities. The program has established two university-led National Marine Renewable Energy Centers to be used for device testing. These centers are located on coasts and will have open-water testing berths, allowing researchers to investigate marine and estuary conditions. Optimal array design, development, modeling and testing are needed to maximize efficiency and electricity generation at marine and hydrokinetic power

  1. Production technology and provenance study of archaeological ceramics from relevant sites in the Alcantara River Valley (North-eastern Sicily, Italy)

    SciTech Connect

    Belfiore, Cristina Maria; Di Bella, Marcella; Triscari, Maurizio; Viccaro, Marco

    2010-04-15

    In this paper, volcanic-rich ceramic remains from the archaeological sites of Francavilla, Naxos and Taormina (Province of Messina, North-eastern Sicily) were studied by using inclusions as main provenance marker. Technological features, such as temper choice, vitrification degree and firing temperatures, were investigated by polarizing microscopy, X-ray diffractometry (XRD) and scanning electron microscopy (SEM). Information on the production centres was obtained through the identification of the source area of raw materials used as temper. Indeed, petrochemical analysis of the volcanic inclusions within the examined ceramics displayed strong affinities with structures/textures and compositions of the locally outcropping mugearitic products, probably ascribed to the eruptive activity of an eccentric vent of Mt. Etna (Mt. Mojo). A local production for the studied pottery samples has been therefore advanced, assuming that the used volcanic temper was easily available from the alluvial deposits along the Alcantara River stream, which is connected to the lava flow of Mt. Mojo.

  2. Overview of VTO Material Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    VTO Material Technologies Stephen Goguen, Jerry Gibbs, Carol Schutte, and Will Joost LM000 June 9, 2015 VEHICLE TECHNOLOGIES OFFICE eere.energy.gov 2 | Vehicle Technologies Program Materials Technologies Materials Technologies $35.6 M Lightweight Materials $28.5 M Values are FY15 enacted Propulsion Materials $7.1 M Properties and Manufacturing Multi-Material Enabling Modeling & Computational Mat. Sci. Engine Materials, Cast Al & Fe High Temp Alloys Exhaust Sys. Materials, Low T Catalysts

  3. Chevron, GE form Technology Alliance

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Chevron, GE form Technology Alliance February 3, 2014 HOUSTON, TX, Feb. 3, 2014-Chevron Energy Technology Company and GE Oil & Gas announced today the creation of the Chevron GE Technology Alliance, which will develop and commercialize valuable technologies to solve critical needs for the oil and gas industry. The Alliance builds upon a current collaboration on flow analysis technology for oil and gas wells. It will leverage research and development from GE's newest Global Research Center,

  4. Technology Reviews | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Technology Reviews Technology Reviews Selecting a distributed energy (DE) technology for a specific application depends on many factors. Considerations include the amount of power needed, the duty cycle, space constraints, thermal needs, emission regulations, fuel availability, utility prices, and interconnection issues. The following technology reviews include descriptions of a variety of DE and combined heat and power (CHP) technologies, providing (when available) such parameters as

  5. Building Technologies Office (BTO) Sensors and Controls Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Sensors and Controls Technologies Emerging Technologies R&D Program Marina Sofos, Ph.D. marina.sofos@ee.doe.gov 2 BTO Emerging Technologies R&D Goals As a result of ET sponsored research, cost effective technologies will be introduced into the marketplace by 2020 that will be capable of reducing a building's energy use by 25% relative to 2010 cost effective technologies, and 35% by 2030. Technology-specific targets relative to the 2030 primary energy consumption projected by the 2010

  6. Gas Storage Technology Consortium

    SciTech Connect

    Joel Morrison; Elizabeth Wood; Barbara Robuck

    2010-09-30

    The EMS Energy Institute at The Pennsylvania State University (Penn State) has managed the Gas Storage Technology Consortium (GSTC) since its inception in 2003. The GSTC infrastructure provided a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. The GSTC received base funding from the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) Oil & Natural Gas Supply Program. The GSTC base funds were highly leveraged with industry funding for individual projects. Since its inception, the GSTC has engaged 67 members. The GSTC membership base was diverse, coming from 19 states, the District of Columbia, and Canada. The membership was comprised of natural gas storage field operators, service companies, industry consultants, industry trade organizations, and academia. The GSTC organized and hosted a total of 18 meetings since 2003. Of these, 8 meetings were held to review, discuss, and select proposals submitted for funding consideration. The GSTC reviewed a total of 75 proposals and committed co-funding to support 31 industry-driven projects. The GSTC committed co-funding to 41.3% of the proposals that it received and reviewed. The 31 projects had a total project value of $6,203,071 of which the GSTC committed $3,205,978 in co-funding. The committed GSTC project funding represented an average program cost share of 51.7%. Project applicants provided an average program cost share of 48.3%. In addition to the GSTC co-funding, the consortium provided the domestic natural gas storage industry with a technology transfer and outreach infrastructure. The technology transfer and outreach were conducted by having project mentoring teams and a GSTC website, and by working closely with the Pipeline Research Council International (PRCI) to jointly host

  7. Chapter 4: Advancing Clean Electric Power Technologies | Advanced Plant Technologies Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Advanced Plant Technologies Chapter 4: Technology Assessments Overview of Advanced Plant Technologies for Solid Fuels Integral to management of carbon emissions from fossil and biomass power generation are efforts to improve base plant costs and efficiencies. The advanced plant technologies are combined with carbon capture and storage (CCS) technologies to minimize both emissions and costs. The non-capture components of a power plant offer opportunity for improving fuel conversion efficiencies,

  8. Chapter 4: Advancing Clean Electric Power Technologies | Carbon Dioxide Capture Technologies Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Technologies Carbon Dioxide Storage Technologies Crosscutting Technologies in Carbon Dioxide Capture and Storage Fast-spectrum Reactors Geothermal Power High Temperature Reactors Hybrid Nuclear-Renewable Energy Systems Hydropower Light Water Reactors Marine and Hydrokinetic Power Nuclear Fuel Cycles Solar Power Stationary Fuel Cells Supercritical Carbon Dioxide Brayton Cycle Wind Power ENERGY U.S. DEPARTMENT OF Clean Power Quadrennial Technology Review 2015 1 Quadrennial Technology Review 2015

  9. Chapter 4: Advancing Clean Electric Power Technologies | Carbon Dioxide Storage Technologies Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Technologies Crosscutting Technologies in Carbon Dioxide Capture and Storage Fast-spectrum Reactors Geothermal Power High Temperature Reactors Hybrid Nuclear-Renewable Energy Systems Hydropower Light Water Reactors Marine and Hydrokinetic Power Nuclear Fuel Cycles Solar Power Stationary Fuel Cells Supercritical Carbon Dioxide Brayton Cycle Wind Power ENERGY U.S. DEPARTMENT OF Clean Power Quadrennial Technology Review 2015 1 Quadrennial Technology Review 2015 Carbon Dioxide Storage Technologies

  10. Advanced Technology Vehicle Testing

    SciTech Connect

    James Francfort

    2004-06-01

    The goal of the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) is to increase the body of knowledge as well as the awareness and acceptance of electric drive and other advanced technology vehicles (ATV). The AVTA accomplishes this goal by testing ATVs on test tracks and dynamometers (Baseline Performance testing), as well as in real-world applications (Fleet and Accelerated Reliability testing and public demonstrations). This enables the AVTA to provide Federal and private fleet managers, as well as other potential ATV users, with accurate and unbiased information on vehicle performance and infrastructure needs so they can make informed decisions about acquiring and operating ATVs. The ATVs currently in testing include vehicles that burn gaseous hydrogen (H2) fuel and hydrogen/CNG (H/CNG) blended fuels in internal combustion engines (ICE), and hybrid electric (HEV), urban electric, and neighborhood electric vehicles. The AVTA is part of DOE's FreedomCAR and Vehicle Technologies Program.

  11. OHVT technology roadmap

    SciTech Connect

    1997-10-01

    The Office of Heavy Vehicle Technologies (OHVT) Technology Roadmap presents the OHVT multiyear program plan. It was developed in response to recommendations by DOE`s heavy vehicle industry customers, including truck and bus manufacturers, diesel engine manufacturers, fuel producers, suppliers to these industries, and the trucking industry. The technical plan is presented for three classes of trucks: (1) class 7-8 (large, on-highway trucks); (2) class 3-6 (medium duty trucks); and (3) class 1-2 (pickups, vans, and sport utility vehicles). The Roadmap documents program goals, technical targets, and technical approaches. Issues addressed include engine efficiency, fuel efficiency, power requirements, emissions, and fuel flexibility. 8 figs., 9 tabs.

  12. Direct conversion technology

    SciTech Connect

    Massier, P.F.; Back, L.H.; Ryan, M.A.; Fabris, G.

    1992-01-07

    The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct conversion systems that have potential application for energy conservation in the end-use sectors. This report contains progress of research on the Alkali Metal Thermal-to-Electric Converter (AMTEC) and on the Two-Phase Liquid-Metal MHD Electrical Generator (LMMHD) for the period January 1, 1991 through December 31, 1991. Research on AMTEC and on LMMHD was initiated during October 1987. Reports prepared on previous occasions (Refs. 1--5) contain descriptive and performance discussions of the following direct conversion concepts: thermoelectric, pyroelectric, thermionic, thermophotovoltaic, thermoacoustic, thermomagnetic, thermoelastic (Nitionol heat engine); and also, more complete descriptive discussions of AMTEC and LMMHD systems.

  13. Chlorofluorocarbon leak detection technology

    SciTech Connect

    Munday, E.B.

    1990-12-01

    There are about 590 large coolant systems located at the Portsmouth Gaseous Diffusion Plant (PORTS) and the Paducah Gaseous Diffusion Plant (PGDP) leaking nearly 800,000 lb of R-114 refrigerant annually (1989 estimate). A program is now under way to reduce the leakage to 325,000 lb/year -- an average loss of 551 lb/year (0.063 lb/h) per coolant system, some of which are as large as 800 ft. This report investigates leak detection technologies that can be used to locate leaks in the coolant systems. Included are descriptions, minimum leak detection rate levels, advantages, disadvantages, and vendor information on the following technologies: bubbling solutions; colorimetric leak testing; dyes; halogen leak detectors (coronea discharge detectors; halide torch detectors, and heated anode detectors); laser imaging; mass spectroscopy; organic vapor analyzers; odorants; pressure decay methods; solid-state electrolytic-cell gas sensors; thermal conductivity leak detectors; and ultrasonic leak detectors.

  14. Image processing technology

    SciTech Connect

    Van Eeckhout, E.; Pope, P.; Balick, L.

    1996-07-01

    This is the final report of a two-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The primary objective of this project was to advance image processing and visualization technologies for environmental characterization. This was effected by developing and implementing analyses of remote sensing data from satellite and airborne platforms, and demonstrating their effectiveness in visualization of environmental problems. Many sources of information were integrated as appropriate using geographic information systems.

  15. SRNL LDRD - Developed Technologies

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Developed Technologies Porous Wall Hollow Glass Microspheres Porous Wall Hollow Glass Microspheres Tiny Glass Spheres for Energy Storage, Medical Applications and Other Uses Researchers at SRNL have developed a new class of materials, dubbed porous wall hollow glass microspheres (PWHGMs). These miniature balloon-like structures are capable of containing and releasing a variety of materials, with exciting potential for use in areas that range from energy to biomedicine. Click here for more on

  16. Technology Readiness Assessment Report

    Office of Environmental Management (EM)

    Technology Readiness Assessment Report March 2010 U U . . S S . . D D e e p p a a r r t t m m e e n n t t o o f f E E n n e e r r g g y y O O f f f f i i c c e e o o f f E E n n v ...

  17. Benchmarking foreign electronics technologies

    SciTech Connect

    Bostian, C.W.; Hodges, D.A.; Leachman, R.C.; Sheridan, T.B.; Tsang, W.T.; White, R.M.

    1994-12-01

    This report has been drafted in response to a request from the Japanese Technology Evaluation Center`s (JTEC) Panel on Benchmarking Select Technologies. Since April 1991, the Competitive Semiconductor Manufacturing (CSM) Program at the University of California at Berkeley has been engaged in a detailed study of quality, productivity, and competitiveness in semiconductor manufacturing worldwide. The program is a joint activity of the College of Engineering, the Haas School of Business, and the Berkeley Roundtable on the International Economy, under sponsorship of the Alfred P. Sloan Foundation, and with the cooperation of semiconductor producers from Asia, Europe and the United States. Professors David A. Hodges and Robert C. Leachman are the project`s Co-Directors. The present report for JTEC is primarily based on data and analysis drawn from that continuing program. The CSM program is being conducted by faculty, graduate students and research staff from UC Berkeley`s Schools of Engineering and Business, and Department of Economics. Many of the participating firms are represented on the program`s Industry Advisory Board. The Board played an important role in defining the research agenda. A pilot study was conducted in 1991 with the cooperation of three semiconductor plants. The research plan and survey documents were thereby refined. The main phase of the CSM benchmarking study began in mid-1992 and will continue at least through 1997. reports are presented on the manufacture of integrated circuits; data storage; wireless technology; human-machine interfaces; and optoelectronics. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  18. Science & Technology

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Science & Technology Ultrathin Polymer Film Wins R&D 100 Award Dante Upgrade Sheds 'Light' on Hohlraum Temperatures A recent upgrade of NIF's workhorse Dante x-ray diagnostic is helping researchers gain a better understanding of the temperatures produced in NIF hohlraums. When heated by NIF's laser beams, the hohlraum can reach temperatures in excess of three million degrees and glow beyond white-hot, producing x rays which can be used for a wide variety of physics experiments. Hohlraum

  19. Science & Technology - 2014

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    4 / june Science & Technology - 2014 June First Isotope-Specific Radiograph Using MEGa-rays Produced LLNL and its partners from the Institute Laue Langevin (ILL) in Grenoble, France, the Technical University of Darmstadt in Germany, and the European Synchrotron Radiation Facility (ESRF) in Grenoble have conducted a series of experiments to validate the performance of the LLNL-patented Dual Isotope Notch Observation (DINO) detector system. In a successful test of this Laboratory Directed

  20. Science & Technology - 2015

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    5 / june Science & Technology - 2015 June Dante: Measuring NIF's Inferno Measuring NIF Implosions with a Bang Improved understanding of implosion physics is essential for NIF to continue on the path to ignition. By obtaining precise measurements of the conditions in NIF implosions, such as shock and compression "bang time," researchers can use the results to validate mathematical models of implosion dynamics. Bang time is the moment of peak emission of the x rays, neutrons and