National Library of Energy BETA

Sample records for tandem mirror experiment

  1. Summary of results from the Tandem Mirror Experiment (TMX)

    SciTech Connect

    Simonen, T.C.

    1981-02-26

    This report summarizes results from the successful experimental operation of the Tandem Mirror Experiment (TMX) over the period October 1978 through September 1980. The experimental program, summarized by the DOE milestones given in Table 1-1, had three basic phases: (1) an 8-month checkout period, October 1978 through May 1979; (2) a 6-month initial period of operation, June through November 1979, during which the basic principles of the tandem configuration were demonstrated (i.e., plasma confinement was improved over that of a single-cell mirror); and (3) a 10-month period, December 1979 through September 1980, during which the initial TMX results were corroborated by additional diagnostic measurements and many detailed physics investigations were carried out. This report summarizes the early results, presents results of recent data analysis, and outlines areas of ongoing research and data analysis which will be reported in future journal publications.

  2. Photo of the Week: Inside the Tandem Mirror Experiment | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Tandem Mirror Experiment Photo of the Week: Inside the Tandem Mirror Experiment December 28, 2012 - 2:22pm Addthis This 1978 photo shows two workers inside the Mirror Fusion Test Facility, a magnetic confinement fusion device designed and built at Lawrence Livermore National Laboratory. In this experiment, magnetic mirrors are placed at both ends of a central magnetic tube. Very hot and dense plasmas inside each mirror enhanced the confinement of another plasma inside the central

  3. Construction and operational experience of the Tandem Mirror Experiment-Upgrade (TMX-U)

    SciTech Connect

    Chargin, A.K.; Calderon, M.O.; Moore, T.L.

    1983-07-01

    The Tandem Mirror Experiment-Upgrade (TMX-U) incorporates two new features at Lawrence Livermore National Laboratory (LLNL) tandem mirror program, thermal barriers in the end plugs and injection of the neutral beams at several oblique angles. The thermal barriers isolate the electrons in the end plugs from those in the central cell, making it possible to heat them independently with microwaves. In addition, this innovation produces a large potential gradient in the end plugs with lower magnetic fields and lower neutral-beam energies than would be possible in a conventional tandem mirror device. The TMX-U is also designed to test neutral-beam-injection angles as an experimental parameter. We use angles other than 90/sup 0/ to produce a plasma with improved microstability.

  4. Applications of small computers for systems control on the Tandem Mirror Experiment-Upgrade

    SciTech Connect

    Bork, R.G.; Kane, R.J.; Moore, T.L.

    1983-11-29

    Desktop computers operating into a CAMAC-based interface are used to control and monitor the operation of the various subsystems on the Tandem Mirror Experiment-Upgrade (TMX-U) at Lawrence Livermore National Laboratory (LLNL). These systems include: shot sequencer/master timing, neutral beam control (four consoles), magnet power system control, ion-cyclotron resonant heating (ICRH) control, thermocouple monitoring, getter system control, gas fueling system control, and electron-cyclotron resonant heating (ECRH) monitoring. Two additional computers are used to control the TMX-U neutral beam test stand and provide computer-aided repair/test and development of CAMAC modules. These machines are usually programmed in BASIC, but some codes have been interpreted into assembly language to increase speed. Details of the computer interfaces and system complexity are described as well as the evolution of the systems to their present states.

  5. Fueling of tandem mirror reactors

    SciTech Connect

    Gorker, G.E.; Logan, B.G.

    1985-01-01

    This paper summarizes the fueling requirements for experimental and demonstration tandem mirror reactors (TMRs), reviews the status of conventional pellet injectors, and identifies some candidate accelerators that may be needed for fueling tandem mirror reactors. Characteristics and limitations of three types of accelerators are described; neutral beam injectors, electromagnetic rail guns, and laser beam drivers. Based on these characteristics and limitations, a computer module was developed for the Tandem Mirror Reactor Systems Code (TMRSC) to select the pellet injector/accelerator combination which most nearly satisfies the fueling requirements for a given machine design.

  6. Tandem mirror technology demonstration facility

    SciTech Connect

    Not Available

    1983-10-01

    This report describes a facility for generating engineering data on the nuclear technologies needed to build an engineering test reactor (ETR). The facility, based on a tandem mirror operating in the Kelley mode, could be used to produce a high neutron flux (1.4 MW/M/sup 2/) on an 8-m/sup 2/ test area for testing fusion blankets. Runs of more than 100 h, with an average availability of 30%, would produce a fluence of 5 mW/yr/m/sup 2/ and give the necessary experience for successful operation of an ETR.

  7. Neutral Beam Injection Experiments and Related Behavior of Neutral Particles in the GAMMA 10 Tandem Mirror

    SciTech Connect

    Nakashima, Y. [Plasma Research Center, University of Tsukuba (Japan); Watanabe, K. [Plasma Research Center, University of Tsukuba (Japan); Higashizono, Y. [Plasma Research Center, University of Tsukuba (Japan); Ohki, T. [Plasma Research Center, University of Tsukuba (Japan); Ogita, T. [Plasma Research Center, University of Tsukuba (Japan); Shoji, M. [National Institute for Fusion Science(Japan); Kobayashi, S. [Institute of Advanced Energy, Kyoto University (Japan); Islam, M.K. [Plasma Research Center, University of Tsukuba (Japan); Kubota, Y. [Plasma Research Center, University of Tsukuba (Japan); Yoshikawa, M. [Plasma Research Center, University of Tsukuba (Japan); Kobayashi, T. [Plasma Research Center, University of Tsukuba (Japan); Yamada, M. [Plasma Research Center, University of Tsukuba (Japan); Murakami, R. [Plasma Research Center, University of Tsukuba (Japan); Cho, T. [Plasma Research Center, University of Tsukuba (Japan)

    2005-01-15

    Results of neutral beam injection (NBI) experiments in the GAMMA 10 tandem mirror plasmas are presented together with the neutral particle behavior observed in the experiments. A hydrogen neural beam was injected into the hot-ion-mode plasmas by using the injector installed in the central-cell for the plasma heating and fueling. High-energy ions produced by NBI were observed and its energy distribution was measured for the first time with a neutral particle analyzer installed in the central-cell. The temporal and spatial behavior of hydrogen was observed with axially aligned H{sub {alpha}} detectors installed from the central midplane to anchor-cell. Enhancement of hydrogen recycling due to the beam injection and the cause of the observed decrease in plasma diamagnetism are discussed. The Monte-Carlo code DEGAS for neutral transport simulation was applied to the GAMMA 10 central-cell and a 3-dimensional simulation was performed in the NBI experiment. Localization of neutral particle during the beam injection is investigated based on the simulation and it was found that the increased recycling due to the beam injection was dominant near the injection port.

  8. Spectroscopic analysis of low Z impurities in the Tandem Mirror Experiment-upgrade

    SciTech Connect

    Yu, T.L.

    1986-09-01

    Two absolutely calibrated EUV instruments have been used to study the impurity characteristics in the Tandem Mirror Experiment-Upgrade (TMX-U). One instrument is a normal incidence spectrograph that measures the time histories of several impurity emission lines (300 to 1800 A) in a single shot; radial scans can be obtained on a shot-by-shot basis. The other instrument is a monochromator that measures time-resolved radial profiles of a given impurity emission line in a single shot. The common intrinsic impurities measured in TMX-U are C,N,O and Ti. It has been shown that large fractions of the oxygen and nitrogen in the plasma are associated with the neutral beams while the main source of carbon is the plasma wall. In general, the concentration of each of the impurities is low (<1%), and the power radiated by them is less than 10 kW, which is a small portion of the total input power to the plasma. The concentrations of the impurities can be reduced substantially blow discharge cleaning and titanium gettering. No significant accumulation of impurity ions in the thermal barrier region has been observed.

  9. Changes and developments in Electron Cyclotron Resonant Heating (ECRH) on the Tandem Mirror Experiment Upgrade (TMX-U)

    SciTech Connect

    Anderson, A.T.; Brooksby, C.A.; Calderon, M.O.; Ellis, R.; Felker, B.; Horton, R.D.; Stallard, B.W.; Wash, T.A.

    1985-11-14

    This paper will describe changes to the previously reported Electron Cyclotron Resonant Heating (ECRH) circular waveguide systems that deliver power to the Tandem Mirror Experiment Upgrade (TMX-U) machine. Four gyrotrons and associated waveguide systems, operating at 28-GHz and 200 kW each, helped establish electrostatic plugging in the end cells of TMX-U. A fifth gyrotron has been installed to power two resonant locations in the end plugs. This system and the pair of 10 kG heaters now use a slot radiator to obtain a more uniform coverage of the plasma. In addition, four 18-GHz ECRH systems have been added to the machine. 3 refs., 7 figs.

  10. Tandem Mirror Reactor Systems Code (Version I)

    SciTech Connect

    Reid, R.L.; Finn, P.A.; Gohar, M.Y.; Barrett, R.J.; Gorker, G.E.; Spampinaton, P.T.; Bulmer, R.H.; Dorn, D.W.; Perkins, L.J.; Ghose, S.

    1985-09-01

    A computer code was developed to model a Tandem Mirror Reactor. Ths is the first Tandem Mirror Reactor model to couple, in detail, the highly linked physics, magnetics, and neutronic analysis into a single code. This report describes the code architecture, provides a summary description of the modules comprising the code, and includes an example execution of the Tandem Mirror Reactor Systems Code. Results from this code for two sensitivity studies are also included. These studies are: (1) to determine the impact of center cell plasma radius, length, and ion temperature on reactor cost and performance at constant fusion power; and (2) to determine the impact of reactor power level on cost.

  11. Tandem mirror plasma confinement apparatus

    DOEpatents

    Fowler, T. Kenneth

    1978-11-14

    Apparatus and method for confining a plasma in a center mirror cell by use of two end mirror cells as positively charged end stoppers to minimize leakage of positive particles from the ends of the center mirror cell.

  12. Axisymmetric Tandem Mirror Magnetic Fusion Energy Power Plant...

    Office of Scientific and Technical Information (OSTI)

    A fusion power plant is described that utilizes a new version of the tandem mirror device including spinning liquid walls. The magnetic configuration is evaluated with an ...

  13. Axisymmetric Tandem Mirror Magnetic Fusion Energy Power Plant...

    Office of Scientific and Technical Information (OSTI)

    Magnetic Fusion Energy Power Plant with Thick Liquid-Walls Citation Details In-Document Search Title: Axisymmetric Tandem Mirror Magnetic Fusion Energy Power Plant with Thick ...

  14. Engineering problems of tandem-mirror reactors

    SciTech Connect

    Moir, R.W.; Barr, W.L.; Boghosian, B.M.

    1981-10-22

    We have completed a comparative evaluation of several end plug configurations for tandem mirror fusion reactors with thermal barriers. The axi-cell configuration has been selected for further study and will be the basis for a detailed conceptual design study to be carried out over the next two years. The axi-cell end plug has a simple mirror cell produced by two circular coils followed by a transition coil and a yin-yang pair, which provides for MHD stability. This paper discusses some of the many engineering problems facing the designer. We estimated the direct cost to be 2$/W/sub e/. Assuming total (direct and indirect) costs to be twice this number, we need to reduce total costs by factors between 1.7 and 2.3 to compete with future LWRs levelized cost of electricity. These reductions may be possible by designing magnets producing over 20T made possible by use of combinations of superconducting and normal conducting coils as well as improvements in performance and cost of neutral beam and microwave power systems. Scientific and technological understanding and innovation are needed in the area of thermal barrier pumping - a process by which unwanted particles are removed (pumped) from certain regions of velocity and real space in the end plug. Removal of exhaust fuel ions, fusion ash and impurities by action of a halo plasma and plasma dump in the mirror end region is another challenging engineering problem discussed in this paper.

  15. Parametric systems analysis for tandem mirror hybrids

    SciTech Connect

    Lee, J.D.; Chapin, D.L.; Chi, J.W.H.

    1980-09-01

    Fusion fission systems, consisting of fissile producing fusion hybrids combining a tandem mirror fusion driver with various blanket types and net fissile consuming LWR's, have been modeled and analyzed parametrically. Analysis to date indicates that hybrids can be competitive with mined uranium when U/sub 3/O/sub 8/ cost is about 100 $/lb., adding less than 25% to present day cost of power from LWR's. Of the three blanket types considered, uranium fast fission (UFF), thorium fast fission (ThFF), and thorium fission supressed (ThFS), the ThFS blanket has a modest economic advantage under most conditions but has higher support ratios and potential safety advantages under all conditions.

  16. Charge exchange cooling in the tandem mirror plasma confinement apparatus

    DOEpatents

    Logan, B. Grant

    1978-01-01

    Method and apparatus for cooling a plasma of warm charged species confined in the center mirror cell of the tandem mirror apparatus by injecting cold neutral species of the plasma into at least one mirroring region of the center mirror cell, the cooling due to the loss of warm charged species through charge exchange with the cold neutral species with resulting diffusion of the warm neutral species out of the plasma.

  17. The influence of impurity and particle control on TMX-U (Tandem Mirror Experiment Upgrade) plasma operation

    SciTech Connect

    Allen, S.L.; Yu, T.L.; Foote, J.H.; Pickles, W.L.

    1985-11-01

    A variety of techniques are used in TMX-U to control impurities and reflux: repeated plasma pulses, glow discharge cleaning (GDC), and gettering. A series of experiments under three different plasma-wall conditions was performed: no wall conditioning after a machine maintenance cycle, a glow-discharge-cleaned wall, and a gettered wall. Several plasma diagnostics to determine the effect of these procedures on TMX-U plasma parameters were used. Spectroscopic measurements indicated that GDC reduced impurities and increased the electron temperature, enabling full-duration beam-sustained plasma operation without a large number of repeated plasma pulses. Gettering further reduced the impurities and the neutral pressure, and this improved condition persisted for several shots after gettering was stopped. Measurements from residual gas analyzers and an end-loss ion spectrometer indicated that hydrogen is present in the plasma during the initial deuterium operation after pumpdown; the hydrogen level decreased after plasma operation with gettering, indicating reduced wall recycling.

  18. Synfuels from fusion: producing hydrogen with the Tandem Mirror Reactor and thermochemical cycles

    SciTech Connect

    Werner, R.W.; Ribe, F.L.

    1981-01-21

    This volume contains the following sections: (1) the Tandem Mirror fusion driver, (2) the Cauldron blanket module, (3) the flowing microsphere, (4) coupling the reactor to the process, (5) the thermochemical cycles, and (6) chemical reactors and process units. (MOW)

  19. Synfuels from fusion: using the tandem mirror reactor and a thermochemical cycle to produce hydrogen

    SciTech Connect

    Werner, R.W.

    1982-11-01

    This study is concerned with the following area: (1) the tandem mirror reactor and its physics; (2) energy balance; (3) the lithium oxide canister blanket system; (4) high-temperature blanket; (5) energy transport system-reactor to process; (6) thermochemical hydrogen processes; (7) interfacing the GA cycle; (8) matching power and temperature demands; (9) preliminary cost estimates; (10) synfuels beyond hydrogen; and (11) thermodynamics of the H/sub 2/SO/sub 4/-H/sub 2/O system. (MOW)

  20. Development of polarization-controlled multi-pass Thomson scattering system in the GAMMA 10 tandem mirror

    SciTech Connect

    Yoshikawa, M.; Morimoto, M.; Shima, Y.; Kohagura, J.; Sakamoto, M.; Nakashima, Y.; Imai, T. [Plasma Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 (Japan); Yasuhara, R.; Yamada, I.; Kawahata, K.; Funaba, H. [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki, Gifu 509-5292 (Japan); Minami, T. [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan)

    2012-10-15

    In the GAMMA 10 tandem mirror, the typical electron density is comparable to that of the peripheral plasma of torus-type fusion devices. Therefore, an effective method to increase Thomson scattering (TS) signals is required in order to improve signal quality. In GAMMA 10, the yttrium-aluminum-garnet (YAG)-TS system comprises a laser, incident optics, light collection optics, signal detection electronics, and a data recording system. We have been developing a multi-pass TS method for a polarization-based system based on the GAMMA 10 YAG TS. To evaluate the effectiveness of the polarization-based configuration, the multi-pass system was installed in the GAMMA 10 YAG-TS system, which is capable of double-pass scattering. We carried out a Rayleigh scattering experiment and applied this double-pass scattering system to the GAMMA 10 plasma. The integrated scattering signal was made about twice as large by the double-pass system.

  1. Soft x-ray intensity profile measurements of electron cyclotron heated plasmas using semiconductor detector arrays in GAMMA 10 tandem mirror

    SciTech Connect

    Minami, R., E-mail: minami@prc.tsukuba.ac.jp; Imai, T.; Kariya, T.; Numakura, T.; Eguchi, T.; Kawarasaki, R.; Nakazawa, K.; Kato, T.; Sato, F.; Nanzai, H.; Uehara, M.; Endo, Y.; Ichimura, M. [Plasma Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan)

    2014-11-15

    Temporally and spatially resolved soft x-ray analyses of electron cyclotron heated plasmas are carried out by using semiconductor detector arrays in the GAMMA 10 tandem mirror. The detector array has 16-channel for the measurements of plasma x-ray profiles so as to make x-ray tomographic reconstructions. The characteristics of the detector array make it possible to obtain spatially resolved plasma electron temperatures down to a few tens eV and investigate various magnetohydrodynamic activities. High power electron cyclotron heating experiment for the central-cell region in GAMMA 10 has been started in order to reduce the electron drag by increasing the electron temperature.

  2. Generating end plug potentials in tandem mirror plasma confinement by heating thermal particles so as to escape low density end stoppering plasmas

    DOEpatents

    Baldwin, David E.; Logan, B. Grant

    1981-01-01

    The invention provides a method and apparatus for raising the potential of a magnetic mirror cell by pumping charged particles of the opposite sign of the potential desired out of the mirror cell through excitation, with the pumping being done by an externally imposed field at the bounce frequency of the above charged particles. These pumped simple mirror cells then provide end stoppering for a center mirror cell for the tandem mirror plasma confinement apparatus. For the substantially complete pumping case, the end plugs of a tandem mirror can be up to two orders of magnitude lower in density for confining a given center mirror cell plasma than in the case of end plugs without pumping. As a result the decrease in recirculating power required to keep the system going, the technological state of the art required, and the capital cost are all greatly lowered.

  3. Generating end plug potentials in tandem mirror plasma confinement by heating thermal particles so as to escape low density end stoppering plasmas

    DOEpatents

    Baldwin, D.E.; Logan, B.G.

    The invention provides a method and apparatus for raising the potential of a magnetic mirror cell by pumping charged particles of the opposite sign of the potential desired out of the mirror cell through excitation, with the pumping being done by an externally imposed field at the bounce frequence of the above charged particles. These pumped simple mirror cells then provide end stoppering for a center mirror cell for the tandem mirror plasma confinement apparatus. For the substantially complete pumping case, the end plugs of a tandem mirror can be up to two orders of magnitude lower in density for confining a given center mirror cell plasma than in the case of end plugs without pumping. As a result the decrease in recirculating power required to keep the system going, the technical state of the art required, and the capital cost are all greatly lowered.

  4. Conceptual design study FY 1981: synfuels from fusion - using the tandem mirror reactor and a thermochemical cycle to produce hydrogen

    SciTech Connect

    Krikorian, O.H.

    1982-02-09

    This report represents the second year's effort of a scoping and conceptual design study being conducted for the express purpose of evaluating the engineering potential of producing hydrogen by thermochemical cycles using a tandem mirror fusion driver. The hydrogen thus produced may then be used as a feedstock to produce fuels such as methane, methanol, or gasoline. The main objective of this second year's study has been to obtain some approximate cost figures for hydrogen production through a conceptual design study.

  5. TMRBAR: a code to calculate plasma parameters for tandem-mirror reactors operating in the MARS mode

    SciTech Connect

    Campbell, R.B.

    1983-08-30

    The purpose of this report is to document the plasma power balance model currently used by LLNL to calculate steady state operating points for tandem mirror reactors. The code developed from this model, TMRBAR, has been used to predict the performance and define supplementary heating requirements for drivers used in the Mirror Advanced Reactor Study (MARS) and for the Fusion Power Demonstration (FPD) study. The equations solved included particle and energy balance for central cell and end cell species, quasineutrality at several cardinal points in the end cell region, as well as calculations of volumes, densities and average energies based on given constraints of beta profiles and fusion power output. Alpha particle ash is treated self-consistently, but no other impurity species is treated.

  6. Fokker-Planck equation in mirror research

    SciTech Connect

    Post, R.F.

    1983-08-11

    Open confinement systems based on the magnetic mirror principle depend on the maintenance of particle distributions that may deviate substantially from Maxwellian distributions. Mirror research has therefore from the beginning relied on theoretical predictions of non-equilibrium rate processes obtained from solutions to the Fokker-Planck equation. The F-P equation plays three roles: Design of experiments, creation of classical standards against which to compare experiment, and predictions concerning mirror based fusion power systems. Analytical and computational approaches to solving the F-P equation for mirror systems will be reviewed, together with results and examples that apply to specific mirror systems, such as the tandem mirror.

  7. New simulation capability for gamma ray mirror experiments

    SciTech Connect

    Descalle, Marie-Anne; Ruz-Armendariz, Jaime; Decker, Todd; Brejhnolt, Nicolai; Pivovaroff, Michael

    2015-09-28

    This report provides a description of the simulation toolkit developed at Lawrence Livermore National Laboratory to support the design of nuclear safeguards experiments using grazing incidence multilayer mirrors in the energy band of uranium (U) and plutonium (Pu) emission lines. This effort was motivated by the data analysis of a scoping experiment at the Irradiated Fuels Examination Facility (IFEL) at Oak Ridge National Laboratory in FY13 and of a benchmark experiment at the Idaho National Laboratory (INL) in FY14 that highlighted the need for predictive tools built around a ray-tracing capability. This report presents the simulation toolkit and relevant results such as the simulated spectra for TMI, MOX, and ATM106 fuel rods based on spent fuel models provided by Los Alamos National Laboratory and for a virgin high 240Pu-content fuel plate, as well as models of the IFEL and INL experiments implemented in the ray tracing tool. The beam position and height were validated against the INL ~60 keV americium data. Examples of alternate configurations of the optics or experimental set-up illustrate the future use of the simulation suite to guide the next IFEL experimental campaign.

  8. Application of structural-mechanics methods to the design of large tandem-mirror fusion devices (MFTF-B). Revision 1

    SciTech Connect

    Karpenko, V.N.; Ng, D.S.

    1985-08-15

    The Mirror Fusion Test Facility (MFTF-B) at Lawrence Livermore National Laboratory requires state-of-the-art structural-mechanics methods to deal with access constraints for plasma heating and diagnostics, alignment requirements, and load complexity and variety. Large interactive structures required an integrated analytical approach to achieve a reasonable level of overall system optimization. The Tandem Magnet Generator (TMG) creates a magnet configuration for the EFFI calculation of electromagnetic-field forces that, coupled with other loads, form the input loading to magnet and vessel finite-element models. The analytical results provide the data base for detailed design of magnet, vessel, foundation, and interaction effects. 13 refs.

  9. Field Experience with 3-Sun Mirror Module Systems

    SciTech Connect

    Fraas, Dr. Lewis; Avery, James E.; Huang, H,; Minkin, Leonid M; Fraas, J. X.; Maxey, L Curt; Gehl, Anthony C

    2008-01-01

    JX Crystals 3-sun PV mirror modules have now been operating in four separate systems in the field for up to 2 years. Two post-mounted 2-axis tracking arrays of 12 modules each were installed at the Shanghai Flower Park in April of 2006. Then 672 modules were installed in a 100 kW array on N-S horizontal beam trackers at the Shanghai Flower Port in November of 2006. Finally, sets of 4 modules were installed on azimuth-tracking carousels on buildings at the Oak Ridge National Lab and at the U. of Nevada in Las Vegas in late 2007. All of these modules in each of these systems are still operating at their initial power ratings. No degradation in performance has been observed. The benefit of these 3-sun PV mirror modules is that they use 1/3 of the silicon single-crystal cell material in comparison to traditional planar modules. Since aluminum mirrors are much cheaper than high-purity single-crystal silicon-cells, these modules and systems should be much lower in cost when manufactured in high volume.

  10. Tandem resonator reflectance modulator

    DOEpatents

    Fritz, Ian J. (Albuquerque, NM); Wendt, Joel R. (Albuquerque, NM)

    1994-01-01

    A wide band optical modulator is grown on a substrate as tandem Fabry-Perot resonators including three mirrors spaced by two cavities. The absorption of one cavity is changed relative to the absorption of the other cavity by an applied electric field, to cause a change in total reflected light, as light reflecting from the outer mirrors is in phase and light reflecting from the inner mirror is out of phase with light from the outer mirrors.

  11. Tandem resonator reflectance modulator

    DOEpatents

    Fritz, I.J.; Wendt, J.R.

    1994-09-06

    A wide band optical modulator is grown on a substrate as tandem Fabry-Perot resonators including three mirrors spaced by two cavities. The absorption of one cavity is changed relative to the absorption of the other cavity by an applied electric field, to cause a change in total reflected light, as light reflecting from the outer mirrors is in phase and light reflecting from the inner mirror is out of phase with light from the outer mirrors. 8 figs.

  12. Design scoping study of the 12T Yin-Yang magnet system for the Tandem Mirror Next Step (TMNS). Final report

    SciTech Connect

    Not Available

    1981-09-01

    The overall objective of this engineering study was to determine the feasibility of designing a Yin-Yang magnet capable of producing a peak field in the windings of 12T for the Tandem Mirror Next Step (TMNS) program. As part of this technical study, a rough order of magnitude (ROM) cost estimate of the winding for this magnet was undertaken. The preferred approach to the winding design of the TMNS plug coil utilizes innovative design concepts to meet the structural, electrical and thermodynamic requirements of the magnet system. Structurally, the coil is radially partitioned into four sections, preventing the accumulation of the radial loads and reacting them into the structural case. To safely dissipate the 13.34 GJ of energy stored in each Yin-Yang magnet, the winding has been electrically subdivided into parallel or nested coils, each having its own power supply and protection circuitry. This arrangement effectively divides the total stored energy of the coils into manageable subsystems. The windings are cooled with superfluid helium II, operated at 1.8K and 1.2 atmospheres. The superior cooling capabilities of helium II have enabled the overall winding envelope to be minimized, providing a current density of 2367 A/CM/sup 2/, excluding substructure.

  13. Mirror plasma apparatus

    DOEpatents

    Moir, Ralph W.

    1981-01-01

    A mirror plasma apparatus which utilizes shielding by arc discharge to form a blanket plasma and lithium walls to reduce neutron damage to the wall of the apparatus. An embodiment involves a rotating liquid lithium blanket for a tandem mirror plasma apparatus wherein the first wall of the central mirror cell is made of liquid lithium which is spun with angular velocity great enough to keep the liquid lithium against the first material wall, a blanket plasma preventing the lithium vapor from contaminating the plasma.

  14. A spheromak ignition experiment reusing Mirror Fusion Test Facility (MFTF) equipment

    SciTech Connect

    Fowler, T.K.

    1993-09-28

    Based on available experimental results and theory, a scenario is presented to achieve ohmic ignition in a spheromak by slow ({approximately} 10 sec.) helicity injection using power from the Mirror Fusion Test Facility (MFTF) substation. Some of the other parts needed (vacuum vessel, coils, power supplies, pumps, shielded building space) might also be obtained from MFTF or other salvage, as well as some components needed for intermediate experiments for additional verification of the concept (especially confinement scaling). The proposed ignition experiment would serve as proof-of-principle for the spheromak DT fusion reactor design published by Hagenson and Krakowski, with a nuclear island cost about ten times less than a tokamak of comparable power. Designs at even higher power density and lower cost might be possible using Christofilos` concept of a liquid lithium blanket. Since all structures would be protected from neutrons by the lithium blanket and the tritium inventory can be reduced by continuous removal from the liquid blanket, environmental and safety characteristics appear to be favorable.

  15. Radial space potential measurements in the central cell of the tandem mirror experiment with a heavy-ion-beam probe

    SciTech Connect

    Hallock, G.A.

    1983-04-11

    Spatial and temporal profiles of the space potential in the central-cell midplane of TMX have been obtained with a heavy-ion-beam probe. The absolute accuracy of measurements is +- 25 volts (with respect to the machine vacuum walls) with a resolution of approx. 2 volts. During moderate fueling with the gas boxes (i/sub gas/ approx. = 1200 Atom-Amperes D/sub 2/), the plasma potential is parabolic to at least 25 cm radius, with phi/sub e/ approx. = phi/sub max/(1-(r/32)/sup 2/) and 300 < phi/sub max/ <450 volts. With puffer-valve fueling, the space potential is relatively flat to at least 27 cm radius, with 250 < phi/sub e/ < 350 volts.

  16. Mirror mount

    DOEpatents

    Kuklo, Thomas C.; Bender, Donald A.

    1994-01-01

    A unique lens or mirror mount having adjustable constraints at two key locations to allow for "X" and "Y" tilts of the mirror only. The device uses two pair of flexures of a type such that the pivots of the mirror gimble are rigidly fixed in all planes allowing the device to have zero stacking tolerance and zero wear over time.

  17. Mirror mount

    DOEpatents

    Kuklo, T.C.; Bender, D.A.

    1994-10-04

    A unique lens or mirror mount having adjustable constraints at two key locations to allow for ''X'' and ''Y'' tilts of the mirror only is disclosed. The device uses two pair of flexures of a type such that the pivots of the mirror gimble are rigidly fixed in all planes allowing the device to have zero stacking tolerance and zero wear over time. 4 figs.

  18. Mirror Advanced Reactor Study interim design report

    SciTech Connect

    Not Available

    1983-04-01

    The status of the design of a tenth-of-a-kind commercial tandem-mirror fusion reactor is described at the midpoint of a two-year study. When completed, the design is to serve as a strategic goal for the mirror fusion program. The main objectives of the Mirror Advanced Reactor Study (MARS) are: (1) to design an attractive tandem-mirror fusion reactor producing electricity and synfuels (in alternate versions), (2) to identify key development and technology needs, and (3) to exploit the potential of fusion for safety, low activation, and simple disposal of radioactive waste. In the first year we have emphasized physics and engineering of the central cell and physics of the end cell. Design optimization and trade studies are continuing, and we expect additional modifications in the end cells to further improve the performance of the final design.

  19. Mirror mount

    DOEpatents

    Humpal, Harold H.

    1987-01-01

    A mirror mount (10) is provided that allows free pitch, yaw and roll motion of the mirror (28) while keeping the location of a point (56) on the surface of the mirror (28) fixed in the rest frame of reference of the mount (10). Yaw movement is provided by two yaw cylinders (30,32) that are bearing (52) mounted to provide rotation. Pitch and roll motion is provided by a spherically annular shell (42) that is air bearing (72,74) mounted to move between a clamp (60) and an upper pedestal bearing (44). The centers of curvature of the spherical surfaces of the shell (42) lie upon the point (56). Pitch motion and roll motion are separately and independently imparted to mirror (28) by a pair of pitch paddles (34) and a pair of roll paddles (36) that are independently and separately moved by control rods (76,80) driven by motors (78,82).

  20. Mirror mount

    DOEpatents

    Humpal, H.H.

    1987-11-10

    A mirror mount is provided that allows free pitch, yaw and roll motion of the mirror while keeping the location of a point on the surface of the mirror fixed in the rest frame of reference of the mount. Yaw movement is provided by two yaw cylinders that are bearing mounted to provide rotation. Pitch and roll motion is provided by a spherically annular shell that is air bearing mounted to move between a clamp and an upper pedestal bearing. The centers of curvature of the spherical surfaces of the shell lie upon the point. Pitch motion and roll motion are separately and independently imparted to mirror by a pair of pitch paddles and a pair of roll paddles that are independently and separately moved by control rods driven by motors. 5 figs.

  1. Mirror mount

    DOEpatents

    Humpal, H.H.

    1986-03-21

    A mirror mount is provided that allows free pitch, yaw and roll motion of the mirror while keeping the location of a point on the surface of the mirror fixed in the rest frame of reference of the mount. Yaw movement is provided by two yaw cylinders that are bearing mounted to provide rotation. Pitch and roll motion is provided by a spherically annular shell that is air bearing mounted to move between a clamp and an upper pedestal bearing. The centers of curvature of the spherical surfaces of the shell lie upon the point. Pitch motion and roll motion are separately and independently imparted to mirror by a pair of pitch paddles and a pair of roll paddles that are independently and separately moved by control rods driven by motors.

  2. Mirror monochromator

    SciTech Connect

    Mankos, Marian; Shadman, Khashayar

    2014-12-02

    In this SBIR project, Electron Optica, Inc. (EOI) is developing a mirror electron monochromator (MirrorChrom) attachment to new and retrofitted electron microscopes (EMs) for improving the energy resolution of the EM from the characteristic range of 0.2-0.5 eV to the range of 10-50 meV. This improvement will enhance the characterization of materials by imaging and spectroscopy. In particular, the monochromator will refine the energy spectra characterizing materials, as obtained from transmission EMs [TEMs] fitted with electron spectrometers, and it will increase the spatial resolution of the images of materials taken with scanning EMs (SEMs) operated at low voltages. EOI’s MirrorChrom technology utilizes a magnetic prism to simultaneously deflect the electron beam off the axis of the microscope column by 90° and disperse the electrons in proportional to their energies into a module with an electron mirror and a knife-edge. The knife-edge cuts off the tails of the energy distribution to reduce the energy spread of the electrons that are reflected, and subsequently deflected, back into the microscope column. The knife-edge is less prone to contamination, and thereby charging, than the conventional slits used in existing monochromators, which improves the reliability and stability of the module. The overall design of the MirrorChrom exploits the symmetry inherent in reversing the electron trajectory in order to maintain the beam brightness – a parameter that impacts how well the electron beam can be focused downstream onto a sample. During phase I, EOI drafted a set of candidate monochromator architectures and evaluated the trade-offs between energy resolution and beam current to achieve the optimum design for three particular applications with market potential: increasing the spatial resolution of low voltage SEMs, increasing the energy resolution of low voltage TEMs (beam energy of 5-20 keV), and increasing the energy resolution of conventional TEMs (beam

  3. Tandem betatron

    DOEpatents

    Keinigs, Rhonald K.

    1992-01-01

    Two betatrons are provided in tandem for alternately accelerating an electron beam to avoid the single flux swing limitation of conventional betatrons and to accelerate the electron beam to high energies. The electron beam is accelerated in a first betatron during a period of increasing magnetic flux. The eletron beam is extracted from the first betatron as a peak magnetic flux is reached and then injected into a second betatron at a time of minimum magnetic flux in the second betatron. The cycle may be repeated until the desired electron beam energy is obtained. In one embodiment, the second betatron is axially offset from the first betatron to provide for electron beam injection directly at the axial location of the beam orbit in the second betatron.

  4. Particle deconfinement in a bent magnetic mirror

    DOE PAGES [OSTI]

    Gueroult, Renaud; Fisch, Nathaniel J.

    2012-11-06

    Here, coils misalignment in a magnetic mirror can produce additional particle transport. The magnetic field non axi-symmetry is responsible for radial and longitudinal drifts in a way much similar to the neo-classical transport in a tandem mirror cell distorted by end plugs. Accordingly, a regime exhibiting large radial displacements––similar to the resonant regime in tandem mirrors––can be obtained by confining ions azimuthally, for example by means of a properly tuned radial electric field. Because of the mass dependence of the magnetic field non-homogeneity drift velocities, the azimuthal trapping is mass specific, allowing, in principle, the filtering of a specific speciesmore » based on its mass.« less

  5. Kinematic high bandwidth mirror mount

    DOEpatents

    Kuklo, T.C.

    1995-03-21

    An adjustable mirror mount system for a mirror is disclosed comprising a mirror support having a planar surface thereon, a mirror frame containing a mirror and having a planar surface behind the mirror facing the planar surface of the mirror support and parallel to the reflecting surface of the mirror and mounted pivotally to the mirror support at a point central to the frame, a first adjustment means between the mirror support and the mirror frame spaced from the central pivot mount for adjusting the movement of the mirror along one axis lying in the plane of the planar surface of the mirror frame; and a second adjustment means between the mirror support and the mirror frame spaced from the central pivot mount for adjusting the movement of the mirror along a second axis lying in the plane of the planar surface of the mirror frame and perpendicular to the first axis. 7 figures.

  6. Water Cooled Mirror Design

    SciTech Connect

    Dale, Gregory E.; Holloway, Michael Andrew; Pulliam, Elias Noel

    2015-03-30

    This design is intended to replace the current mirror setup being used for the NorthStar Moly 99 project in order to monitor the target coupon. The existing setup has limited movement for camera alignment and is difficult to align properly. This proposed conceptual design for a water cooled mirror will allow for greater thermal transfer between the mirror and the water block. It will also improve positioning of the mirror by using flexible vacuum hosing and a ball head joint capable of a wide range of motion. Incorporating this design into the target monitoring system will provide more efficient cooling of the mirror which will improve the amount of diffraction caused by the heating of the mirror. The process of aligning the mirror for accurate position will be greatly improved by increasing the range of motion by offering six degrees of freedom.

  7. Electrons and Mirror Symmetry

    ScienceCinema

    Kumar, Krishna

    2016-07-12

    The neutral weak force between an electron and a target particle, mediated by the Z boson, can be isolated by measuring the fractional change under a mirror reflection of the scattering probability of relativistic longitudinally polarized electrons off unpolarized targets. This technique yields neutral weak force measurements at a length scale of 1 femtometer, in contrast to high energy collider measurements that probe much smaller length scales. Study of the variation of the weak force over a range of length scales provides a stringent test of theory, complementing collider measurements. We describe a recent measurement of the neutral weak force between two electrons by the E158 experiment at the Stanford Linear Accelerator Center. While the weak force between an electron and positron has been extensively studied, that between two electrons had never directly been measured. We conclude by discussing prospects for even more precise measurements at future facilities.

  8. Electrons and Mirror Symmetry

    SciTech Connect

    Kumar, Krishna

    2007-04-04

    The neutral weak force between an electron and a target particle, mediated by the Z boson, can be isolated by measuring the fractional change under a mirror reflection of the scattering probability of relativistic longitudinally polarized electrons off unpolarized targets. This technique yields neutral weak force measurements at a length scale of 1 femtometer, in contrast to high energy collider measurements that probe much smaller length scales. Study of the variation of the weak force over a range of length scales provides a stringent test of theory, complementing collider measurements. We describe a recent measurement of the neutral weak force between two electrons by the E158 experiment at the Stanford Linear Accelerator Center. While the weak force between an electron and positron has been extensively studied, that between two electrons had never directly been measured. We conclude by discussing prospects for even more precise measurements at future facilities.

  9. Erected mirror optical switch

    DOEpatents

    Allen, James J.

    2005-06-07

    A microelectromechanical (MEM) optical switching apparatus is disclosed that is based on an erectable mirror which is formed on a rotatable stage using surface micromachining. An electrostatic actuator is also formed on the substrate to rotate the stage and mirror with a high angular precision. The mirror can be erected manually after fabrication of the device and used to redirect an incident light beam at an arbitrary angel and to maintain this state in the absence of any applied electrical power. A 1.times.N optical switch can be formed using a single rotatable mirror. In some embodiments of the present invention, a plurality of rotatable mirrors can be configured so that the stages and mirrors rotate in unison when driven by a single micromotor thereby forming a 2.times.2 optical switch which can be used to switch a pair of incident light beams, or as a building block to form a higher-order optical switch.

  10. Stable mirror mount

    DOEpatents

    Cutburth, R.W.

    1983-11-04

    An improved mirror mount assembly is disclosed. The mirror mount assembly provides a post assembly slidable in a Y-axis orientation and a nut plate assembly slidable in an X-axis orientation and means for simultaneously locking said post assembly and said key assembly in a fixed position.

  11. Stable mirror mount

    DOEpatents

    Cutburth, Ronald W. (Bulls Gap, TN)

    1990-01-01

    An improved mirror mount assembly is disclosed. The mirror mount assembly provides a post assembly slidable in a Y-axis orientation and a nut plate assembly slidable in an X-axis orientation and a device for simultaneously locking the post assembly and the key assembly in a fixed position.

  12. Partially segmented deformable mirror

    DOEpatents

    Bliss, E.S.; Smith, J.R.; Salmon, J.T.; Monjes, J.A.

    1991-05-21

    A partially segmented deformable mirror is formed with a mirror plate having a smooth and continuous front surface and a plurality of actuators to its back surface. The back surface is divided into triangular areas which are mutually separated by grooves. The grooves are deep enough to make the plate deformable and the actuators for displacing the mirror plate in the direction normal to its surface are inserted in the grooves at the vertices of the triangular areas. Each actuator includes a transducer supported by a receptacle with outer shells having outer surfaces. The vertices have inner walls which are approximately perpendicular to the mirror surface and make planar contacts with the outer surfaces of the outer shells. The adhesive which is used on these contact surfaces tends to contract when it dries but the outer shells can bend and serve to minimize the tendency of the mirror to warp. 5 figures.

  13. Partially segmented deformable mirror

    DOEpatents

    Bliss, Erlan S.; Smith, James R.; Salmon, J. Thaddeus; Monjes, Julio A.

    1991-01-01

    A partially segmented deformable mirror is formed with a mirror plate having a smooth and continuous front surface and a plurality of actuators to its back surface. The back surface is divided into triangular areas which are mutually separated by grooves. The grooves are deep enough to make the plate deformable and the actuators for displacing the mirror plate in the direction normal to its surface are inserted in the grooves at the vertices of the triangular areas. Each actuator includes a transducer supported by a receptacle with outer shells having outer surfaces. The vertices have inner walls which are approximately perpendicular to the mirror surface and make planar contacts with the outer surfaces of the outer shells. The adhesive which is used on these contact surfaces tends to contract when it dries but the outer shells can bend and serve to minimize the tendency of the mirror to warp.

  14. Universally oriented renewable liquid mirror

    DOEpatents

    Ryutov, Dmitri D.; Toor, Arthur

    2004-07-20

    A universally oriented liquid mirror. A liquid and a penetrable unit are operatively connected to provide a mirror that can be universally oriented.

  15. Nanolaminate deformable mirrors

    DOEpatents

    Papavasiliou, Alexandros P.; Olivier, Scot S.

    2010-04-06

    A deformable mirror formed out of two layers of a nanolaminate foil attached to a stiff substrate is introduced. Deformation is provided by an electrostatic force between two of the layers. The internal stiffness of the structure allows for high-spatial-frequency shapes. The nanolaminate foil of the present invention allows for a high-quality mirror surface. The device achieves high precision in the vertical direction by using foils with accurately controlled thicknesses, but does not require high precision in the lateral dimensions, allowing such mirrors to be fabricated using crude lithography techniques. Such techniques allow structures up to about the meter scale to be fabricated.

  16. Nanolaminate deformable mirrors

    DOEpatents

    Papavasiliou, Alexandros P.; Olivier, Scot S.

    2009-04-14

    A deformable mirror formed out of two layers of a nanolaminate foil attached to a stiff substrate is introduced. Deformation is provided by an electrostatic force between two of the layers. The internal stiffness of the structure allows for high-spatial-frequency shapes. The nanolaminate foil of the present invention allows for a high-quality mirror surface. The device achieves high precision in the vertical direction by using foils with accurately controlled thicknesses, but does not require high precision in the lateral dimensions, allowing such mirrors to be fabricated using crude lithography techniques. Such techniques allow structures up to about the meter scale to be fabricated.

  17. Tandem mobile robot system

    DOEpatents

    Buttz, James H.; Shirey, David L.; Hayward, David R.

    2003-01-01

    A robotic vehicle system for terrain navigation mobility provides a way to climb stairs, cross crevices, and navigate across difficult terrain by coupling two or more mobile robots with a coupling device and controlling the robots cooperatively in tandem.

  18. Transition Metal Switchable Mirror

    ScienceCinema

    None

    2013-05-29

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft. More information at: http://windows.lbl.gov/materials/chromogenics/default.htm

  19. Transition Metal Switchable Mirror

    ScienceCinema

    None

    2010-01-08

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft.

  20. Barstow heliostat mirror glass characterization

    SciTech Connect

    Lind, M.A.; Buckwalter, C.Q.

    1980-09-01

    The technical analysis performed on the special run of low iron float glass procured from the Ford Glass Division for the ten megawatt solar thermal/electric pilot power plant to be constructed at Barstow, California is discussed. The topics that are addressed include the optical properties and the relative durability of the glass. Two optical parameters, solar transmittance and optical flatness, were measured as referenced in the specification and found to be better than the stated tolerances. The average solar transmittance exceeded 0.890 transmittance units. The glass also exhibited optical angular flatness deviations less than +-1.0 mrad as required. Both qualitative and quantitative accelerated weathering tests were performed on the glass in order to compare its durability to other soda lime float glass and alternate composition glasses of interest to the solar community. In both the quantitative leaching experiments and the more qualitative room temperature and elevated temperature water vapor exposure experiments the heliostat glass exhibited the same characteristics as the other soda-lime silicate float glasses. As a final test for mirroring compatability, selected samples of the production run of the glass were sent to four different commercial manufacturers for mirror coating. None of the manufacturers reported any difficulty silvering the glass. Based on the tests performed, the glass meets or exceeds all optical specifications for the Barstow heliostat field.

  1. Thermomechanical characterization of a membrane deformable mirror

    SciTech Connect

    Morse, Kathleen A.; McHugh, Stuart L.; Fixler, Jeff

    2008-10-10

    A membrane deformable mirror has been investigated for its potential use in high-energy laser systems. Experiments were performed in which the deformable mirror was heated with a 1 kW incandescent lamp and the thermal profile, the wavefront aberrations, and the mechanical displacement of the membrane were measured. A finite element model was also developed. The wavefront characterization experiments showed that the wavefront degraded with heating. Above a temperature of 35 deg. C, the wavefront characterization experiments indicated a dramatic increase in the high-order wavefront modes before the optical beam became immeasurable in the sensors. The mechanical displacement data of the membrane mirror showed that during heating, the membrane initially deflected towards the heat source and then deflected away from the heat source. Finite element analysis (FEA) predicted a similar displacement behavior as shown by the mechanical displacement data but over a shorter time scale and a larger magnitude. The mechanical displacement data also showed that the magnitude of membrane displacement increased with the experiments that involved higher temperatures. Above a temperature of 35 deg. C, the displacement data showed that random deflections as a function of time developed and that the magnitude of these deflections increased with increased temperature. We concluded that convection, not captured in the FEA, likely played a dominant role in mirror deformation at temperatures above 35 deg. C.

  2. Durable metallized polymer mirror

    DOEpatents

    Schissel, P.O.; Kennedy, C.E.; Jorgensen, G.J.; Shinton, Y.D.; Goggin, R.M.

    1994-11-01

    A metallized polymer mirror construction is disclosed having improved durability against delamination and tunneling, comprising: an outer layer of polymeric material; a metal oxide layer underlying the outer layer of polymeric material; a silver reflective layer underneath the metal oxide layer; and a layer of adhesive attaching the silver layer to a substrate. 6 figs.

  3. Durable metallized polymer mirror

    DOEpatents

    Schissel, Paul O.; Kennedy, Cheryl E.; Jorgensen, Gary J.; Shinton, Yvonne D.; Goggin, Rita M.

    1994-01-01

    A metallized polymer mirror construction having improved durability against delamination and tunneling, comprising: an outer layer of polymeric material; a metal oxide layer underlying the outer layer of polymeric material; a silver reflective layer underneath the metal oxide layer; and a layer of adhesive attaching the silver layer to a substrate.

  4. LCLS X-ray mirror measurements using a large aperture visible light

    Office of Scientific and Technical Information (OSTI)

    interferometer (Conference) | SciTech Connect Conference: LCLS X-ray mirror measurements using a large aperture visible light interferometer Citation Details In-Document Search Title: LCLS X-ray mirror measurements using a large aperture visible light interferometer Synchrotron or FEL X-ray mirrors are required to deliver an X-ray beam from its source to an experiment location, without contributing significantly to wave front distortion. Accurate mirror figure measurements are required prior

  5. Complex/Symplectic Mirrors

    SciTech Connect

    Chuang, Wu-yen; Kachru, Shamit; Tomasiello, Alessandro; /Stanford U., ITP

    2005-10-28

    We construct a class of symplectic non-Kaehler and complex non-Kaehler string theory vacua, extending and providing evidence for an earlier suggestion by Polchinski and Strominger. The class admits a mirror pairing by construction. Comparing hints from a variety of sources, including ten-dimensional supergravity and KK reduction on SU(3)-structure manifolds, suggests a picture in which string theory extends Reid's fantasy to connect classes of both complex non-Kaehler and symplectic non-Kaehler manifolds.

  6. BN-350 "Mirror System".

    SciTech Connect

    Thornton, A. L.; Halbig, J. K.

    2004-01-01

    The BN-350 Unattended Monitoring System plays an important role for the Safeguards Department of the International Atomic Energy Agency (IAEA). In 1998, the Los Alamos National Laboratory, in conjunction with the IAEA and sponsored by the US Department of Energy, designed and installed an integrated multi-instrument safeguards system at the BN-350 reactor in Aktau, Kazakhstan, to monitor spent-fuel and blanket assembly conditioning and canning activities. The purpose of the system was to provide effective safeguards at this facility while reducing the manpower load on the IAEA. The system is composed of many individual nondestructive analysis and surveillance components, each having a unique function and working together to provide fully unattended measurement of spent-fuel assemblies. The BN-350 ''Mirror System'' was built to provide a similar system with like components at the IAEA Headquarters in Vienna to facilitate analysis and/or simulation of problems that might occur in the field and for training inspectors and other technical staff in preparation for their work in the field. In addition, the system is used to test new equipment and qualify new or modified software. This paper describes the main components of the Mirror System, how the components are integrated, and how the Mirror System has benefited the IAEA.

  7. Low Cost, Stable Switchable Mirrors: Lithium Ion Mirrors with Improved

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Stability - Energy Innovation Portal Low Cost, Stable Switchable Mirrors: Lithium Ion Mirrors with Improved Stability Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing SummarySwitchable mirrors are a new generation of electrochromic windows that can alternate between a reflecting state and a transparent or absorbing state when a small voltage is applied. These energy saving devices have advantages over traditional absorbing electrochromics for

  8. Technology of mirror machines: LLL facilities for magnetic mirror...

    Office of Scientific and Technical Information (OSTI)

    The second facility, MFTF (Mirror Fusion Test Facility), is currently in preliminary design with line item approval anticipated for FY 78. MFTF is designed primarily to exploit the ...

  9. Variable focal length deformable mirror

    SciTech Connect

    Headley, Daniel; Ramsey, Marc; Schwarz, Jens

    2007-06-12

    A variable focal length deformable mirror has an inner ring and an outer ring that simply support and push axially on opposite sides of a mirror plate. The resulting variable clamping force deforms the mirror plate to provide a parabolic mirror shape. The rings are parallel planar sections of a single paraboloid and can provide an on-axis focus, if the rings are circular, or an off-axis focus, if the rings are elliptical. The focal length of the deformable mirror can be varied by changing the variable clamping force. The deformable mirror can generally be used in any application requiring the focusing or defocusing of light, including with both coherent and incoherent light sources.

  10. Monolithic tandem solar cell

    DOEpatents

    Wanlass, M.W.

    1994-06-21

    A single-crystal, monolithic, tandem, photovoltaic solar cell is described which includes (a) an InP substrate having upper and lower surfaces, (b) a first photoactive subcell on the upper surface of the InP substrate, (c) a second photoactive subcell on the first subcell; and (d) an optically transparent prismatic cover layer over the second subcell. The first photoactive subcell is GaInAsP of defined composition. The second subcell is InP. The two subcells are lattice matched. 9 figs.

  11. Monolithic tandem solar cell

    SciTech Connect

    Wanlass, Mark W.

    1991-01-01

    A single-crystal, monolithic, tandem, photovoltaic solar cell is described which includes (a) an InP substrate having upper and lower surfaces, (b) a first photoactive subcell on the upper surface of the InP substrate, and (c) a second photoactive subcell on the first subcell. The first photoactive subcell is GaInAsP of defined composition. The second subcell is InP. The two subcells are lattice matched. The solar cell can be provided as a two-terminal device or a three-terminal device.

  12. Monolithic tandem solar cell

    DOEpatents

    Wanlass, Mark W. (Golden, CO)

    1994-01-01

    A single-crystal, monolithic, tandem, photovoltaic solar cell is described which includes (a) an InP substrate having upper and lower surfaces, (b) a first photoactive subcell on the upper surface of the InP substrate, (c) a second photoactive subcell on the first subcell; and (d) an optically transparent prismatic cover layer over the second subcell. The first photoactive subcell is GaInAsP of defined composition. The second subcell is InP. The two subcells are lattice matched.

  13. Concentrating Solar Power Mirror Coating

    Office of Energy Efficiency and Renewable Energy (EERE)

    This photograph features Cheryl Kennedy, a senior scientist at the National Renewable Energy Laboratory. She holds a sample of an experimental mirror coating to increase the efficiency of...

  14. Mirror profile optimization for nano-focusing KB mirror

    SciTech Connect

    Zhang Lin; Baker, Robert; Barrett, Ray; Cloetens, Peter; Dabin, Yves

    2010-06-23

    A KB focusing mirror width profile has been optimized to achieve nano-focusing for the nano-imaging end-station ID22NI at the ESRF. The complete mirror and flexure bender assembly has been modeled in 3D with finite element analysis using ANSYS. Bender stiffness, anticlastic effects and geometrical non-linear effects have been considered. Various points have been studied: anisotropy and crystal orientation, stress in the mirror and bender, actuator resolution and the mirror-bender adhesive bonding... Extremely high performance of the mirror is expected with residual slope error smaller than 0.6 {mu}rad, peak-to-valley, compared to the bent slope of 3000 {mu}rad.

  15. High temperature current mirror amplifier

    DOEpatents

    Patterson, III, Raymond B.

    1984-05-22

    A high temperature current mirror amplifier having biasing means in the transdiode connection of the input transistor for producing a voltage to maintain the base-collector junction reversed-biased and a current means for maintaining a current through the biasing means at high temperatures so that the base-collector junction of the input transistor remained reversed-biased. For accuracy, a second current mirror is provided with a biasing means and current means on the input leg.

  16. High stroke pixel for a deformable mirror

    DOEpatents

    Miles, Robin R.; Papavasiliou, Alexandros P.

    2005-09-20

    A mirror pixel that can be fabricated using standard MEMS methods for a deformable mirror. The pixel is electrostatically actuated and is capable of the high deflections needed for spaced-based mirror applications. In one embodiment, the mirror comprises three layers, a top or mirror layer, a middle layer which consists of flexures, and a comb drive layer, with the flexures of the middle layer attached to the mirror layer and to the comb drive layer. The comb drives are attached to a frame via spring flexures. A number of these mirror pixels can be used to construct a large mirror assembly. The actuator for the mirror pixel may be configured as a crenellated beam with one end fixedly secured, or configured as a scissor jack. The mirror pixels may be used in various applications requiring high stroke adaptive optics.

  17. Compact neutron imaging system using axisymmetric mirrors

    DOEpatents

    Khaykovich, Boris; Moncton, David E; Gubarev, Mikhail V; Ramsey, Brian D; Engelhaupt, Darell E

    2014-05-27

    A dispersed release of neutrons is generated from a source. A portion of this dispersed neutron release is reflected by surfaces of a plurality of nested, axisymmetric mirrors in at least an inner mirror layer and an outer mirror layer, wherein the neutrons reflected by the inner mirror layer are incident on at least one mirror surface of the inner mirror layer N times, wherein N is an integer, and wherein neutrons reflected by the outer mirror are incident on a plurality of mirror surfaces of the outer layer N+i times, where i is a positive integer, to redirect the neutrons toward a target. The mirrors can be formed by a periodically reversed pulsed-plating process.

  18. High temperature current mirror amplifier

    DOEpatents

    Patterson, R.B. III.

    1984-05-22

    Disclosed is a high temperature current mirror amplifier having biasing means in the transdiode connection of the input transistor for producing a voltage to maintain the base-collector junction reversed-biased and a current means for maintaining a current through the biasing means at high temperatures so that the base-collector junction of the input transistor remained reversed-biased. For accuracy, a second current mirror is provided with a biasing means and current means on the input leg. 2 figs.

  19. Compaction managed mirror bend achromat

    DOEpatents

    Douglas, David

    2005-10-18

    A method for controlling the momentum compaction in a beam of charged particles. The method includes a compaction-managed mirror bend achromat (CMMBA) that provides a beamline design that retains the large momentum acceptance of a conventional mirror bend achromat. The CMMBA also provides the ability to tailor the system momentum compaction spectrum as desired for specific applications. The CMMBA enables magnetostatic management of the longitudinal phase space in Energy Recovery Linacs (ERLs) thereby alleviating the need for harmonic linearization of the RF waveform.

  20. ESnet IPv6 Mirror Servers

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Mirror Servers Engineering Services The Network OSCARS Fasterdata IPv6 Network IPv6 Implementation Checklist ESnet IPv6 Mirror Servers ESnet IPv6 History ESnet supports Sandia and APNIC IPv6 Background Radiation research Network Performance Tools The ESnet Engineering Team Contact Us Technical Assistance: 1 800-33-ESnet (Inside US) 1 800-333-7638 (Inside US) 1 510-486-7600 (Globally) 1 510-486-7607 (Globally) Report Network Problems: trouble@es.net Provide Web Site Feedback: info@es.net ESnet

  1. Mirror Advanced Reactor Study (MARS): executive summary and overview

    SciTech Connect

    Logan, B.G.; Perkins, L.J.; Gordon, J.D.

    1984-07-01

    Two self-consistent MARS configurations are discussed - a 1200-MWe commercial electricity-generating plant and a synguels-generating plant that produces hydrogen with an energy equivalent to 26,000 barrels of oil per day. The MARS machine emphasizes the attractive features of the tandem mirror concept, including steady-state operation, a small-diameter high-beta plasma, a linear central cell with simple low-maintenance blankets, low first-wall heat fluxes (<10 W/cm/sup 2/), no driven plasma currents or associated disruptions, natural halo impurity diversion, and direct conversion of end-loss charged-particle power. The MARS electric plant produces 2600 MW of fusion power in a 130-m-long central cell. Advanced tandem-mirror plasma-engineering concepts, a high-efficiency liquid lithium-lead (Li/sub 17/Pb/sub 83/) blanket, and efficient direct electrical conversion of end loss power combine to produce a high net plant efficiency of 36%. With a total capital cost of $2.9 billion (constant 1983 dollars), the MARS electric plant produces busbar electricity at approx. 7 cents/kW-hour. The MARS synfuels plant produces 3500 MW of fusion power in a 150-m-long central cell. A helium-gas-cooled silicon carbide pebble-bed blanket provides high-temperature (1000/sup 0/C) heat to a thermochemical water-splitting cycle and the resulting hydrogen is catalytically converted to methanol for distribution. With a total capital cost of $3.6 billion (constant 1983 dollars), the synfuels plant produces methanol fuel at about $1.7/gal. The major features of the MARS reactor include sloshing-ion thermal barrier plugs for efficient plasma confinement, a high efficiency blanket, high-field (24-T) choke cells, drift pumping for trapped plasma species, quasi-optical electron-cyclotron resonant heating (ECRH) systems, and a component gridless direct converter.

  2. Design of magnetic mirrors for a linear theta pinch

    SciTech Connect

    Veglia, V. P.

    1981-01-01

    The problem of generating optimum magnetic mirror fields at the ends of a 50-cm long theta-pinch experiment to study particle flow and loss effects has been investigated. A combination of active and passive mirrors was developed to produce 2-3:1 fields for a 23-kG pinch. Biot-Savart and potential field prediction solutions for the magnetic field distribution were compared with experimental measurements in 2-5-cm long coils for the 50-cm long pinch.

  3. Mirror with thermally controlled radius of curvature

    DOEpatents

    Neil, George R.; Shinn, Michelle D.

    2010-06-22

    A radius of curvature controlled mirror for controlling precisely the focal point of a laser beam or other light beam. The radius of curvature controlled mirror provides nearly spherical distortion of the mirror in response to differential expansion between the front and rear surfaces of the mirror. The radius of curvature controlled mirror compensates for changes in other optical components due to heating or other physical changes. The radius of curvature controlled mirror includes an arrangement for adjusting the temperature of the front surface and separately adjusting the temperature of the rear surface to control the radius of curvature. The temperature adjustment arrangements can include cooling channels within the mirror body or convection of a gas upon the surface of the mirror. A control system controls the differential expansion between the front and rear surfaces to achieve the desired radius of curvature.

  4. Nanocrystal assembly for tandem catalysis

    DOEpatents

    Yang, Peidong; Somorjai, Gabor; Yamada, Yusuke; Tsung, Chia-Kuang; Huang, Wenyu

    2014-10-14

    The present invention provides a nanocrystal tandem catalyst comprising at least two metal-metal oxide interfaces for the catalysis of sequential reactions. One embodiment utilizes a nanocrystal bilayer structure formed by assembling sub-10 nm platinum and cerium oxide nanocube monolayers on a silica substrate. The two distinct metal-metal oxide interfaces, CeO.sub.2--Pt and Pt--SiO.sub.2, can be used to catalyze two distinct sequential reactions. The CeO.sub.2--Pt interface catalyzed methanol decomposition to produce CO and H.sub.2, which were then subsequently used for ethylene hydroformylation catalyzed by the nearby Pt--SiO.sub.2 interface. Consequently, propanal was selectively produced on this nanocrystal bilayer tandem catalyst.

  5. Radius of curvature controlled mirror

    DOEpatents

    Neil, George R.; Rathke, John Wickham; Schultheiss, Thomas John; Shinn, Michelle D.; Dillon-Townes, Lawrence A.

    2006-01-17

    A controlled radius of curvature mirror assembly comprising: a distortable mirror having a reflective surface and a rear surface; and in descending order from the rear surface; a counter-distortion plate; a flow diverter having a flow diverter aperture at the center thereof; a flow return plate having a flow return aperture at the center thereof; a thermal isolation plate having a thermal isolation plate aperture at the center thereof and a flexible heater having a rear surface and a flexible heater aperture at the center thereof; a double walled tube defining a coolant feed chamber and a coolant return chamber; said coolant feed chamber extending to and through the flow diverter aperture and terminating at the counter-distortion plate and the coolant return chamber extending to and through the thermal isolation backplate and terminating at the flow diverter; and a coolant feed and a coolant return exit at the rear of said flexible heater.

  6. "Nanocrystal bilayer for tandem catalysis"

    SciTech Connect

    Yamada, Yusuke; Tsung, Chia Kuang; Huang, Wenyu; Huo, Ziyang; E.Habas, Susan E; Soejima, Tetsuro; Aliaga, Cesar E; Samorjai, Gabor A; Yang, Peidong

    2011-01-24

    Supported catalysts are widely used in industry and can be optimized by tuning the composition and interface of the metal nanoparticles and oxide supports. Rational design of metal-metal oxide interfaces in nanostructured catalysts is critical to achieve better reaction activities and selectivities. We introduce here a new class of nanocrystal tandem catalysts that have multiple metal-metal oxide interfaces for the catalysis of sequential reactions. We utilized a nanocrystal bilayer structure formed by assembling platinum and cerium oxide nanocube monolayers of less than 10 nm on a silica substrate. The two distinct metal-metal oxide interfaces, CeO2-Pt and Pt-SiO2, can be used to catalyse two distinct sequential reactions. The CeO2-Pt interface catalysed methanol decomposition to produce CO and H2, which were subsequently used for ethylene hydroformylation catalysed by the nearby Pt-SiO2 interface. Consequently, propanal was produced selectively from methanol and ethylene on the nanocrystal bilayer tandem catalyst. This new concept of nanocrystal tandem catalysis represents a powerful approach towards designing high-performance, multifunctional nanostructured catalysts

  7. Passivation coating for flexible substrate mirrors

    DOEpatents

    Tracy, C. Edwin; Benson, David K.

    1990-01-01

    A protective diffusion barrier for metalized mirror structures is provided by a layer or coating of silicon nitride which is a very dense, transparent, dielectric material that is impervious to water, alkali, and other impurities and corrosive substances that typically attack the metal layers of mirrors and cause degradation of the mirrors' reflectivity. The silicon nitride layer can be deposited on the substrate before metal deposition thereon to stabilize the metal/substrate interface, and it can be deposited over the metal to encapsulate it and protect the metal from corrosion or other degradation. Mirrors coated with silicon nitride according to this invention can also be used as front surface mirrors. Also, the silver or other reflective metal layer on mirrors comprising thin, lightweight, flexible substrates of metal or polymer sheets coated with glassy layers can be protected with silicon nitride according to this invention.

  8. Process for preparing improved silvered glass mirrors

    DOEpatents

    Buckwalter, C.Q. Jr.

    1980-01-28

    Glass mirrors having improved weathering properties are prepared by an improvement in the process for making the mirrors. The glass surface after it has been cleaned but before it is silvered, is contacted with a solution of lanthanide rare earths in addition to a sensitization solution of tin or palladium. The addition of the rare earths produces a mirror which has increased resistance to delamination of the silver from the glass surface in the presence of water.

  9. Deformable mirror for short wavelength applications

    DOEpatents

    Chapman, Henry N.; Sweeney, Donald W.

    1999-01-01

    A deformable mirror compatible with short wavelength (extreme ultraviolet) radiation that can be precisely controlled to nanometer and subnanometer accuracy is described. Actuators are coupled between a reaction plate and a face plate which has a reflective coating. A control system adjusts the voltage supplied to the actuators; by coordinating the voltages supplied to the actuators, the reflective surface of the mirror can be deformed to correct for dimensional errors in the mirror or to produce a desired contour.

  10. Process for preparing improved silvered glass mirrors

    DOEpatents

    Buckwalter, Jr., Charles Q. (Benton, WA)

    1981-01-01

    Glass mirrors having improved weathering properties are prepared by an improvement in the process for making the mirrors. The glass surface after it has been cleaned but before it is silvered, is contacted with a solution of lanthanide rare earths in addition to a sensitization solution of tin or palladium. The addition of the rare earths produces a mirror which has increased resistance to delamination of the silver from the glass surface in the presence of water.

  11. AXISYMMETRIC MAGNETIC MIRROR APPLICATIONS - DIVERTER TEST STAND...

    Office of Scientific and Technical Information (OSTI)

    APPLICATIONS - DIVERTER TEST STAND TO FUSION POWER PLANT Citation Details In-Document Search Title: AXISYMMETRIC MAGNETIC MIRROR APPLICATIONS - DIVERTER TEST STAND TO FUSION POWER ...

  12. Astrophysical tests of mirror dark matter

    SciTech Connect

    Ciarcelluti, P.

    2008-08-29

    Mirror matter is a self-collisional dark matter candidate. If exact mirror parity is a conserved symmetry of the nature, there could exist a parallel hidden (mirror) sector of the Universe which has the same kind of particles and the same physical laws of our (visible) sector. The two sectors interact each other only via gravity, therefore mirror matter is naturally 'dark'. The most promising way to test this dark matter candidate is to look at its astrophysical signatures, as Big Bang nucleosynthesis, primordial structure formation and evolution, cosmic microwave background and large scale structure power spectra.

  13. Numerical Analysis for Controlling the Eigenmode Formation of Alfven Waves in the GAMMA 10 Tandem Mirror

    SciTech Connect

    Yamaguchi, Y. [Plasma Research Center, University of Tsukuba (Japan); Ichimura, M. [Plasma Research Center, University of Tsukuba (Japan); Higaki, H. [Plasma Research Center, University of Tsukuba (Japan); Kakimoto, S. [Plasma Research Center, University of Tsukuba (Japan); Ide, K. [Plasma Research Center, University of Tsukuba (Japan); Inoue, D. [Plasma Research Center, University of Tsukuba (Japan); Nagai, H. [Plasma Research Center, University of Tsukuba (Japan); Nakagome, K. [Plasma Research Center, University of Tsukuba (Japan); Fukuyama, A. [Kyoto University (Japan); Cho, T. [Plasma Research Center, University of Tsukuba (Japan)

    2005-01-15

    The numerical analysis is performed with two dimensional wave code for controlling the eigenmode formation of fast Alfven waves in the GAMMA 10 central cell. The plasma production by fast waves depends on the wave excitation in the plasma. Eigenmodes are strongly formed when the boundary conditions in the axial and radial directions are satisfied. As the optimum density for the formation of eigenmode exists discretely, the density is clamped at the value where the eigenmode is strongly formed. For the higher density plasma production, the eigenmodes must be continuously excited as the density increases. It is found that the almost continuous excitation of eigenmodes can be realized by using two waves with different frequencies at the same time.

  14. Plasma confinement apparatus using solenoidal and mirror coils

    DOEpatents

    Fowler, T. Kenneth; Condit, William C.

    1979-01-01

    A plasma confinement apparatus, wherein multiple magnetic mirror cells are linked by magnetic field lines inside of a solenoid with the mirroring regions for adjacent magnetic mirror cells each formed by a separate mirror coil inside of the solenoid. The magnetic mirror cells may be field reversed.

  15. Tandem junction amorphous silicon solar cells

    DOEpatents

    Hanak, Joseph J.

    1981-01-01

    An amorphous silicon solar cell has an active body with two or a series of layers of hydrogenated amorphous silicon arranged in a tandem stacked configuration with one optical path and electrically interconnected by a tunnel junction. The layers of hydrogenated amorphous silicon arranged in tandem configuration can have the same bandgap or differing bandgaps.

  16. ARM: AOS Humidified Tandem Differential Mobility Analyzer (Dataset...

    Office of Scientific and Technical Information (OSTI)

    Title: ARM: AOS Humidified Tandem Differential Mobility Analyzer AOS Humidified Tandem Differential Mobility Analyzer Authors: Scott Smith ; Cynthia Salwen ; Janek Uin ; Alice ...

  17. Three-point spherical mirror mount

    DOEpatents

    Cutburth, R.W.

    1984-01-23

    A three-point spherical mirror mount for use with lasers is disclosed. The improved mirror mount is adapted to provide a pivot ring having an outer surface with at least three spaced apart mating points to engage an inner spherical surface of a support housing.

  18. LED structure with enhanced mirror reflectivity

    DOEpatents

    Bergmann, Michael; Donofrio, Matthew; Heikman, Sten; Schneider, Kevin S; Haberern, Kevin W; Edmond, John A

    2014-04-01

    Embodiments of the present invention are generally related to LED chips having improved overall emission by reducing the light-absorbing effects of barrier layers adjacent mirror contacts. In one embodiment, a LED chip comprises one or more LEDs, with each LED having an active region, a first contact under the active region having a highly reflective mirror, and a barrier layer adjacent the mirror. The barrier layer is smaller than the mirror such that it does not extend beyond the periphery of the mirror. In another possible embodiment, an insulator is further provided, with the insulator adjacent the barrier layer and adjacent portions of the mirror not contacted by the active region or by the barrier layer. In yet another embodiment, a second contact is provided on the active region. In a further embodiment, the barrier layer is smaller than the mirror such that the periphery of the mirror is at least 40% free of the barrier layer, and the second contact is below the first contact and accessible from the bottom of the chip.

  19. Durable silver coating for mirrors

    DOEpatents

    Wolfe, Jesse D.; Thomas, Norman L.

    2000-01-01

    A durable multilayer mirror includes reflective layers of aluminum and silver and has high reflectance over a broad spectral range from ultraviolet to visible to infrared. An adhesion layer of a nickel and/or chromium alloy or nitride is deposited on an aluminum surface, and a thin layer of silver is then deposited on the adhesion layer. The silver layer is protected by a passivation layer of a nickel and/or chromium alloy or nitride and by one or more durability layers made of metal oxides and typically a first layer of metal nitride. The durability layers may include a composite silicon aluminum nitride and an oxinitride transition layer to improve bonding between nitride and oxide layers.

  20. Self-Aligning Mirror Mechanism for Transmission Line Offset Correction...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Self-Aligning Mirror Mechanism for Transmission Line Offset Correction The Self-Aligning Mirror Mechanism for Transmission Line Offset Correction is a self-aligning mechanism which...

  1. Axisymmetric Magnetic Mirror Fusion-Fission Hybrid (Technical...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Axisymmetric Magnetic Mirror Fusion-Fission Hybrid Citation Details In-Document Search Title: Axisymmetric Magnetic Mirror Fusion-Fission Hybrid Authors: Moir, R ...

  2. Calculation of the neutron structure function by using A = 3 mirror nuclei and a quark exchange formalism

    SciTech Connect

    Modarres, M.; Zolfagharpour, F.; Yazdanpanah, M.M.

    2005-05-06

    It is demonstrated that the free neutron structure function can be extracted in deep inelastic scattering from A = 3 mirror nuclei i.e. 3He and 3H, and our extracted free neutron structure function agrees with the experiments.

  3. PROJECT PROFILE: Mechanically Stacked Hybrid Photovoltaic Tandems

    Energy.gov [DOE]

    Tandem cell architectures present a path toward higher module efficiencies over single junction designs. This project will develop a gallium indium phosphide (GaInP) on silicon mechanically stacked voltage-matched tandem, aiming at low cost and high efficiency. The project will result in one of the first published demonstrations of voltage-matched modules, an assessment of the advantages and disadvantages of the new architecture, and its promise for photovoltaic (PV) module design.

  4. Electric dipole radiation near a mirror

    SciTech Connect

    Li Xin; Arnoldus, Henk F.

    2010-05-15

    The emission of radiation by a linearly oscillating electric dipole is drastically altered when the dipole is close to the surface of a mirror. The energy is not emitted along optical rays, as for a free dipole, but as a set of four optical vortices. The field lines of energy flow spiral around a set of two lines through the dipole. At a larger distance from the dipole, singularities and isolated vortices appear. It is shown that these interference vortices are due to the vanishing of the magnetic field at their centers. In the plane of the mirror there is a singular circle with a diameter which is proportional to the distance between the dipole and the mirror. Inside this circle, all energy flows to a singularity on the mirror surface.

  5. Coating considerations for mirrors of CPV devices

    SciTech Connect

    Schmauder, Torsten; Sauer, Peter; Ickes, Gerd

    2014-09-26

    One of the different optical concepts for concentrator devices is to place a focussing primary mirror behind a transparent front plate. In addition (also in case of Fresnel-diffractive main optics), further 'secondary' reflectors may be used further along the beam path. Such mirrors are usually implemented as coating stacks of a highly reflective metal - usually silver - and protective layers. The protective layers are preferably designed as reflection enhancing interference stack. The design of such protective layer stacks yields two difficulties, which are addressed in this paper: (a) vacuum coating of three-dimensional parts will result in a thickness distribution and the optical design of the stack should thus be tolerant to layer thickness variations, and (b) different places of the mirror will have different angle-of-incidence of the sunlight under operating conditions. As result, the layer stack has a different design at different places of the mirror.

  6. Motorized control for mirror mount apparatus

    DOEpatents

    Cutburth, Ronald W.

    1989-01-01

    A motorized control and automatic braking system for adjusting mirror mount apparatus is disclosed. The motor control includes a planetary gear arrangement to provide improved pitch adjustment capability while permitting a small packaged design. The motor control for mirror mount adjustment is suitable for laser beam propagation applications. The brake is a system of constant contact, floating detents which engage the planetary gear at selected between-teeth increments to stop rotation instantaneously when the drive motor stops.

  7. Design of a Thermal Imaging Diagnostic Using 90-Degree, Off-Axis, Parabolic Mirrors

    SciTech Connect

    Malone, Robert M.; Becker, Steven A.; Dolan, Daniel H.; Hacking, Richard G.; Hickman, Randy J.; Kaufman, Morris I.; Stevens, Gerald D.; Turley, William D.

    2006-09-01

    Thermal imaging is an important, though challenging, diagnostic for shockwave experiments. Shock-compressed materials undergo transient temperature changes that cannot be recorded with standard (greater than ms response time) infrared detectors. A further complication arises when optical elements near the experiment are destroyed. We have designed a thermal-imaging system for studying shock temperatures produced inside a gas gun at Sandia National Laboratories. Inexpensive, diamond-turned, parabolic mirrors relay an image of the shocked target to the exterior of the gas gun chamber through a sapphire vacuum port. The 3000–5000-nm portion of this image is directed to an infrared camera which acquires a snapshot of the target with a minimum exposure time of 150 ns. A special mask is inserted at the last intermediate image plane, to provide dynamic thermal background recording during the event. Other wavelength bands of this image are split into high-speed detectors operating at 900–1700 nm, and at 1700–3000 nm for timeresolved pyrometry measurements. This system incorporates 90-degree, off-axis parabolic mirrors, which can collect low f/# light over a broad spectral range, for high-speed imaging. Matched mirror pairs must be used so that aberrations cancel. To eliminate image plane tilt, proper tip-to-tip orientation of the parabolic mirrors is required. If one parabolic mirror is rotated 180 degrees about the optical axis connecting the pair of parabolic mirrors, the resulting image is tilted by 60 degrees. Different focal-length mirrors cannot be used to magnify the image without substantially sacrificing image quality. This paper analyzes performance and aberrations of this imaging diagnostic.

  8. Production of Ar{sup q+} ions with a tandem linear Paul trap

    SciTech Connect

    Higaki, H. Nagayasu, K.; Iwai, T.; Ito, K.; Okamoto, H.

    2015-06-29

    A tandem linear Paul trap was used to create highly charged Argon ions by electron impact ionizations. By improving the operation scheme, the production of Ar{sup 4+} ions was confirmed. Possible improvements for the future experiments with laser cooled Ca{sup +} ions are suggested.

  9. Four-mirror extreme ultraviolet (EUV) lithography projection system

    DOEpatents

    Cohen, Simon J; Jeong, Hwan J; Shafer, David R

    2000-01-01

    The invention is directed to a four-mirror catoptric projection system for extreme ultraviolet (EUV) lithography to transfer a pattern from a reflective reticle to a wafer substrate. In order along the light path followed by light from the reticle to the wafer substrate, the system includes a dominantly hyperbolic convex mirror, a dominantly elliptical concave mirror, spherical convex mirror, and spherical concave mirror. The reticle and wafer substrate are positioned along the system's optical axis on opposite sides of the mirrors. The hyperbolic and elliptical mirrors are positioned on the same side of the system's optical axis as the reticle, and are relatively large in diameter as they are positioned on the high magnification side of the system. The hyperbolic and elliptical mirrors are relatively far off the optical axis and hence they have significant aspherical components in their curvatures. The convex spherical mirror is positioned on the optical axis, and has a substantially or perfectly spherical shape. The spherical concave mirror is positioned substantially on the opposite side of the optical axis from the hyperbolic and elliptical mirrors. Because it is positioned off-axis to a degree, the spherical concave mirror has some asphericity to counter aberrations. The spherical concave mirror forms a relatively large, uniform field on the wafer substrate. The mirrors can be tilted or decentered slightly to achieve further increase in the field size.

  10. Experiment

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    MiniBooNE Experiment September, 2002 SeptemMyungkee Sung (LSU/MiniBooNE) 4th International Workshop on the Identification of Dark Matter Cosmologically Interesting Region; Hot Dark Matter? LSND Signal at High ∆m 2 KARMEN II narrowed the signal region MiniBooNE will fully address this signal. Neutrino Osillation at High ∆m 2 LSND: Searching for ν µ →ν e ν µ - From µ + decay at rest with endpoint energy 53 MeV L = 30m, L/E ~ 1m/MeV, 167 tons of Mineral Oil Look for ν e Appearance: ν

  11. PROJECT PROFILE: Silicon-Based Tandem Solar Cells

    Office of Energy Efficiency and Renewable Energy (EERE)

    The project will demonstrate bonded gallium indium phosphide (GaInP) on silicon tandem cells, evaluate the advantages and disadvantages of this method of forming higher-efficiency tandem cells, and compare two- and three-terminal device configurations.

  12. Alignment and focus of mirrored facets of a heliosat

    DOEpatents

    Yellowhair, Julius E; Ho, Clifford Kuofei; Diver, Richard B; Moss, Timothy A

    2013-11-12

    Various technologies pertaining to aligning and focusing mirrored facets of a heliostat are described herein. Updating alignment and/or focus of mirrored facets is undertaken through generation of a theoretical image, wherein the theoretical image is indicative of a reflection of the target via the mirrored facets when the mirrored facets are properly aligned. This theoretical image includes reference points that are overlaid on an image of the target as reflected by the mirrored facets of the heliostat. A technician adjusts alignment/focus of a mirrored facet by causing reflected reference markings to become aligned with the reference points in the theoretical image.

  13. High voltage series connected tandem junction solar battery

    DOEpatents

    Hanak, Joseph J.

    1982-01-01

    A high voltage series connected tandem junction solar battery which comprises a plurality of strips of tandem junction solar cells of hydrogenated amorphous silicon having one optical path and electrically interconnected by a tunnel junction. The layers of hydrogenated amorphous silicon, arranged in a tandem configuration, can have the same bandgap or differing bandgaps. The tandem junction strip solar cells are series connected to produce a solar battery of any desired voltage.

  14. Adhesion and chemical vapor testing of second surface silver/glass solar mirrors

    SciTech Connect

    Dake, L.S.; Lind, M.A.

    1980-09-01

    Second surface silvered glass mirrors supplied by four different commercial manufacturers were evaluated for silver-to-glass adhesion and resistance to chemical vapor attack. The mirrors were chemically silvered on identical substrates of low iron float glass. Experiments were performed in order to assess the viability of using adhesion and chemical attack as screening tests for predicting the relative long-term durability of solar mirrors. The results of these tests will be compared at a future time with the survivability of field mirrors deployed in stationary exposure racks at ten locations throughout the United States. The adhesion tests were performed using a commercially-available thin film tensile pull tester in which a stud bonded to the film is pulled and the yield load recorded. Numerous subtleties regarding the selection of the adhesive used to bond the study and the validity of the testing procedure are discussed. Several different methods of normalizing the results were attempted in an effort to reduce the scatter in the data. The same set of samples were exposed to salt spray, water, HCl, H/sub 2/SO/sub 4/, and HNO/sub 3/ vapors and then ranked according to their performance. Visual comparison of tested samples did not yield consistent results; however, definite trends were observed favoring one of the manufacturers. Some SEM/EDX analysis was performed on these mirrors subject to accelerated degradation in order to compare them to mirrors subject to natural degradation. However, insufficient data has been collected to show that any of the tests performed will accurately predict the relative life expectancy of the mirrors in an outdoor environment.

  15. Modelling of tandem cell temperature coefficients

    SciTech Connect

    Friedman, D.J.

    1996-05-01

    This paper discusses the temperature dependence of the basic solar-cell operating parameters for a GaInP/GaAs series-connected two-terminal tandem cell. The effects of series resistance and of different incident solar spectra are also discussed.

  16. Solid State Replacement of Rotating Mirror Cameras

    SciTech Connect

    Frank, A M; Bartolick, J M

    2006-08-25

    Rotating mirror cameras have been the mainstay of mega-frame per second imaging for decades. There is still no electronic camera that can match a film based rotary mirror camera for the combination of frame count, speed, resolution and dynamic range. The rotary mirror cameras are predominantly used in the range of 0.1 to 100 micro-seconds per frame, for 25 to more than a hundred frames. Electron tube gated cameras dominate the sub microsecond regime but are frame count limited. Video cameras are pushing into the microsecond regime but are resolution limited by the high data rates. An all solid state architecture, dubbed ''In-situ Storage Image Sensor'' or ''ISIS'', by Prof. Goji Etoh, has made its first appearance into the market and its evaluation is discussed. Recent work at Lawrence Livermore National Laboratory has concentrated both on evaluation of the presently available technologies and exploring the capabilities of the ISIS architecture. It is clear though there is presently no single chip camera that can simultaneously match the rotary mirror cameras, the ISIS architecture has the potential to approach their performance.

  17. Scalable stacked array piezoelectric deformable mirror for astronomy and laser processing applications

    SciTech Connect

    Wlodarczyk, Krystian L. Maier, Robert R. J.; Hand, Duncan P.; Bryce, Emma; Hutson, David; Kirk, Katherine; Schwartz, Noah; Atkinson, David; Beard, Steven; Baillie, Tom; Parr-Burman, Phil; Strachan, Mel; UK Astronomy Technology Centre, Royal Observatory, Edinburgh EH9 3HJ

    2014-02-15

    A prototype of a scalable and potentially low-cost stacked array piezoelectric deformable mirror (SA-PDM) with 35 active elements is presented in this paper. This prototype is characterized by a 2 ?m maximum actuator stroke, a 1.4 ?m mirror sag (measured for a 14 mm 14 mm area of the unpowered SA-PDM), and a 200 nm hysteresis error. The initial proof of concept experiments described here show that this mirror can be successfully used for shaping a high power laser beam in order to improve laser machining performance. Various beam shapes have been obtained with the SA-PDM and examples of laser machining with the shaped beams are presented.

  18. Method for making mirrored surfaces comprising superconducting material

    DOEpatents

    Early, J.T.; Hargrove, R.S.

    1989-12-12

    Superconducting mirror surfaces are provided by forming a mirror surface from a material which is superconductive at a temperature above about 40 K and adjusting the temperature of the surface to that temperature at which the material is superconducting. The mirror surfaces are essentially perfect reflectors for electromagnetic radiation with photon energy less than the superconducting band gap.

  19. Method for making mirrored surfaces comprising superconducting material

    DOEpatents

    Early, James T.; Hargrove, R. Steven

    1989-01-01

    Superconducting mirror surfaces are provided by forming a mirror surface from a material which is superconductive at a temperature above about 40.degree. K. and adjusting the temperature of the surface to that temperature at which the material is superconducting. The mirror surfaces are essentially perfect reflectors for electromagnetic radiation with photon energy less than the superconducting band gap.

  20. Photo of the Week | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Photo of the Week Photo of the Week Addthis Inside the Tandem Mirror Experiment 1 of 28 Inside the Tandem Mirror Experiment This 1978 photo shows two workers inside the Mirror Fusion Test Facility, a magnetic confinement fusion device designed and built at Lawrence Livermore National Laboratory. In this experiment, magnetic mirrors are placed at both ends of a central magnetic tube. Very hot and dense plasmas inside each mirror enhanced the confinement of another plasma inside the central tube,

  1. FIELD EXPERIENCE WITH 3-SUN MIRROR MODULE SYSTEMS

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ABSTRACT Various types of multijunction solar cells have now been demonstrated with energy conversion efficiencies over 40%. Higher cell efficiencies are still possible. ...

  2. Silicon nitride protective coatings for silvered glass mirrors

    DOEpatents

    Tracy, C.E.; Benson, D.K.

    1984-07-20

    A protective diffusion barrier for metalized mirror structures is provided by a layer or coating of silicon nitride which is a very dense, transparent, dielectric material that is impervious to water, alkali, and other impurities and corrosive substances that typically attack the metal layers of mirrors and cause degradation of the mirrors' reflectivity. The silicon nitride layer can be deposited on the substrate prior to metal deposition thereon to stabilize the metal/substrate interface, and it can be deposited over the metal to encapsulate it and protect the metal from corrosion or other degradation. Mirrors coated with silicon nitride according to this invention can also be used as front surface mirrors.

  3. Silicon nitride protective coatings for silvered glass mirrors

    DOEpatents

    Tracy, C. Edwin; Benson, David K.

    1988-01-01

    A protective diffusion barrier for metalized mirror structures is provided by a layer or coating of silicon nitride which is a very dense, transparent, dielectric material that is impervious to water, alkali, and other impurities and corrosive substances that typically attack the metal layers of mirrors and cause degradation of the mirrors' reflectivity. The silicon nitride layer can be deposited on the substrate before metal deposition to stabilize the metal/substrate interface, and it can be deposited over the metal to encapsulate it and protect the metal from corrosion or other degradation. Mirrors coated with silicon nitride according to this invention can also be used as front surface mirrors.

  4. Tandem microwave waste remediation and decontamination system

    DOEpatents

    Wicks, George G.; Clark, David E.; Schulz, Rebecca L.

    1999-01-01

    The invention discloses a tandem microwave system consisting of a primary chamber in which microwave energy is used for the controlled combustion of materials. A second chamber is used to further treat the off-gases from the primary chamber by passage through a susceptor matrix subjected to additional microwave energy. The direct microwave radiation and elevated temperatures provide for significant reductions in the qualitative and quantitative emissions of the treated off gases. The tandem microwave system can be utilized for disinfecting wastes, sterilizing materials, and/or modifying the form of wastes to solidify organic or inorganic materials. The simple design allows on-site treatment of waste by small volume waste generators.

  5. Design considerations for mirrors at the Advanced Photon Source

    SciTech Connect

    Srajer, G.; Mohanty, K.

    1992-06-01

    Detailed ray-tracing studies and preliminary thermal analysis are presented for two mirrors that will be installed at the Advanced Photon Source. The first mirror is designed to accept white radiation from a bending magnet. This radiation is 5 mrad in the horizontal direction and 73 {mu}rad in the vertical. A 1.5 m long toroidal mirror is planned. The second mirror accepts radiation from an undulator. This radiation is 55 {mu}rad and 25 {mu}rad in horizontal and vertical directions, respectively. A 70-cm toroidal mirror is planned. Both mirrors are optimized for 1:1 focusing in order to minimize optical aberrations. Design specifications are presented. Suitable materials for the mirror substrates and reflective surfaces are discussed as well.

  6. Hybrid Tandem Solar Cells | Photovoltaic Research | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Hybrid Tandem Solar Cells To achieve aggressive cost reductions in photovoltaics (PV) beyond the 6¢/kWh SunShot Initiative 2020 goal, module efficiency must be increased beyond the single-junction limit. Many device architectures have been investigated, but successful devices will likely use industry's standard platform-crystalline silicon. We have several projects that build on a silicon platform and that aim to provide viable prototypes for commercialization. PV Research Other Materials &

  7. Current and lattice matched tandem solar cell

    DOEpatents

    Olson, Jerry M.

    1987-01-01

    A multijunction (cascade) tandem photovoltaic solar cell device is fabricated of a Ga.sub.x In.sub.1-x P (0.505.ltoreq.X.ltoreq.0.515) top cell semiconductor lattice matched to a GaAs bottom cell semiconductor at a low-resistance heterojunction, preferably a p+/n+ heterojunction between the cells. The top and bottom cells are both lattice matched and current matched for high efficiency solar radiation conversion to electrical energy.

  8. Cold Climate Heat Pumps Using Tandem Compressors

    SciTech Connect

    Shen, Bo; Abdelaziz, Omar; Rice, C Keith; Baxter, Van D

    2016-01-01

    In cold climate zones, e.g. ASHRAE climate regions IV and V, conventional electric air-source heat pumps (ASHP) do not work well, due to high compressor discharge temperatures, large pressure ratios and inadequate heating capacities at low ambient temperatures. Consequently, significant use of auxiliary strip heating is required to meet the building heating load. We introduce innovative ASHP technologies as part of continuing efforts to eliminate auxiliary strip heat use and maximize heating COP with acceptable cost-effectiveness and reliability. These innovative ASHP were developed using tandem compressors, which are capable of augmenting heating capacity at low temperatures and maintain superior part-load operation efficiency at moderate temperatures. Two options of tandem compressors were studied; the first employs two identical, single-speed compressors, and the second employs two identical, vapor-injection compressors. The investigations were based on system modeling and laboratory evaluation. Both designs have successfully met the performance criteria. Laboratory evaluation showed that the tandem, single-speed compressor ASHP system is able to achieve heating COP = 4.2 at 47 F (8.3 C), COP = 2.9 at 17 F (-8.3 C), and 76% rated capacity and COP = 1.9 at -13 F (-25 C). This yields a HSPF = 11.0 (per AHRI 210/240). The tandem, vapor-injection ASHP is able to reach heating COP = 4.4 at 47 F, COP = 3.1 at 17 F, and 88% rated capacity and COP = 2.0 at -13 F. This yields a HSPF = 12.0. The system modeling and further laboratory evaluation are presented in the paper.

  9. Wave excitation by nonlinear coupling among shear Alfvén waves in a mirror-confined plasma

    SciTech Connect

    Ikezoe, R. Ichimura, M.; Okada, T.; Hirata, M.; Yokoyama, T.; Iwamoto, Y.; Sumida, S.; Jang, S.; Takeyama, K.; Yoshikawa, M.; Kohagura, J.; Shima, Y.; Wang, X.

    2015-09-15

    A shear Alfvén wave at slightly below the ion-cyclotron frequency overcomes the ion-cyclotron damping and grows because of the strong anisotropy of the ion temperature in the magnetic mirror configuration, and is called the Alfvén ion-cyclotron (AIC) wave. Density fluctuations caused by the AIC waves and the ion-cyclotron range of frequencies (ICRF) waves used for ion heating have been detected using a reflectometer in a wide radial region of the GAMMA 10 tandem mirror plasma. Various wave-wave couplings are clearly observed in the density fluctuations in the interior of the plasma, but these couplings are not so clear in the magnetic fluctuations at the plasma edge when measured using a pick-up coil. A radial dependence of the nonlinearity is found, particularly in waves with the difference frequencies of the AIC waves; bispectral analysis shows that such wave-wave coupling is significant near the core, but is not so evident at the periphery. In contrast, nonlinear coupling with the low-frequency background turbulence is quite distinct at the periphery. Nonlinear coupling associated with the AIC waves may play a significant role in the beta- and anisotropy-limits of a mirror-confined plasma through decay of the ICRF heating power and degradation of the plasma confinement by nonlinearly generated waves.

  10. Fiber optics welder having movable aligning mirror

    DOEpatents

    Higgins, Robert W.; Robichaud, Roger E.

    1981-01-01

    A system for welding fiber optic waveguides together. The ends of the two fibers to be joined together are accurately, collinearly aligned in a vertical orientation and subjected to a controlled, diffuse arc to effect welding and thermal conditioning. A front-surfaced mirror mounted at a 45.degree. angle to the optical axis of a stereomicroscope mounted for viewing the junction of the ends provides two orthogonal views of the interface during the alignment operation.

  11. Alternate protection concepts for second surface silver/glass solar mirrors

    SciTech Connect

    Buckwalter, C.Q.; Dake, L.S.; Hartman, J.S.; Lind, M.A.

    1980-10-01

    Investigations into three technologies having the potential of significantly enhancing the durability of solar mirrors are reported. The approaches are based on the assumption that sealing the silver layer on second surface mirrors from the external environment with protective overcoats will significantly extend their useful service life. Considered are: (1) edge sealing a second sheet of glass over the silver layer using solder glasses, (2) overcoating the silver layer with liquid applied SiO/sub 2/ or TiO/sub 2/ coatings, and (3) overcoating the silver layer with an electroless nickel film. Preliminary experiments were performed using Sb/sub 2/O/sub 5/-K/sub 2/O and PbO based solder glasses to edge seal a second sheet of glass over the silver mirror surface. Problems encountered in the formulation of the Sb/sub 2/O/sub 5/-K/sub 2/O glasses forced abandonment of these low melting point solder glass experiments. Materials compatibility problems were encountered when using several of the commercially available PbO based solder glasses alternatives. A cursory evaluation of liquid SiO/sub 2/ and TiO/sub 2/ coatings was also undertaken. The films were applied as direct overcoats on both silver only and silver/copper mirror substrates. Although the process appeared to yield visually acceptable coatings, under microscopic examination the films were found to be porous and pinhole riddled after the final curing step. Consequently, they did not stand up well to salt spray and HCl vapor tests. Background data were collected in an investigation of overcoating the silver or silver/copper mirrors with an electroless deposited nickel film. Two formulations, one a basic solution, the other a commercial acidic solution, were attempted. Film integrity problems were encountered for fairly thick films in the feasibility experiments attempted. Nevertheless, the concept appears sound and merits further investigation.

  12. High explosives vapor detection by atmospheric sampling glow discharge ionization/tandem mass spectrometry

    SciTech Connect

    McLuckey, S.A.; Goeringer, D.E.; Asano, K.G.

    1996-02-01

    The combination of atmospheric sampling glow discharge ionization with tandem mass spectrometry for the detection of traces of high explosives is described. Particular emphasis is placed on use of the quadrupole ion trap as the type of tandem mass spectrometer. Atmospheric sampling glow discharge provides a simple, rugged, and efficient means for anion formation while the quadrupole ion trap provides for efficient tandem mass spectrometry. Mass selective ion accumulation and non-specific ion activation methods can be used to overcome deleterious effects arising from ion/ion interactions. Such interactions constitute the major potential technical barrier to the use of the ion trap for real-time monitoring of targeted compounds in uncontrolled and highly variable matrices. Tailored waveforms can be used to effect both mass selective ion accumulation and ion activation. Concatenated tailored waveforms allow for both functions in a single experiment thereby providing the capability for monitoring several targeted species simultaneously. The combination of atmospheric sampling glow discharge ionization with a state-of-the-art analytical quadrupole ion trap is a highly sensitive and specific detector for traces of high explosives. The combination is also small and inexpensive relative to virtually any other form of tandem mass spectrometry. The science and technology underlying the glow discharge/ion trap combination is sufficiently mature to form the basis for an engineering effort to make the detector portable. 85 refs.

  13. ARM: AOS Humidified Tandem Differential Mobility Analyzer (Dataset) | Data

    Office of Scientific and Technical Information (OSTI)

    Explorer AOS Humidified Tandem Differential Mobility Analyzer Title: ARM: AOS Humidified Tandem Differential Mobility Analyzer AOS Humidified Tandem Differential Mobility Analyzer Authors: Scott Smith ; Cynthia Salwen ; Janek Uin ; Alice Cialella ; Gunnar Senum ; Stephen Springston Publication Date: 2012-11-16 OSTI Identifier: 1095581 DOE Contract Number: DE-AC05-00OR22725 Resource Type: Dataset Data Type: Numeric Data Research Org: Atmospheric Radiation Measurement (ARM) Archive, Oak Ridge

  14. Low Cost, High Efficiency Tandem Silicon Solar Cells and LEDs...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Building Energy Efficiency Building Energy ... Return to Search Low Cost, High Efficiency Tandem Silicon Solar Cells and LEDs ... gaps will lead to efficient power conversion. ...

  15. High-efficiency, monolithic, multi-bandgap, tandem photovoltaic...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles ... High-efficiency, monolithic, multi-bandgap, tandem photovoltaic energy converters United ...

  16. Support mechanism for a mirrored surface or other arrangement

    DOEpatents

    Cutburth, Ronald W.

    1987-01-01

    An adjustment mechanism such as a three point spherical mount for adjustably supporting a planer mirror or other type of arrangement relative to a plane defined by a given pair of intersecting perpendicular axes is disclosed herein. This mechanism includes first means for fixedly supporting the mirror or other arrangement such that the latter is positionable within the plane defined by the given pair of intersecting perpendicular axes. This latter means and the mirror or other such arrangement are supported by second means for limited movement back and forth about either of the intersecting axes. Moreover, this second means supports the first means and the mirror or other arrangement such that the latter is not movable in any other way whereby the point on the mirror or other arrangement coinciding with the intersection of the given axes does not move or float, thereby making the ability to adjust the mirror or other such arrangement more precise and accurate.

  17. Tandem robot control system and method for controlling mobile robots in tandem

    DOEpatents

    Hayward, David R.; Buttz, James H.; Shirey, David L.

    2002-01-01

    A control system for controlling mobile robots provides a way to control mobile robots, connected in tandem with coupling devices, to navigate across difficult terrain or in closed spaces. The mobile robots can be controlled cooperatively as a coupled system in linked mode or controlled individually as separate robots.

  18. Method of fabricating bifacial tandem solar cells

    DOEpatents

    Wojtczuk, Steven J; Chiu, Philip T; Zhang, Xuebing; Gagnon, Edward; Timmons, Michael

    2014-10-07

    A method of fabricating on a semiconductor substrate bifacial tandem solar cells with semiconductor subcells having a lower bandgap than the substrate bandgap on one side of the substrate and with subcells having a higher bandgap than the substrate on the other including, first, growing a lower bandgap subcell on one substrate side that uses only the same periodic table group V material in the dislocation-reducing grading layers and bottom subcells as is present in the substrate and after the initial growth is complete and then flipping the substrate and growing the higher bandgap subcells on the opposite substrate side which can be of different group V material.

  19. Mirror fusion propulsion system: A performance comparison with alternate propulsion systems for the manned Mars Mission

    SciTech Connect

    Schulze, N.R.; Carpenter, S.A.; Deveny, M.E.; Oconnell, T.

    1993-06-01

    The performance characteristics of several propulsion technologies applied to piloted Mars missions are compared. The characteristics that are compared are Initial Mass in Low Earth Orbit (IMLEO), mission flexibility, and flight times. The propulsion systems being compared are both demonstrated and envisioned: Chemical (or Cryogenic), Nuclear Thermal Rocket (NTR) solid core, NTR gas core, Nuclear Electric Propulsion (NEP), and a mirror fusion space propulsion system. The proposed magnetic mirror fusion reactor, known as the Mirror Fusion Propulsion System (MFPS), is described. The description is an overview of a design study that was conducted to convert a mirror reactor experiment at Lawrence Livermore National Lab (LLNL) into a viable space propulsion system. Design principles geared towards minimizing mass and maximizing power available for thrust are identified and applied to the LLNL reactor design, resulting in the MFPS. The MFPS' design evolution, reactor and fuel choices, and system configuration are described. Results of the performance comparison shows that the MFPS minimizes flight time to 60 to 90 days for flights to Mars while allowing continuous return-home capability while at Mars. Total MFPS IMLEO including propellant and payloads is kept to about 1,000 metric tons.

  20. Mirror fusion propulsion system - A performance comparison with alternate propulsion systems for the manned Mars mission

    SciTech Connect

    Deveny, M.; Carpenter, S.; O'connell, T.; Schulze, N.

    1993-06-01

    The performance characteristics of several propulsion technologies applied to piloted Mars missions are compared. The characteristics that are compared are Initial Mass in Low Earth Orbit (IMLEO), mission flexibility, and flight times. The propulsion systems being compared are both demonstrated and envisioned: Chemical (or Cryogenic), Nuclear Thermal Rocket (NTR) solid core, NTR gas core, Nuclear Electric Propulsion (NEP), and a mirror fusion space propulsion system. The proposed magnetic mirror fusion reactor, known as the Mirror Fusion Propulsion System (MFPS), is described. The description is an overview of a design study that was conducted to convert a mirror reactor experiment at Lawrence Livermore National Lab (LLNL) into a viable space propulsion system. Design principles geared towards minimizing mass and maximizing power available for thrust are identified and applied to the LLNL reactor design, resulting in the MFPS. The MFPS' design evolution, reactor and fuel choices, and system configuration are described. Results of the performance comparison shows that the MFPS minimizes flight time to 60 to 90 days for flights to Mars while allowing continuous return-home capability while at Mars. Total MFPS IMLEO including propellant and payloads is kept to about 1,000 metric tons. 50 refs.

  1. Two-axis Beam Steering Mirror Control system for Precision Pointing and Tracking Applications

    SciTech Connect

    Ulander, K

    2006-02-08

    Precision pointing and tracking of laser beams is critical in numerous military and industrial applications. This is particularly true for systems requiring atmospheric beam propagation. Such systems are plagued by environmental influences which cause the optical signal to break up and wander. Example applications include laser communications, precision targeting, active imaging, chemical remote sensing, and laser vibrometry. The goal of this project is to build a beam steering system using a two-axis mirror to maintain precise pointing control. Ultimately, position control to 0.08% accuracy (40 {micro}rad) with a bandwidth of 200 Hz is desired. The work described encompasses evaluation of the instrumentation system and the subsequent design and implementation of an analog electronic controller for a two-axis mirror used to steer the beam. The controller operates over a wide temperature range, through multiple mirror resonances, and is independent of specific mirrors. The design was built and successfully fielded in a Lawrence Livermore National Laboratory free-space optics experiment. All measurements and performance parameters are derived from measurements made on actual hardware that was built and field tested. In some cases, specific design details have been omitted that involve proprietary information pertaining to Lawrence Livermore National Laboratory patent positions and claims. These omissions in no way impact the general validity of the work or concepts presented in this thesis.

  2. Image-rotating, 4-mirror, ring optical parametric oscillator

    DOEpatents

    Smith, Arlee V.; Armstrong, Darrell J.

    2004-08-10

    A device for optical parametric amplification utilizing four mirrors oriented in a nonplanar configuration where the optical plane formed by two of the mirrors is orthogonal to the optical plane formed by the other two mirrors and with the ratio of lengths of the laser beam paths approximately constant regardless of the scale of the device. With a cavity length of less than approximately 110 mm, a conversion efficiency of greater than 45% can be achieved.

  3. Electrocurtain coating process for coating solar mirrors

    DOEpatents

    Kabagambe, Benjamin; Boyd, Donald W.; Buchanan, Michael J.; Kelly, Patrick; Kutilek, Luke A.; McCamy, James W.; McPheron, Douglas A.; Orosz, Gary R.; Limbacher, Raymond D.

    2013-10-15

    An electrically conductive protective coating or film is provided over the surface of a reflective coating of a solar mirror by flowing or directing a cation containing liquid and an anion containing liquid onto the conductive surface. The cation and the anion containing liquids are spaced from, and preferably out of contact with one another on the surface of the reflective coating as an electric current is moved through the anion containing liquid, the conductive surface between the liquids and the cation containing liquid to coat the conductive surface with the electrically conductive coating.

  4. Imperfect relativistic mirrors in the quantum regime

    SciTech Connect

    Mendonça, J. T.; Serbeto, A.; Galvão, R. M. O.

    2014-05-15

    The collective backscattering of intense laser radiation by energetic electron beams is considered in the relativistic quantum regime. Exact solutions for the radiation field are obtained, for arbitrary electron pulse shapes and laser intensities. The electron beams act as imperfect nonlinear mirrors on the incident laser radiation. This collective backscattering process can lead to the development of new sources of ultra-short pulse radiation in the gamma-ray domain. Numerical examples show that, for plausible experimental conditions, intense pulses of gamma-rays, due to the double Doppler shift of the harmonics of the incident laser radiation, can be produced using the available technology, with durations less than 1 as.

  5. Axisymmetric Magnetic Mirror Fusion-Fission Hybrid (Conference...

    Office of Scientific and Technical Information (OSTI)

    Conference: Axisymmetric Magnetic Mirror Fusion-Fission Hybrid Citation Details ... Visit OSTI to utilize additional information resources in energy science and technology. A ...

  6. Axisymmetric Magnetic Mirror Fusion-Fission Hybrid (Technical...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Axisymmetric Magnetic Mirror Fusion-Fission Hybrid Citation Details ... Visit OSTI to utilize additional information resources in energy science and technology. A ...

  7. Miniscule Mirrored Cavities Connect Quantum Memories | U.S. DOE...

    Office of Science (SC)

    Miniscule Mirrored Cavities Connect Quantum Memories Basic Energy Sciences (BES) BES Home ... Diamond optical cavities allow laser light (green arrow) to excite electrons on atoms held ...

  8. Simulating Wavefront Correction via Deformable Mirrors at X-Ray...

    Office of Scientific and Technical Information (OSTI)

    Conference: Simulating Wavefront Correction via Deformable Mirrors at X-Ray Beamlines Citation Details In-Document Search Title: Simulating Wavefront Correction via Deformable ...

  9. Elliptically Bent X-ray Mirrors with Active Temperature Stabilization

    SciTech Connect

    Yuan, Sheng; Church, Matthew; Yashchuk, Valeriy V.; Goldberg, Kenneth A.; Celestre, Rich; McKinney, Wayne R.; Kirschman, Jonathan; Morrison, Greg; Noll, Tino; Warwick, Tony; Padmore, Howard A.

    2010-01-31

    We present details of design of elliptically bent Kirkpatrick-Baez mirrors developed and successfully used at the Advanced Light Source for submicron focusing. A distinctive feature of the mirror design is an active temperature stabilization based on a Peltier element attached directly to the mirror body. The design and materials have been carefully optimized to provide high heat conductance between the mirror body and substrate. We describe the experimental procedures used when assembling and precisely shaping the mirrors, with special attention paid to laboratory testing of the mirror-temperature stabilization. For this purpose, the temperature dependence of the surface slope profile of a specially fabricated test mirror placed inside a temperature-controlled container was measured. We demonstrate that with active mirror-temperature stabilization, a change of the surrounding temperature by more than 3K does not noticeably affect the mirror figure. Without temperature stabilization, the surface slope changes by approximately 1.5 ?mu rad rms (primarily defocus) under the same conditions.

  10. Nondispersive neutron focusing method beyond the critical angle of mirrors

    DOEpatents

    Ice, Gene E. (Oak Ridge, TN)

    2008-10-21

    This invention extends the Kirkpatrick-Baez (KB) mirror focusing geometry to allow nondispersive focusing of neutrons with a convergence on a sample much larger than is possible with existing KB optical schemes by establishing an array of at least three mirrors and focusing neutrons by appropriate multiple deflections via the array. The method may be utilized with supermirrors, multilayer mirrors, or total external reflection mirrors. Because high-energy x-rays behave like neutrons in their absorption and reflectivity rates, this method may be used with x-rays as well as neutrons.

  11. High-throughput beamline for attosecond pulses based on toroidal mirrors with microfocusing capabilities

    SciTech Connect

    Frassetto, F.; Poletto, L.; Trabattoni, A.; Anumula, S.; Sansone, G.; Calegari, F.; Nisoli, M.

    2014-10-15

    We have developed a novel attosecond beamline designed for attosecond-pump/attosecond probe experiments. Microfocusing of the Extreme-ultraviolet (XUV) radiation is obtained by using a coma-compensated optical configuration based on the use of three toroidal mirrors controlled by a genetic algorithm. Trains of attosecond pulses are generated with a measured peak intensity of about 3 × 10{sup 11} W/cm{sup 2}.

  12. A tandem-based compact dual-energy gamma generator

    SciTech Connect

    Persaud, A.; Kwan, J.W.; Leitner, M.; Leung, K.N.; Ludewigt, B.; Tanaka, N.; Waldron, W.; Wilde, S.; Antolak, A.J.; Morse, D.H.; Raber, T.

    2009-11-11

    A dual-energy tandem-type gamma generator has been developed at E.O. Lawrence Berkeley National Laboratory and Sandia National Laboratories. The tandem accelerator geometry allows higher energy nuclear reactions to be reached, thereby allowing more flexible generation of MeV-energy gammas for active interrogation applications.

  13. Development of Highly-Efficient GaInP/Si Tandem Solar Cells

    SciTech Connect

    Essig, Stephanie; Geisz, John F.; Steiner, Myles A.; Merkle, Agnes; Peibst, Robby; Schmidt, Jan; Brendel, Rolf; Ward, Scott; Friedman, Daniel J.; Stradins, Paul; Young, David L.

    2015-06-14

    Dual-junction solar cells consisting of rear-heterojunction GaInP top cells and back-junction, back-contacted crystalline Si bottom cells were fabricated and characterized. Our calculations show that theoretical efficiencies up to 38.9% can be achieved with Si-based tandem devices. In our experiments, the two subcells were fabricated separately and stacked with an index matching fluid. In contrast to conventional mechanically stacked solar cells, that contain two metal grids at the interface, our concept includes a fully back contacted bottom cell which reduces the shadow losses in the device. A 1-sun AM1.5g cumulative efficiency of (26.2 +/- 0.6)% has been achieved with this novel GaInP/Si 4-terminal tandem solar cell.

  14. Background-reducing X-ray multilayer mirror

    DOEpatents

    Bloch, Jeffrey J.; Roussel-Dupre', Diane; Smith, Barham W.

    1992-01-01

    Background-reducing x-ray multilayer mirror. A multiple-layer "wavetrap" deposited over the surface of a layered, synthetic-microstructure soft x-ray mirror optimized for reflectivity at chosen wavelengths is disclosed for reducing the reflectivity of undesired, longer wavelength incident radiation incident thereon. In three separate mirror designs employing an alternating molybdenum and silicon layered, mirrored structure overlaid by two layers of a molybdenum/silicon pair anti-reflection coating, reflectivities of near normal incidence 133, 171, and 186 .ANG. wavelengths have been optimized, while that at 304 .ANG. has been minimized. The optimization process involves the choice of materials, the composition of the layer/pairs as well as the number thereof, and the distance therebetween for the mirror, and the simultaneous choice of materials, the composition of the layer/pairs, and their number and distance for the "wavetrap."

  15. Variational approach for static mirror structures

    SciTech Connect

    Kuznetsov, E. A.; Passot, T.; Sulem, P. L.; Ruban, V. P.

    2015-04-15

    Anisotropic static plasma equilibria where the parallel and perpendicular pressures are only functions of the amplitude of the local magnetic field are shown to be amenable to a variational principle with a free energy density given by the parallel tension. This approach is used to demonstrate that two-dimensional small-amplitude static magnetic holes constructed from a Grad-Shafranov type equation slightly below the (subcritical) mirror instability threshold identify with lump solitons of KPII equation, but turn out to be unstable. Differently, large-amplitude magnetic structures, which are stable as they realize a minimum of the free energy, are computed using a gradient method within two-dimensional numerical simulations where the regularizing effect of finite Larmor radius corrections is retained. Interestingly, these structures transform from stripes to bubbles when the angle of the magnetic field with the coordinate plane is increased.

  16. Mirror: Visually reflecting C{sup ++}

    SciTech Connect

    Orosco, R.; Campo, M.; Sole, J.P.

    1995-12-31

    Reflection is the ability of a system to inspect and change a model of itself. This ability allows to transparently control and extend the functionality of an existing system without performing any changes to the system itself. In dynamic object-oriented languages like CLOS or Smalltalk. the reflective ability is supported directly by the language. In C++, in contrast, reflection must be provided by some form of code annotation and pre-processing. In most cases, this approach either requires modification of the system code, or just supports the reflection of entire classes but not the reflection of determined objects. This work presents the Mirror environment that supports C++ reflective programming through visual association of meta-classes to classes. It allows full transparent reflection of objects using three-dimensional presentations of the different architecture levels. The environment adds reflective ability to C++ classes without any code modification visible to the user, as well as dynamically selective reflection of objects.

  17. Compact Reflective Imaging Spectrometer Design Utilizing An Immersed Grating And Anamorphic Mirror

    DOEpatents

    Lerner, Scott A.

    2006-01-10

    A compact imaging spectrometer comprising an entrance slit, an anamorphic mirror, a grating, and a detector array. The entrance slit directs light to the anamorphic mirror. The anamorphic mirror receives the light and directs the light to the grating. The grating receives the light from the anamorphic mirror and defracts the light back onto the anamorphic mirror. The anamorphic mirror focuses the light onto a detector array.

  18. U and Pu Gamma-Ray Measurements of Spent Fuel Using a Gamma-Ray Mirror Band-Pass Filter

    SciTech Connect

    Ziock, Klaus-Peter; Alameda, J.B.; Brejnholt, N.F.; Decker, T.A.; Descalle, M.A.; Fernandez-Perea, M.; Hill, R.M.; Kisner, R.A.; Melin, A.M.; Patton, B.W.; Ruz, J.; Soufli, R.; Pivovaroff, M.J.

    2014-01-01

    Abstract. We report on the use of grazing incidence gamma-ray mirrors to serve as a narrow band-pass filter for advanced non-destructive analysis (NDA) of spent nuclear fuel. The purpose of the mirrors is to limit the radiation reaching a HPGe detector to narrow spectral bands around characteristic emission lines from fissile isotopes in the fuel. This overcomes the normal rate issues when performing gamma-ray NDA measurements. In a proof-of-concept experiment, a set of simple flat gamma-ray mirrors were used to directly observe the atomic florescence lines from U and Pu from spent fuel pins with the detector located in a shirt-sleeve environment. The mirrors, consisting of highly polished silicon substrates deposited with WC/SiC multilayer coatings, successfully deflected the lines of interest while the intense primary radiation beam from the fuel was blocked by a lead beam stop. The gamma-ray multilayer coatings that make the mirrors work at the gamma-ray energies used here (~ 100 keV) have been experimentally tested at energies as high as 645 keV, indicating that direct observation of nuclear emission lines from 239Pu should be possible with an appropriately designed optic and shielding configuration.

  19. Enhanced loss of magnetic-mirror-trapped fast electrons by a shear Alfvén wave

    SciTech Connect

    Wang, Y.; Gekelman, W.; Pribyl, P.; Papadopoulos, K.

    2014-05-15

    Laboratory observations of enhanced loss of magnetic mirror trapped fast electrons irradiated by a shear Alfvén Wave (SAW) are reported. The experiment is performed in the quiescent after-glow plasma in the Large Plasma Device [Gekelman et al., Rev. Sci. Instrum. 62(12), 2875–2883 (1991)]. A trapped energetic electron population (>100 keV) is generated in a magnetic mirror section (mirror ratio ≈ 2, length = 3.5 m) by an X-mode high power microwave pulse, and forms a hot electron ring due to the grad-B and curvature drift. SAWs of arbitrary polarization are launched externally by a Rotating Magnetic Field source (δB/B{sub 0} ≈ 0.1%, λ{sub ∥} ≈ 9 m). Irradiated by a right-handed circularly polarized SAW, the loss of electrons, in both the radial and the axial direction of the mirror field, is significantly enhanced and is modulated at f{sub Alfvén}. The periodical loss continues even after the termination of the SAW. Experimental observations suggest that a spatial distortion of the ring is formed in the SAW field and creates a collective mode of the hot electron population that degrades its confinement and leads to electron loss from the magnetic mirror. The results could have implications on techniques of radiation belt remediation.

  20. Excitons in a mirror: Formation of “optical bilayers” using MoS{sub 2} monolayers on gold substrates

    SciTech Connect

    Mertens, Jan; Baumberg, Jeremy J.; Shi, Yumeng; Yang, Hui Ying; Molina-Sánchez, Alejandro; Wirtz, Ludger

    2014-05-12

    We report coupling of excitons in monolayers of molybdenum disulphide to their mirror image in an underlying gold substrate. Excitons at the direct band gap are little affected by the substrate whereas strongly bound C-excitons associated with a van-Hove singularity change drastically. On quartz substrates only one C-exciton is visible (in the blue) but on gold substrates a strong red-shifted extra resonance in the green is seen. Exciton coupling to its image leads to formation of a “mirror biexciton” with enhanced binding energy. Estimates of this energy shift in an emitter-gold system match experiments well. The absorption spectrum of MoS{sub 2} on gold thus resembles a bilayer of MoS{sub 2} which has been created by optical coupling. Additional top-mirrors produce an “optical bulk.”.

  1. Some ideas on the choice of designs and materials for cooled mirrors

    SciTech Connect

    Howells, M.R.

    1995-02-01

    Here the author expresses some of his views on how the fabrication of future synchrotron beam-line optics ought to be approached. Many of the most interesting new ideas for beam-line mirrors, especially those with a promise of low costs, involve metals. Historically these materials had posed certain problems, but these have been overcome in recent times to the extent that the initial complement of Advanced-Light-Source (ALS) beam-line optics were made of metal and have met their specifications. To go furthere along that road one needs to get more interested in the metallurgical issues involved in making high-quality metal mirrors. The author recounts the results of some investigations into these materials questions and trys to draw on some of the experiences and achievements of these communities which have hitherto had only limited contact with synchrotron radiation researchers.

  2. Developmental long trace profiler using optimally aligned mirror based pentaprism

    SciTech Connect

    Barber, Samuel K; Morrison, Gregory Y; Yashchuk, Valeriy V; Gubarev, Mikhail V; Geckeler, Ralf D.; Buchheim, Jana; Siewert, Frank; Zeschke, Thomas

    2010-12-20

    A low-budget surface slope measuring instrument, the Developmental Long Trace Profiler (DLTP), was recently brought into operation at the Advanced Light Source Optical Metrology Laboratory. The instrument is based on a precisely calibrated autocollimator and a movable pentaprism. The capability of the DLTP to achieve sub-microradian surface slope metrology has been verified via cross-comparison measurements with other high-performance slope measuring instruments when measuring the same high-quality test optics. In the present work, a further improvement of the DLTP is achieved by replacing the existing bulk pentaprism with a specially designed mirror based pentaprism. A mirror based pentaprism offers the possibility to eliminate systematic errors introduced by inhomogeneity of the optical material and fabrication imperfections of a bulk pentaprism. We provide the details of the mirror based pentaprism design and describe an original experimental procedure for precision mutual alignment of the mirrors. The algorithm of the alignment procedure and its efficiency are verified with rigorous ray tracing simulations. Results of measurements of a spherically curved test mirror and a flat test mirror using the original bulk pentaprism are compared with measurements using the new mirror based pentaprism, demonstrating the improved performance.

  3. WE-A-17A-05: Differences in Applicator Configuration and Dwell Loading Between Standard and Image-Guided Tandem and Ring (T and R) HDR Brachytherapy

    SciTech Connect

    Damato, A; Cormack, R; Bhagwat, M; Buzurovic, I; Lee, L; Viswanathan, A

    2014-06-15

    Purpose: To investigate differences in: (i) relative location of the tandem and the ring compared to a rigid standard applicator model; and (ii) relative loading and changes in loading pattern between standard and image-guided planning. Methods: All T and R insertions performed in 2013 in our institution under CT- or MR-guidance were analyzed. Standard plans were generated using library applicator models with a fixed relationship between ring and tandem, standardized uniform dwell loading and normalization to point A. The graphic plans and the associated standard-plan dwell configurations were compared: the rings were rigidly registered, and the residual tandem shift, rotation and maximum distance between plan tandem dwell and corresponding model tandem dwell were calculated. The normalization ratio (NR = the ratio of graphic versus standard-plan total reference air kerma [TRAK]), the general loading difference (GLD = the difference between graphic and standard ratios of the tandem versus the ring TRAK), and the percent standard deviation (SD% = SD/mean) of the tandem and the ring TRAK for the graphic plan (all standard-plans SD% = 0) were calculated. Results: 71 T and R were analyzed. Residual tandem shift, rotation and maximum corresponding dwell distance were 1.2±0.8mm (0.4±0.4mm lateral, 0.9±0.8mm craniocaudal, 0.4±0.3mm anterior-posterior), 2.3±1.9deg and 3.4±2.3mm. NR was 0.86±0.11 indicating a lower overall loading of the graphic compared to the standard plans. GLD was -0.12±0.16 indicating a modest increased ring loading relative to the tandem in the graphic plans. SD% was 2.1±1.6% for tandem and 2.8±1.9% for ring, indicating small deviations from uniform loading. Conclusion: Variability in the relative locations of the tandem and the ring necessitates the independent registration of each component model for accurate digitization. Our clinical experience suggests that graphically planned T and R results on average in a lower total dose to the

  4. Polymer Solar Cells: New Materials, 3D Morphology, and Tandem...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    on the quantum and energy efficiency by which photons from the sun are absorbed and can be converted ... Using this strategy a solution processed polymer tandem cell with an ...

  5. An Overview of the SGP Tandem Differential Mobility Analyzer

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    An Overview of the SGP Tandem Differential Mobility Analyzer Collins, Don Texas A&M University Spencer, Chance Texas A&M University Category: Instruments A differential mobility analyzer / tandem differential mobility analyzer (DMA / TDMA) system was integrated into the Aerosol Observing System (AOS) trailer at the SGP site in September, 2005. This instrument is used to continuously characterize the size-resolved concentration, hygroscopicity, and volatility of submicron particles. These

  6. Wave-particle Interactions In Rotating Mirrors

    SciTech Connect

    Abraham J. Fetterman and Nathaniel J. Fisch

    2011-01-11

    Wave-particle interactions in EB rotating plasmas feature an unusual effect: particles are diffused by waves in both potential energy and kinetic energy. This wave-particle interaction generalizes the alpha channeling effect, in which radio frequency waves are used to remove alpha particles collisionlessly at low energy. In rotating plasmas, the alpha particles may be removed at low energy through the loss cone, and the energy lost may be transferred to the radial electric field. This eliminates the need for electrodes in the mirror throat, which have presented serious technical issues in past rotating plasma devices. A particularly simple way to achieve this effect is to use a high azimuthal mode number perturbation on the magnetic field. Rotation can also be sustained by waves in plasmas without a kinetic energy source. This type of wave has been considered for plasma centrifuges used for isotope separation. Energy may also be transferred from the electric field to particles or waves, which may be useful for ion heating and energy generation.

  7. Bidirectional reflectivity of mirrors in solar power plants

    SciTech Connect

    Khrustalyov, B.A.; Ragimov, R.K.

    1991-01-01

    In this paper a technique for measuring the bidirectional reflectivity of mirrors is presented. An experimental setup is described which allows one to measure the reflecting characteristics at small angles of scattering. These reflectivities are approximated by an exponential relation.

  8. Lightweight diaphragm mirror module system for solar collectors

    DOEpatents

    Butler, Barry L.

    1985-01-01

    A mirror module system is provided for accurately focusing solar radiation on a point or a line as defined by an array of solar collectors. Each mirror module includes a flexible membrane stretched over a frame in a manner similar to that of a drum or a trampoline and further includes a silvered glass or plastic mirror for forming an optical reflecting surface. The configuration of the optical reflecting surface is variably adjustable to provide for the accurate focusing of the solar energy on a given collector array, e.g., a point or a linear array arrangement. The flexible mirror-membrane combination is lightweight to facilitate installation and reduce system cost yet structurally strong enough to provide for the precise focusing of the incident solar radiation in a semi-rigid reflector system in which unwanted reflector displacement is minimized.

  9. Lightweight diaphragm mirror module system for solar collectors

    DOEpatents

    Butler, B.L.

    1984-01-01

    A mirror module system is provided for accurately focusing solar radiation on a point or a line as defined by an array of solar collectors. Each mirror module includes a flexible membrane stretched over a frame in a manner similar to that of a drum or a trampoline and further includes a silvered glass or plastic mirror for forming an optical reflecting surface. The configuration of the optical reflecting surface is variably adjustable to provide for the accurate focusing of the solar energy on a given collector array, e.g., a point or a linear array arrangement. The flexible mirror-membrane combination is lightweight to facilitate installation and reduce system cost yet structurally strong enough to provide for the precise focusing of the incident solar radiation in a semi-rigid reflector system in which unwanted reflector displacement is minimized.

  10. Application of silicon carbide to synchrotron-radiation mirrors

    SciTech Connect

    Takacs, P.Z.; Hursman, T.L.; Williams, J.T.

    1983-09-01

    Damage to conventional mirror materials exposed to the harsh synchrotron radiation (SR) environment has prompted the SR user community to search for more suitable materials. Next-generation insertion devices, with their attendant flux increases, will make the problem of mirror design even more difficult. A parallel effort in searching for better materials has been underway within the laser community for several years. The technology for dealing with high thermal loads is highly developed among laser manufacturers. Performance requirements for laser heat exchangers are remarkably similar to SR mirror requirements. We report on the application of laser heat exchanger technology to the solution of typical SR mirror design problems. The superior performance of silicon carbide for laser applications is illustrated by various material trades studies, and its superior performance for SR applications is illustrated by means of model calculations.

  11. Mechanical Design of the HER Synchrotron Light Monitor Primary Mirror

    SciTech Connect

    Daly, Edward F.; Fisher, Alan S.; Kurita, Nadine R.; Langton, J.; /SLAC

    2011-09-14

    This paper describes the mechanical design of the primary mirror that images the visible portion of the synchrotron radiation (SR) extracted from the High Energy Ring (HER) of the PEP-II B-Factory. During off-axis operation, the water-cooled GlidCop mirror is subjected to a heat flux in excess of 2000 W/cm2. When on-axis imaging occurs, the heat flux due to scattered SR, resistive wall losses and Higher-Order-Mode (HOM) heating is estimated at 1 W/cm2. The imaging surface is plated with Electroless Nickel to improve its optical characteristics. The design requirements for the primary mirror are listed and discussed. Calculated mechanical distortions and stresses experienced by the mirror during on-axis and off-axis operation will be presented.

  12. Rapid Solar Mirror Characterization with Fringe Reflection Techniques -

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy Innovation Portal Thermal Solar Thermal Energy Analysis Energy Analysis Find More Like This Return to Search Rapid Solar Mirror Characterization with Fringe Reflection Techniques SOFAST: Sandia Optical Fringe Analysis Slope Tool Sandia National Laboratories Contact SNL About This Technology Publications: PDF Document Publication Market Sheet (834 KB) SOFAST Imaging SOFAST Imaging Technology Marketing Summary This technology is an automated system in which the reflection of a mirror,

  13. Insights into Consumer Preferences Mirrored in Powerful Solar Software

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Platforms | Department of Energy Insights into Consumer Preferences Mirrored in Powerful Solar Software Platforms Insights into Consumer Preferences Mirrored in Powerful Solar Software Platforms October 21, 2016 - 12:00pm Addthis SunShot's social sciences research is helping to explore the forces behind solar adoption in the United States. | Photo courtesy of National Renewable Energy Laboratory SunShot's social sciences research is helping to explore the forces behind solar adoption in the

  14. Durable Corrosion and Ultraviolet-Resistant Silver Mirror

    DOEpatents

    Jorgensen, G. J.; Gee, R.

    2006-01-24

    A corrosion and ultra violet-resistant silver mirror for use in solar reflectors; the silver layer having a film-forming protective polymer bonded thereto, and a protective shield overlay comprising a transparent multipolymer film that incorporates a UV absorber. The corrosion and ultraviolet resistant silver mirror retains spectral hemispherical reflectance and high optical clarity throughout the UV and visible spectrum when used in solar reflectors.

  15. In situ ion irradiation/implantation studies in the HVEM-Tandem Facility at Argonne National Laboratory

    SciTech Connect

    Allen, C.W.; Funk, L.L.; Ryan, E.A.; Taylor, A.

    1988-09-01

    The HVEM-Tandem User Facility at Argonne National Laboratory interfaces two ion accelerators, a 2 MV tandem accelerator and a 650 kV ion implanter, to a 1.2 MV high voltage electron microscope. This combination allows experiments involving simultaneous ion irradiation/ion implantation, electron irradiation and electron microscopy/electron diffraction to be performed. In addition the availability of a variety of microscope sample holders permits these as well as other types of in situ experiments to be performed at temperatures ranging from 10-1300 K, with the sample in a stressed state or with simultaneous determination of electrical resistivity of the specimen. This paper summarizes the details of the Facility which are relevant to simultaneous ion beam material modification and electron microscopy, presents several current applications and briefly describes the straightforward mechanism for potential users to access this US Department of Energy supported facility. 7 refs., 1 fig., 1 tab.

  16. Photo of the Week: The Mirror Fusion Test Facility | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    The Mirror Fusion Test Facility Photo of the Week: The Mirror Fusion Test Facility July 19, 2013 - 4:17pm Addthis This 1981 photo shows the Mirror Fusion Test Facility (MFTF), an experimental magnetic confinement fusion device built using a magnetic mirror at Lawrence Livermore National Laboratory (LLNL). The MFTF functioned as the primary research center for mirror fusion devices. The design consisted of a 64-meter-long vacuum vessel fitted with 26 coil magnets bonding the center of the vessel

  17. PPPL engineers build mirror mechanism using 3D printer and off-the-shelf

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    parts | Princeton Plasma Physics Lab engineers build mirror mechanism using 3D printer and off-the-shelf parts By Raphael Rosen November 23, 2015 Tweet Widget Google Plus One Share on Facebook Mirror Mechanism Prototype (Photo by Mike Messineo) Mirror Mechanism Prototype Gallery: Mirror Mechanism Prototype (Photo by Mike Messineo) Mirror Mechanism Prototype At the Princeton Plasma Physics Laboratory, the spirit of tinkering lives. This past summer a team of engineers invented a mechanical

  18. PPPL engineers build mirror mechanism using 3D printer and off-the-shelf

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    parts | Princeton Plasma Physics Lab engineers build mirror mechanism using 3D printer and off-the-shelf parts By Raphael Rosen November 23, 2015 Tweet Widget Google Plus One Share on Facebook Mirror Mechanism Prototype (Photo by Mike Messineo) Mirror Mechanism Prototype Gallery: Mirror Mechanism Prototype (Photo by Mike Messineo) Mirror Mechanism Prototype At the Princeton Plasma Physics Laboratory, the spirit of tinkering lives. This past summer a team of engineers invented a mechanical

  19. Long-Working-Distance Kirkpatrick-Baez Mirrors for Hard X-ray Beamlines at SPring-8

    SciTech Connect

    Yumoto, H.; Koyama, T.

    2011-09-09

    We designed and installed two types of long-working-distance Kirkpatrick-Baez (KB) mirrors and mirror manipulators, which were customized into each experiment for hard x-ray undulator beamlines at SPring-8. For the BL32XU RIKEN Targeted Proteins beamline, 400-mm-long KB focusing mirrors for a beam size of 1 {mu}m with a 730-mm-long working distance were designed for carrying out the structural analysis of protein microcrystals. We realized a focusing beam size of 0.9x0.9 {mu}m{sup 2}(FWHM) and a focusing intensity of 6x10{sup 10} (photons/s) at an x-ray energy of 12.4 keV. For the BL19LXU RIKEN SR Physics beamline, we developed KB mirrors for 100-nm focusing with a 100-mm-working distance for the purpose of nano-focus x-ray diffraction. A focusing beam size of 100x100 nm{sup 2}(FWHM) and a high focusing intensity of 3.7x10{sup 10} (photons/s) at an x-ray energy of 12.4 keV were realized.

  20. The query execution engine in Tandem`s new ServerWare SQL product

    SciTech Connect

    Celis, P.; Zeller, H.

    1996-12-31

    Tandem has re-written its SQL compiler and its query execution engine into a new product that will be available on multiple operating systems. The new product uses a novel query execution engine and we will highlight the unique aspects of the new engine. ServerWare SQL uses a data flow and scheduler driven task model to execute queries. Tasks communicate either via in-memory queues or via interprocess communication. Partitioned, pipelined, or independent operations are executed in parallel. By adding new task types the model can be easily extended. Parallelism in a distributed memory environment is implemented as a special {open_quotes}Exchange{close_quotes} task type, as in the Volcano research prototype. Scheduling and load balancing are performed by separate scheduler tasks.

  1. Counter-Rotating Tandem Motor Drilling System

    SciTech Connect

    Kent Perry

    2009-04-30

    Gas Technology Institute (GTI), in partnership with Dennis Tool Company (DTC), has worked to develop an advanced drill bit system to be used with microhole drilling assemblies. One of the main objectives of this project was to utilize new and existing coiled tubing and slimhole drilling technologies to develop Microhole Technology (MHT) so as to make significant reductions in the cost of E&P down to 5000 feet in wellbores as small as 3.5 inches in diameter. This new technology was developed to work toward the DOE's goal of enabling domestic shallow oil and gas wells to be drilled inexpensively compared to wells drilled utilizing conventional drilling practices. Overall drilling costs can be lowered by drilling a well as quickly as possible. For this reason, a high drilling rate of penetration is always desired. In general, high drilling rates of penetration (ROP) can be achieved by increasing the weight on bit and increasing the rotary speed of the bit. As the weight on bit is increased, the cutting inserts penetrate deeper into the rock, resulting in a deeper depth of cut. As the depth of cut increases, the amount of torque required to turn the bit also increases. The Counter-Rotating Tandem Motor Drilling System (CRTMDS) was planned to achieve high rate of penetration (ROP) resulting in the reduction of the drilling cost. The system includes two counter-rotating cutter systems to reduce or eliminate the reactive torque the drillpipe or coiled tubing must resist. This would allow the application of maximum weight-on-bit and rotational velocities that a coiled tubing drilling unit is capable of delivering. Several variations of the CRTDMS were designed, manufactured and tested. The original tests failed leading to design modifications. Two versions of the modified system were tested and showed that the concept is both positive and practical; however, the tests showed that for the system to be robust and durable, borehole diameter should be substantially larger than

  2. UPGRADE AND OPERATION OF THE BNL TANDEMS FOR RHIC INJECTION.

    SciTech Connect

    STESKI,D.B.; ALESSI,J.; BENJAMIN,J.; CARLSON,C.; MANNI,M.; THIEBERGER,P.; WIPLICH,M.

    2001-06-18

    One of the tandem Van de Graaffs (MP7) at Brookhaven National Laboratory (BNL) has successfully completed its first year as an injector for the Relativistic Heavy Ion Collider (RHIC). The tandem provided pulsed beam of Au{sup +32} (peak intensity 80 e{mu}A, 500{micro}s) with only 17 hours of downtime during a 5 month run. Improvements are being made to further increase the intensity of the gold beam for the experimental run starting in 2001. A second tandem Van de Graaff (MP6) has been extensively upgraded and can now reach a terminal voltage of over 14MV. A beamline has been constructed to transport the MP6 beam around MP7 and then connect to the existing MP7 beamlines. This has allowed MP6 to deliver beam to local target rooms for an outside user program, while MP7 has simultaneously injected RHIC. MP6 can also be used as an injector for RHIC.

  3. Method for providing mirror surfaces with protective strippable polymeric film

    DOEpatents

    Edwards, Charlene C.; Day, Jack R.

    1980-01-01

    This invention is a method for forming a protective, strippable, elastomeric film on a highly reflective surface. The method is especially well suited for protecting diamond-machined metallic mirrors, which are susceptible not only to abrasion and mechanical damage but also to contamination and corrosion by various fluids. In a typical use of the invention, a diamond-machined copper mirror surface is coated uniformly with a solution comprising a completely polymerized and completely cured thermoplastic urethane elastomer dissolved in tetrahydrofuran. The applied coating is evaporated to dryness, forming a tough, adherent, impermeable, and transparent film which encapsulates dust and other particulates on the surface. The film may be left in place for many months. When desired, the film may be stripped intact, removing the entrapped particulates and leaving no residue on the mirror surface.

  4. IR Spectrometer Using 90-degree Off-axis Parabolic Mirrors

    SciTech Connect

    Robert M. Malone, Richard, G. Hacking, Ian J. McKenna, and Daniel H. Dolan

    2008-09-02

    A gated spectrometer has been designed for real-time, pulsed infrared (IR) studies at the National Synchrotron Light ource at the Brookhaven National Laboratory. A pair of 90-degree, off-axis parabolic mirrors are used to relay the light from an entrance slit to an output IR recording camera. With an initial wavelength range of 1500–4500 nm required, gratings could not be used in the spectrometer because grating orders would overlap. A magnesium oxide prism, placed between these parabolic mirrors, serves as the dispersion element. The spectrometer is doubly telecentric. With proper choice of the air spacing between the prism and the second parabolic mirror, any spectral region of interest within the InSb camera array’s sensitivity region can be recorded. The wavelengths leaving the second parabolic mirror are collimated, thereby relaxing the camera positioning tolerance. To set up the instrument, two different wavelength (visible) lasers are introduced at the entrance slit and made collinear with the optical axis via flip mirrors. After dispersion by the prism, these two laser beams are directed to tick marks located on the outside housing of the gated IR camera. This provides first-order wavelength calibration for the instrument. Light that is reflected off the front prism face is coupled into a high-speed detector to verify steady radiance during the gated spectral imaging. Alignment features include tick marks on the prism and parabolic mirrors. This instrument was designed to complement singlepoint pyrometry, which provides continuous time histories of a small collection of spots from shock-heated targets.

  5. Measurement and performance of stretched-membrane mirror facets

    SciTech Connect

    Davenport, R.L.; Oshmyansky, S.

    1995-11-01

    For several years, SAIC has been developing solar concentrators based on stretched-membrane mirrors. In an ongoing development and commercialization program known as the Utility-Scale Joint Venture Program (JVP), SAIC is now developing a commercial 25 kW{sub e} dish/Stirling system using a faceted stretched-membrane dish. This paper reports on physical and optical measurements of the stretched-membrane mirror facets produced for the JVP program, and the use of those measurements to predict and adjust the flux profile on the receiver of a dish/Stirling system in order to optimize its performance.

  6. Normal incidence x-ray mirror for chemical microanalysis

    DOEpatents

    Carr, M.J.; Romig, A.D. Jr.

    1987-08-05

    An x-ray mirror for both electron column instruments and micro x-ray fluorescence instruments for making chemical, microanalysis comprises a non-planar mirror having, for example, a spherical reflecting surface for x-rays comprised of a predetermined number of alternating layers of high atomic number material and low atomic number material contiguously formed on a substrate and whose layers have a thickness which is a multiple of the wavelength being reflected. For electron column instruments, the wavelengths of interest lie above 1.5nm, while for x-ray fluorescence instruments, the range of interest is below 0.2nm. 4 figs.

  7. Can mirror matter solve the the cosmological lithium problem?

    SciTech Connect

    Coc, Alain [Centre de Sciences Nuclaires et de Sciences de la Matire (CSNSM), CNRS/IN2P3, Universit Paris Sud 11, UMR 8609, Btiment 104, 91405 Orsay Campus (France); Uzan, Jean-Philippe; Vangioni, Elisabeth [Institut d'Astrophysique de Paris, UMR-7095 du CNRS, Universit Pierre et Marie Curie, 98 bis bd Arago, 75014 Paris, France and Sorbonne Universits, Institut Lagrange de Paris, 98 bis bd Arago, 75014 Paris (France)

    2014-05-02

    The abundance of lithium-7 confronts cosmology with a long lasting inconsistency between the predictions of standard Big Bang Nucleosynthesis with the baryonic density determined from the Cosmic Microwave Background observations on the one hand, and the spectroscopic determination of the lithium-7 abundance on the other hand. We investigated the influence of the existence of a mirror world, focusing on models in which mirror neutrons can oscillate into ordinary neutrons. Such a mechanism allows for an effective late time neutron injection, which induces an increase of the destruction of beryllium-7and thus a lower final lithium-7 abundance.

  8. Damage imaging in a laminated composite plate using an air-coupled time reversal mirror

    DOE PAGES [OSTI]

    Le Bas, P. -Y.; Remillieux, M. C.; Pieczonka, L.; Ten Cate, J. A.; Anderson, B. E.; Ulrich, T. J.

    2015-11-03

    We demonstrate the possibility of selectively imaging the features of a barely visible impact damage in a laminated composite plate by using an air-coupled time reversal mirror. The mirror consists of a number of piezoelectric transducers affixed to wedges of power law profiles, which act as unconventional matching layers. The transducers are enclosed in a hollow reverberant cavity with an opening to allow progressive emission of the ultrasonic wave field towards the composite plate. The principle of time reversal is used to focus elastic waves at each point of a scanning grid spanning the surface of the plate, thus allowingmore » localized inspection at each of these points. The proposed device and signal processing removes the need to be in direct contact with the plate and reveals the same features as vibrothermography and more features than a C-scan. More importantly, this device can decouple the features of the defect according to their orientation, by selectively focusing vector components of motion into the object, through air. For instance, a delamination can be imaged in one experiment using out-of-plane focusing, whereas a crack can be imaged in a separate experiment using in-plane focusing. As a result, this capability, inherited from the principle of time reversal, cannot be found in conventional air-coupled transducers.« less

  9. Damage imaging in a laminated composite plate using an air-coupled time reversal mirror

    SciTech Connect

    Le Bas, P. -Y.; Remillieux, M. C.; Pieczonka, L.; Ten Cate, J. A.; Anderson, B. E.; Ulrich, T. J.

    2015-11-03

    We demonstrate the possibility of selectively imaging the features of a barely visible impact damage in a laminated composite plate by using an air-coupled time reversal mirror. The mirror consists of a number of piezoelectric transducers affixed to wedges of power law profiles, which act as unconventional matching layers. The transducers are enclosed in a hollow reverberant cavity with an opening to allow progressive emission of the ultrasonic wave field towards the composite plate. The principle of time reversal is used to focus elastic waves at each point of a scanning grid spanning the surface of the plate, thus allowing localized inspection at each of these points. The proposed device and signal processing removes the need to be in direct contact with the plate and reveals the same features as vibrothermography and more features than a C-scan. More importantly, this device can decouple the features of the defect according to their orientation, by selectively focusing vector components of motion into the object, through air. For instance, a delamination can be imaged in one experiment using out-of-plane focusing, whereas a crack can be imaged in a separate experiment using in-plane focusing. As a result, this capability, inherited from the principle of time reversal, cannot be found in conventional air-coupled transducers.

  10. Performance optimization of a bendable parabolic cylinder collimating X-ray mirror for the ALS micro-XAS beamline 10.3.2

    DOE PAGES [OSTI]

    Yashchuk, Valeriy V.; Morrison, Gregory Y.; Marcus, Matthew A.; Domning, Edward E.; Merthe, Daniel J.; Salmassi, Farhad; Smith, Brian V.

    2015-04-08

    The Advanced Light Source (ALS) beamline (BL) 10.3.2 is an apparatus for X-ray microprobe spectroscopy and diffraction experiments, operating in the energy range 2.4–17 keV. The performance of the beamline, namely the spatial and energy resolutions of the measurements, depends significantly on the collimation quality of light incident on the monochromator. In the BL 10.3.2 end-station, the synchrotron source is imaged 1:1 onto a set of roll slits which form a virtual source. The light from this source is collimated in the vertical direction by a bendable parabolic cylinder mirror. Details are presented of the mirror design, which allows formore » precision assembly, alignment and shaping of the mirror, as well as for extending of the mirror operating lifetime by a factor of ~10. Assembly, mirror optimal shaping and preliminary alignment were performed ex situ in the ALS X-ray Optics Laboratory (XROL). Using an original method for optimal ex situ characterization and setting of bendable X-ray optics developed at the XROL, a root-mean-square (RMS) residual surface slope error of 0.31 µrad with respect to the desired parabola, and an RMS residual height error of less than 3 nm were achieved. Once in place at the beamline, deviations from the designed optical geometry (e.g. due to the tolerances for setting the distance to the virtual source, the grazing incidence angle, the transverse position) and/or mirror shape (e.g. due to a heat load deformation) may appear. Due to the errors, on installation the energy spread from the monochromator is typically a few electron-volts. Here, a new technique developed and successfully implemented for at-wavelength (in situ) fine optimal tuning of the mirror, enabling us to reduce the collimation-induced energy spread to ~0.05 eV, is described.« less

  11. Borehole Imaging of In Situ Stress Tests at Mirror Lake Research...

    OpenEI (Open Energy Information) [EERE & EIA]

    at Mirror Lake Research Site Citation U.S. Geological Survey. Borehole Imaging of In Situ Stress Tests at Mirror Lake Research Site Internet. 2013. U.S. Geological Survey. cited...

  12. Mirror Film Company Has 'Concentrated' Plans for Expansion

    Office of Energy Efficiency and Renewable Energy (EERE)

    ReflecTech Inc. is using a silvered polymer-based film -- instead of glass -- to make mirror panels for focusing sunlight onto a heat generator. Their innovation helped them land a Recovery Act tax credit to expand their Colorado company.

  13. Quark and lepton mixing as manifestations of violated mirror symmetry

    SciTech Connect

    Dyatlov, I. T.

    2015-06-15

    The existence of heavy mirror analogs of ordinary fermions would provide deeper insight into the gedanken paradox appearing in the Standard Model upon direct parity violation and consisting in a physical distinguishability of left- and right-hand coordinate frames. Arguments are presented in support of the statement that such mirror states may also be involved in the formation of observed properties of the system of Standard Model quarks and leptons—that is, their mass spectra and their weak-mixing matrices: (i) In the case of the involvement of mirror generations, the quark mixing matrix assumes the experimentally observed form. It is determined by the constraints imposed by weak SU(2) symmetry and by the quark-mass hierarchy. (ii) Under the same conditions and upon the involvement of mirror particles, the lepton mixing matrix (neutrino mixing) may become drastically different from its quark analog—the Cabibbo-Kobayashi-Maskawa matrix; that is, it may acquire properties suggested by experimental data. This character of mixing is also indicative of an inverse mass spectrum of Standard Model neutrinos and their Dirac (not Majorana) nature.

  14. Normal incidence X-ray mirror for chemical microanalysis

    DOEpatents

    Carr, Martin J.; Romig, Jr., Alton D.

    1990-01-01

    A non-planar, focusing mirror, to be utilized in both electron column instruments and micro-x-ray fluorescence instruments for performing chemical microanalysis on a sample, comprises a concave, generally spherical base substrate and a predetermined number of alternating layers of high atomic number material and low atomic number material contiguously formed on the base substrate. The thickness of each layer is an integral multiple of the wavelength being reflected and may vary non-uniformly according to a predetermined design. The chemical analytical instruments in which the mirror is used also include a predetermined energy source for directing energy onto the sample and a detector for receiving and detecting the x-rays emitted from the sample; the non-planar mirror is located between the sample and detector and collects the x-rays emitted from the sample at a large solid angle and focuses the collected x-rays to the sample. For electron column instruments, the wavelengths of interest lie above 1.5 nm, while for x-ray fluorescence instruments, the range of interest is below 0.2 nm. Also, x-ray fluorescence instruments include an additional non-planar focusing mirror, formed in the same manner as the previously described m The invention described herein was made in the performance of work under contract with the Department of Energy, Contract No. DE-AC04-76DP00789, and the United States Government has rights in the invention pursuant to this contract.

  15. Rhodium coated mirrors deposited by magnetron sputtering for fusion applications

    SciTech Connect

    Marot, L.; De Temmerman, G.; Oelhafen, P.; Covarel, G.; Litnovsky, A.

    2007-10-15

    Metallic mirrors will be essential components of all optical spectroscopy and imaging systems for ITER plasma diagnostics. Any change in the mirror performance, in particular, its reflectivity, due to erosion of the surface by charge exchange neutrals or deposition of impurities will influence the quality and reliability of the detected signals. Due to its high reflectivity in the visible wavelength range and its low sputtering yield, rhodium appears as an attractive material for first mirrors in ITER. However, the very high price of the raw material calls for using it in the form of a film deposited onto metallic substrates. The development of a reliable technique for the preparation of high reflectivity rhodium films is therefore of the highest importance. Rhodium layers with thicknesses of up to 2 {mu}m were produced on different substrates of interest (Mo, stainless steel, Cu) by magnetron sputtering. Produced films exhibit a low roughness and crystallite size of about 10 nm with a dense columnar structure. No impurities were detected on the surface after deposition. Scratch tests demonstrate that adhesion properties increase with substrate hardness. Detailed optical characterizations of Rh-coated mirrors as well as results of erosion tests performed both under laboratory conditions and in the TEXTOR tokamak are presented in this paper.

  16. High Dose Neutron Irradiation Performance of Dielectric Mirrors

    SciTech Connect

    Nimishakavi, Anantha Phani Kiran Kumar; Leonard, Keith J; Jellison Jr, Gerald Earle; Snead, Lance Lewis

    2015-01-01

    The study presents the high-dose behavior of dielectric mirrors specifically engineered for radiation-tolerance: alternating layers of Al2O3/SiO2 and HfO2/SiO2 were grown on sapphire substrates and exposed to neutron doses of 1 and 4 dpa at 458 10K in the High Flux Isotope Reactor (HFIR). In comparison to previously reported results, these higher doses of 1 and 4 dpa results in a drastic drop in optical reflectance, caused by a failure of the multilayer coating. HfO2/SiO2 mirrors failed completely when exposed to 1 dpa, whereas the reflectance of Al2O3/SiO2 mirrors reduced to 44%, eventually failing at 4 dpa. Transmission electron microscopy (TEM) observation of the Al2O3/SiO2 specimens showed SiO2 layer defects which increases size with irradiation dose. The typical size of each defect was 8 nm in 1 dpa and 42 nm in 4 dpa specimens. Buckling type delamination of the interface between the substrate and first layer was typically observed in both 1 and 4 dpa HfO2/SiO2 specimens. Composition changes across the layers were measured in high resolution scanning-TEM mode using energy dispersive spectroscopy. A significant interdiffusion between the film layers was observed in Al2O3/SiO2 mirror, though less evident in HfO2/SiO2 system. The ultimate goal of this work is the provide insight into the radiation-induced failure mechanisms of these mirrors.

  17. High-dose neutron irradiation performance of dielectric mirrors

    SciTech Connect

    Nimishakavi Anantha Phani Kiran Kumar; Leonard, Keith J.; Jellison, Jr., Gerald Earle; Snead, Lance Lewis

    2015-05-01

    The study presents the high-dose behavior of dielectric mirrors specifically engineered for radiation-tolerance: alternating layers of Al2O3/SiO2 and HfO2/SiO2 were grown on sapphire substrates and exposed to neutron doses of 1 and 4 dpa at 458 10K in the High Flux Isotope Reactor (HFIR). In comparison to previously reported results, these higher doses of 1 and 4 dpa results in a drastic drop in optical reflectance, caused by a failure of the multilayer coating. HfO2/SiO2 mirrors failed completely when exposed to 1 dpa, whereas the reflectance of Al2O3/SiO2 mirrors reduced to 44%, eventually failing at 4 dpa. Transmission electron microscopy (TEM) observation of the Al2O3/SiO2 specimens showed SiO2 layer defects which increases size with irradiation dose. The typical size of each defect was 8 nm in 1 dpa and 42 nm in 4 dpa specimens. Buckling type delamination of the interface between the substrate and first layer was typically observed in both 1 and 4 dpa HfO2/SiO2 specimens. Composition changes across the layers were measured in high resolution scanning-TEM mode using energy dispersive spectroscopy. A significant interdiffusion between the film layers was observed in Al2O3/SiO2 mirror, though less evident in HfO2/SiO2 system. Lastly, the ultimate goal of this work is the provide insight into the radiation-induced failure mechanisms of these mirrors.

  18. High-dose neutron irradiation performance of dielectric mirrors

    DOE PAGES [OSTI]

    Nimishakavi Anantha Phani Kiran Kumar; Leonard, Keith J.; Jellison, Jr., Gerald Earle; Snead, Lance Lewis

    2015-05-01

    The study presents the high-dose behavior of dielectric mirrors specifically engineered for radiation-tolerance: alternating layers of Al2O3/SiO2 and HfO2/SiO2 were grown on sapphire substrates and exposed to neutron doses of 1 and 4 dpa at 458 10K in the High Flux Isotope Reactor (HFIR). In comparison to previously reported results, these higher doses of 1 and 4 dpa results in a drastic drop in optical reflectance, caused by a failure of the multilayer coating. HfO2/SiO2 mirrors failed completely when exposed to 1 dpa, whereas the reflectance of Al2O3/SiO2 mirrors reduced to 44%, eventually failing at 4 dpa. Transmission electron microscopymore » (TEM) observation of the Al2O3/SiO2 specimens showed SiO2 layer defects which increases size with irradiation dose. The typical size of each defect was 8 nm in 1 dpa and 42 nm in 4 dpa specimens. Buckling type delamination of the interface between the substrate and first layer was typically observed in both 1 and 4 dpa HfO2/SiO2 specimens. Composition changes across the layers were measured in high resolution scanning-TEM mode using energy dispersive spectroscopy. A significant interdiffusion between the film layers was observed in Al2O3/SiO2 mirror, though less evident in HfO2/SiO2 system. Lastly, the ultimate goal of this work is the provide insight into the radiation-induced failure mechanisms of these mirrors.« less

  19. Progress towards sub-micron hard x-ray imaging using elliptically bent mirrors and its applications

    SciTech Connect

    MacDowell, A.A.; Lamble, G.M.; Celestre, R.S.; Padmore, H.A.; Chang, C.H.; Patel, J.R. |

    1998-06-01

    The authors have developed an x-ray micro-probe facility utilizing mirror bending techniques that allow white light x-rays (4--12keV) from the Advanced light Source Synchrotron to be focused down to spot sizes of micron spatial dimensions. They have installed a 4 crystal monochromator prior to the micro-focusing mirrors. The monochromator is designed such that it can move out of the way of the input beam, and allows the same micron sized sample to be illuminated with either white or monochromatic radiation. Illumination of the sample with white light allows for elemental mapping and Laue x-ray diffraction, while illumination of the sample with monochromatic light allows for elemental mapping (with reduced background), micro-X-ray absorption spectroscopy and micro-diffraction. The performance of the system will be described as will some of the initial experiments that cover the various disciplines of Earth, Material and Life Sciences.

  20. Communications system using a mirror kept in outer space by electromagnetic radiation pressure

    DOEpatents

    Csonka, Paul L.

    1981-01-01

    A method and system are described for transmitting electromagnetic radiation by using a communications mirror located between about 100 kilometers and about 200 kilometers above ground. The communications mirror is kept aloft above the atmosphere by the pressure of the electromagnetic radiation which it reflects, and which is beamed at the communications mirror by a suitably constructed transmitting antenna on the ground. The communications mirror will reflect communications, such as radio, radar, or television waves up to about 1,100 kilometers away when the communications mirror is located at a height of about 100 kilometers.

  1. Single P-N junction tandem photovoltaic device

    SciTech Connect

    Walukiewicz, Wladyslaw; Ager, III, Joel W.; Yu, Kin Man

    2012-03-06

    A single P-N junction solar cell is provided having two depletion regions for charge separation while allowing the electrons and holes to recombine such that the voltages associated with both depletion regions of the solar cell will add together. The single p-n junction solar cell includes an alloy of either InGaN or InAlN formed on one side of the P-N junction with Si formed on the other side in order to produce characteristics of a two junction (2J) tandem solar cell through only a single P-N junction. A single P-N junction solar cell having tandem solar cell characteristics will achieve power conversion efficiencies exceeding 30%.

  2. Single P-N junction tandem photovoltaic device

    SciTech Connect

    Walukiewicz, Wladyslaw; Ager, III, Joel W.; Yu, Kin Man

    2011-10-18

    A single P-N junction solar cell is provided having two depletion regions for charge separation while allowing the electrons and holes to recombine such that the voltages associated with both depletion regions of the solar cell will add together. The single p-n junction solar cell includes an alloy of either InGaN or InAlN formed on one side of the P-N junction with Si formed on the other side in order to produce characteristics of a two junction (2J) tandem solar cell through only a single P-N junction. A single P-N junction solar cell having tandem solar cell characteristics will achieve power conversion efficiencies exceeding 30%.

  3. Mirror panel layouts for an icosahedral solar bowl. The Crosbyton Solar Power Project

    SciTech Connect

    Anderson, R.M.; Barnard, R.W.; Ford, W.T.

    1986-03-15

    This study is concerned with designing mirror panel layouts for a spherical shaped solar bowl. It was carried out as part of the Crosbyton Solar Power Project (CSPP). The CSPP is concerned with the development of a technology for producing electric power from steam generated by reflection of the sun's rays from a fixed mirror solar bowl onto a tracking receiver. In this system, the receiver is cantilevered and pivots about the center of curvature of the mirror. This study describes mathematical techniques for designing the mirror surface. The method is based on an icosahedral breakdown of the surface of a sphere and the resulting bowl is called an icosahedral bowl. As an example, a sixty degree icosahedral bowl is constructed from two sets of fifteen identical spherical triangles. These thirty spherical triangles are called superpanels and are used to support several smaller mirrors. The small mirrors used to cover the surface of the icosahedral bowl are hexagonal in shape. This shape mirror gives extremely good coverage of the bowl surface and minimizes parameters such as total mirror perimeter and gap area between mirrors. In addition, this choice of mirror shape yields the same mirror panel layout on each superpanel.

  4. Argonne Tandem Linac Accelerator System (ATLAS) Fact Sheet | Argonne

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    National Laboratory Argonne Tandem Linac Accelerator System (ATLAS) Fact Sheet The ATLAS facility is a leading facility for nuclear structure research in the United States. Any stable ion can be accelerated in ATLAS, the world's first superconducting linear accelerator for ions, and delivered to one of its several target stations. It provides a wide range of beams for nuclear reaction and structure research to a large community of users from the United States and abroad. About 20% of

  5. Inverted Metamorphic III-V Tandem Device for Photoelectrochemical Water

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Splitting - Energy Innovation Portal Vehicles and Fuels Vehicles and Fuels Solar Photovoltaic Solar Photovoltaic Hydrogen and Fuel Cell Hydrogen and Fuel Cell Find More Like This Return to Search Inverted Metamorphic III-V Tandem Device for Photoelectrochemical Water Splitting National Renewable Energy Laboratory Contact NREL About This Technology Technology Marketing Summary The process of photoelectrochemical (PEC) water splitting is a promising pathway for the generation of hydrogen due

  6. High-efficiency, monolithic, multi-bandgap, tandem photovoltaic energy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    converters - Energy Innovation Portal High-efficiency, monolithic, multi-bandgap, tandem photovoltaic energy converters National Renewable Energy Laboratory Contact NREL About This Technology Technology Marketing Summary Matching a semiconductor's bandgap to incident photon energy is a well-known method to achieve the most efficient photovoltaic devices. Since solar radiation consists of a wide range of wavelengths, having one semiconductor with a single bandgap to absorb all solar radiation

  7. Electroless nickel and ion-plated protective coatings for silvered glass mirrors

    SciTech Connect

    Lind, M.A.; Chaudiere, D.A.; Dake, L.S.; Stewart, T.L.

    1982-04-01

    A preliminary examination of two methods of protecting second surface silvered glass mirrors from environmental degradation is presented. One method employed silver mirrors overcoated with Al, Ni, 304 stainless steel, Cr, or an Al/Cu alloy prepared by ion-plating. The other method used conventional wet process silver mirrors protected with a thin electroless nickel coating. No attempt was made to optimize the coatings for either method. These experimental mirrors were compared with conventional paint backed silver/copper mirrors after exposure to elevated temperatures and water vapor in order to estimate their relative environmental stability. The electroless nickel mirrors showed consistently more resistance to these stresses than either the conventional or ion-plated mirrors, suggesting that they may provide more durable field service.

  8. Standardization of Solar Mirror Reflectance Measurements - Round Robin Test: Preprint

    SciTech Connect

    Meyen, S.; Lupfert, E.; Fernandez-Garcia, A.; Kennedy, C.

    2010-10-01

    Within the SolarPaces Task III standardization activities, DLR, CIEMAT, and NREL have concentrated on optimizing the procedure to measure the reflectance of solar mirrors. From this work, the laboratories have developed a clear definition of the method and requirements needed of commercial instruments for reliable reflectance results. A round robin test was performed between the three laboratories with samples that represent all of the commercial solar mirrors currently available for concentrating solar power (CSP) applications. The results show surprisingly large differences in hemispherical reflectance (sh) of 0.007 and specular reflectance (ss) of 0.004 between the laboratories. These differences indicate the importance of minimum instrument requirements and standardized procedures. Based on these results, the optimal procedure will be formulated and validated with a new round robin test in which a better accuracy is expected. Improved instruments and reference standards are needed to reach the necessary accuracy for cost and efficiency calculations.

  9. Some fundamentals of cooled mirrors for synchrotron radiation beam lines

    SciTech Connect

    Howells, M.R.

    1996-04-01

    We present an analysis using conventional heat-transfer theory of a common type of synchrotron-radiation-beam-line mirror with rectangular cooling channels. The analysis leads to a simple analytic expression for the slope error, which enables the distortion performance to be estimated in practical situations. It also provides an understanding of the effect of the various parameters on the goodness of the cooling process and an insight into the underlying physics. The analysis is applied to determining the design steps needed to achieve low slope errors and/or high-heat-removal rates with this type of mirror. The slope-error performance of various materials in a specific design are compared and the best performance is obtained from (in order) invar, silicon, and silicon carbide. {copyright} {ital 1996 Society of Photo{minus}Optical Instrumentation Engineers.}

  10. Mirror force induced wave dispersion in Alfvn waves

    SciTech Connect

    Damiano, P. A.; Johnson, J. R.

    2013-06-15

    Recent hybrid MHD-kinetic electron simulations of global scale standing shear Alfvn waves along the Earth's closed dipolar magnetic field lines show that the upward parallel current region within these waves saturates and broadens perpendicular to the ambient magnetic field and that this broadening increases with the electron temperature. Using resistive MHD simulations, with a parallel Ohm's law derived from the linear Knight relation (which expresses the current-voltage relationship along an auroral field line), we explore the nature of this broadening in the context of the increased perpendicular Poynting flux resulting from the increased parallel electric field associated with mirror force effects. This increased Poynting flux facilitates wave energy dispersion across field lines which in-turn allows for electron acceleration to carry the field aligned current on adjacent field lines. This mirror force driven dispersion can dominate over that associated with electron inertial effects for global scale waves.

  11. Mirror fusion. Quarterly report, April-June 1981

    SciTech Connect

    Not Available

    1981-09-11

    The information in each Quarterly is presented in the same sequence as in the Field Work Package Proposal and Authorization System (WPAS) submissions prepared for the U.S. Department of Energy; the main sections are Applied Plasma Physics, Confinement Systems, Development and Technology, and Mirror Fusion Test Facility (Planning and Projects). On occasion, we shall include information pertaining to the LLNL role as Lead Laboratory for the Open Systems Mirror Fusion Program. Each of these sections is introduced by an overall statement of the goals and purposes of the groups reporting in it. As appropriate within each section, statements of the goals of individual programs and projects are followed by articles containing summaries of significant recent activity and descriptive text.

  12. Cryogenic systems for the Mirror Fusion Test Facility

    SciTech Connect

    Slack, D.S.; Nelson, R.L.; Chronis, W.C.

    1985-08-01

    This paper includes an in-depth discussion of the design, fabrication, and operation of the Mirror Fusion Test Facility (MFTF) cryogenic system located at Lawrence Livermore National Laboratory (LLNL). Each subsystem discussed to present a basic composite of the entire facility. The following subsystems are included: 500kW nitrogen reliquefier, subcoolers, and distribution system; 15kW helium refrigerator/liquefier and distribution system; helium recovery and storage system; rough vacuum and high vacuum systems.

  13. Extreme ultraviolet diagnosis of a neutral-beam-heated mirror machine

    SciTech Connect

    Drake, R.P.

    1980-07-01

    Extreme ultraviolet emissions from the LLL 2XIIB fusion research experiment have been studied. (2XIIB was a magnetic-mirror-plasma-confinement device; beams of high-energy (20 keV) neutral deuterium created a high-density, high-temperature plasma.) A normal-incidence concave-grating monochromator, equipped with a windowless photomultiplier tube, was used to measure emissions in the spectral region from 400 Angstrom to 1600 A. Emissions of oxygen, titanium, carbon, nitrogen, and deuterium were identified; the oxygen brightnesses at times exceeded 10/sup 18/ ph-s/sup -1/-cm/sup -2/-sr/sup -1/. A survey of the emission characteristics found the oxygen concentration was 3%, the other impurities had concentrations near 0.4%. The radiated power loss was about 5% of the deposited neutral beam power.

  14. X-ray metrology and performance of a 45-cm long x-ray deformable mirror

    DOE PAGES [OSTI]

    Poyneer, Lisa A.; Brejnholt, Nicolai F.; Hill, Randall; Jackson, Jessie; Hagler, Lisle; Celestre, Richard; Feng, Jun

    2016-05-20

    We describe experiments with a 45-cm long x-ray deformable mirror (XDM) that have been conducted in End Station 2, Beamline 5.3.1 at the Advanced Light Source. A detailed description of the hardware implementation is provided. We explain our one-dimensional Fresnel propagation code that correctly handles grazing incidence and includes a model of the XDM. This code is used to simulate and verify experimental results. Initial long trace profiler metrology of the XDM at 7.5 keV is presented. The ability to measure a large (150-nm amplitude) height change on the XDM is demonstrated. The results agree well with the simulated experimentmore » at an error level of 1 μrad RMS. Lastly, direct imaging of the x-ray beam also shows the expected change in intensity profile at the detector.« less

  15. The Mirror Fusion Test Facility cryogenic system: Performance, management approach, and present equipment status

    SciTech Connect

    Slack, D.S.; Chronis, W.C.

    1987-06-08

    The cryogenic system for the Mirror Fusion Test Facility (MFTF) is a 14-kW, 4.35-K helium refrigeration system that proved to be highly successful and cost-effective. All operating objectives were met, while remaining within a few percent of initial cost and schedule plans. The management approach used in MFTF allowed decisions to be made quickly and effectively, and it helped keep costs down. Manpower levels, extent and type of industrial participation, key aspects of subcontractor specifications, and subcontractor interactions are reviewed, as well as highlights of the system tests, operation, and present equipment status. Organizations planning large, high-technology systems may benefit from this experience with the MFTF cryogenic system.

  16. Thermodynamically Leveraged Tandem Catalysis for Ester RC(O)O–R' Bond Hydrogenolysis. Scope and Mechanism

    SciTech Connect

    Lohr, Tracy L.; Li, Zhi; Assary, Rajeev S.; Curtiss, Larry A; Marks, Tobin J.

    2015-06-05

    A tandem homogeneous metal triflate + supported palladium catalytic system achieves rapid and selective formal hydrogenolysis of aliphatic ester RC(O)O–R' linkages.

  17. Apparatus and process for removing a predetermined portion of reflective material from mirror

    DOEpatents

    Perry, Stephen J.; Steinmetz, Lloyd L.

    1994-01-01

    An apparatus and process are disclosed for removal of a stripe of soft reflective material of uniform width from the surface of a mirror by using a blade having a large included angle to inhibit curling of the blade during the cutting operation which could result in damage to the glass substrate of the mirror. The cutting blade is maintained at a low blade angle with respect to the mirror surface to produce minimal chipping along the cut edge and to minimize the force exerted on the coating normal to the glass surface which could deform the flat mirror. The mirror is mounted in a cutting mechanism containing a movable carriage on which the blade is mounted to provide very accurate straightness of the travel of the blade along the mirror.

  18. Current- and lattice-matched tandem solar cell

    DOEpatents

    Olson, J.M.

    1985-10-21

    A multijunction (cascade) tandem photovoltaic solar cell device is fabricated of a Ga/sub x/In/sub 1-x/P (0.505 equal to or less than x equal to or less than 0.515) top cell semiconductor lattice-matched to a GaAs bottom cell semiconductor at a low resistance heterojunction, preferably a p/sup +//n/sup +/ heterojunction between the cells. The top and bottom cells are both lattice-matched and current-matched for high efficiency solar radiation conversion to electrical energy.

  19. Deployable telescope having a thin-film mirror and metering structure

    DOEpatents

    Krumel, Leslie J.; Martin, Jeffrey W.

    2010-08-24

    A deployable thin-film mirror telescope comprises a base structure and a metering structure. The base structure houses a thin-film mirror, which can be rolled for stowage and unrolled for deployment. The metering structure is coupled to the base structure and can be folded for stowage and unfolded for deployment. In the deployed state, the unrolled thin-film mirror forms a primary minor for the telescope and the unfolded metering structure positions a secondary minor for the telescope.

  20. The use of a high-order MEMS deformable mirror in the Gemini Planet Imager

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Conference: The use of a high-order MEMS deformable mirror in the Gemini Planet Imager Citation Details In-Document Search Title: The use of a high-order MEMS deformable mirror in the Gemini Planet Imager We briefly review the development history of the Gemini Planet Imager's 4K Boston Micromachines MEMS deformable mirror. We discuss essential calibration steps and algorithms to control the MEMS with nanometer precision, including voltage-phase calibration and

  1. High reflectivity mirrors and method for making same

    DOEpatents

    Heikman, Sten; Jacob-Mitos, Matthew; Li, Ting; Ibbetson, James

    2016-06-07

    A composite high reflectivity mirror (CHRM) with at least one relatively smooth interior surface interface. The CHRM includes a composite portion, for example dielectric and metal layers, on a base element. At least one of the internal surfaces is polished to achieve a smooth interface. The polish can be performed on the surface of the base element, on various layers of the composite portion, or both. The resulting smooth interface(s) reflect more of the incident light in an intended direction. The CHRMs may be integrated into light emitting diode (LED) devices to increase optical output efficiency

  2. Structural support conceptual studies for a Yin-Yang magnet of a tandem mirror reactor. Final report, September 1979-August 1980

    SciTech Connect

    Ojalvo, I.U.; Erickson, J.L.

    1980-07-01

    An investigation was made as to whether the TMR Yin-Yang coils will require elaborate external structural restraints. The approach taken was to use a simple coil case of compact design and to add and modify structural members to transfer loads from one coil to the other. The design considerations are described. (MOW)

  3. High-resolution adaptive optics scanning laser ophthalmoscope with multiple deformable mirrors

    DOEpatents

    Chen, Diana C.; Olivier, Scot S.; Jones; Steven M.

    2010-02-23

    An adaptive optics scanning laser ophthalmoscopes is introduced to produce non-invasive views of the human retina. The use of dual deformable mirrors improved the dynamic range for correction of the wavefront aberrations compared with the use of the MEMS mirror alone, and improved the quality of the wavefront correction compared with the use of the bimorph mirror alone. The large-stroke bimorph deformable mirror improved the capability for axial sectioning with the confocal imaging system by providing an easier way to move the focus axially through different layers of the retina.

  4. Project Profile: Cleanable and Hardcoat Coatings for Increased Durability of Silvered Polymeric Mirrors

    Energy.gov [DOE]

    3M, under the CSP R&D FOA, is developing optical coatings for solar mirrors that are durable, easily maintained, and more cost-effective.

  5. Bob Ellis designs a PPPL first: A 3D printed mirror for microwave...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... The flat channels will increase the efficiency of the coolant, he said, which will be important for shedding heat from the constantly moving steerable mirror. Contact Info PPPL ...

  6. New Sandia Mirror Isn't Shiny: Instead It Reflects Infrared Light...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... New Sandia Mirror Isn't Shiny: Instead It Reflects Infrared Light Using a Metamaterial HomeCapabilities, Materials Science, News, News & Events, Research & CapabilitiesNew ...

  7. TOPHAT(tm) for the Alignment & Focus of Heliostat Mirror Facets...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Increased efficiency & accuracy in solar mirror alignment Reduced loss of concentrated solar Increased efficiency in solar energy generation Can be used during heliostat assembly...

  8. Bob Ellis designs a PPPL first: A 3D printed mirror for microwave launchers

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    | Princeton Plasma Physics Lab Bob Ellis designs a PPPL first: A 3D printed mirror for microwave launchers By John Greenwald October 28, 2014 Tweet Widget Google Plus One Share on Facebook Bob Ellis with a 3D-printed plastic prototype for a non-mirror part of the launcher. (Photo by Elle Starkman/PPPL Office of Communications) Bob Ellis with a 3D-printed plastic prototype for a non-mirror part of the launcher. Gallery: Completed stainless steel and copper mirror system. (Photo by Elle

  9. Bob Ellis designs a PPPL first: A 3D printed mirror for microwave launchers

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    | Princeton Plasma Physics Lab Bob Ellis designs a PPPL first: A 3D printed mirror for microwave launchers By John Greenwald October 28, 2014 Tweet Widget Google Plus One Share on Facebook Bob Ellis with a 3D-printed plastic prototype for a non-mirror part of the launcher. (Photo by Elle Starkman/PPPL Office of Communications) Bob Ellis with a 3D-printed plastic prototype for a non-mirror part of the launcher. Gallery: Completed stainless steel and copper mirror system. (Photo by Elle

  10. Tandem photovoltaic cells with a composite intermediate layer

    SciTech Connect

    Travkin, V. V. Pakhomov, G. L.; Luk’anov, A. Yu.; Stuzhin, P. A.

    2015-11-15

    We have fabricated and tested tandem photovoltaic cells containing series-connected subcells of the “oxide–organic semiconductor–metal” type. The organic semiconductors were two phthalocyanine dyes (SubPc and PcVO); Al or Ag:Mg were used as capping metallic electrodes. A semitransparent composite metal–oxide layer formed by molybdenum oxide MoO{sub x} deposited over an ultrathin Al layer is used to join the subcells. Additionally, a MoO{sub x} layer deposited onto glass/ITO substrates serves as an anode buffer in the front subcell, and LiF deposited onto the dye layers serves as a cathode buffer in the front or rear subcells. Upon optimization of the thickness and composition of the intermediate layer, the open circuit voltage U{sub oc} amounts to 1.6 V reflecting total summation of the contributions from the each of the subcells at a wide spectral coating from 300–1000 nm. The fill factor in the tandem cell is not worse than in individually made single cells with the same scheme or in disconnected subcells.

  11. ASSESSMENT OF MARKER PROTEINS IDENTIFIED IN WHOLE CELL EXTRACTS FOR BACTERIAL SPECIATION USING LIQUID CHROMATOGRAPHY ELECTROSPRAY IONIZATION TANDEM MASS SPECTROMETRY

    SciTech Connect

    Kooken, Jennifer M.; Fox, Karen F.; Fox, Alvin; Wunschel, David S.

    2014-02-02

    ASSESSMENT OF MARKER PROTEINS IDENTIFIED IN WHOLE CELL EXTRACTS FOR BACTERIAL SPECIATION USING LIQUID CHROMATOGRAPHY ELECTROSPRAY IONIZATION TANDEM MASS SPECTROMETRY

  12. Performance optimization of a bendable parabolic cylinder collimating X-ray mirror for the ALS micro-XAS beamline 10.3.2

    SciTech Connect

    Yashchuk, Valeriy V.; Morrison, Gregory Y.; Marcus, Matthew A.; Domning, Edward E.; Merthe, Daniel J.; Salmassi, Farhad; Smith, Brian V.

    2015-04-08

    The Advanced Light Source (ALS) beamline (BL) 10.3.2 is an apparatus for X-ray microprobe spectroscopy and diffraction experiments, operating in the energy range 2.4–17 keV. The performance of the beamline, namely the spatial and energy resolutions of the measurements, depends significantly on the collimation quality of light incident on the monochromator. In the BL 10.3.2 end-station, the synchrotron source is imaged 1:1 onto a set of roll slits which form a virtual source. The light from this source is collimated in the vertical direction by a bendable parabolic cylinder mirror. Details are presented of the mirror design, which allows for precision assembly, alignment and shaping of the mirror, as well as for extending of the mirror operating lifetime by a factor of ~10. Assembly, mirror optimal shaping and preliminary alignment were performed ex situ in the ALS X-ray Optics Laboratory (XROL). Using an original method for optimal ex situ characterization and setting of bendable X-ray optics developed at the XROL, a root-mean-square (RMS) residual surface slope error of 0.31 µrad with respect to the desired parabola, and an RMS residual height error of less than 3 nm were achieved. Once in place at the beamline, deviations from the designed optical geometry (e.g. due to the tolerances for setting the distance to the virtual source, the grazing incidence angle, the transverse position) and/or mirror shape (e.g. due to a heat load deformation) may appear. Due to the errors, on installation the energy spread from the monochromator is typically a few electron-volts. Here, a new technique developed and successfully implemented for at-wavelength (in situ) fine optimal tuning of the mirror, enabling us to reduce the collimation-induced energy spread to ~0.05 eV, is described.

  13. Hard X-ray nanofocusing using adaptive focusing optics based on piezoelectric deformable mirrors

    SciTech Connect

    Goto, Takumi; Nakamori, Hiroki; Sano, Yasuhisa; Matsuyama, Satoshi; Kimura, Takashi; Kohmura, Yoshiki; Tamasaku, Kenji; Yabashi, Makina; Ishikawa, Tetsuya

    2015-04-15

    An adaptive Kirkpatrick–Baez mirror focusing optics based on piezoelectric deformable mirrors was constructed at SPring-8 and its focusing performance characteristics were demonstrated. By adjusting the voltages applied to the deformable mirrors, the shape errors (compared to a target elliptical shape) were finely corrected on the basis of the mirror shape determined using the pencil-beam method, which is a type of at-wavelength figure metrology in the X-ray region. The mirror shapes were controlled with a peak-to-valley height accuracy of 2.5 nm. A focused beam with an intensity profile having a full width at half maximum of 110 × 65 nm (V × H) was achieved at an X-ray energy of 10 keV.

  14. Status of High Performance PV: Polycrystalline Thin-Film Tandems

    SciTech Connect

    Symko-Davies, M.

    2005-02-01

    The High-Performance Photovoltaic (HiPerf PV) Project was initiated by the U.S. Department of Energy to substantially increase the viability of photovoltaics (PV) for cost-competitive applications so that PV can contribute significantly to our energy supply and our environment. The HiPerf PV Project aims at exploring the ultimate performance limits of existing PV technologies, approximately doubling their sunlight-to-electricity conversion efficiencies during its course. This work includes bringing thin-film cells and modules toward 25% and 20% efficiencies, respectively, and developing multijunction concentrator cells and modules able to convert more than one-third of the sun's energy to electricity (i.e., 33% efficiency). This paper will address recent accomplishments of the NREL in-house research effort involving polycrystalline thin-film tandems, as well as the research efforts under way in the subcontracted area.

  15. All solid-state SBS phase conjugate mirror

    DOEpatents

    Dane, C.B.; Hackel, L.A.

    1999-03-09

    A stimulated Brillouin scattering (SBS) phase conjugate laser mirror uses a solid-state nonlinear gain medium instead of the conventional liquid or high pressure gas medium. The concept has been effectively demonstrated using common optical-grade fused silica. An energy threshold of 2.5 mJ and a slope efficiency of over 90% were achieved, resulting in an overall energy reflectivity of >80% for 15 ns, 1 um laser pulses. The use of solid-state materials is enabled by a multi-pass resonant architecture which suppresses transient fluctuations that would otherwise result in damage to the SBS medium. This all solid state phase conjugator is safer, more reliable, and more easily manufactured than prior art designs. It allows nonlinear wavefront correction to be implemented in industrial and defense laser systems whose operating environments would preclude the introduction of potentially hazardous liquids or high pressure gases. 8 figs.

  16. All solid-state SBS phase conjugate mirror

    DOEpatents

    Dane, Clifford B.; Hackel, Lloyd A.

    1999-01-01

    A stimulated Brillouin scattering (SBS) phase conjugate laser mirror uses a solid-state nonlinear gain medium instead of the conventional liquid or high pressure gas medium. The concept has been effectively demonstrated using common optical-grade fused silica. An energy threshold of 2.5 mJ and a slope efficiency of over 90% were achieved, resulting in an overall energy reflectivity of >80% for 15 ns, 1 um laser pulses. The use of solid-state materials is enabled by a multi-pass resonant architecture which suppresses transient fluctuations that would otherwise result in damage to the SBS medium. This all solid state phase conjugator is safer, more reliable, and more easily manufactured than prior art designs. It allows nonlinear wavefront correction to be implemented in industrial and defense laser systems whose operating environments would preclude the introduction of potentially hazardous liquids or high pressure gases.

  17. Gamma Ray Mirrors for Direct Measurement of Spent Nuclear Fuel

    SciTech Connect

    Pivovaroff, Dr. Michael J.; Ziock, Klaus-Peter; Harrison, Mark J; Soufli, Regina

    2014-01-01

    Direct measurement of the amount of Pu and U in spent nuclear fuel represents a challenge for the safeguards community. Ideally, the characteristic gamma-ray emission lines from different isotopes provide an observable suitable for this task. However, these lines are generally lost in the fierce flux of radiation emitted by the fuel. The rates are so high that detector dead times limit measurements to only very small solid angles of the fuel. Only through the use of carefully designed view ports and long dwell times are such measurements possible. Recent advances in multilayer grazing-incidence gamma-ray optics provide one possible means of overcoming this difficulty. With a proper optical and coating design, such optics can serve as a notch filter, passing only narrow regions of the overall spectrum to a fully shielded detector that does not view the spent fuel directly. We report on the design of a mirror system and a number of experimental measurements.

  18. Tandem Filter Development for Thermophotovoltaic Energy Conversion from January 2003 to February 2006

    SciTech Connect

    Fourspring PM

    2007-03-19

    The intent of this report is to summarize the tandem filter development for spectral control of thermophotovoltaic energy conversion from January 2003 to the termination of the program in February 2006 and to closeout tandem filter development in order to capture the knowledge gained from the development effort. Over the last three years, the goals of the tandem filter development have been the following: (1) Study the limits of the design of the interference optical coatings component of a tandem filter in order to develop higher performance designs; (2) Enhance the fabrication process of the optical interference coatings to increase the fidelity with the intended design and allow more complex, higher performing designs; (3) Support TPV module testing by providing tandem filters and assembly assistance; (4) Identify and develop materials for optical interference coatings that are stable at higher temperatures than current materials; and (5) Improve the understanding of the directional and spectral reflectance and transmittance characterization of the completed tandem filters to insure the veracity of the characterization data and to provide useful feedback to the tandem filter development process. This development effort has been a collaboration between KAPL and its contracted development partner, Rugate Technologies Inc.

  19. Experience with pump gas seals

    SciTech Connect

    Nosowicz, J.; Schoepplein, W.

    1997-01-01

    The gas seal technology used in gas compressors has been successfully applied for emission-free sealing of liquid pumps in the past few years. The seals with pressurized gas supply systems are used as single or dual (tandem) seals. Gas seals, mainly as single seals, are frequently used as safety seals as well. Applying this non-contacting sealing system will result in reduced investment and operating cost. The paper discusses the sealing concept, operating performance, operating limits, gas-lubricated safety seals, field experience, and advantages.

  20. Photo Galleries | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    to a Clean Energy Future SunShot Grand Challenge SunShot Grand Challenge Inside the Tandem Mirror Experiment Photo of the Week Franklin County Courthouse (Before) Franklin...

  1. One-way acoustic mirror based on anisotropic zero-index media

    SciTech Connect

    Gu, Zhong-ming; Liang, Bin E-mail: jccheng@nju.edu.cn; Yang, Jing; Cheng, Jian-chun E-mail: jccheng@nju.edu.cn; Zou, Xin-ye; Li, Yong; Yang, Jun

    2015-11-23

    We have designed a one-way acoustic mirror comprising anisotropic zero-index media. For acoustic beam incident at a particular angle, the designed structure behaves like a high-efficient mirror that redirects almost all the incident energy into another direction predicted by the Snell's law, while becoming virtually transparent to beams propagating reversely along this output path. Furthermore, the mirror can be tailored to work at arbitrary incident angle by simply adjusting its geometry. Our design, with undirectional reflection functionality and flexible working angle, may offer possibilities in space isolations and have deep implication in various scenarios like ultrasound imaging or noise control.

  2. Low cost anti-soiling coatings for CSP collector mirrors and heliostats

    SciTech Connect

    Smith, Barton Barton; Polyzos, Georgios; Schaeffer, Daniel A; Lee, Dominic F; Datskos, Panos G

    2014-01-01

    Most concentrating solar power (CSP) facilities in the USA are located in the desert southwest of the country where land and sunshine are abundant. But one of the significant maintenance problems and cost associated with operating CSP facilities in this region is the accumulation of dust, sand and other pollutants on the collector mirrors and heliostats. In this paper we describe the development of low cost, easy to apply anti-soiling coatings based on superhydrophobic (SH) functionalized nano silica materials and polymer binders that posses the key requirements necessary to inhibit particulate deposition on and sticking to CSP mirror surfaces, and thereby significantly reducing mirror cleaning costs and facility downtime.

  3. Semi-transparent perovskite solar cells for tandems with silicon and CIGS

    DOE PAGES [OSTI]

    Bailie, Colin D.; Christoforo, M. Greyson; Mailoa, Jonathan P.; Bowring, Andrea R.; Unger, Eva L.; Nguyen, William H.; Burschka, Julian; Pellet, Norman; Lee, Jungwoo Z.; Grätzel, Michael; et al

    2014-12-23

    A promising approach for upgrading the performance of an established low-bandgap solar technology without adding much cost is to deposit a high bandgap polycrystalline semiconductor on top to make a tandem solar cell. We use a transparent silver nanowire electrode on perovskite solar cells to achieve a semi-transparent device. We place the semi-transparent cell in a mechanically-stacked tandem configuration onto copper indium gallium diselenide (CIGS) and low-quality multicrystalline silicon (Si) to achieve solid-state polycrystalline tandem solar cells with a net improvement in efficiency over the bottom cell alone. Furthermore, this work paves the way for integrating perovskites into a low-costmore » and high-efficiency (>25%) tandem cell.« less

  4. Semi-transparent perovskite solar cells for tandems with silicon and CIGS

    SciTech Connect

    Bailie, Colin D.; Christoforo, M. Greyson; Mailoa, Jonathan P.; Bowring, Andrea R.; Unger, Eva L.; Nguyen, William H.; Burschka, Julian; Pellet, Norman; Lee, Jungwoo Z.; Grätzel, Michael; Noufi, Rommel; Buonassisi, Tonio; Salleo, Alberto; McGehee, Michael D.

    2014-12-23

    A promising approach for upgrading the performance of an established low-bandgap solar technology without adding much cost is to deposit a high bandgap polycrystalline semiconductor on top to make a tandem solar cell. We use a transparent silver nanowire electrode on perovskite solar cells to achieve a semi-transparent device. We place the semi-transparent cell in a mechanically-stacked tandem configuration onto copper indium gallium diselenide (CIGS) and low-quality multicrystalline silicon (Si) to achieve solid-state polycrystalline tandem solar cells with a net improvement in efficiency over the bottom cell alone. Furthermore, this work paves the way for integrating perovskites into a low-cost and high-efficiency (>25%) tandem cell.

  5. GaP/Silicon Tandem Solar Cell with Extended Temperature Range - Energy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Innovation Portal Vehicles and Fuels Vehicles and Fuels Solar Photovoltaic Solar Photovoltaic Find More Like This Return to Search GaP/Silicon Tandem Solar Cell with Extended Temperature Range NASA Glenn Research Center (http://www.nasa.gov/centers/glenn/home/index.html) National Aeronautics and Space Administration Contact NASA About This Technology Technology Marketing SummaryNASA Glenn Research Center (GRC) innovators have developed unique, tandem photovoltaic cells (or "solar

  6. Argonne Tandem Linac Accelerator System (ATLAS) | U.S. DOE Office of

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Science (SC) Argonne Tandem Linac Accelerator System (ATLAS) Nuclear Physics (NP) NP Home About Research Facilities User Facilities Argonne Tandem Linac Accelerator System (ATLAS) Continuous Electron Beam Accelerator Facility (CEBAF) Relativistic Heavy Ion Collider (RHIC) Project Development Isotope Program Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of

  7. PPPL extends system for suppressing instabilities to long-pulse experiments

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    on KSTAR | Princeton Plasma Physics Lab PPPL extends system for suppressing instabilities to long-pulse experiments on KSTAR By John Greenwald March 18, 2014 Tweet Widget Google Plus One Share on Facebook A look into the microwave launcher showing the steering mirrors that guide the beam into the plasma. (Photo by PPPL) A look into the microwave launcher showing the steering mirrors that guide the beam into the plasma. PPPL collaborations have been instrumental in developing a system to

  8. PPPL extends system for suppressing instabilities to long-pulse experiments

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    on KSTAR | Princeton Plasma Physics Lab PPPL extends system for suppressing instabilities to long-pulse experiments on KSTAR By John Greenwald March 19, 2014 Tweet Widget Google Plus One Share on Facebook A look into the microwave launcher showing the steering mirrors that guide the beam into the plasma. (Photo by PPPL) A look into the microwave launcher showing the steering mirrors that guide the beam into the plasma. PPPL collaborations have been instrumental in developing a system to

  9. Hybrid tandem photovoltaic devices with a transparent conductive interconnecting recombination layer

    SciTech Connect

    Kim, Taehee; Choi, Jin Young; Jeon, Jun Hong; Kim, Youn-Su; Kim, Bong-Soo; Lee, Doh-Kwon; Kim, Honggon; Han, Seunghee; Kim, Kyungkon

    2012-10-15

    Highlights: ► This work enhanced power conversion efficiency of the hybrid tandem solar cell from 1.0% to 2.6%. ► The interfacial series resistance of the tandem solar cell was eliminated by inserting ITO layer. ► This work shows the feasibility of the highly efficient hybrid tandem solar cells. -- Abstract: We demonstrate hybrid tandem photovoltaic devices with a transparent conductive interconnecting recombination layer. The series-connected hybrid tandem photovoltaic devices were developed by combining hydrogenated amorphous silicon (a-Si:H) and polymer-based organic photovoltaics (OPVs). In order to enhance the interfacial connection between the subcells, we employed highly transparent and conductive indium tin oxide (ITO) thin layer. By using the ITO interconnecting layer, the power conversion efficiency of the hybrid tandem solar cell was enhanced from 1.0% (V{sub OC} = 1.041 V, J{sub SC} = 2.97 mA/cm{sup 2}, FF = 32.3%) to 2.6% (V{sub OC} = 1.336 V, J{sub SC} = 4.65 mA/cm{sup 2}, FF = 41.98%) due to the eliminated interfacial series resistance.

  10. Transport and equilibrium in field-reversed mirrors

    SciTech Connect

    Boyd, J.K.

    1982-09-01

    Two plasma models relevant to compact torus research have been developed to study transport and equilibrium in field reversed mirrors. In the first model for small Larmor radius and large collision frequency, the plasma is described as an adiabatic hydromagnetic fluid. In the second model for large Larmor radius and small collision frequency, a kinetic theory description has been developed. Various aspects of the two models have been studied in five computer codes ADB, AV, NEO, OHK, RES. The ADB code computes two dimensional equilibrium and one dimensional transport in a flux coordinate. The AV code calculates orbit average integrals in a harmonic oscillator potential. The NEO code follows particle trajectories in a Hill's vortex magnetic field to study stochasticity, invariants of the motion, and orbit average formulas. The OHK code displays analytic psi(r), B/sub Z/(r), phi(r), E/sub r/(r) formulas developed for the kinetic theory description. The RES code calculates resonance curves to consider overlap regions relevant to stochastic orbit behavior.

  11. Tandem Differential Mobility Analyzer/Aerodynamic Particle Sizer (APS) Handbook

    SciTech Connect

    Collins, D

    2010-06-18

    The tandem differential mobility analyzer (TDMA) is a single instrument that cycles through a series of complementary measurements of the physical properties of size-resolved submicron particles. In 2008, the TDMA was augmented through the addition of an aerodynamic particle sizer (APS), which extends the upper limit of the measured size distribution into the supermicron range. These two instruments are operated in parallel, but because they are controlled by a common computer and because the size distributions measured by the two are integrated in the produced datastreams, they are described together here. Throughout the day, the TDMA sequentially measures submicron aerosol size distributions and size-resolved hygroscopic growth distributions. More specifically, the instrument is operated as a scanning DMA to measure size distributions and as a TDMA to measure size-resolved hygroscopicity. A typical measurement sequence requires roughly 45 minutes. Each morning additional measurements are made of the relative humidity (RH) dependent hygroscopicity and temperature-dependent volatility of size-resolved particles. When the outside temperature and RH are within acceptable ranges, the hydration state of size-resolved particles is also characterized. The measured aerosol distributions complement the array of aerosol instruments in the Aerosol Observing System (AOS) and provide additional details of the light-scattering and cloud-nucleating characteristics of the aerosol.

  12. Stimulated Brillouin scattering mirror system, high power laser and laser peening method and system using same

    DOEpatents

    Dane, C. Brent; Hackel, Lloyd; Harris, Fritz B.

    2007-04-24

    A laser system, such as a master oscillator/power amplifier system, comprises a gain medium and a stimulated Brillouin scattering SBS mirror system. The SBS mirror system includes an in situ filtered SBS medium that comprises a compound having a small negative non-linear index of refraction, such as a perfluoro compound. An SBS relay telescope having a telescope focal point includes a baffle at the telescope focal point which blocks off angle beams. A beam splitter is placed between the SBS mirror system and the SBS relay telescope, directing a fraction of the beam to an alternate beam path for an alignment fiducial. The SBS mirror system has a collimated SBS cell and a focused SBS cell. An adjustable attenuator is placed between the collimated SBS cell and the focused SBS cell, by which pulse width of the reflected beam can be adjusted.

  13. Method for pulse control in a laser including a stimulated brillouin scattering mirror system

    DOEpatents

    Dane, C. Brent; Hackel, Lloyd; Harris, Fritz B.

    2007-10-23

    A laser system, such as a master oscillator/power amplifier system, comprises a gain medium and a stimulated Brillouin scattering SBS mirror system. The SBS mirror system includes an in situ filtered SBS medium that comprises a compound having a small negative non-linear index of refraction, such as a perfluoro compound. An SBS relay telescope having a telescope focal point includes a baffle at the telescope focal point which blocks off angle beams. A beam splitter is placed between the SBS mirror system and the SBS relay telescope, directing a fraction of the beam to an alternate beam path for an alignment fiducial. The SBS mirror system has a collimated SBS cell and a focused SBS cell. An adjustable attenuator is placed between the collimated SBS cell and the focused SBS cell, by which pulse width of the reflected beam can be adjusted.

  14. Anisotropy and crystal orientation of silicon--application to the modeling of a bent mirror

    SciTech Connect

    Zhang Lin

    2010-06-23

    Matrix formula and MATLAB algorithm are proposed to calculate the stiffness coefficient matrix C, the Young's modulus, shear modulus and Poisson ratio for the silicon crystal in any orientation. Results for Si(110) and Si(311) are given as an example. The anisotropic material properties of the silicon have been used in the mirror width profile optimization for the nano-imaging end-station ID22NI at the ESRF. As the Si(110) is used as the substrate of this multilayer coated KB mirror, the silicon crystal axis [0 0 1] is proposed to orient to the mirror axis. This is the case to have low stress in the mirror and low bending forces from actuators.

  15. Closely spaced mirror pair for reshaping and homogenizing pump beams in laser amplifiers

    SciTech Connect

    Bass, I.L.

    1992-12-01

    Channeling a laser beam by multiple reflections between two closely-spaced, parallel or nearly parallel mirrors, serves to reshape and homogenize the beam at the output gap between the mirrors. Application of this device to improve the spatial overlap of a copper laser pump beam with the signal beam in a dye laser amplifier is described. This technique has been applied to the AVLIS program at the Lawrence Livermore National Laboratory.

  16. Optical magnetic mirrors using all dielectric metasurfaces and III-V

    Office of Scientific and Technical Information (OSTI)

    semiconductors based dielectric metamaterials. (Conference) | SciTech Connect Conference: Optical magnetic mirrors using all dielectric metasurfaces and III-V semiconductors based dielectric metamaterials. Citation Details In-Document Search Title: Optical magnetic mirrors using all dielectric metasurfaces and III-V semiconductors based dielectric metamaterials. Abstract not provided. Authors: Liu, Sheng ; Brener, Igal ; Sinclair, Michael B. ; campione, salvatore ; Keeler, Gordon Arthur

  17. Experiment of Fundamental ECRH in the GAMMA 10 Central Cell

    SciTech Connect

    Tatematsu, Y. [Plasma Research Center, University of Tsukuba (Japan); Saito, T. [Plasma Research Center, University of Tsukuba (Japan); Ikegami, H. [Plasma Research Center, University of Tsukuba (Japan); Sekine, T. [Plasma Research Center, University of Tsukuba (Japan); Nagai, D. [Plasma Research Center, University of Tsukuba (Japan); Nozaki, K. [Plasma Research Center, University of Tsukuba (Japan); Ishii, K. [Plasma Research Center, University of Tsukuba (Japan); Kohagura, J. [Plasma Research Center, University of Tsukuba (Japan); Nakashima, Y. [Plasma Research Center, University of Tsukuba (Japan); Kubo, S. [National Institute for Fusion Science (Japan); Shimozuma, T. [National Institute for Fusion Science (Japan); Cho, T. [Plasma Research Center, University of Tsukuba (Japan)

    2005-01-15

    As an improvement of the central-cell ECRH (C-ECRH) system in GAMMA 10, an ellipsoidal mirror was installed instead of a cylindrical mirror. With this replacement, the microwave beam for ECRH is converged to the GAMMA 10 axis on the resonance surface and Poynting flux reaching the plasma core region becomes about five times larger than the previous one. Effectiveness of this system has been shown in the initial stage of experiment. Finite increment of soft X-ray signal during ECRH operation indicates an increase of the electron temperature. As more improvement, designing a new antenna is now under way.

  18. Laser processing technique for fabricating series-connected and tandem junction series-connected solar cells into a solar battery

    DOEpatents

    Hanak, Joseph J.

    1981-01-01

    A method of fabricating series-connected and tandem junction series-connected solar cells into a solar battery with laser scribing.

  19. Thin Film Si Bottom Cells for Tandem Device Structures: Final Technical Report, 15 December 2003 - 15 October 2007

    SciTech Connect

    Yelundur, V.; Hegedus, S.; Rohatgi, A.; Birkmire, R.

    2008-11-01

    GIT and IEC developed thin-film Si bottom cell and showed that deposition of top cell in tandem device did not reduce bottom cell performance.

  20. Indium Zinc Oxide Mediated Wafer Bonding for III-V/Si Tandem Solar Cells

    SciTech Connect

    Tamboli, Adele C.; Essig, Stephanie; Horowitz, Kelsey A. W.; Woodhouse, Michael; van Hest, Maikel F. A. M.; Norman, Andrew G.; Steiner, Myles A.; Stradins, Paul

    2015-06-14

    Silicon-based tandem solar cells are desirable as a high efficiency, economically viable approach to one sun or low concentration photovoltaics. We present an approach to wafer bonded III-V/Si solar cells using amorphous indium zinc oxide (IZO) as an interlayer. We investigate the impact of a heavily doped III-V contact layer on the electrical and optical properties of bonded test samples, including the predicted impact on tandem cell performance. We present economic modeling which indicates that the path to commercial viability for bonded cells includes developing low-cost III-V growth and reducing constraints on material smoothness. If these challenges can be surmounted, bonded tandems on Si can be cost-competitive with incumbent PV technologies, especially in low concentration, single axis tracking systems.

  1. Prototype secondary mirror assembly design for the space infrared telescope facility

    SciTech Connect

    Stier, M.; Duffy, M.; Gullapalli, S.; Rockwell, R.; Sileo, F.; Krim, M.

    1989-02-01

    The authors describe their design of a liquid helium temperature prototype secondary mirror assembly (PSMA) under development for the NASA Space Infrared Telescope Facility (SIRTF) program. The SIRTF secondary mirror assembly must operate below 4 K and provide the functions of highly precise 2-axis dynamic tilting (chopping) in addition to the conventional functions needed by the SIRTF observatory. Their PSMA design employs a fused quartz mirror kinematically attached at its center to an aluminium cruciform. The mirror/cruciform assembly is driven in tilt about its combined center of mass using a unique flexure pivot and a four-actuator control system with feedback provided by pairs of differential position sensors. The voice coil actuators are mounted on a second flexure-pivoted mass enhancing servo system stability and isolating the telescope from vibration-induced disturbances. The mirror/cruciform and the reaction mass are attached to opposite sides of an aluminum mounting plate whose dimensional characteristics are nominally identical to that of the aluminum flexure pivot material. The mounting plate is connected to the outer housing by a six degree of freedom focus and centering mechanism using pivoted actuation levers driven by lead screw/harmonic drive/stepper motor assemblies.

  2. DABAM: An open-source database of X-ray mirrors metrology

    SciTech Connect

    Sanchez del Rio, Manuel; Bianchi, Davide; Cocco, Daniele; Glass, Mark; Idir, Mourad; Metz, Jim; Raimondi, Lorenzo; Rebuffi, Luca; Reininger, Ruben; Shi, Xianbo; Siewert, Frank; Spielmann-Jaeggi, Sibylle; Takacs, Peter; Tomasset, Muriel; Tonnessen, Tom; Vivo, Amparo; Yashchuk, Valeriy

    2016-01-01

    An open-source database containing metrology data for X-ray mirrors is presented. It makes available metrology data (mirror heights and slopes profiles) that can be used with simulation tools for calculating the effects of optical surface errors in the performances of an optical instrument, such as a synchrotron beamline. A typical case is the degradation of the intensity profile at the focal position in a beamline due to mirror surface errors. This database for metrology (DABAM) aims to provide to the users of simulation tools the data of real mirrors. The data included in the database are described in this paper, with details of how the mirror parameters are stored. An accompanying software is provided to allow simple access and processing of these data, calculate the most usual statistical parameters, and also include the option of creating input files for most used simulation codes. In conclusion, some optics simulations are presented and discussed to illustrate the real use of the profiles from the database.

  3. DABAM: An open-source database of X-ray mirrors metrology

    DOE PAGES [OSTI]

    Sanchez del Rio, Manuel; Bianchi, Davide; Cocco, Daniele; Glass, Mark; Idir, Mourad; Metz, Jim; Raimondi, Lorenzo; Rebuffi, Luca; Reininger, Ruben; Shi, Xianbo; et al

    2016-01-01

    An open-source database containing metrology data for X-ray mirrors is presented. It makes available metrology data (mirror heights and slopes profiles) that can be used with simulation tools for calculating the effects of optical surface errors in the performances of an optical instrument, such as a synchrotron beamline. A typical case is the degradation of the intensity profile at the focal position in a beamline due to mirror surface errors. This database for metrology (DABAM) aims to provide to the users of simulation tools the data of real mirrors. The data included in the database are described in this paper,more » with details of how the mirror parameters are stored. An accompanying software is provided to allow simple access and processing of these data, calculate the most usual statistical parameters, and also include the option of creating input files for most used simulation codes. In conclusion, some optics simulations are presented and discussed to illustrate the real use of the profiles from the database.« less

  4. Fusion neutron generation computations in a stellarator-mirror hybrid with neutral beam injection

    SciTech Connect

    Moiseenko, V. E.; Agren, O.

    2012-06-19

    In the paper [Moiseenko V.E., Noack K., Agren O. 'Stellarator-mirror based fusion driven fission reactor' J Fusion Energy 29 (2010) 65.], a version of a fusion driven system (FDS), i.e. a sub-critical fast fission assembly with a fusion plasma neutron source, is proposed. The plasma part of the reactor is based on a stellarator with a small mirror part. Hot ions with high perpendicular energy are assumed to be trapped in the magnetic mirror part. The stellarator part which connects to the mirror part and provides confinement for the bulk (deuterium) plasma. In the magnetic well of the mirror part, fusion reactions occur from collisions between a of hot ion component (tritium) with cold background plasma ions. RF heating is one option to heat the tritium. A more conventional method to sustain the hot ions is neutral beam injection (NBI), which is here studied numerically for the above-mentioned hybrid scheme. For these studies, a new kinetic code, KNBIM, has been developed. The code takes into account Coulomb collisions between the hot ions and the background plasma. The geometry of the confining magnetic field is arbitrary for the code. It is accounted for via a numerical bounce averaging procedure. Along with the kinetic calculations the neutron generation intensity and its spatial distribution are computed.

  5. Equivalent circuit analysis of radiative coupling in monolithic tandem solar cells

    SciTech Connect

    Lan, Dongchen E-mail: d.lan@unswalumni.com; Green, Martin A.

    2015-06-29

    As solar cell efficiency improves towards the Shockley-Queisser limit, so does the radiative efficiency of the cell. For tandem stacks of cells where energy conversion efficiency now exceeds 46%, radiative coupling between the cells is becoming increasingly important to consider in cell design, measurement, and performance prediction. We show how an equivalent circuit model can capture the complex radiative interactions between cells in such tandem stacks, allowing more insight into the impact on cell performance. The circuit's use is demonstrated by deriving results relevant to the critical step of eliminating coupling effects from measured cell spectral responses.

  6. System and method for online inspection of turbines using an optical tube with broadspectrum mirrors

    SciTech Connect

    Baleine, Erwan

    2015-12-22

    An optical inspection system for nondestructive internal visual inspection and non-contact infra-red (IR) temperature monitoring of an online, operating power generation turbine. The optical inspection system includes an optical tube having a viewing port, at least one reflective mirror or a mirror array having a reflectivity spectral range from 550 nm to 20 .mu.m, and capable of continuous operation at temperatures greater than 932 degrees Fahrenheit (500 degrees Celsius), and a transparent window with high transmission within the same spectral range mounted distal the viewing port. The same optical mirror array may be used to measure selectively surface temperature of metal turbine blades in the near IR range (approximately 1 .mu.m wavelength) and of thermal barrier coated turbine blades in the long IR range (approximately 10 .mu.m wavelength).

  7. Metrology for x-ray telescope mirrors in a vertical configuration

    SciTech Connect

    Li, Haizhang; Li, Xiaodan; Grindel, M.W.

    1995-09-01

    Mirrors used in x-ray telescope systems for observations outside of the earth`s atmosphere are usually made of several thin nested shells, each formed by a pair of paraboloidal and hyperboloidal surfaces. The thin shells are very susceptible to self-weight deflection caused by gravity and are nearly impossible to test by conventional interferometric techniques. The metrology requirements for these mirrors are extremely challenging. This paper presents a prototype of a Vertical Scanning Long Trace Profiler (VSLTP) which is optimized to measure the surface figure of x-ray telescope mirrors in a vertical orientation. The optical system of the VSLTP is described. Experimental results from measurements on an x-ray telescope mandrel and tests of the accuracy and repeatability of the prototype VSLTP are presented. The prototype instrument has achieved a height measurement accuracy of about 50 nanometers with a repeatability of better than 20 nanometers, and a slope measurement accuracy of about 1 microradian.

  8. Method of bonding silver to glass and mirrors produced according to this method

    DOEpatents

    Pitts, J.R.; Thomas, T.M.; Czanderna, A.W.

    1984-07-31

    A method for adhering silver to a glass substrate for producing mirrors includes attaining a silicon enriched substrate surface by reducing the oxygen therein in a vacuum and then vacuum depositing a silver layer onto the silicon enriched surface. The silicon enrichment can be attained by electron beam bombardment, ion beam bombardment, or neutral beam bombardment. It can also be attained by depositing a metal, such as aluminum, on the substrate surface, allowing the metal to oxidize by pulling oxygen from the substrate surface, thereby leaving a silicon enriched surface, and then etching or eroding the metal oxide layer away to expose the silicon enriched surface. Ultraviolet rays can be used to maintain dangling silicon bonds on the enriched surface until covalent bonding with the silver can occur. This disclosure also includes encapsulated mirrors with diffusion layers built therein. One of these mirrors is assembled on a polymer substrate.

  9. Method of bonding silver to glass and mirrors produced according to this method

    DOEpatents

    Pitts, John R.; Thomas, Terence M.; Czanderna, Alvin W.

    1985-01-01

    A method for adhering silver to a glass substrate for producing mirrors includes attaining a silicon enriched substrate surface by reducing the oxygen therein in a vacuum and then vacuum depositing a silver layer onto the silicon enriched surface. The silicon enrichment can be attained by electron beam bombardment, ion beam bombardment, or neutral beam bombardment. It can also be attained by depositing a metal, such as aluminum, on the substrate surface, allowing the metal to oxidize by pulling oxygen from the substrate surface, thereby leaving a silicon enriched surface, and then etching or eroding the metal oxide layer away to expose the silicon enriched surface. Ultraviolet rays can be used to maintain dangling silicon bonds on the enriched surface until covalent bonding with the silver can occur. This disclosure also includes encapsulated mirrors with diffusion layers built therein. One of these mirrors is assembled on a polymer substrate.

  10. Demonstration of a plasma mirror based on a laminar flow water film

    SciTech Connect

    Panasenko, Dmitriy; Shu, Anthony; Gonsalves, Anthony; Nakamura, Kei; Matlis, Nicholas; Toth, Csaba; Leemans, Wim

    2011-07-22

    A plasma mirror based on a laminar water film with low flow speed 0.5-2 cm/s has been developed and characterized, for use as an ultrahigh intensity optical reflector. The use of flowing water as atarget surface automatically results in each laser pulse seeing a new interaction surface and avoids the need for mechanical scanning of the target surface. In addition, the breakdown of water does notproduce contaminating debris that can be deleterious to vacuum chamber conditions and optics, such as is the case when using conventional solid targets. The mirror exhibits 70percent reflectivity, whilemaintaining high-quality of the reflected spot.

  11. Demonstration of a plasma mirror based on a laminar flow water film

    SciTech Connect

    Panasenko, Dmitriy; Shu, Anthony J.; Gonsalves, Anthony; Nakamura, Kei; Matlis, Nicholas H.; Toth, Csaba; Leemans, Wim P. [Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720 (United States)

    2010-08-15

    A plasma mirror based on a laminar water film with low flow speed (0.5-2 cm/s) has been developed and characterized, for use as an ultrahigh intensity optical reflector. The use of flowing water as a target surface automatically results in each laser pulse seeing a new interaction surface and avoids the need for mechanical scanning of the target surface. In addition, the breakdown of water does not produce contaminating debris that can be deleterious to vacuum chamber conditions and optics, such as is the case when using conventional solid targets. The mirror exhibits 70% reflectivity, while maintaining high-quality of the reflected spot.

  12. Demonstration of achromatic cold-neutron microscope utilizing axisymmetric focusing mirrors

    SciTech Connect

    Liu, D.; Khaykovich, B. [Nuclear Reactor Laboratory, Massachusetts Institute of Technology, 138 Albany St., Cambridge, Massachusetts 02139 (United States)] [Nuclear Reactor Laboratory, Massachusetts Institute of Technology, 138 Albany St., Cambridge, Massachusetts 02139 (United States); Hussey, D.; Jacobson, D.; Arif, M. [Physical Measurement Laboratory, NIST, Gaithersburg, Maryland 20899-8461 (United States)] [Physical Measurement Laboratory, NIST, Gaithersburg, Maryland 20899-8461 (United States); Gubarev, M. V.; Ramsey, B. D. [Marshall Space Flight Center, NASA, VP62, Huntsville, Alabama 35812 (United States)] [Marshall Space Flight Center, NASA, VP62, Huntsville, Alabama 35812 (United States); Moncton, D. E. [Nuclear Reactor Laboratory, Massachusetts Institute of Technology, 138 Albany St., Cambridge, Massachusetts 02139 (United States) [Nuclear Reactor Laboratory, Massachusetts Institute of Technology, 138 Albany St., Cambridge, Massachusetts 02139 (United States); Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139 (United States)

    2013-05-06

    An achromatic cold-neutron microscope with magnification 4 is demonstrated. The image-forming optics is composed of nested coaxial mirrors of full figures of revolution, so-called Wolter optics. The spatial resolution, field of view, and depth of focus are measured and found consistent with ray-tracing simulations. Methods of increasing the resolution and magnification are discussed, as well as the scientific case for the neutron microscope. In contrast to traditional pinhole-camera neutron imaging, the resolution of the microscope is determined by the mirrors rather than by the collimation of the beam, leading to possible dramatic improvements in the signal rate and resolution.

  13. Multilayer mirror with enhanced spectral selectivity for the next generation extreme ultraviolet lithography

    SciTech Connect

    Medvedev, V. V. Kruijs, R. W. E. van de; Yakshin, A. E.; Novikova, N. N.; Krivtsun, V. M.; Louis, E.; Bijkerk, F.; MESA Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede ; Yakunin, A. M.

    2013-11-25

    We have demonstrated a hybrid extreme ultraviolet (EUV) multilayer mirror for 6.x nm radiation that provides selective suppression for infrared (IR) radiation. The mirror consists of an IR-transparent LaN∕B multilayer stack which is used as EUV-reflective coating and antireflective (AR) coating to suppress IR. The AR coating can be optimized to suppress CO{sub 2} laser radiation at the wavelength of 10.6 μm, which is of interest for application in next-generation EUV lithography systems.

  14. Fiber laser cleaning of metal mirror surfaces for optical diagnostic systems of the ITER

    SciTech Connect

    Kuznetsov, A. P. Alexandrova, A. S.; Buzhinsky, O. I.; Gubskiy, K. L.; Kazieva, T. V.; Savchenkov, A. V.; Tugarinov, S. N.

    2015-12-15

    The results of experimental studies into efficiency of removal of films with a complex composition from metal mirrors by pulsed fiber laser irradiation are presented. It is shown that the initial reflectivity of optical elements can be restored by the selection of modes of irradiation impacting the surface with the sputtered film. Effective cleaning is performed by radiation with a power density lower than 10{sup 7} W/cm{sup 2}. The removal of contaminations at such a relatively low power density occurs in a solid phase, owing to which the thermal effect on the mirror is insignificant.

  15. Nuclear breeder reactor fuel element with axial tandem stacking and getter

    DOEpatents

    Gibby, Ronald L.; Lawrence, Leo A.; Woodley, Robert E.; Wilson, Charles N.; Weber, Edward T.; Johnson, Carl E.

    1981-01-01

    A breeder reactor fuel element having a tandem arrangement of fissile and fertile fuel with a getter for fission product cesium disposed between the fissile and fertile sections. The getter is effective at reactor operating temperatures to isolate the cesium generated by the fissile material from reacting with the fertile fuel section.

  16. Thermodynamically leveraged Tandem catalysis for ester RC(O)O-R' bond hydrogenolysis. scope and mechanism.

    SciTech Connect

    Lohr, Tracy L.; Li, Zhi; Assary, Rajeev S.; Curtiss, Larry A.; Marks, Tobin J.

    2015-06-01

    Rapid and selective formal hydrogenolysis of aliphatic ester RC(O)O-R' linkages is achieved by a tandem homogeneous metal triflate + supported palladium catalytic system. The triflate catalyzes the mildly exothermic, turnover-limiting O-R' cleavage process, whereas the exothermic hydrogenation of the intermediate alkene further drives the overall reaction to completion.

  17. Structure of a Longitudinal Actin Dimer Assembled by Tandem W Domains: Implications for Actin Filament Nucleation

    SciTech Connect

    Rebowski, Grzegorz; Namgoong, Suk; Boczkowska, Malgorzata; Leavis, Paul C.; Navaza, Jorge; Dominguez, Roberto

    2013-11-20

    Actin filament nucleators initiate polymerization in cells in a regulated manner. A common architecture among these molecules consists of tandem WASP homology 2 domains (W domains) that recruit three to four actin subunits to form a polymerization nucleus. We describe a low-resolution crystal structure of an actin dimer assembled by tandem W domains, where the first W domain is cross-linked to Cys374 of the actin subunit bound to it, whereas the last W domain is followed by the C-terminal pointed end-capping helix of thymosin {beta}4. While the arrangement of actin subunits in the dimer resembles that of a long-pitch helix of the actin filament, important differences are observed. These differences result from steric hindrance of the W domain with intersubunit contacts in the actin filament. We also determined the structure of the first W domain of Vibrio parahaemolyticus VopL cross-linked to actin Cys374 and show it to be nearly identical with non-cross-linked W-Actin structures. This result validates the use of cross-linking as a tool for the study of actin nucleation complexes, whose natural tendency to polymerize interferes with most structural methods. Combined with a biochemical analysis of nucleation, the structures may explain why nucleators based on tandem W domains with short inter-W linkers have relatively weak activity, cannot stay bound to filaments after nucleation, and are unlikely to influence filament elongation. The findings may also explain why nucleation-promoting factors of the Arp2/3 complex, which are related to tandem-W-domain nucleators, are ejected from branch junctions after nucleation. We finally show that the simple addition of the C-terminal pointed end-capping helix of thymosin {beta}4 to tandem W domains can change their activity from actin filament nucleation to monomer sequestration.

  18. Optical and Durability Evaluation for Silvered Polymeric Mirrors and Reflectors: Cooperative Research and Development Final Report, CRADA Number, CRD-08-316

    SciTech Connect

    Gray, M.

    2014-08-01

    3M is currently developing silvered polymeric mirror reflectors as low-cost replacements for glass mirrors in concentrating solar power (CSP) systems. This effort is focused on development of reflectors comprising both metallized polymeric mirror films based on improved versions of ECP-305+ or other durable mirror film concepts and appropriate mechanically robust substrates. The objectives for this project are to reduce the system capital and operating costs and to lower the levelized cost of energy for CSP installations. The development of mirror reflectors involves work on both full reflectors and mirror films with and without coatings. Mirror reflectors must meet rigid optical specifications in terms of radius of curvature, slope errors and specularity. Mirror films must demonstrate long-term durability and maintain high reflectivity. 3M would like to augment internal capabilities to validate product performance with methods and tools developed at NREL to address these areas.

  19. Fast Steering Mirror systems for the U-AVLIS program at LLNL

    SciTech Connect

    Watson, J.; Avicola, K.; Payne, A.; Peterson, R.L.; Ward, R.

    1994-07-01

    We have successfully deployed several fast steering mirror systems in the Uranium Atomic Vapor Isotope Separation (U-AVLIS) facility at LLNL. These systems employ 2 mm to 150 mm optics and piezoelectric actuators to achieve microradian pointing accuracy with disturbance rejection bandwidths to a few hundred hertz.

  20. Design and Operation of A Setup with A Camera and Adjustable Mirror to Inspect the Sense-Wire Planes of the Time Projection Chamber Inside the MicroBooNE Cryostat

    SciTech Connect

    Carls, Benjamin; Horton-Smith, Glenn; James, Catherine C.; Kubinski, Robert M.; Pordes, Stephen; Schukraft, Anne; Strauss, Thomas

    2015-08-26

    Detectors in particle physics, particularly when including cryogenic components, are often enclosed in vessels that do not provide any physical or visual access to the detectors themselves after installation. However, it can be desirable for experiments to visually investigate the inside of the vessel. The MicroBooNE cryostat hosts a TPC with sense-wire planes, which had to be inspected for damage such as breakage or sagging. This inspection was performed after the transportation of the vessel with the enclosed detector to its final location, but before filling with liquid argon. Our paper describes an approach to view the inside of the MicroBooNE cryostat with a setup of a camera and a mirror through one of its cryogenic service nozzles. The paper also describes the camera and mirror chosen for the operation, the illumination, and the mechanical structure of the setup. It explains how the system was operated and demonstrates its performance.

  1. Targets for the APEX experiment at ATLAS

    SciTech Connect

    Greene, J.P.; Thomas, G.E.; Leonard, R.H.

    1994-12-31

    Targets of lead, tantalum, thorium and uranium have been produced for experiments with the APEX (Argonne Positron Experiment) apparatus at ATLAS (Argonne Tandem Linac Accelerator System). APEX is a device built at Argonne National Laboratory to investigate the anomalous positrons observed in collisions of very heavy ion beams on heavy targets. Both fixed and rotating targets have been used. The rotating target system involves a 4-quadrant wheel rotating at speeds up to 700 rpm with the position encoded into the data stream. In addition to the hundreds of targets produced for the heavy-ion reactions studied, a wide variety of targets were employed for beam diagnostics, detector calibration and target wheel development. The experiment used very heavy ion beams ({sup 238}U, {sup 206}Pb and {sup 208}Pb) from ATLAS and targets of {sup 206}Pb, {sup 208}Pb, {sup 232}Th and {sup 238}U produced in the laboratory.

  2. Sputtered II-VI Alloys and Structures forTandem PV: Final Subcontract Report, 9 December 2003 - 30 July 2007

    SciTech Connect

    Compaan, A. D.; Collins, R.; Karpov, V. G.; Giolando, D.

    2008-09-01

    This report elaborates on Phase 3 and provides summaries of the first two Phases. Phase 3 research work was divided into five task areas covering different aspects of the II-VI tandem cell.

  3. Progress towards a 30% efficient GaInP/Si tandem solar cells

    DOE PAGES [OSTI]

    Essig, Stephanie; Ward, Scott; Steiner, Myles A.; Friedman, Daniel J.; Geisz, John F.; Stradins, Paul; Young, David L.

    2015-08-28

    The performance of dual-junction solar cells with a Si bottom cell has been investigated both theoretically and experimentally. Simulations show that adding a top junction with an energy bandgap of 1.6 -1.9 eV to a standard silicon solar cell enables efficiencies over 38%. Currently, top junctions of GaInP (1.8 eV) are the most promising as they can achieve 1-sun efficiencies of 20.8% [1]. We fabricated mechanically stacked, four terminal GaInP/Si tandem solar cells using a transparent adhesive between the subcells. These tandem devices achieved an efficiency of 27% under AM1.5 g spectral conditions. Furthermore, higher efficiencies can be achieved bymore » using an improved Si-bottom cell and by optimizing the dual-junction device for long-wavelength light and luminescent coupling between the two junctions.« less

  4. Progress towards a 30% efficient GaInP/Si tandem solar cells

    SciTech Connect

    Essig, Stephanie; Ward, Scott; Steiner, Myles A.; Friedman, Daniel J.; Geisz, John F.; Stradins, Paul; Young, David L.

    2015-08-28

    The performance of dual-junction solar cells with a Si bottom cell has been investigated both theoretically and experimentally. Simulations show that adding a top junction with an energy bandgap of 1.6 -1.9 eV to a standard silicon solar cell enables efficiencies over 38%. Currently, top junctions of GaInP (1.8 eV) are the most promising as they can achieve 1-sun efficiencies of 20.8% [1]. We fabricated mechanically stacked, four terminal GaInP/Si tandem solar cells using a transparent adhesive between the subcells. These tandem devices achieved an efficiency of 27% under AM1.5 g spectral conditions. Furthermore, higher efficiencies can be achieved by using an improved Si-bottom cell and by optimizing the dual-junction device for long-wavelength light and luminescent coupling between the two junctions.

  5. Polymer Solar Cells: New Materials, 3D Morphology, and Tandem Devices |

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    MIT-Harvard Center for Excitonics Polymer Solar Cells: New Materials, 3D Morphology, and Tandem Devices March 2, 2010 at 3pm/36-428 René Janssen Molecular Materials and Nanosystems, Eindhoven University of Technology ReneJanssen2-small_000 abstract: Polymer solar cells offer an opportunity for low-cost, large area renewable energy production. These devices use a phase separated blend of two organic semiconductors with energy levels that lead to intermolecular charge transfer after

  6. High-efficiency, monolithic, multi-bandgap, tandem photovoltaic energy converters

    DOEpatents

    Wanlass, Mark W.

    2011-11-29

    A monolithic, multi-bandgap, tandem solar photovoltaic converter has at least one, and preferably at least two, subcells grown lattice-matched on a substrate with a bandgap in medium to high energy portions of the solar spectrum and at least one subcell grown lattice-mismatched to the substrate with a bandgap in the low energy portion of the solar spectrum, for example, about 1 eV.

  7. High-efficiency, monolithic, multi-bandgap, tandem, photovoltaic energy converters

    DOEpatents

    Wanlass, Mark W

    2014-05-27

    A monolithic, multi-bandgap, tandem solar photovoltaic converter has at least one, and preferably at least two, subcells grown lattice-matched on a substrate with a bandgap in medium to high energy portions of the solar spectrum and at least one subcell grown lattice-mismatched to the substrate with a bandgap in the low energy portion of the solar spectrum, for example, about 1 eV.

  8. Two LANL laboratory astrophysics experiments

    SciTech Connect

    Intrator, Thomas P.

    2014-01-24

    Two laboratory experiments are described that have been built at Los Alamos (LANL) to gain access to a wide range of fundamental plasma physics issues germane to astro, space, and fusion plasmas. The overarching theme is magnetized plasma dynamics which includes significant currents, MHD forces and instabilities, magnetic field creation and annihilation, sheared flows and shocks. The Relaxation Scaling Experiment (RSX) creates current sheets and flux ropes that exhibit fully 3D dynamics, and can kink, bounce, merge and reconnect, shred, and reform in complicated ways. Recent movies from a large data set describe the 3D magnetic structure of a driven and dissipative single flux rope that spontaneously self-saturates a kink instability. Examples of a coherent shear flow dynamo driven by colliding flux ropes will also be shown. The Magnetized Shock Experiment (MSX) uses Field reversed configuration (FRC) experimental hardware that forms and ejects FRCs at 150km/sec. This is sufficient to drive a collision less magnetized shock when stagnated into a mirror stopping field region with Alfven Mach number MA=3 so that super critical shocks can be studied. We are building a plasmoid accelerator to drive Mach numbers MA >> 3 to access solar wind and more exotic astrophysical regimes. Unique features of this experiment include access to parallel, oblique and perpendicular shocks, shock region much larger than ion gyro radii and ion inertial length, room for turbulence, and large magnetic and fluid Reynolds numbers.

  9. GaInP/GaAs/GaInAs Monolithic Tandem Cells for High-Performance Solar Concentrators

    SciTech Connect

    Wanlass, M. W.; Ahrenkiel, S. P.; Albin, D. S.; Carapella, J. J.; Duda, A.; Emery, K.; Geisz, J. F.; Jones, K.; Kurtz, S.; Moriarty, T.; Romero, M. J.

    2005-08-01

    We present a new approach for ultra-high-performance tandem solar cells that involves inverted epitaxial growth and ultra-thin device processing. The additional degree of freedom afforded by the inverted design allows the monolithic integration of high-, and medium-bandgap, lattice-matched (LM) subcell materials with lower-bandgap, lattice-mismatched (LMM) materials in a tandem structure through the use of transparent compositionally graded layers. The current work concerns an inverted, series-connected, triple-bandgap, GaInP (LM, 1.87 eV)/GaAs (LM, 1.42 eV)/GaInAs (LMM, {approx}1 eV) device structure grown on a GaAs substrate. Ultra-thin tandem devices are fabricated by mounting the epiwafers to pre-metallized Si wafer handles and selectively removing the parent GaAs substrate. The resulting handle-mounted, ultra-thin tandem cells have a number of important advantages, including improved performance and potential reclamation/reuse of the parent substrate for epitaxial growth. Additionally, realistic performance modeling calculations suggest that terrestrial concentrator efficiencies in the range of 40-45% are possible with this new tandem cell approach. A laboratory-scale (0.24 cm2), prototype GaInP/GaAs/GaInAs tandem cell with a terrestrial concentrator efficiency of 37.9% at a low concentration ratio (10.1 suns) is described, which surpasses the previous world efficiency record of 37.3%.

  10. High-Efficiency GaInP/GaAs Tandem Solar Cells

    SciTech Connect

    Bertness, K. A.; Friedman, D. J.; Kurtz, S. R.; Kibbler, A. E.; Cramer, C.; Olson, J. M.

    1996-09-01

    GaInP/GaAs tandem solar cells have achieved efficiencies between 25.7-30.2%, depending on illumination conditions. The efficiencies are the highest confirmed two-terminal values measured for any solar cell within each standard illumination category. The monolithic, series-connected design of the tandem cells allows them to be substituted for silicon or gallium arsenide cells in photovoltaic panel systems with minimal design changes. The advantages of using GaInP/GaAs tandem solar cells in space and terrestrial applications are discussed primarily in terms of the reduction in balance-of-system costs that accrues when using a higher efficiency cell. The new efficiency values represent a significant improvement over previous efficiencies for this materials system, and we identify grid design, back interface passivation, and top interface passivation as the three key factors leading to this improvement. In producing the high-efficiency cells, we have addressed nondestructive diagnostics and materials growth reproducibility as well as peak cell performance.

  11. High-efficiency GaInP/GaAs tandem solar cells

    SciTech Connect

    Bertness, K.A.; Friedman, D.J.; Kurtz, S.R.; Kibbler, A.E.; Kramer, C.; Olson, J.M.

    1994-12-01

    GaInP/GaAs tandem solar cells have achieved new record efficiencies, specifically 25.7% under air-mass 0 (AM0) illumination, 29.5% under AM 1.5 global (AM1.5G) illumination, and 30.2% at 140-180x concentration under AM 1.5 direct (AM1.5D) illumination. These values are the highest two-terminal efficiencies achieved by any solar cell under these illumination conditions. The monolithic, series-connected design of the tandem cells allows them to be substituted for silicon or gallium arsenide cells in photovoltaic panel systems with minimal design changes. The advantages of using GaInP/GaAs tandem solar cells in space and terrestrial applications are discussed primarily in terms of the reduction in balance-of-system costs that accrues when using a higher efficiency cell. The new efficiency values represent a significant improvement over previous efficiencies for this materials system, and we identify grid design, back interface passivation, and top interface passivation as the three key factors leading to this improvement. In producing the high-efficiency cells, we have addressed nondestructive diagnostics and materials growth reproducibility as well as peak cell performance. 31 refs.

  12. Some new schemes for producing high-accuracy elliptical X-ray mirrors by elastic bending

    SciTech Connect

    Padmore, H.A.; Howells, M.R.; Irick, S.; Renner, T.; Sandler, R.; Koo, Y.-M.

    1996-08-01

    Although x-ray micro-foci can be produced by a variety of diffractive methods, grazing incidence mirrors are the only route to an achromatic focus. In this paper we describe our efforts to produce elliptically shaped mirrors with the very high figure accuracy necessary for producing a micro-focus. The motivation for this work is provided by the need to produce achromatic foci for a range of applications ranging from tunable micro-focus x-ray photoelectron spectroscopy ({mu}-XPS) at soft x-ray energies to micro-focus white beam x-ray diffraction ({mu}-XRD) at hard x-ray energies. We describe the methodology of beam bending, a practical example of a system we have produced for {mu}-XRD, and results demonstrating the production of a surface with micro-radian figure accuracy.

  13. Ion polished Cr/Sc attosecond multilayer mirrors for high water window reflectivity

    SciTech Connect

    Guggenmos, Alexander; Radünz, Stefan; Rauhut, Roman; Hofstetter, Michael; Venkatesan, Sriram; Wochnik, Angela; Gullikson, Eric M.; Fischer, Stefan; Nickel, Bert; Scheu, Christina; Kleineberg, Ulf

    2014-01-20

    Recent advances in the development of attosecond soft X-ray sources ranging into the water window spectral range, between the 1s states of carbon and oxygen (284 eV–543 eV), are also driving the development of suited broadband multilayer optics for steering and shaping attosecond pulses. The relatively low intensity of current High Harmonic Generation (HHG) soft X-ray sources calls for an efficient use of photons, thus the development of low-loss multilayer optics is of uttermost importance. Here, we report about the realization of broadband Cr/Sc attosecond multilayer mirrors with nearly atomically smooth interfaces by an optimized ion beam deposition and assisted interface polishing process. This yields to our knowledge highest multilayer mirror reflectivity at 300 eV near normal incidence. The results are verified by transmission electron microscopy (TEM) and soft/hard X-ray reflectometry.

  14. A mirror for lab-based quasi-monochromatic parallel x-rays

    SciTech Connect

    Nguyen, Thanhhai; Lu, Xun; Lee, Chang Jun; Jeon, Insu; Jung, Jin-Ho; Jin, Gye-Hwan; Kim, Sung Youb

    2014-09-15

    A multilayered parabolic mirror with six W/Al bilayers was designed and fabricated to generate monochromatic parallel x-rays using a lab-based x-ray source. Using this mirror, curved bright bands were obtained in x-ray images as reflected x-rays. The parallelism of the reflected x-rays was investigated using the shape of the bands. The intensity and monochromatic characteristics of the reflected x-rays were evaluated through measurements of the x-ray spectra in the band. High intensity, nearly monochromatic, and parallel x-rays, which can be used for high resolution x-ray microscopes and local radiation therapy systems, were obtained.

  15. Ion polished Cr/Sc attosecond multilayer mirrors for high water window reflectivity

    DOE PAGES [OSTI]

    Guggenmos, Alexander; Radünz, Stefan; Rauhut, Roman; Hofstetter, Michael; Venkatesan, Sriram; Wochnik, Angela; Gullikson, Eric M.; Fischer, Stefan; Nickel, Bert; Scheu, Christina; et al

    2014-01-20

    Recent advances in the development of attosecond soft X-ray sources ranging into the water window spectral range, between the 1s states of carbon and oxygen (284 eV–543 eV), are also driving the development of suited broadband multilayer optics for steering and shaping attosecond pulses. The relatively low intensity of current High Harmonic Generation (HHG) soft X-ray sources calls for an efficient use of photons, thus the development of low-loss multilayer optics is of uttermost importance. Here, we report about the realization of broadband Cr/Sc attosecond multilayer mirrors with nearly atomically smooth interfaces by an optimized ion beam deposition and assistedmore » interface polishing process. This yields to our knowledge highest multilayer mirror reflectivity at 300 eV near normal incidence. The results are verified by transmission electron microscopy (TEM) and soft/hard X-ray reflectometry.« less

  16. Performance of 3-Sun Mirror Modules on Sun Tracking Carousels on Flat Roof Buildings

    SciTech Connect

    Fraas, Dr. Lewis; Avery, James E.; Minkin, Leonid M; Maxey, L Curt; Gehl, Anthony C; Hurt, Rick A; Boehm, Robert F

    2008-01-01

    Commercial buildings represent a near term market for cost competitive solar electric power provided installation costs and solar photovoltaic module costs can be reduced. JX Crystals has developed a carousel sun tracker that is prefabricated and can easily be deployed on building flat roof tops without roof penetration. JX Crystals is also developing 3-sun PV mirror modules where less expensive mirrors are substituted for two-thirds of the expensive single crystal silicon solar cell surface area. Carousels each with four 3-sun modules have been set up at two sites, specifically at Oak Ridge National Lab and at the University of Nevada in Las Vegas. The test results for these systems are presented.

  17. Optical performance of the TBC-2 solar collector before and after the 1993 mirror lustering

    SciTech Connect

    Houser, R.; Strachan, J.

    1995-02-01

    In 1993, the mirror facets of one of Sandia`s point-focusing solar collectors, the Test Bed Concentrator {number_sign}2 (TBC-2), were reconditioned. The concentrator`s optical performance was evaluated before and after this operation. This report summarizes and compares the results of these tests. The tests demonstrated that the concentrator`s total power and peak flux were increased while the overall flux distribution in the focal plane remained qualitatively the same.

  18. Parabolic lithium mirror for a laser-driven hot plasma producing device

    DOEpatents

    Baird, James K.

    1979-06-19

    A hot plasma producing device is provided, wherein pellets, singly injected, of frozen fuel are each ignited with a plurality of pulsed laser beams. Ignition takes place within a void area in liquid lithium contained within a pressure vessel. The void in the liquid lithium is created by rotating the pressure vessel such that the free liquid surface of molten lithium therein forms a paraboloid of revolution. The paraboloid functions as a laser mirror with a reflectivity greater than 90%. A hot plasma is produced when each of the frozen deuterium-tritium pellets sequentially arrive at the paraboloid focus, at which time each pellet is illuminated by the plurality of pulsed lasers whose rays pass through circular annuli across the top of the paraboloid. The beams from the lasers are respectively directed by associated mirrors, or by means of a single conical mirror in another embodiment, and by the mirror-like paraboloid formed by the rotating liquid lithium onto the fuel pellet such that the optical flux reaching the pellet can be made to be uniform over 96% of the pellet surface area. The very hot plasma produced by the action of the lasers on the respective singly injected fuel pellets in turn produces a copious quantity of neutrons and X-rays such that the device has utility as a neutron source or as an x-ray source. In addition, the neutrons produced in the device may be utilized to produce tritium in a lithium blanket and is thus a mechanism for producing tritium.

  19. Ionization of polarized 3He+ ions in EBIS trap with slanted electrostatic mirror.

    SciTech Connect

    Pikin,A.; Zelenski, A.; Kponou, A.; Alessi, J.; Beebe, E.; Prelee, K.; Raparia, D.

    2007-09-10

    Methods of producing the nuclear polarized {sup 3}He{sup +} ions and their ionization to {sup 3}H{sup ++} in ion trap of the electron Beam Ion Source (EBIS) are discussed. Computer simulations show that injection and accumulation of {sup 3}He{sup +} ions in the EBIS trap with slanted electrostatic mirror can be very effective for injection times longer than the ion traversal time through the trap.

  20. Linearization of scan velocity of resonant vibrating-mirror beam deflectors

    DOEpatents

    Yeung, E.S.; Chen, S.L.

    1991-01-15

    A means and method for producing linearization of scan velocity of resonant vibrating-mirror beam deflectors in laser scanning system including presenting an elliptical convex surface to the scanning beam to reflect the scanning beam to the focal plane of the scanning line. The elliptical surface is shaped to produce linear velocity of the reflective scanning beam at the focal plane. Maximization of linearization is accomplished by considering sets of criteria for different scanning applications. 6 figures.

  1. Linearization of scan velocity of resonant vibrating-mirror beam deflectors

    DOEpatents

    Yeung, Edward S.; Chen, Shun-Le

    1991-01-15

    A means and method for producing linerization of scan velocity of resonant vibrating-mirror beam deflectors in laser scanning system including presenting an elliptical convex surface to the scanning beam to reflect the scanning beam to the focal plane of the scanning line. The elliptical surface is shaped to produce linear velocity of the reflective scanning beam at the focal plane. Maximization of linerization is accomplished by considering sets of criteria for different scanning applications.

  2. Advanced ultraviolet-resistant silver mirrors for use in solar reflectors

    DOEpatents

    Jorgensen, Gary J.; Gee, Randy

    2009-11-03

    A silver mirror construction that maintains a high percentage of hemispherical reflectance throughout the UV and visible spectrum when used in solar reflectors, comprising:a) a pressure sensitive adhesive layer positioned beneath a silver overlay;b) a polymer film disposed on the silver overlay;c) an adhesive layer positioned on the polymer film; andd) a UV screening acrylic film disposed on the adhesive layer.

  3. TOPHAT™ for the Alignment & Focus of Heliostat Mirror Facets: Theoretical Overlay Photographic Heliostate Alignment Technique

    Energy Innovation Portal

    The Theoretical Overlay Photographic Heliostat Alignment Technique (TOPHAT) is a unique method which helps to accurately and effectively concentrate solar energy onto a receiver. By utilizing a camera/target fixture placed in front of the heliostat TOPHAT aligns and focuses the mirrors on a heliostat. It uses the photographs taken by cameras on the fixture and comparing the location and size of the target patterns with their predicted theoretical images. Adjustments are made to the facets...

  4. Production of field-reversed mirror plasma with a coaxial plasma gun

    DOEpatents

    Hartman, Charles W.; Shearer, James W.

    1982-01-01

    The use of a coaxial plasma gun to produce a plasma ring which is directed into a magnetic field so as to form a field-reversed plasma confined in a magnetic mirror. Plasma thus produced may be used as a target for subsequent neutral beam injection or other similarly produced and projected plasma rings or for direct fusion energy release in a pulsed mode.

  5. Production of field-reversed mirror plasma with a coaxial plasma gun

    DOEpatents

    Hartman, C.W.; Shearer, J.W.

    The use of a coaxial plasma gun to produce a plasma ring which is directed into a magnetic field so as to form a field-reversed plasma confined in a magnetic mirror. Plasma thus produced may be used as a target for subsequent neutral beam injection or other similarly produced and projected plasma rings or for direct fusion energy release in a pulsed mode.

  6. Catalyzing Alpha-Channeling by Minority Ion Injection in Mirror Machines

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Inventors Andrey Zhmoginov and Nathaniel Fisch | Princeton Plasma Physics Lab Catalyzing Alpha-Channeling by Minority Ion Injection in Mirror Machines Inventors Andrey Zhmoginov and Nathaniel Fisch Maintaining fuel ions hotter than electrons would greatly facilitate controlled nuclear fusion. Alpha channeling is a technique that can potentially extract energy from fusion alpha particles before the energy is lost to the electrons, through collisions and transfer to the background fuel ions,

  7. Support mechanism for a mirrored surface or other arrangement and method

    DOEpatents

    Cutburth, R.W.

    1985-11-08

    An adjustment mechanism such as a three point spherical mount for adjustably supporting a planer mirror or other type of arrangement relative to a plane defined by a given pair of perpendicular axes is described in this disclosure. This mechanism provides for positioning within the plane defined by the given pair of intersecting perpendicular axes. Limited positioning is possible about either of these axes and provides for a ''non-floating'' center of adjustment.

  8. Morphology, microstructure, stress and damage properties of thin film coatings for the LCLS x-ray mirrors

    SciTech Connect

    Soufli, R; Baker, S L; Robinson, J C; Gullikson, E M; McCarville, T J; Pivovaroff, M J; Stefan, P; Hau-Riege, S P; Bionta, R

    2009-04-23

    The development and properties of reflective coatings for the x-ray offset mirror systems of the Linac Coherent Light Source (LCLS) free-electron laser (FEL) are discussed in this manuscript. The uniquely high instantaneous dose of the LCLS FEL beam translates to strict limits in terms of materials choice, thus leading to an x-ray mirror design consisting of a reflective coating deposited on a silicon substrate. Coherent wavefront preservation requirements for these mirrors result in stringent surface figure and finish specifications. DC-magnetron sputtered B{sub 4}C and SiC thin film coatings with optimized stress, roughness and figure properties for the LCLS x-ray mirrors are presented. The evolution of microstructure, morphology, and stress of these thin films versus deposition conditions is discussed. Experimental results on the performance of these coatings with respect to FEL damage are also presented.

  9. On the use of a toroidal mirror to focus neutrons at the ILL neutron spin echo spectrometer IN15

    SciTech Connect

    Hayes, C.; Alefeld, B.; Copley, J.R.D.

    1997-09-01

    The IN15 neutron spin echo spectrometer at the Institut Laue-Langevin (Grenoble) has been designed to accomodate a toroidal focusing mirror. This mirror will be used to increase the intensity at the sample position for measurements at long neutron wavelengths and to perform measurements in the low q-range (10{sup -3} {angstrom}{sup -1}). This paper summarizes the results of ray-tracing simulations for the toroidal mirror system. These calculations were performed in order to assess the effects of the neutron wavelength, gravitational fall, wavelength resolution and spherical aberrations on the quality of the focused beam. The gain in flux that can be expected from the focusing geometry is estimated. The recent installation and characterisation of the mirror is also briefly described.

  10. Optical properties and crystallinity of silver mirrors under a 35 krad cobalt-60 radiation

    SciTech Connect

    Chiu, Po-Kai Chiang, Donyau; Lee, Chao-Te; Lin, Yu-Wei; Hsiao, Chien-Nan

    2015-09-15

    This study addresses the effects of thin film optical design and environmental radiation on the optical properties of silver mirrors. Different experimental thin film optical designs are selected, and the film stack is built using Macleod's approach. Mirror elements are exposed to the same dose of radiation and their properties are characterized using a spectrophotometer equipped with an integration sphere and an x-ray diffractometer. Spectrophotometric analyses of mirrors exposed to about 35 krad of {sup 60}Co radiations overall show that the B270 glass substrates coated with titanium oxide (TiO{sub 2}), silicon dioxide (SiO{sub 2}), pure chrome, and pure silver effectively reduces radiation damage. The absorption spectrum of the TiO{sub 2} film in the visible region decreases after radiation and displays drifting. As thin metal films comparison, the silver thin film exhibits higher radiation resistance than the chrome thin film. The x-ray diffraction analysis on metal film layers reveals that crystallinity slightly increases when the silver thin film is irradiated.

  11. Application Of The Phase Shifting Diffraction Interferometer For Measuring Convex Mirrors And Negative Lenses

    DOEpatents

    Sommargren, Gary E.; Campbell, Eugene W.

    2005-06-21

    To measure a convex mirror, a reference beam and a measurement beam are both provided through a single optical fiber. A positive auxiliary lens is placed in the system to give a converging wavefront onto the convex mirror under test. A measurement is taken that includes the aberrations of the convex mirror as well as the errors due to two transmissions through the positive auxiliary lens. A second measurement provides the information to eliminate this error. A negative lens can also be measured in a similar way. Again, there are two measurement set-ups. A reference beam is provided from a first optical fiber and a measurement beam is provided from a second optical fiber. A positive auxiliary lens is placed in the system to provide a converging wavefront from the reference beam onto the negative lens under test. The measurement beam is combined with the reference wavefront and is analyzed by standard methods. This measurement includes the aberrations of the negative lens, as well as the errors due to a single transmission through the positive auxiliary lens. A second measurement provides the information to eliminate this error.

  12. Application of the phase shifting diffraction interferometer for measuring convex mirrors and negative lenses

    DOEpatents

    Sommargren, Gary E.; Campbell, Eugene W.

    2004-03-09

    To measure a convex mirror, a reference beam and a measurement beam are both provided through a single optical fiber. A positive auxiliary lens is placed in the system to give a converging wavefront onto the convex mirror under test. A measurement is taken that includes the aberrations of the convex mirror as well as the errors due to two transmissions through the positive auxiliary lens. A second, measurement provides the information to eliminate this error. A negative lens can also be measured in a similar way. Again, there are two measurement set-ups. A reference beam is provided from a first optical fiber and a measurement beam is provided from a second optical fiber. A positive auxiliary lens is placed in the system to provide a converging wavefront from the reference beam onto the negative lens under test. The measurement beam is combined with the reference wavefront and is analyzed by standard methods. This measurement includes the aberrations of the negative lens, as well as the errors due to a single transmission through the positive auxiliary lens. A second measurement provides the information to eliminate this error.

  13. Optical losses of solar mirrors due to atmospheric contamination at Liberal, Kansas and Oologah, Oklahoma

    SciTech Connect

    Dake, L.S.; Lind, M.A.

    1981-09-01

    An assessment is presented of the effect of outdoor exposure on mirrors located at two sites selected for potential solar cogeneration/repowering facilities: Liberal, Kansas and Oologah, Oklahoma. Mirror coupons were placed on tracking heliostat simulators located in the proposed heliostat fields and were removed periodically. The spectral hemispherical and diffuse reflectances of these coupons were measured. Representative samples were analyzed for the chemical composition of the dust particulates using SEM/EDX. Other samples were washed with a high pressure spray and recharacterized to determine the effects of the residual dust. Average specular reflectance losses over the entire test period (up to 504 days) were 6 to 12%, with a range of 1 to 30%. Specular reflectance losses varied widely from day to day depending on local weather conditions. The losses due to scattering were 2 to 5 times greater than the losses due to absorptance. The average degradation rate over the first thirty days was an order of magnitude larger than the average degradation rate over the entire sampling period. Specular reflectance loss rates averaged 0.5% per day and greater between periods of natural cleaning. The chemical composition of the dust on the mirrors was characteristic of the indigenous soil, with some samples also showing the presence of sulfur and chlorine, possibly from cooling tower drift.

  14. Application of conical 90-degree reflectors for solving the problem of mirror alignment in terahertz-range lasers

    SciTech Connect

    Radionov, V P; Kiselev, V K

    2014-10-29

    We report a study of the conical mirrors with an apex angle of 90° in the resonator of the gas-discharge HCN laser with the radiation wavelength of 337 μm (0.89 THz). Experimental results have shown that such mirrors do not require precise alignment. This makes it possible to improve the radiation stability, significantly simplify the construction of laser and reduce the complexity of its maintenance. (laser applications and other topics in quantum electronics)

  15. Multilayer X-ray mirrors for the (4.4-5)-nm carbon-window spectral region

    SciTech Connect

    Andreev, S. S.; Barysheva, M. M.; Vainer, Yu. A.; Gaikovich, P. K.; Pariev, D. E. Pestov, A. E.; Salashchenko, N. N.; Chkhalo, N. I.

    2013-05-15

    Cr/C-based multilayer X-ray mirrors intended for the reflection of X-ray radiation in the 'carbon-window' spectral region ({lambda} = 4.4-5 nm) are fabricated and studied. The structures are formed by magnetron sputtering at different deposition parameters. Under normal incidence, record reflection coefficients up to 15% are reached. The structural parameters of the mirrors are investigated by reflectometry at wavelengths of 0.154 and 4.47 nm.

  16. Experiments Approved at the May 20-21, 2005 ATLAS PAC Meeting

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Priority I Experiments Approved at the May 20-21, 2005 ATLAS PAC Meeting Proposal # PI Name Title Days 1036-2 S. Williams High Spin States in the T = 3/2 Mirror Nuclei 37Ca and 37Cl, and the T = 1/2 Mirror Nuclei 37K and 37Ar 4 1050-2 M.A.Bentley High Spin States in the N=Z-3 Nucleus 49Fe - Coulomb Effects at Large Proton Excess 6 1078-2 N. Scielzo Production of 14O for Future Measurements with the Advanced Penning Trap and Precision Measurement of the Q-Value of the Superallowed Branch 7 1085

  17. Three-junction solar cells comprised of a thin-film GaInP/GaAs tandem cell mechanically stacked on a Si cell

    SciTech Connect

    Yazawa, Y.; Tamura, K.; Watahiki, S.; Kitatani, T.; Ohtsuka, H.; Warabisako, T.

    1997-12-31

    Three-junction tandem solar cells were fabricated by mechanical stacking of a thin-film GaInP/GaAs monolithic tandem cell and a Si cell. The epitaxial lift-off (ELO) technique was used for the thinning of GaInP/GaAs tandem cells. Both spectral responses of the GaInP top cell and the GaAs middle cell in the thin-film GaInP/GaAs monolithic tandem cell were conserved. The Si cell performance has been improved by reducing the absorption loss in the GaAs substrate.

  18. Enhancement of efficiencies for tandem green phosphorescent organic light-emitting devices with a p-type charge generation layer

    SciTech Connect

    Yoo, Byung Soo; Jeon, Young Pyo; Lee, Dae Uk; Kim, Tae Whan

    2014-10-15

    The operating voltage of the tandem green phosphorescent organic light-emitting device with a 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile layer was improved by 3% over that of the organic light-emitting device with a molybdenum trioxide layer. The maximum brightness of the tandem green phosphorescent organic light-emitting device at 21.9 V was 26,540 cd/m{sup 2}. The dominant peak of the electroluminescence spectra for the devices was related to the fac-tris(2-phenylpyridine) iridium emission. - Highlights: Tandem OLEDs with CGL were fabricated to enhance their efficiency. The operating voltage of the tandem OLED with a HAT-CN layer was improved by 3%. The efficiency and brightness of the tandem OLED were 13.9 cd/A and 26,540 cd/m{sup 2}. Efficiency of the OLED with a HAT-CN layer was lower than that with a MoO{sub 3} layer. - Abstract: Tandem green phosphorescent organic light-emitting devices with a 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile or a molybdenum trioxide charge generation layer were fabricated to enhance their efficiency. Current densityvoltage curves showed that the operating voltage of the tandem green phosphorescent organic light-emitting device with a 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile layer was improved by 3% over that of the corresponding organic light-emitting device with a molybdenum trioxide layer. The efficiency and the brightness of the tandem green phosphorescent organic light-emitting device were 13.9 cd/A and 26,540 cd/m{sup 2}, respectively. The current efficiency of the tandem green phosphorescent organic light-emitting device with a 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile layer was lower by 1.1 times compared to that of the corresponding organic light-emitting device with molybdenum trioxide layer due to the decreased charge generation and transport in the 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile layer resulting from triplettriplet exciton annihilation.

  19. Ignition Experiments

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Precision experiments devoted to ignition began in May 2011 and have since produced unprecedented high-energy-density environments. The National Ignition Campaign Ignition ...

  20. Realistic warhead and blast shield testing of chemical energy tandem warhead systems for advanced antitank missiles

    SciTech Connect

    Fradkin, D.B.; Hull, L.M.; Laabs, G.W.

    1990-01-01

    The results of dynamic sled track performance testing of advanced tandem configuration shaped-charge warheads against multiple-reactive-element tank armors are presented. Tandem configurations utilizing both currently fielded and experimental shaped-charge warheads were tested. Sled velocities used were between 400 and 1100 ft/s (Mach number 0.35 to 0.95), typical of the terminal approach velocity of TOW-type antitank missiles. High-speed motion pictures (5000 frames/s) of the sled in operation and a typical mock missile'' warhead package approaching the target are shown. Details of the sled design and fabrication and of the warhead package design and fabrication are presented. Sled track instrumentation is discussed. This instrumentation includes foil make/break switches and associated time interval meters (TIM) and digital delay units (DDU), magnetic Hall-effect transistors for measuring sled trajectory, and flash x-rays (FXR). Methods for timing the x-rays are presented. Schematic functional diagrams of the experimental setups are also given. Evidence of the ability to accurately time the delay between precursor and main warheads for even very long time delays are presented. FXR pictures illustrate the dynamics of the interaction of the jets with various target elements. The interaction dynamics of the jets is discussed in relation to the overall penetration performance of the tandem warhead. The use of x-ray fluorescence spectroscopy to help diagnose interaction dynamics is illustrated. The results of a test utilizing the missile propulsion rocket motor as a blast shield is presented in this paper. 2 refs., 22 figs.

  1. Comparison of the effect of outdoor exposure on the optical properties of solar mirrors and transparent encapsulant materials

    SciTech Connect

    Dake, L.S.; Lind, M.A.; Maag, C.R.

    1981-09-01

    The effects of outdoor exposure on solar mirrors and transparent encapsulant materials are assessed and compared. The encapsulant materials tested included glasses, polymers and silicones. Samples of the materials were placed on stationary exposure racks in six locations that represented urban, desert, oceanside and high altitude mountain areas. Samples were removed periodically for optical characterizations. The spectral hemispherical and diffuse reflectance of the mirror samples and the spectral hemispherical transmittance and diffuse reflectance of the encapsulant materials was measured. The relative normal hemispherical transmittance of the encapsulant materials was measured. Correlations between the glass and mirror data showed that the average diffuse reflectance losses were six times larger for the mirrors than for the glass samples. The average specular reflectance losses for the mirror samples were seven times as large as the average hemispherical transmittance losses for the glass samples. These correlations may enable one to predict the performance of mirrors made using the other encapsulant materials for superstrates. It was found that the urban and oceanside sites were the dirtiest, while the desert and mountain sites were the cleanest. Average specular reflectance losses varied from 4% at the cleanest site to 50% at the dirtiest site. The range in hemispherical transmittance losses for the encapsulant materials varied between 0% and 6%. At one site, the average daily specular reflectance losses were .04% for the mirror samples and average daily hemispherical transmittance losses were about .01% for the glass samples. The polymer materials degraded somewhat more rapidly than the glasses, and the silicones irreversible degraded too rapidly and severely to be useful for either photovoltaic or solar thermal applications.

  2. Acidbase bifunctional shell cross-linked micelle nanoreactor for one-pot tandem reaction

    DOE PAGES [OSTI]

    Lee, Li -Chen; Lu, Jie; Weck, Marcus; Jones, Christopher W.

    2015-12-29

    Shell cross-linked micelles (SCMs) containing acid sites in the shell and base sites in the core are prepared from amphiphilic poly(2-oxazoline) triblock copolymers. The materials are utilized as two-chamber nanoreactors for a prototypical acid-base bifunctional tandem deacetalization-nitroaldol reaction. Furthermore, the acid and base sites are localized in different regions of the micelle, allowing the two steps in the reaction sequence to largely proceed in separate compartments, akin to the compartmentalization that occurs in biological systems.

  3. Acid–base bifunctional shell cross-linked micelle nanoreactor for one-pot tandem reaction

    SciTech Connect

    Lee, Li -Chen; Lu, Jie; Weck, Marcus; Jones, Christopher W.

    2015-12-29

    Shell cross-linked micelles (SCMs) containing acid sites in the shell and base sites in the core are prepared from amphiphilic poly(2-oxazoline) triblock copolymers. The materials are utilized as two-chamber nanoreactors for a prototypical acid-base bifunctional tandem deacetalization-nitroaldol reaction. Furthermore, the acid and base sites are localized in different regions of the micelle, allowing the two steps in the reaction sequence to largely proceed in separate compartments, akin to the compartmentalization that occurs in biological systems.

  4. Microelectromechanical mirrors and electrically-programmable diffraction gratings based on two-stage actuation

    DOEpatents

    Allen, James J.; Sinclair, Michael B.; Dohner, Jeffrey L.

    2005-11-22

    A microelectromechanical (MEM) device for redirecting incident light is disclosed. The MEM device utilizes a pair of electrostatic actuators formed one above the other from different stacked and interconnected layers of polysilicon to move or tilt an overlying light-reflective plate (i.e. a mirror) to provide a reflected component of the incident light which can be shifted in phase or propagation angle. The MEM device, which utilizes leveraged bending to provide a relatively-large vertical displacement up to several microns for the light-reflective plate, has applications for forming an electrically-programmable diffraction grating (i.e. a polychromator) or a micromirror array.

  5. Magnetic mirror cavities as terahertz radiation sources and a means of quantifying radiation friction

    SciTech Connect

    Holkundkar, Amol R. E-mail: amol.holkundkar@gmail.com; Harvey, Chris

    2014-10-15

    We propose a radiation source based on a magnetic mirror cavity. Relativistic electrons are simulated entering the cavity and their trajectories and resulting emission spectra are calculated. The uniformity of the particle orbits is found to result in a frequency comb in terahertz range, the precise energies of which are tunable by varying the electron's γ-factor. For very high energy particles, radiation friction causes the spectral harmonics to broaden and we suggest this as a possible way to verify competing classical equations of motion.

  6. Durable silver mirror with ultra-violet thru far infra-red reflection

    DOEpatents

    Wolfe, Jesse D.

    2010-11-23

    A durable highly reflective silver mirror characterized by high reflectance in a broad spectral range of about 300 nm in the UV to the far infrared (.about.10000 nm), as well as exceptional environmental durability. A high absorptivity metal underlayer is used which prevents the formation of a galvanic cell with a silver layer while increasing the reflectance of the silver layer. Environmentally durable overcoat layers are provided to enhance mechanical and chemical durability and protect the silver layer from corrosion and tarnishing, for use in a wide variety of surroundings or climates, including harsh or extreme environments.

  7. Enhanced visible and near-infrared capabilities of the JET mirror-linked divertor spectroscopy system

    SciTech Connect

    Lomanowski, B. A. Sharples, R. M.; Meigs, A. G.; Conway, N. J.; Zastrow, K.-D.; Heesterman, P.; Kinna, D. [EURATOM Collaboration: JET-EFDA Team

    2014-11-15

    The mirror-linked divertor spectroscopy diagnostic on JET has been upgraded with a new visible and near-infrared grating and filtered spectroscopy system. New capabilities include extended near-infrared coverage up to 1875 nm, capturing the hydrogen Paschen series, as well as a 2 kHz frame rate filtered imaging camera system for fast measurements of impurity (Be II) and deuterium D?, D?, D? line emission in the outer divertor. The expanded system provides unique capabilities for studying spatially resolved divertor plasma dynamics at near-ELM resolved timescales as well as a test bed for feasibility assessment of near-infrared spectroscopy.

  8. The use of a high-order MEMS deformable mirror in the Gemini Planet Imager

    SciTech Connect

    Poyneer, L A; Bauman, B; Cornelissen, S; Jones, S; Macintosh, B; Palmer, D; Isaacs, J

    2010-12-17

    We briefly review the development history of the Gemini Planet Imager's 4K Boston Micromachines MEMS deformable mirror. We discuss essential calibration steps and algorithms to control the MEMS with nanometer precision, including voltage-phase calibration and influence function characterization. We discuss the integration of the MEMS into GPI's Adaptive Optics system at Lawrence Livermore and present experimental results of 1.5 kHz closed-loop control. We detail mitigation strategies in the coronagraph to reduce the impact of abnormal actuators on final image contrast.

  9. Cleanable and Hardcoat Coatings for Increased Durability of Silvered Polymeric Mirrors

    SciTech Connect

    Padiyath, Raghunath

    2013-04-01

    We have successfully developed coating formulations which significantly increasethe abrasion resistance of mirror films. We have demonstrated manufacturing scale-up of these films to full width andproduction volumes. Implementation of these films in commercial test sites is planned for Q2 2013(Abengoa, Gossamer Space Frames). This slide show outlines the background and objectives of the project, technical approach and results, and key lessons. It also presents the need and opportunity for reduction of costs for CSP and collectors. It also presents an approach for a large aperture parabolic trough collector with reflective film and a high concentration factor, including demonstration and results.

  10. Method of aligning and locating the mirrors of a collector field with respect to a receptor tower

    SciTech Connect

    Smith, O.J.

    1980-08-26

    A method of surveying a solar field which has a large number of heliostats using a laser beam which originates directly below the heat receptor on the tower and can be controlled to aim towards any one of the mirrors in the field is described. The reflected light from this mirror is analyzed, with an array of photocells which are mounted on the doors which close across the window of the heat receptor, to control both the azimuth and elevation of both the mirror and the laser gun in order to cause the beam to be aimed at the center of the mirror and the laser image centered on the receptor. This permits surveying the field for the purpose of using computer control of the mirror during normal daytime operation. Moreover, not only is the array of photocells on the window used for surveying the field during night time operation, but they are also used to determine the coordinate transformation between the geometry of the field and the geometry of the earth by tracking the sun during daytime operation. Lastly the system with a microprocessor on each heliostat is used for tracking the sun in an open control mode for all normal hours of operation of the power plant.

  11. Application of modern-control-design methodologies to a multi-segmented deformable-mirror system. Master's thesis

    SciTech Connect

    Vaughan, E.M.

    1991-05-23

    The multi-segmented deformable mirror system is proposed as an element for a portion of a ballistic missile defense system. The size of the mirror required for this defense function requires that the mirror be developed in segments, and then these segments should be phased together to produce one continuous, large optic. The application of multivariable control system synthesis techniques to provide closed-loop wavefront control of the deformable mirror system is the problem discussed in this thesis. The method of H at infinity control system synthesis using loop-shaping techniques was used to develop a controller that meets a robust performance specification. The number and location of sensors was treated as a design variable, and the structured singular value (mu) was used to determine the performance robustness of the deformable mirror system. Decentralized control issues are also addressed through the use of necessary conditions in an effort to determine a suitable decentralized control structure with performance similar to that of the centralized controller.

  12. Mixture Experiments

    SciTech Connect

    Piepel, Gregory F.

    2007-12-01

    A mixture experiment involves combining two or more components in various proportions or amounts and then measuring one or more responses for the resulting end products. Other factors that affect the response(s), such as process variables and/or the total amount of the mixture, may also be studied in the experiment. A mixture experiment design specifies the combinations of mixture components and other experimental factors (if any) to be studied and the response variable(s) to be measured. Mixture experiment data analyses are then used to achieve the desired goals, which may include (i) understanding the effects of components and other factors on the response(s), (ii) identifying components and other factors with significant and nonsignificant effects on the response(s), (iii) developing models for predicting the response(s) as functions of the mixture components and any other factors, and (iv) developing end-products with desired values and uncertainties of the response(s). Given a mixture experiment problem, a practitioner must consider the possible approaches for designing the experiment and analyzing the data, and then select the approach best suited to the problem. Eight possible approaches include 1) component proportions, 2) mathematically independent variables, 3) slack variable, 4) mixture amount, 5) component amounts, 6) mixture process variable, 7) mixture of mixtures, and 8) multi-factor mixture. The article provides an overview of the mixture experiment designs, models, and data analyses for these approaches.

  13. Gamma-resonance Contraband Detection using a high current tandem accelerator

    SciTech Connect

    Milton, B. F.; Beis, J.; Dale, D.; Rogers, J.; Ruegg, R.; Debiak, T.; Kamykowski, E.; Melnychuk, S.; Rathke, J.; Sredniawski, J.

    1999-04-26

    TRIUMF and Northrop Grumman have developed a new system for the detection of concealed explosives and drugs. This Contraband Detection System (CDS) is based on the resonant absorption by {sup 14}N of gammas produced using {sup 13}C(p,{gamma}){sup 14}N. The chosen reaction uses protons at 1.75 MeV and the gammas have an energy of 9.17 MeV. By measuring both the resonant and the non-resonant absorption using detectors with good spatial resolution, and applying standard tomographic techniques, we are able to produce 3D images of both the nitrogen partial density and the total density. The images together may be utilized with considerable confidence to determine if small amounts of nitrogen based explosives, heroin or cocaine are present in the interrogated containers. Practical Gamma Resonant Absorption (GRA) scanning requires an intense source of protons. However this proton source must also be very stable, have low energy spread, and have good spatial definition. These demands suggested a tandem as the accelerator of choice. We have therefore constructed a 2 MeV H{sup -} tandem optimized for high current (10 mA) operation, while minimizing the overall size of the accelerator. This has required several special innovations which will be presented in the paper. We will also present initial commissioning results.

  14. Tandem catalysis by palladium nanoclusters encapsulated in metal–organic frameworks

    DOE PAGES [OSTI]

    Li, Xinle; Guo, Zhiyong; Xiao, Chaoxian; Goh, Tian Wei; Tesfagaber, Daniel; Huang, Wenyu

    2014-08-25

    A bifunctional Zr-MOF catalyst containing palladium nanoclusters (NCs) has been developed. The formation of Pd NCs was confirmed by transmission electron microscopy (TEM) and extended X-ray absorption fine structure (EXAFS). Combining the oxidation activity of Pd NCs and the acetalization activity of the Lewis acid sites in UiO-66-NH2, this catalyst (Pd@UiO-66-NH2) exhibits excellent catalytic activity and selectivity in a one-pot tandem oxidation-acetalization reaction. This catalyst shows 99.9% selectivity to benzaldehyde ethylene acetal in the tandem reaction of benzyl alcohol and ethylene glycol at 99.9% conversion of benzyl alcohol. We also examined various substituted benzyl alcohols and found that alcohols withmore » electron-donating groups showed better conversion and selectivity compared to those with electron-withdrawing groups. As a result, we further proved that there was no leaching of active catalytic species during the reaction and the catalyst can be recycled at least five times without significant deactivation.« less

  15. Development of a remote control console for the HHIRF 25-MV tandem accelerator

    SciTech Connect

    Hasanul Basher, A.M.

    1991-09-01

    The CAMAC-based control system for the 25-MV Tandem Accelerator at HHIRF uses two Perkin-Elmer, 32-bit minicomputers: a message-switching computer and a supervisory computer. Two operator consoles are located on one of the six serial highways. Operator control is provided by means of a console CRT, trackball, assignable shaft encoders and meters. The message-switching computer transmits and receives control information on the serial highways. At present, the CRT pages with updated parameters can be displayed and parameters can be controlled only from the two existing consoles, one in the Tandem control room and the other in the ORIC control room. It has become necessary to expand the control capability to several other locations in the building. With the expansion of control and monitoring capability of accelerator parameters to other locations, the operators will be able to control and observe the result of the control action at the same time. Since the new control console will be PC-based, the existing page format will be changed. The PC will be communicating with the Perkin-Elmer through RS-232 and a communication software package. Hardware configuration has been established, a communication software program that reads the pages from the shared memory has been developed. In this paper, we present the implementation strategy, works completed, existing and new page format, future action plans, explanation of pages and use of related global variables, a sample session, and flowcharts.

  16. A remote control console for the HHIRF 25-MV Tandem Accelerator

    SciTech Connect

    Hasanul Basher, A.M.

    1993-09-01

    The CAMAC-based control system for the 25-MV Tandem Accelerator at HHIRF uses two Perkin-Elmer, 32-bit minicomputers: a message-switching computer and a supervisory computer. Two operator consoles are located on one of the six serial highways. Operator control is provided by means of a console CRT, trackball, assignable shaft encoders, and meters. The message-switching computer transmits and receives control information on the serial highways. At present, the CRT pages with updated parameters can be displayed and parameters can be controlled only from the two existing consoles, one in the Tandem control room and the other in the ORIC control room. It has become necessary to expand the control capability to several other locations in the building. With the expansion of control and monitoring capability of accelerator parameters to other locations, the operators will be able to control and observe the result of the control action at the same time. This capability will be useful in the new Radioactive Ion Beam project of the division. Since the new control console will be PC-based, the existing page format will be changed. The PC will be communicating with the Perkin-Elmer through RS-232 with the aid of a communication protocol. Hardware configuration has been established, a software program that reads the pages from the shared memory, and a communication protocol have been developed. The following sections present the implementation strategy, work completed, future action plans, and the functional details of the communication protocol.

  17. Simulations of emission from microcavity tandem organic light-emitting diodes

    SciTech Connect

    Biswas, Rana; Xu, Chun; Zhao, Weijun; Liu, Rui; Shinar, Ruth; Shinar, Joseph

    2011-01-01

    Microcavity tandem organic light-emitting diodes (OLEDs) are simulated and compared to experimental results. The simulations are based on two complementary techniques: rigorous finite element solutions of Maxwell's equations and Fourier space scattering matrix solutions. A narrowing and blue shift of the emission spectrum relative to the noncavity single unit OLED is obtained both theoretically and experimentally. In the simulations, a distribution of emitting sources is placed near the interface of the electron transport layer tris(8-hydroxyquinoline) Al (Alq{sub 3}) and the hole transport layer (N,N'-bis(naphthalen-1-yl)-N,N'-bis(phenyl)benzidine) ({alpha}-NPB). Far-field electric field intensities are simulated. The simulated widths of the emission peaks also agree with the experimental results. The simulations of the 2-unit tandem OLEDs shifted the emission to shorter wavelength, in agreement with experimental measurements. The emission spectra's dependence on individual layer thicknesses also agreed well with measurements. Approaches to simulate and improve the light emission intensity from these OLEDs, in particular for white OLEDs, are discussed.

  18. Tandem catalysis by palladium nanoclusters encapsulated in metal–organic frameworks

    SciTech Connect

    Li, Xinle; Guo, Zhiyong; Xiao, Chaoxian; Goh, Tian Wei; Tesfagaber, Daniel; Huang, Wenyu

    2014-08-25

    A bifunctional Zr-MOF catalyst containing palladium nanoclusters (NCs) has been developed. The formation of Pd NCs was confirmed by transmission electron microscopy (TEM) and extended X-ray absorption fine structure (EXAFS). Combining the oxidation activity of Pd NCs and the acetalization activity of the Lewis acid sites in UiO-66-NH2, this catalyst (Pd@UiO-66-NH2) exhibits excellent catalytic activity and selectivity in a one-pot tandem oxidation-acetalization reaction. This catalyst shows 99.9% selectivity to benzaldehyde ethylene acetal in the tandem reaction of benzyl alcohol and ethylene glycol at 99.9% conversion of benzyl alcohol. We also examined various substituted benzyl alcohols and found that alcohols with electron-donating groups showed better conversion and selectivity compared to those with electron-withdrawing groups. As a result, we further proved that there was no leaching of active catalytic species during the reaction and the catalyst can be recycled at least five times without significant deactivation.

  19. Tandem Microwire Solar Cells for Flexible High Efficiency Low Cost Photovoltaics

    SciTech Connect

    Atwater, Harry A.

    2015-03-10

    This project has developed components of a waferless, flexible, low-cost tandem multijunction III-V/Si microwire array solar cell technology which combines the efficiency of wafered III-V photovoltaic technologies with the process designed to meet the Sunshot object. The project focused on design of lattice-matched GaAsP/SiGe two junction cell design and lattice-mismatched GaInP/Si tandem cell design. Combined electromagnetic simulation/device physics models using realistic microwire tandem structures were developed that predict >22% conversion efficiency for known material parameters, such as tunnel junction structure, window layer structure, absorber lifetimes and optical absorption and these model indicate a clear path to 30% efficiency for high quality III-V heterostructures. SiGe microwire arrays were synthesized via Cu-catalyzed vapor-liquid-solid (VLS) growth with inexpensive chlorosilane and chlorogermance precursors in an atmospheric pressure reactor. SiGe alloy composition in microwires was found to be limited to a maximum of 12% Ge incorporation during chlorogermane growth, due to the melting of the alloy near the solidus composition. Lattice mismatched InGaP double heterostructures were grown by selective epitaxy with a thermal oxide mask on Si microwire substrates using metallorganic vapor phase epitaxy. Transmission electron microscopy (TEM) analysis confirms the growth of individual step graded layers and a high density of defects near the wire/III-V interface. Selective epitaxy was initiated with a low temperature nucleation scheme under “atomic layer epitaxy” or “flow mediated epitaxy” conditions whereby the Ga and P containing precursors are alternately introduced into the reactor to promote layer-bylayer growth. In parallel to our efforts on conformal GaInP heteroepitaxy on selectively masked Si microwires, we explored direct, axial growth of GaAs on Si wire arrays as another route to a tandem junction architecture. We proposed axial

  20. Through a mirror, darkly-using climate change information for land management

    SciTech Connect

    Slater, T.F.

    1995-09-01

    The writer Bruce Hutchison uses the phrase: {open_quotes}The land, always the land!{close_quotes} The land is a common denominator linking the ages. But the {open_quotes}land{close_quotes} in the broadest sense is a vast collection of natural components, events, and interconnections. It is complex, only partially understood, and ever-changing. Our ultimate challenge at this time is to SEE, as we look into the mirror of time. Regardless of the shadows of uncertainty, we must peer hopefully into the mirror to make meaningful connections between the past, the present, and the future. This is not easy. Traditional resource planning has been based on the short-term focus of today and tomorrow. That focus is beginning to change through a concept now popularized as {open_quotes}ecosystem management.{close_quotes} BLM recently has begun applying this concept in the formulation of the Eastern Utah Ecosystem Planning Initiative that is intended to give expanded dimensions to the planning and management of public land resources. These dimensions will give more attention to spatial (regional) and temporal (long-term) expectations. This paper investigates the theoretical and practical problems in linking the past to the future, using as the example the new planning initiative for Eastern Utah. It provides insights which may be applied to land-use planning and management, through new perspectives regarding changing climate and ecosystem patterns.

  1. Nonlinear electron magnetohydrodynamics physics. I. Whistler spheromaks, mirrors, and field reversed configurations

    SciTech Connect

    Stenzel, R. L.; Urrutia, J. M.; Strohmaier, K. D.

    2008-04-15

    The nonlinear interactions of time-varying magnetic fields with plasmas is investigated in the regime of electron magnetohydrodynamics. Simple magnetic field geometries are excited in a large laboratory plasma with a loop antenna driven with large oscillatory currents. When the axial loop field opposes the ambient field, the net field can be reversed to create a field-reversed configuration (FRC). In the opposite polarity, a strong field enhancement is produced. The time-varying antenna field excites whistler modes with wave magnetic fields exceeding the ambient magnetic field. The resulting magnetic field topologies have been measured. As the magnetic topology is changed from FRC to strong enhancement, two propagating field configurations resembling spheromaks are excited, one with positive and the other with negative helicity. Such 'whistler spheromaks' propagate with their null points along the weaker ambient magnetic field, with the current density localized around its O-line. In contrast, 'whistler mirrors' which have topologies similar to linear whistlers, except with B{sub wave}>B{sub 0}, have no null regions and, therefore, broad current layers. This paper describes the basic field topologies of whistler spheromaks and mirrors, while companion papers discuss the associated nonlinear phenomena as well as the interaction between them.

  2. Design of a multilayer mirror monochromatic x-ray imager for the Z accelerator

    SciTech Connect

    Jones, B.; Deeney, C.; Pirela, A.; Meyer, C.; Petmecky, D.; Gard, P.; Clark, R.; Davis, J.

    2004-10-01

    A time-resolved pinhole camera is being developed for monochromatic soft x-ray imaging of z-pinch plasmas on the Z accelerator [R. B. Spielman et al., Phys. Plasmas 5, 2105 (1998)] at Sandia National Laboratories. Pinhole images will reflect from a planar multilayer mirror onto a microchannel plate detector. A W/Si or Cr/C multilayer reflects a narrow energy range (full width at half maximum <10 eV) centered at 277 eV with peak reflectivity up to 20%. This choice of energy will allow final implosion imaging of any wire-array z-pinch fielded on Z, as well as bench testing using a carbon K{alpha} source. Aluminized parylene filters will eliminate optical and second harmonic reflection, and the 34 deg. multilayer grazing angle will allow detector shielding from high energy x rays produced by the Z accelerator. The system will also include a standard in-line pinhole camera, which can be filtered to obtain simultaneous higher-photon-energy images. Future instruments could use multiple mirrors to image at several energies, or operate at a low grazing angle to image 1-10 keV K-shell emission.

  3. A double crystal monochromator using tangentially bend crystals in combination with toroidal mirror focusing

    SciTech Connect

    Feng, Jun, Thompson,A.C.; Padmore,H.A.

    2000-02-24

    In collaboration with the Chemistry Department at the University of California at Berkeley, the ALS is building a beamline for structural determination in materials chemistry. The system will be used for single crystal x-ray diffraction on crystals that are too small or disordered for examination on laboratory systems, and typically will be used for crystals in the 5 - 20 micron regime. As some of the materials being designed are of the size of small proteins, phasing using direct methods is problematic, and so use of multiple wavelength anomalous dispersion techniques will be employed in many cases. The production of new compounds has been revolutionized in recent years with the development of combinatorial synthesis techniques, and a major b2048 to further advances in this field is access to rapid measurement of structural parameters. The specification of the beamline follows from these points. It must have a small focal spot to match closely the size of the crystals, high resolution for MAD techniques, and a high flux in the small focus. The strategy for satisfying these constraints is to us a system which is compact and which uses the minimum number of components. This is done in this case by using a pseudo channel cut crystal monochromator with tangentially bent crystals, in combination with a 1:1 focusing toroidal mirror. The toroidal mirror at 1:1 magnification has only very small aberrations, and from a 220 (h) by 25 (v) [micro] m FWHM source, an image of 220 by 45 [micro]m FWHM should be produced for a 3 mrad horizontal aperture for a full vertical aperture. This has already been achieved on an existing beamline. The crystal monochromator uses tangentially bent crystals in a concave - convex configuration to achieve matching of Bragg angles to the divergent source, while maintaining zero focusing power. A useful feature of this arrangement is that while there is an optimum crystal curvature for each energy that gives the expected Darwin width limited

  4. Resonant loop mirror with narrow-band reflections and its application in single-frequency fiber lasers

    SciTech Connect

    Paschotta, R.; Brinck, D.J.; Farwell, S.G.; Hanna, D.C.

    1997-01-01

    We present a new form of loop mirror (to be realized with all-fiber or integrated optics technology) that can produce narrow-band reflections and could find an application in single-frequency fiber lasers, allowing for a standing-wave design with a long doped section and eliminating the need for a Faraday isolator or a fiber grating. We discuss the main features of such a loop mirror and present experimental results that agree well with the theory. {copyright} 1997 Optical Society of America

  5. Effect of exposing two commercial manufacturers' second surface silver/glass mirrors to elevated temperature, mechanical loading, and high-humidity environments

    SciTech Connect

    Dake, L.S.; Lind, M.A.

    1982-04-01

    A preliminary examination of the effect of three accelerated exposure parameters on second surface silver/glass mirrors was performed. The variables studied were temperature (elevated and sub-zero), humidity and mechanical loading. One test consisted of exposing mirror coupons to dry heat (80/sup 0/C) and heat plus water vapor (80/sup 0/C, approx. 100% RH) environments. Another test consisted of subjecting mechanically loaded mirror strips to sub-zero temperature (-20/sup 0/C), dry heat (80/sup 0/C), and heat plus water vapor. Samples were evaluated qualitatively using dark field microscopy (1X and 100X). Quantitative determination of the effects of exposure testing on the mirrors was done with spectrophotometer spectral hemispherical and diffuse reflectance measurements. Degradation that was progressive with time was observed for mirrors exposed to dry heat and heat plus water vapor. The degradation did not have the same visual appearance for the two environments. Mechanical loading at -20/sup 0/C produced no degradation after three months' exposure time. Mechanical loading in dry heat and heat plus water vapor environments resulted in mirror degradation that was the same as that found in unloaded mirrors exposed to the same temperature and humidity. These preliminary tests indicate that the dry heat and heat plus water vapor accelerated tests may provide useful information about mirror degradation, while the mechanical load tests do not. The microscopy and spectrophotometer reflectance measurements were both useful techniques for determining the extent of degradation.

  6. Current Schedule of Experiments

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    current schedule of experiments Current Schedule of Experiments Current Schedule of Experiments - Updated 4/2016

  7. In Silico Identification Software (ISIS): A Machine Learning Approach to Tandem Mass Spectral Identification of Lipids

    SciTech Connect

    Kangas, Lars J.; Metz, Thomas O.; Isaac, Georgis; Schrom, Brian T.; Ginovska-Pangovska, Bojana; Wang, Luning; Tan, Li; Lewis, Robert R.; Miller, John H.

    2012-05-15

    Liquid chromatography-mass spectrometry-based metabolomics has gained importance in the life sciences, yet it is not supported by software tools for high throughput identification of metabolites based on their fragmentation spectra. An algorithm (ISIS: in silico identification software) and its implementation are presented and show great promise in generating in silico spectra of lipids for the purpose of structural identification. Instead of using chemical reaction rate equations or rules-based fragmentation libraries, the algorithm uses machine learning to find accurate bond cleavage rates in a mass spectrometer employing collision-induced dissocia-tion tandem mass spectrometry. A preliminary test of the algorithm with 45 lipids from a subset of lipid classes shows both high sensitivity and specificity.

  8. Characterization of protein N-glycosylation by tandem mass spectrometry using complementary fragmentation techniques

    SciTech Connect

    Ford, Kristina L.; Zeng, Wei; Heazlewood, Joshua L.; Bacic, Antony

    2015-08-28

    The analysis of post-translational modifications (PTMs) by proteomics is regarded as a technically challenging undertaking. While in recent years approaches to examine and quantify protein phosphorylation have greatly improved, the analysis of many protein modifications, such as glycosylation, are still regarded as problematic. Limitations in the standard proteomics workflow, such as use of suboptimal peptide fragmentation methods, can significantly prevent the identification of glycopeptides. The current generation of tandem mass spectrometers has made available a variety of fragmentation options, many of which are becoming standard features on these instruments. Lastly, we have used three common fragmentation techniques, namely CID, HCD, and ETD, to analyze a glycopeptide and highlight how an integrated fragmentation approach can be used to identify the modified residue and characterize the N-glycan on a peptide.

  9. Characterization of protein N-glycosylation by tandem mass spectrometry using complementary fragmentation techniques

    DOE PAGES [OSTI]

    Ford, Kristina L.; Zeng, Wei; Heazlewood, Joshua L.; Bacic, Antony

    2015-08-28

    The analysis of post-translational modifications (PTMs) by proteomics is regarded as a technically challenging undertaking. While in recent years approaches to examine and quantify protein phosphorylation have greatly improved, the analysis of many protein modifications, such as glycosylation, are still regarded as problematic. Limitations in the standard proteomics workflow, such as use of suboptimal peptide fragmentation methods, can significantly prevent the identification of glycopeptides. The current generation of tandem mass spectrometers has made available a variety of fragmentation options, many of which are becoming standard features on these instruments. Lastly, we have used three common fragmentation techniques, namely CID, HCD,more » and ETD, to analyze a glycopeptide and highlight how an integrated fragmentation approach can be used to identify the modified residue and characterize the N-glycan on a peptide.« less

  10. Toward a Monolithic Lattice-Matched III-V on Silicon Tandem Solar Cell

    SciTech Connect

    Geisz, J. F.; Olson, J. M.; Friedman, D. J.

    2004-09-01

    A two-junction device consisting of a 1.7-eV GaNPAs junction on a 1.1-eV silicon junction has the theoretical potential to achieve nearly optimal efficiency for a two-junction tandem cell. We have demonstrated some of the key components toward realizing such a cell, including GaNPAs top cells grown on silicon substrates, GaP-based tunnel junctions grown on silicon substrates, and diffused silicon junctions formed during the epitaxial growth of GaNP on silicon. These components have required the development of techniques for the growth of high crystalline quality GaNPAs on silicon by metal-organic vapor-phase epitaxy.

  11. A High-Reflectivity, Ambient-Stable Graphene Mirror for Neutral Atomic and Molecular Beams

    SciTech Connect

    Sutter, P.; Minniti, M.; Albrecht, P.; Farias, D.; Miranda, R.; Sutter, E.

    2011-11-21

    We report a He and H{sub 2} diffraction study of graphene-terminated Ru(0001) thin films grown epitaxially on c-axis sapphire. Even for samples exposed for several weeks to ambient conditions, brief annealing in ultrahigh vacuum restored extraordinarily high specular reflectivities for He and H{sub 2} beams (23% and 7% of the incident beam, respectively). The quality of the angular distributions recorded with both probes exceeds the one obtained from in-situ prepared graphene on Ru(0001) single crystals. Our results for graphene-terminated Ru thin films represent a significant step toward ambient tolerant, high-reflectivity curved surface mirrors for He-atom microscopy.

  12. Diagnostic control, data acquisition and data processing at MFTF-B (Mirror Fusion Test Facility)

    SciTech Connect

    Preckshot, G.G.

    1986-01-01

    Diagnostic instruments at the Mirror Fusion Test Facility (MFTF-B) are operated by a distributed computer system which provides an integrated control, data acquisition and data processing interface. Instrument control settings, operator inputs and lists of data to be acquired are combined with data acquired by instrument data recorders, to be used downstream by data processing codes; data processing programs are automatically informed of operator control and setpoint actions without operator intervention. The combined diagnostic control and results presentation interface is presented to experimentalist users by a network of high-resolution graphics workstations. Control coordination, data processing and database management are handled by a shared-memory network of 32-bit super minicomputers. Direct instrument control, data acquisition, data packaging and instrument status monitoring are performed by a network of dedicated local control microcomputers.

  13. OPTIMIZING CENTRIFUGAL BARREL POLISHING FOR MIRROR FINISH SRF CAVITY AND RF TESTS AT JEFFERSON LAB

    SciTech Connect

    Ari Palczewski, Rongli Geng, Hui Tian

    2012-07-01

    We performed Centrifugal Barrel Polishing (CBP) on a 1.3 GHz fine grain TESLA single cell cavity and 1.5 GHz fine grain CEBAF high gradient superconducting radio frequency (SRF) single cell cavity following a modified recipe originally developed at Fermi National Accelerator Lab (FNAL). We were able to obtain a mirror like surface similar to that obtained at FNAL, while reducing the number of CBP steps and total processing time. This paper will discuss the change in surface and subsequent cavity performance post CBP, after a 800 C bake (no pre-bake chemistry) and minimal controlled electro-polishing (10 micron). In addition to Q vs. E{sub ACC} thermometry mapping with preheating characteristics and optical inspection of the cavity after CBP will also be shown.

  14. Mirror effect induced by the dilaton field on the Hawking radiation

    SciTech Connect

    Maeda, Kengo; Okamura, Takashi

    2006-11-03

    A ''stringy particle'' action is naturally derived from Kaluza-Klein compactification of a test string action coupled to the dilaton field in a conformally invariant manner. According to the standard procedure, we perform the second quantization of the stringy particle. As an interesting application, we consider evaporation of a near-extremal dilatonic black hole by Hawking radiation via the stringy particles. We show that a mirror surface which reflects them is induced by the dilaton field outside the the horizon when the size of the black hole is comparable to the Planck scale. As a result, the energy flux does not propagate across the surface, and hence the evaporation of the dilatonic black hole stops just before the naked singularity at the extremal state appears even though the surface gravity is non-zero in the extremal limit.

  15. A combined Kirkpatrick-Baez mirror and multilayer lens for sub-10 nm x-ray focusing

    SciTech Connect

    Ruhlandt, A.; Krueger, S. P.; Osterhoff, M.; Giewekemeyer, K.; Salditt, T.; Liese, T.; Radisch, V.; Krebs, H. U.

    2012-03-15

    We have used a combined optical system of a high gain elliptic Kirkpatrick-Baez mirror system (KB) and a multilayer Laue lens (MLL) positioned in the focal plane of the KB for hard x-rays nano-focusing. The two-step focusing scheme is based on a high acceptance and high gain elliptical mirror with moderate focal length and a MLL with ultra-short focal length. Importantly, fabrication constraints, i.e. in mirror polishing and bending, as well as MLL deposition can be significantly relaxed, since (a) the mirror focus in the range of 200-500 nm is sufficient, and (b) the number of layers of the MLL can be correspondingly small. First demonstrations of this setup at the coherence beamline of the PETRA III storage ring yield a highly divergent far-field diffraction pattern, from which the autocorrelation function of the near-field intensity distribution was obtained. The results show that the approach is well suited to reach smallest spot sizes in the sub-10nm range at high flux.

  16. Focusing X-rays to a 1-{mu}m spot using elastically bent, graded multilayer coated mirrors

    SciTech Connect

    Underwood, J.H.; Thompson, A.C.; Kortright, J.B.

    1997-04-01

    In the x-ray fluorescent microprobe at beamline 10.3.1, the ALS bending magnet source is demagnified by a factor of several hundred using a pair of mirrors arranged in the Kirkpatrick-Baez (K-B) configuration. These are coated with multilayers to increase reflectivity and limit the pass band of the x-rays striking the sample. The x-rays excite characteristic fluorescent x-rays of elements in the sample, which are analyzed by an energy dispersive Si-Li detector, for a sensitive assay of the elemental content. By scanning the focal spot the spatial distribution of the elements is determined; the spatial resolution depends on the size of this spot. When spherical mirrors are used, the spatial resolution is limited by aberrations to 5 or 10 {mu}m. This has been improved to 1 {mu}m through the use of an elliptical mirror formed by elastically bending a plane mirror of uniform width and thickness with the optimum combination of end couples.

  17. Programmable matched filter and Hadamard transform hyperspectral imagers based on micro-mirror arrays

    SciTech Connect

    Love, Steven P

    2008-01-01

    Hyperspectral imaging (HSI), in which each pixel contains a high-resolution spectrum, is a powerful technique that can remotely detect, identify, and quantify a multitude of materials and chemicals. The advent of addressable micro-mirror arrays (MMAs) makes possible a new class of programmable hyperspectral imagers that can perform key spectral processing functions directly in the optical hardware, thus alleviating some of HSI's high computational overhead, as well as offering improved signal-to-noise in certain important regimes (e.g. when using uncooled infrared detectors). We have built and demonstrated a prototype UV-Visible micro-mirror hyperspectral imager that is capable not only of matched-filter imaging, but also of full hyperspectral imagery via the Hadamard transform technique. With this instrument, one can upload a chemical-specific spectral matched filter directly to the MMA, producing an image showing the location of that chemical without further processing. Target chemicals are changeable nearly instantaneously simply by uploading new matched-filter patterns to the MMA. Alternatively, the MMA can implement Hadamard mask functions, yielding a full-spectrum hyperspectral image upon inverting the transform. In either case, the instrument can produce the 2D spatial image either by an internal scan, using the MMA itself, or with a traditional external push-broom scan. The various modes of operation are selectable simply by varying the software driving the MMA. Here the design and performance of the prototype is discussed, along with experimental results confirming the signal-to-noise improvement produced by the Hadamard technique in the noisy-detector regime.

  18. Multiwell experiment

    SciTech Connect

    Sattler, A.R.; Warpinski, N.R.; Lorenz, J.C.; Hart, C.M.; Branagan, P.T.

    1985-01-01

    The Multiwell Experiment is a research-oriented field laboratory. Its overall objectives are to characterize lenticular, low-permeability gas reservoirs and to develop technology for their production. This field laboratory has been established at a site in the east-central Piceance basin, Colorado. Here the Mesaverde formation lies at a depth of 4000 to 8250 ft. This interval contains different, distinct reservoir types depending upon their depositional environments. These different zones serve as the focus of the various testing and stimulation programs. Field work began in late 1981 and is scheduled through mid-1988. One key to the Multiwell Experiment is three closely spaced wells. Core, log, well testing, and well-to-well seismic data are providing a far better definition of the geological setting than has been available previously. The closely spaced wells also allow interference and tracer tests to obtain in situ reservoir parameters. The vertical variation of in situ stress throughout the intervals of interest is being measured. A series of stimulation experiments is being conducted in one well and the other two wells are being used as observation wells for improved fracture diagnostics and well testing. Another key to achieving the Multiwell Experiment objectives is the synergism resulting from a broad spectrum of activities: geophysical surveys, sedimentological studies, core and log analyses, well testing, in situ stress determination, stimulation, fracture diagnostics, and reservoir analyses. The results from the various activities will define the reservoir and the hydraulic fracture. These, in turn, define the net pay stimulated: the intersection of a hydraulic fracture of known geometry with a reservoir of known morphology and properties. Accomplishments of the past year are listed. 4 refs.

  19. SANE experiment

    SciTech Connect

    H. Baghdasaryan, SANE Collaboration

    2012-04-01

    The Spin Asymmetries of the Nucleon Experiment (SANE) is a measurement of parallel and near-perpendicular double spin asymmetries in an inclusive electron scattering. The main goal of the experiment was to measure A{sub {parallel}} and A{sub 80} and extract the spin asymmetries of the proton A{sub 1}{sup p}, A{sub 2}{sup p} and spin structure functions g{sub 1}{sup p} and g{sub 2}{sup p}. Using the Thomas Jefferson National Accelerator Facility's polarized electron beam and the University of Virginia's polarized frozen ammonia ({sup 14}NH{sub 3}) target in Hall C, the experiment ran in 2009, collecting data in a Q{sup 2} region from 2.5 to 6.5 GeV{sup 2} and between Bjorken x of 0.3 to 0.8. Particle detection was accomplished using the Big Electron Telescope Array (BETA), a novel non-magnetic detector. This talk will address the progress of the analysis designed to extract the proton spin asymmetries and structure functions. Preliminary results will be presented.

  20. Approved Experiments

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Cycle 31OCT97 Exp# Spokesperson Experiment Title Days 666 Clark Magnetic Rotation in 104Sn 5 667 Janssens Unsafe COULEX of the 240Pu Nucleus 3 670 Smith Exotic Structures in very Neutron-Deficient 55 < Z < 59, A ~ 120 Nuclei 6 671LI Butler The Feasibility of Studying Octupole Correlations in 224,226U using Gammasphere and the FMA 1 672 Svensson Superdeformation in 3060Zn30 and Proton-Decay from Excited States in 3366As33 5 677 Woods Structure of Deformed Ho Isotopes Beyond the Proton

  1. Material Activation Benchmark Experiments at the NuMI Hadron Absorber Hall in Fermilab

    SciTech Connect

    Matsumura, H.; Matsuda, N.; Kasugai, Y.; Toyoda, A.; Yashima, H.; Sekimoto, S.; Iwase, H.; Oishi, K.; Sakamoto, Y.; Nakashima, H.; Leveling, A.; Boehnlein, D.; Lauten, G.; Mokhov, N.; Vaziri, K.

    2014-06-15

    In our previous study, double and mirror symmetric activation peaks found for Al and Au arranged spatially on the back of the Hadron absorber of the NuMI beamline in Fermilab were considerably higher than those expected purely from muon-induced reactions. From material activation bench-mark experiments, we conclude that this activation is due to hadrons with energy greater than 3 GeV that had passed downstream through small gaps in the hadron absorber.

  2. Design and Operation of A Setup with A Camera and Adjustable Mirror to Inspect the Sense-Wire Planes of the Time Projection Chamber Inside the MicroBooNE Cryostat

    DOE PAGES [OSTI]

    Carls, Benjamin; Horton-Smith, Glenn; James, Catherine C.; Kubinski, Robert M.; Pordes, Stephen; Schukraft, Anne; Strauss, Thomas

    2015-08-26

    Detectors in particle physics, particularly when including cryogenic components, are often enclosed in vessels that do not provide any physical or visual access to the detectors themselves after installation. However, it can be desirable for experiments to visually investigate the inside of the vessel. The MicroBooNE cryostat hosts a TPC with sense-wire planes, which had to be inspected for damage such as breakage or sagging. This inspection was performed after the transportation of the vessel with the enclosed detector to its final location, but before filling with liquid argon. Our paper describes an approach to view the inside of themore » MicroBooNE cryostat with a setup of a camera and a mirror through one of its cryogenic service nozzles. The paper also describes the camera and mirror chosen for the operation, the illumination, and the mechanical structure of the setup. It explains how the system was operated and demonstrates its performance.« less

  3. Novel wide band gap materials for highly efficient thin film tandem solar cells. Final report

    SciTech Connect

    Brian E. Hardin; Connor, Stephen T.; Peters, Craig H.

    2012-06-11

    Tandem solar cells (TSCs), which use two or more materials to absorb sunlight, have achieved power conversion efficiencies of >25% versus 11-20% for commercialized single junction solar cell modules. The key to widespread commercialization of TSCs is to develop the wide-band, top solar cell that is both cheap to fabricate and has a high open-circuit voltage (i.e. >1V). Previous work in TSCs has generally focused on using expensive processing techniques with slow growth rates resulting in costs that are two orders of magnitude too expensive to be used in conventional solar cell modules. The objective of the PLANT PV proposal was to investigate the feasibility of using Ag(In,Ga)Se2 (AIGS) as the wide-bandgap absorber in the top cell of a thin film tandem solar cell (TSC). Despite being studied by very few in the solar community, AIGS solar cells have achieved one of the highest open-circuit voltages within the chalcogenide material family with a Voc of 949 mV when grown with an expensive processing technique (i.e. Molecular Beam Epitaxy). PLANT PV's goal in Phase I of the DOE SBIR was to (1) develop the chemistry to grow AIGS thin films via solution processing techniques to reduce costs and (2) fabricate new device architectures with high open-circuit voltage to produce full tandem solar cells in Phase II. PLANT PV attempted to translate solution processing chemistries that were successful in producing >12% efficient Cu(In,Ga)Se2 solar cells by replacing copper compounds with silver. The main thrust of the research was to determine if it was possible to make high quality AIGS thin films using solution processing and to fully characterize the materials properties. PLANT PV developed several different types of silver compounds in an attempt to fabricate high quality thin films from solution. We found that silver compounds that were similar to the copper based system did not result in high quality thin films. PLANT PV was able to deposit AIGS thin

  4. Design of Integrated III-Nitride/Non-III-Nitride Tandem Photovoltaic Devices

    SciTech Connect

    Toledo, N. G.; Friedman, D..J.; Farrell, R. M.; Perl, E. E.; Lin, C. T.; Bowers, J. E.; Speck, J. S.; Mishra, U. K.

    2012-03-01

    The integration of III-nitride and non-III-nitride materials for tandem solar cell applications can improve the efficiency of the photovoltaic device due to the added power contributed by the III-nitride top cell to that of high-efficiency multi-junction non-III-nitride solar cells if the device components are properly designed and optimized. The proposed tandem solar cell is comprised of a III-nitride top cell bonded to a non-III-nitride, series-constrained, multi-junction subcell. The top cell is electrically isolated, but optically coupled to the underlying subcell. The use of a III-nitride top cell is potentially beneficial when the top junction of a stand-alone non-III-nitride subcell generates more photocurrent than the limiting current of the non-III-nitride subcell. Light producing this excess current can either be redirected to the III-nitride top cell through high energy photon absorption, redirected to the lower junctions through layer thickness optimization, or a combination of both, resulting in improved total efficiency. When the non-III-nitride cell's top junction is the limiting junction, the minimum power conversion efficiency that the III-nitride top cell must contribute should compensate for the spectrum filtered from the multi-junction subcell for this design to be useful. As the III-nitride absorption edge wavelength, {lambda}{sub N}, increases, the performance of the multi-junction subcell decreases due to spectral filtering. In the most common spectra of interest (AM1.5G, AM1.5 D, and AM0), the technology to grow InGaN cells with {lambda}{sub N}<520 nm is found to be sufficient for III-nitride top cell applications. The external quantum efficiency performance, however, of state-of-the-art InGaN solar cells still needs to be improved. The effects of surface/interface reflections are also presented. The management of these reflection issues determines the feasibility of the integrated III-nitride/non-III-nitride design to improve overall cell

  5. Accurate spectral response measurements of a complementary absorbing organic tandem cell with fill factor exceeding the subcells

    SciTech Connect

    Cheyns, David; Kim, Minjae; Verreet, Bregt; Rand, Barry P.

    2014-03-03

    Single heterojunction organic photovoltaic cells based on co-evaporated donor–acceptor layers with power conversion efficiencies (η) above 5.5% are demonstrated, using either high (1.8 eV) or low (1.4 eV) optical gap materials. The high energy absorbing cell utilizes a high fullerene-C{sub 70} content, in combination with a high mobility amorphous donor, while the low energy absorbing cell consists of a donor–acceptor molecule paired with C{sub 60} as the acceptor. The integration of the two cells in an optimized tandem configuration leads to η =7.2%, verified by external quantum efficiency measurements of the subcells. Notably, the fill-factor of the tandem stack is higher than either one of the sub-cells.

  6. SU-E-T-615: Investigation of the Dosimetric Impact of Tandem Loading in the Treatment of Cervical Cancer for HDR Brachytherapy Procedures

    SciTech Connect

    Esquivel, C; Patton, L; Nelson, K; Lin, B

    2014-06-01

    Purpose: To quantify the dosimetric impact of the tandem loading in the treatment of cervical cancer for HDR brachytherapy procedures. Methods: Ten patients were evaluated, each of whom received 5 fractions of treatment. Tandem and ovoid sets were inserted into the uterine cavity based on institutional protocols and procedures. Following insertion and stabilization, CT image sets of 1.5mm slice thickness were acquired and sent to the Oncentra V4.3 Treatment Planning System. Critical structures such as the CTV, bladder, rectum, sigmoid, and bowel were contoured and a fractional dose of 5.5Gy was prescribed to Point A for each patient. Six different treatment plans were created for each fraction using varying tandem weightings; from 0.5 to 1.4 times that of the ovoids. Surface dose evaluation of various ovoid diameters, 2.0-3.5cm, at the vaginal fornices was also investigated. Results: Critical structures were evaluated based on varying dose and volume constraints, in particular the 2.0 cc volume recommendation cited by the gynecological GEC-ESTRO working group. Based on dose volume histogram evaluation, a reduction of dose to the critical structures was most often discovered when the tandem weighting was increased. CTV coverage showed little change as the tandem weighting was varied. Ovoid surface dose decreased by 50-65% as the tandem weighting increased. Conclusion: The advantage of 3D planning with HDR brachytherapy is the dose optimization for each individual treatment plan. This investigation shows that by utilizing large tandem weightings, 1.4 times greater than the ovoid, one can still achieve adequate coverage of the CTV and relatively low doses to the critical structures. In some cases, one would still have to optimize further per individual case. In addition, the ovoid surface dose was greatly decreased when large tandem weighting was utilized; especially for small ovoid diameters.

  7. Enhanced absorption in tandem solar cells by applying hydrogenated In{sub 2}O{sub 3} as electrode

    SciTech Connect

    Yin, Guanchao Manley, Phillip; Steigert, Alexander; Klenk, Reiner; Schmid, Martina

    2015-11-23

    To realize the high efficiency potential of perovskite/chalcopyrite tandem solar cells in modules, hydrogenated In{sub 2}O{sub 3} (IO:H) as electrode is investigated. IO:H with an electron mobility of 100 cm{sup 2} V{sup −1} s{sup −1} is demonstrated. Compared to the conventional Sn doped In{sub 2}O{sub 3} (ITO), IO:H exhibits a decreased electron concentration and leads to almost no sub-bandgap absorption up to the wavelength of 1200 nm. Without a trade-off between transparency and lateral resistance in the IO:H electrode, the tandem cell keeps increasing in efficiency as the IO:H thickness increases and efficiencies above 22% are calculated. In contrast, the cells with ITO as electrode perform much worse due to the severe parasitic absorption in ITO. This indicates that IO:H has the potential to lead to high efficiencies, which is otherwise constrained by the parasitic absorption in conventional transparent conductive oxide electrode for tandem solar cells in modules.

  8. Structural Insights into the Cooperative Binding of SeqA to a Tandem GATC Repeat

    SciTech Connect

    Chung, Y.; Brendler, T; Austin, S; Guarne, A

    2009-01-01

    SeqA is a negative regulator of DNA replication in Escherichia coli and related bacteria that functions by sequestering the origin of replication and facilitating its resetting after every initiation event. Inactivation of the seqA gene leads to unsynchronized rounds of replication, abnormal localization of nucleoids and increased negative superhelicity. Excess SeqA also disrupts replication synchrony and affects cell division. SeqA exerts its functions by binding clusters of transiently hemimethylated GATC sequences generated during replication. However, the molecular mechanisms that trigger formation and disassembly of such complex are unclear. We present here the crystal structure of a dimeric mutant of SeqA [SeqA{Delta}(41-59)-A25R] bound to tandem hemimethylated GATC sites. The structure delineates how SeqA forms a high-affinity complex with DNA and it suggests why SeqA only recognizes GATC sites at certain spacings. The SeqA-DNA complex also unveils additional protein-protein interaction surfaces that mediate the formation of higher ordered complexes upon binding to newly replicated DNA. Based on this data, we propose a model describing how SeqA interacts with newly replicated DNA within the origin of replication and at the replication forks.

  9. Progress in High-Performance PV: Polycrystalline Thin-Film Tandem Cells

    SciTech Connect

    Symko-Davies, M.

    2004-08-01

    The High-Performance Photovoltaic (HiPerf PV) Project was initiated by the U.S. Department of Energy to substantially increase the viability of PV for cost-competitive applications. The goal is that PV will contribute significantly to the U.S. and world energy supply and environmental enhancement in the 21st century. The HiPerf PV Project aims at exploring the ultimate performance limits of existing PV technologies, approximately doubling their sunlight-to-electricity conversion efficiencies during its course, to accelerate and enhance their impact in the marketplace. To accomplish this, the National Center for Photovoltaics (NCPV) directs in-house and subcontracted research in high-performance polycrystalline thin-film and multijunction concentrator devices. This paper will describe progress of the subcontractor and in-house R&D on critical pathways for a PV technology having a high potential to reach cost-competitiveness goals: 25%-efficient, low-cost polycrystalline thin-film tandems for large-area, flat-plate modules.

  10. De novo sequencing of peptides from top-down tandem mass spectra

    SciTech Connect

    Vyatkina, Kira; Wu, Si; Dekker, Leendert J.; vanDuijn, Martijn M.; Liu, Xiaowen; Tolic, Nikola; Dvorkin, Mikhail; Alexandrova, Sonya; Luider, Theo N.; Pasa-Tolic, Ljiljana; Pevzner, Pavel A.

    2015-09-28

    De novo sequencing of proteins and peptides is one of the most important problems in mass spectrometry-driven proteomics. A variety of methods have been developed to accomplish this task from a set of bottom-up tandem (MS/MS) mass spectra. However, a more recently emerged top-down technology, now gaining more and more popularity, opens new perspectives for protein analysis and characterization, implying a need in efficient algorithms for processing this kind of MS/MS data. Here we describe a method that allows to retrieve from a set of top-down MS/MS spectra long and accurate sequence fragments of the proteins contained in a sample. To this end, we outline a strategy for generating high-quality sequence tags from top-down spectra, and introduce the concept of a T-Bruijn graph by adapting to the case of tags the notion of an A-Bruijn graph widely used in genomics. The output of the proposed approach represents the set of amino acid strings spelled out by optimal paths in the connected components of a T-Bruijn graph. We illustrate its performance on top-down datasets acquired from carbonic anhydrase 2 (CAH2) and the Fab region of alemtuzumab.

  11. Mono- and tri-ester hydrogenolysis using tandem catalysis. Scope and mechanism.

    SciTech Connect

    Lohr, Tracy L.; Li, Zhi; Assary, Rajeev S.; Curtiss, Larry A.; Marks, Tobin J.

    2016-01-01

    The scope and mechanism of thermodynamically leveraged ester RC(O)O-R' bond hydrogenolysis by tandem metal triflate + supported Pd catalysts are investigated both experimentally and theoretically by DFT and energy span analysis. This catalytic system has a broad scope, with relative cleavage rates scaling as, tertiary 4 secondary 4 primary ester at 1 bar H-2, yielding alkanes and carboxylic acids with high conversion and selectivity. Benzylic and allylic esters display the highest activity. The rate law is nu = k[M(OTf )(n)](1)[ester](0)[H-2](0) with an H/D kinetic isotope effect = 6.5 +/- 0.5, implying turnover-limiting C-H scission following C-O cleavage, in agreement with theory. Intermediate alkene products are then rapidly hydrogenated. Applying this approach with the very active Hf(OTf)(4) catalyst to bio-derived triglycerides affords near-quantitative yields of C-3 hydrocarbons rather than glycerol. From model substrates, it is found that RC(O)O-R' cleavage rates are very sensitive to steric congestion and metal triflate identity. For triglycerides, primary/external glyceryl CH2-O cleavage predominates over secondary/internal CH-O cleavage, with the latter favored by less acidic or smaller ionic radius metal triflates, raising the diester selectivity to as high as 48% with Ce(OTf)(3).

  12. Optimal tuning and calibration of bendable mirrors with slope measuring profilers

    SciTech Connect

    McKinney, Wayne; Kirschman, Jonathan; MacDowell, Alastair; Warwick, Tony; Yashchuk, Valeriy

    2009-06-22

    We describe a technique to optimally tune and calibrate bendable x-ray optics for sub-micron focusing. The focusing is divided between two elliptically cylindrical reflecting elements, a Kirkpatrick-Baez (KB) pair. Each optic is shaped by applying unequal bending couples to each end of a flat mirror. The developed technique allowsoptimal tuning of these systems using surface slope data obtained with a slope measuring instrument, the long trace profiler (LTP). Due to the near linearity of the problem, the minimal set of data necessary for the tuning of each bender, consists of only three slope traces measured before and after a single adjustment of each bending couple. The data are analyzed with software realizing a method of regression analysis with experimentally found characteristic functions of the benders. The resulting approximation to the functional dependence of the desired shape provides nearly final settings. Moreover, the characteristic functions of the benders found in the course of tuning, can be used for retuning to a new desired shape without removal from the beamline and re-measuring. We perform a ray trace, using profiler data for the finally tuned optics, predicting the performance to be expected during use of the optics on the beamline.

  13. Tully-Fisher relation, galactic rotation curves and dissipative mirror dark matter

    SciTech Connect

    Foot, R.

    2014-12-01

    If dark matter is dissipative then the distribution of dark matter within galactic halos can be governed by dissipation, heating and hydrostatic equilibrium. Previous work has shown that a specific model, in the framework of mirror dark matter, can explain several empirical galactic scaling relations. It is shown here that this dynamical halo model implies a quasi-isothermal dark matter density, ρ(r) ≅ ρ{sub 0}r{sub 0}{sup 2}/(r{sup 2}+r{sub 0}{sup 2}), where the core radius, r{sub 0}, scales with disk scale length, r{sub D}, via r{sub 0}/kpc ≈ 1.4(r{sub D}/kpc). Additionally, the product ρ{sub 0}r{sub 0} is roughly constant, i.e. independent of galaxy size (the constant is set by the parameters of the model). The derived dark matter density profile implies that the galactic rotation velocity satisfies the Tully-Fisher relation, L{sub B}∝v{sup 3}{sub max}, where v{sub max} is the maximal rotational velocity. Examples of rotation curves resulting from this dynamics are given.

  14. Interferometric source of multi-color, multi-beam entangled photons with mirror and mixer

    DOEpatents

    Dress, William B.; Kisner, Roger A.; Richards, Roger K.

    2004-06-01

    53 Systems and methods are described for an interferometric source of multi-color, multi-beam entangled photons. An apparatus includes: a multi-refringent device optically coupled to a source of coherent energy, the multi-refringent device providing a beam of multi-color entangled photons; a condenser device optically coupled to the multi-refringent device, the condenser device i) including a mirror and a mixer and ii) converging two spatially resolved portions of the beam of multi-color entangled photons into a converged multi-color entangled photon beam; a tunable phase adjuster optically coupled to the condenser device, the tunable phase adjuster changing a phase of at least a portion of the converged multi-color entangled photon beam to generate a first interferometeric multi-color entangled photon beam; and a beam splitter optically coupled to the condenser device, the beam splitter combining the first interferometeric multi-color entangled photon beam with a second interferometric multi-color entangled photon beam.

  15. PARTICLE-IN-CELL SIMULATIONS OF CONTINUOUSLY DRIVEN MIRROR AND ION CYCLOTRON INSTABILITIES IN HIGH BETA ASTROPHYSICAL AND HELIOSPHERIC PLASMAS

    SciTech Connect

    Riquelme, Mario A.; Quataert, Eliot; Verscharen, Daniel E-mail: eliot@berkeley.edu

    2015-02-10

    We use particle-in-cell simulations to study the nonlinear evolution of ion velocity space instabilities in an idealized problem in which a background velocity shear continuously amplifies the magnetic field. We simulate the astrophysically relevant regime where the shear timescale is long compared to the ion cyclotron period, and the plasma beta is β ∼ 1-100. The background field amplification in our calculation is meant to mimic processes such as turbulent fluctuations or MHD-scale instabilities. The field amplification continuously drives a pressure anisotropy with p > p {sub ∥} and the plasma becomes unstable to the mirror and ion cyclotron instabilities. In all cases, the nonlinear state is dominated by the mirror instability, not the ion cyclotron instability, and the plasma pressure anisotropy saturates near the threshold for the linear mirror instability. The magnetic field fluctuations initially undergo exponential growth but saturate in a secular phase in which the fluctuations grow on the same timescale as the background magnetic field (with δB ∼ 0.3 (B) in the secular phase). At early times, the ion magnetic moment is well-conserved but once the fluctuation amplitudes exceed δB ∼ 0.1 (B), the magnetic moment is no longer conserved but instead changes on a timescale comparable to that of the mean magnetic field. We discuss the implications of our results for low-collisionality astrophysical plasmas, including the near-Earth solar wind and low-luminosity accretion disks around black holes.

  16. Survey mirrors and lenses and their required surface accuracy. Volume 2. Concentrator optical performance software (COPS) user's manual. Final report for September 15, 1978-December 1, 1979

    SciTech Connect

    Not Available

    1980-01-01

    The mathematical modeling of 11 different concentrating collectors is documented and instructions are given for use of the computer code. The 11 concentrators modeled are: faceted mirror concentration; fixed mirror, two-axis tracking receiver; parabolic trough collector; linear Fresnel; incremental reflector; inflated cylindrical concentrator; CPC-involute reflector with evacuated receiver; CPC-parabolic/involute reflector; V trough collectors, imaging collapsing concentrator; and parabolic dish collector. (MHR)

  17. Compact tunable Compton x-ray source from laser-plasma accelerator and plasma mirror

    SciTech Connect

    Tsai, Hai-En; Wang, Xiaoming; Shaw, Joseph M.; Li, Zhengyan; Zgadzaj, Rafal; Henderson, Watson; Downer, M. C.; Arefiev, Alexey V.; Zhang, Xi; Khudik, V.; Shvets, G.

    2015-02-15

    We present an in-depth experimental-computational study of the parameters necessary to optimize a tunable, quasi-monoenergetic, efficient, low-background Compton backscattering (CBS) x-ray source that is based on the self-aligned combination of a laser-plasma accelerator (LPA) and a plasma mirror (PM). The main findings are (1) an LPA driven in the blowout regime by 30 TW, 30 fs laser pulses produce not only a high-quality, tunable, quasi-monoenergetic electron beam, but also a high-quality, relativistically intense (a{sub 0} ∼ 1) spent drive pulse that remains stable in profile and intensity over the LPA tuning range. (2) A thin plastic film near the gas jet exit retro-reflects the spent drive pulse efficiently into oncoming electrons to produce CBS x-rays without detectable bremsstrahlung background. Meanwhile, anomalous far-field divergence of the retro-reflected light demonstrates relativistic “denting” of the PM. Exploiting these optimized LPA and PM conditions, we demonstrate quasi-monoenergetic (50% FWHM energy spread), tunable (75–200 KeV) CBS x-rays, characteristics previously achieved only on more powerful laser systems by CBS of a split-off, counter-propagating pulse. Moreover, laser-to-x-ray photon conversion efficiency (∼6 × 10{sup −12}) exceeds that of any previous LPA-based quasi-monoenergetic Compton source. Particle-in-cell simulations agree well with the measurements.

  18. Validation experiment of a numerically processed millimeter-wave interferometer in a laboratory

    SciTech Connect

    Kogi, Y., E-mail: kogi@fit.ac.jp; Higashi, T.; Matsukawa, S. [Department of Information Electronics, Fukuoka Institute of Technology, Fukuoka 811-0295 (Japan); Mase, A. [Art, Science and Technology Center for Cooperative Research, Kyushu University, Kasuga, Fukuoka 816-0811 (Japan); Kohagura, J.; Yoshikawa, M. [Plasma Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Nagayama, Y.; Kawahata, K. [National Institute for Fusion Science, Toki, Gifu 509-5202 (Japan); Kuwahara, D. [Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588 (Japan)

    2014-11-15

    We propose a new interferometer system for density profile measurements. This system produces multiple measurement chords by a leaky-wave antenna driven by multiple frequency inputs. The proposed system was validated in laboratory evaluation experiments. We confirmed that the interferometer generates a clear image of a Teflon plate as well as the phase shift corresponding to the plate thickness. In another experiment, we confirmed that quasi-optical mirrors can produce multiple measurement chords; however, the finite spot size of the probe beam degrades the sharpness of the resulting image.

  19. Metrology for Industry for use in the Manufacture of Grazing Incidence Beam Line Mirrors

    SciTech Connect

    Metz, James P.; Parks, Robert E.

    2014-12-01

    The goal of this SBIR was to determine the slope sensitivity of Specular Reflection Deflectometry (SRD) and whether shearing methods had the sensitivity to be able to separate errors in the test equipment from slope error in the unit under test (UUT), or mirror. After many variations of test parameters it does not appear that SRD yields results much better than 1 μ radian RMS independent of how much averaging is done. Of course, a single number slope sensitivity over the full range of spatial scales is not a very insightful number in the same sense as a single number phase or height RMS value in interferometry does not tell the full story. However, the 1 μ radian RMS number is meaningful when contrasted with a sensitivity goal of better than 0.1 μ radian RMS. Shearing is a time proven method of separating the errors in a measurement from the actual shape of a UUT. It is accomplished by taking multiple measurements while moving the UUT relative to the test instrument. This process makes it possible to separate the two errors sources but only to a sensitivity of about 1 μ radian RMS. Another aspect of our conclusions is that this limit probably holds largely independent of the spatial scale of the test equipment. In the proposal for this work it was suggested that a test screen the full size of the UUT could be used to determine the slopes on scales of maybe 0.01 to full scale of the UUT while smaller screens and shorter focal length lenses could be used to measure shorter, or smaller, patches of slope. What we failed to take into consideration was that as the scale of the test equipment got smaller so too did the optical lever arm on which the slope was calculated. Although we did not do a test with a shorter focal length lens over a smaller sample area it is hard to argue with the logic that the slope sensitivity will be about the same independent of the spatial scale of the measurement assuming the test equipment is similarly scaled. On a more positive note

  20. Two-stream cyclotron radiative instabilities due to the marginally mirror-trapped fraction for fustion alphas in tokamaks

    SciTech Connect

    Arunasalam, V.

    1995-07-01

    It is shown here that the marginally mirror-trapped fraction of the newly-born fusion alpha particles in the deuterium-tritium (DT) reaction dominated tokamak plasmas can induce a two-stream cyclotron radiative instability for the fast Alfven waves propagating near the harmonics of the alpha particle cyclotron frequency {omega}{sub c{alpha}}. This can explain both the experimentally observed time behavior and the spatially localized origin of the fusion product ion cyclotron emission (ICE) in TFTR at frequencies {omega} {approx} m{omega}{sub c{alpha}}.

  1. High-accuracy Aspheric X-ray Mirror Metrology Using Software Configurable Optical Test System/deflectometry

    SciTech Connect

    Huang, Run; Su, Peng; Burge, James H.; Huang, Lei; Idir, Mourad

    2015-08-05

    The Software Configurable Optical Test System (SCOTS) uses deflectometry to measure surface slopes of general optical shapes without the need for additional null optics. Careful alignment of test geometry and calibration of inherent system error improve the accuracy of SCOTS to a level where it competes with interferometry. We report a SCOTS surface measurement of an off-axis superpolished elliptical x-ray mirror that achieves <1 nm<1 nm root-mean-square accuracy for the surface measurement with low-order term included.

  2. Highly stable and efficient tandem organic light-emitting devices with intermediate connectors using lithium amide as n-type dopant

    SciTech Connect

    Zhou, Dong-Ying; Zu, Feng-Shuo; Shi, Xiao-Bo; Liao, Liang-Sheng E-mail: lsliao@suda.edu.cn; Zhang, Ying-Jie; Aziz, Hany E-mail: lsliao@suda.edu.cn

    2014-08-25

    In this work, we report thermally decomposable lithium amide (LiNH{sub 2}) feasible to function as an effective n-type dopant for intermediate connectors in tandem organic light-emitting devices (OLEDs). Metallic lithium, which is released from the decomposition process of LiNH{sub 2}, is proved by X-ray photoelectron spectroscopy and responsible for n-type electrical doping of electron transporting materials. We demonstrate that tandem OLEDs using LiNH{sub 2} and Cs{sub 2}CO{sub 3} as n-type dopants, respectively, give a comparable electroluminescence efficiency and, moreover, the device with LiNH{sub 2} has far longer operational lifetime. The results therefore highlight the significance of selecting suitable n-type dopant in intermediate connectors to fabricate high-stability tandem OLEDs.

  3. Manufacturing of High-Efficiency Bi-Facial Tandem Concentrator Solar Cells: February 20, 2009--August 20, 2010

    SciTech Connect

    Wojtczuk , S.

    2011-06-01

    Spire Semiconductor made concentrator photovoltaic (CPV) cells using a new bi-facial growth process and met both main program goals: a) 42.5% efficiency 500X (AM1.5D, 25C, 100mW/cm2); and b) Ready to supply at least 3MW/year of such cells at end of program. We explored a unique simple fabrication process to make a N/P 3-junction InGaP/GaAs/InGaAs tandem cells . First, the InGaAs bottom cell is grown on the back of a GaAs wafer. The wafers are then loaded into a cassette, spin-rinsed to remove particles, dipped in dilute NH4OH and spin-dried. The wafers are then removed from the cassette loaded the reactor for GaAs middle and InGaP top cell growth on the opposite wafer face (bi-facial growth). By making the epitaxial growth process a bit more complex, we are able to avoid more complex processing (such as large area wafer bonding or epitaxial liftoff) used in the inverted metamorphic (IMM) approach to make similar tandem stacks. We believe the yield is improved compared to an IMM process. After bi-facial epigrowth, standard III-V cell steps (back metal, photolithography for front grid, cap etch, AR coat, dice) are used in the remainder of the process.

  4. Outdoor Testing of GaInP2/GaAs Tandem Cells with Top Cell Thickness Varied

    SciTech Connect

    McMahon, W. E.; Emergy, K. E.; Friedman, D. J.; Ottoson, L.; Young, M. S.; Ward, J. S.; Kramer, C. M.; Duda, A.; Kurtz, S.

    2005-08-01

    In this study, we measure the performance of GaInP2/GaAs tandem cells under direct beam sunlight outdoors in order to quantify their sensitivity to both spectral variation and GaInP2 top-cell thickness. A set of cells with five different top-cell thicknesses was mounted on a two-axis tracker with the incident sunlight collimated to exclude all except the direct beam. Current-voltage (I-V) curves were taken throughout the course of several days, along with measurements of the direct solar spectrum. Our two major conclusions are: (1) GaInP2/GaAs tandem cells designed for either the ASTM G-173 direct (G-173D) spectrum or the "air mass 1.5 global" (AM1.5G) spectrum perform the best, and (2) cells can be characterized indoors and modeled using outdoor spectra with the same result. These results are equally valid for GaInP2/GaAs/Ge triple-junction cells.

  5. Development of a laser cleaning method for the first mirror surface of the charge exchange recombination spectroscopy diagnostics on ITER

    SciTech Connect

    Kuznetsov, A. P.; Buzinskij, O. I.; Gubsky, K. L.; Nikitina, E. A.; Savchenkov, A. V.; Tarasov, B. A.; Tugarinov, S. N.

    2015-12-15

    A set of optical diagnostics is expected for measuring the plasma characteristics in ITER. Optical elements located inside discharge chambers are exposed to an intense radiation load, sputtering due to collisions with energetic atoms formed in the charge transfer processes, and contamination due to recondensation of materials sputtered from different parts of the construction of the chamber. Removing the films of the sputtered materials from the mirrors with the aid of pulsed laser radiation is an efficient cleaning method enabling recovery of the optical properties of the mirrors. In this work, we studied the efficiency of removal of metal oxide films by pulsed radiation of a fiber laser. Optimization of the laser cleaning conditions was carried out on samples representing metal substrates polished with optical quality with deposition of films on them imitating the chemical composition and conditions expected in ITER. It is shown that, by a proper selection of modes of radiation exposure to the surface with a deposited film, it is feasible to restore the original high reflection characteristics of optical elements.

  6. A proposed design and fabrication of lenses and mirrors from a set of spherical rings that produce desired energy distributions for solar energy applications

    SciTech Connect

    Gonzalez-Garcia, Jorge; Vazquez-Montiel, Sergio; Santiago-Alvarado, Agustin; Cordero-Davila, Alberto; Castro-Gonzalez, Graciela

    2009-12-15

    The amount of energy contained in the solar aureole affects the performance of solar systems. Solar optical systems are, therefore, dependent on the characteristics of the shape of the sun in a specific geographical location. For this reason, the present study proposes the design of solid lenses and mirrors modelled from a set of concentric spherical rings that give a desired distribution of energy in the focal plane. One hundred spherical rings, whose optimum curvature radius values were calculated by Genetic Algorithms, were employed in the modelling process. The study also proposes a design of a petal tool to polish lens and mirror surfaces. (author)

  7. ORISE: Research Experiences

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Research Experiences Research Experiences The Oak Ridge Institute for Science and Education (ORISE) administers more than 150 science education programs on behalf of the U.S....

  8. Impact of sub-cell internal luminescence yields on energy conversion efficiencies of tandem solar cells: A design principle

    SciTech Connect

    Zhu, Lin Kim, Changsu; Yoshita, Masahiro; Chen, Shaoqiang; Sato, Shintaroh; Mochizuki, Toshimitsu; Akiyama, Hidefumi; Kanemitsu, Yoshihiko

    2014-01-20

    To develop a realistic design principle, we calculated the maximum conversion efficiency ?{sub sc} and optimized sub-cell band-gap energies E{sub g} in double-junction tandem solar cells via a detailed-balance theory, paying particular attention to their dependence on internal luminescence quantum yields y{sub int} of the top and bottom sub-cell materials. A strong drop in the maximum ?{sub sc} occurs when y{sub int} slightly drops from 1 to 0.9, where the drop in y{sub int} of the bottom cell causes a stronger effect than that of the top cell. For low values of y{sub int}, the maximum ?{sub sc} has a simple logarithmic dependence on the geometric mean of the two sub-cells'y{sub int}.

  9. A very thin havar film vacuum window for heavy ions to perform radiobiology studies at the BNL Tandem

    SciTech Connect

    Thieberger, P.; Abendroth, H.; Alessi, J.; Cannizzo, L.; Carlson, C.; Gustavsson, A.; Minty, M.; Snydstrup, L.

    2011-03-28

    Heavy ion beams from the BNL Tandem Van de Graaff accelerators will be made available for radiobiology studies on cell cultures. Beam energy losses need to be minimized both in the vacuum window and in the air in order to achieve the ranges required for the cells to be studied. This is particularly challenging for ions heavier than iron. The design is presented of a 0.4-inch diameter Havar film window that will satisfy these requirements. Films as thin as 80 microinches were successfully pressure tested. The final thickness to be used may be slightly larger to help in achieving pin hole free windows. We discuss design considerations and present pressure and vacuum test results as well as tests with heavy ion beams.

  10. Monolithic, multi-bandgap, tandem, ultra-thin, strain-counterbalanced, photovoltaic energy converters with optimal subcell bandgaps

    DOEpatents

    Wanlass, Mark W.; Mascarenhas, Angelo

    2012-05-08

    Modeling a monolithic, multi-bandgap, tandem, solar photovoltaic converter or thermophotovoltaic converter by constraining the bandgap value for the bottom subcell to no less than a particular value produces an optimum combination of subcell bandgaps that provide theoretical energy conversion efficiencies nearly as good as unconstrained maximum theoretical conversion efficiency models, but which are more conducive to actual fabrication to achieve such conversion efficiencies than unconstrained model optimum bandgap combinations. Achieving such constrained or unconstrained optimum bandgap combinations includes growth of a graded layer transition from larger lattice constant on the parent substrate to a smaller lattice constant to accommodate higher bandgap upper subcells and at least one graded layer that transitions back to a larger lattice constant to accommodate lower bandgap lower subcells and to counter-strain the epistructure to mitigate epistructure bowing.

  11. De novo tandem duplication of chromosome segement 22q11-q12: Clinical, cytogenetic, and molecular characterization

    SciTech Connect

    Lindsay, E.A.; Shaffer, L.G.; Carrozzo, R.

    1995-04-10

    We report on a case of duplication of the segment 22q11-q12 due to a de novo duplication. Molecular cytogenetics studies demonstrated this to be a tandem duplication, flanked proximally by the marker D22Z4, a centromeric alpha satellite DNA repeat, and distally by D22S260, an anonymous DNA marker proximal to the Ewing sarcoma breakpoint. The segment includes the regions responsible for the {open_quotes}cat-eye{close_quotes}, Di George, and velo-cardio-facial syndromes and extends distal to the breakpoint cluster region (BCR). The clinical picture is dominated by the cardiac defects and includes findings reminiscent of {open_quotes}cat-eye{close_quotes} syndrome. These findings reinforce the hypothesis that the proximal 22q region contains dosage-sensitive genes involved in development. 20 refs., 3 figs.

  12. Evolution and development of the Oak Ridge 25URC tandem accelerator control system

    SciTech Connect

    Juras, R.C.; Ziegler, N.F.; Meigs, M.J.; McPherson, R.L.; Hoglund, D.E.; Biggerstaff, J.A.

    1987-01-01

    Since acceptance of the 25URC accelerator in 1982, we have continued to develop and improve both the accelerator control system and associated software. In this paper, we describe these improvements and also discuss how our experience with the present system would influence the architecture and design of future, similar systems.

  13. Au-iClick mirrors the mechanism of copper catalyzed azide–alkyne cycloaddition (CuAAC)

    SciTech Connect

    Powers, Andrew R.; Ghiviriga, Ion; Abboud, Khalil A.; Veige, Adam S.

    2015-07-20

    This report outlines the investigation of the iClick mechanism between gold(I)-azides and gold(I)-acetylides to yield digold triazolates. Isolation of digold triazolate complexes offer compelling support for the role of two copper(I) ions in CuAAC. In addition, a kinetic investigation reveals the reaction is first order in both Au(I)-N3 and Au(I)-C≡C-R equivalent to C-R, thus second order overall. A Hammett plot with a ρ = 1.02(5) signifies electron-withdrawing groups accelerate the cycloaddition by facilitating the coordination of the second gold ion in a π-complex. Rate inhibition by the addition of free triphenylphosphine to the reaction indicates that ligand dissociation is a prerequisite for the reaction. The mechanistic conclusions mirror those proposed for the CuAAC reaction.

  14. Au-iClick mirrors the mechanism of copper catalyzed azide–alkyne cycloaddition (CuAAC)

    DOE PAGES [OSTI]

    Powers, Andrew R.; Ghiviriga, Ion; Abboud, Khalil A.; Veige, Adam S.

    2015-07-20

    This report outlines the investigation of the iClick mechanism between gold(I)-azides and gold(I)-acetylides to yield digold triazolates. Isolation of digold triazolate complexes offer compelling support for the role of two copper(I) ions in CuAAC. In addition, a kinetic investigation reveals the reaction is first order in both Au(I)-N3 and Au(I)-C≡C-R equivalent to C-R, thus second order overall. A Hammett plot with a ρ = 1.02(5) signifies electron-withdrawing groups accelerate the cycloaddition by facilitating the coordination of the second gold ion in a π-complex. Rate inhibition by the addition of free triphenylphosphine to the reaction indicates that ligand dissociation is amore » prerequisite for the reaction. The mechanistic conclusions mirror those proposed for the CuAAC reaction.« less

  15. Development and calibration of mirrors and gratings for the Soft X-ray materials science beamline at the Linac Coherent Light Source free-electron laser

    DOE PAGES [OSTI]

    Soufli, Regina; Fernandez-Perea, Monica; Baker, Sherry L.; Robinson, Jeff C.; Gullikson, Eric M.; Heimann, Philip; Yashchuk, Valerie V.; McKinney, Wayne R.; Schlotter, William F.; Rowen, Michael

    2012-04-18

    This article discusses the development and calibration of the x-ray reflective and diffractive elements for the Soft X-ray Materials Science (SXR) beamline of the Linac Coherent Light Source (LCLS) free-electron laser (FEL), designed for operation in the 500 – 2000 eV region. The surface topography of three Si mirror substrates and two Si diffraction grating substrates was examined by atomic force microscopy (AFM) and optical profilometry. The figure of the mirror substrates was also verified via surface slope measurements with a long trace profiler. A boron carbide (B4C) coating especially optimized for the LCLS FEL conditions was deposited on allmore » SXR mirrors and gratings. Coating thickness uniformity of 0.14 nm root mean square (rms) across clear apertures extending to 205 mm length was demonstrated for all elements, as required to preserve the coherent wavefront of the LCLS source. The reflective performance of the mirrors and the diffraction efficiency of the gratings were calibrated at beamline 6.3.2 at the Advanced Light Source synchrotron. To verify the integrity of the nanometer-scale grating structure, the grating topography was examined by AFM before and after coating. This is to our knowledge the first time B4C-coated diffraction gratings are demonstrated for operation in the soft x-ray region.« less

  16. Operating Experience Committee Charter

    Energy.gov [DOE]

    The Operating Experience Committe Charter explains the purpose of the Department of Energy (DOE) Operating Experience Committee (OEC), which is to support line management within DOE and the DOE community in developing and sustaining effective oeprating experience programs so that lessons from inernal and external operating experience lead to improvement in future operational and safety performance.

  17. Characterization, performance and optimization of PVDF as a piezoelectric film for advanced space mirror concepts.

    SciTech Connect

    Jones, Gary D.; Assink, Roger Alan; Dargaville, Tim Richard; Chaplya, Pavel Mikhail; Clough, Roger Lee; Elliott, Julie M.; Martin, Jeffrey W.; Mowery, Daniel Michael; Celina, Mathew Christopher

    2005-11-01

    Piezoelectric polymers based on polyvinylidene fluoride (PVDF) are of interest for large aperture space-based telescopes as adaptive or smart materials. Dimensional adjustments of adaptive polymer films depend on controlled charge deposition. Predicting their long-term performance requires a detailed understanding of the piezoelectric material features, expected to suffer due to space environmental degradation. Hence, the degradation and performance of PVDF and its copolymers under various stress environments expected in low Earth orbit has been reviewed and investigated. Various experiments were conducted to expose these polymers to elevated temperature, vacuum UV, {gamma}-radiation and atomic oxygen. The resulting degradative processes were evaluated. The overall materials performance is governed by a combination of chemical and physical degradation processes. Molecular changes are primarily induced via radiative damage, and physical damage from temperature and atomic oxygen exposure is evident as depoling, loss of orientation and surface erosion. The effects of combined vacuum UV radiation and atomic oxygen resulted in expected surface erosion and pitting rates that determine the lifetime of thin films. Interestingly, the piezo responsiveness in the underlying bulk material remained largely unchanged. This study has delivered a comprehensive framework for material properties and degradation sensitivities with variations in individual polymer performances clearly apparent. The results provide guidance for material selection, qualification, optimization strategies, feedback for manufacturing and processing, or alternative materials. Further material qualification should be conducted via experiments under actual space conditions.

  18. Experiment Safety Requirements

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Experiment Safety Experiment Safety Requirements Print Safety at the ALS The mission of the ALS is to "Support users in doing outstanding science in a safe environment." How Do...

  19. Energy and technology review

    SciTech Connect

    Brown, P.S.

    1983-06-01

    Research activities at Lawrence Livermore National Laboratory are described in the Energy and Technology Review. This issue includes articles on measuring chromosome changes in people exposed to cigarette smoke, sloshing-ion experiments in the tandem mirror experiment, aluminum-air battery development, and a speech by Edward Teller on national defense. Abstracts of the first three have been prepared separately for the data base. (GHT)

  20. Operating Experience Committee Charter

    Energy.gov [DOE]

    The Operating Experience Committee (OEC) charter provides a description of the OEC's purpose, background, membership, functions, and operations.

  1. Directional resolution of dish antenna experiments to search...

    Office of Scientific and Technical Information (OSTI)

    discuss an improved setup using a combination of a reflecting plane with focussing optics. ... DETECTION; MIRRORS; NONLUMINOUS MATTER; OPTICS; PHOTONS; RESOLUTION; SPHERICAL ...

  2. Efficient enhancement of hydrogen production by Ag/Cu{sub 2}O/ZnO tandem triple-junction photoelectrochemical cell

    SciTech Connect

    Liu, Ying; Ren, Feng Chen, Chao; Liu, Chang; Xing, Zhuo; Liu, Dan; Xiao, Xiangheng; Wu, Wei; Zheng, Xudong; Liu, Yichao; Jiang, Changzhong; Shen, Shaohua; Fu, Yanming

    2015-03-23

    Highly efficient semiconductor photoelectrodes for solar hydrogen production through photocatalytic water splitting are a promising and challenge solution to solve the energy problems. In this work, Ag/Cu{sub 2}O/ZnO tandem triple-junction photoelectrode was designed and prepared. An increase of 11 times of photocurrent is achieved in the Ag/Cu{sub 2}O/ZnO photoelectrode comparing to that of the Cu{sub 2}O film. The high performance of the Ag/Cu{sub 2}O/ZnO film is due to the optimized design of the tandem triple-junction structure, where the localized surface Plasmon resonance of Ag and the hetero-junctions efficiently absorb solar energy, produce, and separate electron-hole pairs in the photocathode.

  3. NREL Develops ZnSiP2 for Silicon-Based Tandem Solar Cells (Fact Sheet), NREL Highlights in Research & Development, NREL (National Renewable Energy Laboratory)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Combining an Earth-abundant chalcopyrite with a silicon layer could significantly boost conversion efficiency above that of single-junction silicon solar cells. A current technological challenge in photovoltaics (PV) is to implement a lattice-matched, optically efficient material to be used in conjunction with silicon for tandem PV cells. III-V materials currently hold the world-record conver- sion efficiencies for both single- and multijunction cells. Researchers at the National Renewable

  4. Future reactor experiments

    SciTech Connect

    Wen, Liangjian

    2015-07-15

    The non-zero neutrino mixing angle θ{sub 13} has been discovered and precisely measured by the current generation short-baseline reactor neutrino experiments. It opens the gate of measuring the leptonic CP-violating phase and enables the neutrino mass ordering. The JUNO and RENO-50 proposals aim at resolving the neutrino mass ordering using reactors. The experiment design, physics sensitivity, technical challenges as well as the progresses of those two proposed experiments are reviewed in this paper.

  5. Double Beta Decay Experiments

    SciTech Connect

    Nanal, Vandana [Dept. of Nuclear and Atomic Physics, Tata Institute of Fundamental Research, Mumbai 400 005 (India)

    2011-11-23

    At present, neutrinoless double beta decay is perhaps the only experiment that can tell us whether the neutrino is a Dirac or a Majorana particle. Given the significance of the 0{nu}{beta}{beta}, there is a widespread interest for these rare event studies employing a variety of novel techniques. This paper describes the current status of DBD experiments. The Indian effort for an underground NDBD experiment at the upcoming INO laboratory is also presented.

  6. ORISE: Faculty Research Experiences

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Faculty Research Experiences The Oak Ridge Institute for Science and Education (ORISE) provides short- and long-term programs for either faculty or faculty-student teams to...

  7. Nuclear Physics: Experiment Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Additional Information Computing at JLab Operations Logbook Current Experiments Archive E04-116: Beyond the Born Approximation: A Precise Comparison of Positron-Proton and ...

  8. Tritium Plasma Experiment and

    Office of Environmental Management (EM)

    Plasma Experiment and its role in PHENIX program Masashi Shimada, Chase Taylor Fusion ... in metal - Tritium behavior in the fusion nuclear environment is not fully ...

  9. ORISE: Research Team Experiences

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Research Team Experiences The Oak Ridge Institute for Science and Education (ORISE) brings together mentors and research teams to serve as a bridge between the classroom and the...

  10. Wake Steering Experiment

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Steering Experiment - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy ...

  11. Operating Experience Summaries

    Energy.gov [DOE]

    The Office of Environment, Health, Safety and Security (AU) Office of Analysis publishes the Operating Experience Summary to exchange lessons-learned information between DOE facilities.

  12. Experiment Research | Jefferson Lab

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Most experiments carried out with the Continuous Electron Beam Accelerator Facility (CEBAF) are in the field of nuclear physics and can be described in terms of the following. ...

  13. Nuclear Physics: Experiment Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Physics Home Seminars & Colloquia Experiment Research UserResearcher Information print version Research Highlights Public Interest Nuclear Physics Accelerator Free Electron Laser ...

  14. Nuclear Physics: Experiment Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Free Electron Laser (FEL) Medical Imaging Physics Topics Campaigns Meetings Recent Talks Archived Talks Additional Information Computing at JLab Operations Logbook Experiment ...

  15. Franklin: User Experiences

    SciTech Connect

    National Energy Research Supercomputing Center; He, Yun; Kramer, William T.C.; Carter, Jonathan; Cardo, Nicholas

    2008-05-07

    The newest workhorse of the National Energy Research Scientific Computing Center is a Cray XT4 with 9,736 dual core nodes. This paper summarizes Franklin user experiences from friendly early user period to production period. Selected successful user stories along with top issues affecting user experiences are presented.

  16. Nuclear Physics: Experiment Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Events Experiment Research User/Researcher Information print version Research Highlights Public Interest Nuclear Physics Accelerator Free-Electron Laser (FEL) Medical Imaging Physics Topics Campaigns Meetings Recent Talks Archived Talks Additional Information Computing at JLab Operations Logbook Accelerator and Experimental Schedule Beam Time Request Form Experiment Scheduling and General Information Radiation Budget Form (pdf) Interactive beam request form (for contact persons / spokespersons)

  17. BooNE Experiment

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Experiment Goals of BooNE BooNE in a Nutshell Making Neutrinos Detecting Neutrinos schematic of BooNE experiment A sample event (3M animated PDF file) A cosmic ray event as displayed by the MiniBooNE detector.

  18. Long pulse EBW start-up experiments in MAST

    DOE PAGES [OSTI]

    Shevchenko, V. F.; Baranov, Y. F.; Bigelow, T.; Caughman, J. B.; Diem, S.; Dukes, C.; Finburg, P.; Hawes, J.; Gurl, C.; Griffiths, J.; et al

    2015-03-12

    Start-up technique reported here relies on a double mode conversion (MC) for electron Bernstein wave (EBW) excitation. It consists of MC of the ordinary (O) mode, entering the plasma from the low field side of the tokamak, into the extraordinary (X) mode at a mirror-polarizer located at the high field side. The X mode propagates back to the plasma, passes through electron cyclotron resonance (ECR) and experiences a subsequent X to EBW MC near the upper hybrid resonance (UHR). Finally the excited EBW mode is totally absorbed at the Doppler shifted ECR. The absorption of EBW remains high even inmore » cold rarefied plasmas. Furthermore, EBW can generate significant plasma current giving the prospect of a fully solenoid-free plasma start-up. First experiments using this scheme were carried out on MAST [1]. Plasma currents up to 33 kA have been achieved using 28 GHz 100kW 90ms RF pulses. Recently experimental results were extended to longer RF pulses showing further increase of plasma currents generated by RF power alone. A record current of 73kA has been achieved with 450ms RF pulse of similar power. The current drive enhancement was mainly achieved due to RF pulse extension and further optimisation of the start-up scenario.« less

  19. Long pulse EBW start-up experiments in MAST

    SciTech Connect

    Shevchenko, V. F.; Baranov, Y. F.; Bigelow, T.; Caughman, J. B.; Diem, S.; Dukes, C.; Finburg, P.; Hawes, J.; Gurl, C.; Griffiths, J.; Mailloux, J.; Peng, M.; Saveliev, A. N.; Takase, Y.; Tanaka, H.; Taylor, G.

    2015-03-12

    Start-up technique reported here relies on a double mode conversion (MC) for electron Bernstein wave (EBW) excitation. It consists of MC of the ordinary (O) mode, entering the plasma from the low field side of the tokamak, into the extraordinary (X) mode at a mirror-polarizer located at the high field side. The X mode propagates back to the plasma, passes through electron cyclotron resonance (ECR) and experiences a subsequent X to EBW MC near the upper hybrid resonance (UHR). Finally the excited EBW mode is totally absorbed at the Doppler shifted ECR. The absorption of EBW remains high even in cold rarefied plasmas. Furthermore, EBW can generate significant plasma current giving the prospect of a fully solenoid-free plasma start-up. First experiments using this scheme were carried out on MAST [1]. Plasma currents up to 33 kA have been achieved using 28 GHz 100kW 90ms RF pulses. Recently experimental results were extended to longer RF pulses showing further increase of plasma currents generated by RF power alone. A record current of 73kA has been achieved with 450ms RF pulse of similar power. The current drive enhancement was mainly achieved due to RF pulse extension and further optimisation of the start-up scenario.

  20. Booster Neutrino Experiment - Introduction

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    close The MiniBooNE Experiment next The Oscillating Neutrino The first phase of the Booster Neutrino Experiment (BooNE) at the Fermi National Accelerator Laboratory is a smaller version of the final planned experiment, and has been dubbed "MiniBooNE." The physicists working on MiniBooNE are trying to find out more about the fundamental properties of neutrinos. But, what exactly is a neutrino? To answer that question, we need to look at what's called the Standard Model of particles and

  1. Experiment Safety Requirements

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Experiment Safety Requirements Print Safety at the ALS The mission of the ALS is to "Support users in doing outstanding science in a safe environment." How Do I...? Complete an...

  2. Experiment Scheduling Committee

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Experiment Scheduling Committee Title Name Phome Email Deputy Director for Research Bob McKeown (757) 269-6481 bmck@jlab.org Physics Division AD (co-chair) Rolf Ent (757) 269-7373...

  3. Corporate Operating Experience Program

    Energy.gov [DOE]

    The DOE Corporate Operating Experience Program helps to prevent the recurrence of significant adverse events/trends by sharing performance information, lessons learned and good practices across the DOE complex.

  4. The MAJORANA Experiment

    SciTech Connect

    Aguayo Navarrete, Estanislao; Avignone, F. T.; Back, Henning O.; Barabash, Alexander S.; Bergevin, M.; Bertrand, F.; Boswell, M.; Brudanin, V.; Busch, Matthew; Chan, Yuen-Dat; Christofferson, Cabot-Ann; Collar, J. I.; Combs, Dustin C.; Cooper, R. J.; Detwiler, Jason A.; Doe, Peter J.; Efremenko, Yuri; Egorov, Viatcheslav; Ejiri, H.; Elliott, Steven R.; Esterline, James H.; Fast, James E.; Fields, N.; Finnerty, P.; Fraenkle, Florian; Gehman, Victor M.; Giovanetti, G. K.; Green, Matthew P.; Guiseppe, Vincente; Gusey, K.; Hallin, A. L.; Hazama, R.; Henning, R.; Hime, Andrew; Hoppe, Eric W.; Horton, Mark; Howard, Stanley; Howe, M. A.; Johnson, R. A.; Keeter, K.; Keillor, Martin E.; Keller, C.; Kephart, Jeremy D.; Kidd, Mary; Knecht, A.; Kochetov, Oleg; Konovalov, S.; Kouzes, Richard T.; LaFerriere, Brian D.; LaRoque, B. H.; Leon, Jonathan D.; Leviner, L.; Loach, J. C.; MacMullin, S.; Marino, Michael G.; Martin, R. D.; Mei, Dong-Ming; Merriman, Jason H.; Miller, M. L.; Mizouni, Leila; Nomachi, Masaharu; Orrell, John L.; Overman, Nicole R.; Phillips, D.; Poon, Alan; Perumpilly, Gopakumar; Prior, Gersende; Radford, D. C.; Rielage, Keith; Robertson, R. G. H.; Ronquest, M. C.; Schubert, Alexis G.; Shima, T.; Shirchenko, M.; Snavely, Kyle J.; Sobolev, V.; Steele, David; Strain, J.; Thomas, K.; Timkin, V.; Tornow, W.; Vanyushin, I.; Varner, R. L.; Vetter, Kai; Vorren, Kris R.; Wilkerson, John; Wolfe, B. A.; Yakushev, E.; Young, A.; Yu, Chang-Hong; Yumatov, Vladimir; Zhang, C.

    2011-10-01

    The Majorana collaboration is actively pursuing research and development aimed at a tonne-scale {sup 76}Ge neutrinoless double-beta decay ({beta}{beta}(0{nu})-decay) experiment. The current, primary focus is the construction of the Majorana Demonstrator experiment, an R and D effort that will field approximately 40 kg of germanium detectors with mixed enrichment levels. This article provides a status update on the construction of the Demonstrator.

  5. Tritium Plasma Experiment and

    Office of Environmental Management (EM)

    Plasma Experiment and its role in PHENIX program Masashi Shimada, Chase Taylor Fusion Safety Program Idaho National Laboratory Rob Kolasinski Sandia National Laboratories, Livermore Tritium Focus Group meeting September 23-25, 2014 at Idaho National Laboratory, Idaho Falls, ID Outline: 1. Motivation 2. Tritium Plasma Experiment 3. INL/STAR's role on US-Japan collaboration 4. Role of TPE in PHENIX project 5. TPE modification and development of plasma-driven permeation M.Shimada | Tritium Focus

  6. Sharing Smart Grid Experiences

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Sharing Smart Grid Experiences through Performance Feedback March 31, 2011 DOE/NETL- DE-FE0004001 U.S. Department of Energy Office of Electricity Delivery and Energy Reliability Prepared by: National Energy Technology Laboratory Sharing Smart Grid Experiences through Performance Feedback v1.0 Page ii Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their

  7. The GLUEX Experiment

    SciTech Connect

    M.R. Shepherd

    2009-12-01

    The GLUEX experiment, to be constructed in the new Hall D at Jefferson Lab as part of the 12 GeV upgrade, will utilize a linearly polarized 9 GeV photon beam, produced via coherent bremsstrahlung radiation off of a diamond wafer, incident on a proton target to conduct a search for exotic hybrid mesons. A summary of the physics motivation for the experiment and the key factors that drive the design of the detector and beam line is presented.

  8. The Majorana Experiment

    SciTech Connect

    Aguayo, E.; Fast, J. E.; Hoppe, E. W.; Keillor, M. E.; Kephart, J. D.; Kouzes, R. T.; LaFerriere, B. D.; Merriman, J. H.; Orrell, J. L.; Overman, N. R. [Pacific Northwest National Laboratory, Richland, WA (United States); Avignone, F. T. III [Department of Physics and Astronomy, University of South Carolina, Columbia, SC (United States); Oak Ridge National Laboratory, Oak Ridge, TN (United States); Back, H. O. [Department of Physics, North Carolina State University, Raleigh, NC (United States); Triangle Universities Nuclear Laboratory, Durham, NC (United States); Barabash, A. S.; Konovalov, S. I.; Vanyushin, I.; Yumatov, V. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Bergevin, M.; Chan, Y.-D.; Detwiler, J. A.; Loach, J. C. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); and others

    2011-12-16

    The Majorana collaboration is actively pursuing research and development aimed at a tonne-scale {sup 76}Ge neutrinoless double-beta decay ({beta}{beta}(0{nu})-decay) experiment. The current, primary focus is the construction of the Majorana Demonstrator experiment, an R and D effort that will field approximately 40 kg of germanium detectors with mixed enrichment levels. This article provides a status update on the construction of the Demonstrator.

  9. Tandem dissolution of UO 3 in amide-based acidic ionic liquid and in situ electrodeposition of UO 2 with regeneration of the ionic liquid: a closed cycle

    DOE PAGES [OSTI]

    Wanigasekara, Eranda; Freiderich, John W.; Sun, Xiao-Guang; Meisner, Roberta A.; Luo, Huimin; Delmau, Lætitia H.; Dai, Sheng; Moyer, Bruce A.

    2016-05-19

    A closed cycle is demonstrated for the tandem dissolution and electroreduction of UO3 to UO2 with regeneration of the acidic ionic liquid. The dissolution is achieved by use of the acidic ionic liquid N,N-dimethylacetimidium bis(trifluoromethanesulfonimide) in 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonimide) serving as the diluent. Bulk electrolysis performed at 1.0 V vs. Ag reference yields a dark brown-black uranium deposit (UO2) on the cathode. Anodic oxidation of water in the presence of dimethylacetamide regenerates the acidic ionic liquid. We have demonstrated the individual steps in the cycle together with a sequential dissolution, electroreduction, and regeneration cycle.

  10. Corrosion resistant solar mirror

    DOEpatents

    Medwick, Paul A.; Abbott, Edward E.

    2016-07-19

    A reflective article includes a transparent substrate having a first major surface and a second major surface. A base coat is formed over at least a portion of the second major surface. A primary reflective coating having at least one metallic layer is formed over at least a portion of the base coat. A protective coating is formed over at least a portion of the primary reflective coating. The article further includes a solar cell and an anode, with the solar cell connected to the metallic layer and the anode.

  11. 1987 may mirror 1986

    SciTech Connect

    Not Available

    1987-08-01

    This article is a survey of the Australian Pacific region and its oil activity. Highlights of the article include the fact that 1987 drilling rates should be approximately comparable to 1986 rates especially in Australia. Details of the activity include the fact that the Australian Government seems to be reducing taxes and that New Zealand has also changed its tax policy. Drilling remains successful in the Timor Sea and a new production has been opened in the Bass Strait. Activity is also beginning on the Papua New Guinea area.

  12. Damage threshold and focusability of mid-infrared free-electron laser pulses gated by a plasma mirror with nanosecond switching pulses

    SciTech Connect

    Wang, Xiaolong; Nakajima, Takashi; Zen, Heishun; Kii, Toshiteru; Ohgaki, Hideaki

    2013-11-04

    The presence of a pulse train structure of an oscillator-type free-electron laser (FEL) results in the immediate damage of a solid target upon focusing. We demonstrate that the laser-induced damage threshold can be significantly improved by gating the mid-infrared FEL pulses with a plasma mirror. Although the switching pulses we employ have a nanosecond duration which does not guarantee the clean wavefront of the gated FEL pulses, the high focusability is experimentally confirmed through the observation of spectral broadening by a factor of 2.1 when we tightly focus the gated FEL pulses onto the Ge plate.

  13. Gyroharmonic conversion experiments

    SciTech Connect

    Hirshfield, J.L.; LaPointe, M.A.; Ganguly, A.K. [Omega-P, Inc., New Haven, Connecticut 06520 (United States); LaPointe, M.A. [Yale University, New Haven, Connecticut 06511 (United States)

    1999-05-01

    Generation of high power microwaves has been observed in experiments where a 250{endash}350 kV, 20{endash}30 A electron beam accelerated in a cyclotron autoresonance accelerator (CARA) passes through a cavity tuned gyroharmonic) and at 8.6 GHz (3rd harmonic) will be described. Theory indicates that high conversion efficiency can be obtained for a high quality beam injected into CARA, and when mode competition can be controlled. Comparisons will be made between the experiments and theory. Planned 7th harmonic experiments will also be described, in which phase matching between the TE-72 mode at 20 GHz, and the TE-11 mode at 2.86 GHz, allows efficient 20 GHz co-generation within the CARA waveguide itself. {copyright} {ital 1999 American Institute of Physics.}

  14. Gyroharmonic conversion experiments

    SciTech Connect

    Hirshfield, J. L.; LaPointe, M. A. [Omega-P, Inc., New Haven, Connecticut 06520 (United States); Yale University, New Haven, Connecticut 06511 (United States); Ganguly, A. K. [Omega-P, Inc., New Haven, Connecticut 06520 (United States)

    1999-05-07

    Generation of high power microwaves has been observed in experiments where a 250-350 kV, 20-30 A electron beam accelerated in a cyclotron autoresonance accelerator (CARA) passes through a cavity tuned gyroharmonic) and at 8.6 GHz (3rd harmonic) will be described. Theory indicates that high conversion efficiency can be obtained for a high quality beam injected into CARA, and when mode competition can be controlled. Comparisons will be made between the experiments and theory. Planned 7th harmonic experiments will also be described, in which phase matching between the TE-72 mode at 20 GHz, and the TE-11 mode at 2.86 GHz, allows efficient 20 GHz co-generation within the CARA waveguide itself.

  15. Composting in tandem

    SciTech Connect

    Sheehan, K.

    1994-03-01

    A composting company, a county, and a waste company have formed a symbiotic public/private relationship that is helping to extend the life of the area's landfills, as well as produce a needed product. California state assembly bill 939, passed in 1989, directed local governments to reduce the amount of garbage being landfilled in order to curtail the need for new landfills. Cities and counties in California are now mandated to reduce the volume of their waste stream by 25% by 1995. By the year 2000, the waste stream must be reduced by 50%. And the law has teeth -- to ensure these percentages are met, a $10,000 fine can be imposed for each day a deadline is missed. According to 1990 figures, Sonoma County's well-established recycling programs have been successful at diverting 15% of the county's waste stream from the landfill. Paula Magyari, a waste management specialist with the county Public Works Department, says yard wastes account for 13% of the waste stream in Sonoma County; wood wastes for at least 15%. At 13% and 15%, they are two of the largest components of the waste stream, and, equally important, they represent the portion of the waste stream that is most readily reusable to meet the 25% goal.

  16. The Majorana Experiment

    SciTech Connect

    Aalseth, Craig E.; Aguayo Navarrete, Estanislao; Amman, M.; Avignone, F. T.; Back, Henning O.; Bai, Xinhua; Barabash, Alexander S.; Barbeau, P. S.; Bergevin, M.; Bertrand, F.; Boswell, M.; Brudanin, V.; Bugg, William; Burritt, Tom H.; Busch, Matthew; Capps, Greg L.; Chan, Yuen-Dat; Collar, J. I.; Cooper, R. J.; Creswick, R.; Detwiler, Jason A.; Diaz, J.; Doe, Peter J.; Efremenko, Yuri; Egorov, Viatcheslav; Ejiri, H.; Elliott, S. R.; Ely, James H.; Esterline, James H.; Farach, H. A.; Fast, James E.; Fields, N.; Finnerty, P.; Fraenkle, Florian; Gehman, Victor M.; Giovanetti, G. K.; Green, M.; Guiseppe, Vincente; Gusey, K.; Hallin, A. L.; Harper, Gregory; Hazama, R.; Henning, Reyco; Hime, Andrew; Hong, H.; Hoppe, Eric W.; Hossbach, Todd W.; Howard, Stanley; Howe, M. A.; Johnson, R. A.; Keeter, K.; Keillor, Martin E.; Keller, C.; Kephart, Jeremy D.; Kidd, M. F.; Knecht, A.; Kochetov, Oleg; Konovalov, S.; Kouzes, Richard T.; LaRoque, B. H.; Leviner, L.; Loach, J. C.; Luke, P.; MacMullin, S.; Marino, Michael G.; Martin, R. D.; Medlin, D.; Mei, Dong-Ming; Miley, Harry S.; Miller, M. L.; Mizouni, Leila; Myers, Allan W.; Nomachi, Masaharu; Orrell, John L.; Peterson, David; Phillips, D.; Poon, Alan; Perevozchikov, O.; Perumpilly, Gopakumar; Prior, Gersende; Radford, D. C.; Reid, Douglas J.; Rielage, Keith; Robertson, R. G. H.; Rodriguez, Larry; Ronquest, M. C.; Salazar, Harold; Schubert, Alexis G.; Shima, T.; Shirchenko, M.; Sobolev, V.; Steele, David; Strain, J.; Swift, Gary; Thomas, K.; Timkin, V.; Tornow, W.; Van Wechel, T. D.; Vanyushin, I.; Varner, R. L.; Vetter, Kai; Vorren, Kris R.; Wilkerson, J. F.; Wolfe, B. A.; Xiang, W.; Yakushev, E.; Yaver, Harold; Young, A.; Yu, Chang-Hong; Yumatov, V.; Zhang, C.

    2011-08-01

    The Majorana Collaboration is assembling an array of HPGe detectors to search for neutrinoless double-beta decay in 76Ge. Initially, Majorana aims to construct a prototype module to demonstrate the potential of a future 1-tonne experiment. The design and potential reach of this prototype Demonstrator module are presented.

  17. The MAJORANA Experiment

    SciTech Connect

    Guiseppe, V.E.; Keller, C.; Mei, D-M; Perevozchikov, O.; Perumpilly, G.; Thomas, K.; Xiang, W.; Zhang, C.; Aalseth, C.E.; Aguayo, E.; Ely, J.; Fast, J.E.; Hoppe, E.W.; Hossbach, T.W.; Keillor, M.; Kephart, J.D.; Kouzes, R.; Miley, H.S.; Mizouni, L.; Myers, A.W.; Reid, D.; Amman, M.; Bergevin, M.; Chan, Y-D; Detwiler, J.A.; Loach, J.C.; Luke, P.N.; Martin, R.D.; Poon, A.W.P.; Prior, G.; Vetter, K.; Yaver, H.; Avignone, F.T. III; Creswick, R.; Farach, H.; Mizouni, L.; Avignone, Frank Titus; Bertrand Jr, Fred E; Capps, Gregory L; Cooper, Reynold J; Radford, David C; Varner Jr, Robert L; Wilkerson, John F; Yu, Chang-Hong; Back, H.O.; Leviner, L.; Young, A.R.; Back , H.O.; Bai, X.; Hong, H.; Howard, S.; Medlin, D.; Sobolev, V.; Barabash, A.S.; Konovalov, S.I.; Vanyushin, I.; Yumatov, V.; Barbeau, P.S.; Collar, J.I.; Fields, N.; Boswell , M.; Brudanin, V.; Egorov, V.; Gusey, K.; Kochetov, O.; Shirchenko, M.; Timkin, V.; Yakushev, E.; Bugg, W.; Efremenko, M.; Burritt , T.H.; Burritt , T.H.; Busch, M.; Esterline, J.; Swift, G.; Tornow, W.; Hazama, R.; Nomachi, M.; Shima, T.; Finnerty , P.; et al.

    2011-01-01

    The Majorana Collaboration is assembling an array of HPGe detectors to search for neutrinoless double-beta decay in {sup 76}Ge. Initially, Majorana aims to construct a prototype module to demonstrate the potential of a future 1-tonne experiment. The design and potential reach of this prototype Demonstrator module are presented.

  18. Kelp growth experiments

    SciTech Connect

    North, W. J.

    1980-01-01

    Harvest yields obtainable from giant kelp plants that are adequately fertilized were investigated. The following topics are discussed: desirable characteristics in a candidate macroalga, and giant kelp as a candidate macroalga for ocean farming. Nutrient requirements, field experiments, and approaches to acquiring yield data are reviewed. (MHR)

  19. Repair of a Mirror Coating on a Large Optic for High Laser Damage Applications using Ion Milling and Over-Coating Methods.

    DOE PAGES [OSTI]

    Field, Ella Suzanne; Bellum, John Curtis; Kletecka, Damon E.

    2016-06-01

    When an optical coating is damaged, deposited incorrectly, or is otherwise unsuitable, the conventional method to restore the optic often entails repolishing the optic surface, which can incur a large cost and long lead time. We propose three alternative options to repolishing, including (i) burying the unsuitable coating under another optical coating, (ii) using ion milling to etch the unsuitable coating completely from the optic surface, and then recoating the optic, and (iii) using ion milling to etch through a number of unsuitable layers, leaving the rest of the coating intact, and then recoating the layers that were etched. Repairsmore » were made on test optics with dielectric mirror coatings according to the above three options. The mirror coatings to be repaired were quarter wave stacks of HfO2 and SiO2 layers for high reflection at 1054 nm at 45° incidence in P-polarization. One of the coating layers was purposely deposited incorrectly as Hf metal instead of HfO2 to evaluate the ability of each repair method to restore the coating’s high laser-induced damage threshold (LIDT) of 64.0 J/cm2. Finally, the repaired coating with the highest resistance to laser-induced damage was achieved using repair method (ii) with an LIDT of 49.0 – 61.0 J/cm2.« less

  20. Stirling machine operating experience

    SciTech Connect

    Ross, B.; Dudenhoefer, J.E.

    1991-01-01

    Numerous Stirling machines have been built and operated, but the operating experience of these machines is not well known. It is important to examine this operating experience in detail, because it largely substantiates the claim that Stirling machines are capable of reliable and lengthy lives. The amount of data that exists is impressive, considering that many of the machines that have been built are developmental machines intended to show proof of concept, and were not expected to operate for any lengthy period of time. Some Stirling machines (typically free-piston machines) achieve long life through non-contact bearings, while other Stirling machines (typically kinematic) have achieved long operating lives through regular seal and bearing replacements. In addition to engine and system testing, life testing of critical components is also considered.

  1. Ganges Valley Aerosol Experiment

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Ganges Valley Aerosol Experiment In northeastern India, the fertile land around the Ganges River supports several hundred million people. This river, the largest in India, is fed by monsoon rains and runoff from the nearby Himalayan Mountains. Through an intergovernmental agreement with India, the U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facility deployed its portable laboratory, the ARM Mobile Facility (AMF), to Nainital, India, in June 2011. During

  2. The LUX experiment

    SciTech Connect

    Akerib, D. S.; Araújo, H. M.; Bai, X.; Bailey, A. J.; Balajthy, J.; Bernard, E.; Bernstein, A.; Bradley, A.; Byram, D.; Cahn, S. B.; Carmona-Benitez, M. C.; Chan, C.; Chapman, J. J.; Chiller, A. A.; Chiller, C.; Coffey, T.; Currie, A.; de Viveiros, L.; Dobi, A.; Dobson, J.; Druszkiewicz, E.; Edwards, B.; Faham, C. H.; Fiorucci, S.; Flores, C.; Gaitskell, R. J.; Gehman, V. M.; Ghag, C.; Gibson, K. R.; Gilchriese, M. G. D.; Hall, C.; Hertel, S. A.; Horn, M.; Huang, D. Q.; Ihm, M.; Jacobsen, R. G.; Kazkaz, K.; Knoche, R.; Larsen, N. A.; Lee, C.; Lindote, A.; Lopes, M. I.; Malling, D. C.; Mannino, R.; McKinsey, D. N.; Mei, D. -M.; Mock, J.; Moongweluwan, M.; Morad, J.; Murphy, A. St.J.; Nehrkorn, C.; Nelson, H.; Neves, F.; Ott, R. A.; Pangilinan, M.; Parker, P. D.; Pease, E. K.; Pech, K.; Phelps, P.; Reichhart, L.; Shutt, T.; Silva, C.; Solovov, V. N.; Sorensen, P.; O'Sullivan, K.; Sumner, T. J.; Szydagis, M.; Taylor, D.; Tennyson, B.; Tiedt, D. R.; Tripathi, M.; Uvarov, S.; Verbus, J. R.; Walsh, N.; Webb, R.; White, J. T.; Witherell, M. S.; Wolfs, F. L.H.; Woods, M.; Zhang, C.

    2015-03-24

    We present the status and prospects of the LUX experiment, which employs approximately 300 kg of two-phase xenon to search for WIMP dark matter interactions. The LUX detector was commissioned at the surface laboratory of the Sanford Underground Research Facility in Lead, SD, between December 2011 and February 2012 and the detector has been operating underground since January, 2013. These proceedings review the results of the commissioning run as well as the status of underground data-taking.

  3. Booster Neutrino Experiment - Introduction

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    back The MiniBooNE Experiment next The Oscillating Neutrino Normal matter is made of atoms. Atoms are also composite objects, made up in turn of protons and neutrons (in the nucleus) and the lightweight and familiar electrons. Electrons belong to a class of particles called leptons, the same family to which neutrinos belong. Neutrinos are the very lightweight (originally thought massless) neutral partners of the electrically charged electron and its more exotic cousins the muon and the tau.

  4. CASL Test Stand Experience

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Industry Test Stand Experience Stephen Hess, EPRI Heather Feldman, EPRI Brenden Mervin, EPRI Martin Pytel, EPRI Rose Montgomery, TVA Bill Bird, TVA Fausto Franceschini, Westinghouse Electric Company LLC Advanced Modeling Applications 28 March 2014 CASL-U-2014-0036-000 Consortium for Advanced Simulation of LWRs ii CASL-U-2014-0036-000 REVISION LOG Revision Date Affected Pages Revision Description 0 3/28/2014 All Original Report Document pages that are: Export Controlled

  5. Experiments in sideband suppression on the Los Alamos National Laboratory Free-Electron Laser

    SciTech Connect

    White, C.J.; Coyle, M.R.; Paxton, A.H. (Mission Research Corp., Albuquerque, NM (United States). Laser and Optical R and D Group); O'Shea, P.G.; Bender, S.C.; Byrd, D.A.; Feldman, D.W.; Goldstein, J.C.: Pitcher, E.J.; Zaugg, T.J. (Los Alamos National Lab., NM (United States))

    1993-01-01

    Two versions of the Phase-Step Mirror'' (PSM), a novel optical component that prevents the formation of sidebands in a Free-Electron Laser (FEL) were tested on the Los Alamos National Laboratory (LANL) APEX FEL. Sideband suppression and frequency control with high extraction efficiency and single line, transform limited operation were demonstrated. The results of our LANL experiments and computer simulations showed that for very high gain applications, the first-order sideband is completely suppressed, but the laser gain is so strong that on about pass 300 the sideband at the second-order or next free spectral range of the PSM appears. This second-order sideband may be suppressed by designing a PSM with grooves having two alternating depths, one chosen to suppress the first-order sideband, and the other, the second-order sideband.

  6. Experiments in sideband suppression on the Los Alamos National Laboratory Free-Electron Laser

    SciTech Connect

    White, C.J.; Coyle, M.R.; Paxton, A.H. [Mission Research Corp., Albuquerque, NM (United States). Laser and Optical R and D Group; O`Shea, P.G.; Bender, S.C.; Byrd, D.A.; Feldman, D.W.; Goldstein, J.C.: Pitcher, E.J.; Zaugg, T.J. [Los Alamos National Lab., NM (United States)

    1993-06-01

    Two versions of the ``Phase-Step Mirror`` (PSM), a novel optical component that prevents the formation of sidebands in a Free-Electron Laser (FEL) were tested on the Los Alamos National Laboratory (LANL) APEX FEL. Sideband suppression and frequency control with high extraction efficiency and single line, transform limited operation were demonstrated. The results of our LANL experiments and computer simulations showed that for very high gain applications, the first-order sideband is completely suppressed, but the laser gain is so strong that on about pass 300 the sideband at the second-order or next free spectral range of the PSM appears. This second-order sideband may be suppressed by designing a PSM with grooves having two alternating depths, one chosen to suppress the first-order sideband, and the other, the second-order sideband.

  7. Spectrometer for X-ray emission experiments at FERMI free-electron-laser

    SciTech Connect

    Poletto, L. Frassetto, F.; Miotti, P.; Di Cicco, A.; Iesari, F.; Finetti, P.; Grazioli, C.; Kivimäki, A.; Stagira, S.; Coreno, M.

    2014-10-15

    A portable and compact photon spectrometer to be used for photon in-photon out experiments, in particular x-ray emission spectroscopy, is presented. The instrument operates in the 25–800 eV energy range to cover the full emissions of the FEL1 and FEL2 stages of FERMI. The optical design consists of two interchangeable spherical varied-lined-spaced gratings and a CCD detector. Different input sections can be accommodated, with/without an entrance slit and with/without an additional relay mirror, that allow to mount the spectrometer in different end-stations and at variable distances from the target area both at synchrotron and at free-electron-laser beamlines. The characterization on the Gas Phase beamline at ELETTRA Synchrotron (Italy) is presented.

  8. SU-E-T-383: Can Stereotactic Body Radiotherapy Mimic the Dose Distribution of High-Dose-Rate Tandem and Ovoids/ring Brachytherapy?

    SciTech Connect

    Park, S; Demanes, J; Kamrava, M; Scanderbeg, D

    2014-06-01

    Purpose: To investigate whether stereotactic body radiotherapy (SBRT) using volumetric modulated arc therapy (VMAT) can mimic the dosimetry of tandem and ovoids/ring brachytherapy. Methods: We selected 5 patients treated with 3D-CT based high-dose rate (HDR) brachytherapy using 4 tandem and ovoid and 1 tandem and ring case. Manual optimization based on the Manchester system followed by graphical optimization (Nucletron Oncentra MasterPlan or Varian BrachyVision) was performed to deliver 6.0 Gy per fraction to a high-risk CTV while maintaining dose to organs at risk (OAR) below the ABS recommendations. For theoretical SBRT plans, CT images and OAR contours from the HDR plans were imported into Eclipse (Varian). The SBRT plan was created to mimic the heterogeneity of HDR plans by using a simultaneous integrated boost technique to match the V100, V150, and V200 isodose volumes from HDR. The OAR Dmax from HDR was used to define the OAR dose constraints for SBRT. Target coverage, dose spill-out, and OAR doses (D0.1cc, D1cc, and D2cc) between the HDR and SBRT plans were compared for significance using a two-tail paired ttest. Results: The mean isodose volumes for HDR vs. SBRT were 29.4 cc vs. 29.0 cc (V200, p = 0.674), 49.2 cc vs. 56.3 cc (V150, p = 0.017), 95.4 cc vs. 127.7 cc (V100, p = 0.001), and 271.9 cc vs. 581.6 cc (V50, p = 0.001). The D2cc to OAR for HDR vs. SBRT was 71.6% vs. 96.2% (bladder, p = 0.002), 69.2% vs. 101.7% (rectum, p = 0.0003), and 56.9% vs. 68.6% (sigmoid, p = 0.004). Conclusion: SBRT with VMAT can provide similar dose target coverage (V200), but dose spill-out and doses to OAR were statistically significantly higher than HDR. This study clearly demonstrated that brachytherapy can not be substituted with SBRT in gynecologic cervical cancer treatment.

  9. 2169 steel waveform experiments.

    SciTech Connect

    Furnish, Michael David; Alexander, C. Scott; Reinhart, William Dodd; Brown, Justin L.

    2012-11-01

    In support of LLNL efforts to develop multiscale models of a variety of materials, we have performed a set of eight gas gun impact experiments on 2169 steel (21% Cr, 6% Ni, 9% Mn, balance predominantly Fe). These experiments provided carefully controlled shock, reshock and release velocimetry data, with initial shock stresses ranging from 10 to 50 GPa (particle velocities from 0.25 to 1.05 km/s). Both windowed and free-surface measurements were included in this experiment set to increase the utility of the data set, as were samples ranging in thickness from 1 to 5 mm. Target physical phenomena included the elastic/plastic transition (Hugoniot elastic limit), the Hugoniot, any phase transition phenomena, and the release path (windowed and free-surface). The Hugoniot was found to be nearly linear, with no indications of the Fe - phase transition. Releases were non-hysteretic, and relatively consistent between 3- and 5-mm-thick samples (the 3 mm samples giving slightly lower wavespeeds on release). Reshock tests with explosively welded impactors produced clean results; those with glue bonds showed transient releases prior to the arrival of the reshock, reducing their usefulness for deriving strength information. The free-surface samples, which were steps on a single piece of steel, showed lower wavespeeds for thin (1 mm) samples than for thicker (2 or 4 mm) samples. A configuration used for the last three shots allows release information to be determined from these free surface samples. The sample strength appears to increase with stress from ~1 GPa to ~ 3 GPa over this range, consistent with other recent work but about 40% above the Steinberg model.

  10. Lower Hybrid Experiments

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Lower Hybrid Experiments on MST M.C. Kaufman, J.A. Goetz, M.A. Thomas, D.R. Burke and D.J. Clayton Department of Physics, University of Wisconsin, Madision, WI 53706 Abstract. Current drive using RF waves has been proposed as a means to reduce the tearing fluctuations responsible for anomalous energy transport in the RFP. A traveling wave antenna op- erating at 800 MHz is being used to launch lower hybrid waves into MST to assess the feasibility of this approach. Parameter studies show that edge

  11. Fundamental experiments in velocimetry

    SciTech Connect

    Briggs, Matthew Ellsworth; Hull, Larry; Shinas, Michael

    2009-01-01

    One can understand what velocimetry does and does not measure by understanding a few fundamental experiments. Photon Doppler Velocimetry (PDV) is an interferometer that will produce fringe shifts when the length of one of the legs changes, so we might expect the fringes to change whenever the distance from the probe to the target changes. However, by making PDV measurements of tilted moving surfaces, we have shown that fringe shifts from diffuse surfaces are actually measured only from the changes caused by the component of velocity along the beam. This is an important simplification in the interpretation of PDV results, arising because surface roughness randomizes the scattered phases.

  12. Stirling machine operating experience

    SciTech Connect

    Ross, B.; Dudenhoefer, J.E.

    1994-09-01

    Numerous Stirling machines have been built and operated, but the operating experience of these machines is not well known. It is important to examine this operating experience in detail, because it largely substantiates the claim that stirling machines are capable of reliable and lengthy operating lives. The amount of data that exists is impressive, considering that many of the machines that have been built are developmental machines intended to show proof of concept, and are not expected to operate for lengthy periods of time. Some Stirling machines (typically free-piston machines) achieve long life through non-contact bearings, while other Stirling machines (typically kinematic) have achieved long operating lives through regular seal and bearing replacements. In addition to engine and system testing, life testing of critical components is also considered. The record in this paper is not complete, due to the reluctance of some organizations to release operational data and because several organizations were not contacted. The authors intend to repeat this assessment in three years, hoping for even greater participation.

  13. Single, stretched membrane, structural module experiments

    SciTech Connect

    Wood, R.L.

    1986-02-01

    This report describes tests done on stretched-membrane heliostats used to reflect solar radiation onto a central receiver. The tests were used to validate prior analysis and mathematical models developed to describe module performance. The modules tested were three meters in diameter and had reflective polymer film laminated to the membrane. The frames were supported at three points equally spaced around the ring. Three modules were pneumatically attached with their weight suspended at the bottom support, two were pneumatically attached with their weight suspended from the upper mounts, and one was rigidly attached with its weight suspended at the bottom mount. By varying the membrane tension we could simulate a uniform wind loading normal to the mirror's surface. A video camera 15+ meters away from the mirror recorded the virtual image of a target grid as reflected by the mirrors' surface. The image was digitized and stored on a microcomputer. Using the law of reflection and analytic geometry, we computed the surface slopes of a sampling of points on the surface. The dominant module response was consistent with prior SERI analyses. The simple analytical model is quite adequate for designing and sizing single-membrane modules if the initial imperfections and their amplification are appropriately controlled. To avoid potential problems resulting from the fundamentally n = 2 deformation phenomena, we advise using either relatively stiffer ring frames or more than three support points.

  14. Laboratory-size three-dimensional x-ray microscope with Wolter type I mirror optics and an electron-impact water window x-ray source

    SciTech Connect

    Ohsuka, Shinji; Ohba, Akira; Onoda, Shinobu; Nakamoto, Katsuhiro; Nakano, Tomoyasu; Miyoshi, Motosuke; Soda, Keita; Hamakubo, Takao

    2014-09-15

    We constructed a laboratory-size three-dimensional water window x-ray microscope that combines wide-field transmission x-ray microscopy with tomographic reconstruction techniques, and observed bio-medical samples to evaluate its applicability to life science research fields. It consists of a condenser and an objective grazing incidence Wolter type I mirror, an electron-impact type oxygen Kα x-ray source, and a back-illuminated CCD for x-ray imaging. A spatial resolution limit of around 1.0 line pairs per micrometer was obtained for two-dimensional transmission images, and 1-μm scale three-dimensional fine structures were resolved.

  15. Top-emission Si-based phosphor organic light emitting diode with Au doped ultrathin n-Si film anode and bottom Al mirror

    SciTech Connect

    Li, Y. Z.; Xu, W. J.; Ran, G. Z. [State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871 (China); Qin, G. G. [State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871 (China); Key Lab of Semiconductor Materials, CAS, Beijing 100083 (China)

    2009-07-20

    We report a highly efficient top-emission Si-based phosphor organic light emitting diode (PhOLED) with an ultrathin polycrystalline n-Si:Au film anode and a bottom Al mirror. This anode is formed by magnetron sputtering followed by Ni induced crystallization and then Au diffusion. By optimizing the thickness of the n-Si:Au film anode, the Au diffusion temperature, and the other parameters of the PhOLED, the highest current and power efficiencies of the n-Si:Au film anode PhOLED reached 85{+-}9 cd/A and 80{+-}8 lm/W, respectively, corresponding to an external quantum efficiency of 21{+-}2% and a power conversion efficiency of 15{+-}2%, respectively, which are about 60% and 110% higher than those of the indium tin oxide anode counterpart and 70% and 50% higher than those of the bulk n{sup +}-Si:Au anode counterpart, respectively.

  16. Thermo-mechanical analysis of ITER first mirrors and its use for the ITER equatorial visible/infrared wide angle viewing system optical design

    SciTech Connect

    Joanny, M.; Salasca, S.; Dapena, M.; Cantone, B.; Travere, J. M.; Thellier, C.; Ferme, J. J.; Marot, L.; Buravand, O.; Perrollaz, G.; Zeile, C.

    2012-10-15

    ITER first mirrors (FMs), as the first components of most ITER optical diagnostics, will be exposed to high plasma radiation flux and neutron load. To reduce the FMs heating and optical surface deformation induced during ITER operation, the use of relevant materials and cooling system are foreseen. The calculations led on different materials and FMs designs and geometries (100 mm and 200 mm) show that the use of CuCrZr and TZM, and a complex integrated cooling system can limit efficiently the FMs heating and reduce their optical surface deformation under plasma radiation flux and neutron load. These investigations were used to evaluate, for the ITER equatorial port visible/infrared wide angle viewing system, the impact of the FMs properties change during operation on the instrument main optical performances. The results obtained are presented and discussed.

  17. A laser gyro with a four-mirror square resonator: formulas for simulating the dynamics of the synchronisation zone parameters of the frequencies of counterpropagating waves during the device operation in the self-heating regime

    SciTech Connect

    Bondarenko, E A

    2014-04-28

    For a laser gyro with a four-mirror square resonator we have developed a mathematical model, which allows one to simulate the temporal behaviour of the synchronisation zone parameters of the frequencies of counterpropagating waves in a situation when the device operates in the self-heating regime and is switched-on at different initial temperatures. (laser gyroscopes)

  18. HPCToolsExperiences.pptx

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Experiences w ith T ools a t N ERSC Richard G erber NERSC User Services Programming w eather, c limate, a nd e arth---system m odels on h eterogeneous m ul>---core p la?orms September 7 , 2 011 a t t he N a>onal C enter f or A tmospheric R esearch i n B oulder, C olorado 2 * Thanks f or t he i nvita>on * My p rofessional g oal i s t o e nable s cien>sts t o u se H PC easily a nd e ffec>vely * Contribute t o i mportant d iscoveries a bout h ow o ur natural w orld w orks * Make a d

  19. The PANTHER User Experience

    SciTech Connect

    Coram, Jamie L.; Morrow, James D.; Perkins, David Nikolaus

    2015-09-01

    This document describes the PANTHER R&D Application, a proof-of-concept user interface application developed under the PANTHER Grand Challenge LDRD. The purpose of the application is to explore interaction models for graph analytics, drive algorithmic improvements from an end-user point of view, and support demonstration of PANTHER technologies to potential customers. The R&D Application implements a graph-centric interaction model that exposes analysts to the algorithms contained within the GeoGraphy graph analytics library. Users define geospatial-temporal semantic graph queries by constructing search templates based on nodes, edges, and the constraints among them. Users then analyze the results of the queries using both geo-spatial and temporal visualizations. Development of this application has made user experience an explicit driver for project and algorithmic level decisions that will affect how analysts one day make use of PANTHER technologies.

  20. Programs for Assembling SBH Experiments

    Energy Science and Technology Software Center

    1995-11-28

    DB EXP ASSEMBLY is a suite of programs that enable selection of bundles of data, which are referred to as experiments, from the DB SBH archival database. In other words, an experiment is a bundle of data which is analyzed as a unit. Program DBJ creates raw experiments based on initial specification. Program DBK then tests the experiments for a number of consistemcy and completeness criteria, reports bugs in the experiment and recommends solutions, andmore » performs the desired corrections. An experiment that has passed the final DBK test is ready for analysis by the DB DISCOVERY programs.« less

  1. The polarized SRF gun experiment

    SciTech Connect

    Kewisch,J.; Ben-Zvi, I.; Rao, T.; Burrill, A.; Pate, D.; Todd, R.; Wang, E.; Bluem, H.; Holmes, D.; Shultheiss, T.

    2008-10-01

    An experiment is under way to prove the feasibility of a super-conducting RF gun for the production of polarized electrons. We report on the progress of the experiment and on simulations predicting the possibility of success.

  2. Subterranean stress engineering experiments

    SciTech Connect

    Campbell, J.R.; Colgate, S.A.; Wheat, B.M.

    1980-01-01

    The state of stress in a subterranean rock mass has classically been assumed to be constant at best. In soil with a high clay content, preconsolidation and drainage methods can lead to more stable foundation material, but methods for engineering the stresses in large masses of rock are not well known. This paper shows the results from an experiment designed to alter the in situ rock stress field in an oil shale mine. This was done by hydrofracturing the rock by use of a packed-well injection system and then propping the crack open with a thixotropic gel, which slowly hardened to the consistency of cement. Successive hydrofracture and high-pressure grouting resulted in an overstressed region. Well-head injection pressures, surface tilts, injection rates, and subterranean strains were measured and recorded on floppy disk by a Z-80 microprocessor. The results were then transmitted to the large computer system at the Los Alamos Scientific Laboratory (LASL). To put the data in a more useful form, computer-generated movies of the tilts and strains were made by use of computer graphics developed at LASL. The purpose of this paper is to present results from the Single Large Instrumented Test conducted in the Colony Oil Shale Mine near Rifle, Colorado. 13 figures.

  3. Spheres of public conversation: Experiences in strategic environmental assessment

    SciTech Connect

    Illsley, Barbara; Jackson, Tony; Deasley, Neil

    2014-01-15

    This paper draws on earlier research, a national review of Scottish SEA practice and a survey of practitioners and stakeholders engaged in SEA and spatial planning in one Scottish city-region, to explore claims being made in the academic literature for Strategic Environmental Assessment (SEA) as a tool for deliberative plan-making. We consider whether there is evidence that Scottish SEA practice is helping create more inclusive plan-making processes in light of recent legislative changes, thereby fulfilling one of the expectations of Scottish Government. The macro analysis found that although there are opportunities for stakeholders to engage in the Scottish SEA process the level in practice is extremely low, a finding which mirrors experience in England and elsewhere. The more detailed micro analysis reveals a more nuanced picture within the spatial planning system, however, suggesting the existence of two distinct spheres of public conversations, one characterised by active dialogue about the environmental effects of alternative strategies amongst public sector stakeholders and the other involving non-governmental stakeholders and community groups in a much more limited way. The paper concludes with a discussion of possible explanations for this outcome, concerning asymmetric incentive structures and the application of power, and a consideration of the implications in relation to the competing discourses of SEA. -- Highlights: We examine the extent to which Scottish SEA is helping promote inclusive plan-making. Low levels of stakeholder engagement generally in Scottish SEA. Stronger SEA dialogue amongst public agencies than with the wider community. Importance of incentive structures and power capture in framing SEA public conversations.

  4. Impact of laser-contaminant interaction on the performance of the protective capping layer of 1w high-reflection mirror coatings

    DOE PAGES [OSTI]

    Qiu, S. R.; Norton, M. A.; Raman, R. N.; Rubenchik, A. M.; Boley, C. D.; Rigatti, A.; Mirkarimi, P. B.; Stolz, C. J.; Matthews, M. J.

    2015-10-02

    In this paper, high dielectric constant multilayer coatings are commonly used on high-reflection mirrors for high-peak-power laser systems because of their high laser-damage resistance. However, surface contaminants often lead to damage upon laser exposure, thus limiting the mirror’s lifetime and performance. One plausible approach to improve the overall mirror resistance against laser damage, including that induced by laser-contaminant coupling, is to coat the multilayers with a thin protective capping (absentee) layer on top of the multilayer coatings. An understanding of the underlying mechanism by which laser-particle interaction leads to capping layer damage is important for the rational design and selectionmore » of capping materials of high-reflection multilayer coatings. In this paper, we examine the responses of two candidate capping layer materials, made of SiO2 and Al2O3, over silica-hafnia multilayer coatings. These are exposed to a single oblique shot of a 1053 nm laser beam (fluence ~10 J/cm2, pulse length 14 ns), in the presence of Ti particles on the surface. We find that the two capping layers show markedly different responses to the laser-particle interaction. The Al2O3 cap layer exhibits severe damage, with the capping layer becoming completely delaminated at the particle locations. The SiO2 capping layer, on the other hand, is only mildly modified by a shallow depression. Combining the observations with optical modeling and thermal/mechanical calculations, we argue that a high-temperature thermal field from plasma generated by the laser-particle interaction above a critical fluence is responsible for the surface modification of each capping layer. The great difference in damage behavior is mainly attributed to the large disparity in the thermal expansion coefficient of the two capping materials, with that of Al2O3 layer being about 15 times greater than that of SiO2.« less

  5. Impact of laser-contaminant interaction on the performance of the protective capping layer of 1w high-reflection mirror coatings

    SciTech Connect

    Qiu, S. R.; Norton, M. A.; Raman, R. N.; Rubenchik, A. M.; Boley, C. D.; Rigatti, A.; Mirkarimi, P. B.; Stolz, C. J.; Matthews, M. J.

    2015-10-02

    In this paper, high dielectric constant multilayer coatings are commonly used on high-reflection mirrors for high-peak-power laser systems because of their high laser-damage resistance. However, surface contaminants often lead to damage upon laser exposure, thus limiting the mirror’s lifetime and performance. One plausible approach to improve the overall mirror resistance against laser damage, including that induced by laser-contaminant coupling, is to coat the multilayers with a thin protective capping (absentee) layer on top of the multilayer coatings. An understanding of the underlying mechanism by which laser-particle interaction leads to capping layer damage is important for the rational design and selection of capping materials of high-reflection multilayer coatings. In this paper, we examine the responses of two candidate capping layer materials, made of SiO2 and Al2O3, over silica-hafnia multilayer coatings. These are exposed to a single oblique shot of a 1053 nm laser beam (fluence ~10 J/cm2, pulse length 14 ns), in the presence of Ti particles on the surface. We find that the two capping layers show markedly different responses to the laser-particle interaction. The Al2O3 cap layer exhibits severe damage, with the capping layer becoming completely delaminated at the particle locations. The SiO2 capping layer, on the other hand, is only mildly modified by a shallow depression. Combining the observations with optical modeling and thermal/mechanical calculations, we argue that a high-temperature thermal field from plasma generated by the laser-particle interaction above a critical fluence is responsible for the surface modification of each capping layer. The great difference in damage behavior is mainly attributed to the large disparity in the thermal expansion coefficient of the two capping materials, with that of Al2O3 layer being about 15 times greater

  6. The blob crashes into the mirror: modeling the exceptional γ-ray flaring activity of 3C 454.3 in 2010 November

    SciTech Connect

    Vittorini, V.; Tavani, M.; Vercellone, S.

    2014-10-01

    3C 454.3 is a prominent flat-spectrum radio quasar that in recent years attracted considerable attention because of its variable high-energy emissions. In this paper, we focus on the exceptional flaring activity of 3C 454.3 that was detected by AGILE and by Fermi-LAT in 2010 November. In the light of the time-varying data ranging from the radio, optical, and X-ray up to GeV γ-ray bands, we discuss a theoretical framework addressing all data in their overall evolution. For two weeks, the source has shown a plateau of enhanced GeV emission preceding a sudden major flare lasting about three days before decaying. The γ-ray flare onset is abrupt (about six hours), and is characterized by a prominent 'Compton dominance' with the GeV flux exceeding the pre-flare values by a factor of four to five. During this episode, the optical and X-ray fluxes increased by a factor of around two. Within the standard framework of a jet launched with a Lorentz bulk factor Γ ∼ 10 from a central black hole, we explore the yields of two alternatives. Case 1, with high-energy emission originating within the broad line region (BLR); and Case 2, with most of it produced outside at larger distances of a few parsecs. We show that Case 1 has considerable problems in explaining the whole set of multifrequency data. Case 2, instead, leads to a consistent and interesting interpretation based on the enhanced inverse Compton radiation that is produced as the jet crashes onto a mirror cloud positioned at parsec scales. This model explains the γ-ray versus optical/X-ray behavior of 3C 454.3, including the otherwise puzzling phenomena such as the prominent 'rphan' optical flare, and the enhanced line emission with no appreciable γ-ray counterpart that preceded the GeV γ-ray flare. It also accounts for the delayed onset of the latter on top of the long plateau. Our modeling of the exceptional 3C 454.3 γ-ray flare shows that while emission inside the canonical BLR is problematic, major and rapid

  7. Evaluation of the DHCE Experiment

    SciTech Connect

    Greenwood, Lawrence R.; Baldwin, David L.; Hollenberg, Glenn W.; Kurtz, Richard J.

    2002-03-31

    The Dynamic Helium Charging Experiment (DHCE) experiment was conducted in the Fast Flux Test Facility (FFTF) during cycle 12, which was completed in 1992. The purpose of the experiment was to enhance helium generation in vanadium alloys to simulate fusion reactor helium-to-dpa ratios with a target goal of 4-5 appm He/dpa. The Fusion Materials Science Program is considering mounting another experiment in hopes of gathering additional data on the effect of helium on the mechanical and physical properties of vanadium structural materials. Pacific Northwest National Laboratory was assigned the task of evaluating the feasibility of conducting another DHCE experiment by carefully evaluating the results obtained of the first DHCE experiment. This report summarizes the results of our evaluation and presents recommendations for consideration by the Materials Science Coordinators Organization.

  8. Results from Neutrino Oscillations Experiments

    SciTech Connect

    Aguilar-Arevalo, Alexis

    2010-09-10

    The interpretation of the results of early solar and atmospheric neutrino experiments in terms of neutrino oscillations has been verified by several recent experiments using both, natural and man-made sources. The observations provide compelling evidence in favor of the existence of neutrino masses and mixings. These proceedings give a general description of the results from neutrino oscillation experiments, the current status of the field, and some possible future developments.

  9. ORISE: Graduate Student Research Experiences

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Graduate Student Research Experiences The Oak Ridge Institute for Science and Education (ORISE) provides well-rounded laboratory experiences that expand graduate students' expertise beyond the traditional university setting. Some graduate students come to ORISE looking for the right setting to conduct their thesis research; some are master's students preparing to pursue their doctorates; some are looking for a program to help fund their education; others seek or a short-term experience, like a

  10. Turner-Fairbank Scour Experiments

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    real scour 1 Turner-Fairbank Pressure Scour Flow Experiments TRACC RESEARCH Computational Fluid Dynamics Computational Structural Mechanics Transportation Systems Modeling Three dimensional data from bridge deck pressure flow scour experiments under clear water conditions conducted at the Federal Highway Administration's (FHWA) Turner-Fairbank Highway Research Center (TFHRC) J. Sterling Jones Hydraulics Laboratory. The experiments included 3 girder, 6 girder, and streamlined scale bridge decks,

  11. ARM West Antarctic Radiation Experiment

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    West Antarctic Radiation Experiment of the most advanced atmospheric research ... From the fall of 2015 to early 2017, the Atmospheric Radiation Measurement (ARM) West ...

  12. AMIE (ACRF MJO Investigation Experiment)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    AMIE (ACRF MJO Investigation Experiment) Planning Meeting AMIE Science Steering Committee Chuck Long, Tony DelGenio, Bill Gustafson, Bob Houze, Mike Jensen, Steve Klein, Ruby...

  13. Booster Neutrino Experiment - About Neutrinos

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    from major neutrino experiments and important results in neutrino physics. Includes java applets. Janet's Neutrino Oscillation Page More extensive material about neutrino...

  14. LANSCE | User Resources | Experiment Reports

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Experiment Reports For experiment report guidance, examples or a blank form, select one of the following .pdf files: Instructions.pdf Experiment Report Form.pdf Send reports to the LANSCE User Office. Reports are due three months after you receive beam time. If you didn't complete a User Survey during your visit, please do so when you complete your Experiment Report. The responses to the survey are used by LANSCE to identify and address issues and are also reported to the agencies providing

  15. Audit on Subcritical Experiment Activities

    Energy.gov [DOE] (indexed site)

    of nuclear weapon materials, such as plutonium, with the use of complex, high-speed diagnostic instruments. The experiments are subcritical because no critical mass is formed and...

  16. Daya Bay Reactor Neutrino Experiment

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Ao Nuclear Power Plant reactors. The experiment is being built by blasting three kilometers of tunnel through the granite rock under the mountains where the power plants are...

  17. APS Experiment Safety Review System

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    that present minimal hazards common to all beamlines should be submitted at least seven (7) days prior to the scheduled start of the experiment. Additional time is required...

  18. UNIRIB Participant Experiences: Ron Goans

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Goans Ron Goans Ron Goans Ron Goans is a graduate research assistant working on the thesis component of his master's degree in physics while performing experiments at the...

  19. Multi-matrix, dual polarity, tandem mass spectrometry imaging strategy applied to a germinated maize seed: toward mass spectrometry imaging of an untargeted metabolome

    SciTech Connect

    Feenstra, Adam D.; Hansen, Rebecca L.; Lee, Young Jin

    2015-08-27

    Mass spectrometry imaging (MSI) provides high spatial resolution information that is unprecedented in traditional metabolomics analyses; however, the molecular coverage is often limited to a handful of compounds and is insufficient to understand overall metabolomic changes of a biological system. Here, we propose an MSI methodology to increase the diversity of chemical compounds that can be imaged and identified, in order to eventually perform untargeted metabolomic analysis using MSI. We use the desorption/ionization bias of various matrixes for different metabolite classes along with dual polarities and a tandem MSI strategy. The use of multiple matrixes and dual polarities allows us to visualize various classes of compounds, while data-dependent MS/MS spectra acquired in the same MSI scans allow us to identify the compounds directly on the tissue. In a proof of concept application to a germinated corn seed, a total of 166 unique ions were determined to have high-quality MS/MS spectra, without counting structural isomers, of which 52 were identified as unique compounds. According to an estimation based on precursor MSI datasets, we expect over five hundred metabolites could be potentially identified and visualized once all experimental conditions are optimized and an MS/MS library is available. Finally, metabolites involved in the glycolysis pathway and tricarboxylic acid cycle were imaged to demonstrate the potential of this technology to better understand metabolic biology.

  20. Multi-matrix, dual polarity, tandem mass spectrometry imaging strategy applied to a germinated maize seed: toward mass spectrometry imaging of an untargeted metabolome

    DOE PAGES [OSTI]

    Feenstra, Adam D.; Hansen, Rebecca L.; Lee, Young Jin

    2015-08-27

    Mass spectrometry imaging (MSI) provides high spatial resolution information that is unprecedented in traditional metabolomics analyses; however, the molecular coverage is often limited to a handful of compounds and is insufficient to understand overall metabolomic changes of a biological system. Here, we propose an MSI methodology to increase the diversity of chemical compounds that can be imaged and identified, in order to eventually perform untargeted metabolomic analysis using MSI. We use the desorption/ionization bias of various matrixes for different metabolite classes along with dual polarities and a tandem MSI strategy. The use of multiple matrixes and dual polarities allows usmore » to visualize various classes of compounds, while data-dependent MS/MS spectra acquired in the same MSI scans allow us to identify the compounds directly on the tissue. In a proof of concept application to a germinated corn seed, a total of 166 unique ions were determined to have high-quality MS/MS spectra, without counting structural isomers, of which 52 were identified as unique compounds. According to an estimation based on precursor MSI datasets, we expect over five hundred metabolites could be potentially identified and visualized once all experimental conditions are optimized and an MS/MS library is available. Finally, metabolites involved in the glycolysis pathway and tricarboxylic acid cycle were imaged to demonstrate the potential of this technology to better understand metabolic biology.« less

  1. Experiences on IGSCC crack manufacturing

    SciTech Connect

    Veron, P.

    1997-02-01

    The author presents his experience in manufacturing IGSCC realistic defects, mainly in INCONEL 600 MA Steam Generator Tubes. From that experience he extracts some knowledge about this cracking (influence of chemistry in the environment, stress state, crack growth rate, and occurrence in laboratory condition of break before leak).

  2. Why the Flamingoes?

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    about cams / why the flamingoes Why the Flamingoes? "You Want Flamingoes with That?" As told by Jay Davis - Founding Director of CAMS The story of how the flamingo came to be the symbol of CAMS is simple, but has interesting side turns and byways. In the late 70s and early 80s, I was the operations manager for the Tandem Mirror Experiment (TMX) at LLNL. TMX was a very complicated plasma physics experiments. As a result, the experimental physics team and their engineering support staff

  3. Laser driven hydrodynamic instability experiments

    SciTech Connect

    Remington, B.A.; Weber, S.V.; Haan, S.W.; Kilkenny, J.D.; Glendinning, S.G.; Wallace, R.J.; Goldstein, W.H.; Wilson, B.G.; Nash, J.K.

    1992-12-07

    We have conducted an extensive series of experiments on the Nova laser to measure hydrodynamic instabilities in planar foils accelerated by x-ray ablation. Single mode experiments allow a measurement of the fundamental growth rates from the linear well into the nonlinear regime; multimode foils allow an assessment of the degree of mode coupling; and surface-finish experiments allow a measurement of the evolution of a broad spectrum of random initial modes. Experimental results and comparisons with theory and simulations are presented.

  4. The ATLAS Positron Experiment -- APEX

    SciTech Connect

    Ahmad, I.; Back, B.B.; Betts, R.R.; Dunford, R.; Kutschera, W.; Rhein, M.D.; Schiffer, J.P.; Wilt, P.; Wuosmaa, A.; Austin, S.M.; Kashy, E.; Winfield, J.S.; Yurkon, J.E.; Bazin, D.; Calaprice, F.P.; Young, A.; Chan, K.C.; Chisti, A.; Chowhury, P.; Greenberg, J.S.; Kaloskamis, N.; Lister, C.J.; Fox, J.D.; Roa, E.; Freedman, S.; Maier, M.R.; Freer, M.; Gazes, S.; Hallin, A.L.; Liu, M.; Happ, T.; Perera, A.; Wolfs, F.L.H.; Trainor, T.; Wolanski, M. |

    1994-03-01

    APEX -- the ATLAS Positron Experiment -- is designed to measure electrons and positrons emitted in heavy-ion collisions. Its scientific goal is to gain insight into the puzzling positron-line phenomena observed at the GSI Darmstadt. It is in operation at the ATLAS accelerator at Argonne National Lab. The assembly of the apparatus is finished and beginning 1993 the first positrons produced in heavy-ion collisions were observed. The first full scale experiment was carried out in December 1993, and the data are currently being analyzed. In this paper, the principles of operation are explained and a status report on the experiment is given.

  5. User Experience Research and Statistics

    Energy.gov [DOE]

    To improve your website or application, especially for new projects, EERE strongly recommends, but does not require, conducting user experience (UX) research. We only require that you get the...

  6. ARM Cloud Aerosol Precipitation Experiment

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Experiment a NOAA ship in the Pacific Ocean and on a DOE- sponsored plane over land and sea. These researchers will study: (1) water sources, evolution and structure of...

  7. DOE Corporate Operating Experience Program

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    2011-04-08

    The Order institutes a DOE wide program for the management of operating experience to prevent adverse operating incidents and facilitate the sharing of good work practices among DOE sites. Supersedes DOE O 210.2.

  8. Status of the MINOS Experiment

    SciTech Connect

    Elizabeth Buckley-Geer

    2003-03-17

    We report on the status of the MINOS long baseline neutrino experiment presently under construction at the Fermi National Accelerator Laboratory and the Soudan mine. There is growing evidence that the solar neutrino and atmospheric neutrino anomalies [1] are the result of neutrino oscillations. The MINOS experiment is a long baseline neutrino oscillation experiment designed to study the region of parameter space indicated by the SuperKamiokande atmospheric neutrino results [2]. The experiment consists of two detectors, one with a mass of 980 tons located at Fermilab (the near detector) and the other of mass 5400 tons located 731 km away in the Soudan mine in northern Minnesota (the far detector). The third component is the neutrino beam which is currently under construction at Fermilab.

  9. User Experience Research Online Tools

    Energy.gov [DOE]

    The Office of Energy Efficiency and Renewable Energy (EERE) has a variety of online tools to help you conduct user experience (UX) research. The following tools are free for use by staff and contractors who work on the EERE website.

  10. Fellowships, Appointments and the Postdoctoral Experience | Argonne...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Experience Fellowships, Appointments and the Postdoctoral Experience Early career STEM professionals may join Argonne as Distinguished Fellows or Divisional Postdoctoral...

  11. Experiments ✚ Simulations = Better Nuclear Power Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Experiments + Simulations Better Nuclear Power Research Experiments Simulations Better Nuclear Power Research Atomic Level Simulations Enhance Characterization of Radiation ...

  12. Experiences

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    One Cyclotron Road Berkeley, CA, 94720, USA mbalman,epouyoul,yyao,ewbethel,bloring,pra... We also demonstrate climate data movement and analysis over the 100Gbps network. We ...

  13. Experiments

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... CRF Experimental Reacting Flow research is focused on revealing and understanding the interactions between fluid dynamics, molecular transport, and combustion chemistry in flames. ...

  14. The MINERvA Experiment

    SciTech Connect

    Harris, Deborah A.; Kopp, Sacha; /Fermilab

    2011-03-18

    The MINERvA experiment is a dedicated cross-section experiment whose aim is to measure neutrino cross sections for inclusive and exclusive final states on several nuclei. The detector is fully commissioned and began running in March 2010. As a dedicated cross-section experiment, MINERvA has a particular need to know the incident neutrino flux: both the absolute level and the energy dependence. In these proceedings we describe the MINERvA detector, give an update on the experimental status, and discuss the means to determine the neutrino flux. The MINERvA experiment is now running and has completed 25% of its full Low Energy run. There are various techniques planned for understanding the flux, including taking neutrino data at several different beam configurations. The experiment has gotten a first glimpse of two of the six configurations, and completed four horn current scans. Because of its exclusive final state reconstruction capabilities MINERvA can provide the much needed input for current and future oscillation experiments. The inclusive final state measurements and comparisons of nuclear effects across as many states as possible will provide new insights into neutrino-nucleus scattering.

  15. Optimizing New Dark Energy Experiments

    SciTech Connect

    Tyson, J. Anthony

    2013-08-26

    Next generation “Stage IV” dark energy experiments under design during this grant, and now under construction, will enable the determination of the properties of dark energy and dark matter to unprecedented precision using multiple complementary probes. The most pressing challenge in these experiments is the characterization and understanding of the systematic errors present within any given experimental configuration and the resulting impact on the accuracy of our constraints on dark energy physics. The DETF and the P5 panel in their reports recommended “Expanded support for ancillary measurements required for the long-term program and for projects that will improve our understanding and reduction of the dominant systematic measurement errors.” Looking forward to the next generation Stage IV experiments we have developed a program to address the most important potential systematic errors within these experiments. Using data from current facilities it has been feasible and timely to undertake a detailed investigation of the systematic errors. In this DOE grant we studied of the source and impact of the dominant systematic effects in dark energy measurements, and developed new analysis tools and techniques to minimize their impact. Progress under this grant is briefly reviewed in this technical report. This work was a necessary precursor to the coming generations of wide-deep probes of the nature of dark energy and dark matter. The research has already had an impact on improving the efficiencies of all Stage III and IV dark energy experiments.

  16. Solar neutrino experiments: An update

    SciTech Connect

    Hahn, R.L.

    1993-12-31

    The situation in solar neutrino physics has changed drastically in the past few years, so that now there are four neutrino experiments in operation, using different methods to look at different regions of the solar neutrino energy spectrum. These experiments are the radiochemical {sup 37}Cl Homestake detector, the realtime Kamiokande detector, and the different forms of radiochemical {sup 71}Ga detectors used in the GALLEX and SAGE projects. It is noteworthy that all of these experiments report a deficit of observed neutrinos relative to the predictions of standard solar models (although in the case of the gallium detectors, the statistical errors are still relatively large). This paper reviews the basic principles of operation of these neutrino detectors, reports their latest results and discusses some theoretical interpretations. The progress of three realtime neutrino detectors that are currently under construction, SuperKamiok, SNO and Borexino, is also discussed.

  17. Fiber bundle phase conjugate mirror

    DOEpatents

    Ward, Benjamin G.

    2012-05-01

    An improved method and apparatus for passively conjugating the phases of a distorted wavefronts resulting from optical phase mismatch between elements of a fiber laser array are disclosed. A method for passively conjugating a distorted wavefront comprises the steps of: multiplexing a plurality of probe fibers and a bundle pump fiber in a fiber bundle array; passing the multiplexed output from the fiber bundle array through a collimating lens and into one portion of a non-linear medium; passing the output from a pump collection fiber through a focusing lens and into another portion of the non-linear medium so that the output from the pump collection fiber mixes with the multiplexed output from the fiber bundle; adjusting one or more degrees of freedom of one or more of the fiber bundle array, the collimating lens, the focusing lens, the non-linear medium, or the pump collection fiber to produce a standing wave in the non-linear medium.

  18. The Holometer: A Fermilab Experiment

    SciTech Connect

    Chou, Aaron

    2015-12-16

    Do we live in a two-dimensional hologram? A group of Fermilab scientists has designed an experiment to find out. It’s called the Holometer, and this video gives you a behind-the-scenes look at the device that could change the way we see the universe.

  19. DOE Corporate Operating Experience Program

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    2006-06-12

    The Order establishes a DOE wide program for management of operating experience to prevent adverse operating incidents and to expand the sharing of good work practices among DOE sites. Canceled by DOE O 210.2A. Does not cancel other directives.

  20. Soliton molecules: Experiments and optimization

    SciTech Connect

    Mitschke, Fedor

    2014-10-06

    Stable compound states of several fiber-optic solitons have recently been demonstrated. In the first experiment their shape was approximated, for want of a better description, by a sum of Gaussians. Here we discuss an optimization strategy which helps to find preferable shapes so that the generation of radiative background is reduced.