National Library of Energy BETA

Sample records for roughness slope terrain

  1. Geology and slope stability in selected parts of The Geysers geothermal resources area: a guide to geologic features indicative of stable and unstable terrain in areas underlain by Franciscan and related rocks

    SciTech Connect (OSTI)

    Bedrossian, T.L.

    1980-01-01

    The results of a 4-month study of various geologic and topographic features related to the stability of Franciscan terrain in The Geysers GRA are presented. The study consisted of investigations of geologic and topographic features, throughout The Geysers GRA, and geologic mapping at a scale of 1:12,000 of approximately 1500 acres (600 hectares) of landslide terrain within the canyon of Big Sulphur Creek in the vicinity of the Buckeye mine (see plate 1). The area mapped during this study was selected because: (1) it is an area of potential future geothermal development, and (2) it illustrates that large areas mapped as landslides on regional scales (McLaughlin, 1974, 1975b; McNitt, 1968a) may contain zones of varying slope stability and, therefore, should be mapped in more detail prior to development of the land.

  2. Nocturnal flow on a western Colorado slope

    SciTech Connect (OSTI)

    Leone, J.M. Jr.; Gudiksen, P.H.

    1990-04-01

    The Department of Energy sponsored Atomspheric Studies in Complex Terrain (ASCOT) program has conducted a research program designed to increase our knowledge and understanding of terrain-dominated flows with specific emphasis on nocturnal flows within mountain valleys. ASCOT has sponsored both field studies and numerical modeling efforts to improve our understanding of the wind, temperature and turbulence structure of nocturnal drainage flows. One of the most recent ASCOT sponsored field studies involves a study within the Mesa Creek Basin in western Colorado to investigate the seasonal frequency of occurrence of drainage flows along the sloped surfaces and within the basin, and to evaluate the effect of the ambient meteorology on their development. The Mesa Creek Basin, situated on the north slope of the Grand Mesa, encompasses a roughly 10 {times} 20 km area that is approximately 30 km east of Grand Junction. The observational segment of the study was undertaken jointly by the Lawrence Livermore National Laboratory and the NOAA Wave Propagation Laboratory, and involved the operation of network of eight meteorological towers and a monostatic sodar within the Mesa Creek study area over a period of one year that extended from December 1988 through November 1989. These measurements were augmented by tethersonde observations to define the vertical wind and temperature structure during a few nights. The modeling portion of the study is being undertaken by Lawrence Livermore Laboratory using a three-dimensional prognostic boundary layer model to gain further insight into the dynamics of the seasonal variations and the effect of cloud cover on the development of the drainage flows. It is the purpose of this paper to present preliminary results form a numerical simulation done as part of this study. 4 refs., 7 figs.

  3. All-terrain vehicle

    SciTech Connect (OSTI)

    Somerton-Rayner, M.

    1986-12-16

    This patent describes an all-terrain vehicle comprising: a chassis; four road wheel axles equally spaced along the chassis; suspension means mounting the axles on the chassis; wheels mounted adjacent both ends of each of the axles, the wheels on the foremost and the rearmost axles being steerably mounted; propulsion and driving means including a single internal combustion engine and gearbox, and first and second transfer boxes both coupled to be driven by the engine through the gearbox; the first transfer box driving the first and third axles and the second transfer box driving the second and fourth axles; means for driving in the alternative all four wheels and only the center two wheels; power-assisted steering gear means operatively connected to the steerably-mounted wheels of the foremost axle; and steering coupling means extending between the steerably-mounted wheels on the foremost and rearmost axles so dimensioned that upon steering of the front wheels, the rear wheels perform castoring constrained to a smaller turning angle and a lower rate of angular movement than the front wheels.

  4. Large Eddy Simulation of Stable Boundary Layer Turbulent Processes in Complex Terrain

    SciTech Connect (OSTI)

    Eric D. Skyllingstad

    2005-01-26

    Research was performed using a turbulence boundary layer model to study the behavior of cold, dense flows in regions of complex terrain. Results show that flows develop a balance between turbulent entrainment of warm ambient air and dense, cold air created by surface cooling. Flow depth and strength is a function of downslope distance, slope angle and angle changes, and the ambient air temperature.

  5. Terrain-Responsive Atmospheric Code

    Energy Science and Technology Software Center (OSTI)

    1991-11-20

    The Terrain-Responsive Atmospheric Code (TRAC) is a real-time emergency response modeling capability designed to advise Emergency Managers of the path, timing, and projected impacts from an atmospheric release. TRAC evaluates the effects of both radiological and non-radiological hazardous substances, gases and particulates. Using available surface and upper air meteorological information, TRAC realistically treats complex sources and atmospheric conditions, such as those found in mountainous terrain. TRAC calculates atmospheric concentration, deposition, and dose for more thanmore » 25,000 receptor locations within 80 km of the release point. Human-engineered output products support critical decisions on the type, location, and timing of protective actions for workers and the public during an emergency.« less

  6. Rock slope stability

    SciTech Connect (OSTI)

    Kliche, C.A.

    1999-07-01

    Whether you're involved in surface mine design, surface mine production, construction, education, or regulation, this is an important new book for your library. It describes the basic rock slope failure modes and methods of analysis--both kinematic and kinetic techniques. Chapters include geotechnical and geomechanical analysis techniques, hydrology, rock slope stabilization techniques, and geotechnical instrumentation and monitoring. Numerous examples, drawings and photos enhance the text.

  7. ARM North Slope of Alaska

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    sites on the North Slope of Alaska (NSA), to provide data about cloud and radiative ... More Information North Slope of Alaska Website NSA Fact Sheet Visit the North Slope of ...

  8. Microcomputer Spectrum Analysis Models (MSAM) with terrain data base (for microcomputers). Software

    SciTech Connect (OSTI)

    Not Available

    1992-08-01

    The package contains a collection of 14 radio frequency communications engineering and spectrum management programs plus a menu program. An associated terrain elevation data base with 30-second data is provided for the U.S. (less Alaska), Hawaii, Puerto Rico, the Caribbean and border areas of Canada and Mexico. The following programs are included: Bearing/Distance Program (BDIST); Satellite Azimuth Program (SATAZ); Intermodulation Program (INTMOD); NLAMBDA-90 smooth-earth propagation program (NL90); Frequency Dependent Rejection program (FDR); ANNEX I program to evaluate frequency proposals per NTIA Manual (ANNEXI); Antenna Field Intensity program (AFI); Personal Computer Plot 2-D graphics program (PCPLT); Profile 4/3 earth terrain elevation plot program (PROFILE); Horizon radio line-of-sight plot program (HORIZON); Single-Emitter Analysis Mode (SEAM); Terrain Integrated Rough-Earth Model (TIREM); Power Density Display Program to produce power contour map (PDDP); Line-of-Sight antenna coverage map program (SHADO).

  9. Does surface roughness amplify wetting?

    SciTech Connect (OSTI)

    Malijevský, Alexandr

    2014-11-14

    Any solid surface is intrinsically rough on the microscopic scale. In this paper, we study the effect of this roughness on the wetting properties of hydrophilic substrates. Macroscopic arguments, such as those leading to the well-known Wenzel's law, predict that surface roughness should amplify the wetting properties of such adsorbents. We use a fundamental measure density functional theory to demonstrate the opposite effect from roughness for microscopically corrugated surfaces, i.e., wetting is hindered. Based on three independent analyses we show that microscopic surface corrugation increases the wetting temperature or even makes the surface hydrophobic. Since for macroscopically corrugated surfaces the solid texture does indeed amplify wetting there must exist a crossover between two length-scale regimes that are distinguished by opposite response on surface roughening. This demonstrates how deceptive can be efforts to extend the thermodynamical laws beyond their macroscopic territory.

  10. Artificial intelligence technologies applied to terrain analysis

    SciTech Connect (OSTI)

    Wright, J.C. ); Powell, D.R. )

    1990-01-01

    The US Army Training and Doctrine Command is currently developing, in cooperation with Los Alamos National Laboratory, a Corps level combat simulation to support military analytical studies. This model emphasizes high resolution modeling of the command and control processes, with particular attention to architectural considerations that enable extension of the model. A planned future extension is the inclusion of an computer based planning capability for command echelons that can be dynamical invoked during the execution of then model. Command and control is the process through which the activities of military forces are directed, coordinated, and controlled to achieve the stated mission. To perform command and control the commander must understand the mission, perform terrain analysis, understand his own situation and capabilities as well as the enemy situation and his probable actions. To support computer based planning, data structures must be available to support the computer's ability to understand'' the mission, terrain, own capabilities, and enemy situation. The availability of digitized terrain makes it feasible to apply artificial intelligence technologies to emulate the terrain analysis process, producing data structures for uses in planning. The work derived thus for to support the understanding of terrain is the topic of this paper. 13 refs., 5 figs., 6 tabs.

  11. High performance robotic traverse of desert terrain.

    SciTech Connect (OSTI)

    Whittaker, William

    2004-09-01

    This report presents tentative innovations to enable unmanned vehicle guidance for a class of off-road traverse at sustained speeds greater than 30 miles per hour. Analyses and field trials suggest that even greater navigation speeds might be achieved. The performance calls for innovation in mapping, perception, planning and inertial-referenced stabilization of components, hosted aboard capable locomotion. The innovations are motivated by the challenge of autonomous ground vehicle traverse of 250 miles of desert terrain in less than 10 hours, averaging 30 miles per hour. GPS coverage is assumed to be available with localized blackouts. Terrain and vegetation are assumed to be akin to that of the Mojave Desert. This terrain is interlaced with networks of unimproved roads and trails, which are a key to achieving the high performance mapping, planning and navigation that is presented here.

  12. North Slope (Wahluke Slope) expedited response action cleanup plan

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    The purpose of this action is to mitigate any threat to public health and the environment from hazards on the North Slope and meet the expedited response action (ERA) objective of cleanup to a degree requiring no further action. The ERA may be the final remediation of the 100-I-3 Operable Unit. A No Action record of decision (ROD) may be issued after remediation completion. The US Department of Energy (DOE) currently owns or administers approximately 140 mi{sup 2} (about 90,000 acres) of land north and east of the Columbia River (referred to as the North Slope) that is part of the Hanford Site. The North Slope, also commonly known as the Wahluke Slope, was not used for plutonium production or support facilities; it was used for military air defense of the Hanford Site and vicinity. The North Slope contained seven antiaircraft gun emplacements and three Nike-Ajax missile positions. These military positions were vacated in 1960--1961 as the defense requirements at Hanford changed. They were demolished in 1974. Prior to government control in 1943, the North Slope was homesteaded. Since the initiation of this ERA in the summer of 1992, DOE signed the modified Hanford Federal Agreement and Consent Order (Tri-Party Agreement) with the Washington Department of Ecology (Ecology) and the US Environmental Protection Agency (EPA), in which a milestone was set to complete remediation activities and a draft closeout report by October 1994. Remediation activities will make the North Slope area available for future non-DOE uses. Thirty-nine sites have undergone limited characterization to determine if significant environmental hazards exist. This plan documents the results of that characterization and evaluates the potential remediation alternatives.

  13. Electrokinetic transport in microchannels with random roughness

    SciTech Connect (OSTI)

    Wang, Moran [Los Alamos National Laboratory; Kang, Qinjun [Los Alamos National Laboratory

    2008-01-01

    We present a numerical framework to model the electrokinetic transport in microchannels with random roughness. The three-dimensional microstructure of the rough channel is generated by a random generation-growth method with three statistical parameters to control the number density, the total volume fraction, and the anisotropy characteristics of roughness elements. The governing equations for the electrokinetic transport are solved by a high-efficiency lattice Poisson?Boltzmann method in complex geometries. The effects from the geometric characteristics of roughness on the electrokinetic transport in microchannels are therefore modeled and analyzed. For a given total roughness volume fraction, a higher number density leads to a lower fluctuation because of the random factors. The electroosmotic flow rate increases with the roughness number density nearly logarithmically for a given volume fraction of roughness but decreases with the volume fraction for a given roughness number density. When both the volume fraction and the number density of roughness are given, the electroosmotic flow rate is enhanced by the increase of the characteristic length along the external electric field direction but is reduced by that in the direction across the channel. For a given microstructure of the rough microchannel, the electroosmotic flow rate decreases with the Debye length. It is found that the shape resistance of roughness is responsible for the flow rate reduction in the rough channel compared to the smooth channel even for very thin double layers, and hence plays an important role in microchannel electroosmotic flows.

  14. Rainfall-ground movement modelling for natural gas pipelines through landslide terrain

    SciTech Connect (OSTI)

    O`Neil, G.D.; Simmonds, G.R.; Grivas, D.A.; Schultz, B.C.

    1996-12-31

    Perhaps the greatest challenge to geotechnical engineers is to maintain the integrity of pipelines at river crossings where landslide terrain dominates the approach slopes. The current design process at NOVA Gas Transmission Ltd. (NGTL) has developed to the point where this impact can be reasonably estimated using in-house models of pipeline-soil interaction. To date, there has been no method to estimate ground movements within unexplored slopes at the outset of the design process. To address this problem, rainfall and slope instrumentation data have been processed to derive rainfall-ground movement relationships. Early results indicate that the ground movements exhibit two components: a steady, small rate of movement independent of the rainfall, and, increased rates over short periods of time following heavy amounts of rainfall. Evidence exists of a definite threshold value of rainfall which has to be exceeded before any incremental movement is induced. Additional evidence indicates a one-month lag between rainfall and ground movement. While these models are in the preliminary stage, results indicate a potential to estimate ground movements for both initial design and planned maintenance actions.

  15. Wetting properties of molecularly rough surfaces

    SciTech Connect (OSTI)

    Svoboda, Martin; Lísal, Martin; Malijevský, Alexandr

    2015-09-14

    We employ molecular dynamics simulations to study the wettability of nanoscale rough surfaces in systems governed by Lennard-Jones (LJ) interactions. We consider both smooth and molecularly rough planar surfaces. Solid substrates are modeled as a static collection of LJ particles arranged in a face-centered cubic lattice with the (100) surface exposed to the LJ fluid. Molecularly rough solid surfaces are prepared by removing several strips of LJ atoms from the external layers of the substrate, i.e., forming parallel nanogrooves on the surface. We vary the solid-fluid interactions to investigate strongly and weakly wettable surfaces. We determine the wetting properties by measuring the equilibrium droplet profiles that are in turn used to evaluate the contact angles. Macroscopic arguments, such as those leading to Wenzel’s law, suggest that surface roughness always amplifies the wetting properties of a lyophilic surface. However, our results indicate the opposite effect from roughness for microscopically corrugated surfaces, i.e., surface roughness deteriorates the substrate wettability. Adding the roughness to a strongly wettable surface shrinks the surface area wet with the liquid, and it either increases or only marginally affects the contact angle, depending on the degree of liquid adsorption into the nanogrooves. For a weakly wettable surface, the roughness changes the surface character from lyophilic to lyophobic due to a weakening of the solid-fluid interactions by the presence of the nanogrooves and the weaker adsorption of the liquid into the nanogrooves.

  16. Simplified models for mask roughness induced LER

    SciTech Connect (OSTI)

    McClinton, Brittany; Naulleau, Patrick

    2011-02-21

    The ITRS requires < 1.2nm line-edge roughness (LER) for the 22nm half-pitch node. Currently, we can consistently achieve only about 3nm LER. Further progress requires understanding the principle causes of LER. Much work has already been done on how both the resist and LER on the mask effect the final printed LER. What is poorly understood, however, is the extent to which system-level effects such as mask surface roughness, illumination conditions, and defocus couple to speckle at the image plane, and factor into LER limits. Presently, mask-roughness induced LER is studied via full 2D aerial image modeling and subsequent analysis of the resulting image. This method is time consuming and cumbersome. It is, therefore, the goal of this research to develop a useful 'rule-of-thumb' analytic model for mask roughness induced LER to expedite learning and understanding.

  17. Rough surface reconstruction for ultrasonic NDE simulation

    SciTech Connect (OSTI)

    Choi, Wonjae; Shi, Fan; Lowe, Michael J. S.; Skelton, Elizabeth A.; Craster, Richard V.

    2014-02-18

    The reflection of ultrasound from rough surfaces is an important topic for the NDE of safety-critical components, such as pressure-containing components in power stations. The specular reflection from a rough surface of a defect is normally lower than it would be from a flat surface, so it is typical to apply a safety factor in order that justification cases for inspection planning are conservative. The study of the statistics of the rough surfaces that might be expected in candidate defects according to materials and loading, and the reflections from them, can be useful to develop arguments for realistic safety factors. This paper presents a study of real rough crack surfaces that are representative of the potential defects in pressure-containing power plant. Two-dimensional (area) values of the height of the roughness have been measured and their statistics analysed. Then a means to reconstruct model cases with similar statistics, so as to enable the creation of multiple realistic realizations of the surfaces, has been investigated, using random field theory. Rough surfaces are reconstructed, based on a real surface, and results for these two-dimensional descriptions of the original surface have been compared with those from the conventional model based on a one-dimensional correlation coefficient function. In addition, ultrasonic reflections from them are simulated using a finite element method.

  18. ETA-HITP05 - HICE Vehicle Rough Road Course Test

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Effective November 1, 2004 "HICE Vehicle Rough Road Course Test" Prepared by Electric ... 8 Appendices Appendix A - HICEV Rough Road Test Data Sheet 9 Appendix B - Vehicle ...

  19. Surface roughness effects on the solar reflectance of cool asphalt...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Surface roughness effects on the solar reflectance of cool asphalt shingles Citation Details In-Document Search Title: Surface roughness effects on the solar ...

  20. Stability of submerged slopes on the flanks of the Hawaiian Islands, a simplified approach

    SciTech Connect (OSTI)

    Lee, H.J.; Torresan, M.E.; McArthur, W.

    1994-12-31

    Undersea transmission lines and shoreline AC-DC conversion stations and near-shore transmission lines are being considered as part of a system for transporting energy between the Hawaiian Islands. These facilities will need to be designed so that they will not be damaged or destroyed by coastal or undersea landslides. Advanced site surveys and engineering design of these facilities will require detailed site specific analyses, including sediment sampling and laboratory testing of samples, in situ testing of sediment and rock, detailed charting of bathymetry, and two- or three-dimensional numerical analyses of the factors of safety of the slopes against failure from the various possible loading mechanisms. An intermediate approximate approach can be followed that involves gravity and piston cores, laboratory testing and the application of simplified models to determine a seismic angle of repose for actual sediment in the vicinity of the planned facility. An even simpler and more approximate approach involves predictions of angles of repose using classification of the sediment along a proposed route as either a coarse volcaniclastic sand, a calcareous ooze, or a muddy terrigenous sediment. The steepest slope that such a sediment can maintain is the static angle of repose. Sediment may be found on slopes as steep as these, but it must be considered metastable and liable to fail in the event of any disturbance, storm or earthquake. The seismic angle of repose likely governs most slopes on the Hawaiian Ridge. This declivity corresponds to the response of the slope to a continuing seismic environment. As a long history of earthquakes affects the slopes, they gradually flatten to this level. Slopes that exceed or roughly equal this value can be considered at risk to fail during future earthquakes. Seismic and static angles of repose for three sediment types are tabulated in this report.

  1. North Slope Co. Northwest Arctic Co.

    U.S. Energy Information Administration (EIA) (indexed site)

    NPRA Colville River Area ANWR 1002 Area (No 2001 Reserves) North Slope Regional NPRA Barrow Area NPRA ANWR NPRA Wells OIL GAS , INJECTOR 2001 Liquid Reserve Class No 2001...

  2. North Slope Co. Northwest Arctic Co.

    U.S. Energy Information Administration (EIA) (indexed site)

    NPRA Colville River Area ANWR 1002 Area (No 2001 Reserves) North Slope Regional NPRA Barrow Area NPRA ANWR NPRA 2001 BOE Reserve Classes 1,000.1 - 10,000 MBOE 10,000.1 - 100,000...

  3. North Slope Co. Northwest Arctic Co.

    U.S. Energy Information Administration (EIA) (indexed site)

    NPRA Colville River Area ANWR 1002 Area (No 2001 Reserves) North Slope Regional NPRA Barrow Area NPRA ANWR NPRA Gas Reserve Class 1,000.1 to 10,000 MMCF 10,000.1 to 100,000 MMCF...

  4. North Slope Co. Northwest Arctic Co.

    U.S. Energy Information Administration (EIA) (indexed site)

    NPRA Colville River Area ANWR 1002 Area (No 2001 Reserves) North Slope Regional NPRA Barrow Area NPRA ANWR NPRA 2001 BOE Reserve Classes 1,000.1 - 10,000 MBOE 10,000.1 - 100,000 ...

  5. North Slope Co. Northwest Arctic Co.

    U.S. Energy Information Administration (EIA) (indexed site)

    NPRA Colville River Area ANWR 1002 Area (No 2001 Reserves) North Slope Regional NPRA Barrow Area NPRA ANWR NPRA Gas Reserve Class 1,000.1 to 10,000 MMCF 10,000.1 to 100,000 MMCF > ...

  6. March 13, 1968: Oil discovered on Alaska's North Slope | Department...

    Office of Environmental Management (EM)

    13, 1968: Oil discovered on Alaska's North Slope March 13, 1968: Oil discovered on Alaska's North Slope March 13, 1968: Oil discovered on Alaska's North Slope March 13, 1968 The ...

  7. Subsurface water flow simulated for hill slopes with spatially dependent soil hydraulic characteristics

    SciTech Connect (OSTI)

    Sharma, M.L.; Luxmoore, R.J.; DeAngelis, R.; Ward, R.C.; Yeh, G.T.

    1987-08-01

    Water flow through hill slopes consisting of five soil layers, with varying spatial dependence in hydraulic characteristics in the lateral plane was simulated by solving Richards' equation in three dimensions under varying rainfall intensities and for two complexities of terrain. By concepts of similar media the variability in soil hydraulic characteristics was expressed by a single dimensionless parameter, the scaling factor ..cap alpha... The moments of log normally distributed ..cap alpha.. were set as: Mean = 1.0 and standard deviation = 1.0. Four cases of spatial dependence of ..cap alpha.. in the lateral plane were selected for simulation, using exponential variogram functions ranging in spatial structure from random (no spatial dependence) to large dependence (large correlation lengths). The simulations showed that the rates of subsurface flow from the 30/sup 0/ hillslope, during and following rainfall, were significantly enhanced with an increase in spatial dependence. Subsurface drainage was also increased with increases in rainfall intensity and slop complexity. For hill slopes the relative effects of spatial dependence in soil hydraulic characteristics was smaller with 30/sup 0/ horizontal pitching than without pitching. Hill slopes with a random distribution of hydraulic characteristics provided greater opportunity for soil units with differing water capacities to interact than in cases with spatially correlated distributions. This greater interaction is associated with a greater lag in subsurface flow generation. These studies illustrate some of the expected effects of spatial dependence of soil hydraulic characteristics of the integrated hydrologic response of land areas.

  8. Wind profiles on the stoss slope of sand dunes: Implications for eolian sand transport

    SciTech Connect (OSTI)

    Frank, A.; Kocurek, G. (Univ. of Texas, Austin, TX (United States). Dept. of Geological Sciences)

    1993-04-01

    Starting with the work of R.A. Bagnold it has been recognized that the shear stress exerted by the wind on sand grains is the driving force for eolian sand transport. Calculation of accurate rates of sand transport is essential for prediction of migration rates of sand dunes in modern environments as well as reconstructing paleoclimates (wind speed and direction) from eolian deposits. Because a sand dune is a streamlined obstacle in the path of the wind, continuity necessitates that the flow field is compressed over the windward side of a dune and shear stress should progressively increase up the slope as the flow accelerates. However, airflow measurements over 14 dunes (at White Sands, New Mexico; Algodones, CA; and Padre Island, TX) show that compression of the flow field occurs very close to the surface and as a consequence, the overlying flow actually shows an overall decrease in shear stress up the slope. Measurements commonly collected in the overlying zone are not representative of the near-surface, sand-driving wind. Furthermore, near-surface compression of the flow field implies that a pressure gradient exists that would render the current transport models inappropriate for sloping surfaces that dominate natural sandy desert terrains.

  9. Data from Innovative Methane Hydrate Test on Alaska's North Slope...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Data from Innovative Methane Hydrate Test on Alaska's North Slope Now Available on NETL Website Data from Innovative Methane Hydrate Test on Alaska's North Slope Now Available on ...

  10. North Slope Borough Power & Light | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Borough Power & Light Jump to: navigation, search Name: North Slope Borough Power & Light Place: Alaska Phone Number: (907) 852-0489 Website: www.north-slope.orgdepartment Outage...

  11. Atmospheric Radiation Measurement (ARM) Data from the North Slope...

    Office of Scientific and Technical Information (OSTI)

    North Slope Alaska (NSA) Site Title: Atmospheric Radiation Measurement (ARM) Data from the North Slope Alaska (NSA) Site You are accessing a document from the Department of ...

  12. Atmospheric Radiation Measurement (ARM) Data from the North Slope...

    Office of Scientific and Technical Information (OSTI)

    North Slope Alaska (NSA) Site Title: Atmospheric Radiation Measurement (ARM) Data from the North Slope Alaska (NSA) Site The Atmospheric Radiation Measurement (ARM) Program is the ...

  13. ARM - Lesson Plans: North Slope of Alaska

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    North Slope of Alaska Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Lesson Plans: North Slope of Alaska Adapting to Survive (PDF, 12.4K) Arctic Microclimates (PDF, 34.3K) Also available in a PowerPoint Version, (PPT, 80K) Arctic Microclimate Worksheet (PDF, 19.6K) Bringing Climate Change

  14. Comparing English, Mandarin, and Russian Hydrographic and Terrain Categories

    SciTech Connect (OSTI)

    Feng, Chen-Chieh; Sorokine, Alexandre

    2013-01-01

    The paper compares hydrographic and terrain categories in the geospatial data standards of the US, Taiwan, and Russian Federation where the dominant languages used are from di erent language families. It aims to identify structural and semantic di erences between similar categories across three geospatial data standards. By formalizing the data standard structures and identifying the properties that di erentiate sibling categories in each geospatial data standard using well-known formal relations and quality universals, we develop a common basis on which hydrographic and terrain categories in the three data standards can be compared. The result suggests that all three data standards structure categories with a mixture of relations with di erent meaning even though most of them are well-known relations in top-level ontologies. Similar categories can be found across all three standards but exact match between similar categories are rare.

  15. SOFAST: Sandia Optical Fringe Analysis Slope Tool

    Energy Science and Technology Software Center (OSTI)

    2012-09-13

    SOFAST is used to characterize the surface slope of reflective mirrors for solar applications. SOFAST uses a large monitor or projection screen to display fringe patterns, and a machine vision camera to image the reflection of these patterns in the subject mirror. From these images, a detailed map of surface normals can be generated and compared to design or fitted mirror shapes. SOFAST uses standard Fringe Reflection (Deflectometry) approaches to measure the mirror surface normals.more »SOFAST uses an extrinsic analysis of key points on the facet to locate the camera and monitor relative to the facet coordinate system. It then refines this position based on the measured surface slope and integrated shape of the mirror facet. The facet is placed into a reference frame such that key points on the facet match the design facet in orientation and position.« less

  16. The Alaska North Slope Stratigraphic Test Well

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    The Alaska North Slope Stratigraphic Test Well image showing Donyon Rig Photo courtesy Doyon Drilling Inc Project Background Maps of Research Area Photo Gallery Well log Data From BP-DOE-US "Mount Elbert" Test Is Now Available. Digital well log data acquired at the February 2007 gas hydrates test well at Milne Point, Alaska are now available. Data include Gamma ray, neutron porosity, density porosity, three-dimensional high resolution resistivity, acoustics including compressional- and

  17. Geosynthetic clay liners - slope stability field study

    SciTech Connect (OSTI)

    Carson, D.A.; Daniel, D.E.; Koerner, R.M.; Bonaparte, R.

    1997-12-31

    A field research project was developed to examine the internal shear performance of geosynthetic clay liners (GCLs). Several combinations of cross sections were assembled using GCL materials that were available at the time of project initiation. The cross sections utilized were intended to simulate landfill cover applications. Thirteen (13) resulting test plots were constructed on two different slope angles, and each plot is instrumented for physical displacement and soil moisture characteristics. Test plots were constructed in a manner that dictated the shear plane in the clay portion of the GCL product. The project purpose is to assess field performance and to verify design parameters associated with the application of GCLs in waste containment applications. Interim research data shows that test slopes on 2H:1V show global deformation, but little internal shear evidence, and the 3H:1V slopes show little deformation at approximately 650 days. The research is ongoing, and this paper presents the most recent information available from the project.

  18. Wind Regimes in Complex Terrain of the Great Valley of Eastern Tennessee

    SciTech Connect (OSTI)

    Birdwell, Kevin R

    2011-05-01

    flowed on-axis only 40% of the time. The Great Smoky Mountains helped create down-valley pressure-driven winds, downslope mountain breezes, and divergent air flow. The Cumberland Mountains and Plateau were associated with wind speed reductions in the Central Great Valley, Emory Gap Flow, weak thermally-driven winds, and northwesterly down sloping. Ridge-and-valley terrain enhanced wind direction reversals, pressure-driven winds, as well as locally and regionally produced thermally-driven flow.

  19. Linewidth roughness in nanowire-mask-based graphene nanoribbons (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Linewidth roughness in nanowire-mask-based graphene nanoribbons Citation Details In-Document Search Title: Linewidth roughness in nanowire-mask-based graphene nanoribbons We present the analysis of linewidth roughness (LWR) in nanowire-mask-based graphene nanoribbons (GNRs) and evaluate its impact on the device performance. The data show that the LWR amplitude decreases with the GNR width, possibly due to the etching undercut near the edge of a nanowire-mask. We

  20. ETA-NTP005 Electric Vehicle Rough Ride Course Test

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    NTP005 Revision 2 Effective December 1, 2004 Electric Vehicle Rough Road Course Test Prepared by Electric Transportation Applications Prepared by: ...

  1. Papua New Guinea pipeline overcomes adverse climate, terrain

    SciTech Connect (OSTI)

    Price, J.B. ); Leipert, G.F. )

    1993-02-15

    Construction of the Kutubu oil-export facilities in Papua New Guinea illustrates the importance of proper planning and flexible execution in completing on schedule and within budget a project through difficult and remote terrain. As part of the Kutubu petroleum development project, the pipeline transports crude oil from a central production facility (CPF) in the southern highlands to a marine terminal located in the Gulf of Papua. The paper describes the land line construction, construction challenges, the plan for catch-up when establishing right-of-way proved slow, pipes and valves used, marine activities, river construction, coating, and commissioning.

  2. Atmospheric studies in complex terrain: a planning guide for future studies

    SciTech Connect (OSTI)

    Orgill, M.M.

    1981-02-01

    The objective of this study is to assist the US Department of Energy in Conducting its atmospheric studies in complex terrain (ASCOT0 by defining various complex terrain research systems and relating these options to specific landforms sites. This includes: (1) reviewing past meteorological and diffusion research on complex terrain; (2) relating specific terrain-induced airflow phenomena to specific landforms and time and space scales; (3) evaluating the technical difficulty of modeling and measuring terrain-induced airflow phenomena; and (4) avolving severdal research options and proposing candidate sites for continuing and expanding field and modeling work. To evolve research options using variable candidate sites, four areas were considered: site selection, terrain uniqueness and quantification, definition of research problems and research plans. 36 references, 111 figures, 20 tables.

  3. Solar radiation on variously oriented sloping surfaces

    SciTech Connect (OSTI)

    Gopinathan, K.K. )

    1991-01-01

    Monthly average daily irradiation on surfaces tilted towards the equator and also inclined at various azimuth angles are estimated for two locations in Lesotho and the results are presented. The isotropic model suggested by Liu and Jordan (Trans. of Ashrae, 526, 1962) along with the modified equation of Klein (Solar Energy, 19, 4, 1977) are employed for the estimation purposes. Surface orientations are selected at three inclinations for six different azimuth angles. Conclusions are reached for optimum tilt and orientation for summer, winter and annual collection. Total annual radiation values are computed for all the slopes and orientations.

  4. Counterintuitive MCNPX Results for Scintillator Surface Roughness Effect

    SciTech Connect (OSTI)

    2012-08-12

    We have reported on our recent MCNPX simulation results of energy deposition for a group of 8 scintillation detectors, coupled with various rough surface patterns. The MCNPX results generally favored the detectors with various rough surface patterns. The observed MCNPX results are not fully explained by this work.

  5. Wind Power Curve Modeling in Simple and Complex Terrain

    SciTech Connect (OSTI)

    Bulaevskaya, V.; Wharton, S.; Irons, Z.; Qualley, G.

    2015-02-09

    Our previous work on wind power curve modeling using statistical models focused on a location with a moderately complex terrain in the Altamont Pass region in northern California (CA). The work described here is the follow-up to that work, but at a location with a simple terrain in northern Oklahoma (OK). The goal of the present analysis was to determine the gain in predictive ability afforded by adding information beyond the hub-height wind speed, such as wind speeds at other heights, as well as other atmospheric variables, to the power prediction model at this new location and compare the results to those obtained at the CA site in the previous study. While we reach some of the same conclusions at both sites, many results reported for the CA site do not hold at the OK site. In particular, using the entire vertical profile of wind speeds improves the accuracy of wind power prediction relative to using the hub-height wind speed alone at both sites. However, in contrast to the CA site, the rotor equivalent wind speed (REWS) performs almost as well as the entire profile at the OK site. Another difference is that at the CA site, adding wind veer as a predictor significantly improved the power prediction accuracy. The same was true for that site when air density was added to the model separately instead of using the standard air density adjustment. At the OK site, these additional variables result in no significant benefit for the prediction accuracy.

  6. Structure of the nocturnal boundary layer over a complex terrain

    SciTech Connect (OSTI)

    Parker, M.J. ); Raman, S. . Dept. of Marine, Earth and Atmospheric Sciences)

    1992-01-01

    The complex nature of the nocturnal boundary layer (NBL) has been shown extensively in the literature Project STABLE was conducted in 1988 to study NBL turbulence and diffusion over the complex terrain of the Savannah River Site (SRS) near Augusta, Georgia. The third night of the study was particularly interesting because of the unusual phenomena observed in the structure of the NBL. Further analyses of microscale and mesoscale data from this night are presented using data from SRS network of eight 61 m towers over 900 km{sup 2}, from six launches of an instrumented tethersonde, from permanent SRL meteorological instrumentation at seven levels of the 304 m (1,000 ft) WJBF-TV tower near SRS, and additional data collected at 36 m (CC) by North Carolina State University (NCSU) including a one dimensional sonic anemometer, fine wire thermocouple, and a three dimensional propeller anemometer. Also, data from the nearby Plant Vogtle nuclear power plant observation tower and the National Weather Service at Augusta's Bush Field (AGS) are presented. The passage of a mesoscale phenomenon, defined as a microfront (with an explanation of the nomenclature used), and a vertical composite schematic of the NBL which shows dual low level wind maxima, dual inversions, and a persistent, elevated turbulent layer over a complex terrain are described.

  7. Structure of the nocturnal boundary layer over a complex terrain

    SciTech Connect (OSTI)

    Parker, M.J.; Raman, S.

    1992-08-01

    The complex nature of the nocturnal boundary layer (NBL) has been shown extensively in the literature Project STABLE was conducted in 1988 to study NBL turbulence and diffusion over the complex terrain of the Savannah River Site (SRS) near Augusta, Georgia. The third night of the study was particularly interesting because of the unusual phenomena observed in the structure of the NBL. Further analyses of microscale and mesoscale data from this night are presented using data from SRS network of eight 61 m towers over 900 km{sup 2}, from six launches of an instrumented tethersonde, from permanent SRL meteorological instrumentation at seven levels of the 304 m (1,000 ft) WJBF-TV tower near SRS, and additional data collected at 36 m (CC) by North Carolina State University (NCSU) including a one dimensional sonic anemometer, fine wire thermocouple, and a three dimensional propeller anemometer. Also, data from the nearby Plant Vogtle nuclear power plant observation tower and the National Weather Service at Augusta`s Bush Field (AGS) are presented. The passage of a mesoscale phenomenon, defined as a microfront (with an explanation of the nomenclature used), and a vertical composite schematic of the NBL which shows dual low level wind maxima, dual inversions, and a persistent, elevated turbulent layer over a complex terrain are described.

  8. SOFAST: Sandia Optical Fringe Analysis Slope Tool

    Energy Science and Technology Software Center (OSTI)

    2015-10-20

    SOFAST is used to characterize the surface slope of reflective mirrors for solar applications. SOFAST uses a large monitor or projections screen to display fringe patterns, and a machine vision camera to image the reflection of these patterns in the subject mirror. From these images, a detailed map of surface normals can be generated and compared to design or fitted mirror shapes. SOFAST uses standard Fringe Reflection (Deflectometry) approaches to measure the mirror surface normals.more » SOFAST uses an extrinsic analysis of key points on the facet to locate the camera and monitor relative to the facet coordinate system. It then refines this position based on the measured surface slope and integrated shape of the mirror facet. The facet is placed into a reference frame such that key points on the facet match the design facet in orientation and position. This is key to evaluating a facet as suitable for a specific solar application. SOFAST reports the measurements of the facet as detailed surface normal location in a format suitable for ray tracing optical analysis codes. SOFAST also reports summary information as to the facet fitted shape (monomial) and error parameters. Useful plots of the error distribution are also presented.« less

  9. Terrain and Ambient Wind Effects on the Warming Footprint of a Wind Machine

    SciTech Connect (OSTI)

    Mcmeeking, Gavin R.; Whiteman, Charles D.; Powell, Stuart G.; Clements, Craig B.

    2002-05-20

    An experiment in a vineyard in south-central Washington is described in which a vineyard wind machine used for frost protection was turned on and off while monitoring the air temperature in the vineyard. The wind machine fan, with a hub height of 12 m, rotated around a quasi-horizontal axis that was tilted downward into the vineyard at an angle of 6 degrees. The fan also rotated around a vertical axis once every 4 minutes to protect a roughly circular area surrounding the wind machine tower. A temperature inversion of about 3.5 C occurred above the vineyard between the 3-m and hub-height levels during the experiments. The 300-m diameter warming footprint of the fan was displaced down the south-facing 1-2{sup o} slope of the vineyard when the ambient wind speed was low, showing the effect of the weak and shallow nighttime drainage flow that often occurred in the vineyard. When the ambient wind speed increased, the footprint was displaced downwind and downslope of the tower. The mean warming footprint magnitude when the fan was switched on was about 1-2 C, and the temperature excess in the footprint relative to the surroundings dissipated quickly when the fan was switched off.

  10. ARM Climate Research Facilities on the North Slope of Alaska...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Climate Research Facilities on the North Slope of Alaska: Field Campaigns in 2007, New Facilities, and the International Polar Year Radiative Heating in Underexplored Bands...

  11. ARM Airborne Carbon Measurement on the North Slope

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Airborne Carbon Measurement on the North Slope During the summer of 2015, a research campaign gave scientists insight into trends and variability of trace gases in the atmosphere ...

  12. A hybrid method for quasi-three-dimensional slope stability analysis in a municipal solid waste landfill

    SciTech Connect (OSTI)

    Yu, L.; Batlle, F.

    2011-12-15

    Highlights: > A quasi-three-dimensional slope stability analysis method was proposed. > The proposed method is a good engineering tool for 3D slope stability analysis. > Factor of safety from 3D analysis is higher than from 2D analysis. > 3D analysis results are more sensitive to cohesion than 2D analysis. - Abstract: Limited space for accommodating the ever increasing mounds of municipal solid waste (MSW) demands the capacity of MSW landfill be maximized by building landfills to greater heights with steeper slopes. This situation has raised concerns regarding the stability of high MSW landfills. A hybrid method for quasi-three-dimensional slope stability analysis based on the finite element stress analysis was applied in a case study at a MSW landfill in north-east Spain. Potential slides can be assumed to be located within the waste mass due to the lack of weak foundation soils and geosynthetic membranes at the landfill base. The only triggering factor of deep-seated slope failure is the higher leachate level and the relatively high and steep slope in the front. The valley-shaped geometry and layered construction procedure at the site make three-dimensional slope stability analyses necessary for this landfill. In the finite element stress analysis, variations of leachate level during construction and continuous settlement of the landfill were taken into account. The 'equivalent' three-dimensional factor of safety (FoS) was computed from the individual result of the two-dimensional analysis for a series of evenly spaced cross sections within the potential sliding body. Results indicate that the hybrid method for quasi-three-dimensional slope stability analysis adopted in this paper is capable of locating roughly the spatial position of the potential sliding mass. This easy to manipulate method can serve as an engineering tool in the preliminary estimate of the FoS as well as the approximate position and extent of the potential sliding mass. The result that Fo

  13. ANALYZING SURFACE ROUGHNESS DEPENDENCE OF LINEAR RF LOSSES

    SciTech Connect (OSTI)

    Reece, Charles E.; Kelley, Michael J.; Xu, Chen

    2012-09-01

    Topographic structure on Superconductivity Radio Frequency (SRF) surfaces can contribute additional cavity RF losses describable in terms of surface RF reflectivity and absorption indices of wave scattering theory. At isotropic homogeneous extent, Power Spectrum Density (PSD) of roughness is introduced and quantifies the random surface topographic structure. PSD obtained from different surface treatments of niobium, such Buffered Chemical Polishing (BCP), Electropolishing (EP), Nano-Mechanical Polishing (NMP) and Barrel Centrifugal Polishing (CBP) are compared. A perturbation model is utilized to calculate the additional rough surface RF losses based on PSD statistical analysis. This model will not consider that superconductor becomes normal conducting at fields higher than transition field. One can calculate the RF power dissipation ratio between rough surface and ideal smooth surface within this field range from linear loss mechanisms.

  14. Modified Newmark model for seismic displacements of compliant slopes

    SciTech Connect (OSTI)

    Kramer, S.L.; Smith, M.W.

    1997-07-01

    Newmark sliding block analyses are widely used for estimation of permanent displacements of slopes in earthquakes. The conventional Newmark model, however, neglects the dynamic response of the material above a potential failure surface. Decoupled procedures have been developed to account for that response, but they neglect the effects of permanent displacements on the response. A modified Newmark analysis that considers the dynamic response, including the effects of permanent displacements, of the material above the failure surface is presented. The modified Newmark analysis shows that the decoupled approach produces somewhat conservative estimates of permanent displacements for stiff and/or shallow failure masses, but that it may produce unconservative estimates for failure masses that are soft and/or deep. Many slopes of large, lined landfills may fall into this latter category. The notion of a slope spectrum, which illustrates the effect of the natural period of a potential failure mass on permanent slope displacement, is also introduced.

  15. West Slope, Oregon: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Hide Map This article is a stub. You can help OpenEI by expanding it. West Slope is a census-designated place in Washington County, Oregon.1 References US...

  16. Atmospheric Radiation Measurement (ARM) Data from the North Slope Alaska

    Office of Scientific and Technical Information (OSTI)

    (NSA) Site () | Data Explorer North Slope Alaska (NSA) Site Title: Atmospheric Radiation Measurement (ARM) Data from the North Slope Alaska (NSA) Site The Atmospheric Radiation Measurement (ARM) Program is the largest global change research program supported by the U.S. Department of Energy. The primary goal of the ARM Program is to improve the treatment of cloud and radiation physics in global climate models in order to improve the climate simulation capabilities of these models. To achieve

  17. Assessment of technologies for constructing self-drying low-slope roofs

    SciTech Connect (OSTI)

    Kyle, D.M.; Desjarlais, A.O.

    1994-05-01

    Issues associated with removing excessive moisture from low-slope roofs have been assessed. The economic costs associated with moisture trapped in existing roofs have been estimated. The evidence suggests that existing moisture levels cause approximately a 40% overall reduction in the R-value of installed roofing insulation in the United States. Excess operating costs are further increased by a summertime heat transfer mode unique to wet insulation, caused by the daily migration of water within the roof. By itself, this effect can increase peak electrical demand for air conditioning by roughly 15 W/m{sup 2} of roofing, depending on the type of insulation. This effect will increase peak demand capacity required of utilities in any geographic region (e.g., 900 MW in the South). A simple formula has been derived for predicting the effect that self-drying roofs can have upon time-averaged construction costs. It is presumed that time-averaged costs depend predominantly upon (1) actual service life and (2) the likelihood that the less expensive recover membranes can be installed safely over old roofs. For example, an increase in service life from 15 to 20 years should reduce the current cost of roofing ($12 billion/year) by 21%. Another simple formula for predicting the reroofing waste volume indicates that an increase in service life from 15 to 20 years might reduce the current estimated 0.4 billion ft{sup 3}/year of waste by 25%. A finite-difference computer program has been used to study the flow of heat and moisture within typical existing roofs for a variety of US climates. Nearly all publicly available experimental drying data have been consulted. The drying times for most existing low-slope roofs in the United States are controlled largely climate and the permeability of the structural deck to water vapor.

  18. Effect of Grit Blasting on Substrate Roughness and Coating Adhesion

    SciTech Connect (OSTI)

    Dominic Varacalle; Donna Guillen; Doug Deason; William Rhodaberger; Elliott Sampson

    2006-09-01

    Statistically designed experiments were performed to compare the surface roughnesses produced by grit blasting A36/1020 steel with different abrasives. Grit blast media, blast pressure, and working distance were varied using a Box-type statistical design of experiment (SDE) approach. The surface textures produced by four metal grits (HG16, HG18, HG25, and HG40) and three conventional grits (copper slag, coal slag, and chilled iron) were compared. Substrate roughness was measured using surface profilometry and correlated with operating parameters. The HG16 grit produced the highest surface roughness of all the grits tested. Aluminum and zinc-aluminum coatings were deposited on the grit-blasted substrates using a Twin-Wire Electric Arc (TWEA) process. Bond strength of the coatings was measured with a portable adhesion tester in accordance with ASTM standard D4541. The coatings on substrates roughened with steel grit exhibit superior bond strength to those on substrates prepared with conventional grit. For aluminum coatings sprayed onto surfaces prepared with the HG16 grit, the bond strength was most influenced by current, spray distance, and spray gun pressure (in that order). The highest bond strength for the zinc-aluminum coatings was attained on surfaces prepared using the metal grits.

  19. Slope Error Measurement Tool for Solar Parabolic Trough Collectors: Preprint

    SciTech Connect (OSTI)

    Stynes, J. K.; Ihas, B.

    2012-04-01

    The National Renewable Energy Laboratory (NREL) has developed an optical measurement tool for parabolic solar collectors that measures the combined errors due to absorber misalignment and reflector slope error. The combined absorber alignment and reflector slope errors are measured using a digital camera to photograph the reflected image of the absorber in the collector. Previous work using the image of the reflection of the absorber finds the reflector slope errors from the reflection of the absorber and an independent measurement of the absorber location. The accuracy of the reflector slope error measurement is thus dependent on the accuracy of the absorber location measurement. By measuring the combined reflector-absorber errors, the uncertainty in the absorber location measurement is eliminated. The related performance merit, the intercept factor, depends on the combined effects of the absorber alignment and reflector slope errors. Measuring the combined effect provides a simpler measurement and a more accurate input to the intercept factor estimate. The minimal equipment and setup required for this measurement technique make it ideal for field measurements.

  20. Structural Damage Detection Using Slopes of Longitudinal Vibration Shapes

    DOE PAGES-Beta [OSTI]

    Xu, W.; Zhu, W. D.; Smith, S. A.; Cao, M. S.

    2016-03-18

    While structural damage detection based on flexural vibration shapes, such as mode shapes and steady-state response shapes under harmonic excitation, has been well developed, little attention is paid to that based on longitudinal vibration shapes that also contain damage information. This study originally formulates a slope vibration shape for damage detection in bars using longitudinal vibration shapes. To enhance noise robustness of the method, a slope vibration shape is transformed to a multiscale slope vibration shape in a multiscale domain using wavelet transform, which has explicit physical implication, high damage sensitivity, and noise robustness. These advantages are demonstrated in numericalmore » cases of damaged bars, and results show that multiscale slope vibration shapes can be used for identifying and locating damage in a noisy environment. A three-dimensional (3D) scanning laser vibrometer is used to measure the longitudinal steady-state response shape of an aluminum bar with damage due to reduced cross-sectional dimensions under harmonic excitation, and results show that the method can successfully identify and locate the damage. Slopes of longitudinal vibration shapes are shown to be suitable for damage detection in bars and have potential for applications in noisy environments.« less

  1. Instrumentation for slope stability -- Experience from an urban area

    SciTech Connect (OSTI)

    Flentje, P.; Chowdhury, R.

    1999-07-01

    This paper describes the monitoring of several existing landslides in an urban area near Wollongong in the state of New South Wales, Australia. A brief overview of topography and geology is given and reference is made to the types of slope movement, processes and causal factors. Often the slope movements are extremely slow and imperceptible to the eye, and catastrophic failures are quite infrequent. However, cumulative movements at these slower rates do, over time, cause considerable distress to structures and disrupt residential areas and transport routes. Inclinometers and piezometers have been installed at a number of locations and monitoring of these has been very useful. The performance of instrumentation at different sites is discussed in relation to the monitoring of slope movements and pore pressures. Interval rates of inclinometer shear displacement have been compared with various periods of cumulative rainfall to assess the relationships.

  2. Low-cost multi-terrain autonomous vehicle for hostile environments

    SciTech Connect (OSTI)

    Perez, M. L., LLNL

    1996-12-03

    This paper describes an innovative and unique autonomous vehicle being developed at the Lawrence Livermore National Laboratory (LLNL) for versatile use in hostile environments. Conventional vehicles used in decommissioning and decontaminating, police activity, and unmanned military operations typically are designed with four-wheels or track in contact with the environment. Although four-wheel and track vehicles work well, they are limited in negotiating saturated terrain, steep hills and soft soils. The Spiral Track Autonomous Robot (STAR) is a versatile and maneuverable multi-terrain mobile vehicle that uses the latest available computer technology and two Archimedes screws, in contact with the local environment to intelligently negotiate a hostile environment.

  3. north-slope-resources | netl.doe.gov

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    North Slope Resources photo of TAPS Alaska North Slope Resources Additional oil production from known resources as well as new discoveries are essential for keeping the Trans Alaska Pipeline System (TAPS) operating both technically and economically. The lower limit of effective operation for TAPS is in the range of 200,000 barrels per day. Current production rates are about 700,000 barrels per day down from a maximum of over 2 million barrels per day in 1988. The economic limit of TAPS will

  4. Roughness Optimization at High Modes for GDP CHx Microshells

    SciTech Connect (OSTI)

    Theobald, M.; Dumay, B.; Chicanne, C.; Barnouin, J.; Legaie, O.; Baclet, P.

    2004-03-15

    For the ''Megajoule'' Laser (LMJ) facility of the CEA, amorphous hydrogenated carbon (a-C:H) is the nominal ablator to be used for inertial confinement fusion (ICF) experiments. These capsules contain the fusible deuterium-tritium mixture to achieve ignition. Coatings are prepared by glow discharge polymerization (GDP) with trans-2-butene and hydrogen. The films properties have been investigated. Laser fusion targets must have optimized characteristics: a diameter of about 2.4 mm for LMJ targets, a thickness up to 175 {mu}m, a sphericity and a thickness concentricity better than 99% and an outer and an inner roughness lower than 20 nm at high modes. The surface finish of these laser fusion targets must be extremely smooth to minimize hydrodynamic instabilities.Movchan and Demchishin, and later Thornton introduced a structure zone model (SZM) based on both evaporated and sputtered metals. They investigated the influence of base temperature and the sputtering gas pressure on structure and properties of thick polycrystalline coatings of nickel, titanium, tungsten, aluminum oxide. An original cross-sectional analysis by atomic force microscopy (AFM) allows amorphous materials characterization and permits to make an analogy between the amorphous GDP material and the existing model (SZM). The purpose of this work is to understand the relationship between the deposition parameters, the growing structures and the surface roughness.The coating structure as a function of deposition parameters was first studied on plane silicon substrates and then optimized on PAMS shells. By adjusting the coating parameters, the structures are modified, and in some case, the high modes roughness decreases dramatically.

  5. Influence of interface roughness in quantum cascade lasers

    SciTech Connect (OSTI)

    Krivas, K. A.; Winge, D. O.; Franckié, M.; Wacker, A.

    2015-09-21

    We use a numerical model based on non-equilibrium Green's functions to investigate the influence of interface roughness (IFR) scattering in terahertz quantum cascade lasers. We confirm that IFR is an important phenomenon that affects both current and gain. The simulations indicate that IFR causes a leakage current that transfers electrons from the upper to the lower laser state. In certain cases, this current can greatly reduce gain. In addition, individual interfaces and their impact on the renormalized single particle energies are studied and shown to give both blue- and red-shifts of the gain spectrum.

  6. Impact of Ice Crystal Roughness on Satellite Retrieved Cloud Properties

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Ice Crystal Roughness on Satellite Retrieved Cloud Properties P. Minnis 1 , P. W. Heck 2 , R. F. Arduini 3 , R. Palikonda 3 , J. K. Ayers 3 , M. M. Khaiyer 3 , P. Yang 4 , Y. Xie 4 3 Science Systems & Applications, Inc. Hampton, VA 1 NASA Langley Research Center Hampton, VA Current Cirrus Models Inadequate Cirrus cloud optical depths τ (heights z e ) are often over (under) estimated when derived from solar reflectances. In situ data suggest smaller asymmetry factors, g, than used in most

  7. THE SLOPE OF THE BARYONIC TULLY-FISHER RELATION

    SciTech Connect (OSTI)

    Gurovich, Sebastian; Freeman, Kenneth; Jerjen, Helmut; Staveley-Smith, Lister; Puerari, Ivanio

    2010-09-15

    We present the results of a baryonic Tully-Fisher relation (BTFR) study for a local sample of relatively isolated disk galaxies. We derive a BTFR with a slope near 3 measured over about 4 dex in baryon mass for our combined H I and bright spiral disk samples. This BTFR is significantly flatter and has less scatter than the TFR (stellar mass only) with its slope near 4 reported for other samples and studies. A BTFR slope near 3 is in better agreement with the expected slope from simple {Lambda}CDM cosmological simulations that include both stellar and gas baryons. The scatter in the TFR/BTFR appears to depend on W{sub 20}: galaxies that rotate slower have more scatter. The atomic gas-to-stars ratio shows a break near W{sub 20} = 250 km s{sup -1} probably associated with a change in star formation efficiency. In contrast, the absence of such a break in the BTFR suggests that this relation was probably set at the main epoch of baryon dissipation rather than as a product of later galactic evolution.

  8. Late Holocene Radiocarbon Variability in Northwest Atlantic Slope Waters

    SciTech Connect (OSTI)

    Sherwood, O; Edinger, E; Guilderson, T P; Ghaleb, B; Risk, M J; Scott, D B

    2008-08-15

    Deep-sea gorgonian corals secrete a 2-part skeleton of calcite, derived from dissolved inorganic carbon at depth, and gorgonin, derived from recently fixed and exported particulate organic matter. Radiocarbon contents of the calcite and gorgonin provide direct measures of seawater radiocarbon at depth and in the overlying surface waters, respectively. Using specimens collected from Northwest Atlantic slope waters, we generated radiocarbon records for surface and upper intermediate water layers spanning the pre- and post bomb-{sup 14}C eras. In Labrador Slope Water (LSW), convective mixing homogenizes the pre-bomb {Delta}{sup 14}C signature (-67 {+-} 4{per_thousand}) to at least 1000 m depth. Surface water bomb-{sup 14}C signals were lagged and damped (peaking at {approx} +45{per_thousand} in the early 1980s) relative to other regions of the northwest Atlantic, and intermediate water signals were damped further. Off southwest Nova Scotia, the vertical gradient in {Delta}{sup 14}C is much stronger. In surface water, pre-bomb {Delta}{sup 14}C averaged -75 {+-} 5{per_thousand}. At 250-475 m depth, prebomb {Delta}{sup 14}C oscillated quasi-decadally between -80 and -100{per_thousand}, likely reflecting interannual variability in the presence of Labrador Slope Water vs. Warm Slope Water (WSW). Finally, subfossil corals reveal no systematic changes in vertical {Delta}{sup 14}C gradients over the last 1200 years.

  9. Case study of slope failures at Spilmans Island

    SciTech Connect (OSTI)

    Kayyal, M.K.; Hasen, M.

    1998-11-01

    This paper presents a case study for a dredge disposal site called Spilmans Island, located along the Houston-Galveston Ship Channel, east of Houston. Initially classified as a sand bar in the San Jacinto River, Spilmans Island evolved in recent years with the construction of perimeter levees to contain the flow of materials produced from dredging operations. These levees were often constructed on soft dredged sediments, and as the levees were raised, occasionally slope failures occurred. The objectives of this paper are to illustrate the importance of reconstructing the history of a site as a basis for geotechnical analyses, and to demonstrate the significance of keeping accurate records of past investigations, construction activities, slope failures and subsequent remedial measures. The results of the geotechnical investigation described in this paper offer a clear example of how such data can be used to provide reliable predictions on the stability conditions of raised levees.

  10. DEVELOPMENT OF SHALLOW VISCOUS OIL RESERVES IN NORTH SLOPE

    SciTech Connect (OSTI)

    Kishore K. Mohanty

    2003-07-01

    North Slope of Alaska has huge oil deposits in heavy oil reservoirs such as Ugnu, West Sak and Shrader Bluff etc. The viscosity of the last two reservoir oils vary from {approx}30 cp to {approx}3000 cp and the amount in the range of 10-20 billion barrels. High oil viscosity and low formation strength impose problems to high recovery and well productivity. Water-alternate-gas injection processes can be effective for the lower viscosity end of these deposits in West Sak and Shrader Bluff. Several gas streams are available in the North Slope containing NGL and CO{sub 2} (a greenhouse gas). The goal of this research is to develop tools to find optimum solvent, injection schedule and well-architecture for a WAG process in North Slope shallow sand viscous oil reservoirs. In the last quarter, we have developed streamline generation and convection subroutines for miscible gas injection. The WAG injection algorithms are being developed. We formulated a four-phase relative permeability model based on two-phase relative permeabilities. The new relative permeability formulations are being incorporated into the simulator. Wettabilities and relative permeabilities are being measured. Plans for the next quarter includes modeling of WAG injection in streamline based simulation, relative permeability studies with cores, incorporation of complex well-architecture.

  11. North Slope Decision Support for Water Resource Planning and Management

    SciTech Connect (OSTI)

    Schnabel, William; Brumbelow, Kelly

    2013-03-31

    The objective of this project was to enhance the water resource decision-making process with respect to oil and gas exploration/production activities on Alaska’s North Slope. To this end, a web-based software tool was developed to allow stakeholders to assemble, evaluate, and communicate relevant information between and amongst themselves. The software, termed North Slope Decision Support System (NSDSS), is a visually-referenced database that provides a platform for running complex natural system, planning, and optimization models. The NSDSS design was based upon community input garnered during a series of stakeholder workshops, and the end product software is freely available to all stakeholders via the project website. The tool now resides on servers hosted by the UAF Water and Environmental Research Center, and will remain accessible and free-of-charge for all interested stakeholders. The development of the tool fostered new advances in the area of data evaluation and decision support technologies, and the finished product is envisioned to enhance water resource planning activities on Alaska’s North Slope.

  12. Comparison of slope stability in two Brazilian municipal landfills

    SciTech Connect (OSTI)

    Gharabaghi, B. Singh, M.K.; Inkratas, C. Fleming, I.R. McBean, E.

    2008-07-01

    The implementation of landfill gas to energy (LFGTE) projects has greatly assisted in reducing the greenhouse gases and air pollutants, leading to an improved local air quality and reduced health risks. The majority of cities in developing countries still dispose of their municipal waste in uncontrolled 'open dumps.' Municipal solid waste landfill construction practices and operating procedures in these countries pose a challenge to implementation of LFGTE projects because of concern about damage to the gas collection infrastructure (horizontal headers and vertical wells) caused by minor, relatively shallow slumps and slides within the waste mass. While major slope failures can and have occurred, such failures in most cases have been shown to involve contributory factors or triggers such as high pore pressures, weak foundation soil or failure along weak geosynthetic interfaces. Many researchers who have studied waste mechanics propose that the shear strength of municipal waste is sufficient such that major deep-seated catastrophic failures under most circumstances require such contributory factors. Obviously, evaluation of such potential major failures requires expert analysis by geotechnical specialists with detailed site-specific information regarding foundation soils, interface shearing resistances and pore pressures both within the waste and in clayey barrier layers or foundation soils. The objective of this paper is to evaluate the potential use of very simple stability analyses which can be used to study the potential for slumps and slides within the waste mass and which may represent a significant constraint on construction and development of the landfill, on reclamation and closure and on the feasibility of a LFGTE project. The stability analyses rely on site-specific but simple estimates of the unit weight of waste and the pore pressure conditions and use 'generic' published shear strength envelopes for municipal waste. Application of the slope stability

  13. Evaluation of Single-Doppler Radar Wind Retrievals in Flat and Complex Terrain

    SciTech Connect (OSTI)

    Newsom, Rob K.; Berg, Larry K.; Pekour, Mikhail S.; Fast, Jerome D.; Xu, Qin; Zhang, Pengfei; Yang, Qing; Shaw, William J.; Flaherty, Julia E.

    2014-08-01

    The accuracy of winds derived from NEXRAD level II data is assessed by comparison with independent observations from 915 MHz radar wind profilers. The evaluation is carried out at two locations with very different terrain characteristics. One site is located in an area of complex terrain within the State Line Wind Energy Center in northeast Oregon. The other site is located in an area of flat terrain on the east-central Florida coast. The National Severe Storm Laboratorys 2DVar algorithm is used to retrieve wind fields from the KPDT (Pendleton OR) and KMLB (Melbourne FL) NEXRAD radars. Comparisons between the 2DVar retrievals and the radar profilers were conducted over a period of about 6 months and at multiple height levels at each of the profiler sites. Wind speed correlations at most observation height levels fell in the range from 0.7 to 0.8, indicating that the retrieved winds followed temporal fluctuations in the profiler-observed winds reasonably well. The retrieved winds, however, consistently exhibited slow biases in the range of1 to 2 ms-1. Wind speed difference distributions were broad with standard deviations in the range from 3 to 4 ms-1. Results from the Florida site showed little change in the wind speed correlations and difference standard deviations with altitude between about 300 and 1400 m AGL. Over this same height range, results from the Oregon site showed a monotonic increase in the wind speed correlation and a monotonic decrease in the wind speed difference standard deviation with increasing altitude. The poorest overall agreement occurred at the lowest observable level (~300 m AGL) at the Oregon site, where the effects of the complex terrain were greatest.

  14. Los Alamos Lab to perform slope-side cleanup near Smith's Marketplace

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Los Alamos Lab to perform slope-side cleanup near Smith's Marketplace Los Alamos National Laboratory to perform slope-side cleanup near Smith's Marketplace The Lab is performing a ...

  15. Adding Complex Terrain and Stable Atmospheric Condition Capability to the Simulator for On/Offshore Wind Farm Applications (SOWFA) (Presentation)

    SciTech Connect (OSTI)

    Churchfield, M. J.

    2013-06-01

    This presentation describes changes made to NREL's OpenFOAM-based wind plant aerodynamics solver so that it can compute the stably stratified atmospheric boundary layer and flow over terrain. Background about the flow solver, the Simulator for Off/Onshore Wind Farm Applications (SOWFA) is given, followed by details of the stable stratification/complex terrain modifications to SOWFA, along with some preliminary results calculations of a stable atmospheric boundary layer and flow over a simple set of hills.

  16. ETA-HTP05 - Hybrid Electric Vehicle Rough Road Course Test

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    HTP05 Revision 0 Effective November 1, 2004 "Hybrid Electric Vehicle Rough Road Course Test" Prepared by Electric Transportation Applications Prepared by: ...

  17. Precision Tiltmeter as a Reference for Slope MeasuringInstruments

    SciTech Connect (OSTI)

    Kirschman, Jonathan L.; Domning, Edward E.; Morrison, Gregory Y.; Smith, Brian V.; Yashchuk, Valeriy V.

    2007-08-01

    The next generation of synchrotrons and free electron lasers require extremely high-performance x-ray optical systems for proper focusing. The necessary optics cannot be fabricated without the use of precise optical metrology instrumentation. In particular, the Long Trace Profiler (LTP) based on the pencil-beam interferometer is a valuable tool for low-spatial-frequency slope measurement with x-ray optics. The limitations of such a device are set by the amount of systematic errors and noise. A significant improvement of LTP performance was the addition of an optical reference channel, which allowed to partially account for systematic errors associated with wiggling and wobbling of the LTP carriage. However, the optical reference is affected by changing optical path length, non-homogeneous optics, and air turbulence. In the present work, we experimentally investigate the questions related to the use of a precision tiltmeter as a reference channel. Dependence of the tiltmeter performance on horizontal acceleration, temperature drift, motion regime, and kinematical scheme of the translation stage has been investigated. It is shown that at an appropriate experimental arrangement, the tiltmeter provides a slope reference for the LTP system with accuracy on the level of 0.1 {micro}rad (rms).

  18. Heat Transfer and Friction-Factor Methods Turbulent Flow Inside Pipes 3d Rough

    Energy Science and Technology Software Center (OSTI)

    1994-01-21

    Three-dimensional roughened internally enhanced tubes have been shown to be one of the most energy efficient for turbulent, forced convection applications. However, there is only one prediction method presented in the open literature and that is restricted to three-dimensional sand-grain roughness. Other roughness types are being proposed: hemispherical sectors, truncated cones, and full and truncated pyramids. There are no validated heat-transfer and friction-factor prediction methods for these different roughness shapes that can be used inmore » the transition and fully rough region. This program calculates the Nusselt number and friction factor values, for a broad range of three-dimensional roughness types such as hemispherical sectors, truncated cones, and full and truncated pyramids. Users of this program are heat-exchangers designers, enhanced tubing suppliers, and research organizations or academia who are developing or validating prediction methods.« less

  19. Final Report of the Grant: ''Vertical Transport and Mixing in Complex Terrain Airsheds''

    SciTech Connect (OSTI)

    Fernando, Joseph Harindra; Anderson, James; Boyer, Don; Berman, Neil

    2004-12-29

    Stable stratification associated with nocturnal thermal circulation in areas of complex terrain leads to interesting and important phenomena that govern local meteorology and contaminant dispersion. Given that most urban areas are in complex topography, understanding and prediction of such phenomena are of immediate practical importance. This project dealt with theoretical, laboratory, numerical and field experimental studies aimed at understanding stratified flow and turbulence phenomena in urban areas, with particular emphasis on flow, turbulence and contaminant transport and diffusion in such flows. A myriad of new results were obtained and some of these results were used to improve the predictive capabilities of the models.

  20. Biocorrosive Thermophilic Microbial Communities in Alaskan North Slope Oil Facilities

    SciTech Connect (OSTI)

    Duncan, Kathleen E.; Gieg, Lisa M.; Parisi, Victoria A.; Tanner, Ralph S.; Green Tringe, Susannah; Bristow, Jim; Suflita, Joseph M.

    2009-09-16

    Corrosion of metallic oilfield pipelines by microorganisms is a costly but poorly understood phenomenon, with standard treatment methods targeting mesophilic sulfatereducing bacteria. In assessing biocorrosion potential at an Alaskan North Slope oil field, we identified thermophilic hydrogen-using methanogens, syntrophic bacteria, peptideand amino acid-fermenting bacteria, iron reducers, sulfur/thiosulfate-reducing bacteria and sulfate-reducing archaea. These microbes can stimulate metal corrosion through production of organic acids, CO2, sulfur species, and via hydrogen oxidation and iron reduction, implicating many more types of organisms than are currently targeted. Micromolar quantities of putative anaerobic metabolites of C1-C4 n-alkanes in pipeline fluids were detected, implying that these low molecular weight hydrocarbons, routinely injected into reservoirs for oil recovery purposes, are biodegraded and provide biocorrosive microbial communities with an important source of nutrients.

  1. Natural gas hydrates on the North Slope of Alaska

    SciTech Connect (OSTI)

    Collett, T.S.

    1991-01-01

    Gas hydrates are crystalline substances composed of water and gas, mainly methane, in which a solid-water lattice accommodates gas molecules in a cage-like structure, or clathrate. These substances often have been regarded as a potential (unconventional) source of natural gas. Significant quantities of naturally occurring gas hydrates have been detected in many regions of the Arctic including Siberia, the Mackenzie River Delta, and the North Slope of Alaska. On the North Slope, the methane-hydrate stability zone is areally extensive beneath most of the coastal plain province and has thicknesses as great as 1000 meters in the Prudhoe Bay area. Gas hydrates have been identified in 50 exploratory and production wells using well-log responses calibrated to the response of an interval in one well where gas hydrates were recovered in a core by ARCO Alaska and EXXON. Most of these gas hydrates occur in six laterally continuous Upper Cretaceous and lower Tertiary sandstone and conglomerate units; all these gas hydrates are geographically restricted to the area overlying the eastern part of the Kuparuk River Oil Field and the western part of the Prudhoe Bay Oil Field. The volume of gas within these gas hydrates is estimated to be about 1.0 {times} 10{sup 12} to 1.2 {times} 10{sup 12} cubic meters (37 to 44 trillion cubic feet), or about twice the volume of conventional gas in the Prudhoe Bay Field. Geochemical analyses of well samples suggest that the identified hydrates probably contain a mixture of deep-source thermogenic gas and shallow microbial gas that was either directly converted to gas hydrate or first concentrated in existing traps and later converted to gas hydrate. The thermogenic gas probably migrated from deeper reservoirs along the same faults thought to be migration pathways for the large volumes of shallow, heavy oil that occur in this area. 51 refs., 11 figs., 3 tabs.

  2. A case study of pipeline route selection and design through discontinuous permafrost terrain in northwestern Alberta

    SciTech Connect (OSTI)

    Wiechnik, C.; Boivin, R.; Henderson, J.; Bowman, M.

    1996-12-31

    As the natural gas pipeline system in Western Canada expands northward, it traverses the discontinuous permafrost zone. As the ground temperature of the frozen soil in this zone is just below freezing, it can be expected that within the design life of a pipeline the permafrost adjacent to it will melt due to the disturbance of the insulating cover by construction activities. Differential settlement at the thawing frozen/unfrozen soil interfaces gives rise to pipeline strain. Based on the calculated settlement and resulting strain level, a cost effective mechanical or civil design solution can be selected to mitigate the differential settlement problem. Since these design solutions can be costly, it is desirable to combine them with a pipeline route that traverses the least amount of discontinuous permafrost terrain while minimizing the overall length of the pipeline. This paper will detail the framework utilized to select the routing for a package of pipeline projects in northwestern Alberta. It is believed that the increased front end effort will result in lower operating costs and an overall reduced life-cycle cost. This basic design methodology can be applied to any project that traverses discontinuous permafrost terrain.

  3. Numerical simulations examining the relationship between wall-roughness and fluid flow in rock fractures

    SciTech Connect (OSTI)

    Crandall, Dustin; Bromhal, Grant; Karpyn, Zuleima T.

    2010-07-01

    Understanding how fracture wall-roughness affects fluid flow is important when modeling many subsurface transport problems. Computed tomography scanning provides a unique view of rock fractures, allowing the measurement of fracture wall-roughness, without destroying the initial rock sample. For this computational fluid dynamics study, we used several different methods to obtain three-dimensional meshes of a computed tomography scanned fracture in Berea sandstone. These volumetric meshes had different wall-roughnesses, which we characterized using the Joint Roughness Coefficient and the fractal dimension of the fracture profiles. We then related these macroscopic roughness parameters to the effective flow through the fractures, as determined from Navier-Stokes numerical models. Thus, we used our fracture meshes to develop relationships between the observed roughness properties of the fracture geometries and flow parameters that are of importance for modeling flow through fractures in field scale models. Fractures with high Joint Roughness Coefficients and fractal dimensions were shown to exhibit tortuous flow paths, be poorly characterized by the mean geometric aperture, and have a fracture transmissivity 35 times smaller than the smoother modeled fracture flows.

  4. Influence of pitch, twist, and taper on a blade`s performance loss due to roughness

    SciTech Connect (OSTI)

    Tangler, J.L.

    1996-12-31

    The purpose of this study was to determine the influence of blade geometric parameters such as pitch, twist, and taper on a blade`s sensitivity to leading edge roughness. The approach began with an evaluation of available test data of performance degradation due to roughness effects for several rotors. In addition to airfoil geometry, this evaluation suggested that a rotor`s sensitivity to roughness was also influenced by the blade geometric parameters. Parametric studies were conducted using the PROP computer code with wind-tunnel airfoil characteristics for smooth and rough surface conditions to quantify the performance loss due to roughness for tapered and twisted blades relative to a constant-chord, non-twisted blade at several blade pitch angles. The results indicate that a constant-chord, non-twisted blade pitched toward stall will have the greatest losses due to roughness. The use of twist, taper, and positive blade pitch angles all help reduce the angle-of-attack distribution along the blade for a given wind speed and the associated performance degradation due to roughness. 8 refs., 6 figs.

  5. File:EIA-AK-NorthSlope-gas.pdf | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    applicationpdf) Description Alaskan North Slope By 2001 Gas Reserve Class Sources Energy Information Administration Authors Samuel H. Limerick; Lucy Luo; Gary Long; David F....

  6. Sub-microradian Surface Slope Metrology with the ALS Developmental Long Trace Profiler

    SciTech Connect (OSTI)

    Yashchuk, Valeriy V; Barber, Samuel; Domning, Edward E.; Kirschman, Jonathan L.; Morrison, Gregory Y.; Smith, Brian V; Siewert, Frank; Zeschke, Thomas; Geckeler, Ralf; Just, Andreas

    2009-09-11

    A new low budget slope measuring instrument, the Developmental Long Trace Profiler (DLTP), was recently brought to operation at the ALS Optical Metrology Laboratory. The design, instrumental control and data acquisition system, initial alignment and calibration procedures, as well as the developed experimental precautions and procedures are described in detail. The capability of the DLTP to achieve sub-microradian surface slope metrology is verified via cross-comparison measurements with other high performance slope measuring instruments when measuring the same high quality test optics. The directions of future work to develop a surface slope measuring profiler with nano-radian performance are also discussed.

  7. Reduction of vortex induced forces and motion through surface roughness control

    DOE Patents [OSTI]

    Bernitsas, Michael M; Raghavan, Kamaldev

    2014-04-01

    Roughness is added to the surface of a bluff body in a relative motion with respect to a fluid. The amount, size, and distribution of roughness on the body surface is controlled passively or actively to modify the flow around the body and subsequently the Vortex Induced Forces and Motion (VIFM). The added roughness, when designed and implemented appropriately, affects in a predetermined way the boundary layer, the separation of the boundary layer, the level of turbulence, the wake, the drag and lift forces, and consequently the Vortex Induced Motion (VIM), and the fluid-structure interaction. The goal of surface roughness control is to decrease/suppress Vortex Induced Forces and Motion. Suppression is required when fluid-structure interaction becomes destructive as in VIM of flexible cylinders or rigid cylinders on elastic support, such as underwater pipelines, marine risers, tubes in heat exchangers, nuclear fuel rods, cooling towers, SPAR offshore platforms.

  8. Enhancement of vortex induced forces and motion through surface roughness control

    DOE Patents [OSTI]

    Bernitsas, Michael M.; Raghavan, Kamaldev

    2011-11-01

    Roughness is added to the surface of a bluff body in a relative motion with respect to a fluid. The amount, size, and distribution of roughness on the body surface is controlled passively or actively to modify the flow around the body and subsequently the Vortex Induced Forces and Motion (VIFM). The added roughness, when designed and implemented appropriately, affects in a predetermined way the boundary layer, the separation of the boundary layer, the level of turbulence, the wake, the drag and lift forces, and consequently the Vortex Induced Motion (VIM), and the fluid-structure interaction. The goal of surface roughness control is to increase Vortex Induced Forces and Motion. Enhancement is needed in such applications as harnessing of clean and renewable energy from ocean/river currents using the ocean energy converter VIVACE (Vortex Induced Vibration for Aquatic Clean Energy).

  9. Solid Deuterium-Tritium Surface Roughness In A Beryllium Inertial Confinement Fusion Shell

    SciTech Connect (OSTI)

    Kozioziemski, B J; Sater, J D; Moody, J D; Montgomery, D S; Gautier, C

    2006-04-19

    Solid deuterium-tritium (D-T) fuel layers for inertial confinement fusion experiments were formed inside of a 2 mm diameter beryllium shell and were characterized using phase-contrast enhanced x-ray imaging. The solid D-T surface roughness is found to be 0.4 {micro}m for modes 7-128 at 1.5 K below the melting temperature. The layer roughness is found to increase with decreasing temperature, in agreement with previous visible light characterization studies. However, phase-contrast enhanced x-ray imaging provides a more robust surface roughness measurement than visible light methods. The new x-ray imaging results demonstrate clearly that the surface roughness decreases with time for solid D-T layers held at 1.5 K below the melting temperature.

  10. Simulation of surface roughness during the formation of thermal spray coatings

    SciTech Connect (OSTI)

    Kanouff, M.P.

    1996-07-01

    The formation of a thermal spray coating was analyzed to identify methods to reduce the surface roughness of the coating. A new methodology was developed which uses a string of equally spaced node points to define the shape of the coating surface and to track the shape change as the thermal spray mass is deposited. This allows the calculation of arbitrary shapes for the coating surface which may be very complex. The model simulates the stochastic deposition of a large number of thermal spray droplets, where experimental data is used for the mass flux distribution on the target surface. This data shows that when the thermal spray mass impinges on the target surface, a large fraction of it (over-spray) splashes off the target and is re-deposited with a small spray angle, resulting in a large coating roughness. This analysis was used in a parameter study to identify methods for reducing the coating roughness. Effect of the shape of the profile for the pre-roughened substrate was found to be small. Decreasing the droplet size by a factor of 2 decreased the roughness by 13%. Increasing the spray angle for the over-spray by a factor of 2 decreased the roughness by 50%, and decreasing the amount of over- spray by a factor of 2 decreased the roughness by 51%.

  11. Application and analysis of anchored geosynthetic systems for stabilization of abandoned mine land slopes

    SciTech Connect (OSTI)

    Vitton, S.J.; Whitman, F.; Liang, R.Y.; Harris, W.W.

    1996-12-31

    An anchored geosynthetic system (AGS) was used in the remediation of a landslide associated with an abandoned coal mine located near Hindman, Kentucky. In concept, AGS is a system that provides in-situ stabilization of soil slopes by combining a surface-deployed geosynthetic with an anchoring system of driven reinforcing rods similar to soil nailing. Installation of the system of driven reinforcing rods similar to soil nailing. Installation of the system involves tensioning a geosynthetic over a slope`s surface by driving anchors through the geosynthetic at a given spacing and distance. By tensioning the geosynthetic over the slope`s surface, a compressive load is applied to the slope. Benefits of AGS are described to include the following: (1) increase soil strength due to soil compression including increased compressive loading on potential failure surfaces, (2) soil reinforcement through soil nailing, (3), halt of soil creep, (4) erosion control, and (5) long term soil consolidation. Following installation of the AGS and one year of monitoring, it was found that the anchored geosynthetic system only provided some of the reported benefits and in general did not function as an active stabilization system. This was due in part to the inability of the system to provide and maintain loading on the geosynthetic. The geosynthetic, however, did tension when slope movement occurred and prevented the slope from failing. Thus, the system functioned more as a passive restraint system and appeared to function well over the monitoring period.

  12. Exporting Alaskan North Slope crude oil: Benefits and costs

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    The Department of Energy study examines the effects of lifting the current prohibitions against the export of Alaskan North Slope (ANS) crude. The study concludes that permitting exports would benefit the US economy. First, lifting the ban would expand the markets in which ANS oil can be sold, thereby increasing its value. ANS oil producers, the States of California and Alaska, and some of their local governments all would benefit from increased revenues. Permitting exports also would generate new economic activity and employment in California and Alaska. The study concludes that these economic benefits would be achieved without increasing gasoline prices (either in California or in the nation as a whole). Lifting the export ban could have important implications for US maritime interests. The Merchant Marine Act of 1970 (known as the Jones Act) requires all inter-coastal shipments to be carried on vessels that are US-owned, US-crewed, and US-built. By limiting the shipment of ANS crude to US ports only, the export ban creates jobs for the seafarers and the builders of Jones Act vessels. Because the Jones Act does not apply to exports, however, lifting the ban without also changing US maritime law would jeopardize the jobs associated with the current fleet of Jones Act tankers. Therefore the report analyzes selected economic impacts of several maritime policy alternatives, including: Maintaining current law, which allows foreign tankers to carry oil where export is allowed; requiring exports of ANS crude to be carried on Jones Act vessels; and requiring exports of ANS crude to be carried on vessels that are US-owned and US-crewed, but not necessarily US-built. Under each of these options, lifting the export ban would generate economic benefits.

  13. Economics of Alaska North Slope gas utilization options

    SciTech Connect (OSTI)

    Thomas, C.P.; Doughty, T.C.; Hackworth, J.H.; North, W.B.; Robertson, E.P.

    1996-08-01

    The recoverable natural gas available for sale in the developed and known undeveloped fields on the Alaskan North Slope (ANS) total about 26 trillion cubic feet (TCF), including 22 TCF in the Prudhoe Bay Unit (PBU) and 3 TCF in the undeveloped Point Thomson Unit (PTU). No significant commercial use has been made of this large natural gas resource because there are no facilities in place to transport this gas to current markets. To date the economics have not been favorable to support development of a gas transportation system. However, with the declining trend in ANS oil production, interest in development of this huge gas resource is rising, making it important for the U.S. Department of Energy, industry, and the State of Alaska to evaluate and assess the options for development of this vast gas resource. The purpose of this study was to assess whether gas-to-liquids (GTL) conversion technology would be an economic alternative for the development and sale of the large, remote, and currently unmarketable ANS natural gas resource, and to compare the long term economic impact of a GTL conversion option to that of the more frequently discussed natural gas pipeline/liquefied natural gas (LNG) option. The major components of the study are: an assessment of the ANS oil and gas resources; an analysis of conversion and transportation options; a review of natural gas, LNG, and selected oil product markets; and an economic analysis of the LNG and GTL gas sales options based on publicly available input needed for assumptions of the economic variables. Uncertainties in assumptions are evaluated by determining the sensitivity of project economics to changes in baseline economic variables.

  14. Shear Wave Velocity Structure of Southern African Crust: Evidence for Compositional Heterogeneity within Archaean and Proterozoic Terrains

    SciTech Connect (OSTI)

    Kgaswane, E M; Nyblade, A A; Julia, J; Dirks, P H H M; Durrheim, R J; Pasyanos, M E

    2008-11-11

    Crustal structure in southern Africa has been investigated by jointly inverting receiver functions and Rayleigh wave group velocities for 89 broadband seismic stations spanning much of the Precambrian shield of southern Africa. 1-D shear wave velocity profiles obtained from the inversion yield Moho depths that are similar to those reported in previous studies and show considerable variability in the shear wave velocity structure of the lower part of the crust between some terrains. For many of the Archaean and Proterozoic terrains in the shield, S velocities reach 4.0 km/s or higher over a substantial part of the lower crust. However, for most of the Kimberley terrain and adjacent parts of the Kheis Province and Witwatersrand terrain, as well as for the western part of the Tokwe terrain, mean shear wave velocities of {le} 3.9 km/s characterize the lower part of the crust along with slightly ({approx}5 km) thinner crust. These findings indicate that the lower crust across much of the shield has a predominantly mafic composition, except for the southwest portion of the Kaapvaal Craton and western portion of the Zimbabwe Craton, where the lower crust is intermediate-to-felsic in composition. The parts of the Kaapvaal Craton underlain by intermediate-to-felsic lower crust coincide with regions where Ventersdorp rocks have been preserved, and thus we suggest that the intermediate-to-felsic composition of the lower crust and the shallower Moho may have resulted from crustal melting during the Ventersdorp tectonomagmatic event at c. 2.7 Ga and concomitant crustal thinning caused by rifting.

  15. Large-eddy simulations of surface roughness parameter sensitivity to canopy-structure characteristics

    DOE PAGES-Beta [OSTI]

    Maurer, K. D.; Bohrer, G.; Kenny, W. T.; Ivanov, V. Y.

    2015-04-30

    Surface roughness parameters, namely the roughness length and displacement height, are an integral input used to model surface fluxes. However, most models assume these parameters to be a fixed property of plant functional type and disregard the governing structural heterogeneity and dynamics. In this study, we use large-eddy simulations to explore, in silico, the effects of canopy-structure characteristics on surface roughness parameters. We performed a virtual experiment to test the sensitivity of resolved surface roughness to four axes of canopy structure: (1) leaf area index, (2) the vertical profile of leaf density, (3) canopy height, and (4) canopy gap fraction.more » We found roughness parameters to be highly variable, but uncovered positive relationships between displacement height and maximum canopy height, aerodynamic canopy height and maximum canopy height and leaf area index, and eddy-penetration depth and gap fraction. We also found negative relationships between aerodynamic canopy height and gap fraction, as well as between eddy-penetration depth and maximum canopy height and leaf area index. We generalized our model results into a virtual "biometric" parameterization that relates roughness length and displacement height to canopy height, leaf area index, and gap fraction. Using a decade of wind and canopy-structure observations in a site in Michigan, we tested the effectiveness of our model-driven biometric parameterization approach in predicting the friction velocity over heterogeneous and disturbed canopies. We compared the accuracy of these predictions with the friction-velocity predictions obtained from the common simple approximation related to canopy height, the values calculated with large-eddy simulations of the explicit canopy structure as measured by airborne and ground-based lidar, two other parameterization approaches that utilize varying canopy-structure inputs, and the annual and decadal means of the surface roughness parameters at

  16. Roughness exponent in two-dimensional percolation, Potts model, and clock model

    SciTech Connect (OSTI)

    Redinz, Jose Arnaldo; Martins, Marcelo Lobato

    2001-06-01

    We present a numerical study of the self-affine profiles obtained from configurations of the q-state Potts (with q=2,3, and 7) and p=10 clock models as well as from the occupation states for site percolation on the square lattice. The first and second order static phase transitions of the Potts model are located by a sharp change in the value of the roughness exponent {alpha} characterizing those profiles. The low temperature phase of the Potts model corresponds to flat ({alpha}{approx_equal}1) profiles, whereas its high temperature phase is associated with rough ({alpha}{approx_equal}0.5) ones. For the p=10 clock model, in addition to the flat (ferromagnetic) and rough (paramagnetic) profiles, an intermediate rough (0.5{lt}{alpha}{lt}1) phase{emdash}associated with a soft spin-wave one{emdash}is observed. Our results for the transition temperatures in the Potts and clock models are in agreement with the static values, showing that this approach is able to detect the phase transitions in these models directly from the spin configurations, without any reference to thermodynamical potentials, order parameters, or response functions. Finally, we show that the roughness exponent {alpha} is insensitive to geometric critical phenomena.

  17. Development of an Immersed Boundary Method to Resolve Complex Terrain in the Weather Research and Forecasting Model

    SciTech Connect (OSTI)

    Lunquist, K A; Chow, F K; Lundquist, J K; Mirocha, J D

    2007-09-04

    simulations, on the other hand, are performed by numerical weather prediction (NWP) codes, which cannot handle the geometry of the urban landscape, but do provide a more complete representation of atmospheric physics. NWP codes typically use structured grids with terrain-following vertical coordinates, include a full suite of atmospheric physics parameterizations, and allow for dynamic synoptic scale lateral forcing through grid nesting. Terrain following grids are unsuitable for urban terrain, as steep terrain gradients cause extreme distortion of the computational cells. In this work, we introduce and develop an immersed boundary method (IBM) to allow the favorable properties of a numerical weather prediction code to be combined with the ability to handle complex terrain. IBM uses a non-conforming structured grid, and allows solid boundaries to pass through the computational cells. As the terrain passes through the mesh in an arbitrary manner, the main goal of the IBM is to apply the boundary condition on the interior of the domain as accurately as possible. With the implementation of the IBM, numerical weather prediction codes can be used to explicitly resolve urban terrain. Heterogeneous urban domains using the IBM can be nested into larger mesoscale domains using a terrain-following coordinate. The larger mesoscale domain provides lateral boundary conditions to the urban domain with the correct forcing, allowing seamless integration between mesoscale and urban scale models. Further discussion of the scope of this project is given by Lundquist et al. [2007]. The current paper describes the implementation of an IBM into the Weather Research and Forecasting (WRF) model, which is an open source numerical weather prediction code. The WRF model solves the non-hydrostatic compressible Navier-Stokes equations, and employs an isobaric terrain-following vertical coordinate. Many types of IB methods have been developed by researchers; a comprehensive review can be found in Mittal

  18. Rough surface electrical contact resistance considering scale dependent properties and quantum effects

    SciTech Connect (OSTI)

    Jackson, Robert L.; Crandall, Erika R.; Bozack, Michael J.

    2015-05-21

    The objective of this work is to evaluate the effect of scale dependent mechanical and electrical properties on electrical contact resistance (ECR) between rough surfaces. This work attempts to build on existing ECR models that neglect potentially important quantum- and size-dependent contact and electrical conduction mechanisms present due to the asperity sizes on typical surfaces. The electrical conductance at small scales can quantize or show a stepping trend as the contact area is varied in the range of the free electron Fermi wavelength squared. This work then evaluates if these effects remain important for the interface between rough surfaces, which may include many small scale contacts of varying sizes. The results suggest that these effects may be significant in some cases, while insignificant for others. It depends on the load and the multiscale structure of the surface roughness.

  19. Site Scientist for the North Slope of Alaska Site (Technical Report) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Site Scientist for the North Slope of Alaska Site Citation Details In-Document Search Title: Site Scientist for the North Slope of Alaska Site Under this grant our team contributed scientific support to the Department of Energy Atmospheric Radiation Program's (DOE-ARM) Infrastructure team to maintain high quality research data at the DOE-ARM North Slope of Alaska with special emphasis on the radars. Under our guidance two major field campaigns focusing on mixed-phase Arctic

  20. Evaluating the Influence of Wall-Roughness on Fracture Transmissivity with CT Scanning and Flow Simulations

    SciTech Connect (OSTI)

    Crandall, Dustin; Bromhal, Grant; McIntyre, Dustin

    2010-01-01

    Combining CT imaging of geomaterials with computational fluid dynamics provides substantial benefits to researchers. With simulations, geometric parameters can be varied in systematic ways that are not possible in the lab. This paper details the conversion of micro-CT images of a physical fracture in Berea sandstone to several tractable finite volume meshes. By computationally varying the level of detail captured from the scans we produced several realistic fracture geometries with different degrees of wall-roughness and various geometric properties. Simulations were performed and it was noted that increasing roughness increased the resistance to fluid flow. Also, as the distance between walls was increased the mean aperture approached the effective aperture.

  1. Effect of surface roughness and polymeric additive on nucleate pool boiling at subatmospheric pressures

    SciTech Connect (OSTI)

    Tewari, P.K.; Verma, R.K.; Ramani, M.P.S.; Mahajan, S.P.

    1986-09-01

    This investigation pertains to boiling heat transfer from a submerged flat surface at subatmospheric and atmospheric pressures in the presence of hydroxy ethyl cellulose (HEC) as a polymeric additive in small doses. Boiling was carried out in presence of the additive on smooth and rough aluminium surfaces having effective cavity size within the range as predicted by Hsu model and the pressure was kept in the range of 8 - 100 KN/sq.m (abs). Effects of surface roughness, saturation pressure and polymer concentration on boiling heat transfer were studied and the results were compared with Rohsenow's correlation.

  2. Alaska North Slope Tundra Travel Model and Validation Study

    SciTech Connect (OSTI)

    Harry R. Bader; Jacynthe Guimond

    2006-03-01

    The Alaska Department of Natural Resources (DNR), Division of Mining, Land, and Water manages cross-country travel, typically associated with hydrocarbon exploration and development, on Alaska's arctic North Slope. This project is intended to provide natural resource managers with objective, quantitative data to assist decision making regarding opening of the tundra to cross-country travel. DNR designed standardized, controlled field trials, with baseline data, to investigate the relationships present between winter exploration vehicle treatments and the independent variables of ground hardness, snow depth, and snow slab thickness, as they relate to the dependent variables of active layer depth, soil moisture, and photosynthetically active radiation (a proxy for plant disturbance). Changes in the dependent variables were used as indicators of tundra disturbance. Two main tundra community types were studied: Coastal Plain (wet graminoid/moist sedge shrub) and Foothills (tussock). DNR constructed four models to address physical soil properties: two models for each main community type, one predicting change in depth of active layer and a second predicting change in soil moisture. DNR also investigated the limited potential management utility in using soil temperature, the amount of photosynthetically active radiation (PAR) absorbed by plants, and changes in microphotography as tools for the identification of disturbance in the field. DNR operated under the assumption that changes in the abiotic factors of active layer depth and soil moisture drive alteration in tundra vegetation structure and composition. Statistically significant differences in depth of active layer, soil moisture at a 15 cm depth, soil temperature at a 15 cm depth, and the absorption of photosynthetically active radiation were found among treatment cells and among treatment types. The models were unable to thoroughly investigate the interacting role between snow depth and disturbance due to a lack

  3. ARMs Climate Change Educational Outreach on the North Slope...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ARM's Climate Change Educational Outreach on the North Slope of Alaska C. E. Talus, F. J. Barnes, and M. H. Springer Los Alamos National Laboratory Los Alamos, New Mexico R. H. ...

  4. Methane Hydrate Production Technologies to be Tested on Alaska's North Slope

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Energy, the Japan Oil, Gas and Metals National Corporation, and ConocoPhillips will work together to test innovative technologies for producing methane gas from hydrate deposits on the Alaska North Slope.

  5. FACT SHEET U.S. Department of Energy North Slope of Alaska

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    North Slope of Alaska Because the environment in the Arctic is changing rapidly, the North Slope of Alaska has become a focal point for atmospheric and ecological research. Aerosols and clouds have strong impacts on the Arctic surface energy balance through absorption and reflection of shortwave and longwave radiation, and in turn, changes in the surface conditions, such as melting of sea ice, snow, or permafrost, can feed back to atmospheric structure and circulation, water vapor, gas and

  6. Large eddy simulations of surface roughness parameter sensitivity to canopy-structure characteristics

    DOE PAGES-Beta [OSTI]

    Maurer, K. D.; Bohrer, G.; Ivanov, V. Y.

    2014-11-27

    Surface roughness parameters are at the core of every model representation of the coupling and interactions between land-surface and atmosphere, and are used in every model of surface fluxes. However, most models assume these parameters to be a fixed property of plant functional type and do not vary them in response to spatial or temporal changes to canopy structure. In part, this is due to the difficulty of reducing the complexity of canopy structure and its spatiotemporal dynamic and heterogeneity to less than a handful of parameters describing its effects of atmosphere–surface interactions. In this study we use large-eddy simulationsmore » to explore, in silico, the effects of canopy structure characteristics on surface roughness parameters. We performed a virtual experiment to test the sensitivity of resolved surface roughness to four axes of canopy structure: (1) leaf area index, (2) the vertical profile of leaf density, (3) canopy height, and (4) canopy gap fraction. We found roughness parameters to be highly variable, but were able to find positive relationships between displacement height and maximum canopy height, aerodynamic canopy height and maximum canopy height and leaf area index, and eddy-penetration depth and gap fraction. We also found negative relationships between aerodynamic canopy height and gap fraction, and between eddy-penetration depth and maximum canopy height and leaf area index. Using a decade of wind and canopy structure observations in a site in Michigan, we tested the effectiveness of our model-resolved parameters in predicting the frictional velocity over heterogeneous and disturbed canopies. We compared it with three other semi-empirical models and with a decade of meteorological observations. We found that parameterizations with fixed representations of roughness performed relatively well. Nonetheless, some empirical approaches that incorporate seasonal and inter-annual changes to the canopy structure performed even better than

  7. Geologic reconnaissance of natural fore-reef slope and a large submarine rockfall exposure, Enewetak Atoll

    SciTech Connect (OSTI)

    Halley, R.B.; Slater, R.A.

    1987-05-01

    In 1958 a submarine rockfall exposed a cross section through the reef and fore-reef deposits along the northwestern margin of Enewetak Atoll, Marshall Islands. Removal of more than 10/sup 8/ MT of rock left a cirque-shaped submarine scarp 220 m high, extending back 190 m into the modern reef, and 1000 m along the reef trend. The scarp exposed older, steeply dipping beds below 220 m along which the rockfall detached. They sampled this exposure and the natural fore-reef slope surrounding it in 1984 and 1985 using a manned submersible. The natural slope in this area is characterized by three zone: (1) the reef plate, crest, and near fore reef that extends from sea level to -16 m, with a slope of less than 10/sup 0/, (2) the bypass slope that extends from -16 to -275 m, with slopes of 55/sup 0/ decreasing to 35/sup 0/ near the base, and (3) a debris slope of less than 35/sup 0/ below -275 m. Vertical walls, grooves, and chutes, common on other fore-reef slopes, are sparse on the northwestern slope of Enewetak. The scarp exposes three stratigraphic units that are differentiated by surficial appearance: (1) a near-vertical wall from the reef crest to 76 m that appears rubbly, has occasional debris-covered ledges, and is composed mainly of coral; (2) a vertical to overhanging wall from -76 m to -220 m that is massive and fractured, and has smooth, blocky surfaces; and (3) inclined bedding below -220 m along which the slump block has fractured, exposing a dip slope of hard, dense, white limestone and dolomite that extends below -400 m. Caves occur in all three units. Open cement-lined fractures and voids layered with cements are most common in the middle unit, which now lies within the thermocline. Along the sides of the scarp are exposed fore-reef boulder beds dipping at 30/sup 0/ toward the open sea; the steeper (55/sup 0/) dipping natural surface truncates these beds, which gives evidence of the erosional nature of the bypass slope.

  8. Adding Complex Terrain and Stable Atmospheric Condition Capability to the OpenFOAM-based Flow Solver of the Simulator for On/Offshore Wind Farm Applications (SOWFA): Preprint

    SciTech Connect (OSTI)

    Churchfield, M. J.; Sang, L.; Moriarty, P. J.

    2013-09-01

    This paper describes changes made to NREL's OpenFOAM-based wind plant aerodynamics solver such that it can compute the stably stratified atmospheric boundary layer and flow over terrain. Background about the flow solver, the Simulator for Off/Onshore Wind Farm Applications (SOWFA) is given, followed by details of the stable stratification/complex terrain modifications to SOWFA, along with somepreliminary results calculations of a stable atmospheric boundary layer and flow over a simply set of hills.

  9. A water balance study of four landfill cover designs varying in slope for semiarid regions

    SciTech Connect (OSTI)

    Nyhan, J.W.; Schofield, T.G.; Salazar, J.A.

    1997-02-01

    The goal of disposing of radioactive and hazardous waste in shallow landfills is to reduce risk to human health and to the environment by isolating contaminants until they no longer pose a hazard. In order to achieve this, the performance of a landfill cover design without an engineered barrier (Conventional Design) was compared with three designs containing either a hydraulic barrier (EPA Design) or a capillary barrier (Loam and Clay Loam Capillary Barrier Designs). Water balance parameters were measured since 1991 at six-hour intervals for four different landfill cover designs in 1.0- by 10.0-m plots with downhill slopes of 5, 10, 15, and 25%. Whereas runoff generally accounted for only 2-3% of the precipitation losses on these designs, similar values for evapotranspiration ranged from 86% to 91%, with increased evapotranspiration occurring with increases in slope. Consequently, interflow and seepage usually decreased with increasing slope for each landfill cover design. Seepage consisted of up to 10% of the precipitation on the Conventional Design, whereas the hydraulic barrier in the EPA Design effectively controlled seepage at all slopes, and both of the capillary designs worked effectively to eliminate seepage at the higher slopes.

  10. The stability of slopes subjected to blasting vibration -- Assessment and application in Hong Kong

    SciTech Connect (OSTI)

    Law, R.; Keller, R.

    1996-12-01

    In the rush to beat the clock before the handover of Hong Kong back to China in June of 1997, an unprecedented amount of infrastructure work is being undertaken at a breakneck pace. In the middle of this construction explosion, on this island of barren granite, stands some of the most concerning and restrictive slope stability measures. So conservative, these measures impact blasting and vibration control to an extent unmatched anywhere in the world. This paper covers the application of vibration limitations and assessment of the stability of rock slopes subjected to blasting vibration in a very challenging application. The widening of the Tuen Mun highway, a project to improve a main artery to the city center to accommodate the ever increasing traffic, involves the blasting of existing slopes in cuts only a few meters wide and up to 45 meters in height, while addressing assessment limitations in a variety of geological conditions. Discussed in the paper is the application of guidelines imposed by the Geotechnical Engineering Office and the Mines Division of the Hong Kong Government and measures taken to address them, i.e., adjustment of geological factors for practical application in blast design; blasting with minimal effect; and maximum protective measures. As slope stability becomes another ever-increasing environmental concern affecting blasting, these applications may be helpful in addressing the encroachment of impending restrictions in other parts of the world on challenging projects where blast assessment of slopes is a critical factor.

  11. Tensile cracking of a brittle conformal coating on a rough substrate

    DOE PAGES-Beta [OSTI]

    Reedy, Jr., E. D.

    2016-04-07

    This note examines the effect of interfacial roughness on the initiation and growth of channel cracks in a brittle film. A conformal film with cusp-like surface flaws that replicate the substrate roughness is investigated. This type of surface flaw is relatively severe in the sense that stress diverges as the cusp-tip is approached (i.e., there is a power-law stress singularity). For the geometry and range of film properties considered, the analysis suggests that smoothing the substrate could substantially increase the film’s resistance to the formation of the through-the-thickness cracks that precede channel cracking. Furthermore, smoothing the substrate’s surface has amore » relatively modest effect on the film stress needed to propagate a channel crack.« less

  12. Improvement of the electrical contact resistance at rough interfaces using two dimensional materials

    SciTech Connect (OSTI)

    Hu, Jianchen; Pan, Chengbin; Lanza, Mario; Li, Heng; Shen, Panpan; Sun, Hui; Duan, Huiling

    2015-12-07

    Reducing the electronic contact resistance at the interfaces of nanostructured materials is a major goal for many kinds of planar and three dimensional devices. In this work, we develop a method to enhance the electronic transport at rough interfaces by inserting a two dimensional flexible and conductive graphene sheet. We observe that an ultra-thin graphene layer with a thickness of 0.35 nm can remarkably reduce the roughness of a sample in a factor of 40%, avoiding the use of thick coatings, leading to a more homogeneous current flow, and extraordinarily increasing the total current compared to the graphene-free counterpart. Due to its simplicity and performance enhancement, this methodology can be of interest to many interface and device designers.

  13. Surface roughness and interface width scaling of magnetron sputter deposited Ni/Ti multilayers

    SciTech Connect (OSTI)

    Maidul Haque, S.; Biswas, A.; Tokas, R. B.; Bhattacharyya, D.; Sahoo, N. K.; Bhattacharya, Debarati

    2013-09-14

    Using an indigenously built r.f. magnetron sputtering system, several single layer Ti and Ni films have been deposited at varying deposition conditions. All the samples have been characterized by Grazing Incidence X-ray Reflectivity (GIXR) and Atomic Force Microscopy to estimate their thickness, density, and roughness and a power law dependence of the surface roughness on the film thickness has been established. Subsequently, at optimized deposition condition of Ti and Ni, four Ni/Ti multilayers of 11-layer, 21-layer, 31-layer, and 51-layer having different bilayer thickness have been deposited. The multilayer samples have been characterized by GIXR and neutron reflectivity measurements and the experimental data have been fitted assuming an appropriate sample structure. A power law correlation between the interface width and bilayer thickness has been observed for the multilayer samples, which was explained in the light of alternate roughening/smoothening of multilayers and assuming that at the interface the growth restarts every time.

  14. Surface roughness measurements of beta-layered solid deuterium-tritium in toroidal geometries

    SciTech Connect (OSTI)

    Hoffer, J.K.; Foreman, L.R.; Sanchez, J.J.; Mapoles, E.R.; Sheliak, J.D.

    1996-07-01

    New experiments in a NIF-scale toroidal cylinder have resulted in true shadowgraphs of the DT ice surface. The spectral analysis of the images summed over l-modes 2 through 256 reveal that the surface roughness reaches values just below 1.0 {micro}m at temperatures of 19 K and above. Summing only modes l {ge} 10, the partial surface roughness is below 0.7 {micro}m at 19.5 K. These results indicate that native beta-layering will be sufficient to meet the NIF requirements for DT ice surface finish for both Be and CH ablating shells. The toroidal cylinder incorporates a linear heater along the cylindrical axis to test the concept of surface enhancement due to heat assisted beta-layering in DT. Additionally, with the use of this heater it is possible to symmetrize a pure D{sub 2} layer.

  15. Electrochemical machining process for forming surface roughness elements on a gas turbine shroud

    DOE Patents [OSTI]

    Lee, Ching-Pang; Johnson, Robert Alan; Wei, Bin; Wang, Hsin-Pang

    2002-01-01

    The back side recessed cooling surface of a shroud defining in part the hot gas path of a turbine is electrochemically machined to provide surface roughness elements and spaces therebetween to increase the heat transfer coefficient. To accomplish this, an electrode with insulating dielectric portions and non-insulating portions is disposed in opposition to the cooling surface. By passing an electrolyte between the cooling surface and electrode and applying an electrical current between the electrode and a shroud, roughness elements and spaces therebetween are formed in the cooling surface in opposition to the insulating and non-insulating portions of the electrode, hence increasing the surface area and heat transfer coefficient of the shroud.

  16. Cement paste surface roughness analysis using coherence scanning interferometry and confocal microscopy

    SciTech Connect (OSTI)

    Apedo, K.L.; Munzer, C.; He, H.; Montgomery, P.; Serres, N.; Fond, C.; Feugeas, F.

    2015-02-15

    Scanning electron microscopy and scanning probe microscopy have been used for several decades to better understand the microstructure of cementitious materials. Very limited work has been performed to date to study the roughness of cementitious materials by optical microscopy such as coherence scanning interferometry (CSI) and chromatic confocal sensing (CCS). The objective of this paper is to better understand how CSI can be used as a tool to analyze surface roughness and topography of cement pastes. Observations from a series of images acquired using this technique on both polished and unpolished samples are described. The results from CSI are compared with those from a STIL confocal microscopy technique (SCM). Comparison between both optical techniques demonstrates the ability of CSI to measure both polished and unpolished cement pastes. - Highlights: • Coherence scanning interferometry (CSI) was used to analyze cement paste surfaces. • The results from the CSI were compared with those from a confocal microscopy. • 3D roughness parameters were obtained using the window resizing method. • Polished and unpolished cement pastes were studied.

  17. The Effect of Excimer Laser Treatment on the Surface Roughness and Fracture Strength of Alumina Substrates

    SciTech Connect (OSTI)

    Smoot, J.E.

    1998-05-13

    The microelectronics industry requires alumina substrates with exceptionally smooth surfaces and few surface defects to allow successful deposition of metallic films for reliable electronic performance. Irradiation by a 248-nm wavelength excimer laser beam (KrF) at a fluence of 125 mJ/mm{sup 2} and at various angles of incidence is shown to significantly reduce the surface roughness of alumina substrates. However, irradiation also creates a fine particulate deposit of alumina that only partially adheres to the substrate and impedes deposition of metal films. Annealing in air between 1350 C and 1450 C was found to remove the particles by sintering. As-received material showed surface roughness average (R{sub a}) mean values of 457 nm, which was reduced to 60 nm (mean) following irradiation and 71 nm (mean) following irradiation and annealing at 1350 C. Irradiation also produced a decrease in the number and severity of surface defects. The flexural strength and Weibull modulus were both increased by laser irradiation and thermal treatment. Flexural strength went from an as-received value of 450 MPa to 560 MPa following irradiation/sintering, measured at 10% probability of failure. The Weibull modulus was increased from the as-received value of about 9, to about 13 following irradiation/sintering. It was concluded that irradiation at an angle of incidence of 60{degree} from perpendicular was most effective in producing a low surface roughness.

  18. Restrictions on Measurement of Roughness of Textile Fabrics by Laser Triangulation: A Phenomenological Approach

    SciTech Connect (OSTI)

    Berberi, Pellumb; Tabaku, Burhan

    2010-01-21

    Laser triangulation method is one of the methods used for contactless measurement of roughness of textile fabrics. Method is based on measurement of distance between the sensor and the object by imaging the light scattered from the surface. However, experimental results, especially for high values of roughness, show a strong dependence to duration of exposure time to laser pulses. Use of very short exposure times and long exposures times causes appearance on the surface of the scanned textile of pixels with Active peak heights. The number of Active peaks increases with decrease of exposure time down to 0.1 ms, and increases with increase of exposure time up to 100 ms. Appearance of Active peaks leads to nonrealistic increase of roughness of the surface both for short exposure times and long exposure times reaching a minimum somewhere in the region of medium exposure times, 1 to 2 ms. The above effect suggests a careful analysis of experimental data and, also, becomes an important restriction to the method. In this paper we attempt to make a phenomenological approach to the mechanisms leading to these effects. We suppose that effect is related both to scattering properties of scanned surface and to physical parameters of CCD sensors. The first factor becomes more important in the region of long exposure times, while second factor becomes more important in the region of short exposure times.

  19. Process of Equiaxed Grains of RE-Al Alloy under Slope Vibration

    SciTech Connect (OSTI)

    Xie Shikun; Yi Rongxi; Pan Xiaoliang; Zheng Xiaoqiu; Guo Xiuyan [School of Engineering, Jinggangshan University, Ji'an, 343009 (China)

    2010-06-15

    A new technique using slope vibration casting process during heating and isothermal holding period to prepare Al-7Si-2RE alloy has been studied. The small, near-spherical and non-dendritic microstructure with the semi-solid processing requirements has been obtained. Experiments show that the cooling method, pouring process and the convection of melt caused by slope vibration had significant effects on the formation of near-spherical primary gains. The water-cooled copper mold casting with slope vibration at the temperature near liquidus can obtain Al-7Si-2RE alloy with small homogeneous equiaxed grains, the average grain diameter is 48.3 mum, and the average grain roundness is 1.92.

  20. Benthic study of the continental slope off Cape Hatteras, North Carolina. Volume 2. Final report

    SciTech Connect (OSTI)

    Diaz, R.J.; Blake, J.A.; Lohse, D.P.

    1993-03-01

    A number of blocks off Cape Hatteras have been leased by Mobil Oil, which has requested permission to drill an exploratory well, at 820-m depth, in a block identified as Manteo 467. The proposed well location is 39 miles from the coast of North Carolina. The possibility of extracting gas from the continental slope off the coast of North Carolina, particularly at slope depths, has raised a number of environmental concerns that cannot be addressed from existing data. The present study was developed by the Minerals Management Service to better define the nature of the continental slope benthic communities off Cape Hatteras and to delineate their areal extent. Emphasis was placed on the area around the proposed drill site in the Manteo 467 lease block.

  1. Bringing Alaska North Slope Natural Gas to Market (released in AEO2009)

    Reports and Publications

    2009-01-01

    At least three alternatives have been proposed over the years for bringing sizable volumes of natural gas from Alaska's remote North Slope to market in the lower 48 states: a pipeline interconnecting with the existing pipeline system in central Alberta, Canada; a gas-to-liquids (GTL) plant on the North Slope; and a large liquefied natural gas (LNG) export facility at Valdez, Alaska. The National Energy Modeling System (NEMS) explicitly models the pipeline and GTL options. The what if LNG option is not modeled in NEMS.

  2. Los Alamos Lab to perform slope-side cleanup near Smith's Marketplace

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Los Alamos Lab to perform slope-side cleanup near Smith's Marketplace Los Alamos National Laboratory to perform slope-side cleanup near Smith's Marketplace The Lab is performing a high-angle canyon-side cleanup on U.S. Department of Energy property just south of the new Smith's Marketplace. May 1, 2015 Los Alamos National Laboratory To complete cleanup activities at one of the few remaining legacy sites along Los Alamos Canyon, crews are using a specialized spider excavator to remove a small

  3. ARM-ACME V: ARM Airborne Carbon Measurements V on the North Slope of Alaska

    Office of Scientific and Technical Information (OSTI)

    Field Campaign Report (Technical Report) | SciTech Connect ARM-ACME V: ARM Airborne Carbon Measurements V on the North Slope of Alaska Field Campaign Report Citation Details In-Document Search Title: ARM-ACME V: ARM Airborne Carbon Measurements V on the North Slope of Alaska Field Campaign Report Atmospheric temperatures are warming faster in the Arctic than predicted by climate models. The impact of this warming on permafrost degradation is not well understood, but it is projected to

  4. Effects of roughness and temperature on low-energy hydrogen positive and negative ion reflection from silicon and carbon surfaces

    SciTech Connect (OSTI)

    Tanaka, N.; Kato, S.; Miyamoto, T.; Wada, M.; Nishiura, M.; Tsumori, K.; Matsumoto, Y.; Kenmotsu, T.; Okamoto, A.; Kitajima, S.; Sasao, M.; Yamaoka, H.

    2014-02-15

    Angle-resolved energy distribution functions of positive and negative hydrogen ions produced from a rough-finished Si surface under 1 keV proton irradiation have been measured. The corresponding distribution from a crystalline surface and a carbon surface are also measured for comparison. Intensities of positive and negative ions from the rough-finished Si are substantially smaller than those from crystalline Si. The angular distributions of these species are broader for rough surface than the crystalline surface. No significant temperature dependence for positive and negative ion intensities is observed for all samples in the temperature range from 300 to 400 K.

  5. SLOPE STABILITY EVALUATION AND EQUIPMENT SETBACK DISTANCES FOR BURIAL GROUND EXCAVATIONS

    SciTech Connect (OSTI)

    MCSHANE DS

    2010-03-25

    After 1970 Transuranic (TRU) and suspect TRU waste was buried in the ground with the intention that at some later date the waste would be retrieved and processed into a configuration for long term storage. To retrieve this waste the soil must be removed (excavated). Sloping the bank of the excavation is the method used to keep the excavation from collapsing and to provide protection for workers retrieving the waste. The purpose of this paper is to document the minimum distance (setback) that equipment must stay from the edge of the excavation to maintain a stable slope. This evaluation examines the equipment setback distance by dividing the equipment into two categories, (1) equipment used for excavation and (2) equipment used for retrieval. The section on excavation equipment will also discuss techniques used for excavation including the process of benching. Calculations 122633-C-004, 'Slope Stability Analysis' (Attachment A), and 300013-C-001, 'Crane Stability Analysis' (Attachment B), have been prepared to support this evaluation. As shown in the calculations the soil has the following properties: Unit weight 110 pounds per cubic foot; and Friction Angle (natural angle of repose) 38{sup o} or 1.28 horizontal to 1 vertical. Setback distances are measured from the top edge of the slope to the wheels/tracks of the vehicles and heavy equipment being utilized. The computer program utilized in the calculation uses the center of the wheel or track load for the analysis and this difference is accounted for in this evaluation.

  6. Rapid growth rates of syndepositional marine aragonite cements in steep marginal slope deposits, Bahamas and Belize

    SciTech Connect (OSTI)

    Grammer, G.M.; Ginsburg, R.N.; Swart, P.K.; McNeill, D.F. . Div. of Marine Geology); Jull, A.J.T. . NSF Accelerator Facility); Prezbindowski, D.R. )

    1993-09-01

    Growth rates of marine botryoidal aragonite cements from steep (35-45[degree]) marginal slope deposits in the Bahamas and Belize have been determined by accelerator mass spectrometer radiocarbon dating of samples taken at the base and top of individual botryoids. The pore-filling cements, which range from approximately 11,000-13,000 years old, grew at average rates of 8-10mm/100 yr with maximum rates > 25mm/100 yr. Radiocarbon dating of coexisting skeletal components indicates that cementation was syndepositional. Microsampling transects across individual botryoids for stable-isotope analyses show little variation in [delta][sup 31]C and [delta][sup 18]O, supporting the conclusion that cementation was extremely rapid. Although the cements show a progressive depletion in isotopic composition of approximately 1[per thousand]([delta][sup 13]C) and 2[per thousand]([delta][sup 18]O) from 13 ka to 11 ka, the average variation ([delta][sub 1]) within individual pore-filling cements, ranging in size 2 mm to 32 mm (bottom to top), was 0.11[per thousand]([delta][sup 13]C) and 0.14[per thousand]([delta][sup 18]O). Results of this study provide the first quantitative data on growth rates of marine carbonate cements in a marginal slope environment. The data indicate that marginal slope deposits may lithify within several tens of years and suggest that geologically instantaneous cementation may be critical in stabilizing steep carbonate slope deposits at or above angles of repose.

  7. Effects of grit roughness and pitch oscillations on the S814 airfoil

    SciTech Connect (OSTI)

    Janiszewska, J.M.; Ramsay, R.R.; Hoffmann, M.J.; Gregorek, G.M. [Ohio State Univ., Columbus, OH (United States)

    1996-07-01

    Horizontal-axis wind turbine rotors experience unsteady aerodynamics when the rotor is yawed, when rotor blades pass through the support tower wake, and when the wind is gusting. An understanding of this unsteady behavior is necessary to assist in the design of new rotor airfoils. The rotors also experience performance degradation due to surface roughness. These surface irregularities are due to the accumulation of insect debris, ice, and/or the aging process. Wind tunnel studies that examine both the steady and unsteady behavior of airfoils can help define pertinent flow phenomena, and the resultant data can also be used to validate analytical computer codes. An S814 airfoil model was tested in The Ohio State University Aeronautical and Astronautical Research Laboratory (OSU/AARL) 3 X 5 subsonic wind tunnel (3 X 5) under steady flow with both stationary model conditions and pitch oscillations. To study the extent of performance loss due to surface roughness, a leading edge grit roughness pattern (LEGR) was used to simulate leading edge contamination. After baseline cases were completed, the LEGR was applied for both steady state and model pitch oscillation cases. The Reynolds numbers for steady state conditions were 0.75, 1, 1.25 and 1.5 million, while the angle of attack ranged from -20{degrees} to +40{degrees}. While the model underwent pitch oscillations, data were acquired at Reynolds numbers of 0.75, 1, 1.25, and 1.5 million, at frequencies of 0.6, 1.2, and 1.8 Hz. Two sine wave forcing functions {+-}5.5{degrees} and {+-}10{degrees}, were used; at mean angles of attack of 8{degrees}, 14{degrees}, and 20{degrees}. For purposes herein, any reference to unsteady conditions means the model was in pitch oscillation.

  8. Regional distribution and chemical characterization of Permian Capitan fore-reef slope dolomite: Implications for paleohydrology

    SciTech Connect (OSTI)

    Melim, L.A. )

    1990-05-01

    Dolomitized fore-reef slope facies recently have become significant targets for petroleum exploration in the Permian basin and elsewhere. Despite this, very little is known about the dolomitization process that largely controls porosity distribution in this facies. An integrated field, petrographic, and geochemical study has been conducted in the fore-reef slope strata of the Permian Capitan Formation to provide insight into this problem. Dolomitization of the Capitan fore-reef slope facies ranges from 0 to 100%. Regionally, the variation is related to stratigraphic age, with older forereef slope facies more dolomitized than younger facies. This generalization is consistent throughout the Guadalupe Mountains and appears to continue into the subsurface. On a local scale, more permeable beds were the first dolomitized, and within these, dolomitization decreases downslope. In the Capitan reef facies, dolomitization is restricted to vertical karst breccia pipes and other zones of high primary porosity. The majority of Capitan dolomite is finely crystalline (5-30 {mu}) with average {delta}{sup 18}O = 0.9 and {delta}{sup 13}C = 5.9. A second coarser (130-{mu}) dolomite generation is also present but is not as volumetrically important. The relative positive (for the Late Permian) {delta}{sup 18}O values indicates an evaporitively concentrated dolomitizing fluid. The most likely paleohydrologic model for the main phase of forereef slope dolomitization calls for descending hypersaline brines passing through the reef facies in vertical karst breccia pipes and then following permeable beds down the foreslope. Several sources are possible for these brines, with the most likely being the hypersaline back-reef lagoonal environment.

  9. EFFECTS OF GRAPHITE SURFACE ROUGHNESS ON BYPASS FLOW COMPUTATIONS FOR AN HTGR

    SciTech Connect (OSTI)

    Rich Johnson; Yu-Hsin Tung; Hiroyuki Sato

    2011-07-01

    Bypass flow in a prismatic high temperature gas reactor (HTGR) occurs between graphite blocks as they sit side by side in the core. Bypass flow is not intentionally designed to occur in the reactor, but is present because of tolerances in manufacture, imperfect installation and expansion and shrinkage of the blocks from heating and irradiation. It is desired to increase the knowledge of the effects of such flow, which has been estimated to be as much as 20% of the total helium coolant flow. Computational fluid dynamic (CFD) simulations can provide estimates of the scale and impacts of bypass flow. Previous CFD calculations have examined the effects of bypass gap width, level and distribution of heat generation and effects of shrinkage. The present contribution examines the effects of graphite surface roughness on the bypass flow for different relative roughness factors on three gap widths. Such calculations should be validated using specific bypass flow measurements. While such experiments are currently underway for the specific reference prismatic HTGR design for the next generation nuclear plant (NGNP) program of the U. S. Dept. of Energy, the data are not yet available. To enhance confidence in the present calculations, wall shear stress and heat transfer results for several turbulence models and their associated wall treatments are first compared for flow in a single tube that is representative of a coolant channel in the prismatic HTGR core. The results are compared to published correlations for wall shear stress and Nusselt number in turbulent pipe flow. Turbulence models that perform well are then used to make bypass flow calculations in a symmetric onetwelfth sector of a prismatic block that includes bypass flow. The comparison of shear stress and Nusselt number results with published correlations constitutes a partial validation of the CFD model. Calculations are also compared to ones made previously using a different CFD code. Results indicate that

  10. Y-12's rough roads smoothed over with 23,000 tons of recycled asphalt |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration | (NNSA) 's rough roads smoothed over with 23,000 tons of recycled asphalt Tuesday, December 29, 2015 - 12:00am NNSA Blog Some 23,000 tons of asphalt removed during this summer's UPF site work have been put to use throughout the site. Potholes and gravel roads are now "paved" with the recycled asphalt that has been ground into a material called base course. Unlike gravel, the material tends to rebind into a solid form as it is packed down,

  11. Single-layer MoS{sub 2} roughness and sliding friction quenching by interaction with atomically flat substrates

    SciTech Connect (OSTI)

    Quereda, J.; Castellanos-Gomez, A.; Agrat, N.; Rubio-Bollinger, G.

    2014-08-04

    We experimentally study the surface roughness and the lateral friction force in single-layer MoS{sub 2} crystals deposited on different substrates: SiO{sub 2}, mica, and hexagonal boron nitride (h-BN). Roughness and sliding friction measurements are performed by atomic force microscopy. We find a strong dependence of the MoS{sub 2} roughness on the underlying substrate material, being h-BN the substrate which better preserves the flatness of the MoS{sub 2} crystal. The lateral friction also lowers as the roughness decreases, and attains its lowest value for MoS{sub 2} flakes on h-BN substrates. However, it is still higher than for the surface of a bulk MoS{sub 2} crystal, which we attribute to the deformation of the flake due to competing tip-to-flake and flake-to-substrate interactions.

  12. A guidebook for insulated low-slope roof systems. IEA Annex 19, Low-slope roof systems: International Energy Agency Energy Conservation in Buildings and Community Systems Programme

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    Low-slope roof systems are common on commercial and industrial buildings and, to a lesser extent, on residential buildings. Although insulating materials have nearly always been a component of low-slope roofs, the amount of insulation used has increased in the past two decades because of escalation of heating and cooling costs and increased awareness of the need for energy conservation. As the amount of insulation has increased, the demand has intensified for design, installation, and maintenance information specifically for well-insulated roofs. Existing practices for design, installation, and maintenance of insulated roofs have evolved from experience. Typically, these practices feature compromises due to the different properties of materials making up a given roof system. Therefore, they should be examined from time to time to ensure that they are appropriate as new materials continue to enter the market and as the data base on existing systems expands. A primary purpose of this International Energy Agency (IEA) study is to assess current roofing insulation practices in the context of an accumulating data base on performance.

  13. Phreatic flow on sloping soil layers from a finite source: An analytical solution

    SciTech Connect (OSTI)

    Filley, T.H.

    1991-09-01

    Sloping clay layers beneath percolation ponds can cause infiltrating wastewater to pond and move in directions not predicted by vertical infiltration equations. This report presents a method for estimating the potential of wastewater from percolation sumps located over sloping clay layers to interact with nearby groundwater resources. The analytical solution developed is for steady-state conditions and includes a procedure to estimate the time needed to reach steady state. The fundamental assumption used in the mathematical development requires that elevation-head gradients be much larger than pressure-head gradients. A method for testing the validity of this assumption is also included. An example calculation was performed for percolation sumps on the Naval Petroleum Reserve No. 1 in Elk Hills, California. That analysis showed that, under the assumptions used, the sumps may have enabled oil field wastewater to reach groundwater resources within the adjacent San Joaquin Valley. 9 refs., 10 figs.

  14. Expansion of Facilities on the North Slope of Alaska in Time for the

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    International Polar Year Expansion of Facilities on the North Slope of Alaska in Time for the International Polar Year Zak, Bernard Sandia National Laboratories Ivey, Mark Sandia National Laboratories Zirzow, Jeffrey Sandia National Laboratories Brower, Walter UIC Science Division ARM/NSA Ivanoff, James NSA Whiteman, Doug NSA/AAO Sassen, Kenneth University of Alaska Fairbanks Truffer-Moudra, Dana University of Alaska Fairbanks Category: Infrastructure & Outreach The International Polar

  15. Infrared Cloud Imager Deployment at the North Slope of Alaska During Early 2002

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Infrared Cloud Imager Deployment at the North Slope of Alaska During Early 2002 J. A. Shaw and B. Thurairajah Department of Electrical and Computer Engineering Montana State University Bozeman, Montana E. Edqvist National Oceanic and Atmospheric Administration Environmental Technology Laboratory Boulder, Colorado K. Mizutani Communications Research Laboratory Koganei, Tokyo, Japan Introduction Starting in February 2002, we deployed a new cloud-radiation sensor called the infrared cloud imager

  16. SPECTRAL SLOPE VARIATION AT PROTON SCALES FROM FAST TO SLOW SOLAR WIND

    SciTech Connect (OSTI)

    Bruno, R.; Trenchi, L.; Telloni, D.

    2014-09-20

    We investigated the behavior of the spectral slope of interplanetary magnetic field fluctuations at proton scales for selected high-resolution time intervals from the WIND and MESSENGER spacecraft at 1 AU and 0.56 AU, respectively. The analysis was performed within the profile of high-speed streams, moving from fast to slow wind regions. The spectral slope showed a large variability between –3.75 and –1.75 and a robust tendency for this parameter to be steeper within the trailing edge, where the speed is higher, and to be flatter within the subsequent slower wind, following a gradual transition between these two states. The value of the spectral index seems to depend firmly on the power associated with the fluctuations within the inertial range; the higher the power, the steeper the slope. Our results support previous analyses suggesting that there must be some response of the dissipation mechanism to the level of the energy transfer rate along the inertial range.

  17. Slope Stability Analysis In Seismic Areas Of The Northern Apennines (Italy)

    SciTech Connect (OSTI)

    Lo Presti, D.; Fontana, T.; Marchetti, D.

    2008-07-08

    Several research works have been published on the slope stability in the northern Tuscany (central Italy) and particularly in the seismic areas of Garfagnana and Lunigiana (Lucca and Massa-Carrara districts), aimed at analysing the slope stability under static and dynamic conditions and mapping the landslide hazard. In addition, in situ and laboratory investigations are available for the study area, thanks to the activities undertaken by the Tuscany Seismic Survey. Based on such a huge information the co-seismic stability of few ideal slope profiles have been analysed by means of Limit equilibrium method LEM - (pseudo-static) and Newmark sliding block analysis (pseudo-dynamic). The analysis--results gave indications about the most appropriate seismic coefficient to be used in pseudo-static analysis after establishing allowable permanent displacement. Such indications are commented in the light of the Italian and European prescriptions for seismic stability analysis with pseudo-static approach. The stability conditions, obtained from the previous analyses, could be used to define microzonation criteria for the study area.

  18. Optimal tuning and calibration of bendable mirrors with slope measuring profilers

    SciTech Connect (OSTI)

    McKinney, Wayne; Kirschman, Jonathan; MacDowell, Alastair; Warwick, Tony; Yashchuk, Valeriy

    2009-06-22

    We describe a technique to optimally tune and calibrate bendable x-ray optics for sub-micron focusing. The focusing is divided between two elliptically cylindrical reflecting elements, a Kirkpatrick-Baez (KB) pair. Each optic is shaped by applying unequal bending couples to each end of a flat mirror. The developed technique allowsoptimal tuning of these systems using surface slope data obtained with a slope measuring instrument, the long trace profiler (LTP). Due to the near linearity of the problem, the minimal set of data necessary for the tuning of each bender, consists of only three slope traces measured before and after a single adjustment of each bending couple. The data are analyzed with software realizing a method of regression analysis with experimentally found characteristic functions of the benders. The resulting approximation to the functional dependence of the desired shape provides nearly final settings. Moreover, the characteristic functions of the benders found in the course of tuning, can be used for retuning to a new desired shape without removal from the beamline and re-measuring. We perform a ray trace, using profiler data for the finally tuned optics, predicting the performance to be expected during use of the optics on the beamline.

  19. Light emitting diode with high aspect ratio submicron roughness for light extraction and methods of forming

    DOE Patents [OSTI]

    Li, Ting

    2013-08-13

    The surface morphology of an LED light emitting surface is changed by applying a reactive ion etch (RIE) process to the light emitting surface. High aspect ratio, submicron roughness is formed on the light emitting surface by transferring a thin film metal hard-mask having submicron patterns to the surface prior to applying a reactive ion etch process. The submicron patterns in the metal hard-mask can be formed using a low cost, commercially available nano-patterned template which is transferred to the surface with the mask. After subsequently binding the mask to the surface, the template is removed and the RIE process is applied for time duration sufficient to change the morphology of the surface. The modified surface contains non-symmetric, submicron structures having high aspect ratio which increase the efficiency of the device.

  20. A study of pitch oscillation and roughness on airfoils used for horizontal axis wind turbines

    SciTech Connect (OSTI)

    Gregorek, G.M.; Hoffmann, M.J.; Ramsay, R.R.; Janiszewska, J.M. [Ohio State Univ., Columbus, OH (United States)

    1995-12-01

    Under subcontract XF-1-11009-3 the Ohio State University Aeronautical and Astronautical Research Laboratory (OSU/AARL) with the National Renewable Energy Laboratory (NREL) developed an extensive database of empirical aerodynamic data. These data will assist in the development of analytical models and in the design of new airfoils for wind turbines. To accomplish the main objective, airfoil models were designed, built and wind tunnel tested with and without model leading edge grit roughness (LEGR). LEGR simulates surface irregularities due to the accumulation of insect debris, ice, and/or the aging process. This report is a summary of project project activity for Phase III, which encompasses the time period from September 17, 1 993 to September 6, 1 994.

  1. Organic photosensitive cells grown on rough electrode with nano-scale morphology control

    DOE Patents [OSTI]

    Yang, Fan; Forrest, Stephen R.

    2011-06-07

    An optoelectronic device and a method for fabricating the optoelectronic device includes a first electrode disposed on a substrate, an exposed surface of the first electrode having a root mean square roughness of at least 30 nm and a height variation of at least 200 nm, the first electrode being transparent. A conformal layer of a first organic semiconductor material is deposited onto the first electrode by organic vapor phase deposition, the first organic semiconductor material being a small molecule material. A layer of a second organic semiconductor material is deposited over the conformal layer. At least some of the layer of the second organic semiconductor material directly contacts the conformal layer. A second electrode is deposited over the layer of the second organic semiconductor material. The first organic semiconductor material is of a donor-type or an acceptor-type relative to the second organic semiconductor material, which is of the other material type.

  2. Light emitting diode with high aspect ratio submicron roughness for light extraction and methods of forming

    DOE Patents [OSTI]

    Li, Ting

    2011-04-26

    The surface morphology of an LED light emitting surface is changed by applying a reactive ion etch (RIE) process to the light emitting surface. High aspect ratio, submicron roughness is formed on the light emitting surface by transferring a thin film metal hard-mask having submicron patterns to the surface prior to applying a reactive ion etch process. The submicron patterns in the metal hard-mask can be formed using a low cost, commercially available nano-patterned template which is transferred to the surface with the mask. After subsequently binding the mask to the surface, the template is removed and the RIE process is applied for time duration sufficient to change the morphology of the surface. The modified surface contains non-symmetric, submicron structures having high aspect ratio which increase the efficiency of the device.

  3. Radiation control coatings installed on rough-surfaced built-up roofs -- Initial results

    SciTech Connect (OSTI)

    Petrie, T.W.; Childs, P.W.; Christian, J.E.

    1998-01-01

    The authors have tracked the solar reflectance and thermal performance of small samples of various radiation control coatings on smooth surfaces for several years on a roof test facility in East Tennessee. The focus is on white coatings because of their potential to weather, causing the solar reflectance to decrease as the coatings age. Support of the federal New Technology Demonstration Program allowed them to extend the study to more samples on smooth surfaces and entire rough-surfaced roofs at a federal facility in the Panhandle of Florida. Two rough-surfaced, moderately well-insulated, low solar reflectance built-up roofs (BURs) were spray-coated with a latex-based product with ceramic beads added to improve solar reflectance. In the first three months after installation, the fresh BUR coatings showed a significant decrease in both the outside-surface temperature and the heat flux through the roof insulation. Average sunlit values were generated to exclude nighttime data, data on cloudy days, and data when the uncoated patch on one roof was more strongly shaded in mid-afternoon on sunny days. The average power demand during occupied periods for the first month with the coating for the building with the thermally massive roof deck was 13% less than during the previous month without the coating. For the other buildings with a lightweight roof deck but high internal loads, there were no clear average power savings due to the coating. The authors are continuing to monitor electricity use in these all-electric buildings to calibrate a model for the peak power and annual energy use of the buildings. Modeling results to be given at the end of the two year project will address the effect of roof R-value, geographic location, and solar reflectance, including the effect of weathering, on the performance of coated roofs. The calibrated models should allow one to segregate site-specific effects such as shading and large thermal mass.

  4. Molecular dynamic simulation of Ar-Kr mixture across a rough walled nanochannel: Velocity and temperature profiles

    SciTech Connect (OSTI)

    Pooja, Ahluwalia, P. K.; Pathania, Y.

    2015-05-15

    This paper presents the results from a molecular dynamics simulation of mixture of argon and krypton in the Poiseuille flow across a rough walled nanochannel. The roughness effect on liquid nanoflows has recently drawn attention The computational software used for carrying out the molecular dynamics simulations is LAMMPS. The fluid flow takes place between two parallel plates and is bounded by horizontal rough walls in one direction and periodic boundary conditions are imposed in the other two directions. Each fluid atom interacts with other fluid atoms and wall atoms through Leenard-Jones (LJ) potential with a cut off distance of 5.0. To derive the flow a constant force is applied whose value is varied from 0.1 to 0.3 and velocity profiles and temperature profiles are noted for these values of forces. The velocity profile and temperature profiles are also looked at different channel widths of nanochannel and at different densities of mixture. The velocity profile and temperature profile of rough walled nanochannel are compared with that of smooth walled nanochannel and it is concluded that mean velocity increases with increase in channel width, force applied and decrease in density also with introduction of roughness in the walls of nanochannel mean velocity again increases and results also agree with the analytical solution of a Poiseuille flow.

  5. The Component Slope Linear Model for Calculating Intensive Partial Molar Properties: Application to Waste Glasses

    SciTech Connect (OSTI)

    Reynolds, Jacob G.

    2013-01-11

    Partial molar properties are the changes occurring when the fraction of one component is varied while the fractions of all other component mole fractions change proportionally. They have many practical and theoretical applications in chemical thermodynamics. Partial molar properties of chemical mixtures are difficult to measure because the component mole fractions must sum to one, so a change in fraction of one component must be offset with a change in one or more other components. Given that more than one component fraction is changing at a time, it is difficult to assign a change in measured response to a change in a single component. In this study, the Component Slope Linear Model (CSLM), a model previously published in the statistics literature, is shown to have coefficients that correspond to the intensive partial molar properties. If a measured property is plotted against the mole fraction of a component while keeping the proportions of all other components constant, the slope at any given point on a graph of this curve is the partial molar property for that constituent. Actually plotting this graph has been used to determine partial molar properties for many years. The CSLM directly includes this slope in a model that predicts properties as a function of the component mole fractions. This model is demonstrated by applying it to the constant pressure heat capacity data from the NaOH-NaAl(OH{sub 4}H{sub 2}O system, a system that simplifies Hanford nuclear waste. The partial molar properties of H{sub 2}O, NaOH, and NaAl(OH){sub 4} are determined. The equivalence of the CSLM and the graphical method is verified by comparing results detennined by the two methods. The CSLM model has been previously used to predict the liquidus temperature of spinel crystals precipitated from Hanford waste glass. Those model coefficients are re-interpreted here as the partial molar spinel liquidus temperature of the glass components.

  6. Comparator circuits with local ramp buffering for a column-parallel single slope ADC

    DOE Patents [OSTI]

    Milkov, Mihail M.

    2016-04-26

    A comparator circuit suitable for use in a column-parallel single-slope analog-to-digital converter comprises a comparator, an input voltage sampling switch, a sampling capacitor arranged to store a voltage which varies with an input voltage when the sampling switch is closed, and a local ramp buffer arranged to buffer a global voltage ramp applied at an input. The comparator circuit is arranged such that its output toggles when the buffered global voltage ramp exceeds the stored voltage. Both DC- and AC-coupled comparator embodiments are disclosed.

  7. STUDY OF TRANSPORTATION OF GTL PRODUCTS FROM ALASKAN NORTH SLOPE (ANS) TO MARKETS

    SciTech Connect (OSTI)

    Godwin A. Chukwu, Ph.D., P.E.

    2002-09-01

    The Alaskan North Slope is one of the largest hydrocarbon reserves in the US where Gas-to-Liquids (GTL) technology can be successfully implemented. The proven and recoverable reserves of conventional natural gas in the developed and undeveloped fields in the Alaskan North Slope (ANS) are estimated to be 38 trillion standard cubic feet (TCF) and estimates of additional undiscovered gas reserves in the Arctic field range from 64 TCF to 142 TCF. Transportation of the natural gas from the remote ANS is the key issue in effective utilization of this valuable and abundance resource. The throughput of oil through the Trans Alaska Pipeline System (TAPS) has been on decline and is expected to continue to decline in future. It is projected that by the year 2015, ANS crude oil production will decline to such a level that there will be a critical need for pumping additional liquid from GTL process to provide an adequate volume for economic operation of TAPS. The pumping of GTL products through TAPS will significantly increase its economic life. Transporting GTL products from the North Slope of Alaska down to the Marine terminal at Valdez is no doubt the great challenge facing the Gas to Liquids options of utilizing the abundant natural gas resource of the North Slope. The primary purpose of this study was to evaluate and assess the economic feasibility of transporting GTL products through the TAPS. Material testing program for GTL and GTL/Crude oil blends was designed and implemented for measurement of physical properties of GTL products. The measurement and evaluation of the properties of these materials were necessary so as to access the feasibility of transporting such materials through TAPS under cold arctic conditions. Results of the tests indicated a trend of increasing yield strength with increasing wax content. GTL samples exhibited high gel strengths at temperatures as high as 20 F, which makes it difficult for cold restart following winter shutdowns. Simplified

  8. Benthic study of the continental slope off Cape Hatteras, North Carolina. Volume 3. Appendices

    SciTech Connect (OSTI)

    Diaz, R.J.; Blake, J.A.; Lohse, D.P.

    1993-03-01

    The Point is an area that supports a most productive pelagic fishery, including tuna, swordfish, marlin, and more. The objective of the study is to analyze video tapes from near the Point, in order to provide data on epibenthic, megafaunal invertebrates including species composition, relative abundances, and large scale (1 km) distribution. The Point is not a defined spot on a chart. Although fishermen do use the steep shelf break for location, they generally look for the west wall of the Gulf Stream. The Point and the oil lease site coincidentally occur where the Gulf Stream parts the continental slope, just north of the eastern-most tip of Cape Hatteras.

  9. IDC Reengineering Phase 2 & 3 Rough Order of Magnitude (ROM) Cost Estimate Summary (Leveraged NDC Case).

    SciTech Connect (OSTI)

    Harris, James M.; Prescott, Ryan; Dawson, Jericah M.; Huelskamp, Robert M.

    2014-11-01

    Sandia National Laboratories has prepared a ROM cost estimate for budgetary planning for the IDC Reengineering Phase 2 & 3 effort, based on leveraging a fully funded, Sandia executed NDC Modernization project. This report provides the ROM cost estimate and describes the methodology, assumptions, and cost model details used to create the ROM cost estimate. ROM Cost Estimate Disclaimer Contained herein is a Rough Order of Magnitude (ROM) cost estimate that has been provided to enable initial planning for this proposed project. This ROM cost estimate is submitted to facilitate informal discussions in relation to this project and is NOT intended to commit Sandia National Laboratories (Sandia) or its resources. Furthermore, as a Federally Funded Research and Development Center (FFRDC), Sandia must be compliant with the Anti-Deficiency Act and operate on a full-cost recovery basis. Therefore, while Sandia, in conjunction with the Sponsor, will use best judgment to execute work and to address the highest risks and most important issues in order to effectively manage within cost constraints, this ROM estimate and any subsequent approved cost estimates are on a 'full-cost recovery' basis. Thus, work can neither commence nor continue unless adequate funding has been accepted and certified by DOE.

  10. Surface Roughness Effects on Fluid Transport Through a Natural Rock Fracture

    SciTech Connect (OSTI)

    Crandall, D.M.; Ahmadi, Goodarz; Smith, D.H.

    2008-04-01

    Fluid flow through rock fractures can be orders of magnitude faster than through the adjacent low-permeability rock. Understanding how fluid moves through these pathways is important for the prediction of sequestered CO2 transport in geologic reservoirs. Reservoir-scale, discrete-fracture simulators use simplified models of flow through fractures to determine transport properties in complex fracture networks. A high level of approximation is required in these reservoir-scale simulations due to the number of fractures within the domain of interest and because of the limited amount of information that can be obtained from geophysical well-logs (Long et al. (1996)). For this study, flow simulations through a CT-scanned fracture were performed to evaluate different fluid transport parameters that are important in geological flow analysis. The ‘roughness’ of the fracture was varied to determine the effect of the bumpy fracture walls on the fluid flow. The permeability and effective aperture were determined for flow under a constant pressure head. The fracture roughness is shown to dramatically reduce the flow through the fracture, and various relations are described.

  11. Image Formation by Incoherent and Coherent Transition Radiation from Flat and Rough Surfaces

    SciTech Connect (OSTI)

    Stupakov, Gennady; /SLAC

    2012-03-01

    In this paper we derive equations for the image formation of transverse profile of a relativistic beam obtained by means of optical transition radiation (OTR) from flat and rough metal surfaces. The motivation behind this study lies in the desire to suppress coherent transition radiation (COTR) observed in experiments at modern free electron lasers. The physical mechanism behind the problem of COTR is that the OTR is predominantly radiated at small angles of order of 1/{gamma} where {gamma} is the relativistic factor of the beam. This means that the transverse formation size of the image is of order of {bar {lambda}}{gamma} where {bar {lambda}} = {lambda}/2{pi} with {lambda} the radiation wavelength. For relativistic beams this can be comparable or even exceed the transverse size of the beam, which would mean that the image of the beam has very little to do with its transverse profile. It is fortuitous, however, that the incoherent image is formed by adding radiation energy of electrons and results in the transverse formation size being of order of {bar {lambda}}/{theta}{sub a}, with {theta}{sub a} is the aperture angle of the optical system. The COTR image, in contrast, is formed by adding electromagnetic field of electrons, and leads to the formation size {bar {lambda}}{gamma}. In situations when the COTR intensity exceeds that of OTR the COTR imaging makes the diagnostic incapable of measuring the beam profile.

  12. Interpretation of recent seismic data from a frontier hydrocarbon province: western Rough Creek graben, southern Illinois and western Kentucky

    SciTech Connect (OSTI)

    Bertagne, A.J.; Pisasale, E.T.; Leising, T.C.

    1986-05-01

    The northern basement fault of the Rough Creek graben is seismically discernible and has surface expression in the Rough Creek fault zone. The southern basement fault is not clearly defined seismically, but can be inferred from shallow faulting and gravity data. This fault is roughly coincident with the Pennyrile fault zone. Extensional faults that formed the rift boundaries were the sites of late-stage compressional and extensional tectonics. Flower structures observed along the graben boundaries probably indicate post-Pennsylvanian wrench faulting. The basement within the graben plunges north-northwest, with the lowest point occurring south of the Rough Creek fault zone. Pre-Knox sediments thicken to approximately 12,000 in this area. The Knox Megagroup thickens toward the Mississippi Embayment, ranging from 4800 ft (southeastern graben area) to more than 7000 ft (west end of graben). Upper Ordovician to Devonian units also display westward thickening. The top of the Meramecian, New Albany, Maquoketa, and the base of the Knox generate continuous, high-amplitude seismic reflections due to large impedance contrasts between clastic and carbonate units. Shallow oil and gas production (Mississippian and Pennsylvanian) is present in this area. However, deep horizons (Knox, Lower Cambrian) remain relatively untested. Potential hydrocarbon traps in the pre-Knox sequence observed on seismic include fault blocks and updip pinch-outs.

  13. Evaluation of WRF predicted near hub-height winds and ramp events over a Pacific Northwest site with complex terrain

    SciTech Connect (OSTI)

    Yang, Qing; Berg, Larry K.; Pekour, Mikhail S.; Fast, Jerome D.; Newsom, Rob K.; Stoelinga, Mark; Finley, Cathy

    2013-08-16

    The WRF model version 3.3 is used to simulate near hub-height winds and power ramps utilizing three commonly used planetary boundary-layer (PBL) schemes: Mellor-Yamada-Janji? (MYJ), University of Washington (UW), and Yonsei University (YSU). The predicted winds have small mean biases compared with observations. Power ramps and step changes (changes within an hour) consistently show that the UW scheme performed better in predicting up ramps under stable conditions with higher prediction accuracy and capture rates. Both YSU and UW scheme show good performance predicting up- and down- ramps under unstable conditions with YSU being slightly better for ramp durations longer than an hour. MYJ is the most successful simulating down-ramps under stable conditions. The high wind speed and large shear associated with low-level jets are frequently associated with power ramps, and the biases in predicted low-level jet explain some of the shown differences in ramp predictions among different PBL schemes. Low-level jets were observed as low as ~200 m in altitude over the Columbia Basin Wind Energy Study (CBWES) site, located in an area of complex terrain. The shear, low-level peak wind speeds, as well as the height of maximum wind speed are not well predicted. Model simulations with 3 PBL schemes show the largest variability among them under stable conditions.

  14. Statistical and Spectral Analysis of Wind Characteristics Relevant to Wind Energy Assessment Using Tower Measurements in Complex Terrain

    DOE PAGES-Beta [OSTI]

    Belu, Radian; Koracin, Darko

    2013-01-01

    The main objective of the study was to investigate spatial and temporal characteristics of the wind speed and direction in complex terrain that are relevant to wind energy assessment and development, as well as to wind energy system operation, management, and grid integration. Wind data from five tall meteorological towers located in Western Nevada, USA, operated from August 2003 to March 2008, used in the analysis. The multiannual average wind speeds did not show significant increased trend with increasing elevation, while the turbulence intensity slowly decreased with an increase were the average wind speed. The wind speed and direction weremore » modeled using the Weibull and the von Mises distribution functions. The correlations show a strong coherence between the wind speed and direction with slowly decreasing amplitude of the multiday periodicity with increasing lag periods. The spectral analysis shows significant annual periodicity with similar characteristics at all locations. The relatively high correlations between the towers and small range of the computed turbulence intensity indicate that wind variability is dominated by the regional synoptic processes. Knowledge and information about daily, seasonal, and annual wind periodicities are very important for wind energy resource assessment, wind power plant operation, management, and grid integration.« less

  15. Marine carbonate embayment system in an Eolian dune terrain, Permian Upper Minnelusa Formation, Rozet Area, Powder River Basin, Wyoming

    SciTech Connect (OSTI)

    Achauer, C.W.

    1987-05-01

    The eolian origin for Minnelusa sandstones has been stressed in numerous published articles. However, the dolomites that are interbedded with the eolian sandstones have received little attention. Isopach mapping of one of the dolomite units (Dolomite I) reflects a marine embayment system whose individual embayments range from 1/2 to 1 mi in width and trend primarily in a northwest direction. Consistently the embayment dolomites pinch out against the flanks of reworked, low relief, broad, eolian dune ridges. So far, 108 mi/sup 2/ of the Dolomite I marine embayment system have been mapped, but the overall extent of the system is undoubtedly much greater. Dolomite I is rarely cored, but cores from stratigraphically higher embayment dolomites in the upper Minnelusa show that these dolomites display the following, shoaling-upward sequence: (1) subtidal, sparingly fossiliferous dolomite; (2) intertidal, algal-laminated or brecciated or mud-cracked dolomite; and (3) very thin, supratidal, nodular anhydrite. The embayments, therefore, became the sites of marine sabkhas located between eolian dunes. Two main conclusions emerge from this study: (1) the juxtaposition of eolian sandstones and marine dolomites in a tectonically stable area suggests that eustatic sea level changes and a very arid climate were responsible for the marked environmental and lithologic changes observed in the upper Minnelusa, and (2) arid, coastal, evaporitic sabkhas bordered by eolian dunes are known from a number of modern and ancient cases, but marine carbonate embayments and associated evaporitic sabkhas that penetrate deeply into eolian sandstone terrains are rare.

  16. Quantifying the effect of anode surface roughness on diagnostic x-ray spectra using Monte Carlo simulation

    SciTech Connect (OSTI)

    Mehranian, A.; Ay, M. R.; Alam, N. Riyahi; Zaidi, H.

    2010-02-15

    Purpose: The accurate prediction of x-ray spectra under typical conditions encountered in clinical x-ray examination procedures and the assessment of factors influencing them has been a long-standing goal of the diagnostic radiology and medical physics communities. In this work, the influence of anode surface roughness on diagnostic x-ray spectra is evaluated using MCNP4C-based Monte Carlo simulations. Methods: An image-based modeling method was used to create realistic models from surface-cracked anodes. An in-house computer program was written to model the geometric pattern of cracks and irregularities from digital images of focal track surface in order to define the modeled anodes into MCNP input file. To consider average roughness and mean crack depth into the models, the surface of anodes was characterized by scanning electron microscopy and surface profilometry. It was found that the average roughness (R{sub a}) in the most aged tube studied is about 50 {mu}m. The correctness of MCNP4C in simulating diagnostic x-ray spectra was thoroughly verified by calling its Gaussian energy broadening card and comparing the simulated spectra with experimentally measured ones. The assessment of anode roughness involved the comparison of simulated spectra in deteriorated anodes with those simulated in perfectly plain anodes considered as reference. From these comparisons, the variations in output intensity, half value layer (HVL), heel effect, and patient dose were studied. Results: An intensity loss of 4.5% and 16.8% was predicted for anodes aged by 5 and 50 {mu}m deep cracks (50 kVp, 6 deg. target angle, and 2.5 mm Al total filtration). The variations in HVL were not significant as the spectra were not hardened by more than 2.5%; however, the trend for this variation was to increase with roughness. By deploying several point detector tallies along the anode-cathode direction and averaging exposure over them, it was found that for a 6 deg. anode, roughened by 50 {mu}m deep

  17. Atmospheric Radiation Measurement (ARM) Data from the North Slope Alaska (NSA) Site

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Atmospheric Radiation Measurement (ARM) Program is the largest global change research program supported by the U.S. Department of Energy. The primary goal of the ARM Program is to improve the treatment of cloud and radiation physics in global climate models in order to improve the climate simulation capabilities of these models. To achieve this goal, ARM scientists and researchers around the world use continuous data obtained through the ARM Climate Research Facility. ARM maintains four major, permanent sites for data collection and deploys the ARM Mobile Facility to other sites as determined. The North Slope of Alaska (NSA) site is a permanent site providing data about cloud and radiative processes at high latitudes. These data are being used to refine models and parameterizations as they relate to the Arctic. Centered at Barrow and extending to the south (to the vicinity of Atqasuk), west (to the vicinity of Wainwright), and east (towards Oliktok), the NSA site has become a focal point for atmospheric and ecological research activity on the North Slope. Approximately 300,000 NSA data sets from 1993 to the present reside in the ARM Archive at http://www.archive.arm.gov/. Users will need to register for a password, but all files are then free for viewing or downloading. The ARM Archive physically resides at the Oak Ridge National Laboratory.

  18. TRANSPORTATION ISSUES IN THE DELIVERY OF GTL PRODUCTS FROM ALASKAN NORTH SLOPE TO MARKET

    SciTech Connect (OSTI)

    Godwin Chukwu

    2004-01-01

    The Alaskan North Slope (ANS) is one of the largest hydrocarbon reserves in the United States where Gas-to-Liquids (GTL) technology can be successfully implemented. The proven and recoverable reserves of conventional natural gas in the developed and undeveloped fields in the Alaskan North Slope (ANS) are estimated to be 38 trillion standard cubic feet (TCF) and estimates of additional undiscovered gas reserves in the Arctic field range from 64 TCF to 142 TCF. Because the domestic gas market in the continental United States is located thousands of miles from the ANS, transportation of the natural gas from the remote ANS to the market is the key issue in effective utilization of this valuable and abundant resource. The focus of this project is to study the operational challenges involved in transporting the gas in converted liquid (GTL) form through the existing Trans Alaska Pipeline System (TAPS). A three-year, comprehensive research program was undertaken by the Petroleum Development Laboratory, University of Alaska Fairbanks, under cooperative agreement No. DE-FC26-98FT40016 to study the feasibility of transporting GTL products through TAPS. Cold restart of TAPS following an extended winter shutdown and solids deposition in the pipeline were identified as the main transportation issues in moving GTL products through the pipeline. The scope of work in the current project (Cooperative Agreement No. DE-FC26-01NT41248) included preparation of fluid samples for the experiments to be conducted to augment the comprehensive research program.

  19. Slope and bank erosional stability of the Canonsburg, Pennsylvania, UMTRA disposal site

    SciTech Connect (OSTI)

    Not Available

    1994-12-01

    This report was prepared in response to US Nuclear Regulatory Commission (NRC) comments received in a letter of 8 March 1994. This letter included discussions of the US Department of Energy (DOE) 21 May 1993 geomorphic report for the Canonsburg, Pennsylvania, site. To clarify the NRC`s position, a DOE/NRC conference call was held on 12 April 1994. The NRC clarified that it did not require a preliminary erosion protection design for the Canonsburg site, but directed the DOE to address a ``one-bad-year`` scenario. The NRC wants confirmation that one bad year of stream flooding and landsliding will not release residual radioactive material (RRM) from the Canonsburg site into the creek. The NRC is concerned that a bad year theoretically could occur between postcell-closure inspections. These annual inspections are conducted in September or October. The NRC suggested that the following procedures should be conducted in this analysis: a flooding analysis, including the maximum saturation levels (flood water elevations) anticipated during a 100-year flood; a stream bank erosion analysis to determine how much of the bank adjacent to the site may be removed in a bad year; a slope stability analysis to determine how far back the site would be disturbed by slope instability that could be triggered by a bad year of stream bank erosion; and a ``critical cross section`` study to show the relationship of the RRM located outside the disposal cell to the maximum computer estimated erosion/landslide activity.

  20. Role of slope stability in cumulative impact assessment of hydropower development: North Cascades, Washington

    SciTech Connect (OSTI)

    Lee, R.R.; Staub, W.P.

    1993-08-01

    Two environmental assessments considered the potential cumulative environmental impacts resulting from the development of eight proposed hydropower projects in the Nooksack River Basin and 11 proposed projects in the Skagit River Basin, North Cascades, Washington, respectively. While not identified as a target resource, slope stability and the alteration of sediment supply to creeks and river mainstems significantly affect other resources. The slope stability assessment emphasized the potential for cumulative impacts under disturbed conditions (e.g., road construction and timber harvesting) and a landslide-induced pipeline rupture scenario. In the case of small-scale slides, the sluicing action of ruptured pipeline water on the fresh landslide scarp was found to be capable of eroding significantly more material than the original landslide. For large-scale landslides, sluiced material was found to be a small increment of the original landslide. These results predicted that hypothetical accidental pipeline rupture by small-scale landslides may result in potential cumulative impacts for 12 of the 19 projects with pending license applications in both river basins. 5 refs., 2 tabs.

  1. Effects of grit roughness and pitch oscillations on the S809 airfoil

    SciTech Connect (OSTI)

    Ramsay, R.F.; Hoffman, M.J.; Gregorek, G.M. [Ohio State Univ., Columbus, OH (United States)

    1995-12-01

    An S809 airfoil model was tested in The Ohio State University Aeronautical and Astronautical Research Laboratory (OSU/AARL) 3{times}5 subsonic wind tunnel (3{times}5) under steady flow and stationary model conditions, and also with the model undergoing pitch oscillations. To study the possible extent of performance loss due to surface roughness, a standard grit pattern (LEGR) was developed to simulate leading edge contamination. After baseline cases were completed, the LEGR was applied for both steady state and model pitch oscillation cases. The Reynolds numbers for steady state conditions were 0.75, 1, 1.25, and 1.5 million, while the angle of attack ranged from {minus}20, to +40 {degrees}. With the model undergoing pitch oscillations, data were acquired at Reynolds numbers of 0.75, 1, 1.25, and 1.4 million, at frequencies of 0.6, 1.2, and 1.8 Hz. Two sine wave forcing functions were used; {plus_minus} 5.5{degrees} and {plus_minus} 10{degrees}, at mean angles of attack of 8{degrees}, 14{degrees}, and 20{degrees}. For purposes herein, any reference to unsteady conditions means the model was in pitch oscillation about the quarter chord. In general, the unsteady maximum lift coefficient was from 4% to 86% higher than the steady state maximum lift coefficient, and variation in the quarter chord pitching moment coefficient magnitude was from {minus}83% to 195% relative to steady state values at high angles of attack. These findings indicate the importance of considering the unsteady flow behavior occurring in wind turbine operation to obtain accurate load estimates.

  2. Stranski-Krastanow islanding initiated on the stochastic rough surfaces of the epitaxially strained thin films

    SciTech Connect (OSTI)

    Tarik Ogurtani, Omer; Celik, Aytac; Emre Oren, Ersin

    2014-06-14

    Quantum dots (QD) have discrete energy spectrum, which can be adjusted over a wide range by tuning composition, density, size, lattice strain, and morphology. These features make quantum dots attractive for the design and fabrication of novel electronic, magnetic and photonic devices and other functional materials used in cutting-edge applications. The formation of QD on epitaxially strained thin film surfaces, known as Stranski-Krastanow (SK) islands, has attracted great attention due to their unique electronic properties. Here, we present a systematic dynamical simulation study for the spontaneous evolution of the SK islands on the stochastically rough surfaces (nucleationless growth). During the development of SK islands through the mass accumulation at randomly selected regions of the film via surface drift-diffusion (induced by the capillary and mismatch stresses) with and/or without growth, one also observes the formation of an extremely thin wetting layer having a thickness of a few Angstroms. Above a certain threshold level of the mismatch strain and/or the size of the patch, the formation of multiple islands separated by shallow wetting layers is also observed as metastable states such as doublets even multiplets. These islands are converted into a distinct SK islands after long annealing times by coalescence through the long range surface diffusion. Extensive computer simulation studies demonstrated that after an initial transient regime, there is a strong quadratic relationship between the height of the SK singlet and the intensity of the lattice mismatch strain (in a wide range of stresses up to 8.5?GPa for germanium thin crystalline films), with the exception at those critical points where the morphological (shape change with necking) transition takes place.

  3. Issues facing the future use of Alaskan NorthSlope natural gas

    SciTech Connect (OSTI)

    Bowsher, C.A.

    1983-05-12

    The North Slope of Alaska contains over 26 trillion cubic feet of natural gas. In 1977, the President and the Congress approved construction of a 4800-mile gas pipeline to bring this gas to US consumers by 1983. However, completion of the project is not now expected until late 1989 at the earliest. This report examines the status and outlook for the Alaskan gas pipeline (the Alaska Natural Gas Transportation System). It also evaluates the pros and cons of (1) alternative systems to deliver this gas to market, including a gas pipeline with Alaska for export of liquefied natural gas; (2) processing the gas in Alaska by converting it to methanol and petrochemicals for export; and (3) using the gas within Alaska.

  4. Physical and Chemical Implications of Mid-Winter Pumping of Trunda Lakes - North Slope, Alaska

    SciTech Connect (OSTI)

    Hinzman, Larry D.; Lilly, Michael R.; Kane, Douglas L.; Miller, D. Dan; Galloway, Braden K.; Hilton, Kristie M.; White, Daniel M.

    2005-09-30

    Tundra lakes on the North Slope, Alaska, are an important resource for energy development and petroleum field operations. A majority of exploration activities, pipeline maintenance, and restoration activities take place on winter ice roads that depend on water availability at key times of the winter operating season. These same lakes provide important fisheries and ecosystem functions. In particular, overwintering habitat for fish is one important management concern. This study focused on the evaluation of winter water use in the current field operating areas to provide a better understanding of the current water use practices. It found that under the current water use practices, there were no measurable negative effects of winter pumping on the lakes studied and current water use management practices were appropriately conservative. The study did find many areas where improvements in the understanding of tundra lake hydrology and water usage would benefit industry, management agencies, and the protection of fisheries and ecosystems.

  5. The Wahluke (North) Slope of the Hanford Site: History and present challenges

    SciTech Connect (OSTI)

    Gerber, M.S.

    1996-04-16

    The Hanford Site was founded in early 1943 for the top secret government mission of producing plutonium for the world`s first atomic weapons. A great deal of land was needed, both to separate various Site facilities from each other, and to provide buffer zones for safety and security purposes. In total, 640 square miles were occupied by the original Hanford Site and its buffer zones. Much of this land had been earmarked for inclusion in the Columbia Basin Irrigation Project (CBP). After World War II ended, a series of national decisions led to a long-term mission for the Hanford Site, and area residents learned that the Site lands they had hoped to farm would be withheld from agricultural production for the foreseeable future. A long set of negotiations commenced between the federal management agency responsible for Hanford (the Atomic Energy Commission -- AEC), and the Bureau of Reclamation (BOR), Department of the Interior that managed the CBP. Some lands were turned back to agriculture, and other compromises made, in the Site`s far northern buffer lands known as the Wahluke Slope, during the 1950s. In the mid-1960s, further negotiations were about to allow farming on lands just north of the Columbia River, opposite Hanford`s reactors, when studies conducted by the BOR found drainage barriers to irrigation. As a result of these findings, two wildlife refuges were created on that land in 1971. Today, after the Hanford Site plutonium production mission has ended and as Site cleanup goes forward, the possibility of total release of Wahluke Slope lands from the control of the Department of Energy (DOE -- a successor agency to the AEC) is under discussion. Such discussion encompasses not just objective and clearly visible criteria, but it resurrects historical debates about the roles of farming and government presence in the Columbia Basin.

  6. Alaska North Slope National Energy Strategy initiative: Analysis of five undeveloped fields

    SciTech Connect (OSTI)

    Thomas, C.P.; Allaire, R.B.; Doughty, T.C.; Faulder, D.D.; Irving, J.S.; Jamison, H.C.; White, G.J.

    1993-05-01

    The US Department of Energy was directed in the National Energy Strategy to establish a federal interagency task force to identify specific technical and regulatory barriers to the development of five undeveloped North Slope Alaska fields and make recommendations for their resolution. The five fields are West Sak, Point Thomson, Gwydyr Bay, Seal Island/Northstar, and Sandpiper Island. Analysis of environmental, regulatory, technical, and economic information, and data relating to the development potential of the five fields leads to the following conclusions: Development of the five fields would result in an estimated total of 1,055 million barrels of oil and 4.4 trillion cubic feet of natural gas and total investment of $9.4 billion in 1992 dollars. It appears that all five of the fields will remain economically marginal developments unless there is significant improvement in world oil prices. Costs of regulatory compliance and mitigation, and costs to reduce or maintain environmental impacts at acceptable levels influence project investments and operating costs and must be considered in the development decision making process. The development of three of the fields (West Sak, Point Thomson, and Gwydyr Bay) that are marginally feasible would have an impact on North Slope production over the period from about 2000 to 2014 but cannot replace the decline in Prudhoe Bay Unit production or maintain the operation of the Trans-Alaska Pipeline System (TAPS) beyond about 2014 with the assumption that the TAPS will shut down when production declines to the range of 400 to 200 thousand barrels of oil/day. Recoverable reserves left in the ground in the currently producing fields and soon to be developed fields, Niakuk and Point McIntyre, would range from 1 billion to 500 million barrels of oil corresponding to the time period of 2008 to 2014 based on the TAPS shutdown assumption.

  7. Carbonate gravity-flow processes on the Lower Permian slope, northwest Delaware basin

    SciTech Connect (OSTI)

    Loucks, R.G.; Brown, A.A.; Achauer, C.W. )

    1991-03-01

    Wolfcampian carbonate gravity-flow deposits accumulated on a low-angle slope in front of a platform of relatively low relief ({approximately}220 m). A 25 m core, located approximately 15 km basinward of the self margin, was examined to determine processes of carbonate deposition in the middle to distal slope environments. The majority of the deposits are cohesive debris-flows composed of clast-supported conglomerates with a calcareous siliciclastic mudstone matrix. Other deposits include high- and low-density turbidites of lime packstones (sand- to boulder-size range), lime grainstones, and siliclastic muddy silstones and suspension deposits of calcareous siliciclastic mudstones. Cohesive debris flows are generally massive and structureless, although several flows show an inverse-graded zone at their base indicating dispersive pressure forces that developed in a traction carpet. Other flows display coarse-tail fining-upward sequences indicating deposition by suspension settling from liquefied flow. At the base of each high-density, gravelly turbidite is one to several inversely graded zones of carbonated clasts indicating a traction carpet zone. These traction carpets are overlain by normal-graded units of shell and clast material. The upper units appear to be deposited directly out of suspension. The low-density turbidites are interpreted to be the residual products of more shelfward-deposited debris flows and high-density turbidity currents. Many of the depositional features described here for carbonate gravity-flow deposits are identical to those in siliclastic deposits, therefore the depositional processes controlling these features are probably similar.

  8. Atomic intermixing and interface roughness in short-period InAs/GaSb superlattices for infrared photodetectors

    SciTech Connect (OSTI)

    Ashuach, Y.; Lakin, E.; Kaufmann, Y.; Saguy, C.; Zolotoyabko, E.

    2014-09-28

    A set of advanced characterization methods, including high-resolution X-ray diffraction (measurements and simulations), cross-sectional scanning tunneling microscopy, and high-angle annular dark-field scanning transmission electron microscopy is applied to quantify the interface roughness and atomic intermixing (in both cation and anion sub-lattices) in short period (6–7 nm) InAs/GaSb superlattices intended for mid-wavelength (M) and long-wavelength (L) infrared detectors. The undesired atomic intermixing and interface roughness in the L-samples were found to be considerably lower than in the M-samples. In all specimens, anion intermixing is much higher than that in the cation sub-lattice. Possible origins of these findings are discussed.

  9. Finite element modeling of the surface roughness of 5052 Al alloy subjected to a surface severe plastic deformation process

    SciTech Connect (OSTI)

    Dai, K.; Villegas, J.; Stone, Z.; Shaw, L. . E-mail: lshaw@mail.ims.uconn.edu

    2004-12-01

    The surface of 5052 Al alloy plates is severely plastically deformed via multiple impacts by high-velocity tungsten carbide/cobalt (Wc/Co) balls in a surface nanocrystallization and hardening (SNH) process. The surface roughness of 5052 Al alloy plates as a function of the impacting ball size and processing time has been evaluated via non-contact 3D profilometry. A three-dimensional finite element (FE) model has been developed to simulate the formation of peaks and valleys during the SNH process. The peak-to-valley distance predicted from the FEM matches the maximum PV value measured experimentally quite well, indicating that surface roughening of 5052 Al alloy plates during the SNH process using WC/Co balls is mainly dictated by the indentation process of the impacting balls. The implications of this surface roughening mechanism in the final surface roughness, processing time, related microstructure change, and property alteration are discussed.

  10. Study of biological processes on the US South Atlantic slope and rise. Phase 1: Benthic characterization. Volume 2. Final report

    SciTech Connect (OSTI)

    Blake, J.A.; Hecker, B.; Grassle, J.F.; Maciolek-Blake, N.; Brown, B.

    1985-06-01

    Concerns about the potential effects of oil and gas exploration on the U.S. Continental Slope and Rise led to the initiation of a deep-sea characterization study off North Carolina. The biological communities off North Carolina were poorly known, and prior to any drilling activities, a limited regional data base was required. The program included a seasonal characterization of biological and surficial geological properties at a limited number of slope and rise sites, with special emphasis on areas of high oil industry interest. A rich and highly diverse benthic infauna was discovered, with a large percentage of the 877 species being new to science. Annelids were the dominant taxa both in terms of density, numbers of species, and biomass. Foraminiferan tests comprised most of the sand fraction. Hydrographic data indicated some intrusion of colder water on the upper slope benthos from deeper water.

  11. Wall-slip of highly filled powder injection molding compounds: Effect of flow channel geometry and roughness

    SciTech Connect (OSTI)

    Hausnerova, Berenika; Sanetrnik, Daniel [Dept. of Production Engineering, Faculty of Technology, Tomas Bata University in Zlin, nm. T.G. Masaryka 5555, 760 01 Zln, Czech Republic and Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Nad Ovc (Czech Republic); Paravanova, Gordana [Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Nad Ovcrnou 3685, 760 01 Zln (Czech Republic)

    2014-05-15

    The paper deals with the rheological behavior of highly filled compounds proceeded via powder injection molding (PIM) and applied in many sectors of industry (automotive, medicine, electronic or military). Online rheometer equipped with slit dies varying in surface roughness and dimensions was applied to investigate the wall-slip as a rheological phenomenon, which can be considered as a parameter indicating the separation of compound components (polymer binder and metallic powder) during high shear rates when injection molded.

  12. Study of biological processes on the US South Atlantic slope and rise. Phase 1: Benthic characterization. Volume 1. Executive Summary

    SciTech Connect (OSTI)

    Blake, J.A.; Hecker, B.; Grassle, J.F.; Maciolek-Blake, N.; Brown, B.

    1985-06-01

    Concerns about the potential effects of oil and gas exploration on the U.S. Continental Slope and Rise led to the initiation of a deep-sea characterization study off North Carolina. The program included a seasonal characterization of biological and surficial geological properties at a limited number of slope and rise sites, with special emphasis on areas of high oil industry interest. A five-station transect was established off Cape Lookout in depths of 600 m, 1000 m, 1500 m, 2000 m and 3000 m. A rich and highly diverse benthic infauna was discovered, with a large percentage of the 877 species being new to science. Faunal density was highest on the upper slope (600 m) and lowest on the continental rise (3000 m). Species diversity values were all higher than 6.0, indicating a very diverse fauna, with the highest values at 3000 m. Foraminiferan tests comprised most of the sand fraction. Hydrographic data indicated some intrusion of colder water on the upper slope benthos from deeper water.

  13. Surface smoothing effect of an amorphous thin film deposited by atomic layer deposition on a surface with nano-sized roughness

    SciTech Connect (OSTI)

    Lau, W. S. Wan, X.; Xu, Y.; Wong, H.; Zhang, J.; Luo, J. K.; Institute of Renewable Energy and Environment Technology, Bolton University, Deane Road, Bolton BL3 5 AB

    2014-02-15

    Previously, Lau (one of the authors) pointed out that the deposition of an amorphous thin film by atomic layer deposition (ALD) on a substrate with nano-sized roughness probably has a surface smoothing effect. In this letter, polycrystalline zinc oxide deposited by ALD onto a smooth substrate was used as a substrate with nano-sized roughness. Atomic force microscopy (AFM) and cross-sectional transmission electron microscopy (XTEM) were used to demonstrate that an amorphous aluminum oxide thin film deposited by ALD can reduce the surface roughness of a polycrystalline zinc oxide coated substrate.

  14. On the improvement of photovoltaic action of ZnO/P3HT:PCBM by controlling roughness of window layer

    SciTech Connect (OSTI)

    Geethu, R. Menon, M. R. Rajesh Kartha, C. Sudha Vijayakumar, K. P.

    2014-04-24

    Polymer solar cells with configuration ITO/ZnO/P3HT:PCBM/Ag were fabricated using cost effective chemical spray pyrolysis and spin coating techniques. When surface of ZnO layer was modified with a second layer so as to increase the roughness, considerable improvement in cell parameters were observed. Optimum conditions for the required roughness were identified and changes in cell parameters with variation in surface roughness were studied. Major enhancements were observed in the open circuit voltage and in the cell efficiency.

  15. Principal facts and a discussion of terrain correction methods for the complete Bouguer gravity anomaly map of the Cascade Mountains, Washington

    SciTech Connect (OSTI)

    Danes, Z.F.; Phillips, W.M.

    1983-02-01

    Since 1974, the Division of Geology and Earth Resources, in conjunction with the US Department of Energy, has supported gravity studies in the Cascade Mountains of Washington State. Results of the Cascade gravity project are summarized graphically as a complete Bouguer gravity anomaly map of the Cascade Mountains, Washington (Danes and Phillips, 1983). This report provides supplementary data and documentation for the complete Bouguer gravity anomaly map. Presented are principal gravity facts, simple Bouguer and Free-air gravity anomalies, computational methods, error analysis and a discussion of terrain corrections.

  16. Cosmic reionization on computers. Ultraviolet continuum slopes and dust opacities in high redshift galaxies

    DOE PAGES-Beta [OSTI]

    Khakhaleva-Li, Zimu; Gnedin, Nickolay Y.

    2016-03-30

    In this study, we compare the properties of stellar populations of model galaxies from the Cosmic Reionization On Computers (CROC) project with the exiting UV and IR data. Since CROC simulations do not follow cosmic dust directly, we adopt two variants of the dust-follows-metals ansatz to populate model galaxies with dust. Using the dust radiative transfer code Hyperion, we compute synthetic stellar spectra, UV continuum slopes, and IR fluxes for simulated galaxies. We find that the simulation results generally match observational measurements, but, perhaps, not in full detail. The differences seem to indicate that our adopted dust-follows-metals ansatzes are notmore » fully sufficient. While the discrepancies with the exiting data are marginal, the future JWST data will be of much higher precision, rendering highly significant any tentative difference between theory and observations. It is, therefore, likely, that in order to fully utilize the precision of JWST observations, fully dynamical modeling of dust formation, evolution, and destruction may be required.« less

  17. Temperature dependence of the Tafel slope and electrochemical barrier symmetry factor,. beta. , in electrode kinetics

    SciTech Connect (OSTI)

    Conway, B.E. ); Tessier, D.F. ); Wilkinson, D.P. )

    1989-09-01

    The significance of the new-established situation that the Tafel slopes, b, ( = d{eta}/d In i) for simple charge-transfer processes at electrodes are usually not represented with respect to variation with temperature, T, by the conventional relation b = RT/{beta} cpF, where {beta} is a constant-valued electrochemical charge-transfer barrier-symmetry coefficient, is examined in the light of recent comments on the problem. Clear evidence is given that b has the form b = RT({beta}sub H + T{beta}{sub s})F for proton transfer at Hg in water and various other solvents, where {beta}{sub H} and T{beta}{sub s} are enthalpic components of the overall {beta}, corresponding to experimentally observable potential-dependence of both the enthalpy and the entropy of activation, respectively. The frequent deviation from conventional behavior thus arises because the entropy of activation, as well as the energy of activation, can be potential-dependent, a situation that, until recently, has been neglected in inter-pretations of electrode-kinetic experiments. The origin of the conventional effect of potential on electrode reaction rates, through the change of electrode work function,{Phi}, with overpotential or electrode potential, V, ({Phi}{sub v} = {Phi}{sub v = O}{plus minus} eV), is examined critically in relation to the potential-dependent surface-potential component, {chi}{sub d}, in {Phi}, which can also be T-dependent.

  18. Steep-Slope Assembly Testing of Clay and Concrete Tile With and Without Cool Pigmented Colors

    SciTech Connect (OSTI)

    Miller, William A

    2005-11-01

    Cool color pigments and sub-tile venting of clay and concrete tile roofs significantly impact the heat flow crossing the roof deck of a steep-slope roof. Field measures for the tile roofs revealed a 70% drop in the peak heat flow crossing the deck as compared to a direct-nailed asphalt shingle roof. The Tile Roofing Institute (TRI) and its affiliate members are keenly interested in documenting the magnitude of the drop for obtaining solar reflectance credits with state and federal "cool roof" building efficiency standards. Tile roofs are direct-nailed or are attached to a deck with batten or batten and counter-batten construction. S-Misson clay and concrete tile roofs, a medium-profile concrete tile roof, and a flat slate tile roof were installed on fully nstrumented attic test assemblies. Temperature measures of the roof, deck, attic, and ceiling, heat flows, solar reflectance, thermal emittance, and the ambient weather were recorded for each of the tile roofs and also on an adjacent attic cavity covered with a conventional pigmented and directnailed asphalt shingle roof. ORNL measured the tile's underside temperature and the bulk air temperature and heat flows just underneath the tile for batten and counter-batten tile systems and compared the results to the conventional asphalt shingle.

  19. Evaluation of Wax Deposition and Its Control During Production of Alaska North Slope Oils

    SciTech Connect (OSTI)

    Tao Zhu; Jack A. Walker; J. Liang

    2008-12-31

    Due to increasing oil demand, oil companies are moving into arctic environments and deep-water areas for oil production. In these regions of lower temperatures, wax deposits begin to form when the temperature in the wellbore falls below wax appearance temperature (WAT). This condition leads to reduced production rates and larger pressure drops. Wax problems in production wells are very costly due to production down time for removal of wax. Therefore, it is necessary to develop a solution to wax deposition. In order to develop a solution to wax deposition, it is essential to characterize the crude oil and study phase behavior properties. The main objective of this project was to characterize Alaskan North Slope crude oil and study the phase behavior, which was further used to develop a dynamic wax deposition model. This report summarizes the results of the various experimental studies. The subtasks completed during this study include measurement of density, molecular weight, viscosity, pour point, wax appearance temperature, wax content, rate of wax deposition using cold finger, compositional characterization of crude oil and wax obtained from wax content, gas-oil ratio, and phase behavior experiments including constant composition expansion and differential liberation. Also, included in this report is the development of a thermodynamic model to predict wax precipitation. From the experimental study of wax appearance temperature, it was found that wax can start to precipitate at temperatures as high as 40.6 C. The WAT obtained from cross-polar microscopy and viscometry was compared, and it was discovered that WAT from viscometry is overestimated. From the pour point experiment it was found that crude oil can cease to flow at a temperature of 12 C. From the experimental results of wax content, it is evident that the wax content in Alaskan North Slope crude oil can be as high as 28.57%. The highest gas-oil ratio for a live oil sample was observed to be 619.26 SCF

  20. Assessment of Alaska's North Slope Oil Field Capacity to Sequester CO{sub 2}

    SciTech Connect (OSTI)

    Umekwe, Pascal; Mongrain, Joanna; Ahmadi, Mohabbat; Hanks, Catherine

    2013-03-15

    The capacity of 21 major fields containing more than 95% of the North Slope of Alaska's oil were investigated for CO{sub 2} storage by injecting CO{sub 2} as an enhanced oil recovery (EOR) agent. These fields meet the criteria for the application of miscible and immiscible CO{sub 2}-EOR methods and contain about 40 billion barrels of oil after primary and secondary recovery. Volumetric calculations from this study indicate that these fields have a static storage capacity of 3 billion metric tons of CO{sub 2}, assuming 100% oil recovery, re-pressurizing the fields to pre-fracturing pressure and applying a 50% capacity reduction to compensate for heterogeneity and for water invasion from the underlying aquifer. A ranking produced from this study, mainly controlled by field size and fracture gradient, identifies Prudhoe, Kuparuk, and West Sak as possessing the largest storage capacities under a 20% safety factor on pressures applied during storage to avoid over-pressurization, fracturing, and gas leakage. Simulation studies were conducted using CO{sub 2} Prophet to determine the amount of oil technically recoverable and CO{sub 2} gas storage possible during this process. Fields were categorized as miscible, partially miscible, and immiscible based on the miscibility of CO{sub 2} with their oil. Seven sample fields were selected across these categories for simulation studies comparing pure CO{sub 2} and water-alternating-gas injection. Results showed that the top two fields in each category for recovery and CO{sub 2} storage were Alpine and Point McIntyre (miscible), Prudhoe and Kuparuk (partially miscible), and West Sak and Lisburne (immiscible). The study concludes that 5 billion metric tons of CO{sub 2} can be stored while recovering 14.2 billion barrels of the remaining oil.

  1. Insights on the influence of surface roughness on photovoltaic properties of state of the art copper indium gallium diselenide thin films solar cells

    SciTech Connect (OSTI)

    Jehl, Z.; Lincot, D.; Guillemoles, J. F.; Naghavi, N.; Bouttemy, M.; Gerard, I.; Etcheberry, A.; Voorwinden, G.; Powalla, M.

    2012-06-01

    The influence of Cu(In,Ga)Se{sub 2} (CIGSe) surface roughness on the photovoltaic parameters of state of the art devices is reported, highlighting the importance of the roughness of the as-grown CIGSe absorbers on solar cell efficiencies. As-grown CIGSe surface is progressively smoothed using a chemical etch, and characterized by SEM, AFM, XPS, {mu}-Raman spectroscopy, x-ray diffraction (XRD), and reflectivity. The decrease of roughness has no marked influence on crystal structure and surface composition of the absorber. The main effect is that the total reflectivity of the CIGSe surface increases with decreasing roughness. The samples are processed into solar cells and characterized by current-voltage measurements. While the open circuit voltage (V{sub oc}) and fill factor remain constant, the short circuit current (J{sub sc}) decreases markedly with decreasing roughness, resulting in a reduction of the solar cell efficiency from 14% down to 11%, which exceeds the expected decrease from increased reflectivity. Quantum efficiency and reflectivity measurements on complete cells are performed to analyze those effects. The influence of surface roughness on the theorical effective space charge region and diffusion length is based on a simple theoretical model. This paper discusses the comparison of CIGSe solar cells with n-i-p structures.

  2. ARM-ACME V: ARM Airborne Carbon Measurements V on the North Slope of Alaska Science and Implementation Plan

    SciTech Connect (OSTI)

    Biraud, S

    2015-05-01

    Atmospheric temperatures are warming faster in the Arctic than predicted by climate models. The impact of this warming on permafrost degradation is not well understood, but it is projected to increase carbon decomposition and greenhouse gas production (CO₂ and/or CH₄) by arctic ecosystems. Airborne observations of atmospheric trace gases, aerosols, and cloud properties at the North Slope of Alaska are improving our understanding of global climate, with the goal of reducing the uncertainty in global and regional climate simulations and projections.

  3. Geologic interrelations relative to gas hydrates within the North Slope of Alaska: Task No. 6, Final report

    SciTech Connect (OSTI)

    Collett, T.S.; Bird, K.J.; Kvenvolden, K.A.; Magoon, L.B.

    1988-01-01

    The five primary objectives of the US Geological Survey North Slope Gas Hydrate Project were to: (1) Determine possible geologic controls on the occurrence of gas hydrate; (2) locate and evaluate possible gas-hydrate-bearing reservoirs; (3) estimate the volume of gas within the hydrates; (4) develop a model for gas-hydrate formation; and (5) select a coring site for gas-hydrate sampling and analysis. Our studies of the North Slope of Alaska suggest that the zone in which gas hydrates are stable is controlled primarily by subsurface temperatures and gas chemistry. Other factors, such as pore-pressure variations, pore-fluid salinity, and reservior-rock grain size, appear to have little effect on gas hydrate stability on the North Slope. Data necessary to determine the limits of gas hydrate stability field are difficult to obtain. On the basis of mud-log gas chromatography, core data, and cuttings data, methane is the dominant species of gas in the near-surface (0--1500 m) sediment. Gas hydrates were identified in 34 wells utilizing well-log responses calibrated to the response of an interval in one well where gas hydrates were actually recovered in a core by an oil company. A possible scenario describing the origin of the interred gas hydrates on the North Slope involves the migration of thermogenic solution- and free-gas from deeper reservoirs upward along faults into the overlying sedimentary rocks. We have identified two (dedicated) core-hole sites, the Eileen and the South-End core-holes, at which there is a high probability of recovering a sample of gas hydrate. At the Eileen core-hole site, at least three stratigraphic units may contain gas hydrate. The South-End core-hole site provides an opportunity to study one specific rock unit that appears to contain both gas hydrate and oil. 100 refs., 72 figs., 24 tabs.

  4. Assessment of primary production and optical variability in shelf and slope waters near Cape Hatteras, North Carolina. Final project report

    SciTech Connect (OSTI)

    Redalje, Donald G.; Lohrenz, Stevern E.

    2001-02-12

    In this project we determined primary production and optical variability in the shelf and slope waters off of Cape Hatteras, N.C. These processes were addressed in conjunction with other Ocean Margins Program investigators, during the Spring Transition period and during Summer. We found that there were significant differences in measured parameters between Spring and Summer, enabling us to develop seasonally specific carbon production and ecosystem models as well as seasonal and regional algorithm improvements for use in remote sensing applications.

  5. High field Q slope and the baking effect: Review of recent experimental results and new data on Nb heat treatments

    DOE PAGES-Beta [OSTI]

    G. Ciovati; Myneni, G.; Stevie, F.; Maheshwari, P.; Griffis, D.

    2010-02-22

    Here, the performance of superconducting radio-frequency (SRF) cavities made of bulk Nb at high fields (peak surface magnetic field greater than about 90 mT) is characterized by exponentially increasing rf losses (high-field Q-slope), in the absence of field emission, which are often mitigated by low temperature (100-140 °C, 12-48 h) baking. In this contribution, recent experimental results and phenomenological models to explain this effect will be briefly reviewed. New experimental results on the high-field Q-slope will be presented for cavities that had been heat treated in a vacuum furnace at high temperature without subsequent chemical etching. These studies are aimedmore » at understanding the role of hydrogen on the high-field Q-slope and at the passivation of the Nb surface during heat treatment. Improvement of the cavity performances, particularly of the cavities’ quality factor, have been obtained following the high temperature heat-treatments, while SIMS surface analysis measurements on Nb samples treated with the cavities revealed significantly lower hydrogen concentration than for samples that followed standard cavity treatments.« less

  6. High field Q slope and the baking effect: Review of recent experimental results and new data on Nb heat treatments

    SciTech Connect (OSTI)

    G. Ciovati, G. Myneni, F. Stevie, P. Maheshwari, D. Griffis

    2010-02-01

    The performance of superconducting radio-frequency (SRF) cavities made of bulk Nb at high fields (peak surface magnetic field greater than about 90 mT) is characterized by exponentially increasing rf losses (high-field Q slope), in the absence of field emission, which are often mitigated by low-temperature (100140C, 1248 h) baking. In this contribution, recent experimental results and phenomenological models to explain this effect will be briefly reviewed. New experimental results on the high-field Q slope will be presented for cavities that had been heat treated in a vacuum furnace at high temperature without subsequent chemical etching. These studies are aimed at understanding the role of hydrogen on the high-field Q slope and at the passivation of the Nb surface during heat treatment. Improvement of the cavity performances, particularly of the cavities quality factor, have been obtained following the high-temperature heat treatments, while secondary ion mass spectroscopy surface analysis measurements on Nb samples treated with the cavities revealed significantly lower hydrogen concentration than for samples that followed standard cavity treatments.

  7. Chemical and Microbial Characterization of North Slope Viscous Oils to Assess Viscosity Reduction and Enhanced Recovery

    SciTech Connect (OSTI)

    Shirish Patil; Abhijit Dandekar; Mary Beth Leigh

    2008-12-31

    A large proportion of Alaska North Slope (ANS) oil exists in the form of viscous deposits, which cannot be produced entirely using conventional methods. Microbially enhanced oil recovery (MEOR) is a promising approach for improving oil recovery for viscous deposits. MEOR can be achieved using either ex situ approaches such as flooding with microbial biosurfactants or injection of exogenous surfactant-producing microbes into the reservoir, or by in situ approaches such as biostimulation of indigenous surfactant-producing microbes in the oil. Experimental work was performed to analyze the potential application of MEOR to the ANS oil fields through both ex situ and in situ approaches. A microbial formulation containing a known biosurfactant-producing strain of Bacillus licheniformis was developed in order to simulate MEOR. Coreflooding experiments were performed to simulate MEOR and quantify the incremental oil recovery. Properties like viscosity, density, and chemical composition of oil were monitored to propose a mechanism for oil recovery. The microbial formulation significantly increased incremental oil recovery, and molecular biological analyses indicated that the strain survived during the shut-in period. The indigenous microflora of ANS heavy oils was investigated to characterize the microbial communities and test for surfactant producers that are potentially useful for biostimulation. Bacteria that reduce the surface tension of aqueous media were isolated from one of the five ANS oils (Milne Point) and from rock oiled by the Exxon Valdez oil spill (EVOS), and may prove valuable for ex situ MEOR strategies. The total bacterial community composition of the six different oils was evaluated using molecular genetic tools, which revealed that each oil tested possessed a unique fingerprint indicating a diverse bacterial community and varied assemblages. Collectively we have demonstrated that there is potential for in situ and ex situ MEOR of ANS oils. Future work

  8. The component slope linear model for calculating intensive partial molar properties /application to waste glasses and aluminate solutions

    SciTech Connect (OSTI)

    Reynolds, Jacob G.

    2013-01-11

    Partial molar properties are the changes occurring when the fraction of one component is varied while the fractions of all other component mole fractions change proportionally. They have many practical and theoretical applications in chemical thermodynamics. Partial molar properties of chemical mixtures are difficult to measure because the component mole fractions must sum to one, so a change in fraction of one component must be offset with a change in one or more other components. Given that more than one component fraction is changing at a time, it is difficult to assign a change in measured response to a change in a single component. In this study, the Component Slope Linear Model (CSLM), a model previously published in the statistics literature, is shown to have coefficients that correspond to the intensive partial molar properties. If a measured property is plotted against the mole fraction of a component while keeping the proportions of all other components constant, the slope at any given point on a graph of this curve is the partial molar property for that constituent. Actually plotting this graph has been used to determine partial molar properties for many years. The CSLM directly includes this slope in a model that predicts properties as a function of the component mole fractions. This model is demonstrated by applying it to the constant pressure heat capacity data from the NaOH-NaAl(OH){sub 4}-H{sub 2}O system, a system that simplifies Hanford nuclear waste. The partial molar properties of H{sub 2}O, NaOH, and NaAl(OH){sub 4} are determined. The equivalence of the CSLM and the graphical method is verified by comparing results determined by the two methods. The CSLM model has been previously used to predict the liquidus temperature of spinel crystals precipitated from Hanford waste glass. Those model coefficients are re-interpreted here as the partial molar spinel liquidus temperature of the glass components.

  9. Improving single slope ADC and an example implemented in FPGA with 16.7 GHz equivalent counter clook frequency

    SciTech Connect (OSTI)

    Wu, Jinyuan; Odeghe, John; Stackley, Scott; Zha, Charles; /Rice U.

    2011-11-01

    Single slope ADC is a common building block in many ASCI or FPGA based front-end systems due to its simplicity, small silicon footprint, low noise interference and low power consumption. In single slope ADC, using a Gray code counter is a popular scheme for time digitization, in which the comparator output drives the clock (CK) port of a register to latch the bits from the Gray code counter. Unfortunately, feeding the comparator output into the CK-port causes unnecessary complexities and artificial challenges. In this case, the propagation delays of all bits from the counter to the register inputs must be matched and the counter must be a Gray code one. A simple improvement on the circuit topology, i.e., feeding the comparator output into the D-port of a register, will avoid these unnecessary challenges, eliminating the requirement of the propagation delay match of the counter bits and allowing the use of regular binary counters. This scheme not only simplifies current designs for low speeds and resolutions, but also opens possibilities for applications requiring higher speeds and resolutions. A multi-channel single slope ADC based on a low-cost FPGA device has been implemented and tested. The timing measurement bin width in this work is 60 ps, which would need a 16.7 GHz counter clock had it implemented with the conventional Gray code counter scheme. A 12-bit performance is achieved using a fully differential circuit making comparison between the input and the ramping reference, both in differential format.

  10. Project test plan for runoff and erosion on fine-soil barrier surfaces and rock-covered side slopes

    SciTech Connect (OSTI)

    Walters, W.H.; Hoover, K.A.; Cadwell, L.L.

    1990-06-01

    Pacific Northwest Laboratory (PNL) and Westinghouse Hanford Company are working together to develop protective barriers to isolate near-surface radioactive waste. The purpose of the barriers is to protect defense wastes at the US Department of Energy's (DOE) Hanford Site from infiltration of precipitation, biointrusion, and surficial erosion for up to 10,000 years without the need for long-term monitoring, maintenance, or institutional control. The barriers will be constructed of layered earth and rock material designed to direct surface and groundwater pathways away from the buried waste. To address soil erosion as it applies to barrier design and long-term stability, a task designed to study this problem has been included in the Protective Barriers Program at PNL. The barrier soil-erosion task will investigate the ability of the soil cover and side slopes to resist the erosional and destabilizing processes from externally applied water. The study will include identification and field testing of the dominant processes contributing to erosion and barrier failure. The effects of rock mulches, vegetation cover on the top fine-grained soil surface, as well as the stability of rock armoring on the side slopes, will be evaluated. Some of the testing will include the effects of animal intrusion on barrier erosion, and these will be coordinated with other animal intrusion studies. 6 refs., 4 figs., 1 tab.

  11. SOLVENT-BASED ENHANCED OIL RECOVERY PROCESSES TO DEVELOP WEST SAK ALASKA NORTH SLOPE HEAVY OIL RESOURCES

    SciTech Connect (OSTI)

    David O. Ogbe; Tao Zhu

    2004-01-01

    A one-year research program is conducted to evaluate the feasibility of applying solvent-based enhanced oil recovery processes to develop West Sak and Ugnu heavy oil resources found on the Alaska North Slope (ANS). The project objective is to conduct research to develop technology to produce and market the 300-3000 cp oil in the West Sak and Ugnu sands. During the first phase of the research, background information was collected, and experimental and numerical studies of vapor extraction process (VAPEX) in West Sak and Ugnu are conducted. The experimental study is designed to foster understanding of the processes governing vapor chamber formation and growth, and to optimize oil recovery. A specially designed core-holder and a computed tomography (CT) scanner was used to measure the in-situ distribution of phases. Numerical simulation study of VAPEX was initiated during the first year. The numerical work completed during this period includes setting up a numerical model and using the analog data to simulate lab experiments of the VAPEX process. The goal was to understand the mechanisms governing the VAPEX process. Additional work is recommended to expand the VAPEX numerical study using actual field data obtained from Alaska North Slope.

  12. Effect of surface roughness and size of beam on squeeze-film damping—Molecular dynamics simulation study

    SciTech Connect (OSTI)

    Kim, Hojin; Strachan, Alejandro

    2015-11-28

    We use large-scale molecular dynamics (MD) to characterize fluid damping between a substrate and an approaching beam. We focus on the near contact regime where squeeze film (where fluid gap is comparable to the mean free path of the gas molecules) and many-body effects in the fluid become dominant. The MD simulations provide explicit description of many-body and non-equilibrium processes in the fluid as well as the surface topography. We study how surface roughness and beam width increases the damping coefficient due to their effect on fluid mobility. We find that the explicit simulations are in good agreement with prior direct simulation Monte Carlo results except at near-contact conditions where many-body effects in the compressed fluid lead the increased damping and weaker dependence on beam width. We also show that velocity distributions near the beam edges and for short gaps deviate from the Boltzmann distribution indicating a degree of local non-equilibrium. These results will be useful to parameterize compact models used for microsystem device-level simulations and provide insight into mesoscale simulations of near-contact damping.

  13. Local changes of work function near rough features on Cu surfaces operated under high external electric field

    SciTech Connect (OSTI)

    Djurabekova, Flyura Ruzibaev, Avaz; Parviainen, Stefan; Holmstrm, Eero; Hakala, Mikko

    2013-12-28

    Metal surfaces operated under high electric fields produce sparks even if they are held in ultra high vacuum. In spite of extensive research on the topic of vacuum arcs, the mystery of vacuum arc origin still remains unresolved. The indications that the sparking rates depend on the material motivate the research on surface response to extremely high external electric fields. In this work by means of density-functional theory calculations we analyze the redistribution of electron density on (100) Cu surfaces due to self-adatoms and in presence of high electric fields from ?1?V/nm up to ?2?V/nm (?1 to ?2 GV/m, respectively). We also calculate the partial charge induced by the external field on a single adatom and a cluster of two adatoms in order to obtain reliable information on charge redistribution on surface atoms, which can serve as a benchmarking quantity for the assessment of the electric field effects on metal surfaces by means of molecular dynamics simulations. Furthermore, we investigate the modifications of work function around rough surface features, such as step edges and self-adatoms.

  14. Analytical studies on the impact of using repeated-rib roughness in LMR (Liquid Metal Reactor) decay heat removal systems

    SciTech Connect (OSTI)

    Obot, N.T.; Tessier, J.H.; Pedersen, D.R.

    1988-01-01

    A numerical study was carried out to determine the effects of roughness on the thermal performance of Liquid Metal Reactor (LMR) decay heat removal systems for a range of possible design configurations and operating conditions. The ranges covered for relative rib height (e/D/sub h/), relative pitch (p/e) and flow attack angle were 0.026--0.103, 5--20 and 0--90 degrees, successively. The heat flux was varied between 1.1 and 21.5 kW/m/sup 2/ (0.1 and 2.0 kW/ft/sup 2/). Calculations were made for three cases: smooth duct with no ribs, ribs on both the guard vessel and collector wall, and ribs on the collector wall only. The results indicate that significant benefits, amounting to nearly two-fold reductions in guard vessel and collector wall temperatures, can be realized by placing repeated ribs on both the guard vessel and the collector wall. The magnitudes of the reduction in the reactor vessel temperature are considerably smaller. In general, the level of improvement, be it with respect to temperature or heat flux, is only mildly affected by changes in rib height or pitch but exhibits greater sensitivity to the assumed value for the system form loss. When the ribs are placed only on the collector wall, the heat removal capability is substantially reduced.

  15. Review of the margins for ASME code fatigue design curve - effects of surface roughness and material variability.

    SciTech Connect (OSTI)

    Chopra, O. K.; Shack, W. J.; Energy Technology

    2003-10-03

    The ASME Boiler and Pressure Vessel Code provides rules for the construction of nuclear power plant components. The Code specifies fatigue design curves for structural materials. However, the effects of light water reactor (LWR) coolant environments are not explicitly addressed by the Code design curves. Existing fatigue strain-vs.-life ({var_epsilon}-N) data illustrate potentially significant effects of LWR coolant environments on the fatigue resistance of pressure vessel and piping steels. This report provides an overview of the existing fatigue {var_epsilon}-N data for carbon and low-alloy steels and wrought and cast austenitic SSs to define the effects of key material, loading, and environmental parameters on the fatigue lives of the steels. Experimental data are presented on the effects of surface roughness on the fatigue life of these steels in air and LWR environments. Statistical models are presented for estimating the fatigue {var_epsilon}-N curves as a function of the material, loading, and environmental parameters. Two methods for incorporating environmental effects into the ASME Code fatigue evaluations are discussed. Data available in the literature have been reviewed to evaluate the conservatism in the existing ASME Code fatigue evaluations. A critical review of the margins for ASME Code fatigue design curves is presented.

  16. Gas Production From a Cold, Stratigraphically Bounded Hydrate Deposit at the Mount Elbert Site, North Slope, Alaska

    SciTech Connect (OSTI)

    Moridis, G.J.; Silpngarmlert, S.; Reagan, M. T.; Collett, T.S.; Zhang, K.

    2009-09-01

    As part of an effort to identify suitable targets for a planned long-term field test, we investigate by means of numerical simulation the gas production potential from unit D, a stratigraphically bounded (Class 3) permafrost-associated hydrate occurrence penetrated in the ount Elbert well on North Slope, Alaska. This shallow, low-pressure deposit has high porosities, high intrinsic permeabilities and high hydrate saturations. It has a low temperature because of its proximity to the overlying permafrost. The simulation results indicate that vertical ells operating at a constant bottomhole pressure would produce at very low rates for a very long period. Horizontal wells increase gas production by almost two orders of magnitude, but production remains low. Sensitivity analysis indicates that the initial deposit temperature is y the far the most important factor determining production performance (and the most effective criterion for target selection) because it controls the sensible heat available to fuel dissociation.

  17. Experimental study of laser-oxygen cutting of low-carbon steel using fibre and CO{sub 2} lasers under conditions of minimal roughness

    SciTech Connect (OSTI)

    Golyshev, A A; Malikov, A G; Orishich, A M; Shulyatyev, V B

    2014-10-31

    The results of an experimental study of laser-oxygen cutting of low-carbon steel using fibre and CO{sub 2} lasers are generalised. The dependence of roughness of the cut surface on the cutting parameters is investigated, and the conditions under which the surface roughness is minimal are formulated. It is shown that for both types of lasers these conditions can be expressed in the same way in terms of the dimensionless variables – the Péclet number Pe and the output power Q of laser radiation per unit thickness of the cut sheet – and take the form of the similarity laws: Pe = const, Q = const. The optimal values of Pe and Q are found. We have derived empirical expressions that relate the laser power and cutting speed with the thickness of the cut sheet under the condition of minimal roughness in the case of cutting by means of radiation from fibre and CO{sub 2} lasers. (laser technologies)

  18. The North Slope of Alaska and Adjacent Arctic Ocean (NSA/AAO) cart site begins operation: Collaboration with SHEBA and FIRE

    SciTech Connect (OSTI)

    Zak, D. B.; Church, H.; Ivey, M.; Yellowhorse, L.; Zirzow, J.; Widener, K. B.; Rhodes, P.; Turney, C.; Koontz, A.; Stamnes, K.; Storvold, R.; Eide, H. A.; Utley, P.; Eagan, R.; Cook, D.; Hart, D.; Wesely, M.

    2000-04-04

    Since the 1997 Atmospheric Radiation Measurement (ARM) Science Team Meeting, the North Slope of Alaska and Adjacent Arctic Ocean (NSA/AAO) Cloud and Radiation Testbed (CART) site has come into being. Much has happened even since the 1998 Science Team Meeting at which this paper was presented. To maximize its usefulness, this paper has been updated to include developments through July 1998.

  19. A study of sediment motion and bottom boundary layer dynamics over the Middle Atlantic Bight shelf and upper slope. Final report

    SciTech Connect (OSTI)

    Churchill, James H.; Williams, Albert J.

    2001-02-14

    This report summarizes research on circulation and particle dynamics over the Middle Atlantic Bight shelf and upper slope. It includes an overview of the field experiments conducted in the waters off North Carolina, and gives the principal results from these experiments.

  20. A comparison of cloud properties at a coastal and inland site at the North Slope of Alaska

    DOE PAGES-Beta [OSTI]

    Doran, J. C.; Zhong, S.; Liljegren, J. C.; Jakob, C.

    2002-06-11

    In this study, we have examined differences in cloud liquid water paths (LWPs) at a coastal (Barrow) and an inland (Atqasuk) location on the North Slope of Alaska using microwave radiometer (MWR) data collected by the U.S. Department of Energy's Atmospheric Radiation Measurement program for the period June-September 1999. Revised retrieval procedures and a filtering algorithm to eliminate data contaminated by wet windows on the MWRs were employed to extract high-quality data suitable for this study. For clouds with low base heights (<350 m), the LWPs at the coastal site were significantly higher than those at the inland site, butmore » for clouds with higher base heights the differences were small. Air-surface interactions may account for some of the differences. Comparisons were also made between observed LWPs and those simulated with the European Centre for Medium-Range Weather Forecasts (ECMWF) model. The model usually successfully captured the occurrence of cloudy periods but it underpredicted the LWPs by approximately a factor of two. It was also unsuccessful in reproducing the observed differences in LWPs between Barrow and Atqasuk. Some suggestions on possible improvements in the model are presented.« less

  1. North Slope of Alaska

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    You are here Home » Services » Protecting Civil Rights » No FEAR Act No FEAR Act The Office of Civil Rights is committed to upholding anti-discrimination and civil rights laws. This is the Department of Energy's reporting page for the Notification and Federal Employee Anti-discrimination and Retaliation Act of 2002 (No FEAR Act), Public Law 207-174. Signed by President George W. Bush on May 15, 2002, the Act increases accountability of Federal Departments and agencies for acts of

  2. Using a Neural Network to Determine the Hatch Status of the AERI at the ARM North Slope of Alaska Site

    SciTech Connect (OSTI)

    Zwink, AB; Turner, DD

    2012-03-19

    The fore-optics of the Atmospheric Emitted Radiance Interferometer (AERI) are protected by an automated hatch to prevent precipitation from fouling the instrument's scene mirror (Knuteson et al. 2004). Limit switches connected with the hatch controller provide a signal of the hatch state: open, closed, undetermined (typically associated with the hatch being between fully open or fully closed during the instrument's sky view period), or an error condition. The instrument then records the state of the hatch with the radiance data so that samples taken when the hatch is not open can be removed from any subsequent analysis. However, the hatch controller suffered a multi-year failure for the AERI located at the ARM North Slope of Alaska (NSA) Central Facility in Barrow, Alaska, from July 2006-February 2008. The failure resulted in misreporting the state of the hatch in the 'hatchOpen' field within the AERI data files. With this error there is no simple solution to translate what was reported back to the correct hatch status, thereby making it difficult for an analysis to determine when the AERI was actually viewing the sky. As only the data collected when the hatch is fully open are scientifically useful, an algorithm was developed to determine whether the hatch was open or closed based on spectral radiance data from the AERI. Determining if the hatch is open or closed in a scene with low clouds is non-trivial, as low opaque clouds may look very similar spectrally as the closed hatch. This algorithm used a backpropagation neural network; these types of neural networks have been used with increasing frequency in atmospheric science applications.

  3. ADVANCED OIL RECOVERY TECHNOLOGIES FOR IMPROVED RECOVERY FROM SLOPE BASIN CLASTIC RESERVOIRS, NASH DRAW BRUSHY CANYON POOL, EDDY COUNTY, NM

    SciTech Connect (OSTI)

    Mark B. Murphy

    2001-10-31

    The Nash Draw Brushy Canyon Pool (NDP) in southeast New Mexico is one of the nine projects selected in 1995 by the U.S. Department of Energy (DOE) for participation in the Class III Reservoir Field Demonstration Program. The goals of the DOE cost-shared Class Program are to: (1) extend economic production, (2) increase ultimate recovery, and (3) broaden information exchange and technology application. Reservoirs in the Class III Program are focused on slope basin and deep-basin clastic depositional types. Production at the NDP is from the Brushy Canyon formation, a low-permeability turbidite reservoir in the Delaware Mountain Group of Permian, Guadalupian age. A major challenge in this marginal-quality reservoir is to distinguish oil-productive pay intervals from water-saturated non-pay intervals. Because initial reservoir pressure is only slightly above bubble-point pressure, rapid oil decline rates and high gas/oil ratios are typically observed in the first year of primary production. Limited surface access, caused by the proximity of underground potash mining and surface playa lakes, prohibits development with conventional drilling. Reservoir characterization results obtained to date at the NDP show that a proposed pilot injection area appears to be compartmentalized. Because reservoir discontinuities will reduce effectiveness of a pressure maintenance project, the pilot area will be reconsidered in a more continuous part of the reservoir if such areas have sufficient reservoir pressure. Most importantly, the advanced characterization results are being used to design extended reach/horizontal wells to tap into predicted ''sweet spots'' that are inaccessible with conventional vertical wells. The activity at the NDP during the past year has included the completion of the NDP Well No.36 deviated/horizontal well and the completion of additional zones in three wells, the design of the NDP No.33 directional/horizontal well, The planning and regulatory approval for the

  4. Reservoir characterization of a Permian Slope Fan/basin-floor fan complex: Cherry Canyon Formation, Ward County, Texas

    SciTech Connect (OSTI)

    Spain, D.R. )

    1990-05-01

    The Cherry Canyon Formation consists of a 925-ft- (280-m) thick section of up to 25 different sandstone and siltstone units that were deposited in a deep-water environment in the Delaware basin. Lowstand sedimentation by fluid density currents with periodic turbidity currents resulted in a broad-migrating channelized slope fan/basin-floor fan complex interpreted to exhibit an intricate reservoir geometry. Thirteen lithofacies are identified. Primary reservoirs are found in massive channel sandstones, and beds of lesser reservoir quality are present in laminated overbank/interchannel sandstones. Original depositional fabric modified by diagenetic cements and authigenic clays created three petrophysical rock types. Type I reservoirs contain intergranular macroporosity relatively free of carbonate cement and authigenic clay. Types II and III reservoirs contain mesoporosity and abundant microporosity created by moderate to abundant carbonate cementation and plugging of pore throats by authigenic grain-coating chlorite and pore-bridging fibrous illite. Depositional and diagenetic factors combine with insufficient oil column height to yield low initial oil saturations that decrease with depth in a hydrocarbon-water transition zone. Mercury injection capillary pressure measurements illustrate the vertical stratification of petrophysical rock types that exist in the section; reservoirs which contain all water are interbedded with reservoirs containing mostly oil. Subsequently, a slight change in height above free water can drive production from all water to all oil. Hydrocarbon column heights greater than 60 ft are required to establish water-free oil production. Accurate reservoir water saturations can be derived using Archie's equation; when combined with a movable oil analysis and drainage relative permeability/fractional flow curves, initial water cuts can be predicted to maximize deliverability.

  5. C-N-P interactions control climate driven changes in regional patterns of C storage on the North Slope of Alaska

    SciTech Connect (OSTI)

    Jiang, Yueyang; Rocha, Adrian; Rastetter, Edward; Shaver, Gaius; Mishra, U.; Zhuang, Qianlai; Kwiatkowski, Bonnie

    2016-01-01

    As climate warms, changes in the carbon (C) balance of arctic tundra will play an important role in the global C balance. The C balance of tundra is tightly coupled to the nitrogen (N) and phosphorus (P) cycles because soil organic matter is the principal source of plant-available nutrients and determines the spatial variation of vegetation biomass across the North Slope of Alaska. Warming will accelerate these nutrient cycles, which should stimulate plant growth.

  6. Spectral analysis of the efficiency of vertical mixing in the deep ocean due to interaction of tidal currents with a ridge running down a continental slope

    SciTech Connect (OSTI)

    Ibragimov, Ranis N.; Tartakovsky, Alexandre M.

    2014-10-29

    Efficiency of mixing, resulting from the reflection of an internal wave field imposed on the oscillatory background flow with a three-dimensional bottom topography, is investigated using a linear approximation. The radiating wave field is associated with the spectrum of the linear model, which consists of those mode numbers n and slope values α, for which the solution represents the internal waves of frequencies ω = nω0 radiating upwrad of the topography, where ω0 is the fundamental frequency at which internal waves are generated at the topography. The effects of the bottom topography and the earth’s rotation on the spectrum is analyzed analytically and numerically in the vicinity of the critical slope, which is a slope with the same angle to the horizontal as the internal wave characteristic. In this notation, θ is latitude, f is the Coriolis parameter and N is the buoyancy frequency, which is assumed to be a constant, which corresponds to the uniform stratification.

  7. High field Q-slope and the baking effect: a brief review of recent experimental results and new data on Nb heat treatments

    DOE PAGES-Beta [OSTI]

    Gianluigi Ciovati, Ganapati Myneni, Fred Stevie, Prateek Maheshwari, Dieter Griffis

    2010-02-01

    The performance of superconducting radio-frequency (SRF) cavities made of bulk Nb at high fields (peak surface magnetic field greater than about 90 mT) is characterized by exponentially increasing rf losses (high-field Q-slope), in the absence of field emission, which are often mitigated by low temperature (100-140 °C, 12-48 h) baking. In this contribution, recent experimental results and phenomenological models to explain this effect will be briefly reviewed. New experimental results on the high-field Q-slope will be presented for cavities that had been heat treated in a vacuum furnace at high temperature without subsequent chemical etching. These studies are aimed atmore » understanding the role of hydrogen on the high-field Q-slope and at the passivation of the Nb surface during heat treatment. Improvement of the cavity performances, particularly of the cavities’ quality factor, have been obtained following the high temperature heat-treatments, while SIMS surface analysis measurements on Nb samples treated with the cavities revealed significantly lower hydrogen concentration than for samples that followed standard cavity treatments.« less

  8. High field Q-slope and the baking effect: a brief review of recent experimental results and new data on Nb heat treatments

    SciTech Connect (OSTI)

    Gianluigi Ciovati, Ganapati Myneni, Fred Stevie, Prateek Maheshwari, Dieter Griffis

    2010-02-01

    The performance of superconducting radio-frequency (SRF) cavities made of bulk Nb at high fields (peak surface magnetic field greater than about 90 mT) is characterized by exponentially increasing rf losses (high-field Q-slope), in the absence of field emission, which are often mitigated by low temperature (100-140 C, 12-48 h) baking. In this contribution, recent experimental results and phenomenological models to explain this effect will be briefly reviewed. New experimental results on the high-field Q-slope will be presented for cavities that had been heat treated in a vacuum furnace at high temperature without subsequent chemical etching. These studies are aimed at understanding the role of hydrogen on the high-field Q-slope and at the passivation of the Nb surface during heat treatment. Improvement of the cavity performances, particularly of the cavities quality factor, have been obtained following the high temperature heat-treatments, while SIMS surface analysis measurements on Nb samples treated with the cavities revealed significantly lower hydrogen concentration than for samples that followed standard cavity treatments.

  9. Petroleum source potential of miocene and eocene shales from the continental slope of the northwestern Gulf of Mexico

    SciTech Connect (OSTI)

    Steffans, G. )

    1993-09-01

    From 1965 through 1968, 80 core holes were drilled by the M/V Eureka above shallow salt bodies on the continental slope of the northwestern Gulf of Mexico (offshore Texas and Louisiana) in water depths of 660-5280 ft. (An additional 13 deep-water core holes were drilled in the north-central gulf of Mexico.) Approximately 40,000 ft of sediment and small amounts of diapiric salt and/or associated cap rock were penetrated by these 80 Eureka core holes, from which more than 18,000 ft of core subsequently was recovered. Although most core holes penetrated only Pleistocene sediments, allochthonous sequences of older sediments (Pliocene-Upper Cretaceous) emplaced during salt diapirism were penetrated at eight drill sites in the northwestern Gulf of Mexico. We have determined the petroleum source potential of Miocene and Eocene shales from four deep-water Eureka core holes (water depths of 1890-2350 ft) in the northwestern Gulf of Mexico. All of these samples have attained only moderate levels of thermal maturity (VR [approx] 0.4-0.6). Two samples of Miocene shale obtained from the East Break 672 Block are relatively lean (containing only 0.37-0.54 wt.% total organic carbon) and their kerogen is enriched in gas prone or inert macerals. Eocene shales penetrated in the Alaminos Canyon 970 and 971 blocks are slightly richer (0.68-0.95 wt.% total organic carbon), principally because they contain migrated petroleum-aliquots extracted with a strong organic solvent contain only 0.31 0.48 wt.% total organic carbon. The leanest sample is an Eocene shale obtained from the boundary between the Garden Banks 332 and 333 blocks, approximately 18 mi northwest of the deep-water Auger oil and gas discovery. This sample contains only 0.33 wt% total organic carbon, and its kerogen also consists predominantly of gas-prone or inert macerals. We conclude these Tertiary shale samples are not the source of the oil that has been generated in the deepwater realm of the northwestern Gulf of Mexico.

  10. The Disruption of Vessel-Spanning Bubbles with Sloped Fins in Flat-Bottom and 2:1 Elliptical-Bottom Vessels

    SciTech Connect (OSTI)

    Gauglitz, Phillip A.; Buchmiller, William C.; Jenks, Jeromy WJ; Chun, Jaehun; Russell, Renee L.; Schmidt, Andrew J.; Mastor, Michael M.

    2010-09-22

    Radioactive sludge was generated in the K-East Basin and K-West Basin fuel storage pools at the Hanford Site while irradiated uranium metal fuel elements from the N Reactor were being stored and packaged. The fuel has been removed from the K Basins, and currently, the sludge resides in the KW Basin in large underwater Engineered Containers. The first phase to the Sludge Treatment Project being led by CH2MHILL Plateau Remediation Company (CHPRC) is to retrieve and load the sludge into sludge transport and storage containers (STSCs) and transport the sludge to T Plant for interim storage. The STSCs will be stored inside T Plant cells that are equipped with secondary containment and leak-detection systems. The sludge is composed of a variety of particulate materials and water, including a fraction of reactive uranium metal particles that are a source of hydrogen gas. If a situation occurs where the reactive uranium metal particles settle out at the bottom of a container, previous studies have shown that a vessel-spanning gas layer above the uranium metal particles can develop and can push the overlying layer of sludge upward. The major concern, in addition to the general concern associated with the retention and release of a flammable gas such as hydrogen, is that if a vessel-spanning bubble (VSB) forms in an STSC, it may drive the overlying sludge material to the vents at the top of the container. Then it may be released from the container into the cell’s secondary containment system at T Plant. A previous study demonstrated that sloped walls on vessels, both cylindrical coned-shaped vessels and rectangular vessels with rounded ends, provided an effective approach for disrupting a VSB by creating a release path for gas as a VSB began to rise. Based on the success of sloped-wall vessels, a similar concept is investigated here where a sloped fin is placed inside the vessel to create a release path for gas. A key potential advantage of using a sloped fin compared to a

  11. a-Si{sub x}C{sub 1?x}:H thin films with subnanometer surface roughness for biological applications

    SciTech Connect (OSTI)

    Herrera-Celis, Jos Reyes-Betanzo, Claudia Itzmoyotl-Toxqui, Adrin; Ordua-Daz, Abdu Prez-Coyotl, Ana

    2015-09-15

    The characterization of a-Si{sub x}C{sub 1?x}:H thin films by plasma-enhanced chemical vapor deposition with high hydrogen dilution for biological applications is addressed. A root mean square roughness less than 1?nm was measured via atomic force microscopy for an area of 25??m{sup 2}. Structural analysis was done using Fourier transform infrared spectroscopy in the middle infrared region. It was found that under the deposition conditions, the formation of SiC bonds is promoted. Electrical dark conductivity measurements were performed to evaluate the effect of high hydrogen dilution and to find the relation between carrier transport properties and the structural arrangement. Conductivities of the order of 10{sup ?7} to 10{sup ?9} S/cm at room temperature for methanesilane gas flow ratio from 0.35 to 0.85 were achieved, respectively. UV-visible spectra were used to obtain the optical band gap and the Tauc parameter. Optical band gap as wide as 3.55?eV was achieved in the regime of high carbon incorporation. Accordingly, deposition under low power density and high hydrogen dilution reduces the roughness, improves the structure of the network, and stabilizes the film properties as a greater percentage of carbon is incorporated. The biofunctionalization of a-Si{sub x}C{sub 1?x}:H surfaces with NH{sub 2}-terminated self-assembled monolayers was obtained through silanization with 3-aminopropyltrimethoxysilane. This knowledge opens a window for the inclusion of these a-Si{sub x}C{sub 1?x}:H thin films in devices such as biosensors.

  12. VERY BLUE UV-CONTINUUM SLOPE {beta} OF LOW LUMINOSITY z {approx} 7 GALAXIES FROM WFC3/IR: EVIDENCE FOR EXTREMELY LOW METALLICITIES?

    SciTech Connect (OSTI)

    Bouwens, R. J.; Illingworth, G. D.; Magee, D.; Trenti, M.; Stiavelli, M.; Franx, M.; Van Dokkum, P. G.; Labbe, I.

    2010-01-10

    We use the ultra-deep WFC3/IR data over the Hubble Ultra Deep Field and the Early Release Science WFC3/IR data over the CDF-South GOODS field to quantify the broadband spectral properties of candidate star-forming galaxies at z {approx} 7. We determine the UV-continuum slope {beta} in these galaxies, and compare the slopes with galaxies at later times to measure the evolution in {beta}. For luminous L* {sub z=3} galaxies, we measure a mean UV-continuum slope {beta} of -2.0 {+-} 0.2, which is comparable to the {beta} {approx} -2 derived at similar luminosities at z {approx} 5-6. However, for the lower luminosity 0.1L* {sub z=3} galaxies, we measure a mean {beta} of -3.0 {+-} 0.2. This is substantially bluer than is found for similar luminosity galaxies at z {approx} 4, just 800 Myr later, and even at z {approx} 5-6. In principle, the observed {beta} of -3.0 can be matched by a very young, dust-free stellar population, but when nebular emission is included the expected {beta} becomes {>=}-2.7. To produce these very blue {beta}s (i.e., {beta} {approx} -3), extremely low metallicities and mechanisms to reduce the red nebular emission seem to be required. For example, a large escape fraction (i.e., f {sub esc} {approx}> 0.3) could minimize the contribution from this red nebular emission. If this is correct and the escape fraction in faint z {approx} 7 galaxies is {approx}>0.3, it may help to explain how galaxies reionize the universe.

  13. Application of Advanced Reservoir Characterization, Simulation, and Production Optimization Strategies to Maximize Recovery in Slope and Basin Clastic Reservoirs, West Texas (Delaware Basin), Class III

    SciTech Connect (OSTI)

    Dutton, Shirley P.; Flanders, William A.

    2001-11-04

    The objective of this Class III project was demonstrate that reservoir characterization and enhanced oil recovery (EOR) by CO2 flood can increase production from slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico. Phase 1 of the project, reservoir characterization, focused on Geraldine Ford and East Ford fields, which are Delaware Mountain Group fields that produce from the upper Bell Canyon Formation (Ramsey sandstone). The demonstration phase of the project was a CO2 flood conducted in East Ford field, which is operated by Orla Petco, Inc., as the East Ford unit.

  14. Study of biological processes on the US South Atlantic slope and rise. Phase 2. Volume 1. Executive summary. Report for November 1985-March 1987

    SciTech Connect (OSTI)

    Blake, J.A.; Hecker, B.; Grassle, J.F.; Brown, B.; Wade, M.

    1987-03-30

    A total of 16 stations were sampled during a 2-year field program designed to characterize the biological, chemical, and sedimentary processes on the slope and rise off North and South Carolina. Box cores were taken along 4 transects at depths of 600-3500 m. The infauna yielded a total of 1202 species, 520 of which were new to science. Annelids were the dominant taxa in terms of density and numbers of species. Species diversity was highest at an 800 m site off Charleston. Higher than normal lead and hydrocarbon inventories suggest enhanced scavenging processes in the area.

  15. Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM

    SciTech Connect (OSTI)

    Mark B. Murphy

    2005-09-30

    The Nash Draw Brushy Canyon Pool in Eddy County New Mexico was a cost-shared field demonstration project in the U.S. Department of Energy Class III Program. A major goal of the Class III Program was to stimulate the use of advanced technologies to increase ultimate recovery from slope-basin clastic reservoirs. Advanced characterization techniques were used at the Nash Draw Pool (NDP) project to develop reservoir management strategies for optimizing oil recovery from this Delaware reservoir. The objective of the project was to demonstrate that a development program, which was based on advanced reservoir management methods, could significantly improve oil recovery at the NDP. Initial goals were (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to other oil and gas producers. Analysis, interpretation, and integration of recently acquired geological, geophysical, and engineering data revealed that the initial reservoir characterization was too simplistic to capture the critical features of this complex formation. Contrary to the initial characterization, a new reservoir description evolved that provided sufficient detail regarding the complexity of the Brushy Canyon interval at Nash Draw. This new reservoir description was used as a risk reduction tool to identify 'sweet spots' for a development drilling program as well as to evaluate pressure maintenance strategies. The reservoir characterization, geological modeling, 3-D seismic interpretation, and simulation studies have provided a detailed model of the Brushy Canyon zones. This model was used to predict the success of different reservoir management scenarios and to aid in determining the most favorable combination of targeted drilling, pressure maintenance, well stimulation, and well spacing to improve recovery from this reservoir. An Advanced

  16. Surface roughness statistics and temperature step stress effects for D-T solid layers equilibrated inside a 2 mm beryllium torus

    SciTech Connect (OSTI)

    Sheliak, J.D.; Hoffer, J.K.

    1998-12-31

    Solid D-T layers are equilibrated inside a 2 mm diameter beryllium toroidal cell at temperatures ranging from 19.0 K to 19.6 K, using the beta-layering process. The experimental runs consists of multiple cycles of rapid- or slow-freezing of the initially liquid D-T charge, followed by a lengthy period of beta-layering equilibration, terminated by melting the layer. The temperature was changed in discrete steps at the end of some equilibration cycles in an attempt to simulate actual ICF target conditions. High-precision images of the D-T solid-vapor interface were analyzed to yield the surface roughness {sigma}{sub mns} as a sum of modal contributions. Results show an overage {sigma}{sub mns} of 1.3 {+-} 0.3 {micro}m for layers equilibrated at 19.0 K and show an inverse dependence of {sigma}{sub mns} on equilibration temperature up to 19.525 K. Inducing sudden temperature perturbations lowered {sigma}{sub mns} to 1.0 {+-} 0.05 {micro}m.

  17. Phase Behavior, Solid Organic Precipitation, and Mobility Characterization Studies in Support of Enhanced Heavy Oil Recovery on the Alaska North Slope

    SciTech Connect (OSTI)

    Shirish Patil; Abhijit Dandekar; Santanu Khataniar

    2008-12-31

    The medium-heavy oil (viscous oil) resources in the Alaska North Slope are estimated at 20 to 25 billion barrels. These oils are viscous, flow sluggishly in the formations, and are difficult to recover. Recovery of this viscous oil requires carefully designed enhanced oil recovery processes. Success of these recovery processes is critically dependent on accurate knowledge of the phase behavior and fluid properties, especially viscosity, of these oils under variety of pressure and temperature conditions. This project focused on predicting phase behavior and viscosity of viscous oils using equations of state and semi-empirical correlations. An experimental study was conducted to quantify the phase behavior and physical properties of viscous oils from the Alaska North Slope oil field. The oil samples were compositionally characterized by the simulated distillation technique. Constant composition expansion and differential liberation tests were conducted on viscous oil samples. Experiment results for phase behavior and reservoir fluid properties were used to tune the Peng-Robinson equation of state and predict the phase behavior accurately. A comprehensive literature search was carried out to compile available compositional viscosity models and their modifications, for application to heavy or viscous oils. With the help of meticulously amassed new medium-heavy oil viscosity data from experiments, a comparative study was conducted to evaluate the potential of various models. The widely used corresponding state viscosity model predictions deteriorate when applied to heavy oil systems. Hence, a semi-empirical approach (the Lindeloff model) was adopted for modeling the viscosity behavior. Based on the analysis, appropriate adjustments have been suggested: the major one is the division of the pressure-viscosity profile into three distinct regions. New modifications have improved the overall fit, including the saturated viscosities at low pressures. However, with the limited

  18. Application of advanced reservoir characterization, simulation, and production optimization strategies to maximize recovery in slope and basin clastic reservoirs, West Texas (Delaware Basin), Class III

    SciTech Connect (OSTI)

    Dutton, Shirley P.; Flanders, William A.; Zirczy, Helena H.

    2000-05-24

    The objective of this Class 3 project was to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost effective way to recover a higher percentage of the original oil in place through strategic placement of infill wells and geologically based field development. Phase 1 of the project, reservoir characterization, was completed this year, and Phase 2 began. The project is focused on East Ford field, a representative Delaware Mountain Group field that produces from the upper Bell Canyon Formation (Ramsey sandstone). The field, discovered in 1960, is operated by Oral Petco, Inc., as the East Ford unit. A CO{sub 2} flood is being conducted in the unit, and this flood is the Phase 2 demonstration for the project.

  19. Significance analysis of the leachate level in a solid waste landfill in a coastal zone using total water balance and slope stability alternatives

    SciTech Connect (OSTI)

    Koo, Ja-Kong; Do, Nam-Young

    1996-12-31

    The K site near Seoul began landfilling in 1992. The landfilled wastes include municipal solid waste (66.4%), construction residues (20.4%), water and wastewater sludges (trace levels), and hazardous waste (trace levels). The water content of the municipal solid waste is very high (47.3%); as a result, the leachate level (average E.L.) of the landfill, the design value of which is 7.0 m, was measured at 10.3 m in January 1995 and is increasing. The increase of leachate level in the landfill site causes a problem with slope stability. The leachate level at each disposal stage divided by the intermediate cover layer was calculated with the HELP (Hydrologic Evaluation of Landfill Performance) model and calibrated with the data measured from February 1993 to June 1995. Also, the hydraulic conductivities of the waste layer and the intermediate cover layer in each stage were calibrated continuously with HELP model analysis. To verify these results, the total water balance in the landfill site was calculated using the infiltration rate calculated from HELP modeling. The leachate level was E.L. 10.0 m, which was close to the measured leachate level. To estimate the change of the leachate level in the future, the total water balances with different leachate discharge rates of 3,000, 3,500, and 5,000 m{sup 3}/day were analyzed. When the leachate discharge rate was 5,000 ton/day and the initial water content was decreased below 25%, the average leachate level was 10.8 m. This result satisfies the safety factor requirements (=1.3) for landfill slope stability. 4 refs., 8 figs., 1 tab.

  20. Evaluation of a deposit in the vicinity of the PBU L-106 Site, North Slope, Alaska, for a potential long-term test of gas production from hydrates

    SciTech Connect (OSTI)

    Moridis, G.J.; Reagan, M.T.; Boyle, K.L.; Zhang, K.

    2010-05-01

    As part of the effort to investigate the technical feasibility of gas production from hydrate deposits, a long-term field test (lasting 18-24 months) is under consideration in a project led by the U.S. Department of Energy. We evaluate a candidate deposit involving the C-Unit in the vicinity of the PBU-L106 site in North Slope, Alaska. This deposit is stratigraphically bounded by impermeable shale top and bottom boundaries (Class 3), and is characterized by high intrinsic permeabilities, high porosity, high hydrate saturation, and a hydrostatic pressure distribution. The C-unit deposit is composed of two hydrate-bearing strata separated by a 30-ft-thick shale interlayer, and its temperatrure across its boundaries ranges between 5 and 6.5 C. We investigate by means of numerical simulation involving very fine grids the production potential of these two deposits using both vertical and horizontal wells. We also explore the sensitivity of production to key parameters such as the hydrate saturation, the formation permeability, and the permeability of the bounding shale layers. Finally, we compare the production performance of the C-Unit at the PBU-L106 site to that of the D-Unit accumulation at the Mount Elbert site, a thinner, single-layer Class 3 deposit on the North Slope of Alaska that is shallower, less-pressurized and colder (2.3-2.6 C). The results indicate that production from horizontal wells may be orders of magnitude larger than that from vertical ones. Additionally, production increases with the formation permeability, and with a decreasing permeability of the boundaries. The effect of the hydrate saturation on production is complex and depends on the time frame of production. Because of higher production, the PBU-L106 deposit appears to have an advantage as a candidate for the long-term test.

  1. Assessment of costs and benefits of flexible and alternative fuel use in the US transportation sector. Technical report twelve: Economic analysis of alternative uses for Alaskan North Slope natural gas

    SciTech Connect (OSTI)

    Not Available

    1993-12-01

    As part of the Altemative Fuels Assessment, the Department of Energy (DOE) is studying the use of derivatives of natural gas, including compressed natural gas and methanol, as altemative transportation fuels. A critical part of this effort is determining potential sources of natural gas and the economics of those sources. Previous studies in this series characterized the economics of unutilized gas within the lower 48 United States, comparing its value for methanol production against its value as a pipelined fuel (US Department of Energy 1991), and analyzed the costs of developing undeveloped nonassociated gas reserves in several countries (US Department of Energy 1992c). This report extends those analyses to include Alaskan North Slope natural gas that either is not being produced or is being reinjected. The report includes the following: A description of discovered and potential (undiscovered) quantities of natural gas on the Alaskan North Slope. A discussion of proposed altemative uses for Alaskan North Slope natural gas. A comparison of the economics of the proposed alternative uses for Alaskan North Slope natural gas. The purpose of this report is to illustrate the costs of transporting Alaskan North Slope gas to markets in the lower 48 States as pipeline gas, liquefied natural gas (LNG), or methanol. It is not intended to recommend one alternative over another or to evaluate the relative economics or timing of using North Slope gas in new tertiary oil recovery projects. The information is supplied in sufficient detail to allow incorporation of relevant economic relationships (for example, wellhead gas prices and transportation costs) into the Altemative Fuels Trade Model, the analytical framework DOE is using to evaluate various policy options.

  2. Slope Extensions to ASL Library

    Energy Science and Technology Software Center (OSTI)

    2010-03-31

    Extensions to the AMPL/solver interface library (http://netlib.sandia.gov/ampl/solvers) to compute bounds on algebraic expressions, plus a test program. use in uncertainty quantification and global optimization algorithms. This software is not primarily for military applications.

  3. Source Characterization and Temporal Variation of Methane Seepage from Thermokarst Lakes on the Alaska North Slope in Response to Arctic Climate Change

    SciTech Connect (OSTI)

    None, None

    2012-09-30

    The goals of this research were to characterize the source, magnitude and temporal variability of methane seepage from thermokarst lakes (TKL) within the Alaska North Slope gas hydrate province, assess the vulnerability of these areas to ongoing and future arctic climate change and determine if gas hydrate dissociation resulting from permafrost melting is contributing to the current lake emissions. Analyses were focused on four main lake locations referred to in this report: Lake Qalluuraq (referred to as Lake Q) and Lake Teshekpuk (both on Alaska's North Slope) and Lake Killarney and Goldstream Bill Lake (both in Alaska's interior). From analyses of gases coming from lakes in Alaska, we showed that ecological seeps are common in Alaska and they account for a larger source of atmospheric methane today than geologic subcap seeps. Emissions from the geologic source could increase with potential implications for climate warming feedbacks. Our analyses of TKL sites showing gas ebullition were complemented with geophysical surveys, providing important insight about the distribution of shallow gas in the sediments and the lake bottom manifestation of seepage (e.g., pockmarks). In Lake Q, Chirp data were limited in their capacity to image deeper sediments and did not capture the thaw bulb. The failure to capture the thaw bulb at Lake Q may in part be related to the fact that the present day lake is a remnant of an older, larger, and now-partially drained lake. These suggestions are consistent with our analyses of a dated core of sediment from the lake that shows that a wetland has been present at the site of Lake Q since approximately 12,000 thousand years ago. Chemical analyses of the core indicate that the availability of methane at the site has changed during the past and is correlated with past environmental changes (i.e. temperature and hydrology) in the Arctic. Discovery of methane seeps in Lake Teshekpuk in the northernmost part of the lake during 2009

  4. RESOURCE CHARACTERIZATION AND QUANTIFICATION OF NATURAL GAS-HYDRATE AND ASSOCIATED FREE-GAS ACCUMULATIONS IN THE PRUDHOE BAY - KUPARUK RIVER AREA ON THE NORTH SLOPE OF ALASKA

    SciTech Connect (OSTI)

    Robert Hunter; Shirish Patil; Robert Casavant; Tim Collett

    2003-06-02

    Interim results are presented from the project designed to characterize, quantify, and determine the commercial feasibility of Alaska North Slope (ANS) gas-hydrate and associated free-gas resources in the Prudhoe Bay Unit (PBU), Kuparuk River Unit (KRU), and Milne Point Unit (MPU) areas. This collaborative research will provide practical input to reservoir and economic models, determine the technical feasibility of gas hydrate production, and influence future exploration and field extension of this potential ANS resource. The large magnitude of unconventional in-place gas (40-100 TCF) and conventional ANS gas commercialization evaluation creates industry-DOE alignment to assess this potential resource. This region uniquely combines known gas hydrate presence and existing production infrastructure. Many technical, economical, environmental, and safety issues require resolution before enabling gas hydrate commercial production. Gas hydrate energy resource potential has been studied for nearly three decades. However, this knowledge has not been applied to practical ANS gas hydrate resource development. ANS gas hydrate and associated free gas reservoirs are being studied to determine reservoir extent, stratigraphy, structure, continuity, quality, variability, and geophysical and petrophysical property distribution. Phase 1 will characterize reservoirs, lead to recoverable reserve and commercial potential estimates, and define procedures for gas hydrate drilling, data acquisition, completion, and production. Phases 2 and 3 will integrate well, core, log, and long-term production test data from additional wells, if justified by results from prior phases. The project could lead to future ANS gas hydrate pilot development. This project will help solve technical and economic issues to enable government and industry to make informed decisions regarding future commercialization of unconventional gas-hydrate resources.

  5. Numerical simulation studies of the long-term evolution of a CO2 plume in a saline aquifer with a sloping caprock

    SciTech Connect (OSTI)

    Pruess, K.; Nordbotten, J.

    2010-12-28

    We have used the TOUGH2-MP/ECO2N code to perform numerical simulation studies of the long-term behavior of CO{sub 2} stored in an aquifer with a sloping caprock. This problem is of great practical interest, and is very challenging due to the importance of multi-scale processes. We find that the mechanism of plume advance is different from what is seen in a forced immiscible displacement, such as gas injection into a water-saturated medium. Instead of pushing the water forward, the plume advances because the vertical pressure gradients within the plume are smaller than hydrostatic, causing the groundwater column to collapse ahead of the plume tip. Increased resistance to vertical flow of aqueous phase in anisotropic media leads to reduced speed of updip plume advancement. Vertical equilibrium models that ignore effects of vertical flow will overpredict the speed of plume advancement. The CO{sub 2} plume becomes thinner as it advances, yet the speed of advancement remains constant over the entire simulation period of up to 400 years, with migration distances of more than 80 km. Our simulations include dissolution of CO{sub 2} into the aqueous phase and associated density increase, and molecular diffusion. However, no convection develops in the aqueous phase because it is suppressed by the relatively coarse (sub-) horizontal gridding required in a regional-scale model. A first crude sub-grid-scale model was developed to represent convective enhancement of CO{sub 2} dissolution. This process is found to greatly reduce the thickness of the CO{sub 2} plume, but, for the parameters used in our simulations, does not affect the speed of plume advancement.

  6. Terrain effects in resistivity and magnetotelluric surveys

    SciTech Connect (OSTI)

    Holcombe, H.T.

    1982-12-01

    A three-dimensional finite element computer algorithm which can accommodate arbitrarily complex topography and subsurface structure, has been developed to model the resistivity response of the earth. The algorithm has undergone extensive evaluation and is believed to provide accurate results for realistic earth models. Testing included comparison to scale model measurements, analytically calculated solutions, and results calculated numerically by other independent means. Computer modeling experiments have demonstrated that it is possible to remove the effect of topography on resistivity data under conditions where such effects dominate the response. This can be done without resorting to lengthy and costly trial and error computer modeling. After correction, the data can be interpreted with confidence that the anomalies are due only to subsurface structure. The results of case studies on resistivity field data measured in high relief topography are discussed.

  7. Metallographic autopsies of full-scale ITER prototype cable-in-conduit conductors after full cyclic testing in SULTAN: III. The importance of strand surface roughness in long twist pitch conductors

    DOE PAGES-Beta [OSTI]

    Sanabria, Charlie; Lee, Peter J.; Starch, William; Devred, Arnaud; Larbalestier, David C.

    2016-05-31

    As part of the ITER conductor qualification process, 3 m long Cable-in-Conduit Conductors (CICCs) were tested at the SULTAN facility under conditions simulating ITER operation so as to establish the current sharing temperature, Tcs, as a function of multiple full Lorentz force loading cycles. After a comprehensive evaluation of both the Toroidal Field (TF) and the Central Solenoid (CS) conductors, it was found that Tcs degradation was common in long twist pitch TF conductors while short twist pitch CS conductors showed some Tcs increase. However, one kind of TF conductors containing superconducting strand fabricated by the Bochvar Institute of Inorganicmore » Materials (VNIINM) avoided Tcs degradation despite having long twist pitch. In our earlier metallographic autopsies of long and short twist pitch CS conductors, we observed a substantially greater transverse strand movement under Lorentz force loading for long twist pitch conductors, while short twist pitch conductors had negligible transverse movement. With help from the literature, we concluded that the transverse movement was not the source of Tcs degradation but rather an increase of the compressive strain in the Nb3Sn filaments possibly induced by longitudinal movement of the wires. Like all TF conductors this TF VNIINM conductor showed large transverse motions under Lorentz force loading, but Tcs actually increased, as in all short twist pitch CS conductors. We here propose that the high surface roughness of the VNIINM strand may be responsible for the suppression of the compressive strain enhancement (characteristic of long twist pitch conductors). Furthermore, it appears that increasing strand surface roughness could improve the performance of long twist pitch CICCs.« less

  8. Surface Orbital 'Roughness' in Colossal Magnetoresistive Oxide...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    containing a mixed-valence of Mn3+ and Mn4+, known as manganites, represent an ideal system to address the role of the surface, because all the relevant degrees of freedom -...

  9. A Rough Road Leads To The Stars

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    then at 210 minutes before launch the flight unit was mounted into the spacecraft. The ground control unit was placed inside a temperature controlled cabinet, in which the...

  10. Monthly Performance Report

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ... delivery of a 90-ton Rough Terrain crane for CHPRC 200W Pump & Treat construction to support a ... REV 24 COO-i Chief Operations Office David G Ruscitto, Chief Operations Officer ...

  11. Failure and Redemption of Multifilter Rotating Shadowband Radiometer (MFRSR)/Normal Incidence Multifilter Radiometer (NIMFR) Cloud Screening: Contrasting Algorithm Performance at Atmospheric Radiation Measurement (ARM) North Slope of Alaska (NSA) and Southern Great Plains (SGP) Sites

    SciTech Connect (OSTI)

    Kassianov, Evgueni I.; Flynn, Connor J.; Koontz, Annette S.; Sivaraman, Chitra; Barnard, James C.

    2013-09-11

    Well-known cloud-screening algorithms, which are designed to remove cloud-contaminated aerosol optical depths (AOD) from AOD measurements, have shown great performance at many middle-to-low latitude sites around the world. However, they may occasionally fail under challenging observational conditions, such as when the sun is low (near the horizon) or when optically thin clouds with small spatial inhomogeneity occur. Such conditions have been observed quite frequently at the high-latitude Atmospheric Radiation Measurement (ARM) North Slope of Alaska (NSA) sites. A slightly modified cloud-screening version of the standard algorithm is proposed here with a focus on the ARM-supported Multifilter Rotating Shadowband Radiometer (MFRSR) and Normal Incidence Multifilter Radiometer (NIMFR) data. The modified version uses approximately the same techniques as the standard algorithm, but it additionally examines the magnitude of the slant-path line of sight transmittance and eliminates points when the observed magnitude is below a specified threshold. Substantial improvement of the multi-year (1999-2012) aerosol product (AOD and its Angstrom exponent) is shown for the NSA sites when the modified version is applied. Moreover, this version reproduces the AOD product at the ARM Southern Great Plains (SGP) site, which was originally generated by the standard cloud-screening algorithms. The proposed minor modification is easy to implement and its application to existing and future cloud-screening algorithms can be particularly beneficial for challenging observational conditions.

  12. North Slope Co. Northwest Arctic Co.

    Gasoline and Diesel Fuel Update

    COLVILLE RIVER COLVILLE RIVER 15050'0"W 15050'0"W 15055'0"W 15055'0"W 1510'0"W 1510'0"W 1515'0"W 1515'0"W 15110'0"W 15110'0"W 15115'0"W 15115'0"W ...

  13. Change of Maximum Standardized Uptake Value Slope in Dynamic Triphasic [{sup 18}F]-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography Distinguishes Malignancy From Postradiation Inflammation in Head-and-Neck Squamous Cell Carcinoma: A Prospective Trial

    SciTech Connect (OSTI)

    Anderson, Carryn M.; Chang, Tangel; Graham, Michael M.; Marquardt, Michael D.; Button, Anna; Smith, Brian J.; Menda, Yusuf; Sun, Wenqing; Pagedar, Nitin A.; Buatti, John M.

    2015-03-01

    Purpose: To evaluate dynamic [{sup 18}F]-fluorodeoxyglucose (FDG) uptake methodology as a post–radiation therapy (RT) response assessment tool, potentially enabling accurate tumor and therapy-related inflammation differentiation, improving the posttherapy value of FDG–positron emission tomography/computed tomography (FDG-PET/CT). Methods and Materials: We prospectively enrolled head-and-neck squamous cell carcinoma patients who completed RT, with scheduled 3-month post-RT FDG-PET/CT. Patients underwent our standard whole-body PET/CT scan at 90 minutes, with the addition of head-and-neck PET/CT scans at 60 and 120 minutes. Maximum standardized uptake values (SUV{sub max}) of regions of interest were measured at 60, 90, and 120 minutes. The SUV{sub max} slope between 60 and 120 minutes and change of SUV{sub max} slope before and after 90 minutes were calculated. Data were analyzed by primary site and nodal site disease status using the Cox regression model and Wilcoxon rank sum test. Outcomes were based on pathologic and clinical follow-up. Results: A total of 84 patients were enrolled, with 79 primary and 43 nodal evaluable sites. Twenty-eight sites were interpreted as positive or equivocal (18 primary, 8 nodal, 2 distant) on 3-month 90-minute FDG-PET/CT. Median follow-up was 13.3 months. All measured SUV endpoints predicted recurrence. Change of SUV{sub max} slope after 90 minutes more accurately identified nonrecurrence in positive or equivocal sites than our current standard of SUV{sub max} ≥2.5 (P=.02). Conclusions: The positive predictive value of post-RT FDG-PET/CT may significantly improve using novel second derivative analysis of dynamic triphasic FDG-PET/CT SUV{sub max} slope, accurately distinguishing tumor from inflammation on positive and equivocal scans.

  14. Hillslope stability and land use (1985). Volume II

    SciTech Connect (OSTI)

    Sidle, R.C.; Pearce, A.J.; O'Loughlin, C.L.

    1985-01-01

    This book emphasizes the natural factors affecting slope stability, including soils and geomorphic, hydrologic, vegetative, and seismic factors and provides information on landslide classification, global damage, and analytical methods. The effects of various extensive and intensive land management practices on slope stability are discussed together with methods for prediction, avoidance, and control. Examples of terrain evaluation procedures and land management practices are presented.

  15. Terrain detection and classification using single polarization SAR

    DOE Patents [OSTI]

    Chow, James G.; Koch, Mark W.

    2016-01-19

    The various technologies presented herein relate to identifying manmade and/or natural features in a radar image. Two radar images (e.g., single polarization SAR images) can be captured for a common scene. The first image is captured at a first instance and the second image is captured at a second instance, whereby the duration between the captures are of sufficient time such that temporal decorrelation occurs for natural surfaces in the scene, and only manmade surfaces, e.g., a road, produce correlated pixels. A LCCD image comprising the correlated and decorrelated pixels can be generated from the two radar images. A median image can be generated from a plurality of radar images, whereby any features in the median image can be identified. A superpixel operation can be performed on the LCCD image and the median image, thereby enabling a feature(s) in the LCCD image to be classified.

  16. Ultrasensitive directional microphone arrays for military operations in urban terrain.

    SciTech Connect (OSTI)

    Hall, Neal A.; Peterson, Kenneth Allen; Parker, Eric Paul; Resnick, Paul James; Okandan, Murat; Serkland, Darwin Keith

    2007-11-01

    Acoustic sensing systems are critical elements in detection of sniper events. The microphones developed in this project enable unique sensing systems that benefit significantly from the enhanced sensitivity and extremely compact foot-print. Surface and bulk micromachining technologies developed at Sandia have allowed the design, fabrication and characterization of these unique sensors. We have demonstrated sensitivity that is only available in 1/2 inch to 1 inch studio reference microphones--with our devices that have only 1 to 2mm diameter membranes in a volume less than 1cm{sup 3}.

  17. PRODUCING SATELLITE-DERIVED IRRADIANCES IN COMPLEX ARID TERRAIN

    Open Energy Information (Open El) [EERE & EIA]

    the corrected monthly maps (see Fig. 3). 4. DISCUSSION We have presented a robust, straightforward two-step approach to correct irradiance estimated from weather satellites'...

  18. High-Resolution Aeromagnetic Mapping Of Volcanic Terrain, Yellowstone...

    Open Energy Information (Open El) [EERE & EIA]

    anomalies coincides with the mapped extent of several post-caldera rhyolitic lavas. Linear magnetic anomalies reflect the rectilinear fault systems characteristic of...

  19. ARM - Field Campaign - Cloud, Aerosol, and Complex Terrain Interaction...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    This range of environmental conditions and cloud properties coupled with a high frequency of events makes this an ideal location for improving our understanding of...

  20. Procedure for estimating fracture energy from fracture surface roughness

    DOE Patents [OSTI]

    Williford, Ralph E.

    1989-01-01

    The fracture energy of a material is determined by first measuring the length of a profile of a section through a fractured surface of the material taken on a plane perpendicular to the mean plane of that surface, then determining the fractal dimensionality of the surface. From this, the yield strength of the material, and the Young's Modulus of that material, the fracture energy is calculated.

  1. Hungry fungi seek rough diet, root out environmental pollutants

    SciTech Connect (OSTI)

    Bishop, J.

    1993-12-01

    The US Navy asked biochemist Stephen Aust to determine whether a common fungus could destroy 2,4,6-trinitrotoluene, a highly explosive compound popularly known as TNT. The reason white rot fungus apparently can be used to attack nearly any organic contaminant, lies in the organisms' evolution in response to a nearly infinite variety of trees and lignin. White rot fungus, evolved to degrade wood, and not every tree is the same. Environmental pollutants are very similar. Some environmental pollutants are very insoluble. Aust emphasizes that using white rot fungi in environmental treatment is not an off-the-shelf technology. Applications and remediation techniques in most cases will be site-specific success will require prior, accurate calculation of the fungi's nutrient demands, contaminant types and concentrations, local conditions, and economic considerations. Most work with white rot fungi to date has been at the laboratory scale. Experiments indicated that the fungus can indeed degrade TNT to carbon dioxide.

  2. Rough and Ready Biomass Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    National Map Retrieved from "http:en.openei.orgwindex.php?titleRoughandReadyBiomassFacility&oldid398020" Feedback Contact needs updating Image needs updating...

  3. Turbulent Flow Inside Pipes with Two-Dimensional Rib Roughness

    Energy Science and Technology Software Center (OSTI)

    1994-01-24

    A commonly used internal enhancement for single-phase forced-convective turbulent flow applications is tranverse and/or near tranverse ribs. These enhanced surfaces consist of a uniform inside diameter with periodic and discrete disruption of ribs. Enhanced tubes of this type are made by an extrusion process and are used in some condensers and evaporators in refrigeration systems. Tubes of this type fall into an enhancement category called separation and reattachment that has been identified as one ofmore » the most energy efficient. Lacking are prediction methods that are mechanistic based that can be used to calculate the heat-transfer coefficients and friction-factors for tubes with this enhancement type. This program calculates the Nusselt number and friction factor for enhanced tubes with tranverse, rectangular ribs with a spacing exceeding the reattachment length. The input quantities are the enhancement height, spacing, and the width. The Nusselt number and friction factor are calculated for a specific Reynolds number or for a range of Reynolds numbers. Users of the program are heat-exchanger designers, enhanced tubing suppliers, and research organizations or academia who are developing or validating prediction methods. The manufacturers of refrigeration heat exchangers and enhanced tube suppliers are potential users of this software.« less

  4. Enhanced Tissue Adhesion by Increased Porosity and Surface Roughness...

    Office of Scientific and Technical Information (OSTI)

    Research Org: Oak Ridge National Laboratory (ORNL) Sponsoring Org: SC USDOE - Office of Science (SC) Country of Publication: United States Language: English Word Cloud More Like ...

  5. Surface roughness effects on the solar reflectance of cool asphalt...

    Office of Scientific and Technical Information (OSTI)

    The model is then used to compute the reflectance of shingles with a mixture of different colored granules, when the reflectances of the corresponding mono-color shingles are ...

  6. File:Wind rough example.pdf | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    this file. Metadata This file contains additional information, probably added from the digital camera or scanner used to create or digitize it. If the file has been modified from...

  7. Numerical errors in the presence of steep topography: analysis and alternatives

    SciTech Connect (OSTI)

    Lundquist, K A; Chow, F K; Lundquist, J K

    2010-04-15

    It is well known in computational fluid dynamics that grid quality affects the accuracy of numerical solutions. When assessing grid quality, properties such as aspect ratio, orthogonality of coordinate surfaces, and cell volume are considered. Mesoscale atmospheric models generally use terrain-following coordinates with large aspect ratios near the surface. As high resolution numerical simulations are increasingly used to study topographically forced flows, a high degree of non-orthogonality is introduced, especially in the vicinity of steep terrain slopes. Numerical errors associated with the use of terrainfollowing coordinates can adversely effect the accuracy of the solution in steep terrain. Inaccuracies from the coordinate transformation are present in each spatially discretized term of the Navier-Stokes equations, as well as in the conservation equations for scalars. In particular, errors in the computation of horizontal pressure gradients, diffusion, and horizontal advection terms have been noted in the presence of sloping coordinate surfaces and steep topography. In this work we study the effects of these spatial discretization errors on the flow solution for three canonical cases: scalar advection over a mountain, an atmosphere at rest over a hill, and forced advection over a hill. This study is completed using the Weather Research and Forecasting (WRF) model. Simulations with terrain-following coordinates are compared to those using a flat coordinate, where terrain is represented with the immersed boundary method. The immersed boundary method is used as a tool which allows us to eliminate the terrain-following coordinate transformation, and quantify numerical errors through a direct comparison of the two solutions. Additionally, the effects of related issues such as the steepness of terrain slope and grid aspect ratio are studied in an effort to gain an understanding of numerical domains where terrain-following coordinates can successfully be used and

  8. Newly Installed Alaska North Slope Well Will Test Innovative...

    Energy.gov (indexed) [DOE]

    A fully instrumented well that will test innovative technologies for producing methane gas ... Energy Technology Laboratory, will test a technology that involves injecting ...

  9. Conversion economics for Alaska North Slope natural gas

    SciTech Connect (OSTI)

    Thomas, C.P.; Robertson, E.P.

    1995-07-01

    For the Prudhoe Bay field, this preliminary analysis provides an indication that major gas sales using a gas pipeline/LNG plant scenario, such as Trans Alaska Gas System, or a gas-to-liquids process with the cost parameters assumed, are essentially equivalent and would be viable and profitable to industry and beneficial to the state of Alaska and the federal government. The cases are compared for the Reference oil price case. The reserves would be 12.7 BBO for the base case without major gas sales, 12.3 BBO and 20 Tcf gas for the major gas sales case, and 14.3 BBO for the gas-to-liquids conversion cases. Use of different parameters will significantly alter these results; e.g., the low oil price case would result in the base case for Prudhoe Bay field becoming uneconomic in 2002 with the operating costs and investments as currently estimated.

  10. Clouds and snowmelt on the north slope of Alaska

    SciTech Connect (OSTI)

    Zhang, T.; Stamnes, K.; Bowling, S.A.

    1996-04-01

    Clouds have a large effect on the radiation field. Consequently, possible changes in cloud properties may have a very substantial impact on climate. Of all natural surfaces, seasonal snow cover has the highest surface albedo, which is one of the most important components of the climatic system. Interactions between clouds and seasonal snow cover are expected to have a significant effect on climate and its change at high latitudes. The purpose of this paper is to investigate the sensitivity of the surface cloud-radiative forcing during the period of snowmelt at high latitudes. The primary variables investigated are cloud liquid path (LWP) and droplet equivalent radius (r{sub e}). We will also examine the sensitivity of the surface radiative fluxes to cloud base height and cloud base temperature.

  11. Site Scientist for the North Slope of Alaska Site (Technical...

    Office of Scientific and Technical Information (OSTI)

    ... Close Cite: Bibtex Format Close 0 pages in this document matching the terms "" Search For Terms: Enter terms in the toolbar above to search the full text of this document for ...

  12. North Slope of Alaska ARM Climate Research Facility

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ... Electrical and electronic equipment that may be sensitive to voltage spikes should be ... If interior temperatures drop too low, instruments and building utility systems may be ...

  13. Sandia Energy - Alaskan North Slope Climate: Hard Data from a...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    the automated release of a weather balloon ... which measures the Arctic atmosphere's temperature, humidity, and wind speeds at a rapid succession of altitudes as it rises. The...

  14. The 2004 North Slope of Alaska Arctic Winter Radiometric Experiment

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ... It was also intended to supplement efforts by industry (F. Solheim, Private Communication) ... the evaluation of the sensitivity of millimeter-wave window channels to arctic clouds. ...

  15. Session Papers North Slope of Alaska and Adjacent Arctic Ocean...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    is, more energy is radiated to space than is received from the sun. The difference is made up by energy transported from lower latitudes by the atmosphere and the oceans. ...

  16. Long range hopping mobility platform.

    SciTech Connect (OSTI)

    Spletzer, Barry Louis; Fischer, Gary John

    2003-03-01

    Sandia National Laboratories has developed a mesoscale hopping mobility platform (Hopper) to overcome the longstanding problems of mobility and power in small scale unmanned vehicles. The system provides mobility in situations such as negotiating tall obstacles and rough terrain that are prohibitive for other small ground base vehicles. The Defense Advanced Research Projects Administration (DARPA) provided the funding for the hopper project.

  17. Adjusting lidar-derived digital terrain models in coastal marshes based on estimated aboveground biomass density

    DOE PAGES-Beta [OSTI]

    Medeiros, Stephen; Hagen, Scott; Weishampel, John; Angelo, James

    2015-03-25

    Digital elevation models (DEMs) derived from airborne lidar are traditionally unreliable in coastal salt marshes due to the inability of the laser to penetrate the dense grasses and reach the underlying soil. To that end, we present a novel processing methodology that uses ASTER Band 2 (visible red), an interferometric SAR (IfSAR) digital surface model, and lidar-derived canopy height to classify biomass density using both a three-class scheme (high, medium and low) and a two-class scheme (high and low). Elevation adjustments associated with these classes using both median and quartile approaches were applied to adjust lidar-derived elevation values closer tomore » true bare earth elevation. The performance of the method was tested on 229 elevation points in the lower Apalachicola River Marsh. The two-class quartile-based adjusted DEM produced the best results, reducing the RMS error in elevation from 0.65 m to 0.40 m, a 38% improvement. The raw mean errors for the lidar DEM and the adjusted DEM were 0.61 ± 0.24 m and 0.32 ± 0.24 m, respectively, thereby reducing the high bias by approximately 49%.« less

  18. Adjusting lidar-derived digital terrain models in coastal marshes based on estimated aboveground biomass density

    SciTech Connect (OSTI)

    Medeiros, Stephen; Hagen, Scott; Weishampel, John; Angelo, James

    2015-03-25

    Digital elevation models (DEMs) derived from airborne lidar are traditionally unreliable in coastal salt marshes due to the inability of the laser to penetrate the dense grasses and reach the underlying soil. To that end, we present a novel processing methodology that uses ASTER Band 2 (visible red), an interferometric SAR (IfSAR) digital surface model, and lidar-derived canopy height to classify biomass density using both a three-class scheme (high, medium and low) and a two-class scheme (high and low). Elevation adjustments associated with these classes using both median and quartile approaches were applied to adjust lidar-derived elevation values closer to true bare earth elevation. The performance of the method was tested on 229 elevation points in the lower Apalachicola River Marsh. The two-class quartile-based adjusted DEM produced the best results, reducing the RMS error in elevation from 0.65 m to 0.40 m, a 38% improvement. The raw mean errors for the lidar DEM and the adjusted DEM were 0.61 ± 0.24 m and 0.32 ± 0.24 m, respectively, thereby reducing the high bias by approximately 49%.

  19. INVESTIGATION OF A DYNAMIC POWER LINE RATING CONCEPT FOR IMPROVED WIND ENERGY INTEGRATION OVER COMPLEX TERRAIN

    SciTech Connect (OSTI)

    Jake P. Gentle; Kurt S Myers; Tyler B Phillips; Inanc Senocak; Phil Anderson

    2014-08-01

    Dynamic Line Rating (DLR) is a smart grid technology that allows the rating of power line to be based on real-time conductor temperature dependent on local weather conditions. In current practice overhead power lines are generally given a conservative rating based on worst case weather conditions. Using historical weather data collected over a test bed area, we demonstrate there is often additional transmission capacity not being utilized with the current static rating practice. We investigate a new dynamic line rating methodology using computational fluid dynamics (CFD) to determine wind conditions along transmission lines at dense intervals. Simulated results are used to determine conductor temperature by calculating the transient thermal response of the conductor under variable environmental conditions. In calculating the conductor temperature, we use both a calculation with steady-state assumption and a transient calculation. Under low wind conditions, steady-state assumption predicts higher conductor temperatures that could lead to curtailments, whereas transient calculations produce conductor temperatures that are significantly lower, implying the availability of additional transmission capacity.

  20. Live Webinar on the Funding Opportunity for Wind Forecasting Improvement Project in Complex Terrain

    Office of Energy Efficiency and Renewable Energy (EERE)

    On April 21, 2014 from 3:00 to 5:00 PM EST the Wind Program will hold a live webinar to provide information to potential applicants for this Funding Opportunity Announcement. There is no cost to...

  1. Multi-scale Atmospheric Modeling of Green House Gas Dispersion in Complex Terrain. Controlled Release Study

    SciTech Connect (OSTI)

    Costigan, Keeley Rochelle; Sauer, Jeremy A.; Dubey, Manvendra Krishna

    2015-07-10

    This report discusses the ghgas IC project which when applied, allows for an evaluation of LANL's HIGRAD model which can be used to create atmospheric simulations.

  2. Eight underground designs: underground plans Book No. 1

    SciTech Connect (OSTI)

    Wells, M.; Wells, S.G.

    1981-01-01

    Eight different designs are given for earth-sheltered houses. Each design is depicted thoroughly, with floor plans, cross sections, views from the several sides, and some general comments. The plans are intended as a planning tool to be adapted to individual needs, budgets, sites and local ordinances. Each plan expresses a different idea, with terrain varying from flat land to south and north slopes. Conventional and novel construction and design methods are demonstrated.

  3. ARM - Publications: Science Team Meeting Documents: Application of 3D

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Radiative Transfer to Mountains Application of 3D Radiative Transfer to Mountains Chen, Yong UCLA Hall, Alex University of California, Los Angeles Liou, Kuo-Nan UCLA A large part of the land surface is not flat, but vertically structured. In mountain terrain, accurate calculations of the net radiation for slopes of varying gradient and orientation are of considerable importance in determining the energy budget of the surface. In order to evaluate the surface variations of total solar

  4. Geologic development and characteristics of continental margins, Gulf of Mexico

    SciTech Connect (OSTI)

    Coleman, J.M.; Prior, D.B.; Roberts, H.H.

    1986-09-01

    The continental slope of the Gulf basin covers more than 500,000 km/sup 2/ and consists of smooth and gently sloping surfaces, prominent escarpments, knolls, intraslope basins, and submarine canyons and channels. It is an area of extremely diverse topographic and sedimentologic conditions. The slope extends from the shelf break, roughly at the 200-m isobath, to the upper limit of the continental rise at a depth of 2800 m. The most complex province in the basin, and the one of most interest to the petroleum industry, is the Texas-Louisiana slope, occupying 120,000 km/sup 2/ and in which bottom slopes range from less than 1/sup 0/ to greater than 20/sup 0/ around the knolls and basins. The near-surface geology and topography of the slope is a function of the interplay between episodes of rapid shelf-edge and slope progradation and contemporaneous modification of the depositional sequence by diapirism. Development of discrete depocenters throughout the Neogene results in rapid shelf-edge progradation, often exceeding 15-20 km/m.y. This rapid progradation of the shelf edge leads to development of thick wedges of sediment accumulation on the continental slope. Slope oversteepening, high pore pressures in rapidly deposited soft sediments, and changes in eustatic sea level cause subaqueous slope instabilities such as landslides and debris flows. Large-scale features such as shelf-edge separation scars and landslide-related canyons often result from such processes.

  5. Strain-induced reduction of surface roughness dominated spin relaxation in MOSFETs

    SciTech Connect (OSTI)

    Osintsev, Dmitri; Stanojevic, Zlatan; Baumgartner, Oskar; Sverdlov, Viktor; Selberherr, Siegfried

    2013-12-04

    Semiconductor spintronics is a rapidly developing field with large impact on microelectronics. Using spin may help to reduce power consumption and increase computational speed. Silicon is perfectly suited for spin-based applications. It is characterized by a weak spin-orbit interaction which should result in a long spin lifetime. However, recent experiments indicate the lifetime is greatly reduced in gated structures. Thus, understanding the peculiarities of the spin-orbit effects on the subband structure and details of the spin propagation in surface layers and thin silicon films is urgently needed. We investigate the contribution of the spin-orbit interaction to the equivalent valley splitting and calculate the spin relaxation matrix elements by using a perturbative k ⋅p approach. We demonstrate that applying uniaxial stress along the [110] direction may considerably suppress electron spin relaxation in silicon surface layers and thin films.

  6. Y-12's rough roads smoothed over with recycled asphalt | Y-12...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    asphalt Posted: December 3, 2015 - 3:11pm The recycled asphalt is good for fixing potholes and ruts and can be used to "pave" a gravel road. Some 23,000 tons of asphalt removed...

  7. ANALYSIS OF HIGH FIELD NON-LINEAR LOSSES ON SRF SURFACES DUE TO SPECIFIC TOPOGRAPHIC ROUGHNESS

    SciTech Connect (OSTI)

    Chen Xu,Charles Reece,Michael Kelley

    2012-07-01

    The high-field performance of SRF cavities will eventually be limited by the realization of fundamental material limits, whether it is Hc1 or Hsh, or some derivative thereof, at which the superconductivity is lost. Before reaching this fundamental field limit at the macro level, it must be encountered at localized, perhaps microscopic, sites of field enhancement due to local topography. If such sites are small enough, they may produce thermally stabilized normal-conducting regions which contribute non-linear losses when viewed from the macro resonant field perspective, and thus produce degradation in Q0. We have undertaken a calculation of local surface magnetic field enhancement from specific fine topographic structure by conformal mapping method and numerically. A solution of the resulting normal conducting volume has been derived and the corresponding RF Ohmic loss simulated.

  8. Y-12's rough roads smoothed over with 23,000 tons of recycled...

    National Nuclear Security Administration (NNSA)

    Related Topics recycling Y-12 Related News NNSA's systems administrators keep the computers running NNSA innovation fuels space exploration Klotz visits Y-12 to see progress on new ...

  9. Effects of Atomic Scale Roughness at Metal/insulator Interfaces on Metal Work Function

    SciTech Connect (OSTI)

    Ling, Sanliang; Watkins, M. B.; Shlyuger, Alexander L.

    2013-09-26

    We evaluate the performance of different van der Waals (vdW) corrected density functional theory (DFT) methods in predicting the structure of perfect interfaces between the LiF(001), MgO(001), NiO(001) films on the Ag(001) surface and the resulting work function shift of Ag(001). The results demonstrate that including the van der Waals interaction is important for obtaining accurate interface structures and the metal work function shift. The work function shift results from a subtle interplay of several effects strongly affected by even small changes in the interface geometry. This makes the accuracy of theoretical methods insufficient for predicting the shift values better than within 0.2 eV. Most of the existing van der Waals corrected functionals are not particularly suited for studying metal/insulator interfaces. The lack of accurate experimental data on the interface geometries and surface rumpling of insulators hampers the calibration of existing and novel density functionals.

  10. Atomic-Level Measurements of Rough Surfaces | U.S. DOE Office...

    Office of Science (SC) [DOE]

    Every material interacts with the world through its surface, whether it is via the catalyst used to clean the emissions from your car, formation of rust on bridges used in the ...

  11. Geologic development and characteristics of the continental margins, Gulf of Mexico. Research report, 1983-1986

    SciTech Connect (OSTI)

    Coleman, J.M.; Prior, D.B.; Roberts, H.H.

    1986-01-01

    The continental slope of the Gulf Basin covers more than 500,000 sq km and consists of smooth and gently sloping surfaces, prominent escarpments, knolls, intraslope basins, and submarine canyons and channels. It is an area of extremely diverse topographic and sedimentologic conditions. The slope extends from the shelf break, roughly at the 200 m isobath, to the upper limit of the continental rise, at a depth of 2800 m. The most-complex province in the basin, and the one of most interest to the petroleum industry, is the Texas-Louisiana slope, occupying 120,000 sq km and in which bottom slopes range from < 1 deg to > 20 deg around the knolls and basins. The near-surface geology and topography of the slope are functions of the interplay between episodes of rapid shelf-edge and slope progradation and contemporaneous modification of the depositional sequence by diapirism. Development of discrete depo-centers throughout the Neogene results in rapid shelf-edge progradation, often in excess of 15-20 km/my. This rapid progradation of the shelf edge leads to development of thick wedges of sediment accumulation on the continental slope. Oversteeping, high pore pressures in rapidly deposited soft sediments and changes in eustatic sea level cause subaqueous slope instabilities such as landsliding and debris flows. Large scale features such as shelf edge separation scars and landslide related canyons often results from such processes.

  12. Multi-scale Atmospheric Modeling of Green House Gas Dispersion in Complex Terrain. Atmospheric Methane at Four Corners

    SciTech Connect (OSTI)

    Costigan, Keeley Rochelle; Dubey, Manvendra Krishna

    2015-07-10

    Atmospheric models are compared in collaboration with LANL and the University of Michigan to understand emissions and the condition of the atmosphere from a model perspective.

  13. Conoco's new approach to drill site construction in difficult, remote, swamp and jungle terrain Irian Jaya, Indonesia

    SciTech Connect (OSTI)

    Roodriguez, F.H.

    1984-02-01

    In October 1982, Conoco Irian Jaya as operator: and partners: Pertamina, Inpex Bintuni Limited, and Moeco Irian Jaya Company, mobilized construction equipment from Singapore to the KBS ''A'' contract area in Irian Jaya, Indonesia for the purpose of constructing a base camp and drill three exploratory sites. What made this construction effort different from others previously used in Irian Jaya; was that it incorporated several new and unique features, namely: a turnkey approach to construction; that is Conoco providing complete set of specifications and conditions with contractor assuming risks for a lump sum payment; special equipment designed by contractor for Irian Jaya operations; an incentive to co pensate or penalize contractor for helicopter hours flown below or above a predetermined number; structural steel pile platform designs for two swamp locations (Ayot and Aum), as opposed to the more conventional corduroy timber log-plank arrangement; and drilling rig pads designed for specific heli-rig with limited extra space. All work was successfully completed within the time frame stipulated in the contract, that is five months from the time the contractor was notified to begin mobilization of equipment, materials and personnel.

  14. Airflow-terrain interactions through a mountain gap, with an example of eolian activity beneath an atmospheric hydraulic jump

    SciTech Connect (OSTI)

    Gaylord, D.R.; Dawson, P.J.

    1987-09-01

    The integration of atmospheric soundings from a fully instrumented aircraft with detailed sedimentary and geomorphic analyses of eolian features in the Ferris dune field of south-central Wyoming lends insight into the manner in which topography interacts with airflow to modify eolian activity. Topographically modified airflow results in zones of airflow deceleration, acceleration, and enhanced atmospheric turbulence, all of which influence the surface morphology and sedimentology. Extreme lateral confluence of prevailing airflow produces accelerated, unidirectional winds. These winds correlate with unusually continuous and elongate parabolic dunes that extend into a mountain gap (Windy Gap). Persistently heightened winds produced at the entrance to Windy Gap have resulted in a concentration of active sand dunes that lack slipfaces. Common development of a strongly amplified atmospheric wave analogous to a hydraulic jump in the gap contributes to the formation of a variety of eolian features that mantle the surface of Windy Gap and the Ferris dune field tail. Heightened, unidirectional winds in this zone promote grain-size segregation, the formation of elongated and aligned sand drifts, climbing and falling dunes, elongate scour streaks, and parabolic dunes that have low-angle (< 20/sup 0/) cross-stratification. Deflation of bedrock and loose sediment has been enhanced in the zone of maximum turbulence beneath the hydraulic jump.

  15. File:EIA-AK-NorthSlope-BOE.pdf | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional...

  16. File:EIA-AK-NorthSlope-liquids.pdf | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional...

  17. The application of high volume jet pumps in North Slope water source wells

    SciTech Connect (OSTI)

    Christ, F.C.; Zublin, J.A.

    1983-03-01

    ARCO Alaska's pilot water flooding system for the Kuparuk Field requires 40000 to 50000 B/D (6360 to 7950 cu m/d) of fresh water from a 3000 foot (914 m) deep aquifer. The artificial lift system selected must be of proven technology, reliable in the harsh environment, easy to maintain, and compact for ease of enclosure. The two lift systems considered were electric submersible pump and hydraulic jet pump. Pilot well tests were run using these two types of systems and are discussed. These tests confirmed the formations' producibility, and revealed some problems at high rates. Based on pilot test results, a system of ten specially designed 3 in. (7.62 cm) jet pumps was selected. Background on jet pumping, design features of the system, results of the tests in October 1982, and comparison with predicted performance are presented.

  18. The Challenge of Estimating Precipitation on Alaskas North Slope

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Author: Peter Gross, peter.gross@eia.doe.gov, (202)586-8822 Disclaimer: Views not necessarily those of the U. S. Energy Information Administration Date: May 15, 2010 Revised: July 16, 2010 The Challenge of Achieving California's Low Carbon Fuel Standard Peter Gross Office of Integrated Analysis and Forecasting U.S. Energy Information Administration This paper is released to encourage discussion and critical comment. The analysis and conclusions expressed here are those of the author and not

  19. ARM-ACME V: ARM Airborne Carbon Measurements V on the North Slope...

    Office of Scientific and Technical Information (OSTI)

    ... AAF ABoVE ACME ARM ATQ BRW CARVE CCSP DOE ESRL FT GCM GHG IVO JPL LGR LSM LTER m NACP NASA ... Reservoirs Vulnerability Experiment, a NASA project U.S. Carbon Cycle Science Plan ...

  20. Dynamic Slope Stability Analysis of Mine Tailing Deposits: the Case of Raibl Mine

    SciTech Connect (OSTI)

    Roberto, Meriggi; Marco, Del Fabbro; Erica, Blasone; Erica, Zilli

    2008-07-08

    Over the last few years, many embankments and levees have collapsed during strong earthquakes or floods. In the Friuli Venezia Giulia Region (North-Eastern Italy), the main source of this type of risk is a slag deposit of about 2x10{sup 6} m{sup 3} deriving from galena and lead mining activity until 1991 in the village of Raibl. For the final remedial action plan, several in situ tests were performed: five boreholes equipped with piezometers, four CPTE and some geophysical tests with different approaches (refraction, ReMi and HVSR). Laboratory tests were conducted on the collected samples: geotechnical classification, triaxial compression tests and constant head permeability tests in triaxial cell. Pressure plate tests were also done on unsaturated slag to evaluate the characteristic soil-water curve useful for transient seepage analysis. A seepage analysis was performed in order to obtain the maximum pore water pressures during the intense rainfall event which hit the area on 29th August 2003. The results highlight that the slag low permeability prevents the infiltration of rainwater, which instead seeps easily through the boundary levees built with coarse materials. For this reason pore water pressures inside the deposits are not particularly influenced by rainfall intensity and frequency. Seismic stability analysis was performed with both the pseudo-static method, coupled with Newmark's method, and dynamic methods, using as design earthquake the one registered in Tolmezzo (Udine) on 6{sup th} May 1976. The low reduction of safety factors and the development of very small cumulative displacements show that the stability of embankments is assured even if an earthquake of magnitude 6.4 and a daily rainfall of 141.6 mm occur at the same time.

  1. Some aspects of computer aided decision making for the crisis management of unstable slopes

    SciTech Connect (OSTI)

    Faure, R.M.; Pairault, T.; Pham, M.; Bernardeau-Moreau, A.; Fayolle, G.; Robinson, J.C.; Foucheyrand, G.

    1995-12-31

    The authors present here the developments in their risk management research; software tools based on object oriented techniques, an image and graphics based man-machine interface, a new algorithm which allows the quick construction of a GIS, strong links with analysis software with the possibility of using fuzzy logic reasoning. The case of the threatening landslide at Sechilienne (Isere, France), studied using these tools, is briefly presented. The authors will show that is management is facilitated through the use of networks as in the WASSS project approach.

  2. ARRA additions to the north slope of Alaska. (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Authors: Richardson, Scott 1 ; Cherry, Jessica 2 ; Stuefer, Martin 2 ; Zirzow, Jeffrey A. ; Zak, Bernard Daniel ; Ivey, Mark D. ; Verlinde, Johannes 1 + Show Author ...

  3. Spoil handling and reclamation costs at a contour surface mine in steep slope Appalachian topography

    SciTech Connect (OSTI)

    Zipper, C.E.; Hall, A.T.; Daniels, W.L.

    1985-12-09

    Accurate overburden handling cost estimation methods are essential to effective pre-mining planning for post-mining landforms and land uses. With the aim of developing such methods, the authors have been monitoring costs at a contour surface mine in Wise County, Virginia since January 1, 1984. Early in the monitoring period, the land was being returned to its Approximate Original Contour (AOC) in a manner common to the Appalachian region since implementation of the Surface Mining Control and Reclamation Act of 1977 (SMCRA). More recently, mining has been conducted under an experimental variance from the AOC provisions of SMCRA which allowed a near-level bench to be constructed across the upper surface of two mined points and an intervening filled hollow. All mining operations are being recorded by location. The cost of spoil movement is calculated for each block of coal mined between January 1, 1984, and August 1, 1985. Per cubic yard spoil handling and reclamation costs are compared by mining block. The average cost of spoil handling was $1.90 per bank cubic yard; however, these costs varied widely between blocks. The reasons for those variations included the landscape positions of the mining blocks and spoil handling practices. The average reclamation cost was $0.08 per bank cubic yard of spoil placed in the near level bench on the mined point to $0.20 for spoil placed in the hollow fill. 2 references, 4 figures.

  4. Preliminary microfacies analysis and cyclicity of the Wahoo Limestone, Lisburne Field, North Slope, Alaska

    SciTech Connect (OSTI)

    Morgan, S.K.; Watts, K.F.

    1995-05-01

    A well from the Lisburne field near Prudhoe Bay was examined in core, thin section, and on well logs for comparison with Wahoo Limestone in the Arctic National Wildlife Refuge (ANWR). Carbonate cycles (parasequences) are well developed in both areas but the greater abundance of terrigenous sediment and associated carbonate facies indicate that the study well is located in a more landward position on the Wahoo carbonate ramp, closer to a source of terrigenous sediment. This report presents the preliminary results of microfacies analyses that have been conducted on 424 of a total 1,115 thin sections from the study well. The stratigraphic nomenclature extended from ANWR (the type locality of the Wahoo Limestone) is different that the terminology previously used for the subsurface Lisburne Group near Prudhoe Bay. We distinguish informal lower and upper members within the Mississippian to Pennsylvanian Wahoo Limestone which overlies the Mississippian Alapah Limestone. Our upper Alapah corresponds to the middle Alapah of previous workers. Our lower Wahoo Limestone member corresponds to the upper Alapah of previous workers. Our upper Wahoo Limestone member corresponds to the previous Wahoo Limestone and is the major hydrocarbon reservoir at the Lisburne field, which is characterized by well-developed carbonate cycles (parasequences).

  5. ARM-ACME V: ARM Airborne Carbon Measurements V on the North Slope...

    Office of Scientific and Technical Information (OSTI)

    Close Cite: Bibtex Format Close 0 pages in this document matching the terms "" Search For Terms: Enter terms in the toolbar above to search the full text of this document for ...

  6. ARM-ACME V: ARM Airborne Carbon Measurements V on the North Slope...

    Office of Scientific and Technical Information (OSTI)

    ... Close Cite: Bibtex Format Close 0 pages in this document matching the terms "" Search For Terms: Enter terms in the toolbar above to search the full text of this document for ...

  7. A Year of Radiation Measurements at the North Slope of Alaska...

    Office of Scientific and Technical Information (OSTI)

    Publication Date: 2009-04-15 OSTI Identifier: 952496 Report Number(s): DOESC-ARMP-09-010 R&D Project: 15990; TRN: US201002%%1470 DOE Contract Number: DE-AC0576RL01830 Resource ...

  8. Project Aids Development of Legacy Oilfield on Alaska’s North Slope

    Energy.gov [DOE]

    Building on a project sponsored by the U.S. Department of Energy, Linc Energy is exploring the potential for accessing significant amounts of oil in the Umiat oilfield, a shallow, low-temperature, light-oil reservoir within Alaska’s National Petroleum Reserve. In the process, they’re shedding light on how this and similar reservoirs could be successfully developed to increase supplies of domestic oil and natural gas.

  9. Benthic study of the continental slope off Cape Hatteras, North Carolina. Volume 1. Executive summary

    SciTech Connect (OSTI)

    Diaz, R.J.; Blake, J.A.; Rhoads, D.C.

    1993-03-01

    Because of the potential impact on the environment associated with development and production activities, the Oil Pollution Act of 1990 mandated that a panel of experts, the North Carolina Environmental Sciences Review Panel (NCESRP), be convened. Their purpose was to consider whether the availability of scientific information was adequate for making decisions about oil and gas leasing, exploration, and development off North Carolina. The present study was developed by the Minerals Management Service because of concern raised by the NCESRP (1992) that not more than 5 percent of the unusual benthic community be covered by drill muds and cuttings. The principal task of the study was to determine if the communities extended over an area of the sea floor that was 20 time larger then the area estimated to be covered by drill muds and cuttings. If more than 5 percent of the unusual benthic community were covered by drill muds and cuttings, the NCESRP recommended that a study be carried out to determine the recovery rate of this community.

  10. Permian Bone Spring formation: Sandstone play in the Delaware basin. Part I - slope

    SciTech Connect (OSTI)

    Montgomery, S.L.

    1997-08-01

    New exploration in the Permian (Leonardian) Bone Spring formation has indicated regional potential in several sandstone sections across portions of the northern Delaware basin. Significant production has been established in the first, second, and third Bone Spring sandstones, as well as in a new reservoir interval, the Avalon sandstone, above the first Bone Spring sandstone. These sandstones were deposited as submarine-fan systems within the northern Delaware basin during periods of lowered sea level. The Bone Spring as a whole consists of alternating carbonate and siliciclastic intervals representing the downdip equivalents to thick Abo-Yeso/Wichita-Clear Fork carbonate buildups along the Leonardian shelf margin. Hydrocarbon exploration in the Bone Spring has traditionally focused on debris-flow carbonate deposits restricted to the paleoslope. Submarine-fan systems, in contrast, extend a considerable distance basinward of these deposits and have been recently proven productive as much as 40-48 km south of the carbonate trend.

  11. ARM Quick-looks Database for North Slope Alaska (NSA) sites

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Stamnes, Knut [NSA Site Scientist

    From these pages one can monitor parts of the data acquisition process and access daily data visualizations from the different instruments. These data visualizations are produced in near real time automatically and are called Quick-Looks (QLs). The quick-looks contains unofficial data of unknown quality. Once data is released one can obtain the full data-set from any instrument available, and along with that, a statement about the data quality from the ARM archive. The database provides Quick-looks for the Barrow ACRF site (NSA C1), the Atqasuk ACRF site (NSA C2), or the SHEBA ice campaign of 1997 and 1998. As of 12-17-08, the database had more than 528,000 quick-looks available as data figures and data plots. No password is required for Quick-look access. (Specialized Interface)

  12. Remotely controlled sensor apparatus for use in dig-face characterization system

    DOE Patents [OSTI]

    Josten, Nicholas E.; Svoboda, John M.

    1999-01-01

    A remotely controlled sensor platform apparatus useful in a dig-face characterization system is deployed from a mobile delivery device such as standard heavy construction equipment. The sensor apparatus is designed to stabilize sensors against extraneous motions induced by heavy equipment manipulations or other outside influences, and includes a terrain sensing and sensor elevation control system to maintain the sensors in close ground proximity. The deployed sensor apparatus is particularly useful in collecting data in work environments where human access is difficult due to the presence of hazardous conditions, rough terrain, or other circumstances that prevent efficient data collection by conventional methods. Such work environments include hazardous waste sites, unexploded ordnance sites, or construction sites. Data collection in these environments by utilizing the deployed sensor apparatus is desirable in order to protect human health and safety, or to assist in planning daily operations to increase efficiency.

  13. Remotely controlled sensor apparatus for use in dig-face characterization system

    DOE Patents [OSTI]

    Josten, N.E.; Svoboda, J.M.

    1999-05-25

    A remotely controlled sensor platform apparatus useful in a dig-face characterization system is deployed from a mobile delivery device such as standard heavy construction equipment. The sensor apparatus is designed to stabilize sensors against extraneous motions induced by heavy equipment manipulations or other outside influences, and includes a terrain sensing and sensor elevation control system to maintain the sensors in close ground proximity. The deployed sensor apparatus is particularly useful in collecting data in work environments where human access is difficult due to the presence of hazardous conditions, rough terrain, or other circumstances that prevent efficient data collection by conventional methods. Such work environments include hazardous waste sites, unexploded ordnance sites, or construction sites. Data collection in these environments by utilizing the deployed sensor apparatus is desirable in order to protect human health and safety, or to assist in planning daily operations to increase efficiency. 13 figs.

  14. Slide 1

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ISDAC weather patterns Hans Verlinde and Chad Bahrmann NSA Site Scientist Team Upper-level trough in Aleutians - Bering Strait area Upper-level jet south of Alaska - North Slope in Polar air mass Omega block period Strong Bering Strait trough weakening Rough Regime Breakdown 0 5 10 15 20 25 30 -35 -30 -25 -20 -15 -10 -5 0 Temperature (Celsius) Date April 2008 Hourly Mean Temperature Upper-level trough in Aleutians - Bering Strait area Upper-level jet south of Alaska - North Slope in Polar air

  15. Diamonds in the rough: a strong case for the inclusion of weak-intensity X-ray diffraction data

    SciTech Connect (OSTI)

    Wang, Jimin; Wing, Richard A.

    2014-05-01

    Here, new evidence is provided to show that the inclusion of weak-intensity, high-resolution X-ray diffraction data helps to improve the quality of experimental phases by imposing proper constraints on electron-density models during noncrystallographic symmetry averaging. Overwhelming evidence exists to show that the inclusion of weak-intensity, high-resolution X-ray diffraction data helps improve the refinement of atomic models by imposing strong constraints on individual and overall temperature B factors and thus the quality of crystal structures. Some researchers consider these data to be of little value and opt to discard them during data processing, particularly at medium and low resolution, at which individual B factors of atomic models cannot be refined. Here, new evidence is provided to show that the inclusion of these data helps to improve the quality of experimental phases by imposing proper constraints on electron-density models during noncrystallographic symmetry (NCS) averaging. Using electron-density correlation coefficients as criteria, the resolution of data has successfully been extended from 3.1 to 2.5 Å resolution with redundancy-independent merging R factors from below 100% to about 310%. It is further demonstrated that phase information can be fully extracted from observed amplitudes through de novo NCS averaging. Averaging starts with uniform density inside double-shelled spherical masks and NCS matrices that are derived from bound heavy-atom clusters at the vertices of cuboctahedrally symmetric protein particles.

  16. Comparison of horizontal load transfer curves for laterally loaded piles from strain gages and slope inclinometer: A case study

    SciTech Connect (OSTI)

    Pinto, P.L.; Anderson, B.; Townsend, F.C.

    1999-07-01

    Laterally loaded deep foundations are commonly analyzed using the Winkler model with the soil-pile interaction modeled through nonlinear springs in the form of p-y curves. Computer programs such as FloridaPier and COM624P use default p-y curves when performing lateral analyses. These curves are based on input soil properties such as subgrade modulus, friction angle, undrained shear strength, etc. Soil properties must be deduced by laboratory testing or correlation to in situ test results. This is a source of uncertainty. In a few cases, lateral load tests are performed on instrumented piles, and the validity of such assumptions can be assessed. Test piles are commonly instrumented with strain gages and/or inclinometers. P-y curves can be back computed from these data, and the curves obtained with the two methods should agree closely. Results from a field test on a concrete pile are presented and the critical factors for the analysis are discussed. One added difficulty with concrete is its nonlinear behavior particularly near structural failure. The curves obtained are also compared with those developed from the Dilatometer/Cone Pressuremeter Test and the Standard Penetration Test.

  17. ADVANCED OIL RECOVERY TECHNOLOGIES FOR IMPROVED RECOVERY FROM SLOPE BASIN CLASTIC RESERVOIRS, NASH DRAW BRUSHY CANYON POOL, EDDY COUNTY, NM

    SciTech Connect (OSTI)

    Mark B. Murphy

    2002-12-31

    The overall objective of this project is to demonstrate that a development program based on advanced reservoir management methods can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry.

  18. Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM

    SciTech Connect (OSTI)

    Murphy, M.B.

    1999-02-01

    Advanced reservoir characterization techniques are being used at the Nash Draw Brushy Canyon Pool project to develop reservoir management strategies for optimizing oil recovery from this Delaware reservoir. The reservoir characterization, geologic modeling, 3-D seismic interpretation, and simulation studies have provided a detailed model of the Brushy Canyon zones. This model was used to predict the success of different reservoir management scenarios and to aid in determining the most favorable combination of targeted drilling, pressure maintenance, well stimulation, and well spacing to improve recovery from this reservoir.

  19. Wind Power Curve Modeling Using Statistical Models: An Investigation of Atmospheric Input Variables at a Flat and Complex Terrain Wind Farm

    SciTech Connect (OSTI)

    Wharton, S.; Bulaevskaya, V.; Irons, Z.; Qualley, G.; Newman, J. F.; Miller, W. O.

    2015-09-28

    The goal of our FY15 project was to explore the use of statistical models and high-resolution atmospheric input data to develop more accurate prediction models for turbine power generation. We modeled power for two operational wind farms in two regions of the country. The first site is a 235 MW wind farm in Northern Oklahoma with 140 GE 1.68 turbines. Our second site is a 38 MW wind farm in the Altamont Pass Region of Northern California with 38 Mitsubishi 1 MW turbines. The farms are very different in topography, climatology, and turbine technology; however, both occupy high wind resource areas in the U.S. and are representative of typical wind farms found in their respective areas.

  20. ANALYSIS OF 3-D URBAN DATABASES WITH RESPECT TO POLLUTION DISPERSION FOR A NUMBER OF EUROPEAN AND AMERICAN CITIES

    SciTech Connect (OSTI)

    C. RATTI; ET AL

    2001-03-01

    Models to estimate pollution dispersion and wind flow in cities (both at the city-scale and above) require a parametrical description of the urban canopy. For instance, two key parameters are the aerodynamic roughness length z{sub 0} and the zero-plane displacement height z{sub d}, which are related, amongst others, to the surface drag coefficient, the scale and intensity of turbulence, the depth of the roughness sub-layer and the wind speed profile. The calculation of z{sub 0} and z{sub d}, however, is not straightforward. The classical way to estimate them in open terrain is based on the measurement of wind profile data from a tall mast or, less accurately, on the inference from published roughness values for similar terrain elsewhere (Davenport, 1960; Davenport et al., 2000). Both methods, however, are very difficult to apply to cities, due to the considerable height where wind measurements should be taken (well above the urban canopy) and to the irregularities of urban texture. A promising alternative that has become available in recent years, due to increasing computing resources and the availability of high-resolution 3-D databases in urban areas, is based on the calculation of z{sub 0} and z{sub d} from the analysis and measure of the city geometry (urban morphometry). This method is reviewed for instance in Grimmond and Oke (1999), where values are calculated using different formulas and then compared with the results of field measurements. Urban morphometry opens up a new range of parameters that can easily be calculated in urban areas and used as input for meso-scale and urban dispersion models. This paper reviews a number of them and shows how they could be calculated from urban Digital Elevation Models (DEM) using image-processing techniques. It builds up on the recent work by Ratti et al. 2000, extending the number of case studies cities: London, Toulouse, Berlin, Salt Lake City and Los Angeles.

  1. Effect of fins and repeated-rib roughness on the performance characteristics of a reactor vessel air cooling system for LMFBR shutdown heat removal

    SciTech Connect (OSTI)

    Cheung, F.B.; Chawla, T.C.; Pedersen, D.R.; Tessier, J.H.; Webb, R.L.

    1986-01-01

    The use of a totally passive cooling system for shutdown heat removal that rejects heat from the reactor vessel by radiation to the guard vessel and from the guard vessel to a circulating air stream driven by natural convection is a key feature of the US Department of Energy's liquid-metal reactor advanced design study concepts. General Electric refers to the system as the Reactor Vessel Auxiliary Cooling System (RVACS) and Rockwell International as the Reactor Auxiliary Cooling System (RACS). The circulating air stream is contained in the annular passage formed with guard vessel wall and the duct wall surrounding the guard vessel. Specifically, the RVACS/RACS is designed to assure adequate cooling of the reactor vessel under abnormal operational conditions associated with loss of heat removal through the normal heat transport path via the steam generator system or the DRACS, if available. To enhance the heat transfer, longitudinal radial fins or repeated ribs can be attached to the duct wall and/or the guard vessel. The purpose of the present paper is to summarize the status of the analytical work on the development of an optimum design configuration for the RVACS/RACS.

  2. SECURITY MODELING FOR MARITIME PORT DEFENSE RESOURCE ALLOCATION

    SciTech Connect (OSTI)

    Harris, S.; Dunn, D.

    2010-09-07

    Redeployment of existing law enforcement resources and optimal use of geographic terrain are examined for countering the threat of a maritime based small-vessel radiological or nuclear attack. The evaluation was based on modeling conducted by the Savannah River National Laboratory that involved the development of options for defensive resource allocation that can reduce the risk of a maritime based radiological or nuclear threat. A diverse range of potential attack scenarios has been assessed. As a result of identifying vulnerable pathways, effective countermeasures can be deployed using current resources. The modeling involved the use of the Automated Vulnerability Evaluation for Risks of Terrorism (AVERT{reg_sign}) software to conduct computer based simulation modeling. The models provided estimates for the probability of encountering an adversary based on allocated resources including response boats, patrol boats and helicopters over various environmental conditions including day, night, rough seas and various traffic flow rates.

  3. AmeriFlux US-SO4 Sky Oaks- New Stand

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Oechel, Walt [San Diego State University

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-SO4 Sky Oaks- New Stand. Site Description - The Sky Oaks New site is located near the Sky Oaks Field station, owned and operated by San Diego State University. Chaparral vegetation, associated with a Mediterranean climate, covers nearly half of the rough and rocky terrain. Precipitation is almost exclusively confined to the winter months. During the summer and early fall, hot and dry Santa Ana winds from the northeast bring desert heat to the site. A high intensity natural wildfire occurred in approximately 1905. Physical characteristics prior to the 1905 burn are unknown, including stand age and canopy height. Currently, the Sky Oaks New site is an excellent representation of an old-growth chaparral ecosystem, with a canopy height of 2.3 m and chamise-dominated overstory.

  4. A GIS wind resource map with tabular printout of monthly and annual wind speeds for 2,000 towns in Iowa

    SciTech Connect (OSTI)

    Brower, M.C.; Factor, T.

    1997-12-31

    The Iowa Wind Energy Institute, under a grant from the Iowa Energy Center, undertook in 1994 to map wind resources in Iowa. Fifty-meter met towers were erected at 13 locations across the state deemed promising for utility-scale wind farm development. Two years of summarized wind speed, direction, and temperature data were used to create wind resource maps incorporating effects of elevation, relative exposure, terrain roughness, and ground cover. Maps were produced predicting long-term mean monthly and annual wind speeds on a one-kilometer grid. The estimated absolute standard error in the predicted annual average wind speeds at unobstructed locations is 9 percent. The relative standard error between points on the annual map is estimated to be 3 percent. These maps and tabular data for 2,000 cities and towns in Iowa are now available on the Iowa Energy Center`s web site (http.//www.energy.iastate.edu).

  5. AmeriFlux US-SO3 Sky Oaks- Young Stand

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Oechel, Walt [San Diego State University

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-SO3 Sky Oaks- Young Stand. Site Description - The Sky Oaks Young site is located near the Sky Oaks Field station, owned and operated by San Diego State University. Chaparral vegetation, associated with a Mediterranean climate, covers nearly half of the rough and rocky terrain. Precipitation is almost exclusively confined to the winter months. During the summer and early fall, hot and dry Santa Ana winds from the northeast bring desert heat to the site. A high intensity natural wildfire occurred in July of 2003. The stand age at the time of the wildfire was 10 years old, following a controlled burn in 1993.

  6. AmeriFlux US-SO2 Sky Oaks- Old Stand

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Oechel, Walt [San Diego State University

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-SO2 Sky Oaks- Old Stand. Site Description - The Sky Oaks Old site is located near the Sky Oaks Field station, owned and operated by San Diego State University. Chaparral vegetation, associated with a Mediterranean climate, covers nearly half of the rough and rocky terrain. Precipitation is almost exclusively confined to the winter months. During the summer and early fall, hot and dry Santa Ana winds from the northeast bring desert heat to the site. A high intensity natural wildfire occurred in July of 2003. The stand age at the time of the wildfire was 80 years old, following an early wildfire poorly characterized. Following the 2003 wildfire, most native chaparral began to regrow from root stocks reaching a height of 1.0 m in 2008.

  7. LNG SAFETY RESEARCH: FEM3A MODEL DEVELOPMENT

    SciTech Connect (OSTI)

    Jerry Havens; Iraj A. Salehi

    2005-05-10

    The objective of this report is to develop the FEM3A model for application to general scenarios involving dispersion problems with obstacles and terrain features of realistic complexity, and for very low wind speed, stable weather conditions as required for LNG vapor dispersion application specified in 49 CFR 193. The dispersion model DEGADIS specified in 49 CFR 193 is limited to application for dispersion over smooth, level terrain free of obstacles (such as buildings, tanks, or dikes). There is a need for a dispersion model that allows consideration of the effects of terrain features and obstacles on the dispersion of LNG vapor clouds. Project milestones are: (1) Simulation of Low-Wind-Speed Stable Atmospheric Milestones Conditions; (2) Verification for Dispersion over Rough Surfaces, With And Without Obstacles; and (3) Adapting the FEM3A Model for General Application. Results for this quarter are work continues to underway to address numerical problems during simulation of low-wind-speed, stable, atmospheric conditions with FEM3A. Steps 1 and 2 in the plan outlined in the first Quarterly report are complete and steps 3 and 4 are in progress. During this quarter, we have been investigating the effect upon numerical stability of the heat transfer model used to predict the surface-to-cloud heat transfer, which can be important for LNG vapor dispersion. Previously, no consideration has been given to ground cooling as a result of heat transfer to the colder gas cloud in FEM3A. The present effort is directed to describing the ground surface temperature decrease as a function of time.

  8. Use of Reinforced Lightweight Clay Aggregates for Landslide Stabilisation

    SciTech Connect (OSTI)

    Herle, Vitezslav

    2008-07-08

    In spring 2006 a large landslide combined with rock fall closed a highway tunnel near Svitavy in NE part of Czech Republic and cut the main highway connecting Bohemia with Moravia regions. Stabilisation work was complicated by steep mountainous terrain and large inflow of surface and underground water. The solution was based on formation of a stabilisation fill made of reinforced free draining aggregates at the toe of the slope with overlying lightweight fill up to 10 m high reinforced with PET geogrid and steel mesh protecting soft easily degrading sandstone against weathering. Extensive monitoring made possible to compare the FEM analysis with real values. The finished work fits very well in the environment and was awarded a special prize in the 2007 transport structures contest.

  9. Upcoming Funding Opportunity for Wind Forecasting Improvement...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Wind Forecasting Improvement Project in Complex Terrain Upcoming Funding Opportunity for Wind Forecasting Improvement Project in Complex Terrain February 12, 2014 - 10:47am ...

  10. Examination of core samples from the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope: Effects of retrieval and preservation

    SciTech Connect (OSTI)

    Kneafsey, T.J.; Liu, T.J. H.; Winters, W.; Boswell, R.; Hunter, R.; Collett, T.S.

    2011-06-01

    Collecting and preserving undamaged core samples containing gas hydrates from depth is difficult because of the pressure and temperature changes encountered upon retrieval. Hydrate-bearing core samples were collected at the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well in February 2007. Coring was performed while using a custom oil-based drilling mud, and the cores were retrieved by a wireline. The samples were characterized and subsampled at the surface under ambient winter arctic conditions. Samples thought to be hydrate bearing were preserved either by immersion in liquid nitrogen (LN), or by storage under methane pressure at ambient arctic conditions, and later depressurized and immersed in LN. Eleven core samples from hydrate-bearing zones were scanned using x-ray computed tomography to examine core structure and homogeneity. Features observed include radial fractures, spalling-type fractures, and reduced density near the periphery. These features were induced during sample collection, handling, and preservation. Isotopic analysis of the methane from hydrate in an initially LN-preserved core and a pressure-preserved core indicate that secondary hydrate formation occurred throughout the pressurized core, whereas none occurred in the LN-preserved core, however no hydrate was found near the periphery of the LN-preserved core. To replicate some aspects of the preservation methods, natural and laboratory-made saturated porous media samples were frozen in a variety of ways, with radial fractures observed in some LN-frozen sands, and needle-like ice crystals forming in slowly frozen clay-rich sediments. Suggestions for hydrate-bearing core preservation are presented.

  11. A Year of Radiation Measurements at the North Slope of Alaska Second Quarter 2009 ARM and Climate Change Prediction Program Metric Report

    SciTech Connect (OSTI)

    S.A. McFarlane, Y. Shi, C.N. Long

    2009-04-15

    In 2009, the Atmospheric Radiation Measurement (ARM) Program and the Climate Change Prediction Program (CCPP) have been asked to produce joint science metrics. For CCPP, the second quarter metrics are reported in Evaluation of Simulated Precipitation in CCSM3: Annual Cycle Performance Metrics at Watershed Scales. For ARM, the metrics will produce and make available new continuous time series of radiative fluxes based on one year of observations from Barrow, Alaska, during the International Polar Year and report on comparisons of observations with baseline simulations of the Community Climate System Model (CCSM).

  12. Regional long-term production modeling from a single well test, Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope

    SciTech Connect (OSTI)

    Anderson, Brian J.; Kurihara, Masanori; White, Mark D.; Moridis, George J.; Wilson, Scott J.; Pooladi-Darvish, Mehran; Gaddipati, Manohar; Masuda, Yoshihiro; Collett, Timothy S.; Hunter, Robert B.; Narita, Hideo; Rose, Kelly; Boswell, Ray

    2011-02-01

    Following the results from the open-hole formation pressure response test in the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well (Mount Elbert well) using Schlumberger's Modular Dynamics Formation Tester (MDT) wireline tool, the International Methane Hydrate Reservoir Simulator Code Comparison project performed long-term reservoir simulations on three different model reservoirs. These descriptions were based on 1) the Mount Elbert gas hydrate accumulation as delineated by an extensive history-matching exercise, 2) an estimation of the hydrate accumulation near the Prudhoe Bay L-pad, and 3) a reservoir that would be down-dip of the Prudhoe Bay L-pad and therefore warmer and deeper. All of these simulations were based, in part, on the results of the MDT results from the Mount Elbert Well. The comparison group's consensus value for the initial permeability of the hydrate-filled reservoir (k = 0.12 mD) and the permeability model based on the MDT history match were used as the basis for subsequent simulations on the three regional scenarios. The simulation results of the five different simulation codes, CMG STARS, HydrateResSim, MH-21 HYDRES, STOMP-HYD, and TOUGH+HYDRATE exhibit good qualitative agreement and the variability of potential methane production rates from gas hydrate reservoirs is illustrated. As expected, the predicted methane production rate increased with increasing in situ reservoir temperature; however, a significant delay in the onset of rapid hydrate dissociation is observed for a cold, homogeneous reservoir and it is found to be repeatable. The inclusion of reservoir heterogeneity in the description of this cold reservoir is shown to eliminate this delayed production. Overall, simulations utilized detailed information collected across the Mount Elbert reservoir either obtained or determined from geophysical well logs, including thickness (37 ft), porosity (35%), hydrate saturation (65%), intrinsic permeability (1000 mD), pore water salinity (5 ppt), and formation temperature (3.3–3.9 °C). Finally, this paper presents the approach and results of extrapolating regional forward production modeling from history-matching efforts on the results from a single well test.

  13. Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, New Mexico, Class III

    SciTech Connect (OSTI)

    Murphy, Mark B.

    2002-01-16

    The overall objective of this project was to demonstrate that a development program-based on advanced reservoir management methods-can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan included developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals were (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry.

  14. Constraining UV continuum slopes of active galactic nuclei with cloudy models of broad-line region extreme-ultraviolet emission lines

    SciTech Connect (OSTI)

    Moloney, Joshua [CASA, Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, CO 80309 (United States); Michael Shull, J., E-mail: joshua.moloney@colorado.edu, E-mail: michael.shull@colorado.edu [Also at Institute of Astronomy, University of Cambridge, Cambridge CB3 0HA, UK. (United Kingdom)

    2014-10-01

    Understanding the composition and structure of the broad-line region (BLR) of active galactic nuclei (AGNs) is important for answering many outstanding questions in supermassive black hole evolution, galaxy evolution, and ionization of the intergalactic medium. We used single-epoch UV spectra from the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope to measure EUV emission-line fluxes from four individual AGNs with 0.49 ? z ? 0.64, two AGNs with 0.32 ? z ? 0.40, and a composite of 159 AGNs. With the CLOUDY photoionization code, we calculated emission-line fluxes from BLR clouds with a range of density, hydrogen ionizing flux, and incident continuum spectral indices. The photoionization grids were fit to the observations using single-component and locally optimally emitting cloud (LOC) models. The LOC models provide good fits to the measured fluxes, while the single-component models do not. The UV spectral indices preferred by our LOC models are consistent with those measured from COS spectra. EUV emission lines such as N IV ?765, O II ?833, and O III ?834 originate primarily from gas with electron temperatures between 37,000 K and 55,000 K. This gas is found in BLR clouds with high hydrogen densities (n {sub H} ? 10{sup 12} cm{sup 3}) and hydrogen ionizing photon fluxes (?{sub H} ? 10{sup 22} cm{sup 2} s{sup 1}).

  15. Geological and Geothermal Investigation of the Lower Wind River Valley, Southwestern Washington Cascade Range

    SciTech Connect (OSTI)

    Berri, Dulcy A.; Korosec, Michael A.

    1983-01-01

    The Wind River Valley, on the west slope of the Cascade Range, is a northwest-trending drainage that joins the Columbia River near Carson, Washington. The region has been heavily dissected by fluvial and glacial erosion. Ridges have sharp crests and deep subsidiary valleys typical of a mature topography, with a total relief of as much as 900 m. The region is vegetated by fir and hemlock, as well as dense, brushy ground-cover and undergrowth. The lower 8 km of the valley is privately owned and moderately populated. The upper reaches lies within the Gifford Pinchot National Forest, and include several campgrounds and day parks, the Carson National Fish Hatchery, and the Wind River Ranger Station and Wind River Nursery of the US Forest Service. Logging activity is light due to the rugged terrain, and consequently, most valley slopes are not accessible by vehicle. The realization that a potential for significant geothermal resources exists in the Wind River area was brought about by earlier exploration activities. Geologic mapping and interpretation was needed to facilitate further exploration of the resource by providing a knowledge of possible geologic controls on the geothermal system. This report presents the detailed geology of the lower Wind River valley with emphasis on those factors that bear significantly on development of a geothermal resource.

  16. Compiled Multi-Lab Geochemistry Synoptic Survey (LANL, ORNL, LBNL), Barrow, Alaska; 2012

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Brent Newman; Heather Throckmorton

    2012-07-18

    To assess the effects of microtopography and depth on ground water geochemistry in arctic polygonal terrain.

  17. Compiled Multi-Lab Geochemistry Synoptic Survey (LANL, ORNL, LBNL), Barrow, Alaska; 2012

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Brent Newman; Heather Throckmorton

    To assess the effects of microtopography and depth on ground water geochemistry in arctic polygonal terrain.

  18. COLOR DEPENDENCE IN THE SIZE DISTRIBUTION OF MAIN BELT ASTEROIDS REVISITED

    SciTech Connect (OSTI)

    August, Tyler M.; Wiegert, Paul A.

    2013-06-15

    The size distribution of the asteroid belt is examined with 16956 main belt asteroids detected in data taken from the Canada-France-Hawaii Telescope Legacy Survey in two filters (g' and r'). The cumulative H (absolute magnitude) distribution is examined in both filters, and both match well to simple power laws down to H = 17, with slopes in rough agreement with those reported the literature. This implies that disruptive collisions between asteroids are gravitationally dominated down to at least this size, and probably sub-kilometer scales. The slopes of these distributions appear shallower in the outer belt than the inner belt, and the g' distributions appear slightly steeper than the r'. The slope shallowing in the outer belt may reflect a real compositional difference: the inner asteroid belt has been suggested to consist mostly of stony and/or metallic S-type asteroids, whereas carbonaceous C-types are thought to be more prevalent further from the Sun. No waves are seen in the size distribution above H = 15. Since waves are expected to be produced at the transition from gravitationally-dominated to internal strength-dominated collisions, their absence here may imply that the transition occurs at sub-kilometer scales, much smaller than the H = 17 (diameter {approx} 1.6 km) cutoff of this study.

  19. Gamma-ray burst spectrum with decaying magnetic field

    SciTech Connect (OSTI)

    Zhao, Xiaohong; Bai, Jinming [Yunnan Observatory, Chinese Academy of Sciences, P.O. Box 110, 650011 Kunming (China); Li, Zhuo [Department of Astronomy and Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China); Liu, Xuewen; Zhang, Bin-bin; Mszros, Peter, E-mail: zhaoxh@ynao.ac.cn, E-mail: zhuo.li@pku.edu.cn [Department of Astronomy and Astrophysics and Department of Physics, The Pennsylvania State University, University Park, PA 16802 (United States)

    2014-01-01

    In the internal shock model for gamma-ray bursts (GRBs), the synchrotron spectrum from the fast cooling electrons in a homogeneous downstream magnetic field (MF) is too soft to produce the low-energy slope of GRB spectra. However, the MF may decay downstream with distance from the shock front. Here we show that the synchrotron spectrum becomes harder if electrons undergo synchrotron and inverse-Compton cooling in a decaying MF. To reconcile this with the typical GRB spectrum with low-energy slope ?F {sub ?}??, the postshock MF decay time must be comparable to the cooling time of the bulk electrons (corresponding to a MF decaying length typically of ?10{sup 5} skin depths); that the inverse-Compton cooling should dominate synchrotron cooling after the MF decay time; and/or that the MF decays with comoving time roughly as B?t {sup 1.5}. An internal shock synchrotron model with a decaying MF can account for the majority of GRBs with low-energy slopes not harder than ?{sup 4/3}.

  20. Update from the Director: David Conrad | Department of Energy

    Energy Savers

    Complex Terrain | Department of Energy Wind Forecasting Improvement Project in Complex Terrain Upcoming Funding Opportunity for Wind Forecasting Improvement Project in Complex Terrain February 12, 2014 - 10:47am Addthis On February 11, 2014 the Wind Program announced a Notice of Intent to issue a funding opportunity entitled "Wind Forecasting Improvement Project in Complex Terrain." By researching the physical processes that take place in complex terrain, this funding would improve

  1. Upcoming Funding Opportunity for Wind Forecasting Improvement Project in

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Complex Terrain | Department of Energy Wind Forecasting Improvement Project in Complex Terrain Upcoming Funding Opportunity for Wind Forecasting Improvement Project in Complex Terrain February 12, 2014 - 10:47am Addthis On February 11, 2014 the Wind Program announced a Notice of Intent to issue a funding opportunity entitled "Wind Forecasting Improvement Project in Complex Terrain." By researching the physical processes that take place in complex terrain, this funding would improve

  2. Development of Autonomous Magnetometer Rotorcraft For Wide Area Assessment

    SciTech Connect (OSTI)

    Mark D. McKay; Matthew O. Anderson

    2011-08-01

    Large areas across the United States and internationally are potentially contaminated with unexploded ordinance (UXO), with some ranges encompassing tens to hundreds of thousands of acres. Technologies are needed which will allow for cost effective wide area scanning with (1) near 100% coverage and (2) near 100% detection of subsurface ordnance or features indicative of subsurface ordnance. The current approach to wide area assessment is a multi-level one, in which medium - altitude fixed wing optical imaging is used for an initial site assessment. This assessment is followed with low altitude manned helicopter based magnetometry. Subsequent to this wide area assessment targeted surface investigations are performed using either towed geophysical sensor arrays or man portable sensors. In order to be an effective tool for small UXO detection, the sensing altitude for magnetic site investigations needs to be on the order of 1 to 3 meters. These altitude requirements mean that manned helicopter surveys will generally only be feasible in large, open and relatively flat terrains. While such surveys are effective in mapping large areas relatively fast there are substantial mobilization/demobilization, staffing and equipment costs associated with these surveys, resulting in costs of approximately $100-$150/acre. In addition, due to the low altitude there are substantial risks to pilots and equipment. Surface towed arrays provide highresolution maps but have other limitations, e.g. in their ability to navigate rough terrain effectively. Thus there is a need for other systems, which can be used for effective data collection. An Unmanned Aerial Vehicle (UAV) magnetometer platform is an obvious alternative. The motivation behind such a system is that it reduces risk to operators, is lower in initial and Operational and Maintenance (O&M) costs (and can thus potentially be applied to smaller sites) and has the potential of being more effective in terms of detection and possibly

  3. Radar remote sensing of forest and wetland ecosystems in the Central American tropics

    SciTech Connect (OSTI)

    Pope, K.O.; Rey-Benayas, J.M. ); Paris, J.F. . Dept. of Biology)

    1994-05-01

    The authors analyzed airborne synthetic aperture radar (AIRSAR) imagery of forest, wetland, and agricultural ecosystems in northern Belize, Central America. The analyses are based upon four biophysical Indices derived from the fully polarimetric SAR data: the volume scattering index (VSI), canopy structure index (CSI), biomass index (BMI), calculated from the backscatter magnitude data, and the interaction type index (ITI), calculated from the backscatter phase data. The authors developed a four-level landscape hierarchy based upon clustering analyses of the 12 index parameters from two test site images. Statistical analyses were used to examine the relative importance of the 12 parameters for discriminating ecosystem characteristics at various landscape scales. The authors found that ITI was the most important index (primarily C band = CITI) for level, vegetated terrain at all levels of the hierarchy. BMI was most important for differentiating between vegetated and nonvegetated areas and between sloping and level terrain. These findings indicate that upper canopy spatial characteristics and flooding in marshlands are more important than biomass in differentiating many tropical ecosystems with radar data. The relative importance of the indices varied with vegetation type; for example, PVSI was the most important for distinguishing between upland forests and regrowth, and PCSI was the most important for differentiating swamp forest types. Finally, the authors evaluated the potential of present and future spaceborne SARs for tropical ecosystem studies based on the results. Most of these SARs are single channel system and will provide limited capability for characterizing biomass and structure of tropical vegetation. The SIR-C/X-SAR and proposed EOS SAR are future spaceborne multifrequency fully polarimetric SAR systems, and they will provide a significant contribution to tropical ecosystem studies.

  4. Landslide hazard mapping with selected dominant factors: A study case of Penang Island, Malaysia

    SciTech Connect (OSTI)

    Tay, Lea Tien; Alkhasawneh, Mutasem Sh.; Ngah, Umi Kalthum; Lateh, Habibah

    2015-05-15

    Landslide is one of the destructive natural geohazards in Malaysia. In addition to rainfall as triggering factos for landslide in Malaysia, topographical and geological factors play important role in the landslide susceptibility analysis. Conventional topographic factors such as elevation, slope angle, slope aspect, plan curvature and profile curvature have been considered as landslide causative factors in many research works. However, other topographic factors such as diagonal length, surface area, surface roughness and rugosity have not been considered, especially for the research work in landslide hazard analysis in Malaysia. This paper presents landslide hazard mapping using Frequency Ratio (FR) and the study area is Penang Island of Malaysia. Frequency ratio approach is a variant of probabilistic method that is based on the observed relationships between the distribution of landslides and each landslide-causative factor. Landslide hazard map of Penang Island is produced by considering twenty-two (22) landslide causative factors. Among these twenty-two (22) factors, fourteen (14) factors are topographic factors. They are elevation, slope gradient, slope aspect, plan curvature, profile curvature, general curvature, tangential curvature, longitudinal curvature, cross section curvature, total curvature, diagonal length, surface area, surface roughness and rugosity. These topographic factors are extracted from the digital elevation model of Penang Island. The other eight (8) non-topographic factors considered are land cover, vegetation cover, distance from road, distance from stream, distance from fault line, geology, soil texture and rainfall precipitation. After considering all twenty-two factors for landslide hazard mapping, the analysis is repeated with fourteen dominant factors which are selected from the twenty-two factors. Landslide hazard map was segregated into four categories of risks, i.e. Highly hazardous area, Hazardous area, Moderately hazardous area

  5. The effects of digital elevation model resolution on the calculation and predictions of topographic wetness indices.

    SciTech Connect (OSTI)

    Drover, Damion, Ryan

    2011-12-01

    One of the largest exports in the Southeast U.S. is forest products. Interest in biofuels using forest biomass has increased recently, leading to more research into better forest management BMPs. The USDA Forest Service, along with the Oak Ridge National Laboratory, University of Georgia and Oregon State University are researching the impacts of intensive forest management for biofuels on water quality and quantity at the Savannah River Site in South Carolina. Surface runoff of saturated areas, transporting excess nutrients and contaminants, is a potential water quality issue under investigation. Detailed maps of variable source areas and soil characteristics would therefore be helpful prior to treatment. The availability of remotely sensed and computed digital elevation models (DEMs) and spatial analysis tools make it easy to calculate terrain attributes. These terrain attributes can be used in models to predict saturated areas or other attributes in the landscape. With laser altimetry, an area can be flown to produce very high resolution data, and the resulting data can be resampled into any resolution of DEM desired. Additionally, there exist many maps that are in various resolutions of DEM, such as those acquired from the U.S. Geological Survey. Problems arise when using maps derived from different resolution DEMs. For example, saturated areas can be under or overestimated depending on the resolution used. The purpose of this study was to examine the effects of DEM resolution on the calculation of topographic wetness indices used to predict variable source areas of saturation, and to find the best resolutions to produce prediction maps of soil attributes like nitrogen, carbon, bulk density and soil texture for low-relief, humid-temperate forested hillslopes. Topographic wetness indices were calculated based on the derived terrain attributes, slope and specific catchment area, from five different DEM resolutions. The DEMs were resampled from LiDAR, which is a

  6. Rough order of magnitude cost estimate for immobilization of 18.2 MT of plutonium using existing facilities at the Savannah River site: alternatives 3A/5A/6A/6B/7A/9A

    SciTech Connect (OSTI)

    DiSabatino, A., LLNL

    1998-06-01

    The purpose of this Cost Estimate Report is to identify preliminary capital and operating costs for a facility to immobilize 18.2 metric tons (nominal) of plutonium using ceramic in a new facility at Savannah River Site (SRS).

  7. Comment on A study of vertical and in-plane electron mobility due to interface roughness scattering at low temperature in InAs-GaSb superlattices [J. Appl. Phys. 114, 053712 (2013)

    SciTech Connect (OSTI)

    Szmulowicz, F.

    2014-04-14

    The purpose of this comment is to point out that the paper by Safa, Asgari, and Faraone [J. Appl. Phys. 114, 053712 (2013)] (SAF) on electronic transport in superlattices contains a number of errors in physics and execution. By dealing with a finite number of periods and forcing the wave function to be zero at the upper and lower boundaries of the superlattice stack, SAF have turned the system into a quantum well for which the momentum along the growth axis is not a good quantum number, so that the bands in the growth direction are flat and the corresponding carrier velocities and vertical mobilities are zero. A number of other errors allow the authors to get nonzero results and to reach conclusions that qualitatively mirror those of Szmulowicz, Haugan, Elhamri, and Brown [Phys. Rev. B 84, 155307 (2011)].

  8. Wave transmission over submerged breakwaters

    SciTech Connect (OSTI)

    Kobayashi, N.; Wurjanto, A. )

    1989-09-01

    Monochromatic wave reflection and transmission over a submerged impermeable breakwater is predicted numerically by slightly modifying the numerical model developed previously for predicting wave reflection and run-up on rough or smooth impermeable slopes. The slight modification is related to the landward boundary condition required for the transmitted wave propagating landward. In addition to the conservation equations of mass and momentum used to compute the flow field, an equation of energy is derived to estimate the rate of energy dissipation due to wave breaking. The computed reflection and transmission coefficients are shown to be in agreement with available small-scale test data. The numerical model also predicts the spatial variation of the energy dissipation, the mean water level difference, and the time-averaged volume flux per unit width, although available measurements are not sufficient for evaluating the capabilities and limitations of the numerical model for predicting these quantities.

  9. Experimental nanocalorimetry of protonated and deprotonated water clusters

    SciTech Connect (OSTI)

    Boulon, Julien; Braud, Isabelle; Zamith, Sébastien; Labastie, Pierre; L’Hermite, Jean-Marc

    2014-04-28

    An experimental nanocalorimetric study of mass selected protonated (H{sub 2}O){sub n}H{sup +} and deprotonated (H{sub 2}O){sub n−1}OH{sup −} water clusters is reported in the size range n = 20–118. Water cluster's heat capacities exhibit a change of slope at size dependent temperatures varying from 90 to 140 K, which is ascribed to phase or structural transition. For both anionic and cationic species, these transition temperatures strongly vary at small sizes, with higher amplitude for protonated than for deprotonated clusters, and change more smoothly above roughly n ≈ 35. There is a correlation between bonding energies and transition temperatures, which is split in two components for protonated clusters while only one component is observed for deprotonated clusters. These features are tentatively interpreted in terms of structural properties of water clusters.

  10. CIRCE2/DEKGEN2

    Energy Science and Technology Software Center (OSTI)

    2007-09-28

    CIRCE2 is a computer code for modeling the optical performance of three-dimensional dish-type and trough-type solar energy concentrators (possibly made up of several separate reflecting surfaces or "facets" of various curvatures and projected shapes). Statistical methods are used to evaluate the directional distribution of reflected rays from any given point on the conventrator. Given concentrator and receiver geometries, sunshape (angular distribution of incident rays from the sun), and concentrator imperfections such as surface roughness andmore » random deviation in slope, the code predicts the flux spatio-angular distribution and total power incident upon the flat or volumetric receiver. Great freedom exists in the variety of concentrator and receiver configurations that can be modeled. Additionally, provisions for shading, blocking, and receiver aperturing are included. DEKGEN2 is a preprocessor designed to facilitate input of sun models and concentrator geometry and surface imperfections.« less

  11. Direct photoetching of polymers using radiation of high energy density from a table-top extreme ultraviolet plasma source

    SciTech Connect (OSTI)

    Barkusky, Frank; Bayer, Armin; Peth, Christian; Mann, Klaus

    2009-01-01

    In order to perform material interaction studies with intense extreme ultraviolet (EUV) radiation, a Schwarzschild mirror objective coated with Mo/Si multilayers was adapted to a compact laser-driven EUV plasma source utilizing a solid Au target. By 10x demagnified imaging of the plasma a maximum pulse energy density of {approx}0.73 J/cm{sup 2} at a wavelength of 13.5 nm can be achieved in the image plane of the objective at a pulse duration of 8.8 ns. In this paper we present EUV photoetching rates measured for polymethyl methacrylate, polycarbonate, and polytetrafluoroethylene at various fluence levels. A linear dependence between etch depth and applied EUV pulse number could be observed without the necessity for any incubation pulses. By evaluating the slope of these data, etch rates were determined, revealing also a linear behavior for low fluences. A threshold energy density could not be observed. The slope of the linear etch regime as well as deviations from the linear trend at higher energy densities are discussed and compared to data known from deep UV laser ablation. Furthermore, the surface roughness of the structured polymers was measured by atomic force microscopy and compared to the nonirradiated polymer surface, indicating a rather smooth etch process (roughness increase of 20%-30%). The different shapes of the etch craters observed for the three polymers at high energy densities can be explained by the measured fluence dependence of the etch rates, having consequences for the proper use of polymer ablation for beam profiling of focused EUV radiation.

  12. Structural and tectonic evolution of the eastern Cayman Trough (Caribbean Sea) from seismic reflection data

    SciTech Connect (OSTI)

    Leroy, S.; Mauffret, A.; Pubellier, M.

    1996-02-01

    The eastern Cayman Trough preserves a record of the Late Cretaceous to Paleogene Caribbean history that is largely affected by Neogene strike-slip tectonics of the current plate boundary. We conducted an analysis of seismic data within the eastern Cayman Trough, based upon single and multi-channel seismic reflection profiles collected during the Seacarib II cruise in 1987 and the Casis cruise in 1992. These data show that the basement of the eastern Cayman Trough can be divided into four domains from east to west, with distinct morphologic and sedimentary character and inferred older to younger ages: (1) a province of rifted Mesozoic continental crust exhibiting seven parallel horst blocks striking northeast-southwest; (2) a continent-ocean transition between provinces 1 and 3 that exhibits seamounts, small hills, and sedimentary basins; (3) an Eocene oceanic crust with rough basement but smoother relief than the rifted crust; basement trends are roughly north-south and oblique to the northwest trend in domain 1, and (4) the northern Jamaica slope, which forms an east-west-trending slope, with northward-dipping strata that flank the three deeper water domains of the Cayman Trough. The domains are interpreted to be the product of the Eocene east-west opening of the Cayman Trough as a pull-apart basin in a left-lateral strike-slip setting. Closure of the 1100 km of Eocene and younger oceanic crust of the Cayman Trough places the fault-block province adjacent to the Belize margin of Central America. A Neogene phase of transpression has reactivated structures in the four domains, along with on-land structures described by previous authors in Jamaica. The proximity of the eastern margin of the Cayman Trough to petroliferous, continental rocks in Central America suggests an improved possibility of hydrocarbon potential. Unfortunately, sediment thicknesses of less than 1 km probably are not conducive to hydrocarbon formation.

  13. Tandem mobile robot system

    DOE Patents [OSTI]

    Buttz, James H.; Shirey, David L.; Hayward, David R.

    2003-01-01

    A robotic vehicle system for terrain navigation mobility provides a way to climb stairs, cross crevices, and navigate across difficult terrain by coupling two or more mobile robots with a coupling device and controlling the robots cooperatively in tandem.

  14. Vegetation Description, Rare Plant Inventory, and Vegetation Monitoring for Craig Mountain, Idaho.

    SciTech Connect (OSTI)

    Mancuso, Michael; Moseley, Robert

    1994-12-01

    The Craig Mountain Wildlife Mitigation Area was purchased by Bonneville Power Administration (BPA) as partial mitigation for wildlife losses incurred with the inundation of Dworshak Reservoir on the North Fork Clearwater River. Upon completion of the National Environmental Protection Act (NEPA) process, it is proposed that title to mitigation lands will be given to the Idaho Department of Fish and Game (IDFG). Craig Mountain is located at the northern end of the Hells Canyon Ecosystem. It encompasses the plateau and steep canyon slopes extending from the confluence of the Snake and Salmon rivers, northward to near Waha, south of Lewiston, Idaho. The forested summit of Craig Mountain is characterized by gently rolling terrain. The highlands dramatically break into the canyons of the Snake and Salmon rivers at approximately the 4,700 foot contour. The highly dissected canyons are dominated by grassland slopes containing a mosaic of shrubfield, riparian, and woodland habitats. During the 1993 and 1994 field seasons, wildlife, habitat/vegetation, timber, and other resources were systematically inventoried at Craig Mountain to provide Fish and Game managers with information needed to draft an ecologically-based management plan. The results of the habitat/vegetation portion of the inventory are contained in this report. The responsibilities for the Craig Mountain project included: (1) vegetation data collection, and vegetation classification, to help produce a GIS-generated Craig Mountain vegetation map, (2) to determine the distribution and abundance of rare plants populations and make recommendations concerning their management, and (3) to establish a vegetation monitoring program to evaluate the effects of Fish and Game management actions, and to assess progress towards meeting habitat mitigation goals.

  15. Funding Opportunity Announcement for Wind Forecasting Improvement Project

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    in Complex Terrain | Department of Energy Funding Opportunity Announcement for Wind Forecasting Improvement Project in Complex Terrain Funding Opportunity Announcement for Wind Forecasting Improvement Project in Complex Terrain April 4, 2014 - 9:47am Addthis On April 4, 2014 the U.S. Department of Energy announced a $2.5 million funding opportunity entitled "Wind Forecasting Improvement Project in Complex Terrain." By researching the physical processes that take place in complex

  16. Anisotropic Hc2 , thermodynamic and transport measurements, and pressure dependence of Tc in K2Cr3As3 single crystals

    DOE PAGES-Beta [OSTI]

    Kong, Tai; Bud'ko, Sergey L.; Canfield, Paul C.

    2015-01-30

    We present a detailed study of single crystalline K2Cr3As3 and analyze its thermodynamic and transport properties, anisotropic Hc2(T), and initial pressure dependence of Tc. In zero field, the temperature-dependent resistivity is metallic. Deviation from a linear temperature dependence is evident below 100 K and a T3 dependence is roughly followed from just above Tc (~10K) to ~40K. Anisotropic Hc2(T) data were measured up to 140 kOe with field applied along and perpendicular to the rodlike crystals. For the applied field perpendicular to the rod, Hc2(T) is linear with a slope ~–70 kOe/K. For field applied along the rod, the slopemore » is about –120 kOe/K below 70 kOe. Above 70 kOe, the magnitude of the slope decreases to ~–70 kOe/K. The electronic specific heat coefficient γ, just above Tc, is 73 mJ/mol K2; the Debye temperature ΘD is 220 K. As a result, the specific heat jump at the superconducting transition ΔC~2.2γTc. Finally, for hydrostatic pressures up to ~7 kbar, Tc decreases under pressure linearly at a rate of –0.034K/kbar.« less

  17. Grain alignment in starless cores

    SciTech Connect (OSTI)

    Jones, T. J.; Bagley, M.; Krejny, M.; Andersson, B.-G.; Bastien, P.

    2015-01-01

    We present near-IR polarimetry data of background stars shining through a selection of starless cores taken in the K band, probing visual extinctions up to A{sub V}∼48. We find that P{sub K}/τ{sub K} continues to decline with increasing A{sub V} with a power law slope of roughly −0.5. Examination of published submillimeter (submm) polarimetry of starless cores suggests that by A{sub V}≳20 the slope for P versus τ becomes ∼−1, indicating no grain alignment at greater optical depths. Combining these two data sets, we find good evidence that, in the absence of a central illuminating source, the dust grains in dense molecular cloud cores with no internal radiation source cease to become aligned with the local magnetic field at optical depths greater than A{sub V}∼20. A simple model relating the alignment efficiency to the optical depth into the cloud reproduces the observations well.

  18. Hybrid eolian dunes of William River Dune field, northern Saskatchewan, Canada

    SciTech Connect (OSTI)

    Carson, M.A.; MacLean, P.A.

    1985-02-01

    A series of northwest-southeast aligned, large-scale (up to 30 m high) eolian dunes, occurring in a confined (600 km/sup 2/) desert area in northern Saskatchewan, Canada, was examined in the field. Observations were made of dune morphology and internal structure, and patterns of sand movement on the dunes were analyzed in relation to wind events during the summer of 1981. Present cross-sectional profiles exhibit steeper northeast slopes, the lower segment of which are intermittently covered by psammophilous grasses. Dune structure is dominated by northeast-dipping accretion laminae. Three /sup 14/C dates from organic material cropping out on the lower southwest slopes reveal that the dunes have migrated as transverse bed forms at rates of roughly 0.5 m/yr during the last few hundred years. However, a progressive increase in height, bulk, and symmetry along the dune axis from northwest to southeast, suggests an along-dune component of sand transport. This view is supported by (1) field measurements of airflow and along-dune sand transport patterns on 2 dunes, and (2) the present-day wind regime (1963-78). Dominated by north-northeast to northeast winds from January to June and by west-southwest winds from July to December, the resultant potential sand transport vector is toward the southeast, virtually identical to the dune axis.

  19. Advanced oil recovery technologies for improved recovery from slope basin clastic reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM. Quarterly technical progress report, October 1--December 31, 1995

    SciTech Connect (OSTI)

    1996-01-22

    Objective is to demonstrate that a development program based on advanced reservoir management methods can significantly improve oil recovery and to transfer this technology to oil and gas producers in the Permian Basin. The demonstration plan includes developing a control area using standard reservoir management techniques and comparing the performance of the control area with an area developed using advanced management methods. Specific goals are (1) to demonstrate that a development drilling program and pressure maintenance program, based on advanced reservoir management methods, can significantly improve oil recovery compared with existing technology applications, and (2) to transfer the advanced technologies to oil and gas producers in the Permian Basin and elswhere in the US oil and gas industry. This is the first quarterly progress report on the project; results to date are summarized.

  20. Advanced oil recovery technologies for improved recovery from slope basin clastic reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, New Mexico. Annual report, September 25, 1995--September 24, 1996

    SciTech Connect (OSTI)

    Murphy, M.B.

    1997-08-01

    The basic driver for this project is the low recovery observed in Delaware reservoirs, such as the Nash Draw Pool (NDP). This low recovery is caused by low reservoir energy, less than optimum permeabilities and porosities, and inadequate reservoir characterization and reservoir management strategies which are typical of projects operated by independent producers. Rapid oil decline rates and high gas/oil ratios are typically observed in the first year of primary production. Based on the production characteristics that have been observed in similar Delaware fields, pressure maintenance is a likely requirement at the Nash Pool. Three basic constraints to producing the Nash Draw Brushy Canyon Reservoir are: (1) limited areal and interwell geologic knowledge, (2) lack of an engineering tool to evaluate the various producing strategies, and (3) limited surface access prohibiting development with conventional drilling. The limited surface access is caused by the proximity of underground potash mining and surface playa lakes. The objectives of this project are: (1) to demonstrate that a development drilling program and pressure maintenance program, based on advanced reservoir management methods, can significantly improve oil recovery compared with existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers, especially in the Permian Basin.

  1. Reactivation of an Idle Lease to Increase Heavy Oil Recovery through Application of Conventional Steam Drive Technology in a Low Dip Slope and Basin Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California

    SciTech Connect (OSTI)

    Steven Schamel

    1998-02-27

    A previously idle portion of the Midway-Sunset field, the ARCO Western Energy Pru Fee property, is being brought back into commercial production through tight integration of geologic characterization, geostatistical modeling, reservoir simulation, and petroleum engineering. This property, shut-in over a decade ago as economically marginal using conventional cyclic steaming methods, has a 200-300 foot thick oil column in the Monarch Sand. However, the sand lacks effective steam barriers and has a thick water-saturation zone above the oil-water contact. These factors require an innovative approach to steam flood production design that will balance optimal total oil production against economically viable steam-oil ratios and production rates. The methods used in the Class III demonstration are accessible to most operators in the Midway-Sunset field and could be used to revitalize properties with declining production of heavy oils throughout the region. In January 1997 the project entered its second and main phase with the purpose of demonstrating whether steamflood can be a more effective mode of production of the heavy, viscous oils from the Monarch Sand reservoir than the more conventional cyclic steaming. The objective is not just to produce the pilot site within the Pru Fee property south of Taft, but to test which production parameters optimize total oil recovery at economically acceptable rates of production and production costs.

  2. Reactivation of an Idle Lease to Increase Heavy Oil Recovery through Application of Conventional Steam Drive Technology in a Low Dip Slope and Basin Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California

    SciTech Connect (OSTI)

    Deo, M.; Forster, C.; Jenkins, C.; Schamel, S.; Sprinkel, D.; and Swain, R.

    1999-02-01

    This project reactivates ARCO's idle Pru Fee lease in the Midway-Sunset field, California and conducts a continuous steamflood enhanced oil recovery demonstration aided by an integration of modern reservoir characterization and simulation methods. Cyclic steaming was used to reestablish baseline production within the reservoir characterization phase of the project completed in December 1996. During the demonstration phase begun in January 1997, a continuous steamflood enhanced oil recovery is testing the incremental value of this method as an alternative to cyclic steaming. Other economically marginal Class III reservoirs having simular producibility problems will benefit from insight gained in this project. The objectives of the project are: (1) to return the shut-in portion of the reservoir to optimal commercial production; (2) to accurately describe the reservoir and recovery process; and (3) to convey the details of this activity to the domestic petroleum industry, especially t o other producers in California, through an aggressive technology transfer program.

  3. Reactivation of an Idle Lease to Increase Heavy Oil Recovery Through Application of Conventional Steam Drive Technology in a Low Dip Slope and Basin Resrvoir in the Midway-Sunset Field, San Jaoquin Basin, California

    SciTech Connect (OSTI)

    Jenkins, Creties; Sprinkel, Doug; Deo, Milind; Wydrinski, Ray; Swain, Robert

    1997-10-21

    This project reactivates ARCO's idle Pru Fee lease in the Midway-Sunset field, California and conducts a continuous steamflood enhanced oil recovery demonstration aided by an integration of modern reservoir characterization and simulation methods. Cyclic steaming is being used to reestablish baseline production within the reservoir characterization phase of the project. During the demonstration phase scheduled to begin in January 1997, a continuous steamflood enhanced oil recovery will be initiated to test the incremental value of this method as an alternative to cyclic steaming. Other economically marginal Class III reservoirs having similar producibility problems will benefit from insight gained in this project. The objectives of the project are: (1) to return the shut-in portion of the reservoir to optimal commercial production; (2) to accurately describe the reservoir and recovery process; and (3) to convey the details of this activity to the domestic petroleum industry, especially to other producers in California, through an aggressive technology transfer program.

  4. Reactivation of an idle lease to increase heavy oil recovery through application of conventional steam drive technology in a low dip slope and basin reservoir in the Midway-Sunset Field, San Jaoquin Basin, California

    SciTech Connect (OSTI)

    Schamel, S.

    1996-11-01

    This project reactivates ARCO`s idle Pru Fee lease in the Midway- Sunset field, California and conducts a continuous steamflood enhanced oil recovery demonstration aided by an integration of modern reservoir characterization and simulation methods. Cyclic steaming is being used to reestablish baseline production within the reservoir characterization phase of the project. During the demonstration phase scheduled to begin in January 1997, a continuous steamflood enhanced oil recovery will be initiated to test the incremental value of this method as an alternative to cyclic steaming. Other economically marginal Class III reservoirs having similar producibility problems will benefit from insight gained in this project. The objectives of the project are: (1) to return the shut-in portion of the reservoir to optimal commercial production; (2) to accurately describe the reservoir and recovery process; and (3) to convey the details of this activity to the domestic petroleum industry, especially to other producers in California, through an aggressive technology transfer program. One of the main objectives of Budget Period I was to return the Pru Fee property to economic production and establish a baseline productivity with cyclic steaming. By the end of the second quarter 1996, all Pru producers except well 101 had been cyclic steamed two times. Each steam cycle was around 10,000 barrels of steam (BS) per well. No mechanical problems were found in the existing old wellbores. Conclusion is after several years of being shut-in, the existing producers on the Pru lease are in reasonable mechanical condition, and can therefore be utilized as viable producers in whatever development plan we determine is optimum. Production response to cyclic steam is very encouraging in the new producer, however productivity in the old producers appears to be limited in comparison.

  5. Reactivation of an Idle Lease to Increase Heavy Oil Recovery through Application of Conventional Steam Drive Technology in a Low Dip Slope and Basin Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California, Class III

    SciTech Connect (OSTI)

    Schamel, Steven; Deo, Milind; Deets, Mike; Olsen, Keven

    2000-04-20

    During the initial phase of the project a multifaceted feasibility study was carried out to examine whether the pilot project could be justified technically and economically at this site. This study included: (1) Recompletion of 9 shut-in wells and drilling of a additional producer and a new temperature observation well. A core was taken from the reservoir interval in the new producer, Pru-101. The wells were produced by conventional cyclic steaming over a period of 15 months to establish a production baseline for the site, (2) Characterization of the stratigraphy and petrophysical properties of the Monarch Sand reservoir using existing well logs and analyses on samples in the core taken from Pru-101. The resulting data were used to develop a geostatistical model of the reservoir at the Pru Fee property and a specific reservoir simulator for the pilot test site on the property, and (3) Use of the reservoir simulator to test various steamflood and cyclic steaming production options leading to design of a production strategy for the pilot steamflood based on a four pattern, 9-spot array covering 8 ac near the center of the 40 ac Pru Fee property. The array chosen required drilling additional producers and injectors to supplement the existing wells recompleted in the initial phase of the project.

  6. Reactivation of an Idle Lease to Increase Heavy Oil Recovery Through Application of Conventional Steam Drive Technology in a Low Dip Slope and Basin Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California

    SciTech Connect (OSTI)

    Schamel, Steven

    1997-07-29

    This project reactivates ARCO's idle Pru Fee property in the Midway-Sunset field, California and conducts a continuous steamflood enhanced oil recovery demonstration aided by an integration of modern reservoir characterization and simulation methods. Cyclic steaming was used to reestablish baseline production within the reservoir characterization phase of the project. During the demonstration phase begun in January 1997, a continuous steamflood enhanced oil recovery was initiated to test the incremental value of this method as an alternative to cyclic steaming. Other economically marginal Class III reservoirs having similar producibility problems will benefit from insight gained in this project. The objectives of the project are: (1) to return the shut-in portion of the reservoir to optimal commercial production; (2) to accurately describe the reservoir and the recovery process; and (3) to convey the details of this activity to the domestic petroleum industry, especially to other producers in California, through an aggressive technology transfer program.

  7. Reactivation of an Idle Lease to Increase Heavy Oil Recovery through Application of Conventional Steam Drive Technology in a Low-Dip Slope and Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California, Class III

    SciTech Connect (OSTI)

    Schamel, Steven; Deo, Milind; Deets, Mike

    2002-02-21

    The objective of the project is not just to commercially produce oil from the Pru Fee property, but rather to test which operational strategies best optimize total oil recovery at economically acceptable rates of production volumes and costs.

  8. Reactivation of an Idle Lease to Increase Heavy Oil Recovery through Application of Conventional Steam Drive Technology in a Low-Dip Slope and Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California, Class III

    SciTech Connect (OSTI)

    Schamel, S.

    2001-01-09

    The objective of this project is not just to produce oil from the Pru Fee property, but rather to test which operational strategies best optimize total oil recovery at economically acceptable rates of production and production costs.

  9. Reactivation of an Idle Lease to Increase Heavy Oil Recovery through Application of Conventional Steam Drive Technology in a Low Dip Slope and Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California

    SciTech Connect (OSTI)

    Schamel, Steven

    1999-07-08

    This project reactivates ARCO's idle Pru Fee lease in the Midway-Sunset field, California and conducts a continuous steamflood enhanced oil recovery demonstration aided by an integration of modern reservoir characterization and simulation methods. Cyclic steam was used to reestablish baseline production within the reservoir characterization phase of the project completed in December 1996. During the demonstration phase begun in January 1997, a continuous steamflood enhanced oil recovery is testing the incremental value of this method as an alternative to cyclic steaming. Other economically marginal Class III reservoirs having similar producibility problems will benefit from insight gained in this project. The objective of the project are: (1) to return the shut-in portion of the reservoir to optimal commercial production; (2) to accurately describe the reservoir and recovery process; and (3) to convey the details of this activity to the domestic petroleum industry, especially to other producers in California, through an aggressive technology transfer program.

  10. Application of advanced reservoir characterization, simulation, and production optimization strategies to maximize recovery in slope and basin clastic reservoirs, west Texas (Delaware Basin). Annual progress report, March 31, 1995--March 31, 1996

    SciTech Connect (OSTI)

    Dutton, S.P.; Hovorka, S.D.; Cole, A.G.

    1996-08-01

    The objective of this Class III project is to demonstrate that detailed reservoir characterization of clastic reservoirs in basinal sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost-effective way to recover more of the original oil in place by strategic infill-well placement and geologically based field development. Reservoirs in the Delaware Mountain Group have low producibility (average recovery <14 percent of the original oil in place) because of a high degree of vertical and lateral heterogeneity caused by depositional processes and post-depositional diagenetic modification. Detailed correlations of the Ramsey sandstone reservoirs in Geraldine Ford field suggest that lateral sandstone continuity is less than interpreted by previous studies. The degree of lateral heterogeneity in the reservoir sandstones suggests that they were deposited by eolian-derived turbidites. According to the eolian-derived turbidite model, sand dunes migrated across the exposed shelf to the shelf break during sea-level lowstands and provided well sorted sand for turbidity currents or grain flows into the deep basin.

  11. THE MARS HOPPER: AN IMPULSE DRIVEN, LONG RANGE, LONG-LIVED MOBILE PLATFORM UTILIZING IN-SITU MARTIAN RESOURCES

    SciTech Connect (OSTI)

    Robert C. O'Brien; Mark McKay; Brian Gross; JOnathan Webb

    2001-09-01

    The requirements for performance by planetary exploration missions are increasing. Landing at a single location to take data is no longer sufficient. Due to the increasing cost, the missions that provide mobile platforms that can acquire data at displaced locations are becoming more attractive. Landers have also had limited range due to power limitations, limited lifetime of subsystems and the inability to negotiate rough terrain. The Center for Space Nuclear Research has designed an instrumented platform that can acquire detailed data at hundreds of locations during its lifetime - a Mars Hopper. The Mars Hopper concept utilizes energy from radioisotopic decay in a manner different from any existing radioisotopic power sources—as a thermal capacitor. By accumulating the heat from radioisotopic decay for long periods, the power of the source can be dramatically increased for short periods. Thus, a radioisotopic thermal rocket (RTR) is possible. The platform will be able to “hop” from one location to the next every 5-7 days with a separation of 5-10 km per hop. Each platform will weigh around 50 kgs unfueled which is the condition at deployment. Consequently, several platforms may be deployed on a single launch from Earth. With a lifetime estimated at 5-7 years, the entire surface of Mars can be mapped in detail by a couple dozen platforms. In addition, Hoppers can collect samples and deliver them to the Mars Science Laboratory for more detailed analysis. The design and performance of the Mars Hopper will be discussed.

  12. Role of surface characteristics in urban meteorology and air quality

    SciTech Connect (OSTI)

    Sailor, D.J.

    1993-08-01

    Urbanization results in a landscape with significantly modified surface characteristics. The lower values of reflectivity to solar radiation, surface moisture availability, and vegetative cover, along with the higher values of anthropogenic heat release and surface roughness combine to result higher air temperatures in urban areas relative to their rural counterparts. Through their role in the surface energy balance and surface exchange processes, these surface characteristics are capable of modifying the local meteorology. The impacts on wind speeds, air temperatures, and mixing heights are of particular importance, as they have significant implications in terms of urban energy use and air quality. This research presents several major improvements to the meteorological modeling methodology for highly heterogeneous terrain. A land-use data-base is implemented to provide accurate specification of surface characteristic variability in simulations of the Los Angeles Basin. Several vegetation parameterizations are developed and implemented, and a method for including anthropogenic heat release into the model physics is presented. These modeling advancements are then used in a series of three-dimensional simulations which were developed to investigate the potential meteorological impact of several mitigation strategies. Results indicate that application of moderate tree-planting and urban-lightening programs in Los Angeles may produce summertime air temperature reductions on the order of 4{degree}C with a concomitant reduction in air pollution. The analysis also reveals several mechanisms whereby the application of these mitigation strategies may potentially increase pollutant concentrations. The pollution and energy use consequences are discussed in detail.

  13. Weather pattern climatology of the Great Plains and the related wind regime

    SciTech Connect (OSTI)

    Barchet, W.R.

    1982-11-01

    The meteorology of the Great Plains can be described as a constant progression of air masses, fronts and cyclonic storm systems. Each of these meteorological conditions can be characterized by identifiable isobaric and related weather parameter patterns. Nine such patterns have been defined to type the weather patterns in the Great Plains. Time series of weather pattern types were produced for 62 stations on the Great Plains. Statistical analyses of these time series produced annual and seasonal frequencies of occurrence of the weather pattern types. Maps of the annual and seasonal frequency of occurrence of weather pattern type are presented for the Great Plains. Persistence and alternation frequencies match what is expected for traveling temperate latitude cyclones, anticyclones and fronts. The wind regime for stations at which the anemometer height and location was constant (and known) for a minimum of three consecutive years was stratified by weather pattern type. Statistical analyses were made to show the response of the wind to the large-scale distribution of air pressure associated with a weather pattern type. The response of the wind to the weather pattern is a site-specific result of the interaction of the large-scale meteorology with local terrain, surface roughness and atmospheric stability. Mean wind speed discriminates between pairs of weather pattern types with better than 75% confidence for more than two-thirds of the possible pairs of weather pattern types.

  14. Automation and optimization of the design parameters in tactical military pipeline systems. Master's thesis

    SciTech Connect (OSTI)

    Frick, R.M.

    1988-12-01

    Tactical military petroleum pipeline systems will play a vital role in any future conflict due to an increased consumption of petroleum products by our combined Armed Forces. The tactical pipeline must be rapidly constructed and highly mobile to keep pace with the constantly changing battle zone. Currently, the design of these pipeline system is time consuming and inefficient, which may cause shortages of fuel and pipeline components at the front lines. Therefore, a need for a computer program that will both automate and optimize the pipeline design process is quite apparent. These design needs are satisfied by developing a software package using Advance Basic (IBM DOS) programming language and made to run on an IBM-compatible personal computer. The program affords the user the options of either finding the optimum pump station locations for a proposed pipeline or calculating the maximum operating pressures for an existing pipeline. By automating the design procedure, a field engineer can vary the pipeline length, diameter, roughness, viscosity, gravity, flow rate, pump station pressure, or terrain profile and see how it affects the other parameters in just a few seconds. The design process was optimized by implementing a weighting scheme based on the volume percent of each fuel in the pipeline at any given time.

  15. Genie Pro

    Energy Science and Technology Software Center (OSTI)

    2004-05-15

    Genie Pro is a general purpose, interactive, adaptive tool for automatically labeling regions and finding objects in large amounts of image data. Genie Pro uses supervised learning techniques to search for spatio-spectral algorithms that are best able to match exaple labels provided by a user during a training session. After Genie Pro has discovered a useful algorithm, this algorith can then be applied to other similar types of image data, to label regions and objectsmore » similar to those provided during the training session. Genie Pro was originally developed for analyzing multispectral satellite data, but it works equally well with panchromatic (grayscale) and hyperspectral satellite data, aerial imagery, and various kinds of medical imagery. AS a rough guideline, Genie Pro can work with any imagery where the scene being imaged is all approximately at a constant distance fromt he imaging device, and so the scale of imagery is fixed. Applications for Genie Pro include: Crop and terrain type mapping, Road and river network mapping, Broad area search for vehicles and buildings, and Cancer identification in histological images.« less

  16. Spatial disaggregation of satellite-derived irradiance using a high-resolution digital elevation model

    SciTech Connect (OSTI)

    Ruiz-Arias, Jose A.; Tovar-Pescador, Joaquin; Cebecauer, Tomas; Suri, Marcel

    2010-09-15

    Downscaling of the Meteosat-derived solar radiation ({proportional_to}5 km grid resolution) is based on decomposing the global irradiance and correcting the systematic bias of its components using the elevation and horizon shadowing that are derived from the SRTM-3 digital elevation model (3 arc sec resolution). The procedure first applies the elevation correction based on the difference between coarse and high spatial resolution. Global irradiance is split into direct, diffuse circumsolar and diffuse isotropic components using statistical models, and then corrections due to terrain shading and sky-view fraction are applied. The effect of reflected irradiance is analysed only in the theoretical section. The method was applied in the eastern Andalusia, Spain, and the validation was carried out for 22 days on April, July and December 2006 comparing 15-min estimates of the satellite-derived solar irradiance and observations from nine ground stations. Overall, the corrections of the satellite estimates in the studied region strongly reduced the mean bias of the estimates for clear and cloudy days from roughly 2.3% to 0.4%. (author)

  17. The Great Plains low-level jet (LLJ) during the atmospheric radiation measurement (ARM) intensive observation period (IOP)-4 and simulations of land use pattern effect on the LLJ

    SciTech Connect (OSTI)

    Wu, Y.; Raman, S.

    1996-04-01

    The Great Plains low-level jet (LLJ) is an important element of the low-level atmospheric circulation. It transports water vapor from the Gulf of Mexico, which in turn affects the development of weather over the Great Plains of the central United States. The LLJ is generally recognized as a complex response of the atmospheric boundary layer to the diurnal cycle of thermal forcing. Early studies have attributed the Great Plains LLJ to the diurnal oscillations of frictional effect, buoyancy over sloping terrain, and the blocking effects of the Rocky Mountains. Recent investigations show that the speed of the LLJ is also affected by the soil type and soil moisture. Some studies also suggest that synoptic patterns may play an important role in the development of the LLJ. Land surface heterogeneties significantly affect mesoscale circulations by generating strong contrasts in surface thermal fluxes. Thus one would expect that the land use pattern should have effects on the LLJ`s development and structure. In this study, we try to determine the relative roles of the synoptic forcing, planetary boundary layers (PBL) processes, and the land use pattern in the formation of the LLJ using the observations from the Atmospheric Radiation Measurement (ARM) Intensive Operation Period (IOP)-4 and numerical sensitivity tests.

  18. The T-REX valley wind intercomparison project

    SciTech Connect (OSTI)

    Schmidli, J; Billings, B J; Burton, R; Chow, F K; De Wekker, S; Doyle, J D; Grubisic, V; Holt, T R; Jiang, Q; Lundquist, K A; Ross, A N; Sheridan, P; Vosper, S; Whiteman, C D; Wyszogrodzki, A A; Zaengl, G; Zhong, S

    2008-08-07

    An accurate simulation of the evolution of the atmospheric boundary layer is very important, as the evolution of the boundary layer sets the stage for many weather phenomena, such as deep convection. Over mountain areas the evolution of the boundary layer is particularly complex, due to the nonlinear interaction between boundary layer turbulence and thermally-induced mesoscale wind systems, such as the slope and valley winds. As the horizontal resolution of operational forecasts progresses to finer and finer resolution, more and more of the thermally-induced mesoscale wind systems can be explicitly resolved, and it is very timely to document the current state-of-the-art of mesoscale models at simulating the coupled evolution of the mountain boundary layer and the valley wind system. In this paper we present an intercomparison of valley wind simulations for an idealized valley-plain configuration using eight state-of-the-art mesoscale models with a grid spacing of 1 km. Different sets of three-dimensional simulations are used to explore the effects of varying model dynamical cores and physical parameterizations. This intercomparison project was conducted as part of the Terrain-induced Rotor Experiment (T-REX; Grubisic et al., 2008).

  19. Structural integrity of offshore pipelines in seismic conditions

    SciTech Connect (OSTI)

    Bruschi, R.; Marchesani, F.; Vitali, L.; Gudmestad, O.T.

    1996-12-01

    An international consensus on seismic design criteria for on land pipelines has been established during the last thirty years. The need to formulate seismic design criteria for offshore pipelines has not been similarly addressed. However, for offshore pipelines crossing seismically active areas, there is a need to establish criteria and measures in order to ensure the structural integrity of the pipeline in such environments. The need to converge efforts to formulate international design guidelines is becoming increasingly urgent in light of upcoming projects envisaged for the second half of the 90`s. In this paper, the geotechnical hazards for a pipeline routed across marine slopes and irregular terrains affected by earthquakes, is assessed. The response of the pipeline to direct excitation from the soil is discussed. The approach to assess the stability of both natural support from the seabed and artificial support from gravel sleepers (often discontinuous and either regularly or sparsely distributed), is also discussed. Some applications are given to highlight topical aspects for offshore pipelines crossing seismically active seabeds.

  20. PHYSICAL PROPERTIES OF SPECTROSCOPICALLY CONFIRMED GALAXIES AT z {>=} 6. I. BASIC CHARACTERISTICS OF THE REST-FRAME UV CONTINUUM AND Ly{alpha} EMISSION

    SciTech Connect (OSTI)

    Jiang Linhua; Mechtley, Matthew; Cohen, Seth H.; Windhorst, Rogier A.; Egami, Eiichi; Fan Xiaohui; Dave, Romeel; Finlator, Kristian; Kashikawa, Nobunari; Ouchi, Masami; Shimasaku, Kazuhiro

    2013-08-01

    We present deep Hubble Space Telescope near-IR and Spitzer mid-IR observations of a large sample of spectroscopically confirmed galaxies at z {>=} 6. The sample consists of 51 Ly{alpha} emitters (LAEs) at z {approx_equal} 5.7, 6.5, and 7.0, and 16 Lyman break galaxies (LBGs) at 5.9 {<=} z {<=} 6.5. The near-IR images were mostly obtained with WFC3 in the F125W and F160W bands, and the mid-IR images were obtained with IRAC in the 3.6 {mu}m and 4.5 {mu}m bands. Our galaxies also have deep optical imaging data from Subaru Suprime-Cam. We utilize the multi-band data and secure redshifts to derive their rest-frame UV properties. These galaxies have steep UV-continuum slopes roughly between {beta} {approx_equal} -1.5 and -3.5, with an average value of {beta} {approx_equal} -2.3, slightly steeper than the slopes of LBGs in previous studies. The slope shows little dependence on UV-continuum luminosity except for a few of the brightest galaxies. We find a statistically significant excess of galaxies with slopes around {beta} {approx_equal} -3, suggesting the existence of very young stellar populations with extremely low metallicity and dust content. Our galaxies have moderately strong rest-frame Ly{alpha} equivalent width (EW) in a range of {approx}10 to {approx}200 A. The star formation rates are also moderate, from a few to a few tens of solar masses per year. The LAEs and LBGs in this sample share many common properties, implying that LAEs represent a subset of LBGs with strong Ly{alpha} emission. Finally, the comparison of the UV luminosity functions between LAEs and LBGs suggests that there exists a substantial population of faint galaxies with weak Ly{alpha} emission (EW < 20 A) that could be the dominant contribution to the total ionizing flux at z {>=} 6.

  1. Feasibility Study for an Autonomous UAV -Magnetometer System -- Final Report on SERDP SEED 1509:2206

    SciTech Connect (OSTI)

    Roelof Versteeg; Mark McKay; Matt Anderson; Ross Johnson; Bob Selfridge; Jay Bennett

    2007-09-01

    Large areas across the United States are potentially contaminated with UXO, with some ranges encompassing tens to hundreds of thousands of acres. Technologies are needed which will allow for cost effective wide area scanning with 1) near 100 % coverage and 2) near 100 % detection of subsurface ordnance or features indicative of subsurface ordnance. The current approach to wide area scanning is a multi-level one, in which medium altitude fixed wing optical imaging is used for an initial site assessment. This assessment is followed with low altitude manned helicopter based magnetometry followed by surface investigations using either towed geophysical sensor arrays or man portable sensors. In order to be effective for small UXO detection, the sensing altitude for magnetic site investigations needs to be on the order of 1 – 3 meters. These altitude requirements means that manned helicopter surveys will generally only be feasible in large, open and relatively flat terrains. While such surveys are effective in mapping large areas relatively fast there are substantial mobilization/demobilization, staffing and equipment costs associated with these surveys (resulting in costs of approximately $100-$150/acre). Surface towed arrays provide high resolution maps but have other limitations, e.g. in their ability to navigate rough terrain effectively. Thus, other systems are needed allowing for effective data collection. An UAV (Unmanned Aerial Vehicle) magnetometer platform is an obvious alternative. The motivation behind such a system is that it would be safer for the operators, cheaper in initial and O&M costs, and more effective in terms of site characterization. However, while UAV data acquisition from fixed wing platforms for large (> 200 feet) stand off distances is relatively straight forward, a host of challenges exist for low stand-off distance (~ 6 feet) UAV geophysical data acquisition. The objective of SERDP SEED 1509:2006 was to identify the primary challenges

  2. Weatherization Installer/Technician Fundamentals 2.0 - Mechanical

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Ventilation Rough-In Guidelines | Department of Energy Mechanical Ventilation Rough-In Guidelines Weatherization Installer/Technician Fundamentals 2.0 - Mechanical Ventilation Rough-In Guidelines Mechanical Ventilation Rough-In Guidelines - Complete (25.92 MB) Lesson Plan: Mechanical Ventilation Rough-In Guidelines (125.71 KB) PowerPoint: Mechanical Ventilation Rough-In Guidelines (26.34 MB) More Documents & Publications Energy Auditor - Single Family 2.0: Mechanical Ventilation Energy

  3. 1

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    These include the Southern Great Plains (SGP) site; North Slope of Alaska (NSA) locale; ... North Slope of Alaska Aerosol Observing Station Instrument and Measurement Status The NSA ...

  4. Failure and Redemption of Multifilter Rotating Shadowband Radiometer...

    Office of Scientific and Technical Information (OSTI)

    Atmospheric Radiation Measurement (ARM) North Slope of Alaska (NSA) and Southern Great ... Atmospheric Radiation Measurement (ARM) North Slope of Alaska (NSA) and Southern Great ...

  5. Performance of a new wind updating system for a prognostic meteorological model in the environs of Mexico City

    SciTech Connect (OSTI)

    Williams, M.D.

    1993-12-31

    Los Alamos National Laboratory and Institute Mexicano del Petroleo are completely a joint study of options for improving air quality in Mexico City. The US Department of Energy supported the efforts of the Los Alamos investigators, while PEMEX supported the efforts of the Mexican researchers. One of the first steps in the process was to develop an understanding of the existing air quality situation. In this context we have modified a three-dimensional, prognostic, higher order turbulence model for atmospheric circulation (HOTMAC) to treat domains which include an urbanized area. This sophisticated meteorological model is required because of the complexity of the terrain and the relative paucity of meteorological data. Mexico City lies at an elevation of approximately 7500 feet above sea level in a ``U`` shaped basin which opens to the north. The city occupies a major part of the southwest portion of the basin. Upper level winds are provided by rawinsondes at the airport, while low-level winds are measured at several sites within the city. Many of the sites have obstructed upwind fetches for a variety of directions. During the wintertime when the worst air quality episodes occur, the winds are frequently light, and out of the northeast at lower levels, while above 1000 meters above the surface they are usually from the southwest. This means the winds are light within the city, but significant slope winds develop which influence the behavior of the pollutants. Frequently, the winds in the basin change as a seabreeze penetrates the basin from the northeast. The seabreeze produces a much different wind regime after its arrival in the late afternoon or early evening. This makes it important to update the winds in a realistic fashion.

  6. sc0013735-psi | netl.doe.gov

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    735-psi High Performance Airborne Laser Scanner for Routine Mapping of Terrain from Unmanned Aircraft Systems (UASs) Last Reviewed 632016 DE-SC0013735 Goal This project will ...

  7. Management Overview

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ... of gneissic-granite terrains in Superior Craton Resource Potential >100 km West (Bakken Fmn: Oil) Boundary Conditions Suggest Ancient Brines at Depth Likely in ...

  8. Map of Solar Power Plants | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Map of Solar Power Plants Jump to: navigation, search Loading map... "format":"googlemaps3","type":"ROADMAP","types":"ROADMAP","SATELLITE","HYBRID","TERRAIN","limit":2500,"offse...

  9. Spain: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Spain: Energy Resources Jump to: navigation, search Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":"ROADMAP","SATELLITE","HYBRID"...

  10. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... (IA) (United States) USDOE Office of Management and Administration (United States) ... climate models (1) climates (1) climatic change (1) cmip5 (1) complex terrain (1) ...

  11. El Salvador: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    El Salvador: Energy Resources Jump to: navigation, search Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":"ROADMAP","SATELLITE","H...

  12. Colorado: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Colorado: Energy Resources Jump to: navigation, search Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":"ROADMAP","SATELLITE","HYBR...

  13. Wyoming: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Wyoming: Energy Resources Jump to: navigation, search Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":"ROADMAP","SATELLITE","HYBRI...

  14. Map of Solar Energy Companies | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Solar Energy Companies Jump to: navigation, search Add a new Company Loading map... "format":"googlemaps3","type":"ROADMAP","types":"ROADMAP","SATELLITE","HYBRID","TERRAIN","lim...

  15. Past Opportunities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Access Greater Wind Resources and Lower Costs 4172015 6042015 RFI: Research and ... Energy 062514 072514 Wind Forecasting Improvement Project in Complex Terrain ...

  16. GETEM -Geothermal Electricity Technology Evaluation Model

    Energy.gov (indexed) [DOE]

    ... costs, inputs are required both from drop down lists to establish the line voltage, terrain and population density, and to establish the distance for the transmission line. ...

  17. Low Temperature Direct Use Space Heating Geothermal Facilities...

    Open Energy Information (Open El) [EERE & EIA]

    Space Heating Geothermal Facilities Jump to: navigation, search Loading map... "format":"googlemaps3","type":"ROADMAP","types":"ROADMAP","SATELLITE","HYBRID","TERRAIN","limit":8...

  18. MHK Projects/Seatricity Orkney | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    e":"ROADMAP","zoom":5,"types":"ROADMAP","SATELLITE","HYBRID","TERRAIN","geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":""...

  19. MHK Projects/Stouts Pass | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    e":"ROADMAP","zoom":5,"types":"ROADMAP","SATELLITE","HYBRID","TERRAIN","geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":""...

  20. MHK Projects/Linwood Bend | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    e":"ROADMAP","zoom":5,"types":"ROADMAP","SATELLITE","HYBRID","TERRAIN","geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":""...

  1. MHK Projects/Tiger Island | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    e":"ROADMAP","zoom":5,"types":"ROADMAP","SATELLITE","HYBRID","TERRAIN","geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":""...

  2. MHK Projects/Matthews Bend | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    e":"ROADMAP","zoom":5,"types":"ROADMAP","SATELLITE","HYBRID","TERRAIN","geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":""...

  3. MHK Projects/Cypress Point | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    e":"ROADMAP","zoom":5,"types":"ROADMAP","SATELLITE","HYBRID","TERRAIN","geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":""...

  4. DOI Recognizes Interagency Collaboration with a 2013 Partners...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    BOEM Issues First Renewable Energy Lease for MHK Technology Testing in Federal Waters Funding Opportunity Announcement for Wind Forecasting Improvement Project in Complex Terrain

  5. Integrated Cloud Based Environmental Data Management System

    Office of Environmental Management (EM)

    SMART2 (data warehouse) SMART2 (data interface software) GIS (LANL Geo Database) GFM, ... logs, and well diagrams Integrated GIS Layersbackgrounds: Google Terrain, ...

  6. BETO Seeks Stakeholder Input on the Use of Advanced Biofuel Blends...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    found in small tractors, chainsaws, hand-held line trimmers, off-road motorcycles, generator sets, small outboards, personal water craft, snowmobiles, and all-terrain vehicles. ...

  7. Tectonic setting of the Coso geothermal reservoir | Open Energy...

    Open Energy Information (Open El) [EERE & EIA]

    eastern California Optimum development of this reservoir requires an understanding of the fracture hydrology of the Coso Mountains crystalline terrain and its hydrologic connection...

  8. Conceptual Model At Coso Geothermal Area (1990) | Open Energy...

    Open Energy Information (Open El) [EERE & EIA]

    useful DOE-funding Unknown Exploration Basis To develop an understanding of the fracture hydrology of the Coso Mountains crystalline terrain and its hydrologic connection...

  9. ch_4

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ... Depth of contaminated soils ranges from surface to nearly 50 feet. b. Source: Data from ... although terrain fea- tures near some locations cause variations from this flow regime. ...

  10. Hydrogen | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Hydrogen Jump to: navigation, search Hydrogen Companies Loading map... "format":"googlemaps3","type":"SATELLITE","types":"ROADMAP","SATELLITE","HYBRID","TERRAIN","limit":1000,"o...

  11. 20% Wind Energy by 2030: Increasing Wind Energy's Contribution...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ... ISET Institute for Solar Energy Technology (Institut ... the Organization of Arab Petroleum Exporting Countries (the ... degree of longitude, each cell has a terrain exposure ...

  12. ENVIRONMENTAL REVIEW FOR CATEGORICAL EXCLUSION DETERMINATION

    Office of Environmental Management (EM)

    ... appearance, working conditions, and sanitation (such as ... Routine maintenance may result in replacement to the extent ... If operations or equipment causes terrain damage, the ...

  13. Submit a Public Comment on The Atmosphere to Electrons (A2e)...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Related Articles Upcoming Funding Opportunity for Wind Forecasting Improvement Project in Complex Terrain Funding Opportunity Announcement for Wind Forecasting Improvement Project in ...

  14. Comparison of caprock pore networks which potentially will be impacted by carbon sequestration projects.

    SciTech Connect (OSTI)

    McCray, John; Navarre-Sitchler, Alexis; Mouzakis, Katherine; Heath, Jason E.; Dewers, Thomas A.; Rother, Gernot

    2010-12-01

    Injection of CO2 into underground rock formations can reduce atmospheric CO2 emissions. Caprocks present above potential storage formations are the main structural trap inhibiting CO2 from leaking into overlying aquifers or back to the Earth's surface. Dissolution and precipitation of caprock minerals resulting from reaction with CO2 may alter the pore network where many pores are of the micrometer to nanometer scale, thus altering the structural trapping potential of the caprock. However, the distribution, geometry and volume of pores at these scales are poorly characterized. In order to evaluate the overall risk of leakage of CO2 from storage formations, a first critical step is understanding the distribution and shape of pores in a variety of different caprocks. As the caprock is often comprised of mudstones, we analyzed samples from several mudstone formations with small angle neutron scattering (SANS) and high-resolution transmission electron microscopy (TEM) imaging to compare the pore networks. Mudstones were chosen from current or potential sites for carbon sequestration projects including the Marine Tuscaloosa Group, the Lower Tuscaloosa Group, the upper and lower shale members of the Kirtland Formation, and the Pennsylvanian Gothic shale. Expandable clay contents ranged from 10% to approximately 40% in the Gothic shale and Kirtland Formation, respectively. During SANS, neutrons effectively scatter from interfaces between materials with differing scattering length density (i.e., minerals and pores). The intensity of scattered neutrons, I(Q), where Q is the scattering vector, gives information about the volume and arrangement of pores in the sample. The slope of the scattering data when plotted as log I(Q) vs. log Q provides information about the fractality or geometry of the pore network. On such plots slopes from -2 to -3 represent mass fractals while slopes from -3 to -4 represent surface fractals. Scattering data showed surface fractal dimensions for

  15. Modeling the conversion of hydroacoustic to seismic energy at island and continental margins: preliminary analysis of Ascension Island data

    SciTech Connect (OSTI)

    Harben, P.; Rodgers, A.

    1999-07-26

    Seismic stations at islands and continental margins will be an essential component of the International Monitoring System (IMS) for event location and identification in support of Comprehensive Nuclear-Test-Ban Treaty (CTBT) monitoring. Particularly important will be the detection and analysis of hydroacoustic-to-seismic converted waves (T-phases) at island or continental margins. Acoustic waves generated by sources in or near the ocean propagate for long distances very efficiently due to the ocean sound speed channel (SOFAR) and low attenuation. When ocean propagating acoustic waves strike an island or continental margin they are converted to seismic (elastic) waves. We are using a finite difference code to model the conversion of hydroacoustic T-waves at an island or continental margin. Although ray-based methods are far more efficient for modeling long-range (> 1000 km) high-frequency hydroacoustic propagation, the finite difference method has the advantage of being able to model both acoustic and elastic wave propagation for a broad range of frequencies. The method allows us to perform simulations of T-phases to relatively high frequencies ({>=}10 Hz). Of particular interest is to identify factors that affect the efficiency of T-phase conversion, such as the topographic slope and roughness at the conversion point and elastic velocity structure within the island or continent. Previous studies have shown that efficient T-phase conversion occurs when the topographic slope at the conversion point is steep (Cansi and Bethoux, 1985; Talandier and Okal, 1998). Another factor impacting T-phase conversion may be the near-shore structure of the sound channel. It is well known that the depth to the sound channel axis decreases in shallow waters. This can weaken the channeled hydroacoustic wave. Elastic velocity structure within the island or continent will impact how the converted seismic wave is refracted to recording stations at the surface and thus impact the T

  16. In-situ Creep Testing Capability Development for Advanced Test Reactor

    SciTech Connect (OSTI)

    B. G. Kim; J. L. Rempe; D. L. Knudson; K. G. Condie; B. H. Sencer

    2010-08-01

    Creep is the slow, time-dependent strain that occurs in a material under a constant strees (or load) at high temperature. High temperature is a relative term, dependent on the materials being evaluated. A typical creep curve is shown in Figure 1-1. In a creep test, a constant load is applied to a tensile specimen maintained at a constant temperature. Strain is then measured over a period of time. The slope of the curve, identified in the figure below, is the strain rate of the test during Stage II or the creep rate of the material. Primary creep, Stage I, is a period of decreasing creep rate due to work hardening of the material. Primary creep is a period of primarily transient creep. During this period, deformation takes place and the resistance to creep increases until Stage II, Secondary creep. Stage II creep is a period with a roughly constant creep rate. Stage II is referred to as steady-state creep because a balance is achieved between the work hardening and annealing (thermal softening) processes. Tertiary creep, Stage III, occurs when there is a reduction in cross sectional area due to necking or effective reduction in area due to internal void formation; that is, the creep rate increases due to necking of the specimen and the associated increase in local stress.

  17. Peru onshore-deepwater basins should have large potential

    SciTech Connect (OSTI)

    Zuniga-Rivero, F.; Keeling, J.A.; Hay-Roe, H.

    1998-10-19

    Perupetro`s recent announcement that 13 offshore exploration blocks of nearly 1 million acres each will be offered for bids in the fourth quarter of 1998 has reawakened interest in this extensive, largely unexplored area. The new government policy, combined with the results of modern, deep-probing seismic surveys, has already led to a stepped-up search for oil and gas that will probably escalate. Most of Peru`s ten coastal basins are entirely offshore, but at both ends of the 1,500-mile coastline the sedimentary basins stretch from onshore across the continental shelf and down the continental slope. Two of these basin areas, both in the north, have commercial production. The third, straddling the country`s southern border, has never been drilled either on land or offshore. The Peruvian sectors of these three basins total roughly 50,000 sq miles in area, 75% offshore. All have major oil and gas potential. They are described individually in this article, an update in the ongoing studies last reported at the 1998 Offshore Technology Conference and in the first article of this series.

  18. Fractal Studies on Titanium-Silica Aerogels using SMARTer

    SciTech Connect (OSTI)

    Putra, E. Giri Rachman; Ikram, A.; Bharoto; Santoso, E. [Neutron Scattering Laboratory, BATAN, Kawasan Puspiptek Serpong, Tangerang 15314 (Indonesia); Fang, T. Chiar; Ibrahim, N. [Department of Physics, Faculty of Science Universiti Teknologi Malaysia (UTM), 81310 Skudai, Johor (Malaysia); Mohamed, A. Aziz [Materials Technology Group, Industrial Technology Division Agensi Nuklear Malaysia, 43000 Kajang (Malaysia)

    2008-03-17

    Power-law scattering approximation has been employed to reveal the fractal structures of solid-state titanium-silica aerogel samples. All small-angle neutron scattering (SANS) measurements were performed using 36 meters SANS BATAN spectrometer (SMARTer) at the neutron scattering laboratory (NSL) in Serpong, Indonesia. The mass fractal dimension of titanium-silica aerogels at low scattering vector q range increases from -1.4 to -1.92 with the decrease of acid concentrations during sol-gel process. These results are attributed to the titanium-silica aerogels that are growing to more polymeric and branched structures. At high scattering vector q range the Porod slope of -3.9 significantly down to -2.24 as the roughness of particle surfaces becomes higher. The cross over between these two regimes decreases from 0.4 to 0.16 nm{sup -1} with the increase of acid concentrations indicating also that the titanium-silica aerogels are growing.

  19. The interstellar medium and star formation in edge-on galaxies. II. NGC 4157, 4565, and 5907

    SciTech Connect (OSTI)

    Yim, Kijeong; Wong, Tony; Xue, Rui; Rand, Richard J.; Rosolowsky, Erik; Hulst, J. M. van der; Benjamin, Robert; Murphy, Eric J.

    2014-12-01

    We present a study of the vertical structure of the gaseous and stellar disks in a sample of edge-on galaxies (NGC 4157, 4565, and 5907) using BIMA/CARMA {sup 12}COJ=1→0, VLA Hi, and Spitzer 3.6 μm data. In order to take into account projection effects when we measure the disk thickness as a function of radius, we first obtain the inclination by modeling the radio data. Using the measurement of the disk thicknesses and the derived radial profiles of gas and stars, we estimate the corresponding volume densities and vertical velocity dispersions. Both stellar and gas disks have smoothly varying scale heights and velocity dispersions, contrary to assumptions of previous studies. Using the velocity dispersions, we find that the gravitational instability parameter Q follows a fairly uniform profile with radius and is ⩾1 across the star-forming disk. The star formation law has a slope that is significantly different from those found in more face-on galaxy studies, both in deprojected and pixel-by-pixel plots. Midplane gas pressure based on the varying scale heights and velocity dispersions appears to roughly hold a power-law correlation with the midplane volume density ratio.

  20. CIRCE2/DEKGEN2: A software package for facilitated optical analysis of 3-D distributed solar energy concentrators

    SciTech Connect (OSTI)

    Romero, V.J.

    1991-01-01

    CIRCE2 is a cone-optics computer code for determining the flux distribution and total incident power upon a receiver, given concentrator and receiver geometries, sunshape (angular distribution of incident rays from the sun-disk), and concentrator imperfections such as surface roughness and random deviation in slope. Statistical methods are used to evaluate the directional distribution of reflected rays from any given point on the concentrator, whence the contribution to any point on the target can be obtained. DEKGEN2 is an interactive preprocessor which facilitates specification of geometry, sun models, and error distributions. The CIRCE2/DEKGEN2 package equips solar energy engineers with a quick, user-friendly design and analysis tool for study/optimization of dish-type distributed receiver systems. The package exhibits convenient features for analysis of conventional'' concentrators, and has the generality required to investigate features are the ability to model dish or faceted concentrators and stretched-membrane reflectors, and to analyze 3-D flux distributions on internal or external receivers with 3-D geometries. Facets of rectangular, triangular, or circular projected shape, with profiles of parabolic, spherical, flat, or custom curvature can be handled. Provisions for shading, blocking, and aperture specification are also included. This paper outlines the features and capabilities of the new package, as well as the theory and numerical models employed in CIRCE2. 20 refs.

  1. THE RADIAL DISTRIBUTION OF WATER ICE AND CHROMOPHORES ACROSS SATURN'S SYSTEM

    SciTech Connect (OSTI)

    Filacchione, G.; Capaccioni, F.; Cerroni, P.; Tosi, F.; Ciarniello, M.; Clark, R. N.; Nicholson, P. D.; Lunine, J. I.; Hedman, M. M.; Cruikshank, D. P.; Cuzzi, J. N.; Brown, R. H.; Buratti, B. J.; Flamini, E.

    2013-04-01

    Over the past eight years, the Visual and Infrared Mapping Spectrometer (VIMS) on board the Cassini orbiter has returned hyperspectral images in the 0.35-5.1 {mu}m range of the icy satellites and rings of Saturn. These very different objects show significant variations in surface composition, roughness, and regolith grain size as a result of their evolutionary histories, endogenic processes, and interactions with exogenic particles. The distributions of surface water ice and chromophores, i.e., organic and non-icy materials, across the Saturnian system, are traced using specific spectral indicators (spectral slopes and absorption band depths) obtained from rings mosaics and disk-integrated satellites observations by VIMS. Moving from the inner C ring to Iapetus, we found a marking uniformity in the distribution of abundance of water ice. On the other hand, the distribution of chromophores is much more concentrated in the rings particles and on the outermost satellites (Rhea, Hyperion, and Iapetus). A reduction of red material is observed on the satellites' surfaces orbiting within the E ring environment likely due to fine particles from Enceladus' plumes. Once the exogenous dark material covering the Iapetus' leading hemisphere is removed, the texture of the water ice-rich surfaces, inferred through the 2 {mu}m band depth, appears remarkably uniform across the entire system.

  2. Alaska Oil and Gas Exploration, Development, and Permitting Project

    SciTech Connect (OSTI)

    Richard McMahon; Robert Crandall

    2006-03-31

    This is the final technical report for Project 15446, covering the grant period of October 2002 through March 2006. This project connects three parts of the oil exploration, development, and permitting process to form the foundation for an advanced information technology infrastructure to better support resource development and resource conservation. Alaska has nearly one-quarter of the nation's supply of crude oil, at least five billion barrels of proven reserves. The American Association of Petroleum Geologists report that the 1995 National Assessment identified the North Slope as having 7.4 billion barrels of technically recoverable oil and over 63 trillion cubic feet of natural gas. From these reserves, Alaska produces roughly one-fifth of the nation's daily crude oil production, or approximately one million barrels per day from over 1,800 active wells. The broad goal of this grant is to increase domestic production from Alaska's known producing fields through the implementation of preferred upstream management practices. (PUMP). Internet publication of extensive and detailed geotechnical data is the first task, improving the permitting process is the second task, and building an advanced geographical information system to offer continuing support and public access of the first two goals is the third task. Excellent progress has been made on all three tasks; the technical objectives as defined by the approved grant sub-tasks have been met. The end date for the grant was March 31, 2006.

  3. ARM - Datastreams - 60noaacrn

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    scientifically relevant. Measurement Variable Precipitation precipitation Surface skin temperature sfcirtemp Atmospheric temperature temperature Locations North Slope...

  4. Sandia National Laboratories: Pathfinder Airborne ISR Systems: Areas of

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Expertise: Missions Missions Change Detection Change Detection Facilities and Border Protection Facilities and Border Protection Crevasse Detection Crevasse Detection Environmental Monitoring Environmental Monitoring Space Missions Space Missions High-Resolution Terrain Elevation Mapping High-Resolution Terrain Elevation Mapping Maritime/Littoral Maritime/Littoral Vehicle and Dismount Tracking Vehicle and Dismount Tracking Reconnaissance, Surveillance, and Targeting Reconnaissance,

  5. Hurricane Katrina Wind Investigation Report

    SciTech Connect (OSTI)

    Desjarlais, A. O.

    2007-08-15

    ; (2) Updated and improved application guidelines and manuals from associations and manufacturers; (3) Launched certified product installer programs; and (4) Submitted building code changes to improve product installation. Estimated wind speeds at the damage locations came from simulated hurricane models prepared by Applied Research Associates of Raleigh, North Carolina. A dynamic hurricane wind field model was calibrated to actual wind speeds measured at 12 inland and offshore stations. The maximum estimated peak gust wind speeds in Katrina were in the 120-130 mph range. Hurricane Katrina made landfall near Grand Isle, Louisiana, and traveled almost due north across the city of New Orleans. Hurricane winds hammered the coastline from Houma, Louisiana, to Pensacola, Florida. The severe flooding problems in New Orleans made it almost impossible for the investigating teams to function inside the city. Thus the WIP investigations were all conducted in areas east of the city. The six teams covered the coastal areas from Bay Saint Louis, Mississippi, on the west to Pascagoula, Mississippi, on the east. Six teams involving a total of 25 persons documented damage to both low slope and steep slope roofing systems. The teams collected specific information on each building examined, including type of structure (use or occupancy), wall construction, roof type, roof slope, building dimensions, roof deck, insulation, construction, and method of roof attachment. In addition, the teams noted terrain exposure and the estimated wind speeds at the building site from the Katrina wind speed map. With each team member assigned a specific duty, they described the damage in detail and illustrated important features with numerous color photos. Where possible, the points of damage initiation were identified and damage propagation described. Because the wind speeds in Katrina at landfall, where the investigations took place, were less than code-specified design speeds, one would expect roof

  6. Reactivation of an idle lease to increase heavy oil recovery through application of conventional steam drive technology in a low dip slope and basin reservoir in the Midway-Sunset field, San Jaoquin Basin, California. Annual report, June 13, 1995--June 13, 1996

    SciTech Connect (OSTI)

    Deo, M.; Jenkins, C.; Sprinkel, D.; Swain, R.; Wydrinski, R.; Schamel, S.

    1998-09-01

    This project reactivates ARCO`s idle Pru Fee lease in the Midway-Sunset field, California and conducts a continuous steamflood enhanced oil recovery demonstration aided by an integration of modern reservoir characterization and simulation methods. Cyclic steaming is being used to reestablish baseline production within the reservoir characterization phase of the project. During the demonstration phase scheduled to begin in January 1997, a continuous steamflood enhanced oil recovery will be initiated to test the incremental value of this method as an alternative to cyclic steaming. Other economically marginal Class III reservoirs having similar producibility problems will benefit from insight gained in this project. The objectives of the project are: (1) to return the shut-in portion of the reservoir to optimal commercial production; (2) to accurately describe the reservoir and recovery process; and (3) to convey the details of this activity to the domestic petroleum industry, especially to other producers in California, through an aggressive technology transfer program.

  7. Reactivation of an idle lease to increase heavy oil recovery through application of conventional steam drive technology in a low dip slope and basin reservoir in the Midway-Sunset field, San Joaquin basin, California. Quarterly report, January 1--March 31, 1996

    SciTech Connect (OSTI)

    Schamel, S.

    1996-06-28

    This project will reactivate ARCO`s idle Pru Fee lease in the Midway-Sunset field, California and conduct a continuous steamflood enhanced oil recovery demonstration aided by an integration of modern reservoir characterization and simulation methods. The objectives of the project are: (1) to return the shut-in portion of the reservoir to commercial production; (2) to accurately describe the reservoir and recovery process; and (3) convey the details of this activity to the domestic petroleum industry, especially to other producers in California, through an aggressive technology transfer program. The producibility problems initially thought to be responsible for the low recovery in the Pru Fee property are: (a) the shallow dip of the bedding; (b) complex reservoir structure, (c) thinning pay zone; and (d) the presence of bottom water. The project is using tight integration of reservoir characterization and simulation modeling to evaluate the magnitude of and alternative solutions to these problems. Two main activities were brought to completion during the first quarter of 1996: (1) lithologic and petrophysical description of the core taken form the new well Pru 101 near the center of the demonstration site and (2) development of a stratigraphic model for the Pru Fee project area. In addition, the first phase of baseline cyclic steaming of the Pru Fee demonstration site was continued with production tests and formation temperature monitoring.

  8. GAMMA-RAY BURST AFTERGLOW LIGHT CURVES FROM A LORENTZ-BOOSTED SIMULATION FRAME AND THE SHAPE OF THE JET BREAK

    SciTech Connect (OSTI)

    Van Eerten, Hendrik; MacFadyen, Andrew

    2013-04-20

    The early stages of decelerating gamma-ray burst (GRB) afterglow jets have been notoriously difficult to resolve numerically using two-dimensional hydrodynamical simulations even at very high resolution, due to the extreme thinness of the blast wave and high outflow Lorentz factors. However, these resolution issues can be avoided by performing the simulations in a boosted frame, which makes it possible to calculate afterglow light curves from numerically computed flows in sufficient detail to accurately quantify the shape of the jet break and the post-break steepening of the light curve. Here, we study afterglow jet breaks for jets with opening angles of 0.05, 0.1, and 0.2 radians decelerating in a surrounding medium of constant density, observed at various angles ranging from on-axis to the edge of the jet. A single set of scale-invariant functions describing the time evolution of afterglow synchrotron spectral break frequencies and peak flux, depending only on jet opening angle and observer angle, are all that is needed to reconstruct light curves for arbitrary explosion energy, circumburst density and synchrotron particle distribution power law slope p. These functions are presented in the paper. Their time evolutions change directly following the jet break, although an earlier reported temporary post-break steepening of the cooling break is found to have been resolution-induced. We compare synthetic light curves to fit functions using sharp power law breaks as well as smooth power law transitions. We confirm our earlier finding that the measured jet break time is very sensitive to the angle of the observer and can be postponed significantly. We find that the difference in temporal indices across the jet break is larger than theoretically anticipated and is about -(0.5 + 0.5p) below the cooling break and about -(0.25 + 0.5p) above the cooling break, both leading to post-break slopes of roughly about 0.25 - 1.3p, although different observer angles, jet opening

  9. Wind Energy Resource Assessment of the Caribbean and Central America

    SciTech Connect (OSTI)

    DL Elliott; CI Aspliden; GL Gower; CG Holladay, MN Schwartz

    1987-04-01

    A wind energy resource assessment of the Caribbean and Central America has identified many areas with good to outstanding wind resource potential for wind turbine applications. Annual average wind resource maps and summary tables have been developed for 35 island/country areas throughout the Caribbean and Central America region. The wind resource maps highlight the locations of major resource areas and provide estimates of the wind energy resource potential for typical well-exposed sites in these areas. The average energy in the wind flowing in the layer near the ground is expressed as a wind power class: the greater the average wind energy, the higher the wind power class. The summary tables that are included with each of the 35 island/country wind energy maps provide information on the frequency distribution of the wind speeds (expressed as estimates of the Weibull shape factor, k) and seasonal variations in the wind resource for the major wind resource areas identified on the maps. A new wind power class legend has been developed for relating the wind power classes to values of mean wind power density, mean wind speed, and Weibull k. Guidelines are presented on how to adjust these values to various heights above ground for different roughness and terrain characteristics. Information evaluated in preparing the assessment included existing meteorological data from airports and other weather stations, and from ships and buoys in offshore and coastal areas. In addition, new data from recent measurement sites established for wind energy siting studies were obtained for a few areas of the Caribbean. Other types of information evaluated in the assessment were climatological data and maps on winds aloft, surface pressure, air flow, and topography. The various data were screened and evaluated for their usefulness in preparing the wind resource assessment. Much of the surface data from airports and other land-based weather stations were determined to be from sheltered

  10. Development of autonomous magnetometer rotorcraft for wide area assessment

    SciTech Connect (OSTI)

    Roelof Versteeg; Matt Anderson; Les Beard; Eric Corban; Darryl Curley; Jeff Gamey; Ross Johnson; Dwight Junkin; Mark McKay; Jared Salzmann; Mikhail Tchernychev; Suraj Unnikrishnan; Scott Vinson

    2010-04-01

    Large areas across the United States are potentially contaminated with UXO, with some ranges encompassing tens to hundreds of thousands of acres. Technologies are needed which will allow for cost effective wide area scanning with 1) near 100 % coverage and 2) near 100 % detection of subsurface ordnance or features indicative of subsurface ordnance. The current approach to wide area assessment is a multi-level one, in which medium - altitude fixed wing optical imaging is used for an initial site assessment. This assessment is followed with low altitude manned helicopter based magnetometry. Subsequent to this wide area assessment targeted surface investigations are performed using either towed geophysical sensor arrays or man portable sensors. In order to be an effective tool for small UXO detection, the sensing altitude for magnetic site investigations needs to be on the order of 1 – 3 meters. These altitude requirements mean that manned helicopter surveys will generally only be feasible in large, open and relatively flat terrains. While such surveys are effective in mapping large areas relatively fast there are substantial mobilization/demobilization, staffing and equipment costs associated with these surveys (resulting in costs of approximately $100-$150/acre). In addition, due to the low altitude there are substantial risks to pilots and equipment. Surface towed arrays provide high resolution maps but have other limitations, e.g. in their ability to navigate rough terrain effectively. There is thus a need for other systems which can be used for effective data collection. An UAV (Unmanned Aerial Vehicle) magnetometer platform is an obvious alternative. The motivation behind such a system is that it reduces risk to operators, is lower in initial and Operational and Maintenance (O&M) costs (and can thus potentially be applied to smaller sites) and has the potential of being more effective in terms of detection and possibly characterization (through the use of

  11. The factory and the beehive. II. Activity and rotation in Praesepe and the Hyades

    SciTech Connect (OSTI)

    Douglas, S. T.; Ageros, M. A.; Bowsher, E. C.; Lemonias, J. J.; Fierroz, D. F.; Covey, K. R.; Bochanski, J. J.; Cargile, P. A.; Kraus, A.; Law, N. M.; Arce, H. G.; Kundert, A.

    2014-11-10

    Open clusters are collections of stars with a single, well-determined age, and can be used to investigate the connections between angular-momentum evolution and magnetic activity over a star's lifetime. We present the results of a comparative study of the relationship between stellar rotation and activity in two benchmark open clusters: Praesepe and the Hyades. As they have the same age and roughly solar metallicity, these clusters serve as an ideal laboratory for testing the agreement between theoretical and empirical rotation-activity relations at ?600 Myr. We have compiled a sample of 720 spectramore than half of which are new observationsfor 516 high-confidence members of Praesepe; we have also obtained 139 new spectra for 130 high-confidence Hyads. We have also collected rotation periods (P {sub rot}) for 135 Praesepe members and 87 Hyads. To compare H? emission, an indicator of chromospheric activity, as a function of color, mass, and Rossby number R{sub o} , we first calculate an expanded set of ? values, with which we can obtain the H? to bolometric luminosity ratio, L {sub H?}/L {sub bol}, even when spectra are not flux-calibrated and/or stars lack reliable distances. Our ? values cover a broader range of stellar masses and colors (roughly equivalent to spectral types from K0 to M9), and exhibit better agreement between independent calculations, than existing values. Unlike previous authors, we find no difference between the two clusters in their H? equivalent width or L {sub H?}/L {sub bol} distributions, and therefore take the merged H? and P {sub rot} data to be representative of 600 Myr old stars. Our analysis shows that H? activity in these stars is saturated for R{sub o}?0.11{sub ?0.03}{sup +0.02}. Above that value activity declines as a power-law with slope ?=?0.73{sub ?0.12}{sup +0.16}, before dropping off rapidly at R{sub o} ? 0.4. These data provide a useful anchor for calibrating the age-activity-rotation relation beyond 600 Myr.

  12. A REST-FRAME OPTICAL VIEW ON z {approx} 4 GALAXIES. I. COLOR AND AGE DISTRIBUTIONS FROM DEEP IRAC PHOTOMETRY OF THE IUDF10 AND GOODS SURVEYS

    SciTech Connect (OSTI)

    Oesch, P. A.; Illingworth, G. D.; Gonzalez, V.; Holden, B. P.; Magee, D.; Trenti, M.; Van Dokkum, P. G.

    2013-08-01

    We present a study of rest-frame UV-to-optical color distributions for z {approx} 4 galaxies based on the combination of deep HST/ACS+WFC3/IR data with Spitzer/IRAC imaging. In particular, we use new, ultra-deep data from the IRAC Ultradeep Field program (IUDF10), together with previous, public IRAC data over the GOODS fields. Our sample contains a total of {approx}2600 galaxies selected as B-dropout Lyman-break Galaxies in the HUDF and its deep parallel field HUDF09-2, as well as GOODS-North/South. This sample is used to investigate the UV continuum slopes {beta} and Balmer break colors (J{sub 125} - [4.5]) as a function of rest-frame optical luminosity (using [4.5] to avoid optical emission lines). We find that galaxies at M{sub z} < -21.5 (roughly corresponding to L{sup *}{sub z{approx}4}) are significantly redder than their lower luminosity counterparts. The UV continuum slopes and the J{sub 125} - [4.5] colors are well correlated, indicating that the dust reddening at these redshifts is better described by an SMC-like extinction curve, rather than the typically assumed Calzetti reddening. After dust correction, we find that the galaxy population shows mean stellar population ages in the range 10{sup 8.5} to 10{sup 9} yr, with a dispersion of {approx}0.5 dex, and only weak trends as a function of luminosity. Only a small fraction of galaxies shows Balmer break colors consistent with extremely young ages, younger than 100 Myr. Under the assumption of smooth star-formation histories, this fraction is 12%-19% for galaxies at M{sub z} < -19.75. Our results are consistent with a gradual build-up of stars and dust in galaxies at z > 4 with only a small fraction of stars being formed in short, intense bursts of star-formation.

  13. Recharge Data Package for the Immobilized Low-Activity Waste 2001 Performance Assessment

    SciTech Connect (OSTI)

    MJ Fayer; EM Murphy; JL Downs; FO Khan; CW Lindenmeier; BN Bjornstad

    2000-01-18

    Lockheed Martin Hanford Company (LMHC) is designing and assessing the performance of disposal facilities to receive radioactive wastes that are currently stored in single- and double-shell tanks at the Hanford Site. The preferred method of disposing of the portion that is classified as immobilized low-activity waste (ILAW) is to vitrify the waste and place the product in near-surface, shallow-land burial facilities. The LMHC project to assess the performance of these disposal facilities is known as the Hanford ILAW Performance Assessment (PA) Activity, hereafter called the ILAW PA project. The goal of this project is to provide a reasonable expectation that the disposal of the waste is protective of the general public, groundwater resources, air resources, surface-water resources, and inadvertent intruders. Achieving this goal will require predictions of contaminant migration from the facility. To make such predictions will require estimates of the fluxes of water moving through the sediments within the vadose zone around and beneath the disposal facility. These fluxes, loosely called recharge rates, are the primary mechanism for transporting contaminants to the groundwater. Pacific Northwest National Laboratory (PNNL) assists LMHC in their performance assessment activities. One of the PNNL tasks is to provide estimates of recharge rates for current conditions and long-term scenarios involving the shallow-land disposal of ILAW. Specifically, recharge estimates are needed for a filly functional surface cover; the cover sideslope, and the immediately surrounding terrain. In addition, recharge estimates are needed for degraded cover conditions. The temporal scope of the analysis is 10,000 years, but could be longer if some contaminant peaks occur after 10,000 years. The elements of this report compose the Recharge Data Package, which provides estimates of recharge rates for the scenarios being considered in the 2001 PA. Table S.1 identifies the surface features and

  14. DOI-BLM-NV-CO10-2011-0501-EA | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    All cut and fill slopes should be constructed to the least percent slope practical. 11. Trash will be retained in portable trash cages and hauled to an authorized disposal site for...

  15. Understanding Climate Change

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Climate Change Sandia Researchers Travel to the North Slope of Alaska Exceptional Service in the National Interest Alaska C a n a d a U n i t e d S t a t e s Russia North Slope ...

  16. Microsoft Word - AMB 2008-final.doc

    Office of Legacy Management (LM)

    ... The access road and a power line cross the site near and parallel to the southern boundary ... The top slopes and side slopes of the disposal cell were armored with rock to prevent wind ...

  17. ARM - Facility News Article

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    March 31, 2008 Facility News Interagency Land Use Agreement Signed for North Slope of Alaska Bookmark and Share As scientific neighbors on Alaska's North Slope, the ARM site at...

  18. ARM - Education Article

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Science Standards Bookmark and Share While on the North Slope in November 2002, ARM Education staff Carrie Talus and Laura Marsh held a meeting with the North Slope Borough...

  19. A3-4 Table A3-1. Classification

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Slopes range from 2-15%. Ailey soils are classified as loamy, siliceous, thermic Arenic ... Slopes range from 0-6%. Albany soils are classified as loamy, siliceous, thermic ...

  20. Electric Transportation Applications All Rights Reserved ETA...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    5 Revision 2 Effective March 1, 1997 "Electric Vehicle Rough Road Course Test" Prepared by Electric Transportation Applications Prepared by: ...

  1. STAR FORMATION IN NUCLEAR RINGS OF BARRED GALAXIES

    SciTech Connect (OSTI)

    Seo, Woo-Young; Kim, Woong-Tae E-mail: wkim@astro.snu.ac.kr

    2013-06-01

    Nuclear rings in barred galaxies are sites of active star formation. We use hydrodynamic simulations to study the temporal and spatial behavior of star formation occurring in nuclear rings of barred galaxies where radial gas inflows are triggered solely by a bar potential. The star formation recipes include a density threshold, an efficiency, conversion of gas to star particles, and delayed momentum feedback via supernova explosions. We find that the star formation rate (SFR) in a nuclear ring is roughly equal to the mass inflow rate to the ring, while it has a weak dependence on the total gas mass in the ring. The SFR typically exhibits a strong primary burst followed by weak secondary bursts before declining to very small values. The primary burst is associated with the rapid gas infall to the ring due to the bar growth, while the secondary bursts are caused by re-infall of the ejected gas from the primary burst. While star formation in observed rings persists episodically over a few Gyr, the duration of active star formation in our models lasts for only about half of the bar growth time, suggesting that the bar potential alone is unlikely to be responsible for gas supply to the rings. When the SFR is low, most star formation occurs at the contact points between the ring and the dust lanes, leading to an azimuthal age gradient of young star clusters. When the SFR is large, on the other hand, star formation is randomly distributed over the whole circumference of the ring, resulting in no apparent azimuthal age gradient. Since the ring shrinks in size with time, star clusters also exhibit a radial age gradient, with younger clusters found closer to the ring. The cluster mass function is well described by a power law, with a slope depending on the SFR. Giant gas clouds in the rings have supersonic internal velocity dispersions and are gravitationally bound.

  2. Driftless Area Initiative Biomass Energy Project

    SciTech Connect (OSTI)

    Wright, Angie; Bertjens, Steve; Lieurance, Mike; Berguson, Bill; Buchman, Dan

    2012-12-31

    The Driftless Area Initiative Biomass Energy Project evaluated the potential for biomass energy production and utilization throughout the Driftless Region of Illinois, Iowa, Minnesota and Wisconsin. The research and demonstration aspect of the project specifically focused on biomass energy feedstock availability and production potential in the region, as well as utilization potential of biomass feedstocks for heat, electrical energy production, or combined heat and power operations. The Driftless Region was evaluated because the topography of the area offers more acres of marginal soils on steep slopes, wooded areas, and riparian corridors than the surrounding “Corn Belt”. These regional land characteristics were identified as potentially providing opportunity for biomass feedstock production that could compete with traditional agriculture commodity crops economically. The project researched establishment methods and costs for growing switchgrass on marginal agricultural lands to determine the economic and quantitative feasibility of switchgrass production for biomass energy purposes. The project was successful in identifying the best management and establishment practices for switchgrass in the Driftless Area, but also demonstrated that simple economic payback versus commodity crops could not be achieved at the time of the research. The project also analyzed the availability of woody biomass and production potential for growing woody biomass for large scale biomass energy production in the Driftless Area. Analysis determined that significant resources exist, but costs to harvest and deliver to the site were roughly 60% greater than that of natural gas at the time of the study. The project contributed significantly to identifying both production potential of biomass energy crops and existing feedstock availability in the Driftless Area. The project also analyzed the economic feasibility of dedicated energy crops in the Driftless Area. High commodity crop prices

  3. SHAPING THE DUST MASS-STAR-FORMATION RATE RELATION

    SciTech Connect (OSTI)

    Hjorth, Jens; Gall, Christa; Michałowski, Michał J. E-mail: cgall@phys.au.dk

    2014-02-20

    There is a remarkably tight relation between the observationally inferred dust masses and star-formation rates (SFRs) of Sloan Digital Sky Survey galaxies, M {sub dust} ∝ SFR{sup 1.11}. Here we extend the M {sub dust}-SFR relation to the high end and show that it bends over at very large SFRs (i.e., dust masses are lower than predicted for a given SFR). We identify several distinct evolutionary processes in the diagram: (1) a star-bursting phase in which dust builds up rapidly at early times. The maximum attainable dust mass in this process is the cause of the bend-over of the relation. A high dust-formation efficiency, a bottom-light initial mass function, and negligible supernova shock dust destruction are required to produce sufficiently high dust masses. (2) A quiescent star-forming phase in which the subsequent parallel decline in dust mass and SFR gives rise to the M {sub dust}-SFR relation, through astration and dust destruction. The dust-to-gas ratio is approximately constant along the relation. We show that the power-law slope of the M {sub dust}-SFR relation is inversely proportional to the global Schmidt-Kennicutt law exponent (i.e., ∼0.9) in simple chemical evolution models. (3) A quenching phase which causes star formation to drop while the dust mass stays roughly constant or drops proportionally. Combined with merging, these processes, as well as the range in total baryonic mass, give rise to a complex population of the diagram which adds significant scatter to the original M {sub dust}-SFR relation. (4) At very high redshifts, a population of galaxies located significantly below the local relation is predicted.

  4. THE RELATION BETWEEN MID-PLANE PRESSURE AND MOLECULAR HYDROGEN IN GALAXIES: ENVIRONMENTAL DEPENDENCE

    SciTech Connect (OSTI)

    Feldmann, Robert; Hernandez, Jose; Gnedin, Nickolay Y.

    2012-12-20

    Molecular hydrogen (H{sub 2}) is the primary component of the reservoirs of cold, dense gas that fuel star formation in our Galaxy. While the H{sub 2} abundance is ultimately regulated by physical processes operating on small scales in the interstellar medium (ISM), observations have revealed a tight correlation between the ratio of molecular to atomic hydrogen in nearby spiral galaxies and the pressure in the mid-plane of their disks. This empirical relation has been used to predict H{sub 2} abundances in galaxies with potentially very different ISM conditions, such as metal-deficient galaxies at high redshifts. Here, we test the validity of this approach by studying the dependence of the pressure-H{sub 2} relation on environmental parameters of the ISM. To this end, we follow the formation and destruction of H{sub 2} explicitly in a suite of hydrodynamical simulations of galaxies with different ISM parameters. We find that a pressure-H{sub 2} relation arises naturally in our simulations for a variety of dust-to-gas ratios or strengths of the interstellar radiation field in the ISM. Fixing the dust-to-gas ratio and the UV radiation field to values measured in the solar neighborhood results in fair agreement with the relation observed in nearby galaxies with roughly solar metallicity. However, the parameters (slope and normalization) of the pressure-H{sub 2} relation vary in a systematical way with ISM properties. A particularly strong trend is the decrease of the normalization of the relation with a lowering of the dust-to-gas ratio of the ISM. We show how this trend and other properties of the pressure-H{sub 2} relation arise from the atomic-to-molecular phase transition in the ISM caused by a combination of H{sub 2} formation, destruction, and shielding mechanisms.

  5. Soil respiration and bacterial structure and function after 17 years of a reciprocal soil transplant experiment

    DOE PAGES-Beta [OSTI]

    Bond-Lamberty, Benjamin; Bolton, Harvey; Fansler, Sarah J.; Heredia-Langner, Alejandro; Liu, Chongxuan; McCue, Lee Ann; Smith, Jeff L.; Bailey, Vanessa L.

    2016-03-02

    The effects of climate change on soil organic matter—its structure, microbial community, carbon storage, and respiration response—remain uncertain and widely debated. In addition, the effects of climate changes on ecosystem structure and function are often modulated or delayed, meaning that short-term experiments are not sufficient to characterize ecosystem responses. This study capitalized on a long-term reciprocal soil transplant experiment to examine the response of dryland soils to climate change. The two transplant sites were separated by 500 m of elevation on the same mountain slope in eastern Washington state, USA, and had similar plant species and soil types. We resampledmore » the original 1994 soil transplants and controls, measuring CO2 production, temperature response, enzyme activity, and bacterial community structure after 17 years. Over a laboratory incubation of 100 days, reciprocally transplanted soils respired roughly equal cumulative amounts of carbon as non-transplanted controls from the same site. Soils transplanted from the hot, dry, lower site to the cooler and wetter (difference of -5 °C monthly maximum air temperature, +50 mm yr-1precipitation) upper site exhibited almost no respiratory response to temperature (Q10 of 1.1), but soils originally from the upper, cooler site had generally higher respiration rates. The bacterial community structure of transplants did not differ significantly from that of untransplanted controls, however. Slight differences in local climate between the upper and lower Rattlesnake locations, simulated with environmental control chambers during the incubation, thus prompted significant differences in microbial activity, with no observed change to bacterial structure. Lastly, these results support the idea that environmental shifts can influence soil C through metabolic changes, and suggest that microbial populations responsible for soil heterotrophic respiration may be constrained in surprising ways, even

  6. Developing large-scale forcing data for single-column and cloud-resolving models from the Mixed-Phase Arctic Cloud Experiment

    DOE PAGES-Beta [OSTI]

    Xie, Shaocheng; Klein, Stephen A.; Zhang, Minghua; Yio, John J.; Cederwall, Richard T.; McCoy, Renata

    2006-10-05

    [1] This study represents an effort to develop Single-Column Model (SCM) and Cloud-Resolving Model large-scale forcing data from a sounding array in the high latitudes. An objective variational analysis approach is used to process data collected from the Atmospheric Radiation Measurement Program (ARM) Mixed-Phase Arctic Cloud Experiment (M-PACE), which was conducted over the North Slope of Alaska in October 2004. In this method the observed surface and top of atmosphere measurements are used as constraints to adjust the sounding data from M-PACE in order to conserve column-integrated mass, heat, moisture, and momentum. Several important technical and scientific issues related tomore » the data analysis are discussed. It is shown that the analyzed data reasonably describe the dynamic and thermodynamic features of the Arctic cloud systems observed during M-PACE. Uncertainties in the analyzed forcing fields are roughly estimated by examining the sensitivity of those fields to uncertainties in the upper-air data and surface constraints that are used in the analysis. Impacts of the uncertainties in the analyzed forcing data on SCM simulations are discussed. Results from the SCM tests indicate that the bulk features of the observed Arctic cloud systems can be captured qualitatively well using the forcing data derived in this study, and major model errors can be detected despite the uncertainties that exist in the forcing data as illustrated by the sensitivity tests. Lastly, the possibility of using the European Center for Medium-Range Weather Forecasts analysis data to derive the large-scale forcing over the Arctic region is explored.« less

  7. ALASKA OIL AND GAS EXPLORATION, DEVELOPMENT, AND PERMITTING PROJECT

    SciTech Connect (OSTI)

    Richard McMahon; Robert Crandall; Chas Dense; Sean Weems

    2003-11-19

    This is the second technical report, covering the period from April 1, 2003 through September 30, 2003. This project brings together three parts of the oil exploration, development, and permitting process to form the foundation for a more fully integrated information technology infrastructure for the State of Alaska. The geo-technical component is a shared effort between the State Department of Administration and the US Department of Energy. The Alaska Oil and Gas Conservation Commission is rapidly converting high volumes of paper documents and geo-technical information to formats suitable for search and retrieval over the Internet. The permitting component is under the lead of the DNR Office of Project Management and Permitting. A web-based system will enable the public and other review participants to track permit status, submit and view comments, and obtain important project information on-line. By automating several functions of the current manual process, permit applications will be completed more quickly and accurately, and agencies will be able to complete reviews with fewer delays. Structural changes are taking place in terms of organization, statutory authority, and regulatory requirements. Geographic Information Systems are a central component to the organization of information, and the delivery of on-line services. Progress has been made to deploy the foundation system for the shared GIS based on open GIS protocols to the extent feasible. Alaska has nearly one-quarter of the nation's supply of crude oil, at least five billion barrels of proven reserves. The American Association of Petroleum Geologists report that the 1995 National Assessment identified the North Slope as having 7.4 billion barrels of technically recoverable oil and over 63 trillion cubic feet of natural gas. From these reserves, Alaska produces roughly one-fifth of the nation's daily crude oil production, or approximately one million barrels per day from over 1,800 active wells.

  8. Concept Study: Exploration and Production in Environmentally Sensitive Arctic Areas

    SciTech Connect (OSTI)

    Shirish Patil; Rich Haut; Tom Williams; Yuri Shur; Mikhail Kanevskiy; Cathy Hanks; Michael Lilly

    2008-12-31

    participants believe that the platform concept could have far-reaching applications in the Arctic as a drilling and production platform, as originally intended, and as a possible staging area. The overall objective of this project was to document various potential applications, locations, and conceptual designs for the inland platform serving oil and gas operations on the Alaska North Slope. The University of Alaska Fairbanks assisted the HARC/TerraPlatforms team with the characterization of potential resource areas, geotechnical conditions associated with continuous permafrost terrain, and the potential end-user evaluation process. The team discussed the various potential applications with industry, governmental agencies, and environmental organizations. The benefits and concerns associated with industry's use of the technology were identified. In this discussion process, meetings were held with five operating companies (22 people), including asset team leaders, drilling managers, HSE managers, and production and completion managers. Three other operating companies and two service companies were contacted by phone to discuss the project. A questionnaire was distributed and responses were provided, which will be included in the report. Meetings were also held with State of Alaska Department of Natural Resources officials and U.S. Bureau of Land Management regulators. The companies met with included ConcoPhillips, Chevron, Pioneer Natural Resources, Fairweather E&P, BP America, and the Alaska Oil and Gas Association.

  9. ARM - Datastreams - aoscpcf

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Dilution slope unitless dilutionslope Dilution flow valve position unitless dilutionvalveposition ( time ) Flow read sccm flowread ( time ) Flow setpoint sccm ...

  10. Predicting and Utilizing the Vehicle's Past and Futuer Road Grade

    Office of Energy Efficiency and Renewable Energy (EERE)

    Predicted road grade may be used to estimate the power required to propel the vehicle through the upcoming terrain so that the engine controller can deliver the necessary power.

  11. Predicting and Utilizing the Vehicle's Past and Futuer Road Grade...

    Energy.gov (indexed) [DOE]

    Predicted road grade may be used to estimate the power required to propel the vehicle through the upcoming terrain so that the engine controller can deliver the necessary power. ...

  12. CX-100158 Categorical Exclusion Determination

    Energy.gov [DOE]

    Forecast Improvement in Complex Terrain near the Columbia River Gorge Award Number: DE-EE0006898 CX(s) Applied: A9 Date: 12/23/2014 Location(s): CO Office(s): Golden Field Office

  13. 1

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    TerranearPMC used a 275-ton, all-terrain crane to transport workers and specialized ... the team built two temporary access ramps and a crane pad to support crane mobilization. ...

  14. Tribal Connections to Nevada National Security Site to Aid Revegetation Efforts

    Energy.gov [DOE]

    LAS VEGAS – The EM program at the Nevada Field Office (NFO) has enlisted the help of the people who know the Mojave Desert the best to revegetate its complex terrain.

  15. ARM - Field Campaign - Columbia Basin Wind Energy Study

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    data set that can be used to evaluate the performance of regional scale models in a geographic area that has complex terrain and is used for wind power production. This data set ...

  16. ARM - Field Campaign - Colorado: The Storm Peak Lab Cloud Property...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    the potential to create a correlative data set equivalent to between 200 and 300 ... of the algorithm results. 2. The data set was collected in a region of complex terrain. ...

  17. Estimating the Wind Resource in Uttarakhand: Comparison of Dynamic Downscaling with Doppler Lidar Wind Measurements

    Energy.gov [DOE]

    Previous estimates of the wind resources in Uttarakhand, India, suggest minimal wind resources in this region. To explore whether or not the complex terrain in fact provides localized regions of...

  18. CX-001380: Categorical Exclusion Determination

    Energy.gov [DOE]

    Idaho National Laboratory - Off-Road All Terrain Vehicle Use in Support of Engineering SurveysCX(s) Applied: B3.1Date: 03/31/2010Location(s): IdahoOffice(s): Idaho Operations Office, Nuclear Energy

  19. Laboratory announces selection of Venture Acceleration Fund recipients

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    With Simtable, Google Earth and GIS data are projected onto the sand surface, allowing the user to hand-model the terrain elevation. Changes in the sand surface are an interactive ...

  20. Venture Acceleration Fund recipients

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    With Simtable, Google Earth and GIS data are projected onto the sand surface, allowing the user to hand-model the terrain elevation. Changes in the sand surface are an interactive ...

  1. Des Plaines Landfill Biomass Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    mW 0.0038 GW Commercial Online Date 2004 Heat Rate (BTUkWh) 12916.67 References EPA Web Site1 Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN...

  2. RCWMD Badlands Landfill Gas Project Biomass Facility | Open Energy...

    Open Energy Information (Open El) [EERE & EIA]

    mW 1.0e-3 GW Commercial Online Date 2001 Heat Rate (BTUkWh) 12916.67 References EPA Web Site1 Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN...

  3. Rio Bravo Fresno Biomass Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    mW 0.0243 GW Commercial Online Date 1988 Heat Rate (BTUkWh) 18456.1 References EPA Web Site1 Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN...

  4. Applied Studies and Technology Stakeholder Outreach: Helping Native Students Heal the Land

    Energy.gov [DOE]

    On a late June afternoon on the high desert east of Tuba City, Arizona, members of a Navajo family scoot along the sand riding all-terrain vehicles, rounding up their horses under a ceramic-blue...

  5. sc0013735-psi | netl.doe.gov

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    735-psi High Performance Airborne Laser Scanner for Routine Mapping of Terrain from Unmanned Aircraft Systems (UASs) Last Reviewed 6/3/2016 DE-SC0013735 Goal This project will develop a conceptual design for an unmanned aerial system-based laser scanner for aerial mapping that preserves the performance of larger systems flown on manned aircraft, but is small enough to be deployed on midsize unmanned aerial systems. This will enable more economical digital terrain mapping than manned systems. The

  6. Uncertainty analysis in geospatial merit matrix–based hydropower resource assessment

    DOE PAGES-Beta [OSTI]

    Pasha, M. Fayzul K.; Yeasmin, Dilruba; Saetern, Sen; Yang, Majntxov; Kao, Shih -Chieh; Smith, Brennan T.

    2016-03-30

    Hydraulic head and mean annual streamflow, two main input parameters in hydropower resource assessment, are not measured at every point along the stream. Translation and interpolation are used to derive these parameters, resulting in uncertainties. This study estimates the uncertainties and their effects on model output parameters: the total potential power and the number of potential locations (stream-reach). These parameters are quantified through Monte Carlo Simulation (MCS) linking with a geospatial merit matrix based hydropower resource assessment (GMM-HRA) Model. The methodology is applied to flat, mild, and steep terrains. Results show that the uncertainty associated with the hydraulic head ismore » within 20% for mild and steep terrains, and the uncertainty associated with streamflow is around 16% for all three terrains. Output uncertainty increases as input uncertainty increases. However, output uncertainty is around 10% to 20% of the input uncertainty, demonstrating the robustness of the GMM-HRA model. Hydraulic head is more sensitive to output parameters in steep terrain than in flat and mild terrains. Furthermore, mean annual streamflow is more sensitive to output parameters in flat terrain.« less

  7. Optimal thermohydraulic performance of artifically roughened solar air heaters

    SciTech Connect (OSTI)

    Prasad, B.N.; Saini, J.S. )

    1991-01-01

    The heat transfer coefficient of solar air heaters can be increased by providing artificial roughness on the bottom of the absorber plate, leading to higher collection efficiency. Inclusion of artificial roughness, however, results in a higher friction factor and consequently a higher pumping power is required. Results show that both the Nusselt number and friction factor increase with increasing relative roughness height and decrease with increasing relative roughness pitch, but not in direct proportions. Optimization of the roughness and flow parameters (p/e, e/D, Re) to maximize heat transfer while keeping friction losses minimum was attempted. It has been found that a particular value of roughness Reynolds number (e{sup +} = e/D {radical}{ovr f/2Re}), always corresponds to optimum thermohydraulic conditions in the range of parameters investigated. On this basis design curves have been developed that give the optimal thermohydraulic performance combination of these parameters.

  8. Carter Co. Harding Co. Perkins Co. Dunn Co. Dawson Co. Fallon...

    U.S. Energy Information Administration (EIA) (indexed site)

    MEDICINE POLE HILLS BICENTENNIAL ROOSEVELT BIG STICK ROUGH RIDER MONARCH TREE TOP LOOKOUT BUTTE BUCKHORN MEDORA FLAT TOP BUTTE ELAND DEMORES ASH COULEE WHISKEY JOE GAS CITY DAVIS ...

  9. Survey of U.S. Ancillary Services Markets | Argonne National...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ... penetration of variable wind resources and a similarly ... respective Non-spinning Reserves products that are roughly ... Design Related Groups Energy, Power, and Decision Analytics

  10. Oil and Natural Gas Program Commericialized Technologies and...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Commercialized Technologies and Significant Research Accomplishments O il and natural gas are the lifeblood of our economy, accounting for roughly 62 percent of the energy consumed ...

  11. Trim or Replace Impellers on Oversized Pumps: Industrial Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    to accommodate gradual increases in pipe surface roughness and fow resistance over time, ... impeller should not be trimmed any smaller than the minimum diameter shown on the curve. ...

  12. Natural Gas Weekly Update, Printer-Friendly Version

    Gasoline and Diesel Fuel Update

    national forests that are included in USFS inventories, roughly 60 million acres of land. The Clinton Administration issued a previous rule in January 2001, which prohibited...

  13. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... Approach for Single Amino Acid Polymorphism ... single nucleotide polymorphism roughly every 200 base pairs. ... of a carefully tuned balance of human host and ...

  14. Impedance spectroscopy of organic magnetoresistance devices-Effect...

    Office of Scientific and Technical Information (OSTI)

    Resource Relation: Journal Name: Journal of Applied Physics; Journal Volume: 117; Journal ... POLARONS; RECOMBINATION; ROUGHNESS; SPECTROSCOPY; SURFACES; TRAPS Word Cloud More Like ...

  15. Energy Department Opens Job Search for Geothermal Technologies...

    Energy.gov (indexed) [DOE]

    This abundant resource generates energy around the clock and has the potential to supply more than 100 GWe of electricity - roughly one tenth of America's energy demand. By ...

  16. Current

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    This abundant resource generates energy around the clock and has the potential to supply more than 100 GWe of electricity - roughly one tenth of America's energy demand. By ...

  17. MHK Projects/AW Energy EMEC | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    AW Energy successfully demonstrated a 1:3 scale prototype device at EMEC (European Marine Energy Center) in both calm and rough winter conditions. Bottom wave velocity measurements...

  18. Microsoft PowerPoint - Liang_JACS-2013.pptx

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    (175 words) By nanostructuring the previously reported lithium ion conductor Li3PS4, we demonstrated that lithium- ion conductivity at room temperature could be improved roughly...

  19. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... States) USDOE Office of Human Resources and ... The roughness of a vicinal interface consisted of atomic ... Engineering and Computer Science, Vanderbilt ...

  20. Thermo Scientific Ozone Analyzer Instrument Handbook (Technical...

    Office of Scientific and Technical Information (OSTI)

    Thus, the same concentration number is repeated roughly 4 times at the uniform, monotonic 1-s time base used in the AOS systems. Accompanying instrument outputs include sample ...

  1. Structure of All-Polymer Solar Cells Impedes Efficiency

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    of annealing and interfacial roughness on the performance of bilayer donoracceptor polymer photovoltaic devices," Adv. Funct. Mater. 20, 4329 (2010). ALS Science Highlight 218...

  2. In the OSTI Collections: LEDs | OSTI, US Dept of Energy Office...

    Office of Scientific and Technical Information (OSTI)

    even counterproductive, a hot light source can be quite ... roughness for light extraction and methods of ... patent "Integrated LED-based luminare for general ...

  3. First-Of-Its-Kind Search Engine Will Speed Materials Research...

    Office of Environmental Management (EM)

    Cell phones, wind turbines, solar panels and a variety of military technologies depend on these roughly fourteen elements (including nine "rare earth" elements). With about 90 ...

  4. Central Activator Keeps the Circadian Clock Ticking

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    utilizes an operational logic involving a central negative feedback loop that turns genes on and off rhythmically with a period of roughly 24 hours. The positive component of...

  5. Lower Sioux Indian Community- 2010 Project

    Energy.gov [DOE]

    Lower Sioux intends to continue its efforts to develop wind projects on its lands as a continuation of efforts begun roughly 20 years ago.

  6. Apache County, Arizona: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Houck, Arizona Lukachukai, Arizona Many Farms, Arizona McNary, Arizona Nazlini, Arizona Red Mesa, Arizona Rock Point, Arizona Rough Rock, Arizona Round Rock, Arizona Sawmill,...

  7. NREL: Energy Sciences - Solid-State Theory

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Science Printable Version Solid-State Theory Image showing a roughly spherical red shape that looks like an apple that is floating within a yellow hemispherical shell....

  8. Project Reports for Lower Sioux Indian Community- 2010 Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    Lower Sioux intends to continue its efforts to develop wind projects on its lands as a continuation of efforts begun roughly 20 years ago.

  9. Department of Energy Awards Hanford River Corridor Contract To...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Inc., Bechtel National Inc., CH2M Hill Inc., Eberline Services Inc., and Integrated Logistics Services Inc. The Columbia River Corridor is composed of roughly 210 square miles...

  10. Dynamo-free

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    The externally applied electric field tends to drive the equilibrium away from the relaxed, minimum energy state which is roughly described by a flat normalized parallel current ...

  11. Digging Begins at Hazardous Hanford Burial Ground - River Corridor...

    Energy.gov (indexed) [DOE]

    completing River Corridor Cleanup by 2015," said Mark ... contaminated shavings and oil, and miscellaneous debris," ... 618-10 Burial Ground Crews process some of the roughly ...

  12. Hanford Progresses in Burial Ground Cleanup | Department of Energy

    Energy.gov (indexed) [DOE]

    Office (RL) and cleanup contractor Washington ... radioactive and hazardous waste into 94 pipes buried ... 618-10 Burial Ground Crews process some of the roughly ...

  13. EM Contractor 'Finishes Strong' at Hanford Site's 618-10 Burial...

    Energy.gov (indexed) [DOE]

    Cleanup of the burial ground includes remediating 94 buried ... units (VPU) that contain radioactive and chemical waste. ... Addthis Related Articles Crews process some of the roughly ...

  14. WindCat Workboats Ltd | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Wind energy Product: Lancashire-based vessel operators of specific vessels for offshore wind farms. These vessels can transfer personnel in rough seas. Coordinates: 53.86121,...

  15. Recap and Conclusions to Tc/I in Hanford Flowsheet Presentations

    Office of Environmental Management (EM)

    Recap & Conclusions to TcI in Hanford Flowsheet Presentations Gary Smith Office of Waste Processing (EM-31) November 18, 2010 2 Rough Flowsheet Diagram Tank Farm Evaporator ...

  16. This Week In Petroleum Printer-Friendly Version

    Gasoline and Diesel Fuel Update

    barrels. This level approximated the prior week's stockdraw in addition to roughly matching the same year-ago reported stockdraw, although the February stockdraw covering...

  17. New Jersey Township Champions Sustainability | Department of...

    Energy.gov (indexed) [DOE]

    Caroline Ehrlich describes her New Jersey town as "a very diverse township where the ... population is roughly that of California, Texas, New York and Maryland combined). ...

  18. Geothermal Energy Growth Continues, Industry Survey Reports ...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Development of these new projects will provide significant economic benefits, according to GEA. "These new projects will result in the infusion of roughly 15 billion in capital ...

  19. ANNUAL REPORT FY2009 I N D U S T R I A L S A N D I A N A T I

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ... microsatellites weighing about 55 pounds and roughly the size of a wedding cake. ... EMCORE's third-generation solar cell photovoltaic array. 27 Partnerships Annual Report * 2009 ...

  20. Oak Ridge Associated Universities

    Office of Legacy Management (LM)

    ... Floor surfaces are generally rough and . "pitted" and are covered with a thin layer of oil absorbant material and dried oil and grease. Machining equipment and material storage ...

  1. Consortium for Advanced Simulation of Light Water Reactors (CASL...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Monte Carlo Code for Research and Development," ... Roughness Elements," International Journal of Heat and Fluid Flow, ... Conference on Mathematics and Computation (M&C), ...

  2. Inquiring Minds - Questions About Physics

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Why does friction increase with roughness to a point and then start to decrease with increasing roughness? Dear Sir/Madam, Please can you help me to explain an experiment result. My sister who is currently studying her A-level had just done her coursework on friction. Where different rough surfaces variable by the different degree on sand paper in it's energy needed to move a fixed mass upon it. They find from their result that as predicted the friction increases as the 'roughness' increases yet

  3. Statement on Defense Nuclear Nonproliferation and Naval Reactors...

    National Nuclear Security Administration (NNSA)

    ... Domestic Uranium Enrichment and Nuclear Detonation and Proliferation Detection projects. ... The R&D Proliferation Detection budget cuts of roughly 33M will cause NNSA to miss all ...

  4. Center for Energy Nanoscience at USC

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Organic Photovoltaics The efficiencies of organic photovoltatic (OPV) cells have increased sharply over recent years, reaching 8%, or roughly half the efficiency of commercial...

  5. Newsletter Southern Great Plains

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    biomass burning, water treatment, waste management ... Increases in atmospheric methane roughly parallel world ... be burned via a flare or used to run electrical generators. ...

  6. Global Warming

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    biomass burning, water treatment facilities, waste ... 1800. Increases in atmospheric methane roughly parallel ... be burned via a flare or used to run electrical generators. ...

  7. ALASKA OIL AND GAS EXPLORATION, DEVELOPMENT, AND PERMITTING PROJECT

    SciTech Connect (OSTI)

    Richard McMahon; Robert Crandall; Chas Dense; Sean Weems

    2003-08-04

    The objective of this project is to eliminate three closely inter-related barriers to oil production in Alaska through the use of a geographic information system (GIS) and other information technology strategies. These barriers involve identification of oil development potential from existing wells, planning projects to efficiently avoid conflicts with other interests, and gaining state approvals for exploration and development projects. Each barrier is the result of either current labor-intensive methods or poorly accessible information. This project brings together three parts of the oil exploration, development, and permitting process to form the foundation for a more fully integrated information technology infrastructure for the State of Alaska. This web-based system will enable the public and other review participants to track permit status, submit and view comments, and obtain important project information online. By automating several functions of the current manual process, permit applications will be completed more quickly and accurately, and agencies will be able to complete reviews with fewer delays. The application will include an on-line diagnostic Coastal Project Questionnaire to determine the suite of permits required for a specific project. The application will also automatically create distribution lists based on the location and type of project, populate document templates for project review start-ups, public notices and findings, allow submission of e-comments, and post project status information on the Internet. Alaska has nearly one-quarter of the nation's supply of crude oil, at least five billion barrels of proven reserves. The American Association of Petroleum Geologists report that the 1995 National Assessment identified the North Slope as having 7.4 billion barrels of technically recoverable oil and over 63 trillion cubic feet of natural gas. From these reserves, Alaska produces roughly one-fifth of the nation's daily crude oil production

  8. Over 150 years of long-term fertilization alters spatial scaling of microbial biodiversity

    DOE PAGES-Beta [OSTI]

    Liang, Yuting; Wu, Liyou; Clark, Ian M.; Xue, Kai; Yang, Yunfeng; Van Nostrand, Joy D.; Deng, Ye; He, Zhili; McGrath, Steve; Storkey, Jonathan; et al

    2015-04-07

    Spatial scaling is a critical issue in ecology, but how anthropogenic activities like fertilization affect spatial scaling is poorly understood, especially for microbial communities. Here, we determined the effects of long-term fertilization on the spatial scaling of microbial functional diversity and its relationships to plant diversity in the 150-year-old Park Grass Experiment, the oldest continuous grassland experiment in the world. Nested samples were taken from plots with contrasting inorganic fertilization regimes, and community DNAs were analyzed using the GeoChip-based functional gene array. The slopes of microbial gene-area relationships (GARs) and plant species-area relationships (SARs) were estimated in a plot receivingmore » nitrogen (N), phosphorus (P), and potassium (K) and a control plot without fertilization. Our results indicated that long-term inorganic fertilization significantly increased both microbial GARs and plant SARs. Microbial spatial turnover rates (i.e., z values) were less than 0.1 and were significantly higher in the fertilized plot (0.0583) than in the control plot (0.0449) (P < 0.0001). The z values also varied significantly with different functional genes involved in carbon (C), N, P, and sulfur (S) cycling and with various phylogenetic groups (archaea, bacteria, and fungi). Similarly, the plant SARs increased significantly (P < 0.0001), from 0.225 in the control plot to 0.419 in the fertilized plot. Soil fertilization, plant diversity, and spatial distance had roughly equal contributions in shaping the microbial functional community structure, while soil geochemical variables contributed less. Results indicated that long-term agricultural practice could alter the spatial scaling of microbial biodiversity. Determining the spatial scaling of microbial biodiversity and its response to human activities is important but challenging in microbial ecology. Most studies to date are based on different sites that may not be truly

  9. Over 150 years of long-term fertilization alters spatial scaling of microbial biodiversity

    SciTech Connect (OSTI)

    Liang, Yuting; Wu, Liyou; Clark, Ian M.; Xue, Kai; Yang, Yunfeng; Van Nostrand, Joy D.; Deng, Ye; He, Zhili; McGrath, Steve; Storkey, Jonathan; Hirsch, Penny R.; Sun, Bo; Zhou, Jizhong

    2015-04-07

    Spatial scaling is a critical issue in ecology, but how anthropogenic activities like fertilization affect spatial scaling is poorly understood, especially for microbial communities. Here, we determined the effects of long-term fertilization on the spatial scaling of microbial functional diversity and its relationships to plant diversity in the 150-year-old Park Grass Experiment, the oldest continuous grassland experiment in the world. Nested samples were taken from plots with contrasting inorganic fertilization regimes, and community DNAs were analyzed using the GeoChip-based functional gene array. The slopes of microbial gene-area relationships (GARs) and plant species-area relationships (SARs) were estimated in a plot receiving nitrogen (N), phosphorus (P), and potassium (K) and a control plot without fertilization. Our results indicated that long-term inorganic fertilization significantly increased both microbial GARs and plant SARs. Microbial spatial turnover rates (i.e., z values) were less than 0.1 and were significantly higher in the fertilized plot (0.0583) than in the control plot (0.0449) (P < 0.0001). The z values also varied significantly with different functional genes involved in carbon (C), N, P, and sulfur (S) cycling and with various phylogenetic groups (archaea, bacteria, and fungi). Similarly, the plant SARs increased significantly (P < 0.0001), from 0.225 in the control plot to 0.419 in the fertilized plot. Soil fertilization, plant diversity, and spatial distance had roughly equal contributions in shaping the microbial functional community structure, while soil geochemical variables contributed less. Results indicated that long-term agricultural practice could alter the spatial scaling of microbial biodiversity. Determining the spatial scaling of microbial biodiversity and its response to human activities is important but challenging in microbial ecology. Most studies to date are based on different sites that may not be truly comparable or on

  10. PHYSICAL PROPERTIES OF SPECTROSCOPICALLY CONFIRMED GALAXIES AT z {>=} 6. II. MORPHOLOGY OF THE REST-FRAME UV CONTINUUM AND Ly{alpha} EMISSION

    SciTech Connect (OSTI)

    Jiang Linhua; Windhorst, Rogier A.; Cohen, Seth H.; Mechtley, Matthew; Egami, Eiichi; Fan Xiaohui; Dave, Romeel; Finlator, Kristian; Kashikawa, Nobunari; Ouchi, Masami; Shimasaku, Kazuhiro

    2013-08-20

    We present a detailed structural and morphological study of a large sample of spectroscopically confirmed galaxies at z {>=} 6 using deep Hubble Space Telescope (HST) near-IR broad-band images and Subaru Telescope optical narrow-band images. The galaxy sample consists of 51 Ly{alpha} emitters (LAEs) at z {approx_equal} 5.7, 6.5, and 7.0, and 16 Lyman break galaxies (LBGs) at 5.9 {<=} z {<=} 6.5. These galaxies exhibit a wide range of rest-frame UV continuum morphology in the HST images, from compact features to multiple component systems. The fraction of merging/interacting galaxies reaches 40%-50% at the brightest end of M{sub 1500} {<=} -20.5 mag. The intrinsic half-light radii r{sub hl,in}, after correcting for point-spread function (PSF) broadening, are roughly between r{sub hl,in} {approx_equal} 0.''05 (0.3 kpc) and 0.''3 (1.7 kpc) at M{sub 1500} {<=} -19.5 mag. The median r{sub hl,in} value is 0.''16 ({approx}0.9 kpc). This is consistent with the sizes of bright LAEs and LBGs at z {>=} 6 found in previous studies. In addition, more luminous galaxies tend to be larger and exhibit a weak size-luminosity relation, r{sub hl,in}{proportional_to}L {sup 0.14} at M{sub 1500} {<=} -19.5 mag. The slope of 0.14 is significantly flatter than those in fainter LBG samples. We discuss the morphology of z {>=} 6 galaxies with nonparametric methods, including the concentration, asymmetry, and smoothness system and the Gini and M{sub 20} parameters, and demonstrate their validity through simulations. We search for extended Ly{alpha} emission halos around LAEs at z {approx_equal} 5.7 and 6.5 by stacking a number of narrow-band images. We do not find evidence of extended Ly{alpha} halos predicted by cosmological simulations. Such halos, if they exist, could be weaker than predicted. Finally, we investigate positional misalignment between the UV continuum and Ly{alpha} emissions in LAEs. While the two positions are generally consistent, several merging galaxies show significant

  11. Investigation of scanning tunneling spectra on iron-based superconductor FeSe0.5Te0.5(in Chinese)

    DOE PAGES-Beta [OSTI]

    Du, Z. -Y.; Fang, D. -L.; Wang, Z. -Y.; Du, G.; Yang, X.; Yang, H.; Gu, G.; -H, Wen H.

    2015-05-05

    FeSe0.5Te0.5 single crystals with superconducting critical temperature of 13.5 K are investigated by scanning tunneling microscopy/spectroscopy (STM/STS) measureflents in detail. STM image on the top surface shows an atomically resolved square lattice consisted by white and dark spots with a constant of about 3.73± 0.03 Å which is consistent with the lattice constant 3.78 Å. The Se and Te atoms with a height difference of about 0.35 Å are successfully identified since the sizes of the two kinds of atoms are different. The tunneling spectra show very large zero-bias conductance value and asymmetric coherent peaks in the superconducting state. Accordingmore » to the positions of coherence peaks, we determine the superconducting gap 2Δ = 5.5 meV, and the reduced gap 2Δ/kBTc = 4.9 is larger than the value predicted by the weak-coupling BCS theory. The zero-bias conductance at 1.7 K only have a decrease of about 40% compared with the normal state conductance, which may originate from some scattering and broadening mechanism in the material. This broadening effect will also make the superconducting gap determined by the distance between the coherence peaks larger than the exact gap value. The asymmetric structure of the tunneling spectra near the superconducting gap is induced by the hump on the background. This hump appears at temperature more than twice the superconducting critical temperature. This kind of hump has also been observed in other iron pnictides and needs further investigation. A possible bosonic mode outside the coherence peak with a mode energy Ω of about 5.5 meV is observed in some tunneling spectra, and the ratio between the mode energy and superconducting transition temperature Ω/kBTc ≈ 4.7 is roughly consistent with the universal ratio 4.3 in iron-based superconductors. The high-energy background of the spectra beyond the superconducting gaps shows a V-shape feature. The slopes of the differential conductance spectra at high energy are

  12. TECHNICAL EVALUATION OF SOIL REMEDIATION ALTERNATIVES AT THE BUILDING 812 OPERABLE UNIT, LAWRENCE LIVERMORE NATIONAL LABORATORY SITE 300

    SciTech Connect (OSTI)

    Eddy-Dilek, C.; Miles, D.; Abitz, R.

    2009-08-14

    implement the recommended phased approach, the cost of characterization, excavation and physical treatment of the contaminated materials is roughly estimated to be one third to one fourth of the cost of the current baseline treatment. This is an estimated cost; the actual cost of the project will be sensitive to actual soil/sediment volumes that can be refined with the results from characterization studies. The technical team encourages the site to promote a more holistic approach during remediation of contaminated sediments at Site 300. It is true that the presence of low levels of residual DU on the steep slopes may stress the ecosystem, as it is not possible to block the exposure of resident biota. It is clear that remediation of the primary source areas will reduce potential effects to humans. However, the site should consider that excavation of the slopes will profoundly disrupt the ecosystem and it may take decades to recover.

  13. An overview of the ASCOT program

    SciTech Connect (OSTI)

    Doran, J.C.

    1993-09-01

    ASCOT (Atmospheric Studies in Complex Terrain) is a multi-laboratory U.S. Department of Energy research program studying the properties of atmospheric boundary layers over non-uniform terrain and the interactions among various scales of motion that influence those properties. Within this context, one of the principal goals of the ASCOT program is to provide information necessary for an accurate description of transport and diffusion processes for atmosphere pollutants that may be released in regions of complex terrain. Three examples from past ASCOT research relevant to this goal are presented. Current and proposed research in the Front Range region of Colorado in the vicinity of the Rocky Flats Plant is also described.

  14. Recharge Data Package for the 2005 Integrated Disposal Facility...

    Office of Scientific and Technical Information (OSTI)

    possible barrier side slopes; and the surrounding soil) and four specific time periods (pre-Hanford; Hanford operations; surface barrier design life; post-barrier design life). ...

  15. EA-1193: Finding of No Significant Impact | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    EA-1193: Finding of No Significant Impact Atmospheric Radiation Measurement (ARM) Program North Slope of Alaska and Adjacent Arctic Ocean Cloud and Radiation Testbed (CART) Site The ...

  16. EA-1193: Final Environmental Assessment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    EA-1193: Final Environmental Assessment Atmospheric Radiation Measurement (ARM) Program North Slope of Alaska and Adjacent Arctic Ocean Cloud and Radiation Testbed (CART) Site The ...

  17. ARM - VAP Product - mmcrmode3ge200404141cloth

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    by this product are those considered scientifically relevant. Cloud base height Radar Doppler Radar reflectivity Vertical velocity Locations North Slope Alaska NSA C1 Browse...

  18. ARM - VAP Product - mmcrmode2ci200712011cloth

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    by this product are those considered scientifically relevant. Cloud base height Radar Doppler Radar reflectivity Vertical velocity Locations North Slope Alaska NSA C1 Browse...

  19. ARM - VAP Product - mmcrmode1st200404151cloth

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    by this product are those considered scientifically relevant. Cloud base height Radar Doppler Radar reflectivity Vertical velocity Locations North Slope Alaska NSA C1 Browse...

  20. ARM - VAP Product - mmcrmode3ge200712011cloth

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    by this product are those considered scientifically relevant. Cloud base height Radar Doppler Radar reflectivity Vertical velocity Locations North Slope Alaska NSA C1 Browse...