National Library of Energy BETA

Sample records for river nuclear solutions

  1. FY 2012 Savannah River Nuclear Solutions, LLC, PER Summary |...

    National Nuclear Security Administration (NNSA)

    12 Savannah River Nuclear Solutions, LLC, PER Summary SUMMARY OF FY 2012 SAVANNAH RIVER NUCLEAR SOLUTIONS, LLC, AWARD FEE DETERMINATION Total Available Fee Total Fee Earned % ...

  2. FY 2010 Savannah River Nuclear Solutions, LLC, PER Summary |...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    0 Savannah River Nuclear Solutions, LLC, PER Summary SUMMARY OF FY 2010 SAVANNAH RIVER NUCLEAR SOLUTIONS, LLC, AWARD FEE DETERMINATION Total Available Fee Total Fee Earned % ...

  3. PIA - Savannah River Nuclear Solution SRNS ProRad Environment...

    Office of Environmental Management (EM)

    SRNS ProRad Environment Management PIA - Savannah River Nuclear Solution SRNS ProRad Environment Management PIA - Savannah River Nuclear Solution SRNS ProRad Environment Management ...

  4. FY 2009 Savannah River Nuclear Solutions, LLC, PER Summary |...

    National Nuclear Security Administration (NNSA)

    FY 2009 Savannah River Nuclear Solutions, LLC, PER Summary SUMMARY OF FY 2009 SAVANNAH RIVER NUCLEAR SOLUTIONS, LLC, AWARD FEE DETERMINATION Total Available Fee Total Fee Earned % ...

  5. FY 2011 Savannah River Nuclear Solutions, LLC, PER Summary |...

    National Nuclear Security Administration (NNSA)

    FY 2011 Savannah River Nuclear Solutions, LLC, PER Summary SUMMARY OF FY 2011 SAVANNAH RIVER NUCLEAR SOLUTIONS, LLC, AWARD FEE DETERMINATION Total Available Fee Total Fee Earned % ...

  6. FY 2010 Savannah River Nuclear Solutions, LLC, PER Summary |...

    National Nuclear Security Administration (NNSA)

    FY 2010 Savannah River Nuclear Solutions, LLC, PER Summary SUMMARY OF FY 2010 SAVANNAH RIVER NUCLEAR SOLUTIONS, LLC, AWARD FEE DETERMINATION Total Available Fee Total Fee Earned % ...

  7. PIA - Savannah River Nuclear Solution IBARS Srs Site Apps. Accreditati...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    IBARS Srs Site Apps. Accreditation Boundary PIA - Savannah River Nuclear Solution IBARS Srs Site Apps. Accreditation Boundary PIA - Savannah River Nuclear Solution IBARS Srs Site ...

  8. PIA - Savannah River Nuclear Solution SRNS Electronic Document...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    SRNS Electronic Document Workflow RECORDS System (EDWS) PIA - Savannah River Nuclear Solution SRNS Electronic Document Workflow RECORDS System (EDWS) PIA - Savannah River Nuclear ...

  9. PIA - Savannah River Nuclear Solution (SRNS) Procurement Cycle System (PCS)

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    | Department of Energy Procurement Cycle System (PCS) PIA - Savannah River Nuclear Solution (SRNS) Procurement Cycle System (PCS) PIA - Savannah River Nuclear Solution (SRNS) Procurement Cycle System (PCS) PIA - Savannah River Nuclear Solution (SRNS) Procurement Cycle System (PCS) (3.36 MB) More Documents & Publications PIA - Savannah River Nuclear Solutions (SRNS) Human Resource Management System (HRMS) PIA - Savannah River Nuclear Solution (SRNS) MedGate Occupational Health and Safety

  10. DOE Selects Savannah River Nuclear Solutions, LLC to Manage and...

    Energy Saver

    that Savannah River Nuclear Solutions (SRNS), LLC has been selected as the management and operating contractor ... nuclear fuel, nuclear materials, and non high-level ...

  11. PIA - Savannah River Nuclear Solution IBARS Srs Site Apps. Accreditation

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Boundary | Department of Energy IBARS Srs Site Apps. Accreditation Boundary PIA - Savannah River Nuclear Solution IBARS Srs Site Apps. Accreditation Boundary PIA - Savannah River Nuclear Solution IBARS Srs Site Apps. Accreditation Boundary PIA - Savannah River Nuclear Solution IBARS Srs Site Apps. Accreditation Boundary (296.54 KB) More Documents & Publications PIA - Savannah River Nuclear Solutions Badge Request and Site Personnel Roster Systems PIA - Savannah River Remediation

  12. PIA - Savannah River Nuclear Solutions (SRNS) Human Resource Management

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    System (HRMS) | Department of Energy (SRNS) Human Resource Management System (HRMS) PIA - Savannah River Nuclear Solutions (SRNS) Human Resource Management System (HRMS) PIA - Savannah River Nuclear Solutions (SRNS) Human Resource Management System (HRMS) PIA - Savannah River Nuclear Solutions (SRNS) Human Resource Management System (HRMS) (3.39 MB) More Documents & Publications PIA - Savannah River Nuclear Solution (SRNS) Procurement Cycle System (PCS) PIA - Savannah River Site

  13. PIA - Savannah River Nuclear Solution SRNS Electronic Document Workflow

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    RECORDS System (EDWS) | Department of Energy SRNS Electronic Document Workflow RECORDS System (EDWS) PIA - Savannah River Nuclear Solution SRNS Electronic Document Workflow RECORDS System (EDWS) PIA - Savannah River Nuclear Solution SRNS Electronic Document Workflow RECORDS System (EDWS) PIA - Savannah River Nuclear Solution SRNS Electronic Document Workflow RECORDS System (EDWS) (3.87 MB) More Documents & Publications PIA - Savannah River Nuclear Solution (SRNS) Procurement Cycle System

  14. Concept Paper Savannah River Nuclear Solutions, LLC Savannah River Site

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Paper Savannah River Nuclear Solutions, LLC Savannah River Site Aiken, SC 29808 Michael S. Navetta, PE Manager- Energy Park Initiative (803) 952-8806 michael.navetta@srs.gov U.S. EnergyFreedomCenter PREDECISIONAL DRAFT Today We Can Start To Unshackle America Decades of debate for ending America's dependence on foreign fossil fuels, climate change and environmentally positive energy has produced a myriad of technologies that independently offer a partial solution. Applying existing technologies

  15. PIA - Savannah River Nuclear Solution (SRNS) Energy Employees Occupational

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Illness Compensation Program Act (EEOICPA) | Department of Energy Energy Employees Occupational Illness Compensation Program Act (EEOICPA) PIA - Savannah River Nuclear Solution (SRNS) Energy Employees Occupational Illness Compensation Program Act (EEOICPA) PIA - Savannah River Nuclear Solution (SRNS) Energy Employees Occupational Illness Compensation Program Act (EEOICPA) PIA - Savannah River Nuclear Solution (SRNS) Energy Employees Occupational Illness Compensation Program Act (EEOICPA)

  16. Department of Energy Cites Savannah River Nuclear Solutions for...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Solutions for Worker Safety and Health Violations Department of Energy Cites Savannah River Nuclear Solutions for Worker Safety and Health Violations October 8, 2010 - 12:00am ...

  17. PIA - Savannah River Nuclear Solutions Training Records and Information

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Network (TRAIN) | Department of Energy Nuclear Solutions Training Records and Information Network (TRAIN) PIA - Savannah River Nuclear Solutions Training Records and Information Network (TRAIN) PIA - Savannah River Nuclear Solutions Training Records and Information Network (TRAIN) PIA - Savannah River Nuclear Solutions Training Records and Information Network (TRAIN) (3.3 MB) More Documents & Publications PIA - HSPD-12 Physical and Logical Access System PIA - WEB Unclassified Business

  18. PIA - Savannah River Nuclear Solutions Badge Request and Site Personnel

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Roster Systems | Department of Energy Badge Request and Site Personnel Roster Systems PIA - Savannah River Nuclear Solutions Badge Request and Site Personnel Roster Systems PIA - Savannah River Nuclear Solutions Badge Request and Site Personnel Roster Systems PIA - Savannah River Nuclear Solutions Badge Request and Site Personnel Roster Systems (3.67 MB) More Documents & Publications PIA - 10th International Nuclear Graphite Specialists Meeting registration web site PIA - HSPD-12

  19. PIA - Savannah River Nuclear Solutions Electronic Safeguards Security

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    System (E3S) | Department of Energy Electronic Safeguards Security System (E3S) PIA - Savannah River Nuclear Solutions Electronic Safeguards Security System (E3S) PIA - Savannah River Nuclear Solutions Electronic Safeguards Security System (E3S) PIA - Savannah River Nuclear Solutions Electronic Safeguards Security System (E3S) (3.6 MB) More Documents & Publications PIA - 10th International Nuclear Graphite Specialists Meeting registration web site PIA - HSPD-12 Physical and Logical

  20. PIA - Savannah River Nuclear Solution (SRNS) Energy Employees...

    Energy.gov [DOE] (indexed site)

    Energy Employees Occupational Illness Compensation Program Act (EEOICPA) PIA - Savannah River Nuclear Solution (SRNS) Energy Employees Occupational Illness Compensation Program Act ...

  1. PIA - Savannah River Nuclear Solution (SRNS) MedGate Occupational...

    Energy Saver

    PIA - Savannah River Nuclear Solution (SRNS) MedGate Occupational Health and Safety Medical System (OHS) (Includes the Drug and Alcohol Testing System (Assistant)) PIA - Savannah...

  2. PIA - Savannah River Nuclear Solution (SRNS) MedGate Occupational...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Health and Safety Medical System (OHS) (Includes the Drug and Alcohol Testing System (Assistant)) PIA - Savannah River Nuclear Solution (SRNS) MedGate Occupational Health and ...

  3. PIA - Savannah River Nuclear Solution (SRNS) Procurement Cycle...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    System (HRMS) PIA - Savannah River Nuclear Solution (SRNS) MedGate Occupational Health and Safety Medical System (OHS) (Includes the Drug and Alcohol Testing System (Assistant)

  4. PIA - Savannah River Nuclear Solutions (SRNS) Human Resource...

    Energy.gov [DOE] (indexed site)

    (SRNS) Human Resource Management System (HRMS) PIA - Savannah River Nuclear Solutions (SRNS) Human Resource Management System (HRMS) (3.39 MB) More Documents & Publications PIA - ...

  5. Preliminary Notice of Violation,Savannah River Nuclear Solutions...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Issued to Savannah River Nuclear Solutions, LLC related to a Puncture Wound Injury ... puncture wound injury that occurred at the F-Canyon Facility at DOE's Savannah River Site. ...

  6. Preliminary Notice of Violation, Savannah River Nuclear Solutions, LLC -

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    WEA-2012-04 | Department of Energy Savannah River Nuclear Solutions, LLC - WEA-2012-04 Preliminary Notice of Violation, Savannah River Nuclear Solutions, LLC - WEA-2012-04 November 9, 2012 Issued to Savannah River Nuclear Solutions (SRNS), LLC, related to a Worker Fall from a Scaffold in the K-Area Complex at the Savannah River Site On November 9, 2012, the U.S. Department of Energy (DOE) Office of Health, Safety and Security's Office of Enforcement and Oversight issued a Preliminary Notice

  7. Department of Energy Cites Savannah River Nuclear Solutions for Worker

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Safety and Health Violations | Department of Energy Solutions for Worker Safety and Health Violations Department of Energy Cites Savannah River Nuclear Solutions for Worker Safety and Health Violations October 8, 2010 - 12:00am Addthis WASHINGTON, D.C. - The Department of Energy has issued a Preliminary Notice of Violation (PNOV) to Savannah River Nuclear Solutions, LLC (SRNS) for five violations of DOE's worker safety and health regulations and withheld $3.08 million in contract fee for

  8. Project Management Institute Highlights Savannah River Nuclear Solutions in Publication

    Energy.gov [DOE]

    AIKEN, S.C. – Project Management Institute (PMI) — the world’s largest not-for-profit membership association for the project management profession — features a story on Savannah River Nuclear Solutions (SRNS).

  9. Preliminary Notice of Violation, Savannah River Nuclear Solutions...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Issued to Savannah River Nuclear Solutions (SRNS), LLC, related to a Worker Fall from a ... of 10 C.F.R. 851 associated with a worker fall from an elevated work platform in the ...

  10. PIA - Savannah River Nuclear Solution SRNS ProRad Environment Management |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy SRNS ProRad Environment Management PIA - Savannah River Nuclear Solution SRNS ProRad Environment Management PIA - Savannah River Nuclear Solution SRNS ProRad Environment Management PIA - Savannah River Nuclear Solution SRNS ProRad Environment Management (3.45 MB) More Documents & Publications PIA - Savannah River Nuclear Solutions (SRNS) Human Resource Management System (HRMS) PIA - Savannah River Nuclear Solution (SRNS) Procurement Cycle System (PCS) PIA - Savannah

  11. PIA - Savannah River Nuclear Solutions Electronic Safeguards...

    Energy Saver

    More Documents & Publications PIA - 10th International Nuclear Graphite Specialists Meeting registration web site PIA - HSPD-12 Physical and Logical Access System PIA - Savannah ...

  12. DOE to Extend Savannah River Nuclear Solutions Contract at Savannah River Site to September 2016

    Energy.gov [DOE]

    Aiken, SC -- The Department of Energy’s (DOE) Savannah River Operations Office today exercised its option to extend the current Savannah River Site Management and Operating contract with Savannah River Nuclear Solutions, LLC (SRNS) for an additional 38 months, from August 1, 2013 to September 2016.

  13. Preliminary Notice of Violation, Savannah River Nuclear Solutions, LLC- WEA-2010-05

    Office of Energy Efficiency and Renewable Energy (EERE)

    Issued to Savannah River Nuclear Solutions, LLC related to a Nitric Acid Spill Event and an Electrical Arc Flash Injury Event at the Savannah River Site

  14. Preliminary Notice of Violation,Savannah River Nuclear Solutions, LLC- NEA-2011-02

    Energy.gov [DOE]

    Issued to Savannah River Nuclear Solutions, LLC related to a Puncture Wound Injury resulting in a Radiological Uptake at the Savannah River Site

  15. Savannah River Nuclear Solutions, LLC, Consent Order NCO-2016-01 |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Savannah River Nuclear Solutions, LLC, Consent Order NCO-2016-01 Savannah River Nuclear Solutions, LLC, Consent Order NCO-2016-01 April 19, 2016 Nuclear Safety Enforcement Consent Order issued to Savannah River Nuclear Solutions, LLC relating to nuclear criticality safety infractions that occurred at the Savannah River Sit On April 19, 2016, the U.S. Department of Energy (DOE) Office of Enterprise Assessments' Office of Enforcement issued a Consent Order (NCO-2016-01) to

  16. DOE Selects Savannah River Nuclear Solutions, LLC to Manage and Operate its Savannah River Site

    Energy.gov [DOE]

    WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced that Savannah River Nuclear Solutions (SRNS), LLC has been selected as the management and operating contractor for DOE's...

  17. Department of Energy Cites Savannah River Nuclear Solutions, LLC for Worker Safety and Health Violations

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Energy has issued a Preliminary Notice of Violation to Savannah River Nuclear Solutions, LLC for violations of the Department’s worker safety and health regulations.

  18. PIA - Savannah River Nuclear Solution (SRNS) MedGate Occupational Health

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    and Safety Medical System (OHS) (Includes the Drug and Alcohol Testing System (Assistant)) | Department of Energy MedGate Occupational Health and Safety Medical System (OHS) (Includes the Drug and Alcohol Testing System (Assistant)) PIA - Savannah River Nuclear Solution (SRNS) MedGate Occupational Health and Safety Medical System (OHS) (Includes the Drug and Alcohol Testing System (Assistant)) PIA - Savannah River Nuclear Solution (SRNS) MedGate Occupational Health and Safety Medical System

  19. DEPARTMENT OF ENERGY CITES SAVANNAH RIVER NUCLEAR SOLUTIONS, LLC FOR WORKER

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    SAVANNAH RIVER NUCLEAR SOLUTIONS, LLC FOR WORKER SAFETY AND HEALTH VIOLATIONS November 9, 2012 - 5:50pm WASHINGTON - The U.S. Department of Energy has issued a Preliminary Notice of Violation (PNOV) to Savannah River Nuclear Solutions, LLC (SRNS) for violations of the Department's worker safety and health regulations. The violations are associated with a July 1, 2011, incident that occurred while a worker was using a Tele-Tower ® scaffold to perform facility modifications in the Purification

  20. Principal Media Contact: DT Townsend Savannah River Nuclear Solutions, LLC

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Sonya Goines (803) 952-8564 sonya.goines@srs.gov SRS Public Tours: Decades of Inspiring History, Cold War Defense, Nuclear Operations and Miles of Pristine Wilderness AIKEN, S.C. (June 13, 2016) - Registration continues for the Savannah River Site's (SRS) 2016 Public Tour Program. Seats are available for the sitewide tours held twice each month through December at the Department of Energy (DOE) complex near Aiken, S.C. The driving tours provide a windshield tour of the historical and operational

  1. Principal Media Contact: DT Townsend Savannah River Nuclear Solutions...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    SRS Information Pods: Learning About SRS Projects and Missions Savannah River Site (SRS) ... The event featured several of the site's projects, programs and missions. John Gilmour, ...

  2. Preliminary Notice of Violation, Savannah River Nuclear Solutions...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Acid Spill Event and an Electrical Arc Flash Injury Event at the Savannah River Site On ... on August 18, 2009, and an electrical arc flash event with that occurred in the D Area ...

  3. Savannah River Nuclear Solutions S A V A N N A H R I V E R S

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Visit us on the web at http:srnl.doe.gov Savannah River Nuclear Solutions is a Fluor-led company whose members are Fluor Federal Services, Newport News Nuclear and...

  4. PIA - Savannah River Nuclear Solutions Badge Request and Site...

    Energy Saver

    More Documents & Publications PIA - 10th International Nuclear Graphite Specialists Meeting registration web site PIA - HSPD-12 Physical and Logical Access System MOX Services ...

  5. Savannah River Nuclear Solutions S A V A N N A H R I V E R S

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    savannahrivernuclearsolutions.com Savannah River Nuclear Solutions S A V A N N A H R I V E R S I T E * A I K E N * S C 2 9 8 0 8 Principal Media Contact: DT Townsend Savannah River Nuclear Solutions, LLC 803.952.7566 dt-lawrence.townsend@srs.gov Public Tour Program Continues at SRS AIKEN, S.C. - June 29, 2015 - The popular public tour of the Department of Energy's Savannah River Site (SRS) has approximately 200 openings left for the 2015 calendar year. Recent tour participant Chuck Yahres,

  6. Savannah River Site | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Savannah River Site FY 2016 FY 2016 Performance Evaluation Plan, Savannah River Nuclear Solutions, LLC FY 2015 FY 2015 Performance Evaluation Report, Savannah River Nuclear Solutions, LLC FY 2015 Performance Evaluation Report, Fee Determination Letter, Savannah River Nuclear Solutions, LLC FY 2015 Performance Evaluation Plan, Savannah River Nuclear Solutions, LLC FY 2014 FY 2014 Performance Evaluation Report, Savannah River Nuclear Solutions, LLC FY 2014 Performance Evaluation Report, Fee

  7. Voluntary Protection Program Onsite Review, Savannah River Nuclear...

    Energy.gov [DOE] (indexed site)

    Department of Energy Voluntary Protection Program. This report summarizes the results from the evaluation of Savannah River Nuclear Solutions, LLC (SRNS), at the Savannah River ...

  8. Principal Media Contact: Lindsey Evans Savannah River Nuclear...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    containers is being main- tained at the Site. Savannah River Nuclear Solutions is a Fluor-led company whose members are Fluor Federal Services, Newport News Nuclear and...

  9. SAVANNAH-RIVER-NUCLEAR-SOLUTION-IBARS-SRS-SITE-APPS-ACCREDIATION-BOUNDARY.pdf

    Energy Saver

    Russel Edge About Us Russel Edge Team Leader, Uranium Mine Team Acting Team Leader, Asset Management Team Russel Edge became an LM staff member on November 2, 2014, as a Business Management Specialist in the Westminster, Colorado, office. He reports directly to the DOE Office of Site Operations Director. Prior to joining LM, Russel was employed by the National Nuclear Security Administration Sandia field office in Albuquerque, New Mexico, as a program manager for the Laboratory Directed Research

  10. Management of Legacy Spent Nuclear Fuel Wastes at the Chalk River Laboratories: The Challenges and Innovative Solutions Implemented - 13301

    SciTech Connect

    Schruder, Kristan; Goodwin, Derek

    2013-07-01

    AECL's Fuel Packaging and Storage (FPS) Project was initiated in 2004 to retrieve, transfer, and stabilize an identified inventory of degraded research reactor fuel that had been emplaced within in-ground 'Tile Hole' structures in Chalk River Laboratories' Waste Management Area in the 1950's and 60's. Ongoing monitoring of the legacy fuel storage conditions had identified that moisture present in the storage structures had contributed to corrosion of both the fuel and the storage containers. This prompted the initiation of the FPS Project which has as its objective to design, construct, and commission equipment and systems that would allow for the ongoing safe storage of this fuel until a final long-term management, or disposition, pathway was available. The FPS Project provides systems and technologies to retrieve and transfer the fuel from the Waste Management Area to a new facility that will repackage, dry, safely store and monitor the fuel for a period of 50 years. All equipment and the new storage facility are designed and constructed to meet the requirements for Class 1 Nuclear Facilities in Canada. (authors)

  11. Savannah River Nuclear Solutions S A V A N N A H R I V E R S

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    SRS Completes Vacuuming of "Cobwebs" found in L Basin AIKEN, S.C. Aug.11, 2014 - The once mysterious "cobwebs" found in the L Disassembly Basin at the Savannah River Site have been...

  12. Nuclear waste solutions

    DOEpatents

    Walker, Darrel D.; Ebra, Martha A.

    1987-01-01

    High efficiency removal of technetium values from a nuclear waste stream is achieved by addition to the waste stream of a precipitant contributing tetraphenylphosphonium cation, such that a substantial portion of the technetium values are precipitated as an insoluble pertechnetate salt.

  13. Home Office Expenses Submitted by Fluor Federal Services, Inc., on Savannah River Nuclear Solutions, LLC's U.S. Department of Energy Management & Operating (M&O) Contract No. DE-AC09-08SR22470

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Home Office Expenses Submitted by Fluor Federal Services, Inc., on Savannah River Nuclear Solutions, LLC's U.S. Department of Energy Management & Operating (M&O) Contract No. DE-AC09-08SR22470 OAS-L-13-08 April 2013 Department of Energy Washington, DC 20585 April 19, 2013 MEMORANDUM FOR THE MANAGER, SAVANNAH RIVER OPERATIONS OFFICE FROM: Rickey R. Hass Deputy Inspector General for Audits and Inspections Office of Inspector General SUBJECT: INFORMATION: Audit Report on "Home Office

  14. Savannah River Site | National Nuclear Security Administration...

    National Nuclear Security Administration (NNSA)

    Savannah River Site NNSA operates facilities at the Savannah River Site to supply and process tritium, a radioactive form of hydrogen that is a key component of nuclear weapons. ...

  15. DOE Selects Washington River Protection Solutions, LLC for Tank...

    Energy Saver

    Washington River Protection Solutions, LLC for Tank Operations Contract at Hanford Site DOE Selects Washington River Protection Solutions, LLC for Tank Operations Contract at ...

  16. Scientific Solutions to Nuclear Waste Environmental Challenges

    SciTech Connect

    Johnson, Bradley R.

    2014-01-30

    The Hidden Cost of Nuclear Weapons The Cold War arms race drove an intense plutonium production program in the U.S. This campaign produced approximately 100 tons of plutonium over 40 years. The epicenter of plutonium production in the United States was the Hanford site, a 586 square mile reservation owned by the Department of Energy and located on the Colombia River in Southeastern Washington. Plutonium synthesis relied on nuclear reactors to convert uranium to plutonium within the reactor fuel rods. After a sufficient amount of conversion occurred, the rods were removed from the reactor and allowed to cool. They were then dissolved in an acid bath and chemically processed to separate and purify plutonium from the rest of the constituents in the used reactor fuel. The acidic waste was then neutralized using sodium hydroxide and the resulting mixture of liquids and precipitates (small insoluble particles) was stored in huge underground waste tanks. The byproducts of the U.S. plutonium production campaign include over 53 million gallons of high-level radioactive waste stored in 177 large underground tanks at Hanford and another 34 million gallons stored at the Savannah River Site in South Carolina. This legacy nuclear waste represents one of the largest environmental clean-up challenges facing the world today. The nuclear waste in the Hanford tanks is a mixture of liquids and precipitates that have settled into sludge. Some of these tanks are now over 60 years old and a small number of them are leaking radioactive waste into the ground and contaminating the environment. The solution to this nuclear waste challenge is to convert the mixture of solids and liquids into a durable material that won't disperse into the environment and create hazards to the biosphere. What makes this difficult is the fact that the radioactive half-lives of some of the radionuclides in the waste are thousands to millions of years long. (The half-life of a radioactive substance is the amount

  17. Louisiana Nuclear Profile - River Bend

    Energy Information Administration (EIA) (indexed site)

    River Bend" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" 1,974,"8,363",98.0,"BWR","application/vnd.ms-excel","application/vnd.ms-excel" ,974,"8,363",98.0 "Data for 2010" "BWR = Boiling

  18. Florida Nuclear Profile - Crystal River

    Energy Information Administration (EIA) (indexed site)

    Crystal River1" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" 3,860,0,"--","PWR","application/vnd.ms-excel","application/vnd.ms-excel" ,860,0,"--" "Data for 2010" "1 Unit was offline in 2010 for repairs." "-- Not applicable.

  19. Savannah River Remediation Intern Sees Nuclear Industry as Job Opportunity

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    | Department of Energy Savannah River Remediation Intern Sees Nuclear Industry as Job Opportunity Savannah River Remediation Intern Sees Nuclear Industry as Job Opportunity July 9, 2012 - 10:00am Addthis Spencer Isom, second year engineering intern for Savannah River Remediation (SRR) and fourth summer at Savannah River Site (SRS), performs a standard equipment check at Saltstone Production Facility. | Photo courtesy of Savannah River Site Spencer Isom, second year engineering intern for

  20. Students in New Nuclear Training Program Tour Savannah River...

    Energy.gov [DOE] (indexed site)

    AIKEN, S.C. - Students in a nuclear training program's inaugural class recently toured the Savannah River Site (SRS) to view EM cleanup efforts and nuclear facilities where they ...

  1. Fundamental aspects of nuclear reactor fuel elements: solutions...

    Office of Scientific and Technical Information (OSTI)

    Fundamental aspects of nuclear reactor fuel elements: solutions to problems Citation Details In-Document Search Title: Fundamental aspects of nuclear reactor fuel elements: ...

  2. Savannah River Nuclear Solutions awards family scholarships ...

    National Nuclear Security Administration (NNSA)

    45,000 were awarded to 15 area students. May 17, 2013 at 4:00 pm Blog archive October 2015 (8) September 2015 (9) August 2015 (10) July 2015 (8) June 2015 (6) May 2015 (18) April...

  3. Independent Activity Report, Washington River Protection Solutions, LLC- October 2011

    Energy.gov [DOE]

    Industrial Hygiene Surveillance of the Washington River Protection Solutions, LLC Industrial Hygiene Program Strategy and Implementation of the Hanford Concerns Council Recommendations [HIAR-ORP-2011-10-26

  4. The Savannah River Site is owned by the U.S. Department of Energy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Jeffrey Griffin Associate Laboratory Director, Environmental Stewardship Savannah River National Laboratory Savannah River Nuclear Solutions, LLC Georgia Southern College Bachelor ...

  5. [Energy Solutions] Task Order 17- Spent Nuclear Fuel Transportation Cask

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Design Study | Department of Energy [Energy Solutions] Task Order 17- Spent Nuclear Fuel Transportation Cask Design Study [Energy Solutions] Task Order 17- Spent Nuclear Fuel Transportation Cask Design Study Per the requirements of the Task Order 17: Spent Nuclear Fuel Transportation Cask Design Study, statement of work (SOW), EnergySolutions and its team partners: NAC International, Talisman International, Booz Allen Hamilton and Exelon Nuclear Partners, hereafter referred to as "the

  6. DOE Cites Washington TRU Solutions for Nuclear Safety Violations |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy TRU Solutions for Nuclear Safety Violations DOE Cites Washington TRU Solutions for Nuclear Safety Violations December 22, 2005 - 4:53pm Addthis WASHINGTON, D.C. -- The Department of Energy (DOE) today notified Washington TRU Solutions (WTS) that it will fine the company $192,500 for violations of the department's nuclear safety requirements. The Preliminary Notice of Violation (PNOV) issued today cites a number of deficiencies that led to a series of low-level plutonium

  7. Building America Whole-House Solutions for New Homes: Hood River Passive

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    House - Hood River, Oregon (Fact Sheet) | Department of Energy Building America Whole-House Solutions for New Homes: Hood River Passive House - Hood River, Oregon (Fact Sheet) Building America Whole-House Solutions for New Homes: Hood River Passive House - Hood River, Oregon (Fact Sheet) The Hood River Passive Project incorporates high R-Value assemblies, extremely tight construction, high performance doors and windows, solar thermal DHW, heat recovery ventilation, moveable external shutters

  8. Regional Nuclear Workforce Development in the Central Savannah River Area

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Nuclear Workforce Development in the Central Savannah River Area Dr. Susan A. Winsor Aiken Technical College President: P.O. Box 696, Aiken, SC 29802, winsors@atc.edu Mindy Mets Nuclear Workforce Initiative Program Manager, SRS Community Reuse Organization: P.O. Box 696, Aiken, SC 29802, mindy.mets@srscro.org INTRODUCTION An expanding role for nuclear energy in the United States has dramatic implications for the nuclear workforce demand in the two-state region of Georgia and South Carolina known

  9. Project Management Institute Highlights Savannah River Nuclear...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    to the train derailment EM Contractor Responds to Train Derailment SRNS Solid Waste Management Director John Gilmour presents on nuclear waste management at the information ...

  10. Savannah River Site | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Tritium facilities at SRS to supply and process tritium, a radioactive form of hydrogen gas that is a vital component of nuclear weapons. The NNSA-SRS loads tritium and...

  11. Savannah River Field Office | National Nuclear Security Administration |

    National Nuclear Security Administration (NNSA)

    (NNSA) Savannah River

  12. Savannah river site | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Savannah river site On Womens Equality Day, we celebrate NNSA's talented Women in STEM NNSA's systems administrators keep the computers running For Systems Administrator (SysAdmin) Day, meet some of the men & women keeping NNSA going. Thanks for all you do! Michelle Swinkels, Senior Systems and Network Technologist at NNSA's Lawrence Livermore National Laboratory What excites you about your work for NNSA? I'... NNSA innovation fuels space exploration Today, in accordance with a 1971

  13. 2013 Nuclear Workforce Development Day

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Savannah River Site Topics:  How are Robotics, Homeland Security & SRS Related?  What are Future Careers at SRS?  Why does SRS have a Gate? Moderator: Steve Hensel - Senior Fellow Engineer Savannah River Nuclear Solutions Panel Members: Steve Tibrea - Director, Research & Development Engineering Savannah River Nuclear Solutions Steve Howell - Deputy Director, Environmental Management Operations - Savannah River Nuclear Solutions Renee Spires - Program Manager Savannah River

  14. Award Fee Determination Scorecard Contractor: Washington River Protection Solutions, LLC

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Washington River Protection Solutions, LLC Contract: Tank Operations Contract Contract Number: DE-AC27-08RV14800 Award Fee Period: October 1, 2014 to September 30, 2015 Basis of Evaluation: FY 2015 Award Fee, Performance Evaluation and Measurement Plan Award Fee Available: $15,600,000 Award Fee Earned: $13,728,000 (88%) Award Fee Area Adjectival Ratings for each Award Fee Special Emphasis Area (SEA): Functional Element Adjectival Rating* SEA 1: Management of Single-Shell (SST) and Double-Shell

  15. Method for cleaning solution used in nuclear fuel reprocessing

    DOEpatents

    Tallent, Othar K. (Oak Ridge, TN); Crouse, David J. (Oak Ridge, TN); Mailen, James C. (Oak Ridge, TN)

    1982-01-01

    Nuclear fuel processing solution consisting of tri-n-butyl phosphate and dodecane, with a complex of uranium, plutonium, or zirconium and with a solvent degradation product such as di-n-butyl phosphate therein, is contacted with an aqueous solution of a salt formed from hydrazine and either a dicarboxylic acid or a hydroxycarboxylic acid, thereby removing the aforesaid complex from the processing solution.

  16. Method for cleaning solution used in nuclear fuel reprocessing

    DOEpatents

    Tallent, O.K.; Crouse, D.J.; Mailen, J.C.

    1980-12-17

    Nuclear fuel processing solution consisting of tri-n-butyl phosphate and dodecane, with a complex of uranium, plutonium, or zirconium and with a solvent degradation product such as di-n-butyl phosphate therein, is contacted with an aqueous solution of a salt formed from hydrazine and either a dicarboxylic acid or a hydroxycarboxylic acid, thereby removing the aforesaid complex from the processing solution.

  17. Consent Order, Washington River Protection Solutions, LLC - NCO-2011-01 |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Washington River Protection Solutions, LLC - NCO-2011-01 Consent Order, Washington River Protection Solutions, LLC - NCO-2011-01 May 27, 2011 Issued to Washington River Protection Solutions, LLC related to deficiencies in the corrective action management program, radiation control program, and sealed radioactive source accountability and control program On May 27, 2011, the U.S. Department of Energy (DOE) Office of Health, Safety and Security's Office of Enforcement and

  18. Voluntary Protection Program Onsite Review, Washington River Protection Solutions, LLC, Hanford – Feb 2014

    Energy.gov [DOE]

    Evaluation to determine whether Washington River Protection Solutions, LLC, Hanford is performing at a level deserving DOE-VPP Star recognition.

  19. Young Professionals in Nuclear Industry Group Forms at Savannah River Site

    Energy.gov [DOE]

    AIKEN, S.C. – Supporting the development of young nuclear professionals in the Central Savannah River Area (CSRA) is the purpose behind a new group forming at the Savannah River Site (SRS).

  20. The Savannah River Site is owned by the U.S. Department of Energy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Ralph B. James, PhD Associate Laboratory Director, Science and Technology Savannah River National Laboratory Savannah River Nuclear Solutions, LLC California Institute of ...

  1. The Savannah River Site is owned by the U.S. Department of Energy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Sharon Marra is Senior Vice President and Deputy Director of the U.S. Department of Energy's Savannah River National Laboratory (SRNL), operated by Savannah River Nuclear Solutions ...

  2. U.S. DEPARTMENT OF ENERGY * SAVANNAH RIVER SITE * AIKEN * SC

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Nanostructured Anodes for Lithium-Ion Batteries Savannah River Nuclear Solutions (SRNS), managing contractor of the Savannah River Site (SRS) for the Department of Energy, has...

  3. The Savannah River Site is owned by the U.S. Department of Energy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Frederick M. Grimm, Sr. Director, Research Operations Savannah River National Laboratory Savannah River Nuclear Solutions, LLC North Carolina State University Bachelor of Science, ...

  4. Method for cleaning solution used in nuclear fuel reprocessing

    DOEpatents

    Tallent, Othar K. (Oak Ridge, TN); Dodson, Karen E. (Knoxville, TN); Mailen, James C. (Oak Ridge, TN)

    1983-01-01

    A nuclear fuel processing solution containing (1) hydrocarbon diluent, (2) tri-n-butyl phosphate or tri-2-ethylhexyl phosphate, and (3) monobutyl phosphate, dibutyl phosphate, mono-2-ethylhexyl phosphate, di-2-ethylhexyl phosphate, or a complex formed by plutonium, uranium, or a fission product thereof with monobutyl phosphate, dibutyl phosphate, mono-2-ethylhexyl phosphate, or di-2-ethylhexyl phosphate is contacted with silica gel having alkali ions absorbed thereon to remove any one of the degradation products named in section (3) above from said solution.

  5. U. S. Department of Energy Savannah River Operations Office - Tenant

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Organizations Organizations Tenant Organizations Federal Offices National Nuclear Security Administration External Link Office of Environmental Management External Link U. S. Forest Service - Savannah River External Link Contractor Organizations Savannah River Nuclear Solutions External Link Savannah River National Laboratory External Link Savannah River Remediation External Link Centerra University of Georgia - Savannah River Ecology Laboratory External Link Shaw AREVA MOX Services External

  6. Savannah River Field Office | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Us Our Operations Management and Budget Office of Civil Rights Workforce Statistics Savannah River Field Office Savannah River Field Office FY15 Year End Report Semi...

  7. USED NUCLEAR MATERIALS AT SAVANNAH RIVER SITE: ASSET OR WASTE?

    SciTech Connect

    Magoulas, V.

    2013-06-03

    The nuclear industry, both in the commercial and the government sectors, has generated large quantities of material that span the spectrum of usefulness, from highly valuable (“assets”) to worthless (“wastes”). In many cases, the decision parameters are clear. Transuranic waste and high level waste, for example, have no value, and is either in a final disposition path today, or – in the case of high level waste – awaiting a policy decision about final disposition. Other materials, though discardable, have intrinsic scientific or market value that may be hidden by the complexity, hazard, or cost of recovery. An informed decision process should acknowledge the asset value, or lack of value, of the complete inventory of materials, and the structure necessary to implement the range of possible options. It is important that informed decisions are made about the asset value for the variety of nuclear materials available. For example, there is a significant quantity of spent fuel available for recycle (an estimated $4 billion value in the Savannah River Site’s (SRS) L area alone); in fact, SRS has already blended down more than 300 metric tons of uranium for commercial reactor use. Over 34 metric tons of surplus plutonium is also on a path to be used as commercial fuel. There are other radiological materials that are routinely handled at the site in large quantities that should be viewed as strategically important and / or commercially viable. In some cases, these materials are irreplaceable domestically, and failure to consider their recovery could jeopardize our technological leadership or national defense. The inventories of nuclear materials at SRS that have been characterized as “waste” include isotopes of plutonium, uranium, americium, and helium. Although planning has been performed to establish the technical and regulatory bases for their discard and disposal, recovery of these materials is both economically attractive and in the national

  8. DOE Selects Washington River Protection Solutions, LLC for Tank Operations Contract at Hanford Site

    Energy.gov [DOE]

    WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced that Washington River Protection Solutions (WRPS), LLC has been selected as the tank operations contractor to store, retrieve...

  9. Savannah River Field Office | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Home fieldoffices Savannah River Field Office Learn More Mixed Oxide (MOX) Fuel Fabrication Facility

  10. Savannah River Site hosts military interns | National Nuclear...

    National Nuclear Security Administration (NNSA)

    complex dedicated to environmental cleanup, nuclear weapons stockpile stewardship, and nuclear materials disposition in support of the U.S. nuclear non-proliferation efforts. ...

  11. Savannah River Nuclear Solutions, LLC Preliminary Notice of Violation

    Office of Environmental Management (EM)

    in F Area on August 18,2009, and the electrical arc flash injury that occurred in the D ... and decommissioning work and in implementing its electrical safety program. ...

  12. Savannah River Nuclear Solutions, LLC Preliminary Notice of Violation

    Office of Environmental Management (EM)

    Santa Ynez Chumash Strategic Energy Planning and Capacity Building Project Lars Davenport Environmental Specialist Santa Ynez Chumash Environmental Office March 24, 2014 137 Acre Reservation * Tribal government facilities * Casino, hotel, WWTP * 20 vehicles Off Reservation * 2 hotels, restaurant, 2 gas stations * 2 parking lots, business admin building * 7 acre fee-to-trust property * 1400 acre fee-to-trust Chumash Energy Overview Tribal Government Manages: Tribal government administration

  13. Principal Media Contact: DT Townsend Savannah River Nuclear Solutions...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    while at SRS. "At times, it was hard to believe that Robbie is an area high school stu- dent. We're confident he'll do well in college and life in general. We hope he...

  14. Principal Media Contact: DT Townsend Savannah River Nuclear Solutions...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Soon after the collision, more than 10 different agencies, companies and organizations, includ- ing the FBI, began to mobilize and descend upon the scene near an industrial plant ...

  15. Department of Energy Cites Savannah River Nuclear Solutions,...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    regulations in the areas of: (1) identification, assessment, prevention, and abatement of hazards; (2) scaffold safety; (3) training and information; and (4) occupational medicine. ...

  16. DEPARTMENT OF ENERGY CITES SAVANNAH RIVER NUCLEAR SOLUTIONS,...

    Energy.gov [DOE] (indexed site)

    regulations in the areas of: (1) identification, assessment, prevention, and abatement of hazards; (2) scaffold safety; (3) training and information; and (4) occupational medicine. ...

  17. Concept Paper Savannah River Nuclear Solutions, LLC Savannah...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Small Modular Reactor Demonstration Complex "One of the most promising areas is small ... for hosting a Small Modular Reactor Demonstration Complex to accelerate 'Plug and Play' ...

  18. PIA - Savannah River Nuclear Solutions Training Records and Informatio...

    Energy Saver

    Network (TRAIN) (3.3 MB) More Documents & Publications PIA - HSPD-12 Physical and Logical Access System PIA - WEB Unclassified Business Operations General Support System

  19. PIA - Savannah River Remediation Accreditation Boundary (SRR...

    Energy Saver

    PIA - Savannah River Nuclear Solution IBARS Srs Site Apps. Accreditation Boundary PIA - WEB Physical Security Major Application Occupational Medical Surveillance System (OMSS) PIA, ...

  20. Dynamic nuclear-polarization studies of paramagnetic species in solution

    SciTech Connect

    Glad, W.E.

    1982-07-01

    Dynamic Nuclear Polarization (DNP) was used to measure the electron spin lattice relaxation times, T/sub 1/, of transition metal ions in aqueous solution. Saturation which is induced in the electron spin system is transferred to the solvent proton spins by dipole-dipole interactions. The change in the polarization of the proton spins is much larger than it is in the electron spins. The change in proton polarization is easily measured by proton Nuclear Magnetic Resonance (NMR). In one experimental arrangement the sample solution was continuously flowed through a microwave cavity to the NMR coil. The NMR was observed with a continuous wave NMR spectrometer. In a second arrangement the whole sample tube was moved from within the microwave cavity to the NMR coil in less than 40 ms by a blast of compressed air. The NMR was then observed with a pulse-Fourier-transform spectrometer. With the second arrangement a mean-square microwave magnetic field at the sample of more than 10 G/sup 2/ is obtainable with 14 W of microwave power. Measurements of DNP at 9 GHz were made on aqueous solutions of VO/sup 2 +/, Mn/sup 2 +/, Cr(CN)/sub 6//sup 3 -/, Cu/sup 2 +/ and Cu(ethylenediamine)/sub 2/(H/sub 2/0)/sub 2//sup 2 +/ ions from 3 to 60/sup 0/C. It was also possible to observe DNP on resolved proton resonances from mixed water-acetonitrile solutions of VO/sup 2 +/ and Cr(CN)/sub 6//sup 3 -/ ions.

  1. Donation Improves Nuclear Training, Education

    Office of Energy Efficiency and Renewable Energy (EERE)

    RICHLAND, Wash. – A $32,000 donation from Washington River Protection Solutions (WRPS), the Hanford Tank Operations Contractor for EM’s Office of River Protection, is improving nuclear training and education at a local community college.

  2. Principal Media Contact: Lindsey Evans Savannah River Nuclear...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    for the site's production reactors. The nomination was submitted by Dr. Elizabeth Hoffman of SRNL and Dr. Elliott Clark, formerly of SRNL, on behalf of the Savannah River...

  3. Savannah River Site's H Canyon Turns 60 Years Old | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) Site's H Canyon Turns 60 Years Old Tuesday, August 25, 2015 - 2:32pm The H Canyon Facility at the Savannah River Site (SRS) recently celebrated 60 years of service to the United States; first in producing nuclear materials in support of our nation's defense weapons programs and later, after the Cold War, helping to disposition and stabilize nuclear materials and spent nuclear fuel from legacy cleanup, and both foreign and domestic research reactors. "H

  4. CONTROL TESTING OF THE UK NATIONAL NUCLEAR LABORATORY'S RADBALL TECHNOLOGY AT SAVANNAH RIVER NATIONAL LABORATORY

    SciTech Connect

    Farfan, E.

    2009-11-23

    The UK National Nuclear Laboratory (NNL) has developed a remote, non-electrical, radiation-mapping device known as RadBall (patent pending), which offers a means to locate and quantify radiation hazards and sources within contaminated areas of the nuclear industry. To date, the RadBall has been deployed in a number of technology trials in nuclear waste reprocessing plants at Sellafield in the UK. The trials have demonstrated the successful ability of the RadBall technology to be deployed and retrieved from active areas. The positive results from these initial deployment trials and the anticipated future potential of RadBall have led to the NNL partnering with the Savannah River National Laboratory (SRNL) to further underpin and strengthen the technical performance of the technology. RadBall consists of a colander-like outer shell that houses a radiation-sensitive polymer sphere. It has no power requirements and can be positioned in tight or hard-to reach places. The outer shell works to collimate radiation sources and those areas of the polymer sphere that are exposed react, becoming increasingly less transparent, in proportion to the absorbed dose. The polymer sphere is imaged in an optical-CT scanner which produces a high resolution 3D map of optical attenuation coefficients. Subsequent analysis of the optical attenuation maps provides information on the spatial distribution and strength of the sources in a given area forming a 3D characterization of the area of interest. This study completed at SRNL addresses key aspects of the testing of the RadBall technology. The first set of tests was performed at Savannah River Nuclear Solutions Health Physics Instrument Calibration Laboratory (HPICL) using various gamma-ray sources and an x-ray machine with known radiological characteristics. The objective of these preliminary tests was to identify the optimal dose and collimator thickness. The second set of tests involved a highly contaminated hot cell. The objective of

  5. Finding Long-Term Solutions for Nuclear Waste | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Long-Term Solutions for Nuclear Waste Finding Long-Term Solutions for Nuclear Waste December 21, 2015 - 1:00pm Addthis The Department of Energy is working toward long-term solutions for nuclear waste storage. | Photo by <a href="https://www.flickr.com/photos/mandj98/">James Marvin Phelps</a>. The Department of Energy is working toward long-term solutions for nuclear waste storage. | Photo by James Marvin Phelps. Franklin (Lynn) Orr Franklin (Lynn) Orr Under Secretary for

  6. NEUTRALIZATIONS OF HIGH ALUMINUM LOW URANIUM USED NUCLEAR FUEL SOLUTIONS CONTAINING GADOLINIUM AS A NEUTRON POISON

    SciTech Connect

    Taylor-Pashow, K.

    2011-06-08

    H-Canyon will begin dissolving High Aluminum - Low Uranium (High Al/Low U) Used Nuclear Fuel (UNF) following approval by DOE which is anticipated in CY2011. High Al/Low U is an aluminum/enriched uranium UNF with small quantities of uranium relative to aluminum. The maximum enrichment level expected is 93% {sup 235}U. The High Al/Low U UNF will be dissolved in H-Canyon in a nitric acid/mercury/gadolinium solution. The resulting solution will be neutralized and transferred to Tank 39H in the Tank Farm. To confirm that the solution generated could be poisoned with Gd, neutralized, and discarded to the Savannah River Site (SRS) high level waste (HLW) system without undue nuclear safety concerns the caustic precipitation of simulant solutions was examined. Experiments were performed with three simulant solutions representative of the H-Canyon estimated concentrations in the final solutions after dissolution. The maximum U, Gd, and Al concentration were selected for testing from the range of solution compositions provided. Simulants were prepared in three different nitric acid concentrations, ranging from 0.5 to 1.5 M. The simulant solutions were neutralized to four different endpoints: (1) just before a solid phase was formed (pH 3.5-4), (2) the point where a solid phase was obtained, (3) 0.8 M free hydroxide, and (4) 1.2 M free hydroxide, using 50 wt % sodium hydroxide (NaOH). The settling behavior of the neutralized solutions was found to be slower compared to previous studies, with settling continuing over a one week period. Due to the high concentration of Al in these solutions, precipitation of solids was observed immediately upon addition of NaOH. Precipitation continued as additional NaOH was added, reaching a point where the mixture becomes almost completely solid due to the large amount of precipitate. As additional NaOH was added, some of the precipitate began to redissolve, and the solutions neutralized to the final two endpoints mixed easily and had expected

  7. Lempke visits Savannah River Site | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    Lempke visits Savannah River Site May 29, 2013 at 11:00 am Blog archive October 2015 (8) September 2015 (9) August 2015 (10) July 2015 (8) June 2015 (6) May 2015 (18) April...

  8. MORTALITY AMONG WORKERS AT THE SAVANNAH RIVER NUCLEAR FUELS PRODUCTION FACILITY

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    MORTALITY AMONG WORKERS AT THE SAVANNAH RIVER NUCLEAR FUELS PRODUCTION FACILITY Donna L. Cragle and Janice P. Watkins, Center for Epidemiologic Research; Kathryn Robertson-DeMers, Bechtel Hanford, Inc. Donna Cragle, Oak Ridge Associated Universities, P.O. Box 117, Oak Ridge, TN 37831-0117 Key Words: mortality study, radiation exposure, leukemia, occupational cohort, trend test INTRODUCTION Since 1952 the Savannah River Site (SRS), located in Aiken, South Carolina, has operated as a Department of

  9. Madelyn Creedon visits Savannah River Site | National Nuclear...

    National Nuclear Security Administration (NNSA)

    She visited the nation's only center for extracting, recycling and processing tritium, an isotope of hydrogen that is a vital component to the nation's nuclear defense. She also ...

  10. Savannah River Site - Sanitary Landfill | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Name: Sanitary Landfill Remediation Contractor: Savannah River Nuclear Solutions, LLC PBS Number: 30 Report Last Updated: 2013 Contaminants Halogenated VOCsSVOCs Present?: Yes ...

  11. Savannah River Operations Office; Interim Management of Nuclear...

    Office of Environmental Management (EM)

    on Remand and instructing the Secretariat to issue a Notice of Final Panel Action. ... Chemicals would be added to existing solutions in order to maintain concentration and ...

  12. Seismic risk management solution for nuclear power plants

    DOE PAGES [OSTI]

    Coleman, Justin; Sabharwall, Piyush

    2014-12-01

    Nuclear power plants should safely operate during normal operations and maintain core-cooling capabilities during off-normal events, including external hazards (such as flooding and earthquakes). Management of external hazards to expectable levels of risk is critical to maintaining nuclear facility and nuclear power plant safety. Seismic risk is determined by convolving the seismic hazard with seismic fragilities (capacity of systems, structures, and components). Seismic isolation (SI) is one protective measure showing promise to minimize seismic risk. Current SI designs (used in commercial industry) reduce horizontal earthquake loads and protect critical infrastructure from the potentially destructive effects of large earthquakes. The benefitmore » of SI application in the nuclear industry is being recognized and SI systems have been proposed in American Society of Civil Engineer Standard 4, ASCE-4, to be released in the winter of 2014, for light water reactors facilities using commercially available technology. The intent of ASCE-4 is to provide criteria for seismic analysis of safety related nuclear structures such that the responses to design basis seismic events, computed in accordance with this standard, will have a small likelihood of being exceeded. The U.S. nuclear industry has not implemented SI to date; a seismic isolation gap analysis meeting was convened on August 19, 2014, to determine progress on implementing SI in the U.S. nuclear industry. The meeting focused on the systems and components that could benefit from SI. As a result, this article highlights the gaps identified at this meeting.« less

  13. Seismic risk management solution for nuclear power plants

    SciTech Connect

    Coleman, Justin; Sabharwall, Piyush

    2014-12-01

    Nuclear power plants should safely operate during normal operations and maintain core-cooling capabilities during off-normal events, including external hazards (such as flooding and earthquakes). Management of external hazards to expectable levels of risk is critical to maintaining nuclear facility and nuclear power plant safety. Seismic risk is determined by convolving the seismic hazard with seismic fragilities (capacity of systems, structures, and components). Seismic isolation (SI) is one protective measure showing promise to minimize seismic risk. Current SI designs (used in commercial industry) reduce horizontal earthquake loads and protect critical infrastructure from the potentially destructive effects of large earthquakes. The benefit of SI application in the nuclear industry is being recognized and SI systems have been proposed in American Society of Civil Engineer Standard 4, ASCE-4, to be released in the winter of 2014, for light water reactors facilities using commercially available technology. The intent of ASCE-4 is to provide criteria for seismic analysis of safety related nuclear structures such that the responses to design basis seismic events, computed in accordance with this standard, will have a small likelihood of being exceeded. The U.S. nuclear industry has not implemented SI to date; a seismic isolation gap analysis meeting was convened on August 19, 2014, to determine progress on implementing SI in the U.S. nuclear industry. The meeting focused on the systems and components that could benefit from SI. As a result, this article highlights the gaps identified at this meeting.

  14. EM Develops Database for Efficient Solutions to Nuclear Cleanup...

    Energy.gov [DOE] (indexed site)

    sites. EM's Office of D&D and Facility Engineering (D&DFE) commissioned a study of robotics and remote technologies available in the nuclear industry to find out how the systems...

  15. Savannah River National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Savannah River National Laboratory srnl.doe.gov SRNL is a DOE National Laboratory operated by Savannah River Nuclear Solutions. At a glance 'Tin whiskers' suppression method Researchers at the Savannah River National Laboratory (SRNL) have identified a treatment method that slows or prevents the formation of whiskers in lead-free solder. Tin whiskers spontaneously grow from thin films of tin, often found in microelectronic devices in the form of solders and platings. Background This problem was

  16. Method for recovering palladium and technetium values from nuclear fuel reprocessing waste solutions

    DOEpatents

    Horwitz, E. Philip; Delphin, Walter H.

    1979-07-24

    A method for recovering palladium and technetium values from nuclear fuel reprocessing waste solutions containing these and other values by contacting the waste solution with an extractant of tricaprylmethylammonium nitrate in an inert hydrocarbon diluent which extracts the palladium and technetium values from the waste solution. The palladium and technetium values are recovered from the extractant and from any other coextracted values with a strong nitric acid strip solution.

  17. Voluntary Protection Program Onsite Review, Savannah River Nuclear Solutions, Llc Savannah River Site- October 2014

    Energy.gov [DOE]

    Recertification of SRNS as a Star Participant in the Department of Energy Voluntary Protection Program.

  18. Development of an improved sodium titanate for the pretreatment of nuclear waste at the Savannah River Site

    SciTech Connect

    Hobbs, D.T.; Poirier, M.R.; Barnes, M.J.; Peters, T.B.; Fondeur, F.F.; Thompson, M.E.; Fink, S.D. [Savannah River National Laboratory, Westinghouse Savannah River Company, Aiken, SC (United States); Nyman, M.D. [Sandia National Laboratories, Albuquerque, NM (United States)

    2008-07-01

    High-level nuclear waste produced from fuel reprocessing operations at the Savannah River Site (SRS) requires pretreatment to remove Cs-137, Sr-90 and alpha-emitting radionuclides (i.e., actinides) prior to disposal onsite as low level waste. Separation processes planned at SRS include sorption of Sr-90 and alpha-emitting radionuclides onto monosodium titanate (MST) and caustic side solvent extraction, for Cs-137 removal. The MST and separated Cs-137 will be encapsulated into a borosilicate glass wasteform for eventual entombment at the federal repository. The predominant alpha-emitting radionuclides in the highly alkaline waste solutions include plutonium isotopes Pu-238, Pu-239 and Pu-240. This paper describes recent results to produce an improved sodium titanate material that exhibits increased removal kinetics and capacity for Sr-90 and alpha-emitting radionuclides compared to the baseline MST material. (authors)

  19. EIS-0220: Interim Management of Nuclear Materials at the Savannah River Site

    Office of Energy Efficiency and Renewable Energy (EERE)

    This environmental impact statement assesses the potential environmental impacts of actions necessary to manage nuclear materials at the Savannah River Site (SRS) in Aiken, South Carolina, until decisions on their ultimate disposition are made and implemented. The Department of Energy has decided to initiate actions which will stabilize certain of the SRS materials that represent environment, safety and health vulnerabilities in their current storage condition or which may represent a vulnerability within the next 10 years.

  20. Nuclear incident monitor criticality alarm instrument for the Savannah River Site: Technical manual

    SciTech Connect

    Jenkins, J.B.

    1996-05-21

    The Savannah River Site is a Department of Energy facility. The facility stores, processes, and works with fissionable material at a number of locations. Technical standards and US Department of Energy orders, require these locations to be monitored by criticality alarm systems under certain circumstances. The Savannah River Site calls such instruments Nuclear Incident Monitors or NIMs. The Sole purpose of the Nuclear Incident Monitor is to provide an immediate evacuation signal in the case of an accidental criticality in order to minimize personnel exposure to radiation. The new unit is the third generation Nuclear Incident Monitor at the Savannah River Site. The second generation unit was developed in 1979. It was designed to eliminate vacuum-tube circuits, and was the first solid state NIM at SRS. The major design objectives of the second generation NIM were to improve reliability and reduce maintenance costs. Ten prototype units have been built and tested. This report describes the design of the new NIM and the testing that took place to verify its acceptability.

  1. Savannah River Site - A/M Area Groundwater | Department of Energy

    Energy.gov [DOE] (indexed site)

    River Nuclear Solutions, LLC PBS Number: 30 Report Last Updated: 2013 Contaminants Halogenated VOCsSVOCs Present?: Yes VOC Name Concentration (ppb) Regulatory Driver...

  2. The Savannah River Site is owned by the U.S. Department of Energy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Savannah River Nuclear Solutions, LLC Alfred University - Bachelor of Science, Ceramic Science Alfred University - Bachelor of Arts, Chemistry Ohio State University - PhD,...

  3. SAVANNAH RIVER SITE TANK CLEANING: CORROSION RATE FOR ONE VERSUS EIGHT PERCENT OXALIC ACID SOLUTION

    SciTech Connect

    Ketusky, E.; Subramanian, K.

    2011-01-20

    Until recently, the use of oxalic acid for chemically cleaning the Savannah River Site (SRS) radioactive waste tanks focused on using concentrated 4 and 8-wt% solutions. Recent testing and research on applicable dissolution mechanisms have concluded that under appropriate conditions, dilute solutions of oxalic acid (i.e., 1-wt%) may be more effective. Based on the need to maximize cleaning effectiveness, coupled with the need to minimize downstream impacts, SRS is now developing plans for using a 1-wt% oxalic acid solution. A technology gap associated with using a 1-wt% oxalic acid solution was a dearth of suitable corrosion data. Assuming oxalic acid's passivation of carbon steel was proportional to the free oxalate concentration, the general corrosion rate (CR) from a 1-wt% solution may not be bound by those from 8-wt%. Therefore, after developing the test strategy and plan, the corrosion testing was performed. Starting with the envisioned process specific baseline solvent, a 1-wt% oxalic acid solution, with sludge (limited to Purex type sludge-simulant for this initial effort) at 75 C and agitated, the corrosion rate (CR) was determined from the measured weight loss of the exposed coupon. Environmental variations tested were: (a) Inclusion of sludge in the test vessel or assuming a pure oxalic acid solution; (b) acid solution temperature maintained at 75 or 45 C; and (c) agitation of the acid solution or stagnant. Application of select electrochemical testing (EC) explored the impact of each variation on the passivation mechanisms and confirmed the CR. The 1-wt% results were then compared to those from the 8-wt%. The immersion coupons showed that the maximum time averaged CR for a 1-wt% solution with sludge was less than 25-mils/yr for all conditions. For an agitated 8-wt% solution with sludge, the maximum time averaged CR was about 30-mils/yr at 50 C, and 86-mils/yr at 75 C. Both the 1-wt% and the 8-wt% testing demonstrated that if the sludge was removed from

  4. Savannah River Site Spent Nuclear Fuel Management Final Environmental Impact Statement

    SciTech Connect

    N /A

    2000-04-14

    The proposed DOE action considered in this environmental impact statement (EIS) is to implement appropriate processes for the safe and efficient management of spent nuclear fuel and targets at the Savannah River Site (SRS) in Aiken County, South Carolina, including placing these materials in forms suitable for ultimate disposition. Options to treat, package, and store this material are discussed. The material included in this EIS consists of approximately 68 metric tons heavy metal (MTHM) of spent nuclear fuel 20 MTHM of aluminum-based spent nuclear fuel at SRS, as much as 28 MTHM of aluminum-clad spent nuclear fuel from foreign and domestic research reactors to be shipped to SRS through 2035, and 20 MTHM of stainless-steel or zirconium-clad spent nuclear fuel and some Americium/Curium Targets stored at SRS. Alternatives considered in this EIS encompass a range of new packaging, new processing, and conventional processing technologies, as well as the No Action Alternative. A preferred alternative is identified in which DOE would prepare about 97% by volume (about 60% by mass) of the aluminum-based fuel for disposition using a melt and dilute treatment process. The remaining 3% by volume (about 40% by mass) would be managed using chemical separation. Impacts are assessed primarily in the areas of water resources, air resources, public and worker health, waste management, socioeconomic, and cumulative impacts.

  5. SAVANNAH RIVER SITE'S H-CANYON FACILITY: IMPACTS OF FOREIGN OBLIGATIONS ON SPECIAL NUCLEAR MATERIAL DISPOSITION

    SciTech Connect

    Magoulas, V.

    2013-06-03

    The US has a non-proliferation policy to receive foreign and domestic research reactor returns of spent fuel materials of US origin. These spent fuel materials are returned to the Department of Energy (DOE) and placed in storage in the L-area spent fuel basin at the Savannah River Site (SRS). The foreign research reactor returns fall subject to the 123 agreements for peaceful cooperation. These “123 agreements” are named after section 123 of the Atomic Energy Act of 1954 and govern the conditions of nuclear cooperation with foreign partners. The SRS management of these foreign obligations while planning material disposition paths can be a challenge.

  6. Building America Whole-House Solutions for New Homes: Hood River Passive House- Hood River, Oregon (Fact Sheet)

    Energy.gov [DOE]

    The Hood River Passive Project incorporates high R-Value assemblies, extremely tight construction, high performance doors and windows, solar thermal DHW, heat recovery ventilation, moveable external shutters and a high performance ductless minisplit heat pump.

  7. Savannah River Site Entities Commit to Collaborate in Partnering Agreement

    Energy.gov [DOE]

    AIKEN, S.C. – Officials from Savannah River Site’s DOE and National Nuclear Security Administration (NNSA) offices and management and operations contractor Savannah River Nuclear Solutions (SRNS) recently signed a partnering agreement to focus on open, candid communication among the three entities to do what is best for the site.

  8. Chemical, mass spectrometric, spectrochemical, nuclear, and radiochemical analysis of nuclear-grade plutonium nitrate solutions

    SciTech Connect

    Not Available

    1981-01-01

    These analytical procedures are designed to show whether a given material meets the purchaser's specifications as to plutonium content, effective fissile content, and impurity content. The following procedures are described in detail: plutonium by controlled-potential coulometry; plutonium by amperometric titration with iron(II); free acid by titration in an oxalate solution; free acid by iodate precipitation-potentiometric titration method; uranium by Arsenazo I spectrophotometric method; thorium by thorin spectrophotometric method; iron by 1,10-phenanthroline spectrophotometric method; chloride by thiocyanate spectrophotometric method; fluoride by distillation-spectrophotometric method; sulfate by barium sulfate turbidimetric method; isotopic composition by mass spectrometry; americium-241 by extraction and gamma counting; americium-241 by gamma counting; gamma-emitting fission products, uranium, and thorium by gamma-ray spectroscopy; rare earths by copper spark spectrochemical method; tungsten, niobium (columbium), and tantalum by spectrochemical method; simple preparation by spectrographic analysis for general impurities. (JMT)

  9. Doug Dearolph | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Doug Dearolph Manager - Savannah Field Office Our Leadership Mr. Douglas James Dearolph is the DOE Manager for the National Nuclear Security Administration's (NNSA) Savannah River Field Office (SRFO). In this position, he is responsible for enabling NNSA programmatic work at the Savannah River Site (SRS), Aiken, South Carolina. The SRFO is responsible for contract administration and federal technical oversight for NNSA operations that are performed by the Savannah River Nuclear Solutions, LLC,

  10. Socio-economic impacts of nuclear generating stations: Crystal River Unit 3 case study

    SciTech Connect

    Bergmann, P.A.

    1982-07-01

    This report documents a case study of the socio-economic impacts of the construction and operation of the Crystal River Unit 3 nuclear power station. It is part of a major post-licensing study of the socio-economic impacts at twelve nuclear power stations. The case study covers the period beginning with the announcement of plans to construct the reactor and ending in the period 1980 to 1981. The case study deals with changes in the economy, population, settlement patterns and housing, local government and public services, social structure, and public response in the study area during the construction/operation of the reactor. A regional modeling approach is used to trace the impact of construction/operation on the local economy, labor market, and housing market. Emphasis in the study is on the attribution of socio-economic impacts to the reactor or other causal factors. As part of the study of local public response to the construction/operation of the reactor, the effects of the Three Mile Island accident are examined.

  11. SAVANNAH RIVER SITE INCIPIENT SLUDGE MIXING IN RADIOACTIVE LIQUID WASTE STORAGE TANKS DURING SALT SOLUTION BLENDING

    SciTech Connect

    Leishear, R.; Poirier, M.; Lee, S.; Steeper, T.; Fowley, M.; Parkinson, K.

    2011-01-12

    This paper is the second in a series of four publications to document ongoing pilot scale testing and computational fluid dynamics (CFD) modeling of mixing processes in 85 foot diameter, 1.3 million gallon, radioactive liquid waste, storage tanks at Savannah River Site (SRS). Homogeneous blending of salt solutions is required in waste tanks. Settled solids (i.e., sludge) are required to remain undisturbed on the bottom of waste tanks during blending. Suspension of sludge during blending may potentially release radiolytically generated hydrogen trapped in the sludge, which is a safety concern. The first paper (Leishear, et. al. [1]) presented pilot scale blending experiments of miscible fluids to provide initial design requirements for a full scale blending pump. Scaling techniques for an 8 foot diameter pilot scale tank were also justified in that work. This second paper describes the overall reasons to perform tests, and documents pilot scale experiments performed to investigate disturbance of sludge, using non-radioactive sludge simulants. A third paper will document pilot scale CFD modeling for comparison to experimental pilot scale test results for both blending tests and sludge disturbance tests. That paper will also describe full scale CFD results. The final paper will document additional blending test results for stratified layers in salt solutions, scale up techniques, final full scale pump design recommendations, and operational recommendations. Specifically, this paper documents a series of pilot scale tests, where sludge simulant disturbance due to a blending pump or transfer pump are investigated. A principle design requirement for a blending pump is UoD, where Uo is the pump discharge nozzle velocity, and D is the nozzle diameter. Pilot scale test results showed that sludge was undisturbed below UoD = 0.47 ft{sup 2}/s, and that below UoD = 0.58 ft{sup 2}/s minimal sludge disturbance was observed. If sludge is minimally disturbed, hydrogen will not be

  12. Savannah River Site 2012 Outlook: Transuranic Waste Program Set to Safely

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Reach Milestone | Department of Energy 2012 Outlook: Transuranic Waste Program Set to Safely Reach Milestone Savannah River Site 2012 Outlook: Transuranic Waste Program Set to Safely Reach Milestone January 1, 2012 - 12:00pm Addthis By May, Savannah River Nuclear Solutions expects to be shipping transuranic waste to the Waste Isolation Pilot Plant almost continuously, using six TRUPACT-III shipping containers like the one shown here. By May, Savannah River Nuclear Solutions expects to be

  13. Radiation re-solution of fission gas in non-oxide nuclear fuel

    SciTech Connect

    Matthews, Christopher; Schwen, Daniel; Klein, Andrew C.

    2015-02-01

    Renewed interest in fast nuclear reactors is creating a need for better understanding of fission gas bubble behavior in non-oxide fuels to support very long fuel lifetimes. Collisions between fission fragments and their subsequent cascades can knock fission gas atoms out of bubbles and back into the fuel lattice. We showed that these collisions can be treated as using the so-called ‘‘homogenous’’ atom-by-atom re-solution theory and calculated using the Binary Collision Approximation code 3DOT. The calculations showed that there is a decrease in the re-solution parameter as bubble radius increases until about 50 nm, at which the re-solution parameter stays nearly constant. Furthermore, our model shows ion cascades created in the fuel result in many more implanted fission gas atoms than collisions directly with fission fragments. This calculated re-solution parameter can be used to find a re-solution rate for future bubble simulations.

  14. PIA - Savannah River Site Management and Operating Contractor (HRMS) |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Site Management and Operating Contractor (HRMS) PIA - Savannah River Site Management and Operating Contractor (HRMS) PIA - Savannah River Site Management and Operating Contractor (HRMS) PIA - Savannah River Site Management and Operating Contractor (HRMS) (292.43 KB) More Documents & Publications PIA - Savannah River Nuclear Solutions (SRNS) Human Resource Management System (HRMS) Integrated Safety Management Workshop Registration, PIA, Idaho National Laboratory PIA -

  15. 2013 Nuclear Workforce Development Day

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Career Workshop Topics:  Focusing on Your Strengths  Dressing for Success  Taking Advantage of Internships & Co-Op Programs Moderator: Renee Stewart - National Nuclear Security Administration Operations & Programs Savannah River Nuclear Solutions Panel Members: Nora Swanson - Workforce Development Coordinator Southern Company Andrew Bouldin - Workforce Strategies Team Leader Southern Company Scott Macfarland - Manager, Corporate Workforce Planning SCANA Corporation Career

  16. Nitrous oxide production from radiolysis of simulted high-level nuclear waste solutions

    SciTech Connect

    Walker, D.D.; Hobbs, D.T.; Tiffany, J.B.; Bibler, N.E.; Meisel, D.

    1992-07-01

    Nitrous oxide gas (N{sub 2}O) is produced by the radiolysis of aqueous nitrate or nitrite solutions in the presence of organic compounds. When ethylenediaminetetraacetic acid (EDTA) or N- (2-hydroxyethyl)-ethylenediaminetriacetic acid (HEDTA) is present, the G-value for hydrogen increases and N{sub 2}O become the major gaseous product (G=0.54). A survey of organic compounds indicates the amount of N{sub 2}O formed depends on the structure of the organic. With highly oxidized organics (carbonate, formate, acetate and oxalate), little or no N{sub 2}O is formed. Aromatic and aliphatic organics (sodium tetraphenylborate, benzene, phenol, n-paraffin, and tributylphosphate) produce small amounts of N{sub 2}O. Water soluble, easily oxidized organics (methanol, ethanol, isopropanol, n-butanol, acetone, and ethylene glycol) produce large amounts of N{sub 2}O relative to the previous two categories. Nitrous oxide production is not greatly affected by pH between neutral and pH=13, but increases significantly in acid solution. The G-value for N{sub 2}O production in 10 wt% potassium tetraphenylborate slurries has been measured under process conditions important at the Savannah River Site.

  17. Nitrous oxide production from radiolysis of simulted high-level nuclear waste solutions

    SciTech Connect

    Walker, D.D.; Hobbs, D.T.; Tiffany, J.B.; Bibler, N.E. ); Meisel, D. )

    1992-01-01

    Nitrous oxide gas (N{sub 2}O) is produced by the radiolysis of aqueous nitrate or nitrite solutions in the presence of organic compounds. When ethylenediaminetetraacetic acid (EDTA) or N- (2-hydroxyethyl)-ethylenediaminetriacetic acid (HEDTA) is present, the G-value for hydrogen increases and N{sub 2}O become the major gaseous product (G=0.54). A survey of organic compounds indicates the amount of N{sub 2}O formed depends on the structure of the organic. With highly oxidized organics (carbonate, formate, acetate and oxalate), little or no N{sub 2}O is formed. Aromatic and aliphatic organics (sodium tetraphenylborate, benzene, phenol, n-paraffin, and tributylphosphate) produce small amounts of N{sub 2}O. Water soluble, easily oxidized organics (methanol, ethanol, isopropanol, n-butanol, acetone, and ethylene glycol) produce large amounts of N{sub 2}O relative to the previous two categories. Nitrous oxide production is not greatly affected by pH between neutral and pH=13, but increases significantly in acid solution. The G-value for N{sub 2}O production in 10 wt% potassium tetraphenylborate slurries has been measured under process conditions important at the Savannah River Site.

  18. Savannah River Remediation Donates $10,000 to South Carolina State Nuclear Engineering Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    *Editor's note: This article is cross-posted from Savannah River Remediation's website, where it was posted on September 28, 2012.

  19. Savannah River Site Contractor Resumes Full Operations Following Pause

    Energy.gov [DOE]

    AIKEN, S.C. – Savannah River Site management and operations contractor Savannah River Nuclear Solutions (SRNS) has resumed full operations following an operational pause in September 2015, incorporating improvements and lessons learned across all projects and facilities. The HB Line facility emerged from a period of improvements called Deliberate Operations in April, the last of the SRNS operations to resume full operations.

  20. The Savannah River Site is owned by the U.S. Department of Energy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    T. Bond Calloway, Jr. Associate Laboratory Director, Clean Energy Savannah River National Laboratory Savannah River Nuclear Solutions, LLC Auburn University Bachelor of Science, Chemical Engineering T. Bond Calloway, Jr. is the Associate Laboratory Director, Clean Energy Directorate at the Savannah River National Laboratory. Mr. Calloway leads a dynamic team of scientists and engineers conducting basic and applied research related to renewable and nuclear energy. He is also responsible for

  1. Deployment at the Savannah River Site of a standardized, modular transportable and connectable hazard category 2 nuclear system for repackaging TRU waste

    SciTech Connect

    Lussiez, G.; Hickman, S.; Anast, K. R.; Oliver, W. B.

    2004-01-01

    This paper describes the conception, design, fabrication and deployment of a modular, transportable, connectable Category 2 nuclear system deployed at the Savannah River site to be used for characterizing and repackaging Transuranic Waste destined for the Waste Isolation Pilot Plant (WIPP). A standardized Nuclear Category 2 and Performance Category 2 envelope called a 'Nuclear Transportainer' was conceived and designed that provides a safety envelope for nuclear operations. The Nuclear Transportainer can be outfitted with equipment that performs functions necessary to meet mission objectives, in this case repackaging waste for shipment to WIPP. Once outfitted with process and ventilation systems the Nuclear Transportainer is a Modular Unit (MU). Each MU is connectable to other MUS - nuclear or non-nuclear - allowing for multiple functions, command & control, or increasing capacity. The design took advantage of work already in-progress at Los Alamos National Laboratory (LANL) for a similar system to be deployed at LANL's Technical Area 54.

  2. New Whole-House Solutions Case Study: Hood River Passive House

    SciTech Connect

    2014-02-01

    The Hood River Passive Project was developed by Root Design Build of Hood River Oregon using the Passive House Planning Package (PHPP) to meet all of the requirements for certification under the European Passive House standards. The Passive House design approach has been gaining momentum among residential designers for custom homes and BEopt modeling indicates that these designs may actually exceed the goal of the U.S. Department of Energy's (DOE) Building America program to "reduce home energy use by 30%-50%" (compared to 2009 energy codes for new homes). This report documents the short term test results of the Shift House and compares the results of PHPP and BEopt modeling of the project. The design includes high R-Value assemblies, extremely tight construction, high performance doors and windows, solar thermal DHW, heat recovery ventilation, moveable external shutters and a high performance ductless mini-split heat pump. Cost analysis indicates that many of the measures implemented in this project did not meet the BA standard for cost neutrality. The ductless mini-split heat pump, lighting and advanced air leakage control were the most cost effective measures. The future challenge will be to value engineer the performance levels indicated here in modeling using production based practices at a significantly lower cost.

  3. Modeling Solute Thermokinetics in LiCI-KCI Molten Salt for Nuclear Waste Separation

    SciTech Connect

    Morgan, Dane; Eapen, Jacob

    2013-10-01

    Recovery of actinides is an integral part of a closed nuclear fuel cycle. Pyrometallurgical nuclear fuel recycling processes have been developed in the past for recovering actinides from spent metallic and nitride fuels. The process is essentially to dissolve the spent fuel in a molten salt and then extract just the actinides for reuse in a reactor. Extraction is typically done through electrorefining, which involves electrochemical reduction of the dissolved actinides and plating onto a cathode. Knowledge of a number of basic thermokinetic properties of salts and salt-fuel mixtures is necessary for optimizing present and developing new approaches for pyrometallurgical waste processing. The properties of salt-fuel mixtures are presently being studied, but there are so many solutes and varying concentrations that direct experimental investigation is prohibitively time consuming and expensive (particularly for radioactive elements like Pu). Therefore, there is a need to reduce the number of required experiments through modeling of salt and salt-fuel mixture properties. This project will develop first-principles-based molecular modeling and simulation approaches to predict fundamental thermokinetic properties of dissolved actinides and fission products in molten salts. The focus of the proposed work is on property changes with higher concentrations (up to 5 mol%) of dissolved fuel components, where there is still very limited experimental data. The properties predicted with the modeling will be density, which is used to assess the amount of dissolved material in the salt; diffusion coefficients, which can control rates of material transport during separation; and solute activity, which determines total solubility and reduction potentials used during electrorefining. The work will focus on La, Sr, and U, which are chosen to include the important distinct categories of lanthanides, alkali earths, and actinides, respectively. Studies will be performed using LiCl-KCl salt

  4. Corrosion property of 9Cr-ODS steel in nitric acid solution for spent nuclear fuel reprocessing

    SciTech Connect

    Takeuchi, M.; Koizumi, T.; Inoue, M.; Koyama, S.I.

    2013-07-01

    Corrosion tests of oxide dispersion strengthened with 9% Cr (9Cr-ODS) steel, which is one of the desirable materials for cladding tube of sodium-cooled fast reactors, in pure nitric acid solution, spent FBR fuel solution, and its simulated solution were performed to understand the corrosion behavior in a spent nuclear fuel reprocessing. In this study, the 9Cr-ODS steel with lower effective chromium content was evaluated to understand the corrosion behavior conservatively. As results, the tube-type specimens of the 9Cr-ODS steels suffered severe weight loss owing to active dissolution at the beginning of the immersion test in pure nitric acid solution in the range from 1 to 3.5 M. In contrast, the weight loss was decreased and they showed a stable corrosion in the higher nitric acid concentration, the dissolved FBR fuel solution, and its simulated solution by passivation. The corrosion rates of the 9Cr-ODS steel in the dissolved FBR fuel solution and its simulated solution were 1-2 mm/y and showed good agreement with each other. The passivation was caused by the shift of corrosion potential to noble side owing to increase in nitric acid concentration or oxidative ions in the dissolved FBR fuel solution and the simulated spent fuel solution. (authors)

  5. SOLUBILITY OF URANIUM AND PLUTONIUM IN ALKALINE SAVANNAH RIVER SITE HIGH LEVEL WASTE SOLUTIONS

    SciTech Connect

    King, W.; Hobbs, D.; Wilmarth, B.; Edwards, T.

    2010-03-10

    Five actual Savannah River Site tank waste samples and three chemically-modified samples were tested to determine solubility limits for uranium and plutonium over a one year time period. Observed final uranium concentrations ranged from 7 mg U/L to 4.5 g U/L. Final plutonium concentrations ranged from 4 {micro}g Pu/L to 12 mg Pu/L. Actinide carbonate complexation is believed to result in the dramatic solubility increases observed for one sample over long time periods. Clarkeite, NaUO{sub 2}(O)OH {center_dot} H{sub 2}O, was found to be the dominant uranium solid phase in equilibrium with the waste supernate in most cases.

  6. Savannah River Site - D-Area Oil Seepage Basin | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    - D-Area Oil Seepage Basin Savannah River Site - D-Area Oil Seepage Basin January 1, 2014 - 12:00pm Addthis US Department of Energy Groundwater Database Groundwater Master Report InstallationName, State: Savannah River Site, SC Responsible DOE Office: Savannah River Site Plume Name: D-Area Oil Seepage Basin Remediation Contractor: Savannah River Nuclear Solutions, LLC PBS Number: 30 Report Last Updated: 2013 Contaminants Halogenated VOCs/SVOCs Present?: Yes VOC Name Concentration (ppb)

  7. U.S. DEPARTMENT OF ENERGY * SAVANNAH RIVER SITE * AIKEN * SC

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Long-term Radionuclide Field Lysimeter Experiment Contact Information SRNL Office of Communications 803.725.4396 Located at the U.S. Department of Energy's Savannah River Site near Aiken, South Carolina Operated by Savannah River Nuclear Solutions "National Laboratory" for DOE Office of Environmental Management Applied research, development and deployment of practical, high-value and cost-effective nuclear materials management and technology solutions in the areas of national security,

  8. U.S. DEPARTMENT OF ENERGY * SAVANNAH RIVER SITE * AIKEN * SC

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    SRNL, Clemson University Join Forces for World's Highest Power Grid Simulator Contact Information SRNL Office of Communications 803.725.4396 Located at the U.S. Department of Energy's Savannah River Site near Aiken, South Carolina Operated by Savannah River Nuclear Solutions "National Laboratory" for DOE Office of Environmental Management Applied research, development and deployment of practical, high-value and cost-effective nuclear materials management and technology solutions in the

  9. Savannah River Site "Live Burn" Training Sharpens Skills | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) Site "Live Burn" Training Sharpens Skills Tuesday, June 30, 2015 - 1:47pm Live Burn training As part of the training that equips them to ensure safe operations, Savannah River Site radiological protection (RP) and fire department personnel recently conducted their annual "Live Burn" training exercises that simulate fires in facilities with chemical and radiological contamination. The Live Burn exercise took place at the Martinez-Columbia

  10. Hood River Passive House, Hood River, Oregon (Fact Sheet), Building America Case Study: Whole-House Solutions for New Homes, Building Technologies Office (BTO)

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Hood River Passive House Hood River, Oregon PROJECT INFORMATION Construction: New Home Type: Single-family, custom Builder: Root Design Build of Hood River, Oregon www.rootdesignbuild.com/ Size: 2,004 ft 2 Price Range: $320,000 Date completed: August 2012 Climate Zone: 5-Dry PERFORMANCE DATA HERS index: 40 Projected annual energy use reduction of 62% below benchmark saving: $943/year Billing data based on 9 months shows a 69% reduction in energy use, resulting in annual savings of $1,140

  11. EM Develops Database for Efficient Solutions to Nuclear Cleanup Challenges Across Complex

    Energy.gov [DOE]

    WASHINGTON, D.C. – Many deactivation and decommissioning (D&D) projects across the EM complex require robotic and remote handling systems to protect workers during nuclear cleanup operations.

  12. Savannah River Site Contractor Endows Professorship to Help Grow Local Engineers

    Energy.gov [DOE]

    AIKEN, S.C. – Savannah River Site (SRS) management and operating contractor Savannah River Nuclear Solutions has given $550,000 to the University of South Carolina Aiken (USCA) to endow its faculty professorship as part of a new bachelor’s degree program in industrial process engineering.

  13. Savannah River Site Workers Share Knowledge with Students in Engineering Teach-Ins

    Energy.gov [DOE]

    AIKEN, S.C. – Employees of EM contractor Savannah River Nuclear Solutions (SRNS) at the Savannah River Site (SRS) recently held 90 science- and engineering-based demonstrations for more than 2,000 students in the region in recognition of National Engineers Week.

  14. Risk-based inspection guide for Crystal River Unit 3 Nuclear Power Plant

    SciTech Connect

    Smith, B.W.; Dukelow, J.S.; Vo, T.V.; Harris, M.S.; Gore, B.F.; Hunt, S.T. )

    1991-06-01

    The Level 1 probabilistic risk assessment (PRA) for Crystal River Unit 3 (CR-3) has been analyzed to identify plant systems and components important to minimizing public risk, as measured by system contributions to plant core damage frequency, and to identify the primary failure modes for these components. The report presents a series of tables, organized by system and prioritized by risk importance, which identify components associated with 98% of the inspectable risk due to plant operation. The systems addressed, in descending order to risk importance are: Low Pressure Injection, AC Power, Service Water, Demineralized Water, High Pressure Injection, DC Power, Emergency Feedwater, Reactor Coolant Pressure Control, and Power Conversion. This ranking is based on the Fussell-Vesely measure of risk importance, i.e., the fraction of the total core damage frequency which involves failures of the system of interest. 3 refs., 9 figs., 13 tabs.

  15. Savannah River Operations Office P.O. Box A Aiken. South Carolina 29802

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Aiken. South Carolina 29802 DEC 1 J 2011 Mr. Dwayne Wilson, President & CEO Savannah River Nuclear Solutions, LLC Savannah River Site Building 730-1 B, Room 333 Aiken, SC 29808 Dear Mr. Wilson: SUBJECT: Final Fee Determination for Fiscal Year (FY) 2011 Base Work Performance Period The purpose of this letter is to inform you of my determination of performance fee to be awarded to Savannah River Nuclear Solutions. LLC (SRNS) for FY20 t 1, in accordance with Contract No. DE-AC09-08SR22470,

  16. Voluntary Protection Program Onsite Review, Washington River...

    Energy Saver

    Washington River Protection Solutions, LLC, Hanford - Feb 2014 Voluntary Protection Program Onsite Review, Washington River Protection Solutions, LLC, Hanford - Feb 2014 February...

  17. POTENTIAL FOR STRESS CORROSION CRACKING OF A537 CARBON STEEL NUCLEAR WASTE TANKS CONTAINING HIGHLY CAUSTIC SOLUTIONS

    SciTech Connect

    Lam, P.; Stripling, C.; Fisher, D.; Elder, J.

    2010-04-26

    The evaporator recycle streams of nuclear waste tanks may contain waste in a chemistry and temperature regime that exceeds the current corrosion control program, which imposes temperature limits to mitigate caustic stress corrosion cracking (CSCC). A review of the recent service history found that two of these A537 carbon steel tanks were operated in highly concentrated hydroxide solution at high temperature. Visual inspections, experimental testing, and a review of the tank service history have shown that CSCC has occurred in uncooled/un-stress relieved tanks of similar construction. Therefore, it appears that the efficacy of stress relief of welding residual stress is the primary corrosion-limiting mechanism. The objective of this experimental program is to test A537 carbon steel small scale welded U-bend specimens and large welded plates (30.48 x 30.38 x 2.54 cm) in a caustic solution with upper bound chemistry (12 M hydroxide and 1 M each of nitrate, nitrite, and aluminate) and temperature (125 C). These conditions simulate worst-case situations in these nuclear waste tanks. Both as-welded and stress-relieved specimens have been tested. No evidence of stress corrosion cracking was found in the U-bend specimens after 21 days of testing. The large plate test was completed after 12 weeks of immersion in a similar solution at 125 C except that the aluminate concentration was reduced to 0.3 M. Visual inspection of the plate revealed that stress corrosion cracking had not initiated from the machined crack tips in the weld or in the heat affected zone. NDE ultrasonic testing also confirmed subsurface cracking did not occur. Based on these results, it can be concluded that the environmental condition of these tests was unable to develop stress corrosion cracking within the test periods for the small welded U-bends and for the large plates, which were welded with an identical procedure as used in the construction of the actual nuclear waste tanks in the 1960s. The

  18. Washington River Protection Solutions

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Management and operation of the Effluent Treatment Facility (ETF), the Liquid Effluent Retention Facility (LERF), and the Treated Effluent Disposal Facility (TEDF) in...

  19. Precipitation process for the removal of technetium values from nuclear waste solutions

    DOEpatents

    Walker, D.D.; Ebra, M.A.

    1985-11-21

    High efficiency removal of techetium values from a nuclear waste stream is achieved by addition to the waste stream of a precipitant contributing tetraphenylphosphonium cation, such that a substantial portion of the technetium values are precipitated as an insoluble pertechnetate salt.

  20. nuclear

    National Nuclear Security Administration (NNSA)

    2%2A en U.S-, Japan Exchange Best Practices on Nuclear Emergency Response http:nnsa.energy.govmediaroompressreleasesu.s-japan-exchange-best-practices-nuclear-emergency-respon...

  1. The Savannah River Site is owned by the U.S. Department of Energy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Acting Associate Laboratory Director, Science and Technology Deputy Associate Laboratory Director, Science and Technology Savannah River National Laboratory Savannah River Nuclear Solutions, LLC Alice M. Murray, PhD Mount Holyoke College Bachelor of Arts, Chemistry University of Arizona PhD, Physical Chemistry Alice M. Murray is Acting Associate Laboratory Director for Science and Technology at the Savannah River National Laboratory. Dr. Murray has been engaged as a researcher, manager, and

  2. Actinide extraction from simulated and irradiated spent nuclear fuel using TBP solutions in HFC-134a

    SciTech Connect

    Shadrin, A.; Babain, V.; Kamachev, V.; Murzin, A.; Shafikov, D.; Dormidonova, A.

    2008-07-01

    It was demonstrated that solutions of TBP-nitric acid adduct in liquid Freon HFC-134a (1.2 MPa, 25 deg. C) allowed for recovery of uranium with nearly the same effectiveness as supercritical CO{sub 2} at 30 MPa. At nearly quantitative recovery of U and Pu, a DF of ca. 10 can be attained on dissolution and extraction of simulated SNF samples. The possibility of recovery of actinides contained in cakes produced by oxide conversion of simulated and irradiated SNF with solutions of TBP and DBE in Freon HFC-134a was shown. (authors)

  3. Savannah River Site’s H Canyon Begins 2012 with New and Continuing Missions- Transuranic waste remediation, new mission work are the focus of the nation’s only active nuclear chemical separations facility in 2012

    Energy.gov [DOE]

    AIKEN, S.C. – The Savannah River Site (SRS) is breathing new life into the H Canyon, the only active nuclear chemical separations facility still operating in the U.S.

  4. A Holistic, rapid-deployment, solution for safe used nuclear fuel management in the United States of America

    SciTech Connect

    Eriksson, L.G.

    2007-07-01

    Recent political initiatives and increased willingness in the United States of America (U.S. or USA) to consider federal storage and recycling of used nuclear fuel (UNF), augmented by expressed private interest in developing 31 new nuclear power plants, strongly suggest that the U.S. is on the brink of a nuclear-energy renaissance. Unfortunately, the related UNF-management and -disposition research, technology, and facility developments have been virtually dormant for 25 years. Fortunately, other countries have pursued safe UNF-management and -disposition solutions during this period that the U.S. now can take advantage of to develop the required UNF-management technologies and facilities in a timely and cost-effective manner. The following criteria/concepts for the timely and cost-effective development of safe and secure nuclear facilities were applied to current and planned UNF-management in the U.S. to formulate a potential, holistic, 'rapid-deployment' UNF-management solution at the Nevada Test Site (NTS), referred to as the Nevada National Nuclear Fuel Management Center (3NFMC): - Locate pending UNF-storage and -recycling facilities on the NTS in the vicinity of the Nation's candidate deep geological disposal system (repository) for UNF and other high level radioactive waste (HLW) at the Yucca Mountain (YM) site; - Locate all main UNF-management facilities underground; and - Use best-available technology to site, design, and construct the pending facilities. Three main challenges to the timely and cost-effective development of the 3NFMC are: (1) Statutory restrictions preventing the UNF-storage and -disposal facilities from being co-located and co-developed by federal and civilian/private parties; (2) Long-standing, scientific, local-political, key-Congressional, and national-ideological opposition to the YM UNF/HLW repository; and (3) The discouraging track record, and the related lack of trust in, and credibility of the organization currently responsible for

  5. Independent Oversight Inspection, Savannah River Site Office...

    Energy Saver

    Office - December 2009 Independent Oversight Inspection, Savannah River Site Office - December 2009 December 2009 Inspection of Nuclear Safety at the Savannah River Site Office and ...

  6. WASTE ISOLATION PILOT PLANT (WIPP): THE NATIONS' SOLUTION TO NUCLEAR WASTE STORAGE AND DISPOSAL ISSUES

    SciTech Connect

    Lopez, Tammy Ann

    2014-07-17

    In the southeastern portion of my home state of New Mexico lies the Chihuahauan desert, where a transuranic (TRU), underground disposal site known as the Waste Isolation Pilot Plant (WIPP) occupies 16 square miles. Full operation status began in March 1999, the year I graduated from Los Alamos High School, in Los Alamos, NM, the birthplace of the atomic bomb and one of the nation’s main TRU waste generator sites. During the time of its development and until recently, I did not have a full grasp on the role Los Alamos was playing in regards to WIPP. WIPP is used to store and dispose of TRU waste that has been generated since the 1940s because of nuclear weapons research and testing operations that have occurred in Los Alamos, NM and at other sites throughout the United States (U.S.). TRU waste consists of items that are contaminated with artificial, man-made radioactive elements that have atomic numbers greater than uranium, or are trans-uranic, on the periodic table of elements and it has longevity characteristics that may be hazardous to human health and the environment. Therefore, WIPP has underground rooms that have been carved out of 2,000 square foot thick salt formations approximately 2,150 feet underground so that the TRU waste can be isolated and disposed of. WIPP has operated safely and successfully until this year, when two unrelated events occurred in February 2014. With these events, the safety precautions and measures that have been operating at WIPP for the last 15 years are being revised and improved to ensure that other such events do not occur again.

  7. In-line x-ray fluorescence analysis of special nuclear materials in dissolver solution: laboratory development and simulation studies

    SciTech Connect

    Hudgens, C.R.

    1986-02-27

    An automated x-ray fluorescence analysis apparatus and sampling system has been designed for a proof-of-principle test of on-line x-ray fluorescence assay of special nuclear materials in dissolver solutions. A sampling technique is described in which the sample may be a large aliquot or an entire, ''totally sampled'' batch of solutions. The total sample technique used with an internal standard gives total mass assays with no need for a tank volume measurement, thereby eliminating errors of aliquotting and tank volume measurement. The test XRF apparatus has been used for the generation of a data base consisting of the usable concentration ranges and times required for attaining targeted standard deviations for assays of dilute plutonium dissolved in high-density uranium solutions, using the uranium-thorium pair as surrogate for plutonium-uranium. Error propagation equations have been derived for governing the efficient accumulation of high-precision data under the extremely low signal-to-noise conditions encountered with dilute SNM in dense matrices. The data base, used as input to the error propagation equations, is used for specifying the parameters of x-ray fluorescence analysis equipment that will meet any targeted assaying precision and assay time requirements. Assay accuracy at low levels of analyst is critically dependent on the accuracy of the background determination. A data-taking strategy which uses a short dwell time at each spectrometer setting is effective in compensating for long-term instrumental drift. The effects on assay time and precision of the reflecting power and diffraction halfwidth of the analyzing crystal, spectrometer design, signal-to-noise ratios, x-ray detection system, and exciting x-ray power are discussed. 8 refs.

  8. System and method for the analysis of one or more compounds and/or species produced by a solution-based nuclear reactor

    DOEpatents

    Policke, Timothy A; Nygaard, Eric T

    2014-05-06

    The present invention relates generally to both a system and method for determining the composition of an off-gas from a solution nuclear reactor (e.g., an Aqueous Homogeneous Reactor (AHR)) and the composition of the fissioning solution from those measurements. In one embodiment, the present invention utilizes at least one quadrupole mass spectrometer (QMS) in a system and/or method designed to determine at least one or more of: (i) the rate of production of at least one gas and/or gas species from a nuclear reactor; (ii) the effect on pH by one or more nitrogen species; (iii) the rate of production of one or more fission gases; and/or (iv) the effect on pH of at least one gas and/or gas species other than one or more nitrogen species from a nuclear reactor.

  9. Savannah River Nuclear Solutions S A V A N N A H R I V E R S

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    to replace the 68 failed coils and repair the other systems. FOR IMMEDIATE RELEASE A crane performs a critical lift to replace a heavy heating and cooling coil that was damaged...

  10. U. S. Department of Energy Savannah River Operations Office - DOE-SR News

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Release Archive Release Archive DOE-SR News Release Archive 2012 News Releases Savannah River Site Reaches Significant Milestone with Waste Tank Closure SR-2012-06 Adobe Acrobat PDF DOE to Extend Savannah River Nuclear Solutions Contract at Savannah River Site to September 2016 SR-2012-05 Adobe Acrobat PDF Savannah River Site Federal Employees Volunteer for United Way Campaign SR-2012-04 Adobe Acrobat PDF Installation of Six Large Process Tanks Mark Big Step in Construction of Critical Waste

  11. Effects of a NBC (nuclear, biological, and chemical) nutrient solution on physiological and psychological status during sustained activity in the heat. Final report, February-March 1987

    SciTech Connect

    Rose, M.S.; Francesconi, R.P.; Levine, L.; Shukitt, B.; Munro, I.

    1987-07-17

    Soldiers involved in nuclear, biological, and chemical (NBC) warfare may be encapsulated in MOPP4 ensemble for up to 24 hours. In that configuration the soldier is in a fasting state unless he can move to a decontaminated area to eat. The purpose of this study was to determine if a nutrient solution containing 2.34% carbohydrate and 24.1 mEq sodium per liter (NBC nutrient solution) would be more effective than a control solution of colored and flavored water in maintaining the physiological and psychological status of a person under thermal conditions that simulate MOPP4 encapsulation. Fluid intake was encouraged and the subjects maintained hydration fairly well. The results of this study indicated that water and the NBC Nutrient solution were equally effective in maintaining hydration and physiological status under hot dry conditions. The NBC Nutrient solution was more palatable, lowered symptom intensity, and improves mood; cognitive performance was not improved.

  12. A Parallel Multi-Domain Solution Methodology Applied to Nonlinear Thermal Transport Problems in Nuclear Fuel Pins

    SciTech Connect

    Philip, Bobby; Berrill, Mark A; Allu, Srikanth; Hamilton, Steven P; Sampath, Rahul S; Clarno, Kevin T; Dilts, Gary

    2015-01-01

    This paper describes an efficient and nonlinearly consistent parallel solution methodology for solving coupled nonlinear thermal transport problems that occur in nuclear reactor applications over hundreds of individual 3D physical subdomains. Efficiency is obtained by leveraging knowledge of the physical domains, the physics on individual domains, and the couplings between them for preconditioning within a Jacobian Free Newton Krylov method. Details of the computational infrastructure that enabled this work, namely the open source Advanced Multi-Physics (AMP) package developed by the authors are described. Details of verification and validation experiments, and parallel performance analysis in weak and strong scaling studies demonstrating the achieved efficiency of the algorithm are presented. Furthermore, numerical experiments demonstrate that the preconditioner developed is independent of the number of fuel subdomains in a fuel rod, which is particularly important when simulating different types of fuel rods. Finally, we demonstrate the power of the coupling methodology by considering problems with couplings between surface and volume physics and coupling of nonlinear thermal transport in fuel rods to an external radiation transport code.

  13. Solution-state structure and affinities of cyclodextrin: Fentanyl complexes by nuclear magnetic resonance spectroscopy and molecular dynamics simulation

    DOE PAGES [OSTI]

    Mayer, Brian P.; Kennedy, Daniel J.; Lau, Edmond Y.; Valdez, Carlos A.

    2016-02-04

    Cyclodextrins (CDs) are investigated for their ability to form inclusion complexes with the analgesic fentanyl and three similar molecules: acetylfentanyl, thiofentanyl, and acetylthiofentanyl. Stoichiometry, binding strength, and complex structure are revealed through nuclear magnetic resonance (NMR) techniques and discussed in terms of molecular dynamics (MD) simulations. It was found that β-cyclodextrin is generally capable of forming the strongest complexes with the fentanyl panel. Two-dimensional NMR data and computational chemical calculations are used to derive solution-state structures of the complexes. Binding of the fentanyls to the CDs occurs at the amide phenyl ring, leaving the majority of the molecule solvated bymore » water, an observation common to all four fentanyls. This finding suggests a universal binding behavior, as the vast majority of previously synthesized fentanyl analogues contain this structural moiety. Furthermore, this baseline study serves as the most complete work on CD:fentanyl complexes to date and provides the insights into strategies for producing future generations of designer cyclodextrins capable of stronger and more selective complexation of fentanyl and its analogues.« less

  14. The Influence of Pre-oxidation on the Corrosion of Copper Nuclear Waste Canisters in Aqueous Anoxic Sulphide Solutions

    SciTech Connect

    Smith, J.M.; Qin, Z.; Wren, J.C.; Shoesmith, D.W.

    2007-07-01

    Scandinavian/Canadian high-level nuclear waste repository conditions are expected to evolve from initially warm and oxic to eventually cool and anoxic. During the warm, oxic period corrosion products will accumulate on the container surface. These deposits could impede the reaction of Cu with aqueous sulphide, the only reaction that could lead to the significant accumulation of additional corrosion damage under the long-term anoxic conditions. The kinetics of the reaction of Cu with aqueous sulphide solutions have been studied using electrochemical and surface analytical techniques. Corrosion potential measurements were used to follow the evolution of the surface as oxides/hydroxides were converted to sulphides in the sulphide concentration range 10{sup -5} to 10{sup -3} mol/L. Changes in composition were followed by in-situ Raman spectroscopy. Of critical importance is whether or not a period of pre-oxidation of a Cu container surface can prevent subsequent reaction of the surface with remotely produced sulphide. (authors)

  15. A parallel multi-domain solution methodology applied to nonlinear thermal transport problems in nuclear fuel pins

    SciTech Connect

    Philip, Bobby; Berrill, Mark A.; Allu, Srikanth; Hamilton, Steven P.; Sampath, Rahul S.; Clarno, Kevin T.; Dilts, Gary A.

    2015-01-26

    We describe an efficient and nonlinearly consistent parallel solution methodology for solving coupled nonlinear thermal transport problems that occur in nuclear reactor applications over hundreds of individual 3D physical subdomains. Efficiency is obtained by leveraging knowledge of the physical domains, the physics on individual domains, and the couplings between them for preconditioning within a Jacobian Free Newton Krylov method. Details of the computational infrastructure that enabled this work, namely the open source Advanced Multi-Physics (AMP) package developed by the authors are described. The details of verification and validation experiments, and parallel performance analysis in weak and strong scaling studies demonstrating the achieved efficiency of the algorithm are presented. Moreover, numerical experiments demonstrate that the preconditioner developed is independent of the number of fuel subdomains in a fuel rod, which is particularly important when simulating different types of fuel rods. Finally, we demonstrate the power of the coupling methodology by considering problems with couplings between surface and volume physics and coupling of nonlinear thermal transport in fuel rods to an external radiation transport code.

  16. A parallel multi-domain solution methodology applied to nonlinear thermal transport problems in nuclear fuel pins

    DOE PAGES [OSTI]

    Philip, Bobby; Berrill, Mark A.; Allu, Srikanth; Hamilton, Steven P.; Sampath, Rahul S.; Clarno, Kevin T.; Dilts, Gary A.

    2015-01-26

    We describe an efficient and nonlinearly consistent parallel solution methodology for solving coupled nonlinear thermal transport problems that occur in nuclear reactor applications over hundreds of individual 3D physical subdomains. Efficiency is obtained by leveraging knowledge of the physical domains, the physics on individual domains, and the couplings between them for preconditioning within a Jacobian Free Newton Krylov method. Details of the computational infrastructure that enabled this work, namely the open source Advanced Multi-Physics (AMP) package developed by the authors are described. The details of verification and validation experiments, and parallel performance analysis in weak and strong scaling studies demonstratingmore » the achieved efficiency of the algorithm are presented. Moreover, numerical experiments demonstrate that the preconditioner developed is independent of the number of fuel subdomains in a fuel rod, which is particularly important when simulating different types of fuel rods. Finally, we demonstrate the power of the coupling methodology by considering problems with couplings between surface and volume physics and coupling of nonlinear thermal transport in fuel rods to an external radiation transport code.« less

  17. nuclear controls | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    controls Nuclear Verification Challenge: Maintain the U.S. ability to monitor and verify nuclear reduction agreements and detect violations of treaties and other nuclear nonproliferation commitments. Solution: Develop and deploy measures to ensure verifiable compliance with treaties and other international agreements,... International Nuclear Safeguards Challenge: Detect/deter undeclared nuclear materials and activities. Solution: Build capacity of the International Atomic Energy Agency and

  18. U.S. DEPARTMENT OF ENERGY * SAVANNAH RIVER SITE * AIKEN * SC

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    IDEAS Program: Individuals Developing Effective Alternative Solutions Savannah River Nuclear Solutions (SRNS) has developed a comprehensive software program adaptable to any company or corporation conducting an employee suggestion program. The IDEAS (Individuals Developing Effective Alternative Solutions) Program was created to stimulate employee participation in generating as many new IDEAS as possible that could benefit SRNS and its employees. The IDEAS software program was developed to manage

  19. Development of a promising filtration method for liquid clarification in nuclear facilities. [For TMI-2 water, reprocessing dissolver solutions, ZnBr/sub 2/ shielding solutions

    SciTech Connect

    Collins, E.D.; Knauer, J.B.; Byrd, L.A.; Ross, R.G.; Savage, H.C.

    1982-01-01

    Conclusions reached are that deep beds of diatomaceous earths are especially attractive for clarification of radioactive solutions, or slurries containing insoluble radioactive material, because the diatomaceous material provides a noncompressible medium that is retentive for a wide variety of particle sizes. Also, the diatomaceous material, because of its inorganic composition, is resistant to degradation by radiation from the retained particulate matter. Its silicious character is especially appropriate for conversion to vitrified or cement-type waste forms. This paper studied the use of diatomaceous earth to filter synthetic TMI-2 water, reprocessing dissolver solutions, and zinc bromide solutions (hot-cell shielding).

  20. Nuclear Verification | National Nuclear Security Administration

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Challenge: Maintain the U.S. ability to monitor and verify nuclear reduction agreements and detect violations of treaties and other nuclear nonproliferation commitments. Solution: ...

  1. U.S. DEPARTMENT OF ENERGY * SAVANNAH RIVER SITE * AIKEN * SC

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Smart Latch (tm) : Acoustic Door Latch Detector A "smart" door lock for industrial and consumer applications has been developed by researchers at Savannah River Nuclear Solution's Savannah River National Laboratory (SRNL) which uses existing state-of-the-art neural network technology to acoustically monitor lock performance and in particular the latching event. Eliminates failure to properly latch doors Properly implemented, the device could meet or exceed the performance of the human

  2. Development of a novel solvent for the simultaneous separation of strontium and cesium from dissolved Spent Nuclear Fuel solutions

    SciTech Connect

    Catherine L. Riddle; John D. Baker; Jack D. Law; Christopher A. McGrath; David H. Meikrantz; Bruce J. Mincher; Dean R. Peterman; Terry A. Todd

    2004-10-01

    The recovery of Cs and Sr from acidic solutions by solvent extraction has been investigated. The goal of this project was to develop an extraction process to remove Cs and Sr from high-level waste in an effort to reduce the heat loading in storage. Solvents for the extraction of Cs and Sr separately have been used on both caustic and acidic spent nuclear fuel waste in the past. The objective of this research was to find a suitable solvent for the extraction of both Cs and Sr simultaneously from acidic nitrate media. The solvents selected for this research possess good stability and extraction behavior when mixed together. The extraction experiments were performed with 4 ,4,(5 )-Di-(tbutyldicyclohexano)- 18-crown-6 {DtBuCH18C6}, Calix[4]arene-bis-(tert-octylbenzocrown-6) {BOBCalixC6} and 1-(2,2,3,3-tetrafluoropropoxy)-3-(4-sec-butylphenoxy)-2-propanol {Cs-7SB modifier} in a branched aliphatic kerosene {Isopar L}. The BOBCalixC6 and Cs-7SB modifier were developed at Oak Ridge National Laboratory (ORNL) by Bonnesen et al. [1]. The values obtained from the SREX solvent for DSr in 1 M nitric acid ranged from 0.7 to 2.2 at 25oC and 10oC respectively. The values for DCs in 1 M nitric acid with the CSSX solvent ranged from 8.0 to 46.0 at 25oC and 10oC respectively. A new mixed solvent, developed at the Idaho National Engineering and Environmental Laboratory (INEEL) by Riddle et al. [2], showed distributions for Sr ranging from 8.8 to 17.4 in 1 M nitric acid at 25oC and 10oC respectively. The DCs for the mixed solvent ranged from 7.7 to 20.2 in 1 M nitric acid at 25oC to 10oC respectively. The unexpectedly high distributions for Sr at both 25oC and 10oC show a synergy in the mixed solvent. The DCs, although lower than with CSSX solvent, still showed good extraction behavior.

  3. Savannah river site

    National Nuclear Security Administration (NNSA)

    at the Savannah River Site (SRS) to supply and process tritium, a radioactive form of hydrogen that is a vital component of nuclear weapons. SRS loads tritium and non-tritium...

  4. Savannah River Site | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Savannah River Site Savannah River Site Savannah River Site | June 2011 Aerial View Savannah River Site | June 2011 Aerial View Savannah River Site (SRS) has mission responsibilities in nuclear weapons stockpile stewardship by ensuring the safe and reliable management of tritium resources; by contributing to the stockpile surveillance program; and by assisting in the development of alternatives for large-scale pit disassembly/conversion capability. SRS also manages excess nuclear materials and

  5. Risk-based Prioritization of Facility Decommissioning and Environmental Restoration Projects in the National Nuclear Legacy Liabilities Program at the Chalk River Laboratory - 13564

    SciTech Connect

    Nelson, Jerel G.; Kruzic, Michael; Castillo, Carlos; Pavey, Todd; Alexan, Tamer; Bainbridge, Ian

    2013-07-01

    Chalk River Laboratory (CRL), located in Ontario Canada, has a large number of remediation projects currently in the Nuclear Legacy Liabilities Program (NLLP), including hundreds of facility decommissioning projects and over one hundred environmental remediation projects, all to be executed over the next 70 years. Atomic Energy of Canada Limited (AECL) utilized WorleyParsons to prioritize the NLLP projects at the CRL through a risk-based prioritization and ranking process, using the WorleyParsons Sequencing Unit Prioritization and Estimating Risk Model (SUPERmodel). The prioritization project made use of the SUPERmodel which has been previously used for other large-scale site prioritization and sequencing of facilities at nuclear laboratories in the United States. The process included development and vetting of risk parameter matrices as well as confirmation/validation of project risks. Detailed sensitivity studies were also conducted to understand the impacts that risk parameter weighting and scoring had on prioritization. The repeatable prioritization process yielded an objective, risk-based and technically defendable process for prioritization that gained concurrence from all stakeholders, including Natural Resources Canada (NRCan) who is responsible for the oversight of the NLLP. (authors)

  6. Socioeconomic impacts of nuclear generating stations: Crystal River Unit 3 case study. Technical report 1 Oct 78-4 Jan 82

    SciTech Connect

    Bergmann, P.A.

    1982-07-01

    The report documents a case study of the socioeconomic impacts of the construction and operation of the Crystal River Unit 3 nuclear power station. It is part of a major post-licensing study of the socioeconomic impacts at twelve nuclear power stations. The case study covers the period beginning with the announcement of plans to construct the reactor and ending in the period, 1980-81. The case study deals with changes in the economy, population, settlement patterns and housing, local government and public services, social structure, and public response in the study area during the construction/operation of the reactor. A regional modeling approach is used to trace the impact of construction/operation on the local economy, labor market, and housing market. Emphasis in the study is on the attribution of socioeconomic impacts to the reactor or other causal factors. As part of the study of local public response to the construction/operation of the reactor, the effects of the Three Mile Island accident are examined.

  7. U.S. DEPARTMENT OF ENERGY * SAVANNAH RIVER SITE * AIKEN * SC

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Reductive Precipitation for Technetium Removal from Salt Waste Researchers at the Savannah River National Laboratory (SRNL) have discovered a precipitation method for removing technetium from highly alkaline nuclear waste liquid. Background Significant soluble technetium removal from highly alkaline solutions was found to be a difficult region for inorganic precipitation processes. Such removal would be of value for future nuclear liquid processing, among other applications. Past work considered

  8. CHARACTERIZATION OF INDIVIDUAL CHEMICAL REACTIONS CONSUMING ACID DURING NUCLEAR WASTE PROCESSING AT THE SAVANNAH RIVER SITE - 136B

    SciTech Connect

    Koopman, D.; Pickenheim, B.; Lambert, D.; Newell, J.; Stone, M.

    2009-09-02

    Conversion of legacy radioactive high-level waste at the Savannah River Site into a stable glass waste form involves a chemical pretreatment process to prepare the waste for vitrification. Waste slurry is treated with nitric and formic acids to achieve certain goals. The total quantity of acid added to a batch of waste slurry is constrained by the catalytic activity of trace noble metal fission products in the waste that can convert formic acid into hydrogen gas at many hundreds of times the radiolytic hydrogen generation rate. A large block of experimental process simulations were performed to characterize the chemical reactions that consume acid prior to hydrogen generation. The analysis led to a new equation for predicting the quantity of acid required to process a given volume of waste slurry.

  9. Nuclear waste-form risk assessment for US Defense waste at Savannah River Plant. Annual report FY 1981

    SciTech Connect

    Cheung, H.; Edwards, L.L.; Harvey, T.F.; Jackson, D.D.; Revelli, M.A.

    1981-12-01

    Savannah River Plant has been supporting the Lawrence Livermore National Laboratory in its present effort to perform risk assessments of alternative waste forms for defense waste. This effort relates to choosing a suitable combination of solid form and geologic medium on the basis of risk of exposure to future generations; therefore, the focus is on post-closure considerations of deep geologic repositories. The waste forms being investigated include borosilicate glass, SYNROC, and others. Geologic media under consideration are bedded salt, basalt, and tuff. The results of our work during FY 1981 are presented in this, our second annual report. The two complementary tasks that comprise our program, analysis of waste-form dissolution and risk assessment, are described.

  10. Nuclear Controls | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Control Nuclear Controls Challenge: Detect/deter illicit transfers of nuclear/dual-use materials, technology, and commodities. Solution: Build domestic and international capacity to implement and meet export control obligations. Related Topics international security international security policy NIS nuclear controls safeguards safeguards and security verification Related News Nuclear Verification International Nuclear Safeguards Nonproliferation Policy Nonproliferation and Arms Control NIS

  11. Nuclear Verification | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Control Nuclear Verification Challenge: Maintain the U.S. ability to monitor and verify nuclear reduction agreements and detect violations of treaties and other nuclear nonproliferation commitments. Solution: Develop and deploy measures to ensure verifiable compliance with treaties and other international agreements, implement regimes to reduce nuclear weapons, and detect and dismantle undeclared nuclear programs. Specific subprogram activities include: Implementing current and developing future

  12. U.S. DEPARTMENT OF ENERGY * SAVANNAH RIVER ...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Nuclear Fuel Cycle Facilities - Nuclear reactors, heavy water facilities, reprocessing ... SRNL Fast Facts Located at the U.S. Department of Energy's Savannah River Site near Aiken, ...

  13. U.S. DEPARTMENT OF ENERGY * SAVANNAH RIVER SITE * AIKEN * SC

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Determining Solute Distribution Coefficient with a Hybrid Raman Sensor-Ion Exchanged Material Researchers at the Savannah River National Laboratory (SRNL) have developed a technique to measure radioactivity in waste solutions Background Almost all nuclear operations use sorption technology to reduce waste volume or to recover key valuable elements or isotopes. Current methods for determining actinide and strontium sorption on ion exchanged materials are laborious and operationally complex. The

  14. SAVANNAH RIVER SITE ENVIRONMENTAL REPORT FOR 2010

    SciTech Connect

    Mamatey, A.; Dunaway-Ackerman, J.

    2011-08-16

    This report was prepared in accordance with U.S. Department of Energy (DOE) Order 231.1A, 'Environment, Safety and Health Reporting,' to present summary environmental data for the purpose of: (a) characterizing site's environmental management performance; (b) summarizing environmental occurrences and responses reported during the calendar year; (c) describing compliance status with respect to environmental standards and requirements; and (d) highlighting significant site programs and efforts. This report is the principal document that demonstrates compliance with the requirements of DOE Order 5400.5, 'Radiation Protection of the Public and the Environment,' and is a key component of DOE's effort to keep the public informed of environmental conditions at Savannah River Site (SRS). SRS has four primary missions: (1) Environmental Management - Cleaning up the legacy of the Cold War efforts and preparing decommissioned facilities and areas for long-term stewardship; (2) Nuclear Weapons Stockpile Support - Meeting the needs of the U.S. nuclear weapons stockpile through the tritium programs of the National Nuclear Security Administration (NNSA); (3) Nuclear Nonproliferation Support - Meeting the needs of the NNSA's nuclear nonproliferation programs by safely storing and dispositioning excess special nuclear materials; and (4) Research and Development - Supporting the application of science by the Savannah River National Laboratory (SRNL) to meet the needs of SRS, the DOE complex, and other federal agencies During 2010, SRS worked to fulfill these missions and position the site for future operations. SRS continued to work with the South Carolina Department of Health and Environmental Control (SCDHEC), the Environmental Protection Agency (EPA), and the Nuclear Regulatory Commission to find and implement solutions and schedules for waste management and disposition. As part of its mission to clean up the Cold War legacy, SRS will continue to address the highest-risk waste

  15. Solution of resource allocation problem for identification of cost-effective measures to reduce nuclear proliferation risks

    SciTech Connect

    Andrianov, A.; Kuptsov, I.

    2013-07-01

    This report presents a methodology of selection of cost-effective measures to reduce nuclear proliferation risks. The methodology relies on a graded security model used in practice in different applications. The method is based on the controlled finite Markov chain approach set in combination with discrete dynamic programming and MCDM (Multi Criteria Decision Making) techniques that enables the expert to select the cost-effective measures to reduce nuclear proliferation risks depending on availability of resources. The analysis performed with different number of possible measures confirms the conclusions that the implementation of extra-large costs may not produce the required effect, and the increase in resources above a certain level does not appear sensitive. Diversification in improving the effectiveness of other measures seems more rational and efficient for the whole system than the unlimited improvement of the effectiveness of only one measure.

  16. Office of Enterprise Assessments Assessment of Savannah River...

    Office of Environmental Management (EM)

    Savannah River Site Radioactive Waste Disposal Facilities September 2016 Office of Nuclear ......... 3 5.1 Radioactive Waste Management Planning ......

  17. Biofuel Solutions | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    developer, which had been developing one plant in Fairmont, Minnesota and another in Wood River, Biofuel Energy LLC took over plant development of Biofuel Solutions' projects in...

  18. Independent Oversight Review, Savannah River Site - September...

    Office of Environmental Management (EM)

    at the Savannah River Site Environmental Management Nuclear Facilities This report provides the ... Management Evaluations, within the DOE Office of Health, Safety and Security. ...

  19. ENVIRONMENTAL SCIENCES; SAVANNAH RIVER PLANT; ENVIRONMENTAL EFFECTS...

    Office of Scientific and Technical Information (OSTI)

    5 audit of SRP radioactive waste Ashley, C. 05 NUCLEAR FUELS; 54 ENVIRONMENTAL SCIENCES; SAVANNAH RIVER PLANT; ENVIRONMENTAL EFFECTS; RADIOACTIVE EFFLUENTS; EMISSION; HIGH-LEVEL...

  20. Initial comparison of leach behavior between fully radioactive and simulated nuclear waste glasses through long-term testing. Part 1, Solution analysis

    SciTech Connect

    Feng, Xiangdong; Bates, J.K.

    1992-04-01

    A comparison of glass reactivity between radioactive sludge based and simulated nuclear waste glasses has been made through long-term testing of both glass types for SRL 165, SRL 131, and SRL 200 frit compositions. The data demonstrate that for time periods through 280 days, differences in elemental release to solution up to 400% are observed. However, in general, differences in glass reactivity as measured by the release of boron, lithium, and sodium are less than a factor of two. The differences in reactivity are not large enough to alter the order of glass durability for the different compositions or to change the controlling glass dissolution mechanism. A radiation effect exists, mainly in the influence on the leachate pH, which in turn affects the glass reaction mechanism and rate. The differences in reactivity between fully radioactive and the simulated glasses can be reasonably explained if the controlling reaction mechanism is accounted for. Those differences are glass composition and leaching mechanism dependent. Lithium is found to have the highest elemental release in an ion-exchange dominated glass reaction process, while lithium has a lower release than boron and sodium in a matrix dissolution dominated process, where boron and sodium are usually among the most concentrated solution species.

  1. Regional Nuclear Workforce Development in the Central Savannah...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Nuclear Workforce Development in the Central Savannah River Area Dr. Susan A. Winsor Aiken ... SC 29802, winsors@atc.edu Mindy Mets Nuclear Workforce Initiative Program Manager, SRS ...

  2. EnergySolutions Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Salt Lake City, Utah Zip: 84101 Sector: Services Product: Utah-based international nuclear services company that provides services and solutions to the nuclear industry....

  3. An Investigation into the Transportation of Irradiated Uranium/Aluminum Targets from a Foreign Nuclear Reactor to the Chalk River Laboratories Site in Ontario, Canada - 12249

    SciTech Connect

    Clough, Malcolm; Jackson, Austin

    2012-07-01

    This investigation required the selection of a suitable cask and development of a device to hold and transport irradiated targets from a foreign nuclear reactor to the Chalk River Laboratories in Ontario, Canada. The main challenge was to design and validate a target holder to protect the irradiated HEU-Al target pencils during transit. Each of the targets was estimated to have an initial decay heat of 118 W prior to transit. As the targets have little thermal mass the potential for high temperature damage and possibly melting was high. Thus, the primary design objective was to conceive a target holder to dissipate heat from the targets. Other design requirements included securing the targets during transportation and providing a simple means to load and unload the targets while submerged five metres under water. A unique target holder (patent pending) was designed and manufactured together with special purpose experimental apparatus including a representative cask. Aluminum dummy targets were fabricated to accept cartridge heaters, to simulate decay heat. Thermocouples were used to measure the temperature of the test targets and selected areas within the target holder and test cask. After obtaining test results, calculations were performed to compensate for differences between experimental and real life conditions. Taking compensation into consideration the maximum target temperature reached was 231 deg. C which was below the designated maximum of 250 deg. C. The design of the aluminum target holder also allowed generous clearance to insert and unload the targets. This clearance was designed to close up as the target holder is placed into the cavity of the transport cask. Springs served to retain and restrain the targets from movement during transportation as well as to facilitate conductive heat transfer. The target holder met the design requirements and as such provided data supporting the feasibility of transporting targets over a relatively long period of time

  4. Final Review of Safety Assessment Issues at Savannah River Site, August 2011

    SciTech Connect

    Napier, Bruce A.; Rishel, Jeremy P.; Bixler, Nathan E.

    2011-12-15

    At the request of Savannah River Nuclear Solutions (SRNS) management, a review team composed of experts in atmospheric transport modeling for environmental radiation dose assessment convened at the Savannah River Site (SRS) on August 29-30, 2011. Though the meeting was prompted initially by suspected issues related to the treatment of surface roughness inherent in the SRS meteorological dataset and its treatment in the MELCOR Accident Consequence Code System Version 2 (MACCS2), various topical areas were discussed that are relevant to performing safety assessments at SRS; this final report addresses these topical areas.

  5. U.S. DEPARTMENT OF ENERGY * SAVANNAH RIVER SITE * AIKEN * SC

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Groundwater and Wastewater Remediation Using Agricultural Oils Savannah River Nuclear Solutions scientists have developed a groundwater treatment technique that employs agricultural oils to stimulate endogenous microbes which accelerates the cleanup. The oils tested include canola oil, rapeseed oil, coconut oil, corn oil, cottonseed oil, olive oil, palm oil, palm kernel oil, peanut oil, safflower oil, soybean oil, sunflower oil, beef oil, cod-liver oil, tallow, candelilla oil, carnawba wax,

  6. PERFORMANCE OF THE SAVANNAH RIVER SITE COULOMETER FOR NEPTUNIUM PROCESSACCOUNTABILITY AND NEPTUNIUM OXIDE PRODUCT CHARACTERIZATION

    SciTech Connect

    Holland, M; Patterson Nuessle, P; Sheldon Nichols, S; Joe Cordaro, J; George Reeves, G

    2008-06-04

    The Savannah River Site's (SRS) H-Area B-Line (HB-Line) nuclear facility is processing neptunium solutions for stabilization as an oxide. The oxide will eventually be reprocessed and fabricated into target material and the 237Np irradiated to produce {sup 238}Pu in support of National Aeronautics and Space Administration space program missions. As part of nuclear materials accountability, solution concentrations were measured using a high-precision controlled-potential coulometer developed and manufactured at the SRS for plutonium accountability measurements. The Savannah River Site Coulometer system and measurement methodology for plutonium meets performance standards in ISO 12183-2005, 'Controlled-Potential Coulometric Assay of Plutonium'. The Department of Energy (DOE) does not produce or supply a neptunium metal certified reference material, which makes qualifying a measurement method and determining accuracy and precision difficult. Testing and performance of the Savannah River Site Coulometer indicates that it can be used to measure neptunium process solutions and dissolved neptunium oxide without purification for material control and accountability purposes. Savannah River Site's Material Control and Accountability organization has accepted the method uncertainty for accountability and product characterization measurements.

  7. International Nuclear Safeguards | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    | (NNSA) International Nuclear Safeguards Challenge: Detect/deter undeclared nuclear materials and activities. Solution: Build capacity of the International Atomic Energy Agency and Member States to implement and meet safeguards obligations. The Office of International Nuclear Safeguards develops and supports the policies, concepts, technologies, expertise, and international safeguards infrastructure necessary to strengthen and sustain the international safeguards system as it evolves to

  8. Nuclear Material Control and Accountability (NMC&A) for the Savannah...

    Office of Environmental Management (EM)

    Material Control and Accountability (NMC&A) for the Savannah River Site Tritium Facilities Nuclear Material Control and Accountability (NMC&A) for the Savannah River Site Tritium...

  9. Independent Activity Report, Savannah River Site- June 2011

    Energy.gov [DOE]

    Defense Nuclear Facilities Safety Board Public Meeting in Augusta, Ga, Regarding the Savannah River Site [HIAR-SRS-2011-06-16

  10. Enterprise Assessments Review of the Savannah River Site Emergency...

    Energy Saver

    Savannah River Site Emergency Management Exercise Program November 2015 Office of ... plants, a heavy water extraction plant, a nuclear fuel and target fabrication ...

  11. Independent Activity Report, Savannah River Site - March 2013...

    Office of Environmental Management (EM)

    The Independent Oversight Site Lead for the Savannah River Site traveled to the site to work with functional area managers to schedule nuclear safety oversight activities. The Site ...

  12. international security policy | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    security policy Nuclear Verification Challenge: Maintain the U.S. ability to monitor and verify nuclear reduction agreements and detect violations of treaties and other nuclear nonproliferation commitments. Solution: Develop and deploy measures to ensure verifiable compliance with treaties and other international agreements,... International Nuclear Safeguards Challenge: Detect/deter undeclared nuclear materials and activities. Solution: Build capacity of the International Atomic Energy Agency

  13. international security | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    security Nuclear Verification Challenge: Maintain the U.S. ability to monitor and verify nuclear reduction agreements and detect violations of treaties and other nuclear nonproliferation commitments. Solution: Develop and deploy measures to ensure verifiable compliance with treaties and other international agreements,... International Nuclear Safeguards Challenge: Detect/deter undeclared nuclear materials and activities. Solution: Build capacity of the International Atomic Energy Agency and

  14. NIS | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    NIS Nuclear Verification Challenge: Maintain the U.S. ability to monitor and verify nuclear reduction agreements and detect violations of treaties and other nuclear nonproliferation commitments. Solution: Develop and deploy measures to ensure verifiable compliance with treaties and other international agreements,... International Nuclear Safeguards Challenge: Detect/deter undeclared nuclear materials and activities. Solution: Build capacity of the International Atomic Energy Agency and Member

  15. PUNT | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    PUNT U.S. and China Continue Cooperative Partnership to Advance Safe, Secure Civil Nuclear Energy for Clean Energy Future DOE/NNSA Hosts 11th U.S.-China Peaceful Uses of Nuclear Technology Meeting at Savannah River National Laboratory in Aiken, South Carolina (Aiken, South Carolina) - On May 10-11, 2016 the U.S. Department of Energy's (DOE) National Nuclear Security Administration (NNSA) and the China... United States and China Continue Partnership for the Peaceful Uses of Nuclear Technology

  16. China | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    China U.S. and China Continue Cooperative Partnership to Advance Safe, Secure Civil Nuclear Energy for Clean Energy Future DOE/NNSA Hosts 11th U.S.-China Peaceful Uses of Nuclear Technology Meeting at Savannah River National Laboratory in Aiken, South Carolina (Aiken, South Carolina) - On May 10-11, 2016 the U.S. Department of Energy's (DOE) National Nuclear Security Administration (NNSA) and the China... NNSA Deputy Administrator Creedon Travels to China In March, National Nuclear Security

  17. Florida Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Crystal River Unit 3",860,0,"--","Progress Energy Florida Inc" "St Lucie Unit 1, Unit ...

  18. H-canyon | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    H-canyon Savannah River Site's H Canyon Turns 60 Years Old The H Canyon Facility at the Savannah River Site (SRS) recently celebrated 60 years of service to the United States; first in producing nuclear materials in support of our nation's defense weapons programs and later, after the Cold War, helping to disposition and stabilize nuclear materials and

  19. Savannah River Site Environmental Report for 1997

    SciTech Connect

    Arnett, M.W.; Mamatey, A.R.

    1998-08-01

    The mission at the Savannah River Site has changed from the production of nuclear weapons materials for national defense to the management of waste, restoration of the environment, and the development of industry in and around the site.

  20. Long-Term Studies of Radionuclide Contamination of Migratory Waterfowl at the Savannah River Site: Implications for Habitat Management and Nuclear Waste Site Remediation

    SciTech Connect

    Brisbin, I.L.; Kennamer, R.A.

    2000-10-01

    Past nuclear activities at SRS have resulted in low level contamination in various wetlands. The wetlands and reservoirs serve a major wintering ground for migratory waterfowl. American coots have the highest level of cesium accumulation among the birds. The concentration has decreased exponentially with a four year half-life. The current levels pose no threat to human consumption.

  1. Radiological/Nuclear Applications

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Radiological/Nuclear Applications Radiological/Nuclear Applications Radiological sensors in action, solutions for you. Radiological and Nuclear Capabilities-for Collaboration View our capability sheets: get details of what we do. Boron 10 Neutron Detector New Neutron Detector Materials How we deploy innovation radiiological-nuclear bubble In the mid-1990s, Los Alamos scientists were developing proton radiography techniques for a variety of applications and decided to try using muons instead of

  2. Nuclear and Particle Futures

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Nuclear and Particle Futures Nuclear and Particle Futures The Lab's four Science Pillars harness our scientific capabilities for national security solutions. Contacts Pillar Champion John Sarrao Email Nuclear and Particle Futures (NPF) Overview Los Alamos is the premier laboratory in the United States for "all-things nuclear," with capabilities that are grounded in its LANSCE and DARHT facilities, its leadership in critical assembly work (now in Nevada), and extensive capabilities in

  3. Virtual Reality for Nuclear Material Handling

    Office of Energy Efficiency and Renewable Energy (EERE)

    AIKEN, S.C. – EM’s Savannah River National Laboratory (SRNL) is applying a high-tech solution to complex and dangerous workforce training: virtual reality.

  4. National Nuclear Security Administration

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Nuclear Security Administration Savannah River Site 1 NNSA Budget ($ Millions) By Program Office FY 2015 Enacted FY 2016 Enacted FY 2017 President Request Delta FY Request Weapon Activities 241 242 252 10 Mixed Oxide Fuel Fabrication Facility (MOX) 340 332 270 (62) Defense Nuclear Nonproliferation (DNN) 77 58 91 33 Federal Expenses 4.7 5.2 5.4 .2 Total Budget for NNSA at SRS 662.7 637.2 618.4 (18.8)

  5. Microsoft Word - spent nuclear fuel report.doc

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Management of Spent Nuclear Fuel at the Savannah River Site DOE/IG-0727 May 2006 REPORT ON MANAGEMENT OF SPENT NUCLEAR FUEL AT THE SAVANNAH RIVER SITE TABLE OF CONTENTS Spent Nuclear Fuel Management Details of Finding 1 Recommendations 2 Comments 3 Appendices 1. Objective, Scope, and Methodology 4 2. Prior Audit Reports 5 3. Management Comments 6 SPENT NUCLEAR FUEL MANGEMENT Page 1 Details of Finding H-Canyon The Department of Energy's (Department) spent nuclear fuel Operations program at the

  6. SUCCESSES AND EMERGING ISSUES IN SIMULATING THE PROCESSING BEHAVIOR OF LIQUID-PARTICLE NUCLEAR WASTE SLURRIES AT THE SAVANNAH RIVER SITE - 205E

    SciTech Connect

    Koopman, D.; Lambert, D.; Stone, M.

    2009-09-02

    Slurries of inorganic solids, containing both stable and radioactive elements, were produced during the cold war as by-products of the production of plutonium and enriched uranium and stored in large tanks at the Savannah River Site. Some of this high level waste is being processed into a stable glass waste form today. Waste processing involves various large scale operations such as tank mixing, inter-tank transfers, washing, gravity settling and decanting, chemical adjustment, and vitrification. The rheological properties of waste slurries are of particular interest. Methods for modeling flow curve data and predicting the properties of slurry blends are particularly important during certain operational phases. Several methods have been evaluated to predict the rheological properties of sludge slurry blends from the data on the individual slurries. These have been relatively successful.

  7. MERCURY-NITRITE-RHODIUM-RUTHENIUM INTERACTIONS IN NOBLE METAL CATALYZED HYDROGEN GENERATION FROM FORMIC ACID DURING NUCLEAR WASTE PROCESSING AT THE SAVANNAH RIVER SITE - 136C

    SciTech Connect

    Koopman, D.; Pickenheim, B.; Lambert, D.; Newell, J; Stone, M.

    2009-09-02

    Chemical pre-treatment of radioactive waste at the Savannah River Site is performed to prepare the waste for vitrification into a stable waste glass form. During pre-treatment, compounds in the waste become catalytically active. Mercury, rhodium, and palladium become active for nitrite destruction by formic acid, while rhodium and ruthenium become active for catalytic conversion of formic acid into hydrogen and carbon dioxide. Nitrite ion is present during the maximum activity of rhodium, but is consumed prior to the activation of ruthenium. Catalytic hydrogen generation during pre-treatment can exceed radiolytic hydrogen generation by several orders of magnitude. Palladium and mercury impact the maximum catalytic hydrogen generation rates of rhodium and ruthenium by altering the kinetics of nitrite ion decomposition. New data are presented that illustrate the interactions of these various species.

  8. Washington Closure Hanford: Cleanup Progress Along Hanford's River Corridor

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    | Department of Energy Washington Closure Hanford: Cleanup Progress Along Hanford's River Corridor Washington Closure Hanford: Cleanup Progress Along Hanford's River Corridor Presentation from the 2015 DOE National Cleanup Workshop by Scott Sax, President, Washington Closure Hanford. Washington Closure Hanford: Cleanup Progress Along Hanford's River Corridor (10.41 MB) More Documents & Publications 2014 Congressional Nuclear Cleanup Caucus Briefings 2013 Congressional Nuclear Cleanup

  9. Office of River Protection (ORP) and Washingotn River Protection Solutions,

    Office of Environmental Management (EM)

    Fellowship | Department of Energy Office of Fossil Energy Kicks Off 19th Year of Mickey Leland Energy Fellowship Office of Fossil Energy Kicks Off 19th Year of Mickey Leland Energy Fellowship June 27, 2014 - 9:09am Addthis Students in the Mickey Leland Energy Fellowship tour the National Energy Technology Laboratory in Morgantown, WV. Students in the Mickey Leland Energy Fellowship tour the National Energy Technology Laboratory in Morgantown, WV. What does this mean for me? "Being at

  10. Smith River Rancheria - Wind and Biomass Power Generation Feasibility...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    DOE Tribal Energy Program Program Review Meeting October 17 - 21, 2005 Greg Retzlaff Strategic Energy Solutions, Inc. Wind & Biomass Power Generation Smith River Rancheria 2 Smith ...

  11. Integrating the stabilization of nuclear materials

    SciTech Connect

    Dalton, H.F.

    1996-05-01

    In response to Recommendation 94-1 of the Defense Nuclear Facilities Safety Board, the Department of Energy committed to stabilizing specific nuclear materials within 3 and 8 years. These efforts are underway. The Department has already repackaged the plutonium at Rocky Flats and metal turnings at Savannah River that had been in contact with plastic. As this effort proceeds, we begin to look at activities beyond stabilization and prepare for the final disposition of these materials. To describe the plutonium materials being stabilize, Figure 1 illustrates the quantities of plutonium in various forms that will be stabilized. Plutonium as metal comprises 8.5 metric tons. Plutonium oxide contains 5.5 metric tons of plutonium. Plutonium residues and solutions, together, contain 7 metric tons of plutonium. Figure 2 shows the quantity of plutonium-bearing material in these four categories. In this depiction, 200 metric tons of plutonium residues and 400 metric tons of solutions containing plutonium constitute most of the material in the stabilization program. So, it is not surprising that much of the work in stabilization is directed toward the residues and solutions, even though they contain less of the plutonium.

  12. NNSA selects Consolidated Nuclear Security, LLC to manage the...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Nuclear Security Administration (NNSA) today ... Ridge, Tenn., and the Pantex Plant near Amarillo, Texas. ... unexercised option for Savannah River Tritium Operations at the ...

  13. Washington River Protection Solutions - Hanford Site

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    735 2.733 2.762 2.760 2.749 2.711 2003-2016 All Grades - Conventional Areas 2.735 2.733 2.762 2.760 2.749 2.711 2003-2016 Regular 2.673 2.670 2.698 2.696 2.685 2.646 2003-2016 Conventional Areas 2.673 2.670 2.698 2.696 2.685 2.646 2003-2016 Midgrade 2.857 2.855 2.884 2.883 2.870 2.837 2003-2016 Conventional Areas 2.857 2.855 2.884 2.883 2.870 2.837 2003-2016 Premium 2.996 2.992 3.028 3.027 3.016 2.980 2003-2016 Conventional Areas 2.996 2.992 3.028 3.027 3.016 2.980 2003

    Contracting Washington

  14. Facility Utilization and Risk Analysis for Remediation of Legacy Transuranic Waste at the Savannah River Site - 13572

    SciTech Connect

    Gilles, Michael L.; Gilmour, John C.

    2013-07-01

    Savannah River Nuclear Solutions (SRNS) completed the Accelerated TRU Project for remediating legacy waste at the Savannah River Site with significant cost and schedule efficiencies due to early identification of resources and utilization of risk matrices. Initial project planning included identification of existing facilities that could be modified to meet the technical requirements needed for repackaging and remediating the waste. The project schedule was then optimized by utilization of risk matrices that identified alternate strategies and parallel processing paths which drove the overall success of the project. Early completion of the Accelerated TRU Project allowed SRNS to pursue stretch goals associated with remediating very difficult TRU waste such as concrete casks from the hot cells in the Savannah River National Laboratory. Project planning for stretch goals also utilized existing facilities and the risk matrices. The Accelerated TRU project and stretch goals were funded under the American Recovery and Reinvestment Act (ARRA). (authors)

  15. INSTALLATION OF BUBBLERS IN THE SAVANNAH RIVER SITED DEFENSE WASTE PROCESSING FACILITY MELTER

    SciTech Connect

    Smith, M.; Iverson, D.

    2010-12-08

    Savannah River Remediation (SRR) LLC assumed the liquid waste contract at the Savannah River Site (SRS) in the summer of 2009. The main contractual agreement was to close 22 High Level Waste (HLW) tanks in eight years. To achieve this aggressive commitment, faster waste processing throughout the SRS liquid waste facilities will be required. Part of the approach to achieve faster waste processing is to increase the canister production rate of the Defense Waste Processing Facility (DWPF) from approximately 200 canisters filled with radioactive waste glass per year to 400 canisters per year. To reach this rate for melter throughput, four bubblers were installed in the DWPF Melter in the late summer of 2010. This effort required collaboration between SRR, SRR critical subcontractor EnergySolutions, and Savannah River Nuclear Solutions, including the Savannah River National Laboratory (SRNL). The tasks included design and fabrication of the bubblers and related equipment, testing of the bubblers for various technical issues, the actual installation of the bubblers and related equipment, and the initial successful operation of the bubblers in the DWPF Melter.

  16. Analytical support for characterization of americium-curium solution at SRS

    SciTech Connect

    Maxwell, S.L. III; Nelson, M.R.

    1996-10-01

    Americium-Curium (Am-Cm) solution in F-Canyon was produced during the Mk 40 and Mk 41 campaigns in the mid and late 1970`s. The Savannah River Site (SRS) Central Laboratory recently characterized this important solution of nuclear material to enable assessment by Westinghouse Savannah River Company and Department of Energy of disposition options. The tank had last been sampled and analyzed in 1986. A wide range of analyses were performed to determine the tank contents. New radiochemical column separation methods were developed to fully characterize the solution for actinides, metals, anions, and isotopics to support the disposition study in a timely manner. Current disposition is to perform a vitrification process on the Am/Cm solution at SRS to produce glass canisters for safe shipment and storage of this material. The SRS Am/Cm waste solution will be converted, in effect, to a product for an outside customer. Oak Ridge National Laboratory. To support the Am/Cm vitrification processing, process support analyses are required after completion of denitration, precipitation and redissolution steps. Full elemental chemistry characterization will be required on the final melter feed solution.

  17. NNSA Exceeds 2012 Goal for Nuclear Weapons Dismantlements | National...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    WASHINGTON, D.C. - The National Nuclear Security Administration (NNSA) ... Non-nuclear components are sent to the Savannah River Site and the Kansas City Plant for final disposition. ...

  18. National Laboratories' Energy Technologies and System Solutions...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Laboratories' Energy Technologies and System Solutions Center Director - Sandia Energy Energy Search Icon Sandia Home Locations ... Nuclear Fuel Cycle Defense Waste Management Programs ...

  19. TESTING OF THE RADBALL TECHNOLOGY AT SAVANNAH RIVER NATIONAL LABORATORY

    SciTech Connect

    Farfan, E.; Foley, T.

    2010-02-10

    The United Kingdom's National Nuclear Laboratory (NNL) has developed a remote, nonelectrical, radiation-mapping device known as RadBall (patent pending), which offers a means to locate and quantify radiation hazards and sources within contaminated areas of the nuclear industry. Positive results from initial deployment trials in nuclear waste reprocessing plants at Sellafield in the United Kingdom and the anticipated future potential use of RadBall throughout the U.S. Department of Energy Complex have led to the NNL partnering with the Savannah River National Laboratory (SRNL) to further test, underpin, and strengthen the technical performance of the technology. The study completed at SRNL addresses key aspects of the testing of the RadBall technology. The first set of tests was performed at Savannah River Nuclear Solutions Health Physics Instrument Calibration Laboratory (HPICL) using various gamma-ray sources and an x-ray machine with known radiological characteristics. The objective of these preliminary tests was to identify the optimal dose and collimator thickness. The second set of tests involved a highly contaminated hot cell. The objective of this testing was to characterize a hot cell with unknown radiation sources. The RadBall calibration experiments and hot cell deployment were successful in that for each trial radiation tracks were visible. The deployment of RadBall can be accomplished in different ways depending on the size and characteristics of the contaminated area (e.g., a hot cell that already has a crane/manipulator available or highly contaminated room that requires the use of a remote control device with sensor and video equipment to position RadBall). This report also presents SRNL-designed RadBall accessories for future RadBall deployment (a harness, PODS, and robot).

  20. EIS-0219: F-Canyon Plutonium Solutions

    Energy.gov [DOE]

    This EIS evaluates the potential environmental impacts of processing the plutonium solutions to metal form using the F-Canyon and FB-Line facilities at the Savannah River Site.

  1. Solvent wash solution

    DOEpatents

    Neace, James C. (Blackville, SC)

    1986-01-01

    Process for removing diluent degradation products from a solvent extraction solution, which has been used to recover uranium and plutonium from spent nuclear fuel. A wash solution and the solvent extraction solution are combined. The wash solution contains (a) water and (b) up to about, and including, 50 volume percent of at least one-polar water-miscible organic solvent based on the total volume of the water and the highly-polar organic solvent. The wash solution also preferably contains at least one inorganic salt. The diluent degradation products dissolve in the highly-polar organic solvent and the organic solvent extraction solvent do not dissolve in the highly-polar organic solvent. The highly-polar organic solvent and the extraction solvent are separated.

  2. Solvent wash solution

    DOEpatents

    Neace, J.C.

    1984-03-13

    A process is claimed for removing diluent degradation products from a solvent extraction solution, which has been used to recover uranium and plutonium from spent nuclear fuel. A wash solution and the solvent extraction solution are combined. The wash solution contains (a) water and (b) up to about, and including, 50 vol % of at least one-polar water-miscible organic solvent based on the total volume of the water and the highly-polar organic solvent. The wash solution also preferably contains at least one inorganic salt. The diluent degradation products dissolve in the highly-polar organic solvent and the organic solvent extraction solvent do not dissolve in the highly-polar organic solvent. The highly-polar organic solvent and the extraction solvent are separated.

  3. MEASUREMENT AND PREDICTION OF RADIOLYTIC HYDROGEN PRODUCTION IN DEFENSE WASTE PROCESSING SLURRIES AT SAVANNAH RIVER SITE

    SciTech Connect

    Bibler, N; John Pareizs, J; Terri Fellinger, T; Cj Bannochie, C

    2007-01-10

    This paper presents results of measurements and predictions of radiolytic hydrogen production rates from two actual process slurries in the Defense Waste Processing Facility (DWPF) at Savannah River Site (SRS). Hydrogen is a flammable gas and its production in nuclear facilities can be a safety hazard if not mitigated. Measurements were made in the Shielded Cells of Savannah River National Laboratory (SRNL) using a sample of Sludge Batch 3 (SB3) currently being processed by the DWPF. Predictions were made using published values for rates of radiolytic reactions producing H{sub 2} in aqueous solutions and the measured radionuclide and chemical compositions of the two slurries. The agreement between measured and predicted results for nine experiments ranged from complete agreement to 24% difference. This agreement indicates that if the composition of the slurry being processed is known, the rate of radiolytic hydrogen production can be reasonably estimated.

  4. Preliminary Review of Safety Assessment Issues at Savannah River Site, August 2011

    SciTech Connect

    Napier, Bruce A.; Rishel, Jeremy P.; Bixler, Nathan E.

    2011-09-19

    At the request of Savannah River Nuclear Solutions (SRNS) management, a review team composed of experts in atmospheric transport modeling for environmental radiation dose assessment convened at the Savannah River Site (SRS) on August 29-30, 2011. Several issues were presented at the meeting for discussion. This is a short summary that is organized in accordance with the primary issues discussed, which is not necessarily a chronological record. Issues include: SRS Meteorological Data and its Use in MACCS2; Deposition Velocities for Particles; Deposition Velocities for Tritium; MACCS2 Dispersion Coefficients; Use of Low Surface Roughness in Open Areas; Adequacy of Meteorological Tower and Instrumentation; Displacement Height; and Validity of MACCS2 Calculations at Close-in Distances. A longer report will be issued at a later date that expands upon these topics and recommendations.

  5. Dismantlement and Disposition | National Nuclear Security Administrati...

    National Nuclear Security Administration (NNSA)

    Other non-nuclear components are sent to the Savannah River Site 5 (e.g., pressure storage devices) and the Kansas City Plant 6 (e.g., electrical components) for final ...

  6. Dismantlement Fact Sheet | National Nuclear Security Administration...

    National Nuclear Security Administration (NNSA)

    Non-nuclear components are either processed on site or sent to the Savannah River Site in South Carolina (gas reservoirs) and the Kansas City Plant in Missouri (electrical and ...

  7. Nuclear Science

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Nuclear Science Nuclear Science Experimental and theoretical nuclear research carried out at NERSC is driven by the quest for improving our understanding of the building blocks of...

  8. Savannah River Analytical Laboratories Achieve International Standard

    National Nuclear Security Administration (NNSA)

    Accreditation | National Nuclear Security Administration | (NNSA) Savannah River Analytical Laboratories Achieve International Standard Accreditation Tuesday, September 8, 2015 - 12:55pm Savannah River National Laboratory's F/H Analytical Laboratories have achieved ISO/IEC 17025 accreditation, which represents an independent validation of two analytical methods against a set of world-class specifications. The accreditation was formally awarded by the American Association for Laboratory

  9. Nuclear Energy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Stationary PowerNuclear Energy Nuclear Energy Tara Camacho-Lopez 2016-06-29T14:02:38+00:00 Contributing to the Next Generation of Nuclear Power Generation Our nuclear energy and ...

  10. Nuclear Forensics

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    nuclear forensics Nuclear Forensics AMS is a Powerful Tool for Nuclear Forensics Nuclear forensics, which can be applied to both interdicted materials and debris from a nuclear explosion, is the application of laboratory analysis and interpretation to provide technical conclusions (provenance, design, etc.) about a nuclear device or interdicted nuclear material. Nuclear forensic analysts can build confidence in their conclusions by employing multiple signatures that collectively minimize the

  11. Nuclear Regulatory Commission issuances

    SciTech Connect

    1996-04-01

    This report includes the issuances received during the April 1996 reporting period from the Commission, the Atomic Safety and Licensing Boards, the Administrative Law Judges, the Directors` Decisions, and the Decisions on Petitions for Rulemaking. Included are issuances pertaining to: (1) Yankee Nuclear Power Station, (2) Georgia Tech Research Reactor, (3) River Bend Station, (4) Millstone Unit 1, (5) Thermo-Lag fire barrier material, and (6) Louisiana Energy Services.

  12. Office of Enterprise Assessments Assessment of Savannah River Site

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Radioactive Waste Disposal Facilities - September 2016 | Department of Energy Savannah River Site Radioactive Waste Disposal Facilities - September 2016 Office of Enterprise Assessments Assessment of Savannah River Site Radioactive Waste Disposal Facilities - September 2016 September 2016 Office of Enterprise Assessments Assessment of Savannah River Site Radioactive Waste Disposal Facilities - September 2016 The U.S. Department of Energy (DOE) Office of Nuclear Safety and Environmental

  13. Consolidation of Surplus Plutonium at Savannah River Site | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Waste Management » Nuclear Materials & Waste » Consolidation of Surplus Plutonium at Savannah River Site Consolidation of Surplus Plutonium at Savannah River Site In April 2002, DOE decided to consolidate surplus, non-pit, weapons-usable plutonium that had been stored at the Rocky Flats Environmental Technology Site in long-term storage at the Savannah River Site. DOE Amends Record of Decision for Plutonium Consolidation A Supplement Analysis on Plutonium Consolidation at

  14. Listing of Defense Nuclear Facilities

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Listing of Defense Nuclear Facilities The facilities listed below are considered DOE defense nuclear facilities for purposes of Section 3161. Kansas City Plant Pinellas Plant Mound Facility Fernald Environmental Management Project Site Pantex Plant Rocky Flats Environmental Technology Site, including the Oxnard Facility Savannah River Site Los Alamos National Laboratory Sandia National Laboratory Lawrence Livermore National Laboratory Oak Ridge National Laboratory Nevada Test Site 1 Y-12 Plant

  15. Labs | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Labs In 20th Year, Stockpile Stewardship Program Celebrated As One of Nation's Greatest Achievements in Science and Security (WASHINGTON) - The proven success of the Stockpile Stewardship Program (SSP)-which pushed the limits of modern science and engineering by requiring the transition from explosive nuclear weapons testing to what is effectively virtual nuclear testing-was celebrated today at a half-day public event... Savannah River Analytical Laboratories Achieve International Standard

  16. Tank Farms at the Savannah River Site | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Tank Farms at the Savannah River Site Tank Farms at the Savannah River Site Section 3116 of the Ronald W. Reagan National Defense Authorization Act for Fiscal Year 2005 authorizes the Secretary of Energy, in consultation with the Nuclear Regulatory Commission, to reclassify certain waste from reprocessing spent nuclear fuel from high-level waste to low-level waste if it meets the criteria set forth in Section 3116. A Waste Determination Basis (WD Basis) provides the analysis to document the

  17. Nuclear Astrophysics

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Nuclear & Uranium Glossary › FAQS › Overview Data Status of U.S. nuclear outages (interactive) Nuclear power plants Uranium & nuclear fuel Spent nuclear fuel All nuclear data reports Analysis & Projections Major Topics Most popular Nuclear plants and reactors Projections Recurring Uranium All reports Browse by Tag Alphabetical Frequency Tag Cloud Current Issues & Trends See more › U.S. energy production, consumption has changed significantly since 1908 liquid

  18. NUCLEAR REACTOR

    DOEpatents

    Miller, H.I.; Smith, R.C.

    1958-01-21

    This patent relates to nuclear reactors of the type which use a liquid fuel, such as a solution of uranyl sulfate in ordinary water which acts as the moderator. The reactor is comprised of a spherical vessel having a diameter of about 12 inches substantially surrounded by a reflector of beryllium oxide. Conventionnl control rods and safety rods are operated in slots in the reflector outside the vessel to control the operation of the reactor. An additional means for increasing the safety factor of the reactor by raising the ratio of delayed neutrons to prompt neutrons, is provided and consists of a soluble sulfate salt of beryllium dissolved in the liquid fuel in the proper proportion to obtain the result desired.

  19. Associate Assistant Deputy Administrator, Defense Nuclear Nonprolifera...

    Energy.gov [DOE] (indexed site)

    The mission of the Deputy Administrator for Defense Nuclear Nonproliferation is to develop and implement technical and policy solutions to eliminate proliferation-sensitive ...

  20. Savannah River Ecology Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Assessment of Radionuclide Monitoring in the CSRA Savannah River NERP Research ... Upcoming Seminars The Savannah River Ecology Laboratory is a research unit of the ...

  1. Global Solutions

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Global Solutions Our Vision National User Facilities Research Areas In Focus Global Solutions ⇒ Navigate Section Our Vision National User Facilities Research Areas In Focus Global Solutions A-Z Index Berkeley Lab masthead U.S. Department of Energy logo Phone Book Jobs Search BANGLADESH INDIA CHINA DAYA BAY CHINA RUSSIA SIBERIA JAPAN SAMOA HAWAII SOUTH POLE ANTARCTICA NEW MEXICO SOUTH DAKOTA TEXAS GULF OF MEXICO NEW YORK PUERTO RICO AMAZON RAIN FOREST CANARY ISLANDS SWITZERLAND ETHIOPIA

  2. nuclear security

    National Nuclear Security Administration (NNSA)

    3%2A en Shaping the future of nuclear detection http:nnsa.energy.govblogshaping-future-nuclear-detection

    Learning techniques to combat nuclear trafficking, touring the...

  3. Nuclear Science

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    and Engineering Education Sourcebook 2013 American Nuclear Society US Department of Energy Nuclear Science & Engineering Education Sourcebook 2013 North American Edition American Nuclear Society Education, Training, and Workforce Division US Department of Energy Office of Nuclear Energy Editor and Founder John Gilligan Professor of Nuclear Engineering North Carolina State University Version 5.13 Welcome to the 2013 Edition of the Nuclear Science and Engineering Education (NS&EE)

  4. Electromarking solution

    DOEpatents

    Bullock, Jonathan S.; Harper, William L.; Peck, Charles G.

    1976-06-22

    This invention is directed to an aqueous halogen-free electromarking solution which possesses the capacity for marking a broad spectrum of metals and alloys selected from different classes. The aqueous solution comprises basically the nitrate salt of an amphoteric metal, a chelating agent, and a corrosion-inhibiting agent.

  5. nuclear enterprise

    National Nuclear Security Administration (NNSA)

    Outlines Accomplishments in Stockpile Stewardship, Nuclear Nonproliferation, Naval Reactors and Managing the Nuclear Enterprise

    The...

  6. Nuclear Physics

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Nuclear Physics Nuclear Physics Enabling remarkable discoveries and tools that transform our understanding of energy and matter and advance national, economic, and energy security. ...

  7. Nuclear Energy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Nuclear Energy Curiosity's multi-mission radioisotope thermoelectric generator on Mars. ... Analysis, Capabilities, Energy, Highlights - Energy Research, News, News & Events, Nuclear ...

  8. Water scarcity and development in the Tigris-Euphrates river basin. Master`s thesis

    SciTech Connect

    1995-08-01

    This report will examine aspects of water scarcity and development, and discuss solutions available to avoid conflict over water in the Tigris-Euphrates River Basin. (MM).

  9. EM Update Newsletter Spotlights River Corridor Cleanup at Hanford Site

    Energy.gov [DOE]

    RICHLAND, Wash. – In this issue of the EM Update newsletter, EM marks the many accomplishments the Richland Operations Office and its contractors have achieved in cleanup along the Columbia River corridor at the Hanford Site. This year marked the 10th anniversary of the River Corridor Closure Contract, the nation’s largest environmental cleanup closure project, managed by Washington Closure Hanford. The work has involved projects to clean up existing contamination and waste sites near the river, preventing contamination from reaching it, and cocooning or demolishing hundreds of structures no longer in use, including former reactors along the river that helped create materials for the U.S. nuclear weapons program.

  10. U.S. DEPARTMENT OF ENERGY * SAVANNAH RIVER ...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Innovative solutions for decommissioning large nuclear facilities Contact Information SRNL Office of Communications 803.725.4396 Impact P and R Reactors at SRS were successfully ...

  11. Nuclear Science/Nuclear Chemistry

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    nuclear science nuclear chemistry Nuclear Science/Nuclear Chemistry Nuclear Physics The 10-MV tandem accelerator at CAMS provides a platform for conducting nuclear physics experiment both for basic science and lab mission-related programs. For example, we performed a new cross section measurement of the astrophysically important reaction 40Ca(a,g)44Ti in which high purity CaO targets were irradiated with helium ions at several different discrete energies. The reaction rate was measured on-line

  12. Testing of stripping columns for the removal of benzene from aqueous radioactive salt solution

    SciTech Connect

    Georgeton, G.K.; Taylor, G.A.; Gaughan, T.P.

    1995-06-27

    Radioactive high level wastes (HLW) generated from production of special nuclear materials at the Savannah River Site (SRS) are held in interim storage in 51 underground, million gallon tanks. Radioactive cesium ({sup 137}Cs) is segregated by evaporation of aqueous waste solution for interim storage in a salt matrix comprised of Na and K salts or in concentrated salt solution. The saltcake will be dissolved and {sup 137}Cs will be separated from the nonradioactive salts in solution in the In-Tank Precipitation (ITP) Process. The cesium will be combined with other radioactive species and glass formers to be melted and poured into stainless steel canisters in the Defense Waste Processing Facility (DWPF). The salt solution remaining after decontamination in the ITP process will be incorporated into grout for disposal at the site`s Saltstone facility. In the ITP facility, sodium tetraphenylborate (STPB) will be added to precipitate the cesium. Potassium in the waste solution also reacts with STPB and precipitates. Due to radiolytic and chemical degradation of the tetraphenylborate (TPB) precipitate, benzene is generated. The benzene dissolves into the decontaminated salt solution (DSS) and into water (WW) used to {open_quotes}wash{close_quotes} the precipitate to lower the soluble salt content of the slurry. Safety and processing requirements for disposal of the DSS and for temporary storage of the WW dictate that the benzene concentration be reduced.

  13. CRITICALITY SAFETY OF PROCESSING SALT SOLUTION AT SRS

    SciTech Connect

    Stephens, K; Davoud Eghbali, D; Michelle Abney, M

    2008-01-15

    High level radioactive liquid waste generated as a result of the production of nuclear material for the United States defense program at the Savannah River Site has been stored as 36 million gallons in underground tanks. About ten percent of the waste volume is sludge, composed of insoluble metal hydroxides primarily hydroxides of Mn, Fe, Al, Hg, and most radionuclides including fission products. The remaining ninety percent of the waste volume is saltcake, composed of primarily sodium (nitrites, nitrates, and aluminates) and hydroxides. Saltcakes account for 30% of the radioactivity while the sludge accounts for 70% of the radioactivity. A pilot plant salt disposition processing system has been designed at the Savannah River Site for interim processing of salt solution and is composed of two facilities: the Actinide Removal Process Facility (ARPF) and the Modular Caustic Side Solvent Extraction Unit (MCU). Data from the pilot plant salt processing system will be used for future processing salt at a much higher rate in a new salt processing facility. Saltcake contains significant amounts of actinides, and other long-lived radioactive nuclides such as strontium and cesium that must be extracted prior to disposal as low level waste. The extracted radioactive nuclides will be mixed with the sludge from waste tanks and vitrified in another facility. Because of the presence of highly enriched uranium in the saltcake, there is a criticality concern associated with concentration and/or accumulation of fissionable material in the ARP and MCU.

  14. NUCLEAR INCIDENT CAPABILITIES, KNOWLEDGE & ENABLER LEVERAGING

    SciTech Connect

    Kinney, J.; Newman, J.; Goodwyn, A.; Dewes, J.

    2011-04-18

    action. Much work needs to be accomplished to enhance nuclear preparedness and to substantially bolster and clarify the capacity to deploy competent resources. Until detailed plans are scripted, and personnel and other resources are postured, and exercised, IND specific planning remains an urgent need requiring attention and action. Although strategic guidance, policies, concepts of operations, roles, responsibilities, and plans governing the response and consequence management for the IND scenario exist, an ongoing integration challenge prevails regarding how best to get capable and competent surge capacity personnel (disaster reservists) and other resources engaged and readied in an up-front manner with pre-scripted assignments to augment the magnitude of anticipated demands of expertise. With the above in mind, Savannah River National Laboratory (SRNL) puts science to work to create and deploy practical, high-value, cost-effective nuclear solutions. As the Department of Energy's (DOE) applied research and development laboratory, SRNL supports Savannah River Site (SRS) operations, DOE, national initiatives, and other federal agencies, across the country and around the world. SRNL's parent at SRS also employs more than 8,000 personnel. The team is a great asset that seeks to continue their service in the interest of national security and stands ready to accomplish new missions. Overall, an integral part of the vision for SRNL's National and Homeland Security Directorate is the establishment of a National Security Center at SRNL, and development of state of the science capabilities (technologies and trained technical personnel) for responding to emergency events on local, regional, or national scales. This entails leveraging and posturing the skills, knowledge and experience base of SRS personnel to deliver an integrated capability to support local, state, and federal authorities through the development of pre-scripted requests for assistance, agreements, and plans. It

  15. Sandia National Labs: PCNSC: Research: Science-based Solutions...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Science-Based Solutions for NNSA Mission Needs Sandia's existence stems from its engineering support of the Manhattan Project during the 1940's to develop Nuclear Weapons (NWs), ...

  16. Compositions and methods for treating nuclear fuel

    DOEpatents

    Soderquist, Chuck Z; Johnsen, Amanda M; McNamara, Bruce K; Hanson, Brady D; Smith, Steven C; Peper, Shane M

    2014-01-28

    Compositions are provided that include nuclear fuel. Methods for treating nuclear fuel are provided which can include exposing the fuel to a carbonate-peroxide solution. Methods can also include exposing the fuel to an ammonium solution. Methods for acquiring molybdenum from a uranium comprising material are provided.

  17. Compositions and methods for treating nuclear fuel

    DOEpatents

    Soderquist, Chuck Z; Johnsen, Amanda M; McNamara, Bruce K; Hanson, Brady D; Smith, Steven C; Peper, Shane M

    2013-08-13

    Compositions are provided that include nuclear fuel. Methods for treating nuclear fuel are provided which can include exposing the fuel to a carbonate-peroxide solution. Methods can also include exposing the fuel to an ammonium solution. Methods for acquiring molybdenum from a uranium comprising material are provided.

  18. Nonproliferation Policy | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Nonproliferation Policy Challenge: Address evolving threats/challenges to the nonproliferation and arms control regimes. Solution: Develop programs and strategies to address emerging nonproliferation and arms control challenges and opportunities. Learn More 10 CFR Part 810 Related Topics international security international security policy NIS nuclear controls safeguards safeguards and security verification Related News Nuclear Verification International Nuclear Safeguards Nonproliferation and

  19. Radioiodine in the Savannah River Site environment

    SciTech Connect

    Kantelo, M.V.; Bauer, L.R.; Marter, W.L.; Murphy, C.E. Jr.; Zeigler, C.C.

    1993-01-15

    Radioiodine, which is the collective term for all radioactive isotopes of the element iodine, is formed at the Savannah River Site (SRS) principally as a by-product of nuclear reactor operations. Part of the radioiodine is released to the environment during reactor and reprocessing operations at the site. The purpose of this report is to provide an introduction to radioiodine production and disposition, its status in the environment, and the radiation dose and health risks as a consequence of its release to the environment around the Savannah River Plant. A rigorous dose reconstruction study is to be completed by thee Center for Disease Control during the 1990s.

  20. Acquisition Management | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Acquisition Management The Office of Acquisition Management supports NNSA's efforts to: Reduce Nuclear Dangers; Manage the nuclear weapons stockpile; Recapitalize the nuclear infrastructure and deterrent capability; Strengthen the science, technology, and engineering base; and, Continue NNSA management reforms. Our Values: Providing solutions: We will use our expertise and knowledge to be solutions people assisting our business partners to achieve mission goals while ensuring compliance with

  1. Savannah River Plant/Savannah River Laboratory radiation exposure report

    SciTech Connect

    Rogers, C.D.; Hyman, S.D.; Keisler, L.L. and Co., Aiken, SC . Savannah River Plant); Reeder, D.F.; Jolly, L.; Spoerner, M.T.; Schramm, G.R. and Co., Aiken, SC . Savannah River Lab.)

    1989-01-01

    The protection of worker health and safety is of paramount concern at the Savannah River Site. Since the site is one of the largest nuclear sites in the nation, radiation safety is a key element in the protection program. This report is a compendium of the results in 1988 of the programs at the Savannah River Plant and the Savannah River Laboratory to protect the radiological health of employees. By any measure, the radiation protection performance at this site in 1988 was the best since the beginning of operations. This accomplishment was made possible by the commitment and support at all levels of the organizations to reduce radiation exposures to ALARA (As Low As Reasonably Achievable). The report provides detailed information about the radiation doses received by departments and work groups within these organizations. It also includes exposure data for recent years to allow Plant and Laboratory units to track the effectiveness of their ALARA efforts. Many of the successful practices and methods that reduced radiation exposure are described. A new goal for personnel contamination cases has been established for 1989. Only through continual and innovative efforts to minimize exposures can the goals be met. The radiation protection goals for 1989 and previous years are included in the report. 27 figs., 58 tabs.

  2. Method for producing nuclear fuel

    DOEpatents

    Haas, Paul A.

    1983-01-01

    Nuclear fuel is made by contacting an aqueous solution containing an actinide salt with an aqueous solution containing ammonium hydroxide, ammonium oxalate, or oxalic acid in an amount that will react with a fraction of the actinide salt to form a precipitate consisting of the hydroxide or oxalate of the actinide. A slurry consisting of the precipitate and solution containing the unreacted actinide salt is formed into drops which are gelled, calcined, and pressed to form pellets.

  3. Method for producing nuclear fuel

    SciTech Connect

    Haas, P.A.

    1981-04-24

    Nuclear fuel is made by contacting an aqueous solution containing an actinide salt with an aqueous solution containing ammonium hydroxide, ammonium oxalate, or oxalic acid in an amount that will react with a fraction of the actinide salt to form a precipitate consisting of the hydroxide or oxalate of the actinide. A slurry consisting of the precipitate and solution containing the unreacted actinide salt is formed into drops which are gelled, calcined, and pressed to form pellets.

  4. Deputy Secretary Poneman's Remarks at the Nuclear Energy Assembly...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    today. I just got back last night from Savannah River Site, where I visited our nuclear facilities and found a community that is dedicated, capable, and energized by a vision to ...

  5. Nuclear Materials Management & Safeguards System | National Nuclear...

    National Nuclear Security Administration (NNSA)

    About Our Programs Nuclear Security Nuclear Materials Management & Safeguards System NMMSS U.S. Department of Energy U.S. Nuclear Regulatory Commission Nuclear Materials ...

  6. Polymer solutions

    DOEpatents

    Krawczyk, Gerhard Erich; Miller, Kevin Michael

    2011-07-26

    There is provided a method of making a polymer solution comprising polymerizing one or more monomer in a solvent, wherein said monomer comprises one or more ethylenically unsaturated monomer that is a multi-functional Michael donor, and wherein said solvent comprises 40% or more by weight, based on the weight of said solvent, one or more multi-functional Michael donor.

  7. Nuclear Navy

    SciTech Connect

    1994-12-31

    This video tells the story of the Navy`s development of nuclear power and its application in long-range submarines and the growing nuclear surface force. Narrated by Frank Blair.

  8. CRAD, Nuclear Safety Delegations for Documented Safety Analysis Approval

    Energy Saver

    Waste System | Department of Energy Emergency Management - Office of River Protection K Basin Sludge Waste System CRAD, Emergency Management - Office of River Protection K Basin Sludge Waste System May 2004 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a May 2004 assessment of the Emergency Management program at the Office of River

  9. Savannah River Ecology Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    in 1997 and replaced with two other areas, both located in the Savannah River swamp. ... on the natural levy that parallels the Savannah River. Area: 1 2 3 4 5 6 7 8 9 10 11 ...

  10. River Corridor - Hanford Site

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    River Corridor Richland Operations Office Richland Operations Office River Corridor B Reactor 300 Area 324 Building 618-10 and 618-11 Burial Grounds C Reactor D and DR Reactors F ...

  11. River Corridor Achievements

    Energy.gov [DOE]

    Washington Closure Hanford and previous contractors have completed much of the cleanup work in the River Corridor, shown here.

  12. U.S. DEPARTMENT OF ENERGY * SAVANNAH RIVER SITE * AIKEN * SC

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    An Overview of the Savannah River National Laboratory Introduction and History Savannah River National Laboratory (SRNL) puts science to work to create and deploy practical, high-value, cost-effective technology solutions. As the applied research and development laboratory at the U.S. Department of Energy's (DOE) Savannah River Site (SRS), SRNL serves DOE and the nation by providing innovative solutions for DOE and other federal agencies across the country and around the world. * The laboratory

  13. Louisiana Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    Louisiana nuclear power plants, summer capacity and net generation, 2010" "Plant Name/Total Reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (Pprcent)","Owner" "River Bend Unit 1",974,"8,363",44.9,"Entergy Gulf States - LA LLC" "Waterford 3 Unit 3","1,168","10,276",55.1,"Entergy Louisiana Inc" "2 Plants 2

  14. Florida Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    Florida nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Crystal River Unit 3",860,0,"--","Progress Energy Florida Inc" "St Lucie Unit 1, Unit 2","1,678","12,630",52.8,"Florida Power & Light Co" "Turkey Point

  15. Enterprise Assessments Review of the Savannah River Site Salt Waste

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Processing Facility Construction Quality and Startup Test Plans - June 2015 | Department of Energy Salt Waste Processing Facility Construction Quality and Startup Test Plans - June 2015 Enterprise Assessments Review of the Savannah River Site Salt Waste Processing Facility Construction Quality and Startup Test Plans - June 2015 June 2015 Review of the Savannah River Site Salt Waste Processing Facility Construction Quality and Startup Test Plans The Office of Nuclear Safety and Environmental

  16. Savannah River National Laboratory by the Numbers August 2015

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    was constructed in the 1950s to produce the basic materials necessary in the fabrication of nuclear weapons, primarily tritium and plutonium-239. Five reactors were also built in an effort to produce these materials for our nation's defense programs. In 1951, the Savannah River Laboratory was created to support these efforts. In 2004 the laboratory was designated a National Laboratory, renamed Savannah River National Laboratory (SRNL), and in 2006 it was recognized as the Office of Environmental

  17. Waste management units: Savannah River Site

    SciTech Connect

    Molen, G.

    1991-09-01

    This report indexes every waste management unit of the Savannah River Site. They are indexed by building number and name. The waste units are also tabulated by solid waste units receiving hazardous materials with a known release or no known release to the environment. It also contains information on the sites which has received no hazardous waste, and units which have received source, nuclear, or byproduct material only. (MB)

  18. Waste management units - Savannah River Site

    SciTech Connect

    Not Available

    1989-10-01

    This report is a compilation of worksheets from the waste management units of Savannah River Plant. Information is presented on the following: Solid Waste Management Units having received hazardous waste or hazardous constituents with a known release to the environment; Solid Waste Management Units having received hazardous waste or hazardous constituents with no known release to the environment; Solid Waste Management Units having received no hazardous waste or hazardous constituents; Waste Management Units having received source; and special nuclear, or byproduct material only.

  19. U. S. Department of Energy Savannah River Operations Office - Home

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Savannah River Site Operator: 803-725-6211 Department of Energy Mailing Address: Savannah River Operations Office, P.O. Box A, Aiken, SC 29802 Employment: www.usajobs.gov Employment Verification: SR Human Resources Advisory Office - (803) 952-7856 Fax: (803) 952-7711 Media: Office of External Affairs, 803-952-7697 Websites: http://sro.srs.gov and www.srs.gov National Nuclear Security Administration (NNSA) Mailing Address: NNSA - Savannah River Field Office, P.O. Box A, Aiken, SC 29802 Main

  20. U. S. Department of Energy Savannah River Operations Office - Leadership -

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Dr. David C. Moody Dr. David C. Moody Dr. David C. Moody Manager U. S. Department of Energy Savannah River Operations Office Dr. David C. Moody Dr. Moody is the Manager of the U.S. Department of Energy (DOE) Savannah River Operations Office (SR) at the Savannah River Site (SRS) in Aiken, South Carolina. He is a career member of the Senior Executive Service with more than 36 years of experience in the fields of environmental science and nuclear chemistry. As DOE-SR Manager, Dr. Moody oversees

  1. Office of River Protection - Hanford Site

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Office of River Protection Office of River Protection Office of River Protection Office of River Protection Email Email Page | Print Print Page |Text Increase Font Size Decrease...

  2. Effective citizen advocacy of beneficial nuclear technologies

    SciTech Connect

    McKibben, J. Malvyn; Wood, Susan

    2007-07-01

    In 1991, a small group of citizens from communities near the Savannah River Site (SRS) formed a pro-nuclear education and advocacy group, Citizens for Nuclear Technology Awareness (CNTA). Their purpose was to: (1) counter nuclear misinformation that dominated the nation's news outlets, (2) provide education on nuclear subjects to area citizens, students, elected officials, and (3) provide informed citizen support for potential new missions for SRS when needed. To effectively accomplish these objectives it is also essential to establish and maintain good relations with community leaders and reporters that cover energy and nuclear subjects. The organization has grown considerably since its inception and has expanded its sphere of influence. We believe that our experiences over these fifteen years are a good model for effectively communicating nuclear subjects with the public. This paper describes the structure, operation and some of the results of CNTA. (authors)

  3. Nuclear Counterterrorism

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    2013-08-26

    The Order defines requirements for the protection of sensitive improvised nuclear device information and provides a framework to support DOE activities related to nuclear counterterrorism. (A supplemental DOE Manual, Control of and Access to Improvised Nuclear Device Information, provides requirements and procedures for protecting Sigma 20 information.) Appendices A and B are Official Use Only. Point of contact is Adam Boyd (NA-82), 202-586-0010. Supersedes DOE O 457.1 and DOE M 457.1-1.

  4. Nuclear Physics

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Nuclear Physics Nuclear Physics Enabling remarkable discoveries and tools that transform our understanding of energy and matter and advance national, economic, and energy security. Isotopes» A roadmap of matter that will help unlock the secrets of how the universe is put together The DOE Office of Science's Nuclear Physics (NP) program supports the experimental and theoretical research needed to create this roadmap. This quest requires a broad approach to different, but related, scientific

  5. Savannah River Site (SRS) environmental overview

    SciTech Connect

    O'Rear, M.G. ); Steele, J.L.; Kitchen, B.G. )

    1990-01-01

    The environmental surveillance activities at and in the vicinity of the Savannah River Site (SRS) (formerly the Savannah River Plant (SRP)) comprise one of the most comprehensive and extensive environmental monitoring programs in the United States. This overview contains monitoring data from routine and nonroutine radiological and nonradiological environmental surveillance activities, summaries of environmental protection programs in progress, a summary of National Environmental Policy Act (NEPA) activities, and a listing of environmental permits (Appendix A) issued by regulatory agencies. This overview provides information about the impact of SRS operations on the public and the environment. The SRS occupies a large area of approximately 300 square miles along the Savannah River, principally in Aiken and Barnwell counties of South Carolina. SRS's primary function is the production of tritium, plutonium, and other special nuclear materials for national defense, for other governmental uses, and for some civilian purposes. From August 1950 to March 31, 1989, SRS was operated for the Department of Energy (DOE) by E. I. du Pont de Nemours Co. On April 1, 1989 the Westinghouse Savannah River Company assumed responsibility as the prime contractor for the Savannah River Site.

  6. The Savannah River Site is owned by the U.S. Department of Energy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Saldivar has 33 years of nuclearnon-nuclear experience at the Savannah River Site (SRS) and DuPont Petrochemicals working in the areas of Design Authority Engineering, Project ...

  7. nuclear smuggling

    National Nuclear Security Administration (NNSA)

    13, 2015

    SHANGHAI, CHINA - Today, the Nuclear Security Administration's (NNSA) Principal Assistant Deputy Administrator for Defense...

  8. nuclear material

    National Nuclear Security Administration (NNSA)

    width"300" >WASHINGTON, D.C. - The Department of Energy's (DOE) National Nuclear Security Administration (NNSA), in partnership with the Defense Threat Reduction...

  9. nuclear weapons

    National Nuclear Security Administration (NNSA)

    09, 2015

    WASHINGTON, D.C. - The National Nuclear Security Administration (NNSA) and United States Air Force completed eight successful...

  10. nuclear controls

    National Nuclear Security Administration (NNSA)

    which "international safeguards are fully integrated into the design process of a new nuclear facility from the initial planning through design, construction, operation, and...

  11. nuclear forensics

    National Nuclear Security Administration (NNSA)

    serves as the premier technical leader in responding to and successfully resolving nuclear and radiological threats worldwide. When the need arises, NNSA is prepared to...

  12. NUCLEAR ENERGY

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    NUCLEAR ENERGY RESEARCH AND DEVELOPMENT ROADMAP Table of Contents List of Acronyms ................................................................................................... iii Executive Summary ............................................................................................... v 1. Introduction ...................................................................................................... 1 2. Background

  13. Material Science and Nuclear Science

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Material Science and Nuclear Science Material Science and Nuclear Science National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place on Earth pursues a broader array of world-class scientific endeavors. The Lab's four Science Pillars harness capabilities for solutions to threats- on national and global scales. Contact thumbnail of Business Development Business Development Richard P. Feynman Center for Innovation

  14. EM Issues Amended Decision to Expand Use of Nuclear Facility

    Energy.gov [DOE]

    AIKEN, S.C. – EM issued an amended Record of Decision (ROD) to the Savannah River Site (SRS) Spent Nuclear Fuel Environmental Impact Statement to expand the operations of the H-Canyon Facility at SRS to support a major nuclear non-proliferation goal and save taxpayer dollars.

  15. U.S. DEPARTMENT OF ENERGY * SAVANNAH RIVER SITE * AIKEN * SC

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Gas Transfer Systems and Reservoir Development Gas Transfer Systems and Reservoir Development The Savannah River Site (SRS) is rich in history for its involvement in the nation's nuclear defense program. For over 50 years, SRS and the Savannah River National Laboratory (SRNL) have developed the expertise necessary to be the premier laboratory for tritium processing and its relation to new reservoir design. SRNL is the bridge between the weapon Design Agencies and the Savannah River Tritium

  16. COLLOQUIUM - NOTE SPECIAL TIME OF 3:15PM: Savannah River National

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Laboratory: Underpinning Critical National Missions | Princeton Plasma Physics Lab May 15, 2013, 3:15pm to 5:30pm Colloquia MBG Auditorium COLLOQUIUM - NOTE SPECIAL TIME OF 3:15PM: Savannah River National Laboratory: Underpinning Critical National Missions Dr. Jeff Griffin Savannah River National Laboratory The Cold War mission of the Savannah River Site in South Carolina was to produce nuclear materials for the national defense. Since the Cold War ended, SRS has continued to ensure United

  17. River Corridor Work Creates Legacy of Success in Cleanup of Nation's

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Plutonium Production | Department of Energy River Corridor Work Creates Legacy of Success in Cleanup of Nation's Plutonium Production River Corridor Work Creates Legacy of Success in Cleanup of Nation's Plutonium Production December 17, 2015 - 12:25pm Addthis RICHLAND, Wash. - The Columbia River flows through the Hanford Site for approximately 50 miles. Nine reactors were built along its southern shore during World War II and the Cold War to produce plutonium for the nation's nuclear weapons

  18. Government Decision to Abandon Yucca Mountain Negatively Impacts Central Savannah River Area

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    For Immediate Release Contact: Rick McLeod Monday, November 9, 2009 803.593.9954 x1411 Government Decision to Abandon Yucca Mountain Negatively Impacts Central Savannah River Area AIKEN, SC - The Federal Government's failure to complete construction of its only option for long-term nuclear waste storage at Yucca Mountain in the Nevada desert will result in the Savannah River Site becoming the permanent home to tons of high- level nuclear waste, a local community group says. The SRS Community

  19. EIS-0108: L-Reactor Operation, Savannah River Plant, Aiken, South Carolina

    Energy.gov [DOE]

    This Environmental Impact Statement (EIS) was prepared to provide environmental input into the proposed decision to restart L-Reactor operation at the Savannah River Plant (SRP). The Savannah River Plant is a major U.S. Department of Energy (DOE) installation for the production of defense nuclear materials. The proposed restart of L–Reactor would provide defense nuclear materials (i.e. , plutonium) to wet current and near-term needs for national defense purposes.

  20. Salt Waste Disposal at the Savannah River Site | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Salt Waste Disposal at the Savannah River Site Salt Waste Disposal at the Savannah River Site Section 3116 of the Ronald W. Reagan National Defense Authorization Act for Fiscal Year 2005 authorizes the Secretary of Energy, in consultation with the Nuclear Regulatory Commission, to reclassify certain waste from reprocessing spent nuclear fuel from high-level waste to low-level waste if it meets the criteria set forth in Section 3116. Currently, DOE SRS has prepared one final (salt waste) and is

  1. Bubblers Speed Nuclear Waste Processing at SRS

    SciTech Connect

    2010-11-14

    At the Department of Energy's Savannah River Site, American Recovery and Reinvestment Act funding has supported installation of bubbler technology and related enhancements in the Defense Waste Processing Facility (DWPF). The improvements will accelerate the processing of radioactive waste into a safe, stable form for storage and permit expedited closure of underground waste tanks holding 37 million gallons of liquid nuclear waste.

  2. Bubblers Speed Nuclear Waste Processing at SRS

    ScienceCinema

    None

    2016-07-12

    At the Department of Energy's Savannah River Site, American Recovery and Reinvestment Act funding has supported installation of bubbler technology and related enhancements in the Defense Waste Processing Facility (DWPF). The improvements will accelerate the processing of radioactive waste into a safe, stable form for storage and permit expedited closure of underground waste tanks holding 37 million gallons of liquid nuclear waste.

  3. June 2014 Most Viewed Documents for Fission And Nuclear Technologies...

    Office of Scientific and Technical Information (OSTI)

    between phases in various two-phase flow regimes Ishii, M. (1977) 29 Reactor safety study. ... (1975) 28 Fundamental aspects of nuclear reactor fuel elements: solutions to problems ...

  4. River and Plateau Committee

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    of Energy River Turbine Provides Clean Energy to Remote Alaskan Village River Turbine Provides Clean Energy to Remote Alaskan Village August 18, 2015 - 10:36am Addthis River Turbine Provides Clean Energy to Remote Alaskan Village Alison LaBonte Marine and Hydrokinetic Technology Manager To date, Ocean Renewable Power Company (ORPC) is the only company to have built, operated and delivered power to a utility grid from a hydrokinetic tidal project, and to a local microgrid from a hydrokinetic

  5. Nuclear Weapons Journal

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Nuclear Weapons Journal Nuclear Weapons Journal The Nuclear Weapons Journal ceased publication after Issue 2, 2009. Below are Nuclear Weapons Journal archived issues. Issue 2, 2009 ...

  6. Civilian Nuclear Program

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Civilian Nuclear Program Civilian Nuclear Program Los Alamos is committed to using its advanced nuclear expertise and unique facilities to meet the civilian nuclear national ...

  7. 2013 Nuclear Workforce Development ...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Nuclear Myths Topics: Can a Nuclear Reactor Explode Like a Bomb? Will Nuclear Waste Be Around for Millions of Years? Is Nuclear Energy Dangerous? Moderator: Suzy Hobbs ...

  8. Great River (1973)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Volume One Film Collection Volume Two 75th Anniversary Hydropower in the Northwest Woody Guthrie Videos Strategic Direction Branding & Logos Power of the River History Book...

  9. River of Power (1987)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Volume One Film Collection Volume Two 75th Anniversary Hydropower in the Northwest Woody Guthrie Videos Strategic Direction Branding & Logos Power of the River History Book...

  10. Savannah River Ecology Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    of bottomland hardwoodfloodplain forest communities of a southern river swamp system. ... or urban waste discharge, or power plant cooling effluents. Area: 1 2 3 4 5 6 7 ...

  11. Savannah River Ecology Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    location of the Savannah River Ecology Laboratory, is one of the original ten SREL habitat reserves and was selected to complement the old-field habitatplant succession studies ...

  12. Nuclear Nonproliferation, International Safeguards and Nuclear...

    Office of Scientific and Technical Information (OSTI)

    Conference: Nuclear Nonproliferation, International Safeguards and Nuclear Security in the Middle East Citation Details In-Document Search Title: Nuclear Nonproliferation, ...

  13. Nuclear Nonproliferation Program Offices | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy ... and monitor nuclear weapons production, proliferation, and nuclear explosions worldwide. ...

  14. Nuclear Nonproliferation Treaty | National Nuclear Security Administra...

    National Nuclear Security Administration (NNSA)

    People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy ... Nuclear Nonproliferation Treaty The Treaty on the Non-Proliferation of Nuclear Weapons off ...

  15. nuclear | National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration (NNSA)

    nuclear Nuclear Science Week releases 2015 Impact Report and 2016 Request for Proposal Last week the Nuclear Science Week (NSW) National Steering Committee released its impact ...

  16. Nuclear Nonproliferation, International Safeguards and Nuclear...

    Office of Scientific and Technical Information (OSTI)

    Nuclear Nonproliferation, International Safeguards and Nuclear Security in the Middle East Citation Details In-Document Search Title: Nuclear Nonproliferation, International ...

  17. Chernobyl Nuclear Accident | National Nuclear Security Administration |

    National Nuclear Security Administration (NNSA)

    (NNSA) Chernobyl Nuclear Accident Chernobyl Nuclear Accident Chernobyl, Ukraine A catastrophic nuclear accident occurs at Chernobyl Reactor #4 in the then Soviet Republic of Ukraine

  18. Alloy solution hardening with solute pairs

    DOEpatents

    Mitchell, John W.

    1976-08-24

    Solution hardened alloys are formed by using at least two solutes which form associated solute pairs in the solvent metal lattice. Copper containing equal atomic percentages of aluminum and palladium is an example.

  19. Nuclear materials management storage study

    SciTech Connect

    Becker, G.W. Jr.

    1994-02-01

    The Office of Weapons and Materials Planning (DP-27) requested the Planning Support Group (PSG) at the Savannah River Site to help coordinate a Departmental complex-wide nuclear materials storage study. This study will support the development of management strategies and plans until Defense Programs` Complex 21 is operational by DOE organizations that have direct interest/concerns about or responsibilities for nuclear material storage. They include the Materials Planning Division (DP-273) of DP-27, the Office of the Deputy Assistant Secretary for Facilities (DP-60), the Office of Weapons Complex Reconfiguration (DP-40), and other program areas, including Environmental Restoration and Waste Management (EM). To facilitate data collection, a questionnaire was developed and issued to nuclear materials custodian sites soliciting information on nuclear materials characteristics, storage plans, issues, etc. Sites were asked to functionally group materials identified in DOE Order 5660.1A (Management of Nuclear Materials) based on common physical and chemical characteristics and common material management strategies and to relate these groupings to Nuclear Materials Management Safeguards and Security (NMMSS) records. A database was constructed using 843 storage records from 70 responding sites. The database and an initial report summarizing storage issues were issued to participating Field Offices and DP-27 for comment. This report presents the background for the Storage Study and an initial, unclassified summary of storage issues and concerns identified by the sites.

  20. Special Nuclear Materials: EM Manages Plutonium, Highly Enriched Uranium

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    and Uranium-233 | Department of Energy Waste Management » Nuclear Materials & Waste » Special Nuclear Materials: EM Manages Plutonium, Highly Enriched Uranium and Uranium-233 Special Nuclear Materials: EM Manages Plutonium, Highly Enriched Uranium and Uranium-233 105-K building houses the K-Area Material Storage (KAMS) facility, designated for the consolidated storage of surplus plutonium at Savannah River Site pending disposition. The plutonium shipped to KAMS is sealed inside a

  1. Nuclear Counterterrorism

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    2006-02-07

    The Order defines requirements for the protection of sensitive improvised nuclear device information and provides a framework to support DOE activities related to nuclear counterterrorism. (A supplemental DOE Manual, Control of and Access to Improvised Nuclear Device Information, provides requirements and procedures for protecting Sigma 20 information. The Manual is Official Use Only, and is not available on the Directives Portal. The point of contact for the Manual is Randall Weidman, NA-121.2, 202-586-4582.) Canceled by DOE O 457.1A

  2. Lower Colorado River Authority | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Lower Colorado River Authority's communications requirements Lower Colorado River Authority (134.07

  3. John Seaman | Savannah River Ecology Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Seaman Curriculum Vitae Faculty & Scientists SREL Home John Seaman Savannah River Ecology Laboratory P O Drawer E, Aiken, SC 29802 (803) 725-0977 office (803) 725-3309 fax seaman(at)uga.edu Dr. Seaman's research interests include a number of active agricultural and environmental research areas: the land application of animal waste and coal combustion by-products; solute and contaminant transport modeling; reclamation of Cr(VI) contaminated aquifers and soils; in situ contaminant

  4. about Savannah River National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    The EDM capability at the Savannah River National Laboratory (SRNL) is unique to the Savannah River Site. It allows for very fine, precise cutting of metal without destroying ...

  5. Onsite transportation of radioactive materials at the Savannah River Site

    SciTech Connect

    Watkins, R.

    2015-03-03

    The Savannah River Site (SRS) Transportation Safety Document (TSD) defines the onsite packaging and transportation safety program at SRS and demonstrates its compliance with Department of Energy (DOE) transportation safety requirements, to include DOE Order 460.1C, DOE Order 461.2, Onsite Packaging and Transfer of Materials of National Security Interest, and 10 CFR 830, Nuclear Safety Management (Subpart B).

  6. RADIOCHEMISTRY, AND NUCLEAR CHEMISTRY; NUCLEAR MEDICINE; HISTORICAL

    Office of Scientific and Technical Information (OSTI)

    The early days Richards, P. 38 RADIATION CHEMISTRY, RADIOCHEMISTRY, AND NUCLEAR CHEMISTRY; NUCLEAR MEDICINE; HISTORICAL ASPECTS; TECHNETIUM 99; COLLOIDS; MOLYBDENUM...

  7. National Nuclear Security Administration | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

  8. nuclear navy

    National Nuclear Security Administration (NNSA)

    7%2A en Powering the Nuclear Navy http:www.nnsa.energy.govourmissionpoweringnavy

    Page...

  9. nuclear navy

    National Nuclear Security Administration (NNSA)

    7%2A en Powering the Nuclear Navy http:nnsa.energy.govourmissionpoweringnavy

    Page...

  10. Nuclear option

    SciTech Connect

    Olson, P.S.

    1983-03-01

    The energy demand complexion of this country is always changing and promises to change in the future. The nuclear industry is responding to changing energy demands through standards writing activities. Since the oil embargo of 1973, there has been a change in the mix of fuels contributing to energy growth in this country; virtually all of the energy growth has come from coal and nuclear power. The predicted expansion of coal use by 1985, over 1977 level, is 37%, while the use of oil is expected to decline by 17%. Use of nuclear power is expected to increase 62% from the 1977 level. The feasibility of using nuclear energy to meet the needs of the USA for electric power is discussed.

  11. Nuclear Energy!

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    more about Nuclear Energy When: Saturday, October 19 | 1:00 p.m. - 3:00 p.m. Where: Aiken Technical College Gymnasium Who: Tigers, Cub Scouts, Webelos, Daisies, Brownies and ...

  12. Integration of Environmental Compliance at the Savannah River Site - 13024

    SciTech Connect

    Hoel, David; Griffith, Michael

    2013-07-01

    The Savannah River Site (SRS) is a large federal installation hosting diverse missions and multiple organizations with competing regulatory needs. Accordingly, there was a need to integrate environmental compliance strategies to ensure the consistent flow of information between Department of Energy-Savannah River (DOE-SR), the regulatory agencies and other interested parties. In order to meet this objective, DOE and major SRS contractors and tenants have committed to a strategy of collaboratively working together to ensure that a consistent, integrated, and fully coordinated approach to environmental compliance and regulator relationships is maintained. DOE-SR and Savannah River Nuclear Solutions, LLC, the SRS management and operations contractor, have established an environmental compliance integration process that provides for the consistent flow down of requirements to projects, facilities, SRS contractors, and subcontractors as well as the upward flow of information to assist in the early identification and resolution of environmental regulatory issues and enhancement of compliance opportunities. In addition, this process strongly fosters teamwork to collaboratively resolve complex regulatory challenges, promote pollution prevention and waste minimization opportunities to advance site missions in a manner that balances near-term actions with the long-term site vision, while being protective of human health and the environment. Communication tools are being utilized, some with enhancements, to ensure appropriate information is communicated to all levels with environmental responsibility at SRS. SRS internal regulatory integration is accomplished through a variety of informational exchange forums (e.g., Challenges, Opportunities and Resolution (COR) Team, DOE's Joint Site Regulatory Integration Team, and the Senior Environmental Managers Council (SEMC)). SRS communications and problem-solving with the regulatory agencies have been enhanced through formation of an

  13. Nuclear Nonproliferation

    SciTech Connect

    Atkins-Duffin, C E

    2008-12-10

    With an explosion equivalent of about 20kT of TNT, the Trinity test was the first demonstration of a nuclear weapon. Conducted on July 16, 1945 in Alamogordo, NM this site is now a Registered National Historic Landmark. The concept and applicability of nuclear power was demonstrated on December 20, 1951 with the Experimental Breeder Reactor Number One (EBR-1) lit four light bulbs. This reactor is now a Registered National Historic Landmark, located near Arco, ID. From that moment forward it had been clearly demonstrated that nuclear energy has both peaceful and military applications and that the civilian and military fuel cycles can overlap. For the more than fifty years since the Atoms for Peace program, a key objective of nuclear policy has been to enable the wider peaceful use of nuclear energy while preventing the spread of nuclear weapons. Volumes have been written on the impact of these two actions on the world by advocates and critics; pundits and practioners; politicians and technologists. The nations of the world have woven together a delicate balance of treaties, agreements, frameworks and handshakes that are representative of the timeframe in which they were constructed and how they have evolved in time. Collectively these vehicles attempt to keep political will, nuclear materials and technology in check. This paper captures only the briefest abstract of the more significant aspects on the Nonproliferation Regime. Of particular relevance to this discussion is the special nonproliferation sensitivity associated with the uranium isotope separation and spent fuel reprocessing aspects of the nuclear fuel cycle.

  14. Nuclear Data

    SciTech Connect

    White, Morgan C.

    2014-01-23

    PowerPoint presentation targeted for educational use. Nuclear data comes from a variety of sources and in many flavors. Understanding where the data you use comes from and what flavor it is can be essential to understand and interpret your results. This talk will discuss the nuclear data pipeline with particular emphasis on providing links to additional resources that can be used to explore the issues you will encounter.

  15. Behavior-Based Safety- The Next Generation

    Energy.gov [DOE]

    Presenters: Roger Staten, Hazel Darby, Frank Cannon, Savannah River Remediation, LLC, Savannah River Remediation, Savannah River Nuclear Solutions, LLC Track 2-6

  16. Use of Electronic Hand-held Devices for Collection of Savannah River Site Environmental Data - 13329

    SciTech Connect

    Marberry, Hugh; Moore, Winston

    2013-07-01

    Savannah River Nuclear Solutions has begun using Xplore Tablet PC's to collect data in the field for soil samples, groundwater samples, air samples and round sheets at the Savannah River Site (SRS). EPA guidelines for groundwater sampling are incorporated into the application to ensure the sample technician follows the proper protocol. The sample technician is guided through the process for sampling and round sheet data collection by a series of menus and input boxes. Field measurements and well stabilization information are entered into the tablet for uploading into Environmental Restoration Data Management System (ERDMS). The process helps to eliminate input errors and provides data integrity. A soil sample technician has the ability to collect information about location of sample, field parameter, describe the soil sample, print bottle labels, and print chain of custody for the sample that they have collected. An air sample technician has the ability to provide flow, pressure, hours of operation, print bottle labels and chain of custody for samples they collect. Round sheets are collected using the information provided in the various procedures. The data are collected and uploaded into ERDMS. The equipment used is weather proof and hardened for the field use. Global Positioning System (GPS) capabilities are integrated into the applications to provide the location where samples were collected and to help sample technicians locate wells that are not visited often. (authors)

  17. ldrd | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    ldrd Laboratory Directed Research & Development The U.S. Department of Energy (DOE) is charged with a large and complex mission: to ensure America's security and prosperity by addressing its energy, environmental, and nuclear challenges through transformative science and technology solutions. The DOE executes this mission to a large extent at

  18. METHOD OF INHIBITING CORROSION IN URANYL SULFATE SOLUTIONS

    DOEpatents

    Bohlmann, E.G.; Griess, J.C. Jr.

    1960-08-23

    A method is given for treating a uranyl sulfate solution to inhibit the corrosiveness of the solution and elevate the phase separation temperature of the solution. Lithium sulfate is added to the solution in an amount ranging from 0.25 to 1.3 times the uranyl sulfate concentration. The corrosiveness of the solution with respect to stainless steel is substantially decreased by this means. This treatment also serves to raise the phase separation temperature of the solution (above 250 deg C), at which time the uranyl sulfate solution separates into two liquid phases of unequal uranium concentration and thus becomes unsuitable as nuclear reactor fuel.

  19. Nuclear Reactor Kinetics and Control.

    Energy Science and Technology Software Center

    2009-07-27

    Version 00 Dr. J.D. Lewins has now released the following legacy book for free distribution: Nuclear Reactor Kinetics and Control, Pergamon Press, London, 275 pages, 1978. 1. Introductory Review 2. Neutron and Precursor Equations 3. Elementary Solutions of the Kinetics Equations at Low Power 4. Linear Reactor Process Dynamics with Feedback 5. Power Reactor Control Systems 6. Fluctuations and Reactor Noise 7. Safety and Reliability 8. Non Linear Systems; Stability and Control 9. Analogue Computingmore » Addendum: Jay Basken and Jeffery D. Lewins: Power Series Solution of the Reactor Kinetics Equations, Nuclear Science and Engineering: 122, 407-436 (1996) (authorized for distribution with the book: courtesy of the American Nuclear Society)« less

  20. Columbia River Treaty History and 2014/2024 Review

    SciTech Connect

    2009-02-01

    The Columbia River, the fourth largest river on the continent as measured by average annual flow, generates more power than any other river in North America. While its headwaters originate in British Columbia, only about 15 percent of the 259,500 square miles of the Columbia River Basin is actually located in Canada. Yet the Canadian waters account for about 38 percent of the average annual volume, and up to 50 percent of the peak flood waters, that flow by The Dalles Dam on the Columbia River between Oregon and Washington. In the 1940s, officials from the United States and Canada began a long process to seek a joint solution to the flooding caused by the unregulated Columbia River and to the postwar demand for greater energy resources. That effort culminated in the Columbia River Treaty, an international agreement between Canada and the United States for the cooperative development of water resources regulation in the upper Columbia River Basin. It was signed in 1961 and implemented in 1964.

  1. Savannah River Site

    Energy.gov [DOE]

    HISTORYDuring the early 1950s, SRS began to produce materials used in nuclear weapons, primarily tritium and plutonium-239. Five reactors were built to produce nuclear materials. Support facilities...

  2. U.S. DEPARTMENT OF ENERGY * SAVANNAH RIVER SITE * AIKEN * SC

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Impact on International Security Training International Capabilities The Savannah River National Laboratory (SRNL) has extensive experience in putting science to work across a broad range of issues with global impact. With expertise in international safeguards, nonproliferation technical consulting, nuclear forensics, intelligence assessments, and nuclear material security programs, SRNL's history of diverse missions supports an array of international programs. From development to execution,

  3. HOMOGENEOUS NUCLEAR POWER REACTOR

    DOEpatents

    King, L.D.P.

    1959-09-01

    A homogeneous nuclear power reactor utilizing forced circulation of the liquid fuel is described. The reactor does not require fuel handling outside of the reactor vessel during any normal operation including complete shutdown to room temperature, the reactor being selfregulating under extreme operating conditions and controlled by the thermal expansion of the liquid fuel. The liquid fuel utilized is a uranium, phosphoric acid, and water solution which requires no gus exhaust system or independent gas recombining system, thereby eliminating the handling of radioiytic gas.

  4. Nuclear Models

    SciTech Connect

    Fossion, Ruben [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-543, Mexico D. F., C.P. 04510 (Mexico)

    2010-09-10

    The atomic nucleus is a typical example of a many-body problem. On the one hand, the number of nucleons (protons and neutrons) that constitute the nucleus is too large to allow for exact calculations. On the other hand, the number of constituent particles is too small for the individual nuclear excitation states to be explained by statistical methods. Another problem, particular for the atomic nucleus, is that the nucleon-nucleon (n-n) interaction is not one of the fundamental forces of Nature, and is hard to put in a single closed equation. The nucleon-nucleon interaction also behaves differently between two free nucleons (bare interaction) and between two nucleons in the nuclear medium (dressed interaction).Because of the above reasons, specific nuclear many-body models have been devised of which each one sheds light on some selected aspects of nuclear structure. Only combining the viewpoints of different models, a global insight of the atomic nucleus can be gained. In this chapter, we revise the the Nuclear Shell Model as an example of the microscopic approach, and the Collective Model as an example of the geometric approach. Finally, we study the statistical properties of nuclear spectra, basing on symmetry principles, to find out whether there is quantum chaos in the atomic nucleus. All three major approaches have been rewarded with the Nobel Prize of Physics. In the text, we will stress how each approach introduces its own series of approximations to reduce the prohibitingly large number of degrees of freedom of the full many-body problem to a smaller manageable number of effective degrees of freedom.

  5. EM’s Office of River Protection Completes Waste Retrieval in Another Hanford Tank

    Office of Energy Efficiency and Renewable Energy (EERE)

    RICHLAND, Wash. – The EM Office of River Protection (ORP) and its tank operations contractor Washington River Protection Solutions completed waste retrieval activities in tank C-102, marking the 14th single-shell tank retrieved at C tank farm at the Hanford Site.

  6. River and Harbors Act

    Energy.gov [DOE]

    Section 10 of the Rivers and Harbors Act of 1899 (33 U.S.C. 403) prohibits the unauthorized obstruction or alteration of any navigable water of the United States.

  7. Nuclear pursuits

    SciTech Connect

    Not Available

    1993-05-01

    This table lists quantities of warheads (in stockpile, peak number per year, total number built, number of known test explosions), weapon development milestones (developers of the atomic bomb and hydrogen bomb, date of first operational ICBM, first nuclear-powered naval SSN in service, first MIRVed missile deployed), and testing milestones (first fission test, type of boosted fission weapon, multistage thermonuclear test, number of months from fission bomb to multistage thermonuclear bomb, etc.), and nuclear infrastructure (assembly plants, plutonium production reactors, uranium enrichment plants, etc.). Countries included in the tally are the United States, Soviet Union, Britain, France, and China.

  8. Meteorological Support at the Savanna River Site

    SciTech Connect

    Addis, Robert P.

    2005-10-14

    The Department of Energy (DOE) operates many nuclear facilities on large complexes across the United States in support of national defense. The operation of these many and varied facilities and processes require meteorological support for many purposes, including: for routine operations, to respond to severe weather events, such as lightning, tornadoes and hurricanes, to support the emergency response functions in the event of a release of materials to the environment, for engineering baseline and safety documentation, as well as hazards assessments etc. This paper describes a program of meteorological support to the Savannah River Site, a DOE complex located in South Carolina.

  9. Safety questions relevant to nuclear thermal propulsion

    SciTech Connect

    Buden, D.

    1991-10-15

    Nuclear propulsion is necessary for successful Mars exploration to enhance crew safety and reduce mission costs. Safety concerns are considered by some to be an implements to the use of nuclear thermal rockets for these missions. Therefore, an assessment was made of the various types of possible accident conditions that might occur and whether design or operational solutions exist. With the previous work on the NERVA nuclear rocket, most of the issues have been addressed in some detail. Thus, a large data base exist to use in an agreement. The assessment includes evaluating both ground, launch, space operations and disposal conditions. The conclusion is that design and operational solutions do exist for the safe use of nuclear thermal rockets and that both the environment and crews be protected against harmful radiation. Further, it is concluded that the use of nuclear thermal propulsion will reduce the radiation and mission risks to the Mars crews.

  10. CHEMICAL SLUDGE HEEL REMOVAL AT THE SAVANNAH RIVER SITE F TANK FARM CLOSURE PROJECT 8183

    SciTech Connect

    Thaxton, D; Timothy Baughman, T

    2008-01-16

    Chemical Sludge Removal (CSR) is the final waste removal activity planned for some of the oldest nuclear waste tanks located at the Savannah River Site (SRS) in Aiken, SC. In 2008, CSR will be used to empty two of these waste tanks in preparation for final closure. The two waste tanks chosen to undergo this process have previously leaked small amounts of nuclear waste from the primary tank into an underground secondary containment pan. CSR involves adding aqueous oxalic acid to the waste tank in order to dissolve the remaining sludge heel. The resultant acidic waste solution is then pumped to another waste tank where it will be neutralized and then stored awaiting further processing. The waste tanks to be cleaned have a storage capacity of 2.84E+06 liters (750,000 gallons) and a target sludge heel volume of 1.89E+04 liters (5,000 gallons) or less for the initiation of CSR. The purpose of this paper is to describe the CSR process and to discuss the most significant technical issues associated with the development of CSR.

  11. Defense Nuclear Facility | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Defense Nuclear Facility NNSA's safety office accredited and recognized for leadership in safe operation of defense nuclear facilities Part of NNSA's commitment to maintaining the nation's safe, secure, and effective nuclear deterrent are relentlessly high standards for technically capable nuclear enterprise personnel qualifications for all aspects of Defense Nuclear Facility operations. In December 2015, the Department of Energy

  12. NNSA Honors SRS Employees for Excellence | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) Honors SRS Employees for Excellence Wednesday, November 4, 2015 - 10:29am NNSA Blog Don Zecha, center, representative of the Savannah River Site R&D Assembly Load and Test Team, accepts the Defense Programs Award of Excellence from NNSA-Savannah River Field Office Manager Doug Dearolph, left, and NNSA Acting Deputy Administrator for Defense Programs Brigadier General S.L. Davis. AIKEN, S.C. -- The National Nuclear Security Administration has honored six teams of

  13. A Perspective on Coupled Multiscale Simulation and Validation in Nuclear Materials

    SciTech Connect

    M. P. Short; D. Gaston; C. R. Stanek; S. Yip

    2014-01-01

    The field of nuclear materials encompasses numerous opportunities to address and ultimately solve longstanding industrial problems by improving the fundamental understanding of materials through the integration of experiments with multiscale modeling and high-performance simulation. A particularly noteworthy example is an ongoing study of axial power distortions in a nuclear reactor induced by corrosion deposits, known as CRUD (Chalk River unidentified deposits). We describe how progress is being made toward achieving scientific advances and technological solutions on two fronts. Specifically, the study of thermal conductivity of CRUD phases has augmented missing data as well as revealed new mechanisms. Additionally, the development of a multiscale simulation framework shows potential for the validation of a new capability to predict the power distribution of a reactor, in effect direct evidence of technological impact. The material- and system-level challenges identified in the study of CRUD are similar to other well-known vexing problems in nuclear materials, such as irradiation accelerated corrosion, stress corrosion cracking, and void swelling; they all involve connecting materials science fundamentals at the atomistic- and mesoscales to technology challenges at the macroscale.

  14. Nuclear Science & Technology

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Nuclear Science & Technology Nuclear Science & Technology1354608000000Nuclear Science & TechnologySome of these resources are LANL-only and will require Remote Access. No...

  15. 2013 Nuclear Workforce Development ...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Nuclear Energy Impact Topics: Today's & Tomorrow's New Nuclear Energy Construction & the Workforce Outlook Current New Nuclear Energy Construction Projects Small Modular...

  16. NUCLEAR REACTOR

    DOEpatents

    Starr, C.

    1963-01-01

    This patent relates to a combination useful in a nuclear reactor and is comprised of a casing, a mass of graphite irapregnated with U compounds in the casing, and at least one coolant tube extending through the casing. The coolant tube is spaced from the mass, and He is irtroduced irto the space between the mass and the coolant tube. (AEC)

  17. Wing River Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    to: navigation, search Name Wing River Wind Farm Facility Wing River Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Wing River...

  18. Sioux River Ethanol LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    River Ethanol LLC Jump to: navigation, search Name: Sioux River Ethanol LLC Place: Hudson, South Dakota Zip: 57034 Product: Farmer owned ethanol producer, Sioux River Ethanol is...

  19. Office of River Protection - Hanford Site

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Office of River Protection Office of River Protection About ORP ORP Projects & Facilities Newsroom Contracts & Procurements Contact ORP Office of River Protection Email Email Page...

  20. Raft River Geothermal Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Raft River Geothermal Facility General Information Name Raft River Geothermal Facility Facility Raft River...

  1. Flambeau River Biofuels | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Flambeau River Biofuels Jump to: navigation, search Name: Flambeau River Biofuels Place: Park Falls, Wisconsin Sector: Biomass Product: A subsidiary of Flambeau River Papers LLC...

  2. Sky River Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    River Wind Farm Jump to: navigation, search Name Sky River Wind Farm Facility Sky River Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  3. Savannah River Site Waste Disposition Project

    Office of Environmental Management (EM)

    Terrel J. Spears Assistant Manager Waste Disposition Project DOE Savannah River Operations Office Savannah River Site Savannah River Site Waste Disposition Project Waste ...

  4. 2013 Congressional Nuclear Cleanup Caucus Briefings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    3 Congressional Nuclear Cleanup Caucus Briefings 2013 Congressional Nuclear Cleanup Caucus Briefings The Congressional Nuclear Cleanup Caucus serves as a way to brief members of Congress and their staff on EM headquarters and site activities, including budget, safety and project progress. 04/24/2013 - FY14 Budget Overview for Clean Up Caucus (2.75 MB) 05/07/2013 - Office of River Protection (8 MB) 05/16/2013 - Oak Ridge Congressional Nuclear Cleanup Caucus (14.23 MB) 05/21/2013 - Richland

  5. Romania: Brand-New Engineering Solutions

    SciTech Connect

    Ken Allen; Lucian Biro; Nicolae Zamfir; Madalina Budu

    2011-01-01

    The HEU spent nuclear fuel transport from Romania was a pilot project in the framework of the Russian Research Reactor Fuel Return Program (RRRFR), being the first fully certified spent nuclear fuel shipment by air. The successful implementation of the Romanian shipment also brought various new technology in the program, further used by other participating countries. Until 2009, the RRRFR program repatriated to the Russian Federation HEU spent nuclear fuel of Russian origin from many countries, like Uzbekistan, Czech Republic, Latvia, Hungary, Kazakhstan and Bulgaria. The means of transport used were various; from specialized TK-5 train for the carriage of Russian TUK-19 transport casks, to platform trains for 20 ft freight ISO containers carrying Czech Skoda VPVR/M casks; from river barge on the Danube, to vessel on the Mediterranean Sea and Atlantic Ocean. Initially, in 2005, the transport plan of the HEU spent nuclear fuel from the National Institute for R&D in Nuclear Physics and Nuclear Engineering 'Horia Hulubei' in Magurele, Romania considered a similar scheme, using the specialized TK-5 train transiting Ukraine to the destination point in the Russian Federation, or, as an alternative, using the means and route of the spent nuclear fuel periodically shipped from the Bulgarian nuclear power plant Kosloduy (by barge on the Danube, and by train through Ukraine to the Russian Federation). Due to impossibility to reach an agreement in due time with the transit country, in February 2007 the US, Russian and Romanian project partners decided to adopt the air shipment of the spent nuclear fuel as prime option, eliminating the need for agreements with any transit countries. By this time the spent nuclear fuel inspections were completed, proving the compliance of the burn-up parameters with the international requirements for air shipments of radioactive materials. The short air route avoiding overflying of any other countries except the country of origin and the

  6. Fissile solution dynamics: Student research

    SciTech Connect

    Hetrick, D.L.

    1994-09-01

    There are two research projects in criticality safety at the University of Arizona: one in dynamic simulation of hypothetical criticality accidents in fissile solutions, and one in criticality benchmarks using transport theory. We have used the data from nuclear excursions in KEWB, CRAC, and SILENE to help in building models for solution excursions. An equation of state for liquids containing gas bubbles has been developed and coupled to point-reactor dynamics in an attempt to predict fission rate, yield, pressure, and kinetic energy. It appears that radiolytic gas is unimportant until after the first peak, but that it does strongly affect the shape of the subsequent power decrease and also the dynamic pressure.

  7. Shale Gas Development in the Susquehanna River Basin

    Gasoline and Diesel Fuel Update

    Water Resource Challenges From Energy Production Major Types of Power Generation in SRB - Total 15,300 Megawatts - 37.5% 4.0% 12.0% 15.5% 31.0% Nuclear Coal Natural Gas Hydroelectric Other Marcellus Shale Gas Development in the Susquehanna River Basin The Basin: * 27,510-square-mile watershed * Comprises 43 percent of the Chesapeake Bay watershed * 4.2 million population * 60 percent forested * 32,000+ miles of waterways The Susquehanna River: * 444 miles, largest tributary to the Chesapeake Bay

  8. Secretary Chu Announces Blue Ribbon Commission on America's Nuclear Future

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    | Department of Energy Blue Ribbon Commission on America's Nuclear Future Secretary Chu Announces Blue Ribbon Commission on America's Nuclear Future January 29, 2010 - 12:00am Addthis Washington, D.C. - As part of the Obama Administration's commitment to restarting America's nuclear industry, U.S. Secretary of Energy Steven Chu today announced the formation of a Blue Ribbon Commission on America's Nuclear Future to provide recommendations for developing a safe, long-term solution to managing

  9. Enterprise SRS: Leveraging Ongoing Operations To Advance Nuclear Fuel Cycles Research And Development Programs

    SciTech Connect

    Murray, Alice M.; Marra, John E.; Wilmarth, William R.; Mcguire, Patrick W.; Wheeler, Vickie B.

    2013-07-03

    The Savannah River Site (SRS) is repurposing its vast array of assets to solve future national issues regarding environmental stewardship, national security, and clean energy. The vehicle for this transformation is Enterprise SRS which presents a new, radical view of SRS as a united endeavor for ''all things nuclear'' as opposed to a group of distinct and separate entities with individual missions and organizations. Key among the Enterprise SRS strategic initiatives is the integration of research into facilities in conjunction with on-going missions to provide researchers from other national laboratories, academic institutions, and commercial entities the opportunity to demonstrate their technologies in a relevant environment and scale prior to deployment. To manage that integration of research demonstrations into site facilities, The Department of Energy, Savannah River Operations Office, Savannah River Nuclear Solutions, the Savannah River National Laboratory (SRNL) have established a center for applied nuclear materials processing and engineering research (hereafter referred to as the Center). The key proposition of this initiative is to bridge the gap between promising transformational nuclear fuel cycle processing discoveries and large commercial-scale-technology deployment by leveraging SRS assets as facilities for those critical engineering-scale demonstrations necessary to assure the successful deployment of new technologies. The Center will coordinate the demonstration of R&D technologies and serve as the interface between the engineering-scale demonstration and the R&D programs, essentially providing cradle-to-grave support to the research team during the demonstration. While the initial focus of the Center will be on the effective use of SRS assets for these demonstrations, the Center also will work with research teams to identify opportunities to perform research demonstrations at other facilities. Unique to this approach is the fact that these SRS

  10. Savannah River | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    River Savannah River Following are compliance agreements for the Savannah River Site. Also included are short summaries of the agreements. Natural Resources Defense Council Consent Decree, May 26, 1988 (705.68 KB) Natural Resources Defense Council Consent Decree, May 26, 1988 Summary (40.89 KB) Savannah River Site Consent Order 99-155-W, October 11, 1999 (196.38 KB) Savannah River Site Consent Order 99-155-W, October 11, 1999 Summary (46.6 KB) Savannah River Site Consent Order 85-70-SW, November

  11. Nuclear Security Enterprise | National Nuclear Security Administration

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    About Our Programs Defense Programs Nuclear Security Enterprise The Nuclear Security Enterprise (NSE) mission is to ensure the Nation sustains a safe, secure, and effective ...

  12. Naval Nuclear Propulsion | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Naval Nuclear Propulsion Klotz visits Bettis Atomic Power Laboratory Lt. Gen. Frank G. Klotz, DOE Undersecretary for Nuclear Security and NNSA Administrator, visited the Bettis ...

  13. Nuclear and Radiological Material Security | National Nuclear...

    National Nuclear Security Administration (NNSA)

    This includes NNSA's work to advance physical protection standards for nuclear facilities and to strengthen nuclear safeguards, which are criteria for the physical security and the ...

  14. Nuclear Suppliers Group & Regimes | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency ...

  15. Nuclear Controls | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Controls | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy ...

  16. Nuclear Incident Team | National Nuclear Security Administration...

    National Nuclear Security Administration (NNSA)

    Incident Team NNSA houses the Nuclear Incident Team (NIT), which is responsible for deploying assets at the request of coordinating agencies in response to a nuclear or ...

  17. nuclear emergency | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Japan earthquake, tsunami, and ensuing nuclear reactor accident, the United States sent Department of Energy (DOE) National Nuclear Security Administration (NNSA) emergency ...

  18. Nuclear Forensics | National Nuclear Security Administration...

    National Nuclear Security Administration (NNSA)

    Nuclear Forensics Forensics Operations The National Technical Nuclear Forensics (NTNF) program is a Homeland Security Council and National Security Council-sponsored policy ...

  19. Nuclear / Radiological Advisory Team | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    Nuclear Radiological Advisory Team (NRAT) provides an emergency response capability for on-scene scientific and technical advice for both domestic and international nuclear or ...

  20. Nuclear Energy Systems Laboratory (NESL) / Transient Nuclear...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Transient Nuclear Fuels Testing - Sandia Energy Energy Search Icon Sandia Home Locations ... Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & ...

  1. Nuclear structure and nuclear reactions | Argonne Leadership...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Nuclear structure and nuclear reactions PI Name: James Vary PI Email: jvary@iastate.edu Institution: Iowa State University Allocation Program: INCITE Allocation Hours at ALCF: 15 ...

  2. nuclear science week | National Nuclear Security Administration...

    National Nuclear Security Administration (NNSA)

    science week Nuclear Science Week releases 2015 Impact Report and 2016 Request for Proposal Last week the Nuclear Science Week (NSW) National Steering Committee released its impact ...

  3. Spent Nuclear Fuel Alternative Technology Decision Analysis

    SciTech Connect

    Shedrow, C.B.

    1999-11-29

    The Westinghouse Savannah River Company (WSRC) made a FY98 commitment to the Department of Energy (DOE) to recommend a technology for the disposal of aluminum-based spent nuclear fuel (SNF) at the Savannah River Site (SRS). The two technologies being considered, direct co-disposal and melt and dilute, had been previously selected from a group of eleven potential SNF management technologies by the Research Reactor Spent Nuclear Fuel Task Team chartered by the DOE''s Office of Spent Fuel Management. To meet this commitment, WSRC organized the SNF Alternative Technology Program to further develop the direct co-disposal and melt and dilute technologies and ultimately provide a WSRC recommendation to DOE on a preferred SNF alternative management technology.

  4. Schlumberger soundings in the Upper Raft River and Raft River...

    OpenEI (Open Energy Information) [EERE & EIA]

    soundings in the Upper Raft River and Raft River Valleys, Idaho and Utah Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Schlumberger soundings in the...

  5. Nuclear | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Nuclear Nuclear Radioisotope Power Systems, a strong partnership between the Energy Department's Office of Nuclear Energy and NASA, has been providing the energy for deep space exploration. Nuclear power is the use of sustained nuclear fission to generate heat and electricity. Nuclear power plants provide about 6 percent of the world's energy and 13-14 percent of the world's electricity. Featured Moving Forward to Address Nuclear Waste Storage and Disposal Three trucks transport nuclear waste

  6. NUCLEAR REACTOR

    DOEpatents

    Anderson, C.R.

    1962-07-24

    A fluidized bed nuclear reactor and a method of operating such a reactor are described. In the design means are provided for flowing a liquid moderator upwardly through the center of a bed of pellets of a nentron-fissionable material at such a rate as to obtain particulate fluidization while constraining the lower pontion of the bed into a conical shape. A smooth circulation of particles rising in the center and falling at the outside of the bed is thereby established. (AEC)

  7. NUCLEAR REACTORS

    DOEpatents

    Long, E.; Ashby, J.W.

    1958-09-16

    ABS>A graphite moderator structure is presented for a nuclear reactor compriscd of an assembly of similarly orientated prismatic graphite blocks arranged on spaced longitudinal axes lying in common planes wherein the planes of the walls of the blocks are positioned so as to be twisted reintive to the planes of said axes so thatthe unlmpeded dtrect paths in direction wholly across the walls of the blocks are limited to the width of the blocks plus spacing between the blocks.

  8. NUCLEAR REACTOR

    DOEpatents

    Grebe, J.J.

    1959-07-14

    High temperature reactors which are uniquely adapted to serve as the heat source for nuclear pcwered rockets are described. The reactor is comprised essentially of an outer tubular heat resistant casing which provides the main coolant passageway to and away from the reactor core within the casing and in which the working fluid is preferably hydrogen or helium gas which is permitted to vaporize from a liquid storage tank. The reactor core has a generally spherical shape formed entirely of an active material comprised of fissile material and a moderator material which serves as a diluent. The active material is fabricated as a gas permeable porous material and is interlaced in a random manner with very small inter-connecting bores or capillary tubes through which the coolant gas may flow. The entire reactor is divided into successive sections along the direction of the temperature gradient or coolant flow, each section utilizing materials of construction which are most advantageous from a nuclear standpoint and which at the same time can withstand the operating temperature of that particular zone. This design results in a nuclear reactor characterized simultaneously by a minimum critiral size and mass and by the ability to heat a working fluid to an extremely high temperature.

  9. September 2014 | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    September 2014 Doug Dearolph receives NNSA's Gold Medal of Excellence Tuesday, September 30, 2014 - 11:31am DOE Undersecretary for Nuclear Security and NNSA Administrator Frank Klotz recently presented the Gold Medal of Excellence for Distinguished Service to Doug Dearolph, manager of the Savannah River Field Office. The medal is the highest honorary award granted by NNSA and was presented to Dearolph in recognition his dedication and commitment to public service and the mission of NNSA. The

  10. Lower Colorado River Authority | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    from Lower Colorado River Authority on Smart Grid communications requirements Lower Colorado River Authority (349.31

  11. Reese River Geothermal Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    River Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Reese River Geothermal Project Project Location Information...

  12. Nuclear Incident Team | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Nuclear Incident Team Fukushima: Five Years Later After the March 11, 2011, Japan earthquake, tsunami, and ensuing nuclear reactor accident, the United States sent Department of Energy (DOE) National Nuclear Security Administration (NNSA) emergency response teams. The NNSA teams included nuclear experts in predictive modeling, monitoring, sample

  13. Secretary Moniz's Remarks at the 2015 Carnegie International Nuclear Policy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Conference -- As Delivered | Department of Energy Carnegie International Nuclear Policy Conference -- As Delivered Secretary Moniz's Remarks at the 2015 Carnegie International Nuclear Policy Conference -- As Delivered March 23, 2015 - 9:00am Addthis Dr. Ernest Moniz Dr. Ernest Moniz Secretary of Energy Thanks, Bill. I had not expected my Fall River heritage to feature in the introduction. But as most of you could just imagine, it was a great pleasure working with Bill over these last years,

  14. Nuclear Forensics Research and Development | Y-12 National Security Complex

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Forensics Research ... Nuclear Forensics Research and Development The Department of Energy has named Y-12 the National Uranium Materials Archive. This storage center holds physical samples that can be retrieved when, for example, smuggled uranium materials are interdicted and the evidence has to be analyzed and compared with samples having known histories. Y-12 is working with nuclear forensics experts throughout the U.S. - at Los Alamos, Pacific Northwest, Oak Ridge and Savannah River national

  15. Most Viewed Documents for Fission and Nuclear Technologies: December 2014 |

    Office of Scientific and Technical Information (OSTI)

    OSTI, US Dept of Energy Office of Scientific and Technical Information Most Viewed Documents for Fission and Nuclear Technologies: December 2014 Stress analysis and evaluation of a rectangular pressure vessel. [For equipment for sampling Hanford tank radwaste] Rezvani, M.A.; Ziada, H.H. (Westinghouse Hanford Co., Richland, WA (United States)); Shurrab, M.S. (Westinghouse Savannah River Co., Aiken, SC (United States)) (1992) 67 Behavior of spent nuclear fuel in water pool storage Johnson,

  16. Whats Next for Nuclear Waste

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    WHAT'S NEXT FOR NUCLEAR WASTE? A New Strategy for the CSRA September 2009 PREFACE This White Paper was prepared by the Savannah River Site Community Reuse Organization (SRSCRO) to serve as a catalyst for public dialog concerning the implications of the Obama Administration's decision to halt more than two decades of work on Yucca Mountain in Nevada as the nation's permanent nuclear waste repository. United States policies governing the permanent disposal of high level waste are defined by the

  17. NNSA Reaches LEU Disposal Milestone | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) Reaches LEU Disposal Milestone NNSA Reaches LEU Disposal Milestone Aiken, SC The National Nuclear Security Administration's reached an important milestone in its efforts to dispose of surplus weapons-usable material as the 100th shipment of low enriched uranium (LEU) departed the Savannah River Site (SRS) in South Carolina for Nuclear Fuels Services in Erwin, Tennessee, four months ahead of schedule. The shipment is part of the Off-Specification HEU Blend Down

  18. Improved method for extracting lanthanides and actinides from acid solutions

    DOEpatents

    Horwitz, E.P.; Kalina, D.G.; Kaplan, L.; Mason, G.W.

    1983-07-26

    A process for the recovery of actinide and lanthanide values from aqueous acidic solutions uses a new series of neutral bi-functional extractants, the alkyl(phenyl)-N,N-dialkylcarbamoylmethylphosphine oxides. The process is suitable for the separation of actinide and lanthanide values from fission product values found together in high-level nuclear reprocessing waste solutions.

  19. Environmental Stewardship at the Savannah River Site: Generations of Success - 13212

    SciTech Connect

    Looney, Brian B.; Bergren, Christopher L.; Gaughan, Thomas F.; Aylward, Robert S.; Guevara, Karen C.; Whitaker, Wade C.; Hennessey, Brian T.; Mills, Gary L.; Blake, John I.

    2013-07-01

    Approximately sixty years ago, the Savannah River Site (SRS) was built to produce nuclear materials. SRS production operations impacted air, soil, groundwater, ecology, and the local environment. Throughout its history, SRS has addressed these contamination issues directly and has maintained a commitment to environmental stewardship. The Site boasts many environmental firsts. Notably, SRS was the first major Department of Energy (DOE) facility to perform a baseline ecological assessment. This pioneering effort, by Ruth Patrick and the Philadelphia Academy of Sciences, was performed during SRS planning and construction in the early 1950's. This unique early generation of work set the stage for subsequent efforts. Since that time, the scientists and engineers at SRS pro-actively identified environmental problems and developed and implemented effective and efficient environmental management and remediation solutions. This second generation, spanning the 1980's through the 2000's, is exemplified by numerous large and small cleanup actions to address metals and radionuclides, solvents and hydrocarbons, facility and area decommissioning, and ecological restoration. Recently, a third generation of environmental management was initiated as part of Enterprise SRS. This initiative to 'Develop and Deploy Next Generation Cleanup Technologies' formalizes and organizes the major technology matching, development, and implementation processes associated with historical SRS cleanup success as a resource to support future environmental management missions throughout DOE. The four elements of the current, third generation, effort relate to: 1) transition from active to passive cleanup, 2) in situ decommissioning of large nuclear facilities, 3) new long term monitoring paradigms, and 4) a major case study related to support for recovery and restoration of the Japanese Fukushima-Daiichi nuclear power plant and surrounding environment. (authors)

  20. Integrated Global Nuclear Materials Management Preliminary Concepts

    SciTech Connect

    Jones, E; Dreicer, M

    2006-06-19

    The world is at a turning point, moving away from the Cold War nuclear legacy towards a future global nuclear enterprise; and this presents a transformational challenge for nuclear materials management. Achieving safety and security during this transition is complicated by the diversified spectrum of threat 'players' that has greatly impacted nonproliferation, counterterrorism, and homeland security requirements. Rogue states and non-state actors no longer need self-contained national nuclear expertise, materials, and equipment due to availability from various sources in the nuclear market, thereby reducing the time, effort and cost for acquiring a nuclear weapon (i.e., manifestations of latency). The terrorist threat has changed the nature of military and national security requirements to protect these materials. An Integrated Global Nuclear Materials Management (IGNMM) approach would address the existing legacy nuclear materials and the evolution towards a nuclear energy future, while strengthening a regime to prevent nuclear weapon proliferation. In this paper, some preliminary concepts and studies of IGNMM will be presented. A systematic analysis of nuclear materials, activities, and controls can lead to a tractable, integrated global nuclear materials management architecture that can help remediate the past and manage the future. A systems approach is best suited to achieve multi-dimensional and interdependent solutions, including comprehensive, end-to-end capabilities; coordinated diverse elements for enhanced functionality with economy; and translation of goals/objectives or standards into locally optimized solutions. A risk-informed basis is excellent for evaluating system alternatives and performances, and it is especially appropriate for the security arena. Risk management strategies--such as defense-in-depth, diversity, and control quality--help to weave together various technologies and practices into a strong and robust security fabric. Effective

  1. NUCLEAR REACTORS

    DOEpatents

    Long, E.; Ashley, J.W.

    1958-12-16

    A graphite moderator structure is described for a gas-cooled nuclear reactor having a vertical orlentation wherein the structure is physically stable with regard to dlmensional changes due to Wigner growth properties of the graphite, and leakage of coolant gas along spaces in the structure is reduced. The structure is comprised of stacks of unlform right prismatic graphite blocks positioned in layers extending in the direction of the lengths of the blocks, the adjacent end faces of the blocks being separated by pairs of tiles. The blocks and tiles have central bores which are in alignment when assembled and are provided with cooperatlng keys and keyways for physical stability.

  2. NUCLEAR REACTOR

    DOEpatents

    Young, G.

    1963-01-01

    This patent covers a power-producing nuclear reactor in which fuel rods of slightly enriched U are moderated by heavy water and cooled by liquid metal. The fuel rods arranged parallel to one another in a circle are contained in a large outer closed-end conduit that extends into a tank containing the heavy water. Liquid metal is introduced into the large conduit by a small inner conduit that extends within the circle of fuel rods to a point near the lower closed end of the outer conduit. (AEC) Production Reactors

  3. Technical solutions to nonproliferation challenges

    SciTech Connect

    Satkowiak, Lawrence

    2014-05-09

    The threat of nuclear terrorism is real and poses a significant challenge to both U.S. and global security. For terrorists, the challenge is not so much the actual design of an improvised nuclear device (IND) but more the acquisition of the special nuclear material (SNM), either highly enriched uranium (HEU) or plutonium, to make the fission weapon. This paper provides two examples of technical solutions that were developed in support of the nonproliferation objective of reducing the opportunity for acquisition of HEU. The first example reviews technologies used to monitor centrifuge enrichment plants to determine if there is any diversion of uranium materials or misuse of facilities to produce undeclared product. The discussion begins with a brief overview of the basics of uranium processing and enrichment. The role of the International Atomic Energy Agency (IAEA), its safeguard objectives and how the technology evolved to meet those objectives will be described. The second example focuses on technologies developed and deployed to monitor the blend down of 500 metric tons of HEU from Russia's dismantled nuclear weapons to reactor fuel or low enriched uranium (LEU) under the U.S.-Russia HEU Purchase Agreement. This reactor fuel was then purchased by U.S. fuel fabricators and provided about half the fuel for the domestic power reactors. The Department of Energy established the HEU Transparency Program to provide confidence that weapons usable HEU was being blended down and thus removed from any potential theft scenario. Two measurement technologies, an enrichment meter and a flow monitor, were combined into an automated blend down monitoring system (BDMS) and were deployed to four sites in Russia to provide 24/7 monitoring of the blend down. Data was downloaded and analyzed periodically by inspectors to provide the assurances required.

  4. Defense Nuclear Nonproliferation | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Defense Nuclear Nonproliferation Meet a Machine: RPMs keep watch 24/7 to strengthen global nuclear security Ensuring that nuclear materials are not being illicitly moved is part of NNSA's core mission to reduce nuclear and radiological threats. However, since traditional security tools - such as metal detectors, X-ray scanners, and sniffer dogs - cannot measure radiation, frontline... NNSA and Bulgaria partner to complete nuclear detection architecture Fixed and mobile detection systems will

  5. Defense Nuclear Security | National Nuclear Security Administration |

    National Nuclear Security Administration (NNSA)

    (NNSA) Programs Defense Nuclear Security The Office of Defense Nuclear Security develops and implements NNSA security programs to protect, control, and account for materials, information, and facilities across the nuclear security enterprise. The Office of the Chief, Defense Nuclear Security (CDNS) executes responsibility for the overall direction and management of security programs employed across the nuclear security enterprise comprised of NNSA's operations and facilities. The CDNS is

  6. Nuclear Detonation Detection | National Nuclear Security Administration |

    National Nuclear Security Administration (NNSA)

    (NNSA) Research and Development Nuclear Detonation Detection The Office of Nuclear Detonation Detection (NDD) develops and provide continuous, global capabilities to detect foreign nuclear weapon detonations, including for test ban treaty monitoring needs and military requirements. These efforts are aligned along three functional areas: Space-based Detection of Nuclear Detonations: Develops and builds space sensors for the nation's operational nuclear test treaty monitoring and Integrated

  7. nuclear science | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    science Nuclear Science Week releases 2015 Impact Report and 2016 Request for Proposal Last week the Nuclear Science Week (NSW) National Steering Committee released its impact report from the 2015 event, detailing the many ways people were educated about all things nuclear as a result of the event. Nuclear Science Week is an international weeklong celebration to focus interest on... Consortium Led by University of California, Berkeley Awarded $25M NNSA Grant for Nuclear Science and Security

  8. nuclear security | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    nuclear security Meet a Machine: RPMs keep watch 24/7 to strengthen global nuclear security Ensuring that nuclear materials are not being illicitly moved is part of NNSA's core mission to reduce nuclear and radiological threats. However, since traditional security tools - such as metal detectors, X-ray scanners, and sniffer dogs - cannot measure radiation, frontline... U.S. and China Continue Cooperative Partnership to Advance Safe, Secure Civil Nuclear Energy for Clean Energy Future DOE/NNSA

  9. nuclear threat science | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    threat science Counterterrorism Counterterrorism Policy and Cooperation Nuclear Threat Science Office of Nuclear Threat Science The Office of Nuclear Threat Science is responsible for overseeing the Nuclear Counterterrorism Program, an NNSA program that sustains specialized expertise and integrates and executes key activities to advise and enable technical aspects of U.S. Government nuclear counterterrorism and... Office of Counterterrorism Policy and Cooperation The 2011 National Strategy for

  10. Downgrade of the Savannah River Sites FB-Line

    SciTech Connect

    SADOWSKI, ED; YOURCHAK, RANDY; PRETZELLO MARJI; MIXON, BONNIE; LYNN, ROBBIE

    2005-07-05

    This paper will discuss the Safeguards & Security (S&S) activities that resulted in the downgrade of the Savannah River Site's FB-Line (FBL) from a Category I Material Balance Area (MBA) in a Material Access Area (MAA) to a Category IV MBA in a Property Protection Area (PPA). The Safeguards activities included measurement of final product items, transferal of nuclear material to other Savannah River Site (SRS) facilities, discard of excess nuclear material items, and final measurements of holdup material. The Security activities included relocation and destruction of classified documents and repositories, decertification of a classified computer, access control changes, updates to planning documents, deactivation and removal of security systems, Human Reliability Program (HRP) removals, and information security training for personnel that will remain in the FBL PPA.

  11. Savannah River Site Robotics

    ScienceCinema

    None

    2016-07-12

    Meet Sandmantis and Frankie, two advanced robotic devices that are key to cleanup at Savannah River Site. Sandmantis cleans hard, residual waste off huge underground storage tanks. Frankie is equipped with unique satellite capabilities and sensing abilties that can determine what chemicals still reside in the tanks in a cost effective manner.

  12. Savannah River Site Robotics

    SciTech Connect

    2010-01-01

    Meet Sandmantis and Frankie, two advanced robotic devices that are key to cleanup at Savannah River Site. Sandmantis cleans hard, residual waste off huge underground storage tanks. Frankie is equipped with unique satellite capabilities and sensing abilties that can determine what chemicals still reside in the tanks in a cost effective manner.

  13. U. S. Department of Energy Savannah River Operations Office - CENTERRA-SRS

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Organizations / CENTERRA-SRS CENTERRA-SRS CENTERRA SRS Centerra-SRS, a subsidiary of Centerra Group, LLC, is contracted by the U.S. Department of Energy's Savannah River Operations Office to provide security support services for the 310-square-mile Savannah River Site (SRS), a critical Government nuclear facility. The initial contract went into effect on August 23, 1983. Centerra-SRS is a paramilitary organization that provides total security services, including access control, property

  14. EIS-0147: Continued Operation of the K, L, and P Reactors, Savannah River Site, Aiken, South Carolina

    Energy.gov [DOE]

    This environmental impact statement (EIS) analyzes the environmental impacts of the proposed action, which is to continue operation of the K, L, and P Reactors at the Savannah River Site (SRS) to ensure the capability to produce nuclear materials, and to produce nuclear materials as necessary for United States defense and nondefense programs.

  15. Nuclear Data Links

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Links to Other Useful Sites Online Journals Institutions and Programs Related to Nuclear Physics U.S. Nuclear Data Program: All evaluated nuclear data supported by the U.S. Department of Energy. National Nuclear Data Center: Brookhaven National Laboratory; Evaluated Nuclear Structure Data Files (ENSDF), Nuclear Science References (NSR) and other databases. Isotopes Project: (E.O.L. Berkeley National Laboratory) Table of Isotopes, Isotope Explorer, XUNDL, Nuclear Data Dissemination Homepage, and

  16. Summary of the Savannah River Site Criticality Dosimetry Program

    SciTech Connect

    Crase, K.W.

    1993-02-01

    The mission of the Savannah River Site (SRS) includes working with fissionable materials. A program is in place, therefore, to assess neutron and gamma doses to individuals in the event of a criticality accident at SRS. The program consists of a method to quickly screen for potentially exposed personnel, a method to provide early but preliminary dose estimates, and a nuclear accident dosimeter and assay procedure to enable final dose estimates.

  17. SCADA Engineering Solutions

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering ...

  18. NUCLEAR REACTOR CONTROL SYSTEM

    DOEpatents

    Howard, D.F.; Motta, E.E.

    1961-06-27

    A method for controlling the excess reactivity in a nuclear reactor throughout the core life while maintaining the neutron flux distribution at the desired level is described. The control unit embodies a container having two electrodes of different surface area immersed in an electrolytic solution of a good neutron sbsorbing metal ion such as boron, gadolinium, or cadmium. Initially, the neutron absorber is plated on the larger electrode to control the greater neutron flux of a freshly refueled core. As the fuel burns up, the excess reactivity decreases and the neutron absorber is then plated onto the smaller electrode so that the number of neutrons absorbed also decreases. The excess reactivity in the core may thus be maintained without the introduction of serious perturbations in the neutron flux distributibn.

  19. Savannah river site

    National Nuclear Security Administration (NNSA)

    Tritium facilities at SRS to supply and process tritium, a radioactive form of hydrogen gas that is a vital component of nuclear weapons. The NNSA-SRS loads tritium and...

  20. Global Nuclear Energy Partnership Fact Sheet - Minimize Nuclear...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Minimize Nuclear Waste Global Nuclear Energy Partnership Fact Sheet - Minimize Nuclear Waste GNEP will increase the efficiency in the management of used nuclear fuel, also known as ...

  1. Fifty years of nuclear fission: Nuclear data and measurements...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Fifty years of nuclear fission: Nuclear data and measurements series Citation Details In-Document Search Title: Fifty years of nuclear fission: Nuclear data and ...

  2. Nuclear reactor engineering

    SciTech Connect

    Glasstone, S.; Sesonske, A.

    1981-01-01

    Chapters are presented concerning energy from nuclear fission; nuclear reactions and radiations; diffusion and slowing-down of neutrons; principles of reactor analysis; nuclear reactor kinetics and control; energy removal; non-fuel reactor materials; the reactor fuel system; radiation protection and environmental effects; nuclear reactor shielding; nuclear reactor safety; and power reactor systems.

  3. Principal Media Contact: Lindsey MonBarren Savannah River Nuclear...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Facility, was used to make spheres and pellets out of Pu-238 to electrically power deep ... in cell one, then traveled through the other cells to be made into spheres and pellets. ...

  4. Savannah River Operations Office Interim Managemnet of Nuclear

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    099 Federal Register / Vol. 62, No. 220 / Friday, November 14, 1997 / Notices Barbara A. Carmichael, Alternate Air Force Federal Register Liaison Officer. [FR Doc. 97-29919 Filed 11-13-97; 8:45 am] BILLING CODE 3910-01-P DEPARTMENT OF EDUCATION Notice of Proposed Information Collection Requests AGENCY: Department of Education. ACTION: Proposed collection; comment request. SUMMARY: The Deputy Chief Information Officer, Office of the Chief Information Officer, invites comments on the proposed

  5. VOLUNTARY PROTECTION PROGRAM ONSITE REVIEW, Savannah River Nuclear...

    Office of Environmental Management (EM)

    ... and Reinvestment Act AU Office of Environment, Health, Safety and Security BBS Behavior-Based Safety BLS Bureau of Labor Statistics CAIRS Computerized AccidentIncident ...

  6. Nuclear reactor

    DOEpatents

    Wade, Elman E.

    1979-01-01

    A nuclear reactor including two rotatable plugs and a positive top core holddown structure. The top core holddown structure is divided into two parts: a small core cover, and a large core cover. The small core cover, and the upper internals associated therewith, are attached to the small rotating plug, and the large core cover, with its associated upper internals, is attached to the large rotating plug. By so splitting the core holddown structures, under-the-plug refueling is accomplished without the necessity of enlarging the reactor pressure vessel to provide a storage space for the core holddown structure during refueling. Additionally, the small and large rotating plugs, and their associated core covers, are arranged such that the separation of the two core covers to permit rotation is accomplished without the installation of complex lifting mechanisms.

  7. NUCLEAR REACTOR

    DOEpatents

    Grebe, J.J.

    1959-12-15

    A reactor which is particularly adapted tu serve as a heat source for a nuclear powered alrcraft or rocket is described. The core of this reactor consists of a porous refractory modera;or body which is impregnated with fissionable nuclei. The core is designed so that its surface forms tapered inlet and outlet ducts which are separated by the porous moderator body. In operation a gaseous working fluid is circulated through the inlet ducts to the surface of the moderator, enters and passes through the porous body, and is heated therein. The hot gas emerges into the outlet ducts and is available to provide thrust. The principle advantage is that tremendous quantities of gas can be quickly heated without suffering an excessive pressure drop.

  8. Nuclear Engineering | Argonne National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Nuclear Engineering Advancing the safe and secure use of nuclear energy Argonne's Nuclear Engineering (NE) division works to advance nuclear energy as a proven, abundant and ...

  9. Counterterrorism and Counterproliferation | National Nuclear...

    National Nuclear Security Administration (NNSA)

    nuclear proliferation and nuclear terrorism is now at the top of America's nuclear agenda, which affirms the central importance of the Nuclear Non-Proliferation Treaty." - ...

  10. EA-1981: Bonneville-Hood River Transmission Line Rebuild, Multnomah...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    81: Bonneville-Hood River Transmission Line Rebuild, Multnomah and Hood River Counties, Oregon EA-1981: Bonneville-Hood River Transmission Line Rebuild, Multnomah and Hood River ...

  11. Food production and consumption near the Savannah River Site

    SciTech Connect

    Hamby, D.M.

    1991-12-31

    Routine operations at the Savannah River Site (SRS) result in the release of radionuclides to the atmosphere and to the Savannah River. The resulting radiological doses to the off-site maximum individual and the 80-km population are estimated on a yearly basis. These estimates are generated using dose models prescribed in the NRC Reg. Guide 1.109 for the commercial nuclear power industry. A study of land and water usage characteristics in the region of the Savannah River Site has been conducted to determine site-specific values of the NRC dose model parameters. The study`s scope included local characteristics of meat, milk, vegetable production; Savannah River recreational activities and fish harvests; meat, milk, vegetable, and seafood consumption rates; and Savannah River drinking-water populations. Average and maximum consumption rates of beef, milk, vegetables, and fish have been determined for individuals residing in the southern United States. The study suggest that many of the consumption rates provided by the NRC may not be appropriate for residents of the South. Average consumption rates are slightly higher than the defaults provided by the NRC. Maximum consumption rates, however, are typically lower than NRC values. Agricultural productivity in the SRS region was found to be quite different than NRC recommendations. Off-site doses have been predicted using both NRC and SRS parameter values to demonstrate the significance of site-specific data.

  12. Food production and consumption near the Savannah River Site

    SciTech Connect

    Hamby, D.M.

    1991-01-01

    Routine operations at the Savannah River Site (SRS) result in the release of radionuclides to the atmosphere and to the Savannah River. The resulting radiological doses to the off-site maximum individual and the 80-km population are estimated on a yearly basis. These estimates are generated using dose models prescribed in the NRC Reg. Guide 1.109 for the commercial nuclear power industry. A study of land and water usage characteristics in the region of the Savannah River Site has been conducted to determine site-specific values of the NRC dose model parameters. The study's scope included local characteristics of meat, milk, vegetable production; Savannah River recreational activities and fish harvests; meat, milk, vegetable, and seafood consumption rates; and Savannah River drinking-water populations. Average and maximum consumption rates of beef, milk, vegetables, and fish have been determined for individuals residing in the southern United States. The study suggest that many of the consumption rates provided by the NRC may not be appropriate for residents of the South. Average consumption rates are slightly higher than the defaults provided by the NRC. Maximum consumption rates, however, are typically lower than NRC values. Agricultural productivity in the SRS region was found to be quite different than NRC recommendations. Off-site doses have been predicted using both NRC and SRS parameter values to demonstrate the significance of site-specific data.

  13. Hood River Passive House

    SciTech Connect

    Hales, D.

    2013-03-01

    The Hood River Passive Project was developed by Root Design Build of Hood River Oregon using the Passive House Planning Package (PHPP) to meet all of the requirements for certification under the European Passive House standards. The Passive House design approach has been gaining momentum among residential designers for custom homes and BEopt modeling indicates that these designs may actually exceed the goal of the U.S. Department of Energy's (DOE) Building America program to reduce home energy use by 30%-50% (compared to 2009 energy codes for new homes). This report documents the short term test results of the Shift House and compares the results of PHPP and BEopt modeling of the project.

  14. Nuclear Explosive Safety

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    2014-07-10

    The Order establishes requirements to implement the nuclear explosive safety (NES) elements of DOE O 452.1E, Nuclear Explosive and Weapon Surety Program, for routine and planned nuclear explosive operations (NEOs).

  15. Office of Nuclear Safety

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Office of Nuclear Safety establishes nuclear safety requirements and expectations for the Department to ensure protection of workers and the public from the hazards associated with nuclear operations with all Department operations.

  16. Proliferation Resistant Nuclear Reactor Fuel

    SciTech Connect

    Gray, L W; Moody, K J; Bradley, K S; Lorenzana, H E

    2011-02-18

    Global appetite for fission power is projected to grow dramatically this century, and for good reason. Despite considerable research to identify new sources of energy, fission remains the most plentiful and practical alternative to fossil fuels. The environmental challenges of fossil fuel have made the fission power option increasingly attractive, particularly as we are forced to rely on reserves in ecologically fragile or politically unstable corners of the globe. Caught between a globally eroding fossil fuel reserve as well as the uncertainty and considerable costs in the development of fusion power, most of the world will most likely come to rely on fission power for at least the remainder of the 21st century. Despite inevitable growth, fission power faces enduring challenges in sustainability and security. One of fission power's greatest hurdles to universal acceptance is the risk of potential misuse for nefarious purposes of fissionable byproducts in spent fuel, such as plutonium. With this issue in mind, we have discussed intrinsic concepts in this report that are motivated by the premise that the utility, desirability, and applicability of nuclear materials can be reduced. In a general sense, the intrinsic solutions aim to reduce or eliminate the quantity of existing weapons usable material; avoid production of new weapons-usable material through enrichment, breeding, extraction; or employ engineering solutions to make the fuel cycle less useful or more difficult for producing weapons-usable material. By their nature, these schemes require modifications to existing fuel cycles. As such, the concomitants of these modifications require engagement from the nuclear reactor and fuel-design community to fully assess their effects. Unfortunately, active pursuit of any scheme that could further complicate the spread of domestic nuclear power will probably be understandably unpopular. Nevertheless, the nonproliferation and counterterrorism issues are paramount, and

  17. Nuclear Quadrupole Moments and Nuclear Shell Structure

    DOE R&D Accomplishments

    Townes, C. H.; Foley, H. M.; Low, W.

    1950-06-23

    Describes a simple model, based on nuclear shell considerations, which leads to the proper behavior of known nuclear quadrupole moments, although predictions of the magnitudes of some quadrupole moments are seriously in error.

  18. Nuclear Structure and Nuclear Reactions | Argonne Leadership...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    C. Cockrell, J.P. Vary and P. Maris, "Lithium isotopes within the ab initio no-core full configuration approach," Phys. Rev. C 86, 034325 (2012) Nuclear Structure and Nuclear ...

  19. Nuclear Structure and Nuclear Reactions | Argonne Leadership...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    of 92.16 MeV and the point rms radius is 2.35 fm vs 2.33 from experiment. Nuclear Structure and Nuclear Reactions PI Name: James Vary PI Email: jvary@iastate.edu Institution: Iowa ...

  20. Safer nuclear power

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Safer nuclear power 1663 Los Alamos science and technology magazine Latest Issue:July 2016 past issues All Issues » submit Safer nuclear power Experiments at Los Alamos reveal that alternative fuel rod cladding materials can make nuclear power plants dramatically less likely to suffer a Fukushima-type explosion in the event of a nuclear accident March 25, 2013 Safer nuclear power Nuclear generating station Los Alamos scientists, in collaboration with scientists from the Idaho and Oak Ridge

  1. Nuclear Security Summit | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

  2. Nuclear Forensics | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Nuclear Forensics Forensics Operations The National Technical Nuclear Forensics (NTNF) program is a Homeland Security Council and National Security Council-sponsored policy initiative that establishes federal agency missions and institutionalizes roles and responsibilities to enable operational support for materials, pre-detonation device, and post-detonation nuclear or radiological forensics programs with the broader goal of attribution. Technical nuclear forensics utilizes the data from

  3. Nuclear Security Enterprise | National Nuclear Security Administration |

    National Nuclear Security Administration (NNSA)

    (NNSA) Nuclear Security Enterprise The Nuclear Security Enterprise (NSE) mission is to ensure the Nation sustains a safe, secure, and effective nuclear deterrent through the application of science, technology, engineering, (ST&E) and manufacturing. In the next 20 years, the U.S. nuclear weapons stockpile will be sustained and modernized through vigorous surveillance, assessment, life extension and dismantlement efforts. In addition, progress will be made in modernizing the physical

  4. Nuclear & Radiological Material Removal | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    & Radiological Material Removal | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation...

  5. nuclear smuggling | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    nuclear smuggling NNSA and Bulgaria partner to complete nuclear detection architecture Fixed and mobile detection systems will prevent smuggling of dangerous radioactive materials Sofia, Bulgaria - Representatives of the Department of Energy's National Nuclear Security Administration (DOE/NNSA), the U.S. Embassy in Sofia, Bulgaria, and the Bulgarian government this week... NNSA Deputy Administrator Creedon Travels to China In March, National Nuclear Security Administration (NNSA) Principal

  6. nuclear navy | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    navy Naval Nuclear Propulsion Plants U.S. naval nuclear propulsion plants use a pressurized-water reactor design that has two basic systems: the primary system and the secondary system. The primary system circulates ordinary water in an all-welded, closed loop consisting of the reactor vessel, piping, pumps, and steam... Protection of People The policy of the U.S. Naval Nuclear Propulsion Program is to reduce personnel exposure to ionizing radiation associated with naval nuclear propulsion

  7. ELECTRONICS UPGRADE TO THE SAVANNAH RIVER NATIONAL LABORATORY COULOMETER FOR PLUTONIUM AND NEPTUNIUM ASSAY

    SciTech Connect

    Cordaro, J.; Holland, M.; Reeves, G.; Nichols, S.; Kruzner, A.

    2011-07-08

    The Savannah River Site (SRS) has the analytical measurement capability to perform high-precision plutonium concentration measurements by controlled-potential coulometry. State-of-the-art controlled-potential coulometers were designed and fabricated by the Savannah River National Laboratory and installed in the Analytical Laboratories process control laboratory. The Analytical Laboratories uses coulometry for routine accountability measurements of and for verification of standard preparations used to calibrate other plutonium measurement systems routinely applied to process control, nuclear safety, and other accountability applications. The SRNL Coulometer has a demonstrated measurement reliability of {approx}0.05% for 10 mg samples. The system has also been applied to the characterization of neptunium standard solutions with a comparable reliability. The SRNL coulometer features: a patented current integration system; continuous electrical calibration versus Faraday's Constants and Ohm's Law; the control-potential adjustment technique for enhanced application of the Nernst Equation; a wide operating room temperature range; and a fully automated instrument control and data acquisition capability. Systems have been supplied to the International Atomic Energy Agency (IAEA), Russia, Japanese Atomic Energy Agency (JAEA) and the New Brunswick Laboratory (NBL). The most recent vintage of electronics was based on early 1990's integrated circuits. Many of the components are no longer available. At the request of the IAEA and the Department of State, SRNL has completed an electronics upgrade of their controlled-potential coulometer design. Three systems have built with the new design, one for the IAEA which was installed at SAL in May 2011, one system for Los Alamos National Laboratory, (LANL) and one for the SRS Analytical Laboratory. The LANL and SRS systems are undergoing startup testing with installation scheduled for this summer.

  8. March 2014 Most Viewed Documents for Fission And Nuclear Technologies...

    Office of Scientific and Technical Information (OSTI)

    DiPippo, R.; Khalifa, H.E.; Correia, R.J.; Kestin, J. (1978) 30 Reactor safety study. ... (1977) 20 Fundamental aspects of nuclear reactor fuel elements: solutions to problems ...

  9. July 2013 Most Viewed Documents for Fission And Nuclear Technologies...

    Office of Scientific and Technical Information (OSTI)

    nitrate and sodium chloride solutions and their effects on fluid flow in unsaturated media Xu, Tianfu; Pruess, Karsten (2001) 54 LWR nuclear fuel bundle data for use in fuel ...

  10. September 2013 Most Viewed Documents for Fission And Nuclear...

    Office of Scientific and Technical Information (OSTI)

    nitrate and sodium chloride solutions and their effects on fluid flow in unsaturated media Xu, Tianfu; Pruess, Karsten (2001) 45 LWR nuclear fuel bundle data for use in fuel ...

  11. Look to the River Columbia River Opens New Opportunities for...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Volume One Film Collection Volume Two 75th Anniversary Hydropower in the Northwest Woody Guthrie Videos Strategic Direction Branding & Logos Power of the River History Book...

  12. Advancing Global Nuclear Security

    Energy.gov [DOE]

    Today world leaders gathered at The Hague for the Nuclear Security Summit, a meeting to measure progress and take action to secure sensitive nuclear materials.

  13. Nuclear Energy Systems Lab

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management ...

  14. Sandia Energy - Nuclear Energy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Sandia's Brayton-Cycle Turbine Boosts Small Nuclear Reactor Efficiency Energy, Energy Efficiency, News, News & Events, Nuclear Energy Sandia's Brayton-Cycle Turbine Boosts Small...

  15. Nuclear | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    High construction costs for nuclear plants, especially relative to natural-gas-fired plants, make other options for new nuclear capacity uneconomical even in the alternative...

  16. Nuclear Security Summit

    National Nuclear Security Administration (NNSA)

    Joint Research Centre and the United States Department of Energy's National Nuclear Security Administration regarding the reduction of excess nuclear material http:...

  17. Sandia Energy Nuclear Energy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    afety-expert-elected-to-national-academy-of-engineeringfeed 0 Sandia Teaches Nuclear Safety Course http:energy.sandia.govsandia-teaches-nuclear-safety-course http:...

  18. Nuclear Energy Advisory Committee

    Energy.gov [DOE]

    The Nuclear Energy Advisory Committee (NEAC), formerly the Nuclear Energy Research Advisory Committee (NERAC), was established on October 1, 1998, to provide independent advice to the Office of...

  19. Sandia's Nuclear Weapons Mission

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Nuclear Weapons Mission Ensuring that the nation's stockpile is safe, secure and effective, and that it meets military requirements America's Nuclear Weapons Systems Engineering ...

  20. Nuclear Safety Regulatory Framework

    Energy.gov [DOE] (indexed site)

    Department of Energy Nuclear Safety Regulatory Framework DOE's Nuclear Safety Enabling Legislation Regulatory Enforcement & Oversight Regulatory Governance Atomic Energy Act 1946 ...

  1. Nuclear Energy Safety Technologies

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management ...

  2. Nuclear Power & Engineering

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management ...

  3. Nuclear Data Links

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Links to Useful Online Nuclear Physics Journals Important Online Resources Science Direct ... Elsevier Physics Online: Nuclear Physics A, B, Physics Repots, Physics Letters B and more. ...

  4. Advanced Nuclear Energy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Nuclear Energy - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us ... Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & ...

  5. Nuclear Controls Checklist

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Nuclear Controls Yes No 1) Is your Facility involved in the research on or development, design, manufacture, construction, testing or maintenance of any nuclear explosive ...

  6. Nuclear Energy Workshops

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management ...

  7. Nuclear Materials Science

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    MST MST-16 Nuclear Materials Science Our multidisciplinary expertise comprises the core actinide materials science and metallurgical capability within the nuclear weapons ...

  8. Nuclear Energy Programs

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Programs Solving Nuclear Energy Technical Challenges Our science and technology are making way for new nuclear fuels and reactor materials. Get Expertise David Teter Email ...

  9. National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    U.S. Department of Energy National Nuclear Security Administration Federal Equal ... A. Name and Address of Agency National Nuclear Security Administration Office of ...

  10. National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Nuclear Security Administration FY 2013 PER Babcock & Wilcox Technical Services Y-12, LLC Performance Evaluation Report NNSA Production Office Y-12 Nuclear Security Complex ...

  11. National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    U.S. Department of Energy National Nuclear Security Administration Federal Equal ... A. Name and Address of Agency National Nuclear Security Administration 1000 Independence ...

  12. National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    15 National Nuclear Security Administration FY 2013 PER Babcock & Wilcox Technical ... The National Nuclear Security Administration (NNSA) Production Office (NPO) took into ...

  13. Nuclear weapons modernizations

    SciTech Connect

    Kristensen, Hans M.

    2014-05-09

    This article reviews the nuclear weapons modernization programs underway in the world's nine nuclear weapons states. It concludes that despite significant reductions in overall weapons inventories since the end of the Cold War, the pace of reductions is slowing - four of the nuclear weapons states are even increasing their arsenals, and all the nuclear weapons states are busy modernizing their remaining arsenals in what appears to be a dynamic and counterproductive nuclear competition. The author questions whether perpetual modernization combined with no specific plan for the elimination of nuclear weapons is consistent with the nuclear Non-Proliferation Treaty and concludes that new limits on nuclear modernizations are needed.

  14. Nuclear Physics: Campaigns

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Free-Electron Laser (FEL) Medical Imaging Physics Topics Campaigns The Structure of the Nuclear Building Blocks The Structure of Nuclei Symmetry Tests in Nuclear Physics Meetings ...

  15. 2013 Nuclear Workforce Development ...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Practice in Nuclear Medicine Radiopharmacy Patient Care Medical Imaging & Computers Moderator: Deborah M. Gibbs, MEd, PET, CNMT Lead Nuclear Medicine PET Facility...

  16. nuclear enterprise | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    enterprise New Report from NNSA Highlights Major Achievements for 2015 Outlines Accomplishments in Stockpile Stewardship, Nuclear Nonproliferation, Naval Reactors and Managing the Nuclear Enterprise The National Nuclear Security Administration (NNSA) today released "NNSA Achievements: 2015 By the Numbers," a report highlighting major accomplishments and milestones

  17. nuclear reactors | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    nuclear reactors NNSA Researchers Advance Technology for Remote Reactor Monitoring NNSA's Defense Nuclear Nonproliferation Research and Development Program drives the innovation of technical capabilities to detect, identify, and characterize foreign nuclear weapons development activities. To achieve this, NNSA leverages the unique capabilities of the national laboratories

  18. Nuclear reactor

    DOEpatents

    Thomson, Wallace B.

    2004-03-16

    A nuclear reactor comprising a cylindrical pressure vessel, an elongated annular core centrally disposed within and spaced from the pressure vessel, and a plurality of ducts disposed longitudinally of the pressure vessel about the periphery thereof, said core comprising an annular active portion, an annular reflector just inside the active portion, and an annular reflector just outside the active a portion, said annular active portion comprising rectangular slab, porous fuel elements radially disposed around the inner reflector and extending the length of the active portion, wedge-shaped, porous moderator elements disposed adjacent one face of each fuel element and extending the length of the fuel element, the fuel and moderator elements being oriented so that the fuel elements face each other and the moderator elements do likewise, adjacent moderator elements being spaced to provide air inlet channels, and adjacent fuel elements being spaced to provide air outlet channels which communicate with the interior of the peripheral ducts, and means for introducing air into the air inlet channels which passes through the porous moderator elements and porous fuel elements to the outlet channel.

  19. U.S. DEPARTMENT OF ENERGY * SAVANNAH RIVER SITE * AIKEN * SC

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Solid Oxide Reduction for Treatment and Recovery of Key Elements from Used Nuclear Fuel and Rare Earth Ore Deposits Researchers at the Savannah River National Laboratory (SRNL) have developed a process for potential use of the solid oxide membrane as the reaction vessel, while serving as the anode in an electrochemical cell. Background SRNL has developed a method for reducing metal oxides for nuclear and industrial applications that uses a solid oxide membrane to isolate the anode from molten

  20. Extraction of cesium and strontium from nuclear waste

    DOEpatents

    Davis, Jr., Milton W.; Bowers, Jr., Charles B.

    1988-01-01

    Cesium is extracted from acidified nuclear waste by contacting the waste with a bis 4,4'(5) [1-hydroxy-2-ethylhexyl]benzo 18-crown-6 compound and a cation exchanger in a matrix solution. Strontium is extracted from acidified nuclear waste by contacting the waste with a bis 4,4'(5') [1-hydroxyheptyl]cyclohexo 18-crown-6 compound, and a cation exchanger in a matrix solution.