National Library of Energy BETA

Sample records for residual radioactive contamination

  1. Residual radioactive contamination from decommissioning: Technical basis for translating contamination levels to annual dose

    SciTech Connect (OSTI)

    Kennedy, W.E. Jr.; Peloquin, R.A. )

    1990-01-01

    This document describes the generic modeling of the total effective dose equivalent (TEDE) to an individual in a population from a unit concentration of residual radioactive contamination. Radioactive contamination inside buildings and soil contamination are considered. Unit concentration TEDE factors by radionuclide, exposure pathway, and exposure scenario are calculated. Reference radiation exposure scenarios are used to derive unit concentration TEDE factors for about 200 individual radionuclides and parent-daughter mixtures. For buildings, these unit concentration factors list the annual TEDE for volume and surface contamination situations. For soil, annual TEDE factors are presented for unit concentrations of radionuclides in soil during residential use of contaminated land and the TEDE per unit total inventory for potential use of drinking water from a ground-water source. Because of the generic treatment of potentially complex ground-water systems, the annual TEDE factors for drinking water for a given inventory may only indicate when additional site data or modeling sophistication are warranted. Descriptions are provided of the models, exposure pathways, exposure scenarios, parameter values, and assumptions used. An analysis of the potential annual TEDE resulting from reference mixtures of residual radionuclides is provided to demonstrate application of the TEDE factors. 62 refs., 5 figs., 66 tabs.

  2. RESRAD Computer Code- Evaluation of Radioactively Contaminated Sites

    Office of Energy Efficiency and Renewable Energy (EERE)

    The evaluation of sites with radioactive contamination was a problem until the RESidual RADioactivity (RESRAD) Computer Code was first released in 1989.

  3. Airborne radioactive contamination monitoring

    SciTech Connect (OSTI)

    Whitley, C.R.; Adams, J.R.; Bounds, J.A.; MacArthur, D.W.

    1996-03-01

    Current technologies for the detection of airborne radioactive contamination do not provide real-time capability. Most of these techniques are based on the capture of particulate matter in air onto filters which are then processed in the laboratory; thus, the turnaround time for detection of contamination can be many days. To address this shortcoming, an effort is underway to adapt LRAD (Long-Range-Alpha-Detection) technology for real-time monitoring of airborne releases of alpa-emitting radionuclides. Alpha decays in air create ionization that can be subsequently collected on electrodes, producing a current that is proportional to the amount of radioactive material present. Using external fans on a pipe containing LRAD detectors, controlled samples of ambient air can be continuously tested for the presence of radioactive contamination. Current prototypes include a two-chamber model. Sampled air is drawn through a particulate filter and then through the first chamber, which uses an electrostatic filter at its entrance to remove ambient ionization. At its exit, ionization that occurred due to the presence of radon is collected and recorded. The air then passes through a length of pipe to allow some decay of short-lived radon species. A second chamber identical to the first monitors the remaining activity. Further development is necessary on air samples without the use of particulate filtering, both to distinguish ionization that can pass through the initial electrostatic filter on otherwise inert particulate matter from that produced through the decay of radioactive material and to separate both of these from the radon contribution. The end product could provide a sensitive, cost-effective, real-time method of determining the presence of airborne radioactive contamination.

  4. Single-Pass Flow-Through Test Elucidation of Weathering Behavior and Evaluation of Contaminant Release Models for Hanford Tank Residual Radioactive Waste

    SciTech Connect (OSTI)

    Cantrell, Kirk J.; Carroll, Kenneth C.; Buck, Edgar C.; Neiner, Doinita; Geiszler, Keith N.

    2013-01-01

    Contaminant release models are required to evaluate and predict long-term environmental impacts of even residual amounts of high-level radioactive waste after cleanup and closure of radioactively contaminated sites such as the DOE’s Hanford Site. More realistic and representative models have been developed for release of uranium, technetium, and chromium from Hanford Site tanks C-202, C-203, and C-103 residual wastes using data collected with a single-pass flow-through test (SPFT) method. These revised models indicate that contaminant release concentrations from these residual wastes will be considerably lower than previous estimates based on batch experiments. For uranium, a thermodynamic solubility model provides an effective description of uranium release, which can account for differences in pore fluid chemistry contacting the waste that could occur through time and as a result of different closure scenarios. Under certain circumstances in the SPFT experiments various calcium rich precipitates (calcium phosphates and calcite) form on the surfaces of the waste particles, inhibiting dissolution of the underlying uranium phases in the waste. This behavior was not observed in previous batch experiments. For both technetium and chromium, empirical release models were developed. In the case of technetium, release from all three wastes was modeled using an equilibrium Kd model. For chromium release, a constant concentration model was applied for all three wastes.

  5. Computer Model Buildings Contaminated with Radioactive Material

    Energy Science and Technology Software Center (OSTI)

    1998-05-19

    The RESRAD-BUILD computer code is a pathway analysis model designed to evaluate the potential radiological dose incurred by an individual who works or lives in a building contaminated with radioactive material.

  6. PROCESS OF DECONTAMINATING MATERIAL CONTAMINATED WITH RADIOACTIVITY

    DOE Patents [OSTI]

    Overholt, D.C.; Peterson, M.D.; Acken, M.F.

    1958-09-16

    A process is described for decontaminating metallic objects, such as stainless steel equipment, which consists in contacting such objects with nltric acid in a concentration of 35 to 60% to remove the major portion of the contamination; and thereafter contacting the partially decontaminated object with a second solution containing up to 20% of alkali metal hydroxide and up to 20% sodium tartrate to remove the remaining radioactive contaminats.

  7. T.G. Hinton: Remediation of Radioactively Contaminated Ecosystems...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Remediation of Radioactively Contaminated Ecosystems Thomas G. Hinton Savannah River Ecology ... availability from sequential extractions compared to plant uptake of 137Cs and 90Sr. ...

  8. A manual for implementing residual radioactive material guidelines

    SciTech Connect (OSTI)

    Gilbert, T.L.; Yu, C.; Yuan, Y.C.; Zielen, A.J.; Jusko, M.J.; Wallo, A. III

    1989-06-01

    This manual presents information for implementing US Department of Energy (DOE) guidelines for residual radioactive material at sites identified by the Formerly Utilized Sites Remedial Action Program (FUSRAP) and the Surplus Facilities Management Program (SFMP). It describes the analysis and models used to derive site-specific guidelines for allowable residual concentrations of radionuclides in soil and the design and use of the RESRAD computer code for calculating guideline values. It also describes procedures for implementing DOE policy for reducing residual radioactivity to levels that are as low as reasonably achievable. 36 refs., 16 figs, 22 tabs.

  9. ORISE: Radiation and Radioactive Contamination FAQ

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    A: Radiation comes from many sources, some natural and some man-made. Naturally occurring radioactive materials, such as uranium, thorium and radon are found in the Earth's crust. ...

  10. Emergency department management of patients internally contaminated with radioactive material

    DOE PAGES-Beta [OSTI]

    Kazzi, Ziad; Buzzell, Jennifer; Bertelli, Luiz; Christensen, Doran

    2014-11-15

    After a radiation emergency that involves the dispersal of radioactive material, patients can become externally and internally contaminated with one or more radionuclides. Internal contamination can lead to the delivery of harmful ionizing radiation doses to various organs and tissues or the whole body. The clinical consequences can range from acute radiation syndrome (ARS) to the long term development of cancer. Estimating the amount of radioactive material absorbed into the body can guide the management of patients. Treatment includes, in addition to supportive care and long term monitoring, certain medical countermeasures like Prussian blue, Calcium DTPA and Zinc DTPA.

  11. Derivation of guidelines for uranium residual radioactive material in soil at the Colonie Site, Colonie, New York

    SciTech Connect (OSTI)

    Dunning, D.

    1996-05-01

    Residual radioactive material guidelines for uranium in soil were derived for the Colonie site located in Colonie, New York. This site has been designated for remedial action under the Formerly Utilized Sites Remedial Action Program (FUSRAP) of the U.S. Department of Energy (DOE). The site became contaminated with radioactive material as a result of operations conducted by National Lead (NL) Industries from 1958 to 1984; these activities included brass foundry operations, electroplating of metal products, machining of various components using depleted uranium, and limited work with small amounts of enriched uranium and thorium. The Colonie site comprises the former NL Industries property, now designated the Colonie Interim Storage Site (CISS), and 56 vicinity properties contaminated by fallout from airborne emissions; 53 of the vicinity properties were previously remediated between 1984 and 1988. In 1984, DOE accepted ownership of the CISS property from NL Industries. Residual radioactive material guidelines for individual radionuclides and total uranium were derived on the basis of the requirement that the 50-year committed effective dose equivalent to a hypothetical individual who lives or works in the immediate vicinity of the site should not exceed a dose of 30 mrem/yr following remedial action for the current use and likely future use scenarios or a dose of 100 mrem/yr for less likely future use scenarios. The DOE residual radioactive material guideline computer code, RESRAD, was used in this evaluation; RESRAD implements the methodology described in the DOE manual for establishing residual radioactive material guidelines.

  12. Release process for non-real property containing residual radioactive material

    SciTech Connect (OSTI)

    Ranek, N.L.; Chen, S.Y.; Kamboj, S.; Hensley, J.; Burns, D.; Fleming, R.; Warren, S.; Wallo, A.

    1997-02-01

    It is DOE`s objective to operate its facilities and to conduct its activities so that radiation exposures to members of the public are maintained within acceptable limits and exposures to residual radioactive materials are controlled. To accomplish this, DOE has adopted Order DOE 5400.51 `Radiation Protection of the Public and the Environment`, and will be promulgating IO CR Part 834 to codify and clarify the requirements of DOE 5400.5. Under both DOE 5400.5 and 10 CR Part 834, radioactively contaminated DOE property is prohibited from release unless specific actions have been completed prior to the release. This paper outlines a ten-step process that, if followed, will assist DOE Operations and contractor personnel in ensuring that the required actions established by Order DOE 5400.5 and 10 CR Part 834 have been appropriately completed prior to the release for reuse or recycle of non-real property (e.g., office furniture, computers, hand tools, machinery, vehicles and scrap metal). Following the process will assist in ensuring that radiological doses to the public from the released materials will meet applicable regulatory standards and be as low as reasonably achievable (ALARA).

  13. U.S. Department of Energy Guidelines for Residual Radioactive Material at

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Formerly Utilized Sites Remedial Action Program and Remote Surplus Facilities Management Program Sites | Department of Energy U.S. Department of Energy Guidelines for Residual Radioactive Material at Formerly Utilized Sites Remedial Action Program and Remote Surplus Facilities Management Program Sites U.S. Department of Energy Guidelines for Residual Radioactive Material at Formerly Utilized Sites Remedial Action Program and Remote Surplus Facilities Management Program Sites U.S. Department

  14. Demolition and removal of radioactively contaminated concrete soil: Aerosol control and monitoring

    SciTech Connect (OSTI)

    Newton, G.J.; Hoover, M.D.; Grace, A.C. III

    1995-12-01

    From 1963 to 1985, two concrete-lined ponds were used to reduce the volume of radioactive liquids from the Institute`s research programs. Following withdrawal of the {open_quotes}hot ponds{close_quotes} from active use, the residual sludges and plastic liners of the ponds were removed and shipped to a radioactive waste disposal site. From 1987 to 1994, the concrete structures remained undisturbed pending environmental restoration on the site. Restoration began in 1994 and was completed in 1995. Restoration involved mechanical breakup and removal of the concrete structures and removal of areas of contaminated soils from the site. This report describes the design and results of the aerosol control and monitoring program that was conducted to ensure protection of workers and the environment during the restoration process. The aerosol control and monitoring strategy developed for remediation of the ITRI hot ponds was successful both in preventing dispersion of radioactive dusts and in demonstrating that exposures of workers and offsite releases were within statutory limits.

  15. Derivation of uranium residual radioactive material guidelines for the former Alba Craft Laboratory site, Oxford, Ohio

    SciTech Connect (OSTI)

    Nimmagadda, M.; Faillace, E.; Yu, C.

    1994-01-01

    Residual radioactive material guidelines for uranium were derived for the former Alba Craft Laboratory site in Oxford, Ohio. This site has been identified for remedial action under the Formerly Utilized Sites Remedial Action Program (FUSRAP) of the US Department of Energy (DOE). Single nuclide and total uranium guidelines were derived on the basis of the requirement that the 50-year committed effective dose equivalent to a hypothetical individual who lives or works in the immediate vicinity of the former Alba Craft Laboratory site should not exceed a dose of 30 mrem/yr following remedial action for the current use and likely future use scenarios or a dose of 100 mrem/yr for less likely future use scenarios (Yu et al. 1993). The DOE residual radioactive material guideline computer code, RESRAD, which implements the methodology described in the DOE manual for implementing residual radioactive material guidelines, was used in this evaluation.

  16. Derivation of residual radioactive material guidelines for uranium in soil at the Middlesex Sampling Plant Site, Middlesex, New Jersey

    SciTech Connect (OSTI)

    Dunning, D.E.

    1995-02-01

    Residual radioactive material guidelines for uranium in soil were derived for the Middlesex Sampling Plant (MSP) site in Middlesex, New Jersey. This site has been designated for remedial action under the Formerly Utilized Sites Remedial Action Program (FUSRAP) of the US Department of Energy. The site became contaminated from operations conducted in support of the Manhattan Engineer District (MED) and the Atomic Energy Commission (AEC) between 1943 and 1967. Activities conducted at the site included sampling, storage, and shipment of uranium, thorium, and beryllium ores and residues. Uranium guidelines for single radioisotopes and total uranium were derived on the basis of the requirement that the 50-year committed effective dose equivalent to a hypothetical individual living or working in the immediate vicinity of the MSP site should not exceed a dose of 30 mrem/yr following remedial action for the current-use and likely future-use scenarios or a dose of 100 mrem/yr for less likely future-use scenarios. The RESRAD computer code, which implements the methodology described in the DOE manual for establishing residual radioactive material guidelines, was used in this evaluation. Four scenarios were considered for the site. These scenarios vary regarding future land use at the site, sources of water used, and sources of food consumed.

  17. T.G. Hinton: Radioactive Contaminants in Aquatic Ecosystems ...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ... W. Whicker, J. E. Pinder III and S. A. Ibrahim. 1992. Comparative kinetics of 47Ca, 85Sr, and 226Ra in the freshwater turtle, Trachemys scripta. J. Environ. Radioactivity 16:25-4

  18. DOE`s radioactively - contaminated metal recycling: The policy and its implementation

    SciTech Connect (OSTI)

    Warren, S.; Rizkalla, E.

    1997-02-01

    In 1994, the Department of Energy`s Office of Environmental Restoration initiated development of a recycling policy to minimize the amount of radioactively-contaminated metal being disposed of as waste. During the following two years, stakeholders (including DOE and contractor personnel, regulators, members of the public, and representatives of labor and industry) were invited to identify key issues of concern, and to provide input on the final policy. As a result of this process, a demonstration policy for recycling radioactively-contaminated carbon steel resulting from decommissioning activities within the Environmental Management program was signed on September 20, 1996. It specifically recognizes that the Office of Environmental Management has a tremendous opportunity to minimize the disposal of metals as waste by the use of disposal containers fabricated from contaminated steel. The policy further recognizes the program`s demand for disposal containers, and it`s role as the major generator of radioactively-contaminated steel.

  19. Evaluation of the Parameters of Radioactive Contamination of Soils

    SciTech Connect (OSTI)

    Panasyuk M.I.; Skorbun A.D.; Klyuchnikov O.O.

    2002-02-26

    After Chornobyl NPP (ChNPP) accident the territory near destroyed Unit 4 (that now with the special confinement has the name the ''Shelter'' object) is contaminated of fuel fallouts. During liquidation of the accident consequences this territory was covered with pure earth, concrete, etc. As a result a contaminated anthropogenic layer of the soil on the depth up to 10 m was formed. Now the problem of contamination estimation and the soils management arose. For this tasks a gamma logging method was modified conformably to ChNPP conditions. The methods for necessary coefficients receiving and log treatment have been suggested.

  20. Soil treatment to remove uranium and related mixed radioactive contaminants. Final report September 1992--October 1995

    SciTech Connect (OSTI)

    1996-07-01

    A research and development project to remove uranium and related radioactive contaminants from soil by an ultrasonically-aided chemical leaching process began in 1993. The project objective was to develop and design, on the basis of bench-scale and pilot-scale experimental studies, a cost-effective soil decontamination process to produce a treated soil containing less than 35 pCi/g. The project, to cover a period of about thirty months, was designed to include bench-scale and pilot-scale studies to remove primarily uranium from the Incinerator Area soil, at Fernald, Ohio, as well as strontium-90, cobalt-60 and cesium-137 from a Chalk River soil, at the Chalk River Laboratories, Ontario. The project goal was to develop, design and cost estimate, on the basis of bench-scale and pilot-scale ex-situ soil treatment studies, a process to remove radionuclides form the soils to a residual level of 35 pCi/g of soil or less, and to provide a dischargeable water effluent as a result of soil leaching and a concentrate that can be recovered for reuse or solidified as a waste for disposal. In addition, a supplementary goal was to test the effectiveness of in-situ soil treatment through a field study using the Chalk River soil.

  1. Recommended Procedures for Measuring Radon Fluxes from Disposal Sites of Residual Radioactive Materials

    SciTech Connect (OSTI)

    Young,, J. A.; Thomas, V. W.; Jackson, P. 0.

    1983-03-01

    This report recornmenrls instrumentation and methods suitable for measuring radon fluxes emanating from covered disposal sites of residual radioactive materials such as uranium mill tailings. Problems of spatial and temporal variations in radon flux are discussed and the advantages and disadvantages of several instruments are examined. A year-long measurement program and a two rnonth measurement rnethodology are then presented based on the inherent difficulties of measuring average radon flux over a cover using the recommended instrumentation.

  2. Monitoring Potential Transport of Radioactive Contaminants in Shallow Ephemeral Channels

    SciTech Connect (OSTI)

    Miller, Julianne J.; Mizell, Steve A.; Nikolich, George; Campbell, Scott A.

    2012-02-01

    The U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA), Nevada Site Office (NSO), Environmental Restoration Soils Activity has authorized the Desert Research Institute (DRI) to conduct field assessments of potential sediment transport of contaminated soil from Corrective Action Unit (CAU) 550, Area 8 Smoky Contamination Area (CA), during precipitation runoff events. CAU 550 includes Corrective Action Sites (CASs) 08-23-03, 08-23-04, 08-23-06, and 08-23-07; these CASs are associated with tests designated Ceres, Smoky, Oberon, and Titania, respectively.

  3. Residual radioactivity guidelines for the heavy water components test reactor at the Savannah River Site

    SciTech Connect (OSTI)

    Owen, M.B. Smith, R.; McNeil, J.

    1997-04-01

    Guidelines were developed for acceptable levels of residual radioactivity in the Heavy Water Components Test Reactor (HWCTR) facility at the conclusion of its decommissioning. Using source terms developed from data generated in a detailed characterization study, the RESRAD and RASRAD-BUILD computer codes were used to calculate derived concentration guideline levels (DCGLs) for the radionuclides that will remain in the facility. The calculated DCGLs, when compared to existing concentrations of radionuclides measured during a 1996 characterization program, indicate that no decontamination of concrete surfaces will be necessary. Also, based on the results of the calculations, activated concrete in the reactor biological shield does not have to be removed, and imbedded radioactive piping in the facility can remain in place. Viewed in another way, the results of the calculations showed that the present inventory of residual radioactivity in the facility (not including that associated with the reactor vessel and steam generators) would produce less than one millirem per year above background to a hypothetical individual on the property. The residual radioactivity is estimated to be approximately 0.04 percent of the total inventory in the facility as of March, 1997. According to the results, the only radionuclides that would produce greater than 0.0.1-millirem per year are Am-241 (0.013 mrem/yr at 300 years), C-14 (0.022 mrem/yr at 1000 years) and U-238 (0.034 mrem/yr at 6000 years). Human exposure would occur only through the groundwater pathways, that is, from water drawn from, a well on the property. The maximum exposure would be approximately one percent of the 4 millirem per year ground water exposure limit established by the U.S. Environmental Protection Agency. 11 refs., 13 figs., 15 tabs.

  4. REAL-TIME IDENTIFICATION AND CHARACTERIZATION OF ASBESTOS AND CONCRETE MATERIALS WITH RADIOACTIVE CONTAMINATION

    SciTech Connect (OSTI)

    XU, X. George; Zhang, X.C.

    2002-05-10

    Concrete and asbestos-containing materials were widely used in DOE building construction in the 1940s and 1950s. Over the years, many of these porous materials have been contaminated with radioactive sources, on and below the surface. To improve current practice in identifying hazardous materials and in characterizing radioactive contamination, an interdisciplinary team from Rensselaer has conducted research in two aspects: (1) to develop terahertz time-domain spectroscopy and imaging system that can be used to analyze environmental samples such as asbestos in the field, and (2) to develop algorithms for characterizing the radioactive contamination depth profiles in real-time in the field using gamma spectroscopy. The basic research focused on the following: (1) mechanism of generating of broadband pulsed radiation in terahertz region, (2) optimal free-space electro-optic sampling for asbestos, (3) absorption and transmission mechanisms of asbestos in THz region, (4) the role of asbestos sample conditions on the temporal and spectral distributions, (5) real-time identification and mapping of asbestos using THz imaging, (7) Monte Carlo modeling of distributed contamination from diffusion of radioactive materials into porous concrete and asbestos materials, (8) development of unfolding algorithms for gamma spectroscopy, and (9) portable and integrated spectroscopy systems for field testing in DOE. Final results of the project show that the combination of these innovative approaches has the potential to bring significant improvement in future risk reduction and cost/time saving in DOE's D and D activities.

  5. EIS-0084: Incineration Facility for Radioactively Contaminated PCBs and Other Wastes, Oak Ridge, Tennessee

    Energy.gov [DOE]

    The U.S. Department of Energy Office of Uranium Enrichment and Assessment prepared this statement to assess the environmental impacts of the construction and operation of the proposed Oak Ridge Gaseous Diffusion Plant, an incineration facility to dispose of radioactively contaminated polychlorinated biophenyls, as well as combustible waste from the Paducah, Portsmouth and Oak Ridge facilities.

  6. Synthesis and evaluation of radioactive and fluorescent residualizing labels for identifying sites of plasma protein catabolism

    SciTech Connect (OSTI)

    Maxwell, J.L.; Baynes, J.W.; Thorpe, S.R.

    1986-05-01

    Inulin and lactose were each coupled to tyramine by reductive amination with NaBH/sub 3/CN and the tyramine then labeled with /sup 125/I. Dilactitol-/sup 125/I-tyramine (DLT) and inulin-/sup 125/I-tyramine (InTn) were coupled by reductive amination and cyanuric chloride, respectively, to asialofetuin (ASF), fetuin and rat serum albumin (RSA). Attachment of either label had no effect on the circulating half-lives of the proteins. Radioactivity from labeled ASF was recovered in rat liver (> 90%) by 1 h post-injection and remained in liver with half-lives of 2 and 6 days, respectively, for the DLT and InTn labels. Whole body recoveries of radioactivity from DLT- and InTn labels. Whole body recoveries of radioactivity from DLT- and InTn-labeled RSA were 5 and 6.5 days, respectively, again indicating that the larger glycoconjugate label residualized more efficiently in cells following protein degradation. (Lactitol)/sub 2/-N-CH/sub 2/-CH/sub 2/-NH-fluroescein (DLF) was also coupled to ASF by reductive amination and recovered quantitatively in liver at 1 h post-injection. Native ASF was an effective competitor for clearance of DLF-ASF from the circulation. Fluorescent degradation products were retained in liver with a half-life of 1.2 days. Residualizing fluorescent labels should be useful for identification and sorting of cells active in the degradation of plasma proteins.

  7. Analysis of disposition alternatives for radioactively contaminated scrap metal

    SciTech Connect (OSTI)

    Nieves, L.A.; Chen, S.Y.; Kohout, E.J.; Nabelssi, B.; Tilbrook, R.W.; Wilson, S.E.

    1997-01-01

    Millions of tonnes of slightly radioactive, scrap iron and steel, stainless steel, and copper are likely to become available as nuclear and other facilities and equipment are withdrawn from service. Disposition of this material is an international policy issue under consideration currently. The major alternatives for managing this material are to either develop a regulatory process for decontamination and recycling that will safeguard human health or to dispose of the scrap and replace the metal stocks. To evaluate the alternatives, we estimate quantities of scrap arising from nuclear power plant decommissioning, evaluate potential price impacts of recycling on regional markets, and assess the health and environmental impacts of the management alternatives. We conclude that decontaminating and recycling the scrap is the superior alternative.

  8. Residual radioactivity in the vicinity of formerly utilized MED/AEC sites

    SciTech Connect (OSTI)

    Haywood, F. F.; Goldsmith, W. A.

    1980-01-01

    As demand for uranium and thorium was accelerated during the 1940's, services of chemical and metallurgical firms and major research facilities were contracted as needed by the Manhattan Engineer District (MED). A lack of documentation of the radiological status at the time contracts were terminated at these facilities led the Department of Energy (DOE), and its predecessor the Energy Research and Development Administration (ERDA), to develop a major radiological resurvey program to fill this information void. A combination of aerial and ground-level radiological monitoring teams were utilized to identify and assess off-site radioactivity. Results from comprehensive aerial surveys provide the approximate areal extent of elevated radiation levels on the ground. These aerial survey results led to two types of ground-level surveys: (1) gamma-ray scanning on foot or from a motorized vehicle (mobile lab based system) to pinpoint the location of residual radioactivity; and (2) compehensive radiological surveys to determine the amount and type of materials present on specific parcels of private and public property identified during the scanning. This type of investigation was initiated in 1978 and has been successful in identifying and assessing the potential radiation hazard from property on which materials bearing natural radioactivity have been found. This paper contains a description of the techniques used to find and evaluate radioactive material displaced outside the boundaries of a formerly utilized site.

  9. Manual for implementing residual radioactive material guidelines using RESRAD, Version 5.0

    SciTech Connect (OSTI)

    Yu, C.; Zielen, A.J.; Cheng, J.J.

    1993-09-01

    This manual presents information for implementing US Department of Energy (DOE) guidelines for residual radioactive material. It describes the analysis and models used to derive site-specific guidelines for allowable residual concentrations of radionuclides in soil and the design and use of the RESRAD computer code for calculating doses, risks, and guideline values. It also describes procedures for implementing DOE policy for reducing residual radioactivity to levels that are as low as reasonably achievable. Two new pathways, radon inhalation and soil ingestion, have been added to RESRAD. Twenty-seven new radionuclides have also been added, and the cutoff half-life for associated radionuclides has been reduced to six months. Other major improvements to the RESRAD code include the ability to run sensitivity analyses, the addition of graphical output, user-specified dose factors, updated databases, an improved groundwater transport model, optional input of a groundwater concentration and a solubility constant, special models for tritium and carbon-14, calculation of cancer incidence risk, and the use of a mouse with menus.

  10. Derivation of uranium residual radioactive material guidelines for the Shpack site

    SciTech Connect (OSTI)

    Cheng, J.J.; Yu, C.; Monette, F.; Jones, L.

    1991-08-01

    Residual radioactive material guidelines for uranium were derived for the Shpack site in Norton, Massachusetts. This site has been identified for remedial action under the Formerly Utilized Sites Remedial Action Program (FUSRAP) of the US Department of Energy (DOE). The uranium guidelines were derived on the basis of the requirement that the 50-year committed effective dose equivalent to a hypothetical individual who lives or works in the immediate vicinity of the Shpack site should not exceed a dose of 100 mrem/yr following decontamination. The DOE residual radioactive material guideline computer code, RESRAD, which implements the methodology described in the DOE manual for implementing residual radioactive material guidelines, was used in this evaluation. Three potential scenarios were considered for the site; the scenarios vary with regard to time spent at the site, sources of water used, and sources of food consumed. The results of the evaluation indicate that the basic dose limit of 100 mrem/yr will not be exceeded for uranium (including uranium-234, uranium-235, and uranium-238) within 1000 years, provided that the soil concentration of combined uranium (uranium-234 and uranium-238) at the Shpack site does not exceed the following levels: 2500 pCi/g for Scenario A (recreationist: the expected scenario); 1100 pCi/g for Scenario B (industrial worker: a plausible scenario); and 53 pCi/g for Scenario C (resident farmer using a well water as the only water source: a possible but unlikely scenario). The uranium guidelines derived in this report apply to the combined activity concentration of uranium-234 and uranium-238 and were calculated on the basis of a dose of 100 mrem/yr. In setting the actual uranium guidelines for the Shpack site, DOE will apply the as low as reasonably achievable (ALARA) policy to the decision-making process, along with other factors, such as whether a particular scenario is reasonable and appropriate. 8 refs., 2 figs., 8 tabs.

  11. DOE G 441.1-XX Control and Release of Property with Residual Radioactive Material

    Office of Environmental Management (EM)

    April 4, 2002 FROM: STEPHEN M. SMITH, DEPUTY DIRECTOR OFFICE OF CORPORATE SOLUTIONS, ME-80 TO: DIRECTIVES POINTS OF CONTACT SUBJECT: DRAFT DOE G 441.1-XX, CONTROL AND RELEASE OF PROPERTY WITH RESIDUAL RADIOACTIVE MATERIAL for use with DOE 5400.5, Radiation Protection of the Public and the Environment This is to notify you that the subject draft Guide has been posted in the "Draft" section of the Explorit system for simultaneous use and coordination. The Guide provides DOE's guidance

  12. SU-E-T-534: Level of Residual Radioactivity of Activated Parts of a Decommissioned Cyclotron

    SciTech Connect (OSTI)

    Choi, HHF; Leung, TM; Chiu, TL; Yang, B; Wu, PM; Cheung, KY; Yu, SK

    2015-06-15

    Purpose: CTI cyclotron RDS-111 was used at the Hong Kong Sanatorium and Hospital (HKSH) to produce radiopharmaceuticals and radioactive tracers for diagnostic scans between 1999 and 2007. During the operation, some machine components became radioactive by activation. For the safety of staff, decommissioning took place in 2009, two years after the cyclotron had stopped operation. This study investigates the residual radioactivity and radionuclides found in different cyclotron components in 2014 in compliance with the local regulations in Hong Kong for transfer of radioactive waste. Methods: A representative sample of each part was counted using a high-purity germanium detector (manufacturer: ORTECT) for at least four hours. GammaVision, a multichannel analyzer software, was used to identify the radionuclides found in the cyclotron components, as well as the associated activities. A standard library and a Mariscotti peak search algorithm were used to identify the present radionuclides. Only radionuclides with half-life greater than 180 days were considered. Results: Among the components, the Havar target foil has the highest specific activity ((4.6±0.6)×10{sup 2} Bq/g), with Co-60 being the most prominent ((3.8±0.5)×10{sup 2} Bq/g). The total activity of the target foil, however, is still low due to its small mass of 0.04 g. Radioisotopes Mn-54 (46±6 Bq/g), Na-22 (6.8±0.8 Bq/g), Co-57 (7.3±0.9 Bq/g), and Fe-59 (6.0±0.9 Bq/g) have also been detected in the target foil. The target window holder and the vacuum window register a specific activity of 88.3±0.6 Bq/g and 48.6±0.1 Bq/g, respectively. Other components, such as the collimator, the target tube, the valve body and the beamline, are also found with trace amounts of radionuclides. Conclusion: Even seven years after the cyclotron had stopped operation, some components still exhibited residual radioactivity from activation exceeding the IAEA clearance levels. Special consideration for radiological

  13. Derivation of guidelines for uranium residual radioactive material in soil at the New Brunswick Site, Middlesex County, New Jersey

    SciTech Connect (OSTI)

    Dunning, D.; Kamboj, S.; Nimmagadda, M.; Yu, C.

    1996-02-01

    Residual radioactive material guidelines for uranium in soil were derived for the New Brunswick Site, located in Middlesex County, New Jersey. This site has been designated for remedial action under the Formerly Utilized Sites Remedial Action Program of the US Department of Energy (DOE). Residual radioactive material guidelines for individual radionuclides of concern and total uranium were derived on the basis of the requirement that the 50-year committed effective dose equivalent to a hypothetical individual who lives or works in the immediate vicinity of the New Brunswick Site should not exceed a dose of 30 mrem/yr following remedial action for the current-use and likely future-use scenarios or a dose of 100 mrem/yr for less likely future-use scenarios. The DOE residual radioactive material guideline computer code, RESRAD, was used in this evaluation; RESRAD implements the methodology described in the DOE manual for establishing residual radioactive material guidelines. The guidelines derived in this report are intended to apply to the remediation of these remaining residual radioactive materials at the site. The primary radionuclides of concern in these remaining materials are expected to be radium-226 and, to a lesser extent, natural uranium and thorium. The DOE has established generic cleanup guidelines for radium and thorium in soil; however, cleanup guidelines for other radionuclides must be derived on a site-specific basis.

  14. Assessment of alternatives for long-term management of uranium ore residues and contaminated soils located at DOE's Niagara Falls Storage Site

    SciTech Connect (OSTI)

    Merry-Libby, P.

    1984-11-05

    About 11,000 m/sup 3/ of uranium ore residues and 180,000 m/sup 3/ of wastes (mostly slightly contaminated soils) are consolidated within a diked containment area at the Niagara Falls Storage Site (NFSS) located about 30 km north of Buffalo, NY. The residues account for less than 6% of the total volume of contaminated materials but almost 99% of the radioactivty. The average /sup 226/Ra concentration in the residues is 67,000 pCi/g. Several alternatives for long-term management of the wastes and residues are being considered, including: improvement of the containment at NFSS, modification of the form of the residues, management of the residues separately from the wastes, management of the wastes and residues at another humid site (Oak Ridge, TN) or arid site (Hanford, WA), and dispersal of the wastes in the ocean. Potential radiological risks are expected to be smaller than the nonradiological risks of occupational and transportation-related injuries and deaths. Dispersal of the slightly contaminated wastes in the ocean is not expected to result in any significant impacts on the ocean environment or pose any significant radiological risk to humans. It will be necessary to take perpetual care of the near-surface burial sites because the residues and wastes will remain hazardous for thousands of years. If controls cease, the radioactive materials will eventually be dispersed in the environment. Predicted loss of the earthen covers over the buried materials ranges from several hundred to more than two million years, depending primarily on the use of the land surface. Groundwater will eventually be contaminated in all alternatives; however, the groundwater pathway is relatively insignificant with respect to radiological risks to the general population. A person intruding into the residues would incur an extremely high radiation dose.

  15. Method of determining whether radioactive contaminants are inside or outside a structure

    DOE Patents [OSTI]

    Lattin, Kenneth R.

    1977-01-01

    A measure is obtained of the relative quantities of radioactive material inside and outside a structure such as a pipe by obtaining two spectra of gamma radiation on a dummy structure of the same shape and composition. A first spectrum is obtained with a quantity of the radioactive element to be measured located inside the structure and a second spectrum is obtained with a quantity of the same contaminant located outside the structure. The two spectra are normalized to the same equivalent value in a portion of the spectrum that does not reflect the presence of gamma rays resulting from Compton scattering in the structure. Comparison of that portion of the spectra obtained where Compton scattering is a factor gives a measure of the relative amounts of contaminants inside and outside the structure on a spectrum obtained from a test structure. The invention may also be practiced by obtaining a plurality of spectra at varying known concentrations inside and outside the dummy structure.

  16. A Review of Removable Surface Contamination on Radioactive Materials Transportation Containers

    SciTech Connect (OSTI)

    Kennedy, Jr, W. E.; Watson, E. C.; Murphy, D. W.; Harrer, B. J.; Harty, R.; Aldrich, J. M.

    1981-05-01

    This report contains the results of a study sponsored by the U.S. Nuclear Regulatory Commission (NRC) of removable surface contamination on radioactive materials transportation containers. The purpose of the study is to provide information to the NRC during their review of existing regulations. Data was obtained from both industry and literature on three major topics: 1) radiation doses, 2) economic costs, and 3) contamination frequencies. Containers for four categories of radioactive materials are considered including radiopharmaceuticals, industrial sources, nuclear fuel cycle materials, and low-level radioactive waste. Assumptions made in this study use current information to obtain realistic yet conservative estimates of radiation dose and economic costs. Collective and individual radiation doses are presented for each container category on a per container basis. Total doses, to workers and the public, are also presented for spent fuel cask and low-level waste drum decontamination. Estimates of the additional economic costs incurred by lowering current limits by factors of 10 and 100 are presented. Current contamination levels for each category of container are estimated from the data collected. The information contained in this report is designed to be useful to the NRC in preparing their recommendations for new regulations.

  17. Restoration of water environment contaminated by radioactive cesium released from Fukushima Daiichi NPP

    SciTech Connect (OSTI)

    Takeshita, K.; Takahashi, H.; Jinbo, Y.; Ishido, A.

    2013-07-01

    In the Fukushima Daiichi NPP Accident, large amounts of volatile radioactive nuclides, such as {sup 131}I, {sup 134}Cs and {sup 137}Cs, were released to the atmosphere and huge areas surrounding the nuclear site were contaminated by the radioactive fallout. In this study, a combined process with a hydrothermal process and a coagulation settling process was proposed for the separation of radioactive Cs from contaminated soil and sewage sludge. The coagulation settling operation uses Prussian Blue (Ferric ferrocyanide) and an inorganic coagulant. The recovery of Cs from sewage sludge sampled at Fukushima city (100.000 Bq/kg) and soil at a nearby village (55.000 Bq/kg), was tested. About 96% of Cs in the sewage sludge was removed successfully by combining simple hydrothermal decomposition and coagulation settling. However, Cs in the soil was not removed sufficiently by the combined process (Cs removal is only 56%). The hydrothermal decomposition with blasting was carried out. The Cs removal from the soil was increased to 85%. When these operations were repeated twice, the Cs recovery was over 90%. The combined process with hydrothermal blasting and coagulation settling is applicable to the removal of Cs from highly contaminated soil.

  18. Monitoring Potential Transport of Radioactive Contaminants in Shallow Ephemeral Channels: FY 2012

    SciTech Connect (OSTI)

    Miller, Julianne J.; Mizell, Steve A.; McCurdy, Greg; Campbell, Scott A.

    2012-09-01

    The US Department of Energy (DOE) National Nuclear Security Administration (NNSA), Nevada Site Office (NSO), Environmental Management’s Soils Activity has authorized the Desert Research Institute (DRI) to conduct field assessments of potential sediment transport of contaminated soil from Corrective Action Unit (CAU) 550, Smoky Contamination Area (CA), during precipitation runoff events. CAU 550 includes Corrective Action Sites (CASs) 08-23-03, 08-23-04, 08-23-06, and 08-23-07; these CASs are associated with tests designated Ceres, Smoky, Oberon, and Titania, respectively. Field measurements at the T-4 Atmospheric Test Site, CAU 370, suggest that radioactive material may have migrated along a shallow ephemeral drainage that traverses the site (NNSA/NSO, 2009). (It is not entirely clear how contaminated soils got into their present location at the T-4 Site, but flow to the channel has been redirected and the contamination does not appear to be migrating at present.) Although DRI initially looked at the CAU 370 site, given that it could not be confirmed that migration of contamination into the channel was natural, an alternate study site was selected at CAU 550. Aerial surveys in selected portions of the Nevada National Security Site (NNSS) also suggest that radioactivity may be migrating along ephemeral channels in Areas 3, 8, 11, 18, and 25 (Colton, 1999). Figure 1 shows the results of a low-elevation aerial survey (Colton, 1999) in Area 8. The numbered markers in Figure 1 identify ground zero for three safety experiments conducted in 1958 [Oberon (number 1), Ceres (number 2), and Titania (number 4)] and a weapons effects test conducted in 1964, Mudpack (number 3). This survey suggests contaminants may be migrating down the ephemeral channels that traverse CAU 550. Note particularly the lobe of higher concentration extending southeastward at the south end of the high concentration area marked as number 3 in Figure 1. CAU 550 in Area 8 of the NNSS was selected for

  19. Residual foreground contamination in the WMAP data and bias in non-Gaussianity estimation

    SciTech Connect (OSTI)

    Chingangbam, Pravabati; Park, Changbom E-mail: cbp@kias.re.kr

    2013-02-01

    We analyze whether there is any residual foreground contamination in the cleaned WMAP 7 years data for the differential assemblies, Q, V and W. We calculate the correlation between the foreground map, from which long wavelength correlations have been subtracted, and the foreground reduced map for each differential assembly after applying the Galaxy and point sources masks. We find positive correlations for all the differential assemblies, with high statistical significance. For Q and V, we find that a large fraction of the contamination comes from pixels where the foreground maps have positive values larger than three times the rms values. These findings imply the presence of residual contamination from Galactic emissions and unresolved point sources. We redo the analysis after masking the extended point sources cataloque of Scodeller et al. [7] and find a drop in the correlation and corresponding significance values. To quantify the effect of the residual contamination on the search for primordial non-Gaussianity in the CMB we add estimated contaminant fraction to simulated Gaussian CMB maps and calculate the characteristic non-Gaussian deviation shapes of Minkowski Functionals that arise due to the contamination. We find remarkable agreement of these deviation shapes with those measured from WMAP data, which imply that a major fraction of the observed non-Gaussian deviation comes from residual foreground contamination. We also compute non-Gaussian deviations of Minkowski Functionals after applying the point sources mask of Scodeller et al. and find a decrease in the overall amplitudes of the deviations which is consistent with a decrease in the level of contamination.

  20. Measurement of Radioactive Contamination in the High-Resistivity Silicon CCDs of the DAMIC Experiment

    SciTech Connect (OSTI)

    Aguilar-Arevalo, A.

    2015-08-25

    We present measurements of radioactive contamination in the high-resistivity silicon charge-coupled devices (CCDs) used by the DAMIC experiment to search for dark matter particles. Novel analysis methods, which exploit the unique spatial resolution of CCDs, were developed to identify α and β particles. Uranium and thorium contamination in the CCD bulk was measured through α spectroscopy, with an upper limit on the 238U (232Th) decay rate of 5 (15) kg-1 d-1 at 95% CL. We also searched for pairs of spatially correlated electron tracks separated in time by up to tens of days, as expected from 32Si –32P or 210Pb –210Bi sequences of b decays. The decay rate of 32Si was found to be 80+110-65 (95% CI). An upper limit of ~35 kg -1 d-1 (95% CL) on the 210Pb decay rate was obtained independently by α spectroscopy and the β decay sequence search. Furthermore, these levels of radioactive contamination are sufficiently low for the successful operation of CCDs in the forthcoming 100 g DAMIC detector.

  1. Measurement of Radioactive Contamination in the High-Resistivity Silicon CCDs of the DAMIC Experiment

    DOE PAGES-Beta [OSTI]

    Aguilar-Arevalo, A.

    2015-08-25

    We present measurements of radioactive contamination in the high-resistivity silicon charge-coupled devices (CCDs) used by the DAMIC experiment to search for dark matter particles. Novel analysis methods, which exploit the unique spatial resolution of CCDs, were developed to identify α and β particles. Uranium and thorium contamination in the CCD bulk was measured through α spectroscopy, with an upper limit on the 238U (232Th) decay rate of 5 (15) kg-1 d-1 at 95% CL. We also searched for pairs of spatially correlated electron tracks separated in time by up to tens of days, as expected from 32Si –32P or 210Pbmore » –210Bi sequences of b decays. The decay rate of 32Si was found to be 80+110-65 (95% CI). An upper limit of ~35 kg -1 d-1 (95% CL) on the 210Pb decay rate was obtained independently by α spectroscopy and the β decay sequence search. Furthermore, these levels of radioactive contamination are sufficiently low for the successful operation of CCDs in the forthcoming 100 g DAMIC detector.« less

  2. Measurement of Radioactive Contamination in the High-Resistivity Silicon CCDs of the DAMIC Experiment

    SciTech Connect (OSTI)

    Aguilar-Arevalo, A.

    2015-08-25

    We present measurements of radioactive contamination in the high-resistivity silicon charge-coupled devices (CCDs) used by the DAMIC experiment to search for dark matter particles. Novel analysis methods, which exploit the unique spatial resolution of CCDs, were developed to identify ? and ? particles. Uranium and thorium contamination in the CCD bulk was measured through ? spectroscopy, with an upper limit on the 238U (232Th) decay rate of 5 (15) kg-1 d-1 at 95% CL. We also searched for pairs of spatially correlated electron tracks separated in time by up to tens of days, as expected from 32Si 32P or 210Pb 210Bi sequences of b decays. The decay rate of 32Si was found to be 80+110-65 (95% CI). An upper limit of ~35 kg -1 d-1 (95% CL) on the 210Pb decay rate was obtained independently by ? spectroscopy and the ? decay sequence search. Furthermore, these levels of radioactive contamination are sufficiently low for the successful operation of CCDs in the forthcoming 100 g DAMIC detector.

  3. EIS-0109: Long-Term Management of the Existing Radioactive Wastes and Residues at the Niagara Falls Storage Site

    Energy.gov [DOE]

    The U.S. Department of Energy developed this statement to evaluate the environmental impacts of several alternatives for management and control of the radioactive wastes and residues at the Niagara Falls Storage Site, including a no action alternative, an alternative to manage wastes on site, and two off-site management alternatives.

  4. FIVE YEAR REVIEW - MONTICELLO RADIOACTIVELY CONTAMINATED PROPERTIES - 06/11/2007

    Office of Legacy Management (LM)

    Third Five-Year Review Report for Monticello Radioactively Contaminated Properties Monticello, Utah San Juan County, Utah June 2007 Office of Legacy Management DOE M/1473 2007 - -L Work Performed Under DOE Contract No. for the U.S. Department of Energy Office of Legacy Management. DE-AC01-02GJ79491 Approved for public release; distribution is unlimited. Office of Legacy Management Office of Legacy Management Office of Legacy Management U.S. Department of Energy DOE-LM/1473-2007 Five-Year Review

  5. The Radioactivity Characteristics of the NPP Charcoal Sample Contaminated by Carbon-14 - 13531

    SciTech Connect (OSTI)

    Kim, Hee Reyoung

    2013-07-01

    The radioactivity of {sup 14}C-contaminated charcoal sample was analyzed by using a high temperature oxidation and liquid scintillation counting method. The radioactivity of the sample was monotonically increased according to the increase of the combustion time at each temperature where the experimental uncertainty was calculated in the 95 % confidence level. It showed that the {sup 14}C radioactivity was not completely extracted from the sample by simply increasing the combustion time unless the combustion temperature was high enough. The higher the combustion temperature was, the higher the recovery during the first 30 minutes was. The first 30 minute recoveries were 100 % at a temperature equal to or greater than 450 deg. C. The ratios of the recovery during the first 30 minutes to the total recovery during whole duration were more than 90 % at each experiment temperature. It was understood that the temperature was a critical factor for the complete removal of the {sup 14}C from the waste sample. (authors)

  6. Hanford tank residual waste – contaminant source terms and release models

    SciTech Connect (OSTI)

    Deutsch, William J.; Cantrell, Kirk J.; Krupka, Kenneth M.; Lindberg, Michael J.; Serne, R. Jeffrey

    2011-08-23

    Residual waste is expected to be left in 177 underground storage tanks after closure at the U.S. Department of Energy’s Hanford Site in Washington State (USA). In the long term, the residual wastes represent a potential source of contamination to the subsurface environment. Residual materials that cannot be completely removed during the tank closure process are being studied to identify and characterize the solid phases and estimate the release of contaminants from these solids to water that might enter the closed tanks in the future. As of the end of 2009, residual waste from five tanks has been evaluated. Residual wastes from adjacent tanks C-202 and C-203 have high U concentrations of 24 and 59 wt%, respectively, while residual wastes from nearby tanks C-103 and C-106 have low U concentrations of 0.4 and 0.03 wt%, respectively. Aluminum concentrations are high (8.2 to 29.1 wt%) in some tanks (C-103, C-106, and S-112) and relatively low (<1.5 wt%) in other tanks (C-202 and C-203). Gibbsite is a common mineral in tanks with high Al concentrations, while non-crystalline U-Na-C-O-P±H phases are common in the U-rich residual wastes from tanks C-202 and C-203. Iron oxides/hydroxides have been identified in all residual waste samples studied to date. Contaminant release from the residual wastes was studied by conducting batch leach tests using distilled deionized water, a Ca(OH)2-saturated solution, or a CaCO3-saturated water. Uranium release concentrations are highly dependent on waste and leachant compositions with dissolved U concentrations one or two orders of magnitude higher in the tests with high U residual wastes, and also higher when leached with the CaCO3-saturated solution than with the Ca(OH)2-saturated solution. Technetium leachability is not as strongly dependent on the concentration of Tc in the waste, and it appears to be slightly more leachable by the Ca(OH)2-saturated solution than by the CaCO3-saturated solution. In general, Tc is much less

  7. Stabilization of Rocky Flats combustible residues contaminated with plutonium metal and organic solvents

    SciTech Connect (OSTI)

    Bowen, S.M.; Cisneros, M.R.; Jacobson, L.L.; Schroeder, N.C.; Ames, R.L.

    1998-09-30

    This report describes tests on a proposed flowsheet designed to stabilize combustible residues that were generated at the Rocky Flats Environmental Technology Site (RFETS) during the machining of plutonium metal. Combustible residues are essentially laboratory trash contaminated with halogenated organic solvents and plutonium metal. The proposed flowsheet, designed by RFETS, follows a glovebox procedure that includes (1) the sorting and shredding of materials, (2) a low temperature thermal desorption of solvents from the combustible materials, (3) an oxidation of plutonium metal with steam, and (4) packaging of the stabilized residues. The role of Los Alamos National Laboratory (LANL) in this study was to determine parameters for the low temperature thermal desorption and steam oxidation steps. Thermal desorption of carbon tetrachloride (CCl{sub 4}) was examined using a heated air stream on a Rocky Flats combustible residue surrogate contaminated with CCl{sub 4}. Three types of plutonium metal were oxidized with steam in a LANL glovebox to determine the effectiveness of this procedure for residue stabilization. The results from these LANL experiments are used to recommend parameters for the proposed RFETS stabilization flowsheet.

  8. Hanford Tank 241-C-106: Residual Waste Contaminant Release Model and Supporting Data

    SciTech Connect (OSTI)

    Deutsch, William J.; Krupka, Kenneth M.; Lindberg, Michael J.; Cantrell, Kirk J.; Brown, Christopher F.; Schaef, Herbert T.

    2005-06-03

    CH2M HILL is producing risk/performance assessments to support the closure of single-shell tanks at the DOE's Hanford Site. As part of this effort, staff at PNNL were asked to develop release models for contaminants of concern that are present in residual sludge remaining in tank 241-C-106 (C-106) after final retrieval of waste from the tank. This report provides the information developed by PNNL.

  9. Proposed sale of radioactively contaminated nickel ingots located at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky

    SciTech Connect (OSTI)

    1995-10-01

    The U.S. Department of Energy (DOE) proposes to sell 8,500 radioactively contaminated nickel ingots (9.350 short tons), currently in open storage at the Paducah Gaseous Diffusion Plant (PGDP), to Scientific Ecology Group, Inc. (SEG) for decontamination and resale on the international market. SEG would take ownership of the ingots when they are loaded for transport by truck to its facility in Oak Ridge, Tennessee. SEG would receive approximately 200 short tons per month over approximately 48 months (an average of 180 ingots per month). The nickel decontamination process specified in SEG`s technical proposal is considered the best available technology and has been demonstrated in prototype at SEG. The resultant metal for resale would have contamination levels between 0.3 and 20 becquerel per gram (Bq/g). The health hazards associated with release of the decontaminated nickel are minimal. The activity concentration of the end product would be further reduced when the nickel is combined with other metals to make stainless steel. Low-level radioactive waste from the SEG decontamination process, estimated to be approximately 382 m{sup 3} (12,730 ft), would be shipped to a licensed commercial or DOE disposal facility. If the waste were packaged in 0.23 m{sup 3}-(7.5 ft{sup 3}-) capacity drums, approximately 1,500 to 1,900 drums would be transported over the 48-month contract period. Impacts from the construction of decontamination facilities and the selected site are minimal.

  10. Processing results of 1,800 gallons of mercury and radioactively contaminated mixed waste rinse solution

    SciTech Connect (OSTI)

    Thiesen, B.P.

    1993-01-01

    The mercury-contaminated rinse solution (INEL waste ID{number_sign} 123; File 8 waste) was successfully treated at the Idaho National Engineering Laboratory (INEL). This waste was generated during the decontamination of the Heat Transfer Reactor Experiment 3 (HTRE-3) reactor shield tank. Approximately 1,800 gal of waste was generated and was placed into 33 drums. Each drum contained precipitated sludge material ranging from 1--10 in. in depth, with the average depth of about 2.5 in. The pH of each drum varied from 3--11. The bulk liquid waste had a mercury level of 7.0 mg/l, which exceeded the Resource Conservation and Recovery Act (RCRA) limit of 0.2 mg/l. The average liquid bulk radioactivity was about 2.1 pCi/ml, while the average sludge contamination was about 13,800 pci/g. Treatment of the waste required separation of the liquid from the sludge, filtration, pH adjustment, and ion exchange. Because of difficulties in processing, three trials were required to reduce the mercury levels to below the RCRA limit. In the first trial, insufficient filtration of the waste allowed solid particulate produced during pH adjustment to enter into the ion exchange columns and ultimately the waste storage tank. In the second trial, the waste was filtered down to 0.1 {mu} to remove all solid mercury compounds. However, before filtration could take place, a solid mercury complex dissolved and mercury levels exceeded the RCRA limit after filtration. In the third trial, the waste was filtered through 0.3-A filters and then passed through the S-920 resin to remove the dissolved mercury. The resulting solution had mercury levels at 0.0186 mg/l and radioactivity of 0.282 pCi/ml. This solution was disposed of at the TAN warm waste pond, TAN782, TSF-10.

  11. Contaminant Leach Testing of Hanford Tank 241-C-104 Residual Waste

    SciTech Connect (OSTI)

    Cantrell, Kirk J.; Snyder, Michelle M.V.; Wang, Guohui; Buck, Edgar C.

    2015-07-01

    Leach testing of Tank C-104 residual waste was completed using batch and column experiments. Tank C-104 residual waste contains exceptionally high concentrations of uranium (i.e., as high as 115 mg/g or 11.5 wt.%). This study was conducted to provide data to develop contaminant release models for Tank C-104 residual waste and Tank C-104 residual waste that has been treated with lime to transform uranium in the waste to a highly insoluble calcium uranate (CaUO4) or similar phase. Three column leaching cases were investigated. In the first case, C-104 residual waste was leached with deionized water. In the second case, crushed grout was added to the column so that deionized water contacted the grout prior to contacting the waste. In the third case, lime was mixed in with the grout. Results of the column experiments demonstrate that addition of lime dramatically reduces the leachability of uranium from Tank C-104 residual waste. Initial indications suggest that CaUO4 or a similar highly insoluble calcium rich uranium phase forms as a result of the lime addition. Additional work is needed to definitively identify the uranium phases that occur in the as received waste and the waste after the lime treatment.

  12. Contaminant Release Data Package for Residual Waste in Single-Shell Hanford Tanks

    SciTech Connect (OSTI)

    Deutsch, William J.; Cantrell, Kirk J.; Krupka, Kenneth M.

    2007-12-01

    The Hanford Federal Facility Agreement and Consent Order requires that a Resource Conservation and Recovery Act (RCRA) Facility Investigation report be submitted to the Washington State Department of Ecology. The RCRA Facility Investigation report will provide a detailed description of the state of knowledge needed for tank farm performance assessments. This data package provides detailed technical information about contaminant release from closed single-shell tanks necessary to support the RCRA Facility Investigation report. It was prepared by Pacific Northwest National Laboratory (PNNL) for CH2M HILL Hanford Group, Inc., which is tasked by the U.S. Department of Energy (DOE) with tank closure. This data package is a compilation of contaminant release rate data for residual waste in the four Hanford single-shell tanks (SSTs) that have been tested (C-103, C-106, C-202, and C-203). The report describes the geochemical properties of the primary contaminants of interest from the perspective of long-term risk to groundwater (uranium, technetium-99, iodine-129, chromium, transuranics, and nitrate), the occurrence of these contaminants in the residual waste, release mechanisms from the solid waste to water infiltrating the tanks in the future, and the laboratory tests conducted to measure release rates.

  13. Technical basis for EPA`s proposed regulation on the cleanup of sites contaminated with radioactivity

    SciTech Connect (OSTI)

    Wolbarst, A.B.; Clark, M.E.; Doehnert, M.

    1996-11-01

    The US Environmental Protection Agency is proposing a regulation for the protection of the public and radioactive contamination at sites that are to be cleaned up and released for public use. The rule will apply to sites under the control of Federal agencies, and will impose limits on radiation doses to individuals living or working on a site following cleanup; it will thereby provide site owners and managers with uniform, consistent cleanup criteria for planning and carrying out remediation. This paper presents an overview of EPA`s approach to assessing some of the beneficial and adverse effects associated with various possible values for the annual dose limit. In particular, it discusses the method developed to determine how the choice of cleanup criterion affects (1) the time-integrated potential numbers of non-fatal and fatal radiogenic cancers averted among future populations, (2) the occurrence of radiogenic cancers among remediation workers and the public caused by the cleanup process itself, and (3) the volumes of contaminated soil that may require remediation. The analytic methods described here were used to provide input data and assumptions for the Regulatory Impact Analysis (RIA) that supports the proposed regulation; the RIA also considered non-radiological benefits and costs (i.e., public health, economic, and ecological) of the standards. 56 refs., 4 figs., 6 tabs.

  14. Application of in-situ gamma spectrometry in the remediation of radioactively contaminated soil

    SciTech Connect (OSTI)

    Sutton, C.; Yesso, J.D.; Danahy, R.J.; Cox, T.

    1999-06-01

    The Fernald Environmental Management Project (FEMP) is a US Department of Energy site that is undergoing total remediation and closure. Most of the remediation effort entails massive excavation of soil for disposal, both offsite and onsite, at an engineered disposal facility. In-situ gamma spectrometry is routinely used to support soil excavation operations to accurately and quickly identify soil areas as being above or below regulatory remediation criteria. Two different in-situ gamma spectrometry systems are used. The first is a sodium iodide (NaI) detector mounted either on a tractor or a jogging stroller, depending on the terrain to be measured. The NaI system allows the collection of a gamma energy spectrum which can be analyzed to identify and quantify radioactive isotopes which are present within the detector`s viewing area. Each energy spectrum is tagged by location coordinates provided by an on-board global positioning system (GPS) to precisely locate elevated contamination areas. The second is a tripod-mounted, high purity germanium detector (HPGe) gamma spectrometry system that is functionally similar to the NaI system. The principal advantage of the HPGe is its superior resolution, which allows much more accurate identification and quantification of radionuclide contaminants in soils. In order to effectively utilize the data quality objective process with these systems, three quality assurance (QA) elements had to be performed.

  15. Geochemical information for sites contaminated with low-level radioactive wastes: I. Niagara Falls Storage Site

    SciTech Connect (OSTI)

    Seeley, F.G.; Kelmers, A.D.

    1984-11-01

    The Niagara Falls Storage Site (NFSS) became radioactively contaminated as a result of wastes that were being stored from operations carried out to recover uranium from pitchblende ore in the 1940s and 1950s. The US Department of Energy (DOE) is considering various remedial action options for the NFSS. This report describes the results of geochemical investigations performed to help provide a quantitative evaluation of the effects of various options. NFSS soil and groundwater samples were characterized; and uranium and radium sorption ratios, as well as apparent concentration limit values, were measured in site soil/groundwater systems by employing batch contact methodology. The results suggest that any uranium which is in solution in the groundwater at the NFSS may be poorly retarded due to the low uranium sorption ratio values and high solubility measured. Further, appreciable concentrations of uranium in groundwater could be attained from soluble wastes. Release of uranium via groundwater migration could be a significant release pathway. Solubilized radium would be expected to be effectively retarded by soil at the NFSS as a result of the very high radium sorption ratios observed. The addition of iron oxyhydroxide to NFSS soils resulted in much higher uranium sorption ratios. Additional field testing of this potential remedial action additive could be desirable. 10 references.

  16. A methodology for estimating the residual contamination contribution to the source term in a spent-fuel transport cask

    SciTech Connect (OSTI)

    Sanders, T.L. ); Jordan, H. . Rocky Flats Plant); Pasupathi, V. ); Mings, W.J. ); Reardon, P.C. )

    1991-09-01

    This report describes the ranges of the residual contamination that may build up in spent-fuel transport casks. These contamination ranges are calculated based on data taken from published reports and from previously unpublished data supplied by cask transporters. The data involve dose rate measurements, interior smear surveys, and analyses of water flushed out of cask cavities during decontamination operations. A methodology has been developed to estimate the effect of residual contamination on spent-fuel cask containment requirements. Factors in estimating the maximum permissible leak rates include the form of the residual contamination; possible release modes; internal gas-borne depletion; and the temperature, pressure, and vibration characteristics of the cask during transport under normal and accident conditions. 12 refs., 9 figs., 4 tabs.

  17. Electroslag Remelting (ESR) Slags for Removal of Radioactive Oxide Contaminants from Stainless Steel, Annual Report (1998-1999)

    SciTech Connect (OSTI)

    PAL, UDAY B.

    1999-08-01

    Decontamination of radioactive contaminated stainless steel using the ESR process is investigated by conducting thermophysical and thermochemical laboratory studies on the slag. The ESR base slag investigated in this research project is 60wt%CaF{sub 2}-20wt%CaO-20wt%Al{sub 2}O{sub 3}. In this report, we present the data obtained to date on relevant slag properties, capacity to incorporate the radioactive contaminant (using CeO{sub 3}) as surrogate, simulant for PUO{sub 2} and UO{sub 2}, slag-metal partition coefficient, volatilization rate and volatile species, viscosity, electrical conductivity and surface tension as a function of temperature. The impact of these properties on the ESR decontamination process is presented.

  18. Electrosorption on carbon aerogel electrodes as a means of treating low-level radioactive wastes and remediating contaminated ground water

    SciTech Connect (OSTI)

    Tran, Tri Duc; Farmer, Joseph C.; DePruneda, Jean H.; Richardson, Jeffery H.

    1997-07-01

    A novel separation process based upon carbon aerogel electrodes has been recently developed for the efficient removal of ionic impurities from aqueous streams. This process can be used as an electrical y- regenerated alternative to ion exchange, thereby reducing-the need for large quantities of chemical regenerants. Once spent (contaminated), these regenerants contribute to the waste that must be disposed of in landfills. The elimination of such wastes is especially beneficial in situations involving radioactive contaminants, and pump and treat processing of massive volumes of ground water. A review and analysis of potential applications will be presented.

  19. Investigation of gas-phase decontamination of internally radioactively contaminated gaseous diffusion process equipment and piping

    SciTech Connect (OSTI)

    Bundy, R.D.; Munday, E.B.

    1991-01-01

    Construction of the gaseous diffusion plants (GDPs) was begun during World War 2 to produce enriched uranium for defense purposes. These plants, which utilized UF{sub 6} gas, were used primarily for this purpose through 1964. From 1959 through 1968, production shifted primarily to uranium enrichment to supply the nuclear power industry. Additional UF{sub 6}-handling facilities were built in feed and fuel-processing plants associated with the uranium enrichment process. Two of the five process buildings at Oak ridge were shut down in 1964. Uranium enrichment activities at Oak Ridge were discontinued altogether in 1985. In 1987, the Department of Energy (DOE) decided to proceed with a permanent shutdown of the Oak Ridge Gaseous Diffusion Plant (ORGDP). DOE intends to begin decommissioning and decontamination (D D) of ORGDP early in the next century. The remaining two GDPs are expected to be shut down during the next 10 to 40 years and will also require D D, as will the other UF{sub 6}-handling facilities. This paper presents an investigation of gas- phase decontamination of internally radioactively contaminated gaseous diffusion process equipment and piping using powerful fluorinating reagents that convert nonvolatile uranium compounds to volatile UF{sub 6}. These reagents include ClF{sub 3}, F{sub 2}, and other compounds. The scope of D D at the GDPs, previous work of gas-phase decontamination, four concepts for using gas-phase decontamination, plans for further study of gas-phase decontamination, and the current status of this work are discussed. 13 refs., 15 figs.

  20. Geochemical information for sites contaminated with low-level radioactive wastes. III. Weldon Spring Storage Site

    SciTech Connect (OSTI)

    Seeley, F.G.; Kelmers, A.D.

    1985-02-01

    The Weldon Spring Storage Site (WSSS), which includes both the chemical site and the quarry, became radioactively contaminated as the result of wastes that were being stored from operations to recover uranium from pitchblende ores in the 1940s and 1950s. The US Department of Energy (DOE) is considering various remedial action options for the WSSS. This report describes the results of geochemical investigations carried out at Oak Ridge National Laboratory (ORNL) to support these activities and to help quantify various remedial action options. Soil and groundwater samples were characterized, and uranium and radium sorption ratios were measured in site soil/groundwater systems by batch contact methodology. Soil samples from various locations around the raffinate pits were found to contain major amounts of silica, along with illite as the primary clay constituent. Particle sizes of the five soil samples were variable (50% distribution point ranging from 12 to 81 ..mu..m); the surface areas varied from 13 to 62 m/sup 2//g. Elemental analysis of the samples showed them to be typical of sandy clay and silty clay soils. Groundwater samples included solution from Pit 3 and well water from Well D. Anion analyses showed significant concentrations of sulfate and nitrate (>350 and >7000 mg/L, respectively) in the solution from Pit 3. These anions were also present in the well water, but in lower concentrations. Uranium sorption ratios for four of the soil samples contacted with the solution from Pit 3 were moderate to high (approx. 300 to approx. 1000 mL/g). The fifth sample had a ratio of only 12 mL/g. Radium sorption ratios for the five samples were moderate to high (approx. 600 to approx. 1000 mL/g). These values indicate that soil at the WSSS may show favorable retardation of uranium and radium in the groundwater. 13 references, 13 figures, 10 tables.

  1. T.G. Hinton: Human and Ecological Risks from Radioactive Contaminants...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ... exposed individual-Use of simulation to estimate bias in various sample statistics. IN: Proceedings from the International Conference on Radioactivity in the Environment. (Eds. ...

  2. Radioactive Waste Management

    Directives, Delegations, and Requirements [Office of Management (MA)]

    1984-02-06

    To establish policies and guidelines by which the Department of Energy (DOE) manages tis radioactive waste, waste byproducts, and radioactively contaminated surplus facilities.

  3. Comparison of two freshwater turtle species as monitors of radionuclide and chemical contamination: DNA damage and residue analysis

    SciTech Connect (OSTI)

    Meyers-Schoene, L. ); Shugart, L.R.; Beauchamp, J.J.; Walton, B.T. )

    1993-08-01

    Two species of turtles that occupy different ecological niches were compared for their usefulness as monitors of freshwater ecosystems where both low-level radioactive and nonradioactive contaminants are present. The pond slider (Trachemys scripta) and common snapping turtle (Chelydra serpentina) were analyzed for the presence of [sup 90]Sr, [sup 137]Cs, [sup 60]Co, and Hg, radionuclides and chemicals known to be present at the contaminated site, and single-strand breaks in liver DNA. The integrity of the DNA was examined by the alkaline unwinding assay, a technique that detects strand breaks as a biological marker of possible exposure to genotoxic agents. This measure of DNA damage was significantly increased in both species of turtles at the contaminated site compared with turtles of the same species at a reference site, and shows that contaminant-exposed populations were under more severe genotoxic stress than those at the reference site. The level of strand breaks observed at the contaminated site was high and in the range reported for other aquatic species exposed to deleterious concentrations of genotoxic agents such as chemicals and ionizing radiation. Statistically significantly higher concentrations of radionuclides and Hg were detected in the turtles from the contaminated area. Mercury concentrations were significantly higher in the more carnivorous snapping turtle compared with the slider; however, both species were effective monitors of the contaminants.

  4. IN-SITU, LONG-TERM MONITORING SYSTEM FOR RADIOACTIVE CONTAMINANTS

    SciTech Connect (OSTI)

    James S. Durham; Stephen W.S. McKeever; Mark S. Akselrod

    2002-10-01

    This report presents the results of the first phase of the project entitled ''In-situ, Long-term Monitoring System for Radioactive Contaminants.'' Phase one of this effort included four objectives, each with specific success criteria. The first objective was to produce dosimetry grade fibers and rods of aluminum oxide. The success criterion for this milestone was the production of aluminum oxide rods and fibers that have a minimum measurable dose (MMD) of 100 mrem or less. This milestone was completed and the MMD for the rods was measured to be 1.53 mrem. Based on the MMD, the ability of the sensor to measure {sup 137}Cs, {sup 90}Sr/{sup 90}Y, and {sup 99}Tc was evaluated. It was determined that the sensor can measure the release limit of these radionuclides (50 pCi/cm{sup 3}) in 150 h, 200 h, and 54,000 h, respectively. The monitor is adequate for measuring {sup 137}Cs and {sup 90}Sr/{sup 90}Y but is unsuitable for measuring {sup 99}Tc in soil. The second objective was to construct a prototype sensor (dosimeter and fiber optic channel). There were three success criteria for this milestone: (1) Perform measurements with the sensor for both gamma and beta radiation with a standard deviation of 10% or less; (2) Demonstrate the ability of the sensor to discriminate between gamma and beta radiation; and (3) Obtain similar or relatable results for differing lengths of fiber optic cable. These milestones were met. The sensor was able to measure gamma radiation repeatedly with a standard deviation of 3.15% and beta radiation with a standard deviation of 2.85%. Data is presented that demonstrates that an end cap can be used to discriminate between beta plus gamma radiation using beta radiation from a {sup 90}Sr/{sup 90}Y source, and gamma radiation alone. It is shown that some amount of attenuation occurs in longer fiber optic cables, but it is unclear if the attenuation is due to poor alignment of the dosimeter and the cable. This issue will be investigated further when

  5. IN-SITU, LONG-TERM MONITORING SYSTEM FOR RADIOACTIVE CONTAMINANTS

    SciTech Connect (OSTI)

    James S. Durham; Stephen W.S. McKeever; Mark S. Akselrod

    2002-10-01

    This report presents the results of the first phase of the project entitled ''In-situ, Long-term Monitoring System for Radioactive Contaminants.'' Phase one of this effort included four objectives, each with specific success criteria. The first objective was to produce dosimetry grade fibers and rods of aluminum oxide. The success criterion for this milestone was the production of aluminum oxide rods and fibers that have a minimum measureable dose (MMD) of 100 mrem or less. This milestone was completed and the MMD for the rods was measured to be 1.53 mrem. Based on the MMD, the ability of the sensor to measure {sup 137}Cs, {sup 90}Sr/{sup 90}Y, and {sup 99}Tc was evaluated. It was determined that the sensor can measure the release limit of these radionuclides (50 pCi/cm{sup 3}) in 150 h, 200 h, and 54,000 h, respectively. The monitor is adequate for measuring {sup 137}Cs and {sup 90}Sr/{sup 90}Y but is unsuitable for measuring {sup 99}Tc in soil. The second objective was to construct a prototype sensor (dosimeter and fiber optic channel). There were three success criteria for this milestone: (1) Perform measurements with the sensor for both gamma and beta radiation with a standard deviation of 10% or less; (2) Demonstrate the ability of the sensor to discriminate between gamma and beta radiation; and (3) Obtain similar or relatable results for differing lengths of fiber optic cable. These milestones were met. The sensor was able to measure gamma radiation repeatedly with a standard deviation of 3.15% and beta radiation with a standard deviation of 2.85%. Data is presented that demonstrates that an end cap can be used to discriminate between beta plus gamma and gamma radiation. It is shown that some amount of attenuation occurs in longer fiber optic cables, but it is unclear if the attenuation is due to poor alignment of the dosimeter and the cable. This issue will be investigated further when more dosimeters are available so that the dosimeters can be permanently

  6. Criteria determining the selection of slags for the melt decontamination of radioactively contaminated stainless steel by electroslag remelting

    SciTech Connect (OSTI)

    Buckentin, J.M.R.; Damkroger, B.K.; Shelmidine, G.J.; Atteridge, D.G.

    1997-03-01

    Electroslag remelting is an excellent process choice for the melt decontamination of radioactively contaminated metals. ESR furnaces are easily enclosed and do not make use of refractories which could complicate thermochemical interactions between molten metal and slag. A variety of cleaning mechanisms are active during melting; radionuclides may be partitioned to the slag by means of thermochemical reaction, electrochemical reaction, or mechanical entrapment. At the completion of melting, the slag is removed from the furnace in solid form. The electroslag process as a whole is greatly affected by the chemical and physical properties of the slag used. When used as a melt decontamination scheme, the ESR process may be optimized by selection of the slag. In this research, stainless steel bars were coated with non-radioactive surrogate elements in order to simulate surface contamination. These bars were electroslag remelted using slags of various chemistries. The slags investigated were ternary mixtures of calcium fluoride, calcium oxide, and alumina. The final chemistries of the stainless steel ingots were compared with those predicted by the use of a Free Energy Minimization Modeling technique. Modeling also provided insight into the chemical mechanisms by which certain elements are captured by a slag. Slag selection was also shown to have an impact on the electrical efficiency of the process as well as the surface quality of the ingots produced.

  7. Vitrification of simulated radioactive Rocky Flats plutonium containing ash residue with a Stir Melter System

    SciTech Connect (OSTI)

    Marra, J.C.; Kormanyos, K.R.; Overcamp, T.J.

    1996-10-01

    A demonstration trial has been completed in which a simulated Rocky Flats ash consisting of an industrial fly-ash material doped with cerium oxide was vitrified in an alloy tank Stir-Melter{trademark} System. The cerium oxide served as a substitute for plutonium oxide present in the actual Rocky Flats residue stream. The glass developed falls within the SiO{sub 2} + Al{sub 2}O{sub 3}/{Sigma}Alkali/B{sub 2}O{sub 3} system. The glass batch contained approximately 40 wt% of ash, the ash was modified to contain {approximately} 5 wt% CeO{sub 2} to simulate plutonium chemistry in the glass. The ash simulant was mixed with water and fed to the Stir-Melter as a slurry with a 60 wt% water to 40 wt% solids ratio. Glass melting temperature was maintained at approximately 1,050 C during the melting trials. Melting rates as functions of impeller speed and slurry feed rate were determined. An optimal melting rate was established through a series of evolutionary variations of the control variables` settings. The optimal melting rate condition was used for a continuous six hour steady state run of the vitrification system. Glass mass flow rates of the melter were measured and correlated with the slurry feed mass flow. Melter off-gas was sampled for particulate and volatile species over a period of four hours during the steady state run. Glass composition and durability studies were run on samples collected during the steady state run.

  8. Status of Activities on Rehabilitation Of Radioactively Contaminated Facilities and the Site of Russian Research Center ''Kurchatov Institute''

    SciTech Connect (OSTI)

    Volkov, V. G.; Ponomarev-Stepnoi, N. N.; Melkov, E. S; Ryazantsev, E. P.; Dikarev, V. S.; Gorodetsky, G. G.; Zverkov, Yu. A.; Kuznetsov, V. V.; Kuznetsova, T. I.

    2003-02-25

    This paper describes the program, the status, and the course of activities on rehabilitation of radioactively contaminated facilities and the territory of temporary radioactive waste (radwaste) disposal at the Russian Research Center ''Kurchatov Institute'' (RRC KI) in Moscow as performed in 2001-2002. The accumulation of significant amounts of radwaste at RRC KI territory is shown to be the inevitable result of Institute's activity performed in the days of former USSR nuclear weapons project and multiple initial nuclear power projects (performed from 1950's to early 1970's). A characterization of RRC KI temporary radwaste disposal site is given. Described is the system of radiation control and monitoring as implemented on this site. A potential hazard of adverse impacts on the environment and population of the nearby housing area is noted, which is due to possible spread of the radioactive plume by subsoil waters. A description of the concept and project of the RRC KI temporary radwaste disposal site is presented. Specific nature of the activities planned and performed stems from the nearness of housing area. This paper describes main stages of the planned activities for rehabilitation, their expected terms and sources of funding, as well as current status of the project advancement. Outlined are the problems faced in the performance and planning of works. The latter include: diagnostics of the concrete-grouted repositories, dust-suppression technologies, packaging of the fragmented ILW and HLW, soil clean-up, radioactive plume spread prevention, broad radiation monitoring of the work zone and environment in the performance of rehabilitation works. Noted is the intention of RRC KI to establish cooperation with foreign, first of all, the U.S. partners for the solution of problems mentioned above.

  9. Pathways analysis and radiation-dose estimates for radioactive residues at formerly utilized MED/AEC sites

    SciTech Connect (OSTI)

    Gilbert, T.L.; Chee, P.C.; Knight, M.J.; Peterson, J.M.; Roberts, C.J.; Robinson, J.E.; Tsai, S.Y.H.; Yuan, Y.C.

    1983-03-01

    Methods of analysis are developed for estimating the largest individual radiation dose that could result from residual radioactivity at sites identified by the Formerly Utilized Sites Remedial Action Program (FUSRAP) of the US Department of Energy. Two unique aspects of the methods are (1) a systematic structuring of the radiation pathways analysis into source terms, source-to-exposure analysis, and exposure-to-dose analysis, and (2) the systematic use of data on the average concentrations of naturally occurring radionuclides in soil, food, and the human body in order to assess the validity of model calculations and obtain more realistic values. The methods are applied to a typical FUSRAP site in order to obtain generic source-to-dose (D/S) conversion factors for estimating the radiation dose to the maximally exposed individual from a known concentration of radionuclides in the soil. The D/S factors are used to derive soil guidelines, i.e., the limiting concentrations of radionuclides at a typical FUSRAP site that are unlikely to result in individual dose limits that exceed generally accepted radiation protection standards. The results lead to the conclusion that the soil guidelines should not exceed 17, 75, and 300 pCi/g for Ra-226, U-238, and Th-230, respectively.

  10. Addendum to the East Tennessee Technology Park Site-Wide Residual Contamination Remedial Investigation Work Plan Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    SAIC

    2011-04-01

    The East Tennessee Technology Park Site-Wide Residual Contamination Remedial Investigation Work Plan (DOE 2004) describes the planned fieldwork to support the remedial investigation (RI) for residual contamination at the East Tennessee Technology Park (ETTP) not addressed in previous Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) decisions. This Addendum describes activities that will be conducted to gather additional information in Zone 1 of the ETTP for groundwater, surface water, and sediments. This Addendum has been developed from agreements reached in meetings held on June 23, 2010, August 25, 2010, October 13, 2010, November 13, 2010, December 1, 2010, and January 13, 2011, with representatives of the U. S. Department of Energy (DOE), U. S. Environmental Protection Agency (EPA), and Tennessee Department of Environment and Conservation (TDEC). Based on historical to recent groundwater data for ETTP and the previously completed Sitewide Remedial Investigation for the ETTP (DOE 2007a), the following six areas of concern have been identified that exhibit groundwater contamination downgradient of these areas above state of Tennessee and EPA drinking water maximum contaminant levels (MCLs): (1) K-720 Fly Ash Pile, (2) K-770 Scrap Yard, (3) Duct Island, (4) K-1085 Firehouse Burn/J.A. Jones Maintenance Area, (5) Contractor's Spoil Area (CSA), and (6) Former K-1070-A Burial Ground. The paper presents a brief summary of the history of the areas, the general conceptual models for the observed groundwater contamination, and the data gaps identified.

  11. Revk - a Tool for the Fulfilment of Requirements from National Rules for Tracking and Documentation of Radioactive Residual Material and Radioactive Waste

    SciTech Connect (OSTI)

    Hartmann, B.; Haeger, M.; Gruendler, D.

    2006-07-01

    According to the German Radiation Protection Ordinance treatment, storage, whereabouts of radioactive material etc. have to be documented. Due to legal requirements an electronic documentation system for radioactive waste has to be installed. Within the framework of the currently largest decommissioning project of nuclear facilities by Energiewerke Nord GmbH, a material flow-waste tracking and control system (ReVK) has been developed, tailored to the special needs of the decommissioning of nuclear facilities. With this system it is possible to record radioactive materials which can be released after treatment or decay storage for restricted and unrestricted utilization. Radioactive waste meant for final storage can be registered and documented as well. Based on ORACLE, ReVK is a client/server data base system with the following modules: 1. data registration, 2. transport management, 3. waste tracking, 4. storage management, 5. container management, 6. reporting, 7. activity calculation, 8. examination of technical acceptance criteria for storages and final repositories. Furthermore ReVK provides a multitude of add-ons to meet special user needs, which enlarge the spectrum of application enormously. ReVK is validated and qualified, accepted by experts and authorities and fulfils the requirements for a radioactive waste documentation system. (authors)

  12. Canyon Disposal Initiative - Numerical Modeling of Contaminant Transport from Grouted Residual Waste in the 221-U Facility (U Plant)

    SciTech Connect (OSTI)

    Rockhold, Mark L.; White, Mark D.; Freeman, Eugene J.

    2004-10-12

    This letter report documents initial numerical analyses conducted by PNNL to provide support for a feasibility study on decommissioning of the canyon buildings at Hanford. The 221-U facility is the first of the major canyon buildings to be decommissioned. The specific objective of this modeling effort was to provide estimates of potential rates of migration of residual contaminants out of the 221-U facility during the first 40 years after decommissioning. If minimal contaminant migration is predicted to occur from the facility during this time period, then the structure may be deemed to provide a level of groundwater protection that is essentially equivalent to the liner and leachate collection systems that are required at conventional landfills. The STOMP code was used to simulate transport of selected radionuclides out of a canyon building, representative of the 221-U facility after decommissioning, for a period of 40 years. Simulation results indicate that none of the selected radionuclides that were modeled migrated beyond the concrete structure of the facility during the 40-year period of interest. Jacques (2001) identified other potential contaminants in the 221-U facility that were not modeled, however, including kerosene, phenol, and various metals. Modeling of these contaminants was beyond the scope of this preliminary effort due to increased complexity. Simulation results indicate that contaminant release from the canyon buildings will be diffusion controlled at early times. Advection is expected to become much more important at later times, after contaminants have diffused out of the facility and into the surrounding soil environment. After contaminants have diffused out of the facility, surface infiltration covers will become very important for mitigating further transport of contaminants in the underlying vadose zone and groundwater.

  13. Characterization of radioactive contamination inside pipes with the Pipe Explorer{sup trademark} system

    SciTech Connect (OSTI)

    Cremer, C.D.; Lowry, W.; Cramer, E.

    1995-10-01

    The U.S. Department of Energy`s nuclear facility decommissioning program needs to characterize radiological contamination inside piping systems before the pipe can be recycled, remediated, or disposed. Historically, this has been attempted using hand held survey instrumentation, surveying only the accessible exterior portions of pipe systems. Difficulty, or inability of measuring threshold surface contamination values, worker exposure, and physical access constraints have limited the effectiveness of this approach. Science and Engineering associates, Inc. under contract with the DOE Morgantown Energy Technology Center has developed and demonstrated the Pipe Explorer{trademark} system, which uses an inverting membrane to transport various characterization sensors into pipes. The basic process involves inverting (turning inside out) a tubular impermeable membrane under air pressure. A characterization sensor is towed down the interior of the pipe by the membrane.

  14. Hybrid fusion reactor for production of nuclear fuel with minimum radioactive contamination of the fuel cycle

    SciTech Connect (OSTI)

    Velikhov, E. P.; Kovalchuk, M. V.; Azizov, E. A. Ignatiev, V. V.; Subbotin, S. A. Tsibulskiy, V. F.

    2015-12-15

    The paper presents the results of the system research on the coordinated development of nuclear and fusion power engineering in the current century. Considering the increasing problems of resource procurement, including limited natural uranium resources, it seems reasonable to use fusion reactors as high-power neutron sources for production of nuclear fuel in a blanket. It is shown that the share of fusion sources in this structural configuration of the energy system can be relatively small. A fundamentally important aspect of this solution to the problem of closure of the fuel cycle is that recycling of highly active spent fuel can be abandoned. Radioactivity released during the recycling of the spent fuel from the hybrid reactor blanket is at least two orders of magnitude lower than during the production of the same number of fissile isotopes after the recycling of the spent fuel from a fast reactor.

  15. Contamination of the Northern Oceans from Releases of Radioactivity from the Former Soviet Union

    SciTech Connect (OSTI)

    Gomez, Leo S.

    1999-06-04

    During the Cold War the handling of Soviet military nuclear wastes was a classified topic--kept secret to hide the status and readiness of Soviet military forces. Following the end of the Cold War information about the handling of nuclear wastes by agencies of the Former Soviet Union (FSU) became available. The US Government response to the disclosure of disposal of radioactive wastes into the Arctic Ocean and into rivers that drain into the Arctic Ocean was the finding of the Arctic Nuclear Waste Assessment Program (ANWAP) in the Office of Naval Research (ONR). Projects were aided by ANWAP to study the behavior, transport, and fate of radionuclides in the Arctic Ocean. One of the research teams, the Risk Assessment Integration Group (RAIG) assessed the potential risks to humans and to the environment, particularly in the US Alaskan Arctic.

  16. Radiological Survey of Contaminated Installations of Research Reactor before Dismantling in High Dose Conditions with Complex for Remote Measurements of Radioactivity - 12069

    SciTech Connect (OSTI)

    Danilovich, Alexey; Ivanov, Oleg; Lemus, Alexey; Smirnov, Sergey; Stepanov, Vyacheslav; Volkovich, Anatoly

    2012-07-01

    Decontamination and decommissioning of the research reactors MR (Testing Reactor) and RFT (Reactor of Physics and Technology) has recently been initiated in the National Research Center (NRC) 'Kurchatov institute', Moscow. These research reactors have a long history and many installations - nine loop facilities for experiments with different kinds of fuel. When decommissioning nuclear facilities it is necessary to measure the distribution of radioactive contamination in the rooms and at the equipment at high levels of background radiation. At 'Kurchatov Institute' some special remote control measuring systems were developed and they are applied during dismantling of the reactors MR and RFT. For a survey of high-level objects a radiometric system mounted on the robotic Brokk vehicle is used. This system has two (4? and collimated) dose meters and a high resolution video camera. Maximum measured dose rate for this system is ?8.5 Sv/h. To determine the composition of contaminants, a portable spectrometric system is used. It is a remotely controlled, collimated detector for scanning the distribution of radioactive contamination. To obtain a detailed distribution of contamination a remote-controlled gamma camera is applied. For work at highly contaminated premises with non-uniform background radiation, another camera is equipped with rotating coded mask (coded aperture imaging). As a result, a new system of instruments for remote radioactivity measurements with wide range of sensitivity and angular resolution was developed. The experience and results of measurements in different areas of the reactor and at its loop installations, with emphasis on the radioactive survey of highly-contaminated samples, are presented. These activities are conducted under the Federal Program for Nuclear and Radiation Safety of Russia. Adaptation of complex remote measurements of radioactivity and survey of contaminated installations of research reactor before dismantling in high dose

  17. Computerized Mathematical Models of Spray Washout of Airborne Contaminants (Radioactivity) in Containment Vessels.

    Energy Science and Technology Software Center (OSTI)

    2003-05-23

    Version 01 Distribution is restricted to the United States Only. SPIRT predicts the washout of airborne contaminants in containment vessels under postulated loss-of-coolant accident (LOCA) conditions. SPIRT calculates iodine removal constants (lambdas) for post-LOCA containment spray systems. It evaluates the effect of the spectrum of drop sizes emitted by the spray nozzles, the effect of drop coalescence, and the precise solution of the time-dependent diffusion equation. STEAM-67 routines are included for calculating the properties ofmore » steam and water according to the 1967 ASME Steam Tables.« less

  18. Contamination analysis unit

    DOE Patents [OSTI]

    Gregg, Hugh R.; Meltzer, Michael P.

    1996-01-01

    The portable Contamination Analysis Unit (CAU) measures trace quantifies of surface contamination in real time. The detector head of the portable contamination analysis unit has an opening with an O-ring seal, one or more vacuum valves and a small mass spectrometer. With the valve closed, the mass spectrometer is evacuated with one or more pumps. The O-ring seal is placed against a surface to be tested and the vacuum valve is opened. Data is collected from the mass spectrometer and a portable computer provides contamination analysis. The CAU can be used to decontaminate and decommission hazardous and radioactive surface by measuring residual hazardous surface contamination, such as tritium and trace organics It provides surface contamination data for research and development applications as well as real-time process control feedback for industrial cleaning operations and can be used to determine the readiness of a surface to accept bonding or coatings.

  19. Contamination analysis unit

    DOE Patents [OSTI]

    Gregg, H.R.; Meltzer, M.P.

    1996-05-28

    The portable Contamination Analysis Unit (CAU) measures trace quantities of surface contamination in real time. The detector head of the portable contamination analysis unit has an opening with an O-ring seal, one or more vacuum valves and a small mass spectrometer. With the valve closed, the mass spectrometer is evacuated with one or more pumps. The O-ring seal is placed against a surface to be tested and the vacuum valve is opened. Data is collected from the mass spectrometer and a portable computer provides contamination analysis. The CAU can be used to decontaminate and decommission hazardous and radioactive surfaces by measuring residual hazardous surface contamination, such as tritium and trace organics. It provides surface contamination data for research and development applications as well as real-time process control feedback for industrial cleaning operations and can be used to determine the readiness of a surface to accept bonding or coatings. 1 fig.

  20. Technical support for the EPA cleanup rule on radioactively contaminated sites

    SciTech Connect (OSTI)

    Hull, H.B.; Newman, A.; Wolbarst, A.B.

    1995-12-31

    The U.S. Environmental Protection Agency (EPA) is developing a radiation site cleanup regulation for the protection of the public from radionuclide contamination at sites that are to be cleaned up and released for public use. The regulation will apply to sites under the control of Federal agencies, and to sites licensed by the Nuclear Regulatory Commission (NRC) or NRC Agreement States. The agency is therefore conducting a comprehensive technical analysis aimed at developing information that will be used to support the rule. This presentation describes the regulation and the approach developed to determine how radiological health impacts and volumes of soil requiring remediation vary as functions of the possible cleanup dose or risk level.

  1. Geochemical information for sites contaminated with low-level radioactive wastes: II. St. Louis Airport Storage Site

    SciTech Connect (OSTI)

    Seeley, F.G.; Kelmers, A.D.

    1985-01-01

    The St. Louis Airport Storage Site (SLASS) became radioactively contaminated as a result of wastes that were being stored from operations to recover uranium from pitchblende ores in the 1940s and 1950s. The US Department of Energy is considering various remedial action options for the SLASS under the Formerly Utilized Site Remedial Action Program (FUSRAP). This report describes the results of geochemical investigations, carried out to support the FUSRAP activities and to aid in quantifying various remedial action options. Soil and groundwater samples from the site were characterized, and sorption ratios for uranium and radium and apparent concentration limit values for uranium were measured in soil/groundwater systems by batch contact methodology. The uranium and radium concentrations in soil samples were significantly above background near the old contaminated surface horizon (now at the 0.3/sup -/ to 0.9/sup -/m depth); the maximum values were 1566 ..mu..g/g and 101 pCi/g, respectively. Below about the 6/sup -/m depth, the concentrations appeared to be typical of those naturally present in soils of this area (3.8 +- 1.2 ..mu..g/g and 3.1 +- 0.6 pCi/g). Uranium sorption ratios showed stratigraphic trends but were generally moderate to high (100 to 1000 L/kg). The sorption isotherm suggested an apparent uranium concentration limit of about 200 mg/L. This relatively high solubility can probably be correlated with the carbonate content of the soil/groundwater systems. The lower sorption ratio values obtained from the sorption isotherm may have resulted from changes in the experimental procedure or the groundwater used. The SLASS appears to exhibit generally favorable behavior for the retardation of uranium solubilized from waste in the site. Parametric tests were conducted to estimate the sensitivity of uranium sorption and solubility to the pH and carbonate content of the system.

  2. Radioactive contamination of fish, shellfish, and waterfowl exposed to Hanford effluents: Annual summaries, 1945--1972

    SciTech Connect (OSTI)

    Hanf, R.W.; Dirkes, R.L.; Duncan, J.P.

    1992-07-01

    The objective of the Hanford Environmental Dose Reconstruction Project (HEDR) is to estimate the potential radiation doses received by people living within the sphere of influence of the Hanford Site. A potential critical pathway for human radiation exposure is through the consumption of waterfowl that frequent onsite waste-water ponds or through eating of fish, shellfish, and waterfowl that reside in/on the Columbia River and its tributaries downstream of the reactors. This document summarizes information on fish, shellfish, and waterfowl radiation contamination for samples collected by Hanford monitoring personnel and offsite agencies for the period 1945 to 1972. Specific information includes the types of organisms sampled, the kinds of tissues and organs analyzed, the sampling locations, and the radionuclides reported. Some tissue concentrations are also included. We anticipate that these yearly summaries will be helpful to individuals and organizations interested in evaluating aquatic pathway information for locations impacted by Hanford operations and will be useful for planning the direction of future HEDR studies.

  3. Characterization of radioactive contamination inside pipes with the Pipe Explorer{trademark} system. Final report

    SciTech Connect (OSTI)

    Cremer, C.D.; Kendrick, D.T.; Lowry, W.; Cramer, E.

    1997-09-30

    The Department of Energy (DOE) is currently in the process of decommissioning and dismantling many of its nuclear materials processing facilities that have been in use for several decades. Site managers throughout the DOE complex must employ the safest and most cost effective means to characterize, remediate and recycle or dispose of hundreds of miles of potentially contaminated piping and duct work. The DOE discovered that standard characterization methods were inadequate for its pipes, drains, and ducts because many of the systems are buried or encased. In response to the DOE`s need for a more specialized characterization technique, Science and Engineering Associates, Inc. (SEA) developed the Pipe Explorer{trademark} system through a DOE Office of Science and Technology (OST) contract administered through the Federal Energy Technology Center (FETC). The purpose of this report is to serve as a comprehensive overview of all phases of the Pipe Explorer{trademark} development project. The report is divided into 6 sections. Section 2 of the report provides an overview of the Pipe Explorer{trademark} system, including the operating principles of using an inverting membrane to tow sensors into pipes. The basic components of the characterization system are also described. Descriptions of the various deployment systems are given in Section 3 along with descriptions of the capabilities of the deployment systems. During the course of the development project 7 types of survey instruments were demonstrated with the Pipe Explorer{trademark} and are a part of the basic toolbox of instruments available for use with the system. These survey tools are described in Section 4 along with their typical performance specifications. The 4 demonstrations of the system are described chronologically in Section 5. The report concludes with a summary of the history, status, and future of the Pipe Explorer{trademark} system in Section 6.

  4. Hanford Tanks 241-C-203 and 241 C 204: Residual Waste Contaminant Release Model and Supporting Data

    SciTech Connect (OSTI)

    Deutsch, William J.; Krupka, Kenneth M.; Lindberg, Michael J.; Cantrell, Kirk J.; Brown, Christopher F.; Schaef, Herbert T.

    2007-05-23

    This report was revised in May 2007 to correct 90Sr values in Chapter 3. The changes were made on page 3.9, paragraph two and Table 3.10; page 3.16, last paragraph on the page; and Tables 3.21 and 3.31. The rest of the text remains unchanged from the original report issued in October 2004. This report describes the development of release models for key contaminants that are present in residual sludge remaining after closure of Hanford Tanks 241-C-203 (C-203) and 241-C-204 (C-204). The release models were developed from data generated by laboratory characterization and testing of samples from these two tanks. Key results from this work are (1) future releases from the tanks of the primary contaminants of concern (99Tc and 238U) can be represented by relatively simple solubility relationships between infiltrating water and solid phases containing the contaminants; and (2) high percentages of technetium-99 in the sludges (20 wt% in C-203 and 75 wt% in C-204) are not readily water leachable, and, in fact, are very recalcitrant. This is similar to results found in related studies of sludges from Tank AY-102. These release models are being developed to support the tank closure risk assessments performed by CH2M HILL Hanford Group, Inc., for the U.S. Department of Energy.

  5. Final report: survey and removal of radioactive surface contamination at environmental restoration sites, Sandia National Laboratories/New Mexico. Volume 1

    SciTech Connect (OSTI)

    Lambert, K.A.; Mitchell, M.M.; Jean, D.; Byrd, C.S.

    1997-09-01

    This report describes the survey and removal of radioactive surface contamination at Sandia`s Environmental Restoration (ER) sites. Radiological characterization was performed as a prerequisite to beginning the Resource Conservation and Recovery Act (RCRA) corrective action process. The removal of radioactive surface contamination was performed in order to reduce potential impacts to human health and the environment. The predominant radiological contaminant of concern was depleted uranium (DU). Between October 1993 and November 1996 scanning surface radiation surveys, using gamma scintillometers, were conducted at 65 sites covering approximately 908 acres. A total of 9,518 radiation anomalies were detected at 38 sites. Cleanup activities were conducted between October 1994 and November 1996. A total of 9,122 anomalies were removed and 2,072 waste drums were generated. The majority of anomalies not removed were associated with a site that has subsurface contamination beyond the scope of this project. Verification soil samples (1,008 total samples) were collected from anomalies during cleanup activities and confirm that the soil concentration achieved in the field were far below the target cleanup level of 230 pCi/g of U-238 (the primary constituent of DU) in the soil. Cleanup was completed at 21 sites and no further radiological action is required. Seventeen sites were not completed since cleanup activities wee precluded by ongoing site activity or were beyond the original project scope.

  6. ENVIRONMENTAL SCIENCES; ENVIRONMENTAL MATERIALS; CONTAMINATION...

    Office of Scientific and Technical Information (OSTI)

    audit of SRP radioactive waste Ashley, C. 05 NUCLEAR FUELS; 54 ENVIRONMENTAL SCIENCES; ENVIRONMENTAL MATERIALS; CONTAMINATION; RADIOACTIVE EFFLUENTS; EMISSION; HIGH-LEVEL...

  7. Radioactive Materials Emergencies Course Presentation

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Hanford Fire Department has developed this training to assist emergency responders in understanding the hazards in responding to events involving radioactive materials, to know the fundamentals of radioactive contamination, to understand the biological affects of exposure to radioactive materials, and to know how to appropriately respond to hazardous material events involving radioactive materials.

  8. In-situ determination of radionuclide levels in facilities to be decommissioned using the allowable residual contamination level method

    SciTech Connect (OSTI)

    Arthur, R.J.; Haggard, D.L.

    1989-07-01

    This feasibility study resulted in verification of a direct and two alternate indirect techniques for making in-situ determinations of {sup 90}Sr and other radionuclide levels in a Hanford facility to be decommissioned that was evaluated using the Allowable Residual Contamination Level (ARCL) method. The ARCL method is used to determine the extent of decontamination that will be required before a facility can be decommissioned. A sump in the 1608F Building was chosen for the feasibility study. Hanford decommissioning personnel had previously taken 79 concrete and surface scale samples from the building to be analyzed by radiochemical analysis. The results of the radiochemical analyses compare favorably with the values derived by the in-situ methods presented in this report. Results obtained using a portable spectrometer and thermoluminescent dosimeters (TLDs) were both very close to the radiochemistry results. Surface {sup 90}Sr levels detected on the sump floor were 550 pCi/cm{sup 2} using the spectrometer system and 780 pCi/cm{sup 2} using the TLD data. This compares favorably with the levels determined by radiochemical analyses (i.e., 230 to 730 pCi/cm{sup 2}). Surface {sup 90}Sr levels detected on the sump wall ranged between 10 and 80 pCi/cm{sup 2} using the spectrometer system, compared with a conservative 200 pCi/cm{sup 2} using the TLD data. The radiochemical results ranged between 19 and 77 pCi/cm{sup 2} for the four samples taken from the wall at indeterminate locations. 17 refs., 15 figs., 2 tabs.

  9. Radioactivity and food

    SciTech Connect (OSTI)

    Olszyna-Marzys, A.E. )

    1990-03-01

    Two topics relating to radioactivity and food are discussed: food irradiation for preservation purposes, and food contamination from radioactive substances. Food irradiation involves the use of electromagnetic energy (x and gamma rays) emitted by radioactive substances or produced by machine in order to destroy the insects and microorganisms present and prevent germination. The sanitary and economic advantages of treating food in this way are discussed. Numerous studies have confirmed that under strictly controlled conditions no undesirable changes take place in food that has been irradiated nor is radioactivity induced. Reference is made to the accident at the Chernobyl nuclear power station, which aroused public concern about irradiated food. The events surrounding the accident are reviewed, and its consequences with regard to contamination of different foods with radioactive substances, particularly iodine-131 and cesium-137, are described. Also discussed are the steps that have been taken by different international organizations to set limits on acceptable radioactivity in food.15 references.

  10. EA-1599: Disposition of Radioactively Contaminated Nickel Located at the East Tennessee Technology Park, Oak Ridge, Tennessee, and the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, for Controlled Radiological Applications

    Energy.gov [DOE]

    This EA was being prepared to evaluate potential environmental impacts of a proposal to dispose of nickel scrap that is volumetrically contaminated with radioactive materials and that DOE recovered from equipment it had used in uranium enrichment. This EA is on hold.

  11. Carbon isotopic evidence for biodegradation of organic contaminants in the shallow vadose zone of the radioactive waste management complex

    SciTech Connect (OSTI)

    Conrad, Mark E.; DePaolo, Donald J.

    2003-09-04

    Waste material buried in drums in the shallow subsurface at the Radioactive Waste Management Facility (RWMC) of the Idaho National Engineering and Environmental Laboratory (INEEL) contained significant amounts of organic compounds including lubricating oils and chlorinated solvents. CO{sub 2} concentrations in pore gas samples from monitoring wells in the vicinity of the disposal pits are 3 to 5 times higher than the concentrations in nearby background wells. The stable carbon isotope ratios ({delta}{sup 13}C values) of CO{sub 2} from the disposal pits averaged 2.4. less than CO{sub 2} from the background wells, indicating that the elevated CO{sub 2} concentrations around the pits were derived from source materials with {delta}{sup 13}C values in the range of -24{per_thousand} to -29{per_thousand}. These {delta}{sup 13}C values are typical of lubricating oils, but higher than most solvents. The radiocarbon ({sup 14}C) contents of CO{sub 2} across most of the site were significantly elevated above modern concentrations due to reactor blocks buried in a subsurface vault at the site. However, several samples collected from the high-CO{sub 2} zone on the far side of the RWMC from the reactor blocks had very low {sup 14}C contents (less than 0.13 times modern), confirming production from lubricating oils manufactured from fossil hydrocarbons. The magnitude of the CO{sub 2} anomaly observed at the site is consistent with intrinsic biodegradation rates on the order of 0.5 to 3.0 metric tons of carbon per year.

  12. Stabilization of in-tank residual wastes and external-tank soil contamination for the tank focus area, Hanford tank initiative: Applications to the AX Tank Farm

    SciTech Connect (OSTI)

    Balsley, S.D.; Krumhansl, J.L.; Borns, D.J.; McKeen, R.G.

    1998-07-01

    A combined engineering and geochemistry approach is recommended for the stabilization of waste in decommissioned tanks and contaminated soils at the AX Tank Farm, Hanford, WA. A two-part strategy of desiccation and gettering is proposed for treatment of the in-tank residual wastes. Dry portland cement and/or fly ash are suggested as an effective and low-cost desiccant for wicking excess moisture from the upper waste layer. Getters work by either ion exchange or phase precipitation to reduce radionuclide concentrations in solution. The authors recommend the use of specific natural and man-made compounds, appropriately proportioned to the unique inventory of each tank. A filler design consisting of multilayered cementitous grout with interlayered sealant horizons should serve to maintain tank integrity and minimize fluid transport to the residual waste form. External tank soil contamination is best mitigated by placement of grouted skirts under and around each tank, together with installation of a cone-shaped permeable reactive barrier beneath the entire tank farm. Actinide release rates are calculated from four tank closure scenarios ranging from no action to a comprehensive stabilization treatment plan (desiccant/getters/grouting/RCRA cap). Although preliminary, these calculations indicate significant reductions in the potential for actinide transport as compared to the no-treatment option.

  13. Characterization of contaminants in oil shale residuals and the potential for their management to meet environmental quality standards. Final report

    SciTech Connect (OSTI)

    Schmidt-Collerus, J.J.

    1984-02-01

    Some general aspects of various oil shale processes developed for scale-up to commercial size modular units are described. The overall magnitude of an envisioned commercial shale oil operation and the magnitude of resulting potentially polluting residues in particular solid residues from retorting oil shale and associated operations and wastewater from retort streams and other sources are considered. The potential problems ensuing from self-oxidation of stockpiles of oil shale and from residual carbonaceous retorted oil shale disposed above ground and/or from in situ retorting operations are examined. Some methods for managing self-heating processes are suggested. The most plausible method of avoiding potential self-heating for retorted oil shale is to oxidize as much as possible of the organic carbon present by utilizing a process that will produce low carbon or carbon-free retorted oil shale residues. In the case of unretorted oil shale, the dimensions and shapes of the stockpiles should be designed such that heat build-up is eliminated or kept to a minimum.

  14. Tracer-level radioactive pilot-scale test of in situ vitrification for the stabilization of contaminated soil sites at ORNL

    SciTech Connect (OSTI)

    Spalding, B.P.; Jacobs, G.K.; Naney, M.T.; Dunbar, N.W.; Tixier, J.S.; Powell, T.D.

    1992-11-01

    A field demonstration of in situ vitrification (ISV) was completed in May 1991, and produced approximately 12 Mg of melted earthen materials containing 12.7 mCi of radioactivity within 500 g of sludge in amodel of an old seepage trench waste disposal unit. Past waste disposal operations at Oak Ridge National Laboratory have left several contaminated seepage sites. In planning for remediation of such sites, ISV technology has been identified as a leading candidate because of the high risks associated with any retrieval option and because of the usual high quality of vitreous waste form. Major isotopes placed in the test trench were {sup 137}Cs and {sup 90}Sr, with lesser amounts of {sup 6O}Co, {sup 241}Am, and {sup 239,240}Pu. A total of 29 MWh of electrical power was delivered to the ground over a 5-day period producing a melt depth of 8.5 ft. During melting, 2.4% of the {sup 137}Cs volatilized from the melt into an off-gas containment hood and was captured quantitatively on a high efficiency particulate air filter. No volatilization of {sup 90}Sr, {sup 241}Am, or {sup 239,240}Pu was detected and > 99.993% retention of these isotopes in the melt was estimated. The use of added rare earth tracers (Ce, La, and Nd), as surrogates for transuranic isotopes, led to estimated melt retentions of >99.9995% during the test. The molten material, composed of the native soil and dolomitic limestone used for filling the test trench, reached a processing temperature of 1500{degrees}C. Standardized leaching procedures using Product Consistency Testing indicated that the ISV product has excellent characteristics relative to other vitreous nuclear waste forms.

  15. Tracer-level radioactive pilot-scale test of in situ vitrification for the stabilization of contaminated soil sites at ORNL

    SciTech Connect (OSTI)

    Spalding, B.P.; Jacobs, G.K.; Naney, M.T. ); Dunbar, N.W. ); Tixier, J.S.; Powell, T.D. )

    1992-11-01

    A field demonstration of in situ vitrification (ISV) was completed in May 1991, and produced approximately 12 Mg of melted earthen materials containing 12.7 mCi of radioactivity within 500 g of sludge in amodel of an old seepage trench waste disposal unit. Past waste disposal operations at Oak Ridge National Laboratory have left several contaminated seepage sites. In planning for remediation of such sites, ISV technology has been identified as a leading candidate because of the high risks associated with any retrieval option and because of the usual high quality of vitreous waste form. Major isotopes placed in the test trench were [sup 137]Cs and [sup 90]Sr, with lesser amounts of [sup 6O]Co, [sup 241]Am, and [sup 239,240]Pu. A total of 29 MWh of electrical power was delivered to the ground over a 5-day period producing a melt depth of 8.5 ft. During melting, 2.4% of the [sup 137]Cs volatilized from the melt into an off-gas containment hood and was captured quantitatively on a high efficiency particulate air filter. No volatilization of [sup 90]Sr, [sup 241]Am, or [sup 239,240]Pu was detected and > 99.993% retention of these isotopes in the melt was estimated. The use of added rare earth tracers (Ce, La, and Nd), as surrogates for transuranic isotopes, led to estimated melt retentions of >99.9995% during the test. The molten material, composed of the native soil and dolomitic limestone used for filling the test trench, reached a processing temperature of 1500[degrees]C. Standardized leaching procedures using Product Consistency Testing indicated that the ISV product has excellent characteristics relative to other vitreous nuclear waste forms.

  16. Uses of ANSI/HPS N13.12-1999, "Surface and Volume Radioactivity Standards for Clearance" and Comparison with Existing Standards

    SciTech Connect (OSTI)

    Stansbury, Paul S.; Strom, Daniel J.

    2001-04-30

    In August of 1999, the American National Standards Institute (ANSI) approved a standard for clearance of materials contaminated with residual levels of radioactivity. "Clearance," as used in the standard, means the movement of material from the control of a regulatory agency to a use or disposition that has no further regulatory controls of any kind. The standard gives derived screening levels (DSLs) in Bq/g and Bq/cm2 for 50 radionuclides. Items or materials with residual surface and volume radioactivity levels below the DSLs can be cleared, that is, managed without regard to their residual radioactivity. Since federal agencies are to use voluntary, industry standards developed by the private sector whenever possible, the standard should play an important role in DOE's regulatory process. The thrust of this report is to explain the standard, make simple observations on its usefulness to DOE, and to explore uses of the standard within DOE facilities beyond the clearance of radioactive materials.

  17. Naturally Occurring Radioactive Materials (NORM)

    SciTech Connect (OSTI)

    Gray, P.

    1997-02-01

    This paper discusses the broad problems presented by Naturally Occuring Radioactive Materials (NORM). Technologically Enhanced naturally occuring radioactive material includes any radionuclides whose physical, chemical, radiological properties or radionuclide concentration have been altered from their natural state. With regard to NORM in particular, radioactive contamination is radioactive material in an undesired location. This is a concern in a range of industries: petroleum; uranium mining; phosphorus and phosphates; fertilizers; fossil fuels; forestry products; water treatment; metal mining and processing; geothermal energy. The author discusses in more detail the problem in the petroleum industry, including the isotopes of concern, the hazards they present, the contamination which they cause, ways to dispose of contaminated materials, and regulatory issues. He points out there are three key programs to reduce legal exposure and problems due to these contaminants: waste minimization; NORM assesment (surveys); NORM compliance (training).

  18. AIR RADIOACTIVITY MONITOR

    DOE Patents [OSTI]

    Bradshaw, R.L.; Thomas, J.W.

    1961-04-11

    The monitor is designed to minimize undesirable background buildup. It consists of an elongated column containing peripheral electrodes in a central portion of the column, and conduits directing an axial flow of radioactively contaminated air through the center of the column and pure air through the annular portion of the column about the electrodes. (AEC)

  19. Radioactivity and foods

    SciTech Connect (OSTI)

    Olszyna-Marzys, A.E. )

    1991-01-01

    The purpose of this article is to describe and contrast two relationships between radiation and food--on the one hand, beneficial preservation of food by controlled exposure to ionizing radiation; and, on the other, contamination of food by accidental incorporation of radioactive nuclides within the food itself. In food irradiation, electrons or electromagnetic radiation is used to destroy microorganisms and insects or prevent seed germination. The economic advantages and health benefits of sterilizing food in this manner are clear, and numerous studies have confirmed that under strictly controlled conditions no undersirable changes or induced radioactivity is produced in the irradiated food. An altogether different situation is presented by exposure of food animals and farming areas to radioactive materials, as occurred after the major Soviet nuclear reactor accident at Chenobyl. This article furnishes the basic information needed to understand the nature of food contamination associated with that event and describes the work of international organizations seeking to establish appropriate safe limits for levels of radioactivity in foods.

  20. Method for decontamination of radioactive metal surfaces

    DOE Patents [OSTI]

    Bray, L.A.

    1996-08-13

    Disclosed is a method for removing radioactive contaminants from metal surfaces by applying steam containing an inorganic acid and cerium IV. Cerium IV is applied to contaminated metal surfaces by introducing cerium IV in solution into a steam spray directed at contaminated metal surfaces. Cerium IV solution is converted to an essentially atomized or vapor phase by the steam.

  1. Method for decontamination of radioactive metal surfaces

    DOE Patents [OSTI]

    Bray, Lane A.

    1996-01-01

    Disclosed is a method for removing radioactive contaminants from metal surfaces by applying steam containing an inorganic acid and cerium IV. Cerium IV is applied to contaminated metal surfaces by introducing cerium IV in solution into a steam spray directed at contaminated metal surfaces. Cerium IV solution is converted to an essentially atomized or vapor phase by the steam.

  2. Radioactive waste disposal sites: Two successful closures at Tinker Air Force Base

    SciTech Connect (OSTI)

    McKenzie, G.; Mohatt, J.V.; Kowall, S.J.; Jarvis, M.F.

    1993-06-01

    This article describes remediation and closure of two radioactive waste disposal sites at Tinker Air Force Base, Oklahoma, making them exemption regulatory control. The approach consisted of careful exhumation and assessment of soils in sites expected to be contaminated based on historical documentation, word of mouth, and geophysical surveys; removal of buried objects that had gamma radiation exposure levels above background; and confirmation that the soil containing residual radium-226 was below an activity level equal to no more than a 10 mrem/yr annual dose equivalent. In addition, 4464 kg of chemically contaminated excavated soils were removed for disposal. After remediation, the sites met standards for unrestricted use. These sites were two of the first three Air Force radioactive disposal sites to be closed and were the first to be closed under Draft NUREG/CR-5512.

  3. How to deal with radiologically contaminated vegetation

    SciTech Connect (OSTI)

    Wilde, E.W.; Murphy, C.E.; Lamar, R.T.; Larson, M.J.

    1996-12-31

    This report describes the findings from a literature review conducted as part of a Department of Energy, Office of Technology Development Biomass Remediation Task. The principal objective of this project is to develop a process or group of processes to treat radiologically contaminated vegetation in a manner that minimizes handling, processing, and treatment costs. Contaminated, woody vegetation growing on waste sites at SRS poses a problem to waste site closure technologies that are being considered for these sites. It is feared that large sections of woody vegetation (logs) can not be buried in waste sites where isolation of waste is accomplished by capping the site. Logs or large piles of woody debris have the potential of decaying and leaving voids under the cap. This could lead to cap failure and entrance of water into the waste. Large solid objects could also interfere with treatments like in situ mixing of soil with grout or other materials to encapsulate the contaminated sediments and soils in the waste sites. Optimal disposal of the wood includes considerations of volume reduction, treatment of the radioactive residue resulting from volume reduction, or confinement without volume reduction. Volume reduction consists primarily of removing the carbon, oxygen, and hydrogen in the wood, leaving an ash that would contain most of the contamination. The only contaminant that would be released by volume reduction would by small amounts of the radioactive isotope of hydrogen, tritium. The following sections will describe the waste sites at SRS which contain contaminated vegetation and are potential candidates for the technology developed under this proposal. The description will provide a context for the magnitude of the problem and the logistics of the alternative solutions that are evaluated later in the review. 76 refs.

  4. Method for storing radioactive combustible waste

    DOE Patents [OSTI]

    Godbee, H.W.; Lovelace, R.C.

    1973-10-01

    A method is described for preventing pressure buildup in sealed containers which contain radioactively contaminated combustible waste material by adding an oxide getter material to the container so as to chemically bind sorbed water and combustion product gases. (Official Gazette)

  5. Criteria and Processes for the Certification of Non-Radioactive Hazardous and Non-Hazardous Wastes

    SciTech Connect (OSTI)

    Dominick, J

    2008-12-18

    This document details Lawrence Livermore National Laboratory's (LLNL) criteria and processes for determining if potentially volumetrically contaminated or potentially surface contaminated wastes are to be managed as material containing residual radioactivity or as non-radioactive. This document updates and replaces UCRL-AR-109662, Criteria and Procedures for the Certification of Nonradioactive Hazardous Waste (Reference 1), also known as 'The Moratorium', and follows the guidance found in the U.S. Department of Energy (DOE) document, Performance Objective for Certification of Non-Radioactive Hazardous Waste (Reference 2). The 1992 Moratorium document (UCRL-AR-109662) is three volumes and 703 pages. The first volume provides an overview of the certification process and lists the key radioanalytical methods and their associated Limits of Sensitivities. Volumes Two and Three contain supporting documents and include over 30 operating procedures, QA plans, training documents and organizational charts that describe the hazardous and radioactive waste management system in place in 1992. This current document is intended to update the previous Moratorium documents and to serve as the top-tier LLNL institutional Moratorium document. The 1992 Moratorium document was restricted to certification of Resource Conservation and Recovery Act (RCRA), State and Toxic Substances Control Act (TSCA) hazardous waste from Radioactive Material Management Areas (RMMA). This still remains the primary focus of the Moratorium; however, this document increases the scope to allow use of this methodology to certify other LLNL wastes and materials destined for off-site disposal, transfer, and re-use including non-hazardous wastes and wastes generated outside of RMMAs with the potential for DOE added radioactivity. The LLNL organization that authorizes off-site transfer/disposal of a material or waste stream is responsible for implementing the requirements of this document. The LLNL Radioactive and

  6. Radioactive contamination of fish, shellfish, and waterfowl exposed to Hanford effluents: Annual summaries, 1945--1972. Hanford Environmental Dose Reconstruction Project

    SciTech Connect (OSTI)

    Hanf, R.W.; Dirkes, R.L.; Duncan, J.P.

    1992-07-01

    The objective of the Hanford Environmental Dose Reconstruction Project (HEDR) is to estimate the potential radiation doses received by people living within the sphere of influence of the Hanford Site. A potential critical pathway for human radiation exposure is through the consumption of waterfowl that frequent onsite waste-water ponds or through eating of fish, shellfish, and waterfowl that reside in/on the Columbia River and its tributaries downstream of the reactors. This document summarizes information on fish, shellfish, and waterfowl radiation contamination for samples collected by Hanford monitoring personnel and offsite agencies for the period 1945 to 1972. Specific information includes the types of organisms sampled, the kinds of tissues and organs analyzed, the sampling locations, and the radionuclides reported. Some tissue concentrations are also included. We anticipate that these yearly summaries will be helpful to individuals and organizations interested in evaluating aquatic pathway information for locations impacted by Hanford operations and will be useful for planning the direction of future HEDR studies.

  7. RADIOACTIVE BATTERY

    DOE Patents [OSTI]

    Birden, J.H.; Jordan, K.C.

    1959-11-17

    A radioactive battery which includes a capsule containing the active material and a thermopile associated therewith is presented. The capsule is both a shield to stop the radiations and thereby make the battery safe to use, and an energy conventer. The intense radioactive decay taking place inside is converted to useful heat at the capsule surface. The heat is conducted to the hot thermojunctions of a thermopile. The cold junctions of the thermopile are thermally insulated from the heat source, so that a temperature difference occurs between the hot and cold junctions, causing an electrical current of a constant magnitude to flow.

  8. Radioactive waste storage issues

    SciTech Connect (OSTI)

    Kunz, D.E.

    1994-08-15

    In the United States we generate greater than 500 million tons of toxic waste per year which pose a threat to human health and the environment. Some of the most toxic of these wastes are those that are radioactively contaminated. This thesis explores the need for permanent disposal facilities to isolate radioactive waste materials that are being stored temporarily, and therefore potentially unsafely, at generating facilities. Because of current controversies involving the interstate transfer of toxic waste, more states are restricting the flow of wastes into - their borders with the resultant outcome of requiring the management (storage and disposal) of wastes generated solely within a state`s boundary to remain there. The purpose of this project is to study nuclear waste storage issues and public perceptions of this important matter. Temporary storage at generating facilities is a cause for safety concerns and underscores, the need for the opening of permanent disposal sites. Political controversies and public concern are forcing states to look within their own borders to find solutions to this difficult problem. Permanent disposal or retrievable storage for radioactive waste may become a necessity in the near future in Colorado. Suitable areas that could support - a nuclear storage/disposal site need to be explored to make certain the health, safety and environment of our citizens now, and that of future generations, will be protected.

  9. Distribution of Radioactive Materials in the Absheron Peninsula, Azerbaijan - 13567

    SciTech Connect (OSTI)

    Vandergraaf, Tjalle T.; Mamedov, Gudrat G.; Ramazanov, Mahammadali A.; Badalov, Vatan H.; Naghiyev, Jalal A.; Mehdiyeva, Afat A.

    2013-07-01

    The Absheron Peninsula forms the extreme Eastern part of Azerbaijan and juts into the Caspian Sea. The region has a long history of oil and gas exploration, transport, and processing and includes a number of abandoned chemical plants that were used in the separation of iodine from formation waters. As a result of lax environmental standards during the Soviet era, the industrial activity has led to serious contamination from oils residues, heavy metals and naturally occurring radioactive materials (NORM). Radiometric surveys performed over a wide range of the Absheron Peninsula showed generally low NORM concentrations. However, radiation levels two to three orders of magnitude above background levels were detected at two abandoned iodine separation plants near the capital city, Baku. These elevated radiation levels are mainly due to Ra-226 and U-238 with lower contributions from Ra-228 and U-235. (authors)

  10. Annual Report - FY 2000, Radioactive Waste Shipments to and from the Nevada Test Site, March 2001

    SciTech Connect (OSTI)

    U.S. Department of Energy, Nevada Operations Office

    2001-03-01

    This document reports the low-level radioactive waste, mixed low-level radioactive waste, and Polychlorinated Biphenyl contaminated low-level waste transported to or from the Nevada Test Site during fiscal year 2000.

  11. RADIOACTIVE-AIRBORNE-CONTAMINATION-SURVEY.pdf

    Energy Savers

    Department of Energy about Making OUO Determinations - OUO and the FOIA Exemptions Questions about Making OUO Determinations - OUO and the FOIA Exemptions Why is OUO linked to the Freedom of Information Act (FOIA) exemptions? Under the FOIA, any person can request any information from the Government and get it - except for information falling under any one of the nine exemptions specified in the FOIA. Therefore, trying to control information that doesn't fall under the FOIA exemptions wastes

  12. Supergel system cleans radioactively contaminated structures | Argonne

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Supercritical CO2 Tech Team Supercritical CO2 Tech Team Supercritical CO2 Tech Team The purpose of the Supercritical Carbon Dioxide (sCO2) Technology Team is to use a collaborative approach to develop and facilitate commercialization of sCO2 energy conversion technology. Within the Department of Energy (DOE), SCO2 Brayton Cycle energy conversion could benefit research and development efforts in the offices of Nuclear Energy, Fossil Energy and Energy Efficiency and Renewable Energy. The Tech Team

  13. RESRAD Computer Code - Evaluation of Radioactively Contaminated...

    Office of Environmental Management (EM)

    then to improve the models within the codes, to operate on new computer platforms, to use new state of science radiation dose and risk factors, and to calculate cleanup criteria ...

  14. 'Supergel' System Cleans Radioactively Contaminated Structures...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    elements in porous structures, like monuments and buildings. Consisting of a spray-on, super-absorbent gel and engineered nanoparticles, this unique technology enables the United...

  15. PIA - Radioactive Airborne Contamination Survey | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Integrated Safety Management Workshop Registration, PIA, Idaho National Laboratory PIA - Bonneville Power Adminstration Ethics Helpline PIA - Advanced Test Reactor National ...

  16. Subsurface contaminants focus area

    SciTech Connect (OSTI)

    1996-08-01

    The US Department of Enregy (DOE) Subsurface Contaminants Focus Area is developing technologies to address environmental problems associated with hazardous and radioactive contaminants in soil and groundwater that exist throughout the DOE complex, including radionuclides, heavy metals; and dense non-aqueous phase liquids (DNAPLs). More than 5,700 known DOE groundwater plumes have contaminated over 600 billion gallons of water and 200 million cubic meters of soil. Migration of these plumes threatens local and regional water sources, and in some cases has already adversely impacted off-site rsources. In addition, the Subsurface Contaminants Focus Area is responsible for supplying technologies for the remediation of numerous landfills at DOE facilities. These landfills are estimated to contain over 3 million cubic meters of radioactive and hazardous buried Technology developed within this specialty area will provide efective methods to contain contaminant plumes and new or alternative technologies for development of in situ technologies to minimize waste disposal costs and potential worker exposure by treating plumes in place. While addressing contaminant plumes emanating from DOE landfills, the Subsurface Contaminants Focus Area is also working to develop new or alternative technologies for the in situ stabilization, and nonintrusive characterization of these disposal sites.

  17. Wide range radioactive gas concentration detector

    DOE Patents [OSTI]

    Anderson, David F.

    1984-01-01

    A wide range radioactive gas concentration detector and monitor which is capable of measuring radioactive gas concentrations over a range of eight orders of magnitude. The device of the present invention is designed to have an ionization chamber which is sufficiently small to give a fast response time for measuring radioactive gases but sufficiently large to provide accurate readings at low concentration levels. Closely spaced parallel plate grids provide a uniform electric field in the active region to improve the accuracy of measurements and reduce ion migration time so as to virtually eliminate errors due to ion recombination. The parallel plate grids are fabricated with a minimal surface area to reduce the effects of contamination resulting from absorption of contaminating materials on the surface of the grids. Additionally, the ionization chamber wall is spaced a sufficient distance from the active region of the ionization chamber to minimize contamination effects.

  18. Understanding Contamination; Twenty Years of Simulating Radiological Contamination

    SciTech Connect (OSTI)

    Emily Snyder; John Drake; Ryan James

    2012-02-01

    A wide variety of simulated contamination methods have been developed by researchers to reproducibly test radiological decontamination methods. Some twenty years ago a method of non-radioactive contamination simulation was proposed at the Idaho National Laboratory (INL) that mimicked the character of radioactive cesium and zirconium contamination on stainless steel. It involved baking the contamination into the surface of the stainless steel in order to 'fix' it into a tenacious, tightly bound oxide layer. This type of contamination was particularly applicable to nuclear processing facilities (and nuclear reactors) where oxide growth and exchange of radioactive materials within the oxide layer became the predominant model for material/contaminant interaction. Additional simulation methods and their empirically derived basis (from a nuclear fuel reprocessing facility) are discussed. In the last ten years the INL, working with the Defense Advanced Research Projects Agency (DARPA) and the National Homeland Security Research Center (NHSRC), has continued to develop contamination simulation methodologies. The most notable of these newer methodologies was developed to compare the efficacy of different decontamination technologies against radiological dispersal device (RDD, 'dirty bomb') type of contamination. There are many different scenarios for how RDD contamination may be spread, but the most commonly used one at the INL involves the dispersal of an aqueous solution containing radioactive Cs-137. This method was chosen during the DARPA projects and has continued through the NHSRC series of decontamination trials and also gives a tenacious 'fixed' contamination. Much has been learned about the interaction of cesium contamination with building materials, particularly concrete, throughout these tests. The effects of porosity, cation-exchange capacity of the material and the amount of dirt and debris on the surface are very important factors. The interaction of the

  19. 2013 Annual Summary Report for the Area 3 and Area 5 Radioactive...

    Office of Scientific and Technical Information (OSTI)

    Nationalmore Security Site (NNSS) relevant to the sources of residual radioactive material that are considered in the CAs, the land-use planning, and the results of the ...

  20. Radioactive Material Transportation Practices

    Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-09-23

    Establishes standard transportation practices for Departmental programs to use in planning and executing offsite shipments of radioactive materials including radioactive waste. Does not cancel other directives.

  1. Environmental impact assessment for a radioactive waste facility: A case study

    SciTech Connect (OSTI)

    Devgun, J.S.

    1990-01-01

    A 77-ha site, known as the Niagara Falls Storage Site and located in northwestern New York State, holds about 190, 000 m{sup 3} of soils, wastes, and residues contaminated with radium and uranium. The facility is owned by the US Department of Energy. The storage of residues resulting from the processing of uranium ores started in 1944, and by 1950 residues from a number of plants were received at the site. The residues, with a volume of about 18,000 m{sup 3}, account for the bulk of the radioactivity, which is primarily due to Ra-226; because of the extraction of uranium from the ore, the amount of uranium remaining in the residues is quite small. An analysis of the environmental impact assessment and environmental compliance actions taken to date at this site and their effectiveness are discussed. This case study provides an illustrative example of the complexity of technical and nontechnical issues for a large radiative waste facility. 11 refs., 7 figs., 2 tabs.

  2. RADIOACTIVE WASTE STREAMS FROM VARIOUS POTENTIAL NUCLEAR FUEL...

    Office of Scientific and Technical Information (OSTI)

    high-burnup used metal, oxide, or inert matrix U andor Th fuels, clad in Zr, steel, or composite non-metal cladding or coatings * Spent radioactive-contaminated graphite, ...

  3. Radioactivity in Precipitation: Methods and Observations from Savannah River Site

    Office of Environmental Management (EM)

    Waste Issues in Major Nuclear Incidents Radioactive Waste Issues in Major Nuclear Incidents S.Y. Chen*, Illinois Institute of Technology Abstract: Large amounts of radioactive waste had been generated in major nuclear accidents such as the Chernobyl nuclear accident in Ukraine of 1986 and the recent Fukushima nuclear accident in Japan of 2011. The wastes were generated due to the accidental releases of radioactive materials that resulted in widespread contamination throughout the affected

  4. DEVELOPMENT OF A SUPPLEMENTAL RESIDUAL CONTAMINATION GUIDELINE

    Office of Legacy Management (LM)

    Oak Ridge, Tennessee Bechtel Job No. 14501 I 1.0 INTRODUCTION AND SUMMARY 1.1 OBJECTIVE AND SCOPE The objective of this report is to describe the methodology used for establishing ...

  5. The development of radioactive sample surrogates for training and exercises

    SciTech Connect (OSTI)

    Martha Finck; Bevin Brush; Dick Jansen; David Chamberlain; Don Dry; George Brooks; Margaret Goldberg

    2012-03-01

    The development of radioactive sample surrogates for training and exercises Source term information is required for to reconstruct a device used in a dispersed radiological dispersal device. Simulating a radioactive environment to train and exercise sampling and sample characterization methods with suitable sample materials is a continued challenge. The Idaho National Laboratory has developed and permitted a Radioactive Response Training Range (RRTR), an 800 acre test range that is approved for open air dispersal of activated KBr, for training first responders in the entry and exit from radioactively contaminated areas, and testing protocols for environmental sampling and field characterization. Members from the Department of Defense, Law Enforcement, and the Department of Energy participated in the first contamination exercise that was conducted at the RRTR in the July 2011. The range was contaminated using a short lived radioactive Br-82 isotope (activated KBr). Soil samples contaminated with KBr (dispersed as a solution) and glass particles containing activated potassium bromide that emulated dispersed radioactive materials (such as ceramic-based sealed source materials) were collected to assess environmental sampling and characterization techniques. This presentation summarizes the performance of a radioactive materials surrogate for use as a training aide for nuclear forensics.

  6. Environmental assessment, finding of no significant impact, and response to comments. Sold residue treatment, repackaging, and storage

    SciTech Connect (OSTI)

    1996-04-01

    From its founding in 1952 through the cessation of production in 1989, the United States Department of Energy`s (DOE) Rocky Flats Plant (now the Rocky Flats Environmental Technology Site [the Site]) produced components for nuclear weapons. Some of those components were made of plutonium. As a result of the processes used to recover and purify plutonium and manufacture the components, a variety of materials became contaminated with plutonium. If the level of contamination were low, the material was considered waste. However, if the concentration of plutonium in the material exceeded the {open_quotes}economic discard limit,{close_quotes} the materials were classified as {open_quotes}residue{close_quotes} rather than{open_quotes}Waste{close_quotes} and were stored for later recovery of the plutonium. While large quantities of residues were processed, others, primarily those more difficult to process, accumulated at the Site in storage. Two important events regarding residues have occurred at the Site since production activities ceased. One event was the end of the Cold War in 1991, which made the return to production of nuclear weapons, with their Rocky Flats-made components, unnecessary. This event led to DOE`s decision to permanently cease production at the Site, clean up and remove radioactive and chemical contamination at the Site, and find alternative uses for the Site. This document describes methods for processing of the wastes for safe interim storage. Environmental impacts from the processing and storage are discussed.

  7. Subsurface Contamination Control

    SciTech Connect (OSTI)

    Y. Yuan

    2001-12-12

    There are two objectives of this report, ''Subsurface Contamination Control''. The first is to provide a technical basis for recommending limiting radioactive contamination levels (LRCL) on the external surfaces of waste packages (WP) for acceptance into the subsurface repository. The second is to provide an evaluation of the magnitude of potential releases from a defective WP and the detectability of the released contents. The technical basis for deriving LRCL has been established in ''Retrieval Equipment and Strategy for Wp on Pallet'' (CRWMS M and O 2000g, 6.3.1). This report updates the derivation by incorporating the latest design information of the subsurface repository for site recommendation. The derived LRCL on the external surface of WPs, therefore, supercede that described in CRWMS M and O 2000g. The derived LRCL represent the average concentrations of contamination on the external surfaces of each WP that must not be exceeded before the WP is to be transported to the subsurface facility for emplacement. The evaluation of potential releases is necessary to control the potential contamination of the subsurface repository and to detect prematurely failed WPs. The detection of failed WPs is required in order to provide reasonable assurance that the integrity of each WP is intact prior to MGR closure. An emplaced WP may become breached due to manufacturing defects or improper weld combined with failure to detect the defect, by corrosion, or by mechanical penetration due to accidents or rockfall conditions. The breached WP may release its gaseous and volatile radionuclide content to the subsurface environment and result in contaminating the subsurface facility. The scope of this analysis is limited to radioactive contaminants resulting from breached WPs during the preclosure period of the subsurface repository. This report: (1) documents a method for deriving LRCL on the external surfaces of WP for acceptance into the subsurface repository; (2) provides a

  8. Engineering evaluation/cost analysis for the proposed removal of contaminated materials at the Elza Gate site, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Not Available

    1991-06-01

    This engineering evaluation/cost analysis (EE/CA) has been prepared in support of the proposed removal action for cleanup of radioactive and chemically contaminated soil at the Elza Gate site in Oak Ridge, Tennessee. This property became contaminated as a result of storage of ore residues, equipment, and other materials for the US Atomic Energy Commission. The US Department of Energy is responsible for cleanup of portions of the site under its Formerly Utilized Sites Remedial Action Program. In December 1990 an area known as Pad 1 was abrasively scoured to remove surface contamination, and in March 1991 removal of Pad 1 contamination was begun under a separate EE/CA. This EE/CA is intended to cover the remaining portions of the site for which the Department of Energy has responsibility. It has been determined that an EE/CA report is appropriate documentation for the proposed removal action. This EE/CA covers removal of contaminated soils and contaminated concrete rubble from the Elza Gate site. The primary objectives of this EE/CA report are to identify and describe the preferred removal action, and to document the selection of response activities that will mitigate the potential for release of contaminants from the property into the environment and that will minimize the associated threats to human health or welfare and the environment. The preferred alternative is disposition on the Oak Ridge Reservation. 30 refs., 7 figs., 12 tabs.

  9. Evaluation of residue drum storage safety risks

    SciTech Connect (OSTI)

    Conner, W.V.

    1994-06-17

    A study was conducted to determine if any potential safety problems exist in the residue drum backlog at the Rocky Flats Plant. Plutonium residues stored in 55-gallon drums were packaged for short-term storage until the residues could be processed for plutonium recovery. These residues have now been determined by the Department of Energy to be waste materials, and the residues will remain in storage until plans for disposal of the material can be developed. The packaging configurations which were safe for short-term storage may not be safe for long-term storage. Interviews with Rocky Flats personnel involved with packaging the residues reveal that more than one packaging configuration was used for some of the residues. A tabulation of packaging configurations was developed based on the information obtained from the interviews. A number of potential safety problems were identified during this study, including hydrogen generation from some residues and residue packaging materials, contamination containment loss, metal residue packaging container corrosion, and pyrophoric plutonium compound formation. Risk factors were developed for evaluating the risk potential of the various residue categories, and the residues in storage at Rocky Flats were ranked by risk potential. Preliminary drum head space gas sampling studies have demonstrated the potential for formation of flammable hydrogen-oxygen mixtures in some residue drums.

  10. Characterization of solids in residual wastes from single-shell tanks at the Hanford site, Washington, USA.

    SciTech Connect (OSTI)

    Krupka, K. M.; Cantrell, K. J.; Todd Schaef, H.; Arey, B. W.; Heald, S. M.; Deutsch, W. J.; Lindberg, M. J.

    2010-03-01

    Solid phase physical and chemical characterization methods have been used in an ongoing study of residual wastes from several single-shell underground waste tanks at the U.S. Department of Energy's Hanford Site in southeastern Washington State. Because these wastes are highly-radioactive dispersible powders and are chemically-complex assemblages of crystalline and amorphous solids that contain contaminants as discrete phases and/or co-precipitated within oxide phases, their detailed characterization offers an extraordinary technical challenge. X-ray diffraction (XRD) and scanning electron microscopy/energy dispersive x-ray spectroscopy (SEM/EDS) are the two principal methods used, along with a limited series of analyses by synchrotron-based methods, to characterize solid phases and their contaminant associations in these wastes.

  11. Scrap metal management issues associated with naturally occurring radioactive material

    SciTech Connect (OSTI)

    Smith, K.P.; Blunt, D.L.

    1995-08-01

    Certain industrial processes sometimes generate waste by-products that contain naturally occurring radioactive material (NORM) at elevated concentrations. Some industries, including the water treatment, geothermal energy, and petroleum industries, generate scrap metal that may be contaminated with NORM wastes. Of these three industries, the petroleum industry probably generates the largest quantity of NORM-contaminated equipment, conservatively estimated at 170,000 tons per year. Equipment may become contaminated when NORM-containing scale or sludge accumulates inside water-handling equipment. The primary radionuclides of concern in these NORM wastes are radium-226 and radium-228. NORM-contaminated equipment generated by the petroleum industry currently is managed several ways. Some equipment is routinely decontaminated for reuse; other equipment becomes scrap metal and may be disposed of by burial at a licensed landfill, encapsulation inside the wellbore of an abandoned well, or shipment overseas for smelting. In view of the increased regulatory activities addressing NORM, the economic burden of managing NORM-contaminated wastes, including radioactive scrap metal, is likely to continue to grow. Efforts to develop a cost-effective strategy for managing radioactive scrap metal should focus on identifying the least expensive disposition options that provide adequate protection of human health and the environment. Specifically, efforts should focus on better characterizing the quantity of radioactive scrap available for recycle or reuse, the radioactivity concentration levels, and the potential risks associated with different disposal options.

  12. Radioactive scrap metal decontamination technology assessment report

    SciTech Connect (OSTI)

    Buckentin, J.M.; Damkroger, B.K.; Schlienger, M.E.

    1996-04-01

    Within the DOE complex there exists a tremendous quantity of radioactive scrap metal. As an example, it is estimated that within the gaseous diffusion plants there exists in excess of 700,000 tons of contaminated stainless steel. At present, valuable material is being disposed of when it could be converted into a high quality product. Liquid metal processing represents a true recycling opportunity for this material. By applying the primary production processes towards the material`s decontamination and re-use, the value of the strategic resource is maintained while drastically reducing the volume of material in need of burial. Potential processes for the liquid metal decontamination of radioactively contaminated metal are discussed and contrasted. Opportunities and technology development issues are identified and discussed. The processes compared are: surface decontamination; size reduction, packaging and burial; melting technologies; electric arc melting; plasma arc centrifugal treatment; air induction melting; vacuum induction melting; and vacuum induction melting and electroslag remelting.

  13. Radioactive Waste Management Basis

    SciTech Connect (OSTI)

    Perkins, B K

    2009-06-03

    The purpose of this Radioactive Waste Management Basis is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE Manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

  14. Residue management at Rocky Flats

    SciTech Connect (OSTI)

    Olencz, J.

    1995-12-31

    Past plutonium production and manufacturing operations conducted at the Rocky Flats Environmental Technology Site (RFETS) produced a variety of plutonium-contaminated by-product materials. Residues are a category of these materials and were categorized as {open_quotes}materials in-process{close_quotes} to be recovered due to their inherent plutonium concentrations. In 1989 all RFETS plutonium production and manufacturing operations were curtailed. This report describes the management of plutonium bearing liquid and solid wastes.

  15. Wide-range radioactive-gas-concentration detector

    DOE Patents [OSTI]

    Anderson, D.F.

    1981-11-16

    A wide-range radioactive-gas-concentration detector and monitor capable of measuring radioactive-gas concentrations over a range of eight orders of magnitude is described. The device is designed to have an ionization chamber sufficiently small to give a fast response time for measuring radioactive gases but sufficiently large to provide accurate readings at low concentration levels. Closely spaced parallel-plate grids provide a uniform electric field in the active region to improve the accuracy of measurements and reduce ion migration time so as to virtually eliminate errors due to ion recombination. The parallel-plate grids are fabricated with a minimal surface area to reduce the effects of contamination resulting from absorption of contaminating materials on the surface of the grids. Additionally, the ionization-chamber wall is spaced a sufficient distance from the active region of the ionization chamber to minimize contamination effects.

  16. Protecting Lake Ontario - Treating Wastewater from the Remediated Low-Level Radioactive Waste Management Facility - 13227

    SciTech Connect (OSTI)

    Freihammer, Till; Chaput, Barb; Vandergaast, Gary; Arey, Jimi

    2013-07-01

    The Port Granby Project is part of the larger Port Hope Area Initiative, a community-based program for the development and implementation of a safe, local, long-term management solution for historic low level radioactive waste (LLRW) and marginally contaminated soils (MCS). The Port Granby Project involves the relocation and remediation of up to 0.45 million cubic metres of such waste from the current Port Granby Waste Management Facility located in the Municipality of Clarington, Ontario, adjacent to the shoreline of Lake Ontario. The waste material will be transferred to a new suitably engineered Long-Term Waste Management Facility (LTWMF) to be located inland approximately 700 m from the existing site. The development of the LTWMF will include construction and commissioning of a new Wastewater Treatment Plant (WWTP) designed to treat wastewater consisting of contaminated surface run off and leachate generated during the site remediation process at the Port Granby Waste Management Facility as well as long-term leachate generated at the new LTWMF. Numerous factors will influence the variable wastewater flow rates and influent loads to the new WWTP during remediation. The treatment processes will be comprised of equalization to minimize impacts from hydraulic peaks, fine screening, membrane bioreactor technology, and reverse osmosis. The residuals treatment will comprise of lime precipitation, thickening, dewatering, evaporation and drying. The distribution of the concentration of uranium and radium - 226 over the various process streams in the WWTP was estimated. This information was used to assess potential worker exposure to radioactivity in the various process areas. A mass balance approach was used to assess the distribution of uranium and radium - 226, by applying individual contaminant removal rates for each process element of the WTP, based on pilot scale results and experience-based assumptions. The mass balance calculations were repeated for various flow

  17. Radioactive waste disposal package

    DOE Patents [OSTI]

    Lampe, Robert F.

    1986-11-04

    A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.

  18. Radioactive waste disposal package

    DOE Patents [OSTI]

    Lampe, Robert F. (Bethel Park, PA)

    1986-01-01

    A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.

  19. Remote Compositional Analysis of Spent-Fuel Residues Using Laser-Induced Breakdown Spectroscopy

    SciTech Connect (OSTI)

    Whitehouse, A. I.; Young, J.; Evans, C. P.; Brown, A.; Simpson, A.; Franco, J.

    2003-02-26

    We report on the application of a novel technique known as Laser-Induced Breakdown Spectroscopy (LIBS) for remotely detecting and characterizing the elemental composition of highly radioactive materials including spent-fuel residues and High-Level Waste (HLW). Within the UK nuclear industry, LIBS has been demonstrated to offer a convenient alternative to sampling and laboratory analysis of a wide range of materials irrespective of the activity of the material or the ambient radiation levels. Proven applications of this technology include in-situ compositional analysis of nuclear reactor components, remote detection and characterization of vitrified HLW and remote compositional analysis of highly-active gross contamination within a spent-fuel reprocessing plant.

  20. RCUT: A Non-Invasive Method for Detection, Location, and Quantification of Radiological Contaminants in Pipes and Ducts - 12514

    SciTech Connect (OSTI)

    Bratton, Wesley L.; Maresca, Joseph W. Jr.; Beck, Deborah A.

    2012-07-01

    Radiological Characterization Using Tracers (RCUT) is a minimally invasive method for detection and location of residual radiological contamination in pipes and ducts. The RCUT technology utilizes reactive gaseous tracers that dissociate when exposed to gamma and/or beta radiation emitting from a radiological contaminant in a pipe or duct. Sulfur hexafluoride (SF{sub 6}) was selected as a tracer for this radiological application, because it is a chemically inert gas that is both nonflammable, nontoxic, and breaks down when exposed to gamma radiation. Laboratory tests demonstrated that the tracer pair of SF{sub 6} and O{sub 2} formed SO{sub 2}F{sub 2} when exposed to a gamma or beta radioactive field, which indicated the presence of radiological contamination. Field application of RCUT involves first injecting the reactive tracers into the pipe to fill the pipe being inspected and allowing sufficient time for the tracer to interact with any contaminants present. This is followed by the injection of an inert gas at one end of the pipe to push the reactive tracer at a known or constant flow velocity along the pipe and then out the exit and sampling port at the end of the pipeline where its concentration is measured by a gas chromatograph. If a radiological contaminant is present in the pipe being tested, the presence of SO{sub 2}F{sub 2} will be detected. The time of arrival of the SO{sub 2}F{sub 2} can be used to locate the contaminant. If the pipe is free of radiological contamination, no SO{sub 2}F{sub 2} will be detected. RCUT and PCUT are both effective technologies that can be used to detect contamination within pipelines without the need for mechanical or human inspection. These methods can be used to detect, locate, and/or estimate the volume of a variety of radioactive materials and hazardous chemicals such as chlorinated solvents, petroleum products, and heavy metals. While further optimization is needed for RCUT, the key first step of identification of a

  1. Cleaning Contaminated Water at Fukushima

    ScienceCinema (OSTI)

    Rende, Dean; Nenoff, Tina

    2014-02-26

    Crystalline Silico-Titanates (CSTs) are synthetic zeolites designed by Sandia National Laboratories scientists to selectively capture radioactive cesium and other group I metals. They are being used for cleanup of radiation-contaminated water at the Fukushima Daiichi nuclear power plant in Japan. Quick action by Sandia and its corporate partner UOP, A Honeywell Company, led to rapid licensing and deployment of the technology in Japan, where it continues to be used to clean up cesium contaminated water at the Fukushima power plant.

  2. Cleaning Contaminated Water at Fukushima

    SciTech Connect (OSTI)

    Rende, Dean; Nenoff, Tina

    2013-11-21

    Crystalline Silico-Titanates (CSTs) are synthetic zeolites designed by Sandia National Laboratories scientists to selectively capture radioactive cesium and other group I metals. They are being used for cleanup of radiation-contaminated water at the Fukushima Daiichi nuclear power plant in Japan. Quick action by Sandia and its corporate partner UOP, A Honeywell Company, led to rapid licensing and deployment of the technology in Japan, where it continues to be used to clean up cesium contaminated water at the Fukushima power plant.

  3. Radioactive Waste Management Manual

    Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09

    This Manual further describes the requirements and establishes specific responsibilities for implementing DOE O 435.1, Radioactive Waste Management, for the management of DOE high-level waste, transuranic waste, low-level waste, and the radioactive component of mixed waste. The purpose of the Manual is to catalog those procedural requirements and existing practices that ensure that all DOE elements and contractors continue to manage DOE's radioactive waste in a manner that is protective of worker and public health and safety, and the environment. Does not cancel other directives.

  4. Protections: Sediment Control = Contaminant Retention

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Sediment Control Protections: Sediment Control = Contaminant Retention LANL maintains hundreds of wells, stream sampling stations and stormwater control structures to protect waters. August 1, 2013 Los Alamos Canyon weir Los Alamos Canyon weir thumbnail of Protection #2: Trap and Remove Sediment Sediment behind LA Canyon weir is sampled and excavated regularly. As of 2012, no sediment required disposal as hazardous or radioactive waste. RELATED IMAGES

  5. Data Collection Handbook to Support Modeling Impacts of Radioactive Material in Soil and Building Structures

    SciTech Connect (OSTI)

    Yu, Charley; Kamboj, Sunita; Wang, Cheng; Cheng, Jing-Jy

    2015-09-01

    This handbook is an update of the 1993 version of the Data Collection Handbook and the Radionuclide Transfer Factors Report to support modeling the impact of radioactive material in soil. Many new parameters have been added to the RESRAD Family of Codes, and new measurement methodologies are available. A detailed review of available parameter databases was conducted in preparation of this new handbook. This handbook is a companion document to the user manuals when using the RESRAD (onsite) and RESRAD-OFFSITE code. It can also be used for RESRAD-BUILD code because some of the building-related parameters are included in this handbook. The RESRAD (onsite) has been developed for implementing U.S. Department of Energy Residual Radioactive Material Guidelines. Hydrogeological, meteorological, geochemical, geometrical (size, area, depth), crops and livestock, human intake, source characteristic, and building characteristic parameters are used in the RESRAD (onsite) code. The RESRAD-OFFSITE code is an extension of the RESRAD (onsite) code and can also model the transport of radionuclides to locations outside the footprint of the primary contamination. This handbook discusses parameter definitions, typical ranges, variations, and measurement methodologies. It also provides references for sources of additional information. Although this handbook was developed primarily to support the application of RESRAD Family of Codes, the discussions and values are valid for use of other pathway analysis models and codes.

  6. Karlsruhe Database for Radioactive Wastes (KADABRA) - Accounting and Management System for Radioactive Waste Treatment - 12275

    SciTech Connect (OSTI)

    Himmerkus, Felix; Rittmeyer, Cornelia [WAK Rueckbau- und Entsorgungs- GmbH, 76339 Eggenstein-Leopoldshafen (Germany)

    2012-07-01

    The data management system KADABRA was designed according to the purposes of the Cen-tral Decontamination Department (HDB) of the Wiederaufarbeitungsanlage Karlsruhe Rueckbau- und Entsorgungs-GmbH (WAK GmbH), which is specialized in the treatment and conditioning of radioactive waste. The layout considers the major treatment processes of the HDB as well as regulatory and legal requirements. KADABRA is designed as an SAG ADABAS application on IBM system Z mainframe. The main function of the system is the data management of all processes related to treatment, transfer and storage of radioactive material within HDB. KADABRA records the relevant data concerning radioactive residues, interim products and waste products as well as the production parameters relevant for final disposal. Analytical data from the laboratory and non destructive assay systems, that describe the chemical and radiological properties of residues, production batches, interim products as well as final waste products, can be linked to the respective dataset for documentation and declaration. The system enables the operator to trace the radioactive material through processing and storage. Information on the actual sta-tus of the material as well as radiological data and storage position can be gained immediately on request. A variety of programs accessed to the database allow the generation of individual reports on periodic or special request. KADABRA offers a high security standard and is constantly adapted to the recent requirements of the organization. (authors)

  7. Dynamic radioactive particle source

    DOE Patents [OSTI]

    Moore, Murray E.; Gauss, Adam Benjamin; Justus, Alan Lawrence

    2012-06-26

    A method and apparatus for providing a timed, synchronized dynamic alpha or beta particle source for testing the response of continuous air monitors (CAMs) for airborne alpha or beta emitters is provided. The method includes providing a radioactive source; placing the radioactive source inside the detection volume of a CAM; and introducing an alpha or beta-emitting isotope while the CAM is in a normal functioning mode.

  8. Radioactive Waste Management Manual

    Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09

    This Manual further describes the requirements and establishes specific responsibilities for implementing DOE O 435.1, Radioactive Waste Management, for the management of DOE high-level waste, transuranic waste, low-level waste, and the radioactive component of mixed waste. Change 1 dated 6/19/01 removes the requirement that Headquarters is to be notified and the Office of Environment, Safety and Health consulted for exemptions for use of non-DOE treatment facilities. Certified 1-9-07.

  9. Container for radioactive materials

    DOE Patents [OSTI]

    Fields, Stanley R.

    1985-01-01

    A container for housing a plurality of canister assemblies containing radioactive material and disposed in a longitudinally spaced relation within a carrier to form a payload package concentrically mounted within the container. The payload package includes a spacer for each canister assembly, said spacer comprising a base member longitudinally spacing adjacent canister assemblies from each other and a sleeve surrounding the associated canister assembly for centering the same and conducting heat from the radioactive material in a desired flow path.

  10. Method for removing contaminants from plastic resin

    DOE Patents [OSTI]

    Bohnert, George W.; Hand, Thomas E.; DeLaurentiis, Gary M.

    2008-12-30

    A method for removing contaminants from synthetic resin material containers using a first organic solvent system and a second carbon dioxide system. The organic solvent is utilized for removing the contaminants from the synthetic resin material and the carbon dioxide is used to separate any residual organic solvent from the synthetic resin material.

  11. Method of removing contaminants from plastic resins

    DOE Patents [OSTI]

    Bohnert,George W.; Hand,Thomas E.; Delaurentiis,Gary M.

    2007-08-07

    A method for removing contaminants from synthetic resin material containers using a first organic solvent system and a second carbon dioxide system. The organic solvent is utilized for removing the contaminants from the synthetic resin material and the carbon dioxide is used to separate any residual organic solvent from the synthetic resin material.

  12. Method of removing contaminants from plastic resins

    DOE Patents [OSTI]

    Bohnert, George W.; Hand, Thomas E.; DeLaurentiis, Gary M.

    2008-11-18

    A method for removing contaminants from synthetic resin material containers using a first organic solvent system and a second carbon dioxide system. The organic solvent is utilized for removing the contaminants from the synthetic resin material and the carbon dioxide is used to separate any residual organic solvent from the synthetic resin material.

  13. Source-term development for a contaminant plume for use by multimedia risk assessment models

    SciTech Connect (OSTI)

    Whelan, Gene ); McDonald, John P. ); Taira, Randal Y. ); Gnanapragasam, Emmanuel K.; Yu, Charley; Lew, Christine S.; Mills, William B.

    1999-12-01

    Multimedia modelers from the U.S. Environmental Protection Agency (EPA) and the U.S. Department of Energy (DOE) are collaborating to conduct a comprehensive and quantitative benchmarking analysis of four intermedia models: DOE's Multimedia Environmental Pollutant Assessment System (MEPAS), EPA's MMSOILS, EPA's PRESTO, and DOE's RESidual RADioactivity (RESRAD). These models represent typical analytically, semi-analytically, and empirically based tools that are utilized in human risk and endangerment assessments for use at installations containing radioactive and/or hazardous contaminants. Although the benchmarking exercise traditionally emphasizes the application and comparison of these models, the establishment of a Conceptual Site Model (CSM) should be viewed with equal importance. This paper reviews an approach for developing a CSM of an existing, real-world, Sr-90 plume at DOE's Hanford installation in Richland, Washington, for use in a multimedia-based benchmarking exercise bet ween MEPAS, MMSOILS, PRESTO, and RESRAD. In an unconventional move for analytically based modeling, the benchmarking exercise will begin with the plume as the source of contamination. The source and release mechanism are developed and described within the context of performing a preliminary risk assessment utilizing these analytical models. By beginning with the plume as the source term, this paper reviews a typical process and procedure an analyst would follow in developing a CSM for use in a preliminary assessment using this class of analytical tool.

  14. Management of sewage sludge and ash containing radioactive materials.

    SciTech Connect (OSTI)

    Bachmaier, J. T.; Aiello, K.; Bastian, R. K.; Cheng, J.-J.; Chiu, W. A.; Goodman, J.; Hogan, R.; Jones, A. R.; Kamboj, S.; Lenhart, T.; Ott, W. R.; Rubin, A. B.; Salomon, S. N.; Schmidt, D. W.; Setlow, L. W.; Yu, C.; Wolbarst, A. B.; Environmental Science Division; Middlesex County Utilities Authority; U.S. EPA; N.J. Dept of Environmental Protection; NRC

    2007-01-01

    Approximately 50% of the seven to eight million metric tonnes of municipal sewage sludge produced annually in the US is reused. Beneficial uses of sewage sludge include agricultural land application, land reclamation, forestry, and various commercial applications. Excessive levels of contaminants, however, can limit the potential usefulness of land-applied sewage sludge. A recently completed study by a federal inter-agency committee has identified radioactive contaminants that could interfere with the safe reuse of sewage sludge. The study found that typical levels of radioactive materials in most municipal sewage sludge and incinerator ash do not present a health hazard to sewage treatment plant workers or to the general public. The inter-agency committee has developed recommendations for operators of sewage treatment plants for evaluating measured or estimated levels of radioactive material in sewage sludge and for determining whether actions to reduce potential exposures are appropriate.

  15. Radioactive hot cell access hole decontamination machine

    DOE Patents [OSTI]

    Simpson, William E.

    1982-01-01

    Radioactive hot cell access hole decontamination machine. A mobile housing has an opening large enough to encircle the access hole and has a shielding door, with a door opening and closing mechanism, for uncovering and covering the opening. The housing contains a shaft which has an apparatus for rotating the shaft and a device for independently translating the shaft from the housing through the opening and access hole into the hot cell chamber. A properly sized cylindrical pig containing wire brushes and cloth or other disks, with an arrangement for releasably attaching it to the end of the shaft, circumferentially cleans the access hole wall of radioactive contamination and thereafter detaches from the shaft to fall into the hot cell chamber.

  16. Radioactivity in food crops

    SciTech Connect (OSTI)

    Drury, J.S.; Baldauf, M.F.; Daniel, E.W.; Fore, C.S.; Uziel, M.S.

    1983-05-01

    Published levels of radioactivity in food crops from 21 countries and 4 island chains of Oceania are listed. The tabulation includes more than 3000 examples of 100 different crops. Data are arranged alphabetically by food crop and geographical origin. The sampling date, nuclide measured, mean radioactivity, range of radioactivities, sample basis, number of samples analyzed, and bibliographic citation are given for each entry, when available. Analyses were reported most frequently for /sup 137/Cs, /sup 40/K, /sup 90/Sr, /sup 226/Ra, /sup 228/Ra, plutonium, uranium, total alpha, and total beta, but a few authors also reported data for /sup 241/Am, /sup 7/Be, /sup 60/Co, /sup 55/Fe, /sup 3/H, /sup 131/I, /sup 54/Mn, /sup 95/Nb, /sup 210/Pb, /sup 210/Po, /sup 106/Ru, /sup 125/Sb, /sup 228/Th, /sup 232/Th, and /sup 95/Zr. Based on the reported data it appears that radioactivity from alpha emitters in food crops is usually low, on the order of 0.1 Bq.g/sup -1/ (wet weight) or less. Reported values of beta radiation in a given crop generally appear to be several orders of magnitude greater than those of alpha emitters. The most striking aspect of the data is the great range of radioactivity reported for a given nuclide in similar food crops with different geographical origins.

  17. Concepts for Environmental Radioactive Air Sampling and Monitoring

    SciTech Connect (OSTI)

    Barnett, J. M.

    2011-11-04

    Environmental radioactive air sampling and monitoring is becoming increasingly important as regulatory agencies promulgate requirements for the measurement and quantification of radioactive contaminants. While researchers add to the growing body of knowledge in this area, events such as earthquakes and tsunamis demonstrate how nuclear systems can be compromised. The result is the need for adequate environmental monitoring to assure the public of their safety and to assist emergency workers in their response. Two forms of radioactive air monitoring include direct effluent measurements and environmental surveillance. This chapter presents basic concepts for direct effluent sampling and environmental surveillance of radioactive air emissions, including information on establishing the basis for sampling and/or monitoring, criteria for sampling media and sample analysis, reporting and compliance, and continual improvement.

  18. DOE - Office of Legacy Management -- University of Washington...

    Office of Legacy Management (LM)

    for residual radioactive contamination considered remote - Operating under active NRC license WA.0-01-1 Radioactive Materials Handled: Yes Primary Radioactive Materials...

  19. Container for radioactive materials

    DOE Patents [OSTI]

    Fields, S.R.

    1984-05-30

    A container is claimed for housing a plurality of canister assemblies containing radioactive material. The several canister assemblies are stacked in a longitudinally spaced relation within a carrier to form a payload concentrically mounted within the container. The payload package includes a spacer for each canister assembly, said spacer comprising a base member longitudinally spacing adjacent canister assemblies from each other and sleeve surrounding the associated canister assembly for centering the same and conducting heat from the radioactive material in a desired flow path. 7 figures.

  20. Radioactive Waste Management Manual

    Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09

    This Manual further describes the requirements and establishes specific responsibilities for implementing DOE O 435.1, Radioactive Waste Management, for the management of DOE high-level waste, transuranic waste, low-level waste, and the radioactive component of mixed waste. Change 1 dated 6/19/01 removes the requirement that Headquarters is to be notified and the Office of Environment, Safety and Health consulted for exemptions for use of non-DOE treatment facilities. Certified 1-9-07. Admin Chg 2, dated 6-8-11, supersedes DOE M 435.1-1 Chg 1.

  1. Radioactive Waste Management

    Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09

    The objective of this Order is to ensure that all Department of Energy (DOE) radioactive waste is managed in a manner that is protective of worker and public health and safety and the environment. Supersedes DOE O 5820.2A. Chg 1 dated 8-28-01. Certified 1-9-07.

  2. Radioactive Waste Management

    Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09

    The objective of this Order is to ensure that all Department of Energy (DOE) radioactive waste is managed in a manner that is protective of worker and public health and safety and the environment. Cancels DOE O 5820.2A

  3. Sealed Radioactive Source Accountability

    Directives, Delegations, and Requirements [Office of Management (MA)]

    1994-12-22

    This Notice extends DOE N 5400.9, Sealed Radioactive Source Accountability, of 12-24-91, until 12-24-95, unless sooner superseded or rescinded. The contents of DOE N 5400.9 will be updated and incorporated in the revised DOE O 5480.11, Radiation Protection for Occupational Workers.

  4. Sealed Radioactive Source Accountability

    Directives, Delegations, and Requirements [Office of Management (MA)]

    1991-12-24

    To establish Department of Energy (DOE) interim policy and to provide guidance for sealed radioactive source accountability. The directive does not cancel any directives. Extended by DOE N 5400.10 to 12-24-93 & Extended by DOE N 5400.12 to 12-24-94.

  5. Method for calcining radioactive wastes

    DOE Patents [OSTI]

    Bjorklund, William J.; McElroy, Jack L.; Mendel, John E.

    1979-01-01

    This invention relates to a method for the preparation of radioactive wastes in a low leachability form by calcining the radioactive waste on a fluidized bed of glass frit, removing the calcined waste to melter to form a homogeneous melt of the glass and the calcined waste, and then solidifying the melt to encapsulate the radioactive calcine in a glass matrix.

  6. Enterprise Assessments Review of Radioactive Waste Management...

    Office of Environmental Management (EM)

    Radioactive Waste Management at the Portsmouth Gaseous Diffusion Plant December 2015 ......... 2 5.1 Radioactive Waste Management Planning ......

  7. Categorical Exclusion Determinations: Civilian Radioactive Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Civilian Radioactive Waste Management Categorical Exclusion Determinations: Civilian Radioactive Waste Management Categorical Exclusion Determinations issued by Civilian ...

  8. FUELS; 54 ENVIRONMENTAL SCIENCES; RADIOACTIVE EFFLUENTS; EMISSION...

    Office of Scientific and Technical Information (OSTI)

    SRP radioactive waste releases. Startup through 1959 Ashley, C. 05 NUCLEAR FUELS; 54 ENVIRONMENTAL SCIENCES; RADIOACTIVE EFFLUENTS; EMISSION; ENVIRONMENTAL MATERIALS;...

  9. Three multimedia models used at hazardous and radioactive waste sites

    SciTech Connect (OSTI)

    1996-01-01

    The report provides an approach for evaluating and critically reviewing the capabilities of multimedia models. The study focused on three specific models: MEPAS version 3.0, MMSOILS Version 2.2, and PRESTO-EPA-CPG Version 2.0. The approach to model review advocated in the study is directed to technical staff responsible for identifying, selecting and applying multimedia models for use at sites containing radioactive and hazardous materials. In the report, restrictions associated with the selection and application of multimedia models for sites contaminated with radioactive and mixed wastes are highlighted.

  10. Radioactive ion detector

    DOE Patents [OSTI]

    Bower, K.E.; Weeks, D.R.

    1997-08-12

    Apparatus for detecting the presence, in aqueous media, of substances which emit alpha and/or beta radiation and determining the oxidation state of these radioactive substances, that is, whether they are in cationic or anionic form. In one embodiment, a sensor assembly has two elements, one comprised of an ion-exchange material which binds cations and the other comprised of an ion-exchange material which binds anions. Each ion-exchange element is further comprised of a scintillation plastic and a photocurrent generator. When a radioactive substance to which the sensor is exposed binds to either element and emits alpha or beta particles, photons produced in the scintillation plastic illuminate the photocurrent generator of that element. Sensing apparatus senses generator output and thereby indicates whether cationic species or anionic species or both are present and also provides an indication of species quantity. 2 figs.

  11. Radioactive ion detector

    DOE Patents [OSTI]

    Bower, Kenneth E. (Los Alamos, NM); Weeks, Donald R. (Saratoga, CA)

    1997-01-01

    Apparatus for detecting the presence, in aqueous media, of substances which emit alpha and/or beta radiation and determining the oxidation state of these radioactive substances, that is, whether they are in cationic or anionic form. In one embodiment, a sensor assembly has two elements, one comprised of an ion-exchange material which binds cations and the other comprised of an ion-exchange material which binds anions. Each ion-exchange element is further comprised of a scintillation plastic and a photocurrent generator. When a radioactive substance to which the sensor is exposed binds to either element and emits alpha or beta particles, photons produced in the scintillation plastic illuminate the photocurrent generator of that element. Sensing apparatus senses generator output and thereby indicates whether cationic species or anionic species or both are present and also provides an indication of species quantity.

  12. PROCESSING OF RADIOACTIVE WASTE

    DOE Patents [OSTI]

    Johnson, B.M. Jr.; Barton, G.B.

    1961-11-14

    A process for treating radioactive waste solutions prior to disposal is described. A water-soluble phosphate, borate, and/or silicate is added. The solution is sprayed with steam into a space heated from 325 to 400 deg C whereby a powder is formed. The powder is melted and calcined at from 800 to 1000 deg C. Water vapor and gaseous products are separated from the glass formed. (AEC)

  13. T.G. Hinton: Radioactive Contaminants in Terrestrial Ecosystems...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Savannah River Ecology Laboratory P O Drawer E, Aiken, SC 29802 (803) 725-7454 office (803) 725-3309 fax thinton(at)uga.edu Dr. Hinton has published numerous papers on plant ...

  14. EA-1599: Disposition of Radioactively Contaminated Nickel Located...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    at the East Tennessee Technology Park, Oak Ridge, Tennessee, and the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, for Controlled Radiological Applications EA-1599:...

  15. Engineering evaluation/cost analysis for the proposed removal of contaminated materials from pad 1 at the Elza Gate site, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Not Available

    1990-09-01

    This engineering evaluation/cost analysis (EE/CA) has been prepared in support of the proposed removal action for cleanup of radioactively contaminated concrete and soil beneath a building on privately owned commercial property in Oak Ridge, Tennessee. The property, known as the Elza Gate site, became contaminated with uranium-238, radium-226, thorium-232, thorium-230, and decay products as a result of the Manhattan Engineer District storing uranium ore and ore processing residues at the site in the early 1940s. The US Department of Energy (DOE) has responsibility for cleanup of the property under its Formerly Utilized Sites Remedial Action Program (FUSRAP). The DOE plans to remove the cracked and worn concrete pad and contaminated subsoil beneath the pad, after which the property owner/tenant will provide clean backfill and new concrete. Portions of the pad and subsoil are contaminated and, if stored or disposed of improperly, may represent a potential threat to public health or welfare and the environment. The EE/CA report is the appropriate documentation for the proposed removal action, as identified in guidance from the US Environmental Protection Agency. The objective of the EE/CA report, in addition to identifying the planned removal action, is to document the selection of response activities that will mitigate the potential for release of contaminants from the property into the environment and minimize the related threats to public health or welfare and the environment. 7 refs., 2 figs., 3 tabs.

  16. Contaminant Sources are Known

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Sources are Known Historical contaminant sources from liquid discharges and solid waste management units are known. August 1, 2013 Contaminant source map LANL contaminant...

  17. Estimates of health risk from exposure to radioactive pollutants

    SciTech Connect (OSTI)

    Sullivan, R.E.; Nelson, N.S.; Ellett, W.H.; Dunning, D.E. Jr.; Leggett, R.W.; Yalcintas, M.G.; Eckerman, K.F.

    1981-11-01

    A dosimetric and health effects analysis has been performed for the Office of Radiation Programs of the Environmental Protection Agency (EPA) to assess potential hazards from radioactive pollutants. Contemporary dosimetric methods were used to obtain estimates of dose rates to reference organs from internal exposures due to either inhalation of contaminated air or ingestion of contaminated food, or from external exposures due to either immersion in contaminated air or proximity to contaminated ground surfaces. These dose rates were then used to estimate the number of premature cancer deaths arising from such exposures and the corresponding number of years of life lost in a cohort of 100,000 persons, all simultaneously liveborn and all going through life with the same risks of dying from competing causes. The risk of dying from a competing cause for a given year was taken to be the probability of dying from all causes as given in a recent actuarial life table for the total US population.

  18. Method for removing contaminants from plastic resin

    SciTech Connect (OSTI)

    Bohnert, George W.; Hand, Thomas E.; DeLaurentiis, Gary M.

    2008-12-09

    A resin recycling method that produces essentially contaminant-free synthetic resin material in an environmentally safe and economical manner. The method includes receiving the resin in container form. The containers are then ground into resin particles. The particles are exposed to a solvent, the solvent contacting the resin particles and substantially removing contaminants on the resin particles. After separating the particles and the resin, a solvent removing agent is used to remove any residual solvent remaining on the resin particles after separation.

  19. Effectiveness of interim remedial actions at a radioactive waste facility

    SciTech Connect (OSTI)

    Devgun, J.S.; Beskid, N.J.; Peterson, J.M.; Seay, W.M.; McNamee, E.; USDOE Oak Ridge Operations Office, TN; Bechtel National, Inc., Oak Ridge, TN )

    1989-01-01

    Over the past eight years, several interim remedial actions have been taken at the Niagara Falls Storage Site (NFSS), primarily to reduce radon and gamma radiation exposures and to consolidate radioactive waste into a waste containment facility. Interim remedial actions have included capping of vents, sealing of pipes, relocation of the perimeter fence (to limit radon risk), transfer and consolidation of waste, upgrading of storage buildings, construction of a clay cutoff wall (to limit the potential groundwater transport of contaminants), treatment and release of contaminated water, interim use of a synthetic liner, and emplacement of an interim clay cap. An interim waste containment facility was completed in 1986. 6 refs., 3 figs.

  20. Material for radioactive protection

    DOE Patents [OSTI]

    Taylor, R.S.; Boyer, N.W.

    A boron containing burn resistant, low-level radiation protection material useful, for example, as a liner for radioactive waste disposal and storage, a component for neutron absorber, and a shield for a neutron source is described. The material is basically composed of borax in the range of 25 to 50%, coal tar in the range of 25 to 37.5%, with the remainder being an epoxy resin mix. A preferred composition is 50% borax, 25% coal tar and 25% epoxy resin. The material is not susceptible to burning and is about 1/5 the cost of existing radiation protection material utilized in similar applications.

  1. Radioactive waste material disposal

    DOE Patents [OSTI]

    Forsberg, Charles W.; Beahm, Edward C.; Parker, George W.

    1995-01-01

    The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide.

  2. Radioactive waste material disposal

    DOE Patents [OSTI]

    Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

    1995-10-24

    The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide. 3 figs.

  3. Evaluation of Recent Trailer Contamination and Supersack Integrity Issues

    SciTech Connect (OSTI)

    Gordon, S.

    2012-09-17

    During the period from fiscal year (FY) 2009 to FY 2011, there were a total of 21 incidents involving radioactively contaminated shipment trailers and 9 contaminated waste packages received at the Nevada National Security Site (NNSS) Area 5 Radioactive Waste Management Site (RWMS). During this time period, the EnergySolutions (ES) Clive, Utah, disposal facility had a total of 18 similar incidents involving trailer and package contamination issues. As a result of the increased occurrence of such incidents, DOE Environmental Management Headquarters (EM/HQ) Waste Management organization (EM-30) requested that the Energy Facility Contractors’ Group (EFCOG) Waste Management Working Group (WMWG) conduct a detailed review of these incidents and report back to EM-30 regarding the results of this review, including providing any recommendations formulated as a result of the evaluation of current site practices involving handling and management of radioactive material and waste shipments.

  4. Method for acid oxidation of radioactive, hazardous, and mixed organic waste materials

    DOE Patents [OSTI]

    Pierce, Robert A.; Smith, James R.; Ramsey, William G.; Cicero-Herman, Connie A.; Bickford, Dennis F.

    1999-01-01

    The present invention is directed to a process for reducing the volume of low level radioactive and mixed waste to enable the waste to be more economically stored in a suitable repository, and for placing the waste into a form suitable for permanent disposal. The invention involves a process for preparing radioactive, hazardous, or mixed waste for storage by contacting the waste starting material containing at least one organic carbon-containing compound and at least one radioactive or hazardous waste component with nitric acid and phosphoric acid simultaneously at a contacting temperature in the range of about 140.degree. C. to about 210 .degree. C. for a period of time sufficient to oxidize at least a portion of the organic carbon-containing compound to gaseous products, thereby producing a residual concentrated waste product containing substantially all of said radioactive or inorganic hazardous waste component; and immobilizing the residual concentrated waste product in a solid phosphate-based ceramic or glass form.

  5. Treatment of radionuclide contaminated soils

    SciTech Connect (OSTI)

    Pettis, S.A.; Kallas, A.J.; Kochen, R.L.; McGlochlin, S.C.

    1988-06-01

    Rockwell, International, Rocky Flats Plants, is committed to remediating within the scope of RCRA/CERCLA, Solid Waste Managements Units (SWMUs) at Rocky Flats found to be contaminated with hazardous substances. SWMUs fund to have radionuclide (uranium, plutonium, and/or americium) concentrations in the soils and/or groundwater that exceed background levels or regulatory limits will also be included in this remediation effort. This paper briefly summarizes past and present efforts by Rockwell International, Rocky Flats Plant, to identify treatment technologies appropriate for remediating actinide contaminated soils. Many of the promising soil treatments evaluated in Rocky Flats' laboratories during the late 1970's and early 1980's are currently being revisited. These technologies are generally directed toward substantially reducing the volume of contaminated soils, with the subsequent intention of disposing of a small remaining concentrated fraction of contaminated soil in a facility approved to receive radioactive wastes. Treatment processes currently will be treated to remove actinides, and recycled back to the process. Past investigations have included evaluations of dry screening, wet screening, scrubbing, ultrasonics, chemical oxidation, calcination, desliming, flotation, and heavy-liquid density separation. 8 refs., 2 figs.

  6. Remote video radioactive process evaluation, Savannah River Site

    SciTech Connect (OSTI)

    Heckendorn, F.M.

    1990-01-01

    Specialized miniature low cost video equipment has been effectively used in a number of remote, radioactive, and contaminated environments at the Savannah River Site (SRS). The equipment and related techniques have reduced the potential for personnel exposure to both radiation and physical hazards. The valuable process information thus provided would not have otherwise been available for use in improving the quality of operation at SRS.

  7. Remote video radioactive systems evaluation, Savannah River Site

    SciTech Connect (OSTI)

    Heckendorn, F.M.; Robinson, C.W.

    1991-12-31

    Specialized miniature low cost video equipment has been effectively used in a number of remote, radioactive, and contaminated environments at the Savannah River Site (SRS). The equipment and related techniques have reduced the potential for personnel exposure to both radiation and physical hazards. The valuable process information thus provided would not have otherwise been available for use in improving the quality of operation at SRS.

  8. Remote video radioactive process evaluation, Savannah River Site

    SciTech Connect (OSTI)

    Heckendorn, F.M.

    1990-12-31

    Specialized miniature low cost video equipment has been effectively used in a number of remote, radioactive, and contaminated environments at the Savannah River Site (SRS). The equipment and related techniques have reduced the potential for personnel exposure to both radiation and physical hazards. The valuable process information thus provided would not have otherwise been available for use in improving the quality of operation at SRS.

  9. Remote video radioactive systems evaluation, Savannah River Site

    SciTech Connect (OSTI)

    Heckendorn, F.M.; Robinson, C.W.

    1991-01-01

    Specialized miniature low cost video equipment has been effectively used in a number of remote, radioactive, and contaminated environments at the Savannah River Site (SRS). The equipment and related techniques have reduced the potential for personnel exposure to both radiation and physical hazards. The valuable process information thus provided would not have otherwise been available for use in improving the quality of operation at SRS.

  10. Control of Sealed Radioactive Sources

    Energy Savers

    appropriate hazards controls were not identified and implemented. CONCLUSION Loss of control of radioactive material can result in unplanned personnel exposures and spread of...

  11. Google Earth Tour: Contaminants

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Google Earth Tour: Contaminants Google Earth Tour: Contaminants Historical operations used the best available waste handling methods for that time.

  12. Review of private sector treatment, storage, and disposal capacity for radioactive waste. Revision 1

    SciTech Connect (OSTI)

    Smith, M.; Harris, J.G.; Moore-Mayne, S.; Mayes, R.; Naretto, C.

    1995-04-14

    This report is an update of a report that summarized the current and near-term commercial and disposal of radioactive and mixed waste. This report was capacity for the treatment, storage, dating and written for the Idaho National Engineering Laboratory (INEL) with the objective of updating and expanding the report entitled ``Review of Private Sector Treatment, Storage, and Disposal Capacity for Radioactive Waste``, (INEL-95/0020, January 1995). The capacity to process radioactively-contaminated protective clothing and/or respirators was added to the list of private sector capabilities to be assessed. Of the 20 companies surveyed in the previous report, 14 responded to the request for additional information, five did not respond, and one asked to be deleted from the survey. One additional company was identified as being capable of performing LLMW treatability studies and six were identified as providers of laundering services for radioactively-contaminated protective clothing and/or respirators.

  13. Model for estimating population impacts averted through the remediation of contaminated soil

    SciTech Connect (OSTI)

    Wolbarst, A.B.; Doehnert, M.; Hull, H.B.; Mauro, J.; Anigstein, R.; Marschke, S.; Beres, D.

    1998-07-01

    This is the second in a series of papers that discuss methodologies being developed and employed by the US Environmental Protection Agency in support of its decisions on cleanup levels for radioactively contaminated sites that are to be remediated and released for public use. It describes a model, CU-POP, designed by the US Environmental Protection Agency to obtain estimates of the potential collective radiological health impacts over specific periods of time (100, 1,000 and 10,000 y following cleanup), both on and off site, due to residual radioactive materials in on-site soil. Collective doses and risks are linear in population density for the direct exposure, dust and indoor radon inhalation, and soil ingestion pathways; it is assumed that specific fractions of all food grown and all groundwater pumped at a site are consumed by on- and off-site populations. The model was developed for application to a set of hypothetical reference sites; its testing on a simple generic site is discussed briefly here.

  14. Radioactive waste processing apparatus

    DOE Patents [OSTI]

    Nelson, Robert E.; Ziegler, Anton A.; Serino, David F.; Basnar, Paul J.

    1987-01-01

    Apparatus for use in processing radioactive waste materials for shipment and storage in solid form in a container is disclosed. The container includes a top, and an opening in the top which is smaller than the outer circumference of the container. The apparatus includes an enclosure into which the container is placed, solution feed apparatus for adding a solution containing radioactive waste materials into the container through the container opening, and at least one rotatable blade for blending the solution with a fixing agent such as cement or the like as the solution is added into the container. The blade is constructed so that it can pass through the opening in the top of the container. The rotational axis of the blade is displaced from the center of the blade so that after the blade passes through the opening, the blade and container can be adjusted so that one edge of the blade is adjacent the cylindrical wall of the container, to insure thorough mixing. When the blade is inside the container, a substantially sealed chamber is formed to contain vapors created by the chemical action of the waste solution and fixant, and vapors emanating through the opening in the container.

  15. In Situ Formation of Calcium Apatite in Soil for Sequestering Contaminants in Soil and Groundwater

    SciTech Connect (OSTI)

    Moore, Robert; Szecsody, Jim; Thompson, Mike

    2015-10-20

    A new method for in situ formation of a calcium apatite permeable reactive barrier that is a groundbreaking technology for containing radioactive/heavy metal contaminants threatening groundwater supplies.

  16. Waste reduction by separation of contaminated soils during environmental restoration

    SciTech Connect (OSTI)

    Roybal, J.A.; Conway, R.; Galloway, B.; Vinsant, E.; Slavin, P.; Guerin, D.

    1998-06-01

    During cleanup of contaminated sites, Sandia National Laboratories, New Mexico (SNL/NM) frequently encounters soils with low-level radioactive contamination. The contamination is not uniformly distributed, but occurs within areas of clean soil. Because it is difficult to characterize heterogeneously contaminated soils in detail and to excavate such soils precisely using heavy equipment, it is common for large quantities of uncontaminated soil to be removed during excavation of contaminated sites. This practice results in the commingling and disposal of clean and contaminated material as low-level waste (LLW), or possibly low-level mixed waste (LLMW). Until recently, volume reduction of radioactively contaminated soil depended on manual screening and analysis of samples, which is a costly and impractical approach and does not uphold As Low As Reasonably Achievable (ALARA) principles. To reduce the amount of LLW and LLMW generated during the excavation process, SNL/NM is evaluating two alternative technologies. The first of these, the Segmented Gate System (SGS), is an automated system that located and removes gamma-ray emitting radionuclides from a host matrix (soil, sand, dry sludge). The matrix materials is transported by a conveyor to an analyzer/separation system, which segregates the clean and contaminated material based on radionuclide activity level. The SGS was used to process radioactively contaminated soil from the excavation of the Radioactive Waste Landfill. The second technology, Large Area Gamma Spectroscopy (LAGS), utilizes a gamma spec analyzer suspended over a slab upon which soil is spread out to a uniform depth. A counting period of approximately 30 minutes is used to obtain a full-spectrum analysis for the isotopes of interest. The LAGS is being tested on the soil that is being excavated from the Classified Waste Landfill.

  17. Analysis of the application of decontamination technologies to radioactive metal waste minimization using expert systems

    SciTech Connect (OSTI)

    Bayrakal, S.

    1993-09-30

    Radioactive metal waste makes up a significant portion of the waste currently being sent for disposal. Recovery of this metal as a valuable resource is possible through the use of decontamination technologies. Through the development and use of expert systems a comparison can be made of laser decontamination, a technology currently under development at Ames Laboratory, with currently available decontamination technologies for applicability to the types of metal waste being generated and the effectiveness of these versus simply disposing of the waste. These technologies can be technically and economically evaluated by the use of expert systems techniques to provide a waste management decision making tool that generates, given an identified metal waste, waste management recommendations. The user enters waste characteristic information as input and the system then recommends decontamination technologies, determines residual contamination levels and possible waste management strategies, carries out a cost analysis and then ranks, according to cost, the possibilities for management of the waste. The expert system was developed using information from literature and personnel experienced in the use of decontamination technologies and requires validation by human experts and assignment of confidence factors to the knowledge represented within.

  18. Contaminant treatment method

    DOE Patents [OSTI]

    Shapiro, Andrew Philip; Thornton, Roy Fred; Salvo, Joseph James

    2003-01-01

    The present invention provides a method for treating contaminated media. The method comprises introducing remediating ions consisting essentially of ferrous ions, and being peroxide-free, in the contaminated media; applying a potential difference across the contaminated media to cause the remediating ions to migrate into contact with contaminants in the contaminated media; chemically degrading contaminants in the contaminated media by contact with the remediating ions; monitoring the contaminated media for degradation products of the contaminants; and controlling the step of applying the potential difference across the contaminated media in response to the step of monitoring.

  19. Radioactive Material Transportation Practices Manual

    Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-06-04

    This Manual establishes standard transportation practices for the Department of Energy, including National Nuclear Security Administration to use in planning and executing offsite shipments of radioactive materials and waste. The revision reflects ongoing collaboration of DOE and outside organizations on the transportation of radioactive material and waste. Supersedes DOE M 460.2-1.

  20. Submersible purification system for radioactive water

    DOE Patents [OSTI]

    Abbott, Michael L.; Lewis, Donald R.

    1989-01-01

    A portable, submersible water purification system for use in a pool of water containing radioactive contamination includes a prefilter for filtering particulates from the water. A resin bed is then provided for removal of remaining dissolved, particulate, organic, and colloidal impurities from the prefiltered water. A sterilizer then sterilizes the water. The prefilter and resin bed are suitably contained and are submerged in the pool. The sterilizer is water tight and located at the surface of the pool. The water is circulated from the pool through the prefilter, resin bed, and sterilizer by suitable pump or the like. In the preferred embodiment, the resin bed is contained within a tank which stands on the bottom of the pool and to which a base mounting the prefilter and pump is attached. An inlet for the pump is provided adjacent the bottom of the pool, while the sterilizer and outlet for the system is located adjacent the top of the pool.

  1. Radioactive Water Treatment at a United States Environmental Protection Agency Superfund Site - 12322

    SciTech Connect (OSTI)

    Beckman, John C.

    2012-07-01

    A water treatment system at a United States Environmental Protection Agency (USEPA) Superfund site impacted by radiological contaminants is used to treat water entering the site. The United States Army Corps of Engineers (USACE) is actively managing the remedial action for the USEPA using contracts to support the multiple activities on site. The site is where former gas mantle production facilities operated around the turn of the century. The manufacturing facilities used thorium ores to develop the mantles and disposed of off-specification mantles and ore residuals in the surrounding areas. During Site remedial actions, both groundwater and surface water comes into contact with contaminated soils and must be collected and treated at an on-site treatment facility. The radionuclides thorium and radium with associated progeny are the main concern for treatment. Suspended solids, volatile organic compounds, and select metals are also monitored during water treatment. The water treatment process begins were water is pumped to a collection tank where debris and grit settle out. Stored water is pumped to a coagulant tank containing poly-aluminum chloride to collect dissolved solids. The water passes into a reaction tube where aspirated air is added or reagent added to remove Volatile Organic Compounds (VOC'S) by mass transfer and convert dissolved iron to a solid. The water enters the flocculent polymer tank to drop solids out. The flocculated water overflows to a fluidized bed contact chamber to increase precipitation. Flocculation is where colloids of material drop out of suspension and settle. The settled solids are periodically removed and disposed of as radioactive waste. The water is passed through filters and an ion exchange process to extract the radionuclides. Several million liters of water are processed each year from two water treatment plants servicing different areas of the remediation site. Ion exchange resin and filter material are periodically replaced

  2. Radioactive waste processing apparatus

    DOE Patents [OSTI]

    Nelson, R.E.; Ziegler, A.A.; Serino, D.F.; Basnar, P.J.

    1985-08-30

    Apparatus for use in processing radioactive waste materials for shipment and storage in solid form in a container is disclosed. The container includes a top, and an opening in the top which is smaller than the outer circumference of the container. The apparatus includes an enclosure into which the container is placed, solution feed apparatus for adding a solution containing radioactive waste materials into the container through the container opening, and at least one rotatable blade for blending the solution with a fixing agent such as cement or the like as the solution is added into the container. The blade is constructed so that it can pass through the opening in the top of the container. The rotational axis of the blade is displaced from the center of the blade so that after the blade passes through the opening, the blade and container can be adjusted so that one edge of the blade is adjacent the cylindrical wall of the container, to insure thorough mixing. When the blade is inside the container, a substantially sealed chamber is formed to contain vapors created by the chemical action of the waste solution and fixant, and vapors emanating through the opening in the container. The chamber may be formed by placing a removable extension over the top of the container. The extension communicates with the apparatus so that such vapors are contained within the container, extension and solution feed apparatus. A portion of the chamber includes coolant which condenses the vapors. The resulting condensate is returned to the container by the force of gravity.

  3. Radioactivity measurements using storage phosphor technology

    SciTech Connect (OSTI)

    Cheng, Y.T.; Hwang, J.; Hutchinson, M.R.

    1995-10-01

    We propose to apply a recently developed charged particle radiation imaging concept in bio-medical research for fast, cost-effective characterization of radionuclides in contaminated sites and environmental samples. This concept utilizes sensors with storage photostimulable phosphor (SPP) technology as radiation detectors. They exhibit high sensitivity for all types of radiation and the response is linear over a wide dynamic range (>10{sup 5}), essential for quantitative analysis. These new sensors have an Active area of up to 35 cm x 43 cm in size and a spatial resolution as fine as 50 {mu}m. They offer considerable promise as large area detectors for fast characterization of radionuclides with an added ability to locate and identify hot spots. Tests with SPP sensors have found that a single alpha particle effect can be observed and an alpha field of 100 dpm/100 cm{sup 2} or a beta activity of 0.1 dpm/mm{sup 2} or gamma radiation of few {mu}R/hr can all be measured in minutes. Radioactive isotopes can further be identified by energy discrimination which is accomplished by placing different thicknesses of filter material in front of the sensor plate. For areas with possible neutron contamination, the sensors can be coupled to a neutron to charged particle converter screen, such as dysprosium foil to detect neutrons. Our study has shown that this approach can detect a neutron flux of 1 n/cm{sup 2}s or lower, again with only minutes of exposure time. The utilization of these new sensors can significantly reduce the time and cost required for many site characterization and environmental monitoring tasks. The {open_quotes}exposure{close_quotes} time for mapping radioactivity in an environmental sample may be in terms of minutes and offer a positional resolution not obtainable with presently used counting equipment. The resultant digital image will lend itself to ready analysis.

  4. Environmental radioactive intercomparison program and radioactive standards program

    SciTech Connect (OSTI)

    Dilbeck, G.

    1993-12-31

    The Environmental Radioactivity Intercomparison Program described herein provides quality assurance support for laboratories involved in analyzing public drinking water under the Safe Drinking Water Act (SDWA) Regulations, and to the environmental radiation monitoring activities of various agencies. More than 300 federal and state nuclear facilities and private laboratories participate in some phase of the program. This presentation describes the Intercomparison Program studies and matrices involved, summarizes the precision and accuracy requirements of various radioactive analytes, and describes the traceability determinations involved with radioactive calibration standards distributed to the participants. A summary of program participants, sample and report distributions, and additional responsibilities of this program are discussed.

  5. Office of Civilian Radioactive Waste Management | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    A chart detailling the Office of Civilian Radioactive Waste Management. Office of Civilian Radioactive Waste Management More Documents & Publications Reassessment of NAF Mission...

  6. One million curies of radioactive material recovered

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Radioactive material recovered One million curies of radioactive material recovered The accomplishment represents a major milestone in protecting our nation and the world from...

  7. Civilian Radioactive Waste Management System Requirements Document...

    Office of Environmental Management (EM)

    Civilian Radioactive Waste Management System Requirements Document Civilian Radioactive Waste Management System Requirements Document This document specifies the top-level ...

  8. Radioactive Waste Management Complex Wide Review

    Office of Environmental Management (EM)

    This page intentionally blank i Complex-Wide Review of DOE's Radioactive Waste Management ... 1.8 Demonstrated Progress in Radioactive Waste Management ......

  9. UNDERWATER COATINGS FOR CONTAMINATION CONTROL

    SciTech Connect (OSTI)

    Julia L. Tripp; Kip Archibald; Ann Marie Phillips; Joseph Campbell

    2004-02-01

    The Idaho National Laboratory (INL) deactivated several aging nuclear fuel storage basins. Planners for this effort were greatly concerned that radioactive contamination present on the basin walls could become airborne as the sides of the basins became exposed during deactivation and allowed to dry after water removal. One way to control this airborne contamination was to fix the contamination in place while the pool walls were still submerged. There are many underwater coatings available on the market for marine, naval and other applications. A series of tests were run to determine whether the candidate underwater fixatives were easily applied and adhered well to the substrates (pool wall materials) found in INL fuel pools. Lab-scale experiments were conducted by applying fourteen different commercial underwater coatings to four substrate materials representative of the storage basin construction materials, and evaluating their performance. The coupons included bare concrete, epoxy painted concrete, epoxy painted carbon steel, and stainless steel. The evaluation criteria included ease of application, adherence to the four surfaces of interest, no change on water clarity or chemistry, non-hazardous in final applied form and be proven in underwater applications. A proprietary two-part, underwater epoxy owned by S. G. Pinney and Associates was selected from the underwater coatings tested for application to all four pools. Divers scrubbed loose contamination off the basin walls and floors using a ship hull scrubber and vacuumed up the sludge. The divers then applied the coating using a special powered roller with two separate heated hoses that allowed the epoxy to mix at the roller surface was used to eliminate pot time concerns. The walls were successfully coated and water was removed from the pools with no detectable airborne contamination releases.

  10. GEOCHEMICAL TESTING AND MODEL DEVELOPMENT - RESIDUAL TANK WASTE TEST PLAN

    SciTech Connect (OSTI)

    CANTRELL KJ; CONNELLY MP

    2010-03-09

    This Test Plan describes the testing and chemical analyses release rate studies on tank residual samples collected following the retrieval of waste from the tank. This work will provide the data required to develop a contaminant release model for the tank residuals from both sludge and salt cake single-shell tanks. The data are intended for use in the long-term performance assessment and conceptual model development.

  11. System to control contamination during retrieval of buried TRU waste

    DOE Patents [OSTI]

    Menkhaus, D.E.; Loomis, G.G.; Mullen, C.K.; Scott, D.W.; Feldman, E.M.; Meyer, L.C.

    1993-04-20

    A system is described to control contamination during the retrieval of hazardous waste comprising an outer containment building, an inner containment building, within the outer containment building, an electrostatic radioactive particle recovery unit connected to and in communication with the inner and outer containment buildings, and a contaminate suppression system including a moisture control subsystem, and a rapid monitoring system having the ability to monitor conditions in the inner and outer containment buildings.

  12. System to control contamination during retrieval of buried TRU waste

    DOE Patents [OSTI]

    Menkhaus, Daniel E.; Loomis, Guy G.; Mullen, Carlan K.; Scott, Donald W.; Feldman, Edgar M.; Meyer, Leroy C.

    1993-01-01

    A system to control contamination during the retrieval of hazardous waste comprising an outer containment building, an inner containment building, within the outer containment building, an electrostatic radioactive particle recovery unit connected to and in communication with the inner and outer containment buildings, and a contaminate suppression system including a moisture control subsystem, and a rapid monitoring system having the ability to monitor conditions in the inner and outer containment buildings.

  13. Disposal of Rocky Flats residues as waste

    SciTech Connect (OSTI)

    Dustin, D.F.; Sendelweck, V.S. . Rocky Flats Plant); Rivera, M.A. )

    1993-01-01

    Work is underway at the Rocky Flats Plant to evaluate alternatives for the removal of a large inventory of plutonium-contaminated residues from the plant. One alternative under consideration is to package the residues as transuranic wastes for ultimate shipment to the Waste Isolation Pilot Plant. Current waste acceptance criteria and transportation regulations require that approximately 1000 cubic yards of residues be repackaged to produce over 20,000 cubic yards of WIPP certified waste. The major regulatory drivers leading to this increase in waste volume are the fissile gram equivalent, surface radiation dose rate, and thermal power limits. In the interest of waste minimization, analyses have been conducted to determine, for each residue type, the controlling criterion leading to the volume increase, the impact of relaxing that criterion on subsequent waste volume, and the means by which rules changes may be implemented. The results of this study have identified the most appropriate changes to be proposed in regulatory requirements in order to minimize the costs of disposing of Rocky Flats residues as transuranic wastes.

  14. Disposal of Rocky Flats residues as waste

    SciTech Connect (OSTI)

    Dustin, D.F.; Sendelweck, V.S.; Rivera, M.A.

    1993-03-01

    Work is underway at the Rocky Flats Plant to evaluate alternatives for the removal of a large inventory of plutonium-contaminated residues from the plant. One alternative under consideration is to package the residues as transuranic wastes for ultimate shipment to the Waste Isolation Pilot Plant. Current waste acceptance criteria and transportation regulations require that approximately 1000 cubic yards of residues be repackaged to produce over 20,000 cubic yards of WIPP certified waste. The major regulatory drivers leading to this increase in waste volume are the fissile gram equivalent, surface radiation dose rate, and thermal power limits. In the interest of waste minimization, analyses have been conducted to determine, for each residue type, the controlling criterion leading to the volume increase, the impact of relaxing that criterion on subsequent waste volume, and the means by which rules changes may be implemented. The results of this study have identified the most appropriate changes to be proposed in regulatory requirements in order to minimize the costs of disposing of Rocky Flats residues as transuranic wastes.

  15. Contaminant Sources are Known

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Contaminant Sources are Known Contaminant Sources are Known Historical contaminant sources from liquid discharges and solid waste management units are known. August 1, 2013 Contaminant source map LANL contaminant source map RELATED IMAGES http://farm4.staticflickr.com/3789/9631743884_4caeb970f9_t.jpg Enlarge

  16. SELF SINTERING OF RADIOACTIVE WASTES

    DOE Patents [OSTI]

    McVay, T.N.; Johnson, J.R.; Struxness, E.G.; Morgan, K.Z.

    1959-12-29

    A method is described for disposal of radioactive liquid waste materials. The wastes are mixed with clays and fluxes to form a ceramic slip and disposed in a thermally insulated container in a layer. The temperature of the layer rises due to conversion of the energy of radioactivity to heat boillng off the liquid to fomn a dry mass. The dry mass is then covered with thermal insulation, and the mass is self-sintered into a leach-resistant ceramic cake by further conversion of the energy of radioactivity to heat.

  17. Active airborne contamination control using electrophoresis

    SciTech Connect (OSTI)

    Veatch, B.D.

    1994-06-01

    In spite of our best efforts, radioactive airborne contamination continues to be a formidable problem at many of the Department of Energy (DOE) weapons complex sites. For workers that must enter areas with high levels of airborne contamination, personnel protective equipment (PPE) can become highly restrictive, greatly diminishing productivity. Rather than require even more restrictive PPE for personnel in some situations, the Rocky Flats Plant (RFP) is actively researching and developing methods to aggressively combat airborne contamination hazards using electrophoretic technology. With appropriate equipment, airborne particulates can be effectively removed and collected for disposal in one simple process. The equipment needed to implement electrophoresis is relatively inexpensive, highly reliable, and very compact. Once airborne contamination levels are reduced, less PPE is required and a significant cost savings may be realized through decreased waste and maximized productivity. Preliminary ``cold,`` or non-radioactive, testing results at the RFP have shown the technology to be effective on a reasonable scale, with several potential benefits and an abundance of applications.

  18. Radioactive decay data tables

    SciTech Connect (OSTI)

    Kocher, D.C.

    1981-01-01

    The estimation of radiation dose to man from either external or internal exposure to radionuclides requires a knowledge of the energies and intensities of the atomic and nuclear radiations emitted during the radioactive decay process. The availability of evaluated decay data for the large number of radionuclides of interest is thus of fundamental importance for radiation dosimetry. This handbook contains a compilation of decay data for approximately 500 radionuclides. These data constitute an evaluated data file constructed for use in the radiological assessment activities of the Technology Assessments Section of the Health and Safety Research Division at Oak Ridge National Laboratory. The radionuclides selected for this handbook include those occurring naturally in the environment, those of potential importance in routine or accidental releases from the nuclear fuel cycle, those of current interest in nuclear medicine and fusion reactor technology, and some of those of interest to Committee 2 of the International Commission on Radiological Protection for the estimation of annual limits on intake via inhalation and ingestion for occupationally exposed individuals.

  19. Total effective dose equivalent associated with fixed uranium surface contamination

    SciTech Connect (OSTI)

    Bogard, J.S.; Hamm, R.N.; Ashley, J.C.; Turner, J.E.; England, C.A.; Swenson, D.E.; Brown, K.S.

    1997-04-01

    This report provides the technical basis for establishing a uranium fixed-contamination action level, a fixed uranium surface contamination level exceeding the total radioactivity values of Appendix D of Title 10, Code of Federal Regulations, part 835 (10CFR835), but below which the monitoring, posting, and control requirements for Radiological Areas are not required for the area of the contamination. An area of fixed uranium contamination between 1,000 dpm/100 cm{sup 2} and that level corresponding to an annual total effective dose equivalent (TEDE) of 100 mrem requires only routine monitoring, posting to alert personnel of the contamination, and administrative control. The more extensive requirements for monitoring, posting, and control designated by 10CFR835 for Radiological Areas do not have to be applied for these intermediate fixed-contamination levels.

  20. Hanford Tank Waste Residuals

    Office of Environmental Management (EM)

    Hanford Tank Waste Residuals DOE HLW Corporate Board November 6, 2008 Chris Kemp, DOE ORP Bill Hewitt, YAHSGS LLC Hanford Tanks & Tank Waste * Single-Shell Tanks (SSTs) - 27 million ...

  1. Radioactive waste material melter apparatus

    DOE Patents [OSTI]

    Newman, D.F.; Ross, W.A.

    1990-04-24

    An apparatus for preparing metallic radioactive waste material for storage is disclosed. The radioactive waste material is placed in a radiation shielded enclosure. The waste material is then melted with a plasma torch and cast into a plurality of successive horizontal layers in a mold to form a radioactive ingot in the shape of a spent nuclear fuel rod storage canister. The apparatus comprises a radiation shielded enclosure having an opening adapted for receiving a conventional transfer cask within which radioactive waste material is transferred to the apparatus. A plasma torch is mounted within the enclosure. A mold is also received within the enclosure for receiving the melted waste material and cooling it to form an ingot. The enclosure is preferably constructed in at least two parts to enable easy transport of the apparatus from one nuclear site to another. 8 figs.

  2. Radioactive waste material melter apparatus

    DOE Patents [OSTI]

    Newman, Darrell F.; Ross, Wayne A.

    1990-01-01

    An apparatus for preparing metallic radioactive waste material for storage is disclosed. The radioactive waste material is placed in a radiation shielded enclosure. The waste material is then melted with a plasma torch and cast into a plurality of successive horizontal layers in a mold to form a radioactive ingot in the shape of a spent nuclear fuel rod storage canister. The apparatus comprises a radiation shielded enclosure having an opening adapted for receiving a conventional transfer cask within which radioactive waste material is transferred to the apparatus. A plasma torch is mounted within the enclosure. A mold is also received within the enclosure for receiving the melted waste material and cooling it to form an ingot. The enclosure is preferably constructed in at least two parts to enable easy transport of the apparatus from one nuclear site to another.

  3. Radioactivity of the Cooling Water

    DOE R&D Accomplishments [OSTI]

    Wigner, E. P.

    1943-03-01

    The most important source of radioactivity at the exit manifold of the pile will be due to O{sup 19}, formed by neutron absorption of O{sup 18}. A recent measurement of Fermi and Weil permits to estimate that it will be safe to stay about 80 minutes daily close to the exit manifolds without any shield. Estimates are given for the radioactivities from other sources both in the neighborhood and farther away from the pile.

  4. Google Earth Tour: Contaminants

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Google Earth Tour: Contaminants Google Earth Tour: Contaminants Historical operations used the best available waste handling methods for that time. Open full screen to view more...

  5. Storage depot for radioactive material

    DOE Patents [OSTI]

    Szulinski, Milton J.

    1983-01-01

    Vertical drilling of cylindrical holes in the soil, and the lining of such holes, provides storage vaults called caissons. A guarded depot is provided with a plurality of such caissons covered by shielded closures preventing radiation from penetrating through any linear gap to the atmosphere. The heat generated by the radioactive material is dissipated through the vertical liner of the well into the adjacent soil and thus to the ground surface so that most of the heat from the radioactive material is dissipated into the atmosphere in a manner involving no significant amount of biologically harmful radiation. The passive cooling of the radioactive material without reliance upon pumps, personnel, or other factor which might fail, constitutes one of the most advantageous features of this system. Moreover this system is resistant to damage from tornadoes or earthquakes. Hermetically sealed containers of radioactive material may be positioned in the caissons. Loading vehicles can travel throughout the depot to permit great flexibility of loading and unloading radioactive materials. Radioactive material can be shifted to a more closely spaced caisson after ageing sufficiently to generate much less heat. The quantity of material stored in a caisson is restricted by the average capacity for heat dissipation of the soil adjacent such caisson.

  6. Emergency Responder Radioactive Material Quick Reference Sheet

    Energy.gov [DOE]

    Transportation Emergency Preparedness Program (TEPP) Emergency Responder Radioactive Material Quick Reference Sheet

  7. Savannah River Site Ingestion Pathway Methodology Manual for Airborne Radioactive Releases

    SciTech Connect (OSTI)

    Vincent, A.W. III

    2001-01-03

    This manual documents a recommended methodology for determining the ingestion pathway consequences of hypothetical accidental airborne radiological releases from facilities at the Savannah River Site. Both particulate and tritiated radioactive contaminants are addressed. Other approaches should be applied for evaluation of routine releases.

  8. The fate and behaviour of enhanced natural radioactivity with respect to environmental protection

    SciTech Connect (OSTI)

    Michalik, B.; Brown, J.; Krajewski, P.

    2013-01-15

    In contrast to the monitoring and prevention of occupational radiation risk caused by enhanced natural radioactivity, relatively little attention has been paid to the environmental impact associated with residues containing enhanced activity concentration of naturally occurring radionuclides. Such materials are often deposited directly into the environment, a practice which is strictly forbidden in the management of other types of radioactive waste. In view of the new trends in radiation protection, the need to consider the occurrence of anthropogenically enhanced natural radioactivity as a particular unique case of environmental hazard is quite apparent. Residues containing high activity concentrations of some natural radionuclides differ from radioactive materials arising from the nuclear industry. In addition, the radiation risk is usually combined with the risk caused by other pollutants. As such and to date, there are no precise regulations regarding this matter and moreover, the non-nuclear industry is often not aware of potential environmental problems caused by natural radioactivity. This article discusses aspects of environmental radiation risks caused by anthropogenically enhanced natural radioactivity stored at unauthorised sites. Difficulties and inconclusiveness in the application of recommendations and models for radiation risk assessment are explored. General terms such as 'environmental effects' and the basic parameters necessary to carry out consistent and comparable Environmental Risk Assessment (ERA) have been developed and defined. - Highlights: Black-Right-Pointing-Pointer Features of environmental impact caused by residues containing high activity concentration of natural radionuclides Black-Right-Pointing-Pointer Definition of an effect of radiation on an ecosystem and novel method for its assessment Black-Right-Pointing-Pointer Radiation protection regulation inconclusiveness in the aspects of enhanced natural radioactivity.

  9. DOE - Office of Legacy Management -- Duriron Co - Dayton - OH...

    Office of Legacy Management (LM)

    OH.49-1 Site Disposition: Eliminated - Limited scope of activities performed there - Potential for residual radioactive contamination is considered remote OH.49-2 Radioactive ...

  10. DOE - Office of Legacy Management -- Summerville Tube Co - PA...

    Office of Legacy Management (LM)

    PA.24-1 Site Disposition: Eliminated - Potential for residual radioactive contamination considered remote due to limited scope of operations and quantity of radioactive material ...

  11. A count rate based contamination control standard for electron accelerators

    SciTech Connect (OSTI)

    May, R.T.; Schwahn, S.O.

    1996-12-31

    Accelerators of sufficient energy and particle fluence can produce radioactivity as an unwanted byproduct. The radioactivity is typically imbedded in structural materials but may also be removable from surfaces. Many of these radionuclides decay by positron emission or electron capture; they often have long half lives and produce photons of low energy and yield making detection by standard devices difficult. The contamination control limit used throughout the US nuclear industry and the Department of Energy is 1,000 disintegrations per minute. This limit is based on the detection threshold of pancake type Geiger-Mueller probes for radionuclides of relatively high radiotoxicity, such as cobalt-60. Several radionuclides of concern at a high energy electron accelerator are compared in terms of radiotoxicity with radionuclides commonly found in the nuclear industry. Based on this comparison, a count-rate based contamination control limit and associated measurement strategy is proposed which provides adequate detection of contamination at accelerators without an increase in risk.

  12. Upgrading residual oil

    SciTech Connect (OSTI)

    Angevine, P.J.; Stein, T.R.

    1982-04-13

    Residual oil fractions are upgraded in that Conradson Carbon Residue (CCR) is selectively removed without undue hydrogen consumption by hydroprocessing with a catalyst comprising a single metal such as molybdenum, tungsten, nickel, iron or palladium or multimetallic combination of such metals, excluding, however, active desulfurization compositions such as nickel molybdenum and nickel-tungsten. Said catalyst is characterized as having greater than about 50% of its pore volume contribution in pores having diameters in the range of between about 100 and 200 angstroms. The product of such hydroprocessing is a particularly preferable feedstock for coking to give more liquid yield and less coke make.

  13. Feasibility analysis of recycling radioactive scrap steel

    SciTech Connect (OSTI)

    Nichols, F.; Balhiser, B.; Cignetti, N.

    1995-09-01

    The purpose of this study is to: (1) establish a conceptual design that integrates commercial steel mill technology with radioactive scrap metal (RSM) processing to produce carbon and stainless steel sheet and plate at a grade suitable for fabricating into radioactive waste containers; (2) determine the economic feasibility of building a micro-mill in the Western US to process 30,000 tons of RSM per year from both DOE and the nuclear utilities; and (3) provide recommendations for implementation. For purposes of defining the project, it is divided into phases: economic feasibility and conceptual design; preliminary design; detail design; construction; and operation. This study comprises the bulk of Phase 1. It is divided into four sections. Section 1 provides the reader with a complete overview extracting pertinent data, recommendations and conclusions from the remainder of the report. Section 2 defines the variables that impact the design requirements. These data form the baseline to create a preliminary conceptual design that is technically sound, economically viable, and capitalizes on economies of scale. Priorities governing the design activities are: (1) minimizing worker exposure to radionuclide hazards, (2) maximizing worker safety, (3) minimizing environmental contamination, (4) minimizing secondary wastes, and (5) establishing engineering controls to insure that the plant will be granted a license in the state selected for operation. Section 3 provides details of the preliminary conceptual design that was selected. The cost of project construction is estimated and the personnel needed to support the steel-making operation and radiological and environmental control are identified. Section 4 identifies the operational costs and supports the economic feasibility analysis. A detailed discussion of the resulting conclusions and recommendations is included in this section.

  14. Radioactive waste management in the USSR: A review of unclassified sources. Volume 2

    SciTech Connect (OSTI)

    Bradley, D.J.

    1991-03-01

    The Soviet Union does not currently have an overall radioactive waste management program or national laws that define objectives, procedures, and standards, although such a law is being developed, according to the Soviets. Occupational health and safety does not appear to receive major attention as it does in Western nations. In addition, construction practices that would be considered marginal in Western facilities show up in Soviet nuclear power and waste management operations. The issues involved with radioactive waste management and environmental restoration are being investigated at several large Soviet institutes; however, there is little apparent interdisciplinary integration between them, or interaction with the USSR Academy of Sciences. It is expected that a consensus on technical solutions will be achieved, but it may be slow in coming, especially for final disposal of high-level radioactive wastes and environmental restoration of contaminated areas. Meanwhile, many treatment, solidification, and disposal options for radioactive waste management are being investigated by the Soviets.

  15. Radioactive waste management in the USSR: A review of unclassified sources

    SciTech Connect (OSTI)

    Bradley, D.J.

    1991-03-01

    The Soviet Union does not currently have an overall radioactive waste management program or national laws that define objectives, procedures, and standards, although such a law is being developed, according to the Soviets. Occupational health and safety does not appear to receive major attention as it does in Western nations. In addition, construction practices that would be considered marginal in Western facilities show up in Soviet nuclear power and waste management operations. The issues involved with radioactive waste management and environmental restoration are being investigated at several large Soviet institutes; however, there is little apparent interdisciplinary integration between them, or interaction with the USSR Academy of Sciences. It is expected that a consensus on technical solutions will be achieved, but it may be slow in coming, especially for final disposal of high-level radioactive wastes and environmental restoration of contaminated areas. Meanwhile, many treatment, solidification, and disposal options for radioactive waste management are being investigated by the Soviets.

  16. System for removing contaminants from plastic resin

    SciTech Connect (OSTI)

    Bohnert, George W.; Hand, Thomas E.; DeLaurentiis, Gary M.

    2010-11-23

    A resin recycling system that produces essentially contaminant-free synthetic resin material in an environmentally safe and economical manner. The system includes receiving the resin in container form. A grinder grinds the containers into resin particles. The particles are exposed to a solvent in one or more solvent wash vessels, the solvent contacting the resin particles and substantially removing contaminants on the resin particles. A separator is used to separate the resin particles and the solvent. The resin particles are then placed in solvent removing element where they are exposed to a solvent removing agent which removes any residual solvent remaining on the resin particles after separation.

  17. Assessment of DOE radioactive scrap metal disposition options

    SciTech Connect (OSTI)

    Butler, C.R.; Kasper, K.M.; Bossart, S.J.

    1997-02-01

    The DOE has amassed a large amount of radioactively-contaminated scrap metal (RSM) as a result of past operations and decontamination and decommissioning (D&D) projects. The volume of RSM will continue to increase as a result of the D&D of more than 6,000 surplus facilities and many of the 14,000 operating facilities in the DOE complex. RSM can be either surface contaminated or volumetrically contaminated, or both, with varying amounts of radioactivity. Several options exist for the disposition of this RSM, including disposal as radioactive waste, recycling by decontamination and free-release for unrestricted use, or recycling for restricted reuse inside a DOE controlled area. The DOE Office of Science and Technology (EM-50) has been actively investing in technology and strategy development in support of restricted-reuse RSM recycling for the past several years. This paper will assess the nature of the RSM recycling issue, review past investment by DOE to develop technologies and strategies to recycle RSM, and then discuss some recommendations concerning future investments in support of RSM management. Available information on the supply of RSM will be presented in Section II. The regulatory and policy framework concerning recycling RSM will be presented in Section III. A review of DOE investment in RSM recycling technology and current programs will be presented in Section IV. The current and projected industrial capacity will be described in Section V. And, finally, a discussion of issues and recommendations regarding DOE technology development interests in RSM recycling will be presented in Section VI and VII, respectively.

  18. System for chemically digesting low level radioactive, solid waste material

    DOE Patents [OSTI]

    Cowan, Richard G.; Blasewitz, Albert G.

    1982-01-01

    An improved method and system for chemically digesting low level radioactive, solid waste material having a high through-put. The solid waste material is added to an annular vessel (10) substantially filled with concentrated sulfuric acid. Concentrated nitric acid or nitrogen dioxide is added to the sulfuric acid within the annular vessel while the sulfuric acid is reacting with the solid waste. The solid waste is mixed within the sulfuric acid so that the solid waste is substantilly fully immersed during the reaction. The off gas from the reaction and the products slurry residue is removed from the vessel during the reaction.

  19. Catalytic extraction processing of contaminated scrap metal

    SciTech Connect (OSTI)

    Griffin, T.P.; Johnston, J.E.; Payea, B.M.

    1995-10-01

    The U.S. Department of Energy issued a Planned Research and Development Announcement (PRDA) in 1993, with the objective of identifying unique technologies which could be applied to the most hazardous waste streams at DOE sites. The combination of radioactive contamination with additional contamination by hazardous constituents such as those identified by the Resource Conservation and Recovery Act (RCRA) pose an especially challenging problem. Traditional remediation technologies are increasingly becoming less acceptable to stakeholders and regulators because of the risks they pose to public health and safety. Desirable recycling technologies were described by the DOE as: (1) easily installed, operated, and maintained; (2) exhibiting superior environmental performance; (3) protective of worker and public health and safety; (4) readily acceptable to a wide spectrum of evaluators; and (5) economically feasible. Molten Metal Technology, Inc. (MMT) was awarded a contract as a result of the PRDA initiative to demonstrate the applicability of Catalytic Extraction Processing (CEP), MMT`s proprietary elemental recycling technology, to DOE`s inventory of low level mixed waste. This includes DOE`s inventory of radioactively- and RCRA-contaminated scrap metal and other waste forms expected to be generated by the decontamination and decommissioning (D&D) of DOE sites.

  20. Storage containers for radioactive material

    DOE Patents [OSTI]

    Groh, E.F.; Cassidy, D.A.; Dates, L.R.

    1980-07-31

    A radioactive material storage system is claimed for use in the laboratory having a flat base plate with a groove in one surface thereof and a hollow pedestal extending perpendicularly away from the other surface thereof, a sealing gasket in the groove, a cover having a filter therein and an outwardly extending flange which fits over the plate, the groove and the gasket, and a clamp for maintaining the cover and the plate sealed together. The plate and the cover and the clamp cooperate to provide a storage area for radioactive material readily accessible for use or inventory. Wall mounts are provided to prevent accidental formation of critical masses during storage.

  1. Storage containers for radioactive material

    DOE Patents [OSTI]

    Groh, Edward F.; Cassidy, Dale A.; Dates, Leon R.

    1981-01-01

    A radioactive material storage system for use in the laboratory having a flat base plate with a groove in one surface thereof and a hollow pedestal extending perpendicularly away from the other surface thereof, a sealing gasket in the groove, a cover having a filter therein and an outwardly extending flange which fits over the plate, the groove and the gasket, and a clamp for maintaining the cover and the plate sealed together, whereby the plate and the cover and the clamp cooperate to provide a storage area for radioactive material readily accessible for use or

  2. Orex based {open_quotes}point of generation{close_quotes} low-level radioactive waste reduction program

    SciTech Connect (OSTI)

    Haynes, B.

    1995-11-01

    Nuclear power facilities, both commercial and government operated, generate material called Dry Active Waste (DAW). DAW is a by-product of maintenance and operation of the power systems which contain radioactive materials. DAW can be any material contaminated with radioactive particles as long as it is not a fluid, typically: paper, cardboard, wood, plastics, cloth, and any other solid which is contaminated and determined to be dry. DAW is generated when any material is exposed to loose radioactive particles and subsequently becomes contaminated. In the United States, once a material is contaminated it must be treated as radioactive waste and disposed of in accordance with the requirements of Title 10 of the Code of Federal Regulations. Problems facing all commercial and non-commercial nuclear facilities are escalating costs of processing DAW and volumetric reduction of the DAW generated. Currently, approximately 85% of all DAW generated at a typical facility is comprised of anti-contamination clothing and protective barrier materials. A typical 800 megawatt power station will generate between 6,000 to 10,000 cubic feet of DAW annually. Facilities that generate low-level radioactive waste need to dramatically reduce their waste volumes. This curtailment is required for several reasons: (1). The number of radioactive waste repositories now accepting new waste is limited. (2). The current cost of burial at an operating dump site is significant. Costs can be as high as $4,000 for a single 55 gallon drum. (3). The cost of burial is constantly increasing. (4). Onsite storage of low-level radioactive waste is costly and results in a burial fee at plant decommissioning. In order to address this issue, the industry must look to the application of {open_quotes}point of generation{close_quotes} technologies.

  3. Remote Methodology used at B Plant Hanford to Map High Radiation and Contamination Fields and Document Remaining Hazards

    SciTech Connect (OSTI)

    SIMMONS, F.M.

    2000-01-01

    A remote radiation mapping system using the Gammacam{trademark} (AIL Systems Inc. Trademark) with real-time response was used in deactivating the B Plant at Hanford to produce digitized images showing actual radiation fields and dose rates. Deployment of this technology has significantly reduced labor requirements, decreased personnel exposure, and increased the accuracy of the measurements. Personnel entries into the high radiation/contamination areas was minimized for a dose savings of 30 Rem (.3 Seivert) and a cost savings of $640K. In addition, the data gathered was utilized along with historical information to estimate the amount of remaining hazardous waste in the process cells. The B Plant facility is a canyon facility containing 40 process cells which were used to separate cesium and strontium from high level waste. The cells and vessels are contaminated with chemicals used in the separation and purification processes. Most of the contaminants have been removed but the residual contamination from spills in the cells and heels in the tanks contribute to the localized high radioactivity. The Gammacam{trademark} system consists of a high density terbium-activated scintillating glass detector coupled with a digitized video camera. Composite images generated by the system are presented in pseudo color over a black and white image. Exposure times can be set from 10 milliseconds to 1 hour depending on the field intensity. This information coupled with process knowledge is then used to document the hazardous waste remaining in each cell. Additional uses for this radiation mapping system would be in support of facilities stabilization and deactivation activities at Hanford or other DOE sites. The system is currently scheduled for installation and mapping of the U Plant in 1999. This system is unique due to its portability and its suitability for use in high dose rate areas.

  4. Shipping Radioactive Waste by Rail from Brookhaven National Laboratory...

    Office of Environmental Management (EM)

    Shipping Radioactive Waste by Rail from Brookhaven National Laboratory Shipping Radioactive Waste by Rail from Brookhaven National Laboratory Shipping Radioactive Waste by Rail ...

  5. The BiPo detector for ultralow radioactivity measurements

    SciTech Connect (OSTI)

    Bongrand, M.

    2007-03-28

    The BiPo project is dedicated to the measurement of extremely low radioactivity contamination of SuperNEMO source foils (208Tl < 2 {mu}Bq/kg and 214Bi < 10 {mu}Bq/kg). The R and D phase is started : a modular BiPo prototype with its shielding test facility is under construction. The goal of this prototype is to study the background and particularly the surface contamination of scintillators. The first capsule has been installed in the Canfranc Underground Laboratory in October, 17th and is now taking data. After 10.7 days of measurements, a preliminary upper limit on the surface radiopurity of the scintillators of A(208Tl) < 60 {mu}Bq/m2 (90% C. L.) has been obtained.

  6. SRP RADIOACTIVE WASTE RELEASES S

    Office of Scientific and Technical Information (OSTI)

    . . . . . -- SRP RADIOACTIVE WASTE RELEASES S t a r t u p t h r o u g h 1 9 5 9 September 1 9 6 0 - R E C O R D - W O R K S T E C H N I C A L D E P A R T M E N T 1 J. E. C o l e , ...

  7. Reporting of Radioactive Sealed Sources

    Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-02-27

    To establish U.S. Department of Energy requirements for inventory reporting, transaction reporting, verification of reporting, and assign responsibilities for reporting of radioactive sealed sources. DOE N 251.86 extends this notice until 5-6-11. No cancellations. Canceled by DOE O 231.1B

  8. radioactive waste | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Home radioactive waste Y-12 completes waste removal project two years ahead of schedule U.S. Leads Fifth International Review Meeting on the Safety of Spent Fuel and Radioactive ...

  9. Transport of radioactive ion beams and related safety issues: The {sup 132}Sn{sup +} case study

    SciTech Connect (OSTI)

    Osswald, F. Bouquerel, E.; Boutin, D.; Dinkov, A.; Sellam, A.

    2014-12-15

    The transport of intense radioactive ion beam currents requires a careful design in order to limit the beam losses, the contamination and thus the dose rates. Some investigations based on numerical models and calculations have been performed in the framework of the SPIRAL 2 project to evaluate the performance of a low energy beam transport line located between the isotope separation on line (ISOL) production cell and the experiment areas. The paper presents the results of the transverse phase-space analysis, the beam losses assessment, the resulting contamination, and radioactivity levels. They show that reasonable beam transmission, emittance growth, and dose rates can be achieved considering the current standards.

  10. SRC residual fuel oils

    SciTech Connect (OSTI)

    Tewari, K.C.; Foster, E.P.

    1985-10-15

    Coal solids (SRC) and distillate oils are combined to afford single-phase blends of residual oils which have utility as fuel oils substitutes. The components are combined on the basis of their respective polarities, that is, on the basis of their heteroatom content, to assure complete solubilization of SRC. The resulting composition is a fuel oil blend which retains its stability and homogeneity over the long term.

  11. SRC Residual fuel oils

    DOE Patents [OSTI]

    Tewari, Krishna C.; Foster, Edward P.

    1985-01-01

    Coal solids (SRC) and distillate oils are combined to afford single-phase blends of residual oils which have utility as fuel oils substitutes. The components are combined on the basis of their respective polarities, that is, on the basis of their heteroatom content, to assure complete solubilization of SRC. The resulting composition is a fuel oil blend which retains its stability and homogeneity over the long term.

  12. Colloid Facilitated Transport of Radioactive Cations in the Vadose Zone: Field Experiments Oak Ridge

    SciTech Connect (OSTI)

    James E. Saiers

    2012-09-20

    The overarching goal of this study was to improve understanding of colloid-facilitated transport of radioactive cations through unsaturated soils and sediments. We conducted a suite of laboratory experiments and field experiments on the vadose-zone transport of colloids, organic matter, and associated contaminants of interest to the U.S. Department of Energy (DOE). The laboratory and field experiments, together with transport modeling, were designed to accomplish the following detailed objectives: 1. Evaluation of the relative importance of inorganic colloids and organic matter to the facilitation of radioactive cation transport in the vadose zone; 2. Assessment of the role of adsorption and desorption kinetics in the facilitated transport of radioactive cations in the vadose zone; 3. Examination of the effects of rainfall and infiltration dynamics and in the facilitated transport of radioactive cations through the vadose zone; 4. Exploration of the role of soil heterogeneity and preferential flow paths (e.g., macropores) on the facilitated transport of radioactive cations in the vadose zone; 5. Development of a mathematical model of facilitated transport of contaminants in the vadose zone that accurately incorporates pore-scale and column-scale processes with the practicality of predicting transport with readily available parameters.

  13. SOLID PHASE MICROEXTRACTION SAMPLING OF FIRE DEBRIS RESIDUES IN THE PRESENCE OF RADIONUCLIDE SURROGATE METALS

    SciTech Connect (OSTI)

    Duff, M; Keisha Martin, K; S Crump, S

    2007-03-23

    The Federal Bureau of Investigation (FBI) Laboratory currently does not have on site facilities for handling radioactive evidentiary materials and there are no established FBI methods or procedures for decontaminating highly radioactive fire debris (FD) evidence while maintaining evidentiary value. One experimental method for the isolation of FD residue from radionuclide metals involves using solid phase microextraction (SPME) fibers to remove the residues of interest. Due to their high affinity for organics, SPME fibers should have little affinity for most (radioactive) metals. The focus of this research was to develop an examination protocol that was applicable to safe work in facilities where high radiation doses are shielded from the workers (as in radioactive shielded cells or ''hot cells''). We also examined the affinity of stable radionuclide surrogate metals (Co, Ir, Re, Ni, Ba, Cs, Nb, Zr and Nd) for sorption by the SPME fibers. This was done under exposure conditions that favor the uptake of FD residues under conditions that will provide little contact between the SPME and the FD material (such as charred carpet or wood that contains commonly-used accelerants). Our results from mass spectrometric analyses indicate that SPME fibers show promise for use in the room temperature head space uptake of organic FD residue (namely, diesel fuel oil, kerosene, gasoline and paint thinner) with subsequent analysis by gas chromatography (GC) with mass spectrometric (MS) detection. No inorganic forms of ignitable fluids were included in this study.

  14. A field strategy to monitor radioactivity associated with investigation derived wastes returned from deep drilling sites

    SciTech Connect (OSTI)

    Rego, J.H.; Smith, D.K.; Friensehner, A.V.

    1995-05-26

    The U.S. Department of Energy, Nevada Operations Office, Underground Test Area Operable Unit (UGTA) is drilling deep (>1500m) monitoring wells that penetrate both unsaturated (vadose) and saturated zones potentially contaminated by sub-surface nuclear weapons testing at the Nevada Test Site, Nye County, Nevada. Drill site radiological monitoring returns data on drilling effluents to make informed management decisions concerning fluid management. Because of rapid turn-around required for on-site monitoring, a representative sample will be analyzed simultaneously for {alpha}, {beta} and {gamma} emitters by instrumentation deployed on-site. For the purposes of field survey, accurate and precise data is returned, in many cases, with minimal sample treatment. A 30% efficient high purity germanium detector and a discriminating liquid scintillation detector are being evaluated for {gamma} and {alpha}/{beta} monitoring respectively. Implementation of these detector systems complements a successful on-site tritium monitoring program. Residual radioactivity associated with underground nuclear tests include tritium, activation products, fission products and actinides. Pulse shape discrimination (PSD) is used in {alpha}/{beta} liquid scintillation counting and is a function of the time distribution of photon emission. In particular, we hope to measure {sup 241}Am produced from {sup 241}Pu by {beta} decay. Because {sup 241}Pu is depleted in fissile bomb fuels, maximum PSD resolution will be required. The high purity germanium detector employs a multichannel analyzer to count gamma emitting radionuclides; we will designate specific window configurations to selectively monitor diagnostic fission product radionuclides (i.e., {sup 137}Cs).

  15. Fate and transport processes controlling the migration of hazardous and radioactive materials from the Area 5 Radioactive Waste Management Site (RWMS)

    SciTech Connect (OSTI)

    Estrella, R.

    1994-10-01

    Desert vadose zones have been considered as suitable environments for the safe and long-term isolation of hazardous wastes. Low precipitation, high evapotranspiration and thick unsaturated alluvial deposits commonly found in deserts make them attractive as waste disposal sites. The fate and transport of any contaminant in the subsurface is ultimately determined by the operating retention and transformation processes in the system and the end result of the interactions among them. Retention (sorption) and transformation are the two major processes that affect the amount of a contaminant present and available for transport. Retention processes do not affect the total amount of a contaminant in the soil system, but rather decrease or eliminate the amount available for transport at a given point in time. Sorption reactions retard the contaminant migration. Permanent binding of solute by the sorbent is also possible. These processes and their interactions are controlled by the nature of the hazardous waste, the properties of the porous media and the geochemical and environmental conditions (temperature, moisture and vegetation). The present study summarizes the available data and investigates the fate and transport processes that govern the migration of contaminants from the Radioactive Waste Management Site (RWMS) in Area 5 of the Nevada Test Site (NTS). While the site is currently used only for low-level radioactive waste disposal, past practices have included burial of material now considered hazardous. Fundamentals of chemical and biological transformation processes are discussed subsequently, followed by a discussion of relevant results.

  16. Radioactive Liquid Waste Treatment Facility Discharges in 2014

    SciTech Connect (OSTI)

    Del Signore, John C.

    2015-07-14

    This report documents radioactive discharges from the TA50 Radioactive Liquid Waste Treatment Facilities (RLWTF) during calendar 2014.

  17. Final Hanford Site Solid (Radioactive and Hazardous) Waste Program...

    Office of Environmental Management (EM)

    Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement, ... Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement ...

  18. Revised Draft Hanford Site Solid (Radioactive and Hazardous)...

    Office of Environmental Management (EM)

    Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement, ... Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement ...

  19. Three multimedia models used at hazardous and radioactive waste sites

    SciTech Connect (OSTI)

    Moskowitz, P.D.; Pardi, R.; Fthenakis, V.M.; Holtzman, S.; Sun, L.C.; Rambaugh, J.O.; Potter, S.

    1996-02-01

    Multimedia models are used commonly in the initial phases of the remediation process where technical interest is focused on determining the relative importance of various exposure pathways. This report provides an approach for evaluating and critically reviewing the capabilities of multimedia models. This study focused on three specific models MEPAS Version 3.0, MMSOILS Version 2.2, and PRESTO-EPA-CPG Version 2.0. These models evaluate the transport and fate of contaminants from source to receptor through more than a single pathway. The presence of radioactive and mixed wastes at a site poses special problems. Hence, in this report, restrictions associated with the selection and application of multimedia models for sites contaminated with radioactive and mixed wastes are highlighted. This report begins with a brief introduction to the concept of multimedia modeling, followed by an overview of the three models. The remaining chapters present more technical discussions of the issues associated with each compartment and their direct application to the specific models. In these analyses, the following components are discussed: source term; air transport; ground water transport; overland flow, runoff, and surface water transport; food chain modeling; exposure assessment; dosimetry/risk assessment; uncertainty; default parameters. The report concludes with a description of evolving updates to the model; these descriptions were provided by the model developers.

  20. Experience base for Radioactive Waste Thermal Processing Systems: A preliminary survey

    SciTech Connect (OSTI)

    Mayberry, J.; Geimer, R.; Gillins, R.; Steverson, E.M.; Dalton, D.; Anderson, G.L.

    1992-04-01

    In the process of considering thermal technologies for potential treatment of the Idaho National Engineering Laboratory mixed transuranic contaminated wastes, a preliminary survey of the experience base available from Radioactive Waste Thermal Processing Systems is reported. A list of known commercial radioactive waste facilities in the United States and some international thermal treatment facilities are provided. Survey focus is upon the US Department of Energy thermal treatment facilities. A brief facility description and a preliminary summary of facility status, and problems experienced is provided for a selected subset of the DOE facilities.

  1. Description of a Multipurpose Processing and Storage Complex for the Hanford Site`s radioactive material

    SciTech Connect (OSTI)

    Nyman, D.H.; Wolfe, B.A.; Hoertkorn, T.R.

    1993-05-01

    The mission of the US Department of Energy`s (DOE) Hanford Site has changed from defense nuclear materials production to that of waste management/disposal and environmental restoration. ne Multipurpose Processing and Storage Complex (MPSC) is being designed to process discarded waste tank internal hardware contaminated with mixed wastes, failed melters from the vitrification plant, and other Hanford Site high-level solid waste. The MPSC also will provide interim storage of other radioactive materials (irradiated fuel, canisters of vitrified high-level waste [HLW], special nuclear material [SNM], and other designated radioactive materials).

  2. Radioactive Waste Management BasisApril 2006

    SciTech Connect (OSTI)

    Perkins, B K

    2011-08-31

    This Radioactive Waste Management Basis (RWMB) documents radioactive waste management practices adopted at Lawrence Livermore National Laboratory (LLNL) pursuant to Department of Energy (DOE) Order 435.1, Radioactive Waste Management. The purpose of this Radioactive Waste Management Basis is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE Manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

  3. radioactivity | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    radioactivity Department of Energy's chief risk officer visits Nevada National Security Site Earlier this month, Associate Deputy Secretary John MacWilliams visited the Nevada National Security Site (NNSS) in his role as Chief Risk Officer for the Department of Energy. He reviewed the various ways the NNSS contributes to the department's and NNSA's missions, including radiological... San Francisco Bay Area Aerial Radiation Assessment Survey (SAN JOSE and SAN FRANCISCO, California) - A helicopter

  4. Integrated data base report--1996: US spent nuclear fuel and radioactive waste inventories, projections, and characteristics

    SciTech Connect (OSTI)

    1997-12-01

    The Integrated Data Base Program has compiled historic data on inventories and characteristics of both commercial and U.S. Department of Energy (DOE) spent nuclear fuel (SNF) and commercial and U.S. government-owned radioactive wastes. Inventories of most of these materials are reported as of the end of fiscal year (FY) 1996, which is September 30, 1996. Commercial SNF and commercial uranium mill tailings inventories are reported on an end-of-calendar year (CY) basis. All SNF and radioactive waste data reported are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest DOE/Energy Information Administration (EIA) projections of U.S. commercial nuclear power growth and the expected DOE-related and private industrial and institutional activities. The radioactive materials considered, on a chapter-by-chapter basis, are SNF, high-level waste, transuranic waste, low-level waste, uranium mill tailings, DOE Environmental Restoration Program contaminated environmental media, naturally occurring and accelerator-produced radioactive material, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through FY 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions.

  5. Radioactivity of spent TRIGA fuel

    SciTech Connect (OSTI)

    Usang, M. D. Nabil, A. R. A.; Alfred, S. L.; Hamzah, N. S.; Abi, M. J. B.; Rawi, M. Z. M.; Abu, M. P.

    2015-04-29

    Some of the oldest TRIGA fuel in the Malaysian Reaktor TRIGA PUSPATI (RTP) is approaching the limit of its end of life with burn-up of around 20%. Hence it is prudent for us to start planning on the replacement of the fuel in the reactor and other derivative activities associated with it. In this regard, we need to understand all of the risk associated with such operation and one of them is to predict the radioactivity of the fuel, so as to estimate the safety of our working conditions. The radioactivity of several fuels are measured and compared with simulation results to confirm the burnup levels of the selected fuels. The radioactivity measurement are conducted inside the water tank to reduce the risk of exposure and in this case the detector wrapped in plastics are lowered under water. In nuclear power plant, the general practice was to continuously burn the fuel. In research reactor, most operations are based on the immediate needs of the reactor and our RTP for example operate periodically. By integrating the burnup contribution for each core configuration, we simplify the simulation of burn up for each core configuration. Our results for two (2) fuel however indicates that the dose from simulation underestimate the actual dose from our measurements. Several postulates are investigated but the underlying reason remain inconclusive.

  6. Radon induced surface contaminations in low background experiments

    SciTech Connect (OSTI)

    Pattavina, L.

    2013-08-08

    In neutrinoless double-beta decay and dark matter searches, one of the main issues is to increase the experimental sensitivity through careful material selection and production, minimizing the background contributions. In order to achieve the required, extremely low, counting rates, very stringent requirements must be fulfilled in terms of bulk material radiopurity. As the experimental sensitivity increases, the bulk impurities in the detector components decrease, and surface contaminations start to play an increasingly significant role In fully active detectors, like cryogenic particle detectors, surface contaminations are a critical issue (as shown by the CUORICINO experiment). {sup 222}Rn is by far the most intense source of airborne radioactivity, and if a radio-pure material is exposed to environment where the Radon concentration is not minimized, {sup 210}Pb and {sup 210}Po contaminations can occur. The mechanisms and the dynamics of Radon-induced surface contaminations are reviewed, and specific solutions to prevent and to reject the induced background are presented.

  7. System and method for the identification of radiation in contaminated rooms

    DOE Patents [OSTI]

    Coleman, Jody Rustyn; Farfan, Eduardo B.

    2015-09-29

    Devices and methods for the characterization of areas of radiation in contaminated rooms are provided. One such device is a collimator with a collimator shield for reducing noise when measuring radiation. A position determination system is provided that may be used for obtaining position and orientation information of the detector in the contaminated room. A radiation analysis method is included that is capable of determining the amount of radiation intensity present at known locations within the contaminated room. Also, a visual illustration system is provided that may project images onto the physical objects, which may be walls, of the contaminated room in order to identify the location of radioactive materials for decontamination.

  8. Method of treating contaminated HEPA filter media in pulp process

    DOE Patents [OSTI]

    Hu, Jian S.; Argyle, Mark D.; Demmer, Ricky L.; Mondok, Emilio P.

    2003-07-29

    A method for reducing contamination of HEPA filters with radioactive and/or hazardous materials is described. The method includes pre-processing of the filter for removing loose particles. Next, the filter medium is removed from the housing, and the housing is decontaminated. Finally, the filter medium is processed as pulp for removing contaminated particles by physical and/or chemical methods, including gravity, flotation, and dissolution of the particles. The decontaminated filter medium is then disposed of as non-RCRA waste; the particles are collected, stabilized, and disposed of according to well known methods of handling such materials; and the liquid medium in which the pulp was processed is recycled.

  9. Analysis of Zinc 65 Contamination after Vacuum Thermal Process

    SciTech Connect (OSTI)

    Korinko, Paul S.; Tosten, Michael H.

    2013-01-01

    Radioactive contamination with a gamma energy emission consistent with {sup 65}Zn was detected in a glovebox following a vacuum thermal process. The contaminated components were removed from the glovebox and subjected to examination. Selected analytical techniques were used to determine the nature of the precursor material, i.e., oxide or metallic, the relative transferability of the deposit and its nature. The deposit was determined to be borne from natural zinc and was further determined to be deposited as a metallic material from vapor.

  10. Controlling Beryllium Contaminated Material And Equipment For The Building 9201-5 Legacy Material Disposition Project

    SciTech Connect (OSTI)

    Reynolds, T. D.; Easterling, S. D.

    2010-10-01

    This position paper addresses the management of beryllium contamination on legacy waste. The goal of the beryllium management program is to protect human health and the environment by preventing the release of beryllium through controlling surface contamination. Studies have shown by controlling beryllium surface contamination, potential airborne contamination is reduced or eliminated. Although there are areas in Building 9201-5 that are contaminated with radioactive materials and mercury, only beryllium contamination is addressed in this management plan. The overall goal of this initiative is the compliant packaging and disposal of beryllium waste from the 9201-5 Legacy Material Removal (LMR) Project to ensure that beryllium surface contamination and any potential airborne release of beryllium is controlled to levels as low as practicable in accordance with 10 CFR 850.25.

  11. Field testing an OREX{reg_sign} based {open_quotes}point of generation{close_quotes} low-level radioactive waste reduction program at FP&L`s St. Lucie Plant

    SciTech Connect (OSTI)

    Payne, K.; Haynes, B.

    1996-10-01

    Nuclear power facilities, both commercial and government operated, generate material called Dry Active Waste (DAW). DAW is a by-product of maintenance and operation of the power systems which contain radioactive materials. DAW can be any material contaminated with radioactive particles as long as it is not a fluid, typically: paper, cardboard, wood, plastics, cloth, and any other solid which is contaminated and determined to be dry. DAW is generated when any material is exposed to loose radioactive particles and subsequently becomes contaminated. In the United States, once a material is contaminated it must be treated as radioactive waste and disposed of in accordance with the requirements of Title 10 of the Code of Federal Regulations. Problems facing all commercial and non-commercial nuclear facilities are escalating costs of processing DAW and volumetric reduction of the DAW generated. Currently, approximately 85% of all DAW generated at a typical facility is comprised of anti-contamination clothing and protective barrier materials. Facilities that generate low-level radioactive waste need to dramatically reduce their waste volumes. This curtailment is required for several reasons: the number of radioactive waste repositories now accepting new waste is limited; the current cost of burial at an operating dump site is significant. Costs can be as high as $4,000 for a single 55 gallon drum; the cost of burial is constantly increasing; onsite storage of low-level radioactive waste is costly and results in a burial fee at plant decommissioning.

  12. Radioactive targets for neutron-induced cross section measurements

    SciTech Connect (OSTI)

    Kronenberg, A.; Bond, E. M.; Glover, S. E.; Rundberg, R. S.; Vieira, D. J.; Esch, E. I.; Reifarth, R.; Ullmann, J. L.; Haight, Robert C.; Rochmann, D.

    2004-01-01

    production of radioactive targets of a few milligrams will be described as well as the containment for safe handling of these targets at the Lujan Center at LANSCE. To avoid any contamination, the targets are electrochemically fixed onto thin Ti foils and two foils are placed back to back to contain the radioactive material within. This target sandwich is placed in a cylinder made of aluminum with thin translucent windows made of Kapton. Actinides targets, such as {sup 234,235,236,238}U, {sup 237}Np, and {sup 239}Pu are prepared by electrodeposition or molecular plating techniques. Target thicknesses of 1-2 mg/cm{sup 2} with sizes of 1 cm{sup 2} or more have been made. Other targets will be fabricated from separation of irradiated isotopically enriched targets, such as {sup 155}Eu from {sup 154}Sm,{sup 171}Tm from {sup 170}Er, and {sup 147}Pm from {sup 146}Nd, which has been irradiated in the high flux reactor at ILL, Grenoble. A radioactive sample isotope separator (RSIS) is in the process of being commissioned for the preparation of other radioactive targets. A brief summary of these experiments and the radioactive target preparation technique will be given.

  13. Bioremediation of contaminated groundwater

    DOE Patents [OSTI]

    Hazen, T.C.; Fliermans, C.B.

    1995-01-24

    An apparatus and method are described for in situ remediation of contaminated subsurface soil or groundwater contaminated by chlorinated hydrocarbons. A nutrient fluid is selected to stimulate the growth and reproduction of indigenous subsurface microorganisms that are capable of degrading the contaminants. An oxygenated fluid is selected to create a generally aerobic environment for these microorganisms to degrade the contaminants, leaving only pockets that are anaerobic. The nutrient fluid is injected periodically while the oxygenated fluid is injected continuously and both are extracted so that both are drawn across the plume. The nutrient fluid stimulates microbial colony growth. Withholding it periodically forces the larger, healthy colony of microbes to degrade the contaminants. Treatment is continued until the subsurface concentration of contaminants is reduced to an acceptable, preselected level. The nutrient fluid can be methane and the oxygenated fluid air for stimulating production of methanotrophs to break down chlorohydrocarbons, especially trichloroethylene (TCE) and tetrachloroethylene. 3 figures.

  14. Bioremediation of contaminated groundwater

    DOE Patents [OSTI]

    Hazen, Terry C.; Fliermans, Carl B.

    1995-01-01

    An apparatus and method for in situ remediation of contaminated subsurface soil or groundwater contaminated by chlorinated hydrocarbons. A nutrient fluid is selected to stimulate the growth and reproduction of indigenous subsurface microorganisms that are capable of degrading the contaminants; an oxygenated fluid is selected to create a generally aerobic environment for these microorganisms to degrade the contaminants, leaving only pockets that are anaerobic. The nutrient fluid is injected periodically while the oxygenated fluid is injected continuously and both are extracted so that both are drawn across the plume. The nutrient fluid stimulates microbial colony growth; withholding it periodicially forces the larger, healthy colony of microbes to degrade the contaminants. Treatment is continued until the subsurface concentration of contaminants is reduced to an acceptable, preselected level. The nutrient fluid can be methane and the oxygenated fluid air for stimulating production of methanotrophs to break down chlorohydrocarbons, especially trichloroethylene (TCE) and tetrachloroethylene.

  15. Organic contaminant separator

    DOE Patents [OSTI]

    Del Mar, Peter; Hemberger, Barbara J.

    1991-01-01

    A process of sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium by (a) passing an initial aqueous medium including a minor amount of the organic contaminant through a polyolefin tube having an internal diameter of from about 0.01 to about 2.0 millimeters and being of sufficient length to permit the organic contaminant to adhere to the tube, (b) passing a solvent through the tube, said solvent capable of separating the adhered organic contaminant from the tube. Further, a chromatographic apparatus for sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium, said apparatus including a polyolefin tube having an internal diameter of from about 0.01 to about 2.0 millimeters and being of sufficient length to permit an organic contaminant contained within an aqueous medium passed therethrough to adhere to the tube is disclosed.

  16. radioactivity

    National Nuclear Security Administration (NNSA)

    application of nuclear science. NNSA maintains and enhances the safety, security, reliability and performance of the U.S. nuclear weapons stockpile without nuclear testing;...

  17. Evaluation of Trenchless Installation Technology for Radioactive Wastewater Piping Applications

    SciTech Connect (OSTI)

    Robinson, Sharon M; Jubin, Robert Thomas; Patton, Bradley D; Sullivan, Nicholas M; Bugbee, Kathy P

    2009-09-01

    The U.S. Department of Energy (DOE) Office of Environmental Management (EM) cleanup mission at Oak Ridge National Laboratory (ORNL) includes dispositioning facilities, contaminated legacy materials/waste, and contamination sources and remediation of soil under facilities, groundwater, and surface water to support final Records of Decision (RODs). The Integrated Facilities Disposition Project (IFDP) is a roughly $15B project for completion of the EM mission at Oak Ridge, with a project duration of up to 35 years. The IFDP Mission Need Statement - Critical Decision-0 (CD-0) - was approved by DOE in July 2007, and the IFDP Alternative Selection and Cost Range - Critical Decision-1 (CD-1) - was approved in November 2008. The IFDP scope includes reconfiguration of waste collection and treatment systems as needed to complete the IFDP remediation and decontamination and decommissioning (D&D) missions in a safe and cost-effective manner while maintaining compliance with all governing regulations and bodies and preserving the support of continuing operations at ORNL. A step in the CD-1 approval process included an external technical review (ETR) of technical approaches proposed in the CD-1 document related to the facility reconfiguration for the ORNL radioactive waste and liquid low-level waste management systems. The ETR team recommended that the IFDP team consider the use of trenchless technologies for installing pipelines underground in and around contaminated sites as part of the alternatives evaluations required in support of the CD-2 process. The team specifically recommended evaluating trenchless technologies for installing new pipes in existing underground pipelines as an alternative to conventional open trench installation methods. Potential benefits could include reduction in project costs, less costly underground piping, fewer disruptions of ongoing and surface activities, and lower risk for workers. While trenchless technologies have been used extensively in the

  18. Radioactive Waste Management BasisSept 2001

    SciTech Connect (OSTI)

    Goodwin, S S

    2011-08-31

    This Radioactive Waste Management Basis (RWMB) documents radioactive waste management practices adopted at Lawrence Livermore National Laboratory (LLNL) pursuant to Department of Energy (DOE) Order 435.1, Radioactive Waste Management. The purpose of this RWMB is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

  19. Data collection handbook to support modeling the impacts of radioactive material in soil

    SciTech Connect (OSTI)

    Yu, C.; Cheng, J.J.; Jones, L.G.; Wang, Y.Y.; Faillace, E.; Loureiro, C.; Chia, Y.P.

    1993-04-01

    A pathway analysis computer code called RESRAD has been developed for implementing US Department of Energy Residual Radioactive Material Guidelines. Hydrogeological, meteorological, geochemical, geometrical (size, area, depth), and material-related (soil, concrete) parameters are used in the RESRAD code. This handbook discusses parameter definitions, typical ranges, variations, measurement methodologies, and input screen locations. Although this handbook was developed primarily to support the application of RESRAD, the discussions and values are valid for other model applications.

  20. SHIPPING CONTAINER FOR RADIOACTIVE MATERIAL

    DOE Patents [OSTI]

    Nachbar, H.D.; Biggs, B.B.; Tariello, P.J.; George, K.O.

    1963-01-15

    A shipping container is described for transponting a large number of radioactive nuclear fuel element modules which produce a substantial amount of heat. The container comprises a primary pressure vessel and shield, and a rotatable head having an access port that can be indexed with module holders in the container. In order to remove heat generated in the fuel eleme nts, a heat exchanger is arranged within the container and in contact with a heat exchange fluid therein. The heat exchanger communicates with additional external heat exchangers, which dissipate heat to the atmosphere. (AEC)

  1. Science with Beams of Radioactive Isotopes

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Pacifichem 2015 Pacifichem 2015 The International Chemical Congress of Pacific Basin Societies Science with Beams of Radioactive Isotopes (# 340) Honolulu, Hawaii, USA December 15-20, 2015 Science with Beams of Radioactive Isotopes (# 340) All of the elements that make up the periodic chart have been created from nuclear reactions. Many of the stable nuclei in the universe are daughters of unstable isotopes, and their true origin lies in the stellar reactions of these radioactive isotopes. Thus

  2. One million curies of radioactive material recovered

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Radioactive material recovered One million curies of radioactive material recovered The accomplishment represents a major milestone in protecting our nation and the world from material that could be used in "dirty bombs" by terrorists. December 22, 2014 Rick Day of Los Alamos National Laboratory's International Threat Reduction group and the Off-Site Source Recovery Project (OSRP) holds a non-radioactive training mockup of what a typical cobalt-60 source might look like. The source is

  3. Rail assembly for use in a radioactive environment

    DOE Patents [OSTI]

    Watts, Ralph E.

    1989-01-01

    An improved rail assembly and method of construction thereof is disclosed herein that is particularly adapted for use with a crane trolley in a hot cell environment which is exposed to airborne and liquidborne radioactive contaminants. The rail assembly is generally comprised of a support wall having an elongated, rail-housing recess having a floor, side wall and ceiling. The floor of the recess is defined at least in part by the load-bearing surface of a rail, and is substantially flat, level and crevice-free to facilitate the drainage of liquids out of the recess. The ceiling of the recess overhangs and thereby captures trolley wheels within the recess to prevent them from becoming dislodged from the recess during a seismic disturbance. Finally, the interior of the recess includes a power track having a slot for receiving a sliding electrical connector from the crane trolley. The power track is mounted in an upper corner of the recess with its connector-receiving groove oriented downwardly to facilitate the drainage of liquidborne contaminants and to discourage the collection of airborne contaminants within the track.

  4. Monitor of the concentration of particles of dense radioactive materials in a stream of air

    DOE Patents [OSTI]

    Yule, Thomas J.

    1979-01-01

    A monitor of the concentration of particles of radioactive materials such as plutonium oxide in diameters as small as 1/2 micron includes in combination a first stage comprising a plurality of virtual impactors, a second stage comprising a further plurality of virtual impactors, a collector for concentrating particulate material, a radiation detector disposed near the collector to respond to radiation from collected material and means for moving a stream of air, possibly containing particulate contaminants, through the apparatus.

  5. Conditioning and Repackaging of Spent Radioactive Cs-137 and Co-60 Sealed Sources in Egypt - 13490

    SciTech Connect (OSTI)

    Hasan, M.A.; Selim, Y.T.; El-Zakla, T.

    2013-07-01

    Radioactive Sealed sources (RSSs) are widely use all over the world in medicine, agriculture, industry, research, etc. The accidental misuse and exposure to RSSs has caused significant environmental contamination, serious injuries and many deaths. The high specific activity of the materials in many RSSs means that the spread of as little as microgram quantities can generate significant risk to human health and inhibit the use of buildings and land. Conditioning of such sources is a must to protect humans and environment from the hazard of ionizing radiation and contamination. Conditioning is also increase the security of these sources by decreasing the probability of stolen and/or use in terrorist attacks. According to the law No.7/2010, Egyptian atomic energy authority represented in the hot laboratories and waste management center (centralized waste facility, HLWMC) has the responsibility of collecting, conditioning, storing and management of all types of radioactive waste from all Egyptian territory including spent radioactive sealed sources (SRSSs). This paper explains the conditioning procedures for two of the most common SRSSs, Cs{sup 137} and Co{sup 60} sources which make up more than 90% of the total spent radioactive sealed sources stored in our centralized waste facility as one of the major activities of hot laboratories and waste management center. Conditioning has to meet three main objectives, be acceptable for storage, enable their safe transport, and comply with disposal requirements. (authors)

  6. Agencies complete comprehensive investigation for radioactive...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    a CERCLA (Superfund) Remedial Investigation and Baseline Risk Assessment and Feasibility Study of a radioactive and hazardous waste landfill at the U.S. Department of...

  7. Enterprise Assessments Review of Radioactive Waste Management...

    Energy Savers

    Gaseous Diffusion Plant - December 2015 Enterprise Assessments Review of Radioactive Waste Management at the Portsmouth Gaseous Diffusion Plant - December 2015 December ...

  8. Argonne In-Flight Radioactive Ion Separator

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    - Argonne National Laboratory S. Manikonda, M. Alcorta - Former Collaborators 2 ATLAS In-Flight Radioactive Beam Program Nuclear astrophysics (,p) & (p,) ...

  9. Radioactivity in Precipitation: Methods and Observations from...

    Office of Environmental Management (EM)

    Radioactivity in Precipitation: Methods & Observations from Savannah River Site Dennis Jackson ...operatingops- experiencetritiumplant-info.html 14 15 DOE Nuclear & NRC ...

  10. ORISE: University Radioactive Ion Beam Consortium

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    University Radioactive Ion Beam Consortium The University ... (ORISE) focused on cutting-edge nuclear physics research. ... different gamma-ray and electron detector systems and was ...

  11. Annual Transportation Report for Radioactive Waste Shipments...

    National Nuclear Security Administration (NNSA)

    ANNUAL TRANSPORTATION REPORT FY 2008 Radioactive Waste Shipments to and from the Nevada Test Site (NTS) February 2009 United States Department of Energy National Nuclear Security...

  12. The Model 9977 Radioactive Material Packaging Primer

    SciTech Connect (OSTI)

    Abramczyk, G.

    2015-10-09

    The Model 9977 Packaging is a single containment drum style radioactive material (RAM) shipping container designed, tested and analyzed to meet the performance requirements of Title 10 the Code of Federal Regulations Part 71. A radioactive material shipping package, in combination with its contents, must perform three functions (please note that the performance criteria specified in the Code of Federal Regulations have alternate limits for normal operations and after accident conditions): Containment, the package must “contain” the radioactive material within it; Shielding, the packaging must limit its users and the public to radiation doses within specified limits; and Subcriticality, the package must maintain its radioactive material as subcritical

  13. Health Physics Code System for Evaluating Accidents Involving Radioactive Materials.

    Energy Science and Technology Software Center (OSTI)

    2014-10-01

    Version 03 The HOTSPOT Health Physics codes were created to provide Health Physics personnel with a fast, field-portable calculational tool for evaluating accidents involving radioactive materials. HOTSPOT codes provide a first-order approximation of the radiation effects associated with the atmospheric release of radioactive materials. The developer's website is: http://www.llnl.gov/nhi/hotspot/. Four general programs, PLUME, EXPLOSION, FIRE, and RESUSPENSION, calculate a downwind assessment following the release of radioactive material resulting from a continuous or puff release, explosivemore » release, fuel fire, or an area contamination event. Additional programs deal specifically with the release of plutonium, uranium, and tritium to expedite an initial assessment of accidents involving nuclear weapons. The FIDLER program can calibrate radiation survey instruments for ground survey measurements and initial screening of personnel for possible plutonium uptake in the lung. The HOTSPOT codes are fast, portable, easy to use, and fully documented in electronic help files. HOTSPOT supports color high resolution monitors and printers for concentration plots and contours. The codes have been extensively used by the DOS community since 1985. Tables and graphical output can be directed to the computer screen, printer, or a disk file. The graphical output consists of dose and ground contamination as a function of plume centerline downwind distance, and radiation dose and ground contamination contours. Users have the option of displaying scenario text on the plots. HOTSPOT 3.0.1 fixes three significant Windows 7 issues: � Executable installed properly under "Program Files/HotSpot 3.0". Installation package now smaller: removed dependency on older Windows DLL files which previously needed to \\ � Forms now properly scale based on DPI instead of font for users who change their screen resolution to something other than 100%. This is a more common feature in Windows 7

  14. Cosmic radioactivity and INTEGRAL results

    SciTech Connect (OSTI)

    Diehl, Roland

    2014-05-02

    Gamma-ray lines from radioactive decay of unstable isotopes co-produced by nucleosynthesis in massive stars and supernova have been measured since more than thirty years. Over the past ten years, INTEGRAL complemented the first sky survey made by COMPTEL. The {sup 26}A1 isotope with 1 My decay time had been first direct proof of currently-ongoing nucleosynthesis in our Galaxy. This has now become a tool to study the ?My history of specific source regions, such as massive-star groups and associations in nearby regions which can be discriminated from the galactic-plane background, and the inner Galaxy, where Doppler shifted lines add to the astronomical information about bar and spiral structure. Recent findings suggest that superbubbles show a remarkable asymmetry, on average, in the spiral arms of our galaxy. {sup 60}Fe is co-produced by the sources of {sup 26}A1, and the isotopic ratio from their nucleosynthesis encodes stellar-structure information. Annihilation gamma-rays from positrons in interstellar space show a puzzling bright and extended source region central to our Galaxy, but also may be partly related to nucleosynthesis. {sup 56}Ni and {sup 44}Ti isotope gamma-rays have been used to constrain supernova explosion mechanisms. Here we report latest results using the accumulated multi-year database of INTEGRAL observations, and discuss their astrophysical interpretations, connecting to other traces of cosmic radioactivity and to other cosmic messengers.

  15. SEPARATION OF RADIOACTIVE COLUMBIUM TRACER

    DOE Patents [OSTI]

    Glendenin, L.E.; Gest, H.

    1958-08-26

    A process is presented for the recovery of radioactive columbium from solutions containing such columbium together with radioactive tellurium. The columbium and tellurium values are separated from such solutions by means of an inorganic oxide carrier precipitate, such as MnO/sub 2/. This oxide carrier precipitate and its associated columbium and telluriuan values are then dissolved in an aqueous acidic solution and nonradioactive tellurium, in an ionic form, is then introduced into such solution, for example in the form of H/sub 2/TeO/sub 3/. The tellurium present in the solution is then reduced to the elemental state and precipitates, and is then separated from the supernataat solution. A basic acetate precipitate is formed in the supernatant and carries the remaining columblum values therefrom. After separation, this basic ferric acetate precipitate is dissolved, and the ferric ions are removed by means of an organic solvent extraction process utilizing ether. The remaining solution contains carrier-free columbium as its only metal ion.

  16. Contamination Control Techniques

    SciTech Connect (OSTI)

    EBY, J.L.

    2000-05-16

    Welcome to a workshop on contamination Control techniques. This work shop is designed for about two hours. Attendee participation is encouraged during the workshop. We will address different topics within contamination control techniques; present processes, products and equipment used here at Hanford and then open the floor to you, the attendees for your input on the topics.

  17. Bioremediation of contaminated groundwater

    DOE Patents [OSTI]

    Hazen, T.C.; Fliermans, C.B.

    1994-01-01

    Disclosed is an apparatus and method for in situ remediation of contaminated subsurface soil or groundwater contaminated by chlorinated hydrocarbons. A nutrient fluid (NF) is selected to simulated the growth and reproduction of indigenous subsurface microorganisms capable of degrading the contaminants; an oxygenated fluid (OF) is selected to create an aerobic environment with anaerobic pockets. NF is injected periodically while OF is injected continuously and both are extracted so that both are drawn across the plume. NF stimulates microbial colony growth; withholding it periodically forces the larger, healthy colony of microbes to degrade the contaminants. Treatment is continued until the subsurface concentration of contaminants is acceptable. NF can be methane and OF be air, for stimulating production of methanotrophs to break down chlorohydrocarbons, especially TCE and tetrachloroethylene.

  18. First Stabilization and Disposal of Radioactive Zinc Bromide at the SRS

    SciTech Connect (OSTI)

    Denny, J.K.

    2003-02-12

    Facilities Disposition Projects (FDP) personnel at Savannah River Site (SRS) implement the Inactive Facility Risk Management Program to drive down risk and costs in SRS inactive facilities. The program includes cost-effective techniques to identify and dispose of hazardous chemicals and radioactive waste from inactive facilities, thereby ensuring adequate protection of the public, workers and the environment. In June 1998, FDP conducted an assessment of the inactive C-Reactor Facility to assure that chemical and radiological hazards had been identified and were being safely managed. The walkdown identified the need to mitigate a significant hazard associated with storing approximately 13,400 gallons of liquid radioactive Zinc Bromide in three aging railcar tankers outside of the facility. No preventive maintenance was being performed on the rusting tankers and a leak could send radioactive Zinc Bromide into an outfall and offsite to the Savannah River. In 2001, DOE-Savannah River (DOE- SR) funded the FDP to eliminate the identified hazard by disposing of the radioactive Zinc Bromide solution and the three contaminated railcar tankers. This paper describes the innovative, cost-effective approaches and technology used to perform the first stabilization and disposal of radioactive Zinc Bromide at SRS.

  19. Integrated data base report - 1994: US spent nuclear fuel and radioactive waste inventories, projections, and characteristics

    SciTech Connect (OSTI)

    1995-09-01

    The Integrated Data Base Program has compiled historic data on inventories and characteristics of both commercial and U.S. Department of Energy (DOE) spent nuclear fuel and commercial and U.S. government-owned radioactive wastes. Except for transuranic wastes, inventories of these materials are reported as of December 31, 1994. Transuranic waste inventories are reported as of December 31, 1993. All spent nuclear fuel and radioactive waste data reported are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest DOE/Energy Information Administration (EIA) projections of U.S. commercial nuclear power growth and the expected DOE-related and private industrial and institutional activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent nuclear fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, DOE Environmental Restoration Program contaminated environmental media, commercial reactor and fuel-cycle facility decommissioning wastes, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through the calendar-year 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions.

  20. A process for treatment of APC residues from municipal solid waste incinerators: Preliminary results

    SciTech Connect (OSTI)

    Hjelmar, O.; Birch, H.

    1997-12-01

    The problem of environmentally safe management of the residues from air pollution control (APC) systems at municipal solid waste (MSW) incinerators, particularly the residues from the semidry/dry acid gas cleaning processes (dry scrubber residues), has not yet been solved in a satisfactory and sustainable manner. These residues are in many cases simply stored indefinitely in big bags or they are landfilled under conditions that in the long term may not be able to prevent potentially harmful constituents from leaching and leaking into the environment. The APC residues, including fly ash, are in many countries classified as hazardous or special waste due to their high contents of soluble salts (particularly calcium chloride) and trace elements/heavy metals. The semidry/dry APC residues are strongly alkaline due to a content of excess lime, and the high pH favours the leaching of several contaminants, particularly lead. This paper presents preliminary results of a study of a process for treatment of semidry/dry APC residues and fly ash from MSW incinerators. In the process the contaminants are partly removed, partly immobilized thus improving the above mentioned situation and allowing for subsequent safe management (i.e. utilization or landfilling) of the treated residues.

  1. Beneficial reuse of US DOE Radioactive scrap metal

    SciTech Connect (OSTI)

    Motl, G.P.

    1995-01-19

    The US Department of Energy (DOE) has more than 2.5 million tons of radioactive scrap metal (RSM) that is either in inventory or expected to be generated over the next 25 years as major facilities within the weapons complex are decommissioned. Since much of this metal cannot be decontaminated easily, past practice has been to either retain this material in inventory or ship it to DOE disposal sites for burial. In an attempt to conserve natural resources and to avoid burial of this material at DOE disposal sites, options are now being explored to ``beneficially reuse`` this material. Under the beneficial reuse concept, RSM that cannot be decontaminated and free released is used in applications where the inherent contamination is not a detriment to its end use. This paper describes initiatives currently in progress in the United States that support the DOE beneficial reuse concept.

  2. Diverter assembly for radioactive material

    DOE Patents [OSTI]

    Andrews, Katherine M.; Starenchak, Robert W.

    1989-01-01

    A diverter assembly for diverting a pneumatically conveyed holder for a radioactive material between a central conveying tube and one of a plurality of radially offset conveying tubes includes an airtight container. A diverter tube having an offset end is suitably mounted in the container for rotation. A rotary seal seals one end of the diverter tube during and after rotation of the diverter tube while a spring biased seal seals the other end of the diverter tube which mvoes between various offset conveying tubes. An indexing device rotatably indexes the diverter tube and this indexing device is driven by a suitable drive. The indexing mechanism is preferably a geneva-type mechanism to provide a locking of the diverter tube in place.

  3. Method for immobilizing radioactive iodine

    DOE Patents [OSTI]

    Babad, Harry; Strachan, Denis M.

    1980-01-01

    Radioactive iodine, present as alkali metal iodides or iodates in an aqueous solution, is incorporated into an inert solid material for long-term storage by adding to the solution a stoichiometric amount with respect to the formation of a sodalite (3M.sub.2 O.3Al.sub.2 O.sub.3. 6SiO.sub.2.2MX, where M=alkali metal; X=I.sup.- or IO.sub.3.sup.-) of an alkali metal, alumina and silica, stirring the solution to form a homogeneous mixture, drying the mixture to form a powder, compacting and sintering the compacted powder at 1073 to 1373 K (800.degree. to 1100.degree. C.) for a time sufficient to form sodalite.

  4. Diverter assembly for radioactive material

    DOE Patents [OSTI]

    Andrews, K.M.; Starenchak, R.W.

    1988-04-11

    A diverter assembly for diverting a pneumatically conveyed holder for a radioactive material between a central conveying tube and one of a plurality of radially offset conveying tubes includes an airtight container. A diverter tube having an offset end is suitably mounted in the container for rotation. A rotary seal seals one end of the diverter tube during and after rotation of the diverter tube while a spring biased seal seals the other end of the diverter tube which moves between various offset conveying tubes. An indexing device rotatably indexes the diverter tube and this indexing device is driven by a suitable drive. The indexing mechanism is preferably a geneva-type mechanism to provide a locking of the diverter tube in place. 3 figs.

  5. Apparatus and method for radioactive waste screening

    DOE Patents [OSTI]

    Akers, Douglas W.; Roybal, Lyle G.; Salomon, Hopi; Williams, Charles Leroy

    2012-09-04

    An apparatus and method relating to screening radioactive waste are disclosed for ensuring that at least one calculated parameter for the measurement data of a sample falls within a range between an upper limit and a lower limit prior to the sample being packaged for disposal. The apparatus includes a radiation detector configured for detecting radioactivity and radionuclide content of the of the sample of radioactive waste and generating measurement data in response thereto, and a collimator including at least one aperture to direct a field of view of the radiation detector. The method includes measuring a radioactive content of a sample, and calculating one or more parameters from the radioactive content of the sample.

  6. Production of high intensity radioactive beams

    SciTech Connect (OSTI)

    Nitschke, J.M.

    1990-04-01

    The production of radioactive nuclear beams world-wide is reviewed. The projectile fragmentation and the ISOL approaches are discussed in detail, and the luminosity parameter is used throughout to compare different production methods. In the ISOL approach a thin and a thick target option are distinguished. The role of storage rings in radioactive beam research is evaluated. It is concluded that radioactive beams produced by the projectile fragmentation and the ISOL methods have complementary characteristics and can serve to answer different scientific questions. The decision which kind of facility to build has to depend on the significance and breadth of these questions. Finally a facility for producing a high intensity radioactive beams near the Coulomb barrier is proposed, with an expected luminosity of {approximately}10{sup 39} cm{sup {minus}2} s{sup {minus}1}, which would yield radioactive beams in excess of 10{sup 11} s{sup {minus}1}. 9 refs., 3 figs., 7 tabs.

  7. IN SITU REMEDIATION OF CONTAMINATED SEDIMENTS - ACTIVE CAPPING TECHNOLOGY

    SciTech Connect (OSTI)

    Knox, A.; Roberts, J.; Paller, M.; Reible, D.

    2010-09-02

    Active capping is a relatively new approach for treating contaminated sediments. It involves applying chemically reactive amendments to the sediment surface. The main role of active caps is to stabilize contaminants in contaminated sediments, lower the bioavailable pool of contaminants, and reduce the release of contaminants to the water column. Metals are common contaminants in many marine and fresh water environments as a result of industrial and military activities. The mobile, soluble forms of metals are generally considered toxic. Induced chemical precipitation of these metals can shift toxic metals from the aqueous phase to a solid, precipitated phase which is often less bioavailable. This approach can be achieved through application of sequestering agents such as rock phosphates, organoclays, zeolites, clay minerals, and biopolymers (e.g., chitosan) in active capping technology. Active capping holds great potential for a more permanent solution that avoids residual risks resulting from contaminant migration through the cap or breaching of the cap. In addition to identifying superior active capping agents, research is needed to optimize application techniques, application rates, and amendment combinations that maximize sequestration of contaminants. A selected set of active capping treatment technologies has been demonstrated at a few sites, including a field demonstration at the Savannah River Site, Aiken, SC. This demonstration has provided useful information on the effects of sequestering agents on metal immobilization, bioavailability, toxicity, and resistance to mechanical disturbance.

  8. Melt processing of radioactive waste: A technical overview

    SciTech Connect (OSTI)

    Schlienger, M.E.; Buckentin, J.M.; Damkroger, B.K.

    1997-04-01

    Nuclear operations have resulted in the accumulation of large quantities of contaminated metallic waste which are stored at various DOE, DOD, and commercial sites under the control of DOE and the Nuclear Regulatory Commission (NRC). This waste will accumulate at an increasing rate as commercial nuclear reactors built in the 1950s reach the end of their projected lives, as existing nuclear powered ships become obsolete or unneeded, and as various weapons plants and fuel processing facilities, such as the gaseous diffusion plants, are dismantled, repaired, or modernized. For example, recent estimates of available Radioactive Scrap Metal (RSM) in the DOE Nuclear Weapons Complex have suggested that as much as 700,000 tons of contaminated 304L stainless steel exist in the gaseous diffusion plants alone. Other high-value metals available in the DOE complex include copper, nickel, and zirconium. Melt processing for the decontamination of radioactive scrap metal has been the subject of much research. A major driving force for this research has been the possibility of reapplication of RSM, which is often very high-grade material containing large quantities of strategic elements. To date, several different single and multi-step melting processes have been proposed and evaluated for use as decontamination or recycling strategies. Each process offers a unique combination of strengths and weaknesses, and ultimately, no single melt processing scheme is optimum for all applications since processes must be evaluated based on the characteristics of the input feed stream and the desired output. This paper describes various melt decontamination processes and briefly reviews their application in developmental studies, full scale technical demonstrations, and industrial operations.

  9. DEVELOPMENT OF GLASS MATRICES FOR HLW RADIOACTIVE WASTES

    SciTech Connect (OSTI)

    Jantzen, C.

    2010-03-18

    Vitrification is currently the most widely used technology for the treatment of high level radioactive wastes (HLW) throughout the world. Most of the nations that have generated HLW are immobilizing in either borosilicate glass or phosphate glass. One of the primary reasons that glass has become the most widely used immobilization media is the relative simplicity of the vitrification process, e.g. melt waste plus glass forming frit additives and cast. A second reason that glass has become widely used for HLW is that the short range order (SRO) and medium range order (MRO) found in glass atomistically bonds the radionuclides and governs the melt properties such as viscosity, resistivity, sulphate solubility. The molecular structure of glass controls contaminant/radionuclide release by establishing the distribution of ion exchange sites, hydrolysis sites, and the access of water to those sites. The molecular structure is flexible and hence accounts for the flexibility of glass formulations to waste variability. Nuclear waste glasses melt between 1050-1150 C which minimizes the volatility of radioactive components such as Tc{sup 99}, Cs{sup 137}, and I{sup 129}. Nuclear waste glasses have good long term stability including irradiation resistance. Process control models based on the molecular structure of glass have been mechanistically derived and have been demonstrated to be accurate enough to control the world's largest HLW Joule heated ceramic melter in the US since 1996 at 95% confidence.

  10. New Remote Method for Estimation of Contamination Levels of Reactor Equipment - 13175

    SciTech Connect (OSTI)

    Danilovich, Alexey; Ivanov, Oleg; Potapov, Victor; Semenov, Sergey; Semin, Ilya; Smirnov, Sergey; Stepanov, Vyacheslav; Volkovich, Anatoly

    2013-07-01

    Projects for decommissioning of shutdown reactors and reactor facilities carried out in several countries, including Russia. In the National Research Centre 'Kurchatov Institute' decontamination and decommissioning of the research reactor MR (Material Testing Reactor) has been initiated. The research reactor MR has a long history and consists of nine loop facilities for experiments with different kinds of fuel. During the operation of main and auxiliary equipment of reactors it was subjected to strong radioactive contamination. The character of this contamination requires individual strategies for the decontamination work. This requires information about the character of the distribution of radioactive contamination of equipment in the premises. A detailed radiation survey of these premises using standard dosimetric equipment is almost impossible because of high levels of radiation and high-density of the equipment that does not allow identifying the most active fragments using standard tools of measurement. The problem can be solved using the method of remote measurements of distribution of radioactivity with help of the collimated gamma-ray detectors. For radiation surveys of the premises of loop installations remotely operated spectrometric collimated system was used [1, 2, 3]. As a result of the work, maps of the distribution of activity and dose rate for surveyed premises were plotted and superimposed on its photo. The new results of measurements in different areas of the reactor and at its loop installations, with emphasis on the radioactive survey of highly-contaminated samples, are presented. (authors)

  11. Contaminant desorption during long-term leaching of hydroxide-weathered Hanford sediments

    SciTech Connect (OSTI)

    Thompson, A.; Steefel, C.I.; Perdrial, N.; Chorover, J.

    2009-11-01

    Considerable efforts have been made toward understanding the behavior of contaminants introduced into sediments surrounding high-level radioactive waste (HLRW) storage sites at several Department of Energy (DOE) facilities (Hanford Site, WA; Savannah River Site, SC; Oak Ridge Site, TN).

  12. Influence of Radioactivity on Surface Charging and Aggregation...

    Office of Scientific and Technical Information (OSTI)

    of Radioactivity on Surface Charging and Aggregation Kinetics of Particles in the Atmosphere Citation Details In-Document Search Title: Influence of Radioactivity on Surface ...

  13. No increase in background, manmade radioactivity for Los Alamos...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Man-Made Radioactivity For Los Alamos area No increase in background, manmade radioactivity for Los Alamos area Two aerial flyovers found that radioisotopes and their associated...

  14. Influence of surface potential on the adhesive force of radioactive...

    Office of Scientific and Technical Information (OSTI)

    of radioactive gold surfaces Citation Details In-Document Search Title: Influence of surface potential on the adhesive force of radioactive gold surfaces Authors: Kweon, Hyojin ...

  15. Safety and Security Technologies for Radioactive Material Shipments...

    Office of Environmental Management (EM)

    and Security Technologies for Radioactive Material Shipments Safety and Security Technologies for Radioactive Material Shipments PDF icon Safety and Security Technologies for...

  16. The Model 9977 Radioactive Material Packaging Primer (Technical...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: The Model 9977 Radioactive Material Packaging Primer Citation Details In-Document Search Title: The Model 9977 Radioactive Material Packaging Primer The Model...

  17. Report on Separate Disposal of Defense High- Level Radioactive...

    Office of Environmental Management (EM)

    Radioactive Waste March 2015 This page left blank. i EXECUTIVE SUMMARY Purpose This report considers whether a separate repository for high-level radioactive waste (HLW) ...

  18. Radioactive Waste Issues in Major Nuclear Incidents | Department...

    Office of Environmental Management (EM)

    Waste Issues in Major Nuclear Incidents Radioactive Waste Issues in Major Nuclear Incidents S.Y. Chen*, Illinois Institute of Technology Abstract: Large amounts of radioactive ...

  19. Hanford Site Solid (Radioactive and Hazardous) Waste Program...

    Office of Environmental Management (EM)

    Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact 5 Statement, ... Site Solid (Radioactive and Hazardous) Waste Program Environmental 3 Impact Statement ...

  20. Management Not Available 12 MANAGEMENT OF RADIOACTIVE AND NON...

    Office of Scientific and Technical Information (OSTI)

    87 Oak Ridge model conference: Proceedings: Volume I, Part 3, Waste Management Not Available 12 MANAGEMENT OF RADIOACTIVE AND NON-RADIOACTIVE WASTES FROM NUCLEAR FACILITIES; 11...

  1. Organic contaminant separator

    DOE Patents [OSTI]

    Del Mar, Peter

    1993-01-01

    A process of sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium by (a) passing an initial aqueous medium including a minor amount of the organic contaminant through a composite tube comprised of a blend of a polyolefin and a polyester, the composite tube having an internal diameter of from about 0.1 to about 2.0 millimeters and being of sufficient length to permit the organic contaminant to adhere to the composite tube, (b) passing a solvent through the composite tube, said solvent capable of separating the adhered organic contaminant from the composite tube. Further, an extraction apparatus for sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium, said apparatus including a composite tube comprised of a blend of a polyolefin and a polyester, the composite tube having an internal diameter of from about 0.1 to about 2.0 millimeters and being of sufficient length to permit an organic contaminant contained within an aqueous medium passed therethrough to adhere to the composite tube is disclosed.

  2. Organic contaminant separator

    DOE Patents [OSTI]

    Del Mar, Peter

    1995-01-01

    A process of sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium by (a) passing an initial aqueous medium including a minor amount of the organic contaminant through a composite tube comprised of a blend of a polyolefin and a polyester, the composite tube having an internal diameter of from about 0.1 to about 2.0 millimeters and being of sufficient length to permit the organic contaminant to adhere to the composite tube, (b) passing a solvent through the composite tube, said solvent capable of separating the adhered organic contaminant from the composite tube. Further, an extraction apparatus for sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium, said apparatus including a composite tube comprised of a blend of a polyolefin and a polyester, the composite tube having an internal diameter of from about 0.1 to about 2.0 millimeters and being of sufficient length to permit an organic contaminant contained within an aqueous medium passed therethrough to adhere to the composite tube is disclosed.

  3. Organic contaminant separator

    DOE Patents [OSTI]

    Del Mar, P.

    1993-12-28

    A process is presented of sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium by (a) passing an initial aqueous medium including a minor amount of the organic contaminant through a composite tube comprised of a blend of a polyolefin and a polyester, the composite tube having an internal diameter of from about 0.1 to about 2.0 millimeters and being of sufficient length to permit the organic contaminant to adhere to the composite tube, (b) passing a solvent through the composite tube. The solvent is capable of separating the adhered organic contaminant from the composite tube. Further, an extraction apparatus is presented for sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium. The apparatus includes a composite tube comprised of a blend of a polyolefin and a polyester. The composite tube has an internal diameter of from about 0.1 to about 2.0 millimeters and has sufficient length to permit an organic contaminant contained within an aqueous medium passed therethrough to adhere to the composite tube. 2 figures.

  4. Organic contaminant separator

    DOE Patents [OSTI]

    Mar, Peter D.

    1994-01-01

    A process of sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium by (a) passing an initial aqueous medium including a minor amount of the organic contaminant through a composite tube including a polymeric base material selected from the group of polyolefins and polyfluorocarbons and particles of a carbon allotrope material adfixed to the inner wall of the polymeric base material, the composite tube having an internal diameter of from about 0.1 to about 2.0 millimeters and being of sufficient length to permit the organic contaminant to adhere to the composite tube, (b) passing a solvent through the composite tube, said solvent capable of separating the adhered organic contaminant from the composite tube. Further, an extraction apparatus for sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium, said apparatus including a composite tube including a polymeric base material selected from the group of polyolefins and polyfluorocarbons and particles of a carbon allotrope material adfixed to the inner wall of the polymeric base material, the composite tube having an internal diameter of from about 0.1 to about 2.0 millimeters and being of sufficient length to permit an organic contaminant contained within an aqueous medium passed therethrough to adhere to the composite tube is disclosed.

  5. Fate of /sup 14/C-allylalcohol herbicide in soils and crop residues

    SciTech Connect (OSTI)

    Scheunert, I.; Vockel, D.; Klein, W.; Korte, F.

    1981-01-01

    Residue disappearance and leaching of /sup 14/C-allylalcohol from different soils were studied in laboratory experiments. Additionally, the uptake of residues by lettuce and carrots was investigated in the greenhouse. In laboratory experiments, residue disappearance and leaching from soils was correlated negatively to the organic matter content. In greenhouse experiments with a sandy loam soil at an application rate normally used in practice, an average of 12.5% of the applied radioactivity was recovered after an eight day interval between application and sowing. Furthermore, an average of 8% (sum in soil and plants) of the applied radioactivity was recovered after lettuce or carrot growing. Uptake of residues was higher by carrots than by lettuce, and higher by lettuce roots than by lettuce tops. No bioaccumulation was observed. The residues in soils and plants were, to a high percent-age, unextractable and, to a smaller extent, fully water-soluble products. Unchanged allylalcohol could not be detected by the analytical methods used.

  6. Natural Gamma Emitters after a Selective Chemical Separation of a TENORM residue: Preliminary Results

    SciTech Connect (OSTI)

    Alves de Freitas, Antonio; Abrao, Alcidio; Godoy dos Santos, Adir Janete; Pecequilo, Brigitte Roxana Soreanu

    2008-08-07

    An analytical procedure was established in order to obtain selective fractions containing radium isotopes ({sup 228}Ra), thorium ({sup 232}Th), and rare earths from RETOTER (REsiduo de TOrio e TErras Raras), a solid residue rich in rare earth elements, thorium isotopes and small amount of natural uranium generated from the operation of a thorium pilot plant for purification and production of pure thorium nitrate at IPEN -CNEN/SP. The paper presents preliminary results of {sup 228}Ra, {sup 226}Ra, {sup 238}U, {sup 210}Pb, and {sup 40}K concentrations in the selective fractions and total residue determined by high-resolution gamma spectroscopy, considering radioactive equilibrium of the samples.

  7. Gross Alpha Beta Radioactivity in Air Filters Measured by Ultra Low Level alpha/beta Counter

    SciTech Connect (OSTI)

    Cfarku, Florinda; Bylyku, Elida; Bakiu, Erjona; Perpunja, Flamur; Deda, Antoneta; Dhoqina, Polikron

    2010-01-21

    Study of radioactivity in air as very important for life is done regularly using different methods in every country. As a result of nuclear reactors, atomic centrals, institutions and laboratories, which use the radioactivity substances in open or closed sources, there are a lot radioactive wastes. Mixing of these wastes after treatment with rivers and lakes waters makes very important control of radioactivity. At the other side nuclear and radiological accidents are another source of the contamination of air and water. Due to their radio toxicity, especially those of Sr{sup 90}, Pu{sup 239}, etc. a contamination hazard for human begins exist even at low concentration levels. Measurements of radioactivity in air have been performed in many parts of the world mostly for assessment of the doses and risk resulting from consuming air. In this study we present the results of international comparison organized by IAEA Vienna, Austria for the air filters spiked with unknown Alpha and Beta Activity. For the calibration of system we used the same filters spiked: a) with Pu-239 as alpha source; b) Sr-90 as beta source and also the blank filter. The measurements of air filter samples after calibration of the system are done with Ultra Low Level alpha/beta Counter (MPC 9604) Protean Instrument Corporation. The high sensitivity of the system for the determination of the Gross Alpha and Beta activity makes sure detection of low values activity of air filters. Our laboratory results are: Aalpha = (0.19+-0.01) Bq/filter and Aalpha(IAEA) = (0.17+-0.009) Bq/filter; A{sub b}eta = (0.33+-0.009) Bq/filter and A{sub b}eta (IAEA) = (0.29+-0.01) Bq/filter. As it seems our results are in good agreement with reference values given by IAEA (International Atomic Energy Agency).

  8. Progress in Recycling Elemental Lead for Reuse of Radiologically-Contaminated within the Nuclear Industry

    SciTech Connect (OSTI)

    Reno, C.

    2003-02-26

    Duratek successfully demonstrated a process for reusing contaminated lead as a shielding material for radioactive waste containers. This process offers the Department of Energy (DOE) and commercial utilities a cost-effective strategy for reusing a material that would otherwise require costly disposal as a mixed waste. During the past year, GTS-Duratek Inc. approximately 500,000 pounds of contaminated and potentially contaminated lead into shielding (bricks) and shielded steel containers. The lead originated from the DOE facilities including INEEL, Hanford, Argonne, Los Alamos, Berkeley and Sandia.

  9. Evidence That Certain Waste Tank Headspace Vapor Samples Were Contaminated by Semivolatile Polymer Additives

    SciTech Connect (OSTI)

    Huckaby, James L.

    2006-02-09

    Vapor samples collected from the headspaces of the Hanford Site high-level radioactive waste tanks in 1994 and 1995 using the Vapor Sampling System (VSS) were reported to contain trace levels of phthalates, antioxidants, and certain other industrial chemicals that did not have a logical origin in the waste. This report examines the evidence these chemicals were sampling artifacts (contamination) and identifies the chemicals reported as headspace constituents that may instead have been contaminants. Specific recommendations are given regarding the marking of certain chemicals as suspect on the basis they were sampling manifold contaminants.

  10. X-231B technology demonstration for in situ treatment of contaminated soil: Contaminant characterization and three dimensional spatial modeling

    SciTech Connect (OSTI)

    West, O.R.; Siegrist, R.L.; Mitchell, T.J.; Pickering, D.A.; Muhr, C.A.; Greene, D.W.; Jenkins, R.A.

    1993-11-01

    Fine-textured soils and sediments contaminated by trichloroethylene (TCE) and other chlorinated organics present a serious environmental restoration challenge at US Department of Energy (DOE) sites. DOE and Martin Marietta Energy Systems, Inc. initiated a research and demonstration project at Oak Ridge National Laboratory. The goal of the project was to demonstrate a process for closure and environmental restoration of the X-231B Solid Waste Management Unit at the DOE Portsmouth Gaseous Diffusion Plant. The X-231B Unit was used from 1976 to 1983 as a land disposal site for waste oils and solvents. Silt and clay deposits beneath the unit were contaminated with volatile organic compounds and low levels of radioactive substances. The shallow groundwater was also contaminated, and some contaminants were at levels well above drinking water standards. This document begins with a summary of the subsurface physical and contaminant characteristics obtained from investigative studies conducted at the X-231B Unit prior to January 1992 (Sect. 2). This is then followed by a description of the sample collection and analysis methods used during the baseline sampling conducted in January 1992 (Sect. 3). The results of this sampling event were used to develop spatial models for VOC contaminant distribution within the X-231B Unit.

  11. JV Task 99-Integrated Risk Analysis and Contaminant Reduction, Watford City, North Dakota

    SciTech Connect (OSTI)

    Jaroslav Solc; Barry W. Botnen

    2007-05-31

    The Energy & Environmental Research Center (EERC) conducted a limited site investigation and risk analyses for hydrocarbon-contaminated soils and groundwater at a Construction Services, Inc., site in Watford City, North Dakota. Site investigation confirmed the presence of free product and high concentrations of residual gasoline-based contaminants in several wells, the presence of 1,2-dichloroethane, and extremely high levels of electrical conductivity indicative of brine residuals in the tank area south of the facility. The risk analysis was based on compilation of information from the site-specific geotechnical investigation, including multiphase extraction pilot test, laser induced fluorescence probing, evaluation of contaminant properties, receptor survey, capture zone analysis and evaluation of well head protection area for municipal well field. The project results indicate that the risks associated with contaminant occurrence at the Construction Services, Inc. site are low and, under current conditions, there is no direct or indirect exposure pathway between the contaminated groundwater and soils and potential receptors.

  12. Radioactive anomaly discrimination from spectral ratios

    DOE Patents [OSTI]

    Maniscalco, James; Sjoden, Glenn; Chapman, Mac Clements

    2013-08-20

    A method for discriminating a radioactive anomaly from naturally occurring radioactive materials includes detecting a first number of gamma photons having energies in a first range of energy values within a predetermined period of time and detecting a second number of gamma photons having energies in a second range of energy values within the predetermined period of time. The method further includes determining, in a controller, a ratio of the first number of gamma photons having energies in the first range and the second number of gamma photons having energies in the second range, and determining that a radioactive anomaly is present when the ratio exceeds a threshold value.

  13. Radioactive Waste Management and Nuclear Facility Decommissioning Progress in Iraq - 13216

    SciTech Connect (OSTI)

    Al-Musawi, Fouad; Shamsaldin, Emad S.; Jasim, Hadi; Cochran, John R.

    2013-07-01

    Directorate (IDD) is responsible for decommissioning activities. The IDD and the RWTMD work together on decommissioning projects. The IDD has developed plans and has completed decommissioning of the GeoPilot Facility in Baghdad and the Active Metallurgical Testing Laboratory (LAMA) in Al-Tuwaitha. Given this experience, the IDD has initiated work on more dangerous facilities. Plans are being developed to characterize, decontaminate and decommission the Tamuz II Research Reactor. The Tammuz Reactor was destroyed by an Israeli air-strike in 1981 and the Tammuz II Reactor was destroyed during the First Gulf War in 1991. In addition to being responsible for managing the decommissioning wastes, the RWTMD is responsible for more than 950 disused sealed radioactive sources, contaminated debris from the first Gulf War and (approximately 900 tons) of naturally-occurring radioactive materials wastes from oil production in Iraq. The RWTMD has trained staff, rehabilitated the Building 39 Radioactive Waste Storage building, rehabilitated portions of the French-built Radioactive Waste Treatment Station, organized and secured thousands of drums of radioactive waste organized and secured the stores of disused sealed radioactive sources. Currently, the IDD and the RWTMD are finalizing plans for the decommissioning of the Tammuz II Research Reactor. (authors)

  14. Radioactive Material or Multiple Hazardous Materials Decontamination

    Energy.gov [DOE]

    The purpose of this procedure is to provide guidance for performing decontamination of individuals who have entered a “hot zone” during transportation incidents involving  radioactive.

  15. CRAD, NNSA- Radioactive Waste Management Program (RW)

    Office of Energy Efficiency and Renewable Energy (EERE)

    CRAD for Radioactive Waste Management Program (RW). Criteria Review and Approach Documents (CRADs) that can be used to conduct a well-organized and thorough assessment of elements of safety and health programs.

  16. Radioactive Materials at SSRL | Stanford Synchrotron Radiation...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Run, there are requests from users to transport and use small amounts of radioactive material in their experiments, either as stand alone samples or in a matrix of other...

  17. 1969 AUDIT OF SRP RADIOACTIVE WASTE

    Office of Scientific and Technical Information (OSTI)

    969 AUDIT OF SRP RADIOACTIVE WASTE bY C . Ashley A p r i l 1970 Radiological Sciences ... CONTENTS Page I n t r o d u c t i o n . . . . . . . . . . . . . . . . . . . . . . . . 5 ...

  18. Principles for Sampling Airborne Radioactivity from Stacks

    SciTech Connect (OSTI)

    Glissmeyer, John A.

    2010-10-18

    This book chapter describes the special processes involved in sampling the airborne effluents from nuclear faciities. The title of the book is Radioactive Air Sampling Methods. The abstract for this chapter was cleared as PNNL-SA-45941.

  19. Radioactive materials shipping cask anticontamination enclosure

    DOE Patents [OSTI]

    Belmonte, Mark S.; Davis, James H.; Williams, David A.

    1982-01-01

    An anticontamination device for use in storing shipping casks for radioactive materials comprising (1) a seal plate assembly; (2) a double-layer plastic bag; and (3) a water management system or means for water management.

  20. Washing of Rocky Flats Combustible Residues (Conducted March - May 1995)

    SciTech Connect (OSTI)

    Mary E. Barr; Ann R. Schake; David A. Romero; Gordon D. Jarvinen

    1999-03-01

    The scope of this project is to determine the feasibility of washing plutonium-containing combustible residues using ultrasonic disruption as a method for dislodging particulate. Removal of plutonium particulate and, to a lesser extent, solubilized plutonium from the organic substrate should substantially reduce potential fire, explosion or radioactive release hazards due to radiolytic hydrogen generation or high flammability. Tests were conducted on polypropylene filters which were used as pre-filters in the rich-residue ion-exchange process at the Los Alamos Plutonium Facility. These filters are similar to the Ful-Flo{reg_sign} cartridges used at Rocky Flats that make up a substantial fraction of the combustible residues with the highest hazard rating. Batch experiments were run on crushed filter material in order to determine the amount of Pu removed by stirring, stirring and sonication, and stirring and sonication with the introduction of Pu-chelating water-soluble polymers or surfactants. Significantly more Pu is removed using sonication and sonication with chelators than is removed with mechanical stirring alone.

  1. Process for minimizing solids contamination of liquids from coal pyrolysis

    DOE Patents [OSTI]

    Wickstrom, Gary H.; Knell, Everett W.; Shaw, Benjamin W.; Wang, Yue G.

    1981-04-21

    In a continuous process for recovery of liquid hydrocarbons from a solid carbonaceous material by pyrolysis of the carbonaceous material in the presence of a particulate source of heat, particulate contamination of the liquid hydrocarbons is minimized. This is accomplished by removing fines from the solid carbonaceous material feed stream before pyrolysis, removing fines from the particulate source of heat before combining it with the carbonaceous material to effect pyrolysis of the carbonaceous material, and providing a coarse fraction of reduced fines content of the carbon containing solid residue resulting from the pyrolysis of the carbonaceous material before oxidizing carbon in the carbon containing solid residue to form the particulate source of heat.

  2. Integrating Individual-Based Indices of Contaminant Effects

    DOE PAGES-Beta [OSTI]

    Rowe, Christopher L.; Hopkins, William A.; Congdon, Justin D.

    2001-01-01

    Habitat contamination can alter numerous biological processes in individual organisms. Examining multiple individual-level responses in an integrative fashion is necessary to understand how individual health or fitness reflects environmental contamination. Here we provide an example of such an integrated perspective based upon recent studies of an amphibian (the bullfrog, Rana catesbeiana) that experiences several, disparate changes when larval development occurs in a trace element�contaminated habitat. First, we present an overview of studies focused on specific responses of individuals collected from, or transplanted into, a habitat contaminated by coal combustion residues (CCR). These studies have reported morphological, behavioral, and physiological modificationsmore » to individuals chronically interacting with sediments in the CCR-contaminated site. Morphological abnormalities in the oral and tail regions in contaminant-exposed individuals influenced other properties such as grazing, growth, and swimming performance. Behavioral changes in swimming activities and responses to stimuli appear to influence predation risk in the contaminant-exposed population. Significant changes in bioenergetics in the contaminated habitat, evident as abnormally high energetic expenditures for survival (maintenance) costs, may ultimately influence production pathways (growth, energy storage) in individuals. We then present a conceptual model to examine how interactions among the affected systems (morphological, behavioral, physiological) may ultimately bring about more severe effects than would be predicted if the responses were considered in isolation. A complex interplay among simultaneously occurring biological changes emerges in which multiple, sublethal effects ultimately can translate into reductions in larval or juvenile survival, and thus reduced recruitment of juveniles into the population. In systems where individuals are exposed to low concentrations of

  3. Method for removal of beryllium contamination from an article

    SciTech Connect (OSTI)

    Simandl, Ronald F.; Hollenbeck, Scott M.

    2012-12-25

    A method of removal of beryllium contamination from an article is disclosed. The method typically involves dissolving polyisobutylene in a solvent such as hexane to form a tackifier solution, soaking the substrate in the tackifier to produce a preform, and then drying the preform to produce the cleaning medium. The cleaning media are typically used dry, without any liquid cleaning agent to rub the surface of the article and remove the beryllium contamination below a non-detect level. In some embodiments no detectible residue is transferred from the cleaning wipe to the article as a result of the cleaning process.

  4. Transport of Radioactive Material by Alpha Recoil

    SciTech Connect (OSTI)

    Icenhour, A.S.

    2005-05-19

    The movement of high-specific-activity radioactive particles (i.e., alpha recoil) has been observed and studied since the early 1900s. These studies have been motivated by concerns about containment of radioactivity and the protection of human health. Additionally, studies have investigated the potential advantage of alpha recoil to effect separations of various isotopes. This report provides a review of the observations and results of a number of the studies.

  5. Vitrification of hazardous and radioactive wastes

    SciTech Connect (OSTI)

    Bickford, D.F.; Schumacher, R.

    1995-12-31

    Vitrification offers many attractive waste stabilization options. Versatility of waste compositions, as well as the inherent durability of a glass waste form, have made vitrification the treatment of choice for high-level radioactive wastes. Adapting the technology to other hazardous and radioactive waste streams will provide an environmentally acceptable solution to many of the waste challenges that face the public today. This document reviews various types and technologies involved in vitrification.

  6. Beneficial reuse `96: The fourth annual conference on the recycle and reuse of radioactive scrap metal

    SciTech Connect (OSTI)

    1997-02-01

    From October 22-24, 1996 the University of Tennessee`s Energy, Environment and Resources Center and the Oak Ridge National Laboratory`s Center for Risk Management cosponsored Beneficial Reuse `96: The Fourth Annual Conference on the Recycle and Reuse of Radioactive Materials. Along with the traditional focus on radioactive scrap metals, this year`s conference included a wide range of topics pertaining to naturally occurring radioactive materials (NORM), and contaminated concrete reuse applications. As with previous Beneficial Reuse conferences, the primary goal of this year`s conference was to bring together stakeholder representatives for presentations, panel sessions and workshops on significant waste minimization issues surrounding the recycle and reuse of contaminated metals and other materials. A wide range of industry, government and public stakeholder groups participated in this year`s conference. An international presence from Canada, Germany and Korea helped to make Beneficial Reuse `96 a well-rounded affair. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  7. Process for the encapsulation and stabilization of radioactive, hazardous and mixed wastes

    DOE Patents [OSTI]

    Colombo, Peter; Kalb, Paul D.; Heiser, III, John H.

    1997-11-14

    The present invention provides a method for encapsulating and stabilizing radioactive, hazardous and mixed wastes in a modified sulfur cement composition. The waste may be incinerator fly ash or bottom ash including radioactive contaminants, toxic metal salts and other wastes commonly found in refuse. The process may use glass fibers mixed into the composition to improve the tensile strength and a low concentration of anhydrous sodium sulfide to reduce toxic metal solubility. The present invention preferably includes a method for encapsulating radioactive, hazardous and mixed wastes by combining substantially anhydrous wastes, molten modified sulfur cement, preferably glass fibers, as well as anhydrous sodium sulfide or calcium hydroxide or sodium hydroxide in a heated double-planetary orbital mixer. The modified sulfur cement is preheated to about 135.degree..+-.5.degree. C., then the remaining substantially dry components are added and mixed to homogeneity. The homogeneous molten mixture is poured or extruded into a suitable mold. The mold is allowed to cool, while the mixture hardens, thereby immobilizing and encapsulating the contaminants present in the ash.

  8. Distinguishing Between Site Waste, Natural, and Other Sources of Contamination at Uranium and Thorium Contaminated Sites - 12274

    SciTech Connect (OSTI)

    Hays, David C.

    2012-07-01

    Uranium and thorium processing and milling sites generate wastes (source, byproduct, or technically enhanced naturally occurring material), that contain contaminants that are similar to naturally occurring radioactive material deposits and other industry wastes. This can lead to mis-identification of other materials as Site wastes. A review of methods used by the US Army Corps of Engineers and the Environmental Protection Agency to distinguish Site wastes from potential other sources, enhanced materials, and natural deposits, at three different thorium mills was conducted. Real case examples demonstrate the importance of understanding the methods of distinguishing wastes. Distinguishing between Site wastes and enhanced Background material can be facilitated by establishing and applying a formal process. Significant project cost avoidance may be realized by distinguishing Site wastes from enhanced NORM. Collection of information on other potential sources of radioactive material and physical information related to the potential for other radioactive material sources should be gathered and reported in the Historical Site Assessment. At a minimum, locations of other such information should be recorded. Site decision makers should approach each Site area with the expectation that non site related radioactive material may be present and have a process in place to distinguish from Site and non Site related materials. (authors)

  9. The IAEA and Control of Radioactive SourcesThe

    SciTech Connect (OSTI)

    Dodd, B.

    2004-10-03

    This presentation discusses the International Atomic Energy Agency (IAEA) and the control of radioactive sources.

  10. Experiences on a Regulatory Clearance of the Radioactive Wastes at KAERI

    SciTech Connect (OSTI)

    Hong, D.S.; Ji, Y.Y.; Shon, J.S.; Hong, S.B.

    2008-07-01

    At the Korea Atomic Energy Research Institute (KAERI) in Daejeon, about 4,500 drums of old radioactive soil and concrete wastes have been stored since their generation and transport to Daejeon in 1988. The wastes have been stored for more than 18 years. So, according to the analysis result for their radioactivity, some of them can be regularly cleared. In addition to that, about 2,200 tonnes of decommissioning wastes were generated during the dismantling of Korean research reactors no.1 and no.2 (KRR-1 and KRR-2) from 1997 to 2005. Among those, only 13% were classified as radioactive wastes and part of remains were cleared. In this paper, the experiences on a regulatory clearance of radioactive wastes at KAERI were discussed. First, for the old wastes, a working procedure for representative sampling of each drum and an analysis was developed. Also, as these old wastes are already in a storage facility, some equipment and tools for easy sampling and restricting a contamination of a storage facility were developed and applied. Following the working procedure, the old wastes with a surface dose rate less than 0.3 {mu}Sv/hr were selected for an analysis. Based on the analysis results of a sample, the waste with a radioactivity concentration less than 0.4 Bq/g was classified as an object for regulatory clearance. According to the radiological dose assessment result and the dose criteria regulated by Atomic Energy Act of Korea (individual dose<10 {mu}Sv/yr, collective dose<1 man.Sv/yr), about 2,800 drums of wastes were determined for a clearance and they are under process for a license. After a clearance, it is scheduled for the wastes to be disposed of at a public dumping ground. Second, for the recently generated decommissioning wastes, the analysis for their radioactive characteristics was simpler than that for the old wastes. The distribution of a radioactivity levels, a gross alpha/beta contamination and a surface dose rate was measured to assess the radiological

  11. Separation of Nickel from Technetium-Contaminated Scrap

    SciTech Connect (OSTI)

    El-Azzami, Louei; Zhai, Tony; Grulke, Eric W

    2004-10-01

    The recovery of nickel (Ni) from Department of Energy (DOE) gaseous diffusion plant barriers contaminated with radionuclides and specifically the separation of from Ni from technetium-99, has proven to be difficult. Manufacturing Science Corporation (MSC) could not remove Tc99 from volumetrically contaminated Ni utilizing electro-refining approaches to levels that would allow the free release of Ni for commercial and industrial uses. The various methods applied by Manufacturing Sciences Corporation (MSC) are reported in the attached appendices. The electro-refining methods employed by MSC resulted in Ni containing residual Tc99. Residual Tc99 in Ni purified by MSC's electro-refining methods resulted in a moratorium being issued by the Secretary of the DOE and congressional opposition to the release of Ni from the K-25 plant at Oak Ridge.

  12. Mercury contamination extraction

    DOE Patents [OSTI]

    Fuhrmann, Mark; Heiser, John; Kalb, Paul

    2009-09-15

    Mercury is removed from contaminated waste by firstly applying a sulfur reagent to the waste. Mercury in the waste is then permitted to migrate to the reagent and is stabilized in a mercury sulfide compound. The stable compound may then be removed from the waste which itself remains in situ following mercury removal therefrom.

  13. Portable Aerosol Contaminant Extractor

    DOE Patents [OSTI]

    Carlson, Duane C.; DeGange, John J.; Cable-Dunlap, Paula

    2005-11-15

    A compact, portable, aerosol contaminant extractor having ionization and collection sections through which ambient air may be drawn at a nominal rate so that aerosol particles ionized in the ionization section may be collected on charged plate in the collection section, the charged plate being readily removed for analyses of the particles collected thereon.

  14. CHAPTER 5-RADIOACTIVE WASTE MANAGEMENT

    SciTech Connect (OSTI)

    Marra, J.

    2010-05-05

    The ore pitchblende was discovered in the 1750's near Joachimstal in what is now the Czech Republic. Used as a colorant in glazes, uranium was identified in 1789 as the active ingredient by chemist Martin Klaproth. In 1896, French physicist Henri Becquerel studied uranium minerals as part of his investigations into the phenomenon of fluorescence. He discovered a strange energy emanating from the material which he dubbed 'rayons uranique.' Unable to explain the origins of this energy, he set the problem aside. About two years later, a young Polish graduate student was looking for a project for her dissertation. Marie Sklodowska Curie, working with her husband Pierre, picked up on Becquerel's work and, in the course of seeking out more information on uranium, discovered two new elements (polonium and radium) which exhibited the same phenomenon, but were even more powerful. The Curies recognized the energy, which they now called 'radioactivity,' as something very new, requiring a new interpretation, new science. This discovery led to what some view as the 'golden age of nuclear science' (1895-1945) when countries throughout Europe devoted large resources to understand the properties and potential of this material. By World War II, the potential to harness this energy for a destructive device had been recognized and by 1939, Otto Hahn and Fritz Strassman showed that fission not only released a lot of energy but that it also released additional neutrons which could cause fission in other uranium nuclei leading to a self-sustaining chain reaction and an enormous release of energy. This suggestion was soon confirmed experimentally by other scientists and the race to develop an atomic bomb was on. The rest of the development history which lead to the bombing of Hiroshima and Nagasaki in 1945 is well chronicled. After World War II, development of more powerful weapons systems by the United States and the Soviet Union continued to advance nuclear science. It was this defense

  15. A compact ultra-clean system for deploying radioactive sources inside the KamLAND detector

    SciTech Connect (OSTI)

    Banks, T. I.; Freedman, S. J.; Wallig, J.; Ybarrolaza, N.; Gando, A.; Gando, Y.; Ikeda, H.; Inoue, K.; Kishimoto, Y.; Koga, M.; Mitsui, T.; Nakamura, K.; Shimizu, I.; Shirai, J.; Suzuki, A.; Takemoto, Y.; Tamae, K.; Ueshima, K.; Watanabe, H.; Xu, B. D.; Yoshida, H.; Yoshida, S.; Kozlov, A.; Grant, C.; Keefer, G.; Piepke, A.; Bloxham, T.; Fujikawa, B. K.; Han, K.; Ichimura, K.; Murayama, H.; O׳Donnell, T.; Steiner, H. M.; Winslow, L. A.; Dwyer, D. A.; McKeown, R. D.; Zhang, C.; Berger, B. E.; Lane, C. E.; Maricic, J.; Miletic, T.; Batygov, M.; Learned, J. G.; Matsuno, S.; Sakai, M.; Horton-Smith, G. A.; Downum, K. E.; Gratta, G.; Efremenko, Y.; Perevozchikov, O.; Karwowski, H. J.; Markoff, D. M.; Tornow, W.; Heeger, K. M.; Detwiler, J. A.; Enomoto, S.; Decowski, M. P.

    2014-10-14

    We describe a compact, ultra-clean device used to deploy radioactive sources along the vertical axis of the KamLAND liquid-scintillator neutrino detector for purposes of calibration. The device worked by paying out and reeling in precise lengths of a hanging, small-gauge wire rope (cable); an assortment of interchangeable radioactive sources could be attached to a weight at the end of the cable. All components exposed to the radiopure liquid scintillator were made of chemically compatible UHV-cleaned materials, primarily stainless steel, in order to avoid contaminating or degrading the scintillator. To prevent radon intrusion, the apparatus was enclosed in a hermetically sealed housing inside a glove box, and both volumes were regularly flushed with purified nitrogen gas. Finally, an infrared camera attached to the side of the housing permitted real-time visual monitoring of the cable’s motion, and the system was controlled via a graphical user interface.

  16. Solidification process for sludge residue

    SciTech Connect (OSTI)

    Pearce, K.L.

    1998-09-10

    This report investigates the solidification process used at 100-N Basin to solidify the N Basin sediment and assesses the N Basin process for application to the K Basin sludge residue material. This report also includes a discussion of a solidification process for stabilizing filters. The solidified matrix must be compatible with the Environmental Remediation Disposal Facility acceptance criteria.

  17. Management of Transuranic Contaminated Material

    Directives, Delegations, and Requirements [Office of Management (MA)]

    1982-09-30

    To establish guidelines for the generation, treatment, packaging, storage, transportation, and disposal of transuranic (TRU) contaminated material.

  18. Climate Change Adaptation Technical Fact Sheet: Contaminated...

    Office of Environmental Management (EM)

    Contaminated Sediment Remedies Climate Change Adaptation Technical Fact Sheet: Contaminated Sediment Remedies This fact sheet addresses remedies for contaminated sediment. It is ...

  19. Pathway analysis for a contaminated landfill in Middlesex, New Jersey

    SciTech Connect (OSTI)

    Yu, C.; Merry-Libby, P.; Yang, J.Y.

    1985-01-01

    Under the Formerly Utilized Sites Remedial Action Program, the US Department of Energy began excavating contaminated materials from the Middlesex Municipal landfill in 1984. A total of 16,000 mT of landfill materials covering a 0.2-ha area was excavated, of which 11,000 mT was contaminated and has been transported to the nearby sampling plant site for interim storage. Based on the pathway analysis for the onsite and near-site resident scenarios, the radiation dose rates and radionuclide concentrations in groundwater would be below the regulatory requirements for both the short-term and long-term scenarios. Hence, the potential health risks to maximally exposed individuals due to radioactive releases from the Middlesex landfill would be insignificant.

  20. Radioactive tank waste remediation focus area

    SciTech Connect (OSTI)

    1996-08-01

    EM`s Office of Science and Technology has established the Tank Focus Area (TFA) to manage and carry out an integrated national program of technology development for tank waste remediation. The TFA is responsible for the development, testing, evaluation, and deployment of remediation technologies within a system architecture to characterize, retrieve, treat, concentrate, and dispose of radioactive waste stored in the underground stabilize and close the tanks. The goal is to provide safe and cost-effective solutions that are acceptable to both the public and regulators. Within the DOE complex, 335 underground storage tanks have been used to process and store radioactive and chemical mixed waste generated from weapon materials production and manufacturing. Collectively, thes tanks hold over 90 million gallons of high-level and low-level radioactive liquid waste in sludge, saltcake, and as supernate and vapor. Very little has been treated and/or disposed or in final form.

  1. Containment of subsurface contaminants

    DOE Patents [OSTI]

    Corey, J.C.

    1994-09-06

    A barrier is disclosed for reducing the spread of a plume of subsurface contaminants. The apparatus includes a well system for injecting a fluid, such as air, just outside and below the periphery of the plume. The fluid is injected at a pressure sufficient to lower the hydraulic conductivity of the soil from the point of injection to the surface thus establishing a curtain-like barrier to groundwater movement. The barrier is established upgradient of the plume to divert groundwater away, or preferably completely around the plume to reduce the flow of groundwater into or out of the plume. The barrier enables the remediation of the confined contamination and then, when the injection of the fluid is halted, the barrier quickly dissipates. 5 figs.

  2. Containment of subsurface contaminants

    DOE Patents [OSTI]

    Corey, John C. (Aiken, SC)

    1994-01-01

    A barrier for reducing the spread of a plume of subsurface contaminants. The apparatus includes a well system for injecting a fluid, such as air, just outside and below the periphery of the plume. The fluid is injected at a pressure sufficient to lower the hydraulic conductivity of the soil from the point of injection to the surface thus establishing a curtain-like barrier to groundwater movement. The barrier is established upgradient of the plume to divert groundwater away, or preferably completely around the plume to reduce the flow of groundwater into or out of the plume. The barrier enables the remediation of the confined contamination and then, when the injection of the fluid is halted, the barrier quickly dissipates.

  3. RADIOACTIVE WASTE STREAMS FROM VARIOUS POTENTIAL NUCLEAR FUEL CYCLE OPTIONS

    SciTech Connect (OSTI)

    Nick Soelberg; Steve Piet

    2010-11-01

    Five fuel cycle options, about which little is known compared to more commonly known options, have been studied in the past year for the United States Department of Energy. These fuel cycle options, and their features relative to uranium-fueled light water reactor (LWR)-based fuel cycles, include: • Advanced once-through reactor concepts (Advanced Once-Through, or AOT) – intended for high uranium utilization and long reactor operating life, use depleted uranium in some cases, and avoid or minimize used fuel reprocessing • Fission-fusion hybrid (FFH) reactor concepts – potential variations are intended for high uranium or thorium utilization, produce fissile material for use in power generating reactors, or transmute transuranic (TRU) and some radioactive fission product (FP) isotopes • High temperature gas reactor (HTGR) concepts - intended for high uranium utilization, high reactor thermal efficiencies; they have unique fuel designs • Molten salt reactor (MSR) concepts – can breed fissile U-233 from Th fuel and avoid or minimize U fuel enrichment, use on-line reprocessing of the used fuel, produce lesser amounts of long-lived, highly radiotoxic TRU elements, and avoid fuel assembly fabrication • Thorium/U-233 fueled LWR (Th/U-233) concepts – can breed fissile U-233 from Th fuel and avoid or minimize U fuel enrichment, and produce lesser amounts of long-lived, highly radiotoxic TRU elements. These fuel cycle options could result in widely different types and amounts of used or spent fuels, spent reactor core materials, and waste streams from used fuel reprocessing, such as: • Highly radioactive, high-burnup used metal, oxide, or inert matrix U and/or Th fuels, clad in Zr, steel, or composite non-metal cladding or coatings • Spent radioactive-contaminated graphite, SiC, carbon-carbon-composite, metal, and Be reactor core materials • Li-Be-F salts containing U, TRU, Th, and fission products • Ranges of separated or un-separated activation

  4. Method for removing hydrocarbon contaminants from solid materials

    DOE Patents [OSTI]

    Bala, G.A.; Thomas, C.P.

    1995-10-03

    A system is described for removing hydrocarbons from solid materials. Contaminated solids are combined with a solvent (preferably terpene based) to produce a mixture. The mixture is washed with water to generate a purified solid product (which is removed from the system) and a drainage product. The drainage product is separated into a first fraction (consisting mostly of contaminated solvent) and a second fraction (containing solids and water). The first fraction is separated into a third fraction (consisting mostly of contaminated solvent) and a fourth fraction (containing residual solids and water). The fourth fraction is combined with the second fraction to produce a sludge which is separated into a fifth fraction (containing water which is ultimately reused) and a sixth fraction (containing solids). The third fraction is then separated into a seventh fraction (consisting of recovered solvent which is ultimately reused) and an eighth fraction (containing hydrocarbon waste). 4 figs.

  5. Apparatus for removing hydrocarbon contaminants from solid materials

    DOE Patents [OSTI]

    Bala, Gregory A. (Idaho Falls, ID); Thomas, Charles P. (Idaho Falls, ID)

    1996-01-01

    A system for removing hydrocarbons from solid materials. Contaminated solids are combined with a solvent (preferably terpene based) to produce a mixture. The mixture is washed with water to generate a purified solid product (which is removed from the system) and a drainage product. The drainage product is separated into a first fraction (consisting mostly of contaminated solvent) and a second fraction (containing solids and water). The first fraction is separated into a third fraction (consisting mostly of contaminated solvent) and a fourth fraction (containing residual solids and water). The fourth fraction is combined with the second fraction to produce a sludge which is separated into a fifth fraction (containing water which is ultimately reused) and a sixth fraction (containing solids). The third fraction is then separated into a seventh fraction (consisting of recovered solvent which is ultimately reused) and an eighth fraction (containing hydrocarbon waste).

  6. Method for removing hydrocarbon contaminants from solid materials

    DOE Patents [OSTI]

    Bala, Gregory A. (Idaho Falls, ID); Thomas, Charles P. (Idaho Falls, ID)

    1995-01-01

    A system for removing hydrocarbons from solid materials. Contaminated solids are combined with a solvent (preferably terpene based) to produce a mixture. The mixture is washed with water to generate a purified solid product (which is removed from the system) and a drainage product. The drainage product is separated into a first fraction (consisting mostly of contaminated solvent) and a second fraction (containing solids and water). The first fraction is separated into a third fraction (consisting mostly of contaminated solvent) and a fourth fraction (containing residual solids and water). The fourth fraction is combined with the second fraction to produce a sludge which is separated into a fifth fraction (containing water which is ultimately reused) and a sixth fraction (containing solids). The third fraction is then separated into a seventh fraction (consisting of recovered solvent which is ultimately reused) and an eighth fraction (containing hydrocarbon waste).

  7. Apparatus for removing hydrocarbon contaminants from solid materials

    DOE Patents [OSTI]

    Bala, G.A.; Thomas, C.P.

    1996-02-13

    A system is described for removing hydrocarbons from solid materials. Contaminated solids are combined with a solvent (preferably terpene based) to produce a mixture. The mixture is washed with water to generate a purified solid product (which is removed from the system) and a drainage product. The drainage product is separated into a first fraction (consisting mostly of contaminated solvent) and a second fraction (containing solids and water). The first fraction is separated into a third fraction (consisting mostly of contaminated solvent) and a fourth fraction (containing residual solids and water). The fourth fraction is combined with the second fraction to produce a sludge which is separated into a fifth fraction (containing water which is ultimately reused) and a sixth fraction (containing solids). The third fraction is then separated into a seventh fraction (consisting of recovered solvent which is ultimately reused) and an eighth fraction (containing hydrocarbon waste). 4 figs.

  8. Purifying contaminated water

    DOE Patents [OSTI]

    Daughton, Christian G.

    1983-01-01

    Process for removing biorefractory compounds from contaminated water (e.g., oil shale retort waste-water) by contacting same with fragmented raw oil shale. Biorefractory removal is enhanced by preactivating the oil shale with at least one member of the group of carboxylic, acids, alcohols, aldehydes, ketones, ethers, amines, amides, sulfoxides, mixed ether-esters and nitriles. Further purification is obtained by stripping, followed by biodegradation and removal of the cells.

  9. Contamination control device

    DOE Patents [OSTI]

    Clark, Robert M.; Cronin, John C.

    1977-01-01

    A contamination control device for use in a gas-insulated transmission bus consisting of a cylindrical center conductor coaxially mounted within a grounded cylindrical enclosure. The contamination control device is electrically connected to the interior surface of the grounded outer shell and positioned along an axial line at the lowest vertical position thereon. The contamination control device comprises an elongated metallic member having a generally curved cross-section in a first plane perpendicular to the axis of the bus and having an arcuate cross-section in a second plane lying along the axis of the bus. Each opposed end of the metallic member and its opposing sides are tapered to form a pair of generally converging and downward sloping surfaces to trap randomly moving conductive particles in the relatively field-free region between the metallic member and the interior surface of the grounded outer shell. The device may have projecting legs to enable the device to be spot welded to the interior of the grounded housing. The control device provides a high capture probability and prevents subsequent release of the charged particles after the capture thereof.

  10. Evaluation of the electrorefining technique for the processing of radioactive scrap metals

    SciTech Connect (OSTI)

    Kessinger, G.F.

    1993-10-01

    This report presents the results of a literature study performed to identify applications of the electrorefining technique to the decontamination of radioactively-contaminated scrap metal (RSM). Upon the completion of the literature search and the review of numerous references, it was concluded that there were applications of this technique that were appropriate for the decontamination of some types of RSM, especially when the desired product is a pure elemental metal of high purity. It was also concluded that this technique was not well-suited for the decontamination of RSM stainless steels and other alloys, when it was desired that the metallurgical characteristics of the alloy be present in the decontaminated product.

  11. Pump station for radioactive waste water

    DOE Patents [OSTI]

    Whitton, John P.; Klos, Dean M.; Carrara, Danny T.; Minno, John J.

    2003-11-18

    A pump station for transferring radioactive particle containing waste water, includes: (a.) an enclosed sump having a vertically elongated right frusto conical wall surface and a bottom surface and (b.) a submersible volute centrifugal pump having a horizontally rotating impeller and a volute exterior surface. The sump interior surface, the bottom surface and the volute exterior surface are made of stainless steel having a 30 Ra or finer surface finish. A 15 Ra finish has been found to be most cost effective. The pump station is used for transferring waste water, without accumulation of radioactive fines.

  12. Radioactive Waste Conditioning, Immobilisation, And Encapsulation Processes And Technologies: Overview And Advances (Chapter 7)

    SciTech Connect (OSTI)

    Jantzen, Carol M.; Lee, William E.; Ojovan, Michael I.

    2012-10-19

    The main immobilization technologies that are available commercially and have been demonstrated to be viable are cementation, bituminization, and vitrification. Vitrification is currently the most widely used technology for the treatment of high level radioactive wastes (HLW) throughout the world. Most of the nations that have generated HLW are immobilizing in either alkali borosilicate glass or alkali aluminophosphate glass. The exact compositions of nuclear waste glasses are tailored for easy preparation and melting, avoidance of glass-in-glass phase separation, avoidance of uncontrolled crystallization, and acceptable chemical durability, e.g., leach resistance. Glass has also been used to stabilize a variety of low level wastes (LLW) and mixed (radioactive and hazardous) low level wastes (MLLW) from other sources such as fuel rod cladding/decladding processes, chemical separations, radioactive sources, radioactive mill tailings, contaminated soils, medical research applications, and other commercial processes. The sources of radioactive waste generation are captured in other chapters in this book regarding the individual practices in various countries (legacy wastes, currently generated wastes, and future waste generation). Future waste generation is primarily driven by interest in sources of clean energy and this has led to an increased interest in advanced nuclear power production. The development of advanced wasteforms is a necessary component of the new nuclear power plant (NPP) flowsheets. Therefore, advanced nuclear wasteforms are being designed for robust disposal strategies. A brief summary is given of existing and advanced wasteforms: glass, glass-ceramics, glass composite materials (GCM’s), and crystalline ceramic (mineral) wasteforms that chemically incorporate radionuclides and hazardous species atomically in their structure. Cementitious, geopolymer, bitumen, and other encapsulant wasteforms and composites that atomically bond and encapsulate

  13. Vitrification of NAC process residue

    SciTech Connect (OSTI)

    Merrill, R.A.; Whittington, K.F.; Peters, R.D. [Pacific Northwest Lab., Richland, WA (United States)

    1995-12-31

    Vitrification tests have been performed with simulated waste compositions formulated to represent the residue which would be obtained from the treatment of low-level, nitrate wastes from Hanford and Oak Ridge by the nitrate to ammonia and ceramic (NAC) process. The tests were designed to demonstrate the feasibility of vitrifying NAC residue and to quantify the impact of the NAC process on the volume of vitrified waste. The residue from NAC treatment of low-level nitrate wastes consists primarily of oxides of aluminum and sodium. High alumina glasses were formulated to maximize the waste loading of the NAC product. Transparent glasses with up to 35 wt% alumina, and even higher contents in opaque glasses, were obtained at melting temperatures of 1,200 C to 1,400 C. A modified TCLP leach test showed the high alumina glasses to have good chemical durability, leaching significantly less than either the ARM-1 or the DWPF-EA high-level waste reference glasses. A significant increase in the final waste volume would be a major result of the NAC process on LLW vitrification. For Hanford wastes, NAC-treatment of nitrate wastes followed by vitrification of the residue will increase the final volume of vitrified waste by 50% to 90%; for Melton Valley waste from Oak Ridge, the increase in final glass volume will be 260% to 280%. The increase in volume is relative to direct vitrification of the waste in a 20 wt% Na{sub 2}O glass formulation. The increase in waste volume directly affects not only disposal costs, but also operating and/or capital costs. Larger plant size, longer operating time, and additional energy and additive costs are direct results of increases in waste volume. Such increases may be balanced by beneficial impacts on the vitrification process; however, those effects are outside the scope of this report.

  14. Vitrification of NAC process residue

    SciTech Connect (OSTI)

    Merrill, R.A.; Whittington, K.F.; Peters, R.D.

    1995-09-01

    Vitrification tests have been performed with simulated waste compositions formulated to represent the residue which would be obtained from the treatment of low-level, nitrate wastes from Hanford and Oak Ridge by the nitrate to ammonia and ceramic (NAC) process. The tests were designed to demonstrate the feasibility of vitrifying NAC residue and to quantify the impact of the NAC process on the volume of vitrified waste. The residue from NAC treatment of low-level nitrate wastes consists primarily of oxides of aluminum and sodium. High alumina glasses were formulated to maximize the waste loading of the NAC product. Transparent glasses with up to 35 wt% alumina, and even higher contents in opaque glasses, were obtained at melting temperatures of 1200{degrees}C to 1400{degrees}C. A modified TCLP leach test showed the high alumina glasses to have good chemical durability, leaching significantly less than either the ARM-1 or the DWPF-EA high-level waste reference glasses. A significant increase in the final waste volume would be a major result of the NAC process on LLW vitrification. For Hanford wastes, NAC-treatment of nitrate wastes followed by vitrification of the residue will increase the final volume of vitrified waste by 50% to 90%; for Melton Valley waste from Oak Ridge, the increase in final glass volume will be 260% to 280%. The increase in volume is relative to direct vitrification of the waste in a 20 wt% Na{sub 2}O glass formulation. The increase in waste volume directly affects not only disposal costs, but also operating and/or capital costs. Larger plant size, longer operating time, and additional energy and additive costs are direct results of increases in waste volume. Such increases may be balanced by beneficial impacts on the vitrification process; however, those effects are outside the scope of this report.

  15. Understanding Mechanisms of Radiological Contamination

    SciTech Connect (OSTI)

    Rick Demmer; John Drake; Ryan James, PhD

    2014-03-01

    Over the last 50 years, the study of radiological contamination and decontamination has expanded significantly. This paper addresses the mechanisms of radiological contamination that have been reported and then discusses which methods have recently been used during performance testing of several different decontamination technologies. About twenty years ago the Idaho Nuclear Technology Engineering Center (INTEC) at the INL began a search for decontamination processes which could minimize secondary waste. In order to test the effectiveness of these decontamination technologies, a new simulated contamination, termed SIMCON, was developed. SIMCON was designed to replicate the types of contamination found on stainless steel, spent fuel processing equipment. Ten years later, the INL began research into methods for simulating urban contamination resulting from a radiological dispersal device (RDD). This work was sponsored by the Defense Advanced Research Projects Agency (DARPA) and included the initial development an aqueous application of contaminant to substrate. Since 2007, research sponsored by the US Environmental Protection Agency (EPA) has advanced that effort and led to the development of a contamination method that simulates particulate fallout from an Improvised Nuclear Device (IND). The IND method diverges from previous efforts to create tenacious contamination by simulating a reproducible “loose” contamination. Examining these different types of contamination (and subsequent decontamination processes), which have included several different radionuclides and substrates, sheds light on contamination processes that occur throughout the nuclear industry and in the urban environment.

  16. Radioactive Waste Storage Facility at the Armenian NPP - 12462

    SciTech Connect (OSTI)

    Grigoryan, G.; Amirjanyan, A.; Gondakyan, Y.; Stepanyan, A.

    2012-07-01

    We present a detailed contaminant transfer dynamics model for radionuclide in geosphere and biosphere medium. The model describes the transport of radionuclides using full equation for the processes of advection, diffusion, decay and sorption. The overall objective is to establish, from a post-closure radiological safety point of view, whether it is practical to convert an existing radioactive waste storage facility at Armenian NPP, to a waste disposal facility. The calculation includes: - Data sources for: the operational waste-source term; options for refurbishment and completion of the waste storage facility as a waste disposal facility; the site and its environs; - Development of an assessment context for the safety assessment, and identification of waste treatment options; - A description of the conceptual and mathematical models, and results calculated for the base case scenario relating to the release of contaminants via the groundwater pathway and also precipitation especially important for this site. The results of the calculations showed that the peak individual dose is < 7 E-8 Sv/y arising principally from I-129 after 700 years post closure. Other significant radionuclides, in terms of their contribution to the total dose are I-129, Tc-99 and in little C-14 (U- 234 and Po-210 are not relevant). The study does not explore all issues that might be expected to be presented in a safety case for a near surface disposal facility it mainly focuses on post- closure dose impacts. Most emphasis has been placed on the development of scenarios and conceptual models rather than the presentation and analyses of results and confidence building (only deterministic results are presented). The calculations suggest that, from a perspective the conversion of the waste-storage facility is feasible such that all the predicted doses are well below internationally recognized targets, as well as provisional Armenian regulatory objectives. This conclusion applies to the disposal

  17. Radioactive Air Emissions Notice of Construction (NOC) for the Waste Sampling and Characterization Facility (WSCF)

    SciTech Connect (OSTI)

    BATES, J.A.

    2000-05-01

    This NOC application is provided to update the description of amounts of material handled, and to update the calculation of potential for emissions and resultant calculation of offsite TEDE. This NOC also includes an updated description of the various emission units at WSCF, including use of portable tanks to receive and remove liquid waste contaminated with low levels of radioactive contamination. The resultant, adjusted estimate for TEDE to the hypothetical MEI due to all combined unabated emissions from WSCF is 1.4 E-02 millirem per year. The total adjusted estimate for all combined abated emissions is 2.8 E-03 millirem per year. No single emission unit at the WSCF Complex exceeds a potential (unabated) offsite dose of 2.7 E-03 millirem per year.

  18. Nondestructive assay of boxed radioactive waste

    SciTech Connect (OSTI)

    Gilles, W.P.; Roberts, R.J.; Jasen, W.G.

    1992-12-01

    This paper describes the problems related to the nondestructive assay (NDA) of boxed radioactive waste at the Hanford Site and how Westinghouse Hanford company (WHC) is solving the problems. The waste form and radionuclide content are described. The characteristics of the combined neutron and gamma-based measurement system are described.

  19. Method for solidifying liquid radioactive wastes

    DOE Patents [OSTI]

    Berreth, Julius R.

    1976-01-01

    The quantity of nitrous oxides produced during the solidification of liquid radioactive wastes containing nitrates and nitrites can be substantially reduced by the addition to the wastes of a stoichiometric amount of urea which, upon heating, destroys the nitrates and nitrites, liberating nontoxic N.sub.2, CO.sub.2 and NH.sub.3.

  20. METHOD OF REMOVING RADIOACTIVE IODINE FROM GASES

    DOE Patents [OSTI]

    Silverman, L.

    1962-01-23

    A method of removing radioactive iodine from a gaseous medium is given in which the gaseous medium is adjusted to a temperature not exceeding 400 deg C and then passed over a copper fibrous pad having a coating of cupric sulfide deposited thereon. An ionic exchange on the pad results in the formation of cupric iodide and the release of sulfur. (AEC)

  1. Annual radioactive waste tank inspection program - 1999

    SciTech Connect (OSTI)

    Moore, C.J.

    2000-04-14

    Aqueous radioactive wastes from Savannah River Site (SRS) separations processes are contained in large underground carbon steel tanks. Inspections made during 1999 to evaluate these vessels and auxiliary appurtenances along with evaluations based on data accrued by inspections performed since the tanks were constructed are the subject of this report.

  2. Annual radioactive waste tank inspection program - 1996

    SciTech Connect (OSTI)

    McNatt, F.G.

    1997-04-01

    Aqueous radioactive wastes from Savannah River Site (SRS) separations processes are contained in large underground carbon steel tanks. Inspections made during 1996 to evaluate these vessels, and evaluations based on data accrued by inspections performed since the tanks were constructed, are the subject of this report.

  3. Annual radioactive waste tank inspection program - 1992

    SciTech Connect (OSTI)

    McNatt, F.G.

    1992-12-31

    Aqueous radioactive wastes from Savannah River Site (SRS) separations processes are contained in large underground carbon steel tanks. Inspections made during 1992 to evaluate these vessels and evaluations based on data accrued by inspections made since the tanks were constructed are the subject of this report.

  4. Annual Radioactive Waste Tank Inspection Program - 2000

    SciTech Connect (OSTI)

    West, W.R.

    2001-04-17

    Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2000 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report.

  5. Annual Radioactive Waste Tank Inspection Program - 1997

    SciTech Connect (OSTI)

    McNatt, F.G.

    1998-05-01

    Aqueous radioactive wastes from Savannah River Site (SRS) separations processes are contained in large underground carbon steel tanks. Inspections made during 1997 to evaluate these vessels, and evaluations based on data accrued by inspections performed since the tanks were constructed are the subject of this report.

  6. Annual Radioactive Waste Tank Inspection Program - 1998

    SciTech Connect (OSTI)

    McNatt, F.G.

    1999-10-27

    Aqueous radioactive wastes from Savannah River Site separations processes are contained in large underground carbon steel tanks. Inspections made during 1998 to evaluate these vessels and auxiliary appurtenances, along with evaluations based on data accrued by inspections performed since the tanks were constructed, are the subject of this report.

  7. Annual radioactive waste tank inspection program: 1995

    SciTech Connect (OSTI)

    McNatt, F.G. Sr.

    1996-04-01

    Aqueous radioactive wastes from Savannah River Site (SRS) separations processes are contained in large underground carbon steel tanks. Inspections made during 1995 to evaluate these vessels and evaluations based on data accrued by inspections performed since the tanks were constructed are the subject of this report

  8. High-level radioactive wastes. Supplement 1

    SciTech Connect (OSTI)

    McLaren, L.H.

    1984-09-01

    This bibliography contains information on high-level radioactive wastes included in the Department of Energy's Energy Data Base from August 1982 through December 1983. These citations are to research reports, journal articles, books, patents, theses, and conference papers from worldwide sources. Five indexes, each preceded by a brief description, are provided: Corporate Author, Personal Author, Subject, Contract Number, and Report Number. 1452 citations.

  9. Hazardous and Radioactive Mixed Waste Program

    Directives, Delegations, and Requirements [Office of Management (MA)]

    1989-02-22

    To establish Department of Energy (DOE) hazardous and radioactive mixed waste policies and requirements and to implement the requirements of the Resource Conservation and Recovery Act (RCRA) within the framework of the environmental programs established under DOE O 5400.1. This directive does not cancel any directives.

  10. Office of Civilian Radioactive Waste Management

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    RW-0583 QA:N/A Office of Civilian Radioactive Waste Management EVALUATION OF TECHNICAL IMPACT ON THE YUCCA MOUNTAIN PROJECT TECHNICAL BASIS RESULTING FROM ISSUES RAISED BY EMAILS OF FORMER PROJECT PARTICIPANTS February 2006 This page intentionally left blank. Table of Contents Executive Summary .............................................................................................................v 1.

  11. Canister arrangement for storing radioactive waste

    DOE Patents [OSTI]

    Lorenzo, Donald K.; Van Cleve, Jr., John E.

    1982-01-01

    The subject invention relates to a canister arrangement for jointly storing high level radioactive chemical waste and metallic waste resulting from the reprocessing of nuclear reactor fuel elements. A cylindrical steel canister is provided with an elongated centrally disposed billet of the metallic waste and the chemical waste in vitreous form is disposed in the annulus surrounding the billet.

  12. Canister arrangement for storing radioactive waste

    DOE Patents [OSTI]

    Lorenzo, D.K.; Van Cleve, J.E. Jr.

    1980-04-23

    The subject invention relates to a canister arrangement for jointly storing high level radioactive chemical waste and metallic waste resulting from the reprocessing of nuclear reactor fuel elements. A cylindrical steel canister is provided with an elongated centrally disposed billet of the metallic waste and the chemical waste in vitreous form is disposed in the annulus surrounding the billet.

  13. BUILDING MATERIAL CHARACTERIZATION USING A CONCRETE FLOOR AND WALL CONTAMINATION PROFILING TECHNOLOGY

    SciTech Connect (OSTI)

    Aggarwal, Dr. S.,; Charters, G.; Thacker, Dr. D.

    2003-02-27

    Certain radioisotopes can penetrate concrete and contaminate the concrete well below the surface. The challenge is to determine the extent and magnitude of the contamination problem in real-time. The concrete profiling technology, TRUPROSM in conjunction with portable radiometric instrumentation produces a profile of radiological or chemical contamination through the material being studied. The data quality, quantity, and representativeness may be used to produce an activity profile from the hot spot surface into the material being sampled. This activity profile may then be expanded to ultimately characterize the facility and expedite waste segregation and facility closure at a reduced cost and risk. Performing a volumetric concrete or metal characterization safer and faster (without lab intervention) is the objective of this characterization technology. This way of determining contamination can save considerable time and money. Currently, concrete core bores are shipped to certified laboratories where the concrete residue is run through a battery of tests to determine the contaminants. The existing core boring operation volatilizes or washes out some of the contaminants (like tritium) and oftentimes cross-contaminates the area around the core bore site. The volatilization of the contaminants can lead to airborne problems in the immediate vicinity of the core bore. Cross-contamination can increase the contamination area and thereby increase the amount of waste generated. The goal is to avoid those field activities that could cause this type of release.

  14. Comparison of two freshwater turtle species as monitors of environmental contamination

    SciTech Connect (OSTI)

    Meyers-Schoene, L. ); Walton, B.T. )

    1990-04-01

    Two species of turtles that occupy different ecological niches were compared for their usefulness as monitors of contamination in freshwater ecosystems. Trachemys scripta (Agassiz) and Chelydra serpentina (Linnaeus) were selected for comparison based on species abundance and differences in food habits and sediment contact. A review of the literature on contaminants in turtles and results of preliminary surveys conducted at the field sites, which are included in this study, were used to direct and focus this research project. White Oak Lake, a settling basin for low-level radioactive and nonradioactive contaminants, and Bearden Creek Embayment, an uncontaminated reference site upriver, were used as study sites in the investigation of turtles as indicators of chemical contamination. Turtles were analyzed for concentrations of strontium-90, cesium-137, cobalt 60, and mercury in specific target tissues, and for single-stranded DNA breaks, a non-specific indicator of possible exposure to genotoxic agents in the environment. 133 refs., 2 figs., 15 tabs.

  15. Atmospheric-Pressure Plasma Cleaning of Contaminated Surfaces

    SciTech Connect (OSTI)

    Robert F. Hicks; Hans W. Herrmann

    2003-12-15

    The purpose of this project was to demonstrate a practical, environmentally benigh technology for the surface decontamination and decommissioning of radioactive waste. A low temperature, atmospheric pressure plasma has been developed with initial support from the DOE, Environmental Management Sciences Program. This devise selectively etches radioactive metals from surfaces, rendering objects radiation free and suitable for decommissioning. The volatile reaction products are captured on filters, which yields a tremendous reduction in the volume of the waste. The technology shows a great potential for accelerating the clean-up effort for the equipment and structures contaminated with radioactive materials within the DOE complex. The viability of this technology has been demonstrated by selectively and rapidly stripping uranium from stainless steel surfaces at low temperature. Studies on uranium oxide have shown that etch rates of 4.0 microns per minute can be achieved at temperature below 473 K. Over the past three years, we have made numerous improvements in the design of the atmospheric pressure plasma source. We are now able to scale up the plasma source to treat large surface areas.

  16. Los Alamos achieves 20-year low on radioactive air emissions

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    LANL achieves 20-year low on radioactive air emissions Los Alamos achieves 20-year low on radioactive air emissions The Lab measures air emissions through a comprehensive system of ...

  17. Radioactive decay data tables (Technical Report) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Radioactive decay data tables Citation Details In-Document Search Title: Radioactive decay data tables You are accessing a document from the Department of Energy's (DOE) SciTech ...

  18. AIRIS Argonne In-flight Radioactive Ion Separator Expansion

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    AIRIS - Argonne In-flight Radioactive Ion Separator Expansion of the ATLAS in-flight radioactive beam program is underway through the design of a separator comprised of a momentum...

  19. CRAD, Low-Level Radioactive Waste Management - April 30, 2015...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Low-Level Radioactive Waste Management - April 30, 2015 (EA CRAD 31-11, Rev. 0) CRAD, Low-Level Radioactive Waste Management - April 30, 2015 (EA CRAD 31-11, Rev. 0) April 2015...

  20. Radioactive Waste Characterization Strategies; Comparisons Between AK/PK, Dose to Curie Modeling, Gamma Spectroscopy, and Laboratory Analysis Methods- 12194

    SciTech Connect (OSTI)

    Singledecker, Steven J.; Jones, Scotty W.; Dorries, Alison M.; Henckel, George; Gruetzmacher, Kathleen M. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2012-07-01

    In the coming fiscal years of potentially declining budgets, Department of Energy facilities such as the Los Alamos National Laboratory (LANL) will be looking to reduce the cost of radioactive waste characterization, management, and disposal processes. At the core of this cost reduction process will be choosing the most cost effective, efficient, and accurate methods of radioactive waste characterization. Central to every radioactive waste management program is an effective and accurate waste characterization program. Choosing between methods can determine what is classified as low level radioactive waste (LLRW), transuranic waste (TRU), waste that can be disposed of under an Authorized Release Limit (ARL), industrial waste, and waste that can be disposed of in municipal landfills. The cost benefits of an accurate radioactive waste characterization program cannot be overstated. In addition, inaccurate radioactive waste characterization of radioactive waste can result in the incorrect classification of radioactive waste leading to higher disposal costs, Department of Transportation (DOT) violations, Notice of Violations (NOVs) from Federal and State regulatory agencies, waste rejection from disposal facilities, loss of operational capabilities, and loss of disposal options. Any one of these events could result in the program that mischaracterized the waste losing its ability to perform it primary operational mission. Generators that produce radioactive waste have four characterization strategies at their disposal: - Acceptable Knowledge/Process Knowledge (AK/PK); - Indirect characterization using a software application or other dose to curie methodologies; - Non-Destructive Analysis (NDA) tools such as gamma spectroscopy; - Direct sampling (e.g. grab samples or Surface Contaminated Object smears) and laboratory analytical; Each method has specific advantages and disadvantages. This paper will evaluate each method detailing those advantages and disadvantages

  1. Innovative technologies for recycling and reusing radioactively contaminated materials from DOE facilities

    SciTech Connect (OSTI)

    Bossart, S.J. ); Hyde, J. )

    1993-01-01

    Through award of ten contracts under the solicitation, DOE is continuing efforts to develop innovative technologies for decontamination and recycling or reusing of process equipment, scrap metal, and concrete. These ten technologies are describe briefly in this report. There is great economic incentive for recycling or reusing materials generated during D D of DOE's facilities. If successfully developed, these superior technologies will enable DOE to clean its facilities by 2019. These technologies will also generate a reusable or recyclable product, while achieving D D in less time at lower cost with reduced health and safety risks to the workers, the public and the environment.

  2. Innovative technologies for recycling and reusing radioactively contaminated materials from DOE facilities

    SciTech Connect (OSTI)

    Bossart, S.J.; Hyde, J.

    1993-06-01

    Through award of ten contracts under the solicitation, DOE is continuing efforts to develop innovative technologies for decontamination and recycling or reusing of process equipment, scrap metal, and concrete. These ten technologies are describe briefly in this report. There is great economic incentive for recycling or reusing materials generated during D&D of DOE`s facilities. If successfully developed, these superior technologies will enable DOE to clean its facilities by 2019. These technologies will also generate a reusable or recyclable product, while achieving D&D in less time at lower cost with reduced health and safety risks to the workers, the public and the environment.

  3. Chupadera Mesa, New Mexico, Site Fact Sheet

    Office of Legacy Management (LM)

    ... with applicable DOE standards and guidelines for cleanup of residual radioactive contamination. A release survey and evaluation was conducted by the Los Alamos National Laboratory. ...

  4. DOE - Office of Legacy Management -- Lodge and Shipley - OH 24

    Office of Legacy Management (LM)

    metal(property of the AEC). OH.24-1 OH.24-3 Site Disposition: Eliminated - Limited scope of activities performed - Potential for residual radioactive contamination considered ...

  5. DOE - Office of Legacy Management -- Robbins and Myers Co - OH...

    Office of Legacy Management (LM)

    Conducted equipment testing - a pump. OH.51-1 Site Disposition: Eliminated - Limited scope of activities performed there - potential for residual radioactive contamination ...

  6. DOE - Office of Legacy Management -- Motch and Merryweather ...

    Office of Legacy Management (LM)

    ...Development and Testing of Uranium. OH.46-1 Site Disposition: Eliminated - Limited scope of activities performed - Potential for residual radioactive contamination considered ...

  7. DOE - Office of Legacy Management -- Clevite Corp - OH 35

    Office of Legacy Management (LM)

    Commercial operation conducted under AEC source material license. Scope of work for AEC (not under license) was limited. Potential for residual radioactive contamination from this ...

  8. file://L:\\DOE-hanford.gov\\public\\boards\\hab\\advice\\advice27.htm

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    substances to meet the residential use cleanup standards of the Washington Model Toxics Control Act. There is no apparent residual radioactive contamination above background...

  9. Radioactive Waste Management in Central Asia - 12034

    SciTech Connect (OSTI)

    Zhunussova, Tamara; Sneve, Malgorzata; Liland, Astrid

    2012-07-01

    After the collapse of the Soviet Union the newly independent states in Central Asia (CA) whose regulatory bodies were set up recently are facing problems with the proper management of radioactive waste and so called 'nuclear legacy' inherited from the past activities. During the former Soviet Union (SU) period, various aspects of nuclear energy use took place in CA republics of Kazakhstan, Kyrgyzstan, Tajikistan and Uzbekistan. Activities range from peaceful use of energy to nuclear testing for example at the former Semipalatinsk Nuclear Test Site (SNTS) in Kazakhstan, and uranium mining and milling industries in all four countries. Large amounts of radioactive waste (RW) have been accumulated in Central Asia and are waiting for its safe disposal. In 2008 the Norwegian Radiation Protection Authority (NRPA), with the support of the Norwegian Ministry of Foreign Affairs, has developed bilateral projects that aim to assist the regulatory bodies in Kazakhstan, Kyrgyzstan Tajikistan, and Uzbekistan (from 2010) to identify and draft relevant regulatory requirements to ensure the protection of the personnel, population and environment during the planning and execution of remedial actions for past practices and radioactive waste management in the CA countries. The participating regulatory authorities included: Kazakhstan Atomic Energy Agency, Kyrgyzstan State Agency on Environmental Protection and Forestry, Nuclear Safety Agency of Tajikistan, and State Inspectorate on Safety in Industry and Mining of Uzbekistan. The scope of the projects is to ensure that activities related to radioactive waste management in both planned and existing exposure situations in CA will be carried out in accordance with the international guidance and recommendations, taking into account the relevant regulatory practice from other countries in this area. In order to understand the problems in the field of radioactive waste management we have analysed the existing regulations through the so

  10. Regulatory Closure Options for the Residue in the Hanford Site Single-Shell Tanks

    SciTech Connect (OSTI)

    Cochran, J.R. Shyr, L.J.

    1998-10-05

    Liquid, mixed, high-level radioactive waste (HLW) has been stored in 149 single-shell tanks (SSTS) located in tank farms on the U.S. Department of Energy's (DOE's) Hanford Site. The DOE is developing technologies to retrieve as much remaining HLW as technically possible prior to physically closing the tank farms. In support of the Hanford Tanks Initiative, Sandia National Laboratories has addressed the requirements for the regulatory closure of the radioactive component of any SST residue that may remain after physical closure. There is significant uncertainty about the end state of each of the 149 SSTS; that is, the nature and amount of wastes remaining in the SSTS after retrieval is uncertain. As a means of proceeding in the face of these uncertainties, this report links possible end-states with associated closure options. Requirements for disposal of HLW and low-level radioactive waste (LLW) are reviewed in detail. Incidental waste, which is radioactive waste produced incidental to the further processing of HLW, is then discussed. If the low activity waste (LAW) fraction from the further processing of HLW is determined to be incidental waste, then DOE can dispose of that incidental waste onsite without a license from the U.S. Nuclear Regulatory Commissions (NRC). The NRC has proposed three Incidental Waste Criteria for determining if a LAW fraction is incidental waste. One of the three Criteria is that the LAW fraction should not exceed the NRC's Class C limits.

  11. Reductive transformation of bound trinitrophenyl residues and free TNT during a bioremediation process analyzed by immunoassay

    SciTech Connect (OSTI)

    Achtnich, C.; Pfortner, P.; Weller, M.G.; Niessner, R.; Lenke, H.; Knackmuss, H.J.

    1999-10-01

    To follow the fate of bound metabolites of TNT in soil, a synthetic trinitrophenyl residue covalently linked to humic acids was used as model compound. A selective monoclonal antibody was able to detect chemical changes of the nitro groups of the bound residues. The general possibility of reductive transformations of nitro groups of bound molecules and the reduction rates should be determined. In comparison to the reduction of free TNT and its metabolites, the reductive transformation of the bound trinitrophenyl residue was delayed, and the transformation rate was considerably slower. Trinitrophenyl residues also could be detected by the immunoassay in humic acids extracted from TNT contaminated soil. The reductive transformation of these trinitrophenyl residues started after the reduction of free TNT. At the end of the treatment, small amounts of these residues were still detectable indicating that some of these structures were not completely reduced during the process. From present results one can conclude that the further reduction of nitro groups of bound metabolites requires a prolonged anaerobic treatment. Not only the monitoring of free nitroaromatic compounds is recommended during the bioremediation process but also the measurement of bound residues to determine the optimal conditions and duration of the treatment.

  12. Honeybees as monitors of low levels of radioactivity

    SciTech Connect (OSTI)

    Simmons, M.A. ); Bromenshenk, J.J.; Gudatis, J.L. . Dept. of Zoology)

    1990-07-01

    Large-scale environmental monitoring programs rely on sampling many media -- air, water, food, et cetera -- from a large network of sampling stations. For describing the total region possibly impacted by contaminants, the most efficient sampler would be one that covered a large region and simultaneously sampled many different media, such as water, air, soil, and vegetation. Honeybees have been shown to be useful monitors of the environment in this context for detecting both radionuclides and heavy metals. This study sought to determine the effectiveness of honeybees as monitors of low levels of radioactivity in the form of tritium and gamma-emitting radionuclides. For the study, approximately 50 honeybee colonies were placed on the Hanford Site and along the Columbia River in areas downwind of the site. The mini-hive colonies were sampled after 1 month and tested for tritium and for gamma-emitting radionuclides. From this and other studies, it is known that honeybees can be used to detect radionuclides present in the environment. Their mobility and their ability to integrate all exposure pathways could expand and add another level of confidence to the present monitoring program. 6 refs., 1 fig., 2 tabs.

  13. Strategy for Characterizing Transuranics and Technetium Contamination in Depleted UF{sub 6} Cylinders

    SciTech Connect (OSTI)

    Hightower, J.R.

    2000-10-26

    This report summarizes results of a study performed to develop a strategy for characterization of low levels of radioactive contaminants [plutonium (Pu), neptunium (Np), americium (Am), and technetium (Tc)] in depleted uranium hexafluoride (DUF{sub 6}) cylinders at the gaseous diffusion plants in Oak Ridge, Tennessee; Paducah, Kentucky; and Piketon, Ohio. In these gaseous diffusion plants, this radioactivity came from enriching recycled uranium (the so-called ''reactor returns'') from Savannah River, South Carolina, and Hanford, Washington, reactors. Results of this study will be used to support a request for proposals to design, build, and operate facilities to convert the DUF{sub 6} to more chemically stable forms. These facilities would need to be designed to handle any transuranic contaminants that might be present in order to (1) protect the workers' health and safety and (2) protect the public and the environment.

  14. Transuranium-element-contaminated soil cleanup

    SciTech Connect (OSTI)

    Bramlitt, E.T.

    1987-01-01

    Johnston Atoll (JA) is a small (270-ha), but strategic, US possession in the Pacific Ocean, which was previously used in nuclear weapons testing. Nuclear devices were launched by missile for detonations at very high altitudes. In 1962, one missile failed on the launch pad and two failed overhead. The devices were destructed without nuclear yield, but transuranium (TRU) elements were dispersed. Cleanup was swift and incomplete. A 2-ha area was placed under radiological controls and restricted from use due to residual contamination. Planning was begun in 1983 for a total JA cleanup to provide additional (unrestricted) land to meet future requirements. A TRUe soil cleanup is programmed to begin at JA in 1988 utilizing a full-scale mining plant. The plant should be able to process all contaminated soil by 1992 and produce less than approx. 2000 m/sup 3/ of concentrated waste. This cleanup will increase the amount of land available for unrestricted use and provide a source of usable soil, which presently must be imported to JA.

  15. Boom and future of radioactive prospecting for oil and gas

    SciTech Connect (OSTI)

    Yuande, Q.; Jinhua, L.; Youqing, Z.; Longchang, W. )

    1992-01-01

    In this paper, the authors sketch out the general development situation of radioactive oil and gas explorations, the mechanism of radioactive anomaly, the application of radon method to oil and gas explorations, and some examples. It is pointed out that with the advance of science and technology, radioactive method will get consummate and very promising in oil and gas explorations.

  16. Contaminated nickel scrap processing

    SciTech Connect (OSTI)

    Compere, A.L.; Griffith, W.L.; Hayden, H.W.; Johnson, J.S. Jr.; Wilson, D.F.

    1994-12-01

    The DOE will soon choose between treating contaminated nickel scrap as a legacy waste and developing high-volume nickel decontamination processes. In addition to reducing the volume of legacy wastes, a decontamination process could make 200,000 tons of this strategic metal available for domestic use. Contaminants in DOE nickel scrap include {sup 234}Th, {sup 234}Pa, {sup 137}Cs, {sup 239}Pu (trace), {sup 60}Co, U, {sup 99}Tc, and {sup 237}Np (trace). This report reviews several industrial-scale processes -- electrorefining, electrowinning, vapormetallurgy, and leaching -- used for the purification of nickel. Conventional nickel electrolysis processes are particularly attractive because they use side-stream purification of process solutions to improve the purity of nickel metal. Additionally, nickel purification by electrolysis is effective in a variety of electrolyte systems, including sulfate, chloride, and nitrate. Conventional electrorefining processes typically use a mixed electrolyte which includes sulfate, chloride, and borate. The use of an electrorefining or electrowinning system for scrap nickel recovery could be combined effectively with a variety of processes, including cementation, solvent extraction, ion exchange, complex-formation, and surface sorption, developed for uranium and transuranic purification. Selected processes were reviewed and evaluated for use in nickel side-stream purification. 80 refs.

  17. Apparatus and method for rapid detection of explosives residue from the deflagration signature thereof

    DOE Patents [OSTI]

    Funsten, Herbert O. (Los Alamos, NM); McComas, David J. (Los Alamos, NM)

    1999-01-01

    Apparatus and method for rapid detection of explosives residue from the deflagration signature thereof. A property inherent to most explosives is their stickiness, resulting in a strong tendency of explosive particulate to contaminate the environment of a bulk explosive. An apparatus for collection of residue particulate, burning the collected particulate, and measurement of the ultraviolet emission produced thereby, is described. The present invention can be utilized for real-time screening of personnel, cars, packages, suspected devices, etc., and provides an inexpensive, portable, and noninvasive means for detecting explosives.

  18. Apparatus and method for rapid detection of explosives residue from the deflagration signature thereof

    DOE Patents [OSTI]

    Funsten, Herbert O. (Los Alamos, NM); McComas, David J. (Los Alamos, NM)

    1997-01-01

    Apparatus and method for rapid detection of explosives residue from the deflagration signature thereof. A property inherent to most explosives is their stickiness, resulting in a strong tendency of explosive particulate to contaminate the environment of a bulk explosive. An apparatus for collection of residue particulate, burning the collected particulate, and measurement of the optical emission produced thereby is described. The present invention can be utilized for real-time screening of personnel, cars, packages, suspected devices, etc., and provides an inexpensive, portable, and noninvasive means for detecting explosives.

  19. Apparatus and method for rapid detection of explosives residue from the deflagration signature thereof

    DOE Patents [OSTI]

    Funsten, H.O.; McComas, D.J.

    1999-06-15

    Apparatus and method are disclosed for rapid detection of explosives residue from the deflagration signature thereof. A property inherent to most explosives is their stickiness, resulting in a strong tendency of explosive particulate to contaminate the environment of a bulk explosive. An apparatus for collection of residue particulate, burning the collected particulate, and measurement of the ultraviolet emission produced thereby, is described. The present invention can be utilized for real-time screening of personnel, cars, packages, suspected devices, etc., and provides an inexpensive, portable, and noninvasive means for detecting explosives. 4 figs.

  20. Process to recycle shredder residue

    DOE Patents [OSTI]

    Jody, Bassam J.; Daniels, Edward J.; Bonsignore, Patrick V.

    2001-01-01

    A system and process for recycling shredder residue, in which separating any polyurethane foam materials are first separated. Then separate a fines fraction of less than about 1/4 inch leaving a plastics-rich fraction. Thereafter, the plastics rich fraction is sequentially contacted with a series of solvents beginning with one or more of hexane or an alcohol to remove automotive fluids; acetone to remove ABS; one or more of EDC, THF or a ketone having a boiling point of not greater than about 125.degree. C. to remove PVC; and one or more of xylene or toluene to remove polypropylene and polyethylene. The solvents are recovered and recycled.

  1. Immobilization of Organic Radioactive and Non-Radioactive Liquid Waste in a Composite Matrix - Final CRADA Report

    SciTech Connect (OSTI)

    Gelis, Artem V.

    2016-01-01

    Treatment and safe disposal of liquid radioactive waste from the BN-350 reactor unit at the LRW Processing Facility, Kazakhstan

  2. History of disposal of radioactive wastes into the ground at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Coobs, J.H.; Gissel, J.R.

    1986-10-01

    Since the beginning of operations at the Oak Ridge National Laboratory (ORNL) in 1943, shallow land burial has been used for the disposal of solid low-level radioactive waste. These wastes have originated from nearly every operating facility, and from 1955 to 1963, ORNL's solid waste storage areas were designated by the Atomic Energy Commission (AEC) as the Southern Regional Burial Ground. During this period, about one million cubic feet of solid waste from various off-site installations were buried in solid waste storage areas (SWSAs) 4 and 5. Six SWSAs have been used since land burial operations began at ORNL in early 1944. ORNL has generated liquid radioactive waste since the separation of plutonium began in 1944. The majority of these wastes are classified as process (low-level) waste and are derived from evaporator condensate and cooling water from process vessels, and from building drains and surface drainage from contaminated areas. Process wastes are monitored at sampling stations located strategicially throughout the plant, and for nearly 15 years (1944 to 1957) they were discharged directly into White Oak Creek without being treated chemically to remove radionuclides. A smaller quantity of intermediate-level wastes (ILW) originate from the radiochemical separation process and from test reactors. The collection, treatment, and methods of disposal of ILW from the years 1943 to 1981 are described. Over this period of time there was a great deal of variation in the amounts and types of radioactive liquid wastes generated.

  3. Hydrogen Contamination Detector Workshop Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Hydrogen Contamination Detector Workshop DOE Fuel Cell Technologies Office Hosted by: SAE International, Troy, Michigan June 12, 2014 (8:30 AM - 3:00 PM) Workshop Objective: The objective of the Hydrogen Contamination Detector (HCD) Workshop is to gather input from stakeholders on requirements, technologies and the research and development (R&D) gaps associated with the detection of contamination at hydrogen fueling stations. This input will help identify current state-of-the-art detection

  4. Normalized Tritium Quantification Approach (NoTQA) a Method for Quantifying Tritium Contaminated Trash and Debris at LLNL

    SciTech Connect (OSTI)

    Dominick, J L; Rasmussen, C L

    2008-07-23

    Several facilities and many projects at LLNL work exclusively with tritium. These operations have the potential to generate large quantities of Low-Level Radioactive Waste (LLW) with the same or similar radiological characteristics. A standardized documented approach to characterizing these waste materials for disposal as radioactive waste will enhance the ability of the Laboratory to manage them in an efficient and timely manner while ensuring compliance with all applicable regulatory requirements. This standardized characterization approach couples documented process knowledge with analytical verification and is very conservative, overestimating the radioactivity concentration of the waste. The characterization approach documented here is the Normalized Tritium Quantification Approach (NoTQA). This document will serve as a Technical Basis Document which can be referenced in radioactive waste characterization documentation packages such as the Information Gathering Document. In general, radiological characterization of waste consists of both developing an isotopic breakdown (distribution) of radionuclides contaminating the waste and using an appropriate method to quantify the radionuclides in the waste. Characterization approaches require varying degrees of rigor depending upon the radionuclides contaminating the waste and the concentration of the radionuclide contaminants as related to regulatory thresholds. Generally, as activity levels in the waste approach a regulatory or disposal facility threshold the degree of required precision and accuracy, and therefore the level of rigor, increases. In the case of tritium, thresholds of concern for control, contamination, transportation, and waste acceptance are relatively high. Due to the benign nature of tritium and the resulting higher regulatory thresholds, this less rigorous yet conservative characterization approach is appropriate. The scope of this document is to define an appropriate and acceptable

  5. RESIDUAL STRESSES IN 3013 CONTAINERS

    SciTech Connect (OSTI)

    Mickalonis, J.; Dunn, K.

    2009-11-10

    The DOE Complex is packaging plutonium-bearing materials for storage and eventual disposition or disposal. The materials are handled according to the DOE-STD-3013 which outlines general requirements for stabilization, packaging and long-term storage. The storage vessels for the plutonium-bearing materials are termed 3013 containers. Stress corrosion cracking has been identified as a potential container degradation mode and this work determined that the residual stresses in the containers are sufficient to support such cracking. Sections of the 3013 outer, inner, and convenience containers, in both the as-fabricated condition and the closure welded condition, were evaluated per ASTM standard G-36. The standard requires exposure to a boiling magnesium chloride solution, which is an aggressive testing solution. Tests in a less aggressive 40% calcium chloride solution were also conducted. These tests were used to reveal the relative stress corrosion cracking susceptibility of the as fabricated 3013 containers. Significant cracking was observed in all containers in areas near welds and transitions in the container diameter. Stress corrosion cracks developed in both the lid and the body of gas tungsten arc welded and laser closure welded containers. The development of stress corrosion cracks in the as-fabricated and in the closure welded container samples demonstrates that the residual stresses in the 3013 containers are sufficient to support stress corrosion cracking if the environmental conditions inside the containers do not preclude the cracking process.

  6. Protections: Sediment Control = Contaminant Retention

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Sediment Control Protections: Sediment Control Contaminant Retention LANL maintains hundreds of wells, stream sampling stations and stormwater control structures to protect...

  7. Closure End States for Facilities, Waste Sites, and Subsurface Contamination

    SciTech Connect (OSTI)

    Gerdes, Kurt D.; Chamberlain, Grover S.; Wellman, Dawn M.; Deeb, Rula A.; Hawley, Elizabeth L.; Whitehurst, Latrincy; Marble, Justin

    2012-11-21

    The United States (U.S.) Department of Energy (DOE) manages the largest groundwater and soil cleanup effort in the world. DOEs Office of Environmental Management (EM) has made significant progress in its restoration efforts at sites such as Fernald and Rocky Flats. However, remaining sites, such as Savannah River Site, Oak Ridge Site, Hanford Site, Los Alamos, Paducah Gaseous Diffusion Plant, Portsmouth Gaseous Diffusion Plant, and West Valley Demonstration Project possess the most complex challenges ever encountered by the technical community and represent a challenge that will face DOE for the next decade. Closure of the remaining 18 sites in the DOE EM Program requires remediation of 75 million cubic yards of contaminated soil and 1.7 trillion gallons of contaminated groundwater, deactivation & decommissioning (D&D) of over 3000 contaminated facilities and thousands of miles of contaminated piping, removal and disposition of millions of cubic yards of legacy materials, treatment of millions of gallons of high level tank waste and disposition of hundreds of contaminated tanks. The financial obligation required to remediate this volume of contaminated environment is estimated to cost more than 7% of the to-go life-cycle cost. Critical in meeting this goal within the current life-cycle cost projections is defining technically achievable end states that formally acknowledge that remedial goals will not be achieved for a long time and that residual contamination will be managed in the interim in ways that are protective of human health and environment. Formally acknowledging the long timeframe needed for remediation can be a basis for establishing common expectations for remedy performance, thereby minimizing the risk of re-evaluating the selected remedy at a later time. Once the expectations for long-term management are in place, remedial efforts can be directed towards near-term objectives (e.g., reducing the risk of exposure to residual contamination) instead of

  8. Development of a computer model for calculation of radioactive materials into the atmosphere after an accident

    SciTech Connect (OSTI)

    Schershakov, V.

    1997-11-01

    Secondary atmospheric contamination with radioactive dust and chemical species deposited on the ground and resuspended by wind occur very widely. This process is particularly pronounced in case of extensive contamination of soil and under extreme weather conditions, for example, during dust storms. The mechanism of wind dust generation consists in the following. At low wind speed U=2-3 m/s, which is most common in midlatitude, small radioactive dust particles (diameter of hundredth of a micron to 10-20 microns) are lifted from soil surface due to turbulent vortexes. Under the gravitational force the particles of 1-2 micron diameter practically do not settle. Larger dust particles cannot remain in the air for a long time: they are lifted by turbulent vortexes and settle, their motion in the wind flow is jump-wise and the interaction of particles with the flow is called saltation /I/. Saltation is the main mechanism of dust generation up to the wind velocity at which wind erosion starts. The size of dust particles can be as large as 100 pm. When dropping they can be ricocheting from ground or pass the impulse to other particles which begin rolling over and jumping up. The process of dust transport by wind can be compared to a chain reaction. At the velocity of 10 m/s large particles of about 500 pm stop skipping and roll over only, while particles of more than 1 mm remain stationary. Thus, the fine fraction is blown out from the polydispersed soil particles. The intensity of wind resuspension of radioactive dust from the ground is characterized either by a resuspension factor or a resuspension rate.

  9. Method of handling radioactive alkali metal waste

    DOE Patents [OSTI]

    Wolson, Raymond D.; McPheeters, Charles C.

    1980-01-01

    Radioactive alkali metal is mixed with particulate silica in a rotary drum reactor in which the alkali metal is converted to the monoxide during rotation of the reactor to produce particulate silica coated with the alkali metal monoxide suitable as a feed material to make a glass for storing radioactive material. Silica particles, the majority of which pass through a 95 mesh screen or preferably through a 200 mesh screen, are employed in this process, and the preferred weight ratio of silica to alkali metal is 7 to 1 in order to produce a feed material for the final glass product having a silica to alkali metal monoxide ratio of about 5 to 1.

  10. Method of handling radioactive alkali metal waste

    DOE Patents [OSTI]

    Wolson, R.D.; McPheeters, C.C.

    Radioactive alkali metal is mixed with particulate silica in a rotary drum reactor in which the alkali metal is converted to the monoxide during rotation of the reactor to produce particulate silica coated with the alkali metal monoxide suitable as a feed material to make a glass for storing radioactive material. Silica particles, the majority of which pass through a 95 mesh screen or preferably through a 200 mesh screen, are employed in this process, and the preferred weight ratio of silica to alkali metal is 7 to 1 in order to produce a feed material for the final glass product having a silica to alkali metal monoxide ratio of about 5 to 1.

  11. Solar Powered Radioactive Air Monitoring Stations

    SciTech Connect (OSTI)

    Barnett, J. Matthew; Bisping, Lynn E.; Gervais, Todd L.

    2013-10-30

    Environmental monitoring of ambient air for radioactive material is required as stipulated in the PNNL Site radioactive air license. Sampling ambient air at identified preferred locations could not be initially accomplished because utilities were not readily available. Therefore, solar powered environmental monitoring systems were considered as a possible option. PNNL purchased two 24-V DC solar powered environmental monitoring systems which consisted of solar panels, battery banks, and sampling units. During an approximate four month performance evaluation period, the solar stations operated satisfactorily at an on-site test location. They were subsequently relocated to their preferred locations in June 2012 where they continue to function adequately under the conditions found in Richland, Washington.

  12. ELECTRONIC ANALOG COMPUTER FOR DETERMINING RADIOACTIVE DISINTEGRATION

    DOE Patents [OSTI]

    Robinson, H.P.

    1959-07-14

    A computer is presented for determining growth and decay curves for elements in a radioactive disintegration series wherein one unstable element decays to form a second unstable element or isotope, which in turn forms a third element, etc. The growth and decay curves of radioactive elements are simulated by the charge and discharge curves of a resistance-capacitance network. Several such networks having readily adjustable values are connected in series with an amplifier between each successive pair. The time constant of each of the various networks is set proportional to the half-life of a corresponding element in the series represented and the charge and discharge curves of each of the networks simulates the element growth and decay curve.

  13. Estimating Residual Solids Volume In Underground Storage Tanks

    SciTech Connect (OSTI)

    Clark, Jason L.; Worthy, S. Jason; Martin, Bruce A.; Tihey, John R.

    2014-01-08

    The Savannah River Site liquid waste system consists of multiple facilities to safely receive and store legacy radioactive waste, treat, and permanently dispose waste. The large underground storage tanks and associated equipment, known as the 'tank farms', include a complex interconnected transfer system which includes underground transfer pipelines and ancillary equipment to direct the flow of waste. The waste in the tanks is present in three forms: supernatant, sludge, and salt. The supernatant is a multi-component aqueous mixture, while sludge is a gel-like substance which consists of insoluble solids and entrapped supernatant. The waste from these tanks is retrieved and treated as sludge or salt. The high level (radioactive) fraction of the waste is vitrified into a glass waste form, while the low-level waste is immobilized in a cementitious grout waste form called saltstone. Once the waste is retrieved and processed, the tanks are closed via removing the bulk of the waste, chemical cleaning, heel removal, stabilizing remaining residuals with tailored grout formulations and severing/sealing external penetrations. The comprehensive liquid waste disposition system, currently managed by Savannah River Remediation, consists of 1) safe storage and retrieval of the waste as it is prepared for permanent disposition; (2) definition of the waste processing techniques utilized to separate the high-level waste fraction/low-level waste fraction; (3) disposition of LLW in saltstone; (4) disposition of the HLW in glass; and (5) closure state of the facilities, including tanks. This paper focuses on determining the effectiveness of waste removal campaigns through monitoring the volume of residual solids in the waste tanks. Volume estimates of the residual solids are performed by creating a map of the residual solids on the waste tank bottom using video and still digital images. The map is then used to calculate the volume of solids remaining in the waste tank. The ability to

  14. Electrically Driven Technologies for Radioactive Aerosol Abatement

    SciTech Connect (OSTI)

    David W. DePaoli; Ofodike A. Ezekoye; Costas Tsouris; Valmor F. de Almeida

    2003-01-28

    The purpose of this research project was to develop an improved understanding of how electriexecy driven processes, including electrocoalescence, acoustic agglomeration, and electric filtration, may be employed to efficiently treat problems caused by the formation of aerosols during DOE waste treatment operations. The production of aerosols during treatment and retrieval operations in radioactive waste tanks and during thermal treatment operations such as calcination presents a significant problem of cost, worker exposure, potential for release, and increased waste volume.

  15. RW - Radioactive Waste - Energy Conservation Plan

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Unconsciously Negative Behaviors Consciously Negative Behaviors Consciously Positive Behaviors Unconsciously Positive Behaviors Education Motivation Repetition Permanent Change Figure 1 - The Phases of Behavior Change Office of Civilian Radioactive Waste Management (OCRWM) Energy Conservation Plan Summary: Development and implementation of this plan is being treated as a project. This serves two purposes. First, it increases familiarity with the precepts of project management and DOE Order 413.

  16. Radioactive materials released from nuclear power plants

    SciTech Connect (OSTI)

    Tichler, J.; Norden, K.; Congemi, J. )

    1991-05-01

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1988 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1988 release data are summarized in tabular form. Data covering specific radionuclides are summarized. 16 tabs.

  17. Radioactive materials released from nuclear power plants

    SciTech Connect (OSTI)

    Tichler, J.; Norden, K.; Congemi, J. )

    1989-10-01

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1987 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1987 release data are summarized in tabular form. Data covering specific radionuclides are summarized. 16 tabs.

  18. Radioactive materials released from nuclear power plants

    SciTech Connect (OSTI)

    Tichler, J.; Benkovitz, C.

    1981-11-01

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1979 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1979 release data are compared with previous year's releases in tabular form. Data covering specific radionuclides are summarized.

  19. Geological problems in radioactive waste isolation

    SciTech Connect (OSTI)

    Witherspoon, P.A.

    1991-01-01

    The problem of isolating radioactive wastes from the biosphere presents specialists in the fields of earth sciences with some of the most complicated problems they have ever encountered. This is especially true for high level waste (HLW) which must be isolated in the underground and away from the biosphere for thousands of years. Essentially every country that is generating electricity in nuclear power plants is faced with the problem of isolating the radioactive wastes that are produced. The general consensus is that this can be accomplished by selecting an appropriate geologic setting and carefully designing the rock repository. Much new technology is being developed to solve the problems that have been raised and there is a continuing need to publish the results of new developments for the benefit of all concerned. The 28th International Geologic Congress that was held July 9--19, 1989 in Washington, DC provided an opportunity for earth scientists to gather for detailed discussions on these problems. Workshop W3B on the subject, Geological Problems in Radioactive Waste Isolation -- A World Wide Review'' was organized by Paul A Witherspoon and Ghislain de Marsily and convened July 15--16, 1989 Reports from 19 countries have been gathered for this publication. Individual papers have been cataloged separately.

  20. Radioactive waste management in the former USSR

    SciTech Connect (OSTI)

    Bradley, D.J.

    1992-06-01

    Radioactive waste materials--and the methods being used to treat, process, store, transport, and dispose of them--have come under increased scrutiny over last decade, both nationally and internationally. Nuclear waste practices in the former Soviet Union, arguably the world's largest nuclear waste management system, are of obvious interest and may affect practices in other countries. In addition, poor waste management practices are causing increasing technical, political, and economic problems for the Soviet Union, and this will undoubtedly influence future strategies. this report was prepared as part of a continuing effort to gain a better understanding of the radioactive waste management program in the former Soviet Union. the scope of this study covers all publicly known radioactive waste management activities in the former Soviet Union as of April 1992, and is based on a review of a wide variety of literature sources, including documents, meeting presentations, and data base searches of worldwide press releases. The study focuses primarily on nuclear waste management activities in the former Soviet Union, but relevant background information on nuclear reactors is also provided in appendixes.

  1. Future radioactive liquid waste streams study

    SciTech Connect (OSTI)

    Rey, A.S.

    1993-11-01

    This study provides design planning information for the Radioactive Liquid Waste Treatment Facility (RLWTF). Predictions of estimated quantities of Radioactive Liquid Waste (RLW) and radioactivity levels of RLW to be generated are provided. This information will help assure that the new treatment facility is designed with the capacity to treat generated RLW during the years of operation. The proposed startup date for the RLWTF is estimated to be between 2002 and 2005, and the life span of the facility is estimated to be 40 years. The policies and requirements driving the replacement of the current RLW treatment facility are reviewed. Historical and current status of RLW generation at Los Alamos National Laboratory are provided. Laboratory Managers were interviewed to obtain their insights into future RLW activities at Los Alamos that might affect the amount of RLW generated at the Lab. Interviews, trends, and investigation data are analyzed and used to create scenarios. These scenarios form the basis for the predictions of future RLW generation and the level of RLW treatment capacity which will be needed at LANL.

  2. Immobilization of chloride-rich radioactive wastes produced by pyrochemical operations

    SciTech Connect (OSTI)

    McDaniel, E.W.; Terry, J.W.

    1997-08-01

    A a result of its former role as a producer of nuclear weapons components, the Rocky Flats Environmental Technology Site (RFETS), Golden, Colorado accumulated a variety of plutonium-contaminated materials. When the level of contamination exceeded a predetermined level (the economic discard limit), the materials were classified as residues rather than waste and were stored for later recovery of the plutonium. Although large quantities of residues were processed, others, primarily those more difficult to process, remain in storage at the site. It is planned for the residues with lower concentrations of plutonium to be disposed of as wastes at an appropriate disposal facility, probably the Waste Isolation Pilot Plant (WIPP). Because the plutonium concentration is too high or because the physical or chemical form would be difficult to get into a form acceptable to WIPP, it may not be possible to dispose of a portion of the residues at WIPP. The pyrochemical salts are among the residues that are difficult to dispose of. For a large percentage of the pyrochemical salts, safeguards controls are required, but WIPP was not designed to accommodate safeguards controls. A potential solution would be to immobilize the salts. These immobilized salts would contain substantially higher plutonium concentrations than is currently permissible but would be suitable for disposal at WIPP. This document presents the results of a review of three immobilization technologies to determine if mature technologies exist that would be suitable to immobilize pyrochemical salts: cement-based stabilization, low-temperature vitrification, and polymer encapsulation. The authors recommend that flow sheets and life-cycle costs be developed for cement-based and low-temperature glass immobilization.

  3. Simulation of contaminated sediment transport in White Oak Creek basin

    SciTech Connect (OSTI)

    Bao, Y.; Clapp, R.B.; Brenkert, A.L.; Moore, T.D.; Fontaine, T.A.

    1995-12-31

    This paper presents a systematic approach to management of the contaminated sediments in the White Oak Creek watershed at Oak Ridge National Laboratory near Oak Ridge, Tennessee. The primary contaminant of concern is radioactive cesium-137 ({sup 137}Cs), which binds to soil and sediment particles. The key components in the approach include an intensive sampling and monitoring system for flood events; modeling of hydrological processes, sediment transport, and contaminant flux movement; and a decision framework with a detailed human health risk analysis. Emphasis is placed on modeling of watershed rainfall-runoff and contaminated sediment transport during flooding periods using the Hydrologic Simulation Program- Fortran (HSPF) model. Because a large number of parameters are required in HSPF modeling, the major effort in the modeling process is the calibration of model parameters to make simulation results and measured values agree as closely as possible. An optimization model incorporating the concepts of an expert system was developed to improve calibration results and efficiency. Over a five-year simulation period, the simulated flows match the observed values well. Simulated total amount of sediment loads at various locations during storms match with the observed values within a factor of 1.5. Simulated annual releases of {sup 137}Cs off-site locations match the data within a factor of 2 for the five-year period. The comprehensive modeling approach can provide a valuable tool for decision makers to quantitatively analyze sediment erosion, deposition, and transport; exposure risk related to radionuclides in contaminated sediment; and various management strategies.

  4. Resource recovery from coal residues

    SciTech Connect (OSTI)

    Jones, G. Jr.; Canon, R.M.

    1980-01-01

    Several processes are being developed to recover metals from coal combustion and conversion residues. Methods to obtain substantial amounts of aluminum, iron, and titanium from these wastes are presented. The primary purpose of our investigation is to find a process that is economically sound or one that at least will partially defray the costs of waste processing. A cursory look at the content of fly ash enables one to see the merits of recovery of these huge quantities of valuable resources. The major constituents of fly ash of most interest are aluminum (14.8%), iron (7.5%), and titanium (1.0%). If these major elements could be recovered from the fly ash produced in the United States (60 million tons/year), bauxite would not have to be imported, iron ore production could be increased, and titanium production could be doubled.

  5. Accident Investigation of the August 21, 2012, Contamination Incident at the Los Alamos Neutron Science Center at the Los Alamos National Laboratory

    Energy.gov [DOE]

    On August 25, 2012, radioactive contamination was identified on Flight Path 04 of the Lujan Center, an experimental area that is part of the Los Alamos Neutron Science Center at the Los Alamos National Laboratory in New Mexico. Los Alamos National Laboratory is operated by Los Alamos National Security, LLC. The Operating Contractor quickly determined that the contamination had spread offsite, and response teams were immediately brought in.

  6. Effects of polymethylmethacrylate-transfer residues on the growth of organic semiconductor molecules on chemical vapor deposited graphene

    SciTech Connect (OSTI)

    Kratzer, Markus Teichert, Christian; Bayer, Bernhard C.; Kidambi, Piran R.; Matkovi?, Aleksandar; Gaji?, Rado; Cabrero-Vilatela, Andrea; Weatherup, Robert S.; Hofmann, Stephan

    2015-03-09

    Scalably grown and transferred graphene is a highly promising material for organic electronic applications, but controlled interfacing of graphene thereby remains a key challenge. Here, we study the growth characteristics of the important organic semiconductor molecule para-hexaphenyl (6P) on chemical vapor deposited graphene that has been transferred with polymethylmethacrylate (PMMA) onto oxidized Si wafer supports. A particular focus is on the influence of PMMA residual contamination, which we systematically reduce by H{sub 2} annealing prior to 6P deposition. We find that 6P grows in a flat-lying needle-type morphology, surprisingly independent of the level of PMMA residue and of graphene defects. Wrinkles in the graphene typically act as preferential nucleation centers. Residual PMMA does however limit the length of the resulting 6P needles by restricting molecular diffusion/attachment. We discuss the implications for organic device fabrication, with particular regard to contamination and defect tolerance.

  7. DOE - Office of Legacy Management -- Milwaukee Airport - WI 04

    Office of Legacy Management (LM)

    WI.04-1 Site Disposition: Eliminated - Limited scope of activities performed there - potential for residual radioactive contamination considered remote WI.04-1 WI.04-2 Radioactive ...

  8. Remaining Sites Verification Package for the 600-243 Petroleum-Contaminated Soil Bioremediation Pad, Waste Site Reclassification Form 2007-033

    SciTech Connect (OSTI)

    J. M. Capron

    2008-11-07

    The 600-243 waste site consisted of a bioremediation pad for petroleum-contaminated soils resulting from the 1100 Area Underground Storage Tank (UST) upgrades in 1994. In accordance with this evaluation, the verification sampling results support a reclassification of this site to Interim Closed Out. The results of verification sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

  9. Particulate residue separators for harvesting devices

    DOE Patents [OSTI]

    Hoskinson, Reed L.; Kenney, Kevin L.; Wright, Christopher T.; Hess, John R.

    2010-06-29

    A particulate residue separator and a method for separating a particulate residue stream may include a plenum borne by a harvesting device, and have a first, intake end and a second, exhaust end; first and second particulate residue air streams which are formed by the harvesting device and which travel, at least in part, along the plenum and in a direction of the second, exhaust end; and a baffle assembly which is located in partially occluding relation relative to the plenum, and which substantially separates the first and second particulate residue air streams.

  10. Methods of separating particulate residue streams

    DOE Patents [OSTI]

    Hoskinson, Reed L.; Kenney, Kevin L.; Wright, Christopher T.; Hess, J. Richard

    2011-04-05

    A particulate residue separator and a method for separating a particulate residue stream may include an air plenum borne by a harvesting device, and have a first, intake end and a second, exhaust end; first and second particulate residue air streams that are formed by the harvesting device and that travel, at least in part, along the air plenum and in a direction of the second, exhaust end; and a baffle assembly that is located in partially occluding relation relative to the air plenum and that substantially separates the first and second particulate residue air streams.

  11. RESULTS FOR THE THIRD QUARTER 2007 TANK 50H WAC SLURRY SAMPLE: CHEMICAL AND RADIONUCLIDE CONTAMINANT RESULTS

    SciTech Connect (OSTI)

    Zeigler, K; Ned Bibler, N

    2008-07-11

    The Saltstone Facility is designed and permitted to immobilize and dispose of low-level radioactive and hazardous liquid waste (salt solution) remaining from the processing of radioactive material at the Savannah River Site. Low activity wastewater streams from the Effluent Treatment Project (ETP), H-Canyon, and the high level waste (HLW) storage tanks, are stored as a mixture in Tank 50H until it can be pumped to the Saltstone Facility for treatment and disposal. Specific waste acceptance criteria (WAC) must be met for the transfer of low-level aqueous waste from Tank 50H to the Saltstone Facility. Low level waste which meets the WAC can be transferred, stored and treated in the Saltstone Production Facility (SPF) for subsequent disposal as saltstone in the Saltstone Disposal Facility (SDF). Waste Solidification Engineering (WSE) has requested through a Technical Task Request (TTR) that the Savannah River National Laboratory (SRNL) measure the concentrations of chemical and radionuclide contaminants listed in the currently approved Saltstone Waste Acceptance Criteria (WAC). A Task Technical and Quality Assurance Plan and Analytical Study Plan has been written for this request. WAC determinations are needed on a quarterly basis for chemical contaminants and every first and third quarter for radioactive contaminants. This memorandum presents the results for the chemical and radionuclide contaminants in the third quarter, from the samples taken from Tank 50 in September, 2007.

  12. In situ destruction of contaminants via hydrous pyrolysis/

    SciTech Connect (OSTI)

    Aines, R D; Carrigan, C; Chiarappa, M; Eaker, C; Hudson, B; Knauss, K; Leif, R; Newmark, R L; Richards, J; Sciarotta, T; Tompson, A; Weidner, R.

    1998-12-01

    A field test of hydrous pyrolysis/oxidation (HPO) was conducted during the summer of 1997, during a commercial application of thermal remediation (Dynamic Underground Stripping (DUS)) at the Visalia Pole Yard (a super-fund site) in southern California. At Visalia, Southern California Edison Co. is applying the DUS thermal remediation method to clean up a large (4.3 acre) site contaminated with pole-treating compounds. This is a full-scale cleanup, during which initial extraction of contaminants is augmented by combined steam/air injection in order to enhance the destruction of residual contaminants by HPO. Laboratory results indicate that the contaminants at Visaha react at similar rates to TCE, which has been the focus of extensive laboratory work (Knauss et al., 1998a-c). Field experimental results from this application yield valuable information (1) confirming the destruction of contaminants in soil and groundwater by HPO, (2) validating the predictive models used to design HP0 steam injection systems, (3) demonstrating that accurate field measurements of the critical fluid parameters can be obtained using existing monitoring wells and (4) obtaining a reasonable prediction of the cost and effectiveness of HPO, working at a commercial scale and with commercial partners. The goal of our additional study and demonstration in conjunction with Edison has been to obtain early proof of hydrous pyrolysis/oxidation in the field, and validate our predictive models and monitoring strategies. This demonstration provides valuable economic and practicability data obtained on a commercial scale, with more detailed field validation than is commonly available on a commercially-conducted cleanup. The results of LLNL s field experiments constrain the destruction rates throughout the site, and enable site management to make accurate estimates of total in situ destruction based on the recovered carbon. As of October, 1998, over 900,000 lb of contaminant have been removed from the

  13. Environmental Assessment Radioactive Source Recovery Program

    SciTech Connect (OSTI)

    1995-12-20

    In a response to potential risks to public health and safety, the U.S. Department of Energy (DOE) is evaluating the recovery of sealed neutron sources under the Radioactive Source Recovery Program (RSRP). This proposed program would enhance the DOE`s and the U.S. Nuclear Regulatory Commission`s (NRC`s) joint capabilities in the safe management of commercially held radioactive source materials. Currently there are no federal or commercial options for the recovery, storage, or disposal of sealed neutron sources. This Environmental Assessment (EA) analyzes the potential environmental impacts that would be expected to occur if the DOE were to implement a program for the receipt and recovery at the Los Alamos National Laboratory (LANL), Los Alamos, New Mexico, of unwanted and excess plutonium-beryllium ({sup 238}Pu-Be) and americium-beryllium ({sup 241}Am-Be) sealed neutron sources. About 1 kg (2.2 lb) plutonium and 3 kg (6.6 lb) americium would be recovered over a 15-year project. Personnel at LANL would receive neutron sources from companies, universities, source brokers, and government agencies across the country. These neutron sources would be temporarily stored in floor holes at the CMR Hot Cell Facility. Recovery reduces the neutron emissions from the source material and refers to a process by which: (1) the stainless steel cladding is removed from the neutron source material, (2) the mixture of the radioactive material (Pu-238 or Am-241) and beryllium that constitutes the neutron source material is chemically separated (recovered), and (3) the recovered Pu-238 or Am-241 is converted to an oxide form ({sup 238}PuO{sub 2} or {sup 241}AmO{sub 2}). The proposed action would include placing the {sup 238}PuO{sub 2} or {sup 241}AmO{sub 2} in interim storage in a special nuclear material vault at the LANL Plutonium Facility.

  14. Advances in Geochemical Testing of Key Contaminants in Residual Hanford Tank Waste

    SciTech Connect (OSTI)

    Deutsch, William J.; Krupka, Kenneth M.; Cantrell, Kirk J.; Brown, Christopher F.; Lindberg, Michael J.; Schaef, Herbert T.; Heald, Steve M.; Arey, Bruce W.; Kukkadapu, Ravi K.

    2005-11-04

    This report describes the advances that have been made over the past two years in testing and characterizing waste material in Hanford tanks.

  15. A Benchmark Study on Casting Residual Stress

    SciTech Connect (OSTI)

    Johnson, Eric M. [John Deere -- Moline Tech Center; Watkins, Thomas R [ORNL; Schmidlin, Joshua E [ORNL; Dutler, S. A. [MAGMA Foundry Technologies, Inc.

    2012-01-01

    Stringent regulatory requirements, such as Tier IV norms, have pushed the cast iron for automotive applications to its limit. The castings need to be designed with closer tolerances by incorporating hitherto unknowns, such as residual stresses arising due to thermal gradients, phase and microstructural changes during solidification phenomenon. Residual stresses were earlier neglected in the casting designs by incorporating large factors of safety. Experimental measurement of residual stress in a casting through neutron or X-ray diffraction, sectioning or hole drilling, magnetic, electric or photoelastic measurements is very difficult and time consuming exercise. A detailed multi-physics model, incorporating thermo-mechanical and phase transformation phenomenon, provides an attractive alternative to assess the residual stresses generated during casting. However, before relying on the simulation methodology, it is important to rigorously validate the prediction capability by comparing it to experimental measurements. In the present work, a benchmark study was undertaken for casting residual stress measurements through neutron diffraction, which was subsequently used to validate the accuracy of simulation prediction. The stress lattice specimen geometry was designed such that subsequent castings would generate adequate residual stresses during solidification and cooling, without any cracks. The residual stresses in the cast specimen were measured using neutron diffraction. Considering the difficulty in accessing the neutron diffraction facility, these measurements can be considered as benchmark for casting simulation validations. Simulations were performed using the identical specimen geometry and casting conditions for predictions of residual stresses. The simulation predictions were found to agree well with the experimentally measured residual stresses. The experimentally validated model can be subsequently used to predict residual stresses in different cast

  16. Hanford Site radioactive hazardous materials packaging directory

    SciTech Connect (OSTI)

    McCarthy, T.L.

    1995-12-01

    The Hanford Site Radioactive Hazardous Materials Packaging Directory (RHMPD) provides information concerning packagings owned or routinely leased by Westinghouse Hanford Company (WHC) for offsite shipments or onsite transfers of hazardous materials. Specific information is provided for selected packagings including the following: general description; approval documents/specifications (Certificates of Compliance and Safety Analysis Reports for Packaging); technical information (drawing numbers and dimensions); approved contents; areas of operation; and general information. Packaging Operations & Development (PO&D) maintains the RHMPD and may be contacted for additional information or assistance in obtaining referenced documentation or assistance concerning packaging selection, availability, and usage.

  17. System for disposing of radioactive water

    DOE Patents [OSTI]

    Gotchy, Reginald L.

    1976-01-13

    A system for reducing radioactivity released to the biosphere in the course of producing natural gas from a reservoir stimulated by the detonation of nuclear explosives therein. Tritiated water produced with the gas is separated out and returned to a nuclear chimney through a string of tubing positioned within the well casing. The tubing string is positioned within the well casing in a manner which enhances separation of the water out of the gas and minimizes entrainment of water into the gas flowing out of the chimney.

  18. Particle beam generator using a radioactive source

    DOE Patents [OSTI]

    Underwood, D.G.

    1993-03-30

    The apparatus of the present invention selects from particles emitted by a radioactive source those particles having momentum within a desired range and focuses the selected particles in a beam having at least one narrow cross-dimension, and at the same time attenuates potentially disruptive gamma rays and low energy particles. Two major components of the present invention are an achromatic bending and focusing system, which includes sector magnets and quadrupole, and a quadrupole doublet final focus system. Permanent magnets utilized in the apparatus are constructed of a ceramic (ferrite) material which is inexpensive and easily machined.

  19. Particle beam generator using a radioactive source

    DOE Patents [OSTI]

    Underwood, David G.

    1993-01-01

    The apparatus of the present invention selects from particles emitted by a radioactive source those particles having momentum within a desired range and focuses the selected particles in a beam having at least one narrow cross-dimension, and at the same time attenuates potentially disruptive gamma rays and low energy particles. Two major components of the present invention are an achromatic bending and focusing system, which includes sector magnets and quadrupole, and a quadrupole doublet final focus system. Permanent magnets utilized in the apparatus are constructed of a ceramic (ferrite) material which is inexpensive and easily machined.

  20. System for handling and storing radioactive waste

    DOE Patents [OSTI]

    Anderson, J.K.; Lindemann, P.E.

    1982-07-19

    A system and method are claimed for handling and storing spent reactor fuel and other solid radioactive waste, including canisters to contain the elements of solid waste, storage racks to hold a plurality of such canisters, storage bays to store these racks in isolation by means of shielded doors in the bays. This system also includes means for remotely positioning the racks in the bays and an access tunnel within which the remotely operated means is located to position a rack in a selected bay. The modular type of these bays will facilitate the construction of additional bays and access tunnel extension.

  1. System for handling and storing radioactive waste

    DOE Patents [OSTI]

    Anderson, John K.; Lindemann, Paul E.

    1984-01-01

    A system and method for handling and storing spent reactor fuel and other solid radioactive waste, including canisters to contain the elements of solid waste, storage racks to hold a plurality of such canisters, storage bays to store these racks in isolation by means of shielded doors in the bays. This system also includes means for remotely positioning the racks in the bays and an access tunnel within which the remotely operated means is located to position a rack in a selected bay. The modular type of these bays will facilitate the construction of additional bays and access tunnel extension.

  2. RECLAMATION OF RADIOACTIVE MATERIAL PACKAGING COMPONENTS

    SciTech Connect (OSTI)

    Abramczyk, G.; Nathan, S.; Loftin, B.; Bellamy, S.

    2011-06-06

    Radioactive material packages are withdrawn from use for various reasons; loss of mission, decertification, damage, replacement, etc. While the packages themselves may be decertified, various components may still be able to perform to their required standards and find useful service. The Packaging Technology and Pressurized Systems group of the Savannah River National Laboratory has been reducing the cost of producing new Type B Packagings by reclaiming, refurbishing, and returning to service the containment vessels from older decertified packagings. The program and its benefits are presented.

  3. Sealed Radioactive Source Accountability and Control Guide

    Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-04-15

    For use with Title 10, Code of Federal Regulations, Part 835, Occupational Radiation Protection. This Guide provides an acceptable methodology for establishing and operating a sealed radioactive source accountability and control program that will comply with U.S. Department of Energy (DOE) requirements specified in Title 10 of the Code of Federal Regulations (CFR), Part 835, Occupational Radiation Protection (DOE 1998a), hereinafter referred to as 10 CFR 835. In particular, this Guide provides guidance for achieving compliance with subpart M of 10 CFR 835. Canceled by DOE G 441.1-1B.

  4. Corrosion resistant storage container for radioactive material

    DOE Patents [OSTI]

    Schweitzer, Donald G.; Davis, Mary S.

    1990-01-01

    A corrosion resistant long-term storage container for isolating radioactive waste material in a repository. The container is formed of a plurality of sealed corrosion resistant canisters of different relative sizes, with the smaller canisters housed within the larger canisters, and with spacer means disposed between judxtaposed pairs of canisters to maintain a predetermined spacing between each of the canisters. The combination of the plural surfaces of the canisters and the associated spacer means is effective to make the container capable of resisting corrosion, and thereby of preventing waste material from leaking from the innermost canister into the ambient atmosphere.

  5. Corrosion resistant storage container for radioactive material

    DOE Patents [OSTI]

    Schweitzer, D.G.; Davis, M.S.

    1984-08-30

    A corrosion resistant long-term storage container for isolating high-level radioactive waste material in a repository is claimed. The container is formed of a plurality of sealed corrosion resistant canisters of different relative sizes, with the smaller canisters housed within the larger canisters, and with spacer means disposed between juxtaposed pairs of canisters to maintain a predetermined spacing between each of the canisters. The combination of the plural surfaces of the canisters and the associated spacer means is effective to make the container capable of resisting corrosion, and thereby of preventing waste material from leaking from the innermost canister into the ambient atmosphere.

  6. Characterization Report on Sand, Slag, and Crucible Residues and on Fluoride Residues

    SciTech Connect (OSTI)

    Murray, A.M.

    1999-02-10

    This paper reports on the chemical characterization of the sand, slag, and crucible (SS and C) residues and the fluoride residues that may be shipped from the Rocky Flats Environmental Technology Site (RFETS) to Savannah River Site (SRS).

  7. Enhancements to System for Tracking Radioactive Waste Shipments Benefit

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Multiple Users | Department of Energy Enhancements to System for Tracking Radioactive Waste Shipments Benefit Multiple Users Enhancements to System for Tracking Radioactive Waste Shipments Benefit Multiple Users January 30, 2013 - 12:00pm Addthis Transportation Tracking and Communication System users can now track shipments of radioactive materials and access transportation information on mobile devices. Transportation Tracking and Communication System users can now track shipments of

  8. Letter to Congress RE: Office of Civilian Radioactive Waste Management's

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Annual Financial Report | Department of Energy to Congress RE: Office of Civilian Radioactive Waste Management's Annual Financial Report Letter to Congress RE: Office of Civilian Radioactive Waste Management's Annual Financial Report The following document is a letter from the Secretary of Energy to the Honorable Joseph R. Biden regarding the U.S. Department of Energy's Office of Civilian Radioactive Waste Management's Annual Financial Report for the years ended September 30, 2009 and 2008

  9. Office of Civilian Radioactive Waste Management-Quality Assurance

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Requirements and Description | Department of Energy Management-Quality Assurance Requirements and Description Office of Civilian Radioactive Waste Management-Quality Assurance Requirements and Description A report detailling the requirements and description of the Quality Assurance program. Office of Civilian Radioactive Waste Management-Quality Assurance Requirements and Description (566.23 KB) More Documents & Publications Quality Assurance Requirements Civilian Radioactive Waste

  10. Enterprise Assessments Review of Radioactive Waste Management at the

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Portsmouth Gaseous Diffusion Plant - December 2015 | Department of Energy Radioactive Waste Management at the Portsmouth Gaseous Diffusion Plant - December 2015 Enterprise Assessments Review of Radioactive Waste Management at the Portsmouth Gaseous Diffusion Plant - December 2015 December 2015 Review of Radioactive Waste Management at the Portsmouth Gaseous Diffusion Plant The U.S. Department of Energy (DOE) Office of Nuclear Safety and Environmental Assessments, within the independent

  11. Hanford Site Shares Lessons Learned in Retrieving Highly Radioactive

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Material | Department of Energy Shares Lessons Learned in Retrieving Highly Radioactive Material Hanford Site Shares Lessons Learned in Retrieving Highly Radioactive Material January 29, 2014 - 12:00pm Addthis A team from the Oak Ridge Office of Environmental Management observes equipment that will be used to retrieve highly radioactive sludge at the Hanford site. This pump was modified to fit the underwater environment where the sludge is stored. A team from the Oak Ridge Office of

  12. Armenia Secures Dangerous Radioactive Sources in Cooperation with NNSA |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration | (NNSA) Armenia Secures Dangerous Radioactive Sources in Cooperation with NNSA May 27, 2015 The Department of Energy's National Nuclear Security Administration (NNSA) joined the Republic of Armenia today to announce the safe and secure removal of three unused radioactive sources from two locations in Yerevan, Armenia. The successful completion of the radioactive source recovery campaign was conducted by the Armenia Nuclear Regulatory Authority

  13. Site characterization program at the radioactive waste management complex of the Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    McElroy, D.L.; Rawson, S.A.; Hubbell, J.M.; Minkin, S.C.; Baca, R.G.; Vigil, M.J.; Bonzon, C.J.; Landon, J.L.; Laney, P.T.

    1989-07-01

    The Radioactive Waste Management Complex (RWMC) Site Characterization Program is a continuation of the Subsurface Investigation Program (SIP). The scope of the SIP has broadened in response to the results of past work that identified hazardous as well as radionuclide contaminants in the subsurface environment and in response to the need to meet regulatory requirements. Two deep boreholes were cored at the RWMC during FY-1988. Selected sediment samples were submitted for Appendix IX of 40 CFR Part 264 and radionuclide analyses. Detailed geologic logging of archived core was initiated. Stratigraphic studies of the unsaturated zone were conducted. Studies to determine hydrologic properties of sediments and basalts were conducted. Geochemical studies and analyses were initiated to evaluate contaminant and radionuclide speciation and migration in the Subsurface Disposal Area (SDA) geochemical environment. Analyses of interbed sediments in boreholes D15 and 8801D did not confirm the presence of radionuclide contamination in the 240-ft interbed. Analyses of subsurface air and groundwater samples identified five volatile organic compounds of concern: carbon tetrachloride, trichloroethylene, 1,1,1-trichloroethane, chloroform, and tetrachloroethylene. 33 refs., 5 figs., 2 tabs.

  14. Handling and Packaging a Potentially Radiologically Contaminated...

    Office of Environmental Management (EM)

    Handling and Packaging a Potentially Radiologically Contaminated Patient Handling and Packaging a Potentially Radiologically Contaminated Patient The purpose of this procedure is...

  15. Tank 12H residuals sample analysis report

    SciTech Connect (OSTI)

    Oji, L. N.; Shine, E. P.; Diprete, D. P.; Coleman, C. J.; Hay, M. S.

    2015-06-11

    The Savannah River National Laboratory (SRNL) was requested by Savannah River Remediation (SRR) to provide sample preparation and analysis of the Tank 12H final characterization samples to determine the residual tank inventory prior to grouting. Eleven Tank 12H floor and mound residual material samples and three cooling coil scrape samples were collected and delivered to SRNL between May and August of 2014.

  16. Office of Civilian Radioactive Waste Management-Quality Assurance...

    Energy Savers

    Quality Assurance Requirements Civilian Radioactive Waste Management System Requirements Document Root Cause Analysis Report In Response to Condition Report 5223 Regarding Emails ...

  17. Mission Plan for the Civilian Radioactive Waste Management Program...

    Energy.gov (indexed) [DOE]

    this Mission Plan for the Civilian Radioactive Waste Management Program. The Mission Plan is divided into two parts. Part I describes the overall goals, objectives, and...

  18. Control of Radioactive Gas Releases from the Processing of Used...

    Office of Scientific and Technical Information (OSTI)

    Control of Radioactive Gas Releases from the Processing of Used Nuclear Fuel: Possible Waste Forms and Volume Considerations Citation Details In-Document Search Title: Control of ...

  19. Cyclotrons to Make Neutrons & Radioactive Targets for SBSS at...

    Office of Science (SC) [DOE]

    Cyclotrons to Make Neutrons & Radioactive Targets for SBSS at LBNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear ...

  20. January 28, 2016 Webinar- Borehole Disposal of Spent Radioactive Sources

    Energy.gov [DOE]

    Performance & RIsk Assessment (P&RA) Community of Practice (CoP) Webinar - January 28, 2016 - Borehole Disposal of Spent Radioactive Sources (Dr. Matt Kozak, INTERA).

  1. EIS-0286: Hanford Solid (Radioactive and Hazardous) Waste Program

    Energy.gov [DOE]

    The Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement (HSW EIS) analyzes the proposed waste management practices at the Hanford Site.

  2. DOE - NNSA/NFO -- EM (RWAP) Radioactive Waste Acceptance Program

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Acceptance Program NNSANFO Language Options U.S. DOENNSA - Nevada Field Office Click to subscribe to NNSS News Radioactive Waste Acceptance Program (RWAP) RWAP photo The mission ...

  3. DOE - NNSA/NFO -- EM Radioactive Waste Transportation

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Transportation NNSANFO Language Options U.S. DOENNSA - Nevada Field Office Click to subscribe to NNSS News Radioactive Waste Transportation Transportation photo Government and ...

  4. Lessons learned by southern states in transportation of radioactive materials

    SciTech Connect (OSTI)

    Not Available

    1992-03-01

    This report has been prepared under a cooperative agreement with DOE`s Office of Civilian Radioactive Waste Management (OCRWM) and is a summary of the lessons learned by southern states regarding the transportation of radioactive materials including High-Level Radioactive Wastes (HLRW) and Spent Nuclear Fuel (SNF). Sources used in this publication include interviews of state radiological health and public safety officials that are members of the Southern States Energy Board (SSEB) Advisory Committee on Radioactive Materials Transportation, as well as the Board`s Transuranic (TRU) Waste Transportation Working Group. Other sources include letters written by the above mentioned committees concerning various aspects of DOE shipment campaigns.

  5. Base Technology for Radioactive Material Transportation Packaging Systems

    Directives, Delegations, and Requirements [Office of Management (MA)]

    1992-07-08

    To establish Department of Energy (DOE) policies and responsibilities for coordinating and planning base technology for radioactive material transportation packaging systems.

  6. Radioactive Waste Shipments To And From The Nevada Test Site...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Radioactive Waste Shipments To And From The Nevada Test Site (NTS) January 2003 United States Department of Energy National Nuclear Security Administration Nevada Operations Office ...

  7. Letter to Congress RE: Office of Civilian Radioactive Waste Management...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Waste Management's Annual Financial Report Letter to Congress RE: Office of Civilian Radioactive Waste Management's Annual Financial Report The following document is a ...

  8. UNITED STATES DEPARTMENT OF ENERGY OFFICE OF CIVILIAN RADIOACTIVE...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    UNITED STATES DEPARTMENT OF ENERGY OFFICE OF CIVILIAN RADIOACTIVE WASTE MANAGEMENT Annual Financial Report Years Ended September 30, 2009 and 2008 UNITED STATES DEPARTMENT OF ...

  9. Methods of capturing and immobilizing radioactive nuclei with...

    Office of Scientific and Technical Information (OSTI)

    Methods of capturing and immobilizing radioactive nuclei with metal fluorite-based inorganic materials Citation Details In-Document Search Title: Methods of capturing and...

  10. Radioactive Mineral Occurences in Nevada | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Radioactive Mineral Occurences in Nevada Abstract Abstract unavailable. Author Larry J. Garside Organization Nevada Bureau of Mines and Geology Published Nevada Bureau of...

  11. THRESHOLD RADIOACTIVITY FOR BULK FOOD SAMPLES BY GAMMA SPECTROSCOPY...

    Office of Scientific and Technical Information (OSTI)

    Orig. Receipt Date: 31-DEC-65 Research Org: Div. of Pharmacology, Food and Drug ... NIOBIUM 95; POTASSIUM 40; QUANTITATIVE ANALYSIS; RADIOACTIVITY; SAMPLING; ...

  12. DOE Comments on Radioactive Waste | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    PDF icon 1. Summary Comments on Draft Branch Technical Position on a Performance Assessment Methodology for Low-Level Radioactive Waste Disposal Facilities PDF icon 2. Department ...

  13. Enhancements to System for Tracking Radioactive Waste Shipments...

    Energy.gov (indexed) [DOE]

    Communication System users can now track shipments of radioactive materials and access transportation information on mobile devices. Transportation Tracking and Communication ...

  14. The Model 9977 Radioactive Material Packaging Primer (Technical...

    Office of Scientific and Technical Information (OSTI)

    Subject: 42 ENGINEERING; RADIOACTIVE MATERIALS; PACKAGING; RADIATION DOSES; PERFORMANCE; CONTAINERS; CRITICALITY; DESIGN; CASKS; SHIELDING Word Cloud More Like This Full Text ...

  15. Public Preferences Related to Consent-Based Siting of Radioactive...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Public Preferences Related to Consent-Based Siting of Radioactive Waste Management Facilities for Storage and Disposal Public Preferences Related to Consent-Based Siting of ...

  16. Fire in a contaminated area

    SciTech Connect (OSTI)

    Ryan, G.W., Westinghouse Hanford

    1996-08-28

    This document supports the development and presentation of the following accident scenario in the TWRS Final Safety Analysis Report: Fire in Contaminated Area. The calculations needed to quantify the risk associated with this accident scenario are included within.

  17. Multi Layer Contaminant Migration Model

    Energy Science and Technology Software Center (OSTI)

    1999-07-28

    This computer software augments and enhances certain calculation included in the previously copyrighted Vadose Zone Contaminant Migration Model. The computational method used in this model recognizes the heterogenous nature of the soils and attempts to account for the variability by using four separate layers to simulate the flow of water through the vadose zone. Therefore, the pore-water velocity calculated by the code will be different than the previous model because it accounts for a widermore » variety of soil properties encountered in the vadose zone. This model also performs an additional screening step than in the previous model. In this model the higher value of two different types of Soil Screening Levels are compared to soil concentrations of contaminants. If the contaminant concentration exceeds the highest of two SSLs, then that contaminant is listed. This is consistent with USEPA's Soil Screening Guidance.« less

  18. Dose assessment for management alternatives for NORM-contaminated equipment within the petroleum industry

    SciTech Connect (OSTI)

    Blunt, D.L.; Smith, K.P.

    1995-08-01

    The contamination of drilling and production equipment by naturally occurring radioactive material (NORM) is a growing concern for the petroleum industry and regulators. Large volumes of NORM-contaminated scrap metal are generated by the industry each year. The contamination generally occurs as surface contamination on the interior of water-handling equipment. The source of this contamination is accumulation of by-product wastes, in the form of scale and sludge contaminated with NORM that are generated by extraction processes. The primary radionuclides of concern in petroleum industry NORM-wastes are radium-226 (Ra-226), and radium-228 (Ra-228). These isotopes are members of the uranium-238 and thorium-232 decay series, respectively. The uranium and thorium isotopes, which are naturally present in the subsurface formations from which hydrocarbons are extracted, are largely immobile and remain in the subsurface. The more soluble radium can become mobilized in the formation water and be transported to the surface in the produced water waste stream. The radium either remains in solution or precipitates in scale or sludge deposits, depending on water salinity and on temperature and pressure phase changes. NORM-containing scale consists of radium that has coprecipitated with barium, calcium, or strontium sulfates, and sludge typically consists of radium-containing silicates and carbonates. This assessment is limited to the evaluation of potential radiological doses from management options that specifically involve recycle and reuse of contaminated metal. Doses from disposal of contaminated equipment are not addressed. Radiological doses were estimated for workers and the general public for equipment decontamination and smelting. Results of this assessment can be used to examine policy issues concerning the regulation and management of NORM-contaminated wastes generated by the petroleum industry.

  19. Hydrogen Contamination Detector Workshop Report

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Contamination Detector Workshop Workshop held June 12, 2014 SAE International, Troy, Michigan (This page intentionally left blank) i Hydrogen Contamination Detector Workshop Workshop held June 12, 2014 SAE International, Troy, Michigan Sponsored by: U.S. Department of Energy (DOE) Energy Effciency and Renewable Energy (EERE) Fuel Cell Technologies Offce (FCTO) Hosted by: SAE International Lead Organizer Will James, Fuel Cell Technologies Offce, DOE Organizing Committee Will James, Fuel Cell

  20. DISSOLVED CONCENTRATION LIMITS OF RADIOACTIVE ELEMENTS

    SciTech Connect (OSTI)

    NA

    2004-11-22

    The purpose of this study is to evaluate dissolved concentration limits (also referred to as solubility limits) of elements with radioactive isotopes under probable repository conditions, based on geochemical modeling calculations using geochemical modeling tools, thermodynamic databases, field measurements, and laboratory experiments. The scope of this modeling activity is to predict dissolved concentrations or solubility limits for 14 elements with radioactive isotopes (actinium, americium, carbon, cesium, iodine, lead, neptunium, plutonium, protactinium, radium, strontium, technetium, thorium, and uranium) important to calculated dose. Model outputs for uranium, plutonium, neptunium, thorium, americium, and protactinium are in the form of tabulated functions with pH and log (line integral) CO{sub 2} as independent variables, plus one or more uncertainty terms. The solubility limits for the remaining elements are either in the form of distributions or single values. The output data from this report are fundamental inputs for Total System Performance Assessment for the License Application (TSPA-LA) to determine the estimated release of these elements from waste packages and the engineered barrier system. Consistent modeling approaches and environmental conditions were used to develop solubility models for all of the actinides. These models cover broad ranges of environmental conditions so that they are applicable to both waste packages and the invert. Uncertainties from thermodynamic data, water chemistry, temperature variation, and activity coefficients have been quantified or otherwise addressed.