National Library of Energy BETA

Sample records for research atmospheric thermodynamics

  1. Atmospheric Radiation Measurement Climate Research Facility Operations...

    Office of Scientific and Technical Information (OSTI)

    Title: Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly ... Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites ...

  2. ORISE: Climate and Atmospheric Research

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Oak Ridge Institute for Science Education Climate and Atmospheric Research Conducting climate research focused on issues of national and global importance is one of the primary objectives of the Atmospheric Turbulence and Diffusion Division (ATDD)-a field division of the National Oceanic and Atmospheric Administration. ORAU partners with ATDD-and in collaboration with scientists and engineers from Oak Ridge National Laboratory (ORNL) as well as government agencies, universities, and private

  3. Atmospheric Research at BNL

    ScienceCinema (OSTI)

    Peter Daum

    2016-07-12

    Brookhaven researcher Peter Daum discusses an international field experiment designed to make observations of critical components of the climate system of the southeastern Pacific. Because elements of this system are poorly understood and poorly represent

  4. JGR-Atmospheres Papers from the RADAGAST Research Team

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    JGR-Atmospheres Papers from the RADAGAST Research Team Bharmal, N.A., A. Slingo, G.J. Robinson, and J.J. Settle, 2009: Simulation of surface and top of atmosphere thermal fluxes and radiances from the RADAGAST experiment. Journal of Geophysical Research-Atmospheres, 114, doi:10.1029/2008JD010504, in press. Kollias, P., M.A. Miller, K.L. Johnson, M.P. Jensen, and D.T. Troyan, 2009: Cloud, thermodynamic, and precipitation observations in West Africa during 2006. Journal of Geophysical Research-

  5. Atmospheric Radiation Measurement Climate Research Facility Operations...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    27 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-16-027 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  6. Atmospheric Radiation Measurement Climate Research Facility Operations...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    7 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-16-037 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  7. Atmospheric Radiation Measurement Climate Research Facility Operations...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    01 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-16-001 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  8. Atmospheric Radiation Measurement (ARM) Climate Research Facility...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Atmospheric Radiation Measurement (ARM) Climate Research Facility and Atmospheric System Research (ASR) Science and Infrastructure Steering Committee CHARTER June 2012 DISCLAIMER ...

  9. Atmospheric Radiation Measurement Climate Research Facility Annual...

    Office of Scientific and Technical Information (OSTI)

    Atmospheric Radiation Measurement Climate Research Facility Annual Report 2006 Citation Details In-Document Search Title: Atmospheric Radiation Measurement Climate Research ...

  10. Atmospheric Radiation Measurement Climate Research Facility Operations

    Office of Scientific and Technical Information (OSTI)

    Quarterly Report October 1-December 31, 2012 (Program Document) | SciTech Connect Program Document: Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report October 1-December 31, 2012 Citation Details In-Document Search Title: Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report October 1-December 31, 2012 Individual datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility

  11. Atmospheric Radiation Measurement Climate Research Facility Operations...

    Office of Scientific and Technical Information (OSTI)

    Title: Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly ... are collected and sent to the Data Management Facility (DMF) at Pacific Northwest ...

  12. Atmospheric Radiation Measurement Program Climate Research Facility...

    Office of Scientific and Technical Information (OSTI)

    Title: Atmospheric Radiation Measurement Program Climate Research Facility Operations ... are collected and sent to the Data Management Facility (DMF) at Pacific Northwest ...

  13. Atmospheric Radiation Measurement Climate Research Facility | Argonne

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    National Laboratory Atmospheric Radiation Measurement Climate Research Facility Argonne scientists study climate change 1 of 22 Argonne scientists study climate change The U.S. Department of Energy's Office of Science provided $60 million in ARRA funding for climate research to the Atmospheric Radiation Measurement (ARM) Climate Research Facility, a DOE national user facility that has been operating climate observing sites around the world for nearly two decades. These sites help scientists

  14. Dynamical and thermodynamical modulations of future changes in landfalling atmospheric rivers over North America

    SciTech Connect (OSTI)

    Gao, Yang; Lu, Jian; Leung, Lai-Yung R.; Yang, Qing; Hagos, Samson M.; Qian, Yun

    2015-09-12

    This study examines the changes of landfalling atmospheric rivers (ARs) over the west coast of North America in response to future warming using model outputs from the Coupled Model Intercomparison Project phase 5 (CMIP5). The result reveals a strikingly large magnitude of increase of AR days by the end of the 21st century in the RCP8.5 climate change scenario, with fractional increases ranging between ~50% and 600%, depending on the seasons and the landfall locations. These increases are predominantly controlled by the super-Clausius-Clapeyron rate of increase of atmospheric water vapor with warming, while changes of winds that transport moisture in the ARs, or dynamical effect, mostly counter the thermodynamical effect of increasing water vapor, limiting the increase of AR events in the future. The consistent negative effect of wind changes on AR days during spring and fall can be further linked to the robust poleward shift of the subtropical jet in the North Pacific basin.

  15. Overview of NASA supported Stirling thermodynamic loss research

    SciTech Connect (OSTI)

    Tew, R.C.; Geng, S.M.

    1994-09-01

    The National Aeronautics and Space Administration (NASA) is funding research to characterize Stirling machine thermodynamic losses. NASA`s primary goal is to improve Stirling design codes to support engine development for space and terrestrial power. However, much of the fundamental data is applicable to Stirling cooler and heat pump applications. The research results are reviewed. Much has been learned about oscillating-flow hydrodynamics, including laminar/turbulent transition, and tabulated data has been documented for further analysis. Now, with a better understanding of the oscillator-flow field, it is time to begin measuring the effects of oscillating flow and oscillating pressure level on heat transfer in heat exchanger flow passages and in cylinders. This critical phase of the work is just beginning.

  16. DOE/SC-ARM-020 Atmospheric Radiation Measurement Climate Research...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    20 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-020 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  17. The Pilatus unmanned aircraft system for lower atmospheric research

    DOE PAGES-Beta [OSTI]

    de Boer, Gijs; Palo, Scott; Argrow, Brian; LoDolce, Gabriel; Mack, James; Gao, Ru -Shan; Telg, Hagen; Trussel, Cameron; Fromm, Joshua; Long, Charles N.; et al

    2016-04-28

    This study presents details of the University of Colorado (CU) “Pilatus” unmanned research aircraft, assembled to provide measurements of aerosols, radiation and thermodynamics in the lower troposphere. This aircraft has a wingspan of 3.2 m and a maximum take-off weight of 25 kg, and it is powered by an electric motor to reduce engine exhaust and concerns about carburetor icing. It carries instrumentation to make measurements of broadband up- and downwelling shortwave and longwave radiation, aerosol particle size distribution, atmospheric temperature, relative humidity and pressure and to collect video of flights for subsequent analysis of atmospheric conditions during flight. Inmore » order to make the shortwave radiation measurements, care was taken to carefully position a high-quality compact inertial measurement unit (IMU) and characterize the attitude of the aircraft and its orientation to the upward-looking radiation sensor. Using measurements from both of these sensors, a correction is applied to the raw radiometer measurements to correct for aircraft attitude and sensor tilt relative to the sun. The data acquisition system was designed from scratch based on a set of key driving requirements to accommodate the variety of sensors deployed. Initial test flights completed in Colorado provide promising results with measurements from the radiation sensors agreeing with those from a nearby surface site. Additionally, estimates of surface albedo from onboard sensors were consistent with local surface conditions, including melting snow and bright runway surface. Aerosol size distributions collected are internally consistent and have previously been shown to agree well with larger, surface-based instrumentation. Finally the atmospheric state measurements evolve as expected, with the near-surface atmosphere warming over time as the day goes on, and the atmospheric relative humidity decreasing with increased temperature. No directional bias on measured

  18. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Liljegren, J. C., Argonne National Laboratory Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Properties, Radiative Processes...

  19. Style Guide Atmospheric Radiation Measurement (ARM) Climate Research Facility

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Style Guide Atmospheric Radiation Measurement (ARM) Climate Research Facility March 2013 Style Guide Atmospheric Radiation Measurement Climate Research Facility March 2013 Work supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research March 2013 ii Contents 1.0 Introduction .......................................................................................................................................... 1 2.0 Acronyms and Abbreviations

  20. Clear Skies S. A. Clough Atmospheric and Environmental Research, Inc.

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    S. A. Clough Atmospheric and Environmental Research, Inc. Cambridge, MA 02139 The objective of this research effort is to develop radiative transfer models that are consistent with Atmospheric Radiation Measurement (ARM) Program spectral radiance measurements for clear and cloudy atmospheres. Our approach is to develop the model physics and related databases with a line-by-line model in the context of available spectral radiance measurements. The line-by- line mode! then functions as an

  1. AUDIT REPORT Atmospheric Radiation Measurement Climate Research Facility

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Atmospheric Radiation Measurement Climate Research Facility OAI-M-16-10 May 2016 U.S. Department of Energy Office of Inspector General Office of Audits and Inspections Department of Energy Washington, DC 20585 May 16, 2016 MEMORANDUM FOR THE DIRECTOR, OFFICE OF SCIENCE FROM: George W. Collard Deputy Inspector General for Audits and Inspections Office of Inspector General SUBJECT: INFORMATION: Audit Report on the "Atmospheric Radiation Measurement Climate Research Facility" BACKGROUND

  2. Atmospheric gas supersaturation: educational and research needs

    SciTech Connect (OSTI)

    Bouck, G.R.; D'Aoust, B.; Ebel, W.J.; Rulifson, R.

    1980-11-01

    There still is need for research on gas supersaturation as it relates to gas bubble disease. Better methods are required for both measurement and treatment of gas-supersaturated water. We must understand more about physiological and ecosystem responses to high gas pressures if existing tolerance data for individual species are to be applied accurately to field or fish-cultural situations. A better training program is needed for scientists, engineers, and facility operators involved in the monitoring and mitigation of gas-supersaturated waters.

  3. Airborne Instrumentation Needs for Climate and Atmospheric Research

    SciTech Connect (OSTI)

    McFarquhar, Greg; Schmid, Beat; Korolev, Alexei; Ogren, John A.; Russell, P. B.; Tomlinson, Jason M.; Turner, David D.; Wiscombe, Warren J.

    2011-10-06

    Observational data are of fundamental importance for advances in climate and atmospheric research. Advances in atmospheric science are being made not only through the use of ground-based and space-based observations, but also through the use of in-situ and remote sensing observations acquired on instrumented aircraft. In order for us to enhance our knowledge of atmospheric processes, it is imperative that efforts be made to improve our understanding of the operating characteristics of current instrumentation and of the caveats and uncertainties in data acquired by current probes, as well as to develop improved observing methodologies for acquisition of airborne data.

  4. DOE/SC-ARM-13-013 Atmospheric Radiation Measurement Climate Research...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    3 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-13-013 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  5. DOE/SC-ARM-14-025 Atmospheric Radiation Measurement Climate Research...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    5 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-14-025 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  6. DOE/SC-ARM-15-037 Atmospheric Radiation Measurement Climate Research...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    7 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-15-037 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  7. DOE/SC-ARM-12-021 Atmospheric Radiation Measurement Climate Research...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    1 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-12-021 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  8. DOE/SC-ARM-14-007 Atmospheric Radiation Measurement Climate Research...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    7 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-14-007 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  9. DOE/SC-ARM-15-018 Atmospheric Radiation Measurement Climate Research...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    8 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-15-018 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  10. DOE/SC-ARM-14-019 Atmospheric Radiation Measurement Climate Research...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    9 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-14-019 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  11. DOE/SC-ARM-15-001 Atmospheric Radiation Measurement Climate Research...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    1 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-15-001 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  12. DOE/SC-ARM-14-001 Atmospheric Radiation Measurement Climate Research...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    1 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-14-001 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  13. DOE/SC-ARM-13-007 Atmospheric Radiation Measurement Climate Research...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    7 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-13-007 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  14. DOE/SC-ARM-12-015 Atmospheric Radiation Measurement Climate Research...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    5 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-12-015 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  15. DOE/SC-ARM-13-001 Atmospheric Radiation Measurement Climate Research...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    1 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-13-001 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  16. DOE/SC-ARM-13-020 Atmospheric Radiation Measurement Climate Research...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    0 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-13-020 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  17. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    The Importance of Thermodynamic Profiling in the Boundary Layer Submitter: Turner, D. D., National Oceanic and Atmospheric Administration Cadeddu, M. P., Argonne National Laboratory Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Life Cycle Journal Reference: Wulfmeyer V, RM Hardesty, DD Turner, A Behrendt, MP Cadeddu, P Di Girolamo, P Schluessel, J Van Baelen, and F Zus. 2015. "A review of remote sensing of lower tropospheric thermodynamic

  18. Atmospheric System Research Marine Low Clouds Workshop Report, January

    Office of Scientific and Technical Information (OSTI)

    27-29,2016 (Technical Report) | SciTech Connect Atmospheric System Research Marine Low Clouds Workshop Report, January 27-29,2016 Citation Details In-Document Search Title: Atmospheric System Research Marine Low Clouds Workshop Report, January 27-29,2016 Marine low clouds are a major determinant of the Earth?s albedo and are a major source of uncertainty in how the climate responds to changing greenhouse gas levels and anthropogenic aerosol. Marine low clouds are particularly difficult to

  19. 2010 Atmospheric System Research (ASR) Science Team Meeting Summary

    SciTech Connect (OSTI)

    Dupont, DL

    2011-05-04

    This document contains the summaries of papers presented in poster format at the March 2010 Atmospheric System Research Science Team Meeting held in Bethesda, Maryland. More than 260 posters were presented during the Science Team Meeting. Posters were sorted into the following subject areas: aerosol-cloud-radiation interactions, aerosol properties, atmospheric state and surface, cloud properties, field campaigns, infrastructure and outreach, instruments, modeling, and radiation. To put these posters in context, the status of ASR at the time of the meeting is provided here.

  20. Atmospheric Sciences Program summaries of research in FY 1993

    SciTech Connect (OSTI)

    Not Available

    1993-11-01

    This document describes the activities and products of the Atmospheric Science Program of the Environmental Sciences Division, Office of Health and Environmental Research, Office of Energy Research, in FY 1993. Each description contains the project`s title; three-year funding history; the contract period over which the funding applies; the name(s) of the principal investigator(s); the institution(s) conducting the projects; and the project`s objectives, products, approach, and results to date. Project descriptions are categorized within the report according to program areas: atmospheric chemistry, atmospheric dynamics, and support operations. Within these categories, the descriptions are ordered alphabetically by principal investigator. Each program area is preceded by a brief text that defines the program area, states its goals and objectives, lists principal research questions, and identifies program managers. Appendixes provide the addresses and telephone numbers of the principal investigators and define the acronyms used. This document has been indexed to aid the reader in locating research topics, participants, and research institutions in the text and the project descriptions. Comprehensive subject, principal investigator, and institution indexes are provided at the end of the text for this purpose. The comprehensive subject index includes keywords from the introduction and chapter texts in addition to those from the project descriptions.

  1. Atmospheric Radiation Measurement Program Climate Research Facility Operations

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    9 Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report July 1-September 30, 2010 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or

  2. Atmospheric Radiation Measurement Program Climate Research Facility Operations

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    2 Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report October 1-December 31, 2010 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or

  3. Atmospheric Radiation Measurement Program Climate Research Facility Operations

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    8 Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report January 1-March 31, 2011 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or

  4. Atmospheric Radiation Measurement Program Climate Research Facility Operations

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    9 Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report April 1-June 30, 2011 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents

  5. Atmospheric Radiation Measurement Program Climate Research Facility Operations

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    2 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report July 1-September 30, 2011 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents

  6. Atmospheric Radiation Measurement Program Climate Research Facility Operations

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    1 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report October 1-December 31, 2011 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents

  7. Atmospheric Radiation Measurement Program Climate Research Facility Operations

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    7 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report January 1-March 31, 2012 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that

  8. Atmospheric Radiation Measurement Climate Research Facility (ACRF) Annual Report 2008

    SciTech Connect (OSTI)

    LR Roeder

    2008-12-01

    The Importance of Clouds and Radiation for Climate Change: The Earth’s surface temperature is determined by the balance between incoming solar radiation and thermal (or infrared) radiation emitted by the Earth back to space. Changes in atmospheric composition, including greenhouse gases, clouds, and aerosols, can alter this balance and produce significant climate change. Global climate models (GCMs) are the primary tool for quantifying future climate change; however, there remain significant uncertainties in the GCM treatment of clouds, aerosol, and their effects on the Earth’s energy balance. In 1989, the U.S. Department of Energy (DOE) Office of Science created the Atmospheric Radiation Measurement (ARM) Program to address scientific uncertainties related to global climate change, with a specific focus on the crucial role of clouds and their influence on the transfer of radiation in the atmosphere. To reduce these scientific uncertainties, the ARM Program uses a unique twopronged approach: • The ARM Climate Research Facility, a scientific user facility for obtaining long-term measurements of radiative fluxes, cloud and aerosol properties, and related atmospheric characteristics in diverse climate regimes; and • The ARM Science Program, focused on the analysis of ACRF and other data to address climate science issues associated with clouds, aerosols, and radiation, and to improve GCMs. This report provides an overview of each of these components and a sample of achievements for each in fiscal year (FY) 2008.

  9. Atmospheric Science Program. Summaries of research in FY 1994

    SciTech Connect (OSTI)

    1995-06-01

    This report provides descriptions for all projects funded by ESD under annual contracts in FY 1994. Each description contains the project`s title; three-year funding history (in thousands of dollars); the contract period over which the funding applies; the name(s) of the principal investigator(s); the institution(s) conducting the projects; and the project`s objectives, products, approach, and results to date (for most projects older than one year). Project descriptions are categorized within the report according to program areas: atmospheric chemistry, atmospheric dynamics, and support operations. Within these categories, the descriptions are ordered alphabetically by principal investigator. Each program area is preceded by a brief text that defines the program area, states it goals and objectives, lists principal research questions, and identifies program managers. Appendixes provide the addresses and telephone numbers of the principal investigators and define the acronyms used.

  10. Atmospheric Research - Manaus Plume: GoAmazon T3 Ground Site...

    Office of Scientific and Technical Information (OSTI)

    Conference: Atmospheric Research - Manaus Plume: GoAmazon T3 Ground Site Citation Details In-Document Search Title: Atmospheric Research - Manaus Plume: GoAmazon T3 Ground Site ...

  11. Atmospheric Radiation Measurement Climate Research Facility (ARM) | U.S.

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    (Barrels per Calendar Day) Data Series: Total Number of Operable Refineries Number of Operating Refineries Number of Idle Refineries Atmospheric Crude Oil Distillation Operable Capacity (B/CD) Atmospheric Crude Oil Distillation Operating Capacity (B/CD) Atmospheric Crude Oil Distillation Idle Capacity (B/CD) Atmospheric Crude Oil Distillation Operable Capacity (B/SD) Atmospheric Crude Oil Distillation Operating Capacity (B/SD) Atmospheric Crude Oil Distillation Idle Capacity (B/SD) Vacuum

  12. Atmospheric System Research (ASR) Program | U.S. DOE Office of Science (SC)

    Office of Science (SC) [DOE]

    Atmospheric System Research (ASR) Program Biological and Environmental Research (BER) BER Home About Research Biological Systems Science Division (BSSD) Climate and Environmental Sciences Division (CESD) ARM Climate Research Facility Atmospheric System Research (ASR) Program Climate Model Development and Validation (CMDV) Data Management Earth System Modeling (ESM) Program William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) Integrated Assessment of Global Climate Change Regional

  13. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Retrieving Thermodynamic Profiles in the Boundary Layer in Clear and Cloudy Conditions Submitter: Turner, D. D., National Oceanic and Atmospheric Administration Area of Research: Radiation Processes Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Turner DD and U Loehnert. 2014. "Information content and uncertainties in thermodynamic profiles and liquid cloud properties retrieved from the ground-based Atmospheric Emitted Radiance Interferometer (AERI)."

  14. Strategic Environmental Research and Development Program: Atmospheric Remote Sensing and Assessment Program -- Final Report. Part 1: The lower atmosphere

    SciTech Connect (OSTI)

    Tooman, T.P.

    1997-01-01

    This report documents work done between FY91 and FY95 for the lower atmospheric portion of the joint Department of Defense (DoD) and Department of Energy (DOE) Atmospheric Remote Sensing and Assessment Program (ARSAP) within the Strategic Environmental Research and Development Program (SERDP). The work focused on (1) developing new measurement capabilities and (2) measuring atmospheric heating in a well-defined layer and then relating it to cloud properties an water vapor content. Seven new instruments were develop3ed for use with Unmanned Aerospace Vehicles (UAVs) as the host platform for flux, radiance, cloud, and water vapor measurements. Four major field campaigns were undertaken to use these new as well as existing instruments to make critically needed atmospheric measurements. Scientific results include the profiling of clear sky fluxes from near surface to 14 km and the strong indication of cloudy atmosphere absorption of solar radiation considerably greater than predicted by extant models.

  15. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Water Vapor Turbulence Statistics in the Convective Boundary Layer Download a printable PDF Submitter: Turner, D. D., National Oceanic and Atmospheric Administration Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Life Cycle Journal Reference: Turner DD, V Wulfmeyer, LK Berg, and JH Schween. 2014. "Water vapor turbulence profiles in stationary continental convective mixed layers." Journal of Geophysical Research - Atmospheres, 119,

  16. Collaborative Research. Atmospheric Pressure Microplasma Chemistry-Photon Synergies

    SciTech Connect (OSTI)

    Park, Sung-Jin; Eden, James Gary

    2015-12-01

    Combining the effects of low temperature, atmospheric pressure microplasmas and microplasma photon sources offers the promise of greatly expanding the range of applications for each of them. The plasma sources create active chemical species and these can be activated further by the addition of photons and the associated photochemistry. There are many ways to combine the effects of plasma chemistry and photochemistry, especially if there are multiple phases present. This project combined the construction of appropriate test experimental systems, various spectroscopic diagnostics and mathematical modeling. Through a continuous discussion and co-design process with the UC-Berkeley Team, we have successfully completed the fabrication and testing of all components for a microplasma array-assisted system designed for photon-activated plasma chemistry research. Microcavity plasma lamps capable of generating more than 20 mW/cm2 at 172 nm (Xe dimer) were fabricated with a custom form factor to mate to the plasma chemistry setup, and a lamp was current being installed by the Berkeley team so as to investigate plasma chemistry-photon synergies at a higher photon energy (~7.2 eV) as compared to the UVA treatment that is afforded by UV LEDs operating at 365 nm. In particular, motivated by the promising results from the Berkeley team with UVA treatment, we also produced the first generation of lamps that can generate photons in the 300-370 nm wavelength range. Another set of experiments, conducted under the auspices of this grant, involved the use of plasma microjet arrays. The combination of the photons and excited radicals produced by the plasma column resulted in broad area deactivation of bacteria.

  17. Atmospheric Radiation Measurement program climate research facility operations quarterly report.

    SciTech Connect (OSTI)

    Sisterson, D. L.; Decision and Information Sciences

    2006-09-06

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998. The U.S. Department of Energy requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1-(ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the third quarter for the Southern Great Plains (SGP) site is 2,074.80 hours (0.95 x 2,184 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1,965.60 hours (0.90 x 2,184), and that for the Tropical Western Pacific (TWP) locale is 1,856.40 hours (0.85 x 2,184). The OPSMAX time for the ARM Mobile Facility (AMF) is 2,074.80 hours (0.95 x 2,184). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent of data in the Archive

  18. Technical Sessions Principal Investigator: S. A. Clough Atmospheric and Environmental Research, Inc.

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Principal Investigator: S. A. Clough Atmospheric and Environmental Research, Inc. Cambridge, MA 02139 Introduction The availability of a rapid highly accurate multiple scattering radiative transfer model is essential to meet the objectives of the Atmospheric Radiation Measurement (ARM) Program. The model must be capable of computing radiance at spectral intervals consistent with the monochromatic spectral variation of the atmospheric molecular absorption. The resolution of the spectrometers to

  19. Hierarchical Diagnosis A. J. Heymsfield and J. L. Coen National Center for Atmospheric Research

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    A. J. Heymsfield and J. L. Coen National Center for Atmospheric Research Boulder, CO 80307-3000 dispersion of hydrometeors in a stratiform anvil cloud. Given the momentum, vapor, and ice fluxes into the stratiform region and the temperature and humidity structure in the anvil's environment, this model will suggest anvil properties and structure. We will be using microphysical measurements from Kwajalein and the Tropical Ocean Global Atmosphere (TOGA) Coupled Ocean Atmosphere Response Experiment

  20. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Validating Water Vapor Turbulence Measurements from Lidar Download a printable PDF Submitter: Turner, D. D., National Oceanic and Atmospheric Administration Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Life Cycle Journal Reference: Turner DD, RA Ferrare, V Wulfmeyer, and AJ Scarino. 2014. "Aircraft evaluation of ground-based Raman lidar water vapor turbulence profiles in convective mixed layers." Journal of Atmospheric and Oceanic

  1. Upper atmospheric effects of the hf active auroral research program ionospheric research instrument (HAARP IRI)

    SciTech Connect (OSTI)

    Eccles, V.; Armstrong, R.

    1993-05-01

    The earth's ozone layer occurs in the stratosphere, primarily between 10 and 30 miles altitude. The amount of ozone, O3, present is the result of a balance between production and destruction processes. Experiments have shown that natural processes such as auroras create molecules that destroy O. One family of such molecules is called odd nitrogen of which nitric oxide (NO) is an example. Because the HAARP (HF Active Auroral Research Program) facility is designed to mimic and investigate certain natural processes, a study of possible effects of HAARP on the ozone layer was conducted. The study used a detailed model of the thermal and chemical effects of the high power HF beam, which interacts with free electrons in the upper atmosphere above 50 miles altitude. It was found only a small fraction of the beam energy goes into the production of odd nitrogen molecules, whereas odd nitrogen is efficiently produced by auroras. Since the total energy emitted by HAARP in the year is some 200,000 times less than the energy deposited in the upper atmosphere by auroras, the study demonstrates that HAARP HF beam experiments will cause no measurable depletion of the earth's ozone layer.... Ozone, Ozone depletion, Ozone layer, Odd nitrogen, Nitric oxide, HAARP Emitter characteristics.

  2. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Environmental Thermodynamics Affect Radiative Impact of Deep Convective Cloud Systems Submitter: Jensen, M., Brookhaven National Laboratory Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Modeling Journal Reference: Jensen, M.P., A. Del Genio, Radiative and Microphysical Characteristics of Deep Convective System in the Tropical Western Pacific, Journal of Applied Meteorology, Vol. 42, No. 9, pp. 1234-1254. Deep convective systems (often referred to as

  3. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Radiative and Thermodynamic Responses to Uncertainty in Aerosol Extinction Profiles Download a printable PDF Submitter: Feng, Y., Argonne National Laboratory Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle Journal Reference: Feng Y, R Kotamarthi, R Coulter, C Zhao, and M Cadeddu. 2016. "Radiative and Thermodynamic Responses to Aerosol Extinction Profiles during the Pre-monsoon Month over South Asia." Atmospheric Chemistry and Physics, 16(1), 247-264. WRF-Chem

  4. Pacific Northwest Laboratory annual report for 1994 to the DOE Office of Energy Research. Part 2: Atmospheric and climate research

    SciTech Connect (OSTI)

    1995-04-01

    Atmospheric research at Pacific Northwest Laboratory (PNL) occurs in conjunction with the Atmospheric Chemistry Program (ACP) and with the Atmospheric Studies in Complex Terrain (ASCOT) Program. Solicitations for proposals and peer review were used to select research projects for funding in FY 1995. Nearly all ongoing projects were brought to a close in FY 1994. Therefore, the articles in this volume include a summary of the long-term accomplishments as well as the FY 1994 progress made on these projects. The following articles present summaries of the progress in FY 1994 under these research tasks: continental and oceanic fate of pollutants; research aircraft operations; ASCOT program management; coupling/decoupling of synoptic and valley circulations; interactions between surface exchange processes and atmospheric circulations; and direct simulations of atmospheric turbulence. Climate change research at PNL is aimed at reducing uncertainties in the fundamental processes that control climate systems that currently prevent accurate predictions of climate change and its effects. PNL is responsible for coordinating and integrating the field and laboratory measurement programs, modeling studies, and data analysis activities of the Atmospheric Radiation Measurements (ARM) program. In FY 1994, PNL scientists conducted 3 research projects under the ARM program. In the first project, the sensitivity of GCM grid-ad meteorological properties to subgrid-scale variations in surface fluxes and subgrid-scale circulation patterns is being tested in a single column model. In the second project, a new and computationally efficient scheme has been developed for parameterizing stratus cloud microphysics in general circulation models. In the last project, a balloon-borne instrument package is being developed for making research-quality measurements of radiative flux divergence profiles in the lowest 1,500 meters of the Earth`s atmosphere.

  5. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    A Partial Mechanistic Understanding of the North American Monsoon Download a printable PDF Submitter: Erfani, E., George Mason University Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Erfani E and DL Mitchell. 2014. "A partial mechanistic understanding of the North American monsoon." Journal of Geophysical Research - Atmospheres, 119(23), 10.1002/2014JD022038. a) Dependence of inversion

  6. Atmospheric Radiation Measurement Climate Research Facility (ACRF Instrumentation Status: New, Current, and Future)

    SciTech Connect (OSTI)

    JW Voyles

    2008-01-30

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following four sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) Small Business Innovation Research instrument development.

  7. Pacific Northwest Laboratory annual report for 1991 to the DOE Office of Energy Research. Part 3, Atmospheric and climate research

    SciTech Connect (OSTI)

    Not Available

    1992-05-01

    Within the US Department of Energy`s (DOE`s) Office of Health and Environmental Research (OHER), the atmospheric sciences and carbon dioxide research programs are part of the Environmental Sciences Division (ESD). One of the central missions of the division Is to provide the DOE with scientifically defensible information on the local, regional, and global distributions of energy-related pollutants and their effects on climate. This information is vital to the definition and Implementation of a sound national energy strategy. This volume reports on the progress and status of all OHER atmospheric science and climate research projects at the Pacific Northwest Laboratory (PNL). Research at PNL provides basic scientific underpinnings to DOE`s program of global climate research. Research projects within the core carbon dioxide and ocean research programs are now integrated with those in the Atmospheric Radiation Measurements (ARM), the Computer Hardware, Advanced Mathematics and Model Physics (CHAMMP), and quantitative links programs to form DOEs contribution to the US Global Change Research Program. Climate research in the ESD has the common goal of improving our understanding of the physical, chemical, biological, and social processes that influence the Earth system so that national and international policymaking relating to natural and human-induced changes in the Earth system can be given a firm scientific basis. This report describes the progress In FY 1991 in each of these areas.

  8. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Atmospheric Moistening by Clouds Sustains Madden-Julian Oscillation Download a printable PDF Submitter: Hagos, S. M., Pacific Northwest National Laboratory Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Life Cycle Journal Reference: N/A Outgoing longwave radiation (OLR Wm-2) signals in the tropics averaged between 10°S and 10°N from (a) a regional simulation with moisture constrained by observations and (b) NOAA-CPC satellite observations. The

  9. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    2007 Floods Not a Complete Washout in U.S. Great Plains Submitter: Bhattacharya, A., Pacific Northwest National Laboratory Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Lamb PJ, DH Portis, and A Zangvil. 2012. "Investigation of Large-Scale Atmospheric Moisture Budget and Land Surface Interactions over U.S. Southern Great Plains including for CLASIC (June 2007)." Journal of

  10. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Shaking Things Up-What Triggers Atmospheric Convection in the West African Sahel? Submitter: Bhattacharya, A., Pacific Northwest National Laboratory Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Life Cycle Journal Reference: Couvreux F, C Rio, F Guichard, M Lothon, G Canut, D Bouniol, and A Gounou. 2012. "Initiation of daytime local convection in a semi-arid region analysed with high-resolution simulations and AMMA observations." Quarterly

  11. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Tropical Radiosonde Comparisons May Improve Past and Present Humidity Data Submitter: Westwater, E. R., University of Colorado Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Properties Journal Reference: Westwater, E.R., B.B. Stankov, D.Cimini, Y. Han, J.A. Shaw, B.M. Lesht, C.N. Long, 2003, Radiosonde Humidity Soundings and Microwave Radiometers during Nauru99, Journal of Atmospheric and Oceanic Technology, Vol. 21. ARM's Nauru99 campaign provided a

  12. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Field Testing the Next-Generation of Radiosondes PI Contact: Jensen, M., Brookhaven National Laboratory Holdridge, D., Argonne National Laboratory Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Life Cycle Journal Reference: Jensen MP, DJ Holdridge, P Survo, R Lehtinen, S Baxter, T Toto, and KL Johnson. 2016. "Comparison of Vaisala radiosondes RS41 and RS92 at the ARM Southern Great Plains site." Atmospheric Measurement Techniques, 9,

  13. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Structure of Cirrus Properties and Its Coupling with the State of the Large-Scale Atmosphere Download a printable PDF Submitter: Ivanova, K., Pennsylvania State University Ackerman, T. P., University of Washington Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Properties Journal Reference: Ivanova K and TP Ackerman. 2009. "Tracking nucleation, growth, and sublimation in cirrus clouds using ARM millimeter wavelength radar observations."

  14. Pacific Northwest Laboratory annual report for 1985 to the DOE Office of Energy Research. Part 3. Atmospheric sciences

    SciTech Connect (OSTI)

    Elderkin, C.E.

    1986-02-01

    The goals of atmospheric research at Pacific Northwest Laboratory (PNL) are to describe and predict the nature and fate of atmospheric contaminants and to develop an understanding of the atmospheric processes contributing to their distribution on local, regional, and continental scales. In 1985, this research has examined the transport and diffusion of atmospheric contaminants in areas of complex terrain, summarized the field studies and analyses of dry deposition and resuspension conducted in past years, and begun participation in a large, multilaboratory program to assess the precipitation scavenging processes important to the transformation and wet deposition of chemicals composing ''acid rain.'' The description of atmospheric research at PNL is organized in terms of the following study areas: Atmospheric Studies in Complex Terrain; Dispersion, Deposition, and Resuspension of Atmospheric Contaminants; and Processing of Emissions by Clouds and Precipitation (PRECP).

  15. Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report October 1–December 31, 2012

    SciTech Connect (OSTI)

    Voyles, JW

    2013-01-11

    Individual datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile research sites are collected and routed to the Data Management Facility (DMF) for processing in near-real-time. Instrument and processed data are then delivered approximately daily to the ARM Data Archive, where they are made freely available to the research community. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Data Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year dating back to 1998.

  16. Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report July 1–September 30, 2012

    SciTech Connect (OSTI)

    Voyles, JW

    2012-10-10

    Individual datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile research sites are collected and routed to the Data Management Facility (DMF) for processing in near-real-time. Instrument and processed data are then delivered approximately daily to the ARM Data Archive, where they are made freely available to the research community. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Data Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  17. Technical Sessions J.-F. Louis Atmospheric and Environment Research, Inc.

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    -F. Louis Atmospheric and Environment Research, Inc. Cambridge, MA 02139 curve fitting and statistical interpolation.lrl fitting techniques, the fields are represented locally by analytical spline functions whose coefficients are determined by a least square method. Somewhat simpler malthematically, and more often used, statistical interpolation defines the value of the field at each grid point as the weighted average of nearby data. The Cressman and the Barnes techniques are two examples of

  18. Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report, January 1-March 31, 2016

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    1 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report July 1-September 30, 2016 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents

  19. Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report: July 1-September 30, 2015

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    9 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report July 1-September 30, 2015 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents

  20. Pacific Northwest Laboratory annual report for 1984 to the DOE Office of Energy Research. Part 3. Atmospheric sciences

    SciTech Connect (OSTI)

    Elderkin, C.E.

    1985-02-01

    The goals of atmospheric research at Pacific Northwest Laboratory (PNL) are to assess, describe, and predict the nature and fate of atmospheric contaminants and to study the impacts of contaminants on local, regional, and global climates. The contaminants being investigated are those resulting from the development and use of conventional resources (coal, gas, oil, and nuclear power) as well as alternative energy sources. The description of the research is organized into 3 sections: (1) Atmospheric Studies in Complex Terrain (ASCOT); (2) Boundary Layer Meteorology; and (3) Dispersion, Deposition, and Resuspension of Atmospheric Contaminants. Separate analytics have been done for each of the sections and are indexed and contained in the EDB. (MDF)

  1. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Interactions Between Cumulus Convection and Its Environment as Revealed by MC3E Download a printable PDF Submitter: Xie, S., Lawrence Livermore National Laboratory Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Life Cycle Journal Reference: Xie S, Y Zhang, SE Giangrande, MP Jensen, R McCoy, and M Zhang. 2014. "Interactions between cumulus convection and its environment as revealed by the MC3E sounding array." Journal of Geophysical Research

  2. Spectrometer for Sky-Scanning Sun-Tracking Atmospheric Research (4STAR): Instrument Technology

    SciTech Connect (OSTI)

    Dunagan, Stephen; Johnson, Roy; Zavaleta, Jhony; Russell, P. B.; Schmid, Beat; Flynn, Connor J.; Redemann, Jens; Shinozuka, Yohei; Livingston, J.; Segal Rozenhaimer, Michal

    2013-08-06

    The Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) combines airborne sun tracking and sky scanning with diffraction spectroscopy, to improve knowledge of atmospheric constituents and their links to air-pollution/climate. Direct beam hyper-spectral measurement of optical depth improves retrievals of gas constituents and determination of aerosol properties. Sky scanning enhances retrievals of aerosol type and size distribution. 4STAR measurements will tighten the closure between satellite and ground-based measurements. 4STAR incorporates a modular sun-tracking/ sky-scanning optical head with fiber optic signal transmission to rack mounted spectrometers, permitting miniaturization of the external optical head, and future detector evolution. Technical challenges include compact optical collector design, radiometric dynamic range and stability, and broad spectral coverage. Test results establishing the performance of the instrument against the full range of operational requirements are presented, along with calibration, engineering flight test, and scientific field campaign data and results.

  3. Research Highlights Sorted by Research Area

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Research Area Radiation Processes | Cloud Distributions/Characterizations | Surface Properties | General Circulation and Single Column Models/Parameterizations | Aerosol Properties | Atmospheric Thermodynamics and Vertical Structures | Clouds with Low Optical [Water] Depths (CLOWD) | Vertical Velocity | Broadband Heating Rate Profile (BBHRP) | Cloud-Aerosol-Precipitation Interactions | Cloud Processes | Aerosol Processes Radiation Processes Alexandrov, M. D. Optical Depth Measurements by

  4. Pacific Northwest Laboratory: Annual report for 1986 to the DOE Office of Energy Research: Part 3, Atmospheric sciences

    SciTech Connect (OSTI)

    Elderkin, C.E.

    1987-06-01

    The goals of atmospheric research at Pacific Northwest Laboratory (PNL) are to describe and predict the nature and fate of atmospheric contaminants and to develop an understanding of the atmospheric processes contributing to their distribution on local, regional, and continental scales. In 1986, atmospheric research examined the transport and diffusion of atmospheric contaminants in areas of complex terrain and participated in a large, multilaboratory program to assess the precipitation scavenging processes important to the transformation and wet deposition of chemicals composing ''acid rain.'' In addition, during 1986, a special opportunity for measuring the transport and removal of radioactivity occurred after the Chernobyl reactor accident in April 1986. Separate abstracts were prepared for individual projects.

  5. Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report January 1–March 31, 2012

    SciTech Connect (OSTI)

    Voyles, JW

    2012-04-13

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Data Archive, where they are made available to the research community. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  6. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Simulating the Impact of Aerosols on Tropical Deep Convection Download a printable PDF Submitter: Morrison, H. C., NCAR Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: Morrison H and WW Grabowski. 2011. "Cloud-system resolving model simulations of aerosol indirect effects on tropical deep convection and its thermodynamic environment." Atmospheric Chemistry and Physics, 11(20),

  7. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Improved Simulation of Boundary Layer Clouds Submitter: Ghan, S. J., Pacific Northwest National Laboratory Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Properties Journal Reference: N/A Figure 1. Comparison of Boundary Layer Clouds Schemes in Climate Models with Satellite Observations Figure 1. Comparison of Boundary Layer Clouds Schemes in Climate Models with Satellite Observations Key Contributors: James McCaa, as part of his Ph.D. dissertation

  8. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    New Algorithm for Automated Detection of Planetary Boundary Layer Depth Download a printable PDF Submitter: Li, Z., University of Maryland Sawyer, V. R., University of Maryland Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Sawyer V and Z Li. 2013. "Detection, variations and intercomparison of the planetary boundary layer depth from radiosonde, lidar, and infrared spectrometer."

  9. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    On the Right Track for Tropical Clouds Download a printable PDF Submitter: Hagos, S. M., Pacific Northwest National Laboratory Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Hagos SM, Z Feng, K Landu, and C Long. 2014. "Advection, moistening, and shallow-to-deep convection transitions during the initiation and propagation of Madden-Julian Oscillation." Journal of Advances in Earth System

  10. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Out with the Old, in with the New: McICA to Replace Traditional Cloud Overlap Assumptions Submitter: Pincus, R., NOAA - CIRES Climate Diagnostics Center Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Modeling Journal Reference: Pincus, R., R. Hemler, and S.A. Klein, 2006: Using Stochastically Generated Subcolumns to Represent Cloud Structure in a Large-Scale Model. Mon. Wea. Rev., 134, 3644-3656. As shown by the difference between the two panels, the

  11. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Self-Regulation Strikes a Balance Between Hydrological Cycle, Radiation Processes, and Intraseasonal Dynamic Variations Submitter: Stephens, G. L., Colorado State University Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Properties Journal Reference: Stephens, Graeme L., Webster, Peter J., Johnson, Richard H., Engelen, Richard, L'Ecuyer, Tristan. 2004: Observational Evidence for the Mutual Regulation of the Tropical Hydrological Cycle and Tropical

  12. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Integrated Water Vapor and Cloud Liquid Water at MCTEX Submitter: Liljegren, J. C., Argonne National Laboratory Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Properties Journal Reference: N/A Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Integrated water vapor and cloud liquid water measurements were obtained during the Maritime Continent Thunderstorm Experiment (MCTEX) by Eugene Clothiaux and Tom Ackerman

  13. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Investigating Water Vapor Variability by Ground-Based Microwave Radiometry Download a printable PDF Submitter: Kneifel, S., McGill University Crewell, S., University of Cologne Loehnert, U., University of Cologne Schween, J. H., Inst. of Geophysics and Meteorology Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Properties Journal Reference: Kneifel S, S Crewell, U Löhnert, and J Schween. 2009. "Investigating water vapor variability by

  14. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report July 1 – September 30, 2009

    SciTech Connect (OSTI)

    DL Sisterson

    2009-10-15

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data then are sent approximately daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by 1) individual data stream, site, and month for the current year and 2) site and fiscal year (FY) dating back to 1998.

  15. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report - July 1 - September 30, 2008

    SciTech Connect (OSTI)

    DL Sisterson

    2008-09-30

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  16. Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report October 1–December 31, 2011

    SciTech Connect (OSTI)

    Voyles, JW

    2012-01-09

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  17. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report January 1 – March 31, 2007

    SciTech Connect (OSTI)

    DL Sisterson

    2007-04-01

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  18. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report April 1 - June 30, 2007

    SciTech Connect (OSTI)

    DL Sisterson

    2007-07-01

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  19. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report - January 1 - March 31, 2008

    SciTech Connect (OSTI)

    Sisterson, DL

    2008-04-01

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  20. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report January 1 - March 31, 2009

    SciTech Connect (OSTI)

    DL Sisterson

    2009-03-17

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  1. Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report July 1–September 30, 2011

    SciTech Connect (OSTI)

    Voyles, JW

    2011-10-10

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  2. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report: October 1 - December 31, 2010

    SciTech Connect (OSTI)

    Sisterson, DL

    2011-03-02

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  3. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report October 1 - December 31, 2007

    SciTech Connect (OSTI)

    DL Sisterson

    2008-01-08

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  4. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report July 1 - September 30, 2007

    SciTech Connect (OSTI)

    DL Sisterson

    2007-10-01

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  5. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report April 1 - June 30, 2008

    SciTech Connect (OSTI)

    DL Sisterson

    2008-06-01

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  6. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report April 1 – June 30, 2006

    SciTech Connect (OSTI)

    DL Sisterson

    2006-07-01

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year; and (2) site and fiscal year dating back to 1998.

  7. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report - October 1 - December 31, 2008

    SciTech Connect (OSTI)

    Sisterson, DL

    2009-01-15

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  8. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report July 1 September 30, 2006

    SciTech Connect (OSTI)

    DL Sisterson

    2006-10-01

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998.

  9. Atmospheric Radiation Measurement program climate research facility operations quarterly report July 1 - September 30, 2008.

    SciTech Connect (OSTI)

    Sisterson, D. L.

    2008-10-08

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. Table 1 shows the accumulated maximum operation time (planned uptime), actual hours of operation, and variance (unplanned downtime) for the period July 1 - September 30, 2008, for the fixed sites. The AMF has been deployed to China, but the data have not yet been released. The fourth quarter comprises a total of 2,208 hours. The average exceeded our goal this quarter. The Site Access Request System is a web-based database used to track visitors to the fixed and mobile sites, all of which have facilities that can be visited. The NSA locale has the Barrow and Atqasuk sites. The SGP site has a central facility, 23 extended facilities, 4 boundary facilities, and 3 intermediate facilities. The TWP locale has the Manus, Nauru, and Darwin sites. HFE represents the AMF statistics for the Shouxian, China, deployment in 2008. FKB represents the AMF statistics for the Haselbach, Germany, past deployment in 2007. NIM represents the AMF statistics for the Niamey, Niger, Africa, past deployment in 2006. PYE represents just the AMF Archive statistics for the Point Reyes, California, past deployment in 2005. In addition, users who do not want to wait for data to be provided through the ACRF Archive can request a research account on the local site data system. The seven computers for the

  10. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    An Update on Unmanned Platforms at Oliktok Point Download a printable PDF Submitter: de Boer, G., University of Colorado, Boulder/CIRES Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Aerosol Life Cycle, Cloud Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: de Boer G, MD Ivey, B Schmid, S McFarlane, and R Petty. 2016. "Unmanned platforms monitor the Arctic atmosphere." EOS, 97, doi:10.1029/2016EO046441. Figure 1: Gijs de

  11. Atmospheric Radiation Measurement program climate research facility operations quarterly report January 1 - March 31, 2008.

    SciTech Connect (OSTI)

    Sisterson, D. L.

    2008-05-22

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. Table 1 shows the accumulated maximum operation time (planned uptime), actual hours of operation, and variance (unplanned downtime) for the period January 1 - March 31, 2008, for the fixed sites. The AMF is being deployed to China and is not in operation this quarter. The second quarter comprises a total of 2,184 hours. The average as well as the individual site values exceeded our goal this quarter. The Site Access Request System is a web-based database used to track visitors to the fixed and mobile sites, all of which have facilities that can be visited. The NSA locale has the Barrow and Atqasuk sites. The SGP site has a central facility, 23 extended facilities, 4 boundary facilities, and 3 intermediate facilities. The TWP locale has the Manus, Nauru, and Darwin sites. FKB represents the AMF statistics for the Haselbach, Germany, past deployment in 2007. NIM represents the AMF statistics for the Niamey, Niger, Africa, past deployment in 2006. PYE represents just the AMF Archive statistics for the Point Reyes, California, past deployment in 2005. In addition, users who do not want to wait for data to be provided through the ACRF Archive can request a research account on the local site data system. The seven computers for the research accounts are located at the Barrow

  12. Pacific Northwest Laboratory annual report for 1987 to the DOE Office of Energy Research: Part 3, Atmospheric sciences

    SciTech Connect (OSTI)

    Elderkin, C.E.

    1988-08-01

    Currently, the broad goals of atmospheric research at Pacific Northwest Laboratory (PNL) are to describe and predict the nature and fate of atmospheric contaminants and to develop an understanding of the atmospheric processes contributing to their distribution on local, regional, and continental scales in the air, in clouds, and on the surface. For several years, studies of transport and diffusion have been extended to mesoscale areas of complex terrain. Atmospheric cleansing research has expanded to a regional scale, multilaboratory investigation of precipitation scavenging processes involving the transformation and wet deposition of chemicals composing ''acid rain.'' In addition, the redistribution and long-range transport of transformed contaminants passing through clouds is recognized as a necessary extension of our research to even larger scales in the future. A few long-range tracer experiments conducted in recent years and the special opportunity for measuring the transport and removal of radioactivity following the Chernobyl reactor accident of April 1986 offer important initial data bases for studying atmospheric processes at these super-regional scales.

  13. Atmospheric Radiation Measurement program climate research facility operations quarterly report October 1 - December 31, 2007.

    SciTech Connect (OSTI)

    Sisterson, D. L.

    2008-01-24

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. Table 1 shows the accumulated maximum operation time (planned uptime), actual hours of operation, and variance (unplanned downtime) for the period October 1 - December 31, 2007, for the fixed sites and the mobile site. The AMF has been deployed to Germany and this was the final operational quarter. The first quarter comprises a total of 2,208 hours. Although the average exceeded our goal this quarter, a series of severe weather events (i.e., widespread ice storms) disrupted utility services, which affected the SGP performance measures. Some instruments were covered in ice and power and data communication lines were down for more than 10 days in some areas of Oklahoma and Kansas, which resulted in lost data at the SGP site. The Site Access Request System is a web-based database used to track visitors to the fixed sites, all of which have facilities that can be visited. The NSA locale has the Barrow and Atqasuk sites. The SGP site has a central facility, 23 extended facilities, 4 boundary facilities, and 3 intermediate facilities. The TWP locale has the Manus, Nauru, and Darwin sites. The AMF completed its mission at the end of this quarter in Haselback, Germany (FKB designation). NIM represents the AMF statistics for the Niamey, Niger, Africa, past deployment in 2006. PYE

  14. CRC handbook of applied thermodynamics

    SciTech Connect (OSTI)

    Palmer, D.A. . Research and Development Dept.)

    1987-01-01

    The emphasis of this book is on applied thermodynamics, featuring the stage of development of a process rather than the logical development of thermodynamic principles. It is organized according to the types of problems encountered in industry, such as probing research, process assessment, and process development. The applied principles presented can be used in most areas of industry including oil and gas production and processing, chemical processing, power generation, polymer production, food processing, synthetic fuels production, specialty chemicals and pharmaceuticals production, bioengineered processes, etc.

  15. NOAA federal/state cooperative program in atmospheric modification research. Collected publication titles and abstracts. Technical memo

    SciTech Connect (OSTI)

    Reinking, R.F.

    1993-04-01

    The volume contains the titles and abstracts of technical publications through fiscal year 1992 that are the products of the NOAA Federal/State Cooperative Program in Atmospheric Modification Research. The program is focused on the very interdisciplinary science of purposeful cloud modification for precipitation enhancement and hail suppression, and unintentional modification of clouds and precipitation. The audience includes, for example, water managers, policy makers, scientists, practitioners in the field, and the interested public. Listed are publications on topics including but not limited to: cloud and precipitation processes, numerical cloud and atmospheric mesoscale modeling, atmospheric and storm monitoring instrumentation and technologies, aerosol transport and dispersion in clouds and over complex terrain, cloud seeding technologies and effects, agricultural responses to cloud modification, weather economics and societal aspects of cloud modification, unintentional weather and climate modification, and precipitation and hydrological assessment and forecasting.

  16. Thermodynamics: Frontiers and Foundations.

    Energy Science and Technology Software Center (OSTI)

    2009-07-27

    Version 00 Dr. J.D. Lewins has now released the following new book for free distribution: Thermodynamics: Frontiers and Foundations, Preface by Sir Alan Cottrell Introduction 1. Four-Square Foundations: The Laws of Thermodynamics 2. Maximum Entropy and Minimum Energy: The Master Functions and Equations 3. Ideal Gases and their Applications 4. Real Fluids and Some Applications 5. Van der Waals: A Model for Real Fluids 6. Surface Tension: Bubbles and Drops 7. Inert and Reactive Mixtures;more » An introduction to Chemical Thermodynamics 8. Radiation Thermodynamics: Solar Power Potential 9. Outposts of the Empire 10. A Glimpse into Statistical Thermodynamics Envoi« less

  17. COLLABORATIVE RESEARCH: CONTINUOUS DYNAMIC GRID ADAPTATION IN A GLOBAL ATMOSPHERIC MODEL: APPLICATION AND REFINEMENT

    SciTech Connect (OSTI)

    Gutowski, William J.; Prusa, Joseph M.; Smolarkiewicz, Piotr K.

    2012-05-08

    validity of soundproof models, showing that they are more broadly applicable than some had previously thought. Substantial testing of EULAG included application and extension of the Jablonowski-Williamson baroclinic wave test - an archetype of planetary weather - and further analysis of multi-scale interactions arising from collapse of temperature fronts in both the baroclinic wave test and simulations of the Held-Suarez idealized climate. These analyses revealed properties of atmospheric gravity waves not seen in previous work and further demonstrated the ability of EULAG to simulate realistic behavior over several orders of magnitude of length scales. Additional collaborative work enhanced capability for modeling atmospheric flows with adaptive moving meshes and demonstrated the ability of EULAG to move into petascale computing. 3b. CAM-EULAG Advances We have developed CAM-EULAG in collaboration with former project postdoc, now University of Cape Town Assistant Professor, Babatunde Abiodun. Initial study documented good model performance in aqua-planet simulations. In particular, we showed that the grid adaptivity (stretching) implemented in CAM-EULAG allows higher resolution in selected regions without causing anomalous behavior such as spurious wave reflection. We then used the stretched-grid version to analyze simulated extreme precipitation events in West Africa, comparing the precipitation and event environment with observed behavior. The model simulates fairly well the spatial scale and the interannual and intraseasonal variability of the extreme events, although its extreme precipitation intensity is weaker than observed. In addition, both observations and the simulations show possible forcing of extreme events by African easterly waves. 3c. Other Contributions Through our collaborations, we have made contributions to a wide range of outcomes. For research focused on terrestrial behavior, these have included (1) upwind schemes for gas dynamics, (2) a nonlinear

  18. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report October 1 - December 31, 2005

    SciTech Connect (OSTI)

    Sisterson, DL

    2005-12-31

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998. The U.S. Department of Energy requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 – (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the third quarter for the Southern Great Plains (SGP) site is 2,097.6 hours (0.95 × 2,208 hours this quarter). The OPSMAX for the North Slope of Alaska (NSA) locale is 1,987.2 hours (0.90 × 2,208), and that for the Tropical Western Pacific (TWP) locale is 1,876.8 hours (0.85 × 2,208). The OPSMAX time for the ARM Mobile Facility (AMF) is 2,097.6 hours (0.95 × 2,208). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the ACRF Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent

  19. Atmospheric Radiation Measurement program climate research facility operations quarterly report October 1 - December 31, 2008.

    SciTech Connect (OSTI)

    Sisterson, D. L.

    2009-01-15

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, they calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The US Department of Energy (DOE) requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1-(ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the first quarter of FY 2009 for the Southern Great Plains (SGP) site is 2,097.60 hours (0.95 x 2,208 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1,987.20 hours (0.90 x 2,208), and for the Tropical Western Pacific (TWP) locale is 1,876.80 hours (0.85 x 2,208). The OPSMAX time for the ARM Mobile Facility (AMF) is not reported this quarter because the data have not yet been released from China to the DMF for processing. The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is

  20. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report October 1 - December 31, 2004

    SciTech Connect (OSTI)

    Sisterson, DL

    2004-12-31

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998. The United States Department of Energy requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 – (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The annual OPSMAX time for the Southern Great Plains (SGP) site is 8,322 hours per year (0.95 × 8,760, the number hours in a year, not including leap year). The annual OPSMAX for the North Slope Alaska (NSA) site is 7,884 hours per year (0.90 × 8,760), and that for the Tropical Western Pacific (TWP) site is 7,446 hours per year (0.85 × 8,760). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the ACRF Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent of data in the Archive represents the

  1. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report January 1 - March 31, 2005

    SciTech Connect (OSTI)

    Sisterson, DL

    2005-03-31

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998. The United States Department of Energy requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 – (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for this second quarter for the Southern Great Plains (SGP) site is 2052 hours (0.95 × 2,160 hours this quarter). The annual OPSMAX for the North Slope Alaska (NSA) site is 1944 hours (0.90 × 2,160), and that for the Tropical Western Pacific (TWP) site is 1836 hours (0.85 × 2,160). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the ACRF Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent of data in the Archive represents the average percent of the time (24 hours per day, 90

  2. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report January-March 2006

    SciTech Connect (OSTI)

    Sisterson, DL

    2006-03-31

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year; and (2) site and fiscal year dating back to 1998. The U.S. Department of Energy requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 – (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the second quarter for the Southern Great Plains (SGP) site is 2,052 hours (0.95 × 2,160 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1,944 hours (0.90 × 2,160), and that for the Tropical Western Pacific (TWP) locale is 1,836 hours (0.85 × 2,160). The OPSMAX time for the ARM Mobile Facility (AMF) is 2,052 hours (0.95 × 2,160). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent of data in the

  3. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report July 1 – September 30, 2008

    SciTech Connect (OSTI)

    Sisterson, DL

    2008-09-30

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The U.S. Department of Energy (DOE) requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 – (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the fourth quarter of FY 2008 for the Southern Great Plains (SGP) site is 2,097.60 hours (0.95 x 2,208 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1,987.20 hours (0.90 x 2,208), and for the Tropical Western Pacific (TWP) locale is 1,876.80 hours (0.85 x 2,208). The OPSMAX time for the ARM Mobile Facility (AMF) is not reported this quarter because the data have not yet been released from China to the DMF for processing. The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is

  4. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report April 1 - June 30, 2005

    SciTech Connect (OSTI)

    DL Sisterson

    2005-06-30

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998. The United States Department of Energy requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the third quarter for the Southern Great Plains (SGP) site is 2,074.8 hours (0.95 2,184 hours this quarter). The annual OPSMAX for the North Slope Alaska (NSA) site is 1,965.6 hours (0.90 2,184), and that for the Tropical Western Pacific (TWP) site is 1,856.4 hours (0.85 2,184). The OPSMAX time for the ARM Mobile Facility (AMF) is 2,074.8 (0.95 2,184). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the ACRF Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent of data in

  5. Scanning Transmission X-ray Microscopy: Applications in Atmospheric Aerosol Research

    SciTech Connect (OSTI)

    Moffet, Ryan C.; Tivanski, Alexei V.; Gilles, Mary K.

    2011-01-20

    Scanning transmission x-ray microscopy (STXM) combines x-ray microscopy and near edge x-ray absorption fine structure spectroscopy (NEXAFS). This combination provides spatially resolved bonding and oxidation state information. While there are reviews relevant to STXM/NEXAFS applications in other environmental fields (and magnetic materials) this chapter focuses on atmospheric aerosols. It provides an introduction to this technique in a manner approachable to non-experts. It begins with relevant background information on synchrotron radiation sources and a description of NEXAFS spectroscopy. The bulk of the chapter provides a survey of STXM/NEXAFS aerosol studies and is organized according to the type of aerosol investigated. The purpose is to illustrate the current range and recent growth of scientific investigations employing STXM-NEXAFS to probe atmospheric aerosol morphology, surface coatings, mixing states, and atmospheric processing.

  6. Thermodynamic Evaluation of Low-Global Warming Potential Refrigerants...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Credit: National Institute of Standards Thermodynamic Evaluation of Low-Global Warming Potential Refrigerants Research & Development Roadmap: Next-Generation Low Global Warming ...

  7. Atmospheric Radiation Measurement program climate research facility operations quarterly report October 1 - December 31, 2006.

    SciTech Connect (OSTI)

    Sisterson, D. L.

    2007-03-14

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998. Table 1 shows the accumulated maximum operation time (planned uptime), the actual hours of operation, and the variance (unplanned downtime) for the period October 1 through December 31, 2006, for the fixed and mobile sites. Although the AMF is currently up and running in Niamey, Niger, Africa, the AMF statistics are reported separately and not included in the aggregate average with the fixed sites. The first quarter comprises a total of 2,208 hours. For all fixed sites, the actual data availability (and therefore actual hours of operation) exceeded the individual (and well as aggregate average of the fixed sites) operational goal for the first quarter of fiscal year (FY) 2007. The Site Access Request System is a web-based database used to track visitors to the fixed sites, all of which have facilities that can be visited. The NSA locale has the Barrow and Atqasuk sites. The SGP site has a Central Facility, 23 extended facilities, 4 boundary facilities, and 3 intermediate facilities. The TWP locale has the Manus, Nauru, and Darwin sites. NIM represents the AMF statistics for the current deployment in Niamey, Niger, Africa. PYE represents the AMF statistics for the Point Reyes, California, past deployment in 2005. In addition, users who do not want to wait for data to be

  8. Pacific Northwest Laboratory annual report for 1989 to the DOE (Department of Energy) Office of Energy Research - Part 3: Atmospheric Sciences

    SciTech Connect (OSTI)

    Not Available

    1990-06-01

    This 1989 Annual Report from Pacific Northwest Laboratory (PNL) to the US Department of Energy (DOE) describes research in environment, safety, and health conducted during fiscal year 1989. The report again consists of five parts, each in a separate volume. This volume contains research in the atmospheric sciences. Currently, the broad goals of atmospheric research at PNL are to describe and predict the nature and fate of atmospheric contaminants and to develop an understanding of the atmospheric processes contributing to their distribution on local, regional, continental, and global scales in the air, in clouds, and on the surface. The redistribution and long-range transport of transformed contaminants passing through clouds is recognized as a necessary extension of our research to even larger scales in the future. Eventually, large-scale experiments on cloud processing and redistribution of contaminants will be integrated into the national program on global change, investigating how energy pollutants affect aerosols and clouds and the transfer of radiant energy through them. As the significance of this effect becomes clear, its global impact on climate will be studied through experimental and modeling research. The description of ongoing atmospheric research at PNL is organized in terms of the following study areas: atmospheric studies in complex terrain, large-scale atmospheric transport and processing of emissions, and climate change. This report describes the progress in FY 1989 in each of these areas. A divider page summarizes the goals of each area and lists project titles that support research activities. 9 refs., 2 figs., 3 tabs.

  9. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report. October 1 - December 31, 2010.

    SciTech Connect (OSTI)

    Sisterson, D. L.

    2011-02-01

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near-real time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The U.S. Department of Energy (DOE) requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 - (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the first quarter of FY2010 for the Southern Great Plains (SGP) site is 2097.60 hours (0.95 x 2208 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1987.20 hours (0.90 x 2208) and for the Tropical Western Pacific (TWP) locale is 1876.80 hours (0.85 x 2208). The first ARM Mobile Facility (AMF1) deployment in Graciosa Island, the Azores, Portugal, continued through this quarter, so the OPSMAX time this quarter is 2097.60 hours (0.95 x 2208). The second ARM Mobile Facility (AMF2) began deployment this quarter to Steamboat Springs, Colorado. The experiment officially began November 15, but most of the instruments were up and running by November 1. Therefore, the OPSMAX time for the AMF2 was 1390.80 hours (.95 x 1464 hours) for November and December (61 days). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It

  10. Atmospheric Radiation Measurement program climate research facility operations quarterly report January 1 - March 31, 2009.

    SciTech Connect (OSTI)

    Sisterson, D. L.

    2009-04-23

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The U.S. Department of Energy (DOE) requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 - (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the second quarter of FY 2009 for the Southern Great Plains (SGP) site is 2,052.00 hours (0.95 x 2,160 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1,944.00 hours (0.90 x 2,160), and for the Tropical Western Pacific (TWP) locale is 1,836.00 hours (0.85 x 2,160). The OPSMAX time for the ARM Mobile Facility (AMF) is not reported this quarter because not all of the metadata have been acquired that are used to generate this metric. The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability

  11. Atmospheric Radiation Measurement program climate research facilities quarterly report April 1 - June 30, 2009.

    SciTech Connect (OSTI)

    Sisterson, D. L.

    2009-07-14

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near-real time. Raw and processed data are then sent approximately daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The U.S. Department of Energy (DOE) requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 - (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the third quarter of FY 2009 for the Southern Great Plains (SGP) site is 2,074.80 hours (0.95 x 2,184 hours this quarter); for the North Slope Alaska (NSA) locale it is 1,965.60 hours (0.90 x 2,184); and for the Tropical Western Pacific (TWP) locale it is 1,856.40 hours (0.85 x 2,184). The ARM Mobile Facility (AMF) was officially operational May 1 in Graciosa Island, the Azores, Portugal, so the OPSMAX time this quarter is 1390.80 hours (0.95 x 1464). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data

  12. Atmospheric Radiation Measurement program climate research facility operations quarterly report July 1 - Sep. 30, 2009.

    SciTech Connect (OSTI)

    Sisterson, D. L.

    2009-10-15

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near-real time. Raw and processed data are then sent approximately daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The U.S. Department of Energy (DOE) requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 - (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the fourth quarter of FY 2009 for the Southern Great Plains (SGP) site is 2,097.60 hours (0.95 ? 2,208 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1,987.20 hours (0.90 ? 2,208) and for the Tropical Western Pacific (TWP) locale is 1,876.8 hours (0.85 ? 2,208). The ARM Mobile Facility (AMF) was officially operational May 1 in Graciosa Island, the Azores, Portugal, so the OPSMAX time this quarter is 2,097.60 hours (0.95 x 2,208). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive result from downtime (scheduled or unplanned) of the individual instruments. Therefore, data

  13. Atmospheric Radiation Measurement program climate research facility operations quarterly report April 1 - June 30, 2007.

    SciTech Connect (OSTI)

    Sisterson, D. L.

    2007-07-26

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The U.S. Department of Energy requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 - (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the third quarter of FY 2007 for the Southern Great Plains (SGP) site is 2,074.8 hours (0.95 x 2,184 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1,965.6 hours (0.90 x 2,184), and that for the Tropical Western Pacific (TWP) locale is 1,856.4 hours (0.85 x 2,184). The OPSMAX time for the ARM Mobile Facility (AMF) is 2,074.8 hours (0.95 x 2,184). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent of data in

  14. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report. October 1 - December 31, 2009.

    SciTech Connect (OSTI)

    D. L. Sisterson

    2010-01-12

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The U.S. Department of Energy (DOE) requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 - (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the first quarter of FY 2010 for the North Slope Alaska (NSA) locale is 1,987.20 hours (0.90 x 2,208); for the Southern Great Plains (SGP) site is 2,097.60 hours (0.95 x 2,208); and for the Tropical Western Pacific (TWP) locale is 1,876.8 hours (0.85 x 2,208). The ARM Mobile Facility (AMF) deployment in Graciosa Island, the Azores, Portugal, continues; its OPSMAX time this quarter is 2,097.60 hours (0.95 x 2,208). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive are the result of downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to

  15. COLLABORATIVE RESEARCH: CONTINUOUS DYNAMIC GRID ADAPTATION IN A GLOBAL ATMOSPHERIC MODEL: APPLICATION AND REFINEMENT

    SciTech Connect (OSTI)

    Prusa, Joseph

    2012-05-08

    This project had goals of advancing the performance capabilities of the numerical general circulation model EULAG and using it to produce a fully operational atmospheric global climate model (AGCM) that can employ either static or dynamic grid stretching for targeted phenomena. The resulting AGCM combined EULAG's advanced dynamics core with the physics of the NCAR Community Atmospheric Model (CAM). Effort discussed below shows how we improved model performance and tested both EULAG and the coupled CAM-EULAG in several ways to demonstrate the grid stretching and ability to simulate very well a wide range of scales, that is, multi-scale capability. We leveraged our effort through interaction with an international EULAG community that has collectively developed new features and applications of EULAG, which we exploited for our own work summarized here. Overall, the work contributed to over 40 peer- reviewed publications and over 70 conference/workshop/seminar presentations, many of them invited.

  16. Rising atmospheric CO{sub 2} and crops: Research methodology and direct effects

    SciTech Connect (OSTI)

    Rogers, H.; Acock, B.

    1993-12-31

    Carbon dioxide is the food of trees and grass. Our relentless pursuit of a better life has taken us down a traffic jammed road, past smoking factories and forests. This pursuit is forcing a rise in the atmospheric CO{sub 2} level, and no one know when and if flood stage will be reached. Some thinkers have suggested that this increase of CO{sub 2} in the atmosphere will cause warming. No matter whether this prediction is realized or not, more CO{sub 2} will directly affect plants. Data from controlled observations have usually, but not always, shown benefits. Our choices of scientific equipment for gathering CO{sub 2} response data are critical since we must see what is happening through the eye of the instrument. The signals derived from our sensors will ultimately determine the truth of our conclusions, conclusion which will profoundly influence our policy decisions. Experimental gear is selected on the basis of scale of interest and problem to be addressed. Our imaginations and our budgets interact to set bounds on our objectives and approaches. Techniques run the gamut from cellular microprobes through whole-plant controlled environment chambers to field-scale exposure systems. Trade-offs exist among the various CO{sub 2} exposure techniques, and many factors impinge on the choice of a method. All exposure chambers are derivatives of three primary types--batch, plug flow, and continuous stirred tank reactor. Systems for the generation of controlled test atmospheres of CO{sub 2} vary in two basic ways--size and degree of control. Among the newest is free-air CO{sub 2} enrichment which allows tens of square meters of cropland to be studied.

  17. Atmospheric Radiation Measurement Program Climate Research Facility Operation quarterly report July 1 - September 30, 2010.

    SciTech Connect (OSTI)

    Sisterson, D. L.

    2010-10-26

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The U.S. Department of Energy (DOE) requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1-(ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the fourth quarter of FY2010 for the Southern Great Plains (SGP) site is 2097.60 hours (0.95 2208 hours this quarter). The OPSMAX for the North Slope of Alaska (NSA) locale is 1987.20 hours (0.90 2208) and for the Tropical Western Pacific (TWP) locale is 1876.80 hours (0.85 2208). The first ARM Mobile Facility (AMF1) deployment in Graciosa Island, the Azores, Portugal, continues, so the OPSMAX time this quarter is 2097.60 hours (0.95 x 2208). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or datastream. Data availability reported here refers to the average of the individual, continuous datastreams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to

  18. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report July 1–September 30, 2010

    SciTech Connect (OSTI)

    Sisterson, DL

    2010-10-15

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  19. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report April 1–June 30, 2010

    SciTech Connect (OSTI)

    Sisterson, DL

    2010-07-09

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  20. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    A Comparison of Integrated Water Vapor Sensors: WVIOP-96 Submitter: Liljegren, J. C., Argonne National Laboratory Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Properties Journal Reference: N/A Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 The 1996 Water Vapor Intensive Operations Period (WVIOP-96) was conducted at the SGP CART central facility in September in order to assess the skill of a wide variety of

  1. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Large-Scale Structures and Diabatic Heating and Drying Profiles Revealed by TWP-ICE Download a printable PDF Submitter: Xie, S., Lawrence Livermore National Laboratory Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Modeling Journal Reference: Xie S, T Hume, C Jakob, SA Klein, RB McCoy, and M Zhang. 2009. "Observed large-scale structures and diabatic heating and drying profiles during TWP-ICE." Journal of Climate, 23(1), . Analyzed vertical

  2. Atmospheric Research - Manaus Plume: GoAmazon T3 Ground Site...

    Office of Scientific and Technical Information (OSTI)

    Research Org: Los Alamos National Laboratory (LANL) Sponsoring Org: DOELANL Country of Publication: United States Language: English Subject: Environmental Sciences(54) ARM MAOS ...

  3. Lawrence Livermore National Laboratory interests and capabilities for research on the ecological effects of global climatic and atmospheric change

    SciTech Connect (OSTI)

    Amthor, J.S.; Houpis, J.L.; Kercher, J.R.; Ledebuhr, A.; Miller, N.L.; Penner, J.E.; Robison, W.L.; Taylor, K.E.

    1994-09-01

    The Lawrence Livermore National Laboratory (LLNL) has interests and capabilities in all three types of research that must be conducted in order to understand and predict effects of global atmospheric and climatic (i.e., environmental) changes on ecological systems and their functions (ecosystem function is perhaps most conveniently defined as mass and energy exchange and storage). These three types of research are: (1) manipulative experiments with plants and ecosystems; (2) monitoring of present ecosystem, landscape, and global exchanges and pools of energy, elements, and compounds that play important roles in ecosystem function or the physical climate system, and (3) mechanistic (i.e., hierarchic and explanatory) modeling of plant and ecosystem responses to global environmental change. Specific experimental programs, monitoring plans, and modeling activities related to evaluation of ecological effects of global environmental change that are of interest to, and that can be carried out by LLNL scientists are outlined. Several projects have the distinction of integrating modeling with empirical studies resulting in an Integrated Product (a model or set of models) that DOE or any federal policy maker could use to assess ecological effects. The authors note that any scheme for evaluating ecological effects of atmospheric and climatic change should take into account exceptional or sensitive species, in particular, rare, threatened, or endangered species.

  4. Electrochemical thermodynamic measurement system

    DOE Patents [OSTI]

    Reynier, Yvan; Yazami, Rachid; Fultz, Brent T.

    2009-09-29

    The present invention provides systems and methods for accurately characterizing thermodynamic and materials properties of electrodes and electrochemical energy storage and conversion systems. Systems and methods of the present invention are configured for simultaneously collecting a suite of measurements characterizing a plurality of interconnected electrochemical and thermodynamic parameters relating to the electrode reaction state of advancement, voltage and temperature. Enhanced sensitivity provided by the present methods and systems combined with measurement conditions that reflect thermodynamically stabilized electrode conditions allow very accurate measurement of thermodynamic parameters, including state functions such as the Gibbs free energy, enthalpy and entropy of electrode/electrochemical cell reactions, that enable prediction of important performance attributes of electrode materials and electrochemical systems, such as the energy, power density, current rate and the cycle life of an electrochemical cell.

  5. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report January 1–March 31, 2011

    SciTech Connect (OSTI)

    Sisterson, DL

    2011-04-11

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Data Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Data Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  6. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report April 1–June 30, 2011

    SciTech Connect (OSTI)

    Voyles, JW

    2011-07-25

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  7. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report October 1–December 31, 2009

    SciTech Connect (OSTI)

    DL Sisterson

    2010-01-15

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Data Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  8. Wind Energy Forecasting: A Collaboration of the National Center for Atmospheric Research (NCAR) and Xcel Energy

    SciTech Connect (OSTI)

    Parks, K.; Wan, Y. H.; Wiener, G.; Liu, Y.

    2011-10-01

    higher. In organized electricity markets, units that are committed for reliability reasons are paid their offer price even when prevailing market prices are lower. Often, these uplift charges are allocated to market participants that caused the inefficient dispatch in the first place. Thus, wind energy facilities are burdened with their share of costs proportional to their forecast errors. For Xcel Energy, wind energy uncertainty costs manifest depending on specific market structures. In the Public Service of Colorado (PSCo), inefficient commitment and dispatch caused by wind uncertainty increases fuel costs. Wind resources participating in the Midwest Independent System Operator (MISO) footprint make substantial payments in the real-time markets to true-up their day-ahead positions and are additionally burdened with deviation charges called a Revenue Sufficiency Guarantee (RSG) to cover out of market costs associated with operations. Southwest Public Service (SPS) wind plants cause both commitment inefficiencies and are charged Southwest Power Pool (SPP) imbalance payments due to wind uncertainty and variability. Wind energy forecasting helps mitigate these costs. Wind integration studies for the PSCo and Northern States Power (NSP) operating companies have projected increasing costs as more wind is installed on the system due to forecast error. It follows that reducing forecast error would reduce these costs. This is echoed by large scale studies in neighboring regions and states that have recommended adoption of state-of-the-art wind forecasting tools in day-ahead and real-time planning and operations. Further, Xcel Energy concluded reduction of the normalized mean absolute error by one percent would have reduced costs in 2008 by over $1 million annually in PSCo alone. The value of reducing forecast error prompted Xcel Energy to make substantial investments in wind energy forecasting research and development.

  9. New and Improved Data Logging and Collection System for Atmospheric...

    Office of Scientific and Technical Information (OSTI)

    for Atmospheric Radiation Measurement Climate Research Facility, Tropical Western ... for Atmospheric Radiation Measurement Climate Research Facility, Tropical Western ...

  10. Cyclic Thermodynamics with Open Flow

    SciTech Connect (OSTI)

    Reid, R.S.; Ward, W.C.; Swift, G.W.

    1998-05-01

    Some general features of a new class of thermodynamic device combining a thermodynamic cycle with the externally applied steady flow of an open thermodynamic process are discussed and experimentally demonstrated in the context of a thermoacoustic refrigerator. {copyright} {ital 1998} {ital The American Physical Society}

  11. Atmospheric Chemistry

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    chemistry Atmospheric Chemistry Atmospheric Chemistry is the study of the composition of the atmosphere, the sources and fates of gases and particles in air, and changes induced by ...

  12. Atmosphere to Electrons

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Atmosphere to Electrons Enabling the Wind Plant of Tomorrow 2 Atmosphere to Electrons Enabling the Wind Plant of Tomorrow The U.S. Department of Energy's (DOE's) Atmosphere to Electrons (A2e) research initiative is focused on improving the performance and reliability of wind plants by establishing an unprecedented under- standing of how the Earth's atmosphere interacts with the wind plants and developing innovative technologies to maximize energy extraction from the wind. The A2e initiative

  13. Cantera and Cantera Electrolyte Thermodynamics Objects

    SciTech Connect (OSTI)

    John Hewson, Harry Moffat

    2015-10-19

    Cantera is a suite of object-oriented software tools for problems involving chemical kinetics, thermodynamics, and/or transport processes. It is a multi-organizational effort to create and formulate high quality 0D and 1D constitutive modeling tools for reactive transport codes.Institutions involved with the effort include Sandia, MIT, Colorado School of Mines, U. Texas, NASA, and Oak Ridge National Labs. Specific to Sandia’s contributions, the Cantera Electrolyte Thermo Objects (CETO) packages is comprised of add-on routines for Cantera that handle electrolyte thermochemistry and reactions within the overall Cantera package. Cantera is a C++ Cal Tech code that handles gas phase species transport, reaction, and thermodynamics. With this addition, Cantera can be extended to handle problems involving liquid phase reactions and transport in electrolyte systems, and phase equilibrium problemsinvolving concentrated electrolytes and gas/solid phases. A full treatment of molten salt thermodynamics and transport has also been implemented in CETO. The routines themselves consist of .cpp and .h files containing C++ objects that are derived from parent Cantera objects representing thermodynamic functions. They are linked unto the main Cantera libraries when requested by the user. As an addendum to the main thermodynamics objects, several utility applications are provided. The first is multiphase Gibbs free energy minimizer based on the vcs algorithm, called vcs_cantera. This code allows for the calculation of thermodynamic equilibrium in multiple phases at constant temperature and pressure. Note, a similar code capability exists already in Cantera. This version follows the same algorithm, but gas a different code-base starting point, and is used as a research tool for algorithm development. The second program, cttables, prints out tables of thermodynamic and kinetic information for thermodynamic and kinetic objects within Cantera. This program serves as a “Get the numbers

  14. Cantera and Cantera Electrolyte Thermodynamics Objects

    Energy Science and Technology Software Center (OSTI)

    2015-10-19

    Cantera is a suite of object-oriented software tools for problems involving chemical kinetics, thermodynamics, and/or transport processes. It is a multi-organizational effort to create and formulate high quality 0D and 1D constitutive modeling tools for reactive transport codes.Institutions involved with the effort include Sandia, MIT, Colorado School of Mines, U. Texas, NASA, and Oak Ridge National Labs. Specific to Sandia’s contributions, the Cantera Electrolyte Thermo Objects (CETO) packages is comprised of add-on routines for Canteramore » that handle electrolyte thermochemistry and reactions within the overall Cantera package. Cantera is a C++ Cal Tech code that handles gas phase species transport, reaction, and thermodynamics. With this addition, Cantera can be extended to handle problems involving liquid phase reactions and transport in electrolyte systems, and phase equilibrium problemsinvolving concentrated electrolytes and gas/solid phases. A full treatment of molten salt thermodynamics and transport has also been implemented in CETO. The routines themselves consist of .cpp and .h files containing C++ objects that are derived from parent Cantera objects representing thermodynamic functions. They are linked unto the main Cantera libraries when requested by the user. As an addendum to the main thermodynamics objects, several utility applications are provided. The first is multiphase Gibbs free energy minimizer based on the vcs algorithm, called vcs_cantera. This code allows for the calculation of thermodynamic equilibrium in multiple phases at constant temperature and pressure. Note, a similar code capability exists already in Cantera. This version follows the same algorithm, but gas a different code-base starting point, and is used as a research tool for algorithm development. The second program, cttables, prints out tables of thermodynamic and kinetic information for thermodynamic and kinetic objects within Cantera. This program serves as a “Get the

  15. Thermodynamics of geothermal fluids

    SciTech Connect (OSTI)

    Rogers, P.S.Z.

    1981-03-01

    A model to predict the thermodynamic properties of geothermal brines, based on a minimum amount of experimental data on a few key systems, is tested. Volumetric properties of aqueous sodium chloride, taken from the literature, are represented by a parametric equation over the range 0 to 300{sup 0}C and 1 bar to 1 kbar. Density measurements at 20 bar needed to complete the volumetric description also are presented. The pressure dependence of activity and thermal properties, derived from the volumetric equation, can be used to complete an equation of state for sodium chloride solutions. A flow calorimeter, used to obtain heat capacity data at high temperatures and pressures, is described. Heat capacity measurements, from 30 to 200{sup 0}C and 1 bar to 200 bar, are used to derive values for the activity coefficient and other thermodynamic properties of sodium sulfate solutions as a function of temperature. Literature data on the solubility of gypsum in mixed electrolyte solutions have been used to evaluate model parameters for calculating gypsum solubility in seawater and natural brines. Predictions of strontium and barium sulfate solubility in seawater also are given.

  16. Atmospheric Radiation Measurement Program Climate Research Facility Operations Cumulative Quarterly Report October 1, 2003 - September 30, 2004

    SciTech Connect (OSTI)

    Sisterson, DL

    2004-09-30

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The United States Department of Energy requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 – (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The annual OPSMAX time for the Southern Great Plains (SGP) site is 8,322 hours per year (0.95 × 8,760, the number hours in a year, not including leap year). The annual OPSMAX for the North Slope Alaska (NSA) site is 7,884 hours per year (0.90 × 8,760), and that for the Tropical Western Pacific (TWP) site is 7,446 hours per year (0.85 × 8,760). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the ACRF Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent of data in the Archive represents the

  17. Thermodynamics and cement science

    SciTech Connect (OSTI)

    Damidot, D.; Lothenbach, B.; Herfort, D.; Glasser, F.P.

    2011-07-15

    Thermodynamics applied to cement science has proved to be very valuable. One of the most striking findings has been the extent to which the hydrate phases, with one conspicuous exception, achieve equilibrium. The important exception is the persistence of amorphous C-S-H which is metastable with respect to crystalline calcium silicate hydrates. Nevertheless C-S-H can be included in the scope of calculations. As a consequence, from comparison of calculation and experiment, it appears that kinetics is not necessarily an insuperable barrier to engineering the phase composition of a hydrated Portland cement. Also the sensitivity of the mineralogy of the AFm and AFt phase compositions to the presence of calcite and to temperature has been reported. This knowledge gives a powerful incentive to develop links between the mineralogy and engineering properties of hydrated cement paste and, of course, anticipates improvements in its performance leading to decreasing the environmental impacts of cement production.

  18. Scientific Final Report: COLLABORATIVE RESEARCH: CONTINUOUS DYNAMIC GRID ADAPTATION IN A GLOBAL ATMOSPHERIC MODEL: APPLICATION AND REFINEMENT

    SciTech Connect (OSTI)

    William J. Gutowski; Joseph M. Prusa, Piotr K. Smolarkiewicz

    2012-04-09

    This project had goals of advancing the performance capabilities of the numerical general circulation model EULAG and using it to produce a fully operational atmospheric global climate model (AGCM) that can employ either static or dynamic grid stretching for targeted phenomena. The resulting AGCM combined EULAG's advanced dynamics core with the 'physics' of the NCAR Community Atmospheric Model (CAM). Effort discussed below shows how we improved model performance and tested both EULAG and the coupled CAM-EULAG in several ways to demonstrate the grid stretching and ability to simulate very well a wide range of scales, that is, multi-scale capability. We leveraged our effort through interaction with an international EULAG community that has collectively developed new features and applications of EULAG, which we exploited for our own work summarized here. Overall, the work contributed to over 40 peer-reviewed publications and over 70 conference/workshop/seminar presentations, many of them invited.

  19. Thermodynamic properties of indan: Experimental and computational...

    Office of Scientific and Technical Information (OSTI)

    Thermodynamic properties of indan: Experimental and computational results This content will become publicly available on March 13, 2018 Prev Next Title: Thermodynamic ...

  20. Practical Thermodynamic Quantities for Aqueous Vanadium- and...

    Office of Scientific and Technical Information (OSTI)

    Practical Thermodynamic Quantities for Aqueous Vanadium- and Iron-Based Flow Batteries. Citation Details In-Document Search Title: Practical Thermodynamic Quantities for Aqueous...

  1. Contributions of the Atmospheric Radiation Measurement (ARM) Program and the ARM Climate Research Facility to the U.S. Climate Change Science Program

    SciTech Connect (OSTI)

    SA Edgerton; LR Roeder

    2008-09-30

    The Earth’s surface temperature is determined by the balance between incoming solar radiation and thermal (or infrared) radiation emitted by the Earth back to space. Changes in atmospheric composition, including greenhouse gases, clouds, and aerosols can alter this balance and produce significant climate change. Global climate models (GCMs) are the primary tool for quantifying future climate change; however, there remain significant uncertainties in the GCM treatment of clouds, aerosol, and their effects on the Earth’s energy balance. The 2007 assessment (AR4) by the Intergovernmental Panel on Climate Change (IPCC) reports a substantial range among GCMs in climate sensitivity to greenhouse gas emissions. The largest contributor to this range lies in how different models handle changes in the way clouds absorb or reflect radiative energy in a changing climate (Solomon et al. 2007). In 1989, the U.S. Department of Energy (DOE) Office of Science created the Atmospheric Radiation Measurement (ARM) Program within the Office of Biological and Environmental Research (BER) to address scientific uncertainties related to global climate change, with a specific focus on the crucial role of clouds and their influence on the transfer of radiation in the atmosphere. To address this problem, BER has adopted a unique two-pronged approach: * The ARM Climate Research Facility (ACRF), a scientific user facility for obtaining long-term measurements of radiative fluxes, cloud and aerosol properties, and related atmospheric characteristics in diverse climate regimes. * The ARM Science Program, focused on the analysis of ACRF data to address climate science issues associated with clouds, aerosols, and radiation, and to improve GCMs. This report describes accomplishments of the BER ARM Program toward addressing the primary uncertainties related to climate change prediction as identified by the IPCC.

  2. CRC handbook of applied thermodynamics

    SciTech Connect (OSTI)

    Palmer, D.A. . Research and Development Dept.)

    1987-01-01

    This book feature an overview of the importance of physical properties and thermodynamics; and the use of thermodynamics to predict the extent of reaction in proposed new chemical combinations. The use of special types of data and prediction methods to develop flowsheets for probing projects; and sources of critically evaluated data, dividing the published works into three categories depending on quality are given. Methods of doing one's own critical evaluation of literature, a list of known North American contract experimentalist with the types of data measured by each, methods for measuring equilibrium data, and thermodynamic concepts to carry out process optimization are also featured.

  3. Actinide Thermodynamics at Elevated Temperatures

    SciTech Connect (OSTI)

    Friese, Judah I.; Rao, Linfeng; Xia, Yuanxian; Bachelor, Paula P.; Tian, Guoxin

    2007-11-16

    The postclosure chemical environment in the proposed Yucca Mountain repository is expected to experience elevated temperatures. Predicting migration of actinides is possible if sufficient, reliable thermodynamic data on hydrolysis and complexation are available for these temperatures. Data are scarce and scattered for 25 degrees C, and nonexistent for elevated temperatures. This collaborative project between LBNL and PNNL collects thermodynamic data at elevated temperatures on actinide complexes with inorganic ligands that may be present in Yucca Mountain. The ligands include hydroxide, fluoride, sulfate, phosphate and carbonate. Thermodynamic parameters of complexation, including stability constants, enthalpy, entropy and heat capacity of complexation, are measured with a variety of techniques including solvent extraction, potentiometry, spectrophotometry and calorimetry

  4. Thermodynamic Metrics and Optimal Paths

    SciTech Connect (OSTI)

    Sivak, David; Crooks, Gavin

    2012-05-08

    A fundamental problem in modern thermodynamics is how a molecular-scale machine performs useful work, while operating away from thermal equilibrium without excessive dissipation. To this end, we derive a friction tensor that induces a Riemannian manifold on the space of thermodynamic states. Within the linear-response regime, this metric structure controls the dissipation of finite-time transformations, and bestows optimal protocols with many useful properties. We discuss the connection to the existing thermodynamic length formalism, and demonstrate the utility of this metric by solving for optimal control parameter protocols in a simple nonequilibrium model.

  5. ARM - Publications: Science Team Meeting Documents: AERI Thermodynamic

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Profiling VAP Improvements and Status AERI Thermodynamic Profiling VAP Improvements and Status Feltz, Wayne University of Wisconsin Howell, Ben University of Wisconsin-Madison Turner, David Pacific Northwest National Laboratory Mahon, Rick Pacific Northwest National Laboratory Knuteson, Robert University Of Wisconsin The Atmospheric Emitted Radiance Interferometer (AERI) was one of the primary instruments developed under the DOE ARM instrument development program (IDP) to be deployed to the

  6. Community Atmosphere Model

    Energy Science and Technology Software Center (OSTI)

    2004-10-18

    The Community Atmosphere Model (CAM) is an atmospheric general circulation model that solves equations for atmospheric dynamics and physics. CAM is an outgrowth of the Community Climate Model at the National Center for Atmospheric Research (NCAR) and was developed as a joint collaborative effort between NCAR and several DOE laboratories, including LLNL. CAM contains several alternative approaches for advancing the atmospheric dynamics. One of these approaches uses a finite-volume method originally developed by personnel atmore » NASNGSFC, We have developed a scalable version of the finite-volume solver for massively parallel computing systems. FV-CAM is meant to be used in conjunction with the Community Atmosphere Model. It is not stand-alone.« less

  7. VAMDC FP7 project and STARK-B database: C II Stark broadening parameters for white dwarf atmospheres research

    SciTech Connect (OSTI)

    Larbi-Terzi, Neila; Ben Nessib, Nebil; Sahal-Brechot, Sylvie; Dimitrijevic, Milan S.

    2010-11-23

    Stark broadening parameters of C II lines were determined within 3s-np spectral series within the semiclassical perturbation method. The atomic energy levels needed for calculations were taken from TOPBASE as well as the oscillator strengths, calculated additionally using the Coulomb approximation (the method of Bates and Damgaard). The both results were compared and the disagreement is found only in one case where the configuration mixing allows a forbidden transition to a close perturbing energy level. Calculations were performed for plasma conditions relevant for atmospheres of DQ white dwarfs and for a new type of white dwarfs, with surface composed mostly of carbon, discovered in 2007 by Dufour et al.. The aim of this work is to provide accurate C II Stark broadening data, which are crucial for this type of white dwarf atmosphere modellisation. Obtained results will be included in STARK-B database (http://stark-b.obspm.fr/), entering in the FP7 project of European Virtual Atomic and Molecular Data Center VAMDC aiming at building an interoperable e-Infrastructure for the exchange of atomic and molecular data (http://www.vamdc.org/).

  8. Research Update: Atmospheric pressure spatial atomic layer deposition of ZnO thin films: Reactors, doping, and devices

    SciTech Connect (OSTI)

    Hoye, Robert L. Z. E-mail: jld35@cam.ac.uk; MacManus-Driscoll, Judith L. E-mail: jld35@cam.ac.uk; Muñoz-Rojas, David; Nelson, Shelby F.; Illiberi, Andrea; Poodt, Paul

    2015-04-01

    Atmospheric pressure spatial atomic layer deposition (AP-SALD) has recently emerged as an appealing technique for rapidly producing high quality oxides. Here, we focus on the use of AP-SALD to deposit functional ZnO thin films, particularly on the reactors used, the film properties, and the dopants that have been studied. We highlight how these films are advantageous for the performance of solar cells, organometal halide perovskite light emitting diodes, and thin-film transistors. Future AP-SALD technology will enable the commercial processing of thin films over large areas on a sheet-to-sheet and roll-to-roll basis, with new reactor designs emerging for flexible plastic and paper electronics.

  9. Atmospheric State, Cloud Microphysics and Radiative Flux

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mace, Gerald

    2008-01-15

    Atmospheric thermodynamics, cloud properties, radiative fluxes and radiative heating rates for the ARM Southern Great Plains (SGP) site. The data represent a characterization of the physical state of the atmospheric column compiled on a five-minute temporal and 90m vertical grid. Sources for this information include raw measurements, cloud property and radiative retrievals, retrievals and derived variables from other third-party sources, and radiative calculations using the derived quantities.

  10. Atmospheric State, Cloud Microphysics and Radiative Flux

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mace, Gerald

    Atmospheric thermodynamics, cloud properties, radiative fluxes and radiative heating rates for the ARM Southern Great Plains (SGP) site. The data represent a characterization of the physical state of the atmospheric column compiled on a five-minute temporal and 90m vertical grid. Sources for this information include raw measurements, cloud property and radiative retrievals, retrievals and derived variables from other third-party sources, and radiative calculations using the derived quantities.

  11. Simulations of Clouds and Sensitivity Study by Weather Research and Forecast Model for Atmospheric Radiation Measurement Case 4

    SciTech Connect (OSTI)

    Wu, J.; Zhang, M.

    2005-03-18

    One of the large errors in general circulation models (GCMs) cloud simulations is from the mid-latitude, synoptic-scale frontal cloud systems. Now, with the availability of the cloud observations from Atmospheric Radiation Measurement (ARM) 2000 cloud Intensive Operational Period (IOP) and other observational datasets, the community is able to document the model biases in comparison with the observations and make progress in development of better cloud schemes in models. Xie et al. (2004) documented the errors in midlatitude frontal cloud simulations for ARM Case 4 by single-column models (SCMs) and cloud resolving models (CRMs). According to them, the errors in the model simulated cloud field might be caused by following reasons: (1) lacking of sub-grid scale variability; (2) lacking of organized mesoscale cyclonic advection of hydrometeors behind a moving cyclone which may play important role to generate the clouds there. Mesoscale model, however, can be used to better under stand these controls on the subgrid variability of clouds. Few studies have focused on applying mesoscale models to the forecasting of cloud properties. Weaver et al. (2004) used a mesoscale model RAMS to study the frontal clouds for ARM Case 4 and documented the dynamical controls on the sub-GCM-grid-scale cloud variability.

  12. Non-hermitian quantum thermodynamics

    DOE PAGES-Beta [OSTI]

    Gardas, Bartłomiej; Deffner, Sebastian; Saxena, Avadh

    2016-03-22

    Thermodynamics is the phenomenological theory of heat and work. Here we analyze to what extent quantum thermodynamic relations are immune to the underlying mathematical formulation of quantum mechanics. As a main result, we show that the Jarzynski equality holds true for all non-hermitian quantum systems with real spectrum. This equality expresses the second law of thermodynamics for isothermal processes arbitrarily far from equilibrium. In the quasistatic limit however, the second law leads to the Carnot bound which is fulfilled even if some eigenenergies are complex provided they appear in conjugate pairs. Lastly, we propose two setups to test our predictions,more » namely with strongly interacting excitons and photons in a semiconductor microcavity and in the non-hermitian tight-binding model.« less

  13. Radiative and thermodynamic responses to aerosol extinction profiles during the pre-monsoon month over South Asia

    DOE PAGES-Beta [OSTI]

    Feng, Y.; Kotamarthi, V. R.; Coulter, R.; Zhao, C.; Cadeddu, M.

    2016-01-18

    Aerosol radiative effects and thermodynamic responses over South Asia are examined with the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) for March 2012. Model results of aerosol optical depths (AODs) and extinction profiles are analyzed and compared to satellite retrievals and two ground-based lidars located in northern India. The WRF-Chem model is found to heavily underestimate the AOD during the simulated pre-monsoon month and about 83 % of the model's low bias is due to aerosol extinctions below  ∼  2 km. Doubling the calculated aerosol extinctions below 850 hPa generates much better agreement with the observed AOD and extinction profiles averaged over Southmore » Asia. To separate the effect of absorption and scattering properties, two runs were conducted: in one run (Case I), the calculated scattering and absorption coefficients were increased proportionally, while in the second run (Case II) only the calculated aerosol scattering coefficient was increased. With the same AOD and extinction profiles, the two runs produce significantly different radiative effects over land and oceans. On the regional mean basis, Case I generates 48 % more heating in the atmosphere and 21 % more dimming at the surface than Case II. Case I also produces stronger cooling responses over the land from the longwave radiation adjustment and boundary layer mixing. These rapid adjustments offset the stronger radiative heating in Case I and lead to an overall lower-troposphere cooling up to −0.7 K day−1, which is smaller than that in Case II. Over the ocean, direct radiative effects dominate the heating rate changes in the lower atmosphere lacking such surface and lower atmosphere adjustments due to fixed sea surface temperature, and the strongest atmospheric warming is obtained in Case I. Consequently, atmospheric dynamics (boundary layer heights and meridional circulation) and thermodynamic processes (water vapor and

  14. Radiative and thermodynamic responses to aerosol extinction profiles during the pre-monsoon month over South Asia

    DOE PAGES-Beta [OSTI]

    Feng, Y.; Kotamarthi, V. R.; Coulter, R.; Zhao, C.; Cadeddu, M.

    2015-06-19

    Aerosol radiative effects and thermodynamic responses over South Asia are examined with a version of the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) for March 2012. Model results of Aerosol Optical Depth (AOD) and extinction profiles are analyzed and compared to satellite retrievals and two ground-based lidars located in the northern India. The WRF-Chem model is found to underestimate the AOD during the simulated pre-monsoon month and about 83 % of the model low-bias is due to aerosol extinctions below ~2 km. Doubling the calculated aerosol extinctions below 850 hPa generates much better agreement with the observed AODmoreand extinction profiles averaged over South Asia. To separate the effect of absorption and scattering properties, two runs were conducted: in one run (Case I), the calculated scattering and absorption coefficients were increased proportionally, while in the second run (Case II) only the calculated aerosol scattering coefficient was increased. With the same AOD and extinction profiles, the two runs produce significantly different radiative effects over land and oceans. On the regional mean basis, Case I generates 48 % more heating in the atmosphere and 21 % more dimming at the surface than Case II. Case I also produces stronger cooling responses over the land from the longwave radiation adjustment and boundary layer mixing. These rapid adjustments offset the stronger radiative heating in Case I and lead to an overall lower-troposphere cooling up to -0.7 K day?1, which is smaller than that in Case II. Over the ocean, direct radiative effects dominate the heating rate changes in the lower atmosphere lacking such surface and lower atmosphere adjustments due to fixed sea surface temperature, and the strongest atmospheric warming is obtained in Case I. Consequently, atmospheric dynamics (boundary layer heights and meridional circulation) and thermodynamic processes (water vapor and cloudiness) are shown to respond

  15. Radiative and thermodynamic responses to aerosol extinction profiles during the pre-monsoon month over South Asia

    DOE PAGES-Beta [OSTI]

    Feng, Y.; Kotamarthi, V. R.; Coulter, R.; Zhao, C.; Cadeddu, M.

    2015-06-19

    Aerosol radiative effects and thermodynamic responses over South Asia are examined with a version of the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) for March 2012. Model results of Aerosol Optical Depth (AOD) and extinction profiles are analyzed and compared to satellite retrievals and two ground-based lidars located in the northern India. The WRF-Chem model is found to underestimate the AOD during the simulated pre-monsoon month and about 83 % of the model low-bias is due to aerosol extinctions below ~2 km. Doubling the calculated aerosol extinctions below 850 hPa generates much better agreement with the observed AODmore » and extinction profiles averaged over South Asia. To separate the effect of absorption and scattering properties, two runs were conducted: in one run (Case I), the calculated scattering and absorption coefficients were increased proportionally, while in the second run (Case II) only the calculated aerosol scattering coefficient was increased. With the same AOD and extinction profiles, the two runs produce significantly different radiative effects over land and oceans. On the regional mean basis, Case I generates 48 % more heating in the atmosphere and 21 % more dimming at the surface than Case II. Case I also produces stronger cooling responses over the land from the longwave radiation adjustment and boundary layer mixing. These rapid adjustments offset the stronger radiative heating in Case I and lead to an overall lower-troposphere cooling up to -0.7 K day−1, which is smaller than that in Case II. Over the ocean, direct radiative effects dominate the heating rate changes in the lower atmosphere lacking such surface and lower atmosphere adjustments due to fixed sea surface temperature, and the strongest atmospheric warming is obtained in Case I. Consequently, atmospheric dynamics (boundary layer heights and meridional circulation) and thermodynamic processes (water vapor and cloudiness) are shown to respond

  16. Radiative and thermodynamic responses to aerosol extinction profiles during the pre-monsoon month over South Asia

    SciTech Connect (OSTI)

    Feng, Y.; Kotamarthi, V. R.; Coulter, R.; Zhao, C.; Cadeddu, M.

    2015-06-19

    Aerosol radiative effects and thermodynamic responses over South Asia are examined with a version of the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) for March 2012. Model results of Aerosol Optical Depth (AOD) and extinction profiles are analyzed and compared to satellite retrievals and two ground-based lidars located in the northern India. The WRF-Chem model is found to underestimate the AOD during the simulated pre-monsoon month and about 83 % of the model low-bias is due to aerosol extinctions below ~2 km. Doubling the calculated aerosol extinctions below 850 hPa generates much better agreement with the observed AOD and extinction profiles averaged over South Asia. To separate the effect of absorption and scattering properties, two runs were conducted: in one run (Case I), the calculated scattering and absorption coefficients were increased proportionally, while in the second run (Case II) only the calculated aerosol scattering coefficient was increased. With the same AOD and extinction profiles, the two runs produce significantly different radiative effects over land and oceans. On the regional mean basis, Case I generates 48 % more heating in the atmosphere and 21 % more dimming at the surface than Case II. Case I also produces stronger cooling responses over the land from the longwave radiation adjustment and boundary layer mixing. These rapid adjustments offset the stronger radiative heating in Case I and lead to an overall lower-troposphere cooling up to -0.7 K day−1, which is smaller than that in Case II. Over the ocean, direct radiative effects dominate the heating rate changes in the lower atmosphere lacking such surface and lower atmosphere adjustments due to fixed sea surface temperature, and the strongest atmospheric warming is obtained in Case I. Consequently, atmospheric dynamics (boundary layer heights and meridional circulation) and thermodynamic processes (water vapor and cloudiness) are shown to respond

  17. Radiative and thermodynamic responses to aerosol extinction profiles during the pre-monsoon month over South Asia

    DOE PAGES-Beta [OSTI]

    Feng, Y.; Kotamarthi, V. R.; Coulter, R.; Zhao, C.; Cadeddu, M.

    2016-01-18

    In this study, aerosol radiative effects and thermodynamic responses over South Asia are examined with the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) for March 2012. Model results of aerosol optical depths (AODs) and extinction profiles are analyzed and compared to satellite retrievals and two ground-based lidars located in northern India. The WRF-Chem model is found to heavily underestimate the AOD during the simulated pre-monsoon month and about 83 % of the model's low bias is due to aerosol extinctions below ~2km. Doubling the calculated aerosol extinctions below 850 hPa generates much better agreement with the observed AOD andmore » extinction profiles averaged over South Asia. To separate the effect of absorption and scattering properties, two runs were conducted: in one run (Case I), the calculated scattering and absorption coefficients were increased proportionally, while in the second run (Case II) only the calculated aerosol scattering coefficient was increased. With the same AOD and extinction profiles, the two runs produce significantly different radiative effects over land and oceans. On the regional mean basis, Case I generates 48 % more heating in the atmosphere and 21 % more dimming at the surface than Case II. Case I also produces stronger cooling responses over the land from the longwave radiation adjustment and boundary layer mixing. These rapid adjustments offset the stronger radiative heating in Case I and lead to an overall lower-troposphere cooling up to –0.7 K day−1, which is smaller than that in Case II. Over the ocean, direct radiative effects dominate the heating rate changes in the lower atmosphere lacking such surface and lower atmosphere adjustments due to fixed sea surface temperature, and the strongest atmospheric warming is obtained in Case I. Consequently, atmospheric dynamics (boundary layer heights and meridional circulation) and thermodynamic processes (water vapor and cloudiness) are

  18. Atmospheric sciences transfer between research advances and energy-policy assessments (ASTRAEA). Final report, 1 April 1996--31 December 1997

    SciTech Connect (OSTI)

    Slinn, W.G.N.

    1997-12-10

    Consistent with the prime goal of the ASTRAEA project, as given in its peer-reviewed proposal, this final report is an informal report to DOE managers about a perceived DOE management problem, specifically, lack of vision in DOE`s Atmospheric Chemistry Program (ACP). After presenting a review of relevant, current literature, the author suggests a framework for conceiving new visions for ACP, namely, multidisciplinary research for energy policy, tackling tough (e.g., nonlinear) problems as a team, ahead of political curves. Two example visions for ACP are then described, called herein the CITIES Project (the Comprehensive Inventory of Trace Inhalants from Energy Sources Project) and the OCEAN Project (the Ocean-Circulation Energy-Aerosol Nonlinearities Project). Finally, the author suggests methods for DOE to provide ACP with needed vision.

  19. Dabasinksas: Thermodynamics and Energy Transfer

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    later. G E F F B D A C Internal Energy (Joules) t t t t t t t t First Law of Thermodynamics: UQ+W for a closed system Q h t i t d W k i t +Q heat input and +W ...

  20. Pacific Northwest Laboratory annual report for 1988 to the DOE Office of Energy Research: Part 3, Atmospheric sciences

    SciTech Connect (OSTI)

    Not Available

    1989-04-01

    Disposal of spent fuel or high level nuclear waste into marine sediments would create high temperature-high gamma radiation environments adjacent to waste canisters. Under these conditions sediments will react producing pore waters that differ significantly from those occurring naturally. These changes may enhance canister corrosion or facilitate transport of radionuclides through unreacted sediments beyond the heated zone. In addition, the term ''near field'' needs clarification, as it is used widely without having a precise meaning. Research in three areas was undertaken to improve our understanding of near field chemical processes. Initially, isothermal experiments were carried out in ''Dickson'' hydrothermal systems. These were followed by an experimental program directed at understanding the chemical effects of temperature-gradient induced transport. Finally, additional experimentation was done to study the combined effects of hydrothermal conditions and intense gamma radiation. Having completed this body of experimental work, it was concluded that near field conditions are not an obstacle to the safe use of abyssal marine sediments for the disposal of spent fuel or high level nuclear wastes. 41 refs., 6 figs., 17 tabs.

  1. ARM - PI Product - Atmospheric State, Cloud Microphysics & Radiative Flux

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ProductsAtmospheric State, Cloud Microphysics & Radiative Flux ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : Atmospheric State, Cloud Microphysics & Radiative Flux [ ARM Principal Investigator (PI) Data Product ] Atmospheric thermodynamics, cloud properties, radiative fluxes and radiative heating rates for the ARM Southern Great Plains (SGP) site. The data represent a characterization of the

  2. Initial Assessment of the Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR)-Based Aerosol Retrieval: Sensitivity Study

    SciTech Connect (OSTI)

    Kassianov, Evgueni I.; Flynn, Connor J.; Redemann, Jens; Schmid, Beat; Russell, P. B.; Sinyuk, Alexander

    2012-10-24

    The Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) being developed for airborne measurements will offer retrievals of aerosol microphysical and optical properties from multi-angular and multi-spectral measurements of sky radiance and direct-beam sun transmittance. In this study, we assess the expected accuracy of the 4STAR-based aerosol retrieval and its sensitivity to major sources of anticipated perturbations in the 4STAR measurements by adapting a theoretical approach previously developed for the AERONET measurements. The major anticipated perturbations are (1) an apparent enhancement of sky radiance at small scattering angles associated with the necessarily compact design of the 4STAR and (2) and an offset (i.e. uncertainty) of sky radiance calibration independent of scattering angle. The assessment is performed through application of the operational AERONET aerosol retrieval and constructed synthetic 4STAR-like data. Particular attention is given to the impact of these perturbations on the upwelling and downwelling broadband fluxes and the direct aerosol radiative forcing at the bottom and top of the atmosphere. The results from this study suggest that limitations in the accuracy of 4STAR-retrieved particle size distributions and scattering phase functions have diminished impact on the accuracy of retrieved bulk microphysical parameters, permitting quite accurate retrievals of properties including the effective radius (up to 10%, or 0.03), and the radiatively important optical properties, such as the asymmetry factor (up to 4%, or 0.02) and single-scattering albedo (up to 6%, or 0.04). Also, the obtained results indicate that the uncertainties in the retrieved aerosol optical properties are quite small in the context of the calculated fluxes and direct aerosol radiative forcing (up to 15%, or 3 Wm-2).

  3. Thermodynamic States in Explosion Fields

    SciTech Connect (OSTI)

    Kuhl, A L

    2010-03-12

    We investigate the thermodynamic states occurring in explosion fields from condensed explosive charges. These states are often modeled with a Jones-Wilkins-Lee (JWL) function. However, the JWL function is not a Fundamental Equation of Thermodynamics, and therefore cannot give a complete specification of such states. We use the Cheetah code of Fried to study the loci of states of the expanded detonation products gases from C-4 charges, and their combustion products air. In the Le Chatelier Plane of specific-internal-energy versus temperature, these loci are fit with a Quadratic Model function u(T), which has been shown to be valid for T < 3,000 K and p < 1k-bar. This model is used to derive a Fundamental Equation u(v,s) for C-4. Given u(v,s), one can use Maxwell's Relations to derive all other thermodynamic functions, such as temperature: T(v,s), pressure: p(v,s), enthalpy: h(v,s), Gibbs free energy: g(v,s) and Helmholz free energy: f(v,s); these loci are displayed in figures for C-4. Such complete equations of state are needed for numerical simulations of blast waves from explosive charges, and their reflections from surfaces.

  4. M4FT-15LL0806062-LLNL Thermodynamic and Sorption Data FY15 Progress Report

    SciTech Connect (OSTI)

    Zavarin, M.; Wolery, T. J.

    2015-08-31

    This progress report (Milestone Number M4FT-15LL0806062) summarizes research conducted at Lawrence Livermore National Laboratory (LLNL) within Work Package Number FT-15LL080606. The focus of this research is the thermodynamic modeling of Engineered Barrier System (EBS) materials and properties and development of thermodynamic databases and models to evaluate the stability of EBS materials and their interactions with fluids at various physicochemical conditions relevant to subsurface repository environments. The development and implementation of equilibrium thermodynamic models are intended to describe chemical and physical processes such as solubility, sorption, and diffusion.

  5. thermodynamics

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ...

  6. DEFRA Global Atmosphere Dept | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Kingdom Zip: SW1E 6DE Product: Atmosphere research department of the UK Department of Food and Rural Affairs. References: DEFRA - Global Atmosphere Dept.1 This article is a...

  7. Thermodynamic Properties of Supported Catalysts

    SciTech Connect (OSTI)

    Gorte, Raymond J.

    2014-03-26

    The goals of this work were to develop Coulometric Titration as a method for characterizing the thermodynamic redox properties of oxides and to apply this technique to the characterization of ceria- and vanadia-based catalysts. The redox properties of ceria and vanadia are a major part of what makes these materials catalytically active but their properties are also dependent on their structure and the presence of other oxides. Quantifying these properties through the measurement of oxidation energetics was the goal of this work.

  8. Thermodynamic Database Population Software (DBCreate) - Energy Innovation

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Portal Geothermal Geothermal Energy Analysis Energy Analysis Find More Like This Return to Search Thermodynamic Database Population Software (DBCreate) DOE Grant Recipients Contact GRANT About This Technology <span id="Caption"><span id="ctl00_MainContentHolder_zoomimage_defaultCaption">Geochemical modeling relies on accurate and up to date thermodynamic databases.</span></span> Geochemical modeling relies on accurate and up to date thermodynamic

  9. Adsorption Thermodynamics and Intrinsic Activation Parameters...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Adsorption Thermodynamics and Intrinsic Activation Parameters for Monomolecular Cracking of n-Alkanes on Bronsted Acid Sites in Zeolites Previous Next List Amber Janda, Bess...

  10. Phase Field model elucidates competing thermodynamic effects...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ... suggest that nanocrystalline metals can be thermodynamically stabilized by the free energy gain associated with the segregation of solute atoms to the grain boundary which ...

  11. Thermodynamic States in Explosion Fields

    SciTech Connect (OSTI)

    Kuhl, A L

    2009-10-16

    Here we investigate the thermodynamic states occurring in explosion fields from the detonation of condensed explosives in air. In typical applications, the pressure of expanded detonation products gases is modeled by a Jones-Wilkins-Lee (JWL) function: P{sub JWL} = f(v,s{sub CJ}); constants in that function are fit to cylinder test data. This function provides a specification of pressure as a function of specific volume, v, along the expansion isentrope (s = constant = s{sub CJ}) starting at the Chapman-Jouguet (CJ) state. However, the JWL function is not a fundamental equation of thermodynamics, and therefore gives an incomplete specification of states. For example, explosions inherently involve shock reflections from surfaces; this changes the entropy of the products, and in such situations the JWL function provides no information on the products states. In addition, most explosives are not oxygen balanced, so if hot detonation products mix with air, they after-burn, releasing the heat of reaction via a turbulent combustion process. This raises the temperature of explosion products cloud to the adiabatic flame temperature ({approx}3,000K). Again, the JWL function provides no information on the combustion products states.

  12. Thermodynamic database for the Co-Pr system

    DOE PAGES-Beta [OSTI]

    Zhou, S. H.; Kramer, M. J.; Meng, F. Q.; McCallum, R. W.; Ott, R. T.

    2016-03-01

    In this article, we describe data on (1) compositions for both as-cast and heat treated specimens were summarized in Table 1; (2) the determined enthalpy of mixing of liquid phase is listed in Table 2; (3) thermodynamic database of the Co-Pr system in TDB format for the research articled entitled ''Chemical partitioning for the Co-Pr system: First-principles, experiments and energetic calculations to investigate the hard magnetic phase W.''

  13. Thermodynamic properties of uranium dioxide

    SciTech Connect (OSTI)

    Fink, J.K.; Chasanov, M.G.; Leibowitz, L.

    1981-04-01

    In order to provide reliable and consistent data on the thermophysical properties of reactor materials for reactor safety studies, this revision is prepared for the thermodynamic properties of the uranium dioxide portion of the fuel property section of the report Properties for LMFBR Safety Analysis. Since the original report was issued in 1976, there has been international agreement on a vapor pressure equation for the total pressure over UO/sub 2/, new methods have been suggested for the calculation of enthalpy and heat capacity, and a phase change at 2670 K has been proposed. In this report, an electronic term is used in place of the Frenkel defect term in the enthalpy and heat capacity equation and the phase transition is accepted.

  14. Retrieving 4-dimensional atmospheric boundary layer structure...

    Office of Scientific and Technical Information (OSTI)

    (BER) (SC-23) Country of Publication: United States Language: English Subject: 54 ENVIRONMENTAL SCIENCES Atmospheric System Research Word Cloud More Like This Full Text preview ...

  15. Thermodynamics Student Guide (6 Activities) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Student Guide (6 Activities) Thermodynamics Student Guide (6 Activities) Information about Thermodynamics, six student activities on energy basics for grades 5-8 and 9-12....

  16. Thermodynamic Guidelines for the Prediction of Hydrogen Storage...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Thermodynamic Guidelines for the Prediction of Hydrogen Storage Reactions and Their Application to Destabillzed Hydride Mixtures Thermodynamic Guidelines for the Prediction of ...

  17. Measurements and non-local thermodynamic equilibrium modeling...

    Office of Scientific and Technical Information (OSTI)

    thermodynamic equilibrium modeling of mid-Z plasma emission Citation Details In-Document Search Title: Measurements and non-local thermodynamic equilibrium modeling of mid-Z ...

  18. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Mlawer, E. J., Atmospheric & Environmental Research, Inc. Turner, D. D., National Oceanic ... Journal Reference: Cady-Pereira, K, M Shephard, E Mlawer, D Turner, S Clough, and T ...

  19. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    PDF Submitter: McComiskey, A. C., National Oceanic and Atmospheric Administration Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Aerosol Life Cycle,...

  20. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Chamber Studies Uncover New Pathways for Atmospheric Aerosol Growth PI Contact: Smith, J., University of California, Irvine Area of Research: Aerosol Processes Working Group(s): ...

  1. Thermodynamic universality of quantum Carnot engines

    DOE PAGES-Beta [OSTI]

    Gardas, Bartłomiej; Deffner, Sebastian

    2015-10-12

    The Carnot statement of the second law of thermodynamics poses an upper limit on the efficiency of all heat engines. Recently, it has been studied whether generic quantum features such as coherence and quantum entanglement could allow for quantum devices with efficiencies larger than the Carnot efficiency. The present study shows that this is not permitted by the laws of thermodynamic —independent of the model. We will show that rather the definition of heat has to be modified to account for the thermodynamic cost of maintaining non-Gibbsian equilibrium states. As a result, our theoretical findings are illustrated for two experimentallymore » relevant examples.« less

  2. Thermodynamic universality of quantum Carnot engines

    SciTech Connect (OSTI)

    Gardas, Bart?omiej; Deffner, Sebastian

    2015-10-12

    The Carnot statement of the second law of thermodynamics poses an upper limit on the efficiency of all heat engines. Recently, it has been studied whether generic quantum features such as coherence and quantum entanglement could allow for quantum devices with efficiencies larger than the Carnot efficiency. The present study shows that this is not permitted by the laws of thermodynamic independent of the model. We will show that rather the definition of heat has to be modified to account for the thermodynamic cost of maintaining non-Gibbsian equilibrium states. As a result, our theoretical findings are illustrated for two experimentally relevant examples.

  3. Theoretical investigation of thermodynamic stability and mobility...

    Office of Scientific and Technical Information (OSTI)

    The thermodynamic stability and the migration energy barriers of oxygen vacancies in ThO2 ... conditions, respectively, while its migration energy barrier is 1.97 eV. The addition ...

  4. Thermodynamic assessment and experimental verification of reactive...

    Office of Scientific and Technical Information (OSTI)

    thermodynamic analysis of etch chemistries for Co, Fe, and Ni using a combination of hydrogen, oxygen, and halogen gases suggested that a single etchant does not work at 300 K;...

  5. Thermodynamics and Transport Phenomena in High Temperature Steam Electrolysis Cells

    SciTech Connect (OSTI)

    James E. O'Brien

    2012-03-01

    Hydrogen can be produced from water splitting with relatively high efficiency using high temperature electrolysis. This technology makes use of solid-oxide cells, running in the electrolysis mode to produce hydrogen from steam, while consuming electricity and high temperature process heat. The overall thermal-to-hydrogen efficiency for high temperature electrolysis can be as high as 50%, which is about double the overall efficiency of conventional low-temperature electrolysis. Current large-scale hydrogen production is based almost exclusively on steam reforming of methane, a method that consumes a precious fossil fuel while emitting carbon dioxide to the atmosphere. An overview of high temperature electrolysis technology will be presented, including basic thermodynamics, experimental methods, heat and mass transfer phenomena, and computational fluid dynamics modeling.

  6. Atmospheric Neutrino Oscillations Professor Takaaki Kajita

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Atiq Warraich About Us Atiq Warraich - Technical Lead/Project Manager Atiq Warraich Most Recent Digital Strategy May

    Research & Development » Atmosphere to Electrons Atmosphere to Electrons Atmosphere to Electrons (A2e) is a multi-year U.S. Department of Energy (DOE) research initiative targeting significant reductions in the cost of wind energy through an improved understanding of the complex physics governing electricity generation by wind plants. The goal of A2e is to ensure future

  7. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Characterization of Atmospheric Aerosols Using MFRSR Measurements Download a printable PDF Submitter: Alexandrov, M. D., Columbia University Area of Research: Aerosol Properties Working Group(s): Aerosol Journal Reference: Alexandrov, MD, AA Lacis, BE Carlson, and B Cairns. 2007. "Characterization of atmospheric aerosols using MFRSR measurements." (Journal of Geophysical Research 113, DO8204. Sample spectral optical depths of atmospheric constituents in 300 - 900 nm spectral range:

  8. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Improving Convection Parameterization Using ARM Observations and NCAR Community Atmosphere Model Download a printable PDF Submitter: Zhang, G., University of California, San Diego Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: Li, G, and GJ Zhang. 2008. "Understanding biases in shortwave cloud radiative forcing in the National Center for Atmospheric Research Community Atmosphere Model (CAM3) during El

  9. THERMODYNAMIC TABLES FOR NUCLEAR WASTE ISOLATION, V.1: AQUEOUSSOLUTIONS DATABASE

    SciTech Connect (OSTI)

    Phillips, S.L.; Hale, F.V.; Silvester, L.F.

    1988-05-01

    Tables of consistent thermodynamic property values for nuclear waste isolation are given. The tables include critically assessed values for Gibbs energy of formation. enthalpy of formation, entropy and heat capacity for minerals; solids; aqueous ions; ion pairs and complex ions of selected actinide and fission decay products at 25{sup o}C and zero ionic strength. These intrinsic data are used to calculate equilibrium constants and standard potentials which are compared with typical experimental measurements and other work. Recommendations for additional research are given.

  10. ARM - PI Product - AERIoe Thermodynamic Profile and Cloud Retrieval for

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    MC3E Garber X-band site (I5) Garber X-band site (I5) ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : AERIoe Thermodynamic Profile and Cloud Retrieval for MC3E Garber X-band site (I5) [ ARM research ] The AERIoe algorithm retrieves profiles of temperature and water vapor mixing ratio, together with cloud properties for a single-layer cloud (i.e., LWP, effective radius), from AERI-observed infrared

  11. ARM - PI Product - AERIoe Thermodynamic Profile and Cloud Retrieval for

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    MC3E Lamont X-band site (I6) Lamont X-band site (I6) ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : AERIoe Thermodynamic Profile and Cloud Retrieval for MC3E Lamont X-band site (I6) [ ARM research ] The AERIoe algorithm retrieves profiles of temperature and water vapor mixing ratio, together with cloud properties for a single-layer cloud (i.e., LWP, effective radius), from AERI-observed infrared

  12. Atmospheric science and power production

    SciTech Connect (OSTI)

    Randerson, D.

    1984-07-01

    This is the third in a series of scientific publications sponsored by the US Atomic Energy Commission and the two later organizations, the US Energy Research and Development Adminstration, and the US Department of Energy. The first book, Meteorology and Atomic Energy, was published in 1955; the second, in 1968. The present volume is designed to update and to expand upon many of the important concepts presented previously. However, the present edition draws heavily on recent contributions made by atmospheric science to the analysis of air quality and on results originating from research conducted and completed in the 1970s. Special emphasis is placed on how atmospheric science can contribute to solving problems relating to the fate of combustion products released into the atmosphere. The framework of this book is built around the concept of air-quality modeling. Fundamentals are addressed first to equip the reader with basic background information and to focus on available meteorological instrumentation and to emphasize the importance of data management procedures. Atmospheric physics and field experiments are described in detail to provide an overview of atmospheric boundary layer processes, of how air flows around obstacles, and of the mechanism of plume rise. Atmospheric chemistry and removal processes are also detailed to provide fundamental knowledge on how gases and particulate matter can be transformed while in the atmosphere and how they can be removed from the atmosphere. The book closes with a review of how air-quality models are being applied to solve a wide variety of problems. Separate analytics have been prepared for each chapter.

  13. Research

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Research Research Isotopes produced at Los Alamos National Laboratory are saving lives, advancing cutting-edge research and keeping the U.S. safe. Research thorium test foil A thorium test foil target for proof-of-concept actinium-225 production In addition to our routine isotope products, the LANL Isotope Program is focused on developing the next suite of isotopes and services to meet the Nation's emerging needs. The LANL Isotope Program's R&D strategy is focused on four main areas (see

  14. Local thermodynamics of a magnetized, anisotropic plasma

    SciTech Connect (OSTI)

    Hazeltine, R. D.; Mahajan, S. M.; Morrison, P. J.

    2013-02-15

    An expression for the internal energy of a fluid element in a weakly coupled, magnetized, anisotropic plasma is derived from first principles. The result is a function of entropy, particle density and magnetic field, and as such plays the role of a thermodynamic potential: it determines in principle all thermodynamic properties of the fluid element. In particular it provides equations of state for the magnetized plasma. The derivation uses familiar fluid equations, a few elements of kinetic theory, the MHD version of Faraday's law, and certain familiar stability and regularity conditions.

  15. Quantum stochastic thermodynamic on harmonic networks

    DOE PAGES-Beta [OSTI]

    Deffner, Sebastian

    2016-01-04

    Fluctuation theorems are symmetry relations for the probability to observe an amount of entropy production in a finite-time process. In a recent paper Pigeon et al (2016 New. J. Phys. 18 013009) derived fluctuation theorems for harmonic networks by means of the large deviation theory. Furthermore, their novel approach is illustrated with various examples of experimentally relevant systems. As a main result, however, Pigeon et al provide new insight how to consistently formulate quantum stochastic thermodynamics, and provide new and robust tools for the study of the thermodynamics of quantum harmonic networks.

  16. Atmosphere to Electrons | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Atmosphere to Electrons Atmosphere to Electrons Addthis Description Atmosphere to Electrons (A2e) is a multi-year U.S. Department of Energy (DOE) research initiative targeting significant reductions in the cost of wind energy through an improved understanding of the complex physics governing electricity generation by wind plants. The goal of A2e is to ensure future wind plants are sited, built, and operated in a way that produces the most cost-effective, usable electric power. Text Version

  17. Research

    SciTech Connect (OSTI)

    1999-10-01

    Subjects covered in this section are: (1) PCAST panel promotes energy research cooperation; (2) Letter issued by ANS urges funding balance in FFTF restart consideration and (3) FESAC panel releases report on priorities and balance.

  18. Research

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    The LANL Isotope Program's R&D strategy is focused on four main areas (see article list below for recent efforts in these areas): Medical Applications are a key focus for research ...

  19. ARM Climate Research Facility

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    DOESC-ARM-15-020 ARM Climate Research Facility Quarterly Ingest Report Second Quarter: ... maintained by the Atmospheric Radiation Measurement (ARM) Climate Research Facility. ...

  20. Thermodynamics Teacher and Student Guides (6 Activities)

    Office of Energy Efficiency and Renewable Energy (EERE)

    This is a hands-on laboratory unit exploring the concepts of heat and movement. Teachers set up six laboratory stations that will introduce students to the basic concepts of thermodynamics, including atomic structure, atomic and molecular motion, states of matter, heat transfer, thermal expansion, specific heat, and heats of fusion and vaporization. It also includes a unit exam and teacher demonstrations.

  1. Atmospheric Radiation Measurement (ARM) Data from Niamey, Niger for the

    Office of Scientific and Technical Information (OSTI)

    Radiative Atmospheric Divergence using AMF, GERB and AMMA Stations (RADAGAST) () | Data Explorer Niamey, Niger for the Radiative Atmospheric Divergence using AMF, GERB and AMMA Stations (RADAGAST) Title: Atmospheric Radiation Measurement (ARM) Data from Niamey, Niger for the Radiative Atmospheric Divergence using AMF, GERB and AMMA Stations (RADAGAST) The Atmospheric Radiation Measurement (ARM) Program is the largest global change research program supported by the U.S. Department of Energy.

  2. Atmosphere to Electrons Program Overview Presentation | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Atmosphere to Electrons Program Overview Presentation Atmosphere to Electrons Program Overview Presentation Atmosphere to Electrons (A2e) is a new, multi-year, multi-stakeholder DOE research and development initiative tasked with improving wind plant performance and mitigating risk and uncertainty to achieve substantial reductions in the cost of wind energy. Atmosphere to Electrons Overview.pdf (762.31 KB) More Documents & Publications External Merit Review for the Atmosphere to

  3. Microwave-induced thermoacoustic effect in dielectrics and its coupling to external medium-A thermodynamical formulation

    SciTech Connect (OSTI)

    Guo, T.C.; Guo, W.W.; Larsen, L.E.

    1984-08-01

    A thorough formulation of electromagnetic wave interaction with biological systems is presented. The thermodynamic process of the microwave-induced thermoacoustic generation is clearly defined. Couplings of the acoustic and thermal energies to the surrounding medium are included through consideration of discontinuities of thermodynamical variables and microwave exposure. Contrary to prior analyses, it is shown that acoustic waves may be generated by pulsed microwaves, even in the absence of inhomogeneity of microwave absorption, owing to discontinuities of thermodynamical variables and microwave exposure conditions across the interface. General equations for the thermoacoustic waves are derived, and the validity of the first-order linear approximation is estimated in terms of its percentage error. For a system with water as the absorbing dielectric interfacing with air of 1 atmosphere pressure, the first-order approximation becomes invalid for a peak specific absorption rate greater than 13 kW/gm.

  4. Compound hybrid geothermal-fossil power plants: thermodynamic...

    Office of Scientific and Technical Information (OSTI)

    SUPERHEATING; THERMODYNAMICS; WELL TEMPERATURE; WELLHEADS; WESTERN REGION; HEATING; HYDROGEN COMPOUNDS; NORTH AMERICA; OXYGEN COMPOUNDS; POWER PLANTS; RESERVOIR TEMPERATURE;...

  5. Thermodynamics and Kinetics of Advanced Separations Systems FY 2010 Summary Report

    SciTech Connect (OSTI)

    Leigh R. Martin; Peter R. Zalupski

    2010-09-01

    This report presents a summary of the work performed in the area of thermodynamics and kinetics of advanced separations systems under the Fuel Cycle Research and Development (FCR&D) program during FY 2010. Thermodynamic investigations into metal extraction dependencies on lactate and HDEHP have been performed. These metal distribution studies indicate a substantial deviation from the expected behavior at conditions that are typical of TALSPEAK process operational platform. These studies also identify that no thermodynamically stable mixed complexes exist in the aqueous solutions and increasing the complexity of the organic medium appears to influence the observed deviations. Following on from this, the first calorimetric measurement of the heat of extraction of americium across a liquid-liquid boundary was performed.

  6. Thermodynamics of Hydrogen Production from Dimethyl Ether Steam Reforming and Hydrolysis

    SciTech Connect (OSTI)

    T.A. Semelsberger

    2004-10-01

    The thermodynamic analyses of producing a hydrogen-rich fuel-cell feed from the process of dimethyl ether (DME) steam reforming were investigated as a function of steam-to-carbon ratio (0-4), temperature (100 C-600 C), pressure (1-5 atm), and product species: acetylene, ethanol, methanol, ethylene, methyl-ethyl ether, formaldehyde, formic acid, acetone, n-propanol, ethane and isopropyl alcohol. Results of the thermodynamic processing of dimethyl ether with steam indicate the complete conversion of dimethyl ether to hydrogen, carbon monoxide and carbon dioxide for temperatures greater than 200 C and steam-to-carbon ratios greater than 1.25 at atmospheric pressure (P = 1 atm). Increasing the operating pressure was observed to shift the equilibrium toward the reactants; increasing the pressure from 1 atm to 5 atm decreased the conversion of dimethyl ether from 99.5% to 76.2%. The order of thermodynamically stable products in decreasing mole fraction was methane, ethane, isopropyl alcohol, acetone, n-propanol, ethylene, ethanol, methyl-ethyl ether and methanol--formaldehyde, formic acid, and acetylene were not observed. The optimal processing conditions for dimethyl ether steam reforming occurred at a steam-to-carbon ratio of 1.5, a pressure of 1 atm, and a temperature of 200 C. Modeling the thermodynamics of dimethyl ether hydrolysis (with methanol as the only product considered), the equilibrium conversion of dimethyl ether is limited. The equilibrium conversion was observed to increase with temperature and steam-to-carbon ratio, resulting in a maximum dimethyl ether conversion of approximately 68% at a steam-to-carbon ratio of 4.5 and a processing temperature of 600 C. Thermodynamically, dimethyl ether processed with steam can produce hydrogen-rich fuel-cell feeds--with hydrogen concentrations exceeding 70%. This substantiates dimethyl ether as a viable source of hydrogen for PEM fuel cells.

  7. Atmosphere to Electrons | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Atmosphere to Electrons Atmosphere to Electrons Atmosphere to Electrons (A2e) is a multi-year U.S. Department of Energy (DOE) research initiative targeting significant reductions in the cost of wind energy through an improved understanding of the complex physics governing electricity generation by wind plants. The goal of A2e is to ensure future wind plants are sited, built, and operated in a way that produces the most cost-effective, usable electric power. Atmosphere to Electrons (A2e) is a

  8. Research

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Research CORE-SHELL NANOPARTICLES AND NANOSTRUCTURED MESOPOROUS MATERIALS(NMMs) Nanomaterials need no special introduction as interest in them sparked exponential growth in the past couple of decades, not only in scientific laboratories but also in industries around the world. In addition to size and shape effects, newer designs of nanostructures have also begun gaining prominence providing a new opportunity to tailor the properties of nanomaterials and investigate their fundamental behavior as

  9. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Marine Stratocumulus Clouds: Turbulence-Raidation-Thermodynamics Coupling Download a printable PDF Submitter: Ghate, V. P., Argonne National Laboratory Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: Ghate VP, BA Albrecht, MA Miller, A Brewer, and CW Fairall. 2014. "Turbulence and radiation in stratocumulus-topped marine boundary layers: A case study from VOCALS-REx." Journal of Applied Meteorology and Climatology, 53, 117-135. Figure 1.

  10. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Effects of Sea Spray on the Thermodynamics of the Hurricane Boundary Layer Download a printable PDF Submitter: Khain, A., The Hebrew University of Jerusalem Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Shpund J, JA Zhang, M Pinksy, and A Khain. 2014. "Microphysical structure of the marine boundary layer under strong wind and sea spray formation as seen from a 2D explicit microphysical model. Part

  11. ARM - Atmospheric Heat Budget

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    The Atmospheric Heat Budget shows where the atmospheric heat energy comes from and where it goes. Practically all this energy ultimately comes from the sun in the form of the ...

  12. Atmospheric Radiation Measurement Program

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    3 ARM 2003 Tom Ackerman Chief Scientist Tom Ackerman Chief Scientist ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement WARNING! WARNING! Today is April 1 But that has NO bearing on this message Today is April 1 But that has NO bearing on this message ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement Two Topics Two Topics * Status of ARM (quick overview) * Science plan - ARM in the next 5 years * Status of ARM (quick overview) * Science plan -

  13. Thermodynamics of metal-organic frameworks

    SciTech Connect (OSTI)

    Wu, Di; Navrotsky, Alexandra

    2015-03-15

    Although there have been extensive studies over the past decade in the synthesis and application of metal-organic frameworks (MOFs), investigation of their thermodynamic stability and of the energetics of guest–host interactions has been much more limited. This review summarizes recent progress in experimental (calorimetric) determination of the thermodynamics of MOF materials. The enthalpies of MOFs relative to dense phase assemblages suggest only modest metastability, with a general increase of enthalpy with increasing molar volume, which becomes less pronounced at higher porosity. The energy landscape of nanoporous materials (inorganic and hybrid) consists of a pair of parallel patterns within a fairly narrow range of metastability of 5–30 kJ per mole of tetrahedra in zeolites and mesoporous silicas or per mole of metal in MOFs. Thus strong thermodynamic instability does not seem to limit framework formation. There are strong interactions within the chemisorption range for small molecule–MOF interactions with defined chemical binding at the metal centers or other specific locations. Coexistence of surface binding and confinement can lead to much stronger guest–host interactions. - Graphical abstract: Energy landscape of inorganic and hybrid porous materials. - Highlights: • Thermochemical data on various MOF structures were experimentally determined. • MOFs are moderately unstable relative to their dense phase assemblage. • Overall energetic landscape of porous materials was revealed. • Guest–host interactions in MOFs were evaluated directly using calorimetry. • Confinement effect and defined chemical binding lead to strong interactions.

  14. Thermodynamics of Sultana-Dyer black hole

    SciTech Connect (OSTI)

    Majhi, Bibhas Ranjan

    2014-05-01

    The thermodynamical entities on the dynamical horizon are not naturally defined like the usual static cases. Here I find the temperature, Smarr formula and the first law of thermodynamics for the Sultana-Dyer metric which is related to the Schwarzschild spacetime by a time dependent conformal factor. To find the temperature (T), the chiral anomaly expressions for the two dimensional spacetime are used. This shows an application of the anomaly method to study Hawking effect for a dynamical situation. Moreover, the analysis singles out one expression for temperature among two existing expressions in the literature. Interestingly, the present form satisfies the first law of thermodynamics. Also, it relates the Misner-Sharp energy (Ē) and the horizon entropy ( S-bar ) by an algebraic expression Ē = 2 S-bar T which is the general form of the Smarr formula. This fact is similar to the usual static black hole cases in Einstein's gravity where the energy is identified as the Komar conserved quantity.

  15. Standard Model thermodynamics across the electroweak crossover

    SciTech Connect (OSTI)

    Laine, M.; Meyer, M.

    2015-07-22

    Even though the Standard Model with a Higgs mass m{sub \\tiny H}=125 GeV possesses no bulk phase transition, its thermodynamics still experiences a “soft point” at temperatures around T=160 GeV, with a deviation from ideal gas thermodynamics. Such a deviation may have an effect on precision computations of weakly interacting dark matter relic abundances if their mass is in the few TeV range, or on leptogenesis scenarios operating in this temperature range. By making use of results from lattice simulations based on a dimensionally reduced effective field theory, we estimate the relevant thermodynamic functions across the crossover. The results are tabulated in a numerical form permitting for their insertion as a background equation of state into cosmological particle production/decoupling codes. We find that Higgs dynamics induces a non-trivial “structure” visible e.g. in the heat capacity, but that in general the largest radiative corrections originate from QCD effects, reducing the energy density by a couple of percent from the free value even at T>160 GeV.

  16. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Adoption of RRTMG in the NCAR CAM5 and CESM1 Global Climate Models Download a printable PDF Submitter: Iacono, M. J., Atmospheric & Environmental Research, Inc. Collins, W. D., Lawrence Berkeley National Laboratory Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: N/A Figure 1. Shortwave cloud forcing for three versions of the NCAR Community Atmosphere Model (CAM) with CERES

  17. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Improving Water Vapor Continuum Absorption and Its Impact on a GCM Simulation Download a printable PDF Submitter: Turner, D. D., National Oceanic and Atmospheric Administration Mlawer, E. J., Atmospheric & Environmental Research, Inc. Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: Turner DD, A Merrelli, D Vimont, and EJ Mlawer. 2012. "Impact of modifying the longwave water vapor continuum absorption model on community Earth system model

  18. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    First Ground-Based Spectral Observations of the Entire Infrared Band Download a printable PDF Submitter: Turner, D. D., National Oceanic and Atmospheric Administration Mlawer, E. J., Atmospheric & Environmental Research, Inc. Area of Research: Radiation Processes Working Group(s): Aerosol Life Cycle, Cloud Life Cycle Journal Reference: Turner DD, EJ Mlawer, G Bianchini, MP Cadeddu, S Crewell, JS Delamere, RO Knuteson, G Maschwitz, M Mlynzcak, S Paine, L Palchetti, and DC Tobin. 2012.

  19. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Pollution + Storm Clouds = Warmer Atmosphere Download a printable PDF Submitter: Fan, J., Pacific Northwest National Laboratory Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Fan J, D Rosenfeld, Y Ding, L Leung, and Z Li. 2012. "Potential aerosol indirect effects on atmospheric circulation and radiative forcing through deep convection." Geophysical Research Letters, 39, L09806,

  20. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Lord of the Wings: Elevated Particles a Rising Star Download a printable PDF Submitter: Kassianov, E., Pacific Northwest National Laboratory Area of Research: Radiation Processes Working Group(s): Aerosol Life Cycle Journal Reference: Kassianov E, C Flynn, J Redemann, B Schmid, PB Russell, and A Sinyuk. 2012. "Initial assessment of the Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR)-based aerosol retrieval: Sensitivity study." Atmosphere, 3,

  1. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Quantifying the Magnitude of Anomalous Solar Absorption Submitter: Ackerman, T. P., University of Washington Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: N/A Figure 1 Figure 1 Spurred by a series of articles published in 1995 claiming solar absorption in cloudy atmospheres far exceeded model predictions, Atmospheric Radiation Measurement (ARM) Program researchers at the Southern Great Plains (SGP) site in

  2. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Downward Longwave Irradiance Uncertainty Under Arctic Atmospheres: Measurements and Modeling Submitter: Marty, C., Swiss Federal Institute of Snow and Avalanche Research Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: Marty, C., R. Philipona, J. Delamere, E.G. Dutton, J. Michalsky, K. Stamnes, R. Storvold, T. Stoffel, S.A. Clough, and E.J. Mlawr, Downward longwave irradiance uncertainty under arctic atmospheres: Measurements and modeling, J.

  3. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Field Campaign Resource Allocation Using Statistical Decision Analysis Download a printable PDF Submitter: Hanlon, C., Pennsylvania State University Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Hanlon CJ, JB Stefik, AA Small, J Verlinde, and GS Young. 2013. "Statistical decision analysis for flight decision support: The SPartICus campaign." Journal of Geophysical Research - Atmospheres, 118(10), 10.1002/jgrd.50237. In many atmospheric science

  4. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Observational Analysis of Land-Atmosphere Coupling for Climate Model Evaluation Download a printable PDF Submitter: Phillips, T. J., Lawrence Livermore National Laboratory Klein, S., Lawrence Livermore National Laboratory Area of Research: Surface Properties Working Group(s): Cloud Life Cycle Journal Reference: Phillips TJ and SA Klein. 2014. "Land-atmosphere coupling manifested in warm-season observations on the U.S. southern great plains." Journal of Geophysical Research -

  5. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Ice Particle Projected Area- and Mass-Dimension Expressions for Cirrus Clouds Download a printable PDF Submitter: Mitchell, D. L., Desert Research Institute Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Erfani E and DL Mitchell. 2015. "Developing and bounding ice particle mass- and area-dimension expressions for use in atmospheric models and remote sensing." Atmospheric Chemistry and Physics, 15(20),

  6. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Comparison of Ground-Based Millimeter-Wave Observations During RHUBC I Submitter: Cimini, D., CETEMPS - Dipartimento di Fisica Westwater, E. R., University of Colorado Payne, V., Jet Propulsion Laboratory/California Institute of Technology Turner, D. D., National Oceanic and Atmospheric Administration Mlawer, E. J., Atmospheric & Environmental Research, Inc. Exner, M., Radiometrics Corporation Cadeddu, M. P., Argonne National Laboratory Area of Research: Radiation Processes Working Group(s):

  7. Local equilibrium and the second law of thermodynamics for irreversible systems with thermodynamic inertia

    SciTech Connect (OSTI)

    Glavatskiy, K. S.

    2015-10-28

    Validity of local equilibrium has been questioned for non-equilibrium systems which are characterized by delayed response. In particular, for systems with non-zero thermodynamic inertia, the assumption of local equilibrium leads to negative values of the entropy production, which is in contradiction with the second law of thermodynamics. In this paper, we address this question by suggesting a variational formulation of irreversible evolution of a system with non-zero thermodynamic inertia. We introduce the Lagrangian, which depends on the properties of the normal and the so-called “mirror-image” systems. We show that the standard evolution equations, in particular, the Maxwell-Cattaneo-Vernotte equation, can be derived from the variational procedure without going beyond the assumption of local equilibrium. We also argue that the second law of thermodynamics in non-equilibrium should be understood as a consequence of the variational procedure and the property of local equilibrium. For systems with instantaneous response this leads to the standard requirement of the local instantaneous entropy production being always positive. However, if a system is characterized by delayed response, the formulation of the second law of thermodynamics should be altered. In particular, the quantity, which is always positive, is not the instantaneous entropy production, but the entropy production averaged over a proper time interval.

  8. Atmospheric Radiation Measurement (ARM) Data from the Southern...

    Office of Scientific and Technical Information (OSTI)

    The Atmospheric Radiation Measurement (ARM) Program is the largest global change research ... reflect conditions over the typical distribution of land uses within the site. ...

  9. Search for: "atmospheric radiation measurement" | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... radiation (237) climate models (206) radar reflectivity (194) aerosols (188) climatic change (168) research programs (157) vertical velocity (155) atmospheric chemistry (146) ...

  10. Thermodynamic Prediction of Compositional Phases Confirmed by Transmission Electron Microscopy on Tantalum-Based Alloy Weldments

    SciTech Connect (OSTI)

    Moddeman, William E.; Birkbeck, Janine C.; Barklay, Chadwick D.; Kramer, Daniel P.; Miller, Roger G.; Allard, Lawrence F.

    2007-01-30

    Tantalum alloys have been used by the U.S. Department of Energy as structural alloys for radioisotope based thermal to electrical power systems since the 1960s. Tantalum alloys are attractive for high temperature structural applications due to their high melting point, excellent formability, good thermal conductivity, good ductility (even at low temperatures), corrosion resistance, and weldability. Tantalum alloys have demonstrated sufficient high-temperature toughness to survive prolonged exposure to the radioisotope power-system working environment. Typically, the fabrication of power systems requires the welding of various components including the structural members made of tantalum alloys. Issues such as thermodynamics, lattice structure, weld pool dynamics, material purity and contamination, and welding atmosphere purity all potentially confound the understanding of the differences between the weldment properties of the different tantalum-based alloys. The objective of this paper is to outline the thermodynamically favorable material phases in tantalum alloys, with and without small amounts of hafnium, during and following solidification, based on the results derived from the FactSage(c) Integrated Thermodynamic Databank. In addition, Transition Electron Microscopy (TEM) data will show for the first time, the changes occurring in the HfC before and after welding, and the data will elucidate the role HfC plays in pinning grain boundaries.

  11. Far-from-equilibrium measurements of thermodynamic length

    SciTech Connect (OSTI)

    Feng, Edward H.; Crooks, Gavin E.

    2008-11-05

    Thermodynamic length is a path function that generalizes the notion of length to the surface of thermodynamic states. Here, we show how to measure thermodynamic length in far-from-equilibrium experiments using the work fluctuation relations. For these microscopic systems, it proves necessary to define the thermodynamic length in terms of the Fisher information. Consequently, the thermodynamic length can be directly related to the magnitude of fluctuations about equilibrium. The work fluctuation relations link the work and the free energy change during an external perturbation on a system. We use this result to determine equilibrium averages at intermediate points of the protocol in which the system is out-of-equilibrium. This allows us to extend Bennett's method to determine the potential of mean force, as well as the thermodynamic length, in single molecule experiments.

  12. Atmospheric tracer technology and applications

    SciTech Connect (OSTI)

    Heiken, J.H.

    1986-01-01

    This book presents information on atmospheric tracer technology and applications. It summarizes the state of the art, provides information exchange for members of the atmospheric community, defines areas for future applications of tracers, and identifies requirements for tracer techniques. A major objective of research in atmospheric science over the past several decades has been to obtain an enhanced description of transport, transformation, and deposition of trace constituents present in the atmosphere. Interest in these processes has been hightened with the recognition that pollutant materials transported over long distances may exert significant effects at receptor locations, and the consequent desire to improve knowledge of source-receptor relationships. There is a wide range of practical applications for tracer experiments. In many cases the tracer allows 1) the documentation of a potential airborne hazard without actually emitting hazardous material or 2) the evaluation of the expected outcome of an expensive process alteration. Some examples of the former case are testing of rocket fuels, developing chemical defense strategies, establishing safety procedures for possible accidents in the handling and transportation of hazardous materials, and assessing the fire and explosion hazards present in handling special materials such as liquified natural gas. The practical use of tracers for economic benefit includes designing emissions systems, for both air quality control and dissemination systems such as in forest and crop spraying or cloud seeding, and siting of industrial facilities. Other applications include source attribution, which is currently of interest in the acid rain problem.

  13. Atmosphere to Electrons: Enabling the Wind Plant of Tomorrow | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Atmosphere to Electrons: Enabling the Wind Plant of Tomorrow Atmosphere to Electrons: Enabling the Wind Plant of Tomorrow a2e-fact-sheet-cover-thumbnail.jpg The U.S. Department of Energy's (DOE's) Atmosphere to Electrons (A2e) research initiative is focused on improving the performance and reliability of wind plants by establishing an unprecedented understanding of how the Earth's atmosphere interacts with the wind plants and developing innovative technologies to maximize energy

  14. Overview of the United States Department of Energy's ARM (Atmospheric

    Office of Scientific and Technical Information (OSTI)

    Radiation Measurement) Program (Conference) | SciTech Connect Conference: Overview of the United States Department of Energy's ARM (Atmospheric Radiation Measurement) Program Citation Details In-Document Search Title: Overview of the United States Department of Energy's ARM (Atmospheric Radiation Measurement) Program The Department of Energy (DOE) is initiating a major atmospheric research effort, the Atmospheric Radiation Measurement Program (ARM). The program is a key component of DOE's

  15. Charter for the ARM Atmospheric Modeling Advisory Group (Program Document)

    Office of Scientific and Technical Information (OSTI)

    | SciTech Connect Program Document: Charter for the ARM Atmospheric Modeling Advisory Group Citation Details In-Document Search Title: Charter for the ARM Atmospheric Modeling Advisory Group The Atmospheric Modeling Advisory Group of the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility is guided by the following: 1. The group will provide feedback on the overall project plan including input on how to address priorities and trade-offs in the

  16. A Revolutionary Hybrid Thermodynamic Cycle for Bianary Geothermal Power |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy A Revolutionary Hybrid Thermodynamic Cycle for Bianary Geothermal Power A Revolutionary Hybrid Thermodynamic Cycle for Bianary Geothermal Power A Revolutionary Hybrid Thermodynamic Cycle for Bianary Geothermal Power presentation at the April 2013 peer review meeting held in Denver, Colorado. hybrid_therm_cycle_peer2013.pdf (571.03 KB) More Documents & Publications Working Fluids and Their Effect on Geothermal Turbines Tailored Working Fluids for Enhanced Binary

  17. Thermodynamic Evaluation of Low-Global Warming Potential Refrigerants -

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    2013 Peer Review | Department of Energy Thermodynamic Evaluation of Low-Global Warming Potential Refrigerants - 2013 Peer Review Thermodynamic Evaluation of Low-Global Warming Potential Refrigerants - 2013 Peer Review Emerging Technologies Project for the 2013 Building Technologies Office's Program Peer Review emrgtech13_mclinden_040213.pdf (2.18 MB) More Documents & Publications Credit: National Institute of Standards Thermodynamic Evaluation of Low-Global Warming Potential Refrigerants

  18. Thermodynamic Guidelines for the Prediction of Hydrogen Storage Reactions

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    and Their Application to Destabillzed Hydride Mixtures | Department of Energy Thermodynamic Guidelines for the Prediction of Hydrogen Storage Reactions and Their Application to Destabillzed Hydride Mixtures Thermodynamic Guidelines for the Prediction of Hydrogen Storage Reactions and Their Application to Destabillzed Hydride Mixtures A presentation demonstrating the development of a set of thermodynamic guidelines aimed at facilitating more-robust screening of candidate storage reactions.

  19. Thermodynamic Data for Geochemical Modeling of Carbonate Reactions Associated with CO2 Sequestration – Literature Review

    SciTech Connect (OSTI)

    Krupka, Kenneth M.; Cantrell, Kirk J.; McGrail, B. Peter

    2010-09-01

    Permanent storage of anthropogenic CO2 in deep geologic formations is being considered as a means to reduce the concentration of atmospheric CO2 and thus its contribution to global climate change. To ensure safe and effective geologic sequestration, numerous studies have been completed of the extent to which the CO2 migrates within geologic formations and what physical and geochemical changes occur in these formations when CO2 is injected. Sophisticated, computerized reservoir simulations are used as part of field site and laboratory CO2 sequestration studies. These simulations use coupled multiphase flow-reactive chemical transport models and/or standalone (i.e., no coupled fluid transport) geochemical models to calculate gas solubility, aqueous complexation, reduction/oxidation (redox), and/or mineral solubility reactions related to CO2 injection and sequestration. Thermodynamic data are critical inputs to modeling geochemical processes. The adequacy of thermodynamic data for carbonate compounds has been identified as an important data requirement for the successful application of these geochemical reaction models to CO2 sequestration. A review of thermodynamic data for CO2 gas and carbonate aqueous species and minerals present in published data compilations and databases used in geochemical reaction models was therefore completed. Published studies that describe mineralogical analyses from CO2 sequestration field and natural analogue sites and laboratory studies were also reviewed to identify specific carbonate minerals that are important to CO2 sequestration reactions and therefore require thermodynamic data. The results of the literature review indicated that an extensive thermodynamic database exists for CO2 and CH4 gases, carbonate aqueous species, and carbonate minerals. Values of ΔfG298° and/or log Kr,298° are available for essentially all of these compounds. However, log Kr,T° or heat capacity values at temperatures above 298 K exist for less than

  20. ARM - Measurement - Atmospheric pressure

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    pressure ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Atmospheric pressure The pressure exerted by the atmosphere as a consequence of gravitational attraction exerted upon the "column" of air lying directly above the point in question. Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream

  1. Precision Plutonium Thermodynamics (Technical Report) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Language: English Subject: 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; 36 MATERIALS SCIENCE Plutonium, ultrasound, thermodynamics ...

  2. Thermodynamic Complexity of Carbon Capture in Alkylamine-Functionalize...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Thermodynamic Complexity of Carbon Capture in Alkylamine-Functionalized Metal-Organic ... of CO2 on an alkylamine-appended MOF, mmen-Mg2(dobpdc) employing gas ...

  3. Thermodynamic Guidelines for the Prediction of Hydrogen Storage...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Thermodynamic guidelines for the prediction of hydrogen storage reactions and their application to destabilized hydride mixtures Hydrogen Storage & Nanoscale Modeling Group Ford ...

  4. Thermodynamic Systems for Tier 2 Bin 2 Diesel Engines | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Thermodynamic Systems for Tier 2 Bin 2 Diesel Engines Discusses engine technology enablers that help achieve overall system integration effectively PDF icon deer12suresh.pdf More ...

  5. Using ARM TWP Nauru Observations to Evaluate a Simple Thermodynamic...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Using ARM TWP Nauru Observations to Evaluate a Simple Thermodynamic Model of the Subcloud Layer Under Fair-Weather Cumulus Conditions Albrecht, Bruce University of Miami Kollias, ...

  6. Thermodynamics of Iodide Adsorption at the Instantaneous Air...

    Office of Scientific and Technical Information (OSTI)

    proposed recently by Willard and Chandler.citechandler1 Referring structural and thermodynamic quantities to the instantaneous interface unmasks molecular-scale details that are...

  7. Thermodynamic Investigations of Lithium- and Manganese-Rich Transition...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Thermodynamic Investigations of Lithium- and Manganese-Rich Transition Metal Oxides 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review ...

  8. Finite-Temperature Hydrogen Adsorption and Desorption Thermodynamics...

    Office of Scientific and Technical Information (OSTI)

    Finite-Temperature Hydrogen Adsorption and Desorption Thermodynamics Driven by Soft Vibration Modes Citation Details In-Document Search Title: Finite-Temperature Hydrogen ...

  9. Precision Plutonium Thermodynamics (Technical Report) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    This presentation discusses some of the fundamental characteristics of a solid and how they can be used to observe thermodynamic changes. Authors: Migliori, Albert 1 + Show ...

  10. Thermodynamic theory of the plasmoelectric effect

    DOE PAGES-Beta [OSTI]

    van de Groep, Jorik; Sheldon, Matthew T.; Atwater, Harry A.; Polman, Albert

    2016-03-18

    Resonant metal nanostructures exhibit an optically induced electrostatic potential when illuminated with monochromatic light under off-resonant conditions. This plasmoelectric effect is thermodynamically driven by the increase in entropy that occurs when the plasmonic structure aligns its resonant absorption spectrum with incident illumination by varying charge density. As a result, the elevated steady-state temperature of the nanostructure induced by plasmonic absorption is further increased by a small amount. Here, we study in detail the thermodynamic theory underlying the plasmoelectric effect by analyzing a simplified model system consisting of a single silver nanoparticle. We find that surface potentials as large as 473more » mV are induced under 100 W/m2 monochromatic illumination, as a result of a 11 mK increases in the steady-state temperature of the nanoparticle. Hence, we discuss the applicability of this analysis for realistic experimental geometries, and show that this effect is generic for optical structures in which the resonance is linked to the charge density.« less

  11. Atmospheric Radiation Measurement Climate Research Facility Operations...

    Office of Scientific and Technical Information (OSTI)

    Close Cite: Bibtex Format Close 0 pages in this document matching the terms "" Search For Terms: Enter terms in the toolbar above to search the full text of this document for ...

  12. Atmospheric Processing Platform | Photovoltaic Research | NREL

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    tools for depositing, processing, and characterizing photovoltaic materials and devices. ... and is applicable to a wide range of photovoltaic (PV) technologies including waferfilm ...

  13. Atmospheric Radiation Measurement Climate Research Facility ...

    Office of Scientific and Technical Information (OSTI)

    ARM Aerial Vehicles Program. * Successful deployment of the ARM Mobile Facility in Germany, including hosting nearly a dozen guest instruments and drawing almost 5000 visitors ...

  14. Atmospheric Radiation Measurement Climate Research Facility ...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ... effects and interactions of sunlight, radiant energy, and clouds to understand their ... To study the effects and interactions of sunlight, radiant energy, and clouds on ...

  15. ORISE: Capabilities in Climate and Atmospheric Research

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    office in 1948 under Atomic Energy Commission sponsorship in Oak Ridge, Tenn. Major contributions to many of the classic models of air pollution dispersion were made there. ...

  16. First Principles Contributions to the Thermodynamic Assessment of Solid State Metal Hydride and Complex Hydride Phases

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Principles Contributions to the Thermodynamic Assessment of Solid State Metal Hydride and Complex Hydride Phases Susanne M. Opalka, United Technologies Research Center Caian Qiu, Caterpillar Champaign Simulation Center Ole Martin Løvvik, University of Olso, Norway DOE Theory Focus Session on Hydrogen Storage Materials Crystal Gateway Marriott, Crystal City, VA May 18, 2006 Acknowledgements We acknowledge the contributions of our collaborators: Paul W. Saxe, Materials Design, Inc. , Institute

  17. Atmospheric and Climate Science | Argonne National Laboratory

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Atmospheric and Climate Science Argonne research in aerosols, micro-meteorology, remote sensing, and atmospheric chemistry combined with our scalable, portable, high-performance climate and weather applications offer a unique look at the complexities of a dynamic planet. Changes in climate can affect biodiversity, the cost of food, our health, and even whole economies. Argonne is developing computational models and tools designed to shed light on complex biological processes and their economic,

  18. A U. S. Department of Energy User Facility Atmospheric Radiation

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    S. Department of Energy User Facility Atmospheric Radiation Measurement Climate Research Facility U.S. Department of Energy Atmospheric Radiation Measurement Program DOE/SC-ARM/P-07-003 Science and Research Data Products Climate Data for the World A primary objective of the U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) Program is to improve scientific understanding of the fundamental physics related to interactions between clouds and radiative feedback processes in the

  19. Oxygen detected in atmosphere of Saturn's moon Dione

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Oxygen detected in atmosphere of Saturn's moon Dione Oxygen detected in atmosphere of Saturn's moon Dione Scientists and an international research team have announced discovery of molecular oxygen ions in the upper-most atmosphere of Dione. March 3, 2012 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics

  20. ARM - Research Themes

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Atmospheric System Research (ASR) Earth System Modeling Regional & Global Climate Modeling Terrestrial Ecosystem Science Performance Metrics User Meetings Past ARM Science Team ...

  1. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Characterizing Clouds at Arctic Atmospheric Observatories Download a printable PDF Submitter: Shupe, M., University of Colorado Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Shupe MD, VP Walden, E Eloranta, T Uttal, JR Campbell, SM Starkweather, and M Shiobara. 2011. "Clouds at Arctic atmospheric observatories, part I: occurrence and macrophysical properties." Journal of Applied Meteorology and Climatology, 50(3), 626-644.

  2. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    A Downwelling Infrared Radiance Climatology for the ARM Southern Great Plains Site Download a printable PDF Submitter: Turner, D. D., National Oceanic and Atmospheric Administration Gero, J., University of Wisconsin Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: Turner DD and PJ Gero. 2011. "Downwelling infrared radiance temperature climatology for the Atmospheric Radiation Measurement Southern Great Plains site." Journal of Geophysical

  3. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Indirect Impact of Atmospheric Aerosols on an Ensemble of Deep Convective Clouds Download a printable PDF Submitter: Grabowski, W., NCAR Morrison, H. C., NCAR Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Grabowski WW and H Morrison. 2011. "Indirect impact of atmospheric aerosols in idealized simulations of convective-radiative quasi-equilibrium. Part II: Double-moment microphysics." Journal of

  4. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Scale Shows True Weight of Aerosol Effects on Clouds Download a printable PDF Submitter: McComiskey, A. C., National Oceanic and Atmospheric Administration Area of Research: Aerosol Processes Working Group(s): Aerosol Life Cycle Journal Reference: McComiskey A and G Feingold. 2012. "The scale problem in quantifying aerosol indirect effects." Atmospheric Chemistry and Physics, 12, doi:10.5194/acp-12-1031-2012. Differing values: Values derived from aircraft and surface observations,

  5. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Understanding the Differences Between Absolution Calibration Techniques in the Microwave Download a printable PDF Submitter: Turner, D. D., National Oceanic and Atmospheric Administration Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: Paine SN, DD Turner, and N Kuechler. 2014. "Understanding thermal drift in liquid nitrogen loads used for radiometric calibration in the field." Journal of Atmospheric and Oceanic Technology, 31(3),

  6. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Validation of Climate Model Ice Cloud Properties Download a printable PDF Submitter: Eidhammer, T., NCAR Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Eidhammer T, H Morrison, A Bansemer, A Gettelman, and AJ Heymsfield. 2014. "Comparison of ice cloud properties simulated by the Community Atmosphere Model (CAM5) with in situ observations." Atmospheric Chemistry and Physics, 14(18), doi:10.5194/acp-14-10103-2014. Mass weighted terminal fall

  7. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Modeling Dust as Component Minerals in the Community Atmosphere Model Download a printable PDF Submitter: Ghan, S. J., Pacific Northwest National Laboratory Area of Research: Radiation Processes Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Scanza R, N Mahowald, S Ghan, CS Zender, JF Kok, Y Zhang, and S Albani. 2015. "Modeling dust as component minerals in the Community Atmosphere Model: development of framework and impact on radiative forcing."

  8. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    A New Model for Liquid Water Absorption Download a printable PDF Submitter: Turner, D. D., National Oceanic and Atmospheric Administration Cadeddu, M. P., Argonne National Laboratory Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: Turner DD, S Kneifel, and MP Cadeddu. 2016. "An improved liquid water absorption model at microwave frequencies for supercooled liquid water clouds." Journal of Atmospheric and Oceanic Technology, 33(1),

  9. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    An Ensemble-Constrained Variational Analysis of Atmospheric Forcing Data and Its Application Download a printable PDF Submitter: Zhang, M., Stony Brook University Tang, S., Lawrence Livermore National Laboratory Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Life Cycle Journal Reference: Tang S, M Zhang, and S Xie. 2016. "An ensemble constrained variation alanalysis of atmospheric forcing data and its application to evaluate clouds

  10. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Splitting the Solar Spectrum: Sometimes Less Is Better Than More Submitter: Pawlak, D. T., Pennsylvania State University Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: Pawlak, DT, EJ Clothiaux, MF Modest, and JNS Cole. 2004. Full-Spectrum Correlated-k Distribution for Shortwave Atmospheric Radiative Transfer. Journal of the Atmospheric Sciences 61: 2588-2601. Of all the physical and dynamical calculations

  11. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Modification of the Atmospheric Boundary Layer by a Small Island: Observations from Nauru Submitter: Long, C. N., NOAA Global Monitoring Division/CIRES Area of Research: Cloud Distributions/Characterizations Working Group(s): Radiative Processes Journal Reference: Matthews, S., J. M. Hacker, J. Cole, J. Hare, C. N. Long, and R. M. Reynolds, (2007): Modification of the atmospheric boundary layer by a small island: observations from Nauru, MWR, Vol. 135, No. 3, pages 891-905. Figure 1.

  12. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Global Dimming and Brightening: an Update Beyond 2000 Download a printable PDF Submitter: Long, C. N., NOAA Global Monitoring Division/CIRES Wild, M., Institute for Atmospheric and Climate Science - ETH Zurich Truessel, B., Institute for Atmospheric and Climate Science - ETH Zurich Ohmura, A., Swiss Federal Institute of Technology Koenig-Langlo, G., Alfred Wegener Institute Dutton, E. G., NOAA/OAR/ESRL Tsvetkov, A. V., World Radiation Data Centre Area of Research: Radiation Processes Working

  13. Thermodynamics in variable speed of light theories

    SciTech Connect (OSTI)

    Racker, Juan [CONICET, Centro Atomico Bariloche, Avenida Bustillo 9500 (8400), San Carlos De Bariloche (Argentina); Facultad de Ciencias Astronomicas y Geofisicas, Universidad Nacional de La Plata, Paseo del Bosque S/N (1900), La Plata (Argentina); Sisterna, Pablo [Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350 (7600), Mar del Plata (Argentina); Vucetich, Hector [Facultad de Ciencias Astronomicas y Geofisicas, Universidad Nacional de La Plata, Paseo del Bosque S/N (1900), La Plata (Argentina)

    2009-10-15

    The perfect fluid in the context of a covariant variable speed of light theory proposed by J. Magueijo is studied. On the one hand the modified first law of thermodynamics together with a recipe to obtain equations of state are obtained. On the other hand the Newtonian limit is performed to obtain the nonrelativistic hydrostatic equilibrium equation for the theory. The results obtained are used to determine the time variation of the radius of Mercury induced by the variability of the speed of light (c), and the scalar contribution to the luminosity of white dwarfs. Using a bound for the change of that radius and combining it with an upper limit for the variation of the fine structure constant, a bound on the time variation of c is set. An independent bound is obtained from luminosity estimates for Stein 2015B.

  14. Transposed critical temperature Rankine thermodynamic cycle

    SciTech Connect (OSTI)

    Pope, W.L.; Doyle, P.A.

    1980-04-01

    The transposed critical temperature (TPCT) is shown to be an extremely important thermodynamic property in the selection of the working fluid and turbine states for optimized geothermal power plants operating on a closed organic (binary) Rankine cycle. When the optimum working fluid composition and process states are determined for given source and sink conditions (7 parameter optimization), turbine inlet states are found to be consistently adjacent to the low pressure side of the working fluids' TPCT line on pressure-enthalpy coordinates. Although the TPCT concepts herein may find numerous future applications in high temperature, advanced cycles for fossil or nuclear fired steam power plants and in supercritical organic Rankine heat recovery bottoming cycles for Diesel engines, this discussion is limited to moderate temperature (150 to 250/sup 0/C) closed simple organic Rankine cycle geothermal power plants. Conceptual design calculations pertinent to the first geothermal binary cycle Demonstration Plant are included.

  15. Lagrangian formulation of irreversible thermodynamics and the second law of thermodynamics

    SciTech Connect (OSTI)

    Glavatskiy, K. S.

    2015-05-28

    We show that the equations which describe irreversible evolution of a system can be derived from a variational principle. We suggest a Lagrangian, which depends on the properties of the normal and the so-called “mirror-image” system. The Lagrangian is symmetric in time and therefore compatible with microscopic reversibility. The evolution equations in the normal and mirror-imaged systems are decoupled and describe therefore independent irreversible evolution of each of the systems. The second law of thermodynamics follows from a symmetry of the Lagrangian. Entropy increase in the normal system is balanced by the entropy decrease in the mirror-image system, such that there exists an “integral of evolution” which is a constant. The derivation relies on the property of local equilibrium, which states that the local relations between the thermodynamic quantities in non-equilibrium are the same as in equilibrium.

  16. Ensemble Atmospheric Dispersion Modeling

    SciTech Connect (OSTI)

    Addis, R.P.

    2002-06-24

    Prognostic atmospheric dispersion models are used to generate consequence assessments, which assist decision-makers in the event of a release from a nuclear facility. Differences in the forecast wind fields generated by various meteorological agencies, differences in the transport and diffusion models, as well as differences in the way these models treat the release source term, result in differences in the resulting plumes. Even dispersion models using the same wind fields may produce substantially different plumes. This talk will address how ensemble techniques may be used to enable atmospheric modelers to provide decision-makers with a more realistic understanding of how both the atmosphere and the models behave.

  17. ARM - Funded Research Proposals

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    govScienceFunded Research Proposals Science Research Themes Research Highlights Journal Articles Collaborations Atmospheric System Research (ASR) Earth System Modeling Regional & Global Climate Modeling Terrestrial Ecosystem Science Performance Metrics User Meetings Past ARM Science Team Meetings ASR Meetings Accomplishments Accomplishments in Atmospheric Science, 2008-2013 (PDF, 7.4MB) ARM Accomplishments from the Science Program and User Facility, 1989-2008 (PDF, 696KB) Funded Research

  18. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Unique Properties of the Arctic Stratiform Cloud-Top Region Submitter: Shupe, M., University of Colorado Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Sedlar J, MD Shupe, and M Tjernström. 2011. "On the relationship between thermodynamic structure and cloud top, and its climate significance in the Arctic." Journal of Climate, 25(7), doi:10.1175/JCLI-D-11-00186.1. Occurrence frequency of low-level, stratiform cloud cases used in the analysis

  19. Atmospheric optical calibration system

    DOE Patents [OSTI]

    Hulstrom, R.L.; Cannon, T.W.

    1988-10-25

    An atmospheric optical calibration system is provided to compare actual atmospheric optical conditions to standard atmospheric optical conditions on the basis of aerosol optical depth, relative air mass, and diffuse horizontal skylight to global horizontal photon flux ratio. An indicator can show the extent to which the actual conditions vary from standard conditions. Aerosol scattering and absorption properties, diffuse horizontal skylight to global horizontal photon flux ratio, and precipitable water vapor determined on a real-time basis for optical and pressure measurements are also used to generate a computer spectral model and for correcting actual performance response of a photovoltaic device to standard atmospheric optical condition response on a real-time basis as the device is being tested in actual outdoor conditions. 7 figs.

  20. Atmospheric optical calibration system

    DOE Patents [OSTI]

    Hulstrom, Roland L.; Cannon, Theodore W.

    1988-01-01

    An atmospheric optical calibration system is provided to compare actual atmospheric optical conditions to standard atmospheric optical conditions on the basis of aerosol optical depth, relative air mass, and diffuse horizontal skylight to global horizontal photon flux ratio. An indicator can show the extent to which the actual conditions vary from standard conditions. Aerosol scattering and absorption properties, diffuse horizontal skylight to global horizontal photon flux ratio, and precipitable water vapor determined on a real-time basis for optical and pressure measurements are also used to generate a computer spectral model and for correcting actual performance response of a photovoltaic device to standard atmospheric optical condition response on a real-time basis as the device is being tested in actual outdoor conditions.

  1. Fifteenth combustion research conference

    SciTech Connect (OSTI)

    1993-06-01

    The BES research efforts cover chemical reaction theory, experimental dynamics and spectroscopy, thermodynamics of combustion intermediates, chemical kinetics, reaction mechanisms, combustion diagnostics, and fluid dynamics and chemically reacting flows. 98 papers and abstracts are included. Separate abstracts were prepared for the papers.

  2. ARM - Measurement - Atmospheric moisture

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    moisture ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Atmospheric moisture The moisture content of the air as indicated by several measurements including relative humidity, specific humidity, dewpoint, vapor pressure, water vapor mixing ratio, and water vapor density; note that precipitable water is a separate type. Categories Atmospheric State Instruments The above measurement is considered

  3. ARM - Measurement - Atmospheric temperature

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    temperature ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Atmospheric temperature The temperature indicated by a thermometer exposed to the air in a place sheltered from direct solar radiation. Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list

  4. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Multiday Production of SOA in Urban and Forest Outflow Submitter: Lee-Taylor, J., NCAR Madronich, S., National Center for Atmospheric Research Area of Research: Aerosol Processes Working Group(s): Aerosol Life Cycle Journal Reference: Lee-Taylor J, A Hodzic, S Madronich, B Aumont, M Camredon, and R Valorso. 2015. "Multiday production of condensing organic aerosol mass in urban and forest outflow." Atmospheric Chemistry and Physics, 15, doi:10.5194/acp-15-595-2015. Simulated SOA in

  5. Methods for thermodynamic evaluation of battery state of health

    DOE Patents [OSTI]

    Yazami, Rachid; McMenamin, Joseph; Reynier, Yvan; Fultz, Brent T

    2013-05-21

    Described are systems and methods for accurately characterizing thermodynamic and materials properties of electrodes and battery systems and for characterizing the state of health of electrodes and battery systems. Measurement of physical attributes of electrodes and batteries corresponding to thermodynamically stabilized electrode conditions permit determination of thermodynamic parameters, including state functions such as the Gibbs free energy, enthalpy and entropy of electrode/electrochemical cell reactions, that enable prediction of important performance attributes of electrode materials and battery systems, such as energy, power density, current rate, cycle life and state of health. Also provided are systems and methods for charging a battery according to its state of health.

  6. THERMODYNAMICS OF PARTIALLY FROZEN COOLING LAKES

    SciTech Connect (OSTI)

    Garrett, A.; Casterline, M.; Salvaggio, C.

    2010-01-05

    The Rochester Institute of Technology (RIT) collected visible, SWIR, MWIR and LWIR imagery of the Midland (Michigan) Cogeneration Ventures Plant from aircraft during the winter of 2008-2009. RIT also made ground-based measurements of lake water and ice temperatures, ice thickness and atmospheric variables. The Savannah River National Laboratory (SRNL) used the data collected by RIT and a 3-D hydrodynamic code to simulate the Midland cooling lake. The hydrodynamic code was able to reproduce the time distribution of ice coverage on the lake during the entire winter. The simulations and data show that the amount of ice coverage is almost linearly proportional to the rate at which heat is injected into the lake (Q). Very rapid melting of ice occurs when strong winds accelerate the movement of warm water underneath the ice. A snow layer on top of the ice acts as an insulator and decreases the rate of heat loss from the water below the ice to the atmosphere above. The simulated ice cover on the lake was not highly sensitive to the thickness of the snow layer. The simplicity of the relationship between ice cover and Q and the weak responses of ice cover to snow depth over the ice are probably attributable to the negative feedback loop that exists between ice cover and heat loss to the atmosphere.

  7. Sandia National Laboratories: Research: Facilities: Technology Deployment

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Centers: Shock Thermodynamic Applied Research Facility (STAR) Shock Thermodynamic Applied Research Facility (STAR) The STAR facility, within Sandia's Solid Dynamic Physics Department, is one of a few institutions in the world with a major shock-physics program. This is the only experimental test facility in the world that can cover the full range of pressure (bars to multi-Mbar) for material property study utilizing gas/propellant launchers, ramp-loading pulsers, and ballistic applications.

  8. Coal surface structure and thermodynamics. Final report

    SciTech Connect (OSTI)

    Larsen, J.W.; Wernett, P.C.; Glass, A.S.; Quay, D.; Roberts, J.

    1994-05-01

    Coals surfaces were studied using static surface adsorption measurements, low angle x-ray scattering (LAXS), inverse gas chromatography (IGC) and a new {sup 13}C NMR relaxation technique. A comparison of surface areas determined by hydrocarbon gas adsorption and LAXS led to the twin conclusions that the hydrocarbons had to diffuse through the solid to reach isolated pores and that the coal pores do not form interconnected networks, but are largely isolated. This conclusion was confirmed when IGC data for small hydrocarbons showed no discontinuities in their size dependence as usually observed with porous solids. IGC is capable of providing adsorption thermodynamics of gases on coal surfaces. The interactions of non-polar molecules and coal surfaces are directly proportioned to the gas molecular polarizability. For bases, the adsorption enthalpy is equal to the polarizability interaction plus the heat of hydrogen bond formation with phenol. Amphoteric molecules have more complex interactions. Mineral matter can have highly specific effects on surface interactions, but with most of the molecules studied is not an important factor.

  9. Thermodynamic analysis of adsorption refrigeration cycles

    SciTech Connect (OSTI)

    Saha, B.B.; Akisawa, Atsushi; Kashiwagi, Takao

    1997-12-31

    High- and mid-temperature waste heat can be recovered by using existing heat pump technologies. However, heat utilization near environmental temperatures still faces technical hurdles. Silica gel-water adsorption cycles have a distinct advantage over other systems in their ability to be driven by near-ambient temperature heat. Waste heat (above 60 C) can be exploited by using conventional silica gel-water adsorption chiller. The advanced silica gel-water adsorption chiller can operate effectively by utilizing low-grade waste heat ({approximately}50 C) as the driving source with a cooling source of 30 C. In this paper, the effect of operating temperatures on cycle performance is discussed from the thermodynamic viewpoint. The temperature effectiveness and the entropy generation number on cycle time are analyzed. For a comparatively short cycle time, adsorber/desorber heat exchanger temperature effectiveness reaches up to 92% after only 200 sec. The entropy generation number N{sub s} is defined by the ratio between irreversibility generated during a cycle and availability of the heat transfer fluid. The result showed that for the advanced adsorption cycle the entropy generation number N{sub s} is smaller for hot water temperature between 45 to 55 C with a cooling source of 30 C, while for the conventional cycle N{sub s} is smaller for hot water temperature between 65 to 75 C /with the same cooling source temperature.

  10. Thermodynamic properties of bulk and confined water

    SciTech Connect (OSTI)

    Mallamace, Francesco; Corsaro, Carmelo; Mallamace, Domenico; Vasi, Sebastiano; Vasi, Cirino; Stanley, H. Eugene

    2014-11-14

    The thermodynamic response functions of water display anomalous behaviors. We study these anomalous behaviors in bulk and confined water. We use nuclear magnetic resonance (NMR) to examine the configurational specific heat and the transport parameters in both the thermal stable and the metastable supercooled phases. The data we obtain suggest that there is a behavior common to both phases: that the dynamics of water exhibit two singular temperatures belonging to the supercooled and the stable phase, respectively. One is the dynamic fragile-to-strong crossover temperature (T{sub L} ? 225K). The second, T{sup *} ? 315 5K, is a special locus of the isothermal compressibility K{sub T}(T, P) and the thermal expansion coefficient ?{sub P}(T, P) in the PT plane. In the case of water confined inside a protein, we observe that these two temperatures mark, respectively, the onset of protein flexibility from its low temperature glass state (T{sub L}) and the onset of the unfolding process (T{sup *})

  11. Thermodynamic characterization of new palladium alloy tritides

    SciTech Connect (OSTI)

    Hoelder, J.S.; Wermer, J.R.

    1994-08-09

    The decay of tritium in a metal tritide generates {sup 3}He in the lattice which tends to degrade the performance of the material over time. It is desired to develop a material which minimizes the tritium aging effects and may be tailored to a particular tritium processing application. Pd alloys with Ni and Co have been investigated, as Pd tritide is known to be resistant to tritium aging effects and alloying provides a means for adjusting the plateau pressure of the metal tritide. Sets of tritium desorption isotherms were acquired at temperatures between 273 and 338 K over the pressure range of 1 to 900 kPa. The thermodynamic parameters of {Delta}H and {Delta}S for the {beta}-{alpha} phase transition of the metal tritides were determined across the plateau regions of the P-C-T curves. The average values of {Delta}H (kJ/mol{center_dot}T) and {Delta}S (J/K/mol{center_dot}T) were found to be 15.8 and 50.1 for Pd(2.8 wt. %)Ni, 13.7 and 50.3 for Pd(5.2 wt. %)Ni, 15.9 and 51.3 for Pd(2.8 wt. %)Co, and 13.6 and 51.8 for Pd(5.2 wt. %)Co, respectively.

  12. A sensitivity study of the thermodynamic environment on GFDL model hurricane intensity: Implications for global warming

    SciTech Connect (OSTI)

    Shen, W.; Tuleya, R.E.; Ginis, I.

    2000-01-01

    In this study, the effect of thermodynamic environmental changes on hurricane intensity is extensively investigated with the National Oceanic and Atmospheric Administration Geophysical Fluid Dynamics Laboratory hurricane model for a suite of experiments with different initial upper-tropospheric temperature anomalies up to {+-}4 C and sea surface temperatures ranging from 26 to 31 C given the same relative humidity profile. The results indicate that stabilization in the environmental atmosphere and sea surface temperature (SST) increase cause opposing effects on hurricane intensity. The offsetting relationship between the effects of atmospheric stability increase (decrease) and SST increase (decrease) is monotonic and systematic in the parameter space. This implies that hurricane intensity increase due to a possible global warming associated with increased CO{sub 2} is considerably smaller than that expected from warming of the oceanic waters alone. The results also indicate that the intensity of stronger (weaker) hurricanes is more (less) sensitive to atmospheric stability and SST changes. The model-attained hurricane intensity is found to be well correlated with the maximum surface evaporation and the large-scale environmental convective available potential energy. The model-attained hurricane intensity if highly correlated with the energy available from wet-adiabatic ascent near the eyewall relative to a reference sounding in the undisturbed environment for all the experiments. Coupled hurricane-ocean experiments show that hurricane intensity becomes less sensitive to atmospheric stability and SST changes since the ocean coupling causes larger (smaller) intensity reduction for stronger (weaker) hurricanes. This implies less increase of hurricane intensity related to a possible global warming due to increased CO{sub 2}.

  13. Thermodynamics of Quark Flavors from Lattice QCD | Argonne Leadership...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Ian McVicar, University of Glasgow (Courtesy of ALICE and CERN) Thermodynamics of Quark ... that ordinary hadronic matter will undergo a phase transition to quark-gluon plasma (QGP). ...

  14. Thermodynamic behavior of particular f(R,T)-gravity models

    SciTech Connect (OSTI)

    Sharif, M. Zubair, M.

    2013-08-15

    We investigate the thermodynamics at the apparent horizon of the FRW universe in f(R, T) theory in the nonequilibrium description. The laws of thermodynamics are discussed for two particular models of the f(R, T) theory. The first law of thermodynamics is expressed in the form of the Clausius relation T{sub h} dS-circumflex{sub h} = {delta} Q , where {delta}Q is the energy flux across the horizon and dS-circumflex is the entropy production term. Furthermore, the conditions for the generalized second law of thermodynamics to be preserved are established with the constraints of positive temperature and attractive gravity. We illustrate our results for some concrete models in this theory.

  15. Relevance of the second law of thermodynamics to energy conservation

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    An analysis is presented of the potential relevance of the use of analytical tools based on the Second Law of thermodynamics to existing federal programs for energy conservation in the industrial, transportation, buildings, and utility sectors in the US. (LCL)

  16. Thermodynamic Complexity of Carbon Capture in Alkylamine-Functionalize...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Thermodynamic Complexity of Carbon Capture in Alkylamine-Functionalized Metal-Organic Frameworks Previous Next List D. Wu, T. M. McDonald, Z. Quan, S. V. Ushakov, P. Zhang, J. R....

  17. A review of the remote sensing of lower-tropospheric thermodynamic profiles and its indispensable role for the understanding and the simulation of water and energy cycles

    DOE PAGES-Beta [OSTI]

    Wulfmeyer, Volker; Hardesty, Mike; Turner, David D.; Behrendt, Andreas; Cadeddu, Maria; Di Girolamo, Paolo; Schlüssel, Peter; van Baelen, Joël; Zus, Florian

    2015-07-08

    A review of remote sensing technology for lower-tropospheric thermodynamic (TD) profiling is presented with focus on high accuracy and high temporal-vertical resolution. The contributions of these instruments to the understanding of the Earth system are assessed with respect to radiative transfer, land-surface-atmosphere feedback, convection initiation, and data assimilation. We demonstrate that for progress in weather and climate research, TD profilers are essential. These observational systems must resolve gradients of humidity and temperature in the stable or unstable atmospheric surface layer close to the ground, in the mixed layer, in the interfacial layer – usually characterized by an inversion – andmore » the lower troposphere. A thorough analysis of the current observing systems is performed revealing significant gaps that must be addressed to fulfill existing needs. We analyze whether current and future passive and active remote sensing systems can close these gaps. A methodological analysis and demonstration of measurement capabilities with respect to bias and precision is executed both for passive and active remote sensing including passive infrared and microwave spectroscopy, the global positioning system as well as water-vapor and temperature Raman lidar and water-vapor differential absorption lidar. Whereas passive remote sensing systems are already mature with respect to operational applications, active remote sensing systems require further engineering to become operational in networks. However, active remote sensing systems provide a smaller bias as well as higher temporal and vertical resolutions. For a suitable mesoscale network design, TD profiler system developments should be intensified and dedicated observing system simulation experiments should be performed.« less

  18. A review of the remote sensing of lower-tropospheric thermodynamic profiles and its indispensable role for the understanding and the simulation of water and energy cycles

    SciTech Connect (OSTI)

    Wulfmeyer, Volker; Hardesty, Mike; Turner, David D.; Behrendt, Andreas; Cadeddu, Maria; Di Girolamo, Paolo; Schlüssel, Peter; van Baelen, Joël; Zus, Florian

    2015-07-08

    A review of remote sensing technology for lower-tropospheric thermodynamic (TD) profiling is presented with focus on high accuracy and high temporal-vertical resolution. The contributions of these instruments to the understanding of the Earth system are assessed with respect to radiative transfer, land-surface-atmosphere feedback, convection initiation, and data assimilation. We demonstrate that for progress in weather and climate research, TD profilers are essential. These observational systems must resolve gradients of humidity and temperature in the stable or unstable atmospheric surface layer close to the ground, in the mixed layer, in the interfacial layer – usually characterized by an inversion – and the lower troposphere. A thorough analysis of the current observing systems is performed revealing significant gaps that must be addressed to fulfill existing needs. We analyze whether current and future passive and active remote sensing systems can close these gaps. A methodological analysis and demonstration of measurement capabilities with respect to bias and precision is executed both for passive and active remote sensing including passive infrared and microwave spectroscopy, the global positioning system as well as water-vapor and temperature Raman lidar and water-vapor differential absorption lidar. Whereas passive remote sensing systems are already mature with respect to operational applications, active remote sensing systems require further engineering to become operational in networks. However, active remote sensing systems provide a smaller bias as well as higher temporal and vertical resolutions. For a suitable mesoscale network design, TD profiler system developments should be intensified and dedicated observing system simulation experiments should be performed.

  19. Atmospheric Science: Solving Challenges of Climate Change

    SciTech Connect (OSTI)

    Geffen, Charlette

    2015-08-05

    PNNL’s atmospheric science research provides data required to make decisions about challenges presented by climate change: Where to site power plants, how to manage water resources, how to prepare for severe weather events and more. Our expertise in fundamental observations and modeling is recognized among the national labs and the world.

  20. Quadractic Model of Thermodynamic States in SDF Explosions

    SciTech Connect (OSTI)

    Kuhl, A L; Khasainov, B

    2007-05-04

    We study the thermodynamic states encountered during Shock-Dispersed-Fuel (SDF) explosions. Such explosions contain up to six components: three fuels (PETN, TNT and Aluminum) and their products corresponding to stoichiometric combustion with air. We establish the loci in thermodynamic state space that correctly describes the behavior of the components. Results are fit with quadratic functions that serve as fast equations of state suitable for 3D numerical simulations of SDF explosions.

  1. Combined thermodynamic study of nickel-base alloys. Progress report

    SciTech Connect (OSTI)

    Brooks, C. R.; Meschter, P. J.

    1981-02-15

    Achievements during this period are the following: (1) initiation of a high-temperature study of the Ni-Ta system using the galvanic cell technique, (2) emf study of high-temperature thermodynamics in the Ni-Mo system, (3) measured heat capacity data on ordered and disordered Ni/sub 4/Mo, (4) heat capacities of Ni and disordered Ni/sub 3/Fe, and (5) computer correlation of thermodynamic and phase diagram data in binary Ni-base alloys. (MOW)

  2. Thermodynamic Evaluation of Low-Global Warming Potential Refrigerants |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Thermodynamic Evaluation of Low-Global Warming Potential Refrigerants Thermodynamic Evaluation of Low-Global Warming Potential Refrigerants Credit: National Institute of Standards Credit: National Institute of Standards Lead Performer: National Institute of Standards and Technology - Gaithersburg, MD Partners: -- Catholic University of America - Washington, DC -- George Mason University - Fairfax, VA DOE Funding: $1,750,000 Cost Share: N/A Project Term: 2/1/2011 -

  3. Thermodynamic Investigations of Lithium- and Manganese-Rich Transition

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Metal Oxides | Department of Energy Thermodynamic Investigations of Lithium- and Manganese-Rich Transition Metal Oxides Thermodynamic Investigations of Lithium- and Manganese-Rich Transition Metal Oxides 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting es192_lu_2013_p.pdf (2.1 MB) More Documents & Publications Vehicle Technologies Office Merit Review 2014: Electrochemical Modeling of LMR-NMC Materials and Electrodes

  4. CNEEC - TRG1: Nanoscale Control of Thermodynamic Potentials

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    TRG1: Nanoscale Control of Thermodynamic Potentials TRG1 Leaders: Bruce Clemens and David Goldhaber-Gordon Energy storage and conversion involve charge transport, charge storage and conversion of materials from one phase to another. At the nanometer regime, size can have a dramatic effect on these processes and properties. Our program develops fundamental understanding of the effect of size on thermodynamics, kinetic processes, electronic structure and charge transport. Material systems

  5. Atmospheric Radiation Measurement Convective and Orographically Induced

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Convective and Orographically Induced Precipitation Study The U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facility is providing the ARM Mobile Facility (AMF) to support a long-term precipitation study in the Black Forest region of Germany. Requested by researchers from the University of Hohenheim, the AMF will be deployed as one of four heav- ily instrumented supersites established for the Convective and Orographically Induced Precipita- tion Study

  6. Thermodynamical description of stationary, asymptotically flat solutions with conical singularities

    SciTech Connect (OSTI)

    Herdeiro, Carlos; Rebelo, Carmen; Radu, Eugen

    2010-05-15

    We examine the thermodynamical properties of a number of asymptotically flat, stationary (but not static) solutions having conical singularities, with both connected and nonconnected event horizons, using the thermodynamical description recently proposed in [C. Herdeiro, B. Kleihaus, J. Kunz, and E. Radu, Phys. Rev. D 81, 064013 (2010).]. The examples considered are the double-Kerr solution, the black ring rotating in either S{sup 2} or S{sup 1}, and the black Saturn, where the balance condition is not imposed for the latter two solutions. We show that not only the Bekenstein-Hawking area law is recovered from the thermodynamical description, but also the thermodynamical angular momentum is the Arnowitt-Deser-Misner angular momentum. We also analyze the thermodynamical stability and show that, for all these solutions, either the isothermal moment of inertia or the specific heat at constant angular momentum is negative, at any point in parameter space. Therefore, all these solutions are thermodynamically unstable in the grand canonical ensemble.

  7. THERMODYNAMICS OF THE COMA CLUSTER OUTSKIRTS

    SciTech Connect (OSTI)

    Simionescu, A.; Werner, N.; Urban, O.; Allen, S. W.; Fabian, A. C.; Sanders, J. S.; Walker, S. A.; Mantz, A.; Matsushita, K.; Sasaki, T.; Sato, T.; Nulsen, P. E. J.; Takei, Y.

    2013-09-20

    We present results from a large mosaic of Suzaku observations of the Coma Cluster, the nearest and X-ray brightest hot ({approx}8 keV), dynamically active, non-cool core system, focusing on the thermodynamic properties of the intracluster medium on large scales. For azimuths not aligned with an infalling subcluster toward the southwest, our measured temperature and X-ray brightness profiles exhibit broadly consistent radial trends, with the temperature decreasing from about 8.5 keV at the cluster center to about 2 keV at a radius of 2 Mpc, which is the edge of our detection limit. The southwest merger significantly boosts the surface brightness, allowing us to detect X-ray emission out to {approx}2.2 Mpc along this direction. Apart from the southwestern infalling subcluster, the surface brightness profiles show multiple edges around radii of 30-40 arcmin. The azimuthally averaged temperature profile, as well as the deprojected density and pressure profiles, all show a sharp drop consistent with an outwardly-propagating shock front located at 40 arcmin, corresponding to the outermost edge of the giant radio halo observed at 352 MHz with the Westerbork Synthesis Radio Telescope. The shock front may be powering this radio emission. A clear entropy excess inside of r{sub 500} reflects the violent merging events linked with these morphological features. Beyond r{sub 500}, the entropy profiles of the Coma Cluster along the relatively relaxed directions are consistent with the power-law behavior expected from simple models of gravitational large-scale structure formation. The pressure is also in agreement at these radii with the expected values measured from Sunyaev-Zel'dovich data from the Planck satellite. However, due to the large uncertainties associated with the Coma Cluster measurements, we cannot yet exclude an entropy flattening in this system consistent with that seen in more relaxed cool core clusters.

  8. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Surface Summertime Radiative Forcing by Shallow Cumuli at the ARM SGP Download a printable PDF Submitter: Berg, L., Pacific Northwest National Laboratory Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: Berg LK, EI Kassianov, CN Long, and DL Mills. 2011. "Surface summertime radiative forcing by shallow cumuli at the ARM SGP." Journal of Geophysical Research - Atmospheres, 116, D01202, 10.1029/2010JD014593. Histogram of hourly average shortwave

  9. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Improving the Treatment of Radiation in Climate Models Download a printable PDF Submitter: Delamere, J. S., University of Alaska Fairbanks Area of Research: Radiation Processes Working Group(s): Aerosol Life Cycle, Cloud Life Cycle Journal Reference: Delamere JS, SA Clough, VH Payne, EJ Mlawer, DD Turner, and RR Gamache. 2010. "A far-infrared radiative closure study in the Arctic: Application to water vapor." Journal of Geophysical Research - Atmospheres, 115, D17106,

  10. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Ice Heating Up Cold Clouds Download a printable PDF Submitter: Ovchinnikov, M., Pacific Northwest National Laboratory Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Ovchinnikov M, A Korolev, and J Fan. 2011. "Effects of ice number concentration on dynamics of a shallow mixed-phase stratiform cloud." Journal of Geophysical Research - Atmospheres, 116, D00T06, doi:10.1029/2011JD015888. The mighty cloud

  11. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Putting the Pieces Together Download a printable PDF Submitter: Fan, J., Pacific Northwest National Laboratory Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Fan J, S Ghan, M Ovchinnikov, X Liu, P Rasch, and A Korolev. 2011. "Representation of arctic mixed-phase clouds and the Wegener-Bergeron-Findeisen process in climate models: Perspectives from a cloud-resolving study." Journal of Geophysical Research - Atmospheres, 116,

  12. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ARM Measurements Help to Evaluate Radiation Codes Used in Global Modeling Download a printable PDF Submitter: Oreopoulos, L., NASA Mlawer, E. J., Atmospheric & Environmental Research, Inc. Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: Oreopoulos L, E Mlawer, J Delamere, T Shippert, J Cole, B Fomin, M Iacono, Z Jin, J Li, J Manners, P Raisanen, F Rose, Y Zhang, MJ Wilson, and WB Rossow. 2012. "The Continual Intercomparison of Radiation Codes:

  13. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Evaluation of Cloud Properties in Major Reanalyses Download a printable PDF Submitter: Liu, Y., Brookhaven National Laboratory Wu, W., Brookhaven National Laboratory Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Wu W, YG Liu, and AK Betts. 2012. "Observationally based evaluation of NWP reanalyses in modeling cloud properties over the Southern Great Plains." Journal of Geophysical Research - Atmospheres, 117, D12202,

  14. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    The Brass Ring of Climate Modeling Download a printable PDF Submitter: Ghan, S. J., Pacific Northwest National Laboratory Area of Research: Aerosol Processes Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Ghan SJ, SJ Smith, M Wang, K Zhang, K Pringle, K Carslaw, J Pierce, S Bauer, and P Adams. 2013. "A simple model of global aerosol indirect effects." Journal of Geophysical Research - Atmospheres, 118, 1-20. The simple model of aerosol effects on clouds

  15. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    CCN and Vertical Velocity Influences Submitter: Hudson, J. G., Desert Research Institute Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Hudson JG and S Noble. 2013. "CCN and vertical velocity influences on droplet concentrations and supersaturations in clean and polluted stratus clouds." Journal of the Atmospheric Sciences, 71(1), 10.1175/JAS-D-13-086.1. Figure 1. Effective cloud supersaturation

  16. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    The Overambitious Other Carbon Submitter: Church, J., Pacific Northwest National Laboratory Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle Journal Reference: Song C, M Gyawali, RA Zaveri, JE Shilling, and WP Arnott. 2013. "Light absorption by secondary organic aerosol from α-pinene: Effects of oxidants, seed aerosol acidity, and relative humidity." Journal of Geophysical Research - Atmospheres, 118, doi:10.1002/jgrd.50767. Time-dependent Mass Absorption

  17. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    MBL Aerosol Properties and Their Impact on CCN at the Azores-AMF Site Download a printable PDF Submitter: Dong, X., University of Arizona Area of Research: Aerosol Properties Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Logan T, B Xi, and X Dong. 2014. "Aerosol properties and their influences on marine boundary layer cloud condensation nuclei at the ARM mobile facility over the Azores." Journal of Geophysical Research - Atmospheres, 119(8),

  18. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Checking Up on Tropical Sunlight Download a printable PDF Submitter: Riihimaki, L., Pacific Northwest National Laboratory Long, C. N., NOAA Global Monitoring Division/CIRES Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: Riihimaki LD and CN Long. 2014. "Spatial variability of surface irradiance measurements at the Manus ARM site." Journal of Geophysical Research - Atmospheres, 119(9), 10.1002/2013JD021187. The radiometer system used at the

  19. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Observed Relations Between Snowfall Microphysics and Triple-Frequency Radar Observations Download a printable PDF Submitter: Kneifel, S., McGill University Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Kneifel S, A von Lerber, J Tiira, D Moisseev, P Kollias, and J Leinonen. 2015. "Observed relations between snowfall microphysics and triple-frequency radar measurements." Journal of Geophysical Research - Atmospheres, 120(12),

  20. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Characterizing Arctic Mixed-Phase Cloud Structure Download a printable PDF Submitter: Dong, X., University of Arizona Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Qiu S, X Dong, B Xi, and F Li. 2015. "Characterizing Arctic mixed-phase cloud structure and its relationship with humidity and temperature inversion using ARM NSA observations." Journal of Geophysical Research - Atmospheres, 120, 10.1002/2014JD023022. Figure 1.

  1. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Scale-Aware Parameterization of Liquid Cloud Inhomogeneity and Its Impact on Simulated Climate Download a printable PDF Submitter: Zhang, M., Stony Brook University Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Life Cycle Journal Reference: Xie X and M Zhang. 2015. "Scale-aware parameterization of liquid cloud inhomogeneity and its impact on simulated climate in CESM." Journal of Geophysical Research - Atmospheres, 120(16),

  2. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Birth and Growth of an Aerosol Download a printable PDF Submitter: Fast, J. D., Pacific Northwest National Laboratory Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: N/A An aerosol particle journey. New modeling approaches developed by a research team led by PNNL show how aerosol particles are born and grow to affect the atmosphere and ultimately climate. An aerosol particle journey. New modeling approaches

  3. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Pollution Changes Clouds' Ice Crystal Genesis Download a printable PDF Submitter: Kulkarni, G., Pacific Northwest National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Kulkarni GR, K Zhang, C Zhao, M Nandasiri, V Shutthanandan, X Liu, L Berg, and J Fast. 2015. "Ice formation on nitric acid-coated dust particles: Laboratory and modeling studies." Journal of Geophysical Research - Atmospheres, 120(15), doi:10.1002/2014JD022637.

  4. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Spiraling Through a Storm PI Contact: Giangrande, S., Brookhaven National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Giangrande SE, T Toto, A Bansemer, MR Kumjian, S Mishra, and A Ryzkhov. 2016. "Insights into riming and aggregation processes as revealed by aircraft, radar, and disdrometer observations for a 27 April 2011 widespread precipitation event." Journal of Geophysical Research - Atmospheres, , doi:10.1002/2015JD024537.

  5. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Three Dimensions Are Better Than Two, When It Comes to Representing Aerosols PI Contact: Ching, J., Pacific Northwest National Laboratory Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle Journal Reference: Ching J, RA Zaveri, RC Easter, N Riemer, and JD Fast. 2016. "A three-dimensional sectional representation of aerosol mixing state for simulating optical properties and cloud condensation nuclei." Journal of Geophysical Research - Atmospheres, 121(10),

  6. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Black Carbon Aerosols Alter Cloud Microphysical Properties PI Contact: Riemer, N., University of Illinois, Urbana Ching, J., Pacific Northwest National Laboratory Area of Research: Aerosol Processes Working Group(s): Aerosol Life Cycle Journal Reference: Ching J, N Riemer, and M West. 2016. "Black carbon mixing state impacts on cloud microphysical properties: Effects of aerosol plume and environmental conditions." Journal of Geophysical Research - Atmospheres, 121(10),

  7. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    A Radiation Closure Study at Both Surface and TOA Using RTM PI Contact: Dong, X., University of Arizona Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: Dong X, B Xi, S Qiu, P Minnis, S Sun-Mack, and F Rose. 2016. "A radiation closure study of Arctic stratus cloud microphysical properties using the collocated satellite-surface data and Fu-Liou radiative transfer model." Journal of Geophysical Research - Atmospheres, 121(17),

  8. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    New DSD Parameterization and SR QPE from Aircraft and Surface Distrometer PI Contact: Dong, X., University of Arizona Area of Research: Cloud Processes Working Group(s): Cloud Properties Journal Reference: Wang J, X Dong, B Xi, and H Andrew. 2016. "Investigation of liquid cloud microphysical properties of deep convective systems: 1. Parameterization of rain drop size distribution and its application for stratiform rain estimate." Journal of Geophysical Research - Atmospheres, 121,

  9. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Minimal Shortwave Anomalous Absorption Found over ACRF Sites Download a printable PDF Submitter: Dong, X., University of Arizona Minnis, P., NASA - Langley Research Center Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: Dong, X, BA Wielicki, B Xi, Y Hu, GG Mace, S Benson, F Rose, S Kato, T Charlock, and P Minnis. 2008. "Using observations of deep convective systems to constrain atmospheric column absorption of solar radiation in the optically

  10. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Atmospheric Aerosol Measurements on Cloudy Days: a New Method Download a printable PDF Submitter: Kassianov, E., Pacific Northwest National Laboratory Ovchinnikov, M., Pacific Northwest National Laboratory Area of Research: Aerosol Properties Working Group(s): Aerosol Journal Reference: Kassianov, EI, and M Ovtchinnikov. 2008. "On reflectance ratios and aerosol optical depth retrieval in the presence of cumulus clouds." Geophysical Research Letters doi:10.1029/2008GL033231.

  11. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    The Influence of Parameterized Ice Habit on Simulated Mixed-Phase Arctic Clouds Download a printable PDF Submitter: Harrington, J. Y., Pennsylvania State University Avramov, A., Columbia University Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Modeling Journal Reference: Avramov A and JY Harrington. 2010. "Influence of parameterized ice habit on simulated mixed phase Arctic clouds." Journal of Geophysical Research - Atmospheres, 115, D03205,

  12. Atmosphere to Electrons: Enabling the Wind Plant of Tomorrow

    SciTech Connect (OSTI)

    Office of Energy Efficiency and Renewable Energy

    2015-11-01

    The U.S. Department of Energy’s Atmosphere to Electrons research initiative is focused on improving the performance and reliability of wind plants by establishing an unprecedented understanding of how the Earth’s atmosphere interacts with the wind plants and developing innovative technologies to maximize energy extraction from the wind.

  13. HGSYSTEMUF6. Model for Simulating Dispersion due to Atmospheric Release of UF6

    SciTech Connect (OSTI)

    Hanna, G; Chang, J.C.; Zhang, J.X.; Bloom, S.G.; Goode, W.D. Jr; Lombardi, D.A.; Yambert, M.W.

    1998-08-01

    HGSYSTEMUF6 is a suite of models designed for use in estimating consequences associated with accidental, atmospheric release of Uranium Hexafluoride (UF6) and its reaction products, namely Hydrogen Fluoride (HF), and other non-reactive contaminants which are either negatively, neutrally, or positively buoyant. It is based on HGSYSTEM Version 3.0 of Shell Research LTD., and contains specific algorithms for the treatment of UF6 chemistry and thermodynamics. HGSYSTEMUF6 contains algorithms for the treatment of dense gases, dry and wet deposition, effects due to the presence of buildings (canyon and wake), plume lift-off, and the effects of complex terrain. The models components of the suite include (1) AEROPLUME/RK, used to model near-field dispersion from pressurized two-phase jet releases of UF6 and its reaction products, (2) HEGADAS/UF6 for simulating dense, ground based release of UF6, (3) PGPLUME for simulation of passive, neutrally buoyant plumes (4) UF6Mixer for modeling warm, potentially reactive, ground-level releases of UF6 from buildings, and (5) WAKE, used to model elevated and ground-level releases into building wake cavities of non-reactive plumes that are either neutrally or positively buoyant.

  14. Model for Simulating Dispersion due to Atmospheric Release of UF6

    Energy Science and Technology Software Center (OSTI)

    1997-01-01

    HGSYSTEMUF6 is a suite of models designed for use in estimating consequences associated with accidental, atmospheric release of Uranium Hexafluoride (UF6) and its reaction products, namely Hydrogen Fluoride (HF), and other non-reactive contaminants which are either negatively, neutrally, or positively buoyant. It is based on HGSYSTEM Version 3.0 of Shell Research LTD., and contains specific algorithms for the treatment of UF6 chemistry and thermodynamics. HGSYSTEMUF6 contains algorithms for the treatment of dense gases, dry andmore » wet deposition, effects due to the presence of buildings (canyon and wake), plume lift-off, and the effects of complex terrain. The models components of the suite include (1) AEROPLUME/RK, used to model near-field dispersion from pressurized two-phase jet releases of UF6 and its reaction products, (2) HEGADAS/UF6 for simulating dense, ground based release of UF6, (3) PGPLUME for simulation of passive, neutrally buoyant plumes (4) UF6Mixer for modeling warm, potentially reactive, ground-level releases of UF6 from buildings, and (5) WAKE, used to model elevated and ground-level releases into building wake cavities of non-reactive plumes that are either neutrally or positively buoyant.« less

  15. Nanoscale Molecules Under Thermodynamic Control:" Digestive Ripening" or " Nanomachining"

    SciTech Connect (OSTI)

    Klabunde, Kenneth J.

    2015-06-04

    Overall Research Goals and Specific Objectives: Nanoscale materials are becoming ubiquitous in science and engineering, and are found widely in nature. However, their formation processes and uniquely high chemical reactivities are not understood well, indeed are often mysterious. Over recent years, a number of research teams have described nanoparticle synthesis, and aging, thermal treatment, or etching times have been mentioned. We have used the terms “digestive ripening” and “nanomachining” and have suggested that thermodynamics plays an important part in the size adjustment to monodisperse arrays being formed. Since there is scant theoretical understanding of digestive ripening, the overall goal in our research is to learn what experimental parameters (ligand used, temperature, solvent, time) are most important, how to control nanoparticle size and shape after initial crude nanoparticles have been synthesized, and gain better understanding of the chemical mechanism details. Specific objectives for the past twentynine months since the grant began have been to (1) Secure and train personnel;as of 2011, a postdoc Deepa Jose, female from the Indian Institute of Science in Bangalore, India; Yijun Sun, a second year graduate student, female from China; and Jessica Changstrom, female from the USA, GK12 fellow (program for enhancing teaching ability) are actively carrying out research. (2) Find out what happens to sulfur bound hydrogen of thiol when it interacts with gold nanoparticles. Our findings are discussed in detail later. (3) Determine the effect of particle size, shape, and temperature on dodecyl thiol assited digestive ripening of gold nanoparticles. See our discussions later. (4) To understand in detail the ligand interaction in molecular clusters and nanoparticles (5) Determine the effect of chain length of amines on Au nanoparticle size under digestive ripening conditions (carbon chain length varied from 4-18). (6) Determine the catalytic activity

  16. ARM - PI Product - AERIoe Thermodynamic Profile and Cloud Retrieval for SGP

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    CF during LABLE-2012 2 ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : AERIoe Thermodynamic Profile and Cloud Retrieval for SGP CF during LABLE-2012 [ ARM research ] The AERIoe algorithm retrieves profiles of temperature and water vapor mixing ratio, together with cloud properties for a single-layer cloud (i.e., LWP, effective radius), from AERI-observed infrared radiance spectrum. The method is a

  17. ARM - PI Product - AERIoe Thermodynamic Profile and Cloud Retrieval for SGP

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    CF during LABLE-2013 3 ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : AERIoe Thermodynamic Profile and Cloud Retrieval for SGP CF during LABLE-2013 [ ARM research ] The AERIoe algorithm retrieves profiles of temperature and water vapor mixing ratio, together with cloud properties for a single-layer cloud (i.e., LWP, effective radius), from AERI-observed infrared radiance spectrum. The method is a

  18. Continuous Water Vapor Profiles for the Fixed Atmospheric Radiation Measurement Sites

    SciTech Connect (OSTI)

    Jensen, M; Troyan, D

    2006-01-09

    The Atmospheric Radiation Measurement (ARM) Program defined a specific metric for the first quarter of Fiscal Year 2006 to complete a continuous time series of the vertical profile of water vapor for selected 30-day periods from each of the fixed ARM sites. In order to accomplish this metric, a new technique devised to incorporate radiosonde data, microwave radiometer data and analysis information from numerical weather forecast models has been developed. The product of this analysis, referred to as the merged sounding value-added product, includes vertical profiles of atmospheric water vapor concentration and several other important thermodynamic state variables at 1-minute time intervals and 266 vertical levels.

  19. Atmospheric Pressure Plasma Process And Applications

    SciTech Connect (OSTI)

    Peter C. Kong; Myrtle

    2006-09-01

    This paper provides a general discussion of atmospheric-pressure plasma generation, processes, and applications. There are two distinct categories of atmospheric-pressure plasmas: thermal and nonthermal. Thermal atmospheric-pressure plasmas include those produced in high intensity arcs, plasma torches, or in high intensity, high frequency discharges. Although nonthermal plasmas are at room temperatures, they are extremely effective in producing activated species, e.g., free radicals and excited state atoms. Thus, both thermal and nonthermal atmosphericpressure plasmas are finding applications in a wide variety of industrial processes, e.g. waste destruction, material recovery, extractive metallurgy, powder synthesis, and energy conversion. A brief discussion of recent plasma technology research and development activities at the Idaho National Laboratory is included.

  20. Differential atmospheric tritium sampler

    DOE Patents [OSTI]

    Griesbach, Otto A.; Stencel, Joseph R.

    1990-01-01

    An atmospheric tritium sampler is provided which uses a carrier gas comprised of hydrogen gas and a diluting gas, mixed in a nonexplosive concentration. Sample air and carrier gas are drawn into and mixed in a manifold. A regulator meters the carrier gas flow to the manifold. The air sample/carrier gas mixture is pulled through a first moisture trap which adsorbs water from the air sample. The mixture then passes through a combustion chamber where hydrogen gas in the form of H.sub.2 or HT is combusted into water. The manufactured water is transported by the air stream to a second moisture trap where it is adsorbed. The air is then discharged back into the atmosphere by means of a pump.

  1. Differential atmospheric tritium sampler

    DOE Patents [OSTI]

    Griesbach, O.A.; Stencel, J.R.

    1987-10-02

    An atmospheric tritium sampler is provided which uses a carrier gas comprised of hydrogen gas and a diluting gas, mixed in a nonexplosive concentration. Sample air and carrier gas are drawn into and mixed in a manifold. A regulator meters the carrier gas flow to the manifold. The air sample/carrier gas mixture is pulled through a first moisture trap which adsorbs water from the air sample. The moisture then passes through a combustion chamber where hydrogen gas in the form of H/sub 2/ or HT is combusted into water. The manufactured water is transported by the air stream to a second moisture trap where it is adsorbed. The air is then discharged back into the atmosphere by means of a pump.

  2. An electromagnetic and thermodynamic lumped parameter model of an explosively driven regenerative magnetohydrodynamic generator

    SciTech Connect (OSTI)

    Morrison, J.L.

    1992-12-01

    The objective of this research is to develop a simple, yet accurate, lumped parameter mathematical model for an explosively driven magnetohydrodynamic generator that can predict the pulse power variables of voltage and current from startup through regenerative operation. The inputs to the model will be the plasma properties entering the generator as predicted by the explosive shock model of Reference [1]. The strategy used was to simplify electromagnetic and thermodynamic three dimensional effects into a zero dimensional model. The model will provide a convenient tool for researchers to optimize designs to be used in pulse power applications. The model is validated using experimental data of Reference [1]. An overview of the operation of the explosively driven generator is first presented. Then a simplified electrical circuit model that describes basic performance of the device is developed. Then a lumped parameter model that incorporates the coupled electromagnetic and thermodynamic effects that govern generator performance is described and developed. The model is based on fundamental physical principles and parameters that were either obtained directly from design data or estimated from experimental data. The model was used to obtain parameter sensitivities and predict beyond the limits observed in the experiments to the levels desired by the potential Department of Defense sponsors. The model identifies process limitations that provide direction for future research.

  3. Sandia National Laboratories: Research: Research Foundations: Geoscience

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Geoscience Bioscience Computing and Information Science Electromagnetics Engineering Science Geoscience Materials Science Nanodevices and Microsystems Radiation Effects and High Energy Density Science Research Geoscience Geoscience photo The Geoscience Research Foundation performs recognized world-class earth and atmospheric sciences research and development to support Sandia's national security missions. Why our work matters Knowledge of the Earth's subsurface properties, structure and

  4. Ab Initio Thermodynamic Model for Magnesium Carbonates and Hydrates

    SciTech Connect (OSTI)

    Chaka, Anne M.; Felmy, Andrew R.

    2014-03-28

    An ab initio thermodynamic framework for predicting properties of hydrated magnesium carbonate minerals has been developed using density-functional theory linked to macroscopic thermodynamics through the experimental chemical potentials for MgO, water, and CO2. Including semiempirical dispersion via the Grimme method and small corrections to the generalized gradient approximation of Perdew, Burke, and Ernzerhof for the heat of formation yields a model with quantitative agreement for the benchmark minerals brucite, magnesite, nesquehonite, and hydromagnesite. The model shows how small differences in experimental conditions determine whether nesquehonite, hydromagnesite, or magnesite is the result of laboratory synthesis from carbonation of brucite, and what transformations are expected to occur on geological time scales. Because of the reliance on parameter-free first principles methods, the model is reliably extensible to experimental conditions not readily accessible to experiment and to any mineral composition for which the structure is known or can be hypothesized, including structures containing defects, substitutions, or transitional structures during solid state transformations induced by temperature changes or processes such as water, CO2, or O2 diffusion. Demonstrated applications of the ab initio thermodynamic framework include an independent means to evaluate differences in thermodynamic data for lansfordite, predicting the properties of Mg analogs of Ca-based hydrated carbonates monohydrocalcite and ikaite which have not been observed in nature, and an estimation of the thermodynamics of barringtonite from the stoichiometry and a single experimental observation.

  5. ARM - Evolution of the Atmosphere

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ListEvolution of the Atmosphere Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Evolution of the Atmosphere The earth's atmosphere plays a crucial role in shaping the weather, climate, and life-supporting systems. However, the ocean and atmosphere are the earth's fluid outer layers and are

  6. Eternal inflation and a thermodynamic treatment of Einstein's equations

    SciTech Connect (OSTI)

    Ghersi, José Tomás Gálvez; Geshnizjani, Ghazal; Shandera, Sarah; Piazza, Federico E-mail: ggeshnizjani@perimeterinstitute.ca E-mail: sshandera@perimeterinstitute.ca

    2011-06-01

    In pursuing the intriguing resemblance of the Einstein equations to thermodynamic equations, most sharply seen in systems possessing horizons, we suggest that eternal inflation of the stochastic type may be a fruitful phenomenon to explore. We develop a thermodynamic first law for quasi-de Sitter space, valid on the horizon of a single observer's Hubble patch and explore consistancy with previous proposals for horizons of various types in dynamic and static situations. We use this framework to demonstrate that for the local observer fluctuations of the type necessary for stochastic eternal inflation fall within the regime where the thermodynamic approach is believed to apply. This scenario is interesting because of suggestive parallels with black hole evaporation.

  7. Atmospheric Science Program (ASP) Data Archive

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Department of Energy's Atmospheric Science Program (ASP) originally consisted of an atmospheric chemistry program, an environmental meteorology program, a tropospheric aerosol program, and NARSTO activities. In 2004, the ASP was reconfigured to focus on aerosol radiative forcing of climate change: aerosol formation and evolution and aerosol properties that affect direct and indirect influences on climate and climate change. This included developing a comprehensive understanding of the atmospheric processes that control the transport, transformation, and fate of energy related trace chemicals and particulate matter. The current focus of the program is aerosol radiative forcing of climate. Effective October 1, 2009, The ASP merged with the Atmospheric Radiation Measurement Program (ARM), with the overall program now called Atmospheric System Research. The overall research goal is one that was shared in common, i.e. to further the understanding of how the climate, as a system works, and to represent the understanding in computer models. The Office of Science and Brookhaven announced, ôA major benefit of the merge is expected to be a strengthening of the aerosol- and cloud-related research components of the programs by bringing together the ARM capabilities of continuous remote sensing measurements of cloud properties and aerosol influences on radiation with the ASP capabilities for in-situ characterization of aerosol properties, evolution, and cloud interactions.ö [http://www.asp.bnl.gov/#New] The ASP data archive has now been moved to a new location in order to be maintained with ARM data. The new url is http://iop.archive.arm.gov/arm-iop/0special-data/ASP_Campaigns_past/. BNL continues to maintain an excellent list of ASP-publications at http://www.asp.bnl.gov/asp_pubs.html

  8. Wetting state on hydrophilic and hydrophobic micro-textured surfaces: Thermodynamic analysis and X-ray visualization

    SciTech Connect (OSTI)

    Yu, Dong In; Kwak, Ho Jae; Doh, Seung Woo; Park, Hyun Sun Kiyofumi, Moriyama; Kang, Hie Chan; Ahn, Ho Seon; Kim, Moo Hwan

    2015-04-27

    In this study, the wetting state on hydrophobic and hydrophilic micro-textured surfaces was investigated. High spatial resolution synchrotron X-ray radiography was used to overcome the limitations in visualization in previous research and clearly visualize the wetting state for each droplet under quantified surface conditions. Based on thermodynamic characteristics, a theoretical model for wetting state depending on the chemical composition (intrinsic contact angle) and geometrical morphology (roughness ratio) of the surfaces was developed.

  9. Analyzing Atmospheric Neutrino Oscillations

    SciTech Connect (OSTI)

    Escamilla, J.; Ernst, D. J.; Latimer, D. C.

    2007-10-26

    We provide a pedagogic derivation of the formula needed to analyze atmospheric data and then derive, for the subset of the data that are fully-contained events, an analysis tool that is quantitative and numerically efficient. Results for the full set of neutrino oscillation data are then presented. We find the following preliminary results: 1.) the sub-dominant approximation provides reasonable values for the best fit parameters for {delta}{sub 32}, {theta}{sub 23}, and {theta}{sub 13} but does not quantitatively provide the errors for these three parameters; 2.) the size of the MSW effect is suppressed in the sub-dominant approximation; 3.) the MSW effect reduces somewhat the extracted error for {delta}{sub 32}, more so for {theta}{sub 23} and {theta}{sub 13}; 4.) atmospheric data alone constrains the allowed values of {theta}{sub 13} only in the sub-dominant approximation, the full three neutrino calculations requires CHOOZ to get a clean constraint; 5.) the linear in {theta}{sub 13} terms are not negligible; and 6.) the minimum value of {theta}{sub 13} is found to be negative, but at a statistically insignificant level.

  10. Atmospheric Emitted Radiance Interferometer

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Gero, Jonathan; Ermold, Brian; Gaustad, Krista; Koontz, Annette; Hackel, Denny; Garcia, Raymond

    2005-01-01

    The atmospheric emitted radiance interferometer (AERI) is a ground-based instrument that measures the downwelling infrared radiance from the Earth’s atmosphere. The observations have broad spectral content and sufficient spectral resolution to discriminate among gaseous emitters (e.g., carbon dioxide and water vapor) and suspended matter (e.g., aerosols, water droplets, and ice crystals). These upward-looking surface observations can be used to obtain vertical profiles of tropospheric temperature and water vapor, as well as measurements of trace gases (e.g., ozone, carbon monoxide, and methane) and downwelling infrared spectral signatures of clouds and aerosols. The AERI is a passive remote sounding instrument, employing a Fourier transform spectrometer operating in the spectral range 3.3–19.2 μm (520–3020 cm-1) at an unapodized resolution of 0.5 cm-1 (max optical path difference of 1 cm). The extended-range AERI (ER-AERI) deployed in dry climates, like in Alaska, have a spectral range of 3.3–25.0 μm (400–3020 cm-1) that allow measurements in the far-infrared region. Typically, the AERI averages views of the sky over a 16-second interval and operates continuously.

  11. Perform Thermodynamics Measurements on Fuel Cycle Case Study Systems

    SciTech Connect (OSTI)

    Leigh R. Martin

    2014-09-01

    This document was prepared to meet FCR&D level 3 milestone M3FT-14IN0304022, Perform Thermodynamics Measurements on Fuel Cycle Case Study Systems. This work was carried out under the auspices of the Thermodynamics and Kinetics FCR&D work package. This document reports preliminary work in support of determining the thermodynamic parameters for the ALSEP process. The ALSEP process is a mixed extractant system comprised of a cation exchanger 2-ethylhexyl-phosphonic acid mono-2-ethylhexyl ester (HEH[EHP]) and a neutral solvating extractant N,N,N,N-tetraoctyldiglycolamide (TODGA). The extractant combination produces complex organic phase chemistry that is challenging for traditional measurement techniques. To neutralize the complexity, temperature dependent solvent extraction experiments were conducted with neat TODGA and scaled down concentrations of the ALSEP formulation to determine the enthalpies of extraction for the two conditions. A full set of thermodynamic data for Eu, Am, and Cm extraction by TODGA from 3.0 M HNO3 is reported. These data are compared to previous extraction results from a 1.0 M HNO3 aqueous medium, and a short discussion of the mixed HEH[EHP]/TODGA system results is offered.

  12. High-Pressure Tailored Compression: Controlled Thermodynamic Paths

    SciTech Connect (OSTI)

    Nguyen, J H; Orlikowski, D; Streitz, F H; Moriarty, J A; Holmes, N C

    2005-10-21

    We have recently carried out novel and exploratory dynamic experiments where the sample follows a prescribed thermodynamic path. In typical dynamic compression experiments, the samples are thermodynamically limited to the principal Hugoniot or quasi-isentrope. With recent developments in the functionally graded material impactor, we can prescribe and shape the applied pressure profile with similarly-shaped, non-monotonic impedance profile in the impactor. Previously inaccessible thermodynamic states beyond the quasi-isentropes and Hugoniot can now be reached in dynamic experiments with these impactors. In the light gas-gun experiments on copper reported here, we recorded the particle velocities of the Cu-LiF interfaces and employed hydrodynamic simulations to relate them to the thermodynamic phase diagram. Peak pressures for these experiments were on the order of megabars, and the time-scales ranged from nanoseconds to several microseconds. The strain rates of the quasi-isentropic experiments are approximately 10{sup 4} s{sup -1} to 10{sup 6} s{sup -1} in samples with thicknesses up to 5 mm. Though developed at a light-gas gun facility, such shaped pressure-profiles are also feasible in principle with laser ablation or magnetic driven compression techniques allowing for new directions to be taken in high pressure physics.

  13. Black hole thermodynamics from a variational principle: asymptotically conical backgrounds

    DOE PAGES-Beta [OSTI]

    An, Ok Song; Cvetič, Mirjam; Papadimitriou, Ioannis

    2016-03-14

    The variational problem of gravity theories is directly related to black hole thermodynamics. For asymptotically locally AdS backgrounds it is known that holographic renormalization results in a variational principle in terms of equivalence classes of boundary data under the local asymptotic symmetries of the theory, which automatically leads to finite conserved charges satisfying the first law of thermodynamics. We show that this connection holds well beyond asymptotically AdS black holes. In particular, we formulate the variational problem for N = 2 STU supergravity in four dimensions with boundary conditions corresponding to those obeyed by the so called ‘subtracted geometries’. Wemore » show that such boundary conditions can be imposed covariantly in terms of a set of asymptotic second class constraints, and we derive the appropriate boundary terms that render the variational problem well posed in two different duality frames of the STU model. This allows us to define finite conserved charges associated with any asymptotic Killing vector and to demonstrate that these charges satisfy the Smarr formula and the first law of thermodynamics. Moreover, by uplifting the theory to five dimensions and then reducing on a 2-sphere, we provide a precise map between the thermodynamic observables of the subtracted geometries and those of the BTZ black hole. Finally, surface terms play a crucial role in this identification.« less

  14. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Increased Accuracy for Sky Imager Retrievals Download a printable PDF Submitter: Long, C. N., NOAA Global Monitoring Division/CIRES Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Long CN. 2010. "Correcting for circumsolar and near-horizon errors in sky cover retrievals from sky images." The Open Atmospheric Science Journal, 4, doi:10.2174/1874282301004010045. Long CN, JM Sabburg, J Calbo, and D Pages. 2006. "Retrieving

  15. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Comparison of Arctic Clouds Between ECMWF Simulations and ARM Observations at the NSA Download a printable PDF Submitter: Zhao, M., National Oceanic and Atmospheric Administration Wang, Z., University of Wyoming Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Life Cycle Journal Reference: N/A Figure 1: Monthly-averaged vertical distribution of cloud fraction from the observation (a) and the ECMWF model (b), and their differences (c). Both

  16. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Multiyear Statistics of 2D Shortwave Radiative Effects at Three ARM Sites Download a printable PDF Submitter: Varnai, T., University of Maryland, Baltimore County/JCEST Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: Varnai T. 2010. "Multiyear statistics of 2D shortwave radiative effects at three ARM sites." Journal of the Atmospheric Sciences, 67, 3757-3762. Multiyear average influence of 2D radiative processes on total (surface and

  17. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    New Surface Albedo Data Set Enables Improved Radiative Transfer Calculations Download a printable PDF Submitter: McFarlane, S. A., U.S. Department of Energy Area of Research: Surface Properties Working Group(s): Cloud Life Cycle Journal Reference: McFarlane SA, K Gaustad, E Mlawer, C Long, and J Delamere. 2011. "Development of a high spectral resolution surface albedo product for the ARM Southern Great Plains central facility." Atmospheric Measurement Techniques, 4, 1713-1733. Time

  18. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Cloud-Top Humidity Inversions and the Maintenance of Arctic Mixed-Phase Stratocumulus Submitter: Solomon, A., NOAA/ESRL/Physical Sciences Division Shupe, M., University of Colorado Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Solomon A, MD Shupe, O Persson, and H Morrison. 2011. "Moisture and dynamical interactions maintaining decoupled Arctic mixed-phase stratocumulus in the presence of a humidity inversion." Atmospheric

  19. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    TOA Radiation Budget of Convective Core/Stratiform Rain/Anvil Clouds from Deep Convection Download a printable PDF Submitter: Feng, Z., Pacific Northwest National Laboratory Dong, X., University of Arizona Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Feng Z, XQ Dong, BK Xi, C Schumacher, P Minnis, and M Khaiyer. 2011. "Top-of-atmosphere radiation budget of convective core/stratiform rain and anvil clouds from deep convective

  20. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Trends in Downwelling Longwave Radiation over SGP Download a printable PDF Submitter: Gero, J., University of Wisconsin Turner, D. D., National Oceanic and Atmospheric Administration Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: Gero P and DD Turner. 2011. "Long-term trends in downwelling spectral infrared radiance over the U.S. Southern Great Plains." Journal of Climate, 24(18),

  1. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Challenging Work: Observing in the Arctic Download a printable PDF Submitter: Long, C. N., NOAA Global Monitoring Division/CIRES Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: Matsui N, CN Long, J Augustine, D Halliwell, T Uttal, D Longenecker, O Niebergall, J Wendell, and R Albee. 2012. "Evaluation of Arctic broadband surface radiation measurements." Atmospheric Measurement Techniques, 5, doi:10.5194/amt-5-429-2012. The Arctic is showing

  2. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Comparing Global Atmospheric Model Simulations of Tropical Convection Download a printable PDF Submitter: Lin, Y., Geophysical Fluid Dynamics Laboratory Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Life Cycle Journal Reference: N/A Mean profiles of (first column) total precipitation normalized Q1, (second column) convective precipitation normalized convective heating, (third column) stratiform heating, and (fourth column) convective

  3. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Radiative-Dynamical Feedbacks in Thin Stratiform Clouds Download a printable PDF Submitter: Petters, J. L., Pennsylvania State University Area of Research: Radiation Processes Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Petters JL, JY Harrington, and EE Clothiaux. 2012. "Radiative-dynamical feedbacks in low liquid water path stratiform clouds." Journal of the Atmospheric Sciences, 69(5), 10.1175/JAS-D-11-0169.1. Large-eddy simulation time series output

  4. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Mexico City Carbon-Containing Particle Composition Simulated Download a printable PDF Submitter: Zaveri, R., Pacific Northwest National Laboratory Area of Research: Radiation Processes Working Group(s): Aerosol Life Cycle Journal Reference: Lee-Taylor J, S Madronich, B Aumont, M Camredon, A Hodzic, GS Tyndall, E Aperl, and RA Zaveri. 2012. "Explicit modeling of organic chemistry and secondary organic aerosol partitioning for Mexico City and its outflow plume." Atmospheric Chemistry and

  5. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Looking at the Full Spectrum for Water Vapor Download a printable PDF Submitter: Turner, D. D., National Oceanic and Atmospheric Administration Area of Research: Radiation Processes Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Mlawer EJ, VH Payne, J Moncet, JS Delamere, MJ Alvarado, and DD Tobin. 2012. "Development and recent evaluation of the MT_CKD model of continuum absorption." Philosophical Transactions of The Royal Society A, 370, doi:

  6. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    What Controls the Vertical Extent of Continental Shallow Cumulus? Download a printable PDF Submitter: Zhang, Y., Lawrence Livermore National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Zhang Y and SA Klein. 2013. "Factors controlling the vertical extent of fair-weather shallow cumulus clouds over land: investigation of diurnal-cycle observations collected at the ARM Southern Great Plains site." Journal of the Atmospheric Sciences,

  7. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    An Application of Linear Programming Techniques to ARM Polarimetric Radar Processing Download a printable PDF Submitter: Giangrande, S., Brookhaven National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Giangrande SE, R McGraw, and L Lei. 2013. "An application of linear programming to polarimetric radar differential phase processing." Journal of Atmospheric and Oceanic Technology, 30(8), 10.1175/JTECH-D-12-00147.1. C-band scanning

  8. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Modified Climate Model Better Replicates Global Rainfall Submitter: Bhattacharya, A., Pacific Northwest National Laboratory Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Song X, GJ Zhang, and JF Li. 2012. "Evaluation of microphysics parameterization for convective clouds in the NCAR Community Atmosphere Model CAM5." Journal of Climate, 25(24), doi:10.1175/JCLI-D-11-00563.1. Rainfall in the

  9. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Mean and Variance Measurements of Photon Path Length in Oxygen A-Band and Water Vapor Band Provide Insight Into Radiative Transfer in Cloudy Conditions Submitter: Min, Q., State University of New York, Albany Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Min, Q, and E.E. Clothiaux, Photon path length distributions inferred from rotating shadowband spectrometer measurements at the Atmospheric Radiation Measurements Program Southern

  10. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Optimal Method to Determine Orientation Average of Scattering Properties of Ice Crystals Download a printable PDF Submitter: Um, J., University of Illinois, Urbana McFarquhar, G., University of Illinois, Urbana Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: Um J and GM McFarquhar. 2013. "Optimal numerical methods for determining the orientation averages of single-scattering properties of atmospheric ice crystals." Journal of Quantitative

  11. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    First-of-Its-Kind Intercomparison Study Highlights Needed Improvements in Atmospheric Models Download a printable PDF Submitter: Fridlind, A. M., NASA - Goddard Institute for Space Studies Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: Petch J, A Hill, L Davies, A Fridlind, C Jakob, Y Lin, S Xie, and P Zhu. 2013. "Evaluation of intercomparisons of four different

  12. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Determining the Future of CO2 Using an Earth System Model Download a printable PDF Submitter: Keppel-Aleks, G., University of Michigan Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Aerosol Life Cycle Journal Reference: Keppel-Aleks G, JT Randerson, K Lindsay, BB Stephens, JK Moore, SC Doney, PE Thornton, NM Mahowald, FM Hoffman, C Sweeney, PP Tans, PO Wennberg, and SC Wofsy. 2013. "Atmospheric carbon dioxide variability in the Community

  13. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Improving Estimates of Cloud Condensation Nuclei Concentration Download a printable PDF Submitter: Li, Z., University of Maryland Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Liu J and Z Li. 2014. "Estimation of cloud condensation nuclei concentration from aerosol optical quantities: influential factors and uncertainties." Atmospheric Chemistry and Physics, 14(1), doi:10.5194/acp-14-1-2014.

  14. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Satellite Inference of Thermals and Cloud Base Updraft Speeds Download a printable PDF Submitter: Zheng, Y., University of Maryland Area of Research: Vertical Velocity Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Zheng Y, D Rosenfeld, and Z Li. 2015. "Satellite inference of thermals and cloud base updraft speeds based on retrieved surface and cloud base temperatures." Journal of the Atmospheric Sciences, , . ONLINE. Validation of satellite-estimated

  15. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Single Particle Database of Natural Ice Crystals: Dimensions and Aspect Ratios Download a printable PDF Submitter: Um, J., University of Illinois, Urbana McFarquhar, G., University of Illinois, Urbana Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Um J, GM McFarquhar, Y Hong, S Lee, C Jung, R Lawson, and Q Mo. 2015. "Dimensions and aspect ratios of natural ice crystals." Atmospheric Chemistry and Physics, 15,

  16. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    "Radiance Assimilation" Correction Method Improves Water Vapor Radiosonde Observations in the Upper Troposphere Submitter: Soden, B. J., University of Miami Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: Soden, B.J., D.D. Turner, B.M. Lesht, and L.M. Miloshevich (2004), An analysis of satellite, radiosonde, and lidar observations of upper tropospheric water vapor from the Atmospheric Radiation

  17. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Making Sense of Convective Updrafts: Mass Flux and Microphysics Download a printable PDF Submitter: Fridlind, A. M., NASA - Goddard Institute for Space Studies Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Mrowiec AA, OM Pauluis, AM Fridlind, and AS Ackerman. 2015. "Properties of a mesoscale convective system in the context of an isentropic analysis." Journal of the Atmospheric Sciences, ,

  18. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    A Lidar View of Clouds in Southeastern China Download a printable PDF Submitter: Li, Z., University of Maryland Cribb, M. C., University of Maryland Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Liu J, Z Li, Y Zheng, and M Cribb. 2015. "Cloud-Base Distribution and Cirrus Properties Based on Micropulse Lidar Measurements at a Site in Southeastern China." Advances in Atmospheric Sciences, 32(7),

  19. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Sticky Thermals: Evidence for a Dominant Balance Between Buoyancy and Drag in Cloud Updrafts Download a printable PDF Submitter: Romps, D., Lawrence Berkeley National Laboratory Area of Research: Vertical Velocity Working Group(s): Cloud Life Cycle Journal Reference: Romps DM and AB Charn. 2015. "Sticky thermals: Evidence for a dominant balance between buoyancy and drag in cloud updrafts." Journal of the Atmospheric Sciences, , doi:10.1175/JAS-D-15-0042.1. ONLINE. Hill's vortex (shown

  20. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Three-Dimensional Constrained Variational Analysis: Approach and Application Download a printable PDF Submitter: Zhang, M., Stony Brook University Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: Tang S and M Zhang. 2015. "Three-dimensional constrained variational analysis: Approach and application to analysis of atmospheric diabatic heating and derivative fields during an ARM SGP intensive observational period." Journal of Geophysical

  1. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Good Is Not Enough: Improving Measurements of Atmospheric Particles Download a printable PDF Submitter: Kassianov, E., Pacific Northwest National Laboratory Area of Research: Radiation Processes Working Group(s): Aerosol Life Cycle Journal Reference: Kassianov E, LK Berg, M Pekour, J Barnard, D Chand, C Flynn, M Ovchinnikov, A Sedlacek, B Schmid, J Shilling, J Tomlinson, and J Fast. 2015. "Airborne aerosol in situ measurements during TCAP: A closure study of total scattering."

  2. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Exploring Stratocumulus Cloud-Top Entrainment Processes and Parameterizations by Using Doppler Download a printable PDF Submitter: Albrecht, B. A., University of Miami Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Albrecht B, M Fang, and V Ghate. 2016. "Exploring Stratocumulus Cloud-Top Entrainment Processes and Parameterizations by Using Doppler Cloud Radar Observations." Journal of the Atmospheric Sciences, 73(2), 10.1175/JAS-D-15-0147.1.

  3. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Diagnosing Raindrop Evaporation, Breakup, and Coalescence in Vertical Radar Observations PI Contact: Williams, C. R., University of Colorado Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Williams CR. 2016. "Reflectivity and Liquid Water Content Vertical Decomposition Diagrams to Diagnose Vertical Evolution of Raindrop Size Distributions." Journal of Atmospheric and Oceanic Technology, 33(3), doi: 10.1175/jtech-d-15-0208.1. Example of

  4. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Microphysical Piggybacking: Understanding the Coupling Between Cloud Dynamics and Microphysics PI Contact: Grabowski, W., NCAR Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Grabowski WW. 2014. "Extracting microphysical impacts in large-eddy simulations of shallow convection." Journal of the Atmospheric Sciences, 71(12), 10.1175/JAS-D-14-0231.1. Grabowski WW. 2015. "Untangling microphysical

  5. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Regime Dependence of Cloud Water Variability Observed at the ARM Sites PI Contact: Ahlgrimm, M., European Centre for Medium-Range Weather Forecasts Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Life Cycle Journal Reference: Ahlgrimm M and RM Forbes. 2016. "Regime dependence of cloud condensate variability observed at the Atmospheric Radiation Measurement sites." Quarterly Journal Royal Meteorological Society, ,

  6. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    On the Impacts of Different Definitions of Maximum Dimension for Nonspherical Cloud Particles PI Contact: Wu, W., University of Illinois at Urbana-Champaign McFarquhar, G., University of Illinois, Urbana Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: McFarquhar GM and W Wu. 2016. "On the impacts of different definitions of maximum dimension for nonspherical particles recorded by 2D imaging probes." Journal of Atmospheric

  7. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Data from DOE Atmospheric Radiation Measurement Program Allows Evaluation of Surface Models Submitter: Robock, A., Rutgers University Area of Research: Surface Properties Working Group(s): Cloud Modeling Journal Reference: Robock, A., Luo, L., Wood, E. F., Wen, F., Mitchell, K. E., Houser, P. R., Schaake, J. C., Lohmann, D., Cosgrove, B., Sheffield, J., Duan, Q., Higgins, R. W., Pinker, R. T., Tarpley, J. D., Basara, J. D., Crawford, K. C., Evaluation of the North American Land Data Assimilation

  8. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Correction Method for Infrared Detector Confirmed; Error in Clear Sky Bias Condition Remains Unresolved Submitter: Turner, D. D., National Oceanic and Atmospheric Administration Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: N/A AERI data from January 2004 at the ARM North Slope of Alaska locale shows the observed radiance for two AERI systems with significantly different hot blackbody temperatures. Residuals are within 1% of the ambient radiance

  9. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Unraveling the Layers of Aerosols in the Atmosphere PI Contact: Fast, J. D., Pacific Northwest National Laboratory Area of Research: Aerosol Processes Working Group(s): Aerosol Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: N/A The higher-resolution model produced stronger vertical motions, and thus more aerosol mass in the free troposphere that was more consistent with lidar data. The higher-resolution model produced stronger vertical motions, and thus more aerosol mass

  10. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    A Major Artifact in Aerosol-Cloud-Interaction Studies Discovered from Azores Measurements PI Contact: Li, Z., University of Maryland Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Liu J, Z Li, and MC Cribb. 2016. "Response of marine boundary layer cloud properties to aerosol perturbations associated with meteorological conditions from the 19-month AMF-Azores campaign." Journal of the Atmospheric

  11. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    General Formulation for Representing Cloud-to-Rain Transition in Atmospheric Models Submitter: Liu, Y., Brookhaven National Laboratory Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Aerosol, Cloud Modeling, Cloud Properties Journal Reference: Liu, Y., P. H. Daum, R. McGraw, M. Miller, and S. Niu, 2007: Theoretical formulation for autoconversion rate of cloud droplet concentration. Geophys. Res. Lett., 34, L116821, doi:10.1029/2007GL030389

  12. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Observational Evidence of Changes in Water Vapor, Clouds, and Radiation Submitter: Dong, X., University of Arizona Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Dong, X., B. Xi, and P. Minnis, 2006: Observational Evidence of Changes in Water vapor, Clouds, and Radiation at the ARM SGP site. Geophys. Res. Lett., 33, L19818,doi:10.1029/2006GL027132. Figure 1. This plot shows that atmospheric precipitable water vapor and downwelling

  13. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Study Aerosol Humidity Effects Using the ARM Measurements Submitter: Li, Z., University of Maryland Area of Research: Radiation Processes Working Group(s): Aerosol Journal Reference: Jeong, M.-J., Z. Li, E. Andrews, and S.-C. Tsay (2007). Effect of aerosol humidification on the column aerosol optical thickness over the Atmospheric Radiation Measurement Southern Great Plains site, J. Geophys. Res., 112, D10202, doi:10.1029/2006JD007176. (a)-(j) Column-mean aerosol humidification factor as

  14. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Use of ARM Products in Reanalysis Applications and IPCC Model Assessment Download a printable PDF Submitter: Walsh, J. E., University of Illinois, Urbana Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Modeling Journal Reference: Walsh, J. E., W. L. Chapman, and D. H. Portis: Arctic clouds and radiative fluxes in large-scale atmospheric reanalysis. Submitted to the Journal of Climate. Figure 1. Monthly mean cloud fraction is shown here from ARM-observations

  15. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Mixed-Phase Cloud Vertical Velocities and Dynamical-Microphysical Interactions Download a printable PDF Submitter: Shupe, M., University of Colorado Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Shupe, MD, P Kollias, M Poellot, and E Eloranta. 2008. "On deriving vertical air motions from cloud radar Doppler spectra." Journal of Atmospheric and Oceanic Technology 25: 547-557. Shupe, MD, P Kollias, POG Persson, and GM

  16. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    A Simple Stochastic Model for Generating Broken Cloud Optical Depth and Cloud Top Height Fields Download a printable PDF Submitter: Marshak, A., NASA - Goddard Space Flight Center Area of Research: Cloud Distributions/Characterizations Working Group(s): Radiative Processes Journal Reference: Prigarin, S, and A Marshak. 2008. "A simple stochastic model for generating broken cloud optical depth and cloud top height fields." Journal of Atmospheric Sciences, in press. Fig. 1. A 68-km by

  17. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ARM QCRad Goes Global Download a printable PDF Submitter: Long, C. N., NOAA Global Monitoring Division/CIRES Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: Long, CN, and Y Shi. 2008. "An automated quality assessment and control algorithm for surface radiation measurements." The Open Atmospheric Science Journal 2: 23-37, doi: 10.2174/1874282300802010023. Figure: QCRad downwelling (top) and upwelling (bottom) longwave (LW) comparison

  18. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Cloud Susceptibility Measures Potential Cloud Sensitivity to First Aerosol Indirect Effect Download a printable PDF Submitter: Oreopoulos, L., NASA Platnick, S., NASA - Goddard Space Flight Center Area of Research: Cloud Distributions/Characterizations Working Group(s): Radiative Processes Journal Reference: Platnick, S, and L Oreopoulos. 2008. "Radiative susceptibility of cloudy atmospheres to droplet number perturbations: 1. Theoretical analysis and examples from MODIS." Journal of

  19. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Vertical Air Motion Measurements in Large-Scale Precipitation Download a printable PDF Submitter: Giangrande, S., Brookhaven National Laboratory Luke, E., Brookhaven National Laboratory Kollias, P., Stony Brook University Area of Research: Vertical Velocity Working Group(s): Cloud Properties Journal Reference: Giangrande SE, EP Luke, and P Kollias. 2010. "Automated retrievals of precipitation parameters using non-Rayleigh scattering at 95-GHz." Journal of Atmospheric and Oceanic

  20. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Continuous Clear-Sky Longwave from Surface Measurements Download a printable PDF Submitter: Long, C. N., NOAA Global Monitoring Division/CIRES Turner, D. D., National Oceanic and Atmospheric Administration Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: Long, CN, and DD Turner. 2008. "A method for continuous estimation of clear-sky downwelling longwave radiative flux developed using ARM surface measurements." Journal of Geophysical

  1. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Improving Cloud Parameterizations in Climate Models: Implications from CAM3 and WRF Simulations Download a printable PDF Submitter: Wang, W., Pacific Northwest National Laboratory Liu, X., University of Wyoming Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: Wang W, X Liu, S Xie, J Boyle, and SA McFarlane. 2009. "Testing ice microphysics parameterizations in the NCAR Community Atmospheric Model Version 3

  2. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Black Carbon Aerosols and the Third Polar Ice Cap Submitter: Menon, S., Lawrence Berkeley National Laboratory Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: Menon S, D Koch, G Beig, S Sahu, J Fasullo, and D Orlikowski. 2009. "Black carbon aerosols and the third polar ice cap." Atmospheric Chemistry and Physics, 9, 26593-26625. Recent thinning of glaciers over the Himalayas (sometimes referred to as

  3. WATEQ3 geochemical model: thermodynamic data for several additional solids

    SciTech Connect (OSTI)

    Krupka, K.M.; Jenne, E.A.

    1982-09-01

    Geochemical models such as WATEQ3 can be used to model the concentrations of water-soluble pollutants that may result from the disposal of nuclear waste and retorted oil shale. However, for a model to competently deal with these water-soluble pollutants, an adequate thermodynamic data base must be provided that includes elements identified as important in modeling these pollutants. To this end, several minerals and related solid phases were identified that were absent from the thermodynamic data base of WATEQ3. In this study, the thermodynamic data for the identified solids were compiled and selected from several published tabulations of thermodynamic data. For these solids, an accepted Gibbs free energy of formation, ..delta..G/sup 0//sub f,298/, was selected for each solid phase based on the recentness of the tabulated data and on considerations of internal consistency with respect to both the published tabulations and the existing data in WATEQ3. For those solids not included in these published tabulations, Gibbs free energies of formation were calculated from published solubility data (e.g., lepidocrocite), or were estimated (e.g., nontronite) using a free-energy summation method described by Mattigod and Sposito (1978). The accepted or estimated free energies were then combined with internally consistent, ancillary thermodynamic data to calculate equilibrium constants for the hydrolysis reactions of these minerals and related solid phases. Including these values in the WATEQ3 data base increased the competency of this geochemical model in applications associated with the disposal of nuclear waste and retorted oil shale. Additional minerals and related solid phases that need to be added to the solubility submodel will be identified as modeling applications continue in these two programs.

  4. Thermodynamically Tuned Nanophase Materials for reversible Hydrogen storage

    SciTech Connect (OSTI)

    Ping Liu; John J. Vajo

    2010-02-28

    This program was devoted to significantly extending the limits of hydrogen storage technology for practical transportation applications. To meet the hydrogen capacity goals set forth by the DOE, solid-state materials consisting of light elements were developed. Many light element compounds are known that have high capacities. However, most of these materials are thermodynamically too stable, and they release and store hydrogen much too slowly for practical use. In this project we developed new light element chemical systems that have high hydrogen capacities while also having suitable thermodynamic properties. In addition, we developed methods for increasing the rates of hydrogen exchange in these new materials. The program has significantly advanced (1) the application of combined hydride systems for tuning thermodynamic properties and (2) the use of nanoengineering for improving hydrogen exchange. For example, we found that our strategy for thermodynamic tuning allows both entropy and enthalpy to be favorably adjusted. In addition, we demonstrated that using porous supports as scaffolds to confine hydride materials to nanoscale dimensions could improve rates of hydrogen exchange by > 50x. Although a hydrogen storage material meeting the requirements for commercial development was not achieved, this program has provided foundation and direction for future efforts. More broadly, nanoconfinment using scaffolds has application in other energy storage technologies including batteries and supercapacitors. The overall goal of this program was to develop a safe and cost-effective nanostructured light-element hydride material that overcomes the thermodynamic and kinetic barriers to hydrogen reaction and diffusion in current materials and thereby achieve > 6 weight percent hydrogen capacity at temperatures and equilibrium pressures consistent with DOE target values.

  5. From the archives: Analyzing atmospheric behavior

    SciTech Connect (OSTI)

    Panofsky, Hans

    2014-06-01

    Most meteorologists are really physicists in disguise. They use thermodynamics and hydrodynamics to understand snow squalls in Buffalo and typhoons in Japan.

  6. Thermodynamic Advantages of Low Temperature Combustion Engines Including the Use of Low Heat Rejection Concepts

    Energy.gov [DOE]

    Thermodynamic cycle simulation was used to evaluate low temperature combustion in systematic and sequential fashion to base engine design.

  7. Atmospheric dispersion in mountain valleys and basins

    SciTech Connect (OSTI)

    Allwine, K.J.

    1992-01-01

    The primary goal of the research is to further characterize and understand dispersion in valley and basin atmospheres. A secondary, and related goal, is to identify and understand the dominant physical processes governing this dispersion. This has been accomplished through a review of the current literature, and analyses of recently collected data from two field experiments. This work should contribute to an improved understanding of material transport in the atmospheric boundary layer. It was found that dispersion in a freely draining valley (Brush Creek valley, CO) atmosphere is much greater than in an enclosed basin (Roanoke, VA) atmosphere primarily because of the greater wind speeds moving past the release point and the greater turbulence levels. The development of a cold air pool in the Roanoke basin is the dominant process governing nighttime dispersion in the basin, while the nighttime dispersion in the Brush Creek valley is dominated by turbulent diffusion and plume confinement between the valley sidewalls. The interaction between valley flows and above ridgetops flows is investigated. A ``ventilation rate`` of material transport between the valley and above ridgetop flows is determined. This is important in regional air pollution modeling and global climate modeling. A simple model of dispersion in valleys, applicable through a diurnal cycle, is proposed.

  8. Atmospheric dispersion in mountain valleys and basins

    SciTech Connect (OSTI)

    Allwine, K.J.

    1992-01-01

    The primary goal of the research is to further characterize and understand dispersion in valley and basin atmospheres. A secondary, and related goal, is to identify and understand the dominant physical processes governing this dispersion. This has been accomplished through a review of the current literature, and analyses of recently collected data from two field experiments. This work should contribute to an improved understanding of material transport in the atmospheric boundary layer. It was found that dispersion in a freely draining valley (Brush Creek valley, CO) atmosphere is much greater than in an enclosed basin (Roanoke, VA) atmosphere primarily because of the greater wind speeds moving past the release point and the greater turbulence levels. The development of a cold air pool in the Roanoke basin is the dominant process governing nighttime dispersion in the basin, while the nighttime dispersion in the Brush Creek valley is dominated by turbulent diffusion and plume confinement between the valley sidewalls. The interaction between valley flows and above ridgetops flows is investigated. A ventilation rate'' of material transport between the valley and above ridgetop flows is determined. This is important in regional air pollution modeling and global climate modeling. A simple model of dispersion in valleys, applicable through a diurnal cycle, is proposed.

  9. ARM - Sources of Atmospheric Carbon

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Sources of Atmospheric Carbon Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Sources of Atmospheric Carbon Atmospheric carbon represented a steady state system, where influx equaled outflow, before the Industrial Revolution. Currently, it is no longer a steady state system because the

  10. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    The Short and the Long of Storms: Tracing a Deep Convective System's Life in the Midlatitude Download a printable PDF Submitter: Feng, Z., Pacific Northwest National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Feng Z, X Dong, B Xi, S McFarlane, A Kennedy, B Lin, and P Minnis. 2012. "Life cycle of midlatitude deep convective systems in a Lagrangian framework." Journal of Geophysical Research - Atmospheres, 117(D23), D23201,

  11. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Evaluation of WRF Microphysics Schemes in Squall Line Simulations Download a printable PDF Submitter: Dong, X., University of Arizona Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Wu D, B Xi, Z Feng, A Kennedy, M Grenchen, G Matt, and T W-K. 2013. "The impact of various WRF single-moment microphysics parameterizations on squall line precipitation events." Journal of Geophysical Research - Atmospheres, 118, doi:10.1002/jgrd.50798. Comparison of

  12. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Madden-Julian Oscillation Heating: to Tilt or Not to Tilt Download a printable PDF Submitter: Schumacher, C., Texas A&M University Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Lappen C and C Schumacher. 2014. "The role of tilted heating in the evolution of the MJO." Journal of Geophysical Research - Atmospheres, 119(6), 10.1002/2013JD020638. In this figure, November through April wavenumber frequency spectrum of OLR (colors) and 850 hPa

  13. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Validation of CERES-MODIS Cloud Retrievals Using the Azores Data Download a printable PDF Submitter: Dong, X., University of Arizona Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Xi B, P Minnis, and S Sun-Mack. 2014. "Comparison of marine boundary layer cloud properties from CERES-MODIS edition 4 and DOE ARM AMF measurements at the Azores." Journal of Geophysical Research - Atmospheres, 119, doi:10.1002/2014JD021813. Figure 1. The ARM radar-MWR

  14. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Climate Warming Due to Soot and Smoke? Maybe Not. Submitter: Penner, J. E., University of Michigan Area of Research: Aerosol Properties Working Group(s): Aerosol Journal Reference: Penner, J.E., S.Y. Zhang, and C.C. Chuang, Soot and smoke aerosol may not warm climate, J. Geophys. Res., 108(D21), 4657, doi:10.1029/2003JD003409, 2003. New research results from the Department of Energy's Atmospheric Radiation Measurement (ARM) Program suggest that fossil fuel soot emissions and biomass smoke may

  15. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Dust Takes Detour on Ice-Cloud Journey Download a printable PDF Submitter: Kulkarni, G., Pacific Northwest National Laboratory Area of Research: Aerosol Processes Working Group(s): Aerosol Life Cycle Journal Reference: Kulkarni G, C Sanders, K Zhang, X Liu, and C Zhao. 2014. "Ice nucleation of bare and sulfuric acid-coated mineral dust particles and implication for cloud properties." Journal of Geophysical Research - Atmospheres, 119(16), doi:10.1002/2014JD021567. Cirrus clouds are

  16. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    How Well Are Shallow Convective Clouds Simulated in the CAM5 Model? Download a printable PDF Submitter: Chandra, A. S., University of Miami Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Chandra AS, C Zhang, SA Klein, and H Ma. 2015. "Low-cloud characteristics over the tropical western Pacific from ARM observations and CAM5 simulations." Journal of Geophysical Research - Atmospheres, 120(17), 52402, doi:10.1002/2015JD02.

  17. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    DCS Ice Cloud Microphysical Properties Derived from Aircraft Data During MC3E Submitter: Dong, X., University of Arizona Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Wang J, X Dong, and B Xi. 2015. "Investigation of ice cloud microphysical properties of DCSs using aircraft in situ measurements during MC3E over the ARM SGP site." Journal of Geophysical Research - Atmospheres, 120(8), 3533-3552. Figure 1. The observed PSDs at different aircraft

  18. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Saggy Bright Bands PI Contact: Kumjian, M., Pennsylvania State University Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Kumjian MR, S Mishra, SE Giangrande, T Toto, AV Ryzhkov, and A Bansemer. 2016. "Polarimetric radar and aircraft observations of saggy bright bands during MC3E." Journal of Geophysical Research - Atmospheres, , doi: 10.1002/2015JD024446. ONLINE. Time series of quasi-vertical profiles from 27 April 2011, 05:00 UTC through about

  19. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ARM Program Research Improves Longwave Radiative Transfer Models Submitter: Turner, D. D., National Oceanic and Atmospheric Administration Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Radiative Processes Journal Reference: The QME AERI LBLRTM: A closure experiment for downwelling high spectral resolution infrared radiance. D.D. Turner, D.C. Tobin, S.A. Clough, P.D. Brown, R.G. Ellingson, E.J. Mlawer, R.O. Knuteson, H.E. Revercomb, T.R.

  20. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    4D (Space-time) Ice Cloud Microphysical Properties of DCSs Retrieved from NEXRAD PI Contact: Dong, X., University of Arizona Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Jingjing T, D Xiquan, X Baike, W Jingyu, H Cameron, M Greg, and F Jiwen. 2016. "Retrievals of ice cloud microphysical properties of deep convective systems using radar measurements." Journal of Geophysical Research - Atmospheres, 121(18), 10.1002/2015JD024686. Figure 1.

  1. Atmospheric Radiation Measurement Program

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    July 1999 ARM Facilities Newsletter is published by Argonne National Laboratory, a multiprogram laboratory operated by The University of Chicago under contract W-31-109-Eng-38 with the U.S. Department of Energy. Technical Contact: Douglas L. Sisterson Editor: Donna J. Holdridge SGP99 Hydrology Campaign Summer research efforts continue in July with the SGP99 Hydrology Campaign headed by the United States Department of Agriculture, Agricultural Research Service. Other participants are the National

  2. Development of a self-consistent thermodynamic- and transport-property correlation framework for the coal conversion industry. Phase I. Semiannual report, September 1, 1980-February 28, 1981

    SciTech Connect (OSTI)

    Starling, K.E.; Lee, L.L.; Kumar, K.H.

    1981-01-01

    During the first half year of this research program the following elements of research have been performed: (1) the development of an improved pure component data bank, including collection and processing of data which is 70% complete as to substance, (2) calculation of distillable coal fluid thermodynamic properties using a multiparameter corresponding states correlation, (3) application of the most general density-cubic equation of pure fluids and (4) initiation of research to extend the corresponding states correlation framework to polar fluids. Primary conclusions of the first phase of this research program are that the three parameter corresponding states correlation predicts lighter coal fluid properties to a reasonable level of accuracy, and that a cubic equation can predict pure fluid thermodynamic properties on par with non-cubic equations of state.

  3. Taking another look at the atmosphere | Argonne National Laboratory

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Chemist Steve Klippenstein Chemist Steve Klippenstein Taking another look at the atmosphere By Jared Sagoff * September 24, 2012 Tweet EmailPrint Even on a relatively calm day, the Earth's atmosphere is a swirling mix of gases that react faster than the human eye can see. In order to model these reactions, scientists have generally simplified the problem by treating them as occurring sequentially. However, a new study by researchers at the U.S. Department of Energy's Argonne National Laboratory

  4. DOE/ER-0441 Atmospheric Radiation Measurement Plan - February 1990

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    1 Atmospheric Radiation Measurement Program Plan ARM Program Plan Forward In 1978 the Department of Energy initiated the Carbon Dioxide Research Program to address climate change from the increasing concentration of carbon dioxide in the atmosphere. Over the years the Program has studied the many facets of the issue, from the carbon cycle, the climate diagnostics, the vegetative effects, to the societal impacts. The Program is presently the Department's principal entry in the U.S. Global Change

  5. Unmanned Aerial Systems (UAS) Evaluation of Routine Atmospheric Sounding

    Office of Scientific and Technical Information (OSTI)

    Measurements using Unmanned Systems (ERASMUS) (Dataset) | Data Explorer Unmanned Aerial Systems (UAS) Evaluation of Routine Atmospheric Sounding Measurements using Unmanned Systems (ERASMUS) Title: Unmanned Aerial Systems (UAS) Evaluation of Routine Atmospheric Sounding Measurements using Unmanned Systems (ERASMUS) Data were collected to improve understanding of the Arctic troposphere, and to provide researchers with a focused case-study period for future observational and modeling studies

  6. Atmospheric Radiation Measurement Program Facilities Newsletter - September 1999

    SciTech Connect (OSTI)

    Holdridge, D. J., ed

    1999-09-27

    The Atmospheric Radiation Measurement Program September 1999 Facilities Newsletter discusses the several Intensive Observation Periods (IOPs) that the ARM SGP CART site will host in the near future. Two projects of note are the International Pyrgeometer Intercomparison and the Fall Single Column Model (SCM)/Nocturnal Boundary Layer (NBL) IOP. Both projects will bring many US and international scientists to the SGP CART site to participate in atmospheric research.

  7. Citations from the Atmospheric Radiation Measurement (ARM) Program Featured

    Office of Scientific and Technical Information (OSTI)

    at OSTI's DOE Data Explorer | OSTI, US Dept of Energy Office of Scientific and Technical Information Citations from the Atmospheric Radiation Measurement (ARM) Program Featured at OSTI's DOE Data Explorer Back to the OSTI News Listing for 2008 Now you can find additional citations from the Atmospheric Radiation Measurement (ARM) Program at the DOE Data Explorer. ARM, a key contributor to national and international research efforts related to global climate change, is a multi-laboratory,

  8. Atmospheric Radiation Measurement (ARM) Data from the ARM Aerial Facility

    Office of Scientific and Technical Information (OSTI)

    () | Data Explorer the ARM Aerial Facility Title: Atmospheric Radiation Measurement (ARM) Data from the ARM Aerial Facility The Atmospheric Radiation Measurement (ARM) Program is the largest global change research program supported by the U.S. Department of Energy. The primary goal of the ARM Program is to improve the treatment of cloud and radiation physics in global climate models in order to improve the climate simulation capabilities of these models. ARM data is collected both through

  9. Atmospheric Radiation Measurement (ARM) Data from the North Slope Alaska

    Office of Scientific and Technical Information (OSTI)

    (NSA) Site () | Data Explorer North Slope Alaska (NSA) Site Title: Atmospheric Radiation Measurement (ARM) Data from the North Slope Alaska (NSA) Site The Atmospheric Radiation Measurement (ARM) Program is the largest global change research program supported by the U.S. Department of Energy. The primary goal of the ARM Program is to improve the treatment of cloud and radiation physics in global climate models in order to improve the climate simulation capabilities of these models. To achieve

  10. Atmospheric Radiation Measurement (ARM) Data from the Southern Great Plains

    Office of Scientific and Technical Information (OSTI)

    (SGP) Site () | Data Explorer Southern Great Plains (SGP) Site Title: Atmospheric Radiation Measurement (ARM) Data from the Southern Great Plains (SGP) Site The Atmospheric Radiation Measurement (ARM) Program is the largest global change research program supported by the U.S. Department of Energy. The primary goal of the ARM Program is to improve the treatment of cloud and radiation physics in global climate models in order to improve the climate simulation capabilities of these models. To

  11. Atmospheric Radiation Measurement (ARM) Data from the Tropical Western

    Office of Scientific and Technical Information (OSTI)

    Pacific (TWP) Site. () | Data Explorer Tropical Western Pacific (TWP) Site. Title: Atmospheric Radiation Measurement (ARM) Data from the Tropical Western Pacific (TWP) Site. The Atmospheric Radiation Measurement (ARM) Program is the largest global change research program supported by the U.S. Department of Energy. The primary goal of the ARM Program is to improve the treatment of cloud and radiation physics in global climate models in order to improve the climate simulation capabilities of

  12. Polyport atmospheric gas sampler

    DOE Patents [OSTI]

    Guggenheim, S. Frederic

    1995-01-01

    An atmospheric gas sampler with a multi-port valve which allows for multi, sequential sampling of air through a plurality of gas sampling tubes mounted in corresponding gas inlet ports. The gas sampler comprises a flow-through housing which defines a sampling chamber and includes a gas outlet port to accommodate a flow of gases through the housing. An apertured sample support plate defining the inlet ports extends across and encloses the sampling chamber and supports gas sampling tubes which depend into the sampling chamber and are secured across each of the inlet ports of the sample support plate in a flow-through relation to the flow of gases through the housing during sampling operations. A normally closed stopper means mounted on the sample support plate and operatively associated with each of the inlet ports blocks the flow of gases through the respective gas sampling tubes. A camming mechanism mounted on the sample support plate is adapted to rotate under and selectively lift open the stopper spring to accommodate a predetermined flow of gas through the respective gas sampling tubes when air is drawn from the housing through the outlet port.

  13. Thermodynamic properties and diffusion of water + methane binary mixtures

    SciTech Connect (OSTI)

    Shvab, I.; Sadus, Richard J.

    2014-03-14

    Thermodynamic and diffusion properties of water + methane mixtures in a single liquid phase are studied using NVT molecular dynamics. An extensive comparison is reported for the thermal pressure coefficient, compressibilities, expansion coefficients, heat capacities, Joule-Thomson coefficient, zero frequency speed of sound, and diffusion coefficient at methane concentrations up to 15% in the temperature range of 298650 K. The simulations reveal a complex concentration dependence of the thermodynamic properties of water + methane mixtures. The compressibilities, heat capacities, and diffusion coefficients decrease with increasing methane concentration, whereas values of the thermal expansion coefficients and speed of sound increase. Increasing methane concentration considerably retards the self-diffusion of both water and methane in the mixture. These effects are caused by changes in hydrogen bond network, solvation shell structure, and dynamics of water molecules induced by the solvation of methane at constant volume conditions.

  14. Thermodynamic assessment of the U-La-O system

    DOE PAGES-Beta [OSTI]

    McMurray, Jake W; Shin, Dongwon; Besmann, Theodore M

    2015-01-01

    The CALPHAD methodology was used to develop a thermodynamic assessment of the U-La-O system. The solid solution and liquid phases are described with the compound energy formalism and the partially ionic two-sublattice liquid model respectively. A density functional theory (DFT) calculation for the lattice stability of the fictive lanthanum oxide fluorite structure compound is used to determine the Gibbs energies for the La containing end-members in the CEF model for U1-yLayO2 x. Experimental thermodynamic and phase equilibria data were then used in optimizations to develop representations of the phases in the system that can be extended to include other actinidemore » and fission products to develop multi-component models. The models that comprise this assessment very well reproduce experimentally determined oxygen potentials and the observed phase relations for the U-La-O system.« less

  15. Generic Natural Systems Evaluation - Thermodynamic Database Development and Data Management

    SciTech Connect (OSTI)

    Wolery, T W; Sutton, M

    2011-09-19

    Thermodynamic data are essential for understanding and evaluating geochemical processes, as by speciation-solubility calculations, reaction-path modeling, or reactive transport simulation. These data are required to evaluate both equilibrium states and the kinetic approach to such states (via the affinity term or its equivalent in commonly used rate laws). These types of calculations and the data needed to carry them out are a central feature of geochemistry in many applications, including water-rock interactions in natural systems at low and high temperatures. Such calculations are also made in engineering studies, for example studies of interactions involving man-made materials such as metal alloys and concrete. They are used in a fairly broad spectrum of repository studies where interactions take place among water, rock, and man-made materials (e.g., usage on YMP and WIPP). Waste form degradation, engineered barrier system performance, and near-field and far-field transport typically incorporate some level of thermodynamic modeling, requiring the relevant supporting data. Typical applications of thermodynamic modeling involve calculations of aqueous speciation (which is of great importance in the case of most radionuclides), solubilities of minerals and related solids, solubilities of gases, and stability relations among the various possible phases that might be present in a chemical system at a given temperature and pressure. If a phase can have a variable chemical composition, then a common calculational task is to determine that composition. Thermodynamic modeling also encompasses ion exchange and surface complexation processes. Any and all of these processes may be important in a geochemical process or reactive transport calculation. Such calculations are generally carried out using computer codes. For geochemical modeling calculations, codes such as EQ3/6 and PHREEQC, are commonly used. These codes typically provide 'full service' geochemistry, meaning that

  16. Thermodynamic assessment of the U–La–O system

    SciTech Connect (OSTI)

    McMurray, J. W.; Shin, D.; Besmann, T. M.

    2014-10-03

    The CALPHAD methodology was used to develop a thermodynamic assessment of the U-La-O system. The solid solution and liquid phases are described with the compound energy formalism and the partially ionic two-sublattice liquid model respectively. A density functional theory (DFT) calculation for the lattice stability of the fictive lanthanum oxide fluorite structure compound is used to determine the Gibbs energies for the La containing end-members in the CEF model for U1-yLayO2+x. Experimental thermodynamic and phase equilibria data were then used in optimizations to develop representations of the phases in the system that can be extended to include other actinide and fission products to develop multi-component models. The models that comprise this assessment very well reproduce experimentally determined oxygen potentials and the observed phase relations for the U-La-O system.

  17. Thermodynamic assessment of the U–La–O system

    DOE PAGES-Beta [OSTI]

    McMurray, J. W.; Shin, D.; Besmann, T. M.

    2014-10-03

    The CALPHAD methodology was used to develop a thermodynamic assessment of the U-La-O system. The solid solution and liquid phases are described with the compound energy formalism and the partially ionic two-sublattice liquid model respectively. A density functional theory (DFT) calculation for the lattice stability of the fictive lanthanum oxide fluorite structure compound is used to determine the Gibbs energies for the La containing end-members in the CEF model for U1-yLayO2+x. Experimental thermodynamic and phase equilibria data were then used in optimizations to develop representations of the phases in the system that can be extended to include other actinide andmore » fission products to develop multi-component models. The models that comprise this assessment very well reproduce experimentally determined oxygen potentials and the observed phase relations for the U-La-O system.« less

  18. Thermodynamic assessment of the Pr-O system

    SciTech Connect (OSTI)

    McMurray, Jake W.

    2015-12-24

    We found that the Calphad method was used to perform a thermodynamic assessment of the Pr–O system. Compound energy formalism representations were developed for the fluorite α-PrO 2–x and bixbyite σ-Pr 3 O 5 ± x solid solutions while the two-sublattice liquid model was used to describe the binary melt. The series of phases between Pr 2 O 3 and PrO 2 were taken to be stoichiometric. Moreover, the equilibrium oxygen pressure, phase equilibria, and enthalpy data were used to optimize the adjustable parameters of the models for a self-consistent representation of the thermodynamic behavior of the Pr–O system from 298 K to melting.

  19. Thermodynamic assessment of the Pr-O system

    DOE PAGES-Beta [OSTI]

    McMurray, Jake W.

    2015-12-24

    We found that the Calphad method was used to perform a thermodynamic assessment of the Pr–O system. Compound energy formalism representations were developed for the fluorite α-PrO 2–x and bixbyite σ-Pr 3 O 5 ± x solid solutions while the two-sublattice liquid model was used to describe the binary melt. The series of phases between Pr 2 O 3 and PrO 2 were taken to be stoichiometric. Moreover, the equilibrium oxygen pressure, phase equilibria, and enthalpy data were used to optimize the adjustable parameters of the models for a self-consistent representation of the thermodynamic behavior of the Pr–O system frommore » 298 K to melting.« less

  20. Rotating black hole thermodynamics with a particle probe

    SciTech Connect (OSTI)

    Gwak, Bogeun; Lee, Bum-Hoon

    2011-10-15

    The thermodynamics of Myers-Perry black holes in general dimensions are studied using a particle probe. When undergoing particle absorption, the changes of the entropy and irreducible mass are shown to be dependent on the particle radial momentum. The black hole thermodynamic behaviors are dependent on dimensionality for specific rotations. For a 4-dimensional Kerr black hole, its black hole properties are maintained for any particle absorption. 5-dimensional black holes can avoid a naked ring singularity by absorbing a particle in specific momenta ranges. Black holes over 6 dimensions become ultraspinning black holes through a specific form of particle absorption. The microscopical changes are interpreted in limited cases of Myers-Perry black holes using Kerr/CFT correspondence. We systematically describe the black hole properties changed by particle absorption in all dimensions.

  1. Thermodynamic Studies to Support Extraction of Uranium from Seawater

    SciTech Connect (OSTI)

    Rao, Linfeng

    2015-09-01

    This milestone report summarizes the data obtained in FY15 on the major task of quantifying the binding strength of amidoxime-related ligands. Thermodynamic studies of the interaction between U(VI) and amidoxime ligand HLIII were studied to quantify the binding ability of U(VI) with amidoxime-related ligands and help to select grafting/reaction conditions so that higher yield of preferred amidoxime-related ligands is obtained. Besides the thermodynamic task, structural studies on vanadium complexation with amidoxime ligand were conducted to help understand the extremely strong sorption of vanadium on poly(amidoxime) sorbents. Data processing and summarization of the vanadium system are in progress and will be included in the next milestone report.

  2. Communication: Thermodynamic analysis of critical conditions of polymer adsorption

    SciTech Connect (OSTI)

    Cimino, R.; Neimark, A. V.; Rasmussen, C. J.

    2013-11-28

    Polymer adsorption to solid surfaces is a ubiquitous phenomenon, which has attracted long-lasting attention. Dependent on the competition between the polymer-solid adsorption and polymer-solvent solvation interactions, a chain may assume either 3d solvated conformation when adsorption is weak or 2d adsorbed conformation when adsorption is strong. The transition between these conformations occurring upon variation of adsorption strength is quite sharp, and in the limit of “infinite” chain length, can be treated as a critical phenomenon. We suggest a novel thermodynamic definition of the critical conditions of polymer adsorption from the equality of incremental chemical potentials of adsorbed and free chains. We show with the example of freely jointed Lennard-Jones chains tethered to an adsorbing surface that this new definition provides a link between thermodynamic and geometrical features of adsorbed chains and is in line with classical scaling relationships for the fraction of adsorbed monomers, chain radii of gyration, and free energy.

  3. Hagedorn's temperature from nonextensive thermodynamics for pp collisions

    SciTech Connect (OSTI)

    Marques, L.; Andrade II, E.; Deppman, A.

    2014-11-11

    In this work some aspects of the nonextensive thermodynamics of hadronic matter are investigated. In particular, an extense analysis of the fitting procedure of the nonextensive distributions of transverse momentum of several particles is performed focusing on the correlation between the entropic index and the effective temperature. The linear relation between ? and (q ? 1) is determined and it is shown that the Hagedorn's temperature can be obtained.

  4. Thermodynamic studies of CaLaFe??O??(s)

    SciTech Connect (OSTI)

    Rakshit, S.K.; Parida, S.C.; Lilova, Kristina; Navrotsky, Alexandra

    2013-05-01

    Thermodynamic studies on CaLaFe??O??(s) were carried out using Knudsen effusion mass spectrometry and calorimetry, viz. differential scanning calorimetry and high temperature oxide melt solution calorimetry. Standard molar Gibbs free energy of formation (?{sub f}G?{sub m}), enthalpy of formation and heat capacity (C?{sub ?,m}) of the compound were calculated as a function of temperature for the first time. C?{sub ?,m}(CaLaFe??O??) was determined and used for second law analysis, from which enthalpy and entropy of formation of the compound were calculated and the respective values are: ?{sub f}H?{sub m}(298.15 K)/kJ mol?=-6057(8) and S?{sub m}(298.15 K)/J K? mol?=427(5). ?{sub f}H?{sub m}(298.15 K)/kJ mol?: -6055(6) was also calculated using oxide melt solution calorimetry, which is in close agreement with the second law value. A heat capacity anomaly was also observed at T=684 K. A table of thermodynamic data from 298.15 K to 1000 K for CaLaFe??O??(s) was also constructed to represent an optimized set of data. - graphical abstract: Variation of standard molar heat capacities of CaLaF??O??(s) and MFe??O??(s) (M=Sr, Ba and Pb) as a function of temperature. Highlights: Thermodynamic studies on CaLaFe??O??(s) were performed using KEQMS and solution calorimetry. It was synthesized using gel combustion route and characterized by XRD technique. The compound is magnetic in nature and shows a heat capacity anomaly at 684 K. Thermodynamic table was constructed from 298 K to 1000 K.

  5. Fluorination utilizing thermodynamically unstable fluorides and fluoride salts thereof

    DOE Patents [OSTI]

    Bartlett, Neil; Whalen, J. Marc; Chacon, Lisa

    2000-12-12

    A method for fluorinating a carbon compound or cationic carbon compound utilizes a fluorination agent selected from thermodynamically unstable nickel fluorides and salts thereof in liquid anhydrous hydrogen fluoride. The desired carbon compound or cationic organic compound to undergo fluorination is selected and reacted with the fluorination agent by contacting the selected organic or cationic organic compound and the chosen fluorination agent in a reaction vessel for a desired reaction time period at room temperature or less.

  6. Thermodynamic Characterization of Mexico City Aerosol during MILAGRO 2006

    SciTech Connect (OSTI)

    Fountoukis, C.; Nenes, A.; Sullivan, A.; Weber, R.; VanReken, T.; Fischer, M.; Matias, E.; Moya, M.; Farmer, D.; Cohen, R.C.

    2008-12-05

    Fast measurements of aerosol and gas-phase constituents coupled with the ISORROPIA-II thermodynamic equilibrium model are used to study the partitioning of semivolatile inorganic species and phase state of Mexico City aerosol sampled at the T1 site during the MILAGRO 2006 campaign. Overall, predicted semivolatile partitioning agrees well with measurements. PM{sub 2.5} is insensitive to changes in ammonia but is to acidic semivolatile species. For particle sizes up to 1 {micro}m diameter, semi-volatile partitioning requires 30-60 min to equilibrate; longer time is typically required during the night and early morning hours. When the aerosol sulfate-to-nitrate molar ratio is less than unity, predictions improve substantially if the aerosol is assumed to follow the deliquescent phase diagram. Treating crustal species as 'equivalent sodium' (rather than explicitly) in the thermodynamic equilibrium calculations introduces important biases in predicted aerosol water uptake, nitrate and ammonium; neglecting crustals further increases errors dramatically. This suggests that explicitly considering crustals in the thermodynamic calculations is required to accurately predict the partitioning and phase state of aerosols.

  7. Structural, thermodynamic and optical properties of MgF{sub 2} studied from first-principles theory

    SciTech Connect (OSTI)

    Ramesh Babu, K.; Bheema Lingam, Ch.; Auluck, S.; Tewari, Surya P.; Vaitheeswaran, G.

    2011-02-15

    A detailed theoretical study of structural, electronic, elastic, thermodynamic and optical properties of rutile type MgF{sub 2} has been carried out by means of first-principles Density Functional Theory (DFT) calculations using plane wave pseudo-potentials within the local density approximation and generalized-gradient approximation for the exchange and correlation functionals. The calculated ground state properties and elastic constants agree quite well with experimental values. From the calculated elastic constants we conclude that MgF{sub 2} is relatively hard when compared to other alkaline-earth fluorides and ductile in nature. The thermodynamic properties such as heat capacity, entropy, free energy, phonon density of states and Debye temperatures are calculated at various temperatures from the lattice dynamical data obtained through the quasi-harmonic Debye model. From free energy and entropy it is found that the system is thermodynamically stable up to 1200 K. The imaginary part of the calculated dielectric function {epsilon}{sub 2}({omega}) could reproduce the six prominent peaks which are observed in experiment. From the calculated {epsilon}({omega}), other optical properties such as refractive index, reflectivity and electron energy-loss spectrum are obtained up to the photon energy range of 30 eV. -- Graphical abstract: The calculated imaginary part {epsilon}{sub 2}({omega}) of the complex dielectric function {epsilon}({omega}) of MgF{sub 2} as a function of photon energy is shown. The calculated {epsilon}{sub 2}({omega}) could reproduce the major peaks observed in experiment. All the peaks observed are corresponds to interband transitions from 'p' states of Fluorine in valence band to the 's' states of Mg in conduction band. Display Omitted Research highlights: > Structural and bonding properties. > Optical properties. > Single and polycrystalline elastic properties. > Thermodynamic properties.

  8. Atmospheric Radiation Measurement Radiative Atmospheric Divergence using ARM Mobile

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Radiative Atmospheric Divergence using ARM Mobile Facility, GERB, and AMMA Stations (RADAGAST) Beginning in January 2006, the ARM Mobile Facility (AMF) began supporting RADAGAST to provide the first well-sampled direct esti- mates of the energy balance across the atmosphere. The experiment is part of an ongoing international study of the West African monsoon system and Saharan dust storms. Stationed outside the Niger Meteo- rological Office at the Niamey International Airport, the AMF is located

  9. (Chemistry of the global atmosphere)

    SciTech Connect (OSTI)

    Marland, G.

    1990-09-27

    The traveler attended the conference The Chemistry of the Global Atmosphere,'' and presented a paper on the anthropogenic emission of carbon dioxide (CO{sub 2}) to the atmosphere. The conference included meetings of the International Global Atmospheric Chemistry (IGAC) programme, a core project of the International Geosphere/Biosphere Programme (IGBP) and the traveler participated in meetings on the IGAC project Development of Global Emissions Inventories'' and agreed to coordinate the working group on CO{sub 2}. Papers presented at the conference focused on the latest developments in analytical methods, modeling and understanding of atmospheric CO{sub 2}, CO, CH{sub 4}, N{sub 2}O, SO{sub 2}, NO{sub x}, NMHCs, CFCs, and aerosols.

  10. Terrain-Responsive Atmospheric Code

    Energy Science and Technology Software Center (OSTI)

    1991-11-20

    The Terrain-Responsive Atmospheric Code (TRAC) is a real-time emergency response modeling capability designed to advise Emergency Managers of the path, timing, and projected impacts from an atmospheric release. TRAC evaluates the effects of both radiological and non-radiological hazardous substances, gases and particulates. Using available surface and upper air meteorological information, TRAC realistically treats complex sources and atmospheric conditions, such as those found in mountainous terrain. TRAC calculates atmospheric concentration, deposition, and dose for more thanmore » 25,000 receptor locations within 80 km of the release point. Human-engineered output products support critical decisions on the type, location, and timing of protective actions for workers and the public during an emergency.« less

  11. Sandia Energy - CRF Researchers Measure Reaction Rates of Second...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Measure Reaction Rates of Second Key Atmospheric Component Researchers at Sandia's Combustion Research Facility, the University of Manchester, Bristol University, University of...

  12. Computer support to run models of the atmosphere. Final report

    SciTech Connect (OSTI)

    Fung, I.

    1996-08-30

    This research is focused on a better quantification of the variations in CO{sub 2} exchanges between the atmosphere and biosphere and the factors responsible for these exchangers. The principal approach is to infer the variations in the exchanges from variations in the atmospheric CO{sub 2} distribution. The principal tool involves using a global three-dimensional tracer transport model to advect and convect CO{sub 2} in the atmosphere. The tracer model the authors used was developed at the Goddard institute for Space Studies (GISS) and is derived from the GISS atmospheric general circulation model. A special run of the GCM is made to save high-frequency winds and mixing statistics for the tracer model.

  13. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Preferred States of the Winter Arctic Atmosphere, Surface, and Sub-Surface Download a printable PDF Submitter: Del Genio, A. D., National Aeronautics and Space Administration Area of Research: Surface Properties Working Group(s): Cloud Life Cycle Journal Reference: Stramler K, AD Del Genio, and WB Rossow. 2011. "Synoptically driven Arctic winter states." Journal of Climate, 24(6), doi:10.1175/2010JCLI3817.1. SHEBA winter hourly surface net (down - up) longwave radiation flux versus

  14. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Ground-Based Cloud Measurements Used to Evaluate the Simulation of Arctic Clouds in CCSM4 Download a printable PDF Submitter: de Boer, G., University of Colorado, Boulder/CIRES Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Life Cycle Journal Reference: de Boer G, W Chapman, JE Kay, B Medeiros, MD Shupe, S Vavrus, and JE Walsh. 2011. "A characterization of the present-day Arctic atmosphere in CCSM4." Journal of Climate, 25(8),

  15. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Mixed-Phase Cloud Radiative Properties from M-PACE Microphysical Retrievals Download a printable PDF Submitter: de Boer, G., University of Colorado, Boulder/CIRES Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: de Boer G, WD Collins, S Menon, and CN Long. 2011. "Using surface remote sensors to derive radiative characteristics of mixed-phase clouds: An example from M-PACE." Atmospheric Chemistry and Physics, 11, doi: 10.5194/acp-11-11937-2011.

  16. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Small Irregular Ice Crystals in Tropical Cirrus Download a printable PDF Submitter: McFarquhar, G., University of Illinois, Urbana Nousiainen, T. P., University of Helsinki Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Nousiainen T, H Lindqvist, GM McFarquhar, and J Um. 2011. "Small irregular ice crystals in tropical cirrus." Journal of the Atmospheric Sciences, 68(11), doi:10.1175/2011JAS3733.1. Examples of small

  17. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Probing the Birth of New Particles Download a printable PDF Submitter: Wang, J., Brookhaven National Laboratory Area of Research: Aerosol Processes Working Group(s): Aerosol Life Cycle Journal Reference: Chen M, M Titcombe, J Jiang, C Jen, C Kuang, ML Fischer, FL Eisele, I Siepmann, DR Hanson, J Zhao, and PH McMurry. 2012. "Acid-base chemical reaction model for nucleation rates in the polluted atmospheric boundary layer." Proceedings of the National Academy of Sciences, 109(46),

  18. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Cloud Phase Determination Using Ground-Based AERI Observations at SHEBA Submitter: Turner, D. D., National Oceanic and Atmospheric Administration Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Properties Journal Reference: Turner, D.D., S.A. Ackerman, B.A. Baum, H.E. Revercomb, and P. Yang, 2003: "Cloud Phase Determination Using Ground-Based AERI Observations at SHEBA," Journal of Applied Meteorology 42(6):701-715. The SHEBA

  19. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    More Like Shades of Gray: the Effects of Black Carbon in Aerosols Submitter: McComiskey, A. C., National Oceanic and Atmospheric Administration Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle Journal Reference: Cappa CD, TB Onasch, P Massoli, DR Worsnop, TS Bates, ES Cross, P Davidovits, J Hakala, KL Hayden, BT Jobson, KR Kolesar, DA Lack, BM Lerner, SM Li, D Mellon, I Nuaaman, JS Olfert, T Petaja, PK Quinn, C Song, R Subramanian, EJ Williams, and RA Zaveri. 2012.

  20. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Mingling in the Sky-A View from the Earth Submitter: Bhattacharya, A., Pacific Northwest National Laboratory Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Madhavan BL, Y He, Y Wu, B Gross, F Moshary, and S Ahmed. 2012. "Development of a ground based remote sensing approach for direct evaluation of aerosol-cloud interaction." Atmosphere, 3(4), doi:10.3390/atmos3040468. Two different types of

  1. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Study Proposes New Scheme to Characterize Land-Atmosphere Interactions and Improve Climate Models Submitter: Bhattacharya, A., Pacific Northwest National Laboratory Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Life Cycle Journal Reference: Liu G, Y Liu, and S Endo. 2013. "Evaluation of surface flux parameterizations with long-term ARM observations." Monthly Weather Review, 141(2), doi:10.1175/MWR-D-12-00095.1. One of the three

  2. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    New Method Simulates 3D Ice Crystal Growth Within Clouds Submitter: Bhattacharya, A., Pacific Northwest National Laboratory Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: Harrington JY, K Sulia, and H Morrison. 2013. "A method for adaptive habit prediction in bulk microphysical models. Part I: theoretical development." Journal of the Atmospheric Sciences, 70(2), doi:10.1175/JAS-D-12-040.1. Harrington JY, K Sulia, and H Morrison. 2013.

  3. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Mixed Bag of Aerosols over Northeastern China Download a printable PDF Submitter: Li, Z., University of Maryland Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle Journal Reference: Li C, JW Stehr, LT Marufu, Z Li, and RR Dickerson. 2012. "Aircraft measurements of SO2 and aerosols over northeastern China: Vertical profiles and the influence of weather on air quality." Atmospheric Environment, 62, doi:10.1016/j.atmosenv.2012.07.076. Altitude profiles of

  4. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Drizzle in the Making Download a printable PDF Submitter: Luke, E., Brookhaven National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Luke EP and P Kollias. 2013. "Separating cloud and drizzle radar moments during precipitation onset using Doppler spectra." Journal of Atmospheric and Oceanic Technology, 30(8), http://dx.doi.org/10.1175/JTECH-D-11-00195.1. This image shows droplet motion measured by a cloud profiling radar, with the

  5. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Is Cumulus Drag a Rayleigh Drag? Download a printable PDF Submitter: Romps, D., Lawrence Berkeley National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Romps DM. 2014. "Rayleigh damping in the free troposphere." Journal of the Atmospheric Sciences, 71(2), 10.1175/JAS-D-13-062.1. Hovmoller diagrams of wind profiles in a large-eddy simulation of deep convection. Note the different damping rates and descent speeds for different

  6. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Automated Rain Rate Estimates Using the Ka-band ARM Zenith Radar (KAZR) Submitter: Chandra, A. S., McGill University Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: Chandra A, C Zhang, P Kollias, S Matrosov, and W Szyrmer. 2015. "Automated rain rate estimates using the Ka-band ARM Zenith Radar (KAZR)." Atmospheric Measurement Techniques, 8(1-15), doi:10.5194/amt-8-1-2015. Scatter plots of rain rates (R) observed from a video disdrometer vs

  7. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Dust in the Wind... and the Clouds... and the Atmosphere Submitter: Sassen, K., University of Alaska, Fairbanks Area of Research: Aerosol Properties Working Group(s): Aerosol Journal Reference: Sassen, K., P.J. DeMott, J.M. Propsero, and M.R. Poellot, Saharan Dust Storms and Indirect Aerosol Effects on Clouds: CRYSTAL-FACE Results, Geophys. Res. Ltt., 30(12), 1633, doi:10/1029/2003GL017371, 2003. PDL linear depolarization ratio (color scale on top) and relative returned power (in gray scale) of

  8. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Aerosol-mediated Changes in Deep Convective Cloud Radiative Forcing over the SGP Download a printable PDF Submitter: Cribb, M. C., University of Maryland Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Yan H, Z Li, J Huang, M Cribb, and J Liu. 2014. "Long-term aerosol-mediated changes in cloud radiative forcing of deep clouds at the top and bottom of the atmosphere over the Southern Great Plains."

  9. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Deciphering Raindrop Collisions with Dual-polarization Radar Download a printable PDF Submitter: Kumjian, M., Pennsylvania State University Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: Kumjian MR and OP Prat. 2014. "The impact of raindrop collisional processes on the polarimetric radar variables." Journal of the Atmospheric Sciences, 71(8), doi:10.1175/JAS-D-13-0357.1. (a) Changes in ZDR as a function

  10. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Island-Induced Cloud Plumes Influence Tropical Atmospheric Measurements, Surface Radiation Submitter: McFarlane, S. A., U.S. Department of Energy Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: McFarlane, S.A., Long, C.N., and Flynn, D., Nauru Island Effect Study, Fourteenth ARM Science Team Meeting, March 22 to 26, 2004, Albuquerque, New Mexico. Nauru Island, about 1,200 miles northeast of Papua New Guinea in the western South Pacific, is one of

  11. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    MBL Drizzle Properties and Their Impact on Cloud Property Retrieval Download a printable PDF Submitter: Dong, X., University of Arizona Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: Wu P, X Dong, and B Xi. 2015. "Marine boundary layer drizzle properties and their impact on cloud property retrieval." Atmospheric Measurement Techniques, 8, doi:10.5194/amt-8-3555-2015. Figure 1. Drizzle properties observed by ARM radar-lidar and retrieved from

  12. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Improving Entrainment Rate Parameterization Download a printable PDF Submitter: Liu, Y., Brookhaven National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Lu C, Y Liu, GJ Zhang, X Wu, S Endo, L Cao, Y Li, and X Guo. 2016. "Improving parameterization of entrainment rate for shallow convection with aircraft measurements and large-eddy simulations." Journal of the Atmospheric Sciences, 73(2), doi:10.1175/JAS-D-15-0050.1. Relationships

  13. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Storm Clouds Take Rain on Rollercoaster Ride Download a printable PDF Submitter: Ovchinnikov, M., Pacific Northwest National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Wong M, M Ovchinnikov, and M Wang. 2015. "Evaluation of subgrid-scale hydrometeor transport schemes using a high-resolution cloud-resolving model." Journal of the Atmospheric Sciences, 72(9), doi:10.1175/JAS-D-15-0060.1. Strong updrafts within the cloud propel their

  14. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Quasi-Vertical Profiles - a New Way to Look at Polarimetric Radar Data PI Contact: Ryzhkov, A., National Severe Storms Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Ryzhkov A, P Zhang, H Reeves, M Kumjian, T Tschallener, S Trömel, and C Simmer. 2016. "Quasi-Vertical Profiles - A New Way to Look at Polarimetric Radar Data." Journal of Atmospheric and Oceanic Technology, 33(3), doi:10.1175/JTECH-D-15-0020.1. An example of composite

  15. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Urban Emissions Significantly Enhance SOA Production at a Rural Site in the NE US PI Contact: Zhang, Q., University of California, Davis Area of Research: Aerosol Processes Working Group(s): Aerosol Life Cycle Journal Reference: Zhou S, S Collier, J Xu, F Mei, J Wang, Y Lee, AI Sedlacek, SR Springston, Y Sun, and Q Zhang. 2016. "Influences of Upwind Emission Sources and Atmospheric Processing on Aerosol Chemistry and Properties at a Rural Location in the Northeastern US." Journal of

  16. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Fall Speeds of Cirrus Crystals Faster Than Expected PI Contact: Fridlind, A. M., NASA - Goddard Institute for Space Studies Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Fridlind AM, R Atlas, B van Diedenhoven, J Um, GM McFarquhar, AS Ackerman, EJ Moyer, and RP Lawson. 2016. "Derivation of physical and optical properties of mid-latitude cirrus ice crystals for a size-resolved cloud microphysics model." Atmospheric Chemistry and Physics, 16(11),

  17. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Impact of External Industrial Sources on the Regional and Local SO2 and O3 Levels of the Mexico Megacity PI Contact: Fast, J. D., Pacific Northwest National Laboratory Area of Research: Radiation Processes Working Group(s): Aerosol Life Cycle Journal Reference: Almanza VH, LT Molina, G Li, J Fast, and G Sosa. 2014. "Impact of External industrial Sources on the Regional and Local SO2 and O3 Levels of the Mexico Megacity." Atmospheric Chemistry and Physics, 14, 8483-8499. Science

  18. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    New Technique Successful for Measuring Thickness of Broken Clouds Submitter: Marshak, A., NASA - Goddard Space Flight Center Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Marshak, A, Y Knyazikhin, K.D. Evans, and W.J. Wiscomb, (2004): The "RED versus NIR" Plane to Retrieve Broken-Cloud Optical Depth from Ground-Based Measurements, Journal of Atmospheric Sciences , 61, 1911-1925. In the "lookup table," vertical

  19. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    "Roobik" Is Part of the Answer, Not a Puzzle Submitter: Turner, D. D., National Oceanic and Atmospheric Administration Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: N/A Taking place during the arid Arctic winter, the RHUBC will obtain measurements in the far-infrared (15-40 microns), when the so-called "Arctic" infrared window between 16 and 40 microns is semi-transparent. Taking place during the arid Arctic winter, the RHUBC

  20. Research Highlight

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    A Surprising Problem with Thin Liquid Water Clouds Submitter: Turner, D. D., National Oceanic and Atmospheric Administration Area of Research: Clouds with Low Optical [Water] Depths (CLOWD) Working Group(s): Radiative Processes Journal Reference: D.D. Turner, A.M. Vogelmann, R.T. Austin, J.C. Barnard, K. Cady-Pereira, J.C. Chiu, S.A. Clough, C. Flynn, M. M. Khaiyer, J. Liljegren, K. Johnson, B. Lin, C. Long, A. Marshak, S. Y. Matrosov, S.A. McFarlane, M. Miller, Q. Min, P. Minnis, W. O'Hirok, Z.