National Library of Energy BETA

Sample records for requirements pv land

  1. land requirements | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    land requirements Home Sfomail's picture Submitted by Sfomail(48) Member 25 June, 2013 - 12:10 Solar Land Use Data on OpenEI acres csp land use how much land land requirements pv...

  2. pv land use | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    pv land use Home Rosborne318's picture Submitted by Rosborne318(5) Member 2 December, 2013 - 11:06 Request for Information Renewable Energy GenerationProduction Shreveport Airport...

  3. Colorado State Land Board Land Survey Requirements | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Colorado State Land Board Land Survey Requirements Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: Colorado...

  4. Impacts of Array Configuration on Land-Use Requirements for Large-Scale Photovoltaic Deployment in the United States: Preprint

    SciTech Connect

    Denholm, P.; Margolis, R. M.

    2008-05-01

    Land use is often cited as an important issue for renewable energy technologies. In this paper we examine the relationship between land-use requirements for large-scale photovoltaic (PV) deployment in the U.S. and PV-array configuration. We estimate the per capita land requirements for solar PV and find that array configuration is a stronger driver of energy density than regional variations in solar insolation. When deployed horizontally, the PV land area needed to meet 100% of an average U.S. citizen's electricity demand is about 100 m2. This requirement roughly doubles to about 200 m2 when using 1-axis tracking arrays. By comparing these total land-use requirements with other current per capita land uses, we find that land-use requirements of solar photovoltaics are modest, especially when considering the availability of zero impact 'land' on rooftops. Additional work is need to examine the tradeoffs between array spacing, self-shading losses, and land use, along with possible techniques to mitigate land-use impacts of large-scale PV deployment.

  5. how much land | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    how much land Home Sfomail's picture Submitted by Sfomail(48) Member 25 June, 2013 - 12:10 Solar Land Use Data on OpenEI acres csp land use how much land land requirements pv land...

  6. csp land use | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    csp land use Home Sfomail's picture Submitted by Sfomail(48) Member 25 June, 2013 - 12:10 Solar Land Use Data on OpenEI acres csp land use how much land land requirements pv land...

  7. Improving Data Transparency for the Distributed PV Interconnection Process: Emergent Utility Practices and State Requirements

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    June 3, 2015 "Improving Data Transparency for the Distributed PV Interconnection Process: Emergent Utility Practices and State Requirements" Joslyn Sato, Hawaiian Electric Companies Michael Conway, Borrego Solar Systems, Inc. Kristen Ardani and Emerson Reiter, National Renewable Energy Laboratory (NREL) 2 Purpose of Today's Meeting * Learn how data reporting requirements for interconnection vary across States, how tracking and data reporting for interconnection requests is evolving

  8. Improving Data Transparency for the Distributed PV Interconnection Process: Emergent Utility Practices and State Requirements Transcript

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Improving Data Transparency for the Distributed PV Page 1 of 21 Interconnection Process Emergent Utility Practices and State Requirements Kristen Adrani, Emerson Reiter, Joslyn Sato, Michael Conway Page 1 of 21 [Speaker: Kristen Ardani] Cover Slide: Thank you everyone for joining us for today's quarterly meeting of the Distributed Generation Interconnection Collaborative, or the DGIC. My name is Kristen Ardani. I'm a solar analyst here at NREL and I'll be moderating today's discussion. The topic

  9. Updated Proposal for a Guide for Quality Management Systems for PV Manufacturing. Supplemental Requirements to ISO 9001-2008

    SciTech Connect

    Ramu, Govind; Yamamichi, Masaaki; Zhou, Wei; Mikonowicz, Alex; Lokanath, Sumanth; Eguchi, Yoshihito; Norum, Paul; Kurtz, Sarah

    2015-03-01

    The goal of this Technical Specification is to provide a guideline for manufacturers of photovoltaic (PV) modules to produce modules that, once the design is proven to meet the quality and reliability requirements, replicate the design on an industrial scale without compromising its consistency with the requirements.

  10. Reactive power interconnection requirements for PV and wind plants : recommendations to NERC.

    SciTech Connect

    McDowell, Jason; Walling, Reigh; Peter, William; Von Engeln, Edi; Seymour, Eric; Nelson, Robert; Casey, Leo; Ellis, Abraham; Barker, Chris.

    2012-02-01

    Voltage on the North American bulk system is normally regulated by synchronous generators, which typically are provided with voltage schedules by transmission system operators. In the past, variable generation plants were considered very small relative to conventional generating units, and were characteristically either induction generator (wind) or line-commutated inverters (photovoltaic) that have no inherent voltage regulation capability. However, the growing level of penetration of non-traditional renewable generation - especially wind and solar - has led to the need for renewable generation to contribute more significantly to power system voltage control and reactive power capacity. Modern wind-turbine generators, and increasingly PV inverters as well, have considerable dynamic reactive power capability, which can be further enhanced with other reactive support equipment at the plant level to meet interconnection requirements. This report contains a set of recommendations to the North-America Electricity Reliability Corporation (NERC) as part of Task 1-3 (interconnection requirements) of the Integration of Variable Generation Task Force (IVGTF) work plan. The report discusses reactive capability of different generator technologies, reviews existing reactive power standards, and provides specific recommendations to improve existing interconnection standards.

  11. NREL Hosts PV Module Reliability Workshop for Industry | PV | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Hosts PV Module Reliability Workshop for Industry March 1, 2016 Nearly 200 researchers from more than 100 companies and representing 16 countries attended the 7th annual PV Module Reliability Workshop, held Feb. 23-25, 2016, in Golden, Colo. The program was designed by the National Renewable Energy Laboratory (NREL) in collaboration with Sandia National Laboratories and the photovoltaic (PV) industry. "NREL's PV Module Reliability Workshop is unique in its requirement for all organizations

  12. Examination of Terminal Land Requirements for Hydrogen Delivery

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    May 8, 2007 Jerry Gillette Examination of Terminal Land Requirements for Hydrogen Hydrogen Delivery Analysis Meeting Argonne National Laboratory A Variety of Terminal Configurations May Exist for Various Hydrogen Delivery Pathways „ Gaseous Tube Trailer Pathway - Receive hydrogen from production plant - Store low volumes of gaseous hydrogen for operational stability - Compress hydrogen for storage and/or charging tube trailers - Charge tube trailers in loading bays - Options for production

  13. Land-Use Requirements for Solar Power Plants in the United States

    SciTech Connect

    Ong, S.; Campbell, C.; Denholm, P.; Margolis, R.; Heath, G.

    2013-06-01

    This report provides data and analysis of the land use associated with utility-scale ground-mounted solar facilities, defined as installations greater than 1 MW. We begin by discussing standard land-use metrics as established in the life-cycle assessment literature and then discuss their applicability to solar power plants. We present total and direct land-use results for various solar technologies and system configurations, on both a capacity and an electricity-generation basis. The total area corresponds to all land enclosed by the site boundary. The direct area comprises land directly occupied by solar arrays, access roads, substations, service buildings, and other infrastructure. As of the third quarter of 2012, the solar projects we analyze represent 72% of installed and under-construction utility-scale PV and CSP capacity in the United States.

  14. Smart-Grid Ready PV Inverters with Utility Communication

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Smart-Grid Ready PV Inverters with Utility Communication Electric Power Research Institute ... required utility communication links to capture the full value of distributed PV plants. ...

  15. Land-Use Requirements of Modern Wind Power Plants in the United...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    4 August 2009 Land-Use Requirements of Modern Wind Power Plants in the United States Paul Denholm, Maureen Hand, Maddalena Jackson, and Sean Ong National Renewable Energy...

  16. Sandia Energy - PV Value

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    PV Value Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Solar Market Transformation PV Value PV ValueTara Camacho-Lopez2015-06-12T20:36:38+00:0...

  17. Supported PV module assembly

    DOEpatents

    Mascolo, Gianluigi; Taggart, David F.; Botkin, Jonathan D.; Edgett, Christopher S.

    2013-10-15

    A supported PV assembly may include a PV module comprising a PV panel and PV module supports including module supports having a support surface supporting the module, a module registration member engaging the PV module to properly position the PV module on the module support, and a mounting element. In some embodiments the PV module registration members engage only the external surfaces of the PV modules at the corners. In some embodiments the assembly includes a wind deflector with ballast secured to a least one of the PV module supports and the wind deflector. An array of the assemblies can be secured to one another at their corners to prevent horizontal separation of the adjacent corners while permitting the PV modules to flex relative to one another so to permit the array of PV modules to follow a contour of the support surface.

  18. PV Hourly Simulation Tool

    Energy Science and Technology Software Center

    2010-12-31

    This software requires inputs of simple general building characteristics and usage information to calculate the energy and cost benefits of solar PV. This tool conducts and complex hourly simulation of solar PV based primarily on the area available on the rooftop. It uses a simplified efficiency calculation method and real panel characteristics. It includes a detailed rate structure to account for time-of-use rates, on-peak and off-peak pricing, and multiple rate seasons. This tool includes themore » option for advanced system design inputs if they are known. This tool calculates energy savings, demand reduction, cost savings, incentives and building life cycle costs including: simple payback, discounted payback, net-present value, and savings to investment ratio. In addition this tool also displays the environmental benefits of a project.« less

  19. Proposal for a Guide for Quality Management Systems for PV Manufacturing: Supplemental Requirements to ISO 9001-2008 (Revised)

    SciTech Connect

    Norum, P.; Sinicco, I.; Eguchi, Y.; Lokanath, S.; Zhou, W.; Brueggemann, G.; Mikonowicz, A.; Yamamichi, M.; Kurtz, S.

    2013-09-01

    This technical specification provides a guideline for photovoltaic module manufacturers to produce modules that, once the design has proven to meet the quality and reliability requirements, replicate such design in an industrial scale without compromising its consistency with the requirements.

  20. NREL Report Firms Up Land-Use Requirements of Solar - News Releases | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Report Firms Up Land-Use Requirements of Solar Study shows solar for 1,000 homes would require 32 acres July 30, 2013 The Energy Department's National Renewable Energy Laboratory (NREL) has published a report on the land use requirements of solar power plants based on actual land-use practices from existing solar facilities. "Having real data from a majority of the solar plants in the United States will help people make proper comparisons and informed decisions," lead author Sean Ong

  1. SunShot Solar PV | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Solar PV SunShot Solar PV

  2. EPRI-Sandia PV Systems Symposium - PV Distribution Systems Modeling...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    EPRI-Sandia PV Systems Symposium - PV Distribution Systems Modeling Workshop Agenda (draft) PV Distribution System Modeling Workshop - Draft Agenda as of May 1 This one-day ...

  3. Sunergie PV | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Sunergie PV Jump to: navigation, search Name: Sunergie PV Place: Perpignan, France Zip: 66000 Product: Perpignan-based project developer. References: Sunergie PV1 This article is...

  4. Sandia Energy - PV Publications

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Publications Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics PV Publications PV PublicationsTara Camacho-Lopez2016-01-05T23:50:37+00:00 Recent...

  5. Energy 101: Solar PV

    Office of Energy Efficiency and Renewable Energy (EERE)

    Solar photovoltaic (PV) systems can generate clean, cost-effective power anywhere the sun shines. This video shows how a PV panel converts the energy of the sun into renewable electricity to power...

  6. Energy 101: Solar PV

    SciTech Connect

    2011-01-01

    Solar photovoltaic (PV) systems can generate clean, cost-effective power anywhere the sun shines. This video shows how a PV panel converts the energy of the sun into renewable electricity to power homes and businesses.

  7. Energy 101: Solar PV

    ScienceCinema

    None

    2016-07-12

    Solar photovoltaic (PV) systems can generate clean, cost-effective power anywhere the sun shines. This video shows how a PV panel converts the energy of the sun into renewable electricity to power homes and businesses.

  8. Conergy PV | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Conergy PV Jump to: navigation, search Name: Conergy PV Place: Germany Product: A holding company that was formed to group all Conergy AG's PV activities. References: Conergy PV1...

  9. Stabilized PV system

    DOEpatents

    Dinwoodie, Thomas L.

    2002-12-17

    A stabilized PV system comprises an array of photovoltaic (PV) assemblies mounted to a support surface. Each PV assembly comprises a PV module and a support assembly securing the PV module to a position overlying the support surface. The array of modules is circumscribed by a continuous, belt-like perimeter assembly. Cross strapping, extending above, below or through the array, or some combination of above, below and through the array, secures a first position along the perimeter assembly to at least a second position along the perimeter assembly thereby stabilizing the array against wind uplift forces. The first and second positions may be on opposite sides on the array.

  10. NREL Hosts PV Module Reliability Workshop for Industry | Solar | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Hosts PV Module Reliability Workshop for Industry March 1, 2016 Nearly 200 researchers from more than 100 companies and representing 16 countries attended the 7th annual PV Module Reliability Workshop, held Feb. 23-25, 2016, in Golden, Colo. The program was designed by the National Renewable Energy Laboratory (NREL) in collaboration with Sandia National Laboratories and the photovoltaic (PV) industry. "NREL's PV Module Reliability Workshop is unique in its requirement for all organizations

  11. Fire resistant PV shingle assembly

    DOEpatents

    Lenox, Carl J.

    2012-10-02

    A fire resistant PV shingle assembly includes a PV assembly, including PV body, a fire shield and a connection member connecting the fire shield below the PV body, and a support and inter-engagement assembly. The support and inter-engagement assembly is mounted to the PV assembly and comprises a vertical support element, supporting the PV assembly above a support surface, an upper interlock element, positioned towards the upper PV edge, and a lower interlock element, positioned towards the lower PV edge. The upper interlock element of one PV shingle assembly is inter-engageable with the lower interlock element of an adjacent PV shingle assembly. In some embodiments the PV shingle assembly may comprise a ventilation path below the PV body. The PV body may be slidably mounted to the connection member to facilitate removal of the PV body.

  12. PV Research & Development Activities

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... to challenging problems facing the PV industry. In addition, with its world class silicon, III-V multi-junction, and thin film research fabrication facilities, Sandia ...

  13. 2010 News | PV | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    October 22, 2010 John Wohlgemuth Brings PV Reliability, Standards Expertise to NREL The ... who specializes in documenting failures in silicon and thin-film photovoltaic modules. ...

  14. 2014 News | PV | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    of a jointly written report on PV pricing trends from the Energy Department's (DOE) National Renewable Energy Laboratory (NREL) and Lawrence Berkeley National Laboratory (LBNL). ...

  15. Sandia Energy - Tutorial on PV System Modeling

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Tutorial on PV System Modeling Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics PV Modeling & Analysis Tutorial on PV System Modeling Tutorial on PV...

  16. Improving Data Transparency for the Distributed PV Interconnection...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    June 3, 2015 "Improving Data Transparency for the Distributed PV Interconnection Process: ... how data reporting requirements for interconnection vary across States, how tracking and ...

  17. Sandian Presents on PV Failure Analysis at European PV Solar...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Presents on PV Failure Analysis at European PV Solar Energy Conference and Exhibition (EU PVSC) - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator ...

  18. Sandia Energy - PV Modeling & Analysis

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    PV Modeling & Analysis Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics PV Modeling & Analysis PV Modeling & AnalysisTara Camacho-Lopez2015-05-11T20:03...

  19. PV Systems | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    PV Systems Place: Wales, United Kingdom Zip: CF15 7JD Product: Welsh building integrated PV (BIPV) company References: PV Systems1 This article is a stub. You can help OpenEI by...

  20. Sunshine PV | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    PV Place: Taiwan Sector: Solar Product: Taiwan-based subsidiary of Solartech Energy and thin-film PV module supplier. References: Sunshine PV1 This article is a stub. You can...

  1. PV_LIB Toolbox

    Energy Science and Technology Software Center

    2012-09-11

    While an organized source of reference information on PV performance modeling is certainly valuable, there is nothing to match the availability of actual examples of modeling algorithms being used in practice. To meet this need, Sandia has developed a PV performance modeling toolbox (PV_LIB) for Matlab. It contains a set of well-documented, open source functions and example scripts showing the functions being used in practical examples. This toolbox is meant to help make the multi-stepmore » process of modeling a PV system more transparent and provide the means for model users to validate and understand the models they use and or develop. It is fully integrated into Matlab’s help and documentation utilities. The PV_LIB Toolbox provides more than 30 functions that are sorted into four categories« less

  2. Ambiental PV | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Ambiental PV Jump to: navigation, search Name: Ambiental PV Place: Bahia, Brazil Zip: 40140-380 Sector: Carbon Product: Bahia-based carbon consultancy firm. References: Ambiental...

  3. Land-Use Requirements for Solar Power Plants in the United States

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    GWhyr for CSP towers and CPV installations to 5.5 acresGWhyr for small 2-axis flat panel PV power plants. Across all solar technologies, the total area generation-weighted...

  4. Energy requirements for metals production: comparison between ocean nodules and land-based resources. Final report

    SciTech Connect

    Not Available

    1980-09-01

    A methodology was developed to compare the energy requirements of technologies for production of metals from ocean nodules with production of same metals from land based ores using conventional processes. The energy requirements for production of copper, nickel, cobalt, and manganese from ocean nodules are based on an ocean mining operation of 3 million tons per year of dry nodules. A linear relationship exists between the amount of nodules processed and the total energy so that the energy can be easily converted to other processing rates if desired.

  5. GridPV Toolbox

    SciTech Connect

    Broderick, Robert; Quiroz, Jimmy; Grijalva, Santiago; Reno, Matthew; Coogan, Kyle

    2014-07-15

    Matlab Toolbox for simulating the impact of solar energy on the distribution grid. The majority of the functions are useful for interfacing OpenDSS and MATLAB, and they are of generic use for commanding OpenDSS from MATLAB and retrieving GridPV Toolbox information from simulations. A set of functions is also included for modeling PV plant output and setting up the PV plant in the OpenDSS simulation. The toolbox contains functions for modeling the OpenDSS distribution feeder on satellite images with GPS coordinates. Finally, example simulations functions are included to show potential uses of the toolbox functions.

  6. GridPV Toolbox

    Energy Science and Technology Software Center

    2014-07-15

    Matlab Toolbox for simulating the impact of solar energy on the distribution grid. The majority of the functions are useful for interfacing OpenDSS and MATLAB, and they are of generic use for commanding OpenDSS from MATLAB and retrieving GridPV Toolbox information from simulations. A set of functions is also included for modeling PV plant output and setting up the PV plant in the OpenDSS simulation. The toolbox contains functions for modeling the OpenDSS distribution feedermore » on satellite images with GPS coordinates. Finally, example simulations functions are included to show potential uses of the toolbox functions.« less

  7. 2013 News | PV | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Below are news stories related to PV. RSS Learn about RSS. November 8, 2013 New Solar Cell Is More Efficient, Less Costly Innovation by NREL and First Solar acquisition TetraSun ...

  8. 2011 News | PV | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Below are news stories related to PV. RSS Learn about RSS. December 20, 2011 NREL Licenses Technology to Increase Solar Cell Efficiency The U.S. Department of Energy's National ...

  9. Grid integrated distributed PV (GridPV).

    SciTech Connect

    Reno, Matthew J.; Coogan, Kyle

    2013-08-01

    This manual provides the documentation of the MATLAB toolbox of functions for using OpenDSS to simulate the impact of solar energy on the distribution system. The majority of the functions are useful for interfacing OpenDSS and MATLAB, and they are of generic use for commanding OpenDSS from MATLAB and retrieving information from simulations. A set of functions is also included for modeling PV plant output and setting up the PV plant in the OpenDSS simulation. The toolbox contains functions for modeling the OpenDSS distribution feeder on satellite images with GPS coordinates. Finally, example simulations functions are included to show potential uses of the toolbox functions. Each function in the toolbox is documented with the function use syntax, full description, function input list, function output list, example use, and example output.

  10. Jiangxi Solar PV Corp JSPV aka Solar PV Corporation | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Solar PV Corp JSPV aka Solar PV Corporation Jump to: navigation, search Name: Jiangxi Solar PV Corp (JSPV, aka Solar PV Corporation ) Place: Xinyu, Jiangxi Province, China Zip:...

  11. PV Value | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    PV Value PV Value PV Value Sandia National Laboratories has developed a prospective model of determining the value of PV. Sandia uses an income capitalization approach, which considers the present value of future energy production to determine the remaining value of a PV system. An online tool developed by Energy Sense Finance, has been released to the public. https://www.pvvalue.com/ PV Value (332.15 KB) More Documents & Publications PV Value® Reduce Risk, Increase Clean Energy: How States

  12. Analysis of concentrating PV-T systems for the commercial/industrial sector. Volume II. PV-T state-of-the-art survey and site/application pair selection and analysis

    SciTech Connect

    Schwinkendorf, W.E.

    1984-09-01

    As part of a project to develop feasibility assessments, design procedures, and reference designs for total energy systems that could use actively cooled concentrating photovoltaic collectors, a survey was conducted to provide an overview of available photovoltaic-thermal (PV-T) technology. General issues associated with the design and installation of a PV-T system are identified. Electrical and thermal efficiencies for the line-focus Fresnel, the linear parabolic trough, and the point-focus Fresnel collectors are specified as a function of operating temperature, ambient temperature, and insolation. For current PV-T technologies, the line-focus Fresnel collector proved to have the highest thermal and electrical efficiencies, lowest array cost, and lowest land area requirement. But a separate feasibility analysis involving 11 site/application pairs showed that for most applications, the cost of the photovoltaic portion of a PV-T system is not recovered through the displacement of an electrical load, and use of a thermal-only system to displace the thermal load would be a more economical alternative. PV-T systems are not feasible for applications that have a small thermal load, a large steam requirement, or a high load return temperature. SAND82-7157/3 identifies the technical issues involved in designing a photovoltaic-thermal system and provides guidance for resolving such issues. Detailed PV-T system designs for three selected applications and the results of a trade-off study for these applications are presented in SAND82-7157/4. A summary of the major results of this entire study and conclusions concerning PV-T systems and applications is presented in SAND82-7157/1.

  13. LDK Uni Land JV | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Uni Land JV Jump to: navigation, search Name: LDK & Uni Land JV Place: Italy Product: Italy-based JV to develop and construct PV projects. References: LDK & Uni Land JV1 This...

  14. Solar Photovoltaic (PV) System Permit Application Checklist

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Permit Application Checklist is intended to be used as a best management practice when establishing local government requirements for residential and commercial solar photovoltaic (PV) system permits. Local governments may modify this checklist to accommodate their local ordinances, code requirements, and permit procedures.

  15. Jinzhou Boyang PV Technology | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Boyang PV Technology Place: Jinzhou, Liaoning Province, China Product: China-based PV product manufacturer. It is also engaged in the design and installation of PV power...

  16. The Open PV Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    The Open PV Project (Redirected from Open PV) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Open PV Project AgencyCompany Organization: National Renewable Energy...

  17. Hunan Huayuan PV | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Huayuan PV Jump to: navigation, search Name: Hunan Huayuan PV Place: Hunan Province, China Product: State-owned PV wafer maker based in China's Hunan Province. References: Hunan...

  18. Teksun PV Manufacturing Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Teksun PV Manufacturing Inc Jump to: navigation, search Logo: Teksun PV Manufacturing Inc Name: Teksun PV Manufacturing Inc Address: 401 Congress Ave Place: Austin, Texas Zip:...

  19. Open PV Project: Unlocking PV Installation Data (Brochure)

    SciTech Connect

    Not Available

    2012-04-01

    This brochure summarizes the Open PV Project, a collaborative effort of government, industry, and the public to compile a comprehensive database of PV installations in the United States. The brochure outlines the purpose and history of the project as well as the main capabilities and benefits of the online Open PV tool. The brochure also introduces how features of the tool are used, and it describes the sources and characteristics of Open PV's data and data collection processes.

  20. Sandia Energy - PV Program Disclaimer

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    PV Program Disclaimersspope2015-03-23T21:15:29+00:00 PV Program Disclaimer The Photovoltaic Projects at Sandia National Laboratories support the development and deployment of...

  1. Sandia Energy - PV Systems Reliability

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Systems Reliability Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics PV Systems Reliability PV Systems ReliabilityCoryne Tasca2015-05-08T03:40:54+00:00...

  2. PV Value | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    PV Value is a web-based tool that calculates the energy production value for a residential or commercial photovoltaic (PV) system. The tool is Uniform Standards of Progressional ...

  3. Ukiah Utilities- PV Buydown Program

    Energy.gov [DOE]

    Through Ukiah Utilities’ PV Buydown Program, residential and commercial customers are eligible for a $1.40-per-watt AC rebate on qualifying grid-connected PV systems up to a maximum system size of...

  4. Kenmos PV | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    navigation, search Name: Kenmos PV Place: Tainan, Taiwan Sector: Solar Product: Solar business unit of Kenmos Technology which was set up in Sep 2007, to produce thin film PV...

  5. PV Trackers | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Trackers Jump to: navigation, search Name: PV Trackers Product: Designer of dual axis trackers References: PV Trackers1 This article is a stub. You can help OpenEI by expanding...

  6. Solar PV and Glare Factsheet

    Energy.gov [DOE]

    A common misconception about solar photovoltaic (PV) panels is that they inherently cause or create "too much" glare, posing a nuisance to neighbors and a safety risk for pilots. While solar PV systems can produce glare, light absorption - rather than reflection - is central to the function of solar PV panels. This fact sheet describes the basic issues surrounding glare from solar PV panels, the new Federal Aviation Administration guidance, and the implications for local governments.

  7. Modeling Distribution Connected PV and Interconnection Study...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... Half PV Full PV Long-Term PV Variability Tap Change Analysis Voltage regulators were ... between smart inverters and regulator load drop compensator control 9 Base Case With PV ...

  8. Delta PV Pvt Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    PV Pvt Ltd Jump to: navigation, search Name: Delta PV Pvt Ltd Place: India Product: Focused on PV cells and modules. References: Delta PV Pvt Ltd1 This article is a stub. You can...

  9. Testing for PV Reliability (Presentation)

    SciTech Connect

    Kurtz, S.; Bansal, S.

    2014-09-01

    The DOE SUNSHOT workshop is seeking input from the community about PV reliability and how the DOE might address gaps in understanding. This presentation describes the types of testing that are needed for PV reliability and introduces a discussion to identify gaps in our understanding of PV reliability testing.

  10. 2015 PV Module Reliability Workshop

    Energy.gov [DOE]

    The National Renewable Energy Laboratory hosts an annual Photovoltaic (PV) Module Reliability Workshop so that solar technology experts can share information leading to the improvement of PV module reliability. Improvements to module reliability reduce the cost of solar electricity and promotes investor confidence in the technology—both critical goals for moving PV technologies deeper into the electricity marketplace.

  11. PV Solar Site Assessment (Milwaukee High School)

    Office of Energy Efficiency and Renewable Energy (EERE)

    The purpose of this assessment is to provide site-specific information on how a solar electric (also referred to as a photovoltaic, or PV) system would perform at your location, including information on estimated physical size, rated output, energy production, costs, financial incentives and mounting options. Site assessors are required to present unbiased information and may not recommend contractors or products.

  12. Distributed Solar PV for Electricity System Resiliency: Policy and Regulatory Considerations (Brochure)

    SciTech Connect

    Not Available

    2014-11-01

    Distributed Solar PV systems have the potential of increasing the grid's resiliency to unforeseen events, such as extreme weather events and attacks. This paper presents the role that distributed PV can play in electric grid resiliency, introduces basic system design requirements and options, and discusses the regulatory and policy options for supporting the use of distributed PV for the purpose of increased electricity resiliency.

  13. 2015 News | PV | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    5 News Below are news stories related to PV. RSS Learn about RSS. December 17, 2015 NREL Records Progress Toward Understanding of Nanotubes Scientists at the Energy Department's National Renewable Energy Laboratory (NREL) have made progress towards answering a fundamental question about single-walled carbon nanotubes: do absorbed photons create only neutral excitations (excitons) or are some free charges created also? December 11, 2015 NREL Reveals Benefits of O2 Contact with Defects in 2D

  14. Solar PV Incentive Programs

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Development Authority Solar PV Incentive Programs Presentation at NREL Webinar on September 27, 2012 Frank Mace, Dana Levy "Advancing innovative energy solutions in ways that improve New York's economy and environment" A public benefit corporation established in 1975 to help New York State meet its energy goals: - Reducing energy consumption - Promoting the use of renewable energy sources - Protecting the environment What is NYSERDA? 2 of 14 Research & Development: - New &

  15. 2007 News | PV | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    7 News Below are news stories related to PV. RSS Learn about RSS. November 29, 2007 Assistant Secretary Announces New Solar Initiative Alexander Karsner, Assistant Secretary for Energy Efficiency and Renewable Energy, today announced a new solar energy initiative designed to speed adoption of low-cost concentrating solar power (CSP) technologies into the marketplace. November 8, 2007 Wakonda Technologies is the Clean Energy Entrepreneur of the Year A small company commercializing a novel solar

  16. 2008 News | PV | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    8 News Below are news stories related to PV. RSS Learn about RSS. November 13, 2008 NREL and Private Industry Begin Nationwide Solar Measuring Network The U.S. Department of Energy's National Renewable Energy Laboratory and IBERDROLA RENEWABLES have jointly deployed the first of several solar resource measuring stations as part of a planned instrumentation network throughout the United States. November 13, 2008 NREL and Private Industry Begin Nationwide Solar Measuring Network The U.S.

  17. 2009 News | PV | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    9 News Below are news stories related to PV. RSS Learn about RSS. July 30, 2009 NREL Names Director for National Center for Photovoltaics Dr. Ryne P. Raffaelle has been named director of the National Center for Photovoltaics at the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL). Raffaelle most recently has been Academic Director for the Golisano Institute for Sustainability and Director of the NanoPower Research Laboratory at Rochester Institute of Technology (RIT)

  18. Habdank PV Montagesysteme GmbH Co KG Habdank PV Mounting Systems...

    OpenEI (Open Energy Information) [EERE & EIA]

    Germany Zip: 73037 Product: Germany-based manufacturer of mounting systems for PV installations. References: Habdank PV-Montagesysteme GmbH & Co KG Habdank PV Mounting...

  19. Kauai Island Utility Co-op (KIUC) PV integration study.

    SciTech Connect

    Ellis, Abraham; Mousseau, Tom

    2011-08-01

    This report investigates the effects that increased distributed photovoltaic (PV) generation would have on the Kauai Island Utility Co-op (KIUC) system operating requirements. The study focused on determining reserve requirements needed to mitigate the impact of PV variability on system frequency, and the impact on operating costs. Scenarios of 5-MW, 10-MW, and 15-MW nameplate capacity of PV generation plants distributed across the Kauai Island were considered in this study. The analysis required synthesis of the PV solar resource data and modeling of the KIUC system inertia. Based on the results, some findings and conclusions could be drawn, including that the selection of units identified as marginal resources that are used for load following will change; PV penetration will displace energy generated by existing conventional units, thus reducing overall fuel consumption; PV penetration at any deployment level is not likely to reduce system peak load; and increasing PV penetration has little effect on load-following reserves. The study was performed by EnerNex under contract from Sandia National Laboratories with cooperation from KIUC.

  20. Characterizing Shading Losses on Partially Shaded PV Systems (Presentation)

    SciTech Connect

    Deline, C.

    2010-09-23

    Presentation on shaded PV power loss, practical issues with modeling shaded PV, and methods of implementing partially shaded PV modeling.

  1. DOE Zero Energy Ready Home PV-Ready Checklist | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    PV-Ready Checklist DOE Zero Energy Ready Home PV-Ready Checklist All homes certified as DOE Zero Energy Ready Homes must meet the mandatory requirements listed in Exhibit 1 of the National Program Requirements, including Requirement 7 Renewable Ready, which requires that homes meet the requirements listed in the PV-Ready Checklist. See the Checklist document for exceptions PV-Ready Checklist.pdf (86.15 KB) More Documents & Publications DOE Zero Energy Ready Home Solar Hot Water-Ready

  2. PV Validation and Bankability Workshop

    Energy.gov [DOE]

    This document summarizes the information given on Aug. 29, 2011, on the survey results of the PV Validation and Bankability Workshop on Aug. 31, 2011.

  3. Jinzhou Prime Solar PV Technology Co Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    PV Technology Co Ltd Jump to: navigation, search Name: Jinzhou Prime Solar PV Technology Co Ltd Place: China Product: The company produces pv cell and develops pv project....

  4. BeyondPV Co Ltd Bayang Solar PV | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Co Ltd (Bayang Solar PV) Place: Tainan, Taiwan Zip: 70955 Product: BeyondPV is an a-Si thin-film silicon PV maker based in southern Taiwan. References: BeyondPV Co Ltd (Bayang...

  5. PV Crystalox Solar AG formerly PV Silicon AG | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    PV Crystalox Solar AG formerly PV Silicon AG Jump to: navigation, search Name: PV Crystalox Solar AG (formerly PV Silicon AG) Place: Abingdon, England, United Kingdom Zip: OX14 4SE...

  6. Feasibility Study of Economics and Performance of Solar Photovoltaics at the Crazy Horse Landfill Site in Salinas, California. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect

    Stoltenberg, B.; Konz, C.; Mosey, G.

    2013-03-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Crazy Horse Landfill site in Salinas, California, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) was contacted to provide technical assistance for this project. The purpose of this report is to assess the site for a possible photovoltaic (PV) system installation and estimate the cost, performance, operation and maintenance requirements, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site.

  7. Interband cascade (IC) photovoltaic (PV) architecture for PV devices

    SciTech Connect

    Yang, Rui Q.; Tian, Zhaobing; Mishima, Tetsuya D.; Santos, Michael B.; Johnson, Matthew B.; Klem, John F.

    2015-10-20

    A photovoltaic (PV) device, comprising a PV interband cascade (IC) stage, wherein the IC PV stage comprises an absorption region with a band gap, the absorption region configured to absorb photons, an intraband transport region configured to act as a hole barrier, and an interband tunneling region configured to act as an electron barrier. An IC PV architecture for a photovoltaic device, the IC PV architecture comprising an absorption region, an intraband transport region coupled to the absorption region, and an interband tunneling region coupled to the intraband transport region and to the adjacent absorption region, wherein the absorption region, the intraband transport region, and the interband tunneling region are positioned such that electrons will flow from the absorption region to the intraband transport region to the interband tunneling region.

  8. Sandia Research on PV Arc-Fault Detection Submitted for US Patent

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Predictive Simulation of Engines Transportation Energy Consortiums Engine Combustion ... The 2011 National Electrical Code requires PV DC series arc-fault protection, but does ...

  9. PV Nano Cell | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Cell Jump to: navigation, search Name: PV Nano Cell Place: Israel Product: Israel-based firm focused on PV nano cell technology. References: PV Nano Cell1 This article is a stub....

  10. All Solar PV | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Solar PV Jump to: navigation, search Logo: All Solar PV Name: All Solar PV Address: 1407-4-105 Century East,Daliushu Road Place: Beijing, China Sector: Solar Product: Solar Energy...

  11. PV World Co Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    World Co Ltd Jump to: navigation, search Name: PV World Co Ltd Place: Singapore Product: Singapore-based PV module manufacturer. References: PV World Co Ltd1 This article is a...

  12. Gansu PV Co Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Gansu PV Co Ltd Jump to: navigation, search Name: Gansu PV Co Ltd Place: Lanzhou, Gansu Province, China Zip: 730000 Sector: Solar Product: Gansu PV Co Ltd is active in...

  13. Generation PV Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    PV Inc Jump to: navigation, search Name: Generation PV Inc. Place: Markham, Ontario, Canada Zip: L6E 1A9 Sector: Wind energy Product: Ontario-based Generation PV distributes and...

  14. Sandia Energy - Evaluating Rooftop Strength for PV

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Evaluating Rooftop Strength for PV Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Evaluating Rooftop Strength for PV Evaluating Rooftop Strength for...

  15. Tokyo Electron PV | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    PV Jump to: navigation, search Name: Tokyo Electron PV Place: Nirasaki City, Yamanashi, Japan Product: Japanese electronics giants Tokyo Electron and Sharp have announced their...

  16. Zhonghuite PV Technology Co | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Zhonghuite PV Technology Co Jump to: navigation, search Name: Zhonghuite PV Technology Co Place: Jiangxi Province, China Sector: Solar Product: Jiangxi-based solar project...

  17. PV Solar Planet | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Solar Planet Jump to: navigation, search Logo: PV Solar Planet Name: PV Solar Planet Address: 5856 S. Garland Way Place: Littleton, Colorado Zip: 80123 Region: Rockies Area Sector:...

  18. Distributed PV Interconnection Screening Procedures and Online...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Distributed PV Interconnection Screening Procedures and Online Tools" Joel Dickinson with ... Engineer Solar Initiatives Distributed PV Interconnection Screening and Online Tools Salt ...

  19. Interconnecting PV on New York City's Secondary Network Distribution System

    SciTech Connect

    Anderson, K; Coddington, M; Burman, K; Hayter, S; Kroposki, B; Watson, and A

    2009-11-01

    The U.S. Department of Energy (DOE) has teamed with cities across the country through the Solar America Cities (SAC) partnership program to help reduce barriers and accelerate implementation of solar energy. The New York City SAC team is a partnership between the City University of New York (CUNY), the New York City Mayor s Office of Long-term Planning and Sustainability, and the New York City Economic Development Corporation (NYCEDC).The New York City SAC team is working with DOE s National Renewable Energy Laboratory (NREL) and Con Edison, the local utility, to develop a roadmap for photovoltaic (PV) installations in the five boroughs. The city set a goal to increase its installed PV capacity from1.1 MW in 2005 to 8.1 MW by 2015 (the maximum allowed in 2005). A key barrier to reaching this goal, however, is the complexity of the interconnection process with the local utility. Unique challenges are associated with connecting distributed PV systems to secondary network distribution systems (simplified to networks in this report). Although most areas of the country use simpler radial distribution systems to distribute electricity, larger metropolitan areas like New York City typically use networks to increase reliability in large load centers. Unlike the radial distribution system, where each customer receives power through a single line, a network uses a grid of interconnected lines to deliver power to each customer through several parallel circuits and sources. This redundancy improves reliability, but it also requires more complicated coordination and protection schemes that can be disrupted by energy exported from distributed PV systems. Currently, Con Edison studies each potential PV system in New York City to evaluate the system s impact on the network, but this is time consuming for utility engineers and may delay the customer s project or add cost for larger installations. City leaders would like to streamline this process to facilitate faster, simpler, and

  20. Solar PV Recycling Identified as Untapped Business Opportunity | PV | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Solar PV Recycling Identified as Untapped Business Opportunity June 27, 2016 A new report, End-of-Life Management: Solar Photovoltaic Panels, highlights that recycling or repurposing solar PV panels at the end of their roughly 30-year lifetime can unlock a large stock of raw materials and other valuable components. The report, co-authored by NREL, the International Renewable Energy Agency (IRENA) and the International Energy Agency's Photovoltaic Power Systems Programme (IEA-PVPS), is the first

  1. Turlock Irrigation District- PV Rebate

    Energy.gov [DOE]

    Turlock Irrigation District (TID) offers an incentive program to their customers who install solar photovoltaic (PV) systems. In keeping with the terms of the California Solar Initiative, the inc...

  2. PV Validation and Bankability Workshop

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    PV Validation and Bankability Workshop What if?? * This is a reality: A subsidy-free solar electricity infrastructure with an LCOE of 5-6 ckWh without subsidies * Jobs and ...

  3. Rooftop Solar PV & Firefighter Safety

    Energy.gov [DOE]

    Solar photovoltaic (PV) installations have experienced significant growth in recent years. Due to technological innovations and cost reductions, solar energy is a viable option for an increasing number of residences and businesses across the United States. Rooftop solar is considered safe – to date there has been no documented case of death from the electric shock, chemical burn or conventional fire caused by a solar panel; however, as more buildings install rooftop solar systems, the likelihood increases that fires will occur on buildings with solar, making it critical for firefighters to receive comprehensive solar education and training. This SolarOPs fact sheet gives a brief overview of typical solar PV installations, addresses the major hazards and risks to firefighters, discusses fire safety in Germany (the country with the most installed solar PV per capita), and suggests recommendations and resources to ensure that first responders are prepared to fight fires on homes and buildings with rooftop solar PV.

  4. PV | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    this new 550 MW PV Solar Plant in Southern California is the latest feather in DOE's cap. Read more about it on Breaking Energy or checkout the info page from the California...

  5. 3-Port Single-Stage PV & Battery Converter Improves Efficiency and Cost in Combined PV/Battery Systems

    SciTech Connect

    Bundschuh, Paul

    2013-03-23

    Due to impressive cost reductions in recent years, photovoltaic (PV) generation is now able to produce electricity at highly competitive prices, but PV’s inherent intermittency reduces the potential value of this energy. The integration of battery storage with PV will be transformational by increasing the value of solar. Utility scale systems will benefit by firming intermittency including PV ramp smoothing, grid support and load shifting, allowing PV to compete directly with conventional generation. For distributed grid-tied PV adding storage will reduce peak demand utility charges, as well as providing backup power during power grid failures. The largest long term impact of combined PV and battery systems may be for delivering reliable off-grid power to the billions of individuals globally without access to conventional power grids, or for billions more that suffer from daily power outages. PV module costs no longer dominate installed PV system costs. Balance-of-System (BOS) costs including the PV inverter and installation now contribute the majority of installed system costs. Battery costs are also dropping faster than installation and battery power converter systems. In each of these separate systems power converters have become a bottleneck for efficiency, cost and reliability. These bottlenecks are compounded in hybrid power conversion systems that combine separate PV and battery converters. Hybrid power conversion systems have required multiple power converters hardware units and multiple power conversion steps adding to efficiency losses, product and installation costs, and reliability issues. Ideal Power Converters has developed and patented a completely new theory of operation for electronic power converters using its indirect EnergyPacket Switching™ topology. It has established successful power converter products for both PV and battery systems, and its 3-Port Hybrid Converter is the first product to exploit the topology’s capability for the

  6. PV module mounting method and mounting assembly

    DOEpatents

    Lenox, Carl J.S.; Johnson, Kurt M.

    2013-04-23

    A method for mounting PV modules to a deck includes selecting PV module layout pattern so that adjacent PV module edges are spaced apart. PV mounting and support assemblies are secured to the deck according to the layout pattern using fasteners extending into the deck. The PV modules are placed on the PV mounting and support assemblies. Retaining elements are located over and secured against the upper peripheral edge surfaces of the PV modules so to secure them to the deck with the peripheral edges of the PV modules spaced apart from the deck. In some examples a PV module mounting assembly, for use on a shingled deck, comprises flashing, a base mountable on the flashing, a deck-penetrating fastener engageable with the base and securable to the deck so to secure the flashing and the base to the shingled deck, and PV module mounting hardware securable to the base.

  7. Pressure-equalizing PV assembly and method

    DOEpatents

    Dinwoodie, Thomas L.

    2004-10-26

    Each PV assembly of an array of PV assemblies comprises a base, a PV module and a support assembly securing the PV module to a position overlying the upper surface of the base. Vents are formed through the base. A pressure equalization path extends from the outer surface of the PV module, past the PV module, to and through at least one of the vents, and to the lower surface of the base to help reduce wind uplift forces on the PV assembly. The PV assemblies may be interengaged, such as by interengaging the bases of adjacent PV assemblies. The base may include a main portion and a cover and the bases of adjacent PV assemblies may be interengaged by securing the covers of adjacent bases together.

  8. PSCAD Modules Representing PV Generator

    SciTech Connect

    Muljadi, E.; Singh, M.; Gevorgian, V.

    2013-08-01

    Photovoltaic power plants (PVPs) have been growing in size, and the installation time is very short. With the cost of photovoltaic (PV) panels dropping in recent years, it can be predicted that in the next 10 years the contribution of PVPs to the total number of renewable energy power plants will grow significantly. In this project, the National Renewable Energy Laboratory (NREL) developed a dynamic modeling of the modules to be used as building blocks to develop simulation models of single PV arrays, expanded to include Maximum Power Point Tracker (MPPT), expanded to include PV inverter, or expanded to cover an entire PVP. The focus of the investigation and complexity of the simulation determines the components that must be included in the simulation. The development of the PV inverter was covered in detail, including the control diagrams. Both the current-regulated voltage source inverter and the current-regulated current source inverter were developed in PSCAD. Various operations of the PV inverters were simulated under normal and abnormal conditions. Symmetrical and unsymmetrical faults were simulated, presented, and discussed. Both the three-phase analysis and the symmetrical component analysis were included to clarify the understanding of unsymmetrical faults. The dynamic model validation was based on the testing data provided by SCE. Testing was conducted at SCE with the focus on the grid interface behavior of the PV inverter under different faults and disturbances. The dynamic model validation covers both the symmetrical and unsymmetrical faults.

  9. Connecticut Rooftop Solar PV Permitting Guide

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Connecticut Rooftop Solar PV Permitting Guide is a compilation of best practices and resources for solar PV permitting. The guide includes a summary of current codes and regulations affecting solar PV, best practices for streamlining the municipal permitting process, and tools to assist municipalities in creating a streamlined permit process for residential solar PV. Resources include a solar PV permit application, a structural review worksheet, an inspection checklist, and a model solar zoning ordinance.

  10. Integrating Solar PV in Utility System Operations

    SciTech Connect

    Mills, A.; Botterud, A.; Wu, J.; Zhou, Z.; Hodge, B-M.; Heany, M.

    2013-10-31

    This study develops a systematic framework for estimating the increase in operating costs due to uncertainty and variability in renewable resources, uses the framework to quantify the integration costs associated with sub-hourly solar power variability and uncertainty, and shows how changes in system operations may affect these costs. Toward this end, we present a statistical method for estimating the required balancing reserves to maintain system reliability along with a model for commitment and dispatch of the portfolio of thermal and renewable resources at different stages of system operations. We estimate the costs of sub-hourly solar variability, short-term forecast errors, and day-ahead (DA) forecast errors as the difference in production costs between a case with “realistic” PV (i.e., subhourly solar variability and uncertainty are fully included in the modeling) and a case with “well behaved” PV (i.e., PV is assumed to have no sub-hourly variability and can be perfectly forecasted). In addition, we highlight current practices that allow utilities to compensate for the issues encountered at the sub-hourly time frame with increased levels of PV penetration. In this analysis we use the analytical framework to simulate utility operations with increasing deployment of PV in a case study of Arizona Public Service Company (APS), a utility in the southwestern United States. In our analysis, we focus on three processes that are important in understanding the management of PV variability and uncertainty in power system operations. First, we represent the decisions made the day before the operating day through a DA commitment model that relies on imperfect DA forecasts of load and wind as well as PV generation. Second, we represent the decisions made by schedulers in the operating day through hour-ahead (HA) scheduling. Peaking units can be committed or decommitted in the HA schedules and online units can be redispatched using forecasts that are improved

  11. How Can We Make PV Modules Safer?: Preprint

    SciTech Connect

    Wohlgemuth, J. H.; Kurtz, S. R.

    2012-06-01

    Safety is a prime concern for the photovoltaics (PV) industry. As a technology deployed on residential and commercial buildings, it is critical that PV not cause damage to the buildings nor harm the occupants. Many of the PV systems on buildings are of sufficiently high voltage (300 to 600 Volts dc) that they may present potential hazards. These PV systems must be safe in terms of mechanical damage (nothing falls on someone), shock hazard (no risk of electrical shock when touching an exposed circuit element), and fire (the modules neither cause nor promote a fire). The present safety standards (IEC 61730 and UL 1703) do a good job of providing for design rules and test requirements for mechanical, shock, and spread of flame dangers. However, neither standard addresses the issue of electrical arcing within a module that can cause a fire. To make PV modules, they must be designed, built, and installed with an emphasis on minimizing the potential for open circuits and ground faults. This paper provides recommendations on redundant connection designs, robust mounting methods, and changes to the safety standards to yield safer PV modules.

  12. Residential Solar Permit Requirements

    Energy.gov [DOE]

    Washington's State Building Code sets requirements for the installation, inspection, maintenance and repair of solar photovoltaic (PV) energy systems. Local jurisdictions have the authority to...

  13. Compressive Shear Test to Accurately Measure Adhesion of PV Encapsulan...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Compressive Shear Test to Accurately Measure Adhesion of PV Encapsulants Compressive Shear Test to Accurately Measure Adhesion of PV Encapsulants Presented at the PV Module ...

  14. Partial Shading in Monolithic Thin Film PV Modules: Analysis...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Partial Shading in Monolithic Thin Film PV Modules: Analysis and Design Partial Shading in Monolithic Thin Film PV Modules: Analysis and Design Presented at the PV Module ...

  15. Beijing Sunpu Solar PV Technology Co Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    China Zip: 100083 Sector: Solar Product: Manufacturers of PV-powered street lights, inverters and other solar PV systems. References: Beijing Sunpu Solar PV Technology Co Ltd1...

  16. Distributed Solar PV for Electricity System Resiliency: Policy...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    CONSIDERATIONS ABSTRACT Distributed solar photovoltaic (PV) systems have the ... DESIGNING PV SYSTEMS TO PROVIDE ENERGY RESILIENCY Deploying solar PV technology in ...

  17. China and India PV Reliability-NREL Cooperation | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    PV Reliability-NREL Cooperation Jump to: navigation, search Logo: China and India PV Reliability under the Asia Pacific Partnership Name China and India PV Reliability under the...

  18. PV Value® | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    PV Value® PV Value® PV Value® is a free solar PV Valuation tool that answers the question of "How much is solar PV worth" and is compliant with the Uniform Standards of Professional Appraisal Practice. It is available for and being used by real estate appraisers, realtors, homeowners, commercial building owners, home builders, solar installers, green raters, insurance companies, and mortgage lenders in all 50 states along with D.C. and Puerto Rico. PV Value® allows for the

  19. Energy 101: Solar PV | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Solar PV Energy 101: Solar PV Addthis Description Solar photovoltaic (PV) systems can generate clean, cost-effective power anywhere the sun shines. This video shows how a PV panel converts the energy of the sun into renewable electricity to power homes and businesses. Text Version Below is the text version for the Energy 101: Solar PV video. The video opens with "Energy 101: Solar PV." This is followed by a timelapse shot of a city skyline as day turns to night. All right, we all know

  20. PV Cell and Module Calibration Activities at NREL

    SciTech Connect

    Emery, K.; Anderberg, A.; Kiehl, J.; Mack, C.; Moriarty, T.; Ottoson, L.; Rummel, S.

    2005-11-01

    The performance of PV cells and modules with respect to standard reference conditions is a key indicator of progress of a given technology. This task provides the U.S. terrestrial PV community with the most accurate measurements that are technically possible in a timely fashion. The international module certification and accreditation program PVGap requires certification laboratories to maintain their calibration traceability path to groups like this one. The politics of a "world record" efficiency requires that an independent laboratory perform these measurements for credibility. Most manufacturers base their module peak watt rating upon standards and reference cells calibrated under this task. This task has been involved in reconciling disputes between manufacturers and their cell suppliers in terms of expected versus actual performance. This task has also served as a resource to the PV community for consultation on solar simulation, current versus voltage measurement instrumentation, measurement procedures and measurement artifacts.

  1. Comparison of Pyranometers vs. PV Reference Cells for Evaluation of PV Array Performance

    SciTech Connect

    Dunn, L.; Gostein, M.; Emery, K.

    2012-09-01

    As the photovoltaics (PV) industry has grown, the need for accurately monitoring the solar resource of PV power plants has increased. Historically, the PV industry has relied on thermopile pyranometers for irradiance measurements, and a large body of historical irradiance data taken with pyranometers exists. However, interest in PV reference devices is increasing. In this paper, we discuss why PV reference devices are better suited for PV applications, and estimate the typical uncertainties in irradiance measurements made with both pyranometers and PV reference devices. We assert that the quantity of interest in monitoring a PV power plant is the equivalent irradiance under the IEC 60904-3 reference solar spectrum that would produce the same electrical response in the PV array as the incident solar radiation. For PV-plant monitoring applications, we find the uncertainties in irradiance measurements of this type to be on the order of +/-5% for thermopile pyranometers and +/-2.4% for PV reference devices.

  2. EERE Success Story—Raising the Bar for Quality PV Modules

    Energy.gov [DOE]

    Since the development and codification of testing standards for PV modules requires a lengthy multiyear process, Department of Energy’s SunShot Initiative and National Renewable Energy Laboratory worked together on an accelerated schedule for nine months in 2013 to develop a voluntary standard that goes beyond current test protocols to qualify superior PV modules.

  3. PV Powered Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    PV Powered Inc Place: Bend, Oregon Zip: 97702 Product: Oregon-based manufacturer of inverters for PV systems. Coordinates: 44.05766, -121.315549 Show Map Loading map......

  4. Webinar: Evaluating Roof Structures for Solar PV

    Energy.gov [DOE]

    This webinar provides an overview of Connecticut's Structural Review Worksheet for Residential Rooftop Solar PV Systems. The webinar explains how the worksheet should be used and common concerns with wind and dead loads for rooftop solar PV.

  5. City of Healdsburg- PV Incentive Program

    Energy.gov [DOE]

    Through the City of Healdsburg's PV Buy-down Program, residential and commercial customers are eligible for rebate on qualifying grid-connected PV systems. In keeping with SB1, (the California...

  6. The Open PV Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    The Open PV Project The Open PV Project The Open PV Project is a collaborative effort between government, industry, and the public that is compiling a comprehensive database of photovoltaic (PV) installation data for the United States. Data for the project is voluntarily contributed from a variety of sources including utilities, installers, and the general public. The data collected is actively maintained by the contributors and are always changing to provide an evolving, up-to-date snapshot of

  7. PV Controls Utility-Scale Demonstration Project

    SciTech Connect

    O'Neill, Barbara; Gevorgian, Vahan

    2015-10-14

    This presentation provides a high-level overview of the utility-scale PV controls demonstration project.

  8. City of Lancaster- Mandatory Solar Requirement for New Homes

    Energy.gov [DOE]

    PV is not required on all homes within a production subdivision, but the builder must meet the aggregate requirement within the subdivision. For example, one house with twice the required PV can ...

  9. Budgeting for Solar PV Plant Operations & Maintenance: Practices and Pricing.

    SciTech Connect

    Enbar, Nadav; Weng, Dean; Klise, Geoffrey Taylor

    2015-12-01

    With rising grid interconnections of solar photovoltaic (PV) systems, greater attention is being trained on lifecycle performance, reliability, and project economics. Expected to meet production thresholds over a 20-30 year timeframe, PV plants require a steady diet of operations and maintenance (O&M) oversight to meet contractual terms. However, industry best practices are only just beginning to emerge, and O&M budgets—given the arrangement of the solar project value chain—appear to vary widely. Based on insights from in-depth interviews and survey research, this paper presents an overview of the utility-scale PV O&M budgeting process along with guiding rationales, before detailing perspectives on current plant upkeep activities and price points largely in the U.S. It concludes by pondering potential opportunities for improving upon existing O&M budgeting approaches in ways that can benefi t the industry at-large.

  10. Budgeting for Solar PV Plant Operations & Maintenance: Practices and Pricing.

    SciTech Connect

    Enbar, Nadav; Weng, Dean; Klise, Geoffrey Taylor

    2016-01-01

    With rising grid interconnections of solar photovoltaic (PV) systems, greater attention is being trained on lifecycle performance, reliability, and project economics. Expected to meet production thresholds over a 20-30 year timeframe, PV plants require a steady diet of operations and maintenance (O&M) oversight to meet contractual terms. However, industry best practices are only just beginning to emerge, and O&M budgets—given the arrangement of the solar project value chain—appear to vary widely. Based on insights from in-depth interviews and survey research, this paper presents an overview of the utility-scale PV O&M budgeting process along with guiding rationales, before detailing perspectives on current plant upkeep activities and price points largely in the U.S. It concludes by pondering potential opportunities for improving upon existing O&M budgeting approaches in ways that can benefit the industry at-large.

  11. The importance of hybrid PV-building integration

    SciTech Connect

    Posnansky, M.; Gnos, S.; Coonen, S.

    1994-12-31

    An extensive utilization of photovoltaics for future electricity generation and for hybrid generation of electricity and thermal energy is possible, when PV-panels are designed to become a part of the building envelope itself. Large areas are available, since roofs and facades are perfectly suited for solar energy conversion. Atlantis Energy Ltd. has developed special PV-generators which fulfill at the same time the functions and requirements of conventional building elements. In the context of different R and D projects funded by the Swiss government to implement a series of typical building integrated photovoltaic systems, Atlantis Energy Ltd was entrusted to design and build various hybrid building integrated PV-power plants, four of which are described in this paper.

  12. Grid Integrated Distributed PV (GridPV) Version 2.

    SciTech Connect

    Reno, Matthew J.; Coogan, Kyle

    2014-12-01

    This manual provides the documentation of the MATLAB toolbox of functions for using OpenDSS to simulate the impact of solar energy on the distribution system. The majority of the functio ns are useful for interfacing OpenDSS and MATLAB, and they are of generic use for commanding OpenDSS from MATLAB and retrieving information from simulations. A set of functions is also included for modeling PV plant output and setting up the PV plant in th e OpenDSS simulation. The toolbox contains functions for modeling the OpenDSS distribution feeder on satellite images with GPS coordinates. Finally, example simulations functions are included to show potential uses of the toolbox functions. Each function i n the toolbox is documented with the function use syntax, full description, function input list, function output list, example use, and example output.

  13. Creating dynamic equivalent PV circuit models with impedance spectroscopy for arc-fault modeling.

    SciTech Connect

    Johnson, Jay Dean; Kuszmaul, Scott S.; Strauch, Jason E.; Schoenwald, David Alan

    2011-06-01

    Article 690.11 in the 2011 National Electrical Code{reg_sign} (NEC{reg_sign}) requires new photovoltaic (PV) systems on or penetrating a building to include a listed arc fault protection device. Currently there is little experimental or empirical research into the behavior of the arcing frequencies through PV components despite the potential for modules and other PV components to filter or attenuate arcing signatures that could render the arc detector ineffective. To model AC arcing signal propagation along PV strings, the well-studied DC diode models were found to inadequately capture the behavior of high frequency arcing signals. Instead dynamic equivalent circuit models of PV modules were required to describe the impedance for alternating currents in modules. The nonlinearities present in PV cells resulting from irradiance, temperature, frequency, and bias voltage variations make modeling these systems challenging. Linearized dynamic equivalent circuits were created for multiple PV module manufacturers and module technologies. The equivalent resistances and capacitances for the modules were determined using impedance spectroscopy with no bias voltage and no irradiance. The equivalent circuit model was employed to evaluate modules having irradiance conditions that could not be measured directly with the instrumentation. Although there was a wide range of circuit component values, the complex impedance model does not predict filtering of arc fault frequencies in PV strings for any irradiance level. Experimental results with no irradiance agree with the model and show nearly no attenuation for 1 Hz to 100 kHz input frequencies.

  14. Grid-tied PV battery systems.

    SciTech Connect

    Barrett, Keith Phillip; Gonzalez, Sigifredo; Hund, Thomas D.

    2010-09-01

    Grid tied PV energy smoothing was implemented by using a valve regulated lead-acid (VRLA) battery as a temporary energy storage device to both charge and discharge as required to smooth the inverter energy output from the PV array. Inverter output was controlled by the average solar irradiance over the previous 1h time interval. On a clear day the solar irradiance power curve is offset by about 1h, while on a variable cloudy day the inverter output power curve will be smoothed based on the average solar irradiance. Test results demonstrate that this smoothing algorithm works very well. Battery state of charge was more difficult to manage because of the variable system inefficiencies. Testing continued for 30-days and established consistent operational performance for extended periods of time under a wide variety of resource conditions. Both battery technologies from Exide (Absolyte) and East Penn (ALABC Advanced) proved to cycle well at a Partial state of charge over the time interval tested.

  15. Heritage Park Facilities PV Project

    SciTech Connect

    Hobaica, Mark

    2013-09-26

    Project Objective: To procure a photovoltaic array (PV) system which will generate approximately 256kW of power to be used for the operations of the Aquatic Complex and the adjacent Senior Facility at the Heritage Park. This project complies with the EERE’s work and objectives by promoting the development and deployment of an energy system that will provide current and future generations with clean, efficient, affordable, and reliable energy.

  16. Time series power flow analysis for distribution connected PV generation.

    SciTech Connect

    Broderick, Robert Joseph; Quiroz, Jimmy Edward; Ellis, Abraham; Reno, Matthew J.; Smith, Jeff; Dugan, Roger

    2013-01-01

    Distributed photovoltaic (PV) projects must go through an interconnection study process before connecting to the distribution grid. These studies are intended to identify the likely impacts and mitigation alternatives. In the majority of the cases, system impacts can be ruled out or mitigation can be identified without an involved study, through a screening process or a simple supplemental review study. For some proposed projects, expensive and time-consuming interconnection studies are required. The challenges to performing the studies are twofold. First, every study scenario is potentially unique, as the studies are often highly specific to the amount of PV generation capacity that varies greatly from feeder to feeder and is often unevenly distributed along the same feeder. This can cause location-specific impacts and mitigations. The second challenge is the inherent variability in PV power output which can interact with feeder operation in complex ways, by affecting the operation of voltage regulation and protection devices. The typical simulation tools and methods in use today for distribution system planning are often not adequate to accurately assess these potential impacts. This report demonstrates how quasi-static time series (QSTS) simulation and high time-resolution data can be used to assess the potential impacts in a more comprehensive manner. The QSTS simulations are applied to a set of sample feeders with high PV deployment to illustrate the usefulness of the approach. The report describes methods that can help determine how PV affects distribution system operations. The simulation results are focused on enhancing the understanding of the underlying technical issues. The examples also highlight the steps needed to perform QSTS simulation and describe the data needed to drive the simulations. The goal of this report is to make the methodology of time series power flow analysis readily accessible to utilities and others responsible for evaluating

  17. Introduction of Break-Out Session at the International PV Module Quality Assurance Forum (Presentation)

    SciTech Connect

    Kurtz, S.; Wohlgemuth, J.; Yamamichi, M.; Sample, T.

    2011-07-01

    This presentation outlines review requirements for quality assurance (QA) rating systems, logical design of QA systems, and specific tasks for break-out session 1 of the 2011 International PV Module Quality Assurance Forum.

  18. Solar PV O&M Standards and Best Practices – Existing Gaps and Improvement Efforts

    SciTech Connect

    Klise, Geoffrey Taylor; Balfour, John R.; Keating, T. J.

    2014-11-01

    As greater numbers of photovoltaic (PV) systems are being installed, operations & maintenance (O&M) activities will need to be performed to ensure the PV system is operating as designed over its useful lifetime. To mitigate risks to PV system availability and performance, standardized procedures for O&M activities are needed to ensure high reliability and long-term system bankability. Efforts are just getting underway to address the need for standard O&M procedures as PV gains a larger share of U.S. generation capacity. Due to the existing landscape of how and where PV is installed, including distributed generation from small and medium PV systems, as well as large, centralized utility-scale PV, O&M activities will require different levels of expertise and reporting, making standards even more important. This report summarizes recent efforts made by solar industry stakeholders to identify the existing standards and best practices applied to solar PV O&M activities, and determine the gaps that have yet to be, or are currently being addressed by industry.

  19. Solar PV O&M Standards and Best Practices - Existing Gaps and Improvement Efforts

    SciTech Connect

    Klise, Geoffrey Taylor; Balfour, John R.; Keating, T. J.

    2014-11-01

    As greater numbers of photovoltaic (PV) systems are being installed, operations & maintenance (O&M) activities will need to be performed to ensure the PV system is operating as designed over its useful lifetime. To mitigate risks to PV system availability and performance, standardized procedures for O&M activities are needed to ensure high reliability and long-term system bankability. Efforts are just getting underway to address the need for standard O&M procedures as PV gains a larger share of U.S. generation capacity. Due to the existing landscape of how and where PV is installed, including distributed generation from small and medium PV systems, as well as large, centralized utility-scale PV, O&M activities will require different levels of expertise and reporting, making standards even more important. This report summarizes recent efforts made by solar industry stakeholders to identify the existing standards and best practices applied to solar PV O&M activities, and determine the gaps that have yet to be, or are currently being addressed by industry.

  20. BEopt-CA (Ex): A Tool for Optimal Integration of EE, DR and PV in Existing California Homes

    SciTech Connect

    Christensen, C.; Horowitz, S.; Maguire, J.; Tabares-Velasco, P.; Springer, D.; Coates, P.; Bell, C.; Price, S.; Sreedharan, P.; Pickrell, K.

    2014-04-01

    Opportunities for combining energy efficiency, demand response, and energy storage with PV are often missed, because the required knowledge and expertise for these different technologies exist in separate organizations or individuals. Furthermore, there is a lack of quantitative tools to optimize energy efficiency, demand response and energy storage with PV, especially for existing buildings. As technology costs evolve (e.g., the ongoing reduction in the cost of PV), design strategies need to be adjusted accordingly based on quantitative analysis.

  1. Analytical Improvements in PV Degradation Rate Determination

    SciTech Connect

    Jordan, D. C.; Kurtz, S. R.

    2011-02-01

    As photovoltaic (PV) penetration of the power grid increases, it becomes vital to know how decreased power output may affect cost over time. In order to predict power delivery, the decline or degradation rates must be determined accurately. For non-spectrally corrected data several complete seasonal cycles (typically 3-5 years) are required to obtain reasonably accurate degradation rates. In a rapidly evolving industry such a time span is often unacceptable and the need exists to determine degradation rates accurately in a shorter period of time. Occurrence of outliers and data shifts are two examples of analytical problems leading to greater uncertainty and therefore to longer observation times. In this paper we compare three methodologies of data analysis for robustness in the presence of outliers, data shifts and shorter measurement time periods.

  2. PV output smoothing with energy storage.

    SciTech Connect

    Ellis, Abraham; Schoenwald, David Alan

    2012-03-01

    This report describes an algorithm, implemented in Matlab/Simulink, designed to reduce the variability of photovoltaic (PV) power output by using a battery. The purpose of the battery is to add power to the PV output (or subtract) to smooth out the high frequency components of the PV power that that occur during periods with transient cloud shadows on the PV array. The control system is challenged with the task of reducing short-term PV output variability while avoiding overworking the battery both in terms of capacity and ramp capability. The algorithm proposed by Sandia is purposely very simple to facilitate implementation in a real-time controller. The control structure has two additional inputs to which the battery can respond. For example, the battery could respond to PV variability, load variability or area control error (ACE) or a combination of the three.

  3. PV Reliability Workshop | Photovoltaic Research | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    PV Reliability Workshop NREL hosts an annual Photovoltaic Reliability Workshop (PVRW) so that solar technology experts can share information leading to the improvement of PV module reliability. Such improvement reduces the cost of solar electricity and promotes investor confidence in the technology-both critical goals for moving PV technologies deeper into the electricity marketplace. 2017 Workshop The 2017 Photovoltaic Reliability Workshop (PVRW) will be held Tuesday, February 28, to Thursday,

  4. National solar technology roadmap: Concentrator PV

    SciTech Connect

    Friedman, Dan

    2007-06-01

    This roadmap addresses high-concentration (>10x) photovoltaic (PV) systems, incorporating high-efficiency III-V or silicon cells, trackers, and reflective or refractive optics.

  5. ASTM PV INSTALLATON COMMISSIONING, OPERATIONS & MAINTENNCE (ICOMP...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ASTM PV INSTALLATON COMMISSIONING, OPERATIONS & MAINTENNCE (ICOMP) STANDARD PRACTICE ... which maps out the intent of the standard including incorporations of existing ...

  6. Ensuring Quality of PV Modules: Preprint

    SciTech Connect

    Kurtz, S.; Wohlgemuth, J.; Hacke, P.; Kempe, M.; Sample, T.; Yamamichi, M.; Kondo, M.; Doi, T.; Otani, K.; Amano, J.

    2011-07-01

    Photovoltaic (PV) customers need to have confidence in the PV modules they purchase. Currently, no test can quantify a module's lifetime with confidence, but stress tests are routinely used to differentiate PV product designs. We suggest that the industry would be strengthened by using the wisdom of the community to develop a single set of tests that will help customers quantify confidence in PV products. This paper evaluates the need for quality assurance (QA) standards and suggests a path for creating these. Two types of standards are needed: 1) QA of the module design and 2) QA of the manufacturing process.

  7. Selecting Solar: Insights into Residential Photovoltaic (PV)...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Selecting Solar: Insights into Residential Photovoltaic (PV) Quote Variation Carolyn Davidson and Robert Margolis National Renewable Energy Laboratory Technical Report NREL...

  8. CPS Energy- Solar PV Rebate Program

    Energy.gov [DOE]

    CPS Energy, San Antonio's municipal utility, offers rebates to customers who install solar photovoltaic (PV) systems on their homes, schools, or businesses. There are four rebate "tiers" available...

  9. Riverside Public Utilities - Residential PV Incentive Program...

    Energy.gov [DOE] (indexed site)

    Riverside Public Utilities Website http:www.riversideca.govutilitiesresi-pv-incentive.asp State California Program Type Rebate Program Rebate Amount 0.50 per watt...

  10. Sandia Rooftop PV Structural Report Webinar

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid ... Sandia Rooftop PV Structural Report Webinar A roof structure is made ...

  11. The Open PV Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Solar, - Solar PV Topics: Background analysis, Market analysis Resource Type: Dataset, Online...

  12. The Open PV Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    National Renewable Energy Laboratory Sector: Energy Focus Area: Solar, - Solar PV Topics: Background analysis, Market analysis Resource Type: Dataset, Online calculator,...

  13. pv_mapper_091713.mp3 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    pv_mapper_091713.mp3 pv_mapper_091713.mp3 pv_mapper_091713.mp3 pv_mapper_091713.mp3 (42.07 MB) More Documents & Publications PVMapper: A Tool for Energy Siting Final Report - Development of an Open Source Utility-Scale Solar Project Siting Tool transcript_pv_mapper.doc

  14. Future of Grid-Tied PV Business Models: What Will Happen When PV Penetration on the Distribution Grid is Significant? Preprint

    SciTech Connect

    Graham, S.; Katofsky, R.; Frantzis, L.; Sawyer, H.; Margolis, R.

    2008-05-01

    Eventually, distributed PV will become a more significant part of the generation mix. When this happens, it is expected that utilities will have to take on a more active role in the placement, operation and control of these systems. There are operational complexities and concerns of revenue erosion that will drive utilities into greater involvement of distributed PV and will create new business models. This report summarizes work done by Navigant Consulting Inc. for the National Renewable Energy Laboratory as part of the Department of Energy's work on Renewable System Integration. The objective of the work was to better understand the structure of these future business models and the research, development and demonstration (RD&D) required to support their deployment. This report describes potential future PV business models in terms of combinations of utility ownership and control of the PV assets, and the various relationships between end-users and third-party owners.

  15. Berkeley Program Offers New Option for Financing Residential PV Systems

    SciTech Connect

    Bolinger, Mark A

    2008-07-06

    Readily accessible credit has often been cited as a necessary ingredient to open up the market for residential photovoltaic (PV) systems. Though financing does not reduce the high up-front cost of PV, by spreading that cost over some portion of the system's life, financing can certainly make PV systems more affordable. As a result, a number of states have, in the past, set up special residential loan programs targeting the installation of renewable energy systems and/or energy-efficiency improvements and often featuring low interest rates, longer terms and no-hassle application requirements. Historically, these loan programs have had mixed success (particularly for PV), for a variety of reasons, including a historical lack of homeowner interest in PV, a lack of program awareness, a reduced appeal in a low-interest-rate environment, and a tendency for early PV adopters to be wealthy and not in need of financing. Some of these barriers have begun to fade. Most notably, homeowner interest in PV has grown in some states, particularly those that offer solar rebates. The passage of the Energy Policy Act of 2005 (EPAct 2005), however, introduced one additional roadblock to the success of low-interest PV loan programs: a residential solar investment tax credit (ITC), subject to the Federal government's 'anti-double-dipping' rules. Specifically, the residential solar ITC--equal to 30% of the system's tax basis, capped at $2000--will be reduced or offset if the system also benefits from what is known as 'subsidized energy financing', which is likely to include most government-sponsored low-interest loan programs. Within this context, it has been interesting to note the recent flurry of announcements from a number of U.S cities concerning a new type of PV financing program. Led by the city of Berkeley, Calif., these cities propose to offer their residents the ability to finance the installation of a PV system using increased property tax assessments, rather than a more

  16. Raising the Bar for Quality PV Modules | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Raising the Bar for Quality PV Modules Raising the Bar for Quality PV Modules October 30, 2014 - 4:58pm Addthis As photovoltaics (PV) markets expand across the United States the...

  17. Stion Commissions PV System at Sandia Regional Test Center

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... Stion Commissions PV System at Sandia Regional Test Center Stion PV system installed and the Sandia RTC site. Stion PV system installed and the Sandia RTC site. Thin-film solar ...

  18. Nvision.Energy - Pernik Solar PV plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Energy - Pernik Solar PV plant Jump to: navigation, search Name Nvision.Energy - Pernik Solar PV plant Facility Nvision.Solar - Pernik Solar PV Plant Sector Solar Facility Type...

  19. EXPERIENCES ON PID TESTING OF PV MODULES IN 2012 | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    EXPERIENCES ON PID TESTING OF PV MODULES IN 2012 EXPERIENCES ON PID TESTING OF PV MODULES IN 2012 Presented at the PV Module Reliability Workshop, February 26 - 27 2013, Golden, ...

  20. Inner Mongolia Zhonghuan PV Materials Co Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    PV Materials Co Ltd Jump to: navigation, search Name: Inner Mongolia Zhonghuan PV Materials Co Ltd Place: Inner Mongolia Autonomous Region, China Product: China-based PV ingot and...

  1. TekSun PV Manufacturing Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    TekSun PV Manufacturing Inc Jump to: navigation, search Name: TekSun PV Manufacturing Inc Place: Austin, Texas Zip: 78701 Product: US-based installer of PV systems; rportedly...

  2. Jiangsu Zongyi PV Co Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Name: Jiangsu Zongyi PV Co Ltd Place: Jiangsu Province, China Product: Nantong-based thin-film PV cell producer. References: Jiangsu Zongyi PV Co Ltd1 This article is a...

  3. Solar PV Permitting and Safety Training Webinar

    Office of Energy Efficiency and Renewable Energy (EERE)

    This webinar provides training on two permitting resources for municipal inspectors; a prescriptive process for building inspectors and a guidance document for permitting for PV for electrical inspectors. The webinar also runs through a number of key code articles in Massachusetts 2014 electrical code and examines a variety of safety hazards commonly found during or after solar PV installations.

  4. Draft Transcript on Municipal PV Systems

    Energy.gov [DOE]

    Webinar on navigating the legal, tax, and finance issues associated with the installation of Municipal PV Systems. The following agenda was developed based on Pat Boylston's experience assisting municipalities with their PV projects and the requests for information that the Solar America City technical team leads have received from many of the 25 Solar America Cities since the April 2008 meeting in Tucson.

  5. Arima Photovoltaic And Optical Corp Arima PV | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Photovoltaic And Optical Corp Arima PV Jump to: navigation, search Name: Arima Photovoltaic And Optical Corp (Arima PV) Place: Taipei, Taiwan Product: Once a maker of computers,...

  6. Sandia/EPRI PV Symposium - Save the Date!

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    PV Distribution System Modeling Workshop - Tue., May 6, Biltmore Hotel Methods and best practices for facilitating the integration of PV into the power system-including those that ...

  7. Low Cost High Concentration PV Systems for Utility Power Generation...

    Office of Environmental Management (EM)

    An overview of the Low Cost High Concentration PV Systems for Utility Power Generation project to transition Amonix's concentrating photovoltaic (PV) systems from low-volume to ...

  8. Pioneer Valley Photovoltaics Cooperative aka PV Squared | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Photovoltaics Cooperative aka PV Squared Jump to: navigation, search Name: Pioneer Valley Photovoltaics Cooperative (aka PV Squared) Place: New Britain, Connecticut Zip: 6051...

  9. Nvision.Solar - Ravnishte Solar PV Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Solar - Ravnishte Solar PV Plant Jump to: navigation, search Name Nvision.Solar - Ravnishte Solar PV Plant Facility Ravishte roof and facade mounted solar power plant Sector Solar...

  10. Comparison of a Recurrent Neural Network PV System Model with...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Neural Network PV System Model with a Traditional Component-Based PV System Model Daniel Riley, Sandia National Laboratories, Albuquerque, New Mexico, USA | Ganesh K....

  11. BIOHAUS PV Handels GmbH | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    GmbH Jump to: navigation, search Name: BIOHAUS PV Handels GmbH Place: Paderborn, Germany Zip: 33100 Product: Distributor of Isofoton PV products in Germany. Coordinates:...

  12. Utility Participation in the Rooftop Solar PV Market

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Utility Participation in the Rooftop Solar PV Market DG Interconnection Collaborative ... innovation related to distributed PV interconnection processes and practices * NEW ...

  13. Inner Mongolia Dunan PV power | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Dunan PV power Jump to: navigation, search Name: Inner Mongolia Dunan PV power Place: Inner Mongolia Autonomous Region, China Sector: Solar Product: Inner Mongolia-based solar...

  14. PV Validation and Bankability Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    PV Validation and Bankability Workshop PV Validation and Bankability Workshop This presentation summarizes the information given by DOE during the Photovoltaic Validation and...

  15. Suzhou Shenglong PV Tech Co Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Shenglong PV Tech Co Ltd Jump to: navigation, search Name: Suzhou Shenglong PV-Tech Co Ltd Place: Zhangjiagang City, Jiangsu Province, China Zip: 215612 Product: Chinese ingot,...

  16. Training on PV Systems: Design, Construction, Operation and Maintenanc...

    OpenEI (Open Energy Information) [EERE & EIA]

    on PV Systems: Design, Construction, Operation and Maintenance Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Training on PV Systems: Design, Construction, Operation...

  17. Linkage to Previous International PV Module QA Task Force Workshops...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Linkage to Previous International PV Module QA Task Force Workshops: Proposal for Rating System Linkage to Previous International PV Module QA Task Force Workshops: Proposal for ...

  18. Department of Veterans Affairs, FONSI - Rooftop solar PV power...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Rooftop solar PV power at Calverton National Cemetery Department of Veterans Affairs, FONSI - Rooftop solar PV power at Calverton National Cemetery An Environmental Assessment (EA) ...

  19. Ningxia Yinxing Energy PV Power Equipment Manufacturing Co Ltd...

    OpenEI (Open Energy Information) [EERE & EIA]

    Yinxing Energy PV Power Equipment Manufacturing Co Ltd Jump to: navigation, search Name: Ningxia Yinxing Energy PV Power Equipment Manufacturing Co Ltd Place: Yinchuan, Ningxia...

  20. Systems for Solar Fuels Generation Utilizing PV and Electrolysis...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Systems for Solar Fuels Generation Utilizing PV and Electrolysis Workshop (Newark, Delaware) Systems for Solar Fuels Generation Utilizing PV and Electrolysis Workshop (Newark, ...

  1. Smart-Grid Ready PV Inverter with Utility Communication

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Advancement of PV system capabilities, communication systems and open standards, ... Smart-Grid Ready PV Inverter With Utility Communication BRIAN SEAL ELECTRIC POWER ...

  2. Zhejiang Cineng PV Science Technology Co Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Cineng PV Science Technology Co Ltd Jump to: navigation, search Name: Zhejiang Cineng PV Science & Technology Co Ltd Place: Cixi, Zhejiang Province, China Sector: Solar Product: A...

  3. Baseline and Target Values for PV Forecasts: Toward Improved...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Baseline and Target Values for PV Forecasts: Toward Improved Solar Power Forecasting ... Baseline and Target Values for PV Forecasts: Toward Improved Solar Power Forecasting Jie ...

  4. Statistical and Domain Analytics Applied to PV Module Lifetime...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Statistical and Domain Analytics Applied to PV Module Lifetime and Degradation Science Statistical and Domain Analytics Applied to PV Module Lifetime and Degradation Science ...

  5. Kauai, Hawaii: Solar Resource Analysis and High-Penetration PV...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Kauai, Hawaii: Solar Resource Analysis and High-Penetration PV Potential Kauai, Hawaii: ... This study looks at the technical feasibility of generating power with PV arrays. PDF icon ...

  6. Winning the Future: Navajo-Hopi Land Commission Leverages DOE...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    (PV) renewable energy project on the 22,000-acre Paragon-Bisti Solar Ranch in northwestern New Mexico. ... to develop renewable energy resources on our lands," said NHLCO ...

  7. Jebel Ali Hotel PV lighting systems

    SciTech Connect

    Ellis, M.

    1984-05-01

    A large stand-alone PV lighting project was installed in June 1983 at the Jebel Ali Hotel in Dubai, United Arab Emirates. A high mast lighting system provides illumination for a 130 meter diameter traffic roundabout. The high mast system is powered by a 15 kilowatt peak array of Mobil Solar ribbon PV modules. Along the 700 meter access road leading to the hotel entrance, twenty-one PV powered streetlights provide low-level lighting. Each streetlight consists of a 20 watt fluorescent tube powered by two 35 Wp modules. Operation of both systems is completely automatic. Design, installation, and operating experience to date are reviewed.

  8. Terawatt Challenge for Thin-Film PV

    SciTech Connect

    Zweibel, K.

    2005-08-01

    The evolution of PV into one of the world's largest industries is not going to happen without major unforeseen problems. However, this study attempts to address the obvious ones, so that we can put aside the mythology of PV (for example, that it is only ''boutique power'' or that one must pave the world with it to be useful) and get on with changing the world's energy infrastructure. With the years of rapid market growth now under way in PV, the author is sure this will not be the last effort to understand the real potential and pitfalls of meeting the Challenge.

  9. NREL Releases High-Penetration PV Handbook for Distribution Engineers | PV

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    | NREL Releases High-Penetration PV Handbook for Distribution Engineers A new resource sponsored by the Energy Department's SunShot Initiative helps distribution engineers understand the challenges of high-penetration PV integration. January 27, 2016 As solar photovoltaic (PV) systems are increasingly installed throughout the country at distribution-level utility scale, a new challenge is emerging: how to safely and effectively integrate greater amounts of variable solar generation onto the

  10. Sandia Energy - PV Reliability & Performance Model

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    15-06-01T20:13:00+00:00 This Web Demo model is a simplified "player" version of the Photovoltaic Reliability Performance Model (PV-RPM) currently in development at Sandia National...

  11. SMUD- PV Residential Retrofit Buy-Down

    Energy.gov [DOE]

    The incentive can be paid directly to the customer or the installer. PV equipment listed on the CEC Approved Equipment list is eligible for incentives: http://www.gosolarcalifornia.org/equipment...

  12. Merced Irrigation District- PV Buydown Program

    Energy.gov [DOE]

    Merced Irrigation District (MID) offers its residential, commercial and non-profit customers a rebate for installing solar electric photovoltaic (PV) systems on their homes and offices. For 2015,...

  13. NanoPV Corporation | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Corporation Place: Ewing, New Jersey Zip: 8618 Product: A New Jersey-based thin film PV cell producer and technology provider. Coordinates: 36.638474, -83.428453 Show Map...

  14. Distributed PV Permitting and Inspection Processes

    SciTech Connect

    Solar Energy Technologies Office

    2010-08-03

    This presentation summarizes case studies of the time and cost involved in the distributed PV permitting and inspection process in three Solar America Cities, Austin, Portland, and Salt Lake City.

  15. PV Module Reliability Research (Fact Sheet)

    SciTech Connect

    Not Available

    2013-06-01

    This National Center for Photovoltaics sheet describes the capabilities of its PV module reliability research. The scope and core competencies and capabilities are discussed and recent publications are listed.

  16. City of Lompoc Utilities- PV Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    City of Lompoc Utilities provides rebates to its electric customers who purchase and install photovoltaic (PV) systems. The rebate is $1.00 per watt-AC. The incentive amount may not exceed 50% the...

  17. Kansas City Power & Light- Solar PV Rebates

    Office of Energy Efficiency and Renewable Energy (EERE)

    Note: On March 9, 2016, KCP&L received approval to cease PV rebate payments under this program when a total of $36.5 million in payments have been made, which is expected to occur within the...

  18. Distributed PV Permitting and Inspection Processes

    Energy.gov [DOE]

    This presentation summarizes case studies of the time and cost involved in the distributed PV permitting and inspection process in three Solar America Cities, Austin, Portland, and Salt Lake City.

  19. Lessons Learned with Early PV Plant Integration

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... whether it's PV, wind, geothermal, hydro, biogas - or you might have smooth parallel ... For example, we had a situation last year where we installed a dedicated TAP for a biogas ...

  20. Austin Energy- Commercial Solar PV Incentive Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    In order to qualify for this program, PV modules must be new and be listed on the California Energy Commission's Go Solar web site. In addition, all solar panels must have a 20-year manufacturer ...

  1. Distributed PV Adoption in Maine Through 2021

    SciTech Connect

    Gagnon, Pieter; Sigrin, Ben

    2015-11-06

    NREL has used its dSolar (distributed solar) model to generate low-medium-high estimates of distributed PV adoption in Maine through 2021. This presentation gives a high-level overview of the model and modeling results.

  2. Solar Energy International Solar PV 101 Training

    Energy.gov [DOE]

    Solar Energy International is offering a five-day training that provides an overview of the three basic PV system applications, primarily focusing on grid-direct systems. The goal of the course is...

  3. Plumas-Sierra REC- PV Rebate Program

    Energy.gov [DOE]

    Plumas-Sierra REC offers an incentive for its customers to install photovoltaic (PV) systems on homes and businesses. Rebates are available for qualifying systems between one kilowatt (kW) and 25...

  4. Solar Works! In Seattle: Introduction to Solar Electric (PV)

    Energy.gov [DOE]

    Presentation slides from residential PV workshop. Also covers general solar resource assessment, siting and financial incentives.

  5. transcript_pv_mapper.doc | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    transcript_pv_mapper.doc transcript_pv_mapper.doc transcript_pv_mapper.doc transcript_pv_mapper.doc (74.5 KB) More Documents & Publications PVMapper: A Tool for Energy Siting transcript_jedi_model.doc 2009 National Electric Transmission Congestion Study - San Francisco Workshop

  6. Feasibility Study of Economics and Performance of Solar PV at the Atlas Industrial Park in Duluth, Minnesota

    SciTech Connect

    Steen, M.; Lisell, L.; Mosey, G.

    2013-01-01

    The U.S. Environmental Protection Agency (EPA) Region 5, in accordance with the RE-Powering America's Land initiative, selected the Atlas Industrial Park in Duluth, Minnesota, for a feasibility study of renewable energy production. The EPA provided funding to the National Renewable Energy Laboratory (NREL) to support a feasibility study of solar renewable energy generation at the Atlas Industrial Park. NREL provided technical assistance for this project but did not assess environmental conditions at the site beyond those related to the performance of a photovoltaic (PV) system. The purpose of this study is to assess the site for a possible PV installation and estimate the cost, performance, and site impacts of different PV configurations. In addition, the study evaluates financing options that could assist in the implementation of a PV system at the site.

  7. Solar PV Incentive Programs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    PV Incentive Programs Solar PV Incentive Programs This presentation summarizes the information discussed by NYSERDA during the Best Practices in the Design of Utility Solar Programs Webinar on September 27, 2012. utility_design_nyserda_mace.pdf (378.85 KB) More Documents & Publications Best Practices in the Design of Utility Solar Programs NYSERDA's CHP Program Guide, 2010 NYSERDA's RPS Customer Sited Tier Fuel Cell Program

  8. PV System Energy Evaluation Method (Presentation)

    SciTech Connect

    Kurtz, S.

    2014-01-01

    This presentation describes a comparison of the "predicted" energy (based on historical weather data) with the "expected" energy (based on the measured weather data) to determine whether a PV system is performing as modeled in order to verify the accuracy of a model. A key factor in defining this energy test is determining the test boundary so that weather variations are not inadvertently included in what is considered to be PV system performance.

  9. Lessons Learned with Early PV Plant Integration

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Lessons Learned with Early PV Plant Integration" Elsa Gonzalez, Rachel Sall, Frankie Greco and David Narang with Arizona Public Service Company June 12, 2014 2 Speakers Frankie Greco Distribution Interconnection Team Arizona Public Service Company Elsa Gonzales Distribution Operations Engineer Arizona Public Service Company David Narang Senior Engineer Arizona Public Service Company Rachel Sall Arizona Public Service Company Lessons Learned with Early PV Plant Integration Elsa Gonzalez

  10. Updating Technical Screens for PV Interconnection: Preprint

    SciTech Connect

    Coddington, M.; Ellis, A.; Lynn, K.; Razon, A.; Key, T.; Kroposki, B.; Mather, B.; Hill, R.; Nicole, K.; Smith, J.

    2012-08-01

    Solar photovoltaics (PV) is the dominant type of distributed generation (DG) technology interconnected to electric distribution systems in the United States, and deployment of PV systems continues to increase rapidly. Considering the rapid growth and widespread deployment of PV systems in United States electric distribution grids, it is important that interconnection procedures be as streamlined as possible to avoid unnecessary interconnection studies, costs, and delays. Because many PV interconnection applications involve high penetration scenarios, the process needs to allow for a sufficiently rigorous technical evaluation to identify and address possible system impacts. Existing interconnection procedures are designed to balance the need for efficiency and technical rigor for all DG. However, there is an implicit expectation that those procedures will be updated over time in order to remain relevant with respect to evolving standards, technology, and practical experience. Modifications to interconnection screens and procedures must focus on maintaining or improving safety and reliability, as well as accurately allocating costs and improving expediency of the interconnection process. This paper evaluates the origins and usefulness of the capacity penetration screen, offers potential short-term solutions which could effectively allow fast-track interconnection to many PV system applications, and considers longer-term solutions for increasing PV deployment levels in a safe and reliable manner while reducing or eliminating the emphasis on the penetration screen.

  11. Final Report - 1366 Project Silicon: Reclaiming US Silicon PV Leadership |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy 1366 Project Silicon: Reclaiming US Silicon PV Leadership Final Report - 1366 Project Silicon: Reclaiming US Silicon PV Leadership Awardee: 1366 Technologies Location: Bedford, MA Subprogram: Technology to Market Funding Program: Scaling Up Nascent PV AT Home 1366 Technologies' Project Silicon addresses two of the major goals of the DOE's PV Manufacturing Initiative Part 2 program: 1) How to reclaim a strong silicon PV manufacturing presence and; 2) How to lower the

  12. New Berkeley Lab Report Tracks a Decade of PV Installed Cost Trends

    SciTech Connect

    Barbose, Galen; Peterman, Carla; Wiser, Ryan

    2009-04-15

    Installations of PV systems have been expanding at a rapid pace in recent years. In the United States, the market for PV is driven by national, state, and local government incentives, including upfront cash rebates, production-based incentives, requirements that electricity suppliers purchase a certain amount of solar energy, and Federal and state tax benefits. These programs are, in part, motivated by the popular appeal of solar energy and by the positive attributes of PV - e.g., modest environmental impacts, avoidance of fuel price risks, coincidence with peak electrical demand, and the location of PV at the point of use. Given the relatively high cost of PV, however, a key goal of these policies is to encourage cost reductions over time. Therefore, as policy incentives have become more significant and as PV deployment has accelerated, so too has the desire to track the installed cost of PV systems over time, by system characteristics, by system location, and by component. A new Lawrence Berkeley National Laboratory report, 'Tracking the Sun: The Installed Cost of Photovoltaics in the U.S. from 1998-2007', helps to fill this need by summarizing trends in the installed cost (i.e., the cost paid by the system owner) of grid-connected PV systems in the U.S. The report is based on an analysis of project-level cost data from nearly 37,000 residential and non-residential PV systems completed from 1998-2007 and installed on the utility-customer-side of the meter. These systems total 363 MW, equal to 76% of all grid-connected PV capacity installed in the U.S. through 2007, representing the most comprehensive data source available on the installed cost of PV in the United States. The data were obtained from administrators of PV incentive programs around the country, who typically collect installed cost data for systems receiving incentives. A total of 16 programs, spanning 12 states, ultimately provided data for the study. Reflecting the broader geographical trends in the

  13. Development of flame retardant PV module encapsulants: Volume 1. Final report

    SciTech Connect

    Galica, J.P.

    1998-06-01

    This Phase 1 final report covers the work performed by Springborn Testing and Research, Inc., for the period October 1, 1997 to June 30, 1998 under the Department of Energy Cooperative Agreement Number DE-FC36-97GO10255, entitled Development of Flame Retardant PV Module Encapsulants. While use of roof-mounted arrays has always been an attractive means of deploying PV, only within recent years have such building integrated concepts (BIPV) found renewed interest among module makers and end-users. Prior to building integrated and rooftop applications, flammability requirements for modules have not been a great industry concern. However, with growing interest in BIPV and the requirement for building code requirements for commercial and industrial structures, flammability issues have become a barrier to entry for many module constructions into this potentially huge domestic market for PV. The overall goal of the 3 phase PV BONUS two project is to develop and commercialize a line of fire retardant encapsulation materials to serve the emerging building integrated and building mounted PV market. The objectives of the Phase 1 effort are limited to concept development and business planning activities.

  14. PV performance modeling workshop summary report.

    SciTech Connect

    Stein, Joshua S.; Tasca, Coryne Adelle; Cameron, Christopher P.

    2011-05-01

    During the development of a solar photovoltaic (PV) energy project, predicting expected energy production from a system is a key part of understanding system value. System energy production is a function of the system design and location, the mounting configuration, the power conversion system, and the module technology, as well as the solar resource. Even if all other variables are held constant, annual energy yield (kWh/kWp) will vary among module technologies because of differences in response to low-light levels and temperature. A number of PV system performance models have been developed and are in use, but little has been published on validation of these models or the accuracy and uncertainty of their output. With support from the U.S. Department of Energy's Solar Energy Technologies Program, Sandia National Laboratories organized a PV Performance Modeling Workshop in Albuquerque, New Mexico, September 22-23, 2010. The workshop was intended to address the current state of PV system models, develop a path forward for establishing best practices on PV system performance modeling, and set the stage for standardization of testing and validation procedures for models and input parameters. This report summarizes discussions and presentations from the workshop, as well as examines opportunities for collaborative efforts to develop objective comparisons between models and across sites and applications.

  15. DOE High Performance Concentrator PV Project

    SciTech Connect

    McConnell, R.; Symko-Davies, M.

    2005-08-01

    Much in demand are next-generation photovoltaic (PV) technologies that can be used economically to make a large-scale impact on world electricity production. The U.S. Department of Energy (DOE) initiated the High-Performance Photovoltaic (HiPerf PV) Project to substantially increase the viability of PV for cost-competitive applications so that PV can contribute significantly to both our energy supply and environment. To accomplish such results, the National Center for Photovoltaics (NCPV) directs in-house and subcontracted research in high-performance polycrystalline thin-film and multijunction concentrator devices with the goal of enabling progress of high-efficiency technologies toward commercial-prototype products. We will describe the details of the subcontractor and in-house progress in exploring and accelerating pathways of III-V multijunction concentrator solar cells and systems toward their long-term goals. By 2020, we anticipate that this project will have demonstrated 33% system efficiency and a system price of $1.00/Wp for concentrator PV systems using III-V multijunction solar cells with efficiencies over 41%.

  16. Real time PV manufacturing diagnostic system

    SciTech Connect

    Kochergin, Vladimir; Crawford, Michael A.

    2015-09-01

    The main obstacle Photovoltaic (PV) industry is facing at present is the higher cost of PV energy compared to that of fossil energy. While solar cell efficiencies continue to make incremental gains these improvements are so far insufficient to drive PV costs down to match that of fossil energy. Improved in-line diagnostics however, has the potential to significantly increase the productivity and reduce cost by improving the yield of the process. On this Phase I/Phase II SBIR project MicroXact developed and demonstrated at CIGS pilot manufacturing line a high-throughput in-line PV manufacturing diagnostic system, which was verified to provide fast and accurate data on the spatial uniformity of thickness, an composition of the thin films comprising the solar cell as the solar cell is processed reel-to-reel. In Phase II project MicroXact developed a stand-alone system prototype and demonstrated the following technical characteristics: 1) ability of real time defect/composition inconsistency detection over 60cm wide web at web speeds up to 3m/minute; 2) Better than 1mm spatial resolution on 60cm wide web; 3) an average better than 20nm spectral resolution resulting in more than sufficient sensitivity to composition imperfections (copper-rich and copper-poor regions were detected). The system was verified to be high vacuum compatible. Phase II results completely validated both technical and economic feasibility of the proposed concept. MicroXact’s solution is an enabling technique for in-line PV manufacturing diagnostics to increase the productivity of PV manufacturing lines and reduce the cost of solar energy, thus reducing the US dependency on foreign oil while simultaneously reducing emission of greenhouse gasses.

  17. Large-Scale PV Integration Study

    SciTech Connect

    Lu, Shuai; Etingov, Pavel V.; Diao, Ruisheng; Ma, Jian; Samaan, Nader A.; Makarov, Yuri V.; Guo, Xinxin; Hafen, Ryan P.; Jin, Chunlian; Kirkham, Harold; Shlatz, Eugene; Frantzis, Lisa; McClive, Timothy; Karlson, Gregory; Acharya, Dhruv; Ellis, Abraham; Stein, Joshua; Hansen, Clifford; Chadliev, Vladimir; Smart, Michael; Salgo, Richard; Sorensen, Rahn; Allen, Barbara; Idelchik, Boris

    2011-07-29

    This research effort evaluates the impact of large-scale photovoltaic (PV) and distributed generation (DG) output on NV Energy’s electric grid system in southern Nevada. It analyzes the ability of NV Energy’s generation to accommodate increasing amounts of utility-scale PV and DG, and the resulting cost of integrating variable renewable resources. The study was jointly funded by the United States Department of Energy and NV Energy, and conducted by a project team comprised of industry experts and research scientists from Navigant Consulting Inc., Sandia National Laboratories, Pacific Northwest National Laboratory and NV Energy.

  18. Updating Interconnection Screens for PV System Integration

    SciTech Connect

    Coddington, M.; Mather, B.; Kroposki, B.; Lynn, K.; Razon, A.; Ellis, A.; Hill, R.; Key, T.; Nicole, K.; Smith, J.

    2012-02-01

    This white paper evaluates the origins and usefulness of the capacity penetration screen, offer short-term solutions which could effectively allow fast-track interconnection to many PV system applications, and considers longer-term solutions for increasing PV deployment levels in a safe and reliable manner while reducing or eliminating the emphasis on the penetration screen. Short-term and longer-term alternatives approaches are offered as examples; however, specific modifications to screening procedures should be discussed with stakeholders and must ultimately be adopted by state and federal regulatory bodies.

  19. Investigating Temperature Effects on PV Arrays

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Schmidt Unit Title: Circuits and Electricity Subject: Physics Lesson Title: Investigating Temperature Effects on PV Arrays Grade Level(s): 11/12 Date(s): July 18, 2014 Lesson Length: 1 Class Period (65 minutes) * Learning Goal(s) [What should students know, understand, or be able to do as a result of this lab or activity.] Students will be able to measure current and voltage using a Multimeter. Students will be able to calculate the power of a PV array using voltage and current. Students will

  20. Standards for PV Modules and Components -- Recent Developments and Challenges: Preprint

    SciTech Connect

    Wohlgemuth, J. H.

    2012-10-01

    International standards play an important role in the Photovoltaic industry. Since PV is such a global industry it is critical that PV products be measured and qualified the same way everywhere in the world. IEC TC82 has developed and published a number of module and component measurement and qualification standards. These are continually being updated to take advantage of new techniques and equipment as well as better understanding of test requirements. Standards presently being updated include the third edition of IEC 61215, Crystalline Silicon Qualification and the second edition of IEC 61730, PV Module Safety Requirements. New standards under development include qualification of junction boxes, connectors, PV cables, and module integrated electronics as well as for testing the packaging used during transport of modules. After many years of effort, a draft standard on Module Energy Rating should be circulated for review soon. New activities have been undertaken to develop standards for the materials within a module and to develop tests that evaluate modules for wear-out in the field (International PV Module QA Task Force). This paper will discuss these efforts and indicate how the audience can participate in development of international standards.

  1. International PV QA Task Force's Proposed Comparative Rating System for PV Modules: Preprint

    SciTech Connect

    Wohlgemuth, J.; Kurtz, S.

    2014-10-01

    The International PV Quality Assurance Task Force is developing a rating system that provides comparative information about the relative durability of PV modules. Development of accelerated stress tests that can provide such comparative information is seen as a major step toward being able to predict PV module service life. This paper will provide details of the ongoing effort to determine the format of such an overall module rating system. The latest proposal is based on using three distinct climate zones as defined in IEC 60721-2-1 for two different mounting systems. Specific stresses beyond those used in the qualification tests are being developed for each of the selected climate zones.

  2. Masdar PV GmbH | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Masdar PV GmbH Place: Germany Product: Germany-based manufacturer of thin film photovoltaic products and solutions References: Masdar PV GmbH1 This article is a stub. You...

  3. Breakout Session: Getting in the Loop: PV Hardware Recycling...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Getting in the Loop: PV Hardware Recycling and Sustainability Breakout Session: Getting in the Loop: PV Hardware Recycling and Sustainability May 21, 2014 6:30PM to 7:30PM PDT ...

  4. PROJECT PROFILE: Solar PV and Real Estate: Harnessing Big Data...

    Energy Saver

    Solar PV and Real Estate: Harnessing Big Data to Drive Demand, Increase Transparency, and Lower BOS Costs (SuNLaMP) PROJECT PROFILE: Solar PV and Real Estate: Harnessing Big Data ...

  5. NREL and Sandia host PV Module Reliability Workshop, Feb. 23...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    and Sandia host PV Module Reliability Workshop, Feb. 23-25, 2016 - Sandia Energy Energy ... Twitter Google + Vimeo GovDelivery SlideShare NREL and Sandia host PV Module Reliability ...

  6. Jiangsu Tianbao PV Energy Co Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Tianbao PV Energy Co Ltd Jump to: navigation, search Name: Jiangsu Tianbao PV Energy Co Ltd Place: Yizheng, Jiangsu Province, China Product: Reportedly planning to have 25MW of...

  7. Breakout Session: A Look Ahead: PV Manufacturing in 10 Years

    Energy.gov [DOE]

    The global PV manufacturing landscape has undergone significant changes in the past decade, from geographic and economic changes in the supply chain to a significant increase in PV module...

  8. Final Technical Report: PV Fault Detection Tool.

    SciTech Connect

    King, Bruce Hardison; Jones, Christian Birk

    2015-12-01

    The PV Fault Detection Tool project plans to demonstrate that the FDT can (a) detect catastrophic and degradation faults and (b) identify the type of fault. This will be accomplished by collecting fault signatures using different instruments and integrating this information to establish a logical controller for detecting, diagnosing and classifying each fault.

  9. Microsoft Word - PV Report v20.doc

    Gasoline and Diesel Fuel Update

    A EIA Task Order No. DE-DT0000804, Subtask 3 Photovoltaic (PV) Cost and Performance Characteristics for Residential and Commercial Applications Final Report August 2010 Prepared for: Office of Integrated Analysis and Forecasting U.S. Energy Information Administration Prepared by: ICF International Contact: Robert Kwartin T: (703) 934-3586 E: rkwartin@icfi.com ii Table of Contents Executive Summary

  10. TRNSYS HYBRID wind diesel PV simulator

    SciTech Connect

    Quinlan, P.J.A.; Mitchell, J.W.; Klein, S.A.; Beckman, W.A.; Blair, N.J.

    1996-12-31

    The Solar Energy Laboratory (SEL) has developed a wind diesel PV hybrid systems simulator, UW-HYBRID 1.0, an application of the TRNSYS 14.2 time-series simulation environment. An AC/DC bus links up to five diesels and wind turbine models, along with PV modules, a battery bank, and an AC/DC converter. Multiple units can be selected. PV system simulations include solar angle and peak power tracking options. Weather data are Typical Meteorological Year data, parametrically generated synthesized data, or external data files. PV performance simulations rely on long-standing SEL-developed algorithms. Loads data are read as scalable time series. Diesel simulations include estimated fuel-use and waste heat output, and are dispatched using a least-cost of fuel strategy. Wind system simulations include varying air density, wind shear and wake effects. Time step duration is user-selectable. UW-HYBRID 1.0 runs in Windows{reg_sign}, with TRNSED providing a customizable user interface. 12 refs., 6 figs.

  11. NREL: Workforce Development and Education Programs - NREL Hosts PV Module

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Reliability Workshop for Industry NREL Hosts PV Module Reliability Workshop for Industry March 1, 2016 Nearly 200 researchers from more than 100 companies and representing 16 countries attended the 7th annual PV Module Reliability Workshop, held Feb. 23-25, 2016, in Golden, Colo. The program was designed by the National Renewable Energy Laboratory (NREL) in collaboration with Sandia National Laboratories and the photovoltaic (PV) industry. "NREL's PV Module Reliability Workshop is

  12. High-Penetration PV with Advanced Power Conditioning Systems | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy High-Penetration PV with Advanced Power Conditioning Systems High-Penetration PV with Advanced Power Conditioning Systems va tech logo2.jpg -- This project is inactive -- Virginia Polytechnic Institute and State University (VT) is evaluating the impacts of high photovoltaic (PV) penetration and methods to manage any impacts with improved power conditioning equipment. APPROACH The team's combined approach is to verify and demonstrate existing and new high-penetration level PV

  13. PV Performance and Reliability Validation Capabilities at Sandia National Laboratories

    Energy.gov [DOE]

    This presenation summarizes the information discussed by Sandia National Laboratories at the PV Manufacturing Workshop, March 25, 2011.

  14. National solar technology roadmap: Film-silicon PV

    SciTech Connect

    Keyes, Brian

    2007-06-01

    Silicon photovoltaic (PV) technologies are addressed in two different technology roadmaps: Film-Silicon PV and Wafer-Silicon PV. This Film-Silicon PV roadmap applies to all silicon-film technologies that rely on a supporting substrate such as glass, polymer, aluminum, stainless steel, or metallurgical-grade silicon. Such devices typically use amorphous, nanocrystalline, fine-grained polycrystalline, or epitaxial silicon layers that are 1–20 μm thick.

  15. PV Performance and Reliability Validation Capabilities at Sandia...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Performance and Reliability Validation Capabilities at Sandia National Laboratories PV Performance and Reliability Validation Capabilities at Sandia National Laboratories This ...

  16. Field Inspection Guidelines for PV Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    & Interconnection Manufacturing, Workforce & Training Resources Subprogram Soft Costs Author Interstate Renewable Energy Council Field Inspection Guidelines for PV Systems ...

  17. Role of Polycrystalline Thin-Film PV Technologies in Competitive PV Module Markets: Preprint

    SciTech Connect

    von Roedern, B.; Ullal, H. S.

    2008-05-01

    This paper discusses the developments in thin-film PV technologies and provides an outlook on future commercial module efficiencies achievable based on today's knowledge about champion cell performance.

  18. Commercialization of PV-powered pumping systems for use in utility PV service programs. Final report

    SciTech Connect

    1997-03-01

    The project described in this report was a commercialization effort focused on cost-effective remote water pumping systems for use in utility-based photovoltaic (PV) service programs. The project combined a commercialization strategy tailored specifically for electric utilities with the development of a PV-powered pumping system that operates conventional ac pumps rather than relying on the more expensive and less reliable PV pumps on the market. By combining these two attributes, a project goal was established of creating sustained utility purchases of 250 PV-powered water pumping systems per year. The results of each of these tasks are presented in two parts contained in this Final Summary Report. The first part summarizes the results of the Photovoltaic Services Network (PSN) as a new business venture, while the second part summarizes the results of the Golden Photon system installations. Specifically, results and photographs from each of the system installations are presented in this latter part.

  19. High Resolution PV Power Modeling for Distribution Circuit Analysis

    SciTech Connect

    Norris, B. L.; Dise, J. H.

    2013-09-01

    NREL has contracted with Clean Power Research to provide 1-minute simulation datasets of PV systems located at three high penetration distribution feeders in the service territory of Southern California Edison (SCE): Porterville, Palmdale, and Fontana, California. The resulting PV simulations will be used to separately model the electrical circuits to determine the impacts of PV on circuit operations.

  20. Solar PV Manufacturing Cost Model Group: Installed Solar PV System Prices (Presentation)

    SciTech Connect

    Goodrich, A. C.; Woodhouse, M.; James, T.

    2011-02-01

    EERE's Solar Energy Technologies Program is charged with leading the Secretary's SunShot Initiative to reduce the cost of electricity from solar by 75% to be cost competitive with conventional energy sources without subsidy by the end of the decade. As part of this Initiative, the program has funded the National Renewable Energy Laboratory (NREL) to develop module manufacturing and solar PV system installation cost models to ensure that the program's cost reduction targets are carefully aligned with current and near term industry costs. The NREL cost analysis team has leveraged the laboratories' extensive experience in the areas of project finance and deployment, as well as industry partnerships, to develop cost models that mirror the project cost analysis tools used by project managers at leading U.S. installers. The cost models are constructed through a "bottoms-up" assessment of each major cost element, beginning with the system's bill of materials, labor requirements (type and hours) by component, site-specific charges, and soft costs. In addition to the relevant engineering, procurement, and construction costs, the models also consider all relevant costs to an installer, including labor burdens and overhead rates, supply chain costs, and overhead and materials inventory costs, and assume market-specific profits.

  1. Capacity Value of PV and Wind Generation in the NV Energy System

    SciTech Connect

    Lu, Shuai; Diao, Ruisheng; Samaan, Nader A.; Etingov, Pavel V.

    2014-03-21

    Calculation of photovoltaic (PV) and wind power capacity values is important for estimating additional load that can be served by new PV or wind installations in the electrical power system. It also is the basis for assigning capacity credit payments in systems with markets. Because of variability in solar and wind resources, PV and wind generation contribute to power system resource adequacy differently from conventional generation. Many different approaches to calculating PV and wind generation capacity values have been used by utilities and transmission operators. Using the NV Energy system as a study case, this report applies peak-period capacity factor (PPCF) and effective load carrying capability (ELCC) methods to calculate capacity values for renewable energy sources. We show the connection between the PPCF and ELCC methods in the process of deriving a simplified approach that approximates the ELCC method. This simplified approach does not require generation fleet data and provides the theoretical basis for a quick check on capacity value results of PV and wind generation. The diminishing return of capacity benefit as renewable generation increases is conveniently explained using the simplified capacity value approach.

  2. The Use of Triangular-Shaped PV Arrays to Better Blend into Historical Structures

    Energy.gov [DOE]

    When considering the installation of a solar PV array on a designated historical structure, placement of each solar panel requires extra attention to aesthetic considerations. If the solar array cannot be installed behind the structure or “hidden” on a roof plane that is not visible from the public street or sidewalk, it can sometimes be installed as an architectural feature that blends into the historical structure. One way to do this is to utilize triangular-shaped PV panels that conform with the building’s roof lines.

  3. PROJECT PROFILE: Opportunistic Hybrid Communications Systems for Distributed PV Coordination (SuNLaMP)

    Energy.gov [DOE]

    As more distributed solar power is added to the electric power grid and becomes an increasing proportion of total energy generation, the grid must support more stringent requirements to ensure continued reliable and cost-effective grid operations. New communications systems are needed to allow for bidirectional information exchange between distributed photovoltaic (PV) generators and various information and controls systems of the electric power grid. This project at the National Renewable Energy Laboratory (NREL) will develop a hybrid communications system to meet the needs of monitoring and controlling millions of distributed PV generators, while taking advantage of existing communications infrastructure, which will greatly reduce the costs necessary to provide these services.

  4. PV_LIB Toolbox v. 1.3

    Energy Science and Technology Software Center

    2015-12-09

    PV_LIB comprises a library of Matlab? code for modeling photovoltaic (PV) systems. Included are functions to compute solar position and to estimate irradiance in the PV system’s plane of array, cell temperature, PV module electrical output, and conversion from DC to AC power. Also included are functions that aid in determining parameters for module performance models from module characterization testing. PV_LIB is open source code primarily intended for research and academic purposes. All algorithms aremore » documented in openly available literature with the appropriate references included in comments within the code.« less

  5. PV_LIB Toolbox v. 1.3

    SciTech Connect

    2015-12-09

    PV_LIB comprises a library of Matlab? code for modeling photovoltaic (PV) systems. Included are functions to compute solar position and to estimate irradiance in the PV system’s plane of array, cell temperature, PV module electrical output, and conversion from DC to AC power. Also included are functions that aid in determining parameters for module performance models from module characterization testing. PV_LIB is open source code primarily intended for research and academic purposes. All algorithms are documented in openly available literature with the appropriate references included in comments within the code.

  6. Cascaded Microinverter PV System for Reduced Cost

    SciTech Connect

    Bellus, Daniel R.; Ely, Jeffrey A.

    2013-04-29

    In this project, a team led by Delphi will develop and demonstrate a novel cascaded photovoltaic (PV) inverter architecture using advanced components. This approach will reduce the cost and improve the performance of medium and large-sized PV systems. The overall project objective is to develop, build, and test a modular 11-level cascaded three-phase inverter building block for photovoltaic applications and to develop and analyze the associated commercialization plan. The system will be designed to utilize photovoltaic panels and will supply power to the electric grid at 208 VAC, 60 Hz 3-phase. With the proposed topology, three inverters, each with an embedded controller, will monitor and control each of the cascade sections, reducing costs associated with extra control boards. This report details the final disposition on this project.

  7. Lessons Learned with Early PV Plant Integration

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Lessons Learned with Early PV Plant Integration Page 1 of 23 Kristen Ardani (NREL), Elsa Gonzales (Arizona Public Service Company), Rachel Sall (Arizona Public Service Company), Frankie Greco (Arizona Public Service Company), David Narang (Arizona Public Service Company) Page 1 of 23 [Speaker: Kristen Ardani] Cover Slide: Thank you everyone for joining us today for the DG Interconnection Collaborative informational webinar. Today we have speakers from Arizona Public Service Company, who will

  8. Modular Power Converters for PV Applications

    SciTech Connect

    Ozpineci, Burak; Tolbert, Leon M

    2012-05-01

    This report describes technical opportunities to serve as parts of a technological roadmap for Shoals Technologies Group in power electronics for PV applications. There are many different power converter circuits that can be used for solar inverter applications. The present applications do not take advantage of the potential for using common modules. We envision that the development of a power electronics module could enable higher reliability by being durable and flexible. Modules would have fault current limiting features and detection circuits such that they can limit the current through the module from external faults and can identify and isolate internal faults such that the remaining modules can continue to operate with only minimal disturbance to the utility or customer. Development of a reliable, efficient, low-cost, power electronics module will be a key enabling technology for harnessing more power from solar panels and enable plug and play operation. Power electronics for computer power supplies, communication equipment, and transportation have all targeted reliability and modularity as key requirements and have begun concerted efforts to replace monolithic components with collections of common smart modules. This is happening on several levels including (1) device level with intelligent control, (2) functional module level, and (3) system module. This same effort is needed in power electronics for solar applications. Development of modular units will result in standard power electronic converters that will have a lower installed and operating cost for the overall system. These units will lead to increased adaptability and flexibility of solar inverters. Incorporating autonomous fault current limiting and reconfiguration capabilities into the modules and having redundant modules will lead to a durable converter that can withstand the rigors of solar power generation for more than 30 years. Our vision for the technology roadmap is that there is no need

  9. Real Power and Reactive Power Control of a Three-Phase Single-Stage-PV System and PV voltage Stability

    SciTech Connect

    Li, Huijuan; Xu, Yan; Adhikari, Sarina; Rizy, D Tom; Li, Fangxing; Irminger, Philip

    2012-01-01

    Grid-connected photovoltaic (PV) systems with power electronic interfaces can provide both real and reactive power to meet power system needs with appropriate control algorithms. This paper presents the control algorithm design for a three-phase single-stage grid-connected PV inverter to achieve either maximum power point tracking (MPPT) or a certain amount of real power injection, as well as the voltage/var control. The switching between MPPT control mode and a certain amount of real power control mode is automatic and seamless. Without the DC-to-DC booster stage, PV DC voltage stability is an important issue in the control design especially when the PV inverter is operating at maximum power point (MPP) with voltage/var control. The PV DC voltage collapse phenomenon and its reason are discussed. The method based on dynamic correction of the PV inverter output is proposed to ensure PV DC voltage stability. Simulation results of the single-stage PV system during system disturbances and fast solar irradiation changes confirm that the proposed control algorithm for single-stage PV inverters can provide appropriate real and reactive power services and ensure PV DC voltage stability during dynamic system operation and atmospheric conditions.

  10. NREL Helps Establish New PV Quality Standards for Manufacturers | Solar |

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    NREL Helps Establish New PV Quality Standards for Manufacturers February 8, 2016 Working with partners around the world, researchers at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) have completed five years of work toward helping establish an international quality standard for manufacturing photovoltaic (PV) modules. PV manufacturers will use the new standard to increase the level of confidence investors, utilities, and consumers have in solar panel safety and

  11. NREL Releases High-Penetration PV Handbook for Distribution Engineers |

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy Systems Integration | NREL Releases High-Penetration PV Handbook for Distribution Engineers A new resource sponsored by the Energy Department's SunShot Initiative helps distribution engineers understand the challenges of high-penetration PV integration. January 27, 2016 As solar photovoltaic (PV) systems are increasingly installed throughout the country at distribution-level utility scale, a new challenge is emerging: how to safely and effectively integrate greater amounts of variable

  12. NREL Releases High-Penetration PV Handbook for Distribution Engineers |

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Grid Modernization | NREL High-Penetration PV Handbook for Distribution Engineers A new resource sponsored by the Energy Department's SunShot Initiative helps distribution engineers understand the challenges of high-penetration PV integration. January 27, 2016 As solar photovoltaic (PV) systems are increasingly installed throughout the country at distribution-level utility scale, a new challenge is emerging: how to safely and effectively integrate greater amounts of variable solar generation

  13. NREL Releases High-Penetration PV Handbook for Distribution Engineers |

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Solar | NREL Releases High-Penetration PV Handbook for Distribution Engineers A new resource sponsored by the Energy Department's SunShot Initiative helps distribution engineers understand the challenges of high-penetration PV integration. January 27, 2016 As solar photovoltaic (PV) systems are increasingly installed throughout the country at distribution-level utility scale, a new challenge is emerging: how to safely and effectively integrate greater amounts of variable solar generation

  14. NREL Helps Establish New PV Quality Standards for Manufacturers - News

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Releases | NREL Helps Establish New PV Quality Standards for Manufacturers February 8, 2016 Working with partners around the world, researchers at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) have completed five years of work toward helping establish an international quality standard for manufacturing photovoltaic (PV) modules. PV manufacturers will use the new standard to increase the level of confidence investors, utilities, and consumers have in solar panel

  15. SunShot Presentation PV Module Reliabity Workshop Opening Session |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Presentation PV Module Reliabity Workshop Opening Session SunShot Presentation PV Module Reliabity Workshop Opening Session This PowerPoint slide deck was originally presented at the opening session of the 2013 NREL PV Module Reliability Workshop on Feb. 26-27, 2013 in Golden, CO. It provides an overview of the DOE SunShot initiative, discusses systems integration and technology validation activities, and highlighted the goals and key agenda items for the workshop.

  16. Solar Development on Contaminated and Disturbed Lands

    SciTech Connect

    Macknick, Jordan; Lee, Courtney; Mosey, Gail; Melius, Jenny

    2013-12-01

    Land classified as contaminated and disturbed across the United States has the potential to host developments of utility-scale solar power. This report examines the prospect of developing utility- and commercial-scale concentrated solar power (CSP) and solar photovoltaics (PV) technologies on degraded and environmentally contaminated lands. The potential for solar development on contaminated anddisturbed lands was assessed, and for the largest and highest solar resource sites, the economic impacts and feasibility were evaluated. Developing solar power on contaminated and disturbed lands can help create jobs and revitalize local and state economies, and selecting these sites over greenfield sites can potentially have permitting and environmental mitigation advantages. The U.S.Department of Energy (DOE) SunShot goals call for 632 GW of PV and 83 GW of CSP to be deployed by 2050. Conservative land-use estimates of this study (10 acres per megawatt) show that there are disturbed and environmentally contaminated lands throughout the country that could be suitable for utility-scale solar power, and, that there is sufficient land area to meet SunShot solar deployment goals. The purpose of this assessment is to improve the understanding of these sites and facilitate solar developers' selection of contaminated and disturbed sites for development.

  17. Sandia Energy - Photovoltaic (PV) Regional Test Center (RTC)...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Photovoltaic (PV) Regional Test Center (RTC) Website Goes Live Home Renewable Energy Energy Partnership News SunShot News & Events Photovoltaic Solar National Solar Thermal Test...

  18. Siemens PV Technology now Konarka | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Siemens PV Technology (now Konarka) Place: Germany Product: Formerly the organic photovoltaic research operations of Siemens, which became part of Konarka Technologies on...

  19. NREL Mesa Top PV System | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    PV System Facility National Renewable Energy Laboratory Sector Solar Facility Type Photovoltaic Owner SunEdison Solar Developer SunEdison Solar Energy Purchaser National Renewable...

  20. Sandia Labs and EPRI Hosted the 2016 PV Systems Symposium

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas ... Hydrogen Production Market Transformation Fuel Cells ... PV performance, reliability, and grid integration. ...

  1. Overcoming Structural Engineering Barriers to PV Permits and...

    Office of Scientific and Technical Information (OSTI)

    Title: Overcoming Structural Engineering Barriers to PV Permits and Installations. Abstract not provided. Authors: Dwyer, Stephen F. ; Harper, Alan Publication Date: 2010-02-01 ...

  2. Zhangjiagang Sunlink PV Co Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Province, China Zip: 215600 Product: Specialises in developing, manufacturing and marketing of crystalline silicon PV products. Coordinates: 31.950001, 120.449997 Show Map...

  3. Global Gathering Addresses PV Role in Energy Prosperity and Climate...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Global Gathering Addresses PV Role in Energy Prosperity and Climate Change Mitigation March 30, 2016 Scientists from the Energy Department's National Renewable Energy Laboratory ...

  4. An Analysis of Residential PV System Price Differences between...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Residential photovoltaic (PV) systems were twice as expensive in the United States as in ... Tracking the Sun VIII: The Installed Price of Residential and Non-Residential Photovoltaic ...

  5. Photovoltaic (PV) Module Level Remote Safety Disconnect - Energy...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Find More Like This Return to Search Photovoltaic (PV) Module Level Remote Safety ... system Applications and Industries * Photovoltaic solar * Emergency response Technology ...

  6. Global Solar Photovoltaic (PV) Installation Market to be Propelled...

    OpenEI (Open Energy Information) [EERE & EIA]

    Global Solar Photovoltaic (PV) Installation Market to be Propelled by Greater Concerns over Carbon Footprint Home > Groups > Renewable Energy RFPs John55364's picture Submitted by...

  7. Weathering Performance of PV Backsheets | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Accelerated Laboratory Tests Using Simultaneous UV, Temperature, and Moisture for PV ... Sheet, Noryl PPE Sheet-Back Sheet Test Procedure for UV Weathering Resistance of Backsheet

  8. NY-Sun PV Incentive Program (Residential and Small Business)...

    Energy.gov [DOE] (indexed site)

    NY-Sun CommercialIndustrial Incentive program that offers incentives for grid connected PV systems larger than 200 KW. The New York State Energy Research and Development...

  9. PV QA Task Group #2: Thermal and Mechanical Fatigue Including...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    for Rating System Agenda for the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado Accelerated Stress Testing, Qualification Testing, HAST, Field Experience

  10. PV technology differences and discrepancies in modelling between...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    and limitations of present and alternative PV models The sensitivity and limitations of ... ; seasonal annealing (particularly thin film) ; soiling ; LID and long term degradation ...

  11. Präsentation Bernhard Gatzka PV*SOL Expert

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... presented at the 2013 Sandia Author: Bernhard Gatzka Slide 10 PV Performance Modeling Workshop Thin Film Modules * Partial shading of all stripes reduces linearly. * Shading ...

  12. NREL: Photovoltaics Research - NREL Hosts PV Module Reliability...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Reliability Workshop for Industry March 1, 2016 Nearly 200 researchers from more than 100 companies and representing 16 countries attended the 7th annual PV Module Reliability ...

  13. NREL: Performance and Reliability R&D - PV Module Reliability...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    PV Module Reliability Workshop NREL hosts an annual Photovoltaic Module Reliability Workshop (PVMRW) so that solar technology experts can share information leading to the ...

  14. NREL: Solar Research - NREL Hosts PV Module Reliability Workshop...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Reliability Workshop for Industry March 1, 2016 Nearly 200 researchers from more than 100 companies and representing 16 countries attended the 7th annual PV Module Reliability ...

  15. Utility Participation in the Rooftop Solar PV Market Transcript

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Utility Participation in the Rooftop Solar PV Market Page 1 of 21 Kristen Ardani, Jurstin ... from two Arizona utilities that have implemented utility owned rooftop solar programs. ...

  16. PROJECT PROFILE: Improving PV performance Estimates in the System...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    This project will improve the forecasting of lifetime PV system performance as well as operations and maintenance costs by incorporating the Photovoltaic Reliability and ...

  17. Sandia to host PV Bankability workshop at Solar Power International...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    host PV Bankability workshop at Solar Power International (SPI) 2013 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & ...

  18. PvXchange GmbH | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Berlin, Germany Zip: 10963 Sector: Services Product: A German platform for PV module spot trades. Also provides data on spot prices and offers consulting services. Coordinates:...

  19. PROJECT PROFILE: Reducing PV Performance Uncertainty by Accurately...

    Energy.gov [DOE] (indexed site)

    500,000 The procedures used today for prediction of the solar resource available to photovoltaic (PV) projects uses horizontal irradiance validated with thermopile radiometers. ...

  20. 4th PV Performance Modeling and Monitoring Workshop in Cologne...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... headquarters of TV Rheinland in Cologne Germany to discuss and share results related to predicting the performance and monitoring the output from solar photovoltaic (PV) systems. ...

  1. Summary of the 3rd International PV Module Quality Assurance...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    in Thermoelectric Power Generation Technologies in Japan Potential Induced Degradation (PID) Tests for Commercially Available PV Modules Overview of Thermoelectric Power ...

  2. Stichting Triodos PV Partners defunct | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    22209 Product: Stichting Triodos PV Partners, a JV Triodos Bank Group, Environmental Enterprises Assistance Fund, & Global Transition Consulting, was wound up and the management of...

  3. Integrating Solar PV into Energy Services Performance Contracts...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Solar PV into Energy Services Performance Contracts: Options for Local Governments Nationwide The guide contains several helpful resources, including a comprehensive list of ...

  4. Water Impacts of High Solar PV Electricity Penetration

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Water Impacts of High Solar PV Electricity Penetration Jordan Macknick and Stuart Cohen National Renewable Energy Laboratory (NREL) Technical Report NRELTP-6A20-63011 September...

  5. Overview of the PV Module Model in PVWatts (Presentation)

    SciTech Connect

    Marion, B.

    2010-09-22

    Overview of the PV module model. PVWatts module power estimates were compared with those using the Sandia model for three modules and data sets.

  6. Instrumentation for Evaluating PV System Performance Losses from Snow: Preprint

    SciTech Connect

    Marion, B.; Rodriguez, J.; Pruett, J.

    2009-04-01

    Describes the use of a pyranometer with a heater and a digital camera to determine losses related to snow for PV systems located at National Renewable Energy Laboratory.

  7. GridPV Toolbox Version 2 Now Available

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, ... GridPV Toolbox Version 2 Now Available HomeDistribution Grid Integration, News, ...

  8. Solar America Initiative (SAI) PV Technology Incubator Program: Preprint

    SciTech Connect

    Keyes, B.; Symko-Davies, M.; Mitchell, R.; Ullal H.; von Roedern, B.; Greene, L.; Stephens, S.

    2008-05-01

    The SAI PV Technology Incubator Program is designed to accelerate technologies/prodesses that have successfully demonstrated a proof-of-concept/process in a laboratory.

  9. Development of a Dispatchable PV Peak Shainv System. PV: Bonus Program - Phase 1 Report. Volume 1

    SciTech Connect

    1995-10-01

    This report summarizes the work performed by Delmarva Power and Light and its subcontractors in Phase 1 of the US Department of Energy's PV:BONUS Program. The purpose of the program is to develop products and systems for buildings which utilize photovoltaic (N) technology. Beginning with a cooperative research effort with the University of Delaware's Center for Energy and Environmental Policy Research Delmarva Power developed and demonstrated the concept of Dispatchable PV Peak Shaving. This concept and the system which resulted horn the development work are unique from other grid-connected PV systems because it combines a PV, battery energy storage, power conversion and control technologies into an integrated package. Phase 1 began in July 1993 with the installation of a test and demonstration system at Delmarva's Northern Division General Office building near Newark, Delaware. Following initial testing throughout the summer and fall of 1993, significant modifications were made under an amendment to the DOE contract. Work on Phase 1 concluded in the early spring of 1995. Significant progress towards the goal of commercializing the system was made during Phase 1, and is summarized. Based on progress in Phase 1, a proposal to continue the work in Phase 2 was submitted to the US DOE in May 1995. A contract amendment and providing funds for the Phase 2 work is expected in July 1995.

  10. Identification and Characterization of Performance Limiting Regions in Poly-Si Wafers Used for PV Cells: Preprint

    SciTech Connect

    Guthrey, H.; Gorman, B.; Al-Jassim, M.

    2011-07-01

    As demand for silicon photovoltaic (PV) material increases, so does the need for cost-effective feedstock and production methods that will allow enhanced penetration of silicon PV into the total energy market. The focus on cost minimization for production of polycrystalline silicon (poly-Si) PV has led to relaxed feedstock purity requirements, which has also introduced undesirable characteristics into cast poly-Si PV wafers. To produce cells with the highest possible conversion efficiencies, it is crucial to understand how reduced purity requirements and defects that are introduced through the casting process can impair minority carrier properties in poly-Si PV cells. This is only possible by using multiple characterization techniques that give macro-scale information (such as the spatial distribution of performance-limiting regions), as well as micro and nano-scale information about the structural and chemical nature of such performance-limiting regions. This study demonstrates the usefulness of combining multiple techniques to analyze performance-limiting regions in the poly-Si wafers that are used for PV cells. This is done by first identifying performance-limiting regions using macro-scale techniques including photoluminescence (PL) imaging, microwave photoconductive decay (uPCD), and reflectometry), then using smaller-scale techniques such as scanning electron microscopy (SEM), electron backscattered diffraction (EBSD), laser ablation inductively coupled mass spectrometry (LA-ICP-MS), cathodoluminescence (CL), and transmission electron microscopy (TEM) to understand the nature of such regions. This analysis shows that structural defects as well as metallic impurities are present in performance-limiting regions, which together act to decrease conversion efficiencies in poly-Si PV cells.

  11. Sensitivities of I-V Parameters in C-Si PV Modules of Hygrothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Sensitivities of I-V Parameters in C-Si PV Modules of Hygrothermal Stress Sensitivities of I-V Parameters in C-Si PV Modules of Hygrothermal Stress Presented at the PV Module ...

  12. Step-Stress Accelerated Degradation Testing (SSADT) for Photovoltaic (PV) Devices and Cells (Presentation)

    SciTech Connect

    Lee, J.; Elmore, R.; Suh, C.; Jones, W.

    2010-10-01

    Presentation on step-stress accelerated degradation testing (SSADT) for photovoltaics (PV). Developed are a step-stress degradation test (SSADT) for PV reliability tests and a lifetime prediction model for PV products.

  13. Preliminary Analysis of Modules Deployed at PV-USA for 18-24...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Preliminary Analysis of Modules Deployed at PV-USA for 18-24 Years Preliminary Analysis of Modules Deployed at PV-USA for 18-24 Years Presented at the PV Module Reliability ...

  14. U.S. Department of Energy PV Roadmaps | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    PV Roadmaps Jump to: navigation, search Logo: U.S. Department of Energy PV Roadmaps Name U.S. Department of Energy PV Roadmaps AgencyCompany Organization United States Department...

  15. Impact of residential PV adoption on Retail Electricity Rates

    SciTech Connect

    Cai, DWH; Adlakha, S; Low, SH; De Martini, P; Chandy, KM

    2013-11-01

    The price of electricity supplied from home rooftop photo voltaic (PV) solar cells has fallen below the retail price of grid electricity in some areas. A number of residential households have an economic incentive to install rooftop PV systems and reduce their purchases of electricity from the grid. A significant portion of the costs incurred by utility companies are fixed costs which must be recovered even as consumption falls. Electricity rates must increase in order for utility companies to recover fixed costs from shrinking sales bases. Increasing rates will, in turn, result in even more economic incentives for customers to adopt rooftop PV. In this paper, we model this feedback between PV adoption and electricity rates and study its impact on future PV penetration and net-metering costs. We find that the most important parameter that determines whether this feedback has an effect is the fraction of customers who adopt PV in any year based solely on the money saved by doing so in that year, independent of the uncertainties of future years. These uncertainties include possible changes in rate structures such as the introduction of connection charges, the possibility of PV prices dropping significantly in the future, possible changes in tax incentives, and confidence in the reliability and maintainability of PV. (C) 2013 Elsevier Ltd. All rights reserved.

  16. Sacramento Municipal Utility District PV and Smart Grid Pilot at Anatolia

    SciTech Connect

    Rawson, Mark; Sanchez, Eddie Paul

    2013-12-30

    Under DE-FOA-0000085 High Penetration Solar Deployment, the U. S. Department of Energy funded agreements with SMUD and Navigant Consulting, SunPower, GridPoint, the National Renewable Energy Laboratory, and the California Energy Commission for this pilot demonstration project. Funding was $5,962,409.00. Cost share of $500,000 was also provided by the California Energy Commission. The project has strategic implications for SMUD, other utilities and the PV and energy-storage industries in business and resource planning, technology deployment and asset management. These implications include: -At this point, no dominant business models have emerged and the industry is open for new ideas. -Demonstrated two business models for using distributed PV and energy storage, and brainstormed several dozen more, each with different pros and cons for SMUD, its customers and the industry. -Energy storage can be used to manage high penetrations of PV and mitigate potential issues such as reverse power flow, voltage control violations, power quality issues, increased wear and tear on utility equipment, and system wide power supply issues. - Smart meters are another tool utilities can use to manage high penetrations of PV. The necessary equipment and protocols exist, and the next step is to determine how to integrate the functionality with utility programs and what level of utility control is required. - Time-of-use rates for the residential customers who hosted energy storage systems did not cause a significant change in energy usage patterns. However, the rates we used were not optimized for PV and energy storage. Opportunities exist for utilities to develop new structures.

  17. Status of High Performance PV: Polycrystalline Thin-Film Tandems

    SciTech Connect

    Symko-Davies, M.

    2005-02-01

    The High-Performance Photovoltaic (HiPerf PV) Project was initiated by the U.S. Department of Energy to substantially increase the viability of photovoltaics (PV) for cost-competitive applications so that PV can contribute significantly to our energy supply and our environment. The HiPerf PV Project aims at exploring the ultimate performance limits of existing PV technologies, approximately doubling their sunlight-to-electricity conversion efficiencies during its course. This work includes bringing thin-film cells and modules toward 25% and 20% efficiencies, respectively, and developing multijunction concentrator cells and modules able to convert more than one-third of the sun's energy to electricity (i.e., 33% efficiency). This paper will address recent accomplishments of the NREL in-house research effort involving polycrystalline thin-film tandems, as well as the research efforts under way in the subcontracted area.

  18. Innovative Ballasted Flat Roof Solar PV Racking System

    SciTech Connect

    Peek, Richard T.

    2015-01-23

    The objective of this project was to reduce the cost of racking for PV solar on flat commercial rooftops. Cost reductions would come from both labor savings and material savings related to the installation process. The rack would need to accommodate the majority of modules available on the market. Cascade Engineering has a long history of converting traditional metal type applications over to plastic. Injection molding of plastics have numerous advantages including selection of resin for the application, placing the material exactly where it is needed, designing in features that will speed up the installation process, and weight reduction of the array. A plastic rack would need to meet the requirements of UL2703, Mounting systems, mounting devices, clamping/retention devices, and ground lugs for use with flat-plate photovoltaic modules and panels. Comparing original data to the end of project racking design, racking material costs were reduced 50% and labor costs reduced 64%. The racking product accommodates all 60 and 72 cell panels on the market, meets UL2703 requirements, contributes only 1.3 pounds per square foot of weight to the array, requires little ballast to secure the array, automatically grounds the module when the module is secured, stacks/nests well for shipping/fewer lifts to the roof, provides integrated wire routing, allows water to drain on the roof, and accommodates various seismic roof connections. Project goals were achieved as noted in the original funding application.

  19. Innovations in Wind and Solar PV Financing

    SciTech Connect

    Cory, K.; Coughlin, J.; Jenkin, T.; Pater, J.; Swezey, B.

    2008-02-01

    There is growing national interest in renewable energy development based on the economic, environmental, and security benefits that these resources provide. Historically, greater development of our domestic renewable energy resources has faced a number of hurdles, primarily related to cost, regulation, and financing. With the recent sustained increase in the costs and associated volatility of fossil fuels, the economics of renewable energy technologies have become increasingly attractive to investors, both large and small. As a result, new entrants are investing in renewable energy and new business models are emerging. This study surveys some of the current issues related to wind and solar photovoltaic (PV) energy project financing in the electric power industry, and identifies both barriers to and opportunities for increased investment.

  20. Microsoft Word - 2016 PV Systems Symposium - Save the Date v6...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... and best practices for integrating PV into the distribution system, assessing the risk of system impacts for high PV deployment levels, and eliminating interconnection barriers. ...

  1. The Falling Price of Utility-Scale Solar Photovoltaic (PV) Projects...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    The Falling Price of Utility-Scale Solar Photovoltaic (PV) Projects The Falling Price of Utility-Scale Solar Photovoltaic (PV) Projects Data courtesy of National Renewable Energy ...

  2. Linkage to Previous International PV Module QA Task Force Workshops; Proposal for Rating System (Presentation)

    SciTech Connect

    Kurtz, S.; Wohlgemuth, J.; Sample, T.; Yamamichi, M.; Kondo, M.

    2013-05-01

    This presentation gives the historical background of the creation of the International PV QA Task Force as an introduction to the PV Module Reliability Workshop.

  3. Integration of Behind-the-Meter PV Fleet Forecasts into Utility...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Forecasting behind-the-meter distributed PV generation power production within a region ... This project is expected to reduce the costs of integrating higher penetrations of PV into ...

  4. Utility Scale PV Perspective on SunShot Progress and Opportunities...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Utility Scale PV Perspective on SunShot Progress and Opportunities Utility Scale PV Perspective on SunShot Progress and Opportunities These slides correspond to a presentation ...

  5. The Falling Price of Utility-Scale Solar Photovoltaic (PV) Projects...

    Office of Environmental Management (EM)

    The Falling Price of Utility-Scale Solar Photovoltaic (PV) Projects The Falling Price of Utility-Scale Solar Photovoltaic (PV) Projects Data courtesy of National Renewable Energy...

  6. NREL Finds Nanotube Semiconductors Well-suited for PV Systems | PV | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    NREL Finds Nanotube Semiconductors Well-suited for PV Systems April 25, 2016 Researchers at the Energy Department's National Renewable Energy Laboratory (NREL) discovered single-walled carbon nanotube semiconductors could be favorable for photovoltaic systems because they can potentially convert sunlight to electricity or fuels without losing much energy. The research builds on the Nobel Prize-winning work of Rudolph Marcus, who developed a fundamental tenet of physical chemistry that explains

  7. Navajo-Hopi Land Commission

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Renewable Power at the Paragon-Bisti Ranch DOE TEP Review, Golden, CO May 7, 2015   THE NAVAJO-HOPI LAND SETTLEMENT ACT  Navajo-Hopi Land Settlement Act passed 1974  Required relocation of Navajo and Hopi families living on land partitioned to other tribe.  Set aside lands for the benefit of relocates  Proceeds from RE development for Relocatee Project Background   Paragon-Bisti Ranch is selected lands :  Located in northwestern New Mexico.  22,000 acres of land

  8. Career Map: Land Acquisition Specialist | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Land Acquisition Specialist Career Map: Land Acquisition Specialist a male land acquisition specialist takes notes while surveying a piece of land. Land Acquisition Specialist Position Title Land Acquisition Specialist Alternate Title(s) Land Agent, Land Acquisition Associate Education & Training Level Bachelor degree required, prefer graduate degree Education & Training Level Description Land acquisition specialists are expected to have a bachelor's degree or higher in business, real

  9. Genetic analysis of Physcomitrella patens identifies ABSCISIC ACID NON-RESPONSIVE, a regulator of ABA responses unique to basal land plants and required for desiccation tolerance

    DOE PAGES [OSTI]

    Stevenson, Sean Ross; Kamisugi, Yasuko; Trinh, Chi H.; Schmutz, Jeremy; Jenkins, Jerry W.; Grimwood, Jane; Muchero, Wellington; Tuskan, Gerald A.; Rensing, Stefan A.; Lang, Daniel; et al

    2016-05-18

    The anatomically simple plants that first colonized land must have acquired molecular and biochemical adaptations to drought stress. Abscisic acid (ABA) coordinates responses leading to desiccation tolerance in all land plants. We identified ABA nonresponsive mutants in the model bryophyte Physcomitrella patens and genotyped a segregating population to map and identify the ABA NON-RESPONSIVE (ANR) gene encoding a modular protein kinase comprising an N-terminal PAS domain, a central EDR domain, and a C-terminal MAPKKK-like domain. anr mutants fail to accumulate dehydration tolerance-associated gene products in response to drought, ABA, or osmotic stress and do not acquire ABA-dependent desiccation tolerance. Themore » crystal structure of the PAS domain, determined to 1.7-Å resolution, shows a conserved PAS-fold that dimerizes through a weak dimerization interface. Targeted mutagenesis of a conserved tryptophan residue within the PAS domain generates plants with ABA nonresponsive growth and strongly attenuated ABA-responsive gene expression, whereas deleting this domain retains a fully ABA-responsive phenotype. ANR orthologs are found in early-diverging land plant lineages and aquatic algae but are absent from more recently diverged vascular plants. Lastly, we propose that ANR genes represent an ancestral adaptation that enabled drought stress survival of the first terrestrial colonizers but were lost during land plant evolution.« less

  10. Optimal Solar PV Arrays Integration for Distributed Generation

    SciTech Connect

    Omitaomu, Olufemi A; Li, Xueping

    2012-01-01

    Solar photovoltaic (PV) systems hold great potential for distributed energy generation by installing PV panels on rooftops of residential and commercial buildings. Yet challenges arise along with the variability and non-dispatchability of the PV systems that affect the stability of the grid and the economics of the PV system. This paper investigates the integration of PV arrays for distributed generation applications by identifying a combination of buildings that will maximize solar energy output and minimize system variability. Particularly, we propose mean-variance optimization models to choose suitable rooftops for PV integration based on Markowitz mean-variance portfolio selection model. We further introduce quantity and cardinality constraints to result in a mixed integer quadratic programming problem. Case studies based on real data are presented. An efficient frontier is obtained for sample data that allows decision makers to choose a desired solar energy generation level with a comfortable variability tolerance level. Sensitivity analysis is conducted to show the tradeoffs between solar PV energy generation potential and variability.

  11. Recovery Act: A Low Cost Spray Deposited Solar PV Anti-Reflection Coating Final Technical Report

    SciTech Connect

    Harvey, Michael D.

    2010-08-30

    PV module glass is typically low iron glass which exhibits extremely low absorption of light at solar wavelengths. However, reflection losses from typical high quality solar glass are about 4.5% of the input solar energy. By applying an antireflection coating to the cover glass of their modules, a PV module maker will gain at least a 3% increase in the light passing through the glass and being converted to electricity. Thus achieving an increase of >3% in electricity output from the modules. This Project focussed on developing a process that deposits a layer of porous silica (SiO2) on glass or plastic components, and testing the necessary subcomponents and subsystems required to demonstrate the commercial technology. This porous layer acts as a broadband single layer AR coating for glass and plastics, with the added benefit of being a hydrophilic surface for low surface soiling.

  12. Distribution system model calibration with big data from AMI and PV inverters

    DOE PAGES [OSTI]

    Peppanen, Jouni; Reno, Matthew J.; Broderick, Robert J.; Grijalva, Santiago

    2016-03-03

    Efficient management and coordination of distributed energy resources with advanced automation schemes requires accurate distribution system modeling and monitoring. Big data from smart meters and photovoltaic (PV) micro-inverters can be leveraged to calibrate existing utility models. This paper presents computationally efficient distribution system parameter estimation algorithms to improve the accuracy of existing utility feeder radial secondary circuit model parameters. The method is demonstrated using a real utility feeder model with advanced metering infrastructure (AMI) and PV micro-inverters, along with alternative parameter estimation approaches that can be used to improve secondary circuit models when limited measurement data is available. Lastly, themore » parameter estimation accuracy is demonstrated for both a three-phase test circuit with typical secondary circuit topologies and single-phase secondary circuits in a real mixed-phase test system.« less

  13. PV Validation and Bankability Workshop: San Jose, California

    SciTech Connect

    Granata, J.; Howard, J.

    2011-12-01

    This report is a collaboration between Sandia National Laboratories, the National Renewable Energy Laboratory, and the Florida Solar Energy Center (FSEC). The report provides feedback from the U.S. Department of Energy's (DOE) Solar Program PV Validation and Bankability Workshop in San Jose, California on August 31, 2011. It focuses on the current state of PV in the United States, private funding to fund U.S. PV industry growth, roles and functions of the regional test center program, and ways to improve the current validation and bankability practices.

  14. ENERGY-10 PV: Photovoltaics, A New Capability (Preprint)

    SciTech Connect

    Balcomb, J.D.; Hayter, S.J.; Weaver, N.L.

    2001-02-16

    This is one of two companion papers that describe the ENERGY-10 PV design-tool computer simulation program. The other paper is titled ''Hourly Simulation of Grid-Connected PV Systems Using Realistic Building Loads.'' While this paper focuses on the implementation method, the companion paper focuses on the PV aspects of the program. The case study in this paper is a residential building application, whereas the case study in the companion paper is a commercial application with an entirely different building load characteristic. Together, they provide a balanced view.

  15. Photovoltaic (PV) Impact Assessment for Very High Penetration Levels

    SciTech Connect

    Cheng, Danling; Mather, Barry A.; Seguin, Richard; Hambrick, Joshua; Broadwater, Robert P.

    2016-01-01

    This paper describes a granular approach for investigating the impacts of very high photovoltaic (PV) generation penetration. Studies on two real-world distribution feeders connected to PV plants are presented. The studies include both steady-state and time-series power flow analyses, which include the effects of solar variability. The goal of the study is to predict the effects of increasing levels of PV generation as it reaches very high penetration levels. The loss and return of generation with and without regulation is simulated to capture short-term problems such as voltage fluctuations. Impact results from the analyses are described along with potential mitigations.

  16. Identifying Critical Pathways to High-Performance PV: Preprint

    SciTech Connect

    Symko-Davies, M.; Noufi, R.; Kurtz, S.

    2002-05-01

    This conference paper describes the High-Performance Photovoltaic (HiPerf PV)Project was initiated by the U.S. Department of Energy to substantially increase the viability of photovoltaics (PV) for cost-competitive applications so that PV can contribute significantly to our energy supply and our environment in the 21st century. To accomplish this, the NCPV directs in-house and subcontracted research in high-performance polycrystalline thin-film and multijunction concentrator devices. Details of the subcontractor and in-house progress will be described toward identifying critical pathways of 25% polycrystalline thin-film tandem cells and developing multijunction concentrator modules to 33%.

  17. SunShot Strategy Forum: PV Codes and Standards

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    SunShot Strategy Forum: PV Codes and Standards Friday, September 16, 2016 from 9:00 AM to 12:00 PM SLS Las Vegas Hotel: Louie I/II Meeting Rooms Agenda: 8:30-9:00 Coffee and tea 9:00-9:30 Overview and introductions I. PV and Firefighter Operations 9:30-9:40 Invited speaker: Fire Service Perspectives Lt. Tony Granato Manchester Fire-Rescue-EMS 9:40-10:00 Discussion of PV and firefighter operations 10:00-10:10 Invited speaker: UL's work on Codes and Standards Tim Zgonena Principal Engineer at UL

  18. Modeling and Analysis of High-Penetration PV in Florida

    Energy.gov [DOE]

    This project aims to leverage simulation-assisted research and development based on a wide variety of Florida feeders that already incorporate high levels of PV power. Working with utilities, the...

  19. Accuracy of Outdoor PV Module Temperature Monitoring Application...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Presented at the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado PDF icon pvmrw13ps1univljubjanovec.pdf More Documents & Publications QA TG5 UV, ...

  20. Yangrui PV Technology Fujian Co Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    (Fujian) Co Ltd Place: Fujian Province, China Product: Involved in the production of a-Si thin-film cells using a turnkey technology supplier. References: Yangrui PV Technology...

  1. Giant Leap Forward Toward Quality Assurance of PV Modules (Presentation)

    SciTech Connect

    Kurtz, S.; Wohlgemuth, J.; Sample, T.; Yamamichi, M.

    2012-03-01

    The presentation describes the composition of and motivation for the International PV QA Task Force, then describes the presentations and discussion that occurred at the workshop on Feb. 29th, 2012.

  2. PV VALUE® User Manual v. 1.1

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... Module degradation rate - This is defaulted to 0.5 and reflects a 0.5% annual degradation rate more common for crystalline systems. For thin-film PV, see the above section on ...

  3. Agenda for the PV Module Reliability Workshop, February 26 -...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Agenda for the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado ... More Documents & Publications PID Failure of c-Si and Thin-Film Modules and Possible ...

  4. Full Steam Ahead for PV in US Homes?

    SciTech Connect

    Bolinger, Mark A; Barbose, Galen; Wiser, Ryan

    2009-01-15

    In October 2008, the United States Congress extended both the residential and commercial solar investment tax credits (ITCs) for an unprecedented eight years, lifted the $2,000 cap on the residential credit, removed the prohibition on utility use of the commercial credit, and eliminated restrictions on the use of both credits in conjunction with the Alternative Minimum Tax. These significant changes, which apply to systems placed in service on or after January 1, 2009, will increase the value of the solar credits for residential system owners in particular, and are likely--in conjunction with state, local, and utility rebate programs targeting solar--to spur significant growth in residential, commercial, and utility-scale photovoltaic (PV) installations in the years ahead. This article focuses specifically on the residential credit, describing three areas in which removal of the $2,000 cap on the residential ITC will have significant implications for PV rebate program administrators, PV system owners, and the PV industry.

  5. Final Report- Transforming PV installations toward dispatchable, schedulable energy solutions

    Office of Energy Efficiency and Renewable Energy (EERE)

    Awardee: AE Solar EnergyLocation: Bend, ORSubprogram: Systems IntegrationFunding Program: SEGIS-ACProject: Transforming PV installations toward dispatchable, schedulable energy solutionsPrincipal...

  6. AEP Texas Central Company - SMART Source Solar PV Rebate Program...

    Energy.gov [DOE] (indexed site)

    from the date of installation. PV modules must be new and certified to UL 1703, and inverters must be new and certified to UL 1741. All installations must be performed service...

  7. Tucson's Solar Experience: Developing PV with RFPs and PPAs

    Energy.gov [DOE]

    This presentation was given January 15, 2013, by Bruce Plenk, Solar Coordinator for the City of Tucson, Arizona, as part of the CommRE Developing PV Projects With RFPs and PPAs webinar.

  8. Interconnecting PV on New York City's Secondary Network Distribution System

    SciTech Connect

    Anderson, K.; Coddington, M.; Burman, K.; Hayter, S.; Kroposki, B.; Watson, A.

    2009-12-01

    This study describes technical assistance provided by NREL to help New York City and Con Edison improve the interconnection of distributed PV systems on a secondary network distribution system.

  9. PROJECT PROFILE: Combined PV/Battery Grid Integration with High...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    This design enables cost-effective grid integration of PV while increasing its ... DC-bus at the input of a high-power inverter for utility-scale grid interconnection. ...

  10. Sandia uses a few spectral measurements to enhance PV performance...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... The power generated by a PV cell depends on both the intensity and spectrum of the light incident on the cell. Silicon solar cells, for example, respond to both visible and ...

  11. Distributed PV Adoption - Sensitivity to Market Factors (Presentation...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... For example, New York nominally has an aggregated capacity limit for each utility of 6.0% of that utility's 2005 electric demand for the combined contribution of PV, on-farm biogas ...

  12. DOE-LPO-MiniReport_PV_v10

    Office of Environmental Management (EM)

    Department of Energy's Loan Programs O ce (LPO) was instrumental in launching the utility-scale photovoltaic (PV) solar industry in the United States. In 2009, there was not a ...

  13. PROJECT PROFILE: Promotion of PV Soft Cost Reductions in the...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    SC SunShot Award Amount: 1,480,000 This project creates a replicable model for solar photovoltaic (PV) soft cost reduction in South Carolina through human capacity-building at ...

  14. Final Report - 1366 Project Silicon: Reclaiming US Silicon PV...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    a strong silicon PV manufacturing presence and; 2) How to lower the levelized cost of electricity ("LCOE") for solar to 0.05-0.07kWh, enabling wide-scale U.S. market adoption. ...

  15. City of Shasta Lake Electric Utility- PV Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    City of Shasta Lake Electric Utility is providing rebates to their customers for the purchase of photovoltaic (PV) systems. The rebate levels will decrease annually over the life of the program. ...

  16. Impact of Soiling and Pollution on PV Generation Performance

    Office of Energy Efficiency and Renewable Energy (EERE)

    This 5-page technical letter addresses air pollution effects on PV performance by quantifying, based on a literature search, the average annual loss due to soiling, the impact of cleaning, and a recommended cleaning schedule.

  17. Taunton Municipal Lighting Plant- Residential PV Rebate Program

    Energy.gov [DOE]

    Customers of Taunton Municipal Lighting Plant (TMLP) may be eligible for a $1.50/watt rebate on solar photovoltaic (PV) installations, up to a maximum rebate of $4,500. The system must be installed...

  18. U.S. PV-Suitable Rooftop Resources

    DOE Data Explorer

    Phillips, Caleb; Melius, Jenny

    2016-06-14

    This dataset contains zipcode resolution estimates of suitable area on small (1,000-5,000 m^2), medium (5,000-10,000 m^2) and large (>10,000 m^2) buildings' rooftops for PV deployment.

  19. Impact and Detection of Pyranometer Failure on PV Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Presented at the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado pvmrw13ps1nreljordan.pdf (1.24 MB) More Documents & Publications Hydrothermally Stable, ...

  20. Instrumentation for Evaluating PV System Performance Losses from Snow

    SciTech Connect

    Marion, B.; Rodriguez, J.; Pruett, J.

    2009-01-01

    When designing a photovoltaic (PV) system for northern climates, the prospective installation should be evaluated with respect to the potentially detrimental effects of snow preventing solar radiation from reaching the PV cells. The extent to which snow impacts performance is difficult to determine because snow events also increase the uncertainty of the solar radiation measurement, and the presence of snow needs to be distinguished from other events that can affect performance. This paper describes two instruments useful for evaluating PV system performance losses from the presence of snow: (1) a pyranometer with a heater to prevent buildup of ice and snow, and (2) a digital camera for remote retrieval of images to determine the presence of snow on the PV array.

  1. PV Technologies India Ltd Moser Baer Solar Plc | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    India Ltd Moser Baer Solar Plc Jump to: navigation, search Name: PV Technologies India Ltd (Moser Baer Solar Plc) Place: New Delhi, Delhi (NCT), India Zip: 110020 Product: One of...

  2. Solar PV Recycling Identified as Untapped Business Opportunity | Solar |

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    NREL Solar PV Recycling Identified as Untapped Business Opportunity June 27, 2016 A new report, End-of-Life Management: Solar Photovoltaic Panels, highlights that recycling or repurposing solar PV panels at the end of their roughly 30-year lifetime can unlock a large stock of raw materials and other valuable components. The report, co-authored by NREL, the International Renewable Energy Agency (IRENA) and the International Energy Agency's Photovoltaic Power Systems Programme (IEA-PVPS), is

  3. NREL, SolarCity Complete Experimental Evaluation of PV Inverter

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Anti-Islanding with Grid Support Functions in Multi-Inverter Island Scenarios | Energy Systems Integration | NREL NREL, SolarCity Complete Experimental Evaluation of PV Inverter Anti-Islanding with Grid Support Functions in Multi-Inverter Island Scenarios First known work using actual hardware to examine scenarios with multiple solar photovoltaic inverters connected to multiple different points on the grid July 26, 2016 Distributed energy resources (DERs) such as solar photovoltaic (PV)

  4. NREL, SolarCity Complete Experimental Evaluation of PV Inverter

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Anti-Islanding with Grid Support Functions in Multi-Inverter Island Scenarios | Grid Modernization | NREL NREL, SolarCity Complete Experimental Evaluation of PV Inverter Anti-Islanding with Grid Support Functions in Multi-Inverter Island Scenarios First known work using actual hardware to examine scenarios with multiple solar photovoltaic inverters connected to multiple different points on the grid July 26, 2016 Distributed energy resources (DERs) such as solar photovoltaic (PV) systems have

  5. NREL, SolarCity Complete Experimental Evaluation of PV Inverter

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Anti-Islanding with Grid Support Functions in Multi-Inverter Island Scenarios | Solar | NREL NREL, SolarCity Complete Experimental Evaluation of PV Inverter Anti-Islanding with Grid Support Functions in Multi-Inverter Island Scenarios First known work using actual hardware to examine scenarios with multiple solar photovoltaic inverters connected to multiple different points on the grid July 26, 2016 Distributed energy resources (DERs) such as solar photovoltaic (PV) systems have long been

  6. Distributed PV Interconnection Screening Procedures and Online Tools

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Distributed PV Interconnection Screening Procedures and Online Tools" Joel Dickinson with Salt River Project Solar Initiatives Group August 27, 2014 2 Speakers Joel Dickinson Sr. Engineer Salt River Project Kristen Ardani Solar Analyst National Renewable Energy Laboratory (DGIC moderator) August 27th, 2014 Joel Dickinson, P.E. Sr. Engineer Solar Initiatives Distributed PV Interconnection Screening and Online Tools Salt River Project  Established in 1903 after Theodore Roosevelt signed

  7. Final Report- High Penetration Solar PV Deployment Sunshine State Solar

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Grid Initiative | Department of Energy Report- High Penetration Solar PV Deployment Sunshine State Solar Grid Initiative Final Report- High Penetration Solar PV Deployment Sunshine State Solar Grid Initiative Awardee: Florida State University Location: Tallahassee, FL Subprogram: Systems Integration Funding Program: High Penetration Solar Deployment Florida State University's Center for Advanced Power Systems and partners in the Sunshine State Solar Grid Initiative (SUNGRIN) have completed a

  8. Time-dependent first-principles approaches to PV materials

    SciTech Connect

    Miyamoto, Yoshiyuki

    2013-12-10

    Computational scheme for designing photovoltaic (PV) materials is presented. First-principles electron dynamics of photo-excitation and subsequent electron-hole splitting is performed based on the time-dependent density functional theory. Photo-induced enhancement of dipole moment was observed in a polar crystal and a donor-acceptor molecular pair. These experiences will pave a way to design PV material from first-principles simulations.

  9. Microgrid-Ready Solar PV; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    2015-07-01

    Designing new solar projects to be 'microgrid-ready' enables the U.S. DoD, other federal agencies, and the private sector to plan future microgrid initiatives to utilize solar PV as a generating resource. This fact sheet provides background information with suggested language for several up-front considerations that can be added to a solar project procurement or request for proposal (RFP) that will help ensure that PV systems are built for future microgrid connection.

  10. Enhanced Modeling and Monitoring Tools for Distributed PV Interconnection

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Enhanced Modeling and Monitoring Tools for Distributed PV Interconnection Page 1 of 27 Kristen Ardani, Rick Thompson, Mark Rawson, David Pinney Page 1 of 27 [Speaker: Kristen Ardani] Cover Slide: Thank you everyone for joining us today for the DG Interconnection Collaborative's informational webinar. The focus of today's presentation will be on enhanced modeling and monitoring tools for distributed PV interconnection. We have a guest speaker from Green Tech Media (GTM) today, Rick Thompson. So

  11. DOE-LPO-MiniReport_PV_v10

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy's Loan Programs O ce (LPO) was instrumental in launching the utility-scale photovoltaic (PV) solar industry in the United States. In 2009, there was not a single PV solar facility larger than 100 megawatts (MW) operating in the United States. Despite growing demand for this clean, renewable energy source, developers faced challenges securing the financing necessary to build these large projects. LPO stepped in to address this market barrier by providing more than $4.6

  12. Integrating PV in Distributed Grids: Solutions and Technologies Workshop |

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy Systems Integration | NREL Integrating PV in Distributed Grids: Solutions and Technologies Workshop In October 2015, NREL's Energy Systems Integration team hosted a workshop on ways to safely integrate more photovoltaics (PV) onto the grid. The workshop was held at the Energy Systems Integration Facility. Presenters from industry, vendors, academia, NREL, and the U.S. Department of Energy participated in the workshops, bringing a broad perspective to the discussions. Below are

  13. PV Derived Data for Predicting Performance; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Marion, Bill

    2015-09-14

    A method is described for providing solar irradiance data for modeling PV performance by using measured PV performance data and back-solving for the unknown direct normal irradiance (DNI) and diffuse horizontal irradiance (DHI), which can then be used to model the performance of PV systems of any size, PV array tilt, or PV array azimuth orientation. Ideally situated for using the performance data from PV modules with micro-inverters, the PV module operating current is used to determine the global tilted irradiance (GTI), and a separation model is then used to determine the DNI and DHI from the GTI.

  14. Lessons Learned with Early PV Plant Integration

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... * Drop out testingshut down testing per APS requirements may be difficult to achieve (no main breaker), therefore APS has been requiring a certified test report showing voltage ...

  15. Performance evaluation of stand alone hybrid PV-wind generator

    SciTech Connect

    Nasir, M. N. M.; Saharuddin, N. Z.; Sulaima, M. F.; Jali, Mohd Hafiz; Bukhari, W. M.; Bohari, Z. H.; Yahaya, M. S.

    2015-05-15

    This paper presents the performance evaluation of standalone hybrid system on Photovoltaic (PV)-Wind generator at Faculty of Electrical Engineering (FKE), UTeM. The hybrid PV-Wind in UTeM system is combining wind turbine system with the solar system and the energy capacity of this hybrid system can generate up to charge the battery and supply the LED street lighting load. The purpose of this project is to evaluate the performance of PV-Wind hybrid generator. Solar radiation meter has been used to measure the solar radiation and anemometer has been used to measure the wind speed. The effectiveness of the PV-Wind system is based on the various data that has been collected and compared between them. The result shows that hybrid system has greater reliability. Based on the solar result, the correlation coefficient shows strong relationship between the two variables of radiation and current. The reading output current followed by fluctuate of solar radiation. However, the correlation coefficient is shows moderate relationship between the two variables of wind speed and voltage. Hence, the wind turbine system in FKE show does not operate consistently to produce energy source for this hybrid system compare to PV system. When the wind system does not fully operate due to inconsistent energy source, the other system which is PV will operate and supply the load for equilibrate the extra load demand.

  16. Continuing Developments in PV Risk Management: Strategies, Solutions, and Implications

    SciTech Connect

    Lowder, T.; Mendelsohn, M.; Speer, B.; Hill, R.

    2013-02-01

    As the PV industry matures, successful risk management practices will become more imperative to ensure investor confidence, control costs, and facilitate further growth. This report discusses several key aspects of risk management during the commercial- and utility-scale project life cycle, from identification of risks, to the process of mitigating and allocating those risks among project parties, to transferring those risks through insurance. The report also explores novel techniques in PV risk management, options to offload risks onto the capital markets, and innovative insurance policies (namely warranty policies) that address risks unique to the PV sector. One of the major justifications for robust risk management in the PV industry is the cost-reduction opportunities it affords. If the PV industry can demonstrate the capability to successfully manage its risks, thereby inspiring confidence in financiers, it may be able to obtain a lower cost of capital in future transactions. A lower cost of capital translates to a lower cost of energy, which will in turn enhance PV?s competitiveness at a time when it will have to rely less on subsidies to support its market penetration.

  17. Integrating High Penetrations of PV into Southern California

    SciTech Connect

    Kroposki, B.; Mather, B.; Hasper-Tuttle, J.; Neal, R.; Katiraei, F.; Yazdani, A.; Aguero, J. R.; Hoff, T. E.; Norris, B. L.; Parkins, A.; Seguin, R.; Schauder, C.

    2011-01-01

    California regulators recently approved a plan proposed by Southern California Edison (SCE) to install 500 MW of distributed photovoltaic (PV) energy in its utility service territory over the next 5 years. The installations will include 250 MW of utility-owned solar and 250 MW of independently owned solar. SCE expects that the majority of these systems will be commercial-scale rooftop PV systems connected at various points in the distribution system. Each of the SCE rooftop PV systems will typically have a rating of 1-3 MW. To understand the impact of high-penetration PV on the distribution grid, the National Renewable Energy Laboratory (NREL) and SCE brought together a team of experts in resource assessment, distribution modeling, and planning to help analyze the impacts of adding high penetration of PV into the distribution system. Through modeling and simulation, laboratory testing, and field demonstrations, the team will address the issues identified in the analysis by fully examining the challenges, developing solutions, and transitioning those solutions to the field for large-scale deployment. This paper gives an update on the project and discusses technical results of integrating a large number of distributed PV systems into the grid.

  18. Lightweight PV Inverters: Dual Bi-Directional IGBTs Modules Enables Breakthrough PV Inverter Using Current Modulation Topology

    SciTech Connect

    2012-01-30

    Solar ADEPT Project: PV inverters convert DC power generated by modules into usable AC power. IPC’s initial 30kW 94lb. PV inverter reduces the weight of comparable 30kW PV inverters by 90%—reducing the cost of materials, manufacturing, shipping, and installation. With ARPA-E support, new bi-directional silicon power switches will be developed, commercialized, and utilized in IPC’s next-generation PV inverter. With these components, IPC will produce 100kW inverters that weight less than 100lb., reducing the weight of conventional 3,000lb. 100kW inverters by more than 95%. The new power switches will cut IPC’s $/W manufacturing cost in half, as well as further reduce indirect shipping and installation costs.

  19. Challenge to Move from 'One Size Fits All' to PV Modules the Customer Needs: Preprint

    SciTech Connect

    Kurtz, S.; Wohlgemuth, J.; Hacke, P.; Bosco, N.; Kempe, M.; Smith, R.; Packard, C. E.

    2011-09-01

    Historically, PV companies requested a single qualification test for a single product. As the market has grown, there have been increasing opportunities for companies to differentiate their products while still maintaining high manufacturing volumes of each product. At the same time, as PV is deployed in an increasingly broad range of conditions, modules need to be able to withstand a wide range of stresses. In some cases, targeting a specific deployment condition may allow reduction of product cost. Realizing this opportunity will require the ability to confidently predict long-term performance based on accelerated tests and known weather conditions. By working together, the community can most quickly develop tests that identify which products perform well under which conditions. This paper discusses some of the challenges of predicting long-term PV performance, including the wide range of stresses that may be encountered, the variability of the stresses from moment to moment, the complexity of some degradation mechanisms, and the dependence of accelerated testing on module geometry. The paper also describes two international projects that deal with location-specific durability evaluation and long-term module performance.

  20. Design, fabrication, and certification of advanced modular PV power systems. Final technical progress report

    SciTech Connect

    Lambarski, T.; Minyard, G.

    1998-10-01

    Solar Electric Specialties Company (SES) has completed a two and a half year effort under the auspices of the US Department of Energy (DOE) PVMaT (Photovoltaic Manufacturing Technology) project. Under Phase 4A1 of the project for Product Driven System and Component Technology, the SES contract ``Design, Fabrication and Certification of Advanced Modular PV Power Systems`` had the goal to reduce installed system life cycle costs through development of certified (Underwriters Laboratories or other listing) and standardized prototype products for two of the product lines, MAPPS{trademark} (Modular Autonomous PV Power Supply) and Photogensets{trademark}. MAPPS are small DC systems consisting of Photovoltaic modules, batteries and a charge controller and producing up to about a thousand watt-hours per day. Photogensets are stand-alone AC systems incorporating a generator as backup for the PV in addition to a DC-AC inverter and battery charger. The program tasks for the two-year contract consisted of designing and fabricating prototypes of both a MAPPS and a Photogenset to meet agency listing requirements using modular concepts that would support development of families of products, submitting the prototypes for listing, and performing functionality testing at Sandia and NREL. Both prototypes were candidates for UL (Underwriters Laboratories) listing. The MAPPS was also a candidate for FM (Factory Mutual) approval for hazardous (incendiary gases) locations.

  1. All-AC, building integrated PV system for mass deployment of residential PV systems

    SciTech Connect

    Kevin Cammack; Joe Augenbraun; Dan Sun

    2011-05-17

    Project Objective: Solar Red is developing novel PV installation methods and system designs that lower costs dramatically and allow seamless integration into the structure of any sloped roof using existing construction tools and processes. The overall objective of this project is to address the greatest barriers to massive adoption of residential and small commercial rooftop solar scalability of installation and total cost of ownership - by moving Solar Reds snap-in/snap-out PV installation method from the pre-prototype design phase to the development and construction of a deployed prototype system. Financial Summary: ? Funded through ARRA, DOE and Match Funding ? Original Project Budget: $229,310 o DOE/ARRA Funding: $150,000 o Match Funding: $79,310 ? Actual Cost: $216,598 o DOE/ARRA Funding: $150,000 o Match Funding: $120,087 Project Summary: Develop snap-in/snap-out mounting system for low-cost, thin-film solar panels Lower installation cost Lower sales costs Lower training/expertise barriers

  2. Property Tax Assessments as a Finance Vehicle for Residential PV Installations: Opportunities and Potential Limitations

    SciTech Connect

    Bolinger, Mark A; Bolinger, Mark

    2008-02-01

    Readily accessible credit has often been cited as a necessary ingredient to open up the market for residential photovoltaic (PV) systems. Though financing does not reduce the high up-front cost of PV, by spreading that cost over some portion of the system's life, financing can certainly make PV systems more affordable. As a result, a number of states have, in the past, set up special residential loan programs targeting the installation of renewable energy systems and/or energy efficiency improvements, and often featuring low interest rates, longer terms, and no-hassle application requirements. Historically, these loan programs have met with mixed success (particularly for PV), for a variety of reasons, including: (1) historical lack of homeowner interest in PV, (2) lack of program awareness, (3) reduced appeal in a low-interest-rate environment, and (4) a tendency for early PV adopters to be wealthy, and not in need of financing. Although some of these barriers have begun to fade--most notably, homeowner interest in PV has grown in some states, particularly those that offer solar rebates--the passage of the Energy Policy Act of 2005 (EPAct 2005) introduced one additional roadblock to the success of low-interest PV loan programs: a residential solar investment tax credit (ITC), subject to the Federal government's 'anti-double-dipping' rules. Specifically, the residential solar ITC--equal to 30% of the system's tax basis, capped at $2000--will be reduced or offset if the system also benefits from what is known as 'subsidized energy financing', which is likely to include most government-sponsored low-interest loan programs. Within this context, it has been interesting to note the recent flurry of announcements from several U.S cities concerning a new type of PV financing program. Led by the City of Berkeley, California, these cities propose to offer their residents the ability to finance the installation of a PV system using increased property tax assessments, rather

  3. Economic analysis of PV hybrid power system: Pinnacles National Monument

    SciTech Connect

    Rosenthal, A.; Durand, S.; Thomas, M.; Post, H.

    1997-11-01

    PV hybrid electric power systems can offer an economically competitive alternative to engine generator (genset) systems in many off-grid applications. Besides the obvious `green` advantages of producing less noise and emissions, the PV hybrid can, in some cases, offer a lower life-cycle cost (LCC) then the genset. This paper evaluates the LCC of the 9.6 kWp PV hybrid power system installed by the National Park Services (NPS) at Pinnacles National Monument, CA. NPS motivation for installation of this hybrid was not based on economics, but rather the need to replace two aging diesel gensets with an alternative that would be quieter, fuel efficient, and more in keeping with new NPS emphasis on sustainable design and operations. In fact, economic analysis shows a lower 20-year LCC for the installed PV hybrid than for simple replacement of the two gensets. The analysis projects are net savings by the PV hybrid system of $83,561 and over 162,000 gallons of propane when compared with the genset-only system. This net savings is independent of the costs associated with environmental emissions. The effects of including emissions costs, according to NPS guidelines, is also discussed. 5 refs., 2 figs., 3 tabs.

  4. Geographic smoothing of solar PV: Results from Gujarat

    DOE PAGES [OSTI]

    Klima, Kelly; Apt, Jay

    2015-09-24

    We examine the potential for geographic smoothing of solar photovoltaic (PV) electricity generation using 13 months of observed power production from utility-scale plants in Gujarat, India. To our knowledge, this is the first published analysis of geographic smoothing of solar PV using actual generation data at high time resolution from utility-scale solar PV plants. We use geographic correlation and Fourier transform estimates of the power spectral density (PSD) to characterize the observed variability of operating solar PV plants as a function of time scale. Most plants show a spectrum that is linear in the log–log domain at high frequencies f,more » ranging from f-1.23 to f-1.56 (slopes of -1.23 and -1.56), thus exhibiting more relative variability at high frequencies than exhibited by wind plants. PSDs for large PV plants have a steeper slope than those for small plants, hence more smoothing at short time scales. Interconnecting 20 Gujarat plants yields a f-1.66 spectrum, reducing fluctuations at frequencies corresponding to 6 h and 1 h by 23% and 45%, respectively. Half of this smoothing can be obtained through connecting 4-5 plants; reaching marginal improvement of 1% per added plant occurs at 12-14 plants. The largest plant (322 MW) showed an f-1.76 spectrum. Furthermore, this suggests that in Gujarat the potential for smoothing is limited to that obtained by one large plant.« less

  5. Terry Land

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    terry land Terry Land Terry Land follows the path of opportunity You came to the Lab as a postdoc after you got your PhD in physical chemistry from UC Irvine. What was your first research project? I was hired to do surface science-which was my background-and to work on high explosives which had never even contemplated working on. I had a lab set up in the basement of the biology building for these experiments. I also worked part time at the Sandia Combustion Research Facility while waiting for

  6. Austin Energy- Residential Solar PV Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Rebates will only be paid for approved systems installed by approved solar contractors according to the established technical requirements. All systems must conform to the utility's equipment and...

  7. Empire District Electric- Solar PV Rebates

    Office of Energy Efficiency and Renewable Energy (EERE)

    Note: Effective May 16, 2015, Empire began offering this solar rebate to retail customers who installed eligible systems after December 31, 2009, and meet all other program requirements.

  8. Recent developments in high-efficiency PV cells

    SciTech Connect

    Deb, S.

    2000-05-22

    Enormous progress has been made in recent years on a number of photovoltaic (PV) materials and devices in terms of conversion efficiencies. Ultrahigh-efficiency (>30{percent}) PV cells have been fabricated from gallium arsenide (GaAs) and its ternary alloys such as gallium indium phosphide (GaInP{sub 2}). The high-efficiency GaAs-based solar cells are being produced on a commercial scale, particularly for space applications. Efficiencies in the range of 18{percent} to 24{percent} have been achieved in traditional silicon-based devices fabricated from both multicrystalline and single-crystal materials. Major advances in efficiency have also been made on various thin-film solar cells based on amorphous silicon (aSi:H), copper gallium indium diselenide (CIGS), and cadmium telluride materials. This paper gives a brief overview of the recent progress in PV cell efficiencies based on these materials and devices.

  9. Toward integrated PV panels and power electronics using printing technologies

    SciTech Connect

    Ababei, Cristinel; Yuvarajan, Subbaraya; Schulz, Douglas L.

    2010-07-15

    In this paper, we review the latest developments in the area of printing technologies with an emphasis on the fabrication of control-embedded photovoltaics (PV) with on-board active and passive devices. We also review the use of power converters and maximum power point tracking (MPPT) circuits with PV panels. Our focus is on the investigation of the simplest implementations of such circuits in view of their integration with solar cells using printing technologies. We see this concept as potentially enabling toward further cost reduction. Besides a discussion as to feasibility, we shall also present some projections and guidelines toward possible integration. (author)

  10. Selecting Solar: Insights into Residential Photovoltaic (PV) Quote Variation

    SciTech Connect

    Davidson, Carolyn; Margolis, Robert

    2015-10-01

    Before investing in a system, a prospective PV customer must not only have initial concept 'buy in,' but also be able to evaluate the tradeoffs associated with different system parameters. Prospective customers might need to evaluate disparate costs for each system attribute by comparing multiple bids. The difficulty of making such an evaluation with limited information can create a cognitive barrier to proceeding with the investment. This analysis leverages recently available data from EnergySage, an online solar marketplace, to offer the first data-driven characterization of quote variation faced by prospective PV customers, lending early insight into the decisions customers face once they have initial buy-in.

  11. Systems for Solar Fuels Generation Utilizing PV and Electrolysis Workshop

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    (Newark, Delaware) - JCAP Systems for Solar Fuels Generation Utilizing PV and Electrolysis Workshop (Newark, Delaware) Systems for Solar Fuels Generation Utilizing PV and Electrolysis Workshop (Newark, Delaware) Mon, Mar 7, 2016 11:30am 11:30 Tue, Mar 8, 2016 12:30pm 12:30 University of Delaware Newark, Delaware Frances Houle, "Solar Fuels Systems Research in the Joint Center for Artificial Photosynthesis" March 6 80th Annual Conference of the DPG & DPG Spring Meeting

  12. Outdoor PV Module Degradation of Current-Voltage Parameters: Preprint

    SciTech Connect

    Smith, R. M.; Jordan, D. C.; Kurtz, S. R.

    2012-04-01

    Photovoltaic (PV) module degradation rate analysis quantifies the loss of PV power output over time and is useful for estimating the impact of degradation on the cost of energy. An understanding of the degradation of all current-voltage (I-V) parameters helps to determine the cause of the degradation and also gives useful information for the design of the system. This study reports on data collected from 12 distinct mono- and poly-crystalline modules deployed at the National Renewable Energy Laboratory (NREL) in Golden, Colorado. Most modules investigated showed < 0.5%/year decrease in maximum power due to short-circuit current decline.

  13. In-Situ Radiological Surveys to Address Nuclear Criticality Safety Requirements During Remediation Activities at the Shallow Land Disposal Area, Armstrong County, Pennsylvania - 12268

    SciTech Connect

    Norris, Phillip; Mihalo, Mark; Eberlin, John; Lambert, Mike; Matthews, Brian

    2012-07-01

    Cabrera Services Inc. (CABRERA) is the remedial contractor for the Shallow Land Disposal Area (SLDA) Site in Armstrong County Pennsylvania, a United States (US) Army Corps of Engineers - Buffalo District (USACE) contract. The remediation is being completed under the USACE's Formerly Utilized Sites Remedial Action Program (FUSRAP) which was established to identify, investigate, and clean up or control sites previously used by the Atomic Energy Commission (AEC) and its predecessor, the Manhattan Engineer District (MED). As part of the management of the FUSRAP, the USACE is overseeing investigation and remediation of radiological contamination at the SLDA Site in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), 42 US Code (USC), Section 9601 et. seq, as amended and, the National Oil and Hazardous Substance Pollution Contingency Plan (NCP), Title 40 of the Code of Federal Regulations (CFR) Section 300.430(f) (2). The objective of this project is to clean up radioactive waste at SLDA. The radioactive waste contains special nuclear material (SNM), primarily U-235, in 10 burial trenches, Cabrera duties include processing, packaging and transporting the waste to an offsite disposal facility in accordance with the selected remedial alternative as defined in the Final Record of Decision (USACE, 2007). Of particular importance during the remediation is the need to address nuclear criticality safety (NCS) controls for the safe exhumation and management of waste containing fissile materials. The partnership between Cabrera Services, Inc. and Measutronics Corporation led to the development of a valuable survey tool and operating procedure that are essential components of the SLDA Criticality Safety and Material Control and Accountability programs. Using proven existing technologies in the design and manufacture of the Mobile Survey Cart, the continued deployment of the Cart will allow for an efficient and reliable methodology to

  14. Lassen Municipal Utility District- PV Rebate Program

    Energy.gov [DOE]

    Systems must be interconnected and must meet all other requirements detailed in the program guidelines. Homes wishing to receive a rebate must have an LMUD administered energy audit performed and...

  15. Land use and energy

    SciTech Connect

    Robeck, K.E.; Ballou, S.W.; South, D.W.; Davis, M.J.; Chiu, S.Y.; Baker, J.E.; Dauzvardis, P.A.; Garvey, D.B.; Torpy, M.F.

    1980-07-01

    This report provides estimates of the amount of land required by past and future energy development in the United States and examines major federal legislation that regulates the impact of energy facilities on land use. An example of one land use issue associated with energy development - the potential conflict between surface mining and agriculture - is illustrated by describing the actual and projected changes in land use caused by coal mining in western Indiana. Energy activities addressed in the report include extraction of coal, oil, natural gas, uranium, oil shale, and geothermal steam; uranium processing; preparation of synfuels from coal; oil refineries; fossil-fuel, nuclear, and hydro-electric power plants; biomass energy farms; and disposal of solid wastes generated during combustion of fossil fuels. Approximately 1.1 to 3.3 x 10/sup 6/ acres were devoted to these activities in the United States in 1975. As much as 1.8 to 2.0 x 10/sup 6/ additional acres could be required by 1990 for new, nonbiomass energy development. The production of grain for fuel ethanol could require an additional 16.9 to 55.7 x 10/sup 6/ acres by 1990. Federal laws that directly or indirectly regulate the land-use impacts of energy facilities include the National Environmental Protection Act, Clean Air Act, Federal Water Pollution Control Act, Surface Mining Control and Reclamation Act, and Coastal Zone Management Act. The major provisions of these acts, other relevant federal regulations, and similar state and local regulatons are described in this report. Federal legislation relating to air quality, water quality, and the management of public lands has the greatest potential to influence the location and timing of future energy development in the United States.

  16. High Penetration PV: How High Can We Go? (Brochure), Energy Systems Integration (ESI), NREL (National Renewable Energy Laboratory)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    High Penetration PV: How High Can We Go? ENERGY SYSTEMS INTEGRATION ESI optimizes the design and performance of electrical, thermal, fuel, and water pathways at all scales. "We know how important the option of solar is for our customers. Solving these issues requires that everyone-utilities, the solar industry, and other leading technical experts like NREL-work together. That's what this work is all about. With the highest amount of solar in the nation, our utilities are facing potential

  17. Video: O&M Best Practices for Small-Scale PV Systems Success...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Video: O&M Best Practices for Small-Scale PV Systems Success Story Video: O&M Best Practices for Small-Scale PV Systems Success Story See how the Federal Energy Management ...

  18. DOE Request for Information (RFI) DE-FOA-0000153 PV Manufacturing Initiative: Summary Report, February 2010

    SciTech Connect

    Not Available

    2010-02-01

    This document sums up results of the PV Manufacturing Request for Information (RFI), DE-FOA-0000153, which supports the PV Manufacturing Initiative, launched by DOE Solar Energy Technologies Program.

  19. Why Are Resiential PV Prices in Germany So Much Lower Than in...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Why Are Resiential PV Prices in Germany So Much Lower Than in the United States? Why Are Resiential PV Prices in Germany So Much Lower Than in the United States? The U.S. ...

  20. Climatically Diverse Data Set for Flat-Plate PV Module Model Validations (Presentation)

    SciTech Connect

    Marion, B.

    2013-05-01

    Photovoltaic (PV) module I-V curves were measured at Florida, Colorado, and Oregon locations to provide data for the validation and development of models used for predicting the performance of PV modules.

  1. Dynamic Model Validation of PV Inverters Under Short-Circuit Conditions: Preprint

    SciTech Connect

    Muljadi, E.; Singh, M.; Bravo, R.; Gevorgian, V.

    2013-03-01

    Photovoltaic (PV) modules have dramatically decreased in price in the past few years, spurring the expansion of photovoltaic deployment. Residential and commercial rooftop installations are connected to the distribution network; large-scale installation PV power plants (PVPs) have benefited from tax incentives and the low cost of PV modules. As the level penetration of PV generation increases, the impact on power system reliability will also be greater. Utility power system planners must consider the role of PV generation in power systems more realistically by representing PV generation in dynamic stability analyses. Dynamic models of PV inverters have been developed in the positive sequence representation. NREL has developed a PV inverter dynamic model in PSCAD/EMTDC. This paper validates the dynamic model with an actual hardware bench test conducted by Southern California Edison's Distributed Energy Resources laboratory. All the fault combinations -- symmetrical and unsymmetrical -- were performed in the laboratory. We compare the simulation results with the bench test results.

  2. Final Report - Integration of Behind-the-Meter PV Fleet Forecasts...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid System Operations Final Report - Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid System ...

  3. China Sunergy Co Ltd CEEG Nanjing PV Tech Co Ltd | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Sunergy Co Ltd CEEG Nanjing PV Tech Co Ltd Jump to: navigation, search Name: China Sunergy Co Ltd (CEEG Nanjing PV-Tech Co Ltd) Place: Nanjing, Jiangsu Province, China Zip: 211100...

  4. Breakout Session: Getting in the Loop: PV Hardware Recycling and Sustainability

    Energy.gov [DOE]

    As PV system installations continue to ramp up across the United States, the process for handling used and expired PV modules in the next  20-30 years would benefit from serious planning and...

  5. Delamination Failures in Long-Term Field Aged PV Modules from...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Delamination Failures in Long-Term Field Aged PV Modules from Point of View of Encapsulant Delamination Failures in Long-Term Field Aged PV Modules from Point of View of ...

  6. U.S. Residential Photovoltaic (PV) System Prices, Q4 2013 Benchmarks...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    U.S. Residential Photovoltaic (PV) System Prices, Q4 2013 Benchmarks: Cash Purchase, Fair ... * www.nrel.gov U.S. Residential Photovoltaic (PV) System Prices, Q4 2013 ...

  7. PV Systems Reliability Final Technical Report: Ground Fault Detection

    SciTech Connect

    Lavrova, Olga; Flicker, Jack David; Johnson, Jay

    2016-01-01

    We have examined ground faults in PhotoVoltaic (PV) arrays and the efficacy of fuse, current detection (RCD), current sense monitoring/relays (CSM), isolation/insulation (Riso) monitoring, and Ground Fault Detection and Isolation (GFID) using simulations based on a Simulation Program with Integrated Circuit Emphasis SPICE ground fault circuit model, experimental ground faults installed on real arrays, and theoretical equations.

  8. Opportunities and Challenges for Power Electronics in PV Modules (Presentation)

    SciTech Connect

    Kurtz, S.; Deline, C.; Wohlgemuth, J.; Marion, B.; Granata, J.

    2011-02-01

    The presentation describes the value of adding DC converters and other power electronics to modules to improve their output even when shading or bad cells would otherwise decrease the module output. The presentation was part of a workshop sponsored by ARPA-E exploring the opportunities for power electronics to support PV applications.

  9. Silicon Oxynitride Thin Film Barriers for PV Packaging (Poster)

    SciTech Connect

    del Cueto, J. A.; Glick, S. H.; Terwilliger, K. M.; Jorgensen, G. J.; Pankow, J. W.; Keyes, B. M.; Gedvilas, L. M.; Pern, F. J.

    2006-10-03

    Dielectric, adhesion-promoting, moisture barriers comprised of silicon oxynitride thin film materials (SiOxNy with various material stoichiometric compositions x,y) were applied to: 1) bare and pre-coated soda-lime silicate glass (coated with transparent conductive oxide SnO2:F and/or aluminum), and polymer substrates (polyethylene terephthalate, PET, or polyethylene napthalate, PEN); plus 2) pre- deposited photovoltaic (PV) cells and mini-modules consisting of amorphous silicon (a-Si) and copper indium gallium diselenide (CIGS) thin-film PV technologies. We used plasma enhanced chemical vapor deposition (PECVD) process with dilute silane, nitrogen, and nitrous oxide/oxygen gas mixtures in a low-power (< or = 10 milliW per cm2) RF discharge at ~ 0.2 Torr pressure, and low substrate temperatures < or = 100(degrees)C, over deposition areas ~ 1000 cm2. Barrier properties of the resulting PV cells and coated-glass packaging structures were studied with subsequent stressing in damp-heat exposure at 85(degrees)C/85% RH. Preliminary results on PV cells and coated glass indicate the palpable benefits of the barriers in mitigating moisture intrusion and degradation of the underlying structures using SiOxNy coatings with thicknesses in the range of 100-200 nm.

  10. Selecting Solar. Insights into Residential Photovoltaic (PV) Quote Variation

    SciTech Connect

    Davidson, Carolyn; Margolis, Robert

    2015-10-01

    This analysis leverages available data from EnergySage, an online solar marketplace, to offer the first data-driven characterization of quote variation faced by prospective PV customers, lending early insight into the decisions customers face once they have initial buy-in.

  11. Minnesota Power- Solar-Electric (PV) Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Minnesota Power offers a rebate of $1,000 per kilowatt (kW) DC for grid-connected solar-electric (PV) systems, with a maximum award of $20,000 per customer or 60% installed costs per customer. This...

  12. NREL and Partners Demonstrate First-of-a-Kind Use of Utility-Scale PV for

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Ancillary Services | PV | NREL and Partners Demonstrate First-of-a-Kind Use of Utility-Scale PV for Ancillary Services Demonstration project shows utility-scale photovoltaic plants that incorporate "grid-friendly" controls can contribute to grid stability and reliability. January 28, 2016 While utility-scale solar photovoltaic (PV) power plants are being increasingly deployed across the country, some believe higher penetrations of PV technologies may potentially impact grid

  13. Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid System

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Operations | Department of Energy Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid System Operations Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid System Operations Clean Power Research logo.jpg This project will address the need for a more accurate approach to forecasting net utility load by taking into consideration the contribution of customer-sited PV energy generation. Tasks within the project are designed to integrate novel PV power

  14. 2016 SunShot Strategy Forum: PV Codes and Standards | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    SunShot Strategy Forum: PV Codes and Standards 2016 SunShot Strategy Forum: PV Codes and Standards This event featured breakout sessions dedicated to defining key areas for future attention within the photovoltaic (PV) codes and standards space. Participants discussed current and future priorities in order to inform future funding directions. Agenda - 2016 SunShot Strategy Forum on Codes and Standards (96.47 KB) PV and Firefighter Operations - Manchester Fire.pdf (929.95 KB) Codes and Standards

  15. Third-Party Financing and Power Purchase Agreements for Public Sector PV

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Projects | Department of Energy Third-Party Financing and Power Purchase Agreements for Public Sector PV Projects Third-Party Financing and Power Purchase Agreements for Public Sector PV Projects Introductory presentation on the third party PPA model for public sector PV. Date May 2009 Topic Solar Basics & Educating Consumers Financing, Incentives & Market Analysis Subprogram Soft Costs Author National Renewable Energy Laboratory may_27th_ppa_for_pv_webinar_jason_coughlin_nrel.ppt

  16. Modeling and Analysis of High-Penetration PV in California | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Modeling and Analysis of High-Penetration PV in California Modeling and Analysis of High-Penetration PV in California NREL logo.jpg The NREL project team will utilize field verification to improve the ability to model and understand the impacts of high-penetration PV on electric utility systems and develop solutions to ease high-penetration PV deployments. The team will develop and verify advanced modeling and simulation methods for distribution system planning and operations; define

  17. Video: O&M Best Practices for Small-Scale PV Systems Success Story |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy O&M Best Practices for Small-Scale PV Systems Success Story Video: O&M Best Practices for Small-Scale PV Systems Success Story See how the Federal Energy Management Program's eTraining course, O&M Best Practices for Small-Scale PV Systems, helped federal energy and facility management professionals complete successful photovoltaics (PV) projects

  18. Rethinking Standby & Fixed Cost Charges: Regulatory & Rate Design Pathways to Deeper Solar PV Cost Reductions

    Office of Energy Efficiency and Renewable Energy (EERE)

    While solar PV's impact on utilities has been frequently discussed the past year, little attention has been paid to the potentially impact posed by solar PV-specific rate designs (often informally referred to as solar "fees" or "taxes") upon non-hardware "soft" cost reductions. In fact, applying some rate designs to solar PV customers could potentially have a large impact on the economics of PV systems.

  19. Junction Evolution During Fabrication of CdS/CdTe Thin-film PV Solar Cells (Presentation)

    SciTech Connect

    Gessert, T. A.

    2010-09-01

    Discussion of the formation of CdTe thin-film PV junctions and optimization of CdTe thin-film PV solar cells.

  20. Real-time POD-CFD Wind-Load Calculator for PV Systems

    SciTech Connect

    Huayamave, Victor; Divo, Eduardo; Ceballos, Andres; Barriento, Carolina; Stephen, Barkaszi; Hubert, Seigneur

    2014-03-21

    The primary objective of this project is to create an accurate web-based real-time wind-load calculator. This is of paramount importance for (1) the rapid and accurate assessments of the uplift and downforce loads on a PV mounting system, (2) identifying viable solutions from available mounting systems, and therefore helping reduce the cost of mounting hardware and installation. Wind loading calculations for structures are currently performed according to the American Society of Civil Engineers/ Structural Engineering Institute Standard ASCE/SEI 7; the values in this standard were calculated from simplified models that do not necessarily take into account relevant characteristics such as those from full 3D effects, end effects, turbulence generation and dissipation, as well as minor effects derived from shear forces on installation brackets and other accessories. This standard does not include provisions that address the special requirements of rooftop PV systems, and attempts to apply this standard may lead to significant design errors as wind loads are incorrectly estimated. Therefore, an accurate calculator would be of paramount importance for the preliminary assessments of the uplift and downforce loads on a PV mounting system, identifying viable solutions from available mounting systems, and therefore helping reduce the cost of the mounting system and installation. The challenge is that although a full-fledged three-dimensional computational fluid dynamics (CFD) analysis would properly and accurately capture the complete physical effects of air flow over PV systems, it would be impractical for this tool, which is intended to be a real-time web-based calculator. CFD routinely requires enormous computation times to arrive at solutions that can be deemed accurate and grid-independent even in powerful and massively parallel computer platforms. This work is expected not only to accelerate solar deployment nationwide, but also help reach the SunShot Initiative goals

  1. Development of a fully-integrated PV system for residential applications: Phase I annual technical report: February 27, 1998 -- August 31, 1999

    SciTech Connect

    West, R.; Mackamul, K.; Duran, G.

    2000-03-06

    This report describes Utility Power Group's (UPG's) technical progress for Phase 1 of a two-phase effort to focus on the design, assembly, and testing of a fully-integrated residential PV power system, including storage. In the PV Array Task, UPG significantly improved the conventional means and methods required to structurally interface PV modules to the roofs of single-family residential houses and to electrically interconnect these PV modules to a power conversion unit. UPG focused on the design and test of a PV array based on the highly efficient use of materials and labor. Design criteria included cost, structural integrity, electrical safety, reliability, conformance with applicable standards and building and seismic codes, and adaptability to a wide range of roof materials for both existing and retrofit roof applications. In the Power Unit Task, UPG designed and tested a high-efficiency, low-cost, high-reliability prototype power conversion unit that included all materials, components, equipment, and software required to perform all DC-AC/AC-DC power collection, conversion, and control functions between the output of the PV array and the interconnection to the electrical grid service of single-family residences. In the Energy Storage Unit Task, UPG designed and tested a low-cost, modular, self-contained, low-maintenance, all-weather, battery-based Energy Storage Unit designed to interface with the Power Unit to provide back-up electricity to supply critical household loads in the event of utility-grid failure. The Energy Storage Unit includes batteries and all structural, mechanical, and electrical equipment required to provide a source of stored DC energy for input of the Power Unit. UPG designed the storage unit as a ''plug and play'' option, where multiple units can be easily paralleled for additional energy storage capacity.

  2. Going Solar in Record Time with Plug-and-Play PV | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Going Solar in Record Time with Plug-and-Play PV Going Solar in Record Time with Plug-and-Play PV April 24, 2012 - 6:10pm Addthis A plug-and-play PV system is envisioned as a...

  3. DOE Request for Information (RFI) DE-FOA-0000153 PV Manufacturing Initiative

    SciTech Connect

    none,

    2010-02-01

    This draft report summarizes the results of the U.S. Department of Energy PV Manufacturing Request for Information (RFI), DE-FOA-0000153, that was released in September 2009. The PV Manufacturing Initiative is intended to help facilitate the development of a strong PV manufacturing industry in the United States.

  4. Experimental comparison of PV-smoothing controllers using distributed generators

    SciTech Connect

    Johnson, Jay Dean; Ellis, Abraham; Denda, Atsushi; Morino, Kimio; Hawkins, John N.; Arellano, Brian; Shinji, Takao; Ogata, Takao; Tadokoro, Masayuki

    2014-02-01

    The power output variability of photovoltaic systems can affect local electrical grids in locations with high renewable energy penetrations or weak distribution or transmission systems. In those rare cases, quick controllable generators (e.g., energy storage systems) or loads can counteract the destabilizing effects by compensating for the power fluctuations. Previously, control algorithms for coordinated and uncoordinated operation of a small natural gas engine-generator (genset) and a battery for smoothing PV plant output were optimized using MATLAB/Simulink simulations. The simulations demonstrated that a traditional generation resource such as a natural gas genset in combination with a battery would smooth the photovoltaic output while using a smaller battery state of charge (SOC) range and extending the life of the battery. This paper reports on the experimental implementation of the coordinated and uncoordinated controllers to verify the simulations and determine the differences in the controllers. The experiments were performed with the PNM PV and energy storage Prosperity site and a gas engine-generator located at the Aperture Center at Mesa Del Sol in Albuquerque, New Mexico. Two field demonstrations were performed to compare the different PV smoothing control algorithms: (1) implementing the coordinated and uncoordinated controls while switching off a subsection of the PV array at precise times on successive clear days, and (2) comparing the results of the battery and genset outputs for the coordinated control on a high variability day with simulations of the coordinated and uncoordinated controls. It was found that for certain PV power profiles the SOC range of the battery may be larger with the coordinated control, but the total amp-hours through the battery-which approximates battery wear-will always be smaller with the coordinated control.

  5. Geographic smoothing of solar PV: Results from Gujarat

    SciTech Connect

    Klima, Kelly; Apt, Jay

    2015-09-24

    We examine the potential for geographic smoothing of solar photovoltaic (PV) electricity generation using 13 months of observed power production from utility-scale plants in Gujarat, India. To our knowledge, this is the first published analysis of geographic smoothing of solar PV using actual generation data at high time resolution from utility-scale solar PV plants. We use geographic correlation and Fourier transform estimates of the power spectral density (PSD) to characterize the observed variability of operating solar PV plants as a function of time scale. Most plants show a spectrum that is linear in the log–log domain at high frequencies f, ranging from f-1.23 to f-1.56 (slopes of -1.23 and -1.56), thus exhibiting more relative variability at high frequencies than exhibited by wind plants. PSDs for large PV plants have a steeper slope than those for small plants, hence more smoothing at short time scales. Interconnecting 20 Gujarat plants yields a f-1.66 spectrum, reducing fluctuations at frequencies corresponding to 6 h and 1 h by 23% and 45%, respectively. Half of this smoothing can be obtained through connecting 4-5 plants; reaching marginal improvement of 1% per added plant occurs at 12-14 plants. The largest plant (322 MW) showed an f-1.76 spectrum. Furthermore, this suggests that in Gujarat the potential for smoothing is limited to that obtained by one large plant.

  6. Field Demonstration of Using Advanced PV Inverter Functionality to Mitigate the Impacts of High-Penetration PV Grid Integration on the Distribution System

    SciTech Connect

    Mather, Barry; Gebeyehu, Araya

    2015-06-14

    This paper describes a field demonstration that was completed to show the ability of currently installed PV inverters to implement advanced PV inverter functionality and that such functionality was effective at reducing the voltage-related PV impacts of high-penetration PV integration. A distribution circuit was instrumented and then tested for a two week period using off-unity power factor operation. Specifically, an inductive power factor of -0.95 was demonstrated. The results show that the PV inverters were capable of such operation and that the use of off-unity power factor operation was highly effective at reducing the voltage-related impacts of the PV systems interconnected to the circuits used in the demonstration. The impacts of using off-unity power factor operation - resulting in additional reactive current flow on the distribution circuit - are also presented and analyzed.

  7. Land-Use Change and Bioenergy

    SciTech Connect

    2011-07-01

    This publication describes the Biomass Program’s efforts to examine the intersection of land-use change and bioenergy production. It describes legislation requiring land-use change assessments, key data and modeling challenges, and the research needs to better assess and understand the impact of bioenergy policy on land-use decisions.

  8. Land Use and Protected Lands Guidance and Requirements | Department of

    Energy Saver

    Laboratory Partnering Laboratory Partnering The Department of Energy operates multiple laboratories and facilities that conduct Technology Transfer through partnerships with industry, universities and non-profit organizations. Technology transfer involves deployment of newly generated technology intended for commercial deployment, and making unique resources in the form of collaborations with laboratory staff and unique equipment available for use by third parties. Technology transfer is done

  9. Integrating High Penetrations of PV into Southern California: Year 2 Project Update; Preprint

    SciTech Connect

    Mather, B.; Neal, R.

    2012-08-01

    Southern California Edison (SCE) is well into a five-year project to install a total of 500 MW of distributed photovoltaic (PV) energy within its utility service territory. Typical installations to date are 1-3 MW peak rooftop PV systems that interconnect to medium-voltage urban distribution circuits or larger (5 MW peak) ground-mounted systems that connect to medium-voltage rural distribution circuits. Some of the PV system interconnections have resulted in distribution circuits that have a significant amount of PV generation compared to customer load, resulting in high-penetration PV integration scenarios. The National Renewable Energy Laboratory (NREL) and SCE have assembled a team of distribution modeling, resource assessment, and PV inverter technology experts in order to investigate a few of the high-penetration PV distribution circuits. Currently, the distribution circuits being studied include an urban circuit with a PV penetration of approximately 46% and a rural circuit with a PV penetration of approximately 60%. In both cases, power flow on the circuit reverses direction, compared to traditional circuit operation, during periods of high PV power production and low circuit loading. Research efforts during year two of the five-year project were focused on modeling the distribution system level impacts of high-penetration PV integrations, the development and installation of distribution circuit data acquisition equipment appropriate for quantifying the impacts of high-penetration PV integrations, and investigating high-penetration PV impact mitigation strategies. This paper outlines these research efforts and discusses the following activities in more detail: the development of a quasi-static time-series test feeder for evaluating high-penetration PV integration modeling tools; the advanced inverter functions being investigated for deployment in the project's field demonstration and a power hardware-in-loop test of a 500-kW PV inverter implementing a

  10. Sensitivity of Rooftop PV Projections in the SunShot Vision Study to Market Assumptions

    SciTech Connect

    Drury, E.; Denholm, P.; Margolis, R.

    2013-01-01

    The SunShot Vision Study explored the potential growth of solar markets if solar prices decreased by about 75% from 2010 to 2020. The SolarDS model was used to simulate rooftop PV demand for this study, based on several PV market assumptions--future electricity rates, customer access to financing, and others--in addition to the SunShot PV price projections. This paper finds that modeled PV demand is highly sensitive to several non-price market assumptions, particularly PV financing parameters.

  11. Solar Photovoltaic Economic Development: Building and Growing a Local PV Industry, August 2011 (Book)

    SciTech Connect

    Not Available

    2011-08-01

    The U.S. photovoltaic (PV) industry is forecast to grow, and it represents an opportunity for economic development and job creation in communities throughout the United States. This report helps U.S. cities evaluate economic opportunities in the PV industry. It serves as a guide for local economic development offices in evaluating their community?s competitiveness in the solar PV industry, assessing the viability of solar PV development goals, and developing strategies for recruiting and retaining PV companies to their areas.

  12. Going Solar in Record Time with Plug-and-Play PV | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Going Solar in Record Time with Plug-and-Play PV Going Solar in Record Time with Plug-and-Play PV April 24, 2012 - 6:10pm Addthis A plug-and-play PV system is envisioned as a consumer friendly solar technology that uses an automatic detection system to initiate communication between the solar energy system and the utility when plugged into a PV-ready circuit. | Photo by iStock. A plug-and-play PV system is envisioned as a consumer friendly solar technology that uses an automatic detection system

  13. College Student Internship Program Requirements and Application...

    Energy Saver

    On-grid photovoltaic (PV) installations - New Mexico Off-grid PV electricity system - ... large PV array, microturbine, fuel cell, large battery bank - New Mexico (Sandia Labs). ...

  14. Implementing Solar PV Projects on Historic Buildings and in Historic Districts

    SciTech Connect

    Kandt, A.; Hotchkiss, E.; Walker, A.; Buddenborg, J; Lindberg, J.

    2011-09-01

    Many municipalities, particularly in older communities of the United States, have a large amount of historic buildings and districts. In addition to preserving these historic assets, many municipalities have goals or legislative requirements to procure a certain amount of energy from renewable sources and to become more efficient in their energy use; often, these requirements do not exempt historic buildings. This paper details findings from a workshop held in Denver, Colorado, in June 2010 that brought together stakeholders from both the solar and historic preservation industries. Based on these findings, this paper identifies challenges and recommends solutions for developing solar photovoltaic (PV) projects on historic buildings and in historic districts in such a way as to not affect the characteristics that make a building eligible for historic status.

  15. Formulating a simplified equivalent representation of distribution circuits for PV impact studies.

    SciTech Connect

    Reno, Matthew J.; Broderick, Robert Joseph; Grijalva, Santiago

    2013-04-01

    With an increasing number of Distributed Generation (DG) being connected on the distribution system, a method for simplifying the complexity of the distribution system to an equivalent representation of the feeder is advantageous for streamlining the interconnection study process. The general characteristics of the system can be retained while reducing the modeling effort required. This report presents a method of simplifying feeders to only specified buses-of-interest. These buses-of-interest can be potential PV interconnection locations or buses where engineers want to verify a certain power quality. The equations and methodology are presented with mathematical proofs of the equivalence of the circuit reduction method. An example 15-bus feeder is shown with the parameters and intermediate example reduction steps to simplify the circuit to 4 buses. The reduced feeder is simulated using PowerWorld Simulator to validate that those buses operate with the same characteristics as the original circuit. Validation of the method is also performed for snapshot and time-series simulations with variable load and solar energy output data to validate the equivalent performance of the reduced circuit with the interconnection of PV.

  16. Baseline and target values for regional and point PV power forecasts: Toward improved solar forecasting

    SciTech Connect

    Zhang, Jie; Hodge, Bri -Mathias; Lu, Siyuan; Hamann, Hendrik F.; Lehman, Brad; Simmons, Joseph; Campos, Edwin; Banunarayanan, Venkat; Black, Jon; Tedesco, John

    2015-11-10

    Accurate solar photovoltaic (PV) power forecasting allows utilities to reliably utilize solar resources on their systems. However, to truly measure the improvements that any new solar forecasting methods provide, it is important to develop a methodology for determining baseline and target values for the accuracy of solar forecasting at different spatial and temporal scales. This paper aims at developing a framework to derive baseline and target values for a suite of generally applicable, value-based, and custom-designed solar forecasting metrics. The work was informed by close collaboration with utility and independent system operator partners. The baseline values are established based on state-of-the-art numerical weather prediction models and persistence models in combination with a radiative transfer model. The target values are determined based on the reduction in the amount of reserves that must be held to accommodate the uncertainty of PV power output. The proposed reserve-based methodology is a reasonable and practical approach that can be used to assess the economic benefits gained from improvements in accuracy of solar forecasting. Lastly, the financial baseline and targets can be translated back to forecasting accuracy metrics and requirements, which will guide research on solar forecasting improvements toward the areas that are most beneficial to power systems operations.

  17. Baseline and target values for regional and point PV power forecasts: Toward improved solar forecasting

    DOE PAGES [OSTI]

    Zhang, Jie; Hodge, Bri -Mathias; Lu, Siyuan; Hamann, Hendrik F.; Lehman, Brad; Simmons, Joseph; Campos, Edwin; Banunarayanan, Venkat; Black, Jon; Tedesco, John

    2015-11-10

    Accurate solar photovoltaic (PV) power forecasting allows utilities to reliably utilize solar resources on their systems. However, to truly measure the improvements that any new solar forecasting methods provide, it is important to develop a methodology for determining baseline and target values for the accuracy of solar forecasting at different spatial and temporal scales. This paper aims at developing a framework to derive baseline and target values for a suite of generally applicable, value-based, and custom-designed solar forecasting metrics. The work was informed by close collaboration with utility and independent system operator partners. The baseline values are established based onmore » state-of-the-art numerical weather prediction models and persistence models in combination with a radiative transfer model. The target values are determined based on the reduction in the amount of reserves that must be held to accommodate the uncertainty of PV power output. The proposed reserve-based methodology is a reasonable and practical approach that can be used to assess the economic benefits gained from improvements in accuracy of solar forecasting. Lastly, the financial baseline and targets can be translated back to forecasting accuracy metrics and requirements, which will guide research on solar forecasting improvements toward the areas that are most beneficial to power systems operations.« less

  18. High-Penetration PV Integration Handbook for Distribution Engineers

    SciTech Connect

    Seguin, Rich; Woyak, Jeremy; Costyk, David; Hambrick, Josh; Mather, Barry

    2016-01-01

    This handbook has been developed as part of a five-year research project which began in 2010. The National Renewable Energy Laboratory (NREL), Southern California Edison (SCE), Quanta Technology, Satcon Technology Corporation, Electrical Distribution Design (EDD), and Clean Power Research (CPR) teamed together to analyze the impacts of high-penetration levels of photovoltaic (PV) systems interconnected onto the SCE distribution system. This project was designed specifically to leverage the experience that SCE and the project team would gain during the significant installation of 500 MW of commercial scale PV systems (1-5 MW typically) starting in 2010 and completing in 2015 within SCE’s service territory through a program approved by the California Public Utility Commission (CPUC).

  19. NREL Provides PV Holiday Lights for Christmas Tree

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Provides PV Holiday Lights for Christmas Tree For more information contact: George Douglas (303) 275-4096 Golden, Colo., December 2, 1997 -- National Renewable Energy Laboratory (NREL) engineers are showing off the power of photovoltaics in Washington, D.C. again this holiday season. They have installed an 8-kilowatt solar array on the Ellipse just south of the White House to help power lights on the National Christmas Tree. The tree lighting ceremony on Dec. 4 begins Washington's 1997 Pageant

  20. NREL to request proposals for reducing PV costs

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Request Proposals for Reducing PV Costs For more information contact: George Douglas, (303) 275-4096 Golden, Colo., May 15, 1997 -- The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) invites the photovoltaics and related industries to join its Photovoltaic Manufacturing Technology (PVMaT) program in looking for ways to improve production processes and reduce the cost of photovoltaic products. NREL will issue in the next 90 days an $8 million request for proposals

  1. High-Penetration PV Integration Handbook for Distribution Engineers

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Contract No. DE-AC36-08GO28308 High-Penetration PV Integration Handbook for Distribution Engineers Rich Seguin, Jeremy Woyak, David Costyk, and Josh Hambrick Electrical Distribution Design Barry Mather National

  2. Distributed PV Interconnection Screening Procedures and Online Tools

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Screening Procedures and Online Tools Page 1 of 9 Kristen Ardani, Joel Dickinson, Max Berger, David Crowell, Jeff Dickinson, Kelly Webster Page 1 of 9 [Speaker: Kristen Ardani] Cover Slide: Thank you everyone for joining us today for the DG Interconnection Collaborative. My name is Kristen Ardani,I'm an analyst here at NREL and the lead facilitator of the DGIC. We are fortunate today to have speakers Joel Dickinson of Salt River Project. We are going to discuss distributed PV interconnection

  3. PG&E Plans for 500 MW of PV

    Energy.gov [DOE]

    PG&E has developed a plan to install 500 MW of PV by the year 2015. The plan calls for 250 MW to be acquired through Power Purchase Agreements (PPA) and the other 250 MW to be purchased and owned by the utility. PG&E presented the plan at a public forum on April 27, 2009. A copy of the power point presentation is attached.

  4. Utility Participation in the Rooftop Solar PV Market Transcript

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Utility Participation in the Rooftop Solar PV Market Page 1 of 21 Kristen Ardani, Jurstin Orkney, Marc Romito Page 1 of 21 [Speaker: Kristen Ardani] Slide 1: Good afternoon, everyone. Thank you for joining the Distributed Generation Interconnection Collaborative Monthly Informational Webinar. My name is Kristen Ardani, and I'm an analyst here at NREL and the moderator for the DGIC. So today, we are kicking off 2016 with a joint presentation from two Arizona utilities that have implemented

  5. High Penetration PV: How High Can We Go?

    SciTech Connect

    2016-01-01

    Brochure highlighting NREL's partnership with SolarCity and Hawaiian Electric (HECO) to increase the penetration of solar photovoltaics on the electricity grid. To better understand the potential impact of transient overvoltages due to load rejection, NREL collaborated with SolarCity and HECO to run a series of tests measuring the magnitude and duration of load rejection overvoltage events and demonstrating the ability of advanced PV inverters to mitigate their impacts.

  6. Efficient Nanostructured Silicon (Black Silicon) PV Devices - Energy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Innovation Portal Efficient Nanostructured Silicon (Black Silicon) PV Devices National Renewable Energy Laboratory Contact NREL About This Technology Technology Marketing Summary Antireflective (AR) coatings on solar cells increase the efficiency of the cells by suppressing reflection, which allows more photons to enter a silicon (Si) wafer and increases the flow of electricity. Traditional AR coatings however, add significant cost to the solar cell manufacturing process. NREL scientists

  7. Enhanced Modeling and Monitoring Tools for Distributed PV Interconnection

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Enhanced Modeling and Monitoring Tools for Distributed PV Interconnection" Mark Rawson, Sacramento Municipal Utility District and David Pinney, National Rural Electric Cooperative Association with introductory remarks by Rick Thompson, Greentech Media May 28, 2014 2 Purpose of Today's Meeting * Foster stakeholder collaboration and awareness o Learn about Green Tech Media's (GTM) new Grid Edge Initiative, Rick Thompson, GTM * Hear an example of how a municipal utility is planning for solar

  8. Center for Inverse Design Highlight: Iron Chalcogenide PV Absorbers

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Iron Chalcogenide Photovoltaic Absorbers The Center for Inverse Design has identified the iron-based ternary chalcogenide materials Fe 2 SiS 4 and Fe 2 GeS 4 as promising new photovoltaic materials, which circumvent the problems historically encountered with iron sulfide FeS 2 (iron pyrite). There is intense interest in earth-abundant materials, including iron-bearing systems, for the widespread development of photovoltaic (PV) technologies to sustainably meet growing energy needs. The inverse

  9. Indium Phosphide Polycrystalline Films on Metal Foil for PV Applications -

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy Innovation Portal Indium Phosphide Polycrystalline Films on Metal Foil for PV Applications Lawrence Berkeley National Laboratory Contact LBL About This Technology Publications: PDF Document Publication Zheng, M., Yu, Z., Seok, T.J., Chen, Y-Z., Kapadia, R., Takei, K., Aloni, S., Ager, J.W., Wu, M., Chueh, Y-L., Javey, A. "High optical quality polycrystalline indium phosphide grown on metal substrates by metalorganic chemical vapor deposition," Journal of Applied Physics 111,

  10. Quantify Degradation Rates and Mechanisms of PV Modules and Systems Installed in Florida Through Comprehensive Experimental and Theoretical Analysis (Poster)

    SciTech Connect

    Sorloaica-Hickman, N.; Davis, K.; Kurtz, S.; Jordan, D.

    2011-02-01

    The economic viability of photovoltaic (PV) technologies is inextricably tied to both the electrical performance and degradation rate of the PV systems, which are the generators of electrical power in PV systems. Over the past 15 years, performance data have been collected on numerous PV systems installed throughout the state of Florida and will be presented.

  11. Performance of a multifunctional PV/T hybrid solar window

    SciTech Connect

    Davidsson, Henrik; Perers, Bengt; Karlsson, Bjoern

    2010-03-15

    A building-integrated multifunctional PV/T solar window has been developed and evaluated. It is constructed of PV cells laminated on solar absorbers placed in a window behind the glazing. To reduce the cost of the solar electricity, tiltable reflectors have been introduced in the construction to focus radiation onto the solar cells. The reflectors render the possibility of controlling the amount of radiation transmitted into the building. The insulated reflectors also reduce the thermal losses through the window. A model for simulation of the electric and hot water production was developed. The model can perform yearly energy simulations where different features such as shading of the cells or effects of the glazing can be included or excluded. The simulation can be run with the reflectors in an active, up right, position or in a passive, horizontal, position. The simulation program was calibrated against measurements on a prototype solar window placed in Lund in the south of Sweden and against a solar window built into a single family house, Solgaarden, in Aelvkarleoe in the central part of Sweden. The results from the simulation shows that the solar window annually produces about 35% more electric energy per unit cell area compared to a vertical flat PV module. (author)

  12. Measurement uncertainty analysis techniques applied to PV performance measurements

    SciTech Connect

    Wells, C.

    1992-10-01

    The purpose of this presentation is to provide a brief introduction to measurement uncertainty analysis, outline how it is done, and illustrate uncertainty analysis with examples drawn from the PV field, with particular emphasis toward its use in PV performance measurements. The uncertainty information we know and state concerning a PV performance measurement or a module test result determines, to a significant extent, the value and quality of that result. What is measurement uncertainty analysis It is an outgrowth of what has commonly been called error analysis. But uncertainty analysis, a more recent development, gives greater insight into measurement processes and tests, experiments, or calibration results. Uncertainty analysis gives us an estimate of the I interval about a measured value or an experiment's final result within which we believe the true value of that quantity will lie. Why should we take the time to perform an uncertainty analysis A rigorous measurement uncertainty analysis: Increases the credibility and value of research results; allows comparisons of results from different labs; helps improve experiment design and identifies where changes are needed to achieve stated objectives (through use of the pre-test analysis); plays a significant role in validating measurements and experimental results, and in demonstrating (through the post-test analysis) that valid data have been acquired; reduces the risk of making erroneous decisions; demonstrates quality assurance and quality control measures have been accomplished; define Valid Data as data having known and documented paths of: Origin, including theory; measurements; traceability to measurement standards; computations; uncertainty analysis of results.

  13. PROJECT PROFILE: Rapid QSTS Simulations for High-Resolution Comprehensive Assessment of Distributed PV Impacts (SuNLaMP)

    Office of Energy Efficiency and Renewable Energy (EERE)

    This project, led by Sandia National Laboratory and supported by the National Renewable Energy Laboratory, will accelerate Quasi Static Time Series (QSTS) simulation capabilities through the use of new and innovative methods for advanced time-series analysis. Currently, QSTS analysis is not commonly performed in photovoltaic (PV) interconnection studies because of the data requirements and computational burden. This project will address both of these issues by developing advanced QSTS methods that greatly reduce the required computational time and by developing high-proxy data sets.

  14. Exploring the Economic Value of EPAct 2005's PV Tax Credits

    SciTech Connect

    Bolinger, Mark A; Wiser, Ryan; Ing, Edwin

    2009-08-01

    This CESA - LBNL Case Study examines how much economic value do new and expanded federal tax credits really provide to PV system purchasers, and what implications might they hold for state/utility PV grant programs. The report begins with a discussion of the taxability of PV grants and their interaction with federal credits, as this issue significantly affects the analysis that follows. We then calculate the incremental value of EPAct's new and expanded credits for PV systems of different sizes, and owned by different types of entities. The report concludes with a discussion of potential implications for purchasers of PV systems, as well as for administrators of state/utility PV programs. The market for grid-connected photovoltaics (PV) in the US has grown dramatically in recent years, driven in large part by PV grant or 'buy-down' programs in California, New Jersey, and many other states. The recent announcement of a new 11-year, $3.2 billion PV program in California suggests that state policy will continue to drive even faster growth over the next decade. Federal policy has also played a role, primarily by providing commercial PV systems access to tax benefits, including accelerated depreciation (5-year MACRS schedule) and a business energy investment tax credit (ITC). Since the signing of the Energy Policy Act of 2005 (EPAct) on August 8, the federal government has begun to play a much more significant role in supporting both commercial and residential PV systems. Specifically, EPAct increased the federal ITC for commercial PV systems from 10% to 30% of system costs, and also created a new 30% ITC (capped at $2000) for residential solar systems. Both changes went into effect on January 1, 2006, for an initial period of two years, and in late 2006 were extended for an additional year. Unless extended further, the new residential ITC will expire, and the 30% commercial ITC will revert back to 10%, on January 1, 2009. How much economic value do these new and

  15. PV FAQs: What Is the Energy Payback for PV? Solar Energy Technologies...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable Reaping the environmental benefits of solar energy requires spending energy to make the ...

  16. Feasibility Study of Economics and Performance of Solar Photovoltaics at the Vincent Mullins Landfill in Tucson, Arizona. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect

    Steen, M.; Lisell, L.; Mosey, G.

    2013-01-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Vincent Mullins Landfill in Tucson, Arizona, for a feasibility study of renewable energy production. Under the RE-Powering America's Land initiative, the EPA provided funding to the National Renewable Energy Laboratory (NREL) to support the study. NREL provided technical assistance for this project but did not assess environmental conditions at the site beyond those related to the performance of a photovoltaic (PV) system. The purpose of this report is to assess the site for a possible PV installation and estimate the cost and performance of different PV configurations, as well as to recommend financing options that could assist in the implementation of a PV system. In addition to the Vincent Mullins site, four similar landfills in Tucson are included as part of this study.

  17. Evaluating the Impact of Solar Generation on Balancing Requirements in Southern Nevada System

    SciTech Connect

    Ma, Jian; Lu, Shuai; Etingov, Pavel V.; Makarov, Yuri V.

    2012-07-26

    Abstract—In this paper, the impacts of solar photovoltaic (PV) generation on balancing requirements including regulation and load following in the Southern Nevada balancing area are analyzed. The methodology is based on the “swinging door” algorithm and a probability box method developed by PNNL. The regulation and load following signals are mimicking the system’s scheduling and real-time dispatch processes. Load, solar PV generation and distributed PV generation (DG) data are used in the simulation. Different levels of solar PV generation and DG penetration profiles are used in the study. Sensitivity of the regulation requirements with respect to real-time solar PV generation forecast errors is analyzed.

  18. Land Use and Land Cover Change

    SciTech Connect

    Brown, Daniel; Polsky, Colin; Bolstad, Paul V.; Brody, Samuel D.; Hulse, David; Kroh, Roger; Loveland, Thomas; Thomson, Allison M.

    2014-05-01

    A contribution to the 3rd National Climate Assessment report, discussing the following key messages: 1. Choices about land-use and land-cover patterns have affected and will continue to affect how vulnerable or resilient human communities and ecosystems are to the effects of climate change. 2. Land-use and land-cover changes affect local, regional, and global climate processes. 3. Individuals, organizations, and governments have the capacity to make land-use decisions to adapt to the effects of climate change. 4. Choices about land use and land management provide a means of reducing atmospheric greenhouse gas levels.

  19. The AES advanced 60kW PV-diesel hybrid inverter

    SciTech Connect

    Wills, R.H.

    1997-12-31

    This paper presents the advances made in hybrid PV-Diesel power conversion under AES`s PVMaT 4A research contract. Assembly and servicing were simplified by combining advances in power electronics (higher power IGBTs, bonded fin heat sinks and a new proprietary IGBT driver board) into a single power block. The newly US manufactured inverter features locally designed magnetics, a 70% smaller floor space requirement and a flexible, expandable software control scheme based on a Visual Basic-based Windows interface and industry standard MODBUS SCADA communications. The prototype unit has been tested at Sandia National Labs and is about to be tested at NREL`s Rocky Flats Wind Test Site. Operating results for an AES hybrid inverter site in Belize are also presented.

  20. Feasibility Study of Economics and Performance of Solar Photovoltaics at the Price Landfill Site in Pleasantville, New Jersey. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect

    Salasovich, J.; Geiger, J.; Mosey, G.; Healey, V.

    2013-05-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Price Landfill site in Pleasantville, New Jersey, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this report is to assess the site for a possible photovoltaic (PV) system installation and estimate the cost, performance, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site. This study did not assess environmental conditions at the site.

  1. Feasibility Study of Economics and Performance of Solar Photovoltaics at the Peru Mill Industrial Park in the City of Deming, New Mexico. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect

    Kiatreungwattana, K.; Geiger, J.; Healey, V.; Mosey, G.

    2013-04-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Peru Mill Industrial Park site in the City of Deming, New Mexico, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this report is to assess the site for a possible photovoltaic (PV) system installation and estimate the cost, performance, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site.

  2. Feasibility Study of Economics and Performance of Solar Photovoltaics at the Sky Park Landfill Site in Eau Claire, Wisconsin. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect

    Simon, J.; Mosey, G.

    2013-01-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Sky Park Landfill site in Eau Claire, Wisconsin, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this report is to assess the site for a possible photovoltaic (PV) system installation and estimate the cost, performance, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site.

  3. Feasibility Study of Economics and Performance of Solar Photovoltaics at the Tower Road Site in Aurora, Colorado. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect

    Van Geet, O.; Mosey, G.

    2013-03-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Tower Road site in Aurora, Colorado, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this report is to assess the site for a possible photovoltaic (PV) system installation and estimate the cost, performance, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site. This study did not assess environmental conditions at the site.

  4. Feasibility Study of Economics and Performance of Solar Photovoltaics at the Former Fort Ord Army Base Site in Marina, California. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect

    Stoltenberg, B.; Konz, C.; Mosey, G.

    2013-05-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Former Fort Ord Army Base (FOAB) site in Marina, California, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this report is to assess the site for a possible photovoltaic (PV) system installation and estimate the cost, performance, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site.

  5. Feasibility Study of Economics and Performance of Solar Photovoltaics at the Kerr McGee Site in Columbus, Mississippi. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect

    Simon, J.; Mosey, G.

    2013-01-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Kerr McGee site in Columbus, Mississippi, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this report is to assess the site for a possible photovoltaic (PV) system installation and estimate the cost, performance, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site.

  6. Feasibility Study of Economics and Performance of Solar Photovoltaics at the Ft. Hood Military Base Outside Killeen, Texas. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect

    Geiger, J.; Lisell, L.; Mosey, G.

    2013-10-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative through the Region 6 contract, selected Ft. Hood Army Base in Killeen, Texas, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this study is to assess the site for possible photovoltaic (PV) system installations and estimate the cost, performance, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site.

  7. Feasibility Study of Economics and Performance of Solar Photovoltaics at the Brisbane Baylands Brownfield Site in Brisbane, California. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect

    Salasovich, J.; Geiger, J.; Healey, V.; Mosey, G.

    2013-04-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Brisbane Baylands site in Brisbane, California, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this report is to assess the site for a possible photovoltaic (PV) system installation and estimate the cost, performance, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site.

  8. Feasibility Study of Economics and Performance of Solar Photovoltaics at the Standard Chlorine of Delaware Superfund Site in Delaware City, Delaware. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect

    Salasovich, J.; Geiger, J.; Mosey, G.; Healey, V.

    2013-06-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Standard Chlorine of Delaware site in Delaware City, Delaware, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this report is to assess the site for a possible photovoltaic (PV) system installation and estimate the cost, performance, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site.

  9. Feasibility Study of Economics and Performance of Solar Photovoltaics at the Former Chicago, Milwaukee, and St. Paul Rail Yard Company Site in Perry, Iowa. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect

    Salasovich, J.; Geiger, J.; Healey, V.; Mosey, G.

    2013-03-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Former Chicago, Milwaukee & St. Paul Rail Yard Company site in Perry, Iowa, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this report is to assess the site for a photovoltaic (PV) system installation and estimate the cost, performance, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site. This study did not assess environmental conditions at the site.

  10. Feasibility Study of Economics and Performance of Solar Photovoltaics at the Former Bethlehem Steel Plant Brownfield Site in Lackawanna, New York. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect

    Salasovich, J.; Geiger, J.; Mosey, G.; Healey, V.

    2013-04-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Former Bethlehem Steel Plant site in Lackawanna, New York, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this report is to assess the site for a possible photovoltaic (PV) system installation and estimate the cost, performance, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site.

  11. Feasibility Study of Economics and Performance of Solar Photovoltaics at the VAG Mine Site in Eden and Lowell, Vermont. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect

    Simon, J.; Mosey, G.

    2013-04-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Vermont Asbestos Group (VAG) Mine site in Eden, Vermont, and Lowell, Vermont, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this report is to assess the site for a possible photovoltaic (PV) system installation and estimate the cost, performance, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site.

  12. Feasibility Study of Economics and Performance of Solar Photovoltaics at the Chino Mine in Silver City, New Mexico. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect

    Kiatreungwattana, K.; Geiger, J.; Healey, V.; Mosey, G.

    2013-04-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Chino Mine site in Silver City, New Mexico, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this report is to assess the site for a possible photovoltaic (PV) system installation and estimate the cost, performance, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site.

  13. Feasibility Study of Economics and Performance of Solar Photovoltaics at the Kolthoff Landfill in Cleveland, Ohio. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect

    Salasovich, J.; Geiger, J.; Mosey, G.; Healey, V.

    2013-06-01

    The U.S. Environmental Protection Agency (EPA), Region 5, in accordance with the RE-Powering America's Land initiative, selected the Kolthoff Landfill site in Cleveland, Ohio, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this report is to assess the site for a possible photovoltaic (PV) system installation and estimate the cost, performance, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site.

  14. Feasibility Study of Economics and Performance of Solar Photovoltaics at the Snohomish County Cathcart Landfill Site in Snohomish County, Washington. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect

    Olis, D.; Salasovich, J.; Mosey, G.; Healey, V.

    2013-04-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Snohomish County Cathcart Landfill Site in Snohomish County, Washington, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this report is to assess the site for a photovoltaic (PV) system installation and estimate the cost, performance, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site.

  15. Feasibility Study of Economics and Performance of Solar Photovoltaics at the Tronox Facility in Savannah, Georgia. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect

    Kiatreungwattana, K.; Geiger, J.; Healey, V.; Mosey, G.

    2013-03-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Tronox Facility site in Savannah, Georgia, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this report is to assess the site for a possible photovoltaic (PV) system installation and estimate the cost, performance, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site.

  16. Feasibility Study of Economics and Performance of Solar Photovoltaics at the TechCity East Campus Resource Conservation and Recovery Act Site in Kingston, New York. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect

    Salasovich, J.; Geiger, J. W.; Mosey, G.; Healey, V.

    2014-01-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the TechCity East Campus site in Kingston, New York, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this study is to assess the site for a possible photovoltaic (PV) system installation and estimate the cost, performance, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site.

  17. Photovoltaics (PV) as an Eligible Measure in Residential PACE Programs: Benefits and Challenges (Fact Sheet)

    SciTech Connect

    Coughlin, J.

    2010-06-01

    Property Assessed Clean Energy (PACE) financing is one of several new financial models broadening access to clean energy by addressing the barrier of initial capital cost. The majority of the PACE programs in the market today include PV as an eligible measure. PV appeals to homeowners as a way to reduce utility bills, self-generate sustainable power, increase energy independence and demonstrate a commitment to the environment. If substantial state incentives for PV exist, PV projects can be economic under PACE, especially when partnered with good net metering policies. At the same time, PV is expensive relative to other eligible measures with a return on investment horizon that might exceed program targets. This fact sheet reviews the benefits and potential challenges of including PV in PACE programs.

  18. Materials from 2014 SunShot Summit Breakout Session: Looking Ahead: PV Manufacturing in 10 Years

    Office of Energy Efficiency and Renewable Energy (EERE)

    This was a breakout session at the 2014 SunShot Grand Challenge Summit and Peer Review. The global PV manufacturing landscape has undergone significant changes in the past decade, from geographic and economic changes in the supply chain to a significant increase in PV module production by fewer manufacturers. The lessons learned over the last decade will guide the future of this growing industry. This session explored the future of PV manufacturing over the next 5 to 10 years, both domestic and abroad. Expert panelists provided their insights and perspectives across three thematic areas: a vision of PV manufacturing, including the level of integration and the factory of the future; value-adding attributes of PV products; and the geographic concentration of PV manufacturing.

  19. Designing PV Incentive Programs to Promote Performance: A Reviewof Current Practice

    SciTech Connect

    Barbose, Galen; Wiser, Ryan; Bolinger, Mark

    2007-06-01

    Increasing levels of financial support for customer-sited photovoltaic (PV) systems, provided through publicly-funded incentive programs, has heightened concerns about the long-term performance of these systems. Given the barriers that customers face to ensuring that their PV systems perform well, and the responsibility that PV incentive programs bear to ensure that public funds are prudently spent, these programs should, and often do, play a critical role in ensuring that PV systems receiving incentives perform well. To provide a point of reference for assessing the current state of the art, and to inform program design efforts going forward, we examine the approaches to encouraging PV system performance used by 32 prominent PV incentive programs in the U.S. We identify eight general strategies or groups of related strategies that these programs have used to address performance issues, and highlight important differences in the implementation of these strategies among programs.

  20. NREL Solar Researcher Honored with World PV Award - News Releases | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    NREL Solar Researcher Honored with World PV Award May 10, 2006 Golden, Colo. - Dr. Lawrence Kazmerski, a leading research director at the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL), received the World PV Award at the Fourth World Conference on Photovoltaic Energy Conversion on May 9 for his outstanding contributions to the worldwide advancements of photovoltaic (PV) science and technology. The award, sponsored by professional organizations from the European,

  1. NREL Supports China PV Investment and Financing Alliance to Open Capital

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    for Solar Deployment - News Releases | NREL Supports China PV Investment and Financing Alliance to Open Capital for Solar Deployment May 14, 2015 The Energy Department's National Renewable Energy Laboratory (NREL) and the China PV Investment and Finance Alliance (CPVFA) have formed a collaboration with the goal of opening wide-scale and diverse sources of investment for solar photovoltaic (PV) asset development in China. NREL is advising CPVFA based on the work of the NREL-convened Solar

  2. NREL and Partners Demonstrate First-of-a-Kind Use of Utility-Scale PV for

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Ancillary Services | Energy Systems Integration | NREL and Partners Demonstrate First-of-a-Kind Use of Utility-Scale PV for Ancillary Services Demonstration project shows utility-scale photovoltaic plants that incorporate "grid-friendly" controls can contribute to grid stability and reliability. January 28, 2016 While utility-scale solar photovoltaic (PV) power plants are being increasingly deployed across the country, some believe higher penetrations of PV technologies may

  3. NREL and Partners Demonstrate First-of-a-Kind Use of Utility-Scale PV for

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Ancillary Services | Solar | NREL Partners Demonstrate First-of-a-Kind Use of Utility-Scale PV for Ancillary Services Demonstration project shows utility-scale photovoltaic plants that incorporate "grid-friendly" controls can contribute to grid stability and reliability. January 28, 2016 While utility-scale solar photovoltaic (PV) power plants are being increasingly deployed across the country, some believe higher penetrations of PV technologies may potentially impact grid

  4. Global Gathering Addresses PV Role in Energy Prosperity and Climate Change

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Mitigation | PV | NREL Global Gathering Addresses PV Role in Energy Prosperity and Climate Change Mitigation March 30, 2016 Scientists from the Energy Department's National Renewable Energy Laboratory (NREL), along with their counterparts from solar energy research institutes in Germany and Japan, gathered recently to discuss the future of photovoltaics (PV) and assess its contributions to increasing global prosperity, energy security and mitigation of climate change. The Global Alliance of

  5. Impacts of High Penetration of PV with Energy Storage at Flagstaff Arizona

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    | Department of Energy Impacts of High Penetration of PV with Energy Storage at Flagstaff Arizona Impacts of High Penetration of PV with Energy Storage at Flagstaff Arizona aps-logo.gif --This project is inactive -- The project team, led by Arizona Public Service, will evaluate the impacts of high penetrations of distributed PV and energy storage on a dedicated feeder to identify the technical and operational modifications that could be deployed in future feeder designs. APPROACH Models

  6. Final Report - Integration of Behind-the-Meter PV Fleet Forecasts into

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Utility Grid System Operations | Department of Energy Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid System Operations Final Report - Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid System Operations Awardee: Clean Power Research Location: Napa, CA Subprogram: Systems Integration Funding Program: Solar Utility Networks: Replicable Innovations in Solar Energy (SUNRISE) Project: Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid

  7. Final Technical Report: Advanced Measurement and Analysis of PV Derate Factors.

    SciTech Connect

    King, Bruce Hardison; Burton, Patrick D.; Hansen, Clifford; Jones, Christian Birk

    2015-12-01

    The Advanced Measurement and Analysis of PV Derate Factors project focuses on improving the accuracy and reducing the uncertainty of PV performance model predictions by addressing a common element of all PV performance models referred to as “derates”. Widespread use of “rules of thumb”, combined with significant uncertainty regarding appropriate values for these factors contribute to uncertainty in projected energy production.

  8. Results from Undergraduate PV Projects at Seven Historically Black Colleges and Universities

    SciTech Connect

    McConnell, R. D.

    1999-03-03

    In 1995, the NREL/Department of Energy (DOE) National Photovoltaics Program funded seven Historically Black Colleges and Universities (HBCUs) in its HBCU Photovoltaic Research Associates Program for a period of three years. The program's purpose is to advance HBCU undergraduate knowledge of photovoltaics, primarily as a result of research investigations performed, and to encourage students to pursue careers in photovoltaics. This paper presents results from PV projects ranging from fundamental materials research on PV materials to field projects of PV systems.

  9. Measurement uncertainty analysis techniques applied to PV performance measurements

    SciTech Connect

    Wells, C.

    1992-10-01

    The purpose of this presentation is to provide a brief introduction to measurement uncertainty analysis, outline how it is done, and illustrate uncertainty analysis with examples drawn from the PV field, with particular emphasis toward its use in PV performance measurements. The uncertainty information we know and state concerning a PV performance measurement or a module test result determines, to a significant extent, the value and quality of that result. What is measurement uncertainty analysis? It is an outgrowth of what has commonly been called error analysis. But uncertainty analysis, a more recent development, gives greater insight into measurement processes and tests, experiments, or calibration results. Uncertainty analysis gives us an estimate of the I interval about a measured value or an experiment`s final result within which we believe the true value of that quantity will lie. Why should we take the time to perform an uncertainty analysis? A rigorous measurement uncertainty analysis: Increases the credibility and value of research results; allows comparisons of results from different labs; helps improve experiment design and identifies where changes are needed to achieve stated objectives (through use of the pre-test analysis); plays a significant role in validating measurements and experimental results, and in demonstrating (through the post-test analysis) that valid data have been acquired; reduces the risk of making erroneous decisions; demonstrates quality assurance and quality control measures have been accomplished; define Valid Data as data having known and documented paths of: Origin, including theory; measurements; traceability to measurement standards; computations; uncertainty analysis of results.

  10. Kauai, Hawaii: Solar Resource Analysis and High Penetration PV Potential

    SciTech Connect

    Helm, C.; Burman, K.

    2010-04-01

    Overview of the solar resource assessment conducted by the National Renewable Energy Laboratory (NREL) in cooperation with Kauai Island Utility Cooperative (KIUC) in Hawaii to determine the technical feasibility of increasing the contribution of solar renewable energy generation on the island of Kauaii through the use of photovoltaic (PV) arrays. The analysis, which was performed using a custom version of NREL's In My Back Yard (IMBY) software tool, showed that there is potential to generate enough energy to cover the peak load as reported for Kauai in 2007.

  11. Utility Participation in the Rooftop Solar PV Market

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Utility Participation in the Rooftop Solar PV Market DG Interconnection Collaborative (DGIC) January 21, 2016 Justin Orkney Program Manager of Distributed Generation Tucson Electric Power (TEP) Marc Romito Manager Arizona Public Service 2 Logistics * Participants are joined in listen-only mode. * Use the Q&A panel to ask questions during the webinar. We will have a few minutes of Q&A between each presentation and group discussion at the very end.  To ask a question: o Click Q&A

  12. New Barrier Coating Materials for PV Module Backsheets: Preprint

    SciTech Connect

    Barber, G. D.; Jorgensen, G. J.; Terwilliger, K.; Glick, S. H.; Pern, J.; McMahon, T. J.

    2002-05-01

    This conference paper describes the high moisture barrier high resistivity coatings on polyethylene terepthalate (PET) have been fabricated and characterized for use in PV module back sheet applications. These thin film barriers exhibit water vapor transmission rates (WVTR) as low as 0.1 g/m2-day at 37.8 C and have shown excellent adhesion (> 10 N/mm) to both ethylene vinyl acetate (EVA) and PET even after filtered xenon arc lamp UV exposure. The WVTR and adhesion values for this construction are compared to and shown to be superior to candidate polymeric backsheet materials.

  13. PV vs. Solar Water Heating- Simple Solar Payback

    Energy.gov [DOE]

    Solar energy systems hang their hats on payback. Financial payback is as tangible as money in your bank account, while other types of payback—like environmental externalities—are not usually calculated in dollars. There’s no doubt that photovoltaic (PV) and solar hot water (SHW) systems will pay you back. Maybe not as quickly as you’d like, but all systems will significantly offset their cost over their lifetimes. Here we’ll try to answer: Which system will give the quickest return on investment (ROI)?

  14. LANL Land Transfers 2015 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Land Transfers 2015 LANL Land Transfers 2015 Land transfer activities are planned to occur fiscal year 2016 which will require independent verification of Los Alamos National Laboratory (LANL)'s sampling protocol and analyses. The former Sewage Treatment Plant within land tract A-16-D and the southern portion of A-16-E are on track for MARSSIM final status survey. The remainder of TA-21 will require verification once final D&D of structures is complete. The sampling activities for these

  15. Concentrating Photovoltaics: Collaborative Opportunities within DOEs CSP and PV Programs; Preprint

    SciTech Connect

    Mehos, M.; Lewandowski, A.; Symko-Davies, M.; Kurtz, S.

    2001-10-01

    Presented at the 2001 NCPV Program Review Meeting: DOEs Concentrating Solar Power program is investigating the viability of concentrating PV converters as an alternative to thermal conversion devices.

  16. Precursor Report of Data Needs and Recommended Practices for PV Plant Availability Operations and Maintenance Reporting.

    SciTech Connect

    Hill, Roger R.; Klise, Geoffrey Taylor; Balfour, John R.

    2015-01-01

    Characterizing the factors that affect reliability of a photovoltaic (PV) power plant is an important aspect of optimal asset management. This document describes the many factors that affect operation and maintenance (O&M) of a PV plant, identifies the data necessary to quantify those factors, and describes how data might be used by O&M service providers and others in the PV industry. This document lays out data needs from perspectives of reliability, availability, and key performance indicators and is intended to be a precursor for standardizing terminology and data reporting, which will improve data sharing, analysis, and ultimately PV plant performance.

  17. Users Manual for Data for Validating Models for PV Module Performanc...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... Preface This user's manual describes performance data measured for flat-plate photovoltaic ... module in watts POA plane-of-array PV photovoltaic QA quality assessment Sandia Sandia ...

  18. Pyranometers and Reference Cells: Part 2: What Makes the Most Sense for PV Power Plants?; Preprint

    SciTech Connect

    Meydbray, J.; Riley, E.; Dunn, L.; Emery, K.; Kurtz, S.

    2012-10-01

    As described in Part 1 of this two-part series, thermopile pyranometers and photovoltaic (PV) reference cells can both be used to measure irradiance; however, there are subtle differences between the data that are obtained. This two-part article explores some implications of uncertainty and subtleties of accurately measuring PV efficiency in the field. Part 2 of the series shows how reference cells can be used to more confidently predict PV performance, but how this could best be accomplished if historic irradiance data could be available in PV-technology-specific formats.

  19. Failure and Degradation Modes of PV Modules in a Hot Dry Climate...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Report Delamination Failures in Long-Term Field Aged PV Modules from Point of View of Encapsulant Accelerated Stress Testing, Qualification Testing, HAST, Field Experience

  20. Climatically Diverse Data Set for Flat-Plate PV Module Model...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Climatically Diverse Data Set for Flat-Plate PV Module Model Validations Bill Marion 2013 ... Validation Project o "Comprehensive data set, with low measurement uncertainty, of ...

  1. A Multi-Perspective Approach to PV Module Reliability and Degradation...

    Energy.gov [DOE] (indexed site)

    Reliability Workshop, February 26 - 27 2013, Golden, Colorado PDF icon pvmrw13ps2bnlcolli.pdf More Documents & Publications Agenda for the PV Module Reliability Workshop, ...

  2. Improved Reliability of PV Modules with Lexan PC Sheet-Front...

    Energy.gov [DOE] (indexed site)

    ps5sabiczhou.pdf More Documents & Publications Weathering Performance of PV Backsheets Hail Impact Testing on Crystalline Si Modules with Flexible Packaging Test Procedure for UV ...

  3. Category:Utility Rate Impacts on PV Economics By Building Type...

    OpenEI (Open Energy Information) [EERE & EIA]

    navigation, search Impact of Utility Rates on PV Economics Full Service Restaurant Hospital Large Hotel Large Office Medium Office Midrise Apartment Outpatient Primary School...

  4. Community Renewable Energy Success Stories Webinar: Developing PV Projects with RFPs and PPAs (text version)

    Energy.gov [DOE]

    Below is the text version of the webinar titled "Developing PV Projects with RFPS and PPAS," originally presented on January 15, 2013.

  5. Defining a Technical Basis for Confidence in PV Investments - A Pathway to Service Life Prediction (Presentation)

    SciTech Connect

    Kurtz, S.; Wohlgemuth, J.; Kempe, M.; Bosco, N.; Hacke, P.; Jordan, D.; Miller, D.

    2013-09-01

    Four levels of accelerated test standards for PV modules are described in the context of how the community can most quickly begin using these.

  6. Sandia Energy - PV Value Tool Featured at Washington D.C. Roundtable

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    by the Federal Housing Administration-Single Family Housing Office of Economic Resilience and the Executive Office of the President on March 11, 2014. The PV Value tool,...

  7. DOE Zero Energy Ready Home PV-Ready Checklist DOE Zero Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    architectural drawing of solar PV system components. (RERHPV Guide 3.5) Alternative: Provide home buyer with the following information: List of renewable-ready features ...

  8. PV Standards: What IEC TC82 is Doing for You | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    More Documents & Publications QA TG5 UV, temperature and humidity Test Procedure for UV Weathering Resistance of Backsheet Literature Review of the Effects of UV Exposure on PV ...

  9. PROJECT PROFILE: Performance Models and Standards for Bifacial PV Module Technologies

    Energy.gov [DOE]

    Bifacial PV modules absorb sunlight and produce electricity from both the front and back sides of the module and can take advantage of light reflected from a surface (albedo). Analysis and field data indicate that this technology has the potential to increase system outputs by 10%-20%. Because current bifacial PV technology has complex light collecting dynamics, its performance advantages have not been fully exploited and no commonly-available tools allow it to be considered for major PV projects beyond current niche applications. The project will provide the data, standard test methods, and validated models to allow developers to fairly evaluate the potential benefits bifacial PV technologies for specific projects.

  10. Update: How DOE Loan Guarantees Helped Launch the Utility-Scale PV Solar

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Market | Department of Energy How DOE Loan Guarantees Helped Launch the Utility-Scale PV Solar Market Update: How DOE Loan Guarantees Helped Launch the Utility-Scale PV Solar Market February 11, 2016 - 5:20pm Addthis Update: How DOE Loan Guarantees Helped Launch the Utility-Scale PV Solar Market Mark A. McCall Mark A. McCall Executive Director of the Loan Programs Office What are the key facts? In 2011, LPO issued loan guarantees to the first 5 PV projects larger than 100 MW in the U.S.

  11. Partially Shaded Operation of a Grid-Tied PV System: Preprint

    SciTech Connect

    Deline, C.

    2009-06-01

    This paper presents background and experimental results from a single-string grid-tied PV system, operated under a variety of shading conditions.

  12. Sustainable and Holistic Integration of Energy Storage and Solar PV (SHINES) Funding Opportunity

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Sustainable and Holistic Integration of Energy Storage and Solar PV (SHINES) solution as envisioned by SunShot will have the following features:

  13. Sandia Labs conducts PV research as part of ARPA-e MOSAIC program

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... HomeNews, Photovoltaic, SolarSandia Labs conducts PV ... the technology to operate in regions with high ... Micro-scale Optimized Solar-cell Arrays with Integrated ...

  14. Solar Access Public Capital (SAPC) Working Group: Best Practices in PV Operations and Maintenance; Version 1.0, March 2015; Period of Performance, January 1, 2014 - December 31, 2015

    SciTech Connect

    Keating, T. J.; Walker, A.; Ardani, K.

    2015-03-01

    This PV O&M Best Practices Guide is designed to improve solar asset transparency for investors and rating agencies, provide an industry framework for quality management, and reduce transaction costs in the solar asset securitization process. The PV O&M Best Practices Guide is intended to outline the minimum requirements for third-party ownership providers (“Providers”). Adherence to the guide is voluntary. Providers that adhere to the guide are responsible for selfcertifying that they have fulfilled the guide requirements.

  15. Extending Performance and Evaluating Risks of PV Systems Failure Using a Fault Tree and Event Tree Approach: Analysis of the Possible Application

    SciTech Connect

    Colli A.

    2012-06-03

    Performance and reliability of photovoltaic (PV) systems are important issues in the overall evaluation of a PV plant and its components. While performance is connected to the amount of energy produced by the PV installation in the working environmental conditions, reliability impacts the availability of the system to produce the expected amount of energy. In both cases, the evaluation should be done considering information and data coming from indoor as well as outdoor tests. In this paper a way of re-thinking performance, giving it a probabilistic connotation, and connecting the two concepts of performance and reliability is proposed. The paper follows a theoretical approach and discusses the way to obtaining such information, facing benefits and problems. The proposed probabilistic performance accounts for the probability of the system to function correctly, thus passing through the complementary evaluation of the probability of system malfunctions and consequences. Scenarios have to be identified where the system is not functioning properly or at all. They are expected to be combined in a probabilistic safety analysis (PSA) based approach, providing not only the required probability, but also being capable of giving a prioritization of the risks and the most dominant scenario associated to a specific situation. This approach can offer the possibility to highlight the most critical parts of a PV system, as well as providing support in design activities identifying weak connections.

  16. Savannah River Site Land Use Plan - May, 2013 i SRNS-RP-2013...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... to help DOE meet cultural resources regulatory requirements for all SRS operations. ... The SRS Land Use Plan guides site land, facility, and infrastructure investment and use ...

  17. TRIDEC Land TRIDEC Land Transfer REQUEST Transfer REQUEST

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Area TRIDEC Land TRIDEC Land Transfer REQUEST Transfer REQUEST 300 Acres 300 Acres Additional Lands Additional Lands Identified for Identified for EA Analysis EA Analysis 2,772...

  18. Utility External Disconnect Switch: Practical, Legal, and Technical Reasons to Eliminate the Requirement

    Energy.gov [DOE]

    This report documents the safe operation of PV systems without a utility external disconnect switch in several large jurisdictions. It includes recommendations for regulators contemplating utility external disconnect switch requirements.

  19. Comparative analysis of environmental impacts of maize-biogas and photovoltaics on a land use basis

    SciTech Connect

    Graebig, Markus; Fenner, Richard; Bringezu, Stefan

    2010-07-15

    This study aims to stimulate the discussion on how to optimize a sustainable energy mix from an environmental perspective and how to apply existing renewable energy sources in the most efficient way. Ground-mounted photovoltaics (PV) and the maize-biogas-electricity route are compared with regard to their potential to mitigate environmental pressure, assuming that a given agricultural area is available for energy production. Existing life cycle assessment (LCA) studies are taken as a basis to analyse environmental impacts of those technologies in relation to conventional technology for power and heat generation. The life-cycle-wide mitigation potential per area used is calculated for the impact categories non-renewable energy input, green house gas (GHG) emissions, acidification and eutrophication. The environmental performance of each system depends on the scenario that is assumed for end energy use (electricity and heat supply have been contemplated). In all scenarios under consideration, PV turns out to be superior to biogas in almost all studied impact categories. Even when maize is used for electricity production in connection with very efficient heat usage, and reduced PV performance is assumed to account for intermittence, PV can still mitigate about four times the amount of green house gas emissions and non-renewable energy input compared to maize-biogas. Soil erosion, which can be entirely avoided with PV, exceeds soil renewal rates roughly 20-fold on maize fields. Regarding the overall Eco-indicator 99 (H) score under most favourable assumptions for the maize-biogas route, PV has still a more than 100% higher potential to mitigate environmental burden. At present, the key advantages of biogas are its price and its availability without intermittence. In the long run, and with respect to more efficient land use, biogas might preferably be produced from organic waste or manure, whereas PV should be integrated into buildings and infrastructures. (author)

  20. Land Management - Hanford Site

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Land Management About Us About Hanford Cleanup Hanford History Hanford Site Wide Programs Contact Us Land Management Email Email Page | Print Print Page |Text Increase Font Size...