National Library of Energy BETA

Sample records for renewable methane production

  1. Enhanced Renewable Methane Production System | Argonne National Laboratory

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Enhanced Renewable Methane Production System Technology available for licensing: Enhanced renewable methane production system provides a low-cost process that accelerates biological methane production rates at least fivefold. Low cost Delivers near-pipeline-quality gas and eliminates carbon dioxide emissions PDF icon methane_production_system

  2. Enhanced Renewable Methane Production System Benefits Wastewater Treatment

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Plants, Farms, and Landfills - Energy Innovation Portal Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Enhanced Renewable Methane Production System Benefits Wastewater Treatment Plants, Farms, and Landfills Argonne National Laboratory Contact ANL About This Technology <p> Argonne&rsquo;s Enhanced Renewable Methane Production System &mdash; Process Schematic.</p> Argonne's Enhanced Renewable Methane Production System - Process Schematic.

  3. Oklahoma Coalbed Methane Production (Billion Cubic Feet)

    Annual Energy Outlook

    Production (Billion Cubic Feet) Oklahoma Coalbed Methane Production (Billion Cubic Feet) ... Referring Pages: Coalbed Methane Estimated Production Oklahoma Coalbed Methane Proved ...

  4. Coalbed Methane Production

    U.S. Energy Information Administration (EIA) (indexed site)

    Methane Production (Billion Cubic Feet) Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes 2009 2010 2011 2012 2013 2014 View History U.S. 1,914 1,886 1,763 1,655 1,466 1,404 1989-2014 Alabama 105 102 98 91 62 78 1989-2014 Alaska 0 0 0 0 0 0 2005-2014 Arkansas 3 3 4 2 2 2 2005-2014 California 0 0 0 0 0 0 2005-2014 Colorado 498 533 516 486 444 412 1989-2014 Florida 0 0 0 0 0 0 2005-2014 Kansas 43 41 37 34 30 27

  5. Coalbed Methane Production

    Gasoline and Diesel Fuel Update

    Methane Production (Billion Cubic Feet) Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes 2009 2010 2011 2012 2013 2014 View History U.S. 1,914 1,886 1,763 1,655 1,466 1,404 1989-2014 Alabama 105 102 98 91 62 78 1989-2014 Alaska 0 0 0 0 0 0 2005-2014 Arkansas 3 3 4 2 2 2 2005-2014 California 0 0 0 0 0 0 2005-2014 Colorado 498 533 516 486 444 412 1989-2014 Florida 0 0 0 0 0 0 2005-2014 Kansas 43 41 37 34 30 27

  6. Florida Coalbed Methane Production (Billion Cubic Feet)

    Annual Energy Outlook

    Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane Estimated Production Florida Coalbed Methane Proved Reserves, Reserves Changes, and ...

  7. Texas (with State Offshore) Coalbed Methane Production (Billion...

    Gasoline and Diesel Fuel Update

    Production (Billion Cubic Feet) Texas (with State Offshore) Coalbed Methane Production ... Referring Pages: Coalbed Methane Estimated Production Texas Coalbed Methane Proved ...

  8. New Mexico Coalbed Methane Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update

    Production (Billion Cubic Feet) New Mexico Coalbed Methane Production (Billion Cubic Feet) ... Referring Pages: Coalbed Methane Estimated Production New Mexico Coalbed Methane Proved ...

  9. Methane Hydrate Production Feasibility | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Production Feasibility Methane Hydrate Production Feasibility The red curves are temperature profiles for various water depths; the blue line shows methane hydrate stability relative to temperature and pressure. The area enclosed by the two curves represents the area of methane hydrate stability. The red curves are temperature profiles for various water depths; the blue line shows methane hydrate stability relative to temperature and pressure. The area enclosed by the two curves represents the

  10. NREL Advancements in Methane Conversion Lead to Cleaner Air, Useful Products (Fact Sheet), Highlights in Research & Development, NREL (National Renewable Energy Laboratory)

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Researchers at NREL leveraged the recent on-site development of gas fermentation capabilities and novel genetic tools to directly convert methane to lactic acid using an engineered methanotrophic bacterium. Key Result The results provide proof-of-concept data for a gas-to-liquids bioprocess that concurrently produces fuels and chemicals from methane. NREL researchers developed genetic tools to express heterologous genes in methanotrophic organisms, which have historically been difficult to

  11. Renewable Energy Products LLC | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Products, LLC Place: Santa Fe Springs, California Zip: 90670 Product: Own and operate a biodiesel production facility in California. References: Renewable Energy Products, LLC1...

  12. Utah Coalbed Methane Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update

    Production (Billion Cubic Feet) Utah Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 74 83 103...

  13. Montana Coalbed Methane Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update

    Production (Billion Cubic Feet) Montana Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 12 12 13...

  14. Virginia Coalbed Methane Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update

    Production (Billion Cubic Feet) Virginia Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 56 81...

  15. Pennsylvania Coalbed Methane Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update

    Production (Billion Cubic Feet) Pennsylvania Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 3 5...

  16. Wyoming Coalbed Methane Production (Billion Cubic Feet)

    Annual Energy Outlook

    Production (Billion Cubic Feet) Wyoming Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 133 278...

  17. U.S. Coalbed Methane Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) (indexed site)

    Production (Billion Cubic Feet) U.S. Coalbed Methane Production (Billion Cubic Feet) ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane ...

  18. Kentucky Coalbed Methane Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) (indexed site)

    Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Estimated Production Kentucky Coalbed Methane Proved Reserves, Reserves Changes, and Production Coalbed Methane Production

  19. Arkansas Coalbed Methane Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) (indexed site)

    Production (Billion Cubic Feet) Arkansas Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 2 3 3 3 3 2010's 3 4 2 2 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Estimated Production Arkansas Coalbed Methane Proved Reserves, Reserves Changes, and

  20. Kansas Coalbed Methane Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) (indexed site)

    Production (Billion Cubic Feet) Kansas Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 17 25 38 47 43 2010's 41 37 34 30 27 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Estimated Production Kansas Coalbed Methane Proved Reserves, Reserves Changes,

  1. Renewable Energy Production By State | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Renewable Energy Production By State Renewable Energy Production By State Renewable Energy Production By State Click on a state for more information...

  2. Ohio Coalbed Methane Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update

    Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 - No Data Reported; -- ...

  3. Methane production by attached film

    DOE Patents [OSTI]

    Jewell, William J.

    1981-01-01

    A method for purifying wastewater of biodegradable organics by converting the organics to methane and carbon dioxide gases is disclosed, characterized by the use of an anaerobic attached film expanded bed reactor for the reaction process. Dilute organic waste material is initially seeded with a heterogeneous anaerobic bacteria population including a methane-producing bacteria. The seeded organic waste material is introduced into the bottom of the expanded bed reactor which includes a particulate support media coated with a polysaccharide film. A low-velocity upward flow of the organic waste material is established through the bed during which the attached bacterial film reacts with the organic material to produce methane and carbon dioxide gases, purified water, and a small amount of residual effluent material. The residual effluent material is filtered by the film as it flows upwardly through the reactor bed. In a preferred embodiment, partially treated effluent material is recycled from the top of the bed to the bottom of the bed for further treatment. The methane and carbon dioxide gases are then separated from the residual effluent material and purified water.

  4. Alabama Coalbed Methane Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) (indexed site)

    Production (Billion Cubic Feet) Alabama Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 23 1990's 36 68 89 103 108 109 98 111 123 108 2000's 109 111 117 98 121 113 114 114 107 105 2010's 102 98 91 62 78 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane

  5. STEAB Renewable Energy Production Incentive (REPI) Action

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    STEAB Renewable Energy Production Incentive (REPI) Action The Renewable Energy Production Incentive (REPI) was introduced in 1992 in order to provide financial incentives that were comparable to tax credits that were available to the private sector for renewable energy generation investors and developers. The REPI program was reauthorized for an additional ten years in the Energy Policy Act of 2005. There is increasing demand being placed on private and public utilities to generate electricity

  6. Renewable Hydrogen Production from Biological Systems

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation by Matthew Posewitz, Colorado School of Mines, at the Biological Hydrogen Production Workshop held September 24-25, 2013, at the National Renewable Energy Laboratory in Golden, Colorado.

  7. Table 15. Coalbed methane proved reserves and production, 2010...

    U.S. Energy Information Administration (EIA) (indexed site)

    Coalbed methane proved reserves and production, 2010-14" "billion cubic feet" ,,"Reserves",,,,,,"Production" "State and Subdivision",,2010,2011,2012,2013,2014,,2010,2011,2012,2013,...

  8. Life Cycle Assessment of Renewable Hydrogen Production viaWind...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Renewable Hydrogen Production via WindElectrolysis: Milestone Completion Report Life Cycle Assessment of Renewable Hydrogen Production via WindElectrolysis: Milestone Completion ...

  9. Colorado Coalbed Methane Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) (indexed site)

    Production (Billion Cubic Feet) Colorado Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 12 1990's 26 48 82 125 179 226 274 312 401 432 2000's 451 490 520 488 520 515 477 519 497 498 2010's 533 516 486 444 412 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed

  10. Western States Coalbed Methane Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update

    Western States Coalbed Methane Production (Billion Cubic Feet) Western States Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 4 14 33 51 77 89 108 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Production

  11. Hydrogen production from fossil and renewable sources using an...

    Office of Scientific and Technical Information (OSTI)

    from fossil and renewable sources using an oxygen transport membrane. Citation Details In-Document Search Title: Hydrogen production from fossil and renewable sources using an ...

  12. Renewable Motor Fuel Production Capacity Under H.R.4

    Reports and Publications

    2002-01-01

    This paper analyzes renewable motor fuel production capacity with the assumption that ethanol will be used to meet the renewable fuels standard.

  13. Enhanced Microbial Pathways for Methane Production from Oil Shale

    SciTech Connect (OSTI)

    Paul Fallgren

    2009-02-15

    Methane from oil shale can potentially provide a significant contribution to natural gas industry, and it may be possible to increase and continue methane production by artificially enhancing methanogenic activity through the addition of various substrate and nutrient treatments. Western Research Institute in conjunction with Pick & Shovel Inc. and the U.S. Department of Energy conducted microcosm and scaled-up reactor studies to investigate the feasibility and optimization of biogenic methane production from oil shale. The microcosm study involving crushed oil shale showed the highest yield of methane was produced from oil shale pretreated with a basic solution and treated with nutrients. Incubation at 30 C, which is the estimated temperature in the subsurface where the oil shale originated, caused and increase in methane production. The methane production eventually decreased when pH of the system was above 9.00. In the scaled-up reactor study, pretreatment of the oil shale with a basic solution, nutrient enhancements, incubation at 30 C, and maintaining pH at circumneutral levels yielded the highest rate of biogenic methane production. From this study, the annual biogenic methane production rate was determined to be as high as 6042 cu. ft/ton oil shale.

  14. Lower 48 States Coalbed Methane Production (Billion Cubic Feet...

    Annual Energy Outlook

    Production (Billion Cubic Feet) Lower 48 States Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's...

  15. West Virginia Coalbed Methane Production (Billion Cubic Feet...

    Annual Energy Outlook

    Production (Billion Cubic Feet) West Virginia Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 30...

  16. Louisiana--North Coalbed Methane Production (Billion Cubic Feet...

    Annual Energy Outlook

    Production (Billion Cubic Feet) Louisiana--North Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's...

  17. Texas--RRC District 10 Coalbed Methane Production (Billion Cubic...

    Gasoline and Diesel Fuel Update

    Production (Billion Cubic Feet) Texas--RRC District 10 Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 ...

  18. Texas--RRC District 2 Onshore Coalbed Methane Production (Billion...

    Gasoline and Diesel Fuel Update

    Production (Billion Cubic Feet) Texas--RRC District 2 Onshore Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 ...

  19. Texas--RRC District 3 Onshore Coalbed Methane Production (Billion...

    Gasoline and Diesel Fuel Update

    Production (Billion Cubic Feet) Texas--RRC District 3 Onshore Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 ...

  20. New Mexico--West Coalbed Methane Production (Billion Cubic Feet...

    Gasoline and Diesel Fuel Update

    Production (Billion Cubic Feet) New Mexico--West Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's ...

  1. New Mexico--East Coalbed Methane Production (Billion Cubic Feet...

    Gasoline and Diesel Fuel Update

    Production (Billion Cubic Feet) New Mexico--East Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's ...

  2. Enhancement of Biogenic Coalbed Methane Production and Back Injection of Coalbed Methane Co-Produced Water

    SciTech Connect (OSTI)

    Song Jin

    2007-05-31

    Biogenic methane is a common constituent in deep subsurface environments such as coalbeds and oil shale beds. Coalbed methane (CBM) makes significant contributions to world natural gas industry and CBM production continues to increase. With increasing CBM production, the production of CBM co-produced water increases, which is an environmental concern. This study investigated the feasibility in re-using CBM co-produced water and other high sodic/saline water to enhance biogenic methane production from coal and other unconventional sources, such as oil shale. Microcosms were established with the selected carbon sources which included coal, oil shale, lignite, peat, and diesel-contaminated soil. Each microcosm contained either CBM coproduced water or groundwater with various enhancement and inhibitor combinations. Results indicated that the addition of nutrients and nutrients with additional carbon can enhance biogenic methane production from coal and oil shale. Methane production from oil shale was much greater than that from coal, which is possibly due to the greater amount of available Dissolved Organic Carbon (DOC) from oil shale. Inconclusive results were observed from the other sources since the incubation period was too low. WRI is continuing studies with biogenic methane production from oil shale.

  3. Alaska (with Total Offshore) Coalbed Methane Production (Billion Cubic

    Gasoline and Diesel Fuel Update

    Feet) Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Estimated Production Alaska Coalbed Methane Proved Reserves, Reserves Changes, and Production Coalbed Methane Production

  4. California (with State off) Coalbed Methane Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update

    Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Estimated Production California Coalbed Methane Proved Reserves, Reserves Changes, and Production Coalbed Methane Production

  5. Mississippi (with State off) Coalbed Methane Production (Billion Cubic

    Gasoline and Diesel Fuel Update

    Feet) Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Estimated Production Mississippi Coalbed Methane Proved Reserves, Reserves Changes, and Production Coalbed Methane Production

  6. Methane production from grape skins. Final technical report

    SciTech Connect (OSTI)

    Yunghans, W.N.

    1981-10-09

    Methane production from grape pomace was measured for a 50-day digestion period. Gas production was calculated to be 2400 ft/sup 3//10 d/ton at 53% methane content. Microorganisms particularly a fungus which grows on grape pomace and lignin was isolated. Lignin content of pomace was measured at approximately 60%. Lignin is slowly digested and may represent a residue which requires long term digestion. Research is continuing on isolation of anaerobic methane bacteria and codigestion of pomace with enzymes as cellulase and pectinase. The sewage sludge functioned adequately as a mixed source of organisms capable of digesting grape pomace. A sediment from stored grape juice produced significant amounts of methane and represents a nutrient substrate for additional studies on continuous flow methane production. 3 figs.

  7. Renewable Hydrogen Production Using Sugars and Sugar Alcohols (Presentation)

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Working Group Meeting 11/06/2007 Renewable Hydrogen Production Using Renewable Hydrogen Production Using Sugars and Sugar Alcohols Sugars and Sugar Alcohols * * Problem: Problem: Need Need to develop renewable to develop renewable hydrogen production technologies using hydrogen production technologies using diverse diverse feedstocks feedstocks 10 15 20 CH 4 : C 6 H 14 ln(P) * * Description: Description: The BioForming The BioForming TM TM process uses process uses aqueous phase reforming to

  8. Development of a Renewable Hydrogen Energy Station

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Development of a Renewable Hydrogen Energy Station Edward C. Heydorn - Air Products and ... Vegetable Oils Oils &1; Other Methane Sources Biogas Neighborhoods Businesses Heat ...

  9. Louisiana (with State Offshore) Coalbed Methane Production (Billion Cubic

    Gasoline and Diesel Fuel Update

    Feet) Production (Billion Cubic Feet) Louisiana (with State Offshore) Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 1 1 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Estimated Production Louisiana Coalbed Methane Proved

  10. Miscellaneous States Coalbed Methane Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) (indexed site)

    Production (Billion Cubic Feet) Miscellaneous States Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1 1 1 1 1 2010's 1 1 1 3 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Estimated Production

  11. Renewable energy for productive uses in Mexico

    SciTech Connect (OSTI)

    Hanley, C.

    1997-12-01

    This paper describes a USAID/USDOE sponsored program to implement renewable energy in Mexico for productive uses. The objectives are to expand markets for US and Mexican industries, and to combat global climate change - primarily greenhouse gas emissions. The focus is on off-grid applications, with an emphasis on developing the institution structure to support the development of these industries within the country. Agricultural development is an example of the type of industry approached, where photovoltaic and wind power can be used for water pumping. There are hundreds of projects under review, and this interest has put renewables as a line item in Mexico`s rural development budget. Village power projects are being considered in the form of utility partnerships.

  12. Life Cycle Assessment of Renewable Hydrogen Production via

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Wind/Electrolysis: Milestone Completion Report | Department of Energy Renewable Hydrogen Production via Wind/Electrolysis: Milestone Completion Report Life Cycle Assessment of Renewable Hydrogen Production via Wind/Electrolysis: Milestone Completion Report This report summarizes the results of a lifecycle assessment of a renewable hydrogen production process employing wind/electrolysis. 35404.pdf (1.17 MB) More Documents & Publications Analysis Activities at National Renewable Energy

  13. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    SciTech Connect (OSTI)

    Thomas E. Williams; Keith Millheim; Buddy King

    2004-06-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the final stages of a cost shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The work scope drilled and cored a well The HOT ICE No.1 on Anadarko leases beginning in FY 2003 and completed in 2004. An on-site core analysis laboratory was built and utilized for determining the physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. The final efforts of the project are to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists developing reservoir models. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in this report.

  14. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    SciTech Connect (OSTI)

    Thomas E. Williams; Keith Millheim; Bill Liddell

    2005-03-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Oil-field engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in Arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrates agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is a cost-shared partnership between Maurer Technology, Anadarko Petroleum, Noble Corporation, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to help identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. As part of the project work scope, team members drilled and cored the HOT ICE No. 1 on Anadarko leases beginning in January 2003 and completed in March 2004. Due to scheduling constraints imposed by the Arctic drilling season, operations at the site were suspended between April 21, 2003 and January 30, 2004. An on-site core analysis laboratory was designed, constructed and used for determining physical characteristics of frozen core immediately after it was retrieved from the well. The well was drilled from a new and innovative Anadarko Arctic Platform that has a greatly reduced footprint and environmental impact. Final efforts of the project were to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists for future hydrate operations. Unfortunately, no gas hydrates were encountered in this well; however, a wealth of information was generated and is

  15. NREL Wind to Hydrogen Project: Renewable Hydrogen Production for Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Storage & Transportation | Department of Energy Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage & Transportation NREL Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage & Transportation Presented at the Renewable Hydrogen Workshop, Nov. 16, 2009, in Palm Springs, CA renewable_hydrogen_workshop_nov16_ramsden.pdf (1.5 MB) More Documents & Publications Hour-by-Hour Cost Modeling of Optimized Central Wind-Based Water Electrolysis

  16. Detection and Production of Methane Hydrate

    SciTech Connect (OSTI)

    George Hirasaki; Walter Chapman; Gerald Dickens; Colin Zelt; Brandon Dugan; Kishore Mohanty; Priyank Jaiswal

    2011-12-31

    This project seeks to understand regional differences in gas hydrate systems from the perspective of as an energy resource, geohazard, and long-term climate influence. Specifically, the effort will: (1) collect data and conceptual models that targets causes of gas hydrate variance, (2) construct numerical models that explain and predict regional-scale gas hydrate differences in 2-dimensions with minimal 'free parameters', (3) simulate hydrocarbon production from various gas hydrate systems to establish promising resource characteristics, (4) perturb different gas hydrate systems to assess potential impacts of hot fluids on seafloor stability and well stability, and (5) develop geophysical approaches that enable remote quantification of gas hydrate heterogeneities so that they can be characterized with minimal costly drilling. Our integrated program takes advantage of the fact that we have a close working team comprised of experts in distinct disciplines. The expected outcomes of this project are improved exploration and production technology for production of natural gas from methane hydrates and improved safety through understanding of seafloor and well bore stability in the presence of hydrates. The scope of this project was to more fully characterize, understand, and appreciate fundamental differences in the amount and distribution of gas hydrate and how this would affect the production potential of a hydrate accumulation in the marine environment. The effort combines existing information from locations in the ocean that are dominated by low permeability sediments with small amounts of high permeability sediments, one permafrost location where extensive hydrates exist in reservoir quality rocks and other locations deemed by mutual agreement of DOE and Rice to be appropriate. The initial ocean locations were Blake Ridge, Hydrate Ridge, Peru Margin and GOM. The permafrost location was Mallik. Although the ultimate goal of the project was to understand processes

  17. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    SciTech Connect (OSTI)

    Richard Sigal; Kent Newsham; Thomas Williams; Barry Freifeld; Timothy Kneafsey; Carl Sondergeld; Shandra Rai; Jonathan Kwan; Stephen Kirby; Robert Kleinberg; Doug Griffin

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. The work scope drilled and cored a well The Hot Ice No. 1 on Anadarko leases beginning in FY 2003 and completed in 2004. An on-site core analysis laboratory was built and utilized for determining the physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. The final efforts of the project are to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists developing reservoir models. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in this report. The Hot Ice No. 1 well was drilled from the surface to a measured depth of 2300 ft. There was almost 100% core recovery from the bottom of surface casing at 107 ft to total depth. Based on the best estimate of the bottom of the methane hydrate stability zone (which used new data obtained from Hot Ice No. 1 and new analysis of data from adjacent wells), core was recovered over its complete range. Approximately 580 ft of porous, mostly frozen, sandstone and 155 of conglomerate were recovered in the Ugnu Formation and approximately 215 ft of porous sandstone were recovered in the West Sak Formation. There were gas shows in the bottom

  18. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    SciTech Connect (OSTI)

    Thomas E. Williams; Keith Millheim; Bill Liddell

    2004-11-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is a cost-shared partnership between Maurer Technology, Anadarko Petroleum, Noble Corporation, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to help identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. As part of the project work scope, team members drilled and cored a well (the Hot Ice No. 1) on Anadarko leases beginning in January 2003 and completed in March 2004. Due to scheduling constraints imposed by the Arctic drilling season, operations at the site were suspended between April 21, 2003 and January 30, 2004. An on-site core analysis laboratory was constructed and used for determining physical characteristics of frozen core immediately after it was retrieved from the well. The well was drilled from a new and innovative Anadarko Arctic Platform that has a greatly reduced footprint and environmental impact. Final efforts of the project were to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists for future hydrate operations. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in the

  19. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    SciTech Connect (OSTI)

    Steve Runyon; Mike Globe; Kent Newsham; Robert Kleinberg; Doug Griffin

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project was a cost-shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The work scope included drilling and coring a well (Hot Ice No. 1) on Anadarko leases beginning in FY 2003 and completed in 2004. During the first drilling season, operations were conducted at the site between January 28, 2003 to April 30, 2003. The well was spudded and drilled to a depth of 1403 ft. Due to the onset of warmer weather, work was then suspended for the season. Operations at the site were continued after the tundra was re-opened the following season. Between January 12, 2004 and March 19, 2004, the well was drilled and cored to a final depth of 2300 ft. An on-site core analysis laboratory was built and utilized for determining the physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. The final efforts of the project are to correlate geology, geophysics, logs, and drilling and

  20. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    SciTech Connect (OSTI)

    Ali Kadaster; Bill Liddell; Tommy Thompson; Thomas Williams; Michael Niedermayr

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project was a cost-shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The work scope included drilling and coring a well (Hot Ice No. 1) on Anadarko leases beginning in FY 2003 and completed in 2004. During the first drilling season, operations were conducted at the site between January 28, 2003 to April 30, 2003. The well was spudded and drilled to a depth of 1403 ft. Due to the onset of warmer weather, work was then suspended for the season. Operations at the site were continued after the tundra was re-opened the following season. Between January 12, 2004 and March 19, 2004, the well was drilled and cored to a final depth of 2300 ft. An on-site core analysis laboratory was built and implemented for determining physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. Final efforts of the project are to correlate geology, geophysics, logs, and drilling and

  1. NREL Research Helps Convert Overabundant Methane into Useful Products |

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Bioenergy | NREL Research Helps Convert Overabundant Methane into Useful Products March 18, 2016 Photo of a fermentation vessel cultivating our bacteria to produce lactic acid. Using fermentation vessels such as the one pictured here, NREL researchers have discovered how to cultivate genetically engineered methanotrophic bacteria to produce lactic acid, a high-value precursor to bioplastics. Photo by Holly Smith, NREL Methane is Earth's second most abundant greenhouse gas (GHG) after carbon

  2. NREL Research Helps Convert Overabundant Methane into Useful Products -

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    News Releases | NREL Research Helps Convert Overabundant Methane into Useful Products March 18, 2016 Photo of a fermentation vessel cultivating our bacteria to produce lactic acid. Using fermentation vessels such as the one pictured here, NREL researchers have discovered how to cultivate genetically engineered methanotrophic bacteria to produce lactic acid, a high-value precursor to bioplastics. Photo by Holly Smith, NREL Methane is Earth's second most abundant greenhouse gas (GHG) after

  3. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    SciTech Connect (OSTI)

    Donn McGuire; Steve Runyon; Richard Sigal; Bill Liddell; Thomas Williams; George Moridis

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the final stages of a cost-shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. Hot Ice No. 1 was planned to test the Ugnu and West Sak sequences for gas hydrates and a concomitant free gas accumulation on Anadarko's 100% working interest acreage in section 30 of Township 9N, Range 8E of the Harrison Bay quadrangle of the North Slope of Alaska. The Ugnu and West Sak intervals are favorably positioned in the hydrate-stability zone over an area extending from Anadarko's acreage westward to the vicinity of the aforementioned gas-hydrate occurrences. This suggests that a large, north-to-south trending gas-hydrate accumulation may exist in that area. The presence of gas shows in the Ugnu and West Sak reservoirs in wells situated eastward and down dip of the Hot Ice location indicate that a free-gas accumulation may be trapped by gas hydrates. The Hot Ice No. 1 well was designed to core from the surface to the base of the West Sak interval using the revolutionary and new

  4. General Renewable Energy-Productive Uses and Development Impact...

    Open Energy Information (Open El) [EERE & EIA]

    Impact Jump to: navigation, search Tool Summary LAUNCH TOOL Name: General Renewable Energy-Productive Uses and Development Impact AgencyCompany Organization: World Bank...

  5. Bioenergy Demonstration Project: Value-Added Products from Renewable...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Bioenergy Demonstration Project: Value-Added Products from Renewable Fuels May 23, 2013 Technology Area Review: Biochemical Conversion Paul Blum University of Nebraska 2 Goal ...

  6. BETO Project Improves Production of Renewable Chemical from Cellulosic

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Feedstocks | Department of Energy Project Improves Production of Renewable Chemical from Cellulosic Feedstocks BETO Project Improves Production of Renewable Chemical from Cellulosic Feedstocks October 13, 2015 - 1:43pm Addthis Renewable chemical company Genomatica made significant progress toward increasing the range of feedstocks that can be used to commercially produce high-quality bio-based chemicals, in a project funded by the Energy Department's Bioenergy Technologies Office (BETO).

  7. Texas--RRC District 4 Onshore Coalbed Methane Production (Billion...

    Annual Energy Outlook

    4 Onshore Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - No Data...

  8. Renewable Hydrogen Production at Hickam Air Force Base | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy at Hickam Air Force Base Renewable Hydrogen Production at Hickam Air Force Base Presented at the Renewable Hydrogen Workshop, Nov. 16, 2009, in Palm Springs, CA renewable_hydrogen_workshop_nov16_quinn.pdf (920.39 KB) More Documents & Publications Hickam Air Force Base Fuel Cell Vehicles: Early Implementation Experience Fuel Cell Hybrid Bus Lands at Hickam AFB: Hydrogen Fuel Cell & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Project (Fact Sheet) Hawaii

  9. Production of Chemical Derivatives from Renewables

    SciTech Connect (OSTI)

    Davison, Brian; Nghiem, John; Donnelly, Mark; Tsai, Shih-Perng; Frye, John; Landucci, Ron; Griffin, Michael

    1996-06-01

    The purpose of this Cooperative Research and Development Agreement (CRADA) between Lockheed Martin Energy Research Corp., (LMER), Argonne National Laboratory (ANL), National Renewable Energy Laboratory (NREL), and Battelle Memorial Institute, operator of Pacific Northwest National Laboratory (PNNL), (collectively referred to as the 'Contractor'), and Applied Carbochemicals, Inc. (Participant) was to scale-up from bench results an economically promising and competitive process for the production of chemical derivatives from biologically produced succinic acid. The products that were under consideration for production from the succinic acid platform included 1,4-butanediol, {gamma}y-butyrolactone, 2-pyrrolidinone and N-methyl pyrrolidinone. Preliminary economic analyses indicated that this platform was competitive with the most recent petrochemical routes. The Contractors and participant are hereinafter jointly referred to as the 'Parties.' Research to date in succinic acid fermentation, separation and genetic engineering resulted in a potentially economical process based on the use of an Escherichia coli strain AFP111 with suitable characteristics for the production of succinic acid from glucose. Economic analysis has shown that higher value commodity chemicals can be economically produced from succinic acid based on preliminary laboratory findings and predicted catalytic parameters. At the time, the current need was to provide the necessary laboratory follow-up information to properly optimize, design and operate a pilot scale process. The purpose of the pilot work was to validate the integrated process, assure 'robustness' of the process, define operating conditions, and provide samples for potential customer evaluation. The data from the pilot scale process was used in design and development of a full scale production facility. A new strain, AFP111 (patented), discovered at ANL was tested and developed for process use at the Oak Ridge National Laboratory (ORNL

  10. Benefits and hurdles for biological methane upgrading; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Fei, Qiang

    2015-09-01

    The presentation will focus on the technical hurdles for bioconversion of methane into chemical and liquid fuel.

  11. Energy Department Policy on Acquiring Tribal Renewable Energy Products

    Office of Energy Efficiency and Renewable Energy (EERE)

    As part of the Department of Energy’s efforts to support tribal renewable energy production, Secretary Steven Chu has issued a policy statement and guidance to give preference to Indian Tribes when...

  12. Potential for Hydrogen Production from Key Renewable Resources...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Potential for Hydrogen Production from Key Renewable Resources in the United States A. Milbrandt and M. Mann Technical Report NRELTP-640-41134 February 2007 NREL is operated by...

  13. Resource Assessment for Hydrogen Production: Hydrogen Production Potential from Fossil and Renewable Energy Resources

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Resource Assessment for Hydrogen Production Hydrogen Production Potential from Fossil and Renewable Energy Resources M. Melaina, M. Penev, and D. Heimiller National Renewable Energy Laboratory Technical Report NREL/TP-5400-55626 September 2013 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL)

  14. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    SciTech Connect (OSTI)

    Thomas E. Williams; Keith Millheim; Buddy King

    2004-03-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the second year of a three-year endeavor being sponsored by Maurer Technology, Noble, and Anadarko Petroleum, in partnership with the DOE. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition. We plan to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. We also plan to design and implement a program to safely and economically drill, core and produce gas from arctic hydrates. The current work scope is to drill and core a well on Anadarko leases in FY 2003 and 2004. We are also using an on-site core analysis laboratory to determine some of the physical characteristics of the hydrates and surrounding rock. The well is being drilled from a new Anadarko Arctic Platform that will have minimal footprint and environmental impact. We hope to correlate geology, geophysics, logs, and drilling and production data to allow reservoir models to be calibrated. Ultimately, our goal is to form an objective technical and economic evaluation of reservoir potential in Alaska.

  15. Sources of biogenic methane to form marine gas hydrates: In situ production or upward migration?

    SciTech Connect (OSTI)

    Paull, C.K.; Ussler, W. III; Borowski, W.S.

    1993-09-01

    Potential sources of biogenic methane in the Carolina Continental Rise -- Blake Ridge sediments have been examined. Two models were used to estimate the potential for biogenic methane production: (1) construction of sedimentary organic carbon budgets, and (2) depth extrapolation of modern microbial production rates. While closed-system estimates predict some gas hydrate formation, it is unlikely that >3% of the sediment volume could be filled by hydrate from methane produced in situ. Formation of greater amounts requires migration of methane from the underlying continental rise sediment prism. Methane may be recycled from below the base of the gas hydrate stability zone by gas hydrate decomposition, upward migration of the methane gas, and recrystallization of gas hydrate within the overlying stability zone. Methane bubbles may also form in the sediment column below the depth of gas hydrate stability because the methane saturation concentration of the pore fluids decreases with increasing depth. Upward migration of methane bubbles from these deeper sediments can add methane to the hydrate stability zone. From these models it appears that recycling and upward migration of methane is essential in forming significant gas hydrate concentrations. In addition, the depth distribution profiles of methane hydrate will differ if the majority of the methane has migrated upward rather than having been produced in situ.

  16. Renewable Hydrogen Production from Biological Systems

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Hydrogen Production from Biological Systems Matthew Posewitz Colorado School of Mines DOE Biological Hydrogen Production Workshop September 24 th , 2013 H 2 production PSII/PSI pathway PSI/nonphotochemical PQ Dark fermentation H 2 uptake oxyhydrogen reaction photoreduction Photosynthetic H 2 pathways Peters JW et al. Science 1998 Nicolet Y et al. Structure and Folding Des. 1999 Phototroph Hydrogenases * Cyanobacteria - Only [NiFe]-hydrogenases identified to date. - Typically dark H 2 production.

  17. Renewable

    Office of Scientific and Technical Information (OSTI)

    and Sustainable Energy V v y Jo ur na l Renewable Electronic structural and electroch em ... Duan Citation: J. Renewable Sustainable Energy 3, 013102 (2011); doi: 10.10631.3529427 ...

  18. Enhanced Anaerobic Digestion and Hydrocarbon Precursor Production...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... to 7 days to minimize the biogas production. Summary Renewable Methane Production We developed a novel process using biochar for producing biomethane at pipeline quality ...

  19. Rapid Production of Methane Hydrates | netl.doe.gov

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ... The high velocities of both the water and gas feeds within the small mixing zone ... methane content), cold energy storage, transportation fuels, and desalination processes. ...

  20. Microbial diversity and dynamics during methane production from municipal solid waste

    SciTech Connect (OSTI)

    Bareither, Christopher A.; Wolfe, Georgia L.; McMahon, Katherine D.; Benson, Craig H.

    2013-10-15

    Highlights: ► Similar bacterial communities developed following different start-up operation. ► Total methanogens in leachate during the decelerated methane phase reflected overall methane yield. ► Created correlations between methanogens, methane yield, and available substrate. ► Predominant bacteria identified with syntrophic polysaccharide degraders. ► Hydrogenotrophic methanogens were dominant in the methane generation process. - Abstract: The objectives of this study were to characterize development of bacterial and archaeal populations during biodegradation of municipal solid waste (MSW) and to link specific methanogens to methane generation. Experiments were conducted in three 0.61-m-diameter by 0.90-m-tall laboratory reactors to simulate MSW bioreactor landfills. Pyrosequencing of 16S rRNA genes was used to characterize microbial communities in both leachate and solid waste. Microbial assemblages in effluent leachate were similar between reactors during peak methane generation. Specific groups within the Bacteroidetes and Thermatogae phyla were present in all samples and were particularly abundant during peak methane generation. Microbial communities were not similar in leachate and solid fractions assayed at the end of reactor operation; solid waste contained a more abundant bacterial community of cellulose-degrading organisms (e.g., Firmicutes). Specific methanogen populations were assessed using quantitative polymerase chain reaction. Methanomicrobiales, Methanosarcinaceae, and Methanobacteriales were the predominant methanogens in all reactors, with Methanomicrobiales consistently the most abundant. Methanogen growth phases coincided with accelerated methane production, and cumulative methane yield increased with increasing total methanogen abundance. The difference in methanogen populations and corresponding methane yield is attributed to different initial cellulose and hemicellulose contents of the MSW. Higher initial cellulose and

  1. Production of methane by anaerobic fermentation of waste materials

    SciTech Connect (OSTI)

    Hitzman, D.O.

    1989-01-17

    This patent describes an apparatus for producing methane by anaerobic fermentation of waste material, comprising: cavity means in the earth for holding a quantity of the waste material; means for covering a quantity of the waste material in the cavity means and thereby separating the quantity of the waste material from the atmosphere; first conduit means communicating between the waste material in the cavity means and a location remote from the cavity means for conveying gas comprising carbon dioxide and methane from the cavity means to the location; gas separation means communicating with the first conduit means at the location for separating carbon dioxide from methane, the first conduit means including at least one pipe having a plurality of apertures therein and disposed in the cavity means extending into and in fluid flow communication with the waste material for receiving gas liberated by the anaerobic fermentation of the waste material and comprising carbon dioxide and methane, through the apertures therein for conveyance via the first conduit means to the gas separation means; second conduit means communicating between the gas separation means and the waste material in the cavity means for conveying carbon dioxide from the gas separation means to the waste material; and third conduit means communicating with the gas separation means for conveying methane from the gas separation means.

  2. NC GreenPower Renewable Energy Credit Production

    Energy.gov [DOE]

    NC GreenPower is requesting proposals for renewable energy credits associated with renewable energy, such as solar, PV, wind, small hydro of 10 MW or less, generated in North Carolina and supplied to the North Carolina electric grid.

  3. Analysis of Modeling Assumptions used in Production Cost Models for Renewable Integration Studies

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Analysis of Modeling Assumptions used in Production Cost Models for Renewable Integration Studies Brady Stoll, Gregory Brinkman, Aaron Townsend, and Aaron Bloom National Renewable Energy Laboratory Technical Report NREL/TP-6A20-65383 January 2016 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory

  4. Methane Credit | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Methane Credit Jump to: navigation, search Name: Methane Credit Place: Charlotte, North Carolina Zip: 28273 Product: Specialises in utilising methane produced on municipal landfill...

  5. Methane Power Inc | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Power Inc Jump to: navigation, search Logo: Methane Power Inc. Name: Methane Power Inc. Address: 121 Edinburgh South Drive Place: Cary, NC Zip: 27511 Sector: Renewable Energy...

  6. Seasonal Production and Emission of Methane from Rice Fields, Final Report

    SciTech Connect (OSTI)

    Khalil, M. Aslam K.; Rasmussen,Reinhold A.

    2002-12-03

    B 139 - Methane (CH4) is a greenhouse gas regarded second only to carbon dioxide in its ability to cause global warming. Methane is important because of its relatively fast increase, and also because it is, per molecule, some 60 times more effective than carbon dioxide in causing global warming. The largest present anthropogenic sources of methane are rice fields, cattle and biomass burning. The global emissions from these sources are still not well known. In the middle 1980s there were few available data on methane emissions from rice fields leading to estimates of a global source between 100-280 Tg/yr. Extensive worldwide research during the last decade has shown that the global emissions from rice fields are more likely to be in the range of 30-80Tg/yr. While this work has led to a substantial reduction in the estimated emissions, the uncertainty is still quite large, and seriously affects our ability to include methane in integrated assessments for future climate change and environmental management.China dominated estimates of methane emissions from rice fields because it was, and is, the largest producer of rice, and major increases in rice production had taken place in the country over the last several decades. This report summarizes the work in Sichuan Province, China, in each of the following areas: the design of the experiment; the main results on methane emissions from rice fields, delineating the factors controlling emissions; production of methane in the soil; a survey of water management practices in sample of counties in Sichuan province; and results of ambient measurements including data from the background continental site. B139

  7. Request for Information Renewable Energy Generation/Production...

    Open Energy Information (Open El) [EERE & EIA]

    benefits of the opportunity - Maximize the land opportunity for the development of renewable generation on the specified installation. -Reduce the SHV carbon footprint....

  8. EERE Success Story-BETO Project Improves Production of Renewable Chemical

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    from Cellulosic Feedstocks | Department of Energy BETO Project Improves Production of Renewable Chemical from Cellulosic Feedstocks EERE Success Story-BETO Project Improves Production of Renewable Chemical from Cellulosic Feedstocks October 20, 2015 - 11:18am Addthis Renewable chemical company Genomatica made significant progress toward increasing the range of feedstocks that can be used to commercially produce high-quality bio-based chemicals, in a project funded by the Energy Department's

  9. A system concept evaluation of commercial scale methane production from Coastal California kelp

    SciTech Connect (OSTI)

    Hoppmann, R.; Jain, K.; Kugler, W.; Wrobel, J.

    1983-01-01

    The systems engineering of a biomass to methane concept is described for a commercialization evaluation of deriving substitute natural gas from ocean kelp. The annual kelp yield from a small oceanic farm, and the gas evolution from small scale biodigesters are used to project the production of a 3MMscfd installation. The objective of the evaluation is to define a practical system implementation and to predict a production cost range for the substitute natural gas generated. The giant California brown kelp, Macrocystis, is the feedstock. For commercial production of methane the near shore kelp forests require expansion and management in contrast to the current harvesting of natural kelp. The planting, harvesting and material handling approaches are described which yield a feedstock production of 10/sup 6/ tons per year. This feedstock is input to a proposed gas conversion process facility and a biogas separator to yield 125 Mscf / hr of 98% pure methane at pipeline pressure. System elements are described and a pro forma cost budget is provided in constant 1982. The resultant cost of kelp derived methane is greater than the current conventional source unit price. However, the potential byproduct revenues could reduce the methane cost to a competitive status, particularly if energy costs are anticipated to continue to escalate in real terms. The future potential of gains in yield and planting strategy are displayed to illustrate the benefit of specific development areas.

  10. ,"Miscellaneous Coalbed Methane Proved Reserves, Reserves Changes, and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Miscellaneous Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2014,"6/30/2005" ,"Release Date:","11/19/2015" ,"Next Release

  11. ,"NM, East Coalbed Methane Proved Reserves, Reserves Changes, and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","NM, East Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2014,"6/30/2005" ,"Release Date:","11/19/2015" ,"Next Release

  12. ,"NM, West Coalbed Methane Proved Reserves, Reserves Changes, and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","NM, West Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2014,"6/30/2005" ,"Release Date:","11/19/2015" ,"Next Release

  13. ,"North Louisiana Coalbed Methane Proved Reserves, Reserves Changes, and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","North Louisiana Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2014,"6/30/2005" ,"Release Date:","11/19/2015" ,"Next Release

  14. ,"TX, RRC District 10 Coalbed Methane Proved Reserves, Reserves Changes, and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 10 Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2014,"6/30/2005" ,"Release Date:","11/19/2015" ,"Next Release

  15. ,"Texas Coalbed Methane Proved Reserves, Reserves Changes, and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Texas Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2014,"6/30/2005" ,"Release Date:","11/19/2015" ,"Next Release

  16. Technoeconomic analysis of renewable hydrogen production, storage, and detection systems

    SciTech Connect (OSTI)

    Mann, M.K.; Spath, P.L.; Kadam, K.

    1996-10-01

    Technical and economic feasibility studies of different degrees of completeness and detail have been performed on several projects being funded by the Department of Energy`s Hydrogen Program. Work this year focused on projects at the National Renewable Energy Laboratory, although analyses of projects at other institutions are underway or planned. Highly detailed analyses were completed on a fiber optic hydrogen leak detector and a process to produce hydrogen from biomass via pyrolysis followed by steam reforming of the pyrolysis oil. Less detailed economic assessments of solar and biologically-based hydrogen production processes have been performed and focused on the steps that need to be taken to improve the competitive position of these technologies. Sensitivity analyses were conducted on all analyses to reveal the degree to which the cost results are affected by market changes and technological advances. For hydrogen storage by carbon nanotubes, a survey of the competing storage technologies was made in order to set a baseline for cost goals. A determination of the likelihood of commercialization was made for nearly all systems examined. Hydrogen from biomass via pyrolysis and steam reforming was found to have significant economic potential if a coproduct option could be co-commercialized. Photoelectrochemical hydrogen production may have economic potential, but only if low-cost cells can be modified to split water and to avoid surface oxidation. The use of bacteria to convert the carbon monoxide in biomass syngas to hydrogen was found to be slightly more expensive than the high end of currently commercial hydrogen, although there are significant opportunities to reduce costs. Finally, the cost of installing a fiber-optic chemochromic hydrogen detection system in passenger vehicles was found to be very low and competitive with alternative sensor systems.

  17. Community-Based Renewable Energy Production Incentive (Pilot...

    Energy.gov (indexed) [DOE]

    solar, wind, hydro projects; to be determined on a case by case basis for other eligible renewable energy projects. Large projects (>1 MW DC): Depends on the result of the bid...

  18. BETO Project Improves Production of Renewable Chemical from Cellulosic Feedstocks

    Energy.gov [DOE]

    Renewable chemical company Genomatica made significant progress toward increasing the range of feedstocks that can be used to commercially produce high-quality bio-based chemicals, in a project...

  19. NREL Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage & Transportation

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage & Transportation NREL Hydrogen Technologies and Systems Center Todd Ramsden, Kevin Harrison, Darlene Steward November 16, 2009 NREL/PR-560-47432 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. NREL Wind2H2 RD&D Project * The National Renewable Energy Laboratory in partnership with Xcel Energy and

  20. Nanostructural control of methane release in kerogen and its implications to wellbore production decline

    DOE PAGES-Beta [OSTI]

    Ho, Tuan Anh; Criscenti, Louise J.; Wang, Yifeng

    2016-06-16

    In spite of the massive success of shale gas production in the US in the last few decades there are still major concerns with the steep decline in wellbore production and the large uncertainty in a long-term projection of decline curves. A reliable projection must rely on a mechanistic understanding of methane release in shale matrix–a limiting step in shale gas extraction. Here we show that methane release in nanoporous kerogen matrix is characterized by fast release of pressurized free gas (accounting for ~30–47% recovery) followed by slow release of adsorbed gas as the gas pressure decreases, and we usemore » molecular simulations to demonstrate it. The first stage is driven by the gas pressure gradient while the second stage is controlled by gas desorption and diffusion. We further show that diffusion of all methane in nanoporous kerogen behaves differently from the bulk phase, with much smaller diffusion coefficients. The MD simulations also indicate that a significant fraction (3–35%) of methane deposited in kerogen can potentially become trapped in isolated nanopores and thus not recoverable. Finally, our results shed a new light on mechanistic understanding gas release and production decline in unconventional reservoirs. The long-term production decline appears controlled by the second stage of gas release.« less

  1. EVermont Renewable Hydrogen Production and Transportation Fueling System

    SciTech Connect (OSTI)

    Garabedian, Harold T. Wight, Gregory Dreier, Ken Borland, Nicholas

    2008-03-30

    A great deal of research funding is being devoted to the use of hydrogen for transportation fuel, particularly in the development of fuel cell vehicles. When this research bears fruit in the form of consumer-ready vehicles, will the fueling infrastructure be ready? Will the required fueling systems work in cold climates as well as they do in warm areas? Will we be sure that production of hydrogen as the energy carrier of choice for our transit system is the most energy efficient and environmentally friendly option? Will consumers understand this fuel and how to handle it? Those are questions addressed by the EVermont Wind to Wheels Hydrogen Project: Sustainable Transportation. The hydrogen fueling infrastructure consists of three primary subcomponents: a hydrogen generator (electrolyzer), a compression and storage system, and a dispenser. The generated fuel is then used to provide transportation as a motor fuel. EVermont Inc., started in 1993 by then governor Howard Dean, is a public-private partnership of entities interested in documenting and advancing the performance of advanced technology vehicles that are sustainable and less burdensome on the environment, especially in areas of cold climates, hilly terrain and with rural settlement patterns. EVermont has developed a demonstration wind powered hydrogen fuel producing filling system that uses electrolysis, compression to 5000 psi and a hydrogen burning vehicle that functions reliably in cold climates. And that fuel is then used to meet transportation needs in a hybrid electric vehicle whose internal combustion engine has been converted to operate on hydrogen Sponsored by the DOE EERE Hydrogen, Fuel Cells & Infrastructure Technologies (HFC&IT) Program, the purpose of the project is to test the viability of sustainably produced hydrogen for use as a transportation fuel in a cold climate with hilly terrain and rural settlement patterns. Specifically, the project addresses the challenge of building a renewable

  2. Functionally gradient material for membrane reactors to convert methane gas into value-added products

    DOE Patents [OSTI]

    Balachandran, U.; Dusek, J.T.; Kleefisch, M.S.; Kobylinski, T.P.

    1996-11-12

    A functionally gradient material for a membrane reactor for converting methane gas into value-added-products includes an outer tube of perovskite, which contacts air; an inner tube which contacts methane gas, of zirconium oxide, and a bonding layer between the perovskite and zirconium oxide layers. The bonding layer has one or more layers of a mixture of perovskite and zirconium oxide, with the layers transitioning from an excess of perovskite to an excess of zirconium oxide. The transition layers match thermal expansion coefficients and other physical properties between the two different materials. 7 figs.

  3. Functionally gradient material for membrane reactors to convert methane gas into value-added products

    DOE Patents [OSTI]

    Balachandran, Uthamalingam; Dusek, Joseph T.; Kleefisch, Mark S.; Kobylinski, Thadeus P.

    1996-01-01

    A functionally gradient material for a membrane reactor for converting methane gas into value-added-products includes an outer tube of perovskite, which contacts air; an inner tube which contacts methane gas, of zirconium oxide, and a bonding layer between the perovskite and zirconium oxide layers. The bonding layer has one or more layers of a mixture of perovskite and zirconium oxide, with the layers transitioning from an excess of perovskite to an excess of zirconium oxide. The transition layers match thermal expansion coefficients and other physical properties between the two different materials.

  4. Hawkeye Renewables formerly Midwest Renewables | Open Energy...

    Open Energy Information (Open El) [EERE & EIA]

    (formerly Midwest Renewables) Place: Iowa Falls, Iowa Zip: 50126 Product: Midwest bioethanol producer References: Hawkeye Renewables (formerly Midwest Renewables)1 This...

  5. Production of Renewable Fuels from Biomass by FCC Co-processing

    Energy.gov [DOE]

    Breakout Session 2A—Conversion Technologies II: Bio-Oils, Sugar Intermediates, Precursors, Distributed Models, and Refinery Co-Processing Production of Renewable Fuels from Biomass by FCC Co-processing Raymond Wissinger, Manager, Renewable Energy & Chemicals, Research & Development, UOP

  6. Methane and carbon dioxide production from simulated anaerobic degradation of cattle carcasses

    SciTech Connect (OSTI)

    Yuan Qi; Saunders, Samuel E.; Bartelt-Hunt, Shannon L.

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer This study evaluates methane and carbon dioxide production after land burial of cattle carcasses. Black-Right-Pointing-Pointer Disposal of animal mortalities is often overlooked in evaluating the environmental impacts of animal production. Black-Right-Pointing-Pointer we quantify annual emissions from cattle carcass disposal in the United States as 1.6 Tg CO{sub 2} equivalents. - Abstract: Approximately 2.2 million cattle carcasses require disposal annually in the United States. Land burial is a convenient disposal method that has been widely used in animal production for disposal of both daily mortalities as well as during catastrophic mortality events. To date, greenhouse gas production after mortality burial has not been quantified, and this study represents the first attempt to quantify greenhouse gas emissions from land burial of animal carcasses. In this study, anaerobic decomposition of both homogenized and unhomogenized cattle carcass material was investigated using bench-scale reactors. Maximum yields of methane and carbon dioxide were 0.33 and 0.09 m{sup 3}/kg dry material, respectively, a higher methane yield than that previously reported for municipal solid waste. Variability in methane production rates were observed over time and between reactors. Based on our laboratory data, annual methane emissions from burial of cattle mortalities in the United States could total 1.6 Tg CO{sub 2} equivalents. Although this represents less than 1% of total emissions produced by the agricultural sector in 2009, greenhouse gas emissions from animal carcass burial may be significant if disposal of swine and poultry carcasses is also considered.

  7. Beginning of Construction for Purposes of the Renewable Electricity Production Tax Credit and Energy Investment Tax Credit

    Energy.gov [DOE]

    Beginning of Construction for Purposes of the Renewable Electricity Production Tax Credit and Energy Investment Tax Credit

  8. Alaska Coalbed Methane Proved Reserves, Reserves Changes, and Production

    Gasoline and Diesel Fuel Update

    Onshore Natural Gas Dry Production (Million Cubic Feet) Alabama--Onshore Natural Gas Dry Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 125,180 106,903 100,663 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Natural Gas Dry Production Alabama Onshore

    Dry Production (Million Cubic

  9. Field-project designs for carbon dioxide sequestration and enhanced coalbed methane production

    SciTech Connect (OSTI)

    W. Neal Sams; Grant Bromhal; Sinisha Jikich; Turgay Ertekin; Duane H. Smith

    2005-12-01

    Worldwide concerns about global warming and possible contributions to it from anthropogenic carbon dioxide have become important during the past several years. Coal seams may make excellent candidates for CO{sub 2} sequestration; coal-seam sequestration could enhance methane production and improve sequestration economics. Reservoir-simulation computations are an important component of any engineering design before carbon dioxide is injected underground. We have performed such simulations for a hypothetical pilot-scale project in representative coal seams. In these simulations we assume four horizontal production wells that form a square, that is, two wells drilled at right angles to each other forming two sides of a square, with another pair of horizontal wells similarly drilled to form the other two sides. Four shorter horizontal wells are drilled from a vertical well at the center of the square, forming two straight lines orthogonal to each other. By modifying coal properties, especially sorption rate, we have approximated different types of coals. By varying operational parameters, such as injector length, injection well pressure, time to injection, and production well pressure, we can evaluate different production schemes to determine an optimum for each coal type. Any optimization requires considering a tradeoff between total CO{sub 2} sequestered and the rate of methane production. Values of total CO{sub 2} sequestered and methane produced are presented for multiple coal types and different operational designs. 30 refs., 11 figs., 1 tab.

  10. Louisiana--South Onshore Coalbed Methane Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update

    Shale Production (Billion Cubic Feet) Louisiana--North Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1 23 293 2010's 1,232 2,084 2,204 1,509 1,169 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Shale Natural Gas Estimated Production North Louisiana Shale Gas Proved Reserves,

  11. Louisiana--State Offshore Coalbed Methane Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update

    Shale Production (Billion Cubic Feet) Louisiana--South Onshore Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 0 0 1 22 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Shale Natural Gas Estimated Production LA, South Onshore Shale Gas Proved Reserves, Reserves Changes, and

  12. Texas--State Offshore Coalbed Methane Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update

    Shale Production (Billion Cubic Feet) Texas--RRC District 9 Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 460 586 643 2010's 725 612 626 619 639 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Shale Natural Gas Estimated Production TX, RRC District 9 Shale Gas Proved

  13. Power production from renewable resources in a gasification power system

    SciTech Connect (OSTI)

    Paisley, M.A.; Farris, G.; Bain, R.

    1996-12-31

    The US Department of Energy (DOE) has been a leader in the promotion and development of alternative fuel supplies based on renewable energy crops. One promising power generation technology is biomass gasification coupled with either a gas turbine in a combined cycle system or a fuel cell. The gasification of biomass can efficiently and economically produce a renewable source of a clean gaseous fuel suitable for use in these high efficiency power systems or as a substitute fuel in other combustion devices such as boilers, kilns, or other natural gas fired equipment. This paper discusses the development and commercialization of the Battelle high-throughput gasification process for gas turbine based power generation systems. Projected process economics for a gas turbine combined cycle plant are presented along with a description of integrated system operation coupling a 200kW gas turbine power generation system to a 10 ton per day gasifier, and current commercialization activities. 6 refs., 3 figs., 1 tab.

  14. Florida Coalbed Methane Proved Reserves, Reserves Changes, and Production

    Gasoline and Diesel Fuel Update

    3. Production Schedules at Two Development Rates for the 95 Percent Probability of Recovering 5.7 Billion Barrels of Technically Recoverable Oil from the ANWR Coastal Plain of Alaska fig3.jpg (32189 bytes) Probability of Recovering 16.0 Billion Barrels

    5. Production Schedules at Two Development Rates for the 5 Percent Probability of Recovering 16.0 Billion Barrels of Technically Recoverable Oil from the ANWR Coastal Plain of Alaska fig5.jpg (3770

    Recoverable Oil

    6. Projected

  15. Low-Energy, Low Cost Production of Ethylene by Low Temperature Oxidative Coupling of Methane

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Guido Radaelli, Divya Jonnavittula, David Zaziski, Jarod McCormick Siluria Technologies U.S. DOE Advanced Manufacturing Office Program Review Meeting Washington, D.C. June 14-15, 2016 This presentation does not contain any proprietary, confidential, or otherwise restricted information. Project Objective  Overall Objective: To develop a new catalytic process for distributed production of ethylene via low-temperature oxidative coupling of methane using the advanced OCM catalyst developed by

  16. The Use of Renewable Feedstocks for the Production of Chemicals and Materials - A Brief Overview of Concepts

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Use of Renewable The Use of Renewable Feedstocks for the Feedstocks for the Production of Chemicals and Production of Chemicals and Material Material s s - - A Brief Overview A Brief Overview of Concepts of Concepts Joseph J. Bozell Joseph J. Bozell National Renewable Energy Laboratory National Renewable Energy Laboratory 1617 Cole Boulevard 1617 Cole Boulevard Golden, CO 80401 Golden, CO 80401 Visions Visions " " The U.S. is the Saudi Arabia of carbohydrates. The U.S. is the Saudi

  17. Made with Renewable Energy: How and Why Companies are Labeling Consumer Products

    SciTech Connect (OSTI)

    Baker Brannan, D.; Heeter, J.; Bird, L.

    2012-03-01

    Green marketing--a marketing strategy highlighting the environmental attributes of a product, often through the use of labels or logos--dates back to the 1970s. It did not proliferate until the 1990s, however, when extensive market research identified a rapidly growing group of consumers with a heightened concern for the environment. This group expressed not only a preference for green products but also a willingness to pay a premium for such products. The response was a surge in green marketing that lasted through the early 1990s. This report discusses the experience of companies that communicate to consumers that their products are 'made with renewable energy.' For this report, representatives from 20 companies were interviewed and asked to discuss their experiences marketing products produced using renewable energy. The first half of this report provides an overview of the type of companies that have labeled products or advertised them as being made with renewable energy. It also highlights the avenues companies use to describe their use of renewable energy. The second half of the report focuses on the motivations for making on-product claims about the use of renewable energy and the challenges in doing so.

  18. PPC Renewables | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    PPC Renewables Jump to: navigation, search Name: PPC Renewables Place: Greece Sector: Renewable Energy Product: The renewables division of Public Power Corp. of Greece (PPC)....

  19. First Renewables | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    search Name: First Renewables Place: United Kingdom Sector: Biomass, Renewable Energy, Wind energy Product: First Renewables owns and operates a portfolio of renewable...

  20. NREL Wind to Hydrogen Project: Renewable Hydrogen Production...

    Energy.gov (indexed) [DOE]

    Hour-by-Hour Cost Modeling of Optimized Central Wind-Based Water Electrolysis Production Hydrogen Production by Polymer Electrolyte Membrane (PEM) Electrolysis-Spotlight on Giner ...

  1. Michigan Coalbed Methane Proved Reserves, Reserves Changes, and Production

    Gasoline and Diesel Fuel Update

    Separation 77 72 77 94 125 108 1979-2014 Adjustments -28 4 2 -8 39 0 1979-2014 Revision Increases 39 10 6 35 8 3 1979-2014 Revision Decreases 105 13 12 8 4 7 1979-2014 Sales 0 0 0 0 0 1 2000-2014 Acquisitions 0 0 0 0 0 0 2000-2014 Extensions 0 0 0 0 0 1 1979-2014 New Field Discoveries 19 0 14 7 0 0 1979-2014 New Reservoir Discoveries in Old Fields 9 0 0 1 3 1 1979-2014 Estimated Production 5 6 5 10 15 14 Commercial Consumers by Local Distribution and Market

    2010 2011 2012 2013 2014

  2. PPL Renewable Energy | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Renewable Energy Jump to: navigation, search Name: PPL Renewable Energy Sector: Renewable Energy Product: PPL Renewable Energy develops, owns, operates and maintains renewable...

  3. ,"Alabama Coalbed Methane Proved Reserves, Reserves Changes, and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2014,"6/30/1989" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  4. ,"Arkansas Coalbed Methane Proved Reserves, Reserves Changes, and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2014,"6/30/2005" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  5. ,"Colorado Coalbed Methane Proved Reserves, Reserves Changes, and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2014,"6/30/1989" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  6. ,"Kansas Coalbed Methane Proved Reserves, Reserves Changes, and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kansas Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2014,"6/30/2005" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  7. ,"Kentucky Coalbed Methane Proved Reserves, Reserves Changes, and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2014,"6/30/2005" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  8. ,"Lower 48 States Coalbed Methane Proved Reserves, Reserves Changes, and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Lower 48 States Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2014,"6/30/2005" ,"Release Date:","11/19/2015" ,"Next Release

  9. ,"Montana Coalbed Methane Proved Reserves, Reserves Changes, and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Montana Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2014,"6/30/2005" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  10. ,"U.S. Coalbed Methane Proved Reserves, Reserves Changes, and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2014,"6/30/1989" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  11. ,"Virginia Coalbed Methane Proved Reserves, Reserves Changes, and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Virginia Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2014,"6/30/2005" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  12. ,"West Virginia Coalbed Methane Proved Reserves, Reserves Changes, and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","West Virginia Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2014,"6/30/2005" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  13. ,"Wyoming Coalbed Methane Proved Reserves, Reserves Changes, and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2014,"6/30/2000" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  14. ,"New Mexico Coalbed Methane Proved Reserves, Reserves Changes, and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2014,"6/30/1989" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  15. ,"Ohio Coalbed Methane Proved Reserves, Reserves Changes, and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2010,"6/30/2005" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  16. ,"Oklahoma Coalbed Methane Proved Reserves, Reserves Changes, and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2014,"6/30/2005" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  17. ,"Pennsylvania Coalbed Methane Proved Reserves, Reserves Changes, and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2014,"6/30/2005" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  18. ,"U.S. Coalbed Methane Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) (indexed site)

    Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Coalbed Methane Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File Name:","rngr52nus_1a.xls"

  19. ,"Utah Coalbed Methane Proved Reserves, Reserves Changes, and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2014,"6/30/2000" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  20. Utilization of coal mine methane for methanol and SCP production. Topical report, May 5, 1995--March 4, 1996

    SciTech Connect (OSTI)

    1998-12-31

    The feasibility of utilizing a biological process to reduce methane emissions from coal mines and to produce valuable single cell protein (SCP) and/or methanol as a product has been demonstrated. The quantities of coal mine methane from vent gas, gob wells, premining wells and abandoned mines have been determined in order to define the potential for utilizing mine gases as a resource. It is estimated that 300 MMCFD of methane is produced in the United States at a typical concentration of 0.2-0.6 percent in ventilation air. Of this total, almost 20 percent is produced from the four Jim Walter Resources (JWR) mines, which are located in very gassy coal seams. Worldwide vent gas production is estimated at 1 BCFD. Gob gas methane production in the U.S. is estimated to be 38 MMCFD. Very little gob gas is produced outside the U.S. In addition, it is estimated that abandoned mines may generate as much as 90 MMCFD of methane. In order to make a significant impact on coal mine methane emissions, technology which is able to utilize dilute vent gases as a resource must be developed. Purification of the methane from the vent gases would be very expensive and impractical. Therefore, the process application must be able to use a dilute methane stream. Biological conversion of this dilute methane (as well as the more concentrated gob gases) to produce single cell protein (SCP) and/or methanol has been demonstrated in the Bioengineering Resources, Inc. (BRI) laboratories. SCP is used as an animal feed supplement, which commands a high price, about $0.11 per pound.

  1. BETO Project Improves Production of Renewable Chemical from Cellulosic...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    pretreatment vendors with specific guidelines that will enable them to produce ... Learn more from the Genomatica press release. Bioproducts-products produced using ...

  2. EERE Success Story-BETO Project Improves Production of Renewable...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    pretreatment vendors with specific guidelines that will enable them to produce ... Learn more from the Genomatica press release. Bioproducts-products produced using ...

  3. BETO Project Improves Production of Renewable Chemical from Cellulosic...

    Energy Savers

    The process could also be applied to biofuel production to make a cellulosic ethanol facility more commercially viable. Learn more from the Genomatica press release....

  4. Process for the utilization of household rubbish or garbage and other organic waste products for the production of methane gas

    SciTech Connect (OSTI)

    Hunziker, M.; Schildknecht, A.

    1985-04-16

    Non-organic substances are separated from household garbage and the organic substances are fed in proportioned manner into a mixing tank and converted into slurry by adding liquid. The slurry is crushed for homogenization purposes in a crushing means and passed into a closed holding container. It is then fed over a heat exchanger and heated to 55/sup 0/ to 60/sup 0/ C. The slurry passes into a plurality of reaction vessels in which the methane gas and carbon dioxide are produced. In a separating plant, the mixture of gaseous products is broken down into its components and some of the methane gas is recycled by bubbling it through both the holding tank and the reaction tank, the remainder being stored in gasholders. The organic substances are degraded much more rapidly through increasing the degradation temperature and as a result constructional expenditure can be reduced.

  5. Water Management Strategies for Improved Coalbed Methane Production in the Black Warrior Basin

    SciTech Connect (OSTI)

    Pashin, Jack; McIntyre-Redden, Marcella; Mann, Steven; Merkel, David

    2013-10-31

    The modern coalbed methane industry was born in the Black Warrior Basin of Alabama and has to date produced more than 2.6 trillion cubic feet of gas and 1.6 billion barrels of water. The coalbed gas industry in this area is dependent on instream disposal of co-produced water, which ranges from nearly potable sodium-bicarbonate water to hypersaline sodium-chloride water. This study employed diverse analytical methods to characterize water chemistry in light of the regional geologic framework and to evaluate the full range of water management options for the Black Warrior coalbed methane industry. Results reveal strong interrelationships among regional geology, water chemistry, and gas chemistry. Coalbed methane is produced from multiple coal seams in Pennsylvanian-age strata of the Pottsville Coal Interval, in which water chemistry is influenced by a structurally controlled meteoric recharge area along the southeastern margin of the basin. The most important constituents of concern in the produced water include chlorides, ammonia compounds, and organic substances. Regional mapping and statistical analysis indicate that the concentrations of most ionic compounds, metallic substances, and nonmetallic substances correlate with total dissolved solids and chlorides. Gas is effectively produced at pipeline quality, and the only significant impurity is N{sub 2}. Geochemical analysis indicates that the gas is of mixed thermogenic-biogenic origin. Stable isotopic analysis of produced gas and calcite vein fills indicates that widespread late-stage microbial methanogenesis occurred primarily along a CO{sub 2} reduction metabolic pathway. Organic compounds in the produced water appear to have helped sustain microbial communities. Ammonia and ammonium levels increase with total dissolved solids content and appear to have played a role in late-stage microbial methanogenesis and the generation of N{sub 2}. Gas production tends to decline exponentially, whereas water production

  6. Energy Department Announces $11 Million to Advance Renewable Carbon Fiber Production from Biomass

    Energy.gov [DOE]

    The Energy Department announced today up to $11.3 million for two projects that aim to advance the production of cost-competitive, high-performance carbon fiber material from renewable, non-food-based feedstocks, such as agricultural residues and woody biomass.

  7. Effect of industrial by-products containing electron acceptors on mitigating methane emission during rice cultivation

    SciTech Connect (OSTI)

    Ali, Muhammad Aslam; Lee, Chang Hoon; Kim, Sang Yoon; Kim, Pil Joo

    2009-10-15

    Three industrial by-products (fly ash, phosphogypsum and blast furnace slag), were evaluated for their potential re-use as soil amendments to reduce methane (CH{sub 4}) emission resulting from rice cultivation. In laboratory incubations, CH{sub 4} production rates from anoxic soil slurries were significantly reduced at amendment levels of 0.5%, 1%, 2% and 5% (wt wt{sup -1}), while observed CO{sub 2} production rates were enhanced. The level of suppression in methane production was the highest for phosphogypsum, followed by blast slag and then fly ash. In the greenhouse experiment, CH{sub 4} emission rates from the rice planted potted soils significantly decreased with the increasing levels (2-20 Mg ha{sup -1}) of the selected amendments applied, while rice yield simultaneously increased compared to the control treatment. At 10 Mg ha{sup -1} application level of the amendments, total seasonal CH{sub 4} emissions were reduced by 20%, 27% and 25%, while rice grain yields were increased by 17%, 15% and 23% over the control with fly ash, phosphogypsum, and blast slag amendments, respectively. The suppression of CH{sub 4} production rates as well as total seasonal CH{sub 4} flux could be due to the increased concentrations of active iron, free iron, manganese oxides, and sulfate in the amended soil, which acted as electron acceptors and controlled methanogens' activity by limiting substrates availability. Among the amendments, blast furnace slag and fly ash contributed mainly to improve the soil nutrients balance and increased the soil pH level towards neutral point, but soil acidity was developed with phosphogypsum application. Conclusively, blast slag among the selected amendments would be a suitable soil amendment for reducing CH{sub 4} emissions as well as sustaining rice productivity.

  8. Nitrous oxide production and methane oxidation by different ammonia-oxidizing bacteria

    SciTech Connect (OSTI)

    Jiang, Q.Q.; Bakken, L.R.

    1999-06-01

    Ammonia-oxidizing bacteria (AOB) are thought to contribute significantly to N{sub 2}O production and methane oxidation in soils. Most knowledge derives from experiments with Nitrosomonas europaea, which appears to be of minor importance in most soils compared to Nitrosospira spp. The authors have conducted a comparative study of levels of aerobic N{sub 2}O production in six phylogenetically different Nitrosospira strains newly isolated from soils and in two N. europaea and Nitrosospira multiformis type strains. The fraction of oxidized ammonium released as N{sub 2}O during aerobic growth was remarkably constant for all the Nitrosospira strains, irrespective of the substrate supply (urea versus ammonium), the pH, or substrate limitation. N. europaea and Nitrosospira multiformis released similar fractions of N{sub 2}O when they were supplied with ample amounts of substrates, but the fractions rose sharply when they were restricted by a low pH or substrate limitation. Phosphate buffer doubled the N{sub 2}O release for all types of AOB. No detectable oxidation of atmospheric methane was detected. Calculations based on detection limits as well as data in the literature on CH{sub 4} oxidation by AOB bacteria prove that none of the tested strains contribute significantly to the oxidation of atmospheric CH{sub 4} in soils.

  9. ,"Federal Offshore, Gulf of Mexico, Louisiana & Alabama Coalbed Methane Proved Reserves, Reserves Changes, and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Louisiana & Alabama Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2014,"6/30/2005" ,"Release

  10. ,"TX, RRC District 2 Onshore Coalbed Methane Proved Reserves, Reserves Changes, and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 2 Onshore Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2014,"6/30/2005" ,"Release Date:","11/19/2015" ,"Next

  11. ,"TX, RRC District 3 Onshore Coalbed Methane Proved Reserves, Reserves Changes, and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 3 Onshore Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2014,"6/30/2005" ,"Release Date:","11/19/2015" ,"Next

  12. ,"TX, RRC District 4 Onshore Coalbed Methane Proved Reserves, Reserves Changes, and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","TX, RRC District 4 Onshore Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2014,"6/30/2005" ,"Release Date:","11/19/2015" ,"Next

  13. Catalytic hydrothermal gasification of biomass for the production of hydrogen-containing feedstock (methane)

    SciTech Connect (OSTI)

    Elliott, Douglas C; Hart, Todd R; Neuenschwander, Gary G

    2008-04-07

    Hydrothermal processing can be used to treat wet biomass by converting the organic contaminants to gases. When the system is operated as a metal catalyzed process at nominally 350°C and 21 MPa (so-called low-temperature gasification), it can produce a methane/carbon dioxide product gas from water slurries of biomass. This process can be utilized for both waste disposal and energy recovery. Catalyst stability in an aqueous processing environment is a major hurdle for use of such a system. Development of useful catalyst formulations has been achieved through bench-scale process development work. Catalyst lifetimes in excess of 5000h have been shown. Protection of the catalyst from feedstock impurities is a second major issue, which is more prominent in the biomass applications. Systems are under development to address mineral matter and sulfur contaminants.

  14. Renewable Hydrogen Production from Biomass Pyrolysis Aqueous Phase Presentation for BETO 2015 Project Peer Review

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    7, 2015 Thermochem Conversion Review PI: Abhijeet P. Borole, Ph.D. Oak Ridge National Laboratory Co:PI's & Collaborators: S. Pavlostathis, C. Tsouris, S. Yiacoumi, Georgia Tech; P. Ye, N. Labbe, University of Tennessee, Knoxville, R. Bhave, ORNL DOE Bioenergy Technologies Office (BETO) 2015 Project Peer Review Renewable Hydrogen Production from Biomass Pyrolysis Aqueous Phase 2 Managed by UT-Battelle for the U.S. Department of Energy Presentation_name Goal Statement * Carbon, Hydrogen and

  15. Scottish Renewables | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Scottish Renewables Place: Glasgow, Scotland, United Kingdom Zip: G2 6LD Sector: Renewable Energy Product: Scottish Renewables Forum is a Company Limited by Guarantee, registered...

  16. Whirlwind Renewables | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Jump to: navigation, search Name: Whirlwind Renewables Place: Huddersfield, England, United Kingdom Sector: Renewable Energy, Wind energy Product: Whirlwind Renewables Limited...

  17. Renewables Marketplace | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Marketplace Jump to: navigation, search Name: Renewables Marketplace Place: Palm Desert, California Zip: 92211 Sector: Renewable Energy Product: The Renewables Marketplace is a...

  18. China United Coalbed Methane Co Ltd | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Coalbed Methane Co Ltd Jump to: navigation, search Name: China United Coalbed Methane Co Ltd Place: Beijing Municipality, China Zip: 100011 Product: Coal bed methane developer in...

  19. Advanced Renewable Energy | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Renewable Energy Jump to: navigation, search Name: Advanced Renewable Energy Place: Italy Sector: Biomass, Renewable Energy, Wind energy Product: Advanced Renewable Energy Ltd...

  20. Rahimafrooz Renewable Energy Ltd | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Renewable Energy Ltd Jump to: navigation, search Name: Rahimafrooz Renewable Energy Ltd. Place: Dhaka, Bangladesh Zip: 1212 Sector: Renewable Energy Product: Renewable energy...

  1. Sinohydro Renewable Energy | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Sinohydro Renewable Energy Jump to: navigation, search Name: Sinohydro Renewable Energy Place: Beijing Municipality, China Sector: Renewable Energy Product: Beijing-based renewable...

  2. Outland Renewable Energy LLC | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Outland Renewable Energy LLC Jump to: navigation, search Name: Outland Renewable Energy, LLC Place: Chaska, Minnesota Zip: 55318 Sector: Renewable Energy Product: Outland Renewable...

  3. First Gen Renewables FGRI | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Gen Renewables FGRI Jump to: navigation, search Name: First Gen Renewables (FGRI) Place: Pasing City, Philippines Zip: 1600 Sector: Renewable Energy Product: The renewable arm of...

  4. Renewable Hawaii Inc | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Inc Jump to: navigation, search Name: Renewable Hawaii Inc Place: Hawaii Sector: Renewable Energy Product: Renewables subsidiary of Hawaii Power Company. References: Renewable...

  5. Development of vanadium-phosphate catalysts for methanol production by selective oxidation of methane. Quarterly report, July - September 1996

    SciTech Connect (OSTI)

    McCormick, R.L.; Alptekin, G.O.

    1996-12-01

    This document covers the period July-September, 1996. Activities included studies of the oxidation of dimethyl ether over vanadyl pyrophosphate and synthesis of all previously acquired kinetic data. This synthesis revealed the need for additional data on methane and methanol oxidation and these experiments were performed. A further series of methanol oxidation/dehydration experiments was conducted on samples with varying surface acidity that have been described in earlier reports. Oxidation of methane over Cr- promoted VPO was also reinvestigated. The kinetic studies performed to date allow us to determine optimum conditions for methanol and formaldehyde production from methane using VPO catalysts, and in particular determine the effect of lean conditions (excess oxygen), oxygen deficient conditions (used in most other methane oxidation studies), and the potential of using the catalyst as a stoichiometric oxidant or oxygen carrier. However, unpromoted VPO yields only CO as the primary oxidation product. Studies of promoters have shown improvements in the formaldehyde selectivity but no methanol has been observed. The best promoters tested have been Fe and Cr (results for Cr are described in this report). We have also examined the use of iron phosphate for the methane conversion reaction. FePO{sub 4}is a more selectivity catalyst than the promoted VPO materials. Support of this iron phosphate on silica results in further improvements in selectivity. Current work is directed at understanding the improved selectivity for promoted VPO and at obtaining a knowledge of the optimum conditions for methane conversion of iron phosphate. 15 refs., 2 figs., 1 tab.

  6. Production of methane-rich syngas from hydrocarbon fuels using multi-functional catalyst/capture agent

    SciTech Connect (OSTI)

    Siefert, Nicholas S; Shekhawat, Dushyant; Berry, David A; Surdoval, Wayne A

    2014-12-30

    The disclosure provides a gasification process for the production of a methane-rich syngas at temperatures exceeding 700.degree. C. through the use of an alkali hydroxide MOH, using a gasification mixture comprised of at least 0.25 moles and less than 2 moles of water for each mole of carbon, and at least 0.15 moles and less than 2 moles of alkali hydroxide MOH for each mole of carbon. These relative amounts allow the production of a methane-rich syngas at temperatures exceeding 700.degree. C. by enabling a series of reactions which generate H.sub.2 and CH.sub.4, and mitigate the reforming of methane. The process provides a methane-rich syngas comprised of roughly 20% (dry molar percentage) CH.sub.4 at temperatures above 700.degree. C., and may effectively operate within an IGFC cycle at reactor temperatures between 700-900.degree. C. and pressures in excess of 10 atmospheres.

  7. Methane Hydrate Field Studies

    Office of Energy Efficiency and Renewable Energy (EERE)

    Since 2001, DOE has conducted field trials of exploration and production technology in the Alaska North Slope. Although Alaska methane hydrate resources are smaller than marine deposits and...

  8. Advances in shrub-willow crops for bioenergy, renewable products, and environmental benefits

    DOE PAGES-Beta [OSTI]

    Volk, Timothy A.; Heavey, Justin P.; Eisenbies, Mark H.

    2016-05-02

    Short-rotation coppice systems like shrub willow are projected to be an important source of biomass in the United States for the production of bioenergy, biofuels, and renewable bio-based products, with the potential for auxiliary environmental benefits and multifunctional systems. Almost three decades of research has focused on the development of shrub willow crops for biomass and ecosystem services. The current expansion of willow in New York State (about 500 ha) for the production of renewable power and heat has been possible because of incentive programs offered by the federal government, commitments by end users, the development of reliable harvesting systems,more » and extension services offered to growers. Improvements in the economics of the system are expected as willow production expands further, which should help lower establishment costs, enhance crop management options and increase efficiencies in harvesting and logistics. As a result, deploying willow in multifunctional value-added systems provides opportunities for both potential producers and end users to learn about the system and the quality of the biomass feedstock, which in turn will help overcome barriers to expansion.« less

  9. Evaluation of Phytoremediation of Coal Bed Methane Product Water and Waters of Quality Similar to that Associated with Coal Bed Methane Reserves of the Powder River Basin, Montana and Wyoming

    SciTech Connect (OSTI)

    James Bauder

    2008-09-30

    U.S. emphasis on domestic energy independence, along with advances in knowledge of vast biogenically sourced coalbed methane reserves at relatively shallow sub-surface depths with the Powder River Basin, has resulted in rapid expansion of the coalbed methane industry in Wyoming and Montana. Techniques have recently been developed which constitute relatively efficient drilling and methane gas recovery and extraction techniques. However, this relatively efficient recovery requires aggressive reduction of hydrostatic pressure within water-saturated coal formations where the methane is trapped. Water removed from the coal formation during pumping is typically moderately saline and sodium-bicarbonate rich, and managed as an industrial waste product. Current approaches to coalbed methane product water management include: surface spreading on rangeland landscapes, managed irrigation of agricultural crop lands, direct discharge to ephermeral channels, permitted discharge of treated and untreated water to perennial streams, evaporation, subsurface injection at either shallow or deep depths. A Department of Energy-National Energy Technology Laboratory funded research award involved the investigation and assessment of: (1) phytoremediation as a water management technique for waste water produced in association with coalbed methane gas extraction; (2) feasibility of commercial-scale, low-impact industrial water treatment technologies for the reduction of salinity and sodicity in coalbed methane gas extraction by-product water; and (3) interactions of coalbed methane extraction by-product water with landscapes, vegetation, and water resources of the Powder River Basin. Prospective, greenhouse studies of salt tolerance and water use potential of indigenous, riparian vegetation species in saline-sodic environments confirmed the hypothesis that species such as Prairie cordgrass, Baltic rush, American bulrush, and Nuttall's alkaligrass will thrive in saline-sodic environments when

  10. Geothermal source potential and utilization for methane generation and alcohol production

    SciTech Connect (OSTI)

    Austin, J.C.

    1981-11-01

    A study was conducted to assess the technical and economic feasibility of integrating a geothermally heated anaerobic digester with a fuel alcohol plant and cattle feedlot. Thin stillage produced from the alcohol production process and manure collected from the cattle feedlot would be digested in anaerobic digesters to produce biogas, a mixture of methane and carbon dioxide, and residue. The energy requirements to maintain proper digester temperatures would be provided by geothermal water. The biogas produced in the digesters would be burned in a boiler to produce low-pressure steam which would be used in the alcohol production process. The alcohol plant would be sized so that the distiller's grains byproduct resulting from the alcohol production would be adequate to supply the daily cattle feed requirements. A portion of the digester residue would substitute for alfalfa hay in the cattle feedlot ration. The major design criterion for the integrated facilty was the production of adequate distiller's grain to supply the daily requirements of 1700 head of cattle. It was determined that, for a ration of 7 pounds of distiller's grain per head per day, a 1 million gpy alcohol facility would be required. An order-of-magnitude cost estimate was prepared for the proposed project, operating costs were calculated for a facility based on a corn feedstock, the economic feasibility of the proposed project was examined by calculating its simple payback, and an analysis was performed to examine the sensitivity of the project's economic viability to variations in feedstock costs and alcohol and distiller's grain prices.

  11. Enhanced coal bed methane production and sequestration of CO2 in unmineable coal

    SciTech Connect (OSTI)

    Locke, James; Winschel, Richard

    2005-03-01

    The Marshall County Project was undertaken by CONSOL Energy Inc. (CONSOL) with partial funding from the U. S. Department of Energy’s (DOE) Carbon Storage Program (CSP). The project, initiated in October 2001, was conducted to evaluate opportunities for carbon dioxide CO2 sequestration in an unmineable coal seam in the Northern Appalachian Basin with simultaneous enhanced coal bed methane recovery. This report details the final results from the project that established a pilot test in Marshall County, West Virginia, USA, where a series of coal bed methane (CBM) production wells were developed in an unmineable coal seam (Upper Freeport (UF)) and the overlying mineable Pittsburgh (PIT) seam. The initial wells were drilled beginning in 2003, using slant-hole drilling procedures with a single production leg, in a down-dip orientation that provided limited success. Improved well design, implemented in the remaining wells, allowed for greater CBM production. The nearly-square-shaped project area was bounded by the perimeter production wells in the UF and PIT seams encompassing an area of 206 acres. Two CBM wells were drilled into the UF at the center of the project site, and these were later converted to serve as CO2 injection wells through which, 20,000 short tons of CO2 were planned to be injected at a maximum rate of 27 tons per day. A CO2 injection system comprised of a 50-ton liquid CO2 storage tank, a cryogenic pump, and vaporization system was installed in the center of the site and, after obtaining a Class II underground injection permit (UIC) permit from the West Virginia Department of Environmental Protection (WVDEP), CO2 injection, through the two center wells, into the UF was initiated in September 2009. Numerous complications limited CO2 injection continuity, but CO2 was injected until breakthrough was encountered in September 2013, at which point the project had achieved an injection total of 4,968 tons of CO2. During the injection and post

  12. Chemicals from biomass: an assessment of the potential for production of chemical feedstocks from renewable resources

    SciTech Connect (OSTI)

    Donaldson, T.L.; Culberson, O.L.

    1983-06-01

    This assessment of the potential for production of commodity chemicals from renewable biomass resources is based on (1) a Delphi study with 50 recognized authorities to identify key technical issues relevant to production of chemicals from biomass, and (2) a systems model based on linear programming for a commodity chemicals industry using renewable resources and coal as well as gas and petroleum-derived resources. Results from both parts of the assessment indicate that, in the absence of gas and petroleum, coal undoubtedly would be a major source of chemicals first, followed by biomass. The most attractive biomass resources are wood, agricultural residues, and sugar and starch crops. A reasonable approximation to the current product slate for the petrochemical industry could be manufactured using only renewable resources for feedstocks. Approximately 2.5 quads (10/sup 15/ Btu (1.055 x 10/sup 18/ joules)) per year of oil and gas would be released. Further use of biomass fuels in the industry could release up to an additional 1.5 quads. however, such an industry would be unprofitable under current economic conditions with existing or near-commercial technology. As fossil resources become more expensive and biotechnology becomes more efficient, the economics will be more favorable. Use of the chemicals industry model to evaluate process technologies is demonstrated. Processes are identified which have potential for significant added value to the system if process improvements can be made to improve the economics. Guidelines and recommendations for research and development programs to improve the attractiveness of chemicals from biomass are discussed.

  13. Influence of H/sub 2/ stripping on methane production in conventional digesters

    SciTech Connect (OSTI)

    Poels, J.; Van Assche, P.; Verstraete, W.

    1985-12-01

    Hydrogen is a central metabolite in the methanization process. In this study the partial pressure of hydrogen in the gas phase of laboratory manure digesters was monitored over extensive periods of time and found to vary between 50 and 100.10/sup -6/ atm. By sparging the gas phase of the digester through an auxiliary reactor, hydrogenotrophic methanogens were allowed to develop at the expense of hydrogen and carbon dioxide present in the biogas, independently of the liquid or cell residence time in the main reactor. By scrubbing ca. 100 volumes of biogas per liter reactor per day through an auxiliary reactor, hydrogen concentration could be decreased maximally 25%. This resulted in an increase in the gas production rate of the main digester of ca. 10% and a concomitant improved removal of volatile fatty acids from the mixed liquor. The results obtained indicate that considerable stripping of hydrogen from the digester could be achieved at acceptable energy expenditure. However, the microbial removal of the hydrogen at these low concentrations is extremely slow and limits the applicability of this approach.

  14. Drilling and production statistics for major US coalbed methane and gas shale reservoirs. Topical report, June-August 1995

    SciTech Connect (OSTI)

    Kelso, B.S.; Lombardi, T.E.; Kuuskraa, J.A.

    1995-12-01

    The objective of this work is to provide GRI with a review and analysis of the oil and gas industry`s activity level and associated production from the major coalbed methane and gas shale reservoirs in the U.S. The authors specifically focused on the pre- and post-Section 29 qualifying deadline of December 1992 for unconventional gas Tax Credits. The primary plays investigated include the coalbed methane reservoirs in the San Juan, Warrier, Appalachian, Uinta, Powder River, and Pieceance basins and the gas shale plays in the Michigan, Fort Worth, Appalachian, Denver, and Illinois basins. A projection for future activity and production levels is made based on historic trends for each of the reservoir types. Telephone surveys were conducted with numerous operators to determine current activity status and to assist in projecting future activity of the two gas resources.

  15. Economic and systems assessment of the concept of nearshore kelp farming for methane production. Final report Jun 82-May 83

    SciTech Connect (OSTI)

    Brehany, J.J.

    1983-04-01

    This is the final report of a study undertaken to quantify the cost of production of pipeline quality methane from the anaerobic digestion of California giant brown kelp, macrocystis. Utilizing state-of-the-art knowledge and techniques, kelp would be grown in nearshore farms in 20- to 80-ft-deep ocean waters off the coast of Southern California. It would be harvested, shredded, and pumped as slurry to a central anaerobic biodigestion plant. The kelp would be digested and the resulting gas refined to essentially pure methane. The residue would be a liquid effluent, which would be returned to sea as a nutrient for the kelp farm. Detailed capital and operating costs are estimated for several sizes of farm and plant and an economic model is developed that is capable of interacting between various system components so it can be used to test the effect of changes or improvements in individual subsystems on the levelized product cost of the total system.

  16. Renewable Energy Group Inc | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Renewable Energy Product: Iowa-based holding company operated under the auspices of biodiesel production company Renewable Energy Group. References: Renewable Energy Group...

  17. Methane Hydrate Production Technologies to be Tested on Alaska's North Slope

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Energy, the Japan Oil, Gas and Metals National Corporation, and ConocoPhillips will work together to test innovative technologies for producing methane gas from hydrate deposits on the Alaska North Slope.

  18. Effects of a gradually increased load of fish waste silage in co-digestion with cow manure on methane production

    SciTech Connect (OSTI)

    Solli, Linn Bergersen, Ove; Sørheim, Roald; Briseid, Tormod

    2014-08-15

    Highlights: • New results from continuous anaerobic co-digestion of fish waste silage (FWS) and cow manure (CM). • Co-digestion of FWS and CM has a high biogas potential. • Optimal mixing ratio of FWS/CM is 13–16/87–84 volume%. • High input of FWS leads to accumulation of NH4+ and VFAs and process failure. - Abstract: This study examined the effects of an increased load of nitrogen-rich organic material on anaerobic digestion and methane production. Co-digestion of fish waste silage (FWS) and cow manure (CM) was studied in two parallel laboratory-scale (8 L effective volume) semi-continuous stirred tank reactors (designated R1 and R2). A reactor fed with CM only (R0) was used as control. The reactors were operated in the mesophilic range (37 °C) with a hydraulic retention time of 30 days, and the entire experiment lasted for 450 days. The rate of organic loading was raised by increasing the content of FWS in the feed stock. During the experiment, the amount (volume%) of FWS was increased stepwise in the following order: 3% – 6% – 13% – 16%, and 19%. Measurements of methane production, and analysis of volatile fatty acids, ammonium and pH in the effluents were carried out. The highest methane production from co-digestion of FWS and CM was 0.400 L CH4 gVS{sup −1}, obtained during the period with loading of 16% FWS in R2. Compared to anaerobic digestion of CM only, the methane production was increased by 100% at most, when FWS was added to the feed stock. The biogas processes failed in R1 and R2 during the periods, with loadings of 16% and 19% FWS, respectively. In both reactors, the biogas processes failed due to overloading and accumulation of ammonia and volatile fatty acids.

  19. Simulation of an integrated system for the production of methane and single cell protein from biomass

    SciTech Connect (OSTI)

    Thomas, M.V.

    1989-01-01

    A numerical model was developed to simulate the operation of an integrated system for the production of methane and single-cell algal protein from a variety of biomass energy crops or waste streams. Economic analysis was performed at the end of each simulation. The model was capable of assisting in the determination of design parameters by providing relative economic information for various strategies. Three configurations of anaerobic reactors were simulated. These included fed-bed reactors, conventional stirred tank reactors, and continuously expanding reactors. A generic anaerobic digestion process model, using lumped substrate parameters, was developed for use by type-specific reactor models. The generic anaerobic digestion model provided a tool for the testing of conversion efficiencies and kinetic parameters for a wide range of substrate types and reactor designs. Dynamic growth models were used to model the growth of algae and Eichornia crassipes was modeled as a function of daily incident radiation and temperature. The growth of Eichornia crassipes was modeled for the production of biomass as a substrate for digestion. Computer simulations with the system model indicated that tropical or subtropical locations offered the most promise for a viable system. The availability of large quantities of digestible waste and low land prices were found to be desirable in order to take advantage of the economies of scale. Other simulations indicated that poultry and swine manure produced larger biogas yields than cattle manure. The model was created in a modular fashion to allow for testing of a wide variety of unit operations. Coding was performed in the Pascal language for use on personal computers.

  20. World Biofuels Production Potential Understanding the Challenges to Meeting the U.S. Renewable Fuel Standard

    SciTech Connect (OSTI)

    Sastri, B.; Lee, A.

    2008-09-15

    This study by the U.S. Department of Energy (DOE) estimates the worldwide potential to produce biofuels including biofuels for export. It was undertaken to improve our understanding of the potential for imported biofuels to satisfy the requirements of Title II of the 2007 Energy Independence and Security Act (EISA) in the coming decades. Many other countries biofuels production and policies are expanding as rapidly as ours. Therefore, we modeled a detailed and up-to-date representation of the amount of biofuel feedstocks that are being and can be grown, current and future biofuels production capacity, and other factors relevant to the economic competitiveness of worldwide biofuels production, use, and trade. The Oak Ridge National Laboratory (ORNL) identified and prepared feedstock data for countries that were likely to be significant exporters of biofuels to the U.S. The National Renewable Energy Laboratory (NREL) calculated conversion costs by conducting material flow analyses and technology assessments on biofuels technologies. Brookhaven National Laboratory (BNL) integrated the country specific feedstock estimates and conversion costs into the global Energy Technology Perspectives (ETP) MARKAL (MARKet ALlocation) model. The model uses least-cost optimization to project the future state of the global energy system in five year increments. World biofuels production was assessed over the 2010 to 2030 timeframe using scenarios covering a range U.S. policies (tax credits, tariffs, and regulations), as well as oil prices, feedstock availability, and a global CO{sub 2} price. All scenarios include the full implementation of existing U.S. and selected other countries biofuels policies (Table 4). For the U.S., the most important policy is the EISA Title II Renewable Fuel Standard (RFS). It progressively increases the required volumes of renewable fuel used in motor vehicles (Appendix B). The RFS requires 36 billion (B) gallons (gal) per year of renewable fuels by 2022

  1. Webinar: "Upgrading Renewable and Sustainable Carbohydrates for the Production of High Energy Density Fuels"

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    U.S. DEPARTMENT OF ENERGY BIOMASS PROGRAM Webinar: "Upgrading Renewable and Sustainable Carbohydrates For the Production of High Energy Density Fuels" December 12, 2012 Biomass Program Overview: Lindsay Southerland, BCS, Incorporated, representing DOE Hydrocarbon Presentation: Pete Silks and John Gordon, LANL 2 | Biomass Program eere.energy.gov Biomass Program Vision, Mission, and Strategic Goal A viable, sustainable domestic biomass industry that: * Produces renewable biofuels,

  2. Analysis of Modeling Assumptions used in Production Cost Models for Renewable Integration Studies

    SciTech Connect (OSTI)

    Stoll, Brady; Brinkman, Gregory; Townsend, Aaron; Bloom, Aaron

    2016-01-01

    Renewable energy integration studies have been published for many different regions exploring the question of how higher penetration of renewable energy will impact the electric grid. These studies each make assumptions about the systems they are analyzing; however the effect of many of these assumptions has not been yet been examined and published. In this paper we analyze the impact of modeling assumptions in renewable integration studies, including the optimization method used (linear or mixed-integer programming) and the temporal resolution of the dispatch stage (hourly or sub-hourly). We analyze each of these assumptions on a large and a small system and determine the impact of each assumption on key metrics including the total production cost, curtailment of renewables, CO2 emissions, and generator starts and ramps. Additionally, we identified the impact on these metrics if a four-hour ahead commitment step is included before the dispatch step and the impact of retiring generators to reduce the degree to which the system is overbuilt. We find that the largest effect of these assumptions is at the unit level on starts and ramps, particularly for the temporal resolution, and saw a smaller impact at the aggregate level on system costs and emissions. For each fossil fuel generator type we measured the average capacity started, average run-time per start, and average number of ramps. Linear programming results saw up to a 20% difference in number of starts and average run time of traditional generators, and up to a 4% difference in the number of ramps, when compared to mixed-integer programming. Utilizing hourly dispatch instead of sub-hourly dispatch saw no difference in coal or gas CC units for either start metric, while gas CT units had a 5% increase in the number of starts and 2% increase in the average on-time per start. The number of ramps decreased up to 44%. The smallest effect seen was on the CO2 emissions and total production cost, with a 0.8% and 0

  3. Matrix Shrinkage and Swelling Effects on Economics of Enhanced Coalbed Methane Production and CO2 Sequestration in Coal

    SciTech Connect (OSTI)

    Gorucu, F.B.; Jikich, S.A.; Bromhal, G.S.; Sams, W.N.; Ertekin, T.; Smith, D.H.

    2005-09-01

    Increases in CO2 levels in the atmosphere and their contributions to global climate change have been a major concern. It has been shown that CO2 injection can enhance the methane recovery from coal. Accordingly, sequestration costs can be partially offset by the value added product. Indeed, coal seam sequestration may be profitable, particularly with the introduction of incentives for CO2 sequestration. Hence, carbon dioxide sequestration in unmineable coals is a very attractive option, not only for environmental reasons, but also for possible economic benefits. Darcy flow through cleats is an important transport mechanism in coal. Cleat compression and permeability changes due to gas sorption desorption, changes of effective stress, and matrix swelling and shrinkage introduce a high level of complexity into the feasibility of a coal sequestration project. The economic effects of carbon dioxide-induced swelling on permeabilities and injectivities has received little (if any) detailed attention. Carbon dioxide and methane have different swelling effects on coal. In this work, the Palmer-Mansoori model for coal shrinkage and permeability increases during primary methane production was re-written to also account for coal swelling caused by carbon dioxide sorption. The generalized model was added to PSU-COALCOMP, a dual porosity reservoir simulator for primary and enhanced coalbed methane production. A standard five-spot of vertical wells and representative coal properties for Appalachian coals were used.[1] Simulations and sensitivity analyses were performed with the modified simulator for nine different parameters, including coal seam and operational parameters and economic criteria. The coal properties and operating parameters that were varied included Youngs modulus, Poissons ratio, the cleat porosity, and the injection pressure. The economic variables included CH4 price, CO2 cost, CO2 credit, water disposal cost, and interest rate. Net present value analyses of

  4. Drilling and Production Testing the Methane Hydrate Resource Potential Associated with the Barrow Gas Fields

    SciTech Connect (OSTI)

    Steve McRae; Thomas Walsh; Michael Dunn; Michael Cook

    2010-02-22

    In November of 2008, the Department of Energy (DOE) and the North Slope Borough (NSB) committed funding to develop a drilling plan to test the presence of hydrates in the producing formation of at least one of the Barrow Gas Fields, and to develop a production surveillance plan to monitor the behavior of hydrates as dissociation occurs. This drilling and surveillance plan was supported by earlier studies in Phase 1 of the project, including hydrate stability zone modeling, material balance modeling, and full-field history-matched reservoir simulation, all of which support the presence of methane hydrate in association with the Barrow Gas Fields. This Phase 2 of the project, conducted over the past twelve months focused on selecting an optimal location for a hydrate test well; design of a logistics, drilling, completion and testing plan; and estimating costs for the activities. As originally proposed, the project was anticipated to benefit from industry activity in northwest Alaska, with opportunities to share equipment, personnel, services and mobilization and demobilization costs with one of the then-active exploration operators. The activity level dropped off, and this benefit evaporated, although plans for drilling of development wells in the BGF's matured, offering significant synergies and cost savings over a remote stand-alone drilling project. An optimal well location was chosen at the East Barrow No.18 well pad, and a vertical pilot/monitoring well and horizontal production test/surveillance well were engineered for drilling from this location. Both wells were designed with Distributed Temperature Survey (DTS) apparatus for monitoring of the hydrate-free gas interface. Once project scope was developed, a procurement process was implemented to engage the necessary service and equipment providers, and finalize project cost estimates. Based on cost proposals from vendors, total project estimated cost is $17.88 million dollars, inclusive of design work

  5. Dry-thermophilic anaerobic digestion of organic fraction of municipal solid waste: Methane production modeling

    SciTech Connect (OSTI)

    Fdez-Gueelfo, L.A.; Alvarez-Gallego, C.; Sales, D.; Romero Garcia, L.I.

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Methane generation may be modeled by means of modified product generation model of Romero Garcia (1991). Black-Right-Pointing-Pointer Organic matter content and particle size influence the kinetic parameters. Black-Right-Pointing-Pointer Higher organic matter content and lower particle size enhance the biomethanization. - Abstract: The influence of particle size and organic matter content of organic fraction of municipal solid waste (OFMSW) in the overall kinetics of dry (30% total solids) thermophilic (55 Degree-Sign C) anaerobic digestion have been studied in a semi-continuous stirred tank reactor (SSTR). Two types of wastes were used: synthetic OFMSW (average particle size of 1 mm; 0.71 g Volatile Solids/g waste), and OFMSW coming from a composting full scale plant (average particle size of 30 mm; 0.16 g Volatile Solids/g waste). A modification of a widely-validated product-generation kinetic model has been proposed. Results obtained from the modified-model parameterization at steady-state (that include new kinetic parameters as K, Y{sub pMAX} and {theta}{sub MIN}) indicate that the features of the feedstock strongly influence the kinetics of the process. The overall specific growth rate of microorganisms ({mu}{sub max}) with synthetic OFMSW is 43% higher compared to OFMSW coming from a composting full scale plant: 0.238 d{sup -1} (K = 1.391 d{sup -1}; Y{sub pMAX} = 1.167 L CH{sub 4}/gDOC{sub c}; {theta}{sub MIN} = 7.924 days) vs. 0.135 d{sup -1} (K = 1.282 d{sup -1}; Y{sub pMAX} = 1.150 L CH{sub 4}/gDOC{sub c}; {theta}{sub MIN} = 9.997 days) respectively. Finally, it could be emphasized that the validation of proposed modified-model has been performed successfully by means of the simulation of non-steady state data for the different SRTs tested with each waste.

  6. Resource Assessment for Hydrogen Production: Hydrogen Production Potential from Fossil and Renewable Energy Resources

    SciTech Connect (OSTI)

    Melaina, M.; Penev, M.; Heimiller, D.

    2013-09-01

    This study examines the energy resources required to produce 4-10 million metric tonnes of domestic, low-carbon hydrogen in order to fuel approximately 20-50 million fuel cell electric vehicles. These projected energy resource requirements are compared to current consumption levels, projected 2040 business as usual consumptions levels, and projected 2040 consumption levels within a carbonconstrained future for the following energy resources: coal (assuming carbon capture and storage), natural gas, nuclear (uranium), biomass, wind (on- and offshore), and solar (photovoltaics and concentrating solar power). The analysis framework builds upon previous analysis results estimating hydrogen production potentials and drawing comparisons with economy-wide resource production projections

  7. Renewable Energy

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Renewable Energy The WIPP Site Holds Promise as an Ideal Source of Renewable Energy Encompassing 16 square miles of open Chihuahuan desert with abundant sunshine and minimal surface roughness, the WIPP site is ideal for either solar- or wind-generated electricity production, demonstration or testing. In fact, WIPP is striving to take advantage of its abundance of sunshine and wind. The Department of Energy's Office of Environmental Management has created what is being called the Energy Park

  8. Connect Renewable Energy Inc | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Connect Renewable Energy Inc Jump to: navigation, search Name: Connect Renewable Energy Inc Place: Grass Valley, California Zip: 95945 Sector: Renewable Energy Product: Connect...

  9. Agency of Renewable Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Renewable Resources Jump to: navigation, search Name: Agency of Renewable Resources Place: Gulzow, Germany Zip: 18276 Sector: Renewable Energy Product: In 1993 the FNR was...

  10. Pioneer Global Renewables | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Renewables Jump to: navigation, search Name: Pioneer Global Renewables Place: San Rafael, California Zip: 94901 Sector: Renewable Energy Product: Pioneer develops, finances...

  11. Renewable Power Systems | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Renewable Power Systems Place: Bedford, England, United Kingdom Zip: MK42 9TW Sector: Renewable Energy Product: Bedford, UK based developer of renewable power systems. References:...

  12. Vital Renewable Energy VREC | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Renewable Energy VREC Jump to: navigation, search Name: Vital Renewable Energy (VREC) Place: Pinheiros, Sao Paulo, Brazil Zip: CEP 05421-010 Sector: Renewable Energy Product: VREC...

  13. Renewable Energy Engineering LLC | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    LLC Jump to: navigation, search Name: Renewable Energy Engineering, LLC Place: Newberg, Oregon Zip: 22700 Sector: Renewable Energy Product: Oregon-based renewable energy...

  14. Standard Renewable Energy SRE | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Renewable Energy SRE Jump to: navigation, search Name: Standard Renewable Energy (SRE) Place: Houston, Texas Zip: 77007 Sector: Renewable Energy, Services Product: Houston-based...

  15. Encore Renewable Energy LLC | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Encore Renewable Energy LLC Jump to: navigation, search Name: Encore Renewable Energy, LLC Place: Santa Barbara, California Zip: 93111 Sector: Renewable Energy Product: National...

  16. Renewable Choice Energy | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Choice Energy Jump to: navigation, search Name: Renewable Choice Energy Place: Boulder, Colorado Zip: 80301 Sector: Carbon, Renewable Energy Product: Renewable Choice Energy is a...

  17. Econic Renewable Energy Solutions | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Econic Renewable Energy Solutions Jump to: navigation, search Name: Econic Renewable Energy Solutions Place: Norfolk, United Kingdom Zip: NR 105PQ Sector: Renewable Energy Product:...

  18. Superior Renewable Energy LLC | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Renewable Energy LLC Jump to: navigation, search Name: Superior Renewable Energy LLC Place: Houston, Texas Zip: 77002 Sector: Renewable Energy, Wind energy Product: An independent...

  19. Alyra Renewable Energy | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Alyra Renewable Energy Jump to: navigation, search Name: Alyra Renewable Energy Place: Northampton, Massachusetts Zip: 10600 Sector: Renewable Energy, Services Product:...

  20. Whites Renewable Energy | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Whites Renewable Energy Jump to: navigation, search Name: Whites Renewable Energy Place: United Kingdom Zip: YO8 8EF Sector: Biomass, Renewable Energy Product: UK based company...

  1. Grounded Renewable Energy | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Grounded Renewable Energy Jump to: navigation, search Name: Grounded Renewable Energy Place: Carbondale, Colorado Zip: 81623 Sector: Renewable Energy, Solar Product: Grounded...

  2. Boreal Renewable Energy | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Energy Jump to: navigation, search Name: Boreal Renewable Energy Place: Acton, Massachusetts Zip: 1720 Sector: Hydro, Renewable Energy, Solar, Wind energy Product: Renewable Energy...

  3. Renewable Energy Resources Inc | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Inc Jump to: navigation, search Name: Renewable Energy Resources, Inc. Place: Las Vegas, Nevada Sector: Hydro, Renewable Energy, Solar, Wind energy Product: Renewable Energy is a...

  4. Renewable Energy World | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Renewable Energy World Place: United Kingdom Sector: Renewable Energy Product: Bimonthly magazine, which used to be published by James & James on the renewable energy industry. Now...

  5. Emerald Renewable Energy | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Renewable Energy Jump to: navigation, search Name: Emerald Renewable Energy Place: Minneapolis, Minnesota Zip: 55401-2374 Sector: Renewable Energy Product: A privately held limited...

  6. BEE Renewable Energy Ltd | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    BEE Renewable Energy Ltd Jump to: navigation, search Name: BEE Renewable Energy Ltd Place: Freiburg, Baden-Wrttemberg, Germany Zip: 79110 Sector: Renewable Energy Product:...

  7. Prestige Renewable Energy | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Renewable Energy Product: Subsidiary of the Spanish Prestige hotel group, set up to invest in renewable technologies. References: Prestige Renewable Energy1 This article is a...

  8. NorthWinds Renewables | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    NorthWinds Renewables Jump to: navigation, search Name: NorthWinds Renewables Place: Harrison, New York Zip: 10528 Sector: Renewable Energy, Wind energy Product: NorthWinds...

  9. China Renewable Energy College | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Name: China Renewable Energy College Place: Beijing Municipality, China Zip: 102206 Sector: Renewable Energy Product: China's first academic renewable energy College. References:...

  10. American Renewable Fuels | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Fuels Jump to: navigation, search Name: American Renewable Fuels Place: Dallas, Texas Zip: TX 75201 Sector: Renewable Energy Product: Developer of commercial scale renewable fuels...

  11. Advanced Renewables LLC | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    navigation, search Name: Advanced Renewables LLC Place: Philadelphia, Pennsylvania Zip: PA 19118 Sector: Renewable Energy Product: A renewable energy company focused on building a...

  12. Daneco Renewables Spa | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Daneco Renewables Spa Jump to: navigation, search Name: Daneco Renewables Spa Place: Milano, Italy Zip: 20152 Sector: Renewable Energy Product: Subsidiary of Waste Italia Group...

  13. E ON Climate Renewables | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    ON Climate Renewables Jump to: navigation, search Name: E.ON Climate & Renewables Place: Dusseldorf, North Rhine-Westphalia, Germany Sector: Renewable Energy Product:...

  14. EPOD Renewable Utilities Inc | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    EPOD Renewable Utilities Inc Jump to: navigation, search Name: EPOD Renewable Utilities Inc Place: Frankfurt, Germany Sector: Renewable Energy Product: Focused on operating...

  15. Renewable Powertech Inc | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Powertech Inc Jump to: navigation, search Name: Renewable Powertech Inc Place: Las Vegas, Nevada Sector: Efficiency, Renewable Energy Product: Las Vegas-based renewable energy...

  16. International Research Centre for Renewable Energy IFEED | Open...

    Open Energy Information (Open El) [EERE & EIA]

    Renewable Energy IFEED Jump to: navigation, search Name: International Research Centre for Renewable Energy (IFEED) Place: Germany Sector: Renewable Energy Product: Renewable...

  17. NREL Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage & Transportation (Presentation)

    SciTech Connect (OSTI)

    Ramsden, T.; Harrison, K.; Steward, D.

    2009-11-16

    Presentation about NREL's Wind to Hydrogen Project and producing renewable hydrogen for both energy storage and transporation, including the challenges, sustainable pathways, and analysis results.

  18. RENEWABLE ENERGY AND ENVIRONMENTAL SUSTAINABILITY USING BIOMASS FROM DAIRY AND BEEF ANIMAL PRODUCTION

    SciTech Connect (OSTI)

    John M. Sweeten, Kalyan Annamalai Brent Auvermann Saqib Mukhtar Sergio C. Capareda Cady Engler Wyatte Harman J.N. Reddy, Robert DeOtte David B. Parker Dr. B.A. Stewart

    2012-05-03

    The Texas Panhandle is regarded as the 'Cattle Feeding Capital of the World', producing 42% of the fed beef cattle in the United States within a 200-mile radius of Amarillo generating more than 5 million tons of feedlot manure/year. Apart from feedlots, the Bosque River Region in Erath County, just north of Waco, Texas with about 110,000 dairy cattle in over 250 dairies, produces 1.8 million tons of manure biomass (excreted plus bedding) per year. While the feedlot manure has been used extensively for irrigated and dry land crop production, most dairies, as well as other concentrated animal feeding operations (CAFO's), the dairy farms utilize large lagoon areas to store wet animal biomass. Water runoff from these lagoons has been held responsible for the increased concentration of phosphorus and other contaminates in the Bosque River which drains into Lake Waco - the primary source of potable water for Waco's 108,500 people. The concentrated animal feeding operations may lead to land, water, and air pollution if waste handling systems and storage and treatment structures are not properly managed. Manure-based biomass (MBB) has the potential to be a source of green energy at large coal-fired power plants and on smaller-scale combustion systems at or near confined animal feeding operations. Although MBB particularly cattle biomass (CB) is a low quality fuel with an inferior heat value compared to coal and other fossil fuels, the concentration of it at large animal feeding operations can make it a viable source of fuel. The overall objective of this interdisciplinary proposal is to develop environmentally benign technologies to convert low-value inventories of dairy and beef cattle biomass into renewable energy. Current research expands the suite of technologies by which cattle biomass (CB: manure, and premature mortalities) could serve as a renewable alternative to fossil fuel. The work falls into two broad categories of research and development. Category 1

  19. RENEWABLE ENERGY AND ENVIRONMENTAL SUSTAINABILITY USING BIOMASS FROM DAIRY AND BEEF ANIMAL PRODUCTION

    SciTech Connect (OSTI)

    Sweeten, John M; Annamalai, Kalyan; Auvermann, Brent; Mukhtar, Saqib; Capareda, Sergio C.; Engler, Cady; Harman, Wyatte; Reddy, J N; DeOtte, Robert; Parker, David B.; Stewart, B. A.

    2012-05-03

    The Texas Panhandle is regarded as the "Cattle Feeding Capital of the World", producing 42% of the fed beef cattle in the United States within a 200-mile radius of Amarillo generating more than 5 million tons of feedlot manure/year. Apart from feedlots, the Bosque River Region in Erath County, just north of Waco, Texas with about 110,000 dairy cattle in over 250 dairies, produces 1.8 million tons of manure biomass (excreted plus bedding) per year. While the feedlot manure has been used extensively for irrigated and dry land crop production, most dairies, as well as other concentrated animal feeding operations (CAFO's), the dairy farms utilize large lagoon areas to store wet animal biomass. Water runoff from these lagoons has been held responsible for the increased concentration of phosphorus and other contaminates in the Bosque River which drains into Lake Waco -- the primary source of potable water for Waco's 108,500 people. The concentrated animal feeding operations may lead to land, water, and air pollution if waste handling systems and storage and treatment structures are not properly managed. Manure-based biomass (MBB) has the potential to be a source of green energy at large coal-fired power plants and on smaller-scale combustion systems at or near confined animal feeding operations. Although MBB particularly cattle biomass (CB) is a low quality fuel with an inferior heat value compared to coal and other fossil fuels, the concentration of it at large animal feeding operations can make it a viable source of fuel. The overall objective of this interdisciplinary proposal is to develop environmentally benign technologies to convert low-value inventories of dairy and beef cattle biomass into renewable energy. Current research expands the suite of technologies by which cattle biomass (CB: manure, and premature mortalities) could serve as a renewable alternative to fossil fuel. The work falls into two broad categories of research and development. Category 1

  20. RENEWABLE ENERGY AND ENVIRONMENTAL SUSTAINABILITY USING BIOMASS FROM DAIRY AND BEEF ANIMAL PRODUCTION

    SciTech Connect (OSTI)

    Sweeten, John; Annamalai, Kalyan; Auvermann, Brent; Mukhtar, Saqib; Capareda, Sergio C; Engler, Cady; Harman, Wyatte; Reddy, J N; DeOtte, Robert; Parker, David B; Stewart, B A

    2012-05-02

    The Texas Panhandle is regarded as the "Cattle Feeding Capital of the World", producing 42% of the fed beef cattle in the United States within a 200-mile radius of Amarillo generating more than 5 million tons of feedlot manure /year. Apart from feedlots, the Bosque River Region in Erath County, just north of Waco, Texas with about 110,000 dairy cattle in over 250 dairies, produces 1.8 million tons of manure biomass (excreted plus bedding) per year. While the feedlot manure has been used extensively for irrigated and dry land crop production, most dairies, as well as other concentrated animal feeding operations (CAFO's), the dairy farms utilize large lagoon areas to store wet animal biomass. Water runoff from these lagoons has been held responsible for the increased concentration of phosphorus and other contaminates in the Bosque River which drains into Lake Waco—the primary source of potable water for Waco's 108,500 people. The concentrated animal feeding operations may lead to land, water, and air pollution if waste handling systems and storage and treatment structures are not properly managed. Manure-based biomass (MBB) has the potential to be a source of green energy at large coal-fired power plants and on smaller-scale combustion systems at or near confined animal feeding operations. Although MBB particularly cattle biomass (CB) is a low quality fuel with an inferior heat value compared to coal and other fossil fuels, the concentration of it at large animal feeding operations can make it a viable source of fuel. The overall objective of this interdisciplinary proposal is to develop environmentally benign technologies to convert low-value inventories of dairy and beef cattle biomass into renewable energy. Current research expands the suite of technologies by which cattle biomass (CB: manure, and premature mortalities) could serve as a renewable alternative to fossil fuel. The work falls into two broad categories of research and development. Category 1

  1. Anaerobic digestion of paunch in a CSTR for renewable energy production and nutrient mineralization

    SciTech Connect (OSTI)

    Nkemka, Valentine Nkongndem; Marchbank, Douglas H.; Hao, Xiying

    2015-09-15

    Highlights: • Anaerobic digestion and nutrient mineralization of paunch in a CSTR. • Low CH{sub 4} yield and high CH{sub 4} productivity was obtained at an OLR of 2.8 g VS L{sup −1} day{sup −1.} • Post-digestion of the digestate resulted in a CH{sub 4} yield of 0.067 L g{sup −1} VS. • Post-digestion is recommended for further digestate stabilization. - Abstract: A laboratory study investigated the anaerobic digestion of paunch in a continuous stirred tank reactor (CSTR) for the recovery of biogas and mineralization of nutrients. At an organic loading rate (OLR) of 2.8 g VS L{sup −1} day{sup −1} with a 30-day hydraulic retention time (HRT), a CH{sub 4} yield of 0.213 L g{sup −1} VS and CH{sub 4} production rate of 0.600 L L{sup −1} day{sup −1} were obtained. Post-anaerobic digestion of the effluent from the CSTR for 30 days at 40 °C recovered 0.067 L g{sup −1} VS as CH{sub 4}, which was 21% of the batch CH{sub 4} potential. Post-digestion of the effluent from the digestate obtained at this OLR is needed to meet the stable effluent criteria. Furthermore, low levels of soluble ions such as K{sup +}, Ca{sup 2+} and Mg{sup 2+} were found in the liquid fraction of the digestate and the remainder could have been retained in the solid digestate fraction. This study demonstrates the potential of biogas production from paunch in providing renewable energy. In addition, recovery of plant nutrients in the digestate is important for a sustainable agricultural system.

  2. Schoeller Renewables | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Schoeller Renewables Jump to: navigation, search Name: Schoeller Renewables Place: Germany Sector: Solar, Wind energy Product: Germany-based subsidiary of Schoeller Industries that...

  3. Rivertop Renewables | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Jump to: navigation, search Name: Rivertop Renewables Place: Missoula, Montana Zip: P.O. Box 8165 Sector: Renewable Energy Product: Montana based startup focused on creating...

  4. Renewable Connections | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Connections Jump to: navigation, search Name: Renewable Connections Place: london, Greater London, United Kingdom Sector: Renewable Energy, Services Product: London-based...

  5. RENEWABLE ENERGY AND ENVIRONMENTAL SUSTAINABILITY USING BIOMASS FROM DAIRY AND BEEF ANIMAL PRODUCTION

    SciTech Connect (OSTI)

    Kalyan Annamalai, John M. Sweeten, Brent W. Auvermann, Saqib Mukhtar, Sergio Caperada Cady R. Engler, Wyatte Harman Reddy JN Robert Deotte

    2012-05-03

    The Texas Panhandle is regarded as the 'Cattle Feeding Capital of the World', producing 42% of the fed beef cattle in the United States within a 200-mile radius of Amarillo generating more than 5 million tons of feedlot manure/year. Apart from feedlots, the Bosque River Region in Erath County, just north of Waco, Texas with about 110,000 dairy cattle in over 250 dairies, produces 1.8 million tons of manure biomass (excreted plus bedding) per year. While the feedlot manure has been used extensively for irrigated and dry land crop production, most dairies, as well as other concentrated animal feeding operations (CAFO's), the dairy farms utilize large lagoon areas to store wet animal biomass. Water runoff from these lagoons has been held responsible for the increased concentration of phosphorus and other contaminates in the Bosque River which drains into Lake Waco - the primary source of potable water for Waco's 108,500 people. The concentrated animal feeding operations may lead to land, water, and air pollution if waste handling systems and storage and treatment structures are not properly managed. Manure-based biomass (MBB) has the potential to be a source of green energy at large coal-fired power plants and on smaller-scale combustion systems at or near confined animal feeding operations. Although MBB particularly cattle biomass (CB) is a low quality fuel with an inferior heat value compared to coal and other fossil fuels, the concentration of it at large animal feeding operations can make it a viable source of fuel. The overall objective of this interdisciplinary proposal is to develop environmentally benign technologies to convert low-value inventories of dairy and beef cattle biomass into renewable energy. Current research expands the suite of technologies by which cattle biomass (CB: manure, and premature mortalities) could serve as a renewable alternative to fossil fuel. The work falls into two broad categories of research and development. Category 1

  6. Industrial landfill leachate characterization and treatment utilizing anaerobic digestion with methane production

    SciTech Connect (OSTI)

    Corbo, P.

    1985-01-01

    Anaerobic digestion of organic compounds found in an industrial landfill leachate originating from a Superfund site was assessed using mixed methanogenic cultures. Leachate was found to contain a dissolved organic content (DOC) of about 16,000 mg/liter, of which 40% was in the form of acetic, propionic and butyric acids. The overall reduction of DOC and the fates of individual volatile fatty acids were studied during batch experiments of 5, 10, and 20% leachate dilutions. Other leachate components were characterized. Two methanogenic cultures were selected. A leachate digesting culture was selected directly with the leachate. A volatile fatty acid digesting culture was selected using acetic, propionic and butyric acids in the ratio found in the leachate. An overall DOC reduction of 64.3% was observed for the leachate digesting culture. A reduction of 69.1% was observed for the volatile fatty acid digesting culture. Specific DOC utilization rates were 0.154 and 0.211 day/sup -1/, for the leachate digesting and volatile fatty acid digesting cultures, respectively. Methane was produced at levels of 0.95-0.99 liters per gram DOC removed. Cell growth could not be observed during batch experiments. Acetate appeared to be the rate-limiting step in the DOC removal. Batch experiments with 20% leachate dilutions did not produce much methane, possibly due to overloading systems with volatile fatty acids. Other leachate components did not appear to effect anaerobic digestion.

  7. AO13. High energy, low methane syngas from low-rank coals for coal-to-liquids production

    SciTech Connect (OSTI)

    Lucero, Andrew; Goyal, Amit; McCabe, Kevin; Gangwal, Santosh

    2015-06-30

    An experimental program was undertaken to develop and demonstrate novel steam reforming catalysts for converting tars, C2+ hydrocarbons, and methane under high temperature and sulfur environments at lab scale. Several catalysts were developed and synthesized along with some catalysts based on recipes found in the literature. Of these, two had good resistance at 90 ppm H2S with one almost not affected at all. Higher concentrations of H2S did affect methane conversion across the catalyst, but performance was fairly stable for up to 200 hours. Based on the results of the experimental program, a techno-economic analysis was developed for IGCC and CTL applications and compared to DOE reference cases to examine the effects of the new technology. In the IGCC cases, the reformer/POX system produces nearly the same amount of electricity for nearly the same cost, however, the reformers/POX case sequesters a higher percentage of the carbon when compared to IGCC alone. For the CTL case the economics of the new process were nearly identical to the CTL case, but due to improved yields, the greenhouse gas emissions for a given production of fuels was approximately 50% less than the baseline case.

  8. Alaska's renewable energy potential.

    SciTech Connect (OSTI)

    Not Available

    2009-02-01

    This paper delivers a brief survey of renewable energy technologies applicable to Alaska's climate, latitude, geography, and geology. We first identify Alaska's natural renewable energy resources and which renewable energy technologies would be most productive. e survey the current state of renewable energy technologies and research efforts within the U.S. and, where appropriate, internationally. We also present information on the current state of Alaska's renewable energy assets, incentives, and commercial enterprises. Finally, we escribe places where research efforts at Sandia National Laboratories could assist the state of Alaska with its renewable energy technology investment efforts.

  9. Comment on ``Effect of electron temperature on negative hydrogen ion production in a low-pressure Ar discharge plasma with methane`` [Appl. Phys. Lett. 63, 1619 (1993)

    SciTech Connect (OSTI)

    Pinnaduwage, L.A. |

    1995-08-14

    The author proposes a mechanism for the efficient production of negative Hydrogen ions in a low{minus}pressure Ar discharge plasma with methane using a novel pin{minus}hollow cathode as reported in Appl. Phys. Lett. 63, 1619 (1993). (AIP) {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  10. The Promise of Renewable Gaseous Fuels

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    drop-in fuel by 2025 16 Opportunity Areas Use of dedicated energy crops to produce methane Co-production of methane and hydrogen with other products Joint deployment...

  11. Bison Renewable Energy LLC | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Renewable Energy LLC Place: Minneapolis, Minnesota Zip: 55401 Product: Developing biogas production facilities. References: Bison Renewable Energy LLC1 This article is a...

  12. Webinar: "Upgrading Renewable and Sustainable Carbohydrates for...

    Energy Savers

    "Upgrading Renewable and Sustainable Carbohydrates for the Production of High Energy Density Fuels" Webinar: "Upgrading Renewable and Sustainable Carbohydrates for the Production of ...

  13. Crimson Renewable Energy LP | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Crimson Renewable Energy LP Place: Denver, Colorado Zip: 80202 Sector: Biomass, Renewable Energy Product: Focused on biodiesel production and conversion of waste biomass into...

  14. Sorption-Enhanced Synthetic Natural Gas (SNG) Production from Syngas. A Novel Process Combining CO Methanation, Water-Gas Shift, and CO2 Capture

    SciTech Connect (OSTI)

    Lebarbier, Vanessa M.C.; Dagle, Robert A.; Kovarik, Libor; Albrecht, Karl O.; Li, Xiaohong S.; Li, Liyu; Taylor, Charles E.; Bao, Xinhe; Wang, Yong

    2013-07-08

    Synthetic natural gas (SNG) production from syngas is under investigation again due to the desire for less dependency from imports and the opportunity for increasing coal utilization and reducing green house gas emission. CO methanation is highly exothermic and substantial heat is liberated which can lead to process thermal imbalance and deactivation of the catalyst. As a result, conversion per pass is limited and substantial syngas recycle is employed in conventional processes. Furthermore, the conversion of syngas to SNG is typically performed at moderate temperatures (275 to 325°C) to ensure high CH4 yields since this reaction is thermodynamically limited. In this study, the effectiveness of a novel integrated process for the SNG production from syngas at high temperature (i.e. 600°C) was investigated. This integrated process consists of combining a CO methanation nickel-based catalyst with a high temperature CO2 capture sorbent in a single reactor. Integration with CO2 separation eliminates the reverse-water-gas shift and the requirement for a separate water-gas shift (WGS) unit. Easing of thermodynamic constraint offers the opportunity of enhancing yield to CH4 at higher operating temperature (500-700ºC) which also favors methanation kinetics and improves the overall process efficiency due to exploitation of reaction heat at higher temperatures. Furthermore, simultaneous CO2 capture eliminates green house gas emission. In this work, sorption-enhanced CO methanation was demonstrated using a mixture of a 68% CaO/32% MgAl2O4 sorbent and a CO methanation catalyst (Ni/Al2O3, Ni/MgAl2O4, or Ni/SiC) utilizing a syngas ratio (H2/CO) of 1, gas-hour-space velocity (GHSV) of 22 000 hr-1, pressure of 1 bar and a temperature of 600°C. These conditions resulted in ~90% yield to methane, which was maintained until the sorbent

  15. Methane Hydrates

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Special Report: Frozen Heat: A Global Outlook on Methane Hydrates The United Nations Environmental Programme released this new, two-volume report in March 2015. Frozen Heat: A ...

  16. 7.4 Landfill Methane Utilization | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    7.4 Landfill Methane Utilization 7.4 Landfill Methane Utilization A chapter on Landfill Methane Utilization from the Clean Energy Strategies for Local Governments publication. 7.4_landfill_methane_utilization.pdf (484.59 KB) More Documents & Publications CHP and Bioenergy for Landfills and Wastewater Treatment Plants: Market Opportunities Powering Microturbines With Landfill Gas, October 2002 Barriers to CHP with Renewable Portfolio Standards, Draft White Paper, September 2007

  17. Integrated Agent-Based and Production Cost Modeling Framework for Renewable Energy Studies: Preprint

    SciTech Connect (OSTI)

    Gallo, Giulia

    2015-10-07

    The agent-based framework for renewable energy studies (ARES) is an integrated approach that adds an agent-based model of industry actors to PLEXOS and combines the strengths of the two to overcome their individual shortcomings. It can examine existing and novel wholesale electricity markets under high penetrations of renewables. ARES is demonstrated by studying how increasing levels of wind will impact the operations and the exercise of market power of generation companies that exploit an economic withholding strategy. The analysis is carried out on a test system that represents the Electric Reliability Council of Texas energy-only market in the year 2020. The results more realistically reproduce the operations of an energy market under different and increasing penetrations of wind, and ARES can be extended to address pressing issues in current and future wholesale electricity markets.

  18. Davison Circulating Riser (DCR) Capabilities Postcard (Other Marketing Product), NREL (National Renewable Energy Laboratory)

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Vapor Phase Upgrading With NREL's Davison Circulating Riser (DCR) Advancing technologies in biomass conversion to fuels and fuel intermediates NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. DCR System With Custom Biomass Prolyzer Highlights * Custom biomass pyrolyzer provides vapors to the DCR for upgrading to hydrocarbon fuel intermediates * 2 mass balance runs per 8 hrs: 3-6

  19. Methane recovery from animal manures: A current opportunities casebook

    SciTech Connect (OSTI)

    Lusk, P.

    1994-12-01

    One manure management system provides not only pollution prevention but also converts a manure management problem into a new profit center. Economic evaluations and case studies of operating systems indicate that the anaerobic digestion of livestock manures is a commercially-available bioconversion technology with considerable potential for providing profitable co-products including a cost-effective renewable fuel for livestock production operations. This Casebook examines some of the current opportunities for the recovery of methane from the anaerobic digestion of animal manures. The economic evaluations are based on engineering studies of digesters that generate electricity from the recovered methane. Regression models, which can be used to estimate digester cost and internal rate of return, are developed from the evaluations. Finally, anaerobic digestion has considerable potential beyond agribusiness. Examples of digesters currently employed by other industries are provided.

  20. A microbial functional group-based module for simulating methane production and consumption: Application to an incubated permafrost soil

    SciTech Connect (OSTI)

    Xu, Xiaofeng; Elias, Dwayne A.; Graham, David E.; Phelps, Tommy J.; Carroll, Sue L.; Wullschleger, Stan D.; Thornton, Peter E.

    2015-07-23

    In this study, accurately estimating methane (CH4) flux is critically important for investigating and predicting the biogeochemistry-climate feedback. Better simulating CH4 flux requires explicit representations of microbial processes on CH4 dynamics because all processes for CH4 production and consumption are actually carried out by microbes. A microbial functional group based module was developed and tested against an incubation experiment. The module considers four key mechanisms for CH4 production and consumption: methanogenesis from acetate or single-carbon compounds and CH4 oxidation using molecular oxygen or other inorganic electron acceptors. These four processes were carried out by four microbial functional groups: acetoclastic methanogens, hydrogenotrophic methanogens, aerobic methanotrophs, and anaerobic methanotrophs. This module was then linked with the decomposition subroutine of the Community Land Model, and was further used to simulate dynamics of carbon dioxide (CO2) and CH4 concentrations from an incubation experiment with permafrost soils. The results show that the model could capture the dynamics of CO2 and CH4 concentrations in microcosms with top soils, mineral layer soils and permafrost soils under natural and saturated moisture conditions and a temperature gradient of -2°C, 3°C, and 5°C. Sensitivity analysis confirmed the importance of acetic acid's direct contribution as substrate and indirect effects through pH feedback on CO2 and CH4 production and consumption. This study suggests that representing the microbial mechanisms is critical for modeling CH4 production and consumption; it is urgent to incorporate microbial mechanisms into Earth system models for better predicting the behavior of the climate system.

  1. A microbial functional group-based module for simulating methane production and consumption: Application to an incubated permafrost soil

    SciTech Connect (OSTI)

    Xu, Xiaofeng; Elias, Dwayne A.; Graham, David E.; Phelps, Tommy J.; Carroll, Sue L.; Wullschleger, Stan D.; Thornton, Peter E.

    2015-07-23

    In this study, accurately estimating methane (CH4) flux is critically important for investigating and predicting the biogeochemistry-climate feedback. Better simulating CH4 flux requires explicit representations of microbial processes on CH4 dynamics because all processes for CH4 production and consumption are actually carried out by microbes. A microbial functional group based module was developed and tested against an incubation experiment. The module considers four key mechanisms for CH4 production and consumption: methanogenesis from acetate or single-carbon compounds and CH4 oxidation using molecular oxygen or other inorganic electron acceptors. These four processes were carried out by four microbial functional groups: acetoclastic methanogens, hydrogenotrophic methanogens, aerobic methanotrophs, and anaerobic methanotrophs. This module was then linked with the decomposition subroutine of the Community Land Model, and was further used to simulate dynamics of carbon dioxide (CO2) and CH4 concentrations from an incubation experiment with permafrost soils. The results show that the model could capture the dynamics of CO2 and CH4 concentrations in microcosms with top soils, mineral layer soils and permafrost soils under natural and saturated moisture conditions and a temperature gradient of -2C, 3C, and 5C. Sensitivity analysis confirmed the importance of acetic acid's direct contribution as substrate and indirect effects through pH feedback on CO2 and CH4 production and consumption. This study suggests that representing the microbial mechanisms is critical for modeling CH4 production and consumption; it is urgent to incorporate microbial mechanisms into Earth system models for better predicting the behavior of the climate system.

  2. A microbial functional group-based module for simulating methane production and consumption: Application to an incubated permafrost soil

    DOE PAGES-Beta [OSTI]

    Xu, Xiaofeng; Elias, Dwayne A.; Graham, David E.; Phelps, Tommy J.; Carroll, Sue L.; Wullschleger, Stan D.; Thornton, Peter E.

    2015-07-23

    In this study, accurately estimating methane (CH4) flux is critically important for investigating and predicting the biogeochemistry-climate feedback. Better simulating CH4 flux requires explicit representations of microbial processes on CH4 dynamics because all processes for CH4 production and consumption are actually carried out by microbes. A microbial functional group based module was developed and tested against an incubation experiment. The module considers four key mechanisms for CH4 production and consumption: methanogenesis from acetate or single-carbon compounds and CH4 oxidation using molecular oxygen or other inorganic electron acceptors. These four processes were carried out by four microbial functional groups: acetoclastic methanogens,more » hydrogenotrophic methanogens, aerobic methanotrophs, and anaerobic methanotrophs. This module was then linked with the decomposition subroutine of the Community Land Model, and was further used to simulate dynamics of carbon dioxide (CO2) and CH4 concentrations from an incubation experiment with permafrost soils. The results show that the model could capture the dynamics of CO2 and CH4 concentrations in microcosms with top soils, mineral layer soils and permafrost soils under natural and saturated moisture conditions and a temperature gradient of -2°C, 3°C, and 5°C. Sensitivity analysis confirmed the importance of acetic acid's direct contribution as substrate and indirect effects through pH feedback on CO2 and CH4 production and consumption. This study suggests that representing the microbial mechanisms is critical for modeling CH4 production and consumption; it is urgent to incorporate microbial mechanisms into Earth system models for better predicting the behavior of the climate system.« less

  3. Texas--RRC District 5 Coalbed Methane Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update

    Production (Billion Cubic Feet) Texas--RRC District 4 onsh Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 5 2010's 26 154 305 316 381 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Shale Natural Gas Estimated Production TX, RRC District 4 Onshore Shale Gas Proved

  4. Texas--RRC District 6 Coalbed Methane Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update

    Shale Production (Billion Cubic Feet) Texas--RRC District 5 Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 437 769 954 2010's 1,053 1,266 1,256 1,128 1,022 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Shale Natural Gas Estimated Production TX, RRC District 5 Shale Gas

  5. Texas--RRC District 7B Coalbed Methane Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update

    Shale Production (Billion Cubic Feet) Texas--RRC District 6 Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 3 28 2010's 219 382 486 409 270 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Shale Natural Gas Estimated Production TX, RRC District 6 Shale Gas Proved Reserves,

  6. Texas--RRC District 7C Coalbed Methane Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update

    Shale Production (Billion Cubic Feet) Texas--RRC District 7B Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 90 141 145 2010's 140 184 258 218 165 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Shale Natural Gas Estimated Production TX, RRC District 7B Shale Gas Proved

  7. Texas--RRC District 8 Coalbed Methane Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update

    Shale Production (Billion Cubic Feet) Texas--RRC District 7C Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 0 0 2 13 111 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Shale Natural Gas Estimated Production TX, RRC District 7C Shale Gas Proved Reserves, Reserves Changes, and

  8. Texas--RRC District 8A Coalbed Methane Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update

    Shale Production (Billion Cubic Feet) Texas--RRC District 8 Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1 4 3 2010's 7 5 22 62 78 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Shale Natural Gas Estimated Production TX, RRC District 8 Shale Gas Proved Reserves, Reserves

  9. Texas--RRC District 9 Coalbed Methane Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update

    Shale Production (Billion Cubic Feet) Texas--RRC District 8A Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 0 0 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Shale Natural Gas Estimated Production TX, RRC District 8A Shale Gas Proved Reserves, Reserves Changes, and

  10. Coal-Derived Warm Syngas Purification and CO2 Capture-Assisted Methane Production

    SciTech Connect (OSTI)

    Dagle, Robert A.; King, David L.; Li, Xiaohong S.; Xing, Rong; Spies, Kurt A.; Zhu, Yunhua; Rainbolt, James E.; Li, Liyu; Braunberger, B.

    2014-10-01

    Gasifier-derived syngas from coal has many applications in the area of catalytic transformation to fuels and chemicals. Raw syngas must be treated to remove a number of impurities that would otherwise poison the synthesis catalysts. Inorganic impurities include alkali salts, chloride, sulfur compounds, heavy metals, ammonia, and various P, As, Sb, and Se- containing compounds. Systems comprising multiple sorbent and catalytic beds have been developed for the removal of impurities from gasified coal using a warm cleanup approach. This approach has the potential to be more economic than the currently available acid gas removal (AGR) approaches and improves upon currently available processes that do not provide the level of impurity removal that is required for catalytic synthesis application. Gasification also lends itself much more readily to the capture of CO2, important in the regulation and control of greenhouse gas emissions. CO2 capture material was developed and in this study was demonstrated to assist in methane production from the purified syngas. Simultaneous CO2 sorption enhances the CO methanation reaction through relaxation of thermodynamic constraint, thus providing economic benefit rather than simply consisting of an add-on cost for carbon capture and release. Molten and pre-molten LiNaKCO3 can promote MgO and MgO-based double salts to capture CO2 with high cycling capacity. A stable cycling CO2 capacity up to 13 mmol/g was demonstrated. This capture material was specifically developed in this study to operate in the same temperature range and therefore integrate effectively with warm gas cleanup and methane synthesis. By combining syngas methanation, water-gas-shift, and CO2 sorption in a single reactor, single pass yield to methane of 99% was demonstrated at 10 bar and 330°C when using a 20 wt% Ni/MgAl2O4 catalyst and a molten-phase promoted Mg

  11. Characterization of Methane Degradation and Methane-Degrading Microbes in Alaska Coastal Water

    SciTech Connect (OSTI)

    Kirchman, David L.

    2012-03-29

    The net flux of methane from methane hydrates and other sources to the atmosphere depends on methane degradation as well as methane production and release from geological sources. The goal of this project was to examine methane-degrading archaea and organic carbon oxidizing bacteria in methane-rich and methane-poor sediments of the Beaufort Sea, Alaska. The Beaufort Sea system was sampled as part of a multi-disciplinary expedition (Methane in the Arctic Shelf or MIDAS) in September 2009. Microbial communities were examined by quantitative PCR analyses of 16S rRNA genes and key methane degradation genes (pmoA and mcrA involved in aerobic and anaerobic methane degradation, respectively), tag pyrosequencing of 16S rRNA genes to determine the taxonomic make up of microbes in these sediments, and sequencing of all microbial genes (metagenomes ). The taxonomic and functional make-up of the microbial communities varied with methane concentrations, with some data suggesting higher abundances of potential methane-oxidizing archaea in methane-rich sediments. Sequence analysis of PCR amplicons revealed that most of the mcrA genes were from the ANME-2 group of methane oxidizers. According to metagenomic data, genes involved in methane degradation and other degradation pathways changed with sediment depth along with sulfate and methane concentrations. Most importantly, sulfate reduction genes decreased with depth while the anaerobic methane degradation gene (mcrA) increased along with methane concentrations. The number of potential methane degradation genes (mcrA) was low and inconsistent with other data indicating the large impact of methane on these sediments. The data can be reconciled if a small number of potential methane-oxidizing archaea mediates a large flux of carbon in these sediments. Our study is the first to report metagenomic data from sediments dominated by ANME-2 archaea and is one of the few to examine the entire microbial assemblage potentially involved in

  12. Production Tax Credit for Renewable Electricity Generation (released in AEO2005)

    Reports and Publications

    2005-01-01

    In the late 1970s and early 1980s, environmental and energy security concerns were addressed at the federal level by several key pieces of energy legislation. Among them, the Public Utility Regulatory Policies Act of 1978 (PURPA), P.L. 95-617, required regulated power utilities to purchase alternative electricity generation from qualified generating facilities, including small-scale renewable generators; and the Investment Tax Credit (ITC), P.L. 95-618, part of the Energy Tax Act of 1978, provided a 10% federal tax credit on new investment in capital-intensive wind and solar generation technologies.

  13. Peterborough Renewable Energy Ltd PREL | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Peterborough Renewable Energy Ltd PREL Jump to: navigation, search Name: Peterborough Renewable Energy Ltd. (PREL) Place: United Kingdom Sector: Renewable Energy Product:...

  14. RENERCO Renewable Energy Concepts AG | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    RENERCO Renewable Energy Concepts AG Jump to: navigation, search Name: RENERCO Renewable Energy Concepts AG Place: Munich, Germany Zip: D-80336 Sector: Renewable Energy Product:...

  15. World Renewable Energy Network WREN | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Renewable Energy Network WREN Jump to: navigation, search Name: World Renewable Energy Network (WREN) Place: Brighton, United Kingdom Zip: BN2 1YH Sector: Renewable Energy Product:...

  16. NUON Renewable Energy Business Unit | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    NUON Renewable Energy Business Unit Jump to: navigation, search Name: NUON Renewable Energy Business Unit Place: Arnhem, Netherlands Zip: 6800 EZ Sector: Renewable Energy Product:...

  17. Mulilo Renewable Energy Pty Ltd | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Mulilo Renewable Energy Pty Ltd Jump to: navigation, search Name: Mulilo Renewable Energy Pty (Ltd) Place: Cape Town, South Africa Zip: 7525 Sector: Renewable Energy Product: Cape...

  18. Interstate Renewable Energy Council IREC | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Renewable Energy Council IREC Jump to: navigation, search Name: Interstate Renewable Energy Council (IREC) Place: Latham, New York Zip: 12110-1156 Sector: Renewable Energy Product:...

  19. Midwest Renewable Energy Credits LLC | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Credits LLC Jump to: navigation, search Name: Midwest Renewable Energy Credits LLC Place: Florida Sector: Renewable Energy Product: MRE Credits markets renewable energy credits to...

  20. World Council for Renewable Energy | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    for Renewable Energy Jump to: navigation, search Name: World Council for Renewable Energy Place: Bonn, North Rhine-Westphalia, Germany Zip: 53113 Sector: Renewable Energy Product:...

  1. RenewableEnergyStocks com | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Place: Washington State Sector: Renewable Energy Product: Investor and industry portal for the renewable energy sector. References: RenewableEnergyStocks.com1 This article...

  2. NordEnergie Renewables A S | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Renewables AS Place: Copenhagen, Denmark Zip: DK 1265 Sector: Renewable Energy, Solar, Wind energy Product: Copenhagen-based renewable energy project developer focused on wind and...

  3. Bro Dyfi Community Renewables Ltd | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Dyfi Community Renewables Ltd Place: Bro Dyfi, Wales, United Kingdom Sector: Renewable Energy, Wind energy Product: Bro Dyfi Community Renewables Ltd was formed in 2001 to create...

  4. UK Centre for Marine Renewable Energy | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Centre for Marine Renewable Energy Jump to: navigation, search Name: UK Centre for Marine Renewable Energy Place: United Kingdom Sector: Renewable Energy Product: UK Centre for...

  5. NextLight Renewable Power LLC | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    NextLight Renewable Power LLC Jump to: navigation, search Name: NextLight Renewable Power LLC Place: San Francisco, California Zip: 94111 Sector: Renewable Energy Product:...

  6. TowPath Renewable Ventures | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    TowPath Renewable Ventures Jump to: navigation, search Name: TowPath Renewable Ventures Place: Washington, Washington, DC Zip: 20007 Sector: Renewable Energy Product: TowPath...

  7. Conergy Renewable Services GmbH | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Renewable Services GmbH Jump to: navigation, search Name: Conergy Renewable Services GmbH Place: Hamburg, Germany Zip: 20537 Sector: Renewable Energy, Services Product: Provides...

  8. Renewable Energy

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ... Social Twitter Google + Vimeo Newsletter Signup SlideShare Renewable Energy HomeRenewable Energy Raspberry Pi (RPI) device used to monitor a PV array Permalink Gallery Fault ...

  9. Renewable Energy

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ... Social Twitter Google + Vimeo Newsletter Signup SlideShare Renewable Energy HomeRenewable Energy Matt Reno and Robert Broderick attend IEEE 2016 Permalink Gallery Sandia Labs ...

  10. Renewable Energy

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ... Social Twitter Google + Vimeo Newsletter Signup SlideShare Renewable Energy HomeRenewable Energy Sandia's 117-scale WEC device with being tested in the maneuvering and ...

  11. ARM - Methane Background Information

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    WarmingMethane Background Information Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Methane Background Information What is Methane? Why Do We Use Methane? How is Methane Made? Where Do We Find Methane? Can Methane Be Dangerous? Does Methane Contribute to Climate Change? What is Methane?

  12. Methane Recovery from Animal Manures The Current Opportunities Casebook

    SciTech Connect (OSTI)

    Lusk, P.

    1998-09-22

    Growth and concentration of the livestock industry create opportunities for the proper disposal of the large quantities of manures generated at dairy, swine, and poultry farms. Pollutants from unmanaged livestock wastes can degrade the environment, and methane emitted from decomposing manure may contribute to global climate change. One management system not only helps prevent pollution but can also convert a manure problem into a new profit center. Economic evaluations and case studies of operating systems indicate that the anaerobic digestion of livestock manures is a commercially viable conversion technology with considerable potential for providing profitable coproducts, including a cost-effective renewable fuel for livestock production operations. This casebook examines some of the current opportunities for recovering methane from anaerobic digestion animal manures.

  13. RDC Falck Renewables JV | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    JV Place: United Kingdom Sector: Renewable Energy, Wind energy Product: RDC created a joint venture with Falck Renewables Ltd (FRL) to develop a portfolio of wind energy...

  14. Pathfinder Renewable Wind Energy | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Pathfinder Renewable Wind Energy Jump to: navigation, search Name: Pathfinder Renewable Wind Energy Place: Casper, Wyoming Zip: 82601 Sector: Wind energy Product: Wyoming-based...

  15. Crown Renewable Energy LLC | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Renewable Energy LLC Jump to: navigation, search Name: Crown Renewable Energy LLC Place: Union City, California Zip: 94587 Product: Buys monosilicon PV cells from JingAo....

  16. Countryside Renewable Energy | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Countryside Renewable Energy Jump to: navigation, search Name: Countryside Renewable Energy Place: Iowa Product: Iowa-based company that plans to take a stake in a number of...

  17. Distomo Renewable Energy SA | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Distomo Renewable Energy SA Jump to: navigation, search Name: Distomo Renewable Energy SA Place: Greece Zip: 32005 Product: Aiming to develop PV projects in Greece. References:...

  18. Homeland Renewable Energy LLC | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Homeland Renewable Energy LLC Jump to: navigation, search Name: Homeland Renewable Energy LLC Place: Langhorne, Pennsylvania Zip: 19047 Product: Holding company for Fibrowatt LLC...

  19. Alderney Renewable Energy ARE | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Alderney Renewable Energy ARE Jump to: navigation, search Name: Alderney Renewable Energy (ARE) Place: Alderney, Channel Islands, United Kingdom Zip: GY9 3XY Product: AREl develops...

  20. Sphere Renewable Energy Corp | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Sphere Renewable Energy Corp Jump to: navigation, search Name: Sphere Renewable Energy Corp Place: California Product: California-based polysilicon technology company which has...

  1. Alpha Renewable Energy | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Renewable Energy Jump to: navigation, search Name: Alpha Renewable Energy Place: Atlanta, Georgia Sector: Biomass Product: Manufacturer of biomass wood gas stoves and standalone...

  2. Renewable Fuels Assocation | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    DC Zip: 20001 Sector: Renewable Energy Product: US national trade association for the ethanol industry, the Renewable Fuels Association (RFA) has been working as the "Voice of the...

  3. Clear Wind Renewable Power | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Wind Renewable Power Jump to: navigation, search Name: Clear Wind Renewable Power Place: Minneapolis, Minnesota Zip: 55416 Sector: Wind energy Product: Clear Wind focuses its...

  4. Neptune Renewable Energy | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    search Name: Neptune Renewable Energy Place: United Kingdom Zip: HU14 3JP Product: Tidal project developer. References: Neptune Renewable Energy1 This article is a stub. You...

  5. Tersus Asian Renewables | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    energy Product: Tersus Asian Renewables is focusing on investments in wind, biomass and clean coal, principally in China and India. References: Tersus Asian Renewables1 This...

  6. Renewable Energy Partnerships Ltd | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Partnerships Ltd Jump to: navigation, search Name: Renewable Energy Partnerships Ltd Place: Wiltshire, England, United Kingdom Zip: SN13 9TZ Sector: Renewable Energy Product:...

  7. German Renewable Energy Federation | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Federation Jump to: navigation, search Name: German Renewable Energy Federation Place: Paderborn, Germany Zip: 33100 Sector: Renewable Energy Product: Paderborn-based pressure...

  8. Eolian Renewable Energy LLC | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Eolian Renewable Energy LLC Jump to: navigation, search Name: Eolian Renewable Energy LLC Place: Portsmouth, New Hampshire Zip: 3801 Sector: Solar, Wind energy Product: New...

  9. Gigha Renewable Energy Ltd | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Gigha Renewable Energy Ltd Jump to: navigation, search Name: Gigha Renewable Energy Ltd Place: Isle of Gigha, Scotland, United Kingdom Sector: Wind energy Product: Developer of the...

  10. Lincoln Renewable Energy LLC | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Renewable Energy LLC Jump to: navigation, search Name: Lincoln Renewable Energy LLC Place: Chicago, Illinois Zip: 60606 Sector: Solar, Wind energy Product: Chicago-based company...

  11. American Renewable Energy | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Energy Jump to: navigation, search Name: American Renewable Energy Place: Evanston, Illinois Zip: 60202 Sector: Geothermal energy, Renewable Energy, Solar Product: American...

  12. Jefferson Renewable Energy | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Renewable Energy Jump to: navigation, search Name: Jefferson Renewable Energy Place: Warwick, Rhode Island Zip: 2886 Product: Rhode Island-based waste-to-energy and biofuel project...

  13. Abundant Renewable Energy ARE | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Abundant Renewable Energy ARE Jump to: navigation, search Name: Abundant Renewable Energy (ARE) Place: Newberg, Oregon Zip: 97132 Sector: Solar, Wind energy Product: Oregon-based...

  14. Midwest Renewable Energy Corporation | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Corporation Jump to: navigation, search Name: Midwest Renewable Energy Corporation Place: Joice, Iowa Zip: Iowa 50446 Sector: Renewable Energy, Wind energy Product: Midwest...

  15. Renewable Energy Holdings Plc | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Plc Jump to: navigation, search Name: Renewable Energy Holdings Plc Place: Greater London, United Kingdom Sector: Renewable Energy Product: Investment vehicle for proven and...

  16. Grasslands Renewable Energy LLC | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Grasslands Renewable Energy LLC Jump to: navigation, search Name: Grasslands Renewable Energy LLC Place: Bozeman, Montana Zip: 59715 Sector: Wind energy Product: Montana-based...

  17. PNE Renewable Solutions JV | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    PNE Renewable Solutions JV Jump to: navigation, search Name: PNE & Renewable Solutions JV Place: Delaware Sector: Wind energy Product: Delaware-based limited liability company and...

  18. Liberty Green Renewables LLC | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Green Renewables LLC Jump to: navigation, search Name: Liberty Green Renewables, LLC Place: Georgetown, Indiana Zip: 47122 Sector: Biomass Product: Biomass power plant developer...

  19. Renewed World Energies | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Renewed World Energies Jump to: navigation, search Name: Renewed World Energies Place: Georgetown, South Carolina Zip: 29440 Product: South Carolina-based closed loop...

  20. Solar Renewable Energy Certificates Program (SRECs)

    Energy.gov [DOE]

    Solar Renewable Energy Certificates (SRECs) represent the renewable attributes of solar generation, bundled in minimum denominations of one megawatt-hour (MWh) of production. The legislation...

  1. WIP Renewable Energies | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    WIP Renewable Energies Jump to: navigation, search Name: WIP - Renewable Energies Place: Mnchen, Bavaria, Germany Zip: 81369 Product: Consultancy collaborating in R&D and...

  2. Renewable NRG LLC | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    search Name: Renewable NRG LLC Place: Woodstock, New York Zip: 12498 Product: Small manufacturing company located in New York. References: Renewable NRG LLC1 This article is a...

  3. American Renewables LLC | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Renewables LLC Jump to: navigation, search Name: American Renewables LLC Place: Boston, Massachusetts Sector: Biomass Product: US developer of biomass-fueled power generating...

  4. US Renewables Group USRG | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Group USRG Jump to: navigation, search Name: US Renewables Group (USRG) Place: West Santa Monica, California Zip: 90404 Sector: Biofuels, Renewable Energy Product: Santa...

  5. Calgren Renewable Fuels LLC | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Renewable Fuels LLC Place: Newport Beach, California Zip: 92660 Product: Developer of bio-ethanol plants in US, particularly California. References: Calgren Renewable Fuels...

  6. Renewable Fuels Consulting | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Consulting Jump to: navigation, search Name: Renewable Fuels Consulting Place: Mason City, Iowa Sector: Renewable Energy Product: RFC specializes in providing technical solutions...

  7. British Energy Renewables | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Energy, Wind energy Product: Renewables division of British Energy. Involved in the Lewis Wind Farm project. References: British Energy Renewables1 This article is a stub....

  8. Technical and Economic Evaluation of Macroalgae Cultivation for Fuel Production (Draft)

    SciTech Connect (OSTI)

    Feinberg, D. A.; Hock, S. M.

    1985-04-01

    The potential of macroalgae as sources of renewable liquid and gaseous fuels is evaluated. A series of options for production of macroalgae feedstock is considered. Because of their high carbohydrate content, the fuel products for which macroalgae are most suitable are methane and ethanol. Fuel product costs were compared with projected fuel costs in the year 1995.

  9. Renewal Application

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Renewal Individual Permit Renewal Application The Permit expires March 31, 2014 and existing permit conditions will be in effect until a new permit is issued. The Permittees submitted a renewal application to EPA on March 27, 2014. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email Individual Permit Renewal Application February 10, 2015 NPDES Permit No. NM0030759, Supplemental Information for Permit Renewal Application

  10. Demonstration of Isothermal Compressed Air Energy Storage to Support Renewable Energy Production

    SciTech Connect (OSTI)

    Bollinger, Benjamin

    2015-01-02

    This project develops and demonstrates a megawatt (MW)-scale Energy Storage System that employs compressed air as the storage medium. An isothermal compressed air energy storage (ICAESTM) system rated for 1 MW or more will be demonstrated in a full-scale prototype unit. Breakthrough cost-effectiveness will be achieved through the use of proprietary methods for isothermal gas cycling and staged gas expansion implemented using industrially mature, readily-available components.The ICAES approach uses an electrically driven mechanical system to raise air to high pressure for storage in low-cost pressure vessels, pipeline, or lined-rock cavern (LRC). This air is later expanded through the same mechanical system to drive the electric motor as a generator. The approach incorporates two key efficiency-enhancing innovations: (1) isothermal (constant temperature) gas cycling, which is achieved by mixing liquid with air (via spray or foam) to exchange heat with air undergoing compression or expansion; and (2) a novel, staged gas-expansion scheme that allows the drivetrain to operate at constant power while still allowing the stored gas to work over its entire pressure range. The ICAES system will be scalable, non-toxic, and cost-effective, making it suitable for firming renewables and for other grid applications.

  11. Kun Renewables | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Kun Renewables Jump to: navigation, search Name: Kun Renewables Place: Kazakhstan Product: Plans to build a 2,500 tonne polysilicon plant in Kazakhstan, with the backing of the...

  12. Methane for Power Generation in Muaro Jambi: A Green Prosperity Model Project

    SciTech Connect (OSTI)

    Moriarty, K.; Elchinger, M.; Hill, G.; Katz, J.; Barnett, J.

    2014-07-01

    NREL conducted eight model projects for Millennium Challenge Corporation's (MCC) Compact with Indonesia. Green Prosperity, the largest project of the Compact, seeks to address critical constraints to economic growth while supporting the Government of Indonesia's commitment to a more sustainable, less carbon-intensive future. This study evaluates electricity generation from the organic content of wastewater at a palm oil mill in Muaro Jambi, Sumatra. Palm mills use vast amounts of water in the production process resulting in problematic waste water called palm oil mill effluent (POME). The POME releases methane to the atmosphere in open ponds which could be covered to capture the methane to produce renewable electricity for rural villages. The study uses average Indonesia data to determine the economic viability of methane capture at a palm oil mill and also evaluates technology as well as social and environmental impacts of the project.

  13. Fred Olsen Renewables Ltd | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Fred Olsen Renewables Ltd Jump to: navigation, search Name: Fred. Olsen Renewables Ltd Place: London, Greater London, United Kingdom Zip: SW1V 1AU Sector: Renewable Energy Product:...

  14. Bio Renewables Group | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Renewables Group Jump to: navigation, search Name: Bio-Renewables Group Place: United Kingdom Zip: CB6 2BA Sector: Biomass, Renewable Energy Product: Specialist in bio-energy...

  15. Tax Credits for Home Energy Improvements: If You Buy an Energy-Efficient Product or Renewable Energy System for Your Home, You May be Eligible for a Federal Tax Credit (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-05-01

    This two-page fact sheet provides an overview of 2010 federal tax credits for energy efficient products or renewable energy systems in the home.

  16. Methane generation from animal wastes

    SciTech Connect (OSTI)

    Fulton, E.L.

    1980-06-01

    The conversion of manure to biogas via anaerobic digestion is described. The effluent resulting from the conversion retains fertilizer value and is environmentally acceptable. Discussion is presented under the headings: methane formation in the digester; the Tarleton State Poultry Waste to Methane production system; operating experience at Tarleton State; economics of biogas production from poultry waste; construction cost and biogas value; energy uses; feed and waste processing; and advantages of anaerobic digestion. (DMC)

  17. Coal mine methane global review

    SciTech Connect (OSTI)

    2008-07-01

    This is the second edition of the Coal Mine Methane Global Overview, updated in the summer of 2008. This document contains individual, comprehensive profiles that characterize the coal and coal mine methane sectors of 33 countries - 22 methane to market partners and an additional 11 coal-producing nations. The executive summary provides summary tables that include statistics on coal reserves, coal production, methane emissions, and CMM projects activity. An International Coal Mine Methane Projects Database accompanies this overview. It contains more detailed and comprehensive information on over two hundred CMM recovery and utilization projects around the world. Project information in the database is updated regularly. This document will be updated annually. Suggestions for updates and revisions can be submitted to the Administrative Support Group and will be incorporate into the document as appropriate.

  18. Renewable Hydrogen Potential from Biogas in the United States

    SciTech Connect (OSTI)

    Saur, G.; Milbrandt, A.

    2014-07-01

    This analysis updates and expands upon previous biogas studies to include total potential and net availability of methane in raw biogas with respect to competing demands and includes a resource assessment of four sources of biogas: (1) wastewater treatment plants, including domestic and a new assessment of industrial sources; (2) landfills; (3) animal manure; and (4) a new assessment of industrial, institutional, and commercial sources. The results of the biogas resource assessment are used to estimate the potential production of renewable hydrogen from biogas as well as the fuel cell electric vehicles that the produced hydrogen might support.

  19. Coalbed Methane Estimated Production

    Gasoline and Diesel Fuel Update

    1,966 1,914 1,886 1,763 1,655 1,466 1989-2013 Federal Offshore U.S. 0 0 0 0 0 0 2005-2013 Pacific (California) 0 0 0 0 0 0 2005-2013 Gulf of Mexico (Louisiana & Alabama) 0 0 0 0 0...

  20. Coalbed Methane Estimated Production

    U.S. Energy Information Administration (EIA) (indexed site)

    1,914 1,886 1,763 1,655 1,466 1,404 1989-2014 Federal Offshore U.S. 0 0 0 0 0 0 2005-2014 Pacific (California) 0 0 0 0 0 0 2005-2014 Gulf of Mexico (Louisiana & Alabama) 0 0 0 0 0 0 2005-2014 Gulf of Mexico (Texas) 0 0 0 0 0 0 2005-2014 Alaska 0 0 0 0 0 0 2005-2014 Lower 48 States 1,914 1,886 1,763 1,655 1,466 1,404 2005-2014 Alabama 105 102 98 91 62 78 1989-2014 Arkansas 3 3 4 2 2 2 2005-2014 California 0 0 0 0 0 0 2005-2014 Coastal Region Onshore 0 0 0 0 0 0 2005-2014 Los Angeles Basin

  1. 8KU Renewables GmbH | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    KU Renewables GmbH Jump to: navigation, search Name: 8KU Renewables GmbH Place: Berlin, Germany Zip: 10117 Sector: Renewable Energy Product: Berlin-based start-up renewables...

  2. Methane sources and emissions in Italy

    SciTech Connect (OSTI)

    Guidotti, G.R.; Castagnola, A.M.

    1994-12-31

    Methane emissions in Italy were assessed in the framework of the measures taken to follow out the commitments undertaken at the 1992 U.N. Conference for Environment and Development. Methane emissions of anthropic origin were estimated to be in the range of 1.6 to 2.3 million ton of methane per year. Some of these methane sources (natural gas production, transmission and distribution; rice paddies; managed livestock enteric fermentation and waste; solid waste landfills) are given here particular care as they mainly contribute to the total methane emission budget.

  3. Direct Aromaization of Methane

    SciTech Connect (OSTI)

    George Marcelin

    1997-01-15

    The thermal decomposition of methane offers significant potential as a means of producing higher unsaturated and aromatic hydrocarbons when the extent of reaction is limited. Work in the literature previous to this project had shown that cooling the product and reacting gases as the reaction proceeds would significantly reduce or eliminate the formation of solid carbon or heavier (Clo+) materials. This project studied the effect and optimization of the quenching process as a means of increasing the amount of value added products during the pyrolysis of methane. A reactor was designed to rapidly quench the free-radical combustion reaction so as to maximize the yield of aromatics. The use of free-radical generators and catalysts were studied as a means of lowering the reaction temperature. A lower reaction temperature would have the benefits of more rapid quenching as well as a more feasible commercial process due to savings realized in energy and material of construction costs. It was the goal of the project to identify promising routes from methane to higher hydrocarbons based on the pyrolysis of methane.

  4. Effects of matrix shrinkage and swelling on the economics of enhanced-coalbed-methane production and CO{sub 2} sequestration in coal

    SciTech Connect (OSTI)

    Gorucu, F.B.; Jikich, S.A.; Bromhal, G.S.; Sams, W.N.; Ertekin, T.; Smith, D.H.

    2007-08-15

    In this work, the Palmer-Mansoori model for coal shrinkage and permeability increases during primary methane production was rewritten to also account for coal swelling caused by CO{sub 2} sorption. The generalized model was added to a compositional, dual porosity coalbed-methane reservoir simulator for primary (CBM) and ECBM production. A standard five-spot of vertical wells and representative coal properties for Appalachian coals was used. Simulations and sensitivity analyses were performed with the modified simulator for nine different parameters, including coal seam and operational parameters and economic criteria. The coal properties and operating parameters that were varied included Young's modulus, Poisson's ratio, cleat porosity, and injection pressure. The economic variables included CH{sub 4}, price, Col Cost, CO{sub 2} credit, water disposal cost, and interest rate. Net-present value (NPV) analyses of the simulation results included profits resulting from CH{sub 4}, production and potential incentives for sequestered CO{sub 2}, This work shows that for some coal seams, the combination of compressibility, cleat porosity, and shrinkage/swelling of the coal may have a significant impact on project economics.

  5. Production of Hydrogen for Clean and Renewable Source of Energy for Fuel Cell Vehicles

    SciTech Connect (OSTI)

    Deng, Xunming; Ingler, William B, Jr.; Abraham, Martin; Castellano, Felix; Coleman, Maria; Collins, Robert; Compaan, Alvin; Giolando, Dean; Jayatissa, Ahalapitiya. H.; Stuart, Thomas; Vonderembse, Mark

    2008-10-31

    This was a two-year project that had two major components: 1) the demonstration of a PV-electrolysis system that has separate PV system and electrolysis unit and the hydrogen generated is to be used to power a fuel cell based vehicle; 2) the development of technologies for generation of hydrogen through photoelectrochemical process and bio-mass derived resources. Development under this project could lead to the achievement of DOE technical target related to PEC hydrogen production at low cost. The PEC part of the project is focused on the development of photoelectrochemical hydrogen generation devices and systems using thin-film silicon based solar cells. Two approaches are taken for the development of efficient and durable photoelectrochemical cells; 1) An immersion-type photoelectrochemical cells (Task 3) where the photoelectrode is immersed in electrolyte, and 2) A substrate-type photoelectrochemical cell (Task 2) where the photoelectrode is not in direct contact with electrolyte. Four tasks are being carried out: Task 1: Design and analysis of DC voltage regulation system for direct PV-to-electrolyzer power feed Task 2: Development of advanced materials for substrate-type PEC cells Task 3: Development of advanced materials for immersion-type PEC cells Task 4: Hydrogen production through conversion of biomass-derived wastes

  6. Direct production of hydrogen and aromatics from methane or natural gas: Review of recent U.S. patents

    SciTech Connect (OSTI)

    Lucia M. Petkovic; Daniel M. Ginosar

    2012-03-01

    Since the year 2000, the United States Patent and Trademark Office (USPTO) has granted a dozen patents for inventions related to methane dehydroaromatization processes. One of them was granted to UOP LLC (Des Plaines). It relates to a catalyst composition and preparation method. Two patents were granted to Conoco Phillips Company (Houston, TX). One was aimed at securing a process and operating conditions for methane aromatization. The other was aimed at securing a process that may be integrated with separation of wellhead fluids and blending of the aromatics produced from the gas with the crude. Nine patents were granted to ExxonMobil Chemical Patents Inc. (Houston, TX). Most of these were aimed at securing a dehydroaromatization process where methane-containing feedstock moves counter currently to a particulate catalyst. The coked catalyst is heated or regenerated either in the reactor, by cyclic operation, or in annex equipment, and returned to the reactor. The reactor effluent stream may be separated in its main components and used or recycled as needed. A brief summary of those inventions is presented in this review.

  7. Renewable Portfolio Standards Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Renewable Portfolio Standards Resources Renewable Portfolio Standards Resources An RPS is a regulatory method mandating utility companies operating within a certain jurisdiction to increase production of energy from renewable sources such as wind, solar, biomass and other alternatives to fossil and nuclear electric generation. It's also known as a renewable electricity standard. Find renewable portfolio standards resources below. DOE Resource Renewable Portfolio Standards: A Factual Introduction

  8. Energy Department Policy on Acquiring Tribal Renewable Energy...

    Office of Environmental Management (EM)

    Energy Department Policy on Acquiring Tribal Renewable Energy Products Energy Department Policy on Acquiring Tribal Renewable Energy Products As part of the Department of Energy's ...

  9. Determination of biogas generation potential as a renewable energy source from supermarket wastes

    SciTech Connect (OSTI)

    Alkanok, Gizem; Demirel, Burak Onay, Turgut T.

    2014-01-15

    Highlights: • Disposal of supermarket wastes in landfills may contribute to environmental pollution. • High methane yields can be obtained from supermarket wastes by anaerobic co-digestion. • Fruit and vegetable wastes or dairy products wastes could individually be handled by a two-stage anaerobic process. • Buffering capacity, trace metal and C/N ratio are essential for digestion of supermarket wastes. - Abstract: Fruit, vegetable, flower waste (FVFW), dairy products waste (DPW), meat waste (MW) and sugar waste (SW) obtained from a supermarket chain were anaerobically digested, in order to recover methane as a source of renewable energy. Batch mesophilic anaerobic reactors were run at total solids (TS) ratios of 5%, 8% and 10%. The highest methane yield of 0.44 L CH{sub 4}/g VS{sub added} was obtained from anaerobic digestion of wastes (FVFW + DPW + MW + SW) at 10% TS, with 66.4% of methane (CH{sub 4}) composition in biogas. Anaerobic digestion of mixed wastes at 5% and 8% TS provided slightly lower methane yields of 0.41 and 0.40 L CH{sub 4}/g VS{sub added}, respectively. When the wastes were digested alone without co-substrate addition, the highest methane yield of 0.40 L CH{sub 4}/g VS{sub added} was obtained from FVFW at 5% TS. Generally, although the volatile solids (VS) conversion percentages seemed low during the experiments, higher methane yields could be obtained from anaerobic digestion of supermarket wastes. A suitable carbon/nitrogen (C/N) ratio, proper adjustment of the buffering capacity and the addition of essential trace nutrients (such as Ni) could improve VS conversion and biogas production yields significantly.

  10. Renewable NRG | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    NRG Jump to: navigation, search Name: Renewable NRG Product: Commercial and residential PV integrator and installer, based in Oregon. Acquired by SunEdison in April 2008....

  11. Catalyst Renewables | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Renewables Place: Dallas, Texas Zip: 75204 Product: Pursue projects with low technical risk, stable fuel supply and prices, and long-term power purchase agreements References:...

  12. Renewable Capital | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Capital Jump to: navigation, search Name: Renewable Capital Place: Las Vegas, Nevada Zip: 89109 Sector: Solar Product: Investment vehicle of Ed Stevenson, founder of Solar...

  13. Renewable Energy Resources Trust Fund

    Energy.gov [DOE]

    Renewable-energy projects eligible for RERTF support include wind energy, solar-thermal energy, photovoltaics, dedicated crops grown for energy production and organic waste biomass, hydropower th...

  14. Renewable Analytics | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Analytics Jump to: navigation, search Name: Renewable Analytics Place: San Francisco, California Zip: 94104 Product: San francisco-based provider of public market trading...

  15. Renewable Zukunft | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Zukunft Jump to: navigation, search Name: Renewable Zukunft Place: Dry Drayton, United Kingdom Zip: CB23 8BA Product: A Cambridgeshire-based generator of electricity from organic...

  16. Methane conversion to methanol

    SciTech Connect (OSTI)

    Noble, R.D.; Falconer, J.L.

    1992-06-01

    The objective of this research study is to demonstrate the effectiveness of a catalytic membrane reactor for the partial oxidation of methane. The specific goals are to demonstrate that we can improve product yield, demonstrate the optimal conditions for membrane reactor operation, determine the transport properties of the membrane, and provide demonstration of the process at the pilot plant scale. The last goal will be performed by Unocal, Inc., our industrial partner, upon successful completion of this study.

  17. Methane conversion to methanol

    SciTech Connect (OSTI)

    Noble, R.D.; Falconer, J.L.

    1992-01-01

    The objective of this research study is to demonstrate the effectiveness of a catalytic membrane reactor for the partial oxidation of methane. The specific goals are to demonstrate that we can improve product yield, demonstrate the optimal conditions for membrane reactor operation, determine the transport properties of the membrane, and provide demonstration of the process at the pilot plant scale. The last goal will be performed by Unocal, Inc., our industrial partner, upon successful completion of this study.

  18. Four Critical Needs to Change the Hydrate Energy Paradigm from Assessment to Production: The 2007 Report to Congress by the U.S. Federal methane Hydrate Advisory Committee

    SciTech Connect (OSTI)

    Mahajan,D.; Sloan, D.; Brewer, P.; Dutta, N.; Johnson, A.; Jones, E.; Juenger, K.; Kastner, M.; Masutani, S.; Swenson, R.; Whelan, J.; Wilson, s.; Woolsey, R.

    2009-03-11

    This work summarizes a two-year study by the U.S. Federal Methane Hydrate Advisory Committee recommending the future needs for federally-supported hydrate research. The Report was submitted to the US Congress on August 14, 2007 and includes four recommendations regarding (a) permafrost hydrate production testing, (b) marine hydrate viability assessment (c) climate effect of hydrates, and (d) international cooperation. A secure supply of natural gas is a vital goal of the U.S. national energy policy because natural gas is the cleanest and most widely used of all fossil fuels. The inherent cleanliness of natural gas, with the lowest CO2 emission per unit of heat energy of any fossil fuel, means substituting gas for coal and fuel oil will reduce emissions that can exacerbate the greenhouse effect. Both a fuel and a feedstock, a secure and reasonably priced supply of natural gas is important to industry, electric power generators, large and small commercial enterprises, and homeowners. Because each volume of solid gas hydrate contains as much as 164 standard volumes of methane, hydrates can be viewed as a concentrated form of natural gas equivalent to compressed gas but less concentrated than liquefied natural gas (LNG). Natural hydrate accumulations worldwide are estimated to contain 700,000 TCF of natural gas, of which 200,000 TCF are located within the United States. Compared with the current national annual consumption of 22 TCF, this estimate of in-place gas in enormous. Clearly, if only a fraction of the hydrated methane is recoverable, hydrates could constitute a substantial component of the future energy portfolio of the Nation (Figure 1). However, recovery poses a major technical and commercial challenge. Such numbers have sparked interest in natural gas hydrates as a potential, long-term source of energy, as well as concerns about any potential impact the release of methane from hydrates might have on the environment. Energy-hungry countries such as India and

  19. Methane emissions from MBT landfills

    SciTech Connect (OSTI)

    Heyer, K.-U. Hupe, K.; Stegmann, R.

    2013-09-15

    Highlights: • Compilation of methane generation potential of mechanical biological treated (MBT) municipal solid waste. • Impacts and kinetics of landfill gas production of MBT landfills, approach with differentiated half-lives. • Methane oxidation in the waste itself and in soil covers. • Estimation of methane emissions from MBT landfills in Germany. - Abstract: Within the scope of an investigation for the German Federal Environment Agency (“Umweltbundesamt”), the basics for the estimation of the methane emissions from the landfilling of mechanically and biologically treated waste (MBT) were developed. For this purpose, topical research including monitoring results regarding the gas balance at MBT landfills was evaluated. For waste treated to the required German standards, a methane formation potential of approximately 18–24 m{sup 3} CH{sub 4}/t of total dry solids may be expected. Monitoring results from MBT landfills show that a three-phase model with differentiated half-lives describes the degradation kinetics in the best way. This is due to the fact that during the first years of disposal, the anaerobic degradation processes still proceed relatively intensively. In addition in the long term (decades), a residual gas production at a low level is still to be expected. Most of the soils used in recultivation layer systems at German landfills show a relatively high methane oxidation capacity up to 5 l CH{sub 4}/(m{sup 2} h). However, measurements at MBT disposal sites indicate that the majority of the landfill gas (in particular at non-covered areas), leaves the landfill body via preferred gas emission zones (hot spots) without significant methane oxidation. Therefore, rather low methane oxidation factors are recommended for open and temporarily covered MBT landfills. Higher methane oxidation rates can be achieved when the soil/recultivation layer is adequately designed and operated. Based on the elaborated default values, the First Order Decay (FOD

  20. Monthly/Annual Energy Review - renewable section

    Reports and Publications

    2015-01-01

    Monthly and latest annual statistics on renewable energy production and consumption and overviews of fuel ethanol and biodiesel.

  1. Development of Renewable Biofuels Technology by Transcriptomic...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    information Development of Renewable Biofuels Technology by Transcriptomic Analysis ... and the development of diatoms as biofuels production organisms, which will ...

  2. Coal Bed Methane Primer

    SciTech Connect (OSTI)

    Dan Arthur; Bruce Langhus; Jon Seekins

    2005-05-25

    During the second half of the 1990's Coal Bed Methane (CBM) production increased dramatically nationwide to represent a significant new source of income and natural gas for many independent and established producers. Matching these soaring production rates during this period was a heightened public awareness of environmental concerns. These concerns left unexplained and under-addressed have created a significant growth in public involvement generating literally thousands of unfocused project comments for various regional NEPA efforts resulting in the delayed development of public and fee lands. The accelerating interest in CBM development coupled to the growth in public involvement has prompted the conceptualization of this project for the development of a CBM Primer. The Primer is designed to serve as a summary document, which introduces and encapsulates information pertinent to the development of Coal Bed Methane (CBM), including focused discussions of coal deposits, methane as a natural formed gas, split mineral estates, development techniques, operational issues, producing methods, applicable regulatory frameworks, land and resource management, mitigation measures, preparation of project plans, data availability, Indian Trust issues and relevant environmental technologies. An important aspect of gaining access to federal, state, tribal, or fee lands involves education of a broad array of stakeholders, including land and mineral owners, regulators, conservationists, tribal governments, special interest groups, and numerous others that could be impacted by the development of coal bed methane. Perhaps the most crucial aspect of successfully developing CBM resources is stakeholder education. Currently, an inconsistent picture of CBM exists. There is a significant lack of understanding on the parts of nearly all stakeholders, including industry, government, special interest groups, and land owners. It is envisioned the Primer would being used by a variety of

  3. EIA - Greenhouse Gas Emissions - Methane Emissions

    Gasoline and Diesel Fuel Update

    3. Methane Emissions 3.1. Total emissions The major sources of U.S. methane emissions are energy production, distribution, and use; agriculture; and waste management (Figure 17). U.S. methane emissions in 2009 totaled 731 MMTCO2e, 0.9 percent higher than the 2008 total of 724 MMTCO2e (Table 17). Methane emissions declined steadily from 1990 to 2001, as emissions from coal mining and landfills fell, then rose from 2002 to 2009 as a result of moderate increases in emissions related to energy,

  4. Renewable Hydrogen

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Hydrogen NREL Hydrogen Technologies and Systems Center Dr. Robert J. Remick November 16, 2009 NREL/PR-560-47433 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. U.S. Dependence on Imported Oil National Renewable Energy Laboratory Innovation for Our Energy Future 2 Energy Solutions are Challenging We need a balanced portfolio of options- including clean, domestic energy

  5. Renewable Technology Ventures Ltd RTVL | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Kingdom Sector: Renewable Energy Product: Renewable Technology Ventures Limited (RTVL), a joint venture between SSE and The Weir Group, is investing in the development of a tidal...

  6. Moroccan Center for the Development of Renewable Energies CDER...

    Open Energy Information (Open El) [EERE & EIA]

    (CDER) Place: Marrakech, Morocco Zip: 40000 Sector: Renewable Energy Product: Focused on research, development and use of renewable energies in Morocco. Coordinates: 31.633821,...

  7. Saran Renewable Energy Ltd SRE | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Saran Renewable Energy Ltd SRE Jump to: navigation, search Name: Saran Renewable Energy Ltd. (SRE) Place: Saran, Bihar, India Zip: 841301 Sector: Biomass Product: Bihar-based...

  8. West Bengal Renewable Energy Development Agency WBREDA | Open...

    Open Energy Information (Open El) [EERE & EIA]

    WBREDA Jump to: navigation, search Name: West Bengal Renewable Energy Development Agency (WBREDA) Place: Calcutta, West Bengal, India Zip: 700091 Sector: Renewable Energy Product:...

  9. Safe Renewable Corporation formerly Safe Fuels | Open Energy...

    Open Energy Information (Open El) [EERE & EIA]

    Renewable Corporation (formerly Safe Fuels) Place: Texas Zip: 77380 Product: Texas-based biodiesel producer. References: Safe Renewable Corporation (formerly Safe Fuels)1 This...

  10. Fenner Renewable Energy Education Center | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Renewable Energy Education Center Jump to: navigation, search Name: Fenner Renewable Energy Education Center Place: Morrisville, New York Zip: 13408 Product: Not-for profit...

  11. Qingxin Evergreen Renewable Resources Co Ltd | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Qingxin Evergreen Renewable Resources Co Ltd Jump to: navigation, search Name: Qingxin Evergreen Renewable Resources Co Ltd Place: Qingyuan, Guangdong Province, China Product: A...

  12. Datang Sino Japan Chifeng Renewable Power Corp | Open Energy...

    Open Energy Information (Open El) [EERE & EIA]

    Japan Chifeng Renewable Power Corp Jump to: navigation, search Name: Datang Sino-Japan (Chifeng) Renewable Power Corp Place: Inner Mongolia Autonomous Region, China Product:...

  13. Blue Ridge Renewable Energy LLC | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Renewable Energy LLC Jump to: navigation, search Name: Blue Ridge Renewable Energy LLC Place: Arlington, Virginia Zip: 22209 Product: Developer and operator of the Blue Ridge...

  14. BP Gas Power and Renewables | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Jump to: navigation, search Name: BP Gas, Power and Renewables Place: Central Milton Keynes, United Kingdom Zip: MK9 1ES Sector: Renewable Energy Product: Subsidiary of...

  15. Suez Renewable Energy North America | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Renewable Energy North America Jump to: navigation, search Name: Suez Renewable Energy North America Place: Texas Sector: Biomass, Hydro, Solar, Wind energy Product: Developer of...

  16. Gyeongnam Renewable Energy Co Ltd GRE | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Gyeongnam Renewable Energy Co Ltd GRE Jump to: navigation, search Name: Gyeongnam Renewable Energy Co. Ltd. (GRE) Place: Seoul, Korea (Republic) Sector: Wind energy Product: Wind...

  17. Massachusetts Renewable Energy Trust MRET | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Trust MRET Jump to: navigation, search Name: Massachusetts Renewable Energy Trust (MRET) Place: Westborough, Massachusetts Zip: MA 01581 Sector: Renewable Energy Product: USD 150m...

  18. Synergy Renewable Energy Pvt Ltd SREPL | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Renewable Energy Pvt Ltd SREPL Jump to: navigation, search Name: Synergy Renewable Energy Pvt. Ltd (SREPL) Place: Kolkatta, West Bengal, India Zip: 700020 Sector: Solar Product:...

  19. Renewable Energy Development Institute REDI | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Institute REDI Jump to: navigation, search Name: Renewable Energy Development Institute (REDI) Place: Willits, California Zip: 95490 Sector: Renewable Energy Product: An US...

  20. Renewable Energy Association UK REA | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Association UK REA Jump to: navigation, search Name: Renewable Energy Association UK (REA) Place: London, United Kingdom Zip: SW1Y 4AR Sector: Renewable Energy Product: Trade...

  1. Orissa Renewable Energy Development Agency OREDA | Open Energy...

    Open Energy Information (Open El) [EERE & EIA]

    OREDA Jump to: navigation, search Name: Orissa Renewable Energy Development Agency (OREDA) Place: Bhubaneshwar, Orissa, India Zip: 751010 Sector: Renewable Energy Product: Agency...

  2. Bihar Renewable Energy Development Agency | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Agency Jump to: navigation, search Name: Bihar Renewable Energy Development Agency Place: Patna, Bihar, India Zip: 800001 Sector: Renewable Energy Product: Nodal agency for...

  3. Midwest Renewable Energy Projects LLC | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Projects LLC Jump to: navigation, search Name: Midwest Renewable Energy Projects LLC Place: Florida Zip: FL 33408 Sector: Renewable Energy, Wind energy Product: MRE Projects LLC is...

  4. Karnataka Renewable Energy Development Ltd KREDL | Open Energy...

    Open Energy Information (Open El) [EERE & EIA]

    Renewable Energy Development Ltd KREDL Jump to: navigation, search Name: Karnataka Renewable Energy Development Ltd (KREDL) Place: Bangalore, Karnataka, India Zip: 560 052 Product:...

  5. Green Plains Renewable Energy Inc GPRE | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Renewable Energy Inc GPRE Jump to: navigation, search Name: Green Plains Renewable Energy Inc (GPRE) Place: Omaha, Nebraska Zip: 68114 Product: Nebraska-based publicly traded...

  6. The Green Renewable Energy Company Limited | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Renewable Energy Company Limited Jump to: navigation, search Name: The Green Renewable Energy Company Limited Place: London, United Kingdom Sector: Biomass Product: Company to...

  7. S R Renewable Energy Ltd SRREL | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    R Renewable Energy Ltd SRREL Jump to: navigation, search Name: S.R. Renewable Energy Ltd. (SRREL) Place: Hyderabad, Andhra Pradesh, India Zip: 500 026 Sector: Biomass Product:...

  8. REC Group Renewable Energy Corporation | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Group Renewable Energy Corporation Jump to: navigation, search Name: REC Group (Renewable Energy Corporation) Place: Hvik, Norway Zip: N-1323 Sector: Solar Product: Norwegian...

  9. Weihai International Renewable Energy Science Park | Open Energy...

    Open Energy Information (Open El) [EERE & EIA]

    Science Park Jump to: navigation, search Name: Weihai International Renewable Energy Science Park. Place: Weihai, Shandong Province, China Sector: Renewable Energy Product:...

  10. Pakistan Council for Renewable Energy Technologies PCRET | Open...

    Open Energy Information (Open El) [EERE & EIA]

    Islamabad, Pakistan Sector: Renewable Energy Product: Nodal agency under Ministry of Science and Technology that focuses on research and development for renewable energy...

  11. Renewable Power Generation JV Company | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    JV Company Jump to: navigation, search Name: Renewable Power Generation JV Company Place: India Product: India-based JV to develop green power projects. References: Renewable Power...

  12. Spanish Renewable Energy National Centre CENER | Open Energy...

    Open Energy Information (Open El) [EERE & EIA]

    National Centre CENER Jump to: navigation, search Name: Spanish Renewable Energy National Centre (CENER) Place: Pamplona, Spain Zip: 31008 Sector: Renewable Energy Product: CENER...

  13. Renewable Alternatives LLC | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Renewable Alternatives LLC Place: Columbia, Missouri Zip: 65211 Product: Focused on the research, development and commercialization of products that are an alternative to...

  14. XL Renewables Inc | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Name: XL Renewables Inc Place: Phoenix, Arizona Zip: 85009 Product: Arizona based biorefinery developer, also involved in the diary production business. Coordinates: 33.44826,...

  15. DOE/NETL Methane Hydrate Projects | netl.doe.gov

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Methane Hydrate Projects Active Projects | Completed Projects Active Methane Hydrate Projects Project Number Project Name Primary Performer DE-FE0023919 Deepwater Methane Hydrate Characterization and Scientific Assessment University of Texas at Austin DE-FE0025387 Support for Methane Hydrate Research on the Alaska North Slope Petrotechnical Resources of Alaska DE-FE0009897 Hydrate-Bearing Clayey Sediments: Morphology, Physical Properties, Production and Engineering/Geological Implications

  16. Renewable Agricultural Energy | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Sector: Renewable Energy Product: Renewable Agricultural Energy plans to bring five ethanol plants on line by the end of 2009 with a combined annual capacity of at least 1.89bn...

  17. Evergreen Renewables LLC | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Evergreen Renewables LLC Place: Indiana Zip: P.O. Box 565 Product: Biodiesel producer which runs a 19m liter plant in Hammond, Indiana. References: Evergreen Renewables LLC1 This...

  18. Renewable Energy Center | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Center Jump to: navigation, search Name: Renewable Energy Center Place: Gyeonggi-Do, Korea (Republic) Zip: 448-994 Sector: Renewable Energy Product: Part of KEMCO that deals with...

  19. Frontier Renewables LLC | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Energy Product: Californian based developer of utility-scale renewable energy plants. References: Frontier Renewables LLC1 This article is a stub. You can help OpenEI by...

  20. Renewable Power and Light | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Place: London, Greater London, United Kingdom Zip: W1 J5P2 Sector: Biofuels, Renewable Energy Product: Renewable Power and Light intend to become a power producer generating from...

  1. EDF Energy Renewables | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Zip: WC2R 0PT Sector: Renewable Energy, Wind energy Product: UK-based renewable energy arm of EDF Energy, developing wind projects in the UK. Coordinates: 51.506325,...

  2. NREL Photoelectrode Research Advances Hydrogen Production Efforts (Fact Sheet), Highlights in Research & Development, NREL (National Renewable Energy Laboratory)

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Scientists have created a high-performing photo- electrode that boosts the ability of solar water-splitting to produce hydrogen. Scientists at the National Renewable Energy Laboratory (NREL) have taken an innovative approach to solving a drawback in the photo- electrochemical (PEC) process, which uses solar energy to split water into hydrogen and oxygen. The standard approach uses precious metals such as platinum, ruthenium, and iridium as catalysts attached to a semiconductor. The downside of

  3. ,"U.S. Coalbed Methane Proved Reserves, Reserves Changes, and...

    U.S. Energy Information Administration (EIA) (indexed site)

    ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"06301989"...

  4. Controlling Methane Emissions in the Natural Gas Sector: A Review...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Controlling Methane Emissions in the Natural Gas Sector: A Review of Federal & State Regulatory Frameworks Governing Production, Processing, Transmission, and Distribution ...

  5. Table 16. Coalbed methane proved reserves, reserves changes,...

    U.S. Energy Information Administration (EIA) (indexed site)

    Coalbed methane proved reserves, reserves changes, and production, 2014" "billion cubic feet" ,,"Changes in Reserves During 2014" ,"Published",,,..."New Reservoir" ...

  6. Renewable Energy Standard

    Energy.gov [DOE]

    Note: H.B. 40, enacted in June 2015, created Vermont's Renewable Energy Standard and repeals the Sustainably Priced Energy Enterprise Development program's renewable energy goals. The Renewable...

  7. Guide to Purchasing Green Power: Renewable Electricity, Renewable...

    Office of Environmental Management (EM)

    Purchasing Green Power: Renewable Electricity, Renewable Energy Certificates, and On-Site Renewable Generation Guide to Purchasing Green Power: Renewable Electricity, Renewable ...

  8. ARM - Methane Gas

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Methane Gas Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Methane Gas Methane gas is another naturally occurring greenhouse gas. It is produced as a result of microbial activity in the absence of oxygen. Pre-industrial concentrations of methane were about 700 ppb and in 1994 they were up

  9. Methane Hydrate Program

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    FY 2011 Methane Hydrate Program Report to Congress July 2012 United States Department of Energy Washington, DC 20585 Department of Energy | July 2012 FY 2011 Methane Hydrate Program Report to Congress | Page ii Message from the Secretary Section 968 of the Energy Policy Act of 2005 requires the Department of Energy to submit to Congress an annual report on the results of methane hydrate research. I am pleased to submit the enclosed report entitled U.S. Department of Energy FY 2011 Methane

  10. Heat pipe methanator

    DOE Patents [OSTI]

    Ranken, William A.; Kemme, Joseph E.

    1976-07-27

    A heat pipe methanator for converting coal gas to methane. Gravity return heat pipes are employed to remove the heat of reaction from the methanation promoting catalyst, transmitting a portion of this heat to an incoming gas pre-heat section and delivering the remainder to a steam generating heat exchanger.

  11. Renewable Energy Project Bond Program

    Energy.gov [DOE]

    For the purposes of this program, renewable energy is defined as "a source of energy that occurs naturally, is regenerated naturally or uses as a fuel source, a waste product or byproduct from a...

  12. Renewable Fuels Module - NEMS Documentation

    Reports and Publications

    2014-01-01

    This report documents the objectives, analytical approach, and design of the National Energy Modeling System (NEMS) Renewable Fuels Module (RFM) as it relates to the production of the Annual Energy Outlook forecasts.

  13. The RENEWABLES PORTFOLIO STANDARD RENEWABLES PORTFOLIO STANDARD...

    Energy Savers

    The broader goal of the RPS is to achieve various benefits associated with renewable ... More Documents & Publications Renewables Portfolio Standards: What Are We Learning? Reference ...

  14. National Renewable Energy Laboratory Renewable Energy Opportunity...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    with support from the U.S. Department of Energy, U.S. Environmental Protection Agency, ... DEVELOPMENT STRATEGIES NATIONAL RENEWABLE ENERGY LABORATORY RENEWABLE ENERGY OPPORTUNITY ...

  15. Renewable Energy 101 (Presentation)

    SciTech Connect (OSTI)

    Walker, A.

    2012-03-01

    Presentation given at the 2012 Department of Homeland Security Renewable Energy Roundtable as an introduction to renewable technologies and applications.

  16. REAP Renewable Energy Fair

    Energy.gov [DOE]

    The Renewable Energy Alaska Project (REAP) is hosting their annual Renewable Energy Fair at Fairview Elementary School.

  17. Renewable Electricity State Profiles - Energy Information Administration

    U.S. Energy Information Administration (EIA) (indexed site)

    Renewable & Alternative Fuels Glossary › FAQS › Overview Data Summary Biomass Geothermal Hydropower Solar Wind Alternative transportation fuels All renewable & alternative fuels data reports Analysis & Projections Major Topics Most popular Alternative Fuels Capacity and generation Consumption Environment Industry Characteristics Prices Production Projections Recurring Renewable energy type All reports Browse by Tag Alphabetical Frequency Tag Cloud ‹ See all Renewable Reports

  18. Renewable Generation Technologies: Costs and Market Outlook

    Gasoline and Diesel Fuel Update

    Renewable & Alternative Fuels Glossary › FAQS › Overview Data Summary Biomass Geothermal Hydropower Solar Wind Alternative transportation fuels All renewable & alternative fuels data reports Analysis & Projections Major Topics Most popular Alternative Fuels Capacity and generation Consumption Environment Industry Characteristics Prices Production Projections Recurring Renewable energy type All reports Browse by Tag Alphabetical Frequency Tag Cloud ‹ See all Renewable Reports

  19. Utilization of high-strength wastewater for the production of biogas as a renewable energy source using hybrid upflow anaerobic sludge blanket (HUASB) reactor

    SciTech Connect (OSTI)

    Shivayogimath, C.B.; Ramanujam, T.K.

    1998-07-01

    Anaerobic digestion of distillery spentwash, a high-strength wastewater, was studied using a hybrid upflow anaerobic sludge blanket (HUASB) reactor for 240 days under ambient conditions. The HUASB reactor combined an open volume in the bottom two-thirds of the reactor for sludge blanket and polypropylene pall rings packing in the upper one-third of the reactor. The aim of the study was to achieve optimum biogas production and waste treatment. Using non-granular anaerobic sewage sludge as seed, the start-up of the HUASB reactor was successfully completed, with the production of active bacterial granules of 1--2 mm size, within 90 days. Examination of the bacterial granules under scanning electron microscope (SEM) revealed that Methanothrix like microorganisms were the dominant species besides Methanosarcina. An organic loading of 24 kg COD/m{sup 3}d at a low hydraulic retention time (HRT) of 6 hours was achieved with 82% reduction in COD. Biogas with high methane content (80%) was produced at these loadings. The specific biogas yield was 0.36 m{sup 3} CH{sub 4}/kg COD. Packing in the upper third of the reactor was very efficient as a gas-solid separator (GSS); and in addition it retained the biomass.

  20. Methane Hydrate | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Methane Hydrate Methane Hydrate Types of Methane Hydrate Deposits Types of Methane Hydrate Deposits Methane hydrate is a cage-like lattice of ice inside of which are trapped molecules of methane, the chief constituent of natural gas. If methane hydrate is either warmed or depressurized, it will revert back to water and natural gas. When brought to the earth's surface, one cubic meter of gas hydrate releases 164 cubic meters of natural gas. Hydrate deposits may be several hundred meters thick and

  1. Renewable Technologies Inc RTI | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    search Name: Renewable Technologies Inc (RTI) Place: California Zip: 95685 Product: Photovoltaic systems design, engineering and installation firm, with several registered...

  2. Aventine Renewable Energy Holdings | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Holdings Jump to: navigation, search Name: Aventine Renewable Energy Holdings Place: Pekin, Illinois Zip: 61555-0010 Product: Illinois-based producer and marketer of ethanol in the...

  3. Commonwealth Renewable Energy Inc | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Commonwealth Renewable Energy Inc Place: Pennsylvania Product: A subsidiary of the Andersons Group of Companies that is planning to build a 200m gallon ethanol plant in...

  4. Aventine Renewable Energy Inc | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Inc Jump to: navigation, search Name: Aventine Renewable Energy Inc Place: Pekin, Illinois Zip: 61555-0010 Product: Producer and marketer of ethanol. Coordinates: 47.790615,...

  5. Iowa Renewable Energy LLC | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    LLC Jump to: navigation, search Name: Iowa Renewable Energy LLC Place: Washington, Iowa Product: Set up to develop a 114m-litre biodiesel facility near Washington, Iowa....

  6. Dale Renewables Consulting | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    search Name: Dale Renewables Consulting Place: California Sector: Solar Product: PV marketing and installation firm, merged with Solar Power Inc in January 2007. References: Dale...

  7. Mulk Renewable Energy Inc | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    to: navigation, search Name: Mulk Renewable Energy Inc Place: Sharjah, United Arab Emirates Sector: Solar Product: UAE-based developer of solar thermal power plants....

  8. Renewable Energy RFPs | OpenEI Community

    Open Energy Information (Open El) [EERE & EIA]

    2014 - 09:38 Blog entry Solar Power Request for Information Renewable Energy GenerationProduction Shreveport Airport Authority - Response Deadline 2 January 2014 Rosborne318 2...

  9. Renewable Energy RFPs | OpenEI Community

    Open Energy Information (Open El) [EERE & EIA]

    sort icon Blog entry solar land use Request for Information Renewable Energy GenerationProduction Shreveport Airport Authority - Response Deadline 2 January 2014 Rosborne318 2...

  10. Renewable Energy RFPs | OpenEI Community

    Open Energy Information (Open El) [EERE & EIA]

    Post sort icon Blog entry pv land use Request for Information Renewable Energy GenerationProduction Shreveport Airport Authority - Response Deadline 2 January 2014 Rosborne318 2...

  11. Renewable Energy RFPs | OpenEI Community

    Open Energy Information (Open El) [EERE & EIA]

    3 Jul 2014 - 09:38 Blog entry Solar Request for Information Renewable Energy GenerationProduction Shreveport Airport Authority - Response Deadline 2 January 2014 Rosborne318 2...

  12. Solectria Renewables LLC | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Massachusetts Zip: 01843 Region: Greater Boston Area Sector: Solar Product: Power electronics and system for renewable energy power generation Website: www.solren.com...

  13. Renewable Energy Providers | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Providers Jump to: navigation, search Name: Renewable Energy Providers Place: Redding, California Zip: 96001 Sector: Biomass Product: The wholly owned subsidiary of this...

  14. Renewable Energy Technology Center | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Center Jump to: navigation, search Name: Renewable Energy Technology Center Place: Hamburg, Hamburg, Germany Zip: D-22335 Sector: Wind energy Product: RETC, a JV formed which will...

  15. Renewable Energy Action Project | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Action Project Jump to: navigation, search Name: Renewable Energy Action Project Place: San Francisco, California Zip: 94107 Product: REAP is a San Francisco-based non-profit...

  16. Solterra Renewable Technologies Inc | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Sector: Solar Product: Solterra is a technology development firm focused on thin-film quantum dot solar cells. References: Solterra Renewable Technologies Inc.1 This article is...

  17. Centro Renewables Holding Limited | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Kong Sector: Solar, Wind energy Product: Hong Kong-based developer of wind, solar and water power facilities in China, Taiwan and South Korea. References: Centro Renewables...

  18. Colorado Renewable Resource Cooperative | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Product: Colorado-based cooperative and forestry producer, that targets the use of woody biomass to generate heat or electricity. References: Colorado Renewable Resource...

  19. Chinese Renewable Energy Industries Association CREIA | Open...

    Open Energy Information (Open El) [EERE & EIA]

    Product: CREIA promotes the adoption of advanced technologies among renewable energy enterprises in China and actively develops capacity for the rapid industrialisation of the...

  20. Algasol Renewables SL | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Newly started technology firm that will seek to use the photosynthetic capabilities of algae to generate renewable energy and other products. Coordinates: 39.613529, 2.91156...

  1. US Renewables Group (California) | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Renewables Group (California) Address: 2425 Olympic Boulevard, Suite 4050 West Place: Santa Monica, California Zip: 90404 Region: Southern CA Area Product: Private equity firm...

  2. Mainstream Renewable Power | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Name: Mainstream Renewable Power Place: Dublin, Ireland Zip: 18 Sector: Ocean, Solar, Wind energy Product: Developer of wind farms, solar, thermal and ocean stream projects....

  3. Greenergy Renewables Pvt Ltd | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Renewables Pvt. Ltd. Place: Mumbai, Maharashtra, India Zip: 400023 Sector: Solar, Wind energy Product: Mumbai-based firm involved in development of wind and solar projects....

  4. Vigor Renewables Ltd | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Renewables Ltd Place: London, Greater London, United Kingdom Zip: W1W7TH Sector: Solar, Wind energy Product: London-based wind and solar project developer. Coordinates:...

  5. Renewable Spirits LLC | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Spirits LLC Jump to: navigation, search Name: Renewable Spirits LLC Place: Delray Beach, Florida Zip: 33446 Product: Focused on developing citrus waste into ethanol. References:...

  6. Renewable Power Systems LLC | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Power Systems LLC Jump to: navigation, search Name: Renewable Power Systems, LLC Place: Averill Park, New York Zip: 12018 Sector: Solar Product: Albany, New York-based solar...

  7. Renewable Development Company RDC | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Development Company RDC Jump to: navigation, search Name: Renewable Development Company (RDC) Place: Mold, United Kingdom Zip: CH7 4ED Sector: Wind energy Product: Wind farm...

  8. Renewable Resources International RRI | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    International RRI Jump to: navigation, search Name: Renewable Resources International (RRI) Place: North Carolina Product: A group of investors which owns the North Carolina...

  9. Renewable Fuels Limited RFL | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Limited RFL Jump to: navigation, search Name: Renewable Fuels Limited (RFL) Place: York, United Kingdom Zip: YO19 6ET Sector: Biomass Product: Supplies various biomass fuels and...

  10. Renewable Generation Inc | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Generation Inc Jump to: navigation, search Name: Renewable Generation Inc Place: Austin, Texas Sector: Wind energy Product: Developer of utility-scale wind projects. References:...

  11. Next Generation Hydrogen Station Composite Data Products: Data through Quarter 4 of 2014; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Sprik, S.; Kurtz, J.; Ainscough, C.; Peters, M.

    2015-05-14

    This publication includes 43 composite data products (CDPs) produced for next generation hydrogen stations, with data through the fourth quarter of 2014.

  12. Stationary Fuel Cell System Composite Data Products: Data through Quarter 4 of 2014; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Saur, G.; Kurtz, J.; Ainscough, C.; Sprik, S.; Post, M.

    2015-04-01

    This publication includes 33 composite data products (CDPs) produced for stationary fuel cell systems, with data through the fourth quarter of 2014.

  13. Renewable Systems Interconnection

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Juan J. Torres Manager, Energy Systems Analysis Sandia National Laboratories jjtorre@sandia.gov Renewable Systems Interconnection Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000. 2 Driving the market: Climate change Cost reductions Market Risk: As PV production approaches ~5% of installed generating capacity, grid impacts could create barriers to future growth. Significant

  14. Coalbed Methane (CBM) is natural

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Coalbed Methane (CBM) is natural gas found in coal deposits. It was once considered a nuisance and mine safety hazard, but today has become a valuable part of the U.S. energy portfolio. A major reason for this is resource characterization and the establishment of efficient recovery methods pioneered by Office of Fossil Energy (FE) research and development. CBM proved reserves and production have grown nearly every year since 1989. Today it accounts for 9 percent of total domestic natural gas

  15. ARRA Material Handling Equipment Composite Data Products: Data through Quarter 3 of 2014; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Ainscough, Chris; Kurtz, Jennifer

    2015-05-01

    This document includes 23 composite data products (CDPs) produced for American Recovery and Reinvestment Act (ARRA) fuel cell material handling equipment, with data through the third quarter of 2014.

  16. Energy Department Announces up to $4 Million to Advance Low-Cost Hydrogen Production from Renewable and Low Carbon Sources

    Energy.gov [DOE]

    In support of the Obama Administration's all-of-the-above energy strategy, the Energy Department today announced up to$4 million in new funding to address critical challenges and barriers for low-cost, low-carbon hydrogen production.

  17. Methane Hydrate Field Program

    SciTech Connect (OSTI)

    2013-12-31

    This final report document summarizes the activities undertaken and the output from three primary deliverables generated during this project. This fifteen month effort comprised numerous key steps including the creation of an international methane hydrate science team, determining and reporting the current state of marine methane hydrate research, convening an international workshop to collect the ideas needed to write a comprehensive Marine Methane Hydrate Field Research Plan and the development and publication of that plan. The following documents represent the primary deliverables of this project and are discussed in summary level detail in this final report. • Historical Methane Hydrate Project Review Report • Methane Hydrate Workshop Report • Topical Report: Marine Methane Hydrate Field Research Plan • Final Scientific/Technical Report

  18. Methane Hydrate Program

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fiscal Year 2012 Methane Hydrate Program Report to Congress August 2013 United States Department of Energy Washington, DC 20585 Department of Energy | August 2013 Fiscal Year 2012 Methane Hydrate Program Report to Congress | Page ii Message from the Secretary Section 968 of the Energy Policy Act of 2005 requires the Department of Energy to submit to Congress an annual report on the actions taken to carry out methane hydrate research. I am pleased to submit the enclosed report, entitled U.S.

  19. Methane drainage with horizontal boreholes in advance of longwall mining: an analysis. Final report

    SciTech Connect (OSTI)

    Gabello, D.P.; Felts, L.L.; Hayoz, F.P.

    1981-05-01

    The US Department of Energy (DOE) Morgantown Energy Technology Center has implemented a comprehensive program to demonstrate the technical and economic viability of coalbed methane as an energy resource. The program is directed toward solution of technical and institutional problems impeding the recovery and use of large quantities of methane contained in the nation's minable and unminable coalbeds. Conducted in direct support of the DOE Methane Recovery from Coalbeds Project, this study analyzes the economic aspects of a horizontal borehole methane recovery system integrated as part of a longwall mine operation. It establishes relationships between methane selling price and annual mine production, methane production rate, and the methane drainage system capital investment. Results are encouraging, indicating that an annual coal production increase of approximately eight percent would offset all associated drainage costs over the range of methane production rates and capital investments considered.

  20. Large-Scale Renewable Energy Guide: Developing Renewable Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Large-Scale Renewable Energy Guide: Developing Renewable Energy Projects Larger Than 10 MWs at Federal Facilities Large-Scale Renewable Energy Guide: Developing Renewable Energy ...

  1. Natural Innovative Renewable Energy formerly Northwest Iowa Renewable...

    Open Energy Information (Open El) [EERE & EIA]

    Innovative Renewable Energy formerly Northwest Iowa Renewable Energy Jump to: navigation, search Name: Natural Innovative Renewable Energy (formerly Northwest Iowa Renewable...

  2. Guide to Purchasing Green Power: Renewable Electricity, Renewable...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Guide to Purchasing Green Power: Renewable Electricity, Renewable Energy Certificates, and On-Site Renewable Generation Guide to Purchasing Green Power: Renewable Electricity, ...

  3. Federal Off-Site Renewable Energy Purchases and Renewable Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Project Financing Renewable Energy Procurement Federal Off-Site Renewable Energy Purchases and Renewable Energy Certificates Federal Off-Site Renewable Energy Purchases and ...

  4. PPM Atlantic Renewable Formerly Atlantic Renewable Energy Corp...

    Open Energy Information (Open El) [EERE & EIA]

    PPM Atlantic Renewable Formerly Atlantic Renewable Energy Corp Jump to: navigation, search Name: PPM Atlantic Renewable (Formerly Atlantic Renewable Energy Corp) Place: Virginia...

  5. Controlling Methane Emissions in the Natural Gas Sector: A Review of Federal & State Regulatory Frameworks Governing Production, Processing, Transmission, and Distribution

    Office of Energy Efficiency and Renewable Energy (EERE)

    This paper examines a broad range of regulatory drivers, barriers and opportunities that influence investment decisions related to methane emissions from natural gas systems. Federal and state regulators of the natural gas industry are increasingly taking steps to use their existing authorities to help minimize venting and leakage of methane from infrastructure. A few state agencies are now regulating methane emissions directly and the Obama Administration is implementing an interagency Strategy to Reduce Methane Emissions from a broad range of sources, including natural gas infrastructure. While many regulations are already in place to improve public safety, fuel conservation, air quality, natural gas deliverability and even climate protection, companies often are constrained in the investments that they are willing or able to make in infrastructure modernization. For this reason, economic regulators are also focusing on these issues; FERC recently approved a new policy to enable cost recovery for investments in natural gas facilities to improve safety and environmental performance while many states are implementing pipeline replacement programs.

  6. The future of methane

    SciTech Connect (OSTI)

    Howell, D.G.

    1995-12-31

    Natural gas, mainly methane, produces lower CO{sub 2}, CO, NO{sub x}, SO{sub 2} and particulate emissions than either oil or coal; thus further substitutions of methane for these fuels could help mitigate air pollution. Methane is, however, a potent greenhouse gas and the domestication of ruminants, cultivation of rice, mining of coal, drilling for oil, and transportation of natural gas have all contributed to a doubling of the amount of atmospheric methane since 1800. Today nearly 300,000 wells yearly produce ca. 21 trillion cubic feet of methane. Known reserves suggest about a 10 year supply at the above rates of recovery; and the potential for undiscovered resources is obscured by uncertainty involving price, new technologies, and environmental restrictions steming from the need to drill an enormous number of wells, many in ecologically sensitive areas. Until all these aspects of methane are better understood, its future role in the world`s energy mix will remain uncertain. The atomic simplicity of methane, composed of one carbon and four hydrogen atoms, may mask the complexity and importance of this, the most basic of organic molecules. Within the Earth, methane is produced through thermochemical alteration of organic materials, and by biochemical reactions mediated by metabolic processes of archaebacteria; some methane may even be primordial, a residue of planetary accretion. Methane also occurs in smaller volumes in landfills, rice paddies, termite complexes, ruminants, and even many humans. As an energy source, its full energy potential is controversial. Methane is touted by some as a viable bridge to future energy systems, fueled by the sun and uranium and carried by electricity and hydrogen.

  7. Methane production from marine biomass

    SciTech Connect (OSTI)

    Chynoweth, D. P.; Srivastava, V. J.

    1980-01-01

    The overall concept of the giant brown kelp farm and conversion system, the integrated research program engaged in its study, and IGT's work on biogasification process development are discussed. A summary of results to date on anaerobic digestion will be emphasized. (MHR)

  8. Methanation assembly using multiple reactors

    DOE Patents [OSTI]

    Jahnke, Fred C.; Parab, Sanjay C.

    2007-07-24

    A methanation assembly for use with a water supply and a gas supply containing gas to be methanated in which a reactor assembly has a plurality of methanation reactors each for methanating gas input to the assembly and a gas delivery and cooling assembly adapted to deliver gas from the gas supply to each of said methanation reactors and to combine water from the water supply with the output of each methanation reactor being conveyed to a next methanation reactor and carry the mixture to such next methanation reactor.

  9. Advantages of Enzyme Could Lead to Improved Biofuels Production (Fact Sheet), NREL Highlights in Science, NREL (National Renewable Energy Laboratory)

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Cellulase C. bescii CelA, a highly active and stable enzyme, exhibits a new cellulose digestion paradigm promoting inter-cellulase synergy. C. bescii CelA, a hydrolytic enzyme with multiple functional domains, may have several advantages over other fungal and bacterial cellulases for use in biofuels production: very high specific activity, stability at elevated tempera- tures, and a novel digestion mechanism. A research team from the U.S. Department of Energy's Bio- Energy Science Center, which

  10. RESTORING SUSTAINABLE FORESTS ON APPALACHIAN MINED LANDS FOR WOOD PRODUCTS, RENEWABLE ENERGY, CARBON SEQUESTRATION, AND OTHER ECOSYSTEM SERVICES

    SciTech Connect (OSTI)

    Jonathan Aggett

    2003-12-15

    The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. In this segment of work, our goal was to review methods for estimating tree survival, growth, yield and value of forests growing on surface mined land in the eastern coalfields of the USA, and to determine the extent to which carbon sequestration is influenced by these factors. Public Law 95-87, the Surface Mining Control and Reclamation Act of 1977 (SMCRA), mandates that mined land be reclaimed in a fashion that renders the land at least as productive after mining as it was before mining. In the central Appalachian region, where prime farmland and economic development opportunities for mined land are scarce, the most practical land use choices are hayland/pasture, wildlife habitat, or forest land. Since 1977, the majority of mined land has been reclaimed as hayland/pasture or wildlife habitat, which is less expensive to reclaim than forest land, since there are no tree planting costs. As a result, there are now hundreds of thousands of hectares of grasslands and scrublands in various stages of natural succession located throughout otherwise forested mountains in the U.S. A literature review was done to develop the basis for an economic feasibility study of a range of land-use conversion scenarios. Procedures were developed for both mixed hardwoods and white pine under a set of low product prices and under a set of high product prices. Economic feasibility is based on land expectation values. Further, our review shows that three types of incentive schemes might be important: (1) lump sum payment at planting (and equivalent series of annual payments); (2) revenue incentive at harvest; and (3) benefit based on carbon volume.

  11. Bioconversion of methane to lactate by an obligate methanotrophic bacterium

    DOE PAGES-Beta [OSTI]

    Henard, Calvin A.; Smith, Holly; Dowe, Nancy; Kalyuzhnaya, Marina G.; Pienkos, Philip T.; Guarnieri, Michael T.

    2016-02-23

    Methane is the second most abundant greenhouse gas (GHG), with nearly 60% of emissions derived from anthropogenic sources. Microbial conversion of methane to fuels and value-added chemicals offers a means to reduce GHG emissions, while also valorizing this otherwise squandered high-volume, high-energy gas. However, to date, advances in methane biocatalysis have been constrained by the low-productivity and limited genetic tractability of natural methane-consuming microbes. Here, leveraging recent identification of a novel, tractable methanotrophic bacterium, Methylomicrobium buryatense, we demonstrate microbial biocatalysis of methane to lactate, an industrial platform chemical. Heterologous overexpression of a Lactobacillus helveticus L-lactate dehydrogenase in M. buryatense resultedmore » in an initial titer of 0.06 g lactate/L from methane. Cultivation in a 5 L continuously stirred tank bioreactor enabled production of 0.8 g lactate/L, representing a 13-fold improvement compared to the initial titer. The yields (0.05 g lactate/g methane) and productivity (0.008 g lactate/L/h) indicate the need and opportunity for future strain improvement. Additionally, real-time analysis of methane utilization implicated gas-to-liquid transfer and/or microbial methane consumption as process limitations. This work opens the door to develop an array of methanotrophic bacterial strain-engineering strategies currently employed for biocatalytic sugar upgrading to “green” chemicals and fuels.« less

  12. Renewable Energy Powers Renewable Energy Lab, Employees

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Renewable Energy Powers Renewable Energy Lab, Employees For more information contact: Mike Marsh (303) 275-4085 email: marshm@tcplink.nrel.gov Golden, Colo., July 9, 1997 -- The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) does more than just research renewable energy. It runs on it. And so do NREL employees. Site Operations Director John Shaffer today announced that the laboratory will purchase 4,000 kilowatt hours from Public Service Company of Colorado's (PSC)

  13. Renewable energy technology characterizations

    SciTech Connect (OSTI)

    None, None

    1997-12-01

    The Renewable Energy Technology Characterizations describe the technical and economic status of the major emerging renewable energy options for electricity supply.

  14. Renewable Energy Innovations

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    We are applying our expertise in chemical and materials science to provide innovations in renewable energy generation, storage, and use. 4 08 FACT SHEET Renewable Energy ...

  15. Tribal Renewable Energy Workshop

    Energy Savers

    Economics, and Marketing * State Renewable Portfolio Standards * Federal Clean ... Networking Break 10:30 - 11:00 a.m. Corporate Commitments to Renewable Energy and ...

  16. Renewable Electricity Generation

    SciTech Connect (OSTI)

    2012-09-01

    This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in renewable electricity generation technologies including solar, water, wind, and geothermal.

  17. Renewable Energy Standard

    Office of Energy Efficiency and Renewable Energy (EERE)

    In 2007, Minnesota legislation modified the state's 2001 voluntary renewable energy objective to create a mandatory renewable portfolio standard (RPS). Public utilities (i.e., investor-owned...

  18. National Renewable Energy Laboratory

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    RENEWABLE ENERGY AND ENERGY EFFICIENCY SCIENCE PROJECTS 1 SCIENCE PROECTS IN RENEWABLE ENERGY AND ENERGY EFFICIENCY A guide for Secondary School Teachers Authors and ...

  19. Safety Analysis Report for the use of hazardous production materials in photovoltaic applications at the National Renewable Energy Laboratory

    SciTech Connect (OSTI)

    Crandall, R.S.; Nelson, B.P. ); Moskowitz, P.D.; Fthenakis, V.M. )

    1992-07-01

    To ensure the continued safety of SERI's employees, the community, and the environment, NREL commissioned an internal audit of its photovoltaic operations that used hazardous production materials (HPMs). As a result of this audit, NREL management voluntarily suspended all operations using toxic and/or pyrophoric gases. This suspension affected seven laboratories and ten individual deposition systems. These activities are located in Building 16, which has a permitted occupancy of Group B, Division 2 (B-2). NREL management decided to do the following. (1) Exclude from this SAR all operations which conformed, or could easily be made to conform, to B-2 Occupancy requirements. (2) Include in this SAR all operations that could be made to conform to B-2 Occupancy requirements with special administrative and engineering controls. (3) Move all operations that could not practically be made to conform to B-2 Occupancy requirements to alternate locations. In addition to the layered set of administrative and engineering controls set forth in this SAR, a semiquantitative risk analysis was performed on 30 various accident scenarios. Twelve presented only routine risks, while 18 presented low risks. Considering the demonstrated safe operating history of NREL in general and these systems specifically, the nature of the risks identified, and the layered set of administrative and engineering controls, it is clear that this facility falls within the DOE Low Hazard Class. Each operation can restart only after it has passed an Operational Readiness Review, comparing it to the requirements of this SAR, while subsequent safety inspections will ensure future compliance.

  20. Controlling Methane Emissions in the Natural Gas Sector. A Review of Federal and State Regulatory Frameworks Governing Production, Gathering, Processing, Transmission, and Distribution

    SciTech Connect (OSTI)

    Paranhos, Elizabeth; Kozak, Tracy G.; Boyd, William; Bradbury, James; Steinberg, D. C.; Arent, D. J.

    2015-04-23

    This report provides an overview of the regulatory frameworks governing natural gas supply chain infrastructure siting, construction, operation, and maintenance. Information was drawn from a number of sources, including published analyses, government reports, in addition to relevant statutes, court decisions and regulatory language, as needed. The scope includes all onshore facilities that contribute to methane emissions from the natural gas sector, focusing on three areas of state and federal regulations: (1) natural gas pipeline infrastructure siting and transportation service (including gathering, transmission, and distribution pipelines), (2) natural gas pipeline safety, and (3) air emissions associated with the natural gas supply chain. In addition, the report identifies the incentives under current regulatory frameworks to invest in measures to reduce leakage, as well as the barriers facing investment in infrastructure improvement to reduce leakage. Policy recommendations regarding how federal or state authorities could regulate methane emissions are not provided; rather, existing frameworks are identified and some of the options for modifying existing regulations or adopting new regulations to reduce methane leakage are discussed.

  1. Restoring Sustainable Forests on Appalachian Mined Lands for Wood Products, Renewable Energy, Carbon Sequestration, and Other Ecosystem Services

    SciTech Connect (OSTI)

    Burger, James A

    2005-07-20

    The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. We are currently estimating the acreage of lands in Virginia, West Virginia, Kentucky, Ohio, and Pennsylvania mined under SMCRA and reclaimed to non-forested post-mining land uses that are not currently under active management, and therefore can be considered as available for carbon sequestration. To determine actual sequestration under different forest management scenarios, a field study was installed as a 3 x 3 factorial in a random complete block design with three replications at each of three locations, one each in Ohio, West Virginia, and Virginia. The treatments included three forest types (white pine, hybrid poplar, mixed hardwood) and three silvicultural regimes (competition control, competition control plus tillage, competition control plus tillage plus fertilization). Each individual treatment plot is 0.5 acres. Each block of nine plots is 4.5 acres, and the complete installation at each site is 13.5 acres. During the reporting period we determined that by grinding the soil samples to a finer particle size of less than 250 μm (sieve No. 60), the effect of mine soil coal particle size on the extent to which these particles will be oxidized during the thermal treatment of the carbon partitioning procedure will be eliminated, thus making the procedure more accurate and precise. In the second phase of the carbon sequestration project, we focused our attention on determining the sample size required for carbon accounting on grassland mined fields in order to achieve a desired accuracy and precision of the final soil organic carbon (SOC) estimate. A mine land site quality classification scheme was developed and some field-testing of the methods of implementation was completed. The classification model

  2. Safety Analysis Report for the use of hazardous production materials in photovoltaic applications at the National Renewable Energy Laboratory

    SciTech Connect (OSTI)

    Crandall, R.S.; Nelson, B.P.; Moskowitz, P.D.; Fthenakis, V.M.

    1992-07-01

    To ensure the continued safety of SERI`s employees, the community, and the environment, NREL commissioned an internal audit of its photovoltaic operations that used hazardous production materials (HPMs). As a result of this audit, NREL management voluntarily suspended all operations using toxic and/or pyrophoric gases. This suspension affected seven laboratories and ten individual deposition systems. These activities are located in Building 16, which has a permitted occupancy of Group B, Division 2 (B-2). NREL management decided to do the following. (1) Exclude from this SAR all operations which conformed, or could easily be made to conform, to B-2 Occupancy requirements. (2) Include in this SAR all operations that could be made to conform to B-2 Occupancy requirements with special administrative and engineering controls. (3) Move all operations that could not practically be made to conform to B-2 Occupancy requirements to alternate locations. In addition to the layered set of administrative and engineering controls set forth in this SAR, a semiquantitative risk analysis was performed on 30 various accident scenarios. Twelve presented only routine risks, while 18 presented low risks. Considering the demonstrated safe operating history of NREL in general and these systems specifically, the nature of the risks identified, and the layered set of administrative and engineering controls, it is clear that this facility falls within the DOE Low Hazard Class. Each operation can restart only after it has passed an Operational Readiness Review, comparing it to the requirements of this SAR, while subsequent safety inspections will ensure future compliance.

  3. RESTORING SUSTAINABLE FORESTS ON APPALACHIAN MINED LANDS FOR WOOD PRODUCTS, RENEWABLE ENERGY, CARBON SEQUESTRATION, AND OTHER ECOSYSTEM SERVICES

    SciTech Connect (OSTI)

    J. Burger; J. Galbraith; T. Fox; G. Amacher; J. Sullivan; C. Zipper

    2003-12-18

    The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. In this quarterly report, we present a preliminary comparison of the carbon sequestration benefits for two forest types used to convert abandoned grasslands for carbon sequestration. Annual mixed hardwood benefits, based on total stand carbon volume present at the end of a given year, range from a minimum of $0/ton of carbon to a maximum of $5.26/ton of carbon (low prices). White pine benefits based on carbon volume range from a minimum of $0/ton of carbon to a maximum of $18.61/ton of carbon (high prices). The higher maximum white pine carbon payment can primarily be attributed to the fact that the shorter rotation means that payments for white pine carbon are being made on far less cumulative carbon tonnage than for that of the long-rotation hardwoods. Therefore, the payment per ton of white pine carbon needs to be higher than that of the hardwoods in order to render the conversion to white pine profitable by the end of a rotation. These carbon payments may seem appealingly low to the incentive provider. However, payments (not discounted) made over a full rotation may add up to approximately $17,493/ha for white pine (30-year rotation), and $18,820/ha for mixed hardwoods (60-year rotation). The literature suggests a range of carbon sequestration costs, from $0/ton of carbon to $120/ton of carbon, although the majority of studies suggest a cost below $50/ ton of carbon, with van Kooten et al. (2000) suggesting a cutoff cost of $20/ton of carbon sequestered. Thus, the ranges of carbon payments estimated for this study fall well within the ranges of carbon sequestration costs estimated in previous studies.

  4. RESTORING SUSTAINABLE FORESTS ON APPALACHIAN MINED LANDS FOR WOOD PRODUCTS, RENEWABLE ENERGY, CARBON SEQUESTRATION, AND OTHER ECOSYSTEM SERVICES

    SciTech Connect (OSTI)

    J. Burger; J. Galbraith; T. Fox; G. Amacher; J. Sullivan; C. Zipper

    2004-06-04

    The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. In this quarterly report, we present a preliminary comparison of the carbon sequestration potential of forests growing on 14 mined sites in a seven-state region in the Midwestern and Eastern Coalfields. Carbon contents of these forests were compared to adjacent forests on non-mined land. The study was installed as a 3 x 3 factorial in a random complete block design with three replications at each location. The treatments include three forest types (white pine, hybrid poplar, mixed hardwood) and three silvicultural regimes (competition control, competition control plus tillage, competition control plus tillage plus fertilization). Each individual treatment plot is 0.5 acres. Each block of nine plots requires 4.5 acres, and the complete installation at each site requires 13.5 acres. The plots at all three locations have been installed and the plot corners marked with PVC stakes. GPS coordinates of each plot have been collected. Soil samples were collected from each plot to characterize the sites prior to treatment. Analysis of soil samples was completed and these data are being used to prepare fertilizer prescriptions. Fertilizer prescripts will be developed for each site. Fertilizer will be applied during the second quarter 2004. Data are included as appendices in this report. As part of our economic analysis of mined land reforestation, we focused on the implications of a shift in reforestation burden from the landowner to the mine operator. Results suggest that the reforestation of mined lands as part of the mining operation creates a viable and profitable forest enterprise for landowners with greater potential for carbon sequestration.

  5. Safety analysis report for the use of hazardous production materials in photovoltaic applications at the National Renewable Energy Laboratory

    SciTech Connect (OSTI)

    Crandall, R.S.; Nelson, B.P.; Moskowitz, P.D.; Fthenakis, V.M.

    1992-07-01

    To ensure the continued safety of SERI's employees, the community, and the environment, NREL commissioned an internal audit of its photovoltaic operations that used hazardous production materials (HPMS). As a result of this audit, NREL management voluntarily suspended all operations using toxic and/or pyrophoric gases. This suspension affected seven laboratories and ten individual deposition systems. These activities are located in Building 16, which has a permitted occupancy of Group B, Division 2 (B-2). NREL management decided to do the following. (1) Exclude from this SAR all operations which conformed, or could easily be made to conform, to B-2 Occupancy requirements. (2) Include in this SAR all operations that could be made to conform to B-2 Occupancy requirements with special administrative and engineering controls. (3) Move all operations that could not practically be made to conform to B-2 occupancy requirements to alternate locations. In addition to the layered set of administrative and engineering controls set forth in this SAR, a semiquantitative risk analysis was performed on 30 various accident scenarios. Twelve presented only routine risks, while 18 presented low risks. Considering the demonstrated safe operating history of NREL in general and these systems specifically, the nature of the risks identified, and the layered set of administrative and engineering controls, it is clear that this facility falls within the DOE Low Hazard Class. Each operation can restart only after it has passed an Operational Readiness Review, comparing it to the requirements of this SAR, while subsequent safety inspections will ensure future compliance. This document contains the appendices to the NREL safety analysis report.

  6. Restoring Sustainable Forests on Appalachian Mined Lands for Wood Product, Renewable Energy, Carbon Sequestration, and Other Ecosystem Services

    SciTech Connect (OSTI)

    Burger, James A

    2006-09-30

    Concentrations of CO{sub 2} in the Earths atmosphere have increased dramatically in the past 100 years due to deforestation, land use change, and fossil fuel combustion. These humancaused, higher levels of CO{sub 2} may enhance the atmospheric greenhouse effect and may contribute to climate change. Many reclaimed coal-surface mine areas in the eastern U.S. are not in productive use. Reforestation of these lands could provide societal benefits, including sequestration of atmospheric carbon. The goal of this project was to determine the biological and economic feasibility of restoring high-quality forests on the tens of thousands of hectares of mined land and to measure carbon sequestration and wood production benefits that would be achieved from large-scale application of forest restoration procedures. We developed a mine soil quality model that can be used to estimate the suitability of selected mined sites for carbon sequestration projects. Across the mine soil quality gradient, we tested survival and growth performance of three species assemblages under three levels of silvicultural. Hardwood species survived well in WV and VA, and survived better than the other species used in OH, while white pine had the poorest survival of all species at all sites. Survival was particularly good for the site-specific hardwoods planted at each site. Weed control plus tillage may be the optimum treatment for hardwoods and white pine, as any increased growth resulting from fertilization may not offset the decreased survival that accompanied fertilization. Grassland to forest conversion costs may be a major contributor to the lack of reforestation of previously reclaimed mine lands in the Appalachian coal-mining region. Otherwise profitable forestry opportunities may be precluded by these conversion costs, which for many combinations of factors (site class, forest type, timber prices, regeneration intensity, and interest rate) result in negative land expectation values. Improved

  7. Direct use of natural gas (methane) for conversion of carbonaceous raw materials to fuels and chemical feedstocks

    SciTech Connect (OSTI)

    Steinberg, M.

    1985-04-01

    It appears that natural gas is almost as abundant as petroleum, if not more so, as a natural resource in many parts of the world. Because of its rich hydrogen content, it is probably the lowest cost source of hydrogen wherever it is available. The most abundant fossil energy resource in the world appears to be coal, and the most abundant renewable resource appears to be biomass (trees and plants), both of which contain a deficiency of hydrogen. It is proposed to use natural gas in conjunction with coal and biomass to produce the preferred liquid fuel simulating petroleum products. Processes are described which include methanolysis that is the direct use of methane for gasification and liquefaction of coal and biomass, and for desulfurization of coal derived liquid and gases. The thermal decomposition of methane is described for hydrogen and carbon particulate production. A cyclical process is described for producing a clean particulate carbon from coal for use in a carbon-water-fuel-mix as a substitute diesel fuel or premium-grade boiler fuel. The hydrogen from methane can be used for flash hydropyrolysis or can be used to produce ammonia fertilizer. 7 refs., 3 figs., 5 tabs.

  8. Local Option- Sales and Use Tax Exemption for Renewable Energy Systems

    Energy.gov [DOE]

    Eligible renewable energy property is defined as "any fixture, product, system, device or interacting group of devices that produce electricity from renewable resources, including, but not limite...

  9. EU Energy Renewables Ltd now part of DeWind | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Renewable Energy Product: Previously a subsidiary of EU Energy plc focused on researching renewable energy technologies, until acquisition by Composite Technology...

  10. TMO Renewables Ltd formerly TMO Biotec Ltd | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Energy Product: Startup working on the use of thermophile (high-temperature) fermentation to replace yeast-based fermentation for the production of renewable ethanol, and...

  11. Guangxi Zhilian Renewable Energy Co Ltd | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    China Zip: 530022 Product: China-based firm that foccuese on jatropha cultivation and biodiesel production. References: Guangxi Zhilian Renewable Energy Co Ltd1 This article...

  12. Restoring Sustainable Forests on Appalachian Mined Lands for Wood Products, Renewable Energy, Carbon Sequestration, and Other Ecosystem Services

    SciTech Connect (OSTI)

    James A. Burger; J. Galbraith; T. Fox; G. Amacher; J. Sullivan; C. Zipper

    2005-12-01

    The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. We are currently estimating the acreage of lands in Virginia, West Virginia, Kentucky, Ohio, and Pennsylvania mined under SMCRA and reclaimed to non-forested post-mining land uses that are not currently under active management, and therefore can be considered as available for carbon sequestration. To determine actual sequestration under different forest management scenarios, a field study was installed as a 3 x 3 factorial in a random complete block design with three replications at each of three locations, one each in Ohio, West Virginia, and Virginia. The treatments included three forest types (white pine, hybrid poplar, mixed hardwood) and three silvicultural regimes (competition control, competition control plus tillage, competition control plus tillage plus fertilization). Each individual treatment plot is 0.5 acres. Each block of nine plots is 4.5 acres, and the complete installation at each site is 13.5 acres. Regression models of chemical and physical soil properties were created in order to estimate the SOC content down the soil profile. Soil organic carbon concentration and volumetric percent of the fines decreased exponentially down the soil profile. The results indicated that one-third of the total SOC content on mined lands was found in the surface 0-13 cm soil layer, and more than two-thirds of it was located in the 0-53 cm soil profile. A relative estimate of soil density may be best in broad-scale mine soil mapping since actual D{sub b} values are often inaccurate and difficult to obtain in rocky mine soils. Carbon sequestration potential is also a function of silvicultural practices used for reforestation success. Weed control plus tillage may be the optimum treatment for hardwoods and

  13. RESTORING SUSTAINABLE FORESTS ON APPALACHIAN MINED LANDS FOR WOOD PRODUCTS, RENEWABLE ENERGY, CARBON SEQUESTRATION, AND OTHER ECOSYSTEM SERVICES

    SciTech Connect (OSTI)

    James A. Burger; J. Galbraith; T. Fox; G. Amacher; J. Sullivan; C. Zipper

    2005-06-08

    The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. We are currently estimating the acreage of lands in VA, WV, KY, OH, and PA mined under SMCRA and reclaimed to non-forested post-mining land uses that are not currently under active management, and therefore can be considered as available for carbon sequestration. To determine actual sequestration under different forest management scenarios, a field study was installed as a 3 x 3 factorial in a random complete block design with three replications at each of three locations, Ohio, West Virginia, and Virginia. The treatments included three forest types (white pine, hybrid poplar, mixed hardwood) and three silvicultural regimes (competition control, competition control plus tillage, competition control plus tillage plus fertilization). Each individual treatment plot is 0.5 acres. Each block of nine plots is 4.5 acres, and the complete installation at each site is 13.5 acres. During the reporting period we compiled and evaluated all soil properties measured on the study sites. Statistical analysis of the properties was conducted, and first year survival and growth of white pine, hybrid poplars, and native hardwoods was assessed. Hardwood species survived better at all sites than white pine or hybrid poplar. Hardwood survival across treatments was 80%, 85%, and 50% for sites in Virginia, West Virginia, and Ohio, respectively, while white pine survival was 27%, 41%, and 58%, and hybrid poplar survival was 37%, 41%, and 72% for the same sites, respectively. Hybrid poplar height and diameter growth were superior to those of the other species tested, with the height growth of this species reaching 126.6cm after one year in the most intensive treatment at the site in Virginia. To determine carbon in soils on these

  14. Federal Off-Site Renewable Energy Purchases and Renewable Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Certificates | Department of Energy Renewable Energy Procurement » Federal Off-Site Renewable Energy Purchases and Renewable Energy Certificates Federal Off-Site Renewable Energy Purchases and Renewable Energy Certificates If developing an on-site renewable energy project is impractical, federal agencies can purchase renewable energy from off-site renewable energy projects or purchase renewable energy certificates (RECs). Renewable energy purchases do not require project financing and can

  15. Guide to Purchasing Green Power: Renewable Electricity, Renewable Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Certificates, and On-Site Renewable Generation | Department of Energy Purchasing Green Power: Renewable Electricity, Renewable Energy Certificates, and On-Site Renewable Generation Guide to Purchasing Green Power: Renewable Electricity, Renewable Energy Certificates, and On-Site Renewable Generation Document describes renewable electricity, renewable energy certificates, and on-site renewable generation, which agencies and organizations can consider to diversify their energy supply and

  16. Peninsula Research Institute for Marine Renewable Energy PRIMaRE...

    Open Energy Information (Open El) [EERE & EIA]

    Energy PRIMaRE Jump to: navigation, search Name: Peninsula Research Institute for Marine Renewable Energy (PRIMaRE) Place: United Kingdom Sector: Renewable Energy Product: UK-based...

  17. U.S. Energy Information Administration | Renewable Energy...

    Gasoline and Diesel Fuel Update

    Table 1 data for net production of fuel ethanol at renewable fuels and oxygenate plants. ... for refinery and blender net inputs of renewable fuels except fuel ethanol, March 2009 ...

  18. Renewable Jet Fuel Is Taking Flight | Department of Energy

    Energy Savers

    Renewable Jet Fuel Is Taking Flight Renewable Jet Fuel Is Taking Flight August 26, 2015 - 3:58pm Addthis Zia Haq Zia Haq Senior Analyst and Defense Production Act Coordinator, ...

  19. Green India Renewables Pvt Ltd | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    India Renewables Pvt Ltd Jump to: navigation, search Name: Green India Renewables Pvt. Ltd. Place: Kochi, Kerala, India Zip: 682 011 Sector: Solar Product: Kochi-based firm that...

  20. Enzymatic Oxidation of Methane

    SciTech Connect (OSTI)

    Sirajuddin, S; Rosenzweig, AC

    2015-04-14

    Methane monooxygenases (MMOs) are enzymes that catalyze the oxidation of methane to methanol in methanotrophic bacteria. As potential targets for new gas-to-liquid methane bioconversion processes, MMOs have attracted intense attention in recent years. There are two distinct types of MMO, a soluble, cytoplasmic MMO (sMMO) and a membrane-bound, particulate MMO (pMMO). Both oxidize methane at metal centers within a complex, multisubunit scaffold, but the structures, active sites, and chemical mechanisms are completely different. This Current Topic review article focuses on the overall architectures, active site structures, substrate reactivities, proteinprotein interactions, and chemical mechanisms of both MMOs, with an emphasis on fundamental aspects. In addition, recent advances, including new details of interactions between the sMMO components, characterization of sMMO intermediates, and progress toward understanding the pMMO metal centers are highlighted. The work summarized here provides a guide for those interested in exploiting MMOs for biotechnological applications.

  1. Methane Hydrate Advisory Committee Meeting Minutes | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Methane Hydrate Advisory Committee Meeting Minutes Methane Hydrate Advisory Committee Meeting Minutes Methane Hydrate Advisory Committee Meeting Minutes May 15, 2014 Washington, DC...

  2. Science on the Hill: Methane cloud hunting

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Methane cloud hunting Science on the Hill: Methane cloud hunting Los Alamos researchers go ... Science on the Hill: Methane cloud hunting When our team from Los Alamos National ...

  3. Methane Hydrate Program Reports | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Program Reports Methane Hydrate Program Reports PDF icon Secretary of Energy Advisory Board Task Force Report on Methane Hydrate PDF icon FY14 Methane Hydrate Report to Congress ...

  4. ARM - Measurement - Methane concentration

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    concentration ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Methane concentration The amount of methane, a greenhouse gas, per unit of volume. Categories Atmospheric Carbon Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those

  5. ARM - Measurement - Methane flux

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    flux ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Methane flux Vertical flux of methane near the surface due to turbulent transport. Categories Surface Properties, Atmospheric Carbon Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including

  6. Completed Methane Hydrate Projects

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Completed Methane Hydrate Projects Active Projects | Completed Projects Completed Methane Hydrate Projects Project Number Project Name Primary Performer DE-FE0002911 Natural Gas Hydrates in Permafrost and Marine Settings: Resources, Properties, and Environmental Issues U.S. Geological Survey at Woods Hole DE-FE0013565 Hydrate Evolution in Response to Ongoing Environmental Shifts University of Oregon DE-FE0013889 THCM Coupled Model for Hydrate-bearing Sediments: Data Analysis and Design of New

  7. Electrochemical methane sensor

    DOE Patents [OSTI]

    Zaromb, S.; Otagawa, T.; Stetter, J.R.

    1984-08-27

    A method and instrument including an electrochemical cell for the detection and measurement of methane in a gas by the oxidation of methane electrochemically at a working electrode in a nonaqueous electrolyte at a voltage about 1.4 volts vs R.H.E. (the reversible hydrogen electrode potential in the same electrolyte), and the measurement of the electrical signal resulting from the electrochemical oxidation.

  8. RP-5 Renewable Energy Efficiency Project

    SciTech Connect (OSTI)

    Neil Clifton; Dave Wall; Jamal Zughbi

    2007-06-30

    This is the final technical report for the RP-5 Renewable Energy Efficiency Project (REEP). The report summarizes, in a comprehensive manner, all the work performed during the award period extending between July 12, 2002 and June 30, 2007. This report has been prepared in accordance with the Department of Energy (DOE) Guidelines and summarizes all of the activities that occurred during the award period. The RP-5 Renewable Energy Efficiency Project, under development by the Inland Empire Utilities Agency (IEUA), is comprised of a series of full-scale demonstration projects that will showcase innovative combinations of primary and secondary generation systems using methane gas derived from local processing of biosolids, dairy manure and other organic material. The goal of the project is to create renewable energy-based generation systems with energy efficiencies 65% or more. The project was constructed at the 15 MGD Regional Wastewater Treatment Plant No. 5 located in the City of Chino in California where the Agency has constructed its new energy-efficient (platinum-LEED rating) headquarters building. Technologies that were featured in the project include internal combustion engines (ICE), absorption chillers, treatment plant secondary effluent cooling systems, heat recovery systems, thermal energy storage (TES), Organic Rankine Cycle (ORC) secondary power generation system, the integration of a future fuel cell system, gas cleaning requirements, and other state-of-the-art design combinations. The RP-5 REEP biogas source is coming from three manure digesters which are located within the RP-5 Complex and are joined with the RP-5 REEP through gas conveyance pipelines. Food waste is being injected into the manure digesters for digester gas production enhancement. The RP-5 REEP clearly demonstrates the biogas production and power generation viability, specifically when dealing with renewable and variable heating value (Btu) fuel. The RP-5 REEP was challenged with meeting

  9. Renewable energy 1998: Issues and trends

    SciTech Connect (OSTI)

    1999-03-01

    This report presents the following five papers: Renewable electricity purchases: History and recent developments; Transmission pricing issues for electricity generation from renewable resources; Analysis of geothermal heat pump manufacturers survey data; A view of the forest products industry from a wood energy perspective; and Wind energy developments: Incentives in selected countries. A glossary is included. 19 figs., 27 tabs.

  10. Current Renewable Energy Technologies and Future Projections

    SciTech Connect (OSTI)

    Allison, Stephen W; Lapsa, Melissa Voss; Ward, Christina D; Smith, Barton; Grubb, Kimberly R; Lee, Russell

    2007-05-01

    The generally acknowledged sources of renewable energy are wind, geothermal, biomass, solar, hydropower, and hydrogen. Renewable energy technologies are crucial to the production and utilization of energy from these regenerative and virtually inexhaustible sources. Furthermore, renewable energy technologies provide benefits beyond the establishment of sustainable energy resources. For example, these technologies produce negligible amounts of greenhouse gases and other pollutants in providing energy, and they exploit domestically available energy sources, thereby reducing our dependence on both the importation of fossil fuels and the use of nuclear fuels. The market price of renewable energy technologies does not reflect the economic value of these added benefits.

  11. Renewable Energy Production Tax Credit

    Energy.gov [DOE]

    This annual corporate tax credit is equal to $0.01 per kilowatt-hour (kWh) of electricity produced and sold by the taxpayer to an unrelated party during a given tax year. For new facilities (plac...

  12. Renewable Energy Integration | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Renewable Energy Integration Renewable Energy Integration Renewable Energy Integration focuses on incorporating renewable energy, distributed generation, energy storage, thermally ...

  13. Plasma catalytic reforming of methane

    SciTech Connect (OSTI)

    Bromberg, L.; Cohn, D.R.; Rabinovich, A.; Alexeev, N.

    1998-08-01

    Thermal plasma technology can be efficiently used in the production of hydrogen and hydrogen-rich gases from methane and a variety of fuels. This paper describes progress in plasma reforming experiments and calculations of high temperature conversion of methane using heterogeneous processes. The thermal plasma is a highly energetic state of matter that is characterized by extremely high temperatures (several thousand degrees Celsius) and high degree of dissociation and substantial degree of ionization. The high temperatures accelerate the reactions involved in the reforming process. Hydrogen-rich gas (50% H{sub 2}, 17% CO and 33% N{sub 2}, for partial oxidation/water shifting) can be efficiently made in compact plasma reformers. Experiments have been carried out in a small device (2--3 kW) and without the use of efficient heat regeneration. For partial oxidation/water shifting, it was determined that the specific energy consumption in the plasma reforming processes is 16 MJ/kg H{sub 2} with high conversion efficiencies. Larger plasmatrons, better reactor thermal insulation, efficient heat regeneration and improved plasma catalysis could also play a major role in specific energy consumption reduction and increasing the methane conversion. A system has been demonstrated for hydrogen production with low CO content ({approximately} 1.5%) with power densities of {approximately} 30 kW (H{sub 2} HHV)/liter of reactor, or {approximately} 10 m{sup 3}/hr H{sub 2} per liter of reactor. Power density should further increase with increased power and improved design.

  14. Novera Renewable Energy formerly Novera Macquarie Renewable Energy...

    Open Energy Information (Open El) [EERE & EIA]

    formerly Novera Macquarie Renewable Energy Limited NMRE Jump to: navigation, search Name: Novera Renewable Energy (formerly Novera Macquarie Renewable Energy Limited - NMRE) Place:...

  15. E ON Climate Renewables UK formerly Powergen Renewable Energy...

    Open Energy Information (Open El) [EERE & EIA]

    UK formerly Powergen Renewable Energy Holdings Jump to: navigation, search Name: E.ON Climate & Renewables UK (formerly Powergen Renewable Energy Holdings) Place: Coventry,...

  16. Renewable energy annual 1996

    SciTech Connect (OSTI)

    1997-03-01

    This report presents summary data on renewable energy consumption, the status of each of the primary renewable technologies, a profile of each of the associated industries, an analysis of topical issues related to renewable energy, and information on renewable energy projects worldwide. It is the second in a series of annual reports on renewable energy. The renewable energy resources included in the report are biomass (wood and ethanol); municipal solid waste, including waste-to-energy and landfill gas; geothermal; wind; and solar energy, including solar thermal and photovoltaic. The report also includes various appendices and a glossary.

  17. FEMP Renewable Energy Overview

    SciTech Connect (OSTI)

    Not Available

    2003-06-01

    This four-page overview describes how Federal agencies can contact the Department of Energy's Federal Energy Management Program (FEMP) to obtain assistance in acquiring renewable energy systems, renewable fuels, and renewable ("green") power for use in their facilities and vehicles. Renewable resources, technologies, and fuels are described, as well as Federal goals for using clean, sustainable renewable energy; the current goal is to supply 2.5% of the Federal Government's energy with renewable sources by 2005. Also included is a description of the resources and technologies themselves and associated benefits.

  18. Methane activation using Kr and Xe in a dielectric barrier discharge reactor

    SciTech Connect (OSTI)

    Jo, Sungkwon; Lee, Dae Hoon Kim, Kwan-Tae; Kang, Woo Seok; Song, Young-Hoon

    2014-10-15

    Methane has interested many researchers as a possible new energy source, but the high stability of methane causes a bottleneck in methane activation, limiting its practical utilization. To determine how to effectively activate methane using non-thermal plasma, the conversion of methane is measured in a planar-type dielectric barrier discharge reactor using three different noble gases—Ar, Kr, and Xe—as additives. In addition to the methane conversion results at various applied voltages, the discharge characteristics such as electron temperature and electron density were calculated through zero-dimensional calculations. Moreover, the threshold energies of excitation and ionization were used to distinguish the dominant particle for activating methane between electrons, excited atoms, and ionized atoms. From the experiments and calculations, the selection of the additive noble gas is found to affect not only the conversion of methane but also the selectivity of product gases even under similar electron temperature and electron density conditions.

  19. U.S. and Japan Complete Successful Field Trial of Methane Hydrate

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Production Technologies | Department of Energy Japan Complete Successful Field Trial of Methane Hydrate Production Technologies U.S. and Japan Complete Successful Field Trial of Methane Hydrate Production Technologies May 2, 2012 - 10:40am Addthis WASHINGTON, DC - U.S. Energy Secretary Steven Chu announced today the completion of a successful, unprecedented test of technology in the North Slope of Alaska that was able to safely extract a steady flow of natural gas from methane hydrates - a

  20. Understanding the nature of methane emission from rice ecosystems as basis of mitigation strategies

    SciTech Connect (OSTI)

    Buendia, L.V.; Neue, H.U.; Wassmann, R.

    1996-12-31

    Methane is considered as an important Greenhouse gas and rice fields are one of the major atmospheric methane sources. The paper aims to develop sampling strategies and formulate mitigation options based on diel (day and night) and seasonal pattern of methane emission. The study was conducted in 4 countries to measure methane flux using an automatic closed chamber system. A 24-hour bihourly methane emissions were continuously obtained during the whole growing season. Daily and seasonal pattern of methane fluxes from different rice ecosystems were evaluated. Diel pattern of methane emission from irrigated rice fields, in all sites, displayed similar pattern from planting to flowering. Fluxes at 0600, 1200, and 1800 h were important components of the total diel flux. A proposed sampling frequency to accurately estimate methane emission within the growing season was designed based on the magnitude of daily flux variation. Total methane emission from different ecosystems follow the order: deepwater rice > irrigated rice > rainfed rice. Application of pig manure increased total emission by 10 times of that without manure. Green manure application increased emission by 49% of that applied only with inorganic fertilizer. Removal of floodwater at 10 DAP and 35 DAP, within a period of 4 days, inhibited production and emission of methane. The level of variation in daily methane emission and seasonal emission pattern provides useful information for accurate determination of methane fluxes. Characterization of seasonal emission pattern as to ecologies, fertilizer amendments, and water management gives an idea of where to focus mitigation strategies for sustainable rice production.