National Library of Energy BETA

Sample records for reference case fuel

  1. Mechanism reduction for multicomponent surrogates: A case study using toluene reference fuels

    SciTech Connect

    Niemeyer, Kyle E.; Sung, Chih-Jen

    2014-11-01

    Strategies and recommendations for performing skeletal reductions of multicomponent surrogate fuels are presented, through the generation and validation of skeletal mechanisms for a three-component toluene reference fuel. Using the directed relation graph with error propagation and sensitivity analysis method followed by a further unimportant reaction elimination stage, skeletal mechanisms valid over comprehensive and high-temperature ranges of conditions were developed at varying levels of detail. These skeletal mechanisms were generated based on autoignition simulations, and validation using ignition delay predictions showed good agreement with the detailed mechanism in the target range of conditions. When validated using phenomena other than autoignition, such as perfectly stirred reactor and laminar flame propagation, tight error control or more restrictions on the reduction during the sensitivity analysis stage were needed to ensure good agreement. In addition, tight error limits were needed for close prediction of ignition delay when varying the mixture composition away from that used for the reduction. In homogeneous compression-ignition engine simulations, the skeletal mechanisms closely matched the point of ignition and accurately predicted species profiles for lean to stoichiometric conditions. Furthermore, the efficacy of generating a multicomponent skeletal mechanism was compared to combining skeletal mechanisms produced separately for neat fuel components; using the same error limits, the latter resulted in a larger skeletal mechanism size that also lacked important cross reactions between fuel components. Based on the present results, general guidelines for reducing detailed mechanisms for multicomponent fuels are discussed.

  2. Mechanism reduction for multicomponent surrogates: A case study using toluene reference fuels

    DOE PAGES [OSTI]

    Niemeyer, Kyle E.; Sung, Chih-Jen

    2014-11-01

    Strategies and recommendations for performing skeletal reductions of multicomponent surrogate fuels are presented, through the generation and validation of skeletal mechanisms for a three-component toluene reference fuel. Using the directed relation graph with error propagation and sensitivity analysis method followed by a further unimportant reaction elimination stage, skeletal mechanisms valid over comprehensive and high-temperature ranges of conditions were developed at varying levels of detail. These skeletal mechanisms were generated based on autoignition simulations, and validation using ignition delay predictions showed good agreement with the detailed mechanism in the target range of conditions. When validated using phenomena other than autoignition, suchmore » as perfectly stirred reactor and laminar flame propagation, tight error control or more restrictions on the reduction during the sensitivity analysis stage were needed to ensure good agreement. In addition, tight error limits were needed for close prediction of ignition delay when varying the mixture composition away from that used for the reduction. In homogeneous compression-ignition engine simulations, the skeletal mechanisms closely matched the point of ignition and accurately predicted species profiles for lean to stoichiometric conditions. Furthermore, the efficacy of generating a multicomponent skeletal mechanism was compared to combining skeletal mechanisms produced separately for neat fuel components; using the same error limits, the latter resulted in a larger skeletal mechanism size that also lacked important cross reactions between fuel components. Based on the present results, general guidelines for reducing detailed mechanisms for multicomponent fuels are discussed.« less

  3. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update

    G Projections of petroleum and other liquids production in three cases * Reference * High Oil Price * Low Oil Price This page inTenTionally lefT blank 85 U.S. Energy Information Administration | International Energy Outlook 2016 Projections of petroleum and other liquid fuels production in three cases Table G1. World petroleum and other liquids production by region and country, Reference case, 2011-40 (million barrels per day, unless otherwise noted) Region/country History (estimates)

  4. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update

    F Reference case projections by end-use sector and country grouping This page inTenTionally lefT blank 63 U.S. Energy Information Administration | International Energy Outlook 2016 Reference case projections by end-use sector and country grouping Table F1. Total world delivered energy consumption by end-use sector and fuel, 2011-40 (quadrillion Btu) Sector/fuel History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 Residential Liquids 9.1 9.2 10.0 9.8 9.5

  5. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update

    H Reference case projections for electricity capacity and generation by fuel This page inTenTionally lefT blank 97 U.S. Energy Information Administration | International Energy Outlook 2016 Reference case projections for electricity capacity and generation by fuel Table H1. World total installed generating capacity by region and country, 2011-40 (gigawatts) Region/country History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 1,258 1,278

  6. Appendix A: Reference case

    Annual Energy Outlook

    Reference case Energy Information Administration Annual Energy Outlook 2014 Table A17. Renewable energy consumption by sector and source (quadrillion Btu) Sector and source...

  7. Appendix A: Reference case

    Annual Energy Outlook

    4 Reference case Table A2. Energy consumption by sector and source (quadrillion Btu per year, unless otherwise noted) Energy Information Administration Annual Energy Outlook 2014...

  8. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update

    7 U.S. Energy Information Administration | International Energy Outlook 2016 Projections of petroleum and other liquid fuels production in three cases Table G3. International other liquid fuels a production by region and country, Reference case, 2011-40 (million barrels per day, unless otherwise noted) Region/country History (estimates) Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OPEC b 3.7 3.8 4.3 4.6 4.8 5.2 5.6 1.3 Natural gas plant liquids 3.6 3.7

  9. Reference Designs for Hydrogen Fueling Stations Webinar

    Energy.gov [DOE]

    Access the recording and download the presentation slides from the Fuel Cell Technologies Office webinar "Reference Designs for Hydrogen Fueling Stations" held on October 13, 2015.

  10. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update

    5 U.S. Energy Information Administration | International Energy Outlook 2016 Projections of petroleum and other liquid fuels production in three cases Table G1. World petroleum and other liquids production by region and country, Reference case, 2011-40 (million barrels per day, unless otherwise noted) Region/country History (estimates) Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OPEC a 36.0 37.4 39.2 41.4 44.6 48.7 52.2 1.2 Middle East 26.2 26.6 29.8

  11. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update

    7 U.S. Energy Information Administration | International Energy Outlook 2016 Reference case projections for electricity capacity and generation by fuel Table H1. World total installed generating capacity by region and country, 2011-40 (gigawatts) Region/country History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 1,258 1,278 1,330 1,371 1,436 1,517 1,622 0.9 United States a 1,046 1,063 1,079 1,091 1,133 1,187 1,261 0.6 Canada 133 135

  12. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update

    7 U.S. Energy Information Administration | International Energy Outlook 2016 Reference case projections for electricity capacity and generation by fuel Table H11. World installed other renewable generating capacity by region and country, 2011-40 (gigawatts) Region/country History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 41 42 45 49 52 57 59 1.2 United States a 36 37 39 39 39 40 41 0.4 Canada 4 4 5 8 12 15 16 4.9 Mexico and Chile 1 1

  13. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update

    9 U.S. Energy Information Administration | International Energy Outlook 2016 Reference case projections for electricity capacity and generation by fuel Table H13. World net liquids-fred electricity generation by region and country, 2011-40 (billion kilowatthours) Region/country History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 88 88 66 37 36 35 35 -3.3 United States a 30 23 18 18 18 18 18 -0.9 Canada 6 7 6 6 6 5 5 -1.0 Mexico and

  14. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update

    1 U.S. Energy Information Administration | International Energy Outlook 2016 Reference case projections for electricity capacity and generation by fuel Table H15. World net coal-fred electricity generation by region and country, 2011-40 (billion kilowatthours) Region/country History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 1,857 1,630 1,808 1,820 1,786 1,778 1,769 0.3 United States a 1,733 1,514 1,709 1,724 1,713 1,704 1,702 0.4

  15. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update

    Reference case projections for electricity capacity and generation by fuel Table H17. World net hydroelectric and other renewable electricity generation by region and country, 2011-40 (billion kilowatthours) Region/country History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 1,004 987 1,278 1,376 1,472 1,598 1,763 2.1 United States a 535 520 704 741 781 848 934 2.1 Canada 398 397 459 491 524 557 606 1.5 Mexico and Chile 71 69 115 144

  16. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update

    5 U.S. Energy Information Administration | International Energy Outlook 2016 Reference case projections for electricity capacity and generation by fuel Table H19. World net wind-powered electricity generation by region and country, 2011-40 (billion kilowatthours) Region/country History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 142 156 295 327 354 404 460 3.9 United States a 120 141 232 235 245 278 319 3.0 Canada 20 11 39 46 53 60 66

  17. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update

    7 U.S. Energy Information Administration | International Energy Outlook 2016 Reference case projections for electricity capacity and generation by fuel Table H21. World net solar electricity generation by region and country, 2011-40 (billion kilowatthours) Region/country History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 6 12 57 65 79 96 120 8.7 United States a 6 11 51 59 71 88 110 8.5 Canada 0 0 3 3 4 5 5 10.3 Mexico and Chile 0 0 3

  18. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update

    9 U.S. Energy Information Administration | International Energy Outlook 2016 Reference case projections for electricity capacity and generation by fuel Table H3. World installed natural-gas-fred generating capacity by region and country, 2011-40 (gigawatts) Region/country History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 410 420 455 488 534 584 640 1.5 United States a 358 367 393 409 444 481 525 1.3 Canada 20 20 25 30 36 41 46 3.0

  19. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update

    1 U.S. Energy Information Administration | International Energy Outlook 2016 Reference case projections for electricity capacity and generation by fuel Table H5. World installed nuclear generating capacity by region and country, 2011-40 (gigawatts) Region/country History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 115 117 115 113 115 114 118 0.0 United States a 102 102 101 101 102 102 105 0.1 Canada 13 14 12 10 10 10 9 -1.5 Mexico and

  20. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update

    3 U.S. Energy Information Administration | International Energy Outlook 2016 Reference case projections for electricity capacity and generation by fuel Table H7. World installed hydroelectric generating capacity by region and country, 2011-40 (gigawatts) Region/country History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 171 171 183 187 192 198 210 0.7 United States a 78 78 80 80 80 80 80 0.1 Canada 75 75 83 85 88 90 99 1.0 Mexico and

  1. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update

    5 U.S. Energy Information Administration | International Energy Outlook 2016 Reference case projections for electricity capacity and generation by fuel Table H9. World installed geothermal generating capacity by region and country, 2011-40 (gigawatts) Region/country History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 3 3 5 7 9 10 11 4.3 United States a 3 3 4 5 7 8 9 4.6 Canada 0 0 0 0 0 0 0 - Mexico and Chile 1 1 1 1 2 2 2 3.3 OECD

  2. Webinar: Reference Designs for Hydrogen Fueling Stations

    Energy.gov [DOE]

    The Fuel Cell Technologies Office will present a live webinar titled "Reference Designs for Hydrogen Fueling Stations" on Tuesday, October 13, from 12 to 1 p.m. Eastern Daylight Time (EDT).

  3. Generic Crystalline Disposal Reference Case

    SciTech Connect

    Painter, Scott Leroy; Chu, Shaoping; Harp, Dylan Robert; Perry, Frank Vinton; Wang, Yifeng

    2015-02-20

    A generic reference case for disposal of spent nuclear fuel and high-level radioactive waste in crystalline rock is outlined. The generic cases are intended to support development of disposal system modeling capability by establishing relevant baseline conditions and parameters. Establishment of a generic reference case requires that the emplacement concept, waste inventory, waste form, waste package, backfill/buffer properties, EBS failure scenarios, host rock properties, and biosphere be specified. The focus in this report is on those elements that are unique to crystalline disposal, especially the geosphere representation. Three emplacement concepts are suggested for further analyses: a waste packages containing 4 PWR assemblies emplaced in boreholes in the floors of tunnels (KBS-3 concept), a 12-assembly waste package emplaced in tunnels, and a 32-assembly dual purpose canister emplaced in tunnels. In addition, three failure scenarios were suggested for future use: a nominal scenario involving corrosion of the waste package in the tunnel emplacement concepts, a manufacturing defect scenario applicable to the KBS-3 concept, and a disruptive glaciation scenario applicable to both emplacement concepts. The computational approaches required to analyze EBS failure and transport processes in a crystalline rock repository are similar to those of argillite/shale, with the most significant difference being that the EBS in a crystalline rock repository will likely experience highly heterogeneous flow rates, which should be represented in the model. The computational approaches required to analyze radionuclide transport in the natural system are very different because of the highly channelized nature of fracture flow. Computational workflows tailored to crystalline rock based on discrete transport pathways extracted from discrete fracture network models are recommended.

  4. Detailed HCCI Exhaust Speciation - ORNL Reference Fuel Blends...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    HCCI Exhaust Speciation - ORNL Reference Fuel Blends Detailed HCCI Exhaust Speciation - ORNL Reference Fuel Blends *Accurately measure exhaust profile from an HCCI engine with a ...

  5. Appendix A: Reference case projections

    Energy Information Administration (EIA) (indexed site)

    6 Appendix A Table A2. World total energy consumption by region and fuel, Reference case, 2011-40 (quadrillion Btu) Region History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas Liquids 45.3 44.6 46.4 46.1 46.0 46.2 46.7 0.2 Natural gas 31.8 32.8 33.9 35.5 37.7 39.5 41.4 0.8 Coal 21.0 18.7 20.3 20.5 20.1 20.0 20.0 0.2 Nuclear 9.4 9.2 9.5 9.4 9.5 9.5 9.7 0.2 Other 13.1 12.9 15.6 16.6 17.5 18.6 20.3 1.6 Total 120.6 118.1 125.7 128.1 130.7

  6. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update

    I Reference case projections for natural gas production This page inTenTionally lefT blank 121 U.S. Energy Information Administration | International Energy Outlook 2016 Reference case projections for natural gas production Table I1. World total natural gas production by region, Reference case, 2012-40 (trillion cubic feet) Region/country Projections Average annual percent change, 2012-40 2012 2020 2025 2030 2035 2040 OECD OECD Americas 31.8 35.7 38.6 42.1 44.6 47.3 1.4 United States a 24.0 28.7

  7. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update

    3 U.S. Energy Information Administration | International Energy Outlook 2016 Projections of petroleum and other liquid fuels production in three cases Table G9. World other liquid fuels a production by region and country, Low Oil Price case, 2011-40 (million barrels per day, unless otherwise noted) Region/country History (estimates) Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OPEC b 3.7 3.8 4.3 4.5 4.5 4.9 4.8 0.8 Natural gas plant liquids 3.6 3.7 4.0

  8. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update

    A Reference case projections This page inTenTionally lefT blank 25 U.S. Energy Information Administration | International Energy Outlook 2016 Reference case projections Table A1. World total primary energy consumption by region, Reference case, 2011-40 (quadrillion Btu) Region History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 120.6 118.1 125.7 128.1 130.7 133.8 138.1 0.6 United States a 96.8 94.4 100.8 102.0 102.9 103.8 105.7 0.4

  9. Appendix A: Reference case projections

    Energy Information Administration (EIA) (indexed site)

    U.S. Energy Information Administration | International Energy Outlook 2016 Reference case projections Table A4. World gross domestic product (GDP) by region expressed in market exchange rates, Reference case, 2011-40 (billion 2010 dollars) Region History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 18,006 18,440 22,566 25,585 28,757 32,166 36,120 2.4 United States a 15,021 15,369 18,801 21,295 23,894 26,659 29,898 2.4 Canada 1,662

  10. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update

    9 U.S. Energy Information Administration | International Energy Outlook 2016 Reference case projections Table A14. World population by region, Reference case, 2011-40 (millions) Region History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 484 489 523 544 564 581 597 0.7 United States a 312 315 334 347 359 370 380 0.7 Canada 34 35 38 39 41 43 44 0.8 Mexico and Chile 137 139 151 158 164 169 173 0.8 OECD Europe 548 550 565 571 576 579 581

  11. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update

    3 U.S. Energy Information Administration | International Energy Outlook 2016 Reference case projections Table A8. World nuclear energy consumption by region, Reference case, 2011-40 (billion kilowatthours) Region History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 888 867 902 891 901 900 924 0.2 United States a 790 769 804 808 808 812 833 0.3 Canada 88 89 86 72 72 67 62 -1.3 Mexico and Chile 9 8 12 12 20 20 29 4.5 OECD Europe 861 837

  12. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update

    1 U.S. Energy Information Administration | International Energy Outlook 2016 Projections of petroleum and other liquid fuels production in three cases Table G7. World petroleum and other liquids production by region and country, Low Oil Price case, 2011-40 (million barrels per day, unless otherwise noted) Region/country History (estimates) Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OPEC a 36.0 37.4 43.2 45.6 49.9 54.7 59.4 1.7 Middle East 26.2 26.6 31.1

  13. Appendix A: Reference case projections

    Energy Information Administration (EIA) (indexed site)

    U.S. Energy Information Administration | International Energy Outlook 2016 Reference case projections Table A1. World total primary energy consumption by region, Reference case, 2011-40 (quadrillion Btu) Region History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 120.6 118.1 125.7 128.1 130.7 133.8 138.1 0.6 United States a 96.8 94.4 100.8 102.0 102.9 103.8 105.7 0.4 Canada 14.5 14.5 15.1 15.6 16.3 17.1 18.1 0.8 Mexico and Chile 9.3

  14. Appendix A: Reference case projections

    Energy Information Administration (EIA) (indexed site)

    U.S. Energy Information Administration | International Energy Outlook 2016 Reference case projections Table A6. World natural gas consumption by region, Reference case, 2011-40 (trillion cubic feet) Region History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 30.8 31.8 32.8 34.3 36.5 38.2 40.1 0.8 United States a 24.5 25.5 26.1 26.9 28.1 28.8 29.7 0.5 Canada 3.7 3.7 3.9 4.2 4.7 5.2 5.6 1.5 Mexico and Chile 2.6 2.6 2.8 3.2 3.6 4.2 4.8

  15. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update

    1 U.S. Energy Information Administration | International Energy Outlook 2016 Reference case projections for natural gas production Table I1. World total natural gas production by region, Reference case, 2012-40 (trillion cubic feet) Region/country Projections Average annual percent change, 2012-40 2012 2020 2025 2030 2035 2040 OECD OECD Americas 31.8 35.7 38.6 42.1 44.6 47.3 1.4 United States a 24.0 28.7 30.4 32.9 34.0 35.3 1.4 Canada 6.1 5.8 6.6 7.2 7.9 8.6 1.2 Mexico 1.7 1.2 1.5 2.0 2.6 3.3

  16. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update

    3 U.S. Energy Information Administration | International Energy Outlook 2016 Reference case projections for natural gas production Table I3. World other natural gas production by region, Reference case, 2012-40 (trillion cubic feet) Region/country Projections Average annual percent change, 2012-40 2012 2020 2025 2030 2035 2040 OECD OECD Americas 12.0 9.8 9.5 10.7 10.3 10.3 -0.5 United States a 7.5 6.6 6.5 7.8 7.5 7.5 0.0 Canada 2.8 2.0 1.8 1.7 1.6 1.5 -2.2 Mexico 1.7 1.2 1.2 1.2 1.2 1.2 -1.2

  17. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update

    5 U.S. Energy Information Administration | International Energy Outlook 2016 Reference case projections Table A10. World carbon dioxide emissions by region, Reference case, 2011-40 (million metric tons carbon dioxide) Region History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 6,558 6,343 6,569 6,620 6,675 6,769 6,887 0.3 United States a 5,483 5,272 5,499 5,511 5,514 5,521 5,549 0.2 Canada 562 563 557 577 587 621 647 0.5 Mexico and

  18. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update

    Reference case projections Table A12. World carbon dioxide emissions from natural gas use by region, Reference case, 2011-40 (million metric tons carbon dioxide) Region History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 1,666 1,715 1,766 1,849 1,965 2,063 2,167 0.8 United States a 1,305 1,363 1,394 1,432 1,497 1,538 1,586 0.5 Canada 205 205 213 234 261 287 310 1.5 Mexico and Chile 156 147 158 184 207 238 271 2.2 OECD Europe 1,016 970

  19. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update

    J Kaya Identity factor projections * Carbon dioxide intensity * Energy intensity * GDP per capita * Population This page inTenTionally lefT blank 127 U.S. Energy Information Administration | International Energy Outlook 2016 Kaya Identity factor projections Table J1. World carbon dioxide intensity of energy use by region, Reference case, 2011-40 (metric tons per billion Btu) Region History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas

  20. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update

    9 U.S. Energy Information Administration | International Energy Outlook 2016 Projections of petroleum and other liquid fuels production in three cases Table G5. World crude oil a production by region and country, High Oil Price case, 2011-40 (million barrels per day, unless otherwise noted) Region/country History (estimates) Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OPEC b 32.2 33.4 30.7 30.9 32.4 33.4 34.4 0.1 Middle East 22.9 23.2 22.7 23.0 24.4 25.2

  1. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update

    9 U.S. Energy Information Administration | International Energy Outlook 2016 Kaya Identity factor projections Table J3. World gross domestic product (GDP) per capita by region expressed in purchasing power parity, Reference case, 2011-40 (2010 dollars per person) Region History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 38,441 39,055 44,716 48,842 53,114 57,747 63,278 1.7 United States a 48,094 48,865 56,285 61,453 66,639 72,107

  2. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update

    0 Appendix G Table G6. World other liquid fuels a production by region and country, High Oil Price case, 2011-40 (million barrels per day, unless otherwise noted) Region/country History (estimates) Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OPEC b 3.7 3.8 4.6 4.9 5.3 5.8 5.9 1.6 Natural gas plant liquids 3.6 3.7 4.3 4.6 4.9 5.3 5.3 1.3 Liquids from renewable sources c 0.0 0.0 0.0 0.0 0.0 0.0 0.0 - Liquids from coal 0.0 0.0 0.0 0.0 0.0 0.0 0.0 - Liquids

  3. Appendix A: Reference case projections

    Energy Information Administration (EIA) (indexed site)

    8 Appendix A Table A3. World gross domestic product (GDP) by region expressed in purchasing power parity, Reference case, 2011-40 (billion 2010 dollars) Region History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 18,616 19,080 23,390 26,577 29,942 33,569 37,770 2.5 United States a 15,021 15,369 18,801 21,295 23,894 26,659 29,898 2.4 Canada 1,396 1,422 1,700 1,881 2,074 2,293 2,529 2.1 Mexico and Chile 2,200 2,288 2,890 3,400 3,974 4,618

  4. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update

    7 U.S. Energy Information Administration | International Energy Outlook 2016 Kaya Identity factor projections Table J1. World carbon dioxide intensity of energy use by region, Reference case, 2011-40 (metric tons per billion Btu) Region History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 53.6 53.0 52.3 51.7 51.1 50.6 49.9 -0.2 United States a 55.7 55.0 54.5 54.0 53.6 53.2 52.5 -0.2 Canada 38.8 38.9 37.0 37.0 36.1 36.2 35.8 -0.3 Mexico

  5. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update

    30 Appendix J Table J4. World population by region, Reference case, 2011-2040 (millions) Region History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 484 489 523 544 564 581 597 0.7 United States a 312 315 334 347 359 370 380 0.7 Canada 34 35 38 39 41 43 44 0.8 Mexico and Chile 137 139 151 158 164 169 173 0.8 OECD Europe 548 550 565 571 576 579 581 0.2 OECD Asia 203 204 207 208 208 207 206 0.0 Japan 127 127 125 123 120 117 114 -0.4 South

  6. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update

    6 Appendix A Table A11. World carbon dioxide emissions from liquids use by region, Reference case, 2011-40 (million metric tons carbon dioxide) Region History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 2,881 2,838 2,861 2,812 2,785 2,794 2,812 0.0 United States a 2,291 2,240 2,269 2,227 2,182 2,163 2,147 -0.2 Canada 289 291 291 289 290 295 304 0.2 Mexico and Chile 301 307 301 296 313 335 361 0.6 OECD Europe 1,969 1,903 1,823 1,804

  7. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update

    8 Appendix A Table A13. World carbon dioxide emissions from coal use by region, Reference case, 2011-40 (million metric tons carbon dioxide) Region History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 2,000 1,779 1,931 1,947 1,912 1,901 1,896 0.2 United States a 1,876 1,657 1,824 1,840 1,822 1,808 1,804 0.3 Canada 68 68 53 54 36 38 33 -2.5 Mexico and Chile 56 54 53 53 54 55 58 0.3 OECD Europe 1,208 1,251 1,228 1,244 1,219 1,195 1,178

  8. Appendix A: Reference case projections

    Energy Information Administration (EIA) (indexed site)

    30 Appendix A Table A5. World liquids consumption by region, Reference case, 2011-40 (million barrels per day) Region History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 23.6 23.2 24.4 24.4 24.3 24.4 24.6 0.2 United States a 18.9 18.5 19.6 19.6 19.4 19.3 19.3 0.2 Canada 2.3 2.4 2.4 2.4 2.4 2.4 2.5 0.2 Mexico and Chile 2.4 2.4 2.4 2.4 2.5 2.7 2.9 0.6 OECD Europe 14.5 14.1 13.7 13.6 13.7 13.8 14.0 0.0 OECD Asia 7.9 8.2 7.7 7.5 7.5 7.5

  9. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update

    8 Appendix J Table J2. World energy intensity by region, Reference case, 2011-40 (thousand Btu per 2010 dollar of GDP) Region History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 6.5 6.2 5.4 4.8 4.4 4.0 3.7 -1.9 United States a 6.4 6.1 5.4 4.8 4.3 3.9 3.5 -2.0 Canada 10.4 10.2 8.9 8.3 7.8 7.5 7.1 -1.3 Mexico and Chile 4.2 4.0 3.4 3.1 2.9 2.8 2.7 -1.4 OECD Europe 4.4 4.4 3.9 3.7 3.5 3.3 3.2 -1.1 OECD Asia 5.7 5.5 5.4 5.3 5.1 4.9 4.8 -0.5

  10. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update

    86 Appendix G Table G2. World crude oil a production by region and country, Reference case, 2011-40 (million barrels per day, unless otherwise noted) Region/country History (estimates) Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OPEC b 32.2 33.4 34.9 36.8 39.7 43.4 46.6 1.2 Middle East 22.9 23.2 26.2 27.9 30.3 33.4 35.6 1.5 North Africa 2.0 2.9 1.6 1.7 1.8 2.0 2.2 -1.0 West Africa 4.3 4.3 4.3 4.3 4.5 4.7 5.1 0.6 South America 3.0 3.0 2.8 2.9 3.1 3.4 3.6

  11. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update

    2 Appendix I Table I2. World tight gas, shale gas and coalbed methane production by region, Reference case, 2012-40 (trillion cubic feet) Region/country Projections Average annual percent change, 2012-40 2012 2020 2025 2030 2035 2040 OECD OECD Americas 19.8 26.0 29.0 31.4 34.3 37.0 2.3 United States a 16.6 22.1 23.9 25.1 26.5 27.8 1.9 Canada 3.3 3.8 4.9 5.5 6.3 7.0 2.8 Mexico 0.0 0.1 0.3 0.8 1.4 2.2 - Chile 0.0 0.0 0.0 0.0 0.0 0.0 - OECD Europe 0.0 0.5 1.7 3.3 4.6 5.5 21.8 North Europe 0.0 0.5

  12. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update

    4 Appendix I Table I4. World net trade in natural gas by region, Reference case, 2012-40 (trillion cubic feet) Region/country Projections Average annual percent change, 2012-40 2012 2020 2025 2030 2035 2040 OECD OECD Americas 0.3 -2.6 -4.0 -5.4 -6.2 -6.9 - United States a 1.5 -2.6 -3.5 -4.8 -5.2 -5.6 - Canada -2.3 -1.9 -2.3 -2.4 -2.7 -2.8 0.7 Mexico 1.0 1.7 1.7 1.6 1.5 1.3 1.1 Chile 0.1 0.1 0.1 0.2 0.2 0.2 1.7 OECD Europe 7.8 10.9 11.9 12.7 13.0 14.0 2.1 North Europe 2.4 5.2 5.9 6.1 6.1 6.3 3.5

  13. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update

    2 Appendix A Table A7. World coal consumption by region, Reference case, 2011-40 (quadrillion Btu) Region History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 21.0 18.7 20.3 20.5 20.1 20.0 20.0 0.2 United States a 19.6 17.3 19.2 19.3 19.2 19.0 19.0 0.3 Canada 0.7 0.7 0.6 0.6 0.4 0.4 0.4 -2.5 Mexico and Chile 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.3 OECD Europe 12.9 13.4 13.2 13.3 13.1 12.8 12.6 -0.2 OECD Asia 9.7 9.7 10.2 10.1 10.1 10.1 10.1 0.1

  14. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update

    4 Appendix A Table A9. World consumption of hydroelectricity and other renewable energy by region, Reference case, 2011-40 (quadrillion Btu) Region History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 13.1 12.9 15.6 16.6 17.5 18.6 20.3 1.6 United States a 7.9 7.7 9.3 9.7 9.9 10.4 11.3 1.4 Canada 4.3 4.2 4.8 5.1 5.5 5.8 6.3 1.4 Mexico and Chile 0.9 1.0 1.5 1.8 2.1 2.4 2.7 3.7 OECD Europe 10.7 11.5 15.7 16.7 17.3 18.5 19.6 1.9 OECD Asia

  15. Fuel Cell Case Study

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Building & Energy Initiatives * Solar 20 new; 30 total, ... * Alternative Energy-Fuel Cells, waste to electricity, ... History of Fuel Cell Contemplation * Back in 2006, UTC Power ...

  16. Webinar October 13: Reference Designs for Hydrogen Fueling Stations

    Energy.gov [DOE]

    The Fuel Cell Technologies Office will present a live webinar titled "Reference Designs for Hydrogen Fueling Stations" on Tuesday, October 13, from 12 to 1 p.m. Eastern Daylight Time (EDT). This presentation will discuss the process and findings of the work, recommended future research and development topics, and outline planned next steps for the H2FIRST Reference Station Design Task.

  17. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update

    C Low Economic Growth case projections This page inTenTionally lefT blank 47 U.S. Energy Information Administration | International Energy Outlook 2016 Low Economic Growth case projections Table C1. World total primary energy consumption by region, Low Economic Growth case, 2011-40 (quadrillion Btu) Region History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 120.6 118.1 123.3 123.9 124.7 126.3 128.8 0.3 United States a 96.8 94.4 98.7

  18. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update

    D High Oil Price case projections This page inTenTionally lefT blank 51 U.S. Energy Information Administration | International Energy Outlook 2016 High Oil Price case projections Table D1. World total primary energy consumption by region, High Oil Price case, 2011-40 (quadrillion Btu) Region History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 120.6 118.1 125.3 127.9 130.8 135.5 142.1 0.7 United States a 96.8 94.4 100.8 102.2 103.3

  19. Appendix A. Reference case projections

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    by region and end-use sector, High Oil Price case, 2010-40 (quadrillion Btu) Region History Projections Average annual percent change, 2010-40 2010 2020 2025 2030 2035 2040 OECD...

  20. Appendix A. Reference case projections

    Gasoline and Diesel Fuel Update

    by region and country, Low Oil Price case, 2009-40 (million barrels per day) Region History Projections Average annual percent change, 2010-40 2009 2010 2011 2020 2025 2030...

  1. Fuel Cell Case Study

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presented at the Clean Energy States Alliance and U.S. Department of Energy Webinar: Fuel Cells for Supermarkets, April 4, 2011.

  2. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update

    E Low Oil Price case projections This page inTenTionally lefT blank 57 U.S. Energy Information Administration | International Energy Outlook 2016 Low Oil Price case projections Table E1. World total primary energy consumption by region, Low Oil Price case, 2011-40 (quadrillion Btu) Region History Projections Average annual percent change, 2012-s40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 120.6 118.1 126.5 129.2 131.8 135.0 138.9 0.6 United States a 96.8 94.4 101.2 102.7 103.6 104.6

  3. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update

    7 U.S. Energy Information Administration | International Energy Outlook 2016 Low Oil Price case projections Table E1. World total primary energy consumption by region, Low Oil Price case, 2011-40 (quadrillion Btu) Region History Projections Average annual percent change, 2012-s40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 120.6 118.1 126.5 129.2 131.8 135.0 138.9 0.6 United States a 96.8 94.4 101.2 102.7 103.6 104.6 106.1 0.4 Canada 14.5 14.5 15.3 15.8 16.5 17.4 18.3 0.8 Mexico and

  4. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update

    9 U.S. Energy Information Administration | International Energy Outlook 2016 Low Oil Price case projections Table E3. World liquids consumption by region, Low Oil Price case, 2011-40 (million barrels per day) Region History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 23.6 23.2 24.9 25.0 25.2 25.5 26.1 0.4 United States a 18.9 18.5 20.0 20.1 20.1 20.2 20.4 0.4 Canada 2.3 2.4 2.4 2.4 2.5 2.6 2.6 0.4 Mexico and Chile 2.4 2.4 2.5 2.5 2.6

  5. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update

    7 U.S. Energy Information Administration | International Energy Outlook 2016 Low Economic Growth case projections Table C1. World total primary energy consumption by region, Low Economic Growth case, 2011-40 (quadrillion Btu) Region History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 120.6 118.1 123.3 123.9 124.7 126.3 128.8 0.3 United States a 96.8 94.4 98.7 98.1 97.5 97.4 98.0 0.1 Canada 14.5 14.5 15.0 15.4 15.9 16.6 17.3 0.6 Mexico

  6. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update

    58 Appendix E Table E2. World gross domestic product (GDP) by region expressed in purchasing power parity, Low Oil Price case, 2011-40 (billion 2010 dollars) Region History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 18,616 19,080 23,330 26,574 29,998 33,626 37,702 2.5 United States a 15,021 15,369 18,742 21,299 23,963 26,735 29,885 2.4 Canada 1,396 1,422 1,700 1,881 2,073 2,290 2,521 2.1 Mexico and Chile 2,200 2,288 2,889 3,394 3,962

  7. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update

    8 Appendix C Table C2. World gross domestic product (GDP) by region expressed in purchasing power parity, Low Economic Growth case, 2011-40 (billion 2010 dollars) Region History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 18,616 19,080 22,285 24,599 27,041 29,850 33,088 2.0 United States a 15,021 15,369 17,747 19,441 21,224 23,305 25,763 1.9 Canada 1,396 1,422 1,682 1,841 2,005 2,186 2,375 1.8 Mexico and Chile 2,200 2,288 2,856 3,317

  8. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update

    8 Appendix G Table G4. World petroleum and other liquids production by region and country, High Oil Price case, 2011-40 (million barrels per day, unless otherwise noted) Region/country History (estimates) Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OPEC a 36.0 37.4 35.3 35.8 37.7 39.3 40.4 0.3 Middle East 26.2 26.6 26.5 27.0 28.6 29.8 30.6 0.5 North Africa 2.4 3.3 2.1 1.9 2.1 2.2 2.3 -1.4 West Africa 4.3 4.3 4.0 4.0 4.0 4.0 4.0 -0.2 South America 3.2 3.2

  9. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update

    2 Appendix G Table G8. World crude oil a production by region and country, Low Oil Price case, 2011-40 (million barrels per day, unless otherwise noted) Region/country History (estimates) Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OPEC b 32.2 33.4 38.9 41.1 45.3 49.7 54.5 1.8 Middle East 22.9 23.2 27.8 28.9 32.2 35.6 38.5 1.8 North Africa 2.0 2.9 2.9 3.0 3.0 3.0 3.3 0.5 West Africa 4.3 4.3 4.4 4.5 4.9 5.5 6.3 1.3 South America 3.0 3.0 3.8 4.7 5.1 5.6

  10. REFERENCE CASES FOR USE IN THE CEMENTITOUS PARTNERSHIP PROJECT

    SciTech Connect

    Langton, C.; Kosson, D.; Garrabrants, A.

    2010-08-31

    The Cementitious Barriers Partnership Project (CBP) is a multi-disciplinary, multi-institution cross cutting collaborative effort supported by the US Department of Energy (DOE) to develop a reasonable and credible set of tools to improve understanding and prediction of the structural, hydraulic and chemical performance of cementitious barriers used in nuclear applications. The period of performance is >100 years for operating facilities and > 1000 years for waste management. The CBP has defined a set of reference cases to provide the following functions: (i) a common set of system configurations to illustrate the methods and tools developed by the CBP, (ii) a common basis for evaluating methodology for uncertainty characterization, (iii) a common set of cases to develop a complete set of parameter and changes in parameters as a function of time and changing conditions, (iv) a basis for experiments and model validation, and (v) a basis for improving conceptual models and reducing model uncertainties. These reference cases include the following two reference disposal units and a reference storage unit: (i) a cementitious low activity waste form in a reinforced concrete disposal vault, (ii) a concrete vault containing a steel high-level waste tank filled with grout (closed high-level waste tank), and (iii) a spent nuclear fuel basin during operation. Each case provides a different set of desired performance characteristics and interfaces between materials and with the environment. Examples of concretes, grout fills and a cementitious waste form are identified for the relevant reference case configurations.

  11. REFERENCE CASES FOR USE IN THE CEMENTITIOUS BARRIERS PARTNERSHIP

    SciTech Connect

    Langton, C

    2009-01-06

    The Cementitious Barriers Project (CBP) is a multidisciplinary cross cutting project initiated by the US Department of Energy (DOE) to develop a reasonable and credible set of tools to improve understanding and prediction of the structural, hydraulic and chemical performance of cementitious barriers used in nuclear applications. The period of performance is >100 years for operating facilities and > 1000 years for waste management. The CBP has defined a set of reference cases to provide the following functions: (1) a common set of system configurations to illustrate the methods and tools developed by the CBP, (2) a common basis for evaluating methodology for uncertainty characterization, (3) a common set of cases to develop a complete set of parameter and changes in parameters as a function of time and changing conditions, and (4) a basis for experiments and model validation, and (5) a basis for improving conceptual models and reducing model uncertainties. These reference cases include the following two reference disposal units and a reference storage unit: (1) a cementitious low activity waste form in a reinforced concrete disposal vault, (2) a concrete vault containing a steel high-level waste tank filled with grout (closed high-level waste tank), and (3) a spent nuclear fuel basin during operation. Each case provides a different set of desired performance characteristics and interfaces between materials and with the environment. Examples of concretes, grout fills and a cementitious waste form are identified for the relevant reference case configurations.

  12. The Business Case for Fuel Cells

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    CELLS THE BUSINESS CASE FOR FUEL Hydrogen for Local Leaders Webinar May 17, 2011 Sandra Curtin Research Director Breakthrough Technologies Institute/Fuel Cells 2000 FUEL CELLS 2000 | U.S. nonprofit organization | Leading non-aligned source for fuel cell information since 1993 | Award-winning services | Education through outreach/publications/ website | www.fuelcells.org | www.fuelcellinsider.org BUSINESS CASE FOR FUEL CELLS Download at Profiles 38 nationally-recognized companies, including

  13. The Business Case for Fuel Cells 2013: Reliability, Resiliency...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    The Business Case for Fuel Cells 2013: Reliability, Resiliency & Savings The Business Case for Fuel Cells 2013: Reliability, Resiliency & Savings This report, compiled by Fuel ...

  14. Generic Argillite/Shale Disposal Reference Case

    SciTech Connect

    Zheng, Liange; Colon, Carlos Jové; Bianchi, Marco; Birkholzer, Jens

    2014-08-08

    properties (parameters) used in these models are different, which not only make inter-model comparisons difficult, but also compromise the applicability of the lessons learned from one model to another model. The establishment of a reference case would therefore be helpful to set up a baseline for model development. A generic salt repository reference case was developed in Freeze et al. (2013) and the generic argillite repository reference case is presented in this report. The definition of a reference case requires the characterization of the waste inventory, waste form, waste package, repository layout, EBS backfill, host rock, and biosphere. This report mainly documents the processes in EBS bentonite and host rock that are potentially important for performance assessment and properties that are needed to describe these processes, with brief description other components such as waste inventory, waste form, waste package, repository layout, aquifer, and biosphere. A thorough description of the generic argillite repository reference case will be given in Jové Colon et al. (2014).

  15. Annual Energy Outlook 2011 Reference Case

    Gasoline and Diesel Fuel Update

    Detailed data files > Historic Form EIA-906 Historic Form EIA-906 Detailed Data with previous form data (EIA-759) Historic electric utility data files include information on net generation, fuel consumption, fuel stocks, prime mover and fuel type. Data sources are surveys -- Form EIA-906, "Power Plant Report" and Form EIA-759, "Monthly Power Plant Report." Beginning with 1996, two separate files are available for each year: Monthly (M) data submitted by those respondents

  16. Alternative Fuels Data Center: Business Case for E85 Fuel Retailers

    Alternative Fuels and Advanced Vehicles Data Center

    Business Case for E85 Fuel Retailers to someone by E-mail Share Alternative Fuels Data Center: Business Case for E85 Fuel Retailers on Facebook Tweet about Alternative Fuels Data Center: Business Case for E85 Fuel Retailers on Twitter Bookmark Alternative Fuels Data Center: Business Case for E85 Fuel Retailers on Google Bookmark Alternative Fuels Data Center: Business Case for E85 Fuel Retailers on Delicious Rank Alternative Fuels Data Center: Business Case for E85 Fuel Retailers on Digg Find

  17. The Business Case for Fuel Cells 2013: Reliability, Resiliency...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    3: Reliability, Resiliency & Savings The Business Case for Fuel Cells 2013: Reliability, Resiliency & Savings This report, compiled by Fuel Cells 2000 with support from the Fuel ...

  18. Revised Analyses of Decommissioning Reference Non-Fuel-Cycle Facilities

    SciTech Connect

    MC Bierschbach; DR Haffner; KJ Schneider; SM Short

    2002-12-01

    Cost information is developed for the conceptual decommissioning of non-fuel-cycle nuclear facilities that represent a significant decommissioning task in terms of decontamination and disposal activities. This study is a re-evaluation of the original study (NUREG/CR-1754 and NUREG/CR-1754, Addendum 1). The reference facilities examined in this study are the same as in the original study and include: a laboratory for the manufacture of {sup 3}H-labeled compounds; a laboratory for the manufacture of {sup 14}C-labeled compounds; a laboratory for the manufacture of {sup 123}I-labeled compounds; a laboratory for the manufacture of {sup 137}Cs sealed sources; a laboratory for the manufacture of {sup 241}Am sealed sources; and an institutional user laboratory. In addition to the laboratories, three reference sites that require some decommissioning effort were also examined. These sites are: (1) a site with a contaminated drain line and hold-up tank; (2) a site with a contaminated ground surface; and (3) a tailings pile containing uranium and thorium residues. Decommissioning of these reference facilities and sites can be accomplished using techniques and equipment that are in common industrial use. Essentially the same technology assumed in the original study is used in this study. For the reference laboratory-type facilities, the study approach is to first evaluate the decommissioning of individual components (e.g., fume hoods, glove boxes, and building surfaces) that are common to many laboratory facilities. The information obtained from analyzing the individual components of each facility are then used to determine the cost, manpower requirements and dose information for the decommissioning of the entire facility. DECON, the objective of the 1988 Rulemaking for materials facilities, is the decommissioning alternative evaluated for the reference laboratories because it results in the release of the facility for restricted or unrestricted use as soon as possible. For a

  19. Annual Energy Outlook 2013 Early Release Reference Case

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    emission intensity index, 20051 Source: EIA, Annual Energy Outlook 2015 Reference case History Projections 2013 Carbon dioxide emissions per 2009 dollar GDP Energy use per 2009...

  20. Detailed HCCI Exhaust Speciation- ORNL Reference Fuel Blends

    Energy.gov [DOE]

    ·Accurately measure exhaust profile from an HCCI engine with a variety of fuels and create a better understanding of HCCI engine emissions.

  1. The Business Case for Fuel Cells | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    The Business Case for Fuel Cells The Business Case for Fuel Cells Presented at the Local Leaders Create Fuel Cell Success Stories Webinar, May 17, 2011 infocallmay11_curtin.pdf (875.78 KB) More Documents & Publications State of the States: Fuel Cells in America 2011 The Business Case for Fuel Cells 2011: Energizing America's Top Companies State of the States: Fuel Cells in America 2011

  2. The Business Case for Fuel Cells 2015: Powering Corporate Sustainabili...

    Energy Saver

    5: Powering Corporate Sustainability The Business Case for Fuel Cells 2015: Powering Corporate Sustainability This report, written and compiled by the Fuel Cell and Hydrogen Energy ...

  3. The Business Case for Fuel Cells 2011: Energizing America's Top...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    The Business Case for Fuel Cells 2011: Energizing America's Top Companies November 2011 i ... Jennifer Gangi, and Sandra Curtin of Fuel Cells 2000, an activity of Breakthrough ...

  4. The Business Case for Fuel Cells 2011: Energizing America's Top...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    The Business Case for Fuel Cells 2011: Energizing America's Top Companies This report ... The Business Case for Fuel Cells 2011: Energizing America's Top Companies (2.22 MB) More ...

  5. Case Study: Fuel Cells Increase Reliability at First National...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Increase Reliability at First National Bank of Omaha Case Study: Fuel Cells Increase Reliability at First National Bank of Omaha First National Bank of Omaha installed a fuel cell ...

  6. Fuel Cell Power Plants Biofuel Case Study - Tulare, CA

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    clean Fuel Cell Power Plants Biofuel Case Study - Tulare, CA DOE-NREL Workshop Golden, CO June 11-13, 2012 FuelCell Energy, the FuelCell Energy logo, Direct FuelCell and "DFC" are all registered trademarks (®) of FuelCell Energy, Inc. Integrated Fuel Cell Company 2 Manufacture Sell (direct & via partners) Install Services 1.4 MW plant at a municipal building 2.4 MW plant owned by an Independent power producer 600 kW plant at a food processor 11.2 MW plant - largest fuel cell park

  7. Radionuclide release from PWR fuels in a reference tuff repository groundwater

    SciTech Connect

    Wilson, C.N.; Oversby, V.M.

    1985-03-01

    The Nevada Nuclear Waste Storage Investigations Project (NNWSI) is studying the suitability of the welded devitrified Topopah Spring tuff at Yucca Mountain, Nye County, Nevada, for potential use as a high-level nuclear waste repository. In support of the Waste Package task of NNWSI, tests have been conducted under ambient air environment to measure radionuclide release from two pressurized water reactor (PWR) spent fuels in water obtained from the J-13 well near the Yucca Mountain site. Four specimen types, representing a range of fuel physical conditions that may exist in a failed waste canister containing a limited amount of water were tested. The specimen types were: fuel rod sections split open to expose bare fuel particles; rod sections with water-tight end fittings with a 2.5-cm long by 150-{mu}m wide slit through the cladding; rod sections with water-tight end fittings and two 200-{mu}m-diameter holes through the cladding; and undefected rod segments with water-tight end fittings. Radionuclide release results from the first 223-day test runs on H.B. Robinson spent fuel specimens in J-13 water are reported and compared to results from a previous test series in which similar Turkey Point reactor spent fuel specimens were tested on deionized water. Selected initial results are also given for Turkey Point fuel specimens tested on J-13 water. Results suggest that the actinides Pu, Am, Cm and Np are released congruently with U as the UO{sub 2} spent fuel matrix dissolves. Fractional release of {sup 137}Cs and {sup 99}Tc was greater than that measured for the actinides. Generally, lower radionuclide releases were measured for the H.B. Robinson fuel in J-13 water than for Turkey Point Fuel in deionized water. 8 references, 7 figures, 9 tables.

  8. Preliminary Reference Case Results for Oil and Natural Gas

    Energy Information Administration (EIA) (indexed site)

    Preliminary Reference Case Results for Oil and Natural Gas AEO2014 Oil and Gas Supply Working Group Meeting Office of Petroleum, Gas, and Biofuels Analysis September 26, 2013 | Washington, DC WORKING GROUP PRESENTATION FOR DISCUSSION PURPOSES DO NOT QUOTE OR CITE AS RESULTS ARE SUBJECT TO CHANGE AEO2014P uses ref2014.d092413a AEO2013 uses ref2013.d102312a Changes for AEO2014 2 * Revised shale & tight play resources (EURs, type curves) * Updated classification of shale gas, tight gas, &

  9. The Business Case for Fuel Cells 2015: Powering Corporate Sustainability |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy 5: Powering Corporate Sustainability The Business Case for Fuel Cells 2015: Powering Corporate Sustainability This report, written and compiled by the Fuel Cell and Hydrogen Energy Association (FCHEA) with support from the Fuel Cell Technologies Office, provides an overview of private sector fuel cell installations at U.S. businesses, as well as highlights of international deployments up through October 1, 2015. FCHEA estimates, over the past few decades, hundreds of

  10. Alternative Fuels Data Center: Case Studies

    Alternative Fuels and Advanced Vehicles Data Center

    ... Learn More Picture of five white propane-fueled vans in front of prison with barbed wire fence and water tower that says Alabama Prisons Adopt Propane, Establish Fuel Savings for ...

  11. Detailed Chemical Kinetic Reaction Mechanisms for Primary Reference Fuels for Diesel Cetane Number and Spark-Ignition Octane Number

    SciTech Connect

    Westbrook, C K; Pitz, W J; Mehl, M; Curran, H J

    2010-03-03

    For the first time, a detailed chemical kinetic reaction mechanism is developed for primary reference fuel mixtures of n-hexadecane and 2,2,4,4,6,8,8-heptamethyl nonane for diesel cetane ratings. The mechanisms are constructed using existing rules for reaction pathways and rate expressions developed previously for the primary reference fuels for gasoline octane ratings, n-heptane and iso-octane. These reaction mechanisms are validated by comparisons between computed and experimental results for shock tube ignition and for oxidation under jet-stirred reactor conditions. The combined kinetic reaction mechanism contains the submechanisms for the primary reference fuels for diesel cetane ratings and submechanisms for the primary reference fuels for gasoline octane ratings, all in one integrated large kinetic reaction mechanism. Representative applications of this mechanism to two test problems are presented, one describing fuel/air autoignition variations with changes in fuel cetane numbers, and the other describing fuel combustion in a jet-stirred reactor environment with the fuel varying from pure 2,2,4,4,6,8,8-heptamethyl nonane (Cetane number of 15) to pure n-hexadecane (Cetane number of 100). The final reaction mechanism for the primary reference fuels for diesel fuel and gasoline is available on the web.

  12. The Business Case for Fuel Cells 2010: Why Top Companies are...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    The Business Case for Fuel Cells 2010: Why Top Companies are Purchasing Fuel Cells Today The Business Case for Fuel Cells 2010: Why Top Companies are Purchasing Fuel Cells Today ...

  13. Autoignition response of n-butanol and its blend with primary reference fuel constituents of gasoline.

    DOE PAGES [OSTI]

    Kumar, Kamal; Zhang, Yu; Sung, Chi -Jen; Pitz, William J.

    2015-04-13

    We study the influence of blending n-butanol on the ignition delay times of n-heptane and iso-octane, the primary reference fuels for gasoline. The ignition delay times are measured using a rapid compression machine, with an emphasis on the low-to-intermediate temperature conditions. The experiments are conducted at equivalence ratios of 0.4 and 1.0, for a compressed pressure of 20 bar, with the temperatures at the end of compression ranging from 613 K to 979 K. The effect of n-butanol addition on the development of the two-stage ignition characteristics for the two primary reference fuels is also examined. The experimental results aremore » compared to predictions obtained using a detailed chemical kinetic mechanism, which has been obtained by a systematic merger of previously reported base models for the combustion of the individual fuel constituents. In conclusion, a sensitivity analysis on the base, and the merged models, is also performed to understand the dependence of autoignition delay times on the model parameters.« less

  14. Annual Energy Outlook 2013 Early Release Reference Case

    Annual Energy Outlook

    Flex-Fuel Vehicle Modeling in the Annual Energy Outlook John Maples Office of Energy Consumption and Energy Analysis March 20, 2013 | Washington, DC Light duty vehicle technology ...

  15. Coal-by-Rail: A Business-as-Usual Reference Case | Argonne National...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Coal-by-Rail: A Business-as-Usual Reference Case Title Coal-by-Rail: A Business-as-Usual Reference Case Publication Type Report Year of Publication 2015 Authors Mintz, MM, Saricks,...

  16. Selecting the incremental use of the fuel cycle and regional reference environments

    SciTech Connect

    Cantor, R.; Curlee, R.; Hillsman, E.

    1990-10-18

    To demonstrate the accounting framework and give some practical meaning to the concept of external costs of various stages of the fuel cycle, we will apply the approach to a limited number of case studies. These case studies will emphasize two of the major sectors for which energy sources are needed: electricity production and transportation. Because the intent here is to illustrate the approach and not to derive sweeping generalizations or comparisons, criteria and proposed selections for the two sectors were not constrained to be identical. However, applications to either sector require the resolution of a number of general issues. 1 fig.

  17. The Business Case for Fuel Cells 2010: Why Top Companies are...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    0: Why Top Companies are Purchasing Fuel Cells Today The Business Case for Fuel Cells 2010: Why Top Companies are Purchasing Fuel Cells Today This report was developed by Fuel ...

  18. The Business Case for Fuel Cells 2012: America's Partner in Power

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    The Business Case for Fuel Cells 2012 America's Partner in Power The Business Case for Fuel Cells 2012 Fuel Cells 2000 | Page i Authors and Acknowledgements This report was written ...

  19. Fuel Cycle Analysis Framework Base Cases for the IAEA/INPRO GAINS Collaborative Project

    SciTech Connect

    Brent Dixon

    2012-09-01

    Thirteen countries participated in the Collaborative Project GAINS Global Architecture of Innovative Nuclear Energy Systems Based on Thermal and Fast Reactors Including a Closed Fuel Cycle, which was the primary activity within the IAEA/INPRO Program Area B: Global Vision on Sustainable Nuclear Energy for the last three years. The overall objective of GAINS was to develop a standard framework for assessing future nuclear energy systems taking into account sustainable development, and to validate results through sample analyses. This paper details the eight scenarios that constitute the GAINS framework base cases for analysis of the transition to future innovative nuclear energy systems. The framework base cases provide a reference for users of the framework to start from in developing and assessing their own alternate systems. Each base case is described along with performance results against the GAINS sustainability evaluation metrics. The eight cases include four using a moderate growth projection and four using a high growth projection for global nuclear electricity generation through 2100. The cases are divided into two sets, addressing homogeneous and heterogeneous scenarios developed by GAINS to model global fuel cycle strategies. The heterogeneous world scenario considers three separate nuclear groups based on their fuel cycle strategies, with non-synergistic and synergistic cases. The framework base case analyses results show the impact of these different fuel cycle strategies while providing references for future users of the GAINS framework. A large number of scenario alterations are possible and can be used to assess different strategies, different technologies, and different assumptions about possible futures of nuclear power. Results can be compared to the framework base cases to assess where these alternate cases perform differently versus the sustainability indicators.

  20. The Business Case for Fuel Cells 2010: Why Top Companies are Purchasing

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fuel Cells Today | Department of Energy 0: Why Top Companies are Purchasing Fuel Cells Today The Business Case for Fuel Cells 2010: Why Top Companies are Purchasing Fuel Cells Today This report was developed by Fuel Cells 2000 with support from the Fuel Cell Technologies program. The report profiles companies and corporations that are deploying or demonstrating fuel cells for power in warehouses, stores, manufacturing facilities, hotels, and telecommunications sites. The Business Case for

  1. The Business Case for Fuel Cells 2014: Powering the Bottom Line...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    The Business Case for Fuel Cells 2014: Powering the Bottom Line for Businesses and ... Office of Energy Efficiency and Renewable Energy (EERE) Fuel Cell Technologies Office. ...

  2. The Business Case for Fuel Cells 2010: Why Top Companies are...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    The Business Case for Fuel Cells: Why Top Companies are Purchasing Fuel Cells Today September 2010 Authors and Acknowledgements This report was written and compiled by Sandra ...

  3. Fuel Cell Power Plants Biofuel Case Study - Tulare, CA | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Biofuel Case Study - Tulare, CA Fuel Cell Power Plants Biofuel Case Study - Tulare, CA Success story about fuel cell power plants using wastewater treatment gas in Tulare, California. Presented by Frank Wolak, Fuel Cell Energy, at the NREL/DOE Biogas and Fuel Cells Workshop held June 11-13, 2012, in Golden, Colorado. june2012_biogas_workshop_wolak.pdf (1.24 MB) More Documents & Publications Fuel Cell Power Plants Renewable and Waste Fuels Fuel Cell Power Plant Experience Naval

  4. Advanced coal-fueled gas turbine systems reference system definition update

    SciTech Connect

    Not Available

    1991-09-01

    The objective of the the Direct Coal-Fueled 80 MW Combustion Turbine Program is to establish the technology required for private sector use of an advanced coal-fueled combustion turbine power system. Under this program the technology for a direct coal-fueled 80 MW combustion turbine is to be developed. This unit would be an element in a 207 MW direct coal-fueled combustion turbine combined cycle which includes two combustion turbines, two heat recovery steam generators and a steam turbine. Key to meeting the program objectives is the development of a successful high pressure slagging combustor that burns coal, while removing sulfur, particulates, and corrosive alkali matter from the combustion products. Westinghouse and Textron (formerly AVCO Research Laboratory/Textron) have designed and fabricated a subscale slagging combustor. This slagging combustor, under test since September 1988, has been yielding important experimental data, while having undergone several design iterations.

  5. Fuel Cell Tri-Generation System Case Study using the H2A Stationary...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fuel Cell Tri-Generation System Case Study using the H2A Stationary Model Darlene Steward ... Fuel Cell with CHP Electricity Natural Gas Power Heat Natural Gas or Biogas Hydrogen ...

  6. The Business Case for Fuel Cells 2012: America's Partner in Power |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy 2: America's Partner in Power The Business Case for Fuel Cells 2012: America's Partner in Power This report, compiled by Fuel Cells 2000 with support from the Fuel Cell Technologies Office, profiles a select group of nationally recognizable companies and corporations that are deploying or demonstrating fuel cells. These businesses are taking advantage of a fuel cell's unique benefits, especially for powering lift trucks and providing combined heat and power to their

  7. The Business Case for Fuel Cells 2013: Reliability, Resiliency & Savings |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy 3: Reliability, Resiliency & Savings The Business Case for Fuel Cells 2013: Reliability, Resiliency & Savings This report, compiled by Fuel Cells 2000 with support from the Fuel Cell Technologies Office, profiles a select group of nationally recognizable companies and corporations that are deploying or demonstrating fuel cells. These businesses are taking advantage of a fuel cell's unique benefits, especially for material handling and providing clean, reliable

  8. Assessment of the potential of colloidal fuels in future energy usage. Final report. [97 references

    SciTech Connect

    Not Available

    1980-02-25

    Pulverized coal has been an increasing important source of energy over the past century. Most large utility boilers, all modern coking plants, and many industrial boilers and blast furnaces employ pulverized coal as a major feed stream. In periods of oil shortages, such as during World Wars I and II, the concept of adding powdered coal to oil for use in combustion equipment originally designed for oil has been actively pursued but rarely used. Over this same period of time, there have been attempts to use air suspensions of coal dust in diesel engines in Germany, and in turbines in various countries. The economic advantages to be enjoyed by substitution of powdered coal in oil are not generally realized. Oil costs at $30/bbl represent a fuel value of about $5.00/10/sup 6/ Btu; coal at $25/ton is equivalent to approximately $1.00/10/sup 6/ Btu. Although capital costs for the use of coal are higher than those associated with the use of oil, coal is clearly becoming the least costly fuel. Not only are considerable cost advantages possible, but an improvement in balance of payments and an increase in reliability of fuel supplies are other potential benefits. It is therefore recommended that increased national attention be given to develop these finer grinds of carbonaceous fuels to be used in various suspending fluids. Technical areas where significant additional support appear desirable are described.

  9. The Business Case for Fuel Cells 2011: Energizing America's Top Companies |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy 1: Energizing America's Top Companies The Business Case for Fuel Cells 2011: Energizing America's Top Companies This report profiles a select group of nationally recognizable companies and corporations that are deploying or demonstrating fuel cells. These businesses are taking advantage of a fuel cell's unique benefits, especially for powering forklifts and providing combined heat and power to their stores and headquarters. The Business Case for Fuel Cells 2011:

  10. Case Study: Fuel Cells Increase Reliability at First National...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fuel Cells Increase Reliability at First National Bank of Omaha Technology Center Fuel cells are a viable primary power choice for data centers-they generate highly reliable ...

  11. The Business Case for Fuel Cells 2013: Reliability, Resiliency...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fuel Cells 2013 Reliability, Resiliency & Savings i Authors and Acknowledgements This report was written and compiled by Sandra Curtin and Jennifer Gangi of Fuel Cells 2000, an ...

  12. The Business Case for Fuel Cells 2015: Powering Corporate Sustainabili...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fuel Cells 2015: Powering Corporate Sustainability i Authors and Acknowledgements This report was written and compiled by Sandra Curtin and Jennifer Gangi of the Fuel Cell and ...

  13. Case Study: Fuel Cells Increase Reliability at First National Bank of Omaha

    Publication and Product Library

    A case study of the First National Bank of Omaha fuel cell system, covering 1999 through October 2009. The system reduced heating bills by more than $1 million.

  14. The Business Case for Fuel Cells 2014: Powering the Bottom Line...

    Office of Environmental Management (EM)

    These include wastewater treatment plants, government buildings, universities, military bases, hospitals, and other sites. The Business Case for Fuel Cells 2014: Powering the ...

  15. Case Study: Fuel Cells Increase Reliability at First National Bank of Omaha

    SciTech Connect

    2010-12-31

    A case study of the First National Bank of Omaha fuel cell system, covering 1999 through October 2009. The system reduced heating bills by more than $1 million.

  16. Microalgae as a source of liquid fuels. Final technical report. [200 references

    SciTech Connect

    Benemann, J.R.; Goebel, R.P.; Weissman, J.C.; Augenstein, D.C.

    1982-05-15

    The economics of liquid-fuels production from microalgae was evaluated. A detailed review of published economic analyses of microalgae biomass production revealed wide variations in the published costs, which ranged from several dollars per pound for existing commercial health-food production in the Far East, to less than .05/lb costs projected for microalgae biomass for fuel conversion. As little design information or specific cost data has been published, a credible cost estimate required the conceptual engineering design and cost estimating of microalgae to liquid-fuels processes. Two systems were analyzed, shallow (2 to 3'') covered ponds and deeper (1 ft) open ponds. Only the latter was selected for an in-depth analysis due to the many technical shortcomings of the former approach. Based on the cost analysis of a very simple and low cost process, the most optimistic costs extrapolated were about $60/barrel. These were based on many optimistic assumptions. Additional, more detailed, engieering and cost analyses would be useful. However, the major emphasis in future work in this area should be on demonstrating the basic premises on which this design was based: high productivity and oil content of microalgae strains that can dominate in open ponds and which can be harvested by a simple bioflocculation process. Several specific basic research needs were identified: (1) Fundamentals of species selection and control in open pond systems. Effects of environmental variables on species dominance is of particular interest. (2) Mechanisms of algae bioflocculation. (3) Photosynthetic pathways and efficiency under conditions of high lipid production. (4) Effects of non-steady state operating conditions, particularly pH (CO/sub 2/ availability), on productivity. 18 figures, 47 tables.

  17. Case Study: Fuel Cells Provide Combined Heat and Power at Verizon...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Provide Combined Heat and Power at Verizon's Garden Central Office Case Study: Fuel Cells Provide Combined Heat and Power at Verizon's Garden Central Office This is a case study ...

  18. Case Study: Fuel Cells Provide Combined Heat and Power at Verizon's Garden

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Central Office | Department of Energy Provide Combined Heat and Power at Verizon's Garden Central Office Case Study: Fuel Cells Provide Combined Heat and Power at Verizon's Garden Central Office This is a case study about Verizons Communications, who installed a 14-MW phosphoric acid fuel cell system at its Central Office in Garden City, New York, in 2005 and is now reaping environmental benefits and demonstrating the viaility of fuel cells in a commerical, critical telecommunications

  19. Perform Thermodynamics Measurements on Fuel Cycle Case Study Systems

    SciTech Connect

    Leigh R. Martin

    2014-09-01

    This document was prepared to meet FCR&D level 3 milestone M3FT-14IN0304022, Perform Thermodynamics Measurements on Fuel Cycle Case Study Systems. This work was carried out under the auspices of the Thermodynamics and Kinetics FCR&D work package. This document reports preliminary work in support of determining the thermodynamic parameters for the ALSEP process. The ALSEP process is a mixed extractant system comprised of a cation exchanger 2-ethylhexyl-phosphonic acid mono-2-ethylhexyl ester (HEH[EHP]) and a neutral solvating extractant N,N,N,N-tetraoctyldiglycolamide (TODGA). The extractant combination produces complex organic phase chemistry that is challenging for traditional measurement techniques. To neutralize the complexity, temperature dependent solvent extraction experiments were conducted with neat TODGA and scaled down concentrations of the ALSEP formulation to determine the enthalpies of extraction for the two conditions. A full set of thermodynamic data for Eu, Am, and Cm extraction by TODGA from 3.0 M HNO3 is reported. These data are compared to previous extraction results from a 1.0 M HNO3 aqueous medium, and a short discussion of the mixed HEH[EHP]/TODGA system results is offered.

  20. Co-Optimization of Fuels and Engines

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Optimization of Fuels and Engines John Farrell SAE High Efficiency Internal Combustion Engine Symposium April 11, 2016 2 Goal: better fuels and better vehicles sooner Fuel and Engine Co-Optimization o What fuel properties maximize engine performance? o How do engine parameters affect efficiency? o What fuel and engine combinations are sustainable, affordable, and scalable? 3 30% per vehicle petroleum reduction via efficiency and displacement source: EIA 2014 reference case Fuel selection

  1. The Business Case for Fuel Cells 2014: Powering the Bottom Line for

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Businesses and Communities | Department of Energy 4: Powering the Bottom Line for Businesses and Communities The Business Case for Fuel Cells 2014: Powering the Bottom Line for Businesses and Communities This report, written and compiled by Breakthrough Technologies Institute (BTI) with support from the Fuel Cell Technologies Office, provides an overview of fuel cell installations at businesses and municipal buildings or facilities run by non-profit organizations or institutions. These

  2. Case Study: Fuel Cells Provide Combined Heat and Power at Verizon's Garden City Central Office

    Publication and Product Library

    This case study describes how Verizon's Central Office in Garden City, NY, installed a 1.4-MW phosphoric acid fuel cell system as an alternative solution to bolster electric reliability, optimize the

  3. Chapter 11. Fuel Economy: The Case for Market Failure

    SciTech Connect

    Greene, David L; German, John; Delucchi, Mark A

    2009-01-01

    The efficiency of energy using durable goods, from automobiles to home air conditioners, is not only a key determinant of economy-wide energy use but also of greenhouse gas (GHG) emissions, climate change and energy insecurity. Energy analysts have long noted that consumers appear to have high implicit discount rates for future fuel savings when choosing among energy using durable goods (Howarth and Sanstad, 1995). In modeling consumers choices of appliances, the Energy Information Administration (EIA) has used discount rates of 30 percent for heating systems, 69 percent for choice of refrigerator and up to 111 percent for choice of water heater (U.S. DOE/EIA, 1996). Several explanations have been offered for this widespread phenomenon, including asymmetric information, bounded rationality and transaction costs. This chapter argues that uncertainty combined with loss aversion by consumers is sufficient to explain the failure to adopt cost effective energy efficiency improvements in the market for automotive fuel economy, although other market failures appear to be present as well. Understanding how markets for energy efficiency function is crucial to formulating effective energy policies (see Pizer, 2006). Fischer et al., (2004), for example, demonstrated that if consumers fully value the discounted present value of future fuel savings, fuel economy standards are largely redundant and produce small welfare losses. However, if consumers value only the first three years of fuel savings, then fuel economy standards can significantly increase consumer welfare. The nature of any market failure that might be present in the market for energy efficiency would also affect the relative efficacy of energy taxes versus regulatory standards (CBO, 2003). If markets function efficiently, energy taxes would generally be more efficient than regulatory standards in increasing energy efficiency and reducing energy use. If markets are decidedly inefficient, standards would likely be

  4. fuel

    National Nuclear Security Administration (NNSA)

    4%2A en Cheaper catalyst may lower fuel costs for hydrogen-powered cars http:www.nnsa.energy.govblogcheaper-catalyst-may-lower-fuel-costs-hydrogen-powered-cars

  5. fuel

    National Nuclear Security Administration (NNSA)

    4%2A en Cheaper catalyst may lower fuel costs for hydrogen-powered cars http:nnsa.energy.govblogcheaper-catalyst-may-lower-fuel-costs-hydrogen-powered-cars

  6. Fuels

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing ... Heavy Duty Fuels DISI Combustion HCCISCCI Fundamentals Spray Combustion Modeling ...

  7. Radionuclide release from PWR fuels in a reference tuff repository groundwater subsquently changed to Radionuclide release from PWR fuels in J-13 well water

    SciTech Connect

    Wilson, C.N.; Oversby, V.M.

    1985-04-01

    The Nevada Nuclear Waste Storage Investigations Project (NNWSI) is studying the suitability of the welded devitrified Topopah Spring tuff at Yucca Mountain, Nye County, Nevada, for potential use as a high level nuclear waste repository. In support of the Waste Package task of NNWSI, tests have been conducted under ambient air environment to measure radionuclide release from two pressurized water reactor (PWR) spent fuels in water obtained from the J-13 well near the Yucca Mountain site. Four specimen types, representing a range of fuel physical conditions that may exist in a failed waste canister containing a limited amount of water were tested. The specimen types were: (1) fuel rod sections split open to expose bare fuel particles; (2) rod sections with water-tight end fittings with a 2.5-cm long by 150-{mu}m wide slit through the cladding; (3) rod sections with water-tight end fittings and two 200-{mu}m diameter holes through the cladding; and (4) undefected rod segments with water-tight end fittings. Radionuclide release results from the first 223-day test runs on H.B. Robinson spent fuel specimens in J-13 water are reported and compared to results from a previous test series in which similar Turkey Point reactor spent fuel specimens were tested in deionized water. Selected initial results are also given for Turkey Point fuel specimens tested in J-13 water. Results suggest that the actinides Pu, Am, Cm and Np are released congruently with U as the UO{sub 2} spent fuel matrix dissolves. Fractional release of {sup 137}Cs and {sup 99}Tc was greater than that measured for the actinides. Generally, lower radionuclide releases were measured for the H.B. Robinson fuel in J-13 water than for Turkey Point Fuel in deionized water.

  8. Clean Cities Case Study: UPS delivers with Alternative Fuels

    SciTech Connect

    Frailey, M.

    1999-08-30

    In the fall of 1994, the UPS fleet in Landover, Maryland, began operating 20 vehicles on CNG. UPS selected CNG because natural gas is an abundant domestic resource that is available in almost every city in the US, and it also generally costs less than other fuels. The UPS project, funded by DOE through NREL and managed by TRI, was designed to test the feasibility of using CNG in a medium-duty pick-up and delivery fleet. This study is intended only to illustrate approaches that organizations could use in adopting AFVs into their fleets.

  9. The Case for Natural Gas Fueled Solid Oxide Fuel Cell Power Systems for Distributed Generation

    SciTech Connect

    Chick, Lawrence A.; Weimar, Mark R.; Whyatt, Greg A.; Powell, Michael R.

    2015-02-01

    Natural-gas-fueled solid oxide fuel cell (NGSOFC) power systems yield electrical conversion efficiencies exceeding 60% and may become a viable alternative for distributed generation (DG) if stack life and manufacturing economies of scale can be realized. Currently, stacks last approximately 2 years and few systems are produced each year because of the relatively high cost of electricity from the systems. If mass manufacturing (10,000 units per year) and a stack life of 15 years can be reached, the cost of electricity from an NGSOFC system is estimated to be about 7.7 ¢/kWh, well within the price of commercial and residential retail prices at the national level (9.9-10¢/kWh and 11-12 ¢/kWh, respectively). With an additional 5 ¢/kWh in estimated additional benefits from DG, NGSOFC could be well positioned to replace the forecasted 59-77 gigawatts of capacity loss resulting from coal plant closures due to stricter emissions regulations and low natural gas prices.

  10. Case Study: Fuel Cells Provide Combined Heat and Power at Verizon's Garden City Central Office

    SciTech Connect

    2010-12-01

    This case study describes how Verizon's Central Office in Garden City, NY, installed a 1.4-MW phosphoric acid fuel cell system as an alternative solution to bolster electric reliability, optimize the company's energy use, and reduce costs in an environmentally responsible manner.

  11. Reclamation of water contaminated with fuel system icing inhibitor: Phase 1, Literature review and information compilation. [281 references

    SciTech Connect

    Brinkman, D.W.; Stirling, K.Q.; Whisman, M.L.; Bhan, O.K.

    1988-02-01

    The volume of water that must be removed from an aviation turbine fuel storage tank can be as much as 15,000 to 20,000 gallons per year from a fuel tank of moderate capacity. If each fuel storage facility has 10 fuel storage tanks, a total water volume of 200,000 gallons per terminal per year is a reasonable estimate. Some terminals generate as much as one million gallons per year of FSII contaminated wastewater. In the past, this FSII/water mixture was released from time to time into diked areas around the storage tank where it evaporated or penetrated underlying media. A host of recent studies that have shown these glycol ethers to be toxic now make this practice questionable based on both vapor inhalation toxicity and potential groundwater contamination. The ensuing narrative sections contain a summary of the data and information that have been compiled as a result of computerized literature searches, personal contacts with government and industry representatives knowledgeable in the field of FSII, and contact with vendors of equipment and processes with some applicability to achieving the goals of this research. Our recommendations for the subsequent bench-scale testing phase are included and are based upon this literature compilation and review. If the second phase yields a technically and economically attractive solution, a third phase will follow to implement concept verification studies. 281 refs., 1 tab.

  12. Reference Materials

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Reference Materials Reference Materials Large Scale Computing and Storage Requirements for Advanced Scientific Computing Research January 5-6, 2011 Official DOE Invitation Workshop Invitation Letter from DOE Associate Directors NERSC Documents NERSC science requirements home page NERSC science requirements workshop page NERSC science requirements case study FAQ Previous NERSC Requirements Workshops Biological and Environmental Research (BER) Basic Energy Sciences (BES) Fusion Energy Sciences

  13. Technical Approach and Results from the Fuels Pathway on an Alternative Selection Case Study

    SciTech Connect

    Bob Youngblood; Curtis Smith

    2013-09-01

    The report presents a detailed plan for conducting case studies to characterize probabilistic safety margins associated with different fuel cladding types in a way that supports a valid comparison of different fuels' performance. Recent work performed in other programs is described briefly and used to illustrate the challenges posed by characterization of margin in a probabilistic way. It is additionally pointed out that consistency of evaluation of performance across different cladding types is not easy to assure; a process for achieving the needed consistency is described.

  14. Case Study: Fuel Cells Provide Combined Heat and Power at Verizon's Garden Central Office

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Case Study: Fuel Cells Provide Com- bined Heat and Power at Verizon's Garden City Central Office With more than 67 million customers nationwide, Verizon Communications is one of the largest telecommunica- tions providers in the U.S. Power inter- ruptions can severely impact network operations and could result in losses in excess of $1 million/minute. 1 In 2005, Verizon Communications installed a 1.4 MW phosphoric acid fuel cell (PAFC) system, consisting of seven 200 kW units, at its Central

  15. Case Study: Fuel Cells Increase Reliability at First National Bank of Omaha

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    | Department of Energy Increase Reliability at First National Bank of Omaha Case Study: Fuel Cells Increase Reliability at First National Bank of Omaha First National Bank of Omaha installed a fuel cell system in 1999 to provide primary power to its data center in Omaha, Nebraska. In more than 89,000 hours of operation through October 2009, the system is estimated to have reduced heating bills by more than $1 million. An independent third party verified that the designed total power system

  16. An Updated Annual Energy Outlook 2009 Reference Case Reflecting Provisions of the American Recovery and Reinvestment Act and Recent Changes in the Economic Outlook

    Reports and Publications

    2009-01-01

    This report updates the Reference Case presented in the Annual Energy Outlook 2009 based on recently enacted legislation and the changing macroeconomic environment.

  17. Technical basis for cases N-629 and N-631 as an alternative for RTNDT reference temperature

    SciTech Connect

    Merkle, John Graham; Server, W. L.

    2007-01-01

    ASME Code Cases N-629/N-631, published in 1999, provided an important new approach to allow material specific, measured fracture toughness curves for ferritic steels in the code applications. This has enabled some of the nuclear power plants whose reactor pressure vessel materials reached a certain threshold level based on overly conservative rules to use an alternative RTNDT to justify continued operation of their plants. These code cases have been approved by the US Nuclear Regulatory Commission and these have been proposed to be codified in Appendix A and Appendix G of the ASME Boiler and Pressure Vessel Code. This paper summarizes the basis of this approach for the record.

  18. Reference Materials

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Reference Materials Reference Materials Large Scale Computing and Storage Requirements for Fusion Energy Sciences August 3-4, 2010 Official DOE Invitation Workshop Invitation Letter from DOE Associate Directors [not available] NERSC Documents NERSC science requirements home page NERSC science requirements workshop page NERSC science requirements case study FAQ Workshop Agenda Previous NERSC Requirements Workshops Biological and Environmental Research (BER) Basic Energy Sciences (BES) Fusion

  19. Reference Materials

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Reference Materials Reference Materials Large Scale Computing and Storage Requirements for High Energy Physics November 12-13, 2009 Official DOE Invitation Workshop Invitation Letter from DOE Associate Directors NERSC Documents NERSC science requirements home page NERSC science requirements workshop page NERSC science requirements case study FAQ Workshop Agenda Previous NERSC Requirements Workshops Biological and Environmental Research (BER) Basic Energy Sciences (BES) Fusion Energy Sciences

  20. Arbor Fuel | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Sector: Biomass Product: Arbor Fuel is developing micro-organisms to convert biomass into alternative fuels like biobutanol. References: Arbor Fuel1 This article is a stub. You...

  1. Planet Fuels | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Fuels Jump to: navigation, search Name: Planet Fuels Place: Brighton, United Kingdom Product: A UK based producer and supplier of biodiesel. References: Planet Fuels1 This...

  2. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    fuel use. For these purposes, alternative fuels are natural gas, hydrogen, propane, or electricity used to operate a motor vehicle. (Reference Connecticut General Statutes 4a-59

  3. SuperShuttle CNG Fleet Study Summary: Clean Cities Alternative Fuel Information Series, Alternative Fuel Case Study

    SciTech Connect

    Eudy, L.

    2001-03-05

    An account of the successful use of alternative fuels in a fleet of SuperShuttle passenger vans, which offer shared-rides between Boulder and Denver International Airport.

  4. Boise Inc. St. Helens Paper Mill Achieves Significant Fuel Savings; Industrial Technologies Program (ITP) Save Energy Now (SEN) Case Study

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Boise Inc. St. Helens mill produces nearly 1,000 tons of pulp and specialty paper per day, including a wide variety of light-to-heavy paper and napkin grade tissues. Boise Inc. St. Helens Paper Mill Achieves Significant Fuel Savings Annual Energy Savings Exceed $1 Million Industrial Technologies Program Case Study Benefits * Achieved annual energy cost savings of more than $1 million * Achieved annual fuel savings of approximately 154,000 MMBtu * Revealed innovative method to save energy *

  5. The Business Case for Fuel Cells 2012. America's Partner in Power

    SciTech Connect

    Curtin, Sandra; Gangi, Jennifer; Skukowski, Ryan

    2012-12-01

    This report, compiled by Fuel Cells 2000 with support from the Fuel Cell Technologies Program, profiles a select group of nationally recognizable companies and corporations that are deploying or demonstrating fuel cells. These businesses are taking advantage of a fuel cell's unique benefits, especially for powering lift trucks and providing combined heat and power to their stores and administrative offices.

  6. Appendix A: Reference case

    Gasoline and Diesel Fuel Update

    ... 29.52 28.85 29.72 29.67 30.56 31.49 32.63 0.4% Non-renewable energy expenditures by sector (billion 2012 dollars) Residential...

  7. Appendix A: Reference case

    Annual Energy Outlook

    523.3 1.5% 1 Does not include water heating portion of load. 2 Includes televisions, set-top boxes, home theater systems, DVD players, and video game consoles. 3 Includes desktop...

  8. Appendix A: Reference case

    Gasoline and Diesel Fuel Update

    ... 4,370 4,525 5,735 6,467 7,148 7,784 8,443 2.3% Agriculture, mining, and construction ... 1,556 1,623 2,226 2,311 2,389 2,457...

  9. Appendix A: Reference case

    Annual Energy Outlook

    DC, September 2013). 2011 and 2012 natural gas spot price at Henry Hub: Thomson Reuters. 2011 and 2012 electric power prices: EIA, Electric Power Monthly, DOEEIA-0226,...

  10. Appendix A: Reference case

    Annual Energy Outlook

    2011 and 2012 Brent and West Texas Intermediate crude oil spot prices: Thomson Reuters. 2011 and 2012 average imported crude oil cost: U.S. Energy Information...

  11. Appendix A: Reference case

    Annual Energy Outlook

    ... 9,429 9,603 11,592 12,773 14,220 15,828 17,635 2.2% Real investment ... 1,744 1,914 2,876 3,269 3,740...

  12. Appendix A: Reference case

    Annual Energy Outlook

    2012-2040 (percent) 2011 2012 2020 2025 2030 2035 2040 Energy consumption Residential Propane ... 0.51 0.51 0.42 0.40...

  13. Appendix A: Reference case

    Annual Energy Outlook

    ... 1,096 1,016 1,077 1,114 1,127 1,126 1,121 0.3% Waste coal supplied 2 ... 13 11 14 14 15 17 19...

  14. Appendix A: Reference case

    Gasoline and Diesel Fuel Update

    Sources: 2011 and 2012 interregional firm electricity trade data: 2012 seasonal reliability assessments from North American Electric Reliability Council regional entities and...

  15. Appendix A: Reference case

    Annual Energy Outlook

    12.92 12.90 13.09 -0.2% 1 Commercial trucks 8,501 to 10,000 pounds gross vehicle weight rating. 2 CAFE standard based on projected new vehicle sales. 3 Includes CAFE credits for...

  16. Appendix A: Reference case

    Annual Energy Outlook

    Information Administration Annual Energy Outlook 2014 Table A18. Energy-related carbon dioxide emissions by sector and source (million metric tons, unless otherwise noted)...

  17. Appendix A: Reference case

    Annual Energy Outlook

    district services. 2 Includes (but is not limited to) miscellaneous uses such as transformers, medical imaging and other medical equipment, elevators, escalators, off-road...

  18. Appendix A: Reference case

    Annual Energy Outlook

    supplies. 2 Includes lease condensate. 3 Tight oil represents resources in low-permeability reservoirs, including shale and chalk formations. The specific plays included in...

  19. Appendix A: Reference case

    Annual Energy Outlook

    Netherlands, Norway, Poland, Portugal, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey, and the United Kingdom. 3 Other Europe and Eurasia Albania, Armenia, Azerbaijan,...

  20. Appendix A - Reference Case

    Gasoline and Diesel Fuel Update

    October 2016 98 U.S. Energy Information Administration | Natural Gas Monthly Dakota, Ohio, Pennsylvania, Utah, and West Virginia) were added to the EIA-914 data collection and are reported individually. The remaining states/areas (Alabama, Arizona, Federal Offshore Pacific, Florida, Illinois, Indiana, Kentucky, Maryland, Michigan, Mississippi, Missouri, Nebraska, Nevada, New York, Oregon, South Dakota, Tennessee, and Virginia) are grouped in the "Other States" category. The sum of

  1. Appendix A: Reference case

    Annual Energy Outlook

    road oil, still gas, special naphthas, petroleum coke, crude oil product supplied, methanol, and miscellaneous petroleum products. 14 Includes energy for combined heat and...

  2. Appendix A: Reference case

    Gasoline and Diesel Fuel Update

    energy. See Table A17 for selected nonmarketed residential and commercial renewable energy data. 5 Includes non-biogenic municipal waste, liquid hydrogen, methanol, and some...

  3. Appendix A: Reference case

    Annual Energy Outlook

    and related equipment 2 ... 0.33 0.33 0.33 0.33 0.35 0.37 0.39 0.5% Computers and related equipment 3 ... 0.13 0.12 0.10 0.08 0.07 0.06 0.05...

  4. Appendix A: Reference case

    Annual Energy Outlook

    ... 133.0 147.6 173.1 175.0 178.2 184.2 199.2 1.1% Distributed generation (natural gas) 7 ... 0.0 0.0 1.6 3.3 4.6 6.2 8.9 - -...

  5. Appendix A: Reference case

    Gasoline and Diesel Fuel Update

    sources 5 ... 476 459 600 634 660 686 735 1.7% Distributed generation (natural gas) ... 0 0 1 2 2 3 4 - - Total...

  6. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    Fuel Dispenser Labeling Requirement All equipment used to dispense motor fuel containing at least 1% ethanol or methanol must be clearly labeled to inform customers that the fuel contains ethanol or methanol. (Reference Texas Statutes, Agriculture Code 17.051

  7. The Business Case for Fuel Cells 2011: Energizing America's Top Companies

    Publication and Product Library

    This report was developed by Fuel Cells 2000 with support from the Fuel Cell Technologies program. The report profiles nationally recognizable companies and corporations that are deploying or demonstr

  8. The Business Case for Fuel Cells 2012: America's Partner in Power

    Publication and Product Library

    This report, compiled by Fuel Cells 2000 with support from the Fuel Cell Technologies Program, profiles a select group of nationally recognizable companies and corporations that are deploying or demon

  9. DAVID Fuel Cell Components SL | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    manufacture and marketing of components and devices for PEM fuel cells, direct methanol fuel cells (DMFC) and fuel reformers. References: DAVID Fuel Cell Components SL1...

  10. Fuel Cells for Supermarkets: Cleaner Energy with Fuel Cell Combined...

    Energy.gov [DOE] (indexed site)

    smith.pdf (0 B) More Documents & Publications Fuel Cells at Supermarkets: NYSERDA's Perspective Fuel Cell Case Study Hydrogen Production and Storage for Fuel Cells: Current Status

  11. Strategic backdrop analysis for fossil fuel planning. Task 1. Default Case. Report 468-117-07/01

    SciTech Connect

    Not Available

    1980-06-01

    This report presents data describing a default case analysis performed using the strategic backdrop analytical framework developed to facilitate fossil fuel planning within the DOE. Target years are 1985 and 2025. Residential, commercial, and industrial energy demands are forecast as well as the impacts of energy technology implementation and market penetration using a set of energy technology assumptions. (DMC)

  12. Strategic backdrop analysis for fossil fuel planning. Task 1. Default Case. Report 468-117-07/02

    SciTech Connect

    Not Available

    1980-06-01

    This report presents data describing a default case analysis performed using the strategic backdrop analytical framework developed to facilitate fossil fuel planning within the DOE. Target years are 1985, 2000, and 2025. Residential, commercial, and industrial energy demands and impacts of energy technology implementation and market penetration are forecast using a set of energy technology assumptions. (DMC)

  13. Strategic backdrop analysis for fossil fuel planning. Task 1. Default Case. Report 468-117-07/03

    SciTech Connect

    Not Available

    1980-06-01

    This report presents data describing a default case analysis performed using the strategic backdrop analytical framework developed to facilitate fossil fuel planning within the DOE. Target years are 1985, 2000, and 2025. Residential, commercial, and industrial energy demands and impacts of energy technology implementation and market penetration are forecast using a set of energy technology assumptions.

  14. The Business Case for Fuel Cells 2011: Energizing America's Top Companies

    SciTech Connect

    Delmont, Elizabeth; Gangi, Jennifer; Curtin, Sandra

    2011-11-01

    This report was developed by Fuel Cells 2000 with support from the Fuel Cell Technologies program. The report profiles nationally recognizable companies and corporations that are deploying or demonstrating fuel cells for powering forklifts and providing combined heat and power to their stores and headquarters.

  15. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    Hydrogen Fuel Specifications The California Department of Food and Agriculture, Division of Measurement Standards (DMS) requires that hydrogen fuel used in internal combustion engines and fuel cells must meet the SAE International J2719 standard for hydrogen fuel quality. For more information, see the DMS Hydrogen Fuel News website. (Reference California Code of Regulations Title 4, Section 4180-4181

  16. Business Case for a Micro-Combined Heat and Power Fuel Cell System in Commercial Applications

    SciTech Connect

    Brooks, Kriston P.; Makhmalbaf, Atefe; Anderson, David M.; Amaya, Jodi P.; Pilli, Siva Prasad; Srivastava, Viraj; Upton, Jaki F.

    2013-10-30

    Combined heat and power fuel cell systems (CHP-FCSs) provide consistent electrical power and hot water with greater efficiency and lower emissions than alternative sources. These systems can be used either as baseload, grid-connected, or as off-the-grid power sources. This report presents a business case for CHP-FCSs in the range of 5 to 50 kWe. Systems in this power range are considered micro-CHP-FCS. For this particular business case, commercial applications rather than residential or industrial are targeted. To understand the benefits of implementing a micro-CHP-FCS, the characteristics that determine their competitive advantage must first be identified. Locations with high electricity prices and low natural gas prices are ideal locations for micro-CHP-FCSs. Fortunately, these high spark spread locations are generally in the northeastern area of the United States and California where government incentives are already in place to offset the current high cost of the micro-CHP-FCSs. As a result of the inherently high efficiency of a fuel cell and their ability to use the waste heat that is generated as a CHP, they have higher efficiency. This results in lower fuel costs than comparable alternative small-scale power systems (e.g., microturbines and reciprocating engines). A variety of markets should consider micro-CHP-FCSs including those that require both heat and baseload electricity throughout the year. In addition, the reliable power of micro-CHP-FCSs could be beneficial to markets where electrical outages are especially frequent or costly. Greenhouse gas emission levels from micro-CHP-FCSs are 69 percent lower, and the human health costs are 99.9 percent lower, than those attributed to conventional coal-fired power plants. As a result, FCSs can allow a company to advertise as environmentally conscious and provide a bottom-line sales advantage. As a new technology in the early stages of adoption, micro-CHP-FCSs are currently more expensive than alternative

  17. Alternatives to Traditional Transportation Fuels | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    fuel vehicles produced, the number of alternative fuel vehicles in use, and the amount of alternative transportation fuels consumed in the United States. References Retrieved from...

  18. Chief Ethanol Fuels | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Fuels Jump to: navigation, search Name: Chief Ethanol Fuels Place: Hastings, NE Website: www.chiefethanolfuels.com References: Chief Ethanol Fuels1 Information About Partnership...

  19. Chief Ethanol Fuels Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Fuels Inc Jump to: navigation, search Name: Chief Ethanol Fuels Inc Place: Hastings, Nebraska Product: Ethanol producer and supplier References: Chief Ethanol Fuels Inc1 This...

  20. Fuel Cell Power | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Fuel Cell Power Place: United Kingdom Product: Information provider of fuel cells and their supporting infrastructure. References: Fuel Cell Power1 This article is a stub. You...

  1. Whole Energy Fuels | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search Name: Whole Energy Fuels Place: Washington State Zip: 98226 Product: Supplies biodiesel and alternative fuels. References: Whole Energy Fuels1 This article is a stub....

  2. Liquidyne Fuels | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search Name: Liquidyne Fuels Place: Washington, DC Zip: 20015 Product: Focused on waste-to-energy hybrid approach for bioethanol production. References: Liquidyne Fuels1...

  3. World nuclear fuel cycle requirements 1990

    SciTech Connect

    Not Available

    1990-10-26

    This analysis report presents the projected requirements for uranium concentrate and uranium enrichment services to fuel the nuclear power plants expected to be operating under three nuclear supply scenarios. Two of these scenarios, the Lower Reference and Upper Reference cases, apply to the United States, Canada, Europe, the Far East, and other countries with free market economies (FME countries). A No New Orders scenario is presented only for the United States. These nuclear supply scenarios are described in Commercial Nuclear Power 1990: Prospects for the United States and the World (DOE/EIA-0438(90)). This report contains an analysis of the sensitivities of the nuclear fuel cycle projections to different levels and types of projected nuclear capacity, different enrichment tails assays, higher and lower capacity factors, changes in nuclear fuel burnup levels, and other exogenous assumptions. The projections for the United States generally extend through the year 2020, and the FME projections, which include the United States, are provided through 2010. The report also presents annual projections of spent nuclear fuel discharges and inventories of spent fuel. Appendix D includes domestic spent fuel projections through the year 2030 for the Lower and Upper Reference cases and through 2040, the last year in which spent fuel is discharged, for the No New Orders case. These disaggregated projections are provided at the request of the Department of Energy's Office of Civilian Radioactive Waste Management.

  4. Fuel Cell Tri-Generation System Case Study using the H2A Stationary Model

    Energy.gov [DOE]

    Overview of H2A stationary model concept, results, strategy for analysis, Federal incentives for fuel cells, and summary of next steps

  5. FUEL ROD CLUSTERS

    DOEpatents

    Schultz, A.B.

    1959-08-01

    A cluster of nuclear fuel rods and a tubular casing therefor through which a coolant flows in heat-exchange contact with the fuel rods is described. The fuel rcds are held in the casing by virtue of the compressive force exerted between longitudinal ribs of the fuel rcds and internal ribs of the casing or the internal surfaces thereof.

  6. Alternative fuel trucks case studies: Running refuse haulers on compressed natural gas

    SciTech Connect

    Norton, P.; Kelly, K.

    1996-07-01

    This document details the experience of New York City`s compressed natural gas refuse haulers. These 35 ton vehicles have engines that displace 10 liters and provide 240 horsepower. Fuel economy, range, cost, maintenance, repair issues, and emissions are discussed. Photographs and figures illustrate the attributes of these alternative fuel vehicles.

  7. Reference Materials

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Reference Materials Reference Materials Large Scale Computing and Storage Requirements for Biological and Environmental Research May 7-8, 2009 Invitation Workshop Invitation Letter...

  8. Reference Materials

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Reference Materials Reference Materials Large Scale Computing and Storage Requirements for Basic Energy Sciences February 9-10, 2010 Official DOE Invitation Workshop Invitation...

  9. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    Diesel Fuel Blend Tax Exemption The biodiesel or ethanol portion of blended fuel containing taxable diesel is exempt from the diesel fuel tax. The biodiesel or ethanol fuel blend must be clearly identified on the retail pump, storage tank, and sales invoice in order to be eligible for the exemption. (Reference Texas Statutes, Tax Code 162.2

  10. Fuel Cell Tri-Generation System Case Study using the H2A Stationary...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    System Economics and Performance Analysis Tri-Generation Success Story: World's First Tri-Gen Energy Station-Fountain Valley Expanding the Use of Biogas with Fuel Cell Technologies

  11. Making the case for direct hydrogen storage in fuel cell vehicles

    SciTech Connect

    James, B.D.; Thomas, C.E.; Baum, G.N.; Lomas, F.D. Jr.; Kuhn, I.F. Jr.

    1997-12-31

    Three obstacles to the introduction of direct hydrogen fuel cell vehicles are often states: (1) inadequate onboard hydrogen storage leading to limited vehicle range; (2) lack of an hydrogen infrastructure, and (3) cost of the entire fuel cell system. This paper will address the first point with analysis of the problem/proposed solutions for the remaining two obstacles addressed in other papers. Results of a recent study conducted by Directed Technologies Inc. will be briefly presented. The study, as part of Ford Motor Company/DOE PEM Fuel Cell Program, examines multiple pure hydrogen onboard storage systems on the basis of weight, volume, cost, and complexity. Compressed gas, liquid, carbon adsorption, and metal hydride storage are all examined with compressed hydrogen storage at 5,000 psia being judged the lowest-risk, highest benefit, near-term option. These results are combined with recent fuel cell vehicle drive cycle simulations to estimate the onboard hydrogen storage requirement for full vehicle range (380 miles on the combined Federal driving schedule). The results indicate that a PNGV-like vehicle using powertrain weights and performance realistically available by the 2004 PNGV target data can achieve approximate fuel economy equivalent to 100 mpg on gasoline (100 mpg{sub eq}) and requires storage of approximately 3.6 kg hydrogen for full vehicle storage quantity allows 5,000 psia onboard storage without altering the vehicle exterior lines or appreciably encroaching on the passenger or trunk compartments.

  12. Flying F Bio Fuels | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    F Bio Fuels Jump to: navigation, search Name: Flying F Bio-Fuels Place: Iowa Product: Flying F Bio-Fuels conducts technological research in bio-fuels. References: Flying F...

  13. Reference Materials

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Reference Materials Reference Materials Large Scale Computing and Storage Requirements for Basic Energy Sciences February 9-10, 2010 Official DOE Invitation Workshop Invitation Letter from DOE Associate Directors Last edited: 2016-04-29 11:35:05

  14. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    take actions to promote the growth of domestic alternative fuel sources, such as natural gas, and reduce dependence on foreign oil. (Reference House Concurrent Resolution 132, 2013

  15. Alternative Fuels Data Center

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Use Requirement West Virginia higher education governing boards must use alternative fuels to the maximum extent feasible. (Reference West Virginia Code 18B-5-9)...

  16. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    Biodiesel Tax Exemption Biodiesel blends containing at least 20% biodiesel derived from used cooking oil are exempt from the $0.30 per gallon state fuel excise tax. The exemption does not apply to fuel used in vehicles with a gross vehicle weight rating of 26,001 pounds or more, fuel not sold in retail operations, or fuel sold in operations involving fleet fueling or bulk sales. The exemption expires after December 31, 2019. (Reference Oregon Revised Statutes 319.530

  17. Biomass Scenario Model Documentation: Data and References Lin...

    Office of Scientific and Technical Information (OSTI)

    Documentation: Data and References Lin, Y.; Newes, E.; Bush, B.; Peterson, S.; Stright, D. 09 BIOMASS FUELS BIOMASS SCENARIO MODEL; BSM; BIOMASS; BIOFUEL; MODEL; DATA; REFERENCES;...

  18. Florida Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    Annual Energy Outlook

    Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Florida Natural Gas Vehicle Fuel ... Referring Pages: Natural Gas Vehicle Fuel Price Florida Natural Gas Prices Natural Gas ...

  19. Florida Natural Gas Plant Fuel Consumption (Million Cubic Feet...

    Gasoline and Diesel Fuel Update

    Plant Fuel Consumption (Million Cubic Feet) Florida Natural Gas Plant Fuel Consumption ... Referring Pages: Natural Gas Plant Fuel Consumption Florida Natural Gas Consumption by End ...

  20. Florida Natural Gas Lease Fuel Consumption (Million Cubic Feet...

    Annual Energy Outlook

    Fuel Consumption (Million Cubic Feet) Florida Natural Gas Lease Fuel Consumption (Million ... Referring Pages: Natural Gas Lease Fuel Consumption Florida Natural Gas Consumption by End ...

  1. Virginia Natural Gas Lease Fuel Consumption (Million Cubic Feet...

    Energy Information Administration (EIA) (indexed site)

    Fuel Consumption (Million Cubic Feet) Virginia Natural Gas Lease Fuel Consumption (Million ... Referring Pages: Natural Gas Lease Fuel Consumption Virginia Natural Gas Consumption by ...

  2. Virginia Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    Energy Information Administration (EIA) (indexed site)

    Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Virginia Natural Gas Vehicle Fuel ... Referring Pages: Natural Gas Vehicle Fuel Price Virginia Natural Gas Prices Natural Gas ...

  3. West Virginia Natural Gas Lease Fuel Consumption (Million Cubic...

    Energy Information Administration (EIA) (indexed site)

    Fuel Consumption (Million Cubic Feet) West Virginia Natural Gas Lease Fuel Consumption ... Referring Pages: Natural Gas Lease Fuel Consumption West Virginia Natural Gas Consumption ...

  4. Nevada Natural Gas Lease Fuel Consumption (Million Cubic Feet...

    Annual Energy Outlook

    Fuel Consumption (Million Cubic Feet) Nevada Natural Gas Lease Fuel Consumption (Million ... Referring Pages: Natural Gas Lease Fuel Consumption Nevada Natural Gas Consumption by End ...

  5. Nevada Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic...

    Energy Information Administration (EIA) (indexed site)

    Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Nevada Natural Gas Vehicle Fuel Price ... Referring Pages: Natural Gas Vehicle Fuel Price Nevada Natural Gas Prices Natural Gas ...

  6. Kansas Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic...

    Energy Information Administration (EIA) (indexed site)

    Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Kansas Natural Gas Vehicle Fuel Price ... Referring Pages: Natural Gas Vehicle Fuel Price Kansas Natural Gas Prices Natural Gas ...

  7. New York Natural Gas Lease Fuel Consumption (Million Cubic Feet...

    Annual Energy Outlook

    Fuel Consumption (Million Cubic Feet) New York Natural Gas Lease Fuel Consumption (Million ... Referring Pages: Natural Gas Lease Fuel Consumption New York Natural Gas Consumption by ...

  8. New Mexico Natural Gas Lease Fuel Consumption (Million Cubic...

    Gasoline and Diesel Fuel Update

    Fuel Consumption (Million Cubic Feet) New Mexico Natural Gas Lease Fuel Consumption ... Referring Pages: Natural Gas Lease Fuel Consumption New Mexico Natural Gas Consumption by ...

  9. New York Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    Gasoline and Diesel Fuel Update

    Vehicle Fuel Price (Dollars per Thousand Cubic Feet) New York Natural Gas Vehicle Fuel ... Referring Pages: Natural Gas Vehicle Fuel Price New York Natural Gas Prices Natural Gas ...

  10. New Mexico Natural Gas Plant Fuel Consumption (Million Cubic...

    Annual Energy Outlook

    Fuel Consumption (Million Cubic Feet) New Mexico Natural Gas Plant Fuel Consumption ... Referring Pages: Natural Gas Plant Fuel Consumption New Mexico Natural Gas Consumption by ...

  11. New Mexico Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    Annual Energy Outlook

    Vehicle Fuel Price (Dollars per Thousand Cubic Feet) New Mexico Natural Gas Vehicle Fuel ... Referring Pages: Natural Gas Vehicle Fuel Price New Mexico Natural Gas Prices Natural Gas ...

  12. New Jersey Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    Gasoline and Diesel Fuel Update

    Vehicle Fuel Price (Dollars per Thousand Cubic Feet) New Jersey Natural Gas Vehicle Fuel ... Referring Pages: Natural Gas Vehicle Fuel Price New Jersey Natural Gas Prices Natural Gas ...

  13. North Dakota Natural Gas Lease Fuel Consumption (Million Cubic...

    Energy Information Administration (EIA) (indexed site)

    Fuel Consumption (Million Cubic Feet) North Dakota Natural Gas Lease Fuel Consumption ... Referring Pages: Natural Gas Lease Fuel Consumption North Dakota Natural Gas Consumption ...

  14. North Dakota Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    Energy Information Administration (EIA) (indexed site)

    Vehicle Fuel Price (Dollars per Thousand Cubic Feet) North Dakota Natural Gas Vehicle Fuel ... Referring Pages: Natural Gas Vehicle Fuel Price North Dakota Natural Gas Prices Natural ...

  15. Minnesota Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    Annual Energy Outlook

    Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Minnesota Natural Gas Vehicle Fuel ... Referring Pages: Natural Gas Vehicle Fuel Price Minnesota Natural Gas Prices Natural Gas ...

  16. Reference Materials

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Reference Materials (continued) * Generators are required to avoid Las Vegas metropolitan area and Hoover Dam (Section 6.4 of NNSS Waste Acceptance Criteria, available at ...

  17. Solid fuel applications to transportation engines

    SciTech Connect

    Rentz, Richard L.; Renner, Roy A.

    1980-06-01

    The utilization of solid fuels as alternatives to liquid fuels for future transportation engines is reviewed. Alternative liquid fuels will not be addressed nor will petroleum/solid fuel blends except for the case of diesel engines. With respect to diesel engines, coal/oil mixtures will be addressed because of the high interest in this specific application as a result of the large number of diesel engines currently in transportation use. Final assessments refer to solid fuels only for diesel engines. The technical assessments of solid fuels utilization for transportation engines is summarized: solid fuel combustion in transportation engines is in a non-developed state; highway transportation is not amenable to solid fuels utilization due to severe environmental, packaging, control, and disposal problems; diesel and open-cycle gas turbines do not appear worthy of further development, although coal/oil mixtures for slow speed diesels may offer some promise as a transition technology; closed-cycle gas turbines show some promise for solid fuels utilization for limited applications as does the Stirling engine for use of cleaner solid fuels; Rankine cycle engines show good potential for limited applications, such as for locomotives and ships; and any development program will require large resources and sophisticated equipment in order to advance the state-of-the-art.

  18. Reference Materials

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Reference Materials Reference Materials Large Scale Computing and Storage Requirements for Biological and Environmental Research May 7-8, 2009 Invitation Workshop Invitation Letter from DOE Associate Directors Workshop Invitation Letter from DOE ASCR Program Manager Yukiko Sekine Last edited: 2016-04-29 11:34:54

  19. Alternative Fuels Group | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Group Jump to: navigation, search Name: Alternative Fuels Group Place: Maryland Sector: Renewable Energy Product: US-based producer of renewable fuels. References: Alternative...

  20. Platte Valley Fuel Ethanol | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Valley Fuel Ethanol Jump to: navigation, search Name: Platte Valley Fuel Ethanol Place: Central City, Nebraska Product: Bioethanol producer using corn as feedstock References:...

  1. V Fuels Biodiesel Limited | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Biodiesel Limited Jump to: navigation, search Name: V-Fuels Biodiesel Limited Place: United Kingdom Product: UK-based biodiesel producers. References: V-Fuels Biodiesel Limited1...

  2. Fuel FX International Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    on development and distribution of proprietary products focused on improving fuel economy and reducing environmental emissions in diesel and gasoline engines. References: Fuel...

  3. Fuel Systems Solutions Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    company with divisions focusing on bringing cleaner-burning gaseous fuel (such as propane and natural gas) technology to various types of vehicles. References: Fuel Systems...

  4. American Ag Fuels LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    American Ag Fuels LLC Jump to: navigation, search Name: American Ag Fuels LLC Place: Defiance, Ohio Zip: 43512 Product: Biodiesel producer in Defiance, Ohio. References: American...

  5. Calgren Renewable Fuels LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Renewable Fuels LLC Place: Newport Beach, California Zip: 92660 Product: Developer of bio-ethanol plants in US, particularly California. References: Calgren Renewable Fuels...

  6. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    Alternative Fuel Vehicle (AFV) Infrastructure Incentives Study The Georgia Joint Alternative Fuels Infrastructure Study Committee will evaluate how providing market incentives for AFV fueling infrastructure may lead to AFV market deployment. The Committee will provide a report of its recommendations and proposed legislation by December 1, 2016. (Reference Senate Resolution 1038

  7. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    Ethanol Blend Requirement Suppliers that import gasoline for sale in North Carolina must offer fuel that is not pre-blended with fuel alcohol but that is suitable for future blending. Future contract provisions that restrict distributors or retailers from blending gasoline with fuel alcohol are void. (Reference North Carolina General Statutes 75-90, 105-449.60

  8. Fuel flexible fuel injector

    DOEpatents

    Tuthill, Richard S; Davis, Dustin W; Dai, Zhongtao

    2015-02-03

    A disclosed fuel injector provides mixing of fuel with airflow by surrounding a swirled fuel flow with first and second swirled airflows that ensures mixing prior to or upon entering the combustion chamber. Fuel tubes produce a central fuel flow along with a central airflow through a plurality of openings to generate the high velocity fuel/air mixture along the axis of the fuel injector in addition to the swirled fuel/air mixture.

  9. Quick Reference

    Energy.gov [DOE] (indexed site)

    Reference 2015 Annual Planning Summary (APS) User's Guide 1, 2 PART 1 OFFICE Enter the office preparing this APS. NEPA REVIEWS Select one of two responses. SITE-WIDE EISs Select...

  10. Fuel Cell Power Model Version 2: Startup Guide, System Designs, and Case Studies. Modeling Electricity, Heat, and Hydrogen Generation from Fuel Cell-Based Distributed Energy Systems

    SciTech Connect

    Steward, D.; Penev, M.; Saur, G.; Becker, W.; Zuboy, J.

    2013-06-01

    This guide helps users get started with the U.S. Department of Energy/National Renewable Energy Laboratory Fuel Cell Power (FCPower) Model Version 2, which is a Microsoft Excel workbook that analyzes the technical and economic aspects of high-temperature fuel cell-based distributed energy systems with the aim of providing consistent, transparent, comparable results. This type of energy system would provide onsite-generated heat and electricity to large end users such as hospitals and office complexes. The hydrogen produced could be used for fueling vehicles or stored for later conversion to electricity.

  11. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    Ethanol and Methanol Tax Ethyl alcohol and methyl alcohol motor fuels are taxed at a rate of $0.14 per gallon when used as a motor fuel. Ethyl alcohol is defined as a motor fuel that is typically derived from agricultural products that have been denatured. Methyl alcohol is a motor fuel that is most commonly derived from wood products. (Reference South Dakota Statutes 10-47B-3 and 10-47B-4

  12. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    Ethanol Fuel Blend Tax Rate The tax rate on fuel containing ethanol is $0.06 per gallon less than the tax rate on other motor fuels in certain geographic areas. This reduced rate is in effect during months ethanol fuel blends must be sold, transferred, or used to operate motor vehicles to reduce carbon monoxide emissions and attain federal or state air quality standards. (Reference Alaska Statutes 43.40.01

  13. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    Alternative Fuel Excise Tax Compressed natural gas motor fuel is subject to the state fuel excise tax at the rate of $0.30 per 120 cubic feet, measured at 14.73 pounds per square inch and 60 degrees Fahrenheit. Propane motor fuel is subject to the excise tax $0.30 per 1.3 gallons at 60 degrees Fahrenheit. (Reference Oregon Revised Statutes 319.530

  14. The NEPA reference guide

    SciTech Connect

    Swartz, L.L.; Reinke, D.C.

    1999-10-01

    The NEPA Reference Guide conveniently organizes and indexes National Environmental Policy Act (NEPA) and Council on Environmental Quality (CEQ) regulations and guidance, along with relevant federal case law, all in one place. It allows the user to quickly learn the statutory, regulatory, and case law authority for a large number of NEPA subjects. A unique feature of The NEPA Reference Guide is its detailed index that includes a large number of diverse NEPA subjects. The index enables users to find and compile any statutory, regulatory (including CEQ guidance), and case law original source material and references on virtually any NEPA subject. This will be an especially useful tool for new NEPA practitioners who need to become immersed in a particular subject quickly.

  15. Poroelastic references

    DOE Data Explorer

    Christina Morency

    This file contains a list of relevant references on the Biot theory (forward and inverse approaches), the double-porosity and dual-permeability theory, and seismic wave propagation in fracture porous media, in RIS format, to approach seismic monitoring in a complex fractured porous medium such as Brady?s Geothermal Field.

  16. Poroelastic references

    SciTech Connect

    Morency, Christina

    2014-12-12

    This file contains a list of relevant references on the Biot theory (forward and inverse approaches), the double-porosity and dual-permeability theory, and seismic wave propagation in fracture porous media, in RIS format, to approach seismic monitoring in a complex fractured porous medium such as Brady?s Geothermal Field.

  17. Reference Materials

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    home page NERSC science requirements workshop page NERSC science requirements case study FAQ Workshop Agenda Previous NERSC Requirements Workshops Biological and...

  18. FUEL ROD ASSEMBLY

    DOEpatents

    Hutter, E.

    1959-09-01

    A cluster of nuclear fuel rods aod a tubular casing through which a coolant flows in heat-change contact with the ruel rods are described. The casting is of trefoil section and carries the fuel rods, each of which has two fin engaging the serrated fins of the other two fuel rods, whereby the fuel rods are held in the casing and are interlocked against relative longitudinal movement.

  19. EPG Fuel Cell LLc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    EPG Fuel Cell LLc Jump to: navigation, search Name: EPG Fuel Cell LLc Place: Maryland Product: 50-50 JV between Catamount Energy and Elemental Power. References: EPG Fuel Cell...

  20. Appendix A. Reference case projections

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    9.7 15.3 15.2 14.2 13.8 13.5 1.2 Canada 3.4 3.6 3.7 5.4 6.4 7.3 7.8 8.0 2.7 Mexico and Chile 3.0 3.0 3.0 3.1 3.4 3.7 3.9 4.2 1.1 OECD Europe 4.9 4.6 4.3 3.3 3.2 3.2 3.2 3.4 -1.0...

  1. Appendix A. Reference case projections

    Gasoline and Diesel Fuel Update

    9.7 13.6 12.9 11.7 11.2 10.6 0.4 Canada 3.4 3.6 3.7 4.7 5.1 5.5 5.7 5.8 1.6 Mexico and Chile 3.0 3.0 3.0 2.4 2.0 2.0 2.1 2.2 -1.0 OECD Europe 4.9 4.6 4.3 3.1 2.9 2.5 2.4 2.5 -2.0...

  2. Appendix A. Reference case projections

    Gasoline and Diesel Fuel Update

    Persian Gulf Share of World Production 29% 29% 31% 32% 35% 38% 40% 42% a Crude and lease condensate includes tight oil, shale oil, extra-heavy oil, field condensate, and bitumen. b ...

  3. Appendix A. Reference case projections

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Persian Gulf Share of World Production 29% 29% 31% 24% 24% 26% 27% 28% a Crude and lease condensate includes tight oil, shale oil, extra-heavy oil, field condensate, and bitumen. b ...

  4. Appendix A. Reference case projections

    Annual Energy Outlook

    4.3 4.5 4.8 5.1 5.0 1.4 Natural gas plant liquids 3.1 3.3 3.4 4.0 4.2 4.4 4.8 4.7 1.2 Biofuels c 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 - Coal-to-liquids 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -...

  5. Appendix A. Reference case projections

    Annual Energy Outlook

    4.6 4.9 5.3 5.8 5.9 1.9 Natural gas plant liquids 3.1 3.3 3.4 4.3 4.6 4.9 5.3 5.3 1.6 Biofuels c 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 - Coal-to-liquids 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -...

  6. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update

    6 Appendix H Table H10. World installed solar generating capacity by region and country, 2011-40 (gigawatts) Region/country History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 5 8 32 36 44 54 67 7.7 United States a 4 8 28 32 39 48 61 7.7 Canada 1 1 2 3 3 4 4 5.9 Mexico and Chile 0 0 2 2 2 2 3 14.4 OECD Europe 52 70 93 93 93 94 98 1.2 OECD Asia 7 9 45 51 57 59 60 6.9 Japan 5 7 38 43 48 49 49 7.4 South Korea 1 1 2 3 4 4 4 5.1 Australia

  7. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update

    8 Appendix H Table H12. World total net electricity generation by region and country, 2011-40 (billion kilowatthours) Region/country History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 5,071 5,017 5,449 5,724 6,036 6,359 6,727 1.1 United States a 4,102 4,055 4,351 4,513 4,691 4,860 5,056 0.8 Canada 627 616 692 748 809 880 958 1.6 Mexico and Chile 342 346 406 463 535 618 713 2.6 OECD Europe 3,455 3,483 3,858 4,090 4,328 4,590 4,889 1.2

  8. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update

    0 Appendix H Table H14. World net natural gas-fred electricity generation by region and country, 2011-40 (billion kilowatthours) Region/country History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 1,234 1,446 1,396 1,600 1,840 2,048 2,237 1.6 United States a 1,014 1,228 1,117 1,223 1,371 1,478 1,569 0.9 Canada 61 63 97 136 187 230 272 5.3 Mexico and Chile 160 154 182 240 282 340 396 3.4 OECD Europe 766 645 655 746 905 1,056 1,321 2.6

  9. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update

    2 Appendix H Table H16. World net nuclear electricity generation by region and country, 2011-40 (billion kilowatthours) Region/country History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 888 867 902 891 901 900 924 0.2 United States a 790 769 804 808 808 812 833 0.3 Canada 88 89 86 72 72 67 62 -1.3 Mexico and Chile 9 8 12 12 20 20 29 4.5 OECD Europe 861 837 845 879 930 948 896 0.2 OECD Asia 304 161 381 437 457 450 427 3.5 Japan 156 17

  10. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update

    4 Appendix H Table H18. World net hydroelectric electricity generation by region and country, 2011-40 (billion kilowatthours) Region/country History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 747 703 764 784 806 831 887 0.8 United States a 319 275 292 294 295 295 297 0.3 Canada 372 377 403 414 425 437 475 0.8 Mexico and Chile 57 51 68 76 86 99 114 2.9 OECD Europe 498 556 592 617 617 617 657 0.6 OECD Asia 128 115 127 131 135 143 153

  11. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update

    8 Appendix H Table H2. World installed liquids-fred generating capacity by region and country, 2011-40 (gigawatts) Region/country History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 125 121 108 98 92 87 85 -1.2 United States a 105 101 89 80 75 71 70 -1.3 Canada 4 4 4 4 4 4 3 -1.0 Mexico and Chile 16 16 14 14 13 12 12 -1.0 OECD Europe 50 50 47 45 43 41 39 -0.9 OECD Asia 58 59 54 52 49 47 45 -1.0 Japan 52 52 49 46 44 42 40 -1.0 South

  12. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update

    6 Appendix H Table H20. World net geothermal electricity generation by region and country, 2011-40 (billion kilowatthours) Region/country History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 22 21 37 49 64 75 85 5.0 United States a 15 16 27 39 52 62 70 5.5 Canada 0 0 0 0 0 0 0 - Mexico and Chile 7 6 10 10 11 13 15 3.5 OECD Europe 11 12 21 23 23 23 25 2.7 OECD Asia 9 9 17 18 20 22 25 3.9 Japan 3 3 3 3 3 3 3 0.1 South Korea 0 0 1 1 2 2 2

  13. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update

    8 Appendix H Table H22. World net other renewable electricity generation by region and country, 2011-40 (billion kilowatthours) Region/country History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 87 94 125 151 169 191 210 2.9 United States a 75 77 103 115 119 125 138 2.1 Canada 6 9 14 28 41 55 60 7.0 Mexico and Chile 6 8 8 8 9 11 13 1.8 OECD Europe 155 149 201 210 210 210 224 1.5 OECD Asia 28 37 60 71 80 84 87 3.1 Japan 23 33 38 44 50

  14. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update

    0 Appendix H Table H4. World installed coal-fred generating capacity by region and country, 2011-40 (gigawatts) Region/country History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 333 327 279 276 272 272 271 -0.7 United States a 314 308 263 260 260 260 260 -0.6 Canada 10 10 7 7 3 3 2 -5.2 Mexico and Chile 9 9 9 9 9 9 9 -0.2 OECD Europe 197 198 207 200 194 188 183 -0.3 OECD Asia 109 112 117 113 111 109 110 -0.1 Japan 50 50 49 47 46 44 43

  15. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update

    2 Appendix H Table H6. World installed hydroelectric and other renewable generating capacity by region and country, 2011-40 (gigawatts) Region/country History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 273 293 372 396 424 460 507 2.0 United States a 168 185 233 240 252 273 301 1.8 Canada 85 87 106 114 123 132 144 1.8 Mexico and Chile 20 21 34 42 48 55 62 3.9 OECD Europe 337 372 514 534 553 594 626 1.9 OECD Asia 54 57 115 129 145 153

  16. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update

    4 Appendix H Table H8. World installed wind-powered generating capacity by region and country, 2011-40 (gigawatts) Region/country History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 53 67 107 117 127 141 159 3.1 United States a 47 59 83 84 87 97 110 2.2 Canada 5 6 15 18 20 22 24 5.0 Mexico and Chile 1 2 9 16 19 22 25 10.1 OECD Europe 94 107 189 203 222 263 277 3.5 OECD Asia 6 6 24 29 37 40 44 7.2 Japan 2 3 3 5 8 8 8 4.1 South Korea 0 0

  17. EDG Fuels | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search Name: EDG Fuels Place: Silver City, Arizona Zip: 88062 Product: Arizona-based biodiesel producer. References: EDG Fuels1 This article is a stub. You can help OpenEI...

  18. Phoenix Fuels | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Phoenix Fuels Place: Notts, United Kingdom Zip: NG22 9HB Product: Ethanol project developer based in Newark, Nottingham. References: Phoenix Fuels1 This article is a stub. You...

  19. Fuel plus | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    magnetic device that can be fitted on the fuel lines of internal combustion engines and LPG stoves References: Fuel plus1 This article is a stub. You can help OpenEI by...

  20. The impact of fuel cladding failure events on occupational radiation exposures at nuclear power plants: Case study, PWR (pressurized-water reactor) during an outage

    SciTech Connect

    Moeller, M.P.; Martin, G.F.; Kenoyer, J.L.

    1987-08-01

    This report is the second in a series of case studies designed to evaluate the magnitude of increase in occupational radiation exposures at commercial US nuclear power plants resulting from small incidents or abnormal events. The event evaluated is fuel cladding failure, which can result in elevated primary coolant activity and increased radiation exposure rates within a plant. For this case study, radiation measurements were made at a pressurized-water reactor (PWR) during a maintenance and refueling outage. The PWR had been operating for 22 months with fuel cladding failure characterized as 105 pin-hole leakers, the equivalent of 0.21% failed fuel. Gamma spectroscopy measurements, radiation exposure rate determinations, thermoluminescent dosimeter (TLD) assessments, and air sample analyses were made in the plant's radwaste, pipe penetration, and containment buildings. Based on the data collected, evaluations indicate that the relative contributions of activation products and fission products to the total exposure rates were constant over the duration of the outage. This constancy is due to the significant contribution from the longer-lived isotopes of cesium (a fission product) and cobalt (an activation product). For this reason, fuel cladding failure events remain as significant to occupational radiation exposure during an outage as during routine operations. As documented in the previous case study (NUREG/CR-4485 Vol. 1), fuel cladding failure events increased radiation exposure rates an estimated 540% at some locations of the plant during routine operations. Consequently, such events can result in significantly greater radiation exposure rates in many areas of the plant during the maintenance and refueling outages than would have been present under normal fuel conditions.

  1. Reference Designs for Hydrogen Fueling Stations

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... and the general public: high-level understanding of typical stations lowering acceptance risk. * ... 9 Common station designs Gas Supply, Cascade Fill Three basic ...

  2. International Energy Outlook 2016-Petroleum and other liquid fuels - Energy

    Gasoline and Diesel Fuel Update

    Information Administration 2. Petroleum and other liquid fuels print version Overview In the International Energy Outlook 2016 (IEO2016) Reference case, worldwide consumption of petroleum and other liquid fuels increases from 90 million barrels per day (b/d) in 2012 to 100 million b/d in 2020 and 121 million b/d in 2040. Much of the growth in world liquid fuels consumption is projected for the emerging, non-Organization for Economic Cooperation and Development (non-OECD) economies of Asia,

  3. Energy reference handbook. Third edition

    SciTech Connect

    Not Available

    1985-01-01

    The energy field has exploded since the OPEC oil embargo of 1973. Terms that did not even exist several years ago are now being used. In addition, many words have developed interpretations somewhat different from their commonly accepted meanings. The 3rd Edition of the Energy Reference Handbook records and standardizes these terms in a comprehensive glossary. Special emphasis is placed on providing terms and definitions in the area of alternative fuels-synthetics from coal and oil shale; solar; wind; biomass; geothermal; and more - as well as traditional fossil fuels. In total, more than 3,500 terms, key words, and phrases used daily in energy literature are referenced. In addition to these definitions, conversion tables, diagrams, maps, tables, and charts on various aspects of energy which forecast the reserves of fuel resources, plus other information relevant to energy resources and technologies are found in this reference.

  4. Kennecott Utah Copper Retrofits Smelting Applications from Air-Fuel to Oxy-Fuel Burners: Office of Industrial Technologies (OIT) Best Practices Mining Technical Case Study

    SciTech Connect

    U.S. Department of Energy

    2001-08-06

    This case study is the latest in a series on industrial firms who are implementing energy efficient technologies and system improvements into their manufacturing processes. The case studies document the activities, savings, and lessons learned on these projects.

  5. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    Under current law, this tax credit is applicable to fuel sold or used between January 1, ... Publications website. (Reference Public Law 114-113 and 26 U.S. Code 6426) Point of ...

  6. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    by at least 50% by 2015 as compared to the total amount used in 2006. In addition, state agencies must reduce petroleum-based diesel fuel use by 25% by 2015. (Reference ...

  7. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    Fueling Infrastructure Tax Credit For tax years beginning before January 1, 2020, a tax ... The tax credit may be carried forward for up to five years. (Reference Oklahoma Statutes

  8. Alternative Fuels Data Center

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Municipal Alternative Fuel Tax Regulation A taxing jurisdiction may not levy a tax or fee, however denominated, on natural gas or propane used to propel a motor vehicle. (Reference ...

  9. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    Tax Exemption The retail sale, use, storage, and consumption of alternative fuels is exempt from the state retail sales and use tax. (Reference North Carolina General Statutes 105-164.13

  10. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    Tax Exemption An individual who produces biodiesel for use in that individual's private passenger vehicle is exempt from the state motor fuel excise tax. (Reference North Carolina General Statutes 105-449.88

  11. Impact of fuel cladding failure events on occupational radiation exposures at nuclear power plants. Case study: PWR during routine operations

    SciTech Connect

    Moeller, M.P.; Martin, G.F.; Haggard, D.L.

    1986-01-01

    The purpose of this report is to present data in support of evaluating the impact of fuel cladding failure events on occupational radiation exposure. To determine quantitatively whether fuel cladding failure contributes significantly to occupational radiation exposure, radiation exposure measurements were taken at comparable locations in two mirror-image pressurized-water reactors (PWRs) and their common auxiliary building. One reactor, Unit B, was experiencing degraded fuel characterized as 0.125% fuel pin-hole leakers and was operating at approximately 55% of the reactor's licensed maximum core power, while the other reactor, Unit A, was operating under normal conditions with less than 0.01% fuel pin-hole leakers at 100% of the reactor's licensed maximum core power. Measurements consisted of gamma spectral analyses, radiation exposure rates and airborne radionuclide concentrations. In addition, data from primary coolant sample results for the previous 20 months on both reactor coolant systems were analyzed. The results of the measurements and coolant sample analyses suggest that a 3560-megawatt-thermal (1100 MWe) PWR operating at full power with 0.125% failed fuel can experience an increase of 540% in radiation exposure rates as compared to a PWR operating with normal fuel. In specific plant areas, the degraded fuel may elevate radiation exposure rates even more.

  12. Fuel Cell Technical Publications | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Technical Publications » Fuel Cell Technical Publications Fuel Cell Technical Publications Technical information about fuel cells published in technical reports, conference proceedings, journal articles, and websites is provided here. General Transportation Stationary/Distributed Power Auxiliary and Portable Power Manufacturing Material Handling Equipment General 2015 Fuel Cell Technologies Market Report (Fuel Cell Technologies Office, October 2016) The Business Case for Fuel Cells 2015:

  13. Aluminum reference electrode

    DOEpatents

    Sadoway, D.R.

    1988-08-16

    A stable reference electrode is described for use in monitoring and controlling the process of electrolytic reduction of a metal. In the case of Hall cell reduction of aluminum, the reference electrode comprises a pool of molten aluminum and a solution of molten cryolite, Na[sub 3]AlF[sub 6], wherein the electrical connection to the molten aluminum does not contact the highly corrosive molten salt solution. This is accomplished by altering the density of either the aluminum (decreasing the density) or the electrolyte (increasing the density) so that the aluminum floats on top of the molten salt solution. 1 fig.

  14. Aluminum reference electrode

    DOEpatents

    Sadoway, Donald R.

    1988-01-01

    A stable reference electrode for use in monitoring and controlling the process of electrolytic reduction of a metal. In the case of Hall cell reduction of aluminum, the reference electrode comprises a pool of molten aluminum and a solution of molten cryolite, Na.sub.3 AlF.sub.6, wherein the electrical connection to the molten aluminum does not contact the highly corrosive molten salt solution. This is accomplished by altering the density of either the aluminum (decreasing the density) or the electrolyte (increasing the density) so that the aluminum floats on top of the molten salt solution.

  15. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    Committee of Alternative Fuels Technician Examiners The Committee of Alternative Fuels Technician Examiners (Committee) was established to assist the Commissioner of Labor on matters relating to the formulation of rules and standards to comply with the Alternative Fuels Technician Certification Act. The Committee consists of eight members, including experts in the natural gas and electric vehicle industries. (Reference House Bill 2622, 2016, and Oklahoma Statutes 40-142.6

  16. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    Fueling Infrastructure Tax Credit An income tax credit is available to eligible taxpayers who construct or purchase and install qualified alternative fueling infrastructure. The tax credit is 20% of the total allowable costs associated with construction or purchase and installation of the equipment, up to $400,000 per facility. For the purpose of this tax credit, qualified alternative fuels include natural gas and propane. This tax credit expires December 31, 2017. (Reference West Virginia Code

  17. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    Ethanol Fueling Infrastructure Grants The Minnesota Corn Research & Promotion Council and the Minnesota Department of Agriculture offer funding assistance to fuel retailers for the installation of equipment to dispense ethanol fuel blends ranging from E15 through E85. Grant amounts are based on the extent to which the installation meets project priorities. For more information, refer to the Clean Air Choice E85 Retailer Information website. Point of Contact Kelly Marczak Director American

  18. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants The Motor Vehicle Registration Fee Program (Program) provides funding for projects that reduce air pollution from on- and off-road vehicles. Eligible projects include purchasing AFVs and developing alternative fueling infrastructure. Contact local air districts and see the Program website for more information about available grant funding and distribution from the Program. (Reference California Health and Safety Code 44220 (b))

  19. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    Support for Advanced Biofuel Development The California Legislature urges the U.S. Congress or the U.S. Environmental Protection Agency to take action to amend the U.S. Renewable Fuel Standard to favor non-food crop biofuel feedstocks and promote the development of advanced fuels, such as cellulosic ethanol. (Reference Assembly Joint Resolution 21, 2013

  20. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    Bond Exemption for Small Biofuels Suppliers Fuel blenders or suppliers of ethanol or biodiesel are not required to file a bond with the North Carolina Department of Revenue when the expected motor fuel tax liability is less than $2,000. (Reference North Carolina General Statutes 105-449.72

  1. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    Fuel-Efficient Tire Program Development The California Energy Commission (CEC) must adopt and implement a state-wide Fuel-Efficient Tire Program that includes a consumer information and education program and minimum tire efficiency standards. The CEC must consult with the California Integrated Waste Management Board on the program's adoption, implementation, and regular review. (Reference California Public Resources Code 25770-2577

  2. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    Alternative Fuel Vehicle Retrofit Emissions Inspection Process The California Department of Health and Safety may adopt a process by which state designated referees inspect vehicles that present prohibitive inspection circumstances, such as vehicles equipped with alternative fuel retrofit systems. (Reference California Health and Safety Code 44014

  3. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    Public Utility Definition A corporation or individual that owns, controls, operates, or manages a facility that supplies electricity to the public exclusively to charge light-duty battery electric and plug-in hybrid electric vehicles, compressed natural gas to fuel natural gas vehicles, or hydrogen as a motor vehicle fuel is not defined as a public utility. (Reference California Public Utilities Code 216

  4. Coupling hydrogen fuel and carbonless utilities

    SciTech Connect

    Berry, G.D.

    1998-08-01

    A number of previous analyses have focused on comparisons of single hydrogen vehicles to petroleum and alternative fuel vehicles or of stationary hydrogen storage for utility or local power applications. LLNL`s approach is to compare combined transportation/utility storage systems using hydrogen and fossil fuels. Computer models have been constructed to test the hypothesis that combining carbonless electricity sources and vehicles fueled by electrolytic hydrogen can reduce carbon emissions more cost effectively than either approach alone. Three scenarios have been developed and compared using computer simulations, hourly utility demand data, representative data for solar and wind energy sites, and the latest available EIA projections for transportation and energy demand in the US in 2020. Cost projections were based on estimates from GRI, EIA, and a recent DOE/EPRI report on renewable energy technologies. The key question guiding this analysis was: what can be gained by combining hydrogen fuel production and renewable electricity? Bounding scenarios were chosen to analyze three carbon conscious options for the US transportation fuel and electricity supply system beyond 2020: Reference Case -- petroleum transportation and natural gas electric sector; Benchmark Case -- petroleum transportation and carbonless electric sector; and Target Case -- hydrogen transportation and carbonless electric sector.

  5. BioFuel Energy Corp | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Energy Corp Jump to: navigation, search Name: BioFuel Energy Corp Place: Denver, Colorado Zip: 80202 Product: Develops, owns and operates ethanol facilities. References: BioFuel...

  6. Safe Renewable Corporation formerly Safe Fuels | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Renewable Corporation (formerly Safe Fuels) Place: Texas Zip: 77380 Product: Texas-based biodiesel producer. References: Safe Renewable Corporation (formerly Safe Fuels)1 This...

  7. West Virginia Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    Energy Information Administration (EIA) (indexed site)

    Vehicle Fuel Price (Dollars per Thousand Cubic Feet) West Virginia Natural Gas Vehicle ... Referring Pages: Natural Gas Vehicle Fuel Price West Virginia Natural Gas Prices Natural ...

  8. BioGold Fuels Corporation | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    through joint ventures a lower-cost, higher-output system for the production of diesel fuel derived from Municipal Solid Waste ("MSW"). References: BioGold Fuels...

  9. US Energy Initiatives Corp formerly Hybrid Fuel Systems Inc ...

    OpenEI (Open Energy Information) [EERE & EIA]

    Fuel Systems Inc) Place: Tampa, Florida Zip: 33637 Product: Holds patented natural gasdiesel dual fuel technology. References: US Energy Initiatives Corp (formerly Hybrid...

  10. Nevada Natural Gas Input Supplemental Fuels (Million Cubic Feet...

    Energy Information Administration (EIA) (indexed site)

    Input Supplemental Fuels (Million Cubic Feet) Nevada Natural Gas Input Supplemental Fuels ... Referring Pages: Total Supplemental Supply of Natural Gas Nevada Supplemental Supplies of ...

  11. Heliocentris Energiesysteme GmbH aka Heliocentris Fuel Cells...

    OpenEI (Open Energy Information) [EERE & EIA]

    Germany Zip: 12489 Product: Specialised in fuel cell demonstration applications for education and outreach. References: Heliocentris Energiesysteme GmbH (aka Heliocentris Fuel...

  12. Kentucky Natural Gas Plant Fuel Consumption (Million Cubic Feet...

    Energy Information Administration (EIA) (indexed site)

    Fuel Consumption (Million Cubic Feet) Kentucky Natural Gas Plant Fuel Consumption (Million ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Natural Gas Plant ...

  13. West Virginia Natural Gas Plant Fuel Consumption (Million Cubic...

    Energy Information Administration (EIA) (indexed site)

    Fuel Consumption (Million Cubic Feet) West Virginia Natural Gas Plant Fuel Consumption ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Natural Gas Plant ...

  14. Utah Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update

    Fuel Consumption (Million Cubic Feet) Utah Natural Gas Plant Fuel Consumption (Million ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Natural Gas Plant ...

  15. Wyoming Natural Gas Plant Fuel Consumption (Million Cubic Feet...

    Annual Energy Outlook

    Fuel Consumption (Million Cubic Feet) Wyoming Natural Gas Plant Fuel Consumption (Million ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Natural Gas Plant ...

  16. Kansas Natural Gas Plant Fuel Consumption (Million Cubic Feet...

    Energy Information Administration (EIA) (indexed site)

    Fuel Consumption (Million Cubic Feet) Kansas Natural Gas Plant Fuel Consumption (Million ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Natural Gas Plant ...

  17. California Fuel Cell Partnership CaFCP | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    fuel cell vehicles under real driving conditions and to assist in the development of a hydrogen infrastructure. References: California Fuel Cell Partnership (CaFCP)1 This...

  18. North Dakota Natural Gas Vehicle Fuel Consumption (Million Cubic...

    Energy Information Administration (EIA) (indexed site)

    Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Natural Gas Delivered to Vehicle Fuel Consumers North Dakota Natural Gas Consumption by End Use Vehicle Fuel ...

  19. North Carolina Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    Energy Information Administration (EIA) (indexed site)

    Vehicle Fuel Price (Dollars per Thousand Cubic Feet) North Carolina Natural Gas Vehicle ... Referring Pages: Natural Gas Vehicle Fuel Price North Carolina Natural Gas Prices Natural ...

  20. AlumiFuel Power Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search Name: AlumiFuel Power Inc. Place: Philadelphia, Pennsylvania Sector: Hydro, Hydrogen Product: Philadelphia-based hydrogen gas generator. References: AlumiFuel Power...

  1. Fuel Cell Financing Options | Department of Energy

    Energy.gov [DOE] (indexed site)

    Department of Energy Webinar: Financing Fuel Cell Installations, August 30, 2011. ... Case for Fuel Cells 2011: Energizing America's Top Companies PAFC Cost Challenges

  2. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    Alternative Fuel Tax Rates A special excise tax rate of 2% is imposed on the sale of propane and an excise tax of $0.23 per gallon is imposed on all special fuels sales and deliveries, including compressed natural gas (CNG) and liquefied natural gas (LNG). One gallon of special fuel is equal to 120 cubic feet of CNG or 1.7 gallons of LNG. Retailers must obtain a license from the Office of the State Tax Commissioner to sell special fuels. Exceptions apply. (Reference North Dakota Century Code

  3. Fuel performance annual report for 1990. Volume 8

    SciTech Connect

    Preble, E.A.; Painter, C.L.; Alvis, J.A.; Berting, F.M.; Beyer, C.E.; Payne, G.A.; Wu, S.L.

    1993-11-01

    This annual report, the thirteenth in a series, provides a brief description of fuel performance during 1990 in commercial nuclear power plants. Brief summaries of fuel design changes, fuel surveillance programs, fuel operating experience and trends, fuel problems high-burnup fuel experience, and items of general significance are provided . References to additional, more detailed information, and related NRC evaluations are included where appropriate.

  4. Fuel performance annual report for 1983. Volume 1

    SciTech Connect

    Bailey, W.J.; Dunenfeld, M.S.

    1985-03-01

    This annual report, the sixth in a series, provides a brief description of fuel performance during 1983 in commercial nuclear power plants. Brief summaries of fuel design changes, fuel surveillance programs, fuel operating experience, fuel problems, high-burnup fuel experience, and items of general significance are provided. References to additional, more detailed information and related NRC evaluations are included.

  5. Fuel performance annual report for 1981. [PWR; BWR

    SciTech Connect

    Bailey, W.J.; Tokar, M.

    1982-12-01

    This annual report, the fourth in a series, provides a brief description of fuel performance during 1981 in commercial nuclear power plants. Brief summaries of fuel operating experience, fuel problems, fuel design changes and fuel surveillance programs, and high-burnup fuel experience are provided. References to additional, more detailed information and related NRC evaluations are included.

  6. Laser surveillance system for spent fuel

    SciTech Connect

    Fiarman, S; Zucker, M S; Bieber, Jr, A M

    1980-01-01

    A laser surveillance system installed at spent fuel storage pools will provide the safeguard inspector with specific knowledge of spent fuel movement that cannot be obtained with current surveillance systems. The laser system will allow for the division of the pool's spent fuel inventory into two populations - those assemblies which have been moved and those which haven't - which is essential for maximizing the efficiency and effectiveness of the inspection effort. We have designed, constructed, and tested a laser system and have used it with a simulated BWR assembly. The reflected signal from the zircaloy rods depends on the position of the assembly, but in all cases is easily discernable from the reference scan of background with no assembly.

  7. Laser Surveillance System for Spent Fuel

    SciTech Connect

    Fiarman, S.; Zucker, M. S.; Bieber, Jr., A. M.

    1980-01-01

    A laser surveillance system installed at spent fuel storage pools (SFSP's) will provide the safeguard inspector with specific knowledge of spent fuel movement that cannot be obtained with current surveillance systems. The laser system will allow for the division of the pool's spent fuel inventory into two populations - those assemblies which have been moved and those which haven't - which is essential for maximizing the efficiency and effectiveness of the inspection effort. We have designed, constructed, and tested a full size laser system operating in air and have used an array of 6 zircaloy BWR tubes to simulate an assembly. The reflective signal from the zircaloy rods is a strong function of position of the assembly, but in all cases is easily discernable from the reference scan of the background with no assembly. A design for a SFSP laser surveillance system incorporating laser ranging is discussed. 10 figures.

  8. Fuel Options

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Hydrogen Production Market Transformation Fuel Cells Predictive Simulation of Engines ... Twitter Google + Vimeo Newsletter Signup SlideShare Fuel Options HomeCapabilitiesFuel ...

  9. Fuel performance annual report for 1986

    SciTech Connect

    Bailey, W.J.; Wu, S.

    1988-03-01

    This annual report, the ninth in a series, provides a brief description of fuel performance during 1986 in commercial nuclear power plants and an indication of trends. Brief summaries of fuel design changes, fuel surveillance programs, fuel operating experience, fuel problems, high-burnup fuel experience, and items of general significance are provided. References to more detailed information and related U.S. Nuclear Regulatory Commission evaluations are included. 550 refs., 12 figs., 31 tabs.

  10. Fuel performance annual report for 1985

    SciTech Connect

    Bailey, W.J.; Wu, S.

    1987-02-01

    This annual report, the eighth in a series, provides a brief description of fuel performance during 1985 in commercial nuclear power plants and an indication of trends. Brief summaries of fuel design changes, fuel surveillance programs, fuel operating experience, fuel problems, high-burnup fuel experience, and items of general significance are provided. References to additional, more detailed information and related NRC evaluations are included.

  11. Fuel performance annual report for 1988

    SciTech Connect

    Bailey, W.J. ); Wu, S. . Div. of Engineering and Systems Technology)

    1990-03-01

    This annual report, the eleventh in a series, provides a brief description of fuel performance during 1988 in commercial nuclear power plants and an indication of trends. Brief summaries of fuel design changes, fuel surveillance programs, fuel operating experience, fuel problems, high-burnup fuel experience, and items of general significance are provided. References to more detailed information and related US Nuclear Regulatory Commission evaluations are included. 414 refs., 13 figs., 32 tabs.

  12. Fuel performance annual report for 1989

    SciTech Connect

    Bailey, W.J.; Berting, F.M. ); Wu, S. . Div. of Systems Technology)

    1992-06-01

    This annual report, the twelfth in a series, provides a brief description of fuel performance during 1989 in commercial nuclear power plants and an indication of trends. Brief summaries of fuel design changes, fuel surveillance programs, fuel operating experience, fuel problems, high-burnup fuel experience, and items of general significance are provided. References to more detailed information and related US Nuclear Regulatory Commission evaluations are included.

  13. Fuel performance: Annual report for 1987

    SciTech Connect

    Bailey, W.J.; Wu, S.

    1989-03-01

    This annual report, the tenth in a series, provides a brief description of fuel performance during 1987 in commercial nuclear power plants and an indication of trends. Brief summaries of fuel design changes, fuel surveillance programs, fuel operating experience, fuel problems, high-burnup fuel experience, and items of general significance are provided. References to more detailed information and related US Nuclear Regulator Commission evaluations are included. 384 refs., 13 figs., 33 tabs.

  14. Fossil fuels -- future fuels

    SciTech Connect

    1998-03-01

    Fossil fuels -- coal, oil, and natural gas -- built America`s historic economic strength. Today, coal supplies more than 55% of the electricity, oil more than 97% of the transportation needs, and natural gas 24% of the primary energy used in the US. Even taking into account increased use of renewable fuels and vastly improved powerplant efficiencies, 90% of national energy needs will still be met by fossil fuels in 2020. If advanced technologies that boost efficiency and environmental performance can be successfully developed and deployed, the US can continue to depend upon its rich resources of fossil fuels.

  15. Fuel Performance Annual Report for 1980

    SciTech Connect

    Bailey, W. J.; Rising, K. H.; Tokar, M.

    1981-12-01

    This annual report, the third in a series, provides a brief description of fuel performance in conmercial nuclear power plants. Brief summaries of fuel surveillance programs and operating experience, fuel performance problems, and fuel design changes are provided. References to additional, more detailed, information and related NRC evaluation are included.

  16. SFC Smart Fuel Cell AG | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Zip: D-85649 Product: Smart Fuel Cell designs, develops and manufactures direct methanol fuel cell systems. References: SFC Smart Fuel Cell AG1 This article is a stub. You...

  17. Opportunity fuels

    SciTech Connect

    Lutwen, R.C.

    1994-12-31

    Opportunity fuels - fuels that can be converted to other forms of energy at lower cost than standard fossil fuels - are discussed in outline form. The type and source of fuels, types of fuels, combustability, methods of combustion, refinery wastes, petroleum coke, garbage fuels, wood wastes, tires, and economics are discussed.

  18. Ag Fuels Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    to: navigation, search Name: Ag Fuels Ltd Place: Sealy, Texas Product: 3.6Mgpl (13.6Mlpy) biodiesel producer in Sealy, Texas. References: Ag Fuels Ltd1 This article is a stub....

  19. Fuel Cells UK | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    United Kingdom Zip: NN14 3ED Product: An industry association of the UK fuel cell industry whose mission is to foster the development of the industry. References: Fuel...

  20. Eco Fuel Positive | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Kingdom-based financial services firm. The firm organised finances to run Rwandan Eco-Fuel Global's biodiesel project. References: Eco-Fuel Positive1 This article is a stub....

  1. NuFuels LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search Name: NuFuels, LLC Place: Fort Wayne, Indiana Zip: 46814 Product: A start-up firm seeking to develop a biodiesel plant in northeast Indiana. References: NuFuels,...

  2. Argonaut BioFuels | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Argonaut BioFuels Jump to: navigation, search Name: Argonaut BioFuels Place: Virginia Product: Manufacturer of wood pellets that has a plant in Virginia, US. References: Argonaut...

  3. Green Fuels Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Green Fuels Ltd Place: Malmesbury, Wiltshire, United Kingdom Zip: SN16 9SG Product: Designer of small-scale and commercial-scale biodiesel plants. References: Green Fuels Ltd1...

  4. AltAir Fuels | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Renewable Energy Product: Seattle-based developer of projects for the production of jet fuel from renewable and sustainable oils. References: AltAir Fuels1 This article is a...

  5. PolyFuel Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    California Zip: 94043 Product: Polyfuel specialises in membrane technology for direct methanol fuel cells. References: PolyFuel Inc1 This article is a stub. You can help OpenEI...

  6. Microheterogeneous Thoria-Urania Fuels for Pressurized Water Reactors

    SciTech Connect

    Shwageraus, Eugene; Zhao Xianfeng; Driscoll, Michael J.; Hejzlar, Pavel; Kazimi, Mujid S.; Herring, J. Stephen

    2004-07-15

    A thorium-based fuel cycle for light water reactors will reduce the plutonium generation rate and enhance the proliferation resistance of the spent fuel. However, priming the thorium cycle with {sup 235}U is necessary, and the {sup 235}U fraction in the uranium must be limited to below 20% to minimize proliferation concerns. Thus, a once-through thorium-uranium dioxide (ThO{sub 2}-UO{sub 2}) fuel cycle of no less than 25% uranium becomes necessary for normal pressurized water reactor (PWR) operating cycle lengths. Spatial separation of the uranium and thorium parts of the fuel can improve the achievable burnup of the thorium-uranium fuel designs through more effective breeding of {sup 233}U from the {sup 232}Th. Focus is on microheterogeneous fuel designs for PWRs, where the spatial separation of the uranium and thorium is on the order of a few millimetres to a few centimetres, including duplex pellet, axially microheterogeneous fuel, and a checkerboard of uranium and thorium pins. A special effort was made to understand the underlying reactor physics mechanisms responsible for enhancing the achievable burnup at spatial separation of the two fuels. The neutron spectral shift was identified as the primary reason for the enhancement of burnup capabilities. Mutual resonance shielding of uranium and thorium is also a factor; however, it is small in magnitude. It is shown that the microheterogeneous fuel can achieve higher burnups, by up to 15%, than the reference all-uranium fuel. However, denaturing of the {sup 233}U in the thorium portion of the fuel with small amounts of uranium significantly impairs this enhancement. The denaturing is also necessary to meet conventional PWR thermal limits by improving the power share of the thorium region at the beginning of fuel irradiation. Meeting thermal-hydraulic design requirements by some of the microheterogeneous fuels while still meeting or exceeding the burnup of the all-uranium case is shown to be potentially feasible

  7. The MacArthur Maze Fire and Roadway Collapse: A "Worst Case Scenario" for Spent Nuclear Fuel Transportation?

    SciTech Connect

    Bajwa, Christopher S.; Easton, Earl P.; Adkins, Harold E.; Cuta, Judith M.; Klymyshyn, Nicholas A.; Suffield, Sarah R.

    2012-07-06

    In 2007, a severe transportation accident occurred near Oakland, California, at the interchange known as the "MacArthur Maze." The accident involved a double tanker truck of gasoline overturning and bursting into flames. The subsequent fire reduced the strength of the supporting steel structure of an overhead interstate roadway causing the collapse of portions of that overpass onto the lower roadway in less than 20 minutes. The US Nuclear Regulatory Commission has analyzed what might have happened had a spent nuclear fuel transportation package been involved in this accident, to determine if there are any potential regulatory implications of this accident to the safe transport of spent nuclear fuel in the United States. This paper provides a summary of this effort, presents preliminary results and conclusions, and discusses future work related to the NRC's analysis of the consequences of this type of severe accident.

  8. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    Alternative Fuel Vehicle (AFV) Registration A fee of $75 is required for the registration of an AFV that operates on electricity, solar power, or any other source of energy not otherwise taxed under the state motor fuel tax laws. Compressed natural gas, liquefied natural gas, and liquefied petroleum gas (propane) are not subject to this requirement. (Reference Nebraska Revised Statutes 60-306 and 60-3,191

  9. Clean Fuels Ohio | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Ohio Jump to: navigation, search Name: Clean Fuels Ohio Address: 3400 North High Street, Suite 430 Place: Columbus, Ohio Zip: 43202 Website: www.cleanfuelsohio.org References:...

  10. Agri Source Fuels | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search Name: Agri-Source Fuels Place: Pensacola, Florida Zip: 32505 Product: Biodiesel producer located in Florida that owns a plant in Dade City. References: Agri-Source...

  11. Agra Bio Fuels | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search Name: Agra Bio Fuels Place: Middletown, Pennsylvania Zip: 17057 Product: Biodiesel producer with plans to build 11 biodiesel plants in Pennsylvania. References: Agra...

  12. Hydrogen Fuel Initiative | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Hydrogen Fuel Initiative Jump to: navigation, search Contents 1 Introduction 2 Cost 3 Hydrogen Production Strategy 4 Objectives 5 Manufacturing Challenges 6 References Introduction...

  13. FY2015 ceramic fuels development annual highlights

    SciTech Connect

    Mcclellan, Kenneth James

    2015-09-22

    Key challenges for the Advanced Fuels Campaign are the development of fuel technologies to enable major increases in fuel performance (safety, reliability, power and burnup) beyond current technologies, and development of characterization methods and predictive fuel performance models to enable more efficient development and licensing of advanced fuels. Ceramic fuel development activities for fiscal year 2015 fell within the areas of 1) National and International Technical Integration, 2) Advanced Accident Tolerant Ceramic Fuel Development, 3) Advanced Techniques and Reference Materials Development, and 4) Fabrication of Enriched Ceramic Fuels. High uranium density fuels were the focus of the ceramic fuels efforts. Accomplishments for FY15 primarily reflect the prioritization of identification and assessment of new ceramic fuels for light water reactors which have enhanced accident tolerance while also maintaining or improving normal operation performance, and exploration of advanced post irradiation examination techniques which will support more efficient testing and qualification of new fuel systems.

  14. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    Natural Gas and Propane Vehicle License Fee Drivers using natural gas or propane to fuel a vehicle may pay an annual special use fuel license fee in lieu of the state fuel excise tax of $0.30 per gallon. The fee is determined by multiplying a base amount in the table below by the current tax rate and dividing by 12. Combined Vehicle Weight (pounds) Base Amount 0 - 10,000 $60 10,001 - 26,000 $300 26,001 and above $400 (Reference Oregon Revised Statutes 319.530

  15. Alternative Fuels Data Center: Biodiesel Fueling Stations

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fueling ...

  16. Municipal solid waste fueled power generation in China: a case study of waste-to-energy in Changchun city

    SciTech Connect

    Hefa Cheng; Yanguo Zhang; Aihong Meng; Qinghai Li

    2007-11-01

    With rapid economic growth and massive urbanization in China, many cities face the problem of municipal solid waste (MSW) disposal. With the lack of space for new landfills, waste-to-energy incineration is playing an increasingly important role in waste management. Incineration of MSW from Chinese cities presents some unique challenges because of its low calorific value (3000-6700 kJ/kg) and high water content (about 50%). This study reports a novel waste-to-energy incineration technology based on co-firing of MSW with coal in a grate-circulating fluidized bed (CFB) incinerator, which was implemented in the Changchun MSW power plant. In 2006, two 260 ton/day incinerators incinerated 137,325 tons, or approximately one/sixth of the MSW generated in Changchun, saving more than 0.2 million m{sup 3} landfill space. A total of 46.2 million kWh electricity was generated (38,473 tons lignite was also burned as supplementary fuel), with an overall fuel-to-electricity efficiency of 14.6%. Emission of air pollutants including particulate matters, acidic gases, heavy metals, and dioxins was low and met the emission standards for incinerators. As compared to imported incineration systems, this new technology has much lower capital and operating costs and is expected to play a role in meeting China's demands for MSW disposal and alternative energy. 34 refs., 1 fig., 4 tabs.

  17. Filling Knowledge Gaps with Five Fuel Cycle Studies

    SciTech Connect

    Steven J. Piet; Jess Gehin; William Halsey; Temitope Taiwo

    2010-11-01

    During FY 2010, five studies were conducted of technology families’ applicability to various fuel cycle strategies to fill in knowledge gaps in option space and to better understand trends and patterns. Here, a “technology family” is considered to be defined by a type of reactor and by selection of which actinides provide fuel. This report summarizes the higher-level findings; the detailed analyses and results are documented in five individual reports, as follows: • Advanced once through with uranium fuel in fast reactors (SFR), • Advanced once through (uranium fuel) or single recycle (TRU fuel) in high temperature gas cooled reactors (HTGR), • Sustained recycle with Th/U-233 in light water reactors (LWRs), • Sustained recycle with Th/U-233 in molten salt reactors (MSR), and • Several fuel cycle missions with Fusion-Fission Hybrid (FFH). Each study examined how the designated technology family could serve one or more designated fuel cycle missions, filling in gaps in overall option space. Each study contains one or more illustrative cases that show how the technology family could be used to meet a fuel cycle mission, as well as broader information on the technology family such as other potential fuel cycle missions for which insufficient information was available to include with an illustrative case. None of the illustrative cases can be considered as a reference, baseline, or nominal set of parameters for judging performance; the assessments were designed to assess areas of option space and were not meant to be optimized. There is no implication that any of the cases or technology families are necessarily the best way to meet a given fuel cycle mission. The studies provide five examples of 1-year fuel cycle assessments of technology families. There is reasonable coverage in the five studies of the performance areas of waste management and uranium utilization. The coverage of economics, safety, and proliferation resistance and physical protection in

  18. Biomass fuel use in agriculture under alternative fuel prices

    SciTech Connect

    Bjornstad, D.J.; Hillsman, E.L.; Tepel, R.C.

    1984-11-01

    A linear programming model is used to analyze cost-competitiveness of biomass fuels in agricultural applications for the projected year 1990. With all else held constant, the prices of conventional fuels are increased and analytically compared to prices for biomass fuel products across a variety of end uses. Potential penetration of biomass fuels is measured as the share of each conventional fuel for which cost savings could be realized by substituting biomass fuels. This study examines the cost competitiveness of biomass fuels produced on farms, relative to conventional fuels (diesel, gasoline, natural gas, LPG, fuel oil, and electricity), as the prices of conventional fuels change. The study is targeted at the year 1990 and considers only fuel use in the agricultural sector. The method of analysis is to project fuel demands for ten farm operations in the year 1990 and to match these with biomass fuel substitutes from ten feedstock and nine process alternatives. In all, 61 feedstock/process combinations are possible. The matching of fuel demands and biomass fuels occurs in a linear programming model that seeks to meet fuel demands at minimum cost. Two types of biomass fuel facilities are considered, assuming a decentralized fuel distribution system. The first includes on-farm production units such as oil presses, low-Btu gasifiers, biogas digestors and direct combustion units. The second type of facility would be run by a farm co-operative. The primary data describing the biomass technologies are cost per unit output, where costs are calculated as first-year capital charges, plus al l allocable operating expenses, less any by-products of value. All costs assume commercial purchase of equipment. Homemade or makeshift installations are not considered. 1 reference.

  19. Fuel pin

    DOEpatents

    Christiansen, David W.; Karnesky, Richard A.; Leggett, Robert D.; Baker, Ronald B.

    1989-10-03

    A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

  20. Fuel pin

    DOEpatents

    Christiansen, David W. (Kennewick, WA); Karnesky, Richard A. (Richland, WA); Leggett, Robert D. (Richland, WA); Baker, Ronald B. (Richland, WA)

    1989-01-01

    A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

  1. Fuel pin

    DOEpatents

    Christiansen, D.W.; Karnesky, R.A.; Leggett, R.D.; Baker, R.B.

    1987-11-24

    A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

  2. Alternative Fuels Data Center: Video Download Help

    Alternative Fuels and Advanced Vehicles Data Center

    Case Studies Printable Version Share this resource Send a link to Alternative Fuels Data Center: Video Download Help to someone by E-mail Share Alternative Fuels Data Center: Video Download Help on Facebook Tweet about Alternative Fuels Data Center: Video Download Help on Twitter Bookmark Alternative Fuels Data Center: Video Download Help on Google Bookmark Alternative Fuels Data Center: Video Download Help on Delicious Rank Alternative Fuels Data Center: Video Download Help on Digg Find More

  3. Reference electrode for electrolytic cell

    DOEpatents

    Kessie, R.W.

    1988-07-28

    A reference electrode device is provided for a high temperature electrolytic cell used to electrolytically recover uranium from spent reactor fuel dissolved in an anode pool, the device having a glass tube to enclose the electrode and electrolyte and serve as a conductive membrane with the cell electrolyte, and an outer metal tube about the glass tube to serve as a shield and basket for any glass sections broken by handling of the tube to prevent their contact with the anode pool, the metal tube having perforations to provide access between the bulk of the cell electrolyte and glass membrane. 4 figs.

  4. Automotive Stirling reference engine design report

    SciTech Connect

    Not Available

    1981-06-01

    The Reference Stirling Engine System, which was to provide the best possible fuel economy while meeting or exceeding all other program objectives is described. It was designed to meet the requirements of a Reference Vehicle, which is a 1984 GM Pontiac Phoenix (X-body). This design utilizes all new technology that can reasonably be expected to be developed by 1984 and that is judged to provide significant improvement, relative to development risk and cost.

  5. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    Aftermarket Alternative Fuel Vehicle (AFV) Conversion Requirements Conventional original equipment manufacturer vehicles altered to operate on propane, natural gas, methane, ethanol, or electricity are classified as aftermarket AFV conversions. All vehicle conversions must meet current applicable U.S. Environmental Protection Agency or California Air Resources Board standards for aftermarket conversions. (Reference Pennsylvania Department of Environmental Protection Policy on Clean Alternative

  6. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    Alternative Fuel Vehicle (AFV) Emissions Inspection Exemption Vehicles powered exclusively by electricity, propane, or natural gas are exempt from state motor vehicle emissions inspections after receiving a one-time verification inspection. For more information, see the Ohio Environmental Protection Agency's E-Check website. (Reference Ohio Administrative Code 3745.26

  7. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    Compressed Natural Gas (CNG) Tax CNG used in motor vehicles is subject to a state motor fuel tax rate of $0.26 per gasoline gallon equivalent (GGE). For taxation purposes, one GGE is equal to 5.66 pounds or 126.67 standard cubic feet of natural gas. (Reference House Bill 5466, 2014, and Special Notice 2014-2

  8. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    High Occupancy Vehicle (HOV) Lane Exemption Qualified plug-in electric vehicles, dedicated natural gas vehicles, and fuel cell electric vehicles may use North Carolina HOV lanes, regardless of the number of occupants. This exemption expires September 30, 2019. (Reference North Carolina General Statutes 20-4.01 and 20-146.2

  9. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    Idle Reduction Weight Exemption A vehicle equipped with a fully functional idle reduction system designed to reduce fuel use and emissions from engine idling may exceed the maximum weight limitations by up to 400 pounds to accommodate the added weight of the idle reduction technology. (Reference Oregon Revised Statutes 818.03

  10. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    Compressed Natural Gas (CNG) and Electricity Tax Exemption for Transit Use CNG and electricity that local agencies or public transit operators use as motor vehicle fuel to operate public transit services is exempt from applicable user taxes a county imposes. (Reference California Revenue and Taxation Code 7284.3

  11. Alternative Fuels Data Center: Emerging Fuels

    Alternative Fuels and Advanced Vehicles Data Center

    Emerging Fuels Printable Version Share this resource Send a link to Alternative Fuels Data Center: Emerging Fuels to someone by E-mail Share Alternative Fuels Data Center: Emerging Fuels on Facebook Tweet about Alternative Fuels Data Center: Emerging Fuels on Twitter Bookmark Alternative Fuels Data Center: Emerging Fuels on Google Bookmark Alternative Fuels Data Center: Emerging Fuels on Delicious Rank Alternative Fuels Data Center: Emerging Fuels on Digg Find More places to share Alternative

  12. Alternative Fuels Data Center: Electricity Fuel Basics

    Alternative Fuels and Advanced Vehicles Data Center

    Electricity Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Electricity Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Electricity Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Electricity Fuel Basics on Google Bookmark Alternative Fuels Data Center: Electricity Fuel Basics on Delicious Rank Alternative Fuels Data Center: Electricity Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Electricity Fuel Basics on

  13. Alternative Fuels Data Center: Ethanol Fuel Basics

    Alternative Fuels and Advanced Vehicles Data Center

    Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fuel Basics on Google Bookmark Alternative Fuels Data Center: Ethanol Fuel Basics on Delicious Rank Alternative Fuels Data Center: Ethanol Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fuel Basics on AddThis.com... More in this

  14. Alternative Fuels Data Center: Ethanol Fueling Stations

    Alternative Fuels and Advanced Vehicles Data Center

    Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fueling Stations on Google Bookmark Alternative Fuels Data Center: Ethanol Fueling Stations on Delicious Rank Alternative Fuels Data Center: Ethanol Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fueling Stations on

  15. Alternative Fuels Data Center: Hydrogen Fueling Stations

    Alternative Fuels and Advanced Vehicles Data Center

    Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fueling Stations on Google Bookmark Alternative Fuels Data Center: Hydrogen Fueling Stations on Delicious Rank Alternative Fuels Data Center: Hydrogen Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Fueling Stations

  16. Alternative Fuels Data Center: Propane Fueling Stations

    Alternative Fuels and Advanced Vehicles Data Center

    Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Propane Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Propane Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Propane Fueling Stations on Google Bookmark Alternative Fuels Data Center: Propane Fueling Stations on Delicious Rank Alternative Fuels Data Center: Propane Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Propane Fueling Stations on

  17. Boise Inc. St. Helens Paper Mill Achieves Significant Fuel Savings...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Boise Inc. St. Helens Paper Mill Achieves Significant Fuel Savings Boise Inc. St. Helens Paper Mill Achieves Significant Fuel Savings This case study describes how the Boise Inc. ...

  18. Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures"

    Energy Information Administration (EIA) (indexed site)

    1. Total Fuel Oil Consumption and Expenditures, 1999" ,"All Buildings Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures" ,"Number of Buildings (thousand)","Floorspac...

  19. Advanced Fuel Reformer Development: Putting the 'Fuel' in Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fuel Reformer Development Putting the 'Fuel' in Fuel Cells Subir Roychoudhury Precision Combustion, Inc. (PCI), North Haven, CT Shipboard Fuel Cell Workshop March 29, 2011 ...

  20. Biodegradation of biodiesel fuels

    SciTech Connect

    Zhang, X.; Haws, R.; Wright, B.; Reese, D.; Moeller, G.; Peterson, C.

    1995-12-31

    Biodiesel fuel test substances Rape Ethyl Ester (REE), Rape Methyl Ester (RME), Neat Rape Oil (NR), Say Methyl Ester (SME), Soy Ethyl Ester (SEE), Neat Soy Oil (NS), and proportionate combinations of RME/diesel and REE/diesel were studied to test the biodegradability of the test substances in an aerobic aquatic environment using the EPA 560/6-82-003 Shake Flask Test Method. A concurrent analysis of Phillips D-2 Reference Diesel was also performed for comparison with a conventional fuel. The highest rates of percent CO{sub 2} evolution were seen in the esterified fuels, although no significant difference was noted between them. Ranges of percent CO{sub 2} evolution for esterified fuels were from 77% to 91%. The neat rape and neat soy oils exhibited 70% to 78% CO{sub 2} evolution. These rates were all significantly higher than those of the Phillips D-2 reference fuel which evolved from 7% to 26% of the organic carbon to CO{sub 2}. The test substances were examined for BOD{sub 5} and COD values as a relative measure of biodegradability. Water Accommodated Fraction (WAF) was experimentally derived and BOD{sub 5} and COD analyses were carried out with a diluted concentration at or below the WAF. The results of analysis at WAF were then converted to pure substance values. The pure substance BOD{sub 5} and COD values for test substances were then compared to a control substance, Phillips D-2 Reference fuel. No significant difference was noted for COD values between test substances and the control fuel. (p > 0.20). The D-2 control substance was significantly lower than all test substances for BCD, values at p << 0.01. RME was also significantly lower than REE (p < 0.05) and MS (p < 0.01) for BOD{sub 5} value.

  1. Transportation Fuels

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Transportation Fuels DOE would invest $52 million to fund a major fleet transformation at Idaho National Laboratory, along with the installation of nine fuel management systems, purchase of additional flex fuel cars and one E85 ethanol fueling station. Transportation projects, such as the acquisition of highly efficient and alternative-fuel vehicles, are not authorized by ESPC legislation. DOE has twice proportion of medium vehicles and three times as many heavy vehicles as compared to the

  2. Assessment of effectiveness of geologic isolation systems. Test case release consequence analysis for a spent fuel repository in bedded salt

    SciTech Connect

    Raymond, J.R.; Bond, F.W.; Cole, C.R.; Nelson, R.W.; Reisenauer, A.E.; Washburn, J.F.; Norman, N.A.; Mote, P.A.; Segol, G.

    1980-01-01

    Geologic and geohydrologic data for the Paradox Basin have been used to simulate movement of ground water and radioacrtive contaminants from a hypothetical nuclear reactor spent fuel repository after an assumed accidental release. The pathlines, travel times and velocity of the ground water from the repository to the discharge locale (river) were determined after the disruptive event by use of a two-dimensional finite difference hydrologic model. The concentration of radioactive contaminants in the ground water was calculated along a series of flow tubes by use of a one-dimensional mass transport model which takes into account convection, dispersion, contaminant/media interactions and radioactive decay. For the hypothetical site location and specific parameters used in this demonstration, it is found that Iodine-129 (I-129) is tthe only isotope reaching the Colorado River in significant concentration. This concentration occurs about 8.0 x 10/sup 5/ years after the repository has been breached. This I-129 ground-water concentration is about 0.3 of the drinking water standard for uncontrolled use. The groundwater concentration would then be diluted by the Colorado River. None of the actinide elements reach more than half the distance from the repository to the Colorado River in the two-million year model run time. This exercise demonstrates that the WISAP model system is applicable for analysis of contaminant transport. The results presented in this report, however, are valid only for one particular set of parameters. A complete sensitivity analysis must be performed to evaluate the range of effects from the release of contaminants from a breached repository.

  3. Alternative Fuels Data Center: Flexible Fuel Vehicles

    Alternative Fuels and Advanced Vehicles Data Center

    Ethanol Printable Version Share this resource Send a link to Alternative Fuels Data Center: Flexible Fuel Vehicles to someone by E-mail Share Alternative Fuels Data Center: Flexible Fuel Vehicles on Facebook Tweet about Alternative Fuels Data Center: Flexible Fuel Vehicles on Twitter Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicles on Google Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicles on Delicious Rank Alternative Fuels Data Center: Flexible Fuel Vehicles on Digg

  4. Comparative analysis of internal fuel motion in annular fuel designs

    SciTech Connect

    Smith, D.E.

    1983-09-16

    In this paper, the whole-core reactivity consequences of internal fuel motion in three annular fuel designs during a hypothetical 3 dollars/s transient overpower (TOP) accident are compared to determine the effect of geometric design variations. The PINEX-2 and PINEX-3 experiments were performed in the TREAT reactor using annular fuel pins irradiated in GETR. This paper investigates three combinations of solid and annular axial blankets and fission gas plena: top annular blanket and plenum, bottom annular blanket and plenum, and both top and bottom (dual) annular blankets and plena. The dual plena design case showed a significant decrease in internal fuel motion over the single plenum design cases.

  5. Feedstock Supply System Design and Economics for Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels: Conversion Pathway: Biological Conversion of Sugars to Hydrocarbons The 2017 Design Case

    SciTech Connect

    Kevin Kenney; Kara G. Cafferty; Jacob J. Jacobson; Ian J Bonner; Garold L. Gresham; William A. Smith; David N. Thompson; Vicki S. Thompson; Jaya Shankar Tumuluru; Neal Yancey

    2013-09-01

    The U.S. Department of Energy promotes the production of a range of liquid fuels and fuel blendstocks from lignocellulosic biomass feedstocks by funding fundamental and applied research that advances the state of technology in biomass collection, conversion, and sustainability. As part of its involvement in this program, the Idaho National Laboratory (INL) investigates the feedstock logistics economics and sustainability of these fuels. Between 2000 and 2012, INL conducted a campaign to quantify the economics and sustainability of moving biomass from standing in the field or stand to the throat of the biomass conversion process. The goal of this program was to establish the current costs based on conventional equipment and processes, design improvements to the current system, and to mark annual improvements based on higher efficiencies or better designs. The 2012 programmatic target was to demonstrate a delivered biomass logistics cost of $35/dry ton. This goal was successfully achieved in 2012 by implementing field and process demonstration unit-scale data from harvest, collection, storage, preprocessing, handling, and transportation operations into INL’s biomass logistics model. Looking forward to 2017, the programmatic target is to supply biomass to the conversion facilities at a total cost of $80/dry ton and on specification with in-feed requirements. The goal of the 2017 Design Case is to enable expansion of biofuels production beyond highly productive resource areas by breaking the reliance of cost-competitive biofuel production on a single, abundant, low-cost feedstock. If this goal is not achieved, biofuel plants are destined to be small and/or clustered in select regions of the country that have a lock on low-cost feedstock. To put the 2017 cost target into perspective of past accomplishments of the cellulosic ethanol pathway, the $80 target encompasses total delivered feedstock cost, including both grower payment and logistics costs, while meeting all

  6. Fuel Cells and Renewable Gaseous Fuels

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Cell Technologies Office | 1 7142015 Fuel Cells and Renewable Gaseous Fuels Bioenergy 2015: Renewable Gaseous Fuels Breakout Session Sarah Studer, PhD ORISE Fellow Fuel Cell ...

  7. Opportunity fuels

    SciTech Connect

    Lutwen, R.C.

    1996-12-31

    The paper consists of viewgraphs from a conference presentation. A comparison is made of opportunity fuels, defined as fuels that can be converted to other forms of energy at lower cost than standard fossil fuels. Types of fuels for which some limited technical data is provided include petroleum coke, garbage, wood waste, and tires. Power plant economics and pollution concerns are listed for each fuel, and compared to coal and natural gas power plant costs. A detailed cost breakdown for different plant types is provided for use in base fuel pricing.

  8. Fuels Technologies

    Office of Environmental Management (EM)

    ... and why do NO x x emissions emissions increase when fueling with biodiesel? increase when fueling with biodiesel? NO NO x x increase is larger at higher increase is larger ...

  9. Synthetic Fuel

    ScienceCinema

    Idaho National Laboratory - Steve Herring, Jim O'Brien, Carl Stoots

    2016-07-12

    Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhouse gass Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhous

  10. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    Weight Exemption A vehicle powered in whole or part by compressed or liquefied natural gas may exceed the state's gross and axle weight limits by up to 2,000 pounds, equal to the difference between the weight of the vehicle with the natural gas tank and fueling system and the weight of a comparable diesel tank and fueling system. The exemption is allowed on all state roads and interstate highways, as defined in Title 23 of the Code of Federal Regulations section 127(s). (Reference Senate Bill

  11. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    Tax Compressed natural gas used as a special motor fuel is subject to the state fuel excise tax rate of $0.32 per gasoline gallon equivalent, measured at 5.66 lbs. or 126.67 cubic feet at a base temperature of 60 degrees Fahrenheit and a pressure of 14.7 lbs. per square inch. Liquefied natural gas is also subject to the excise tax rate of $0.349 per diesel gallon equivalent, measured at 6.06 lbs. (Reference House Bill 343, 2016, and Idaho Statutes 63-2402 and 63-2424

  12. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    Requirement for School Buses Every school bus that is capable of operating on diesel fuel must be capable of operating using blends of at least 20% biodiesel (B20). At least 2% of the total volume of fuel purchased annually by local school districts statewide for use in diesel school buses must be a minimum of B20, to the extent that biodiesel blends are available and compatible with the technology of the vehicles and the equipment used. (Reference North Carolina General Statutes 115C-240 and

  13. Fuel Economy

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Energy Department is investing in groundbreaking research that will make cars weigh less, drive further and consume less fuel.

  14. Reference Documents | National Nuclear Security Administration...

    National Nuclear Security Administration (NNSA)

    Reference Documents Summary References Main Draft SEIS References Additional SEIS References Appendix C References Appendix D References Appendix E References Appendix F References ...

  15. Method of monitoring stored nuclear fuel elements

    SciTech Connect

    Borloo, E.; Buergers, W.; Crutzen, S.; Vinche, C.

    1983-05-24

    To monitor a nuclear fuel element or fuel elements located in a store, e.g. a pond in a swimming pool reactor, the store is illuminated ultrasonically using one or more transducers transmitting ultrasonic signals in one or more predetermined directions to obtain an output which, because it depends on the number and relative location of the fuel elements in the store, and the structure of the store itself is distinctive to the fuel elements or elements stored therein. From this distinctive output is derived an identity unique to the stored fuel element or elements and a reference signal indicative of the whole structure when intact, the reference signal and identity being recorded. Subsequent ultrasonic testing of the store and its contents under identical operating conditions produces a signal which is compared to the recorded reference signal and if different therefrom reveals the occurrence of tampering with the store and/or the fuel element or elements.

  16. FUEL CELLS Fuel Cell Cars

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    CELLS Fuel Cell Cars Power, performance, and pollution - free Only water from tailpipe More efficient than traditional combustion Only water and heat as byproducts Produce electricity without any combustion Scale up easily to meet many power needs Hydrogen in. Electricity, Heat and Water Out. Share the knowledge #FuelCellsNow #HydrogenNow Learn more: energy.gov/eere/fuelcells Most abundant element in universe Fuel Cell Cars Power, performance, and pollution - free Only water from tailpipe Fuel

  17. Alvan Blanch Green Fuels joint venture | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    to extract oil from rape and Green Fuels provides the equipment to turn the oil into biodiesel, to allow farmers to produce their own fuel. References: Alvan Blanch - Green...

  18. Annual Energy Outlook 2011 Reference Case

    Energy Information Administration (EIA) (indexed site)

    ... -200 0 200 400 600 2008-2015 2015-2040 BTL Biodiesel Ethanol Unconv. Naptha Unconv. Dist. ... The average Carbon Intensity of biodiesel in B20 required to meet LCFS targets is ...

  19. The case for unified linear reference system

    SciTech Connect

    Espinoza, J. Jr.; Mackoy, R.D.; Fletcher, D.R.

    1997-06-01

    The transportation industry distinguishes its activities and data into three functionally and institutionally distinct domains. Transportation infrastructure management activities make transport links (e.g., roads, rail lines, transit routes) available for travel. In contrast, civilian and military transport operations focus on finding and using the best transport links. Each of these three transportation interest groups - transportation facility operators, civilian and military transportation users - currently collects and maintains separate, often redundant or inconsistent information concerning the location and status of the transportation system, the vehicles using the system, and the passengers and freight (or material) being conveyed. Although there has been some progress made in integrating data within each domain, little emphasis has been placed on identifying and improving the flow of information between them. Because activities initiated in one domain affect conditions in the others, defining these flows is crucial to the next generation of planners, traffic managers and customers of transportation services. For example, construction and maintenance activities affect civilian and military route choices and travel times; large scale military movements disrupt civilian travel and have potentially major effects on the infrastructure and so on. This intertwined interest in the transportation system implies the need for data integration not only within each sphere of interest but among the spheres as well. Although recent policy statements by the U.S. Departments of Transportation and Defense and ITS America indicate a desire to combine and share information resources, there are enormous technical and institutional barriers that need to be overcome.

  20. Annual Energy Outlook 2011 Reference Case

    Energy Information Administration (EIA) (indexed site)

    and Renewables Analysis Office of Energy Analysis WORKING GROUP PRESENTATION FOR ... History 2012 Source: EIA, Annual Energy Outlook 2013, (preliminary), Annual ...

  1. Annual Energy Outlook 2011 Reference Case

    Annual Energy Outlook

    (RFS2, for example) * Prices of primary energy (crude oil, etc.) LP * Minimize cost to ... Biomass- based diesel FAME biodiesel Green Diesel Cellulosic Drop-in For use as motor ...

  2. Annual Energy Outlook 2011 Reference Case

    Energy Information Administration (EIA) (indexed site)

    ... ARE SUBJECT TO CHANGE A look ahead: future modeling updates 39 * Light-duty vehicle battery electric vehicles (HEVs, PHEVs, EVs) - BatPaC model developed by Argonne National Lab ...

  3. Annual Energy Outlook 2011 Reference Case

    Annual Energy Outlook

    ... CITE AS RESULTS ARE SUBJECT TO CHANGE Future modeling updates 10 * Light-duty vehicle battery electric vehicles (HEVs, PHEVs, EVs) - BatPaC model developed by Argonne National Lab ...

  4. High frequency reference electrode

    DOEpatents

    Kronberg, James W.

    1994-01-01

    A high frequency reference electrode for electrochemical experiments comprises a mercury-calomel or silver-silver chloride reference electrode with a layer of platinum around it and a layer of a chemically and electrically resistant material such as TEFLON around the platinum covering all but a small ring or "halo" at the tip of the reference electrode, adjacent to the active portion of the reference electrode. The voltage output of the platinum layer, which serves as a redox electrode, and that of the reference electrode are coupled by a capacitor or a set of capacitors and the coupled output transmitted to a standard laboratory potentiostat. The platinum may be applied by thermal decomposition to the surface of the reference electrode. The electrode provides superior high-frequency response over conventional electrodes.

  5. High frequency reference electrode

    DOEpatents

    Kronberg, J.W.

    1994-05-31

    A high frequency reference electrode for electrochemical experiments comprises a mercury-calomel or silver-silver chloride reference electrode with a layer of platinum around it and a layer of a chemically and electrically resistant material such as TEFLON around the platinum covering all but a small ring or halo' at the tip of the reference electrode, adjacent to the active portion of the reference electrode. The voltage output of the platinum layer, which serves as a redox electrode, and that of the reference electrode are coupled by a capacitor or a set of capacitors and the coupled output transmitted to a standard laboratory potentiostat. The platinum may be applied by thermal decomposition to the surface of the reference electrode. The electrode provides superior high-frequency response over conventional electrodes. 4 figs.

  6. Alternative Fuels Data Center: Biodiesel Fuel Basics

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fuel Basics on Twitter ...

  7. Optical voltage reference

    DOEpatents

    Rankin, R.; Kotter, D.

    1994-04-26

    An optical voltage reference for providing an alternative to a battery source is described. The optical reference apparatus provides a temperature stable, high precision, isolated voltage reference through the use of optical isolation techniques to eliminate current and impedance coupling errors. Pulse rate frequency modulation is employed to eliminate errors in the optical transmission link while phase-lock feedback is employed to stabilize the frequency to voltage transfer function. 2 figures.

  8. Optical voltage reference

    DOEpatents

    Rankin, Richard; Kotter, Dale

    1994-01-01

    An optical voltage reference for providing an alternative to a battery source. The optical reference apparatus provides a temperature stable, high precision, isolated voltage reference through the use of optical isolation techniques to eliminate current and impedance coupling errors. Pulse rate frequency modulation is employed to eliminate errors in the optical transmission link while phase-lock feedback is employed to stabilize the frequency to voltage transfer function.

  9. EFRC Management Reference Document

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    EFRC management reference document Energy Frontier Research Centers Acknowledgments of Support (v.1, October 2009) Office of Basic Energy Sciences Office of Science US Department ...

  10. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    Vehicle Incremental Cost Allocation The U.S. General Services Administration (GSA) must allocate the incremental cost of purchasing alternative fuel vehicles (AFVs) across the entire fleet of vehicles distributed by GSA. This mandate also applies to other federal agencies that procure vehicles for federal fleets. For more information, see the GSA's AFV website. (Reference 42 U.S. Code 13212 (c)) Point of Contact U.S. General Services Administration Phone: (703) 605-5630

  11. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    Alternative Fuel Vehicle (AFV) Definition AFVs include vehicles propelled to a significant extent by electricity from a battery that has a capacity of at least four kilowatt-hours and can be recharged from an external source and vehicles propelled solely by compressed natural gas, hydrogen, or propane and that meet or exceed Tier 2, Bin 2 federal exhaust emissions standards. (Reference Nevada Revised Statutes 484A.196 through 484A.197

  12. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    Measurement Effective November 1, 2015, the Oklahoma Department of Labor (DOL) must standardize compressed natural gas (CNG) and liquefied natural gas (LNG) measurements for retail motor vehicle fuel, unless the National Conference on Weights and Measures has established equivalent measures. Until the DOL standardizes measurements, a gasoline gallon equivalent is equal to 5.66 pounds (lbs.) of CNG and a diesel gallon equivalent is equal to 6.06 lbs. of LNG. (Reference House Bill 1283, 2015, and

  13. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    Fleet Emissions Reduction Requirements - South Coast The South Coast Air Quality Management District (SCAQMD) requires government fleets and private contractors under contract with public entities to purchase non-diesel lower emission and alternative fuel vehicles. The rule applies to transit bus, school bus, refuse hauler, and other vehicle fleets of at least 15 vehicles that operate in Los Angeles, San Bernardino, Riverside, and Orange counties. (Reference SCAQMD Rules 1186.1 and 1191-1196)

  14. National Clean Fuels Inc National Wind Solutions Inc | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    developers, or with public utilities in their strategic and procurement plans for alternative energy contracts. References: National Clean Fuels Inc (National Wind...

  15. Alternative Fuels Data Center: Charging Plug-In Electric Vehicles...

    Alternative Fuels and Advanced Vehicles Data Center

    ... Refer to these resources from the National Institute of Science and Technology (NIST): NIST Handbook 130 Method of Sale for Electrical Energy as Vehicle Fuel Handbook 44 Device ...

  16. CO2 Emissions from Fuel Combustion | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    from international marine and aviation bunkers, and other relevant information" Excel Spreadsheet References "CO2 Emissions from Fuel Combustion" Retrieved from "http:...

  17. Choice FuelCorp Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Pennsylvania Zip: 17702 Product: Pennsylvania-based biodiesel producer, from its plant in Williamsport. References: Choice FuelCorp, Inc.1 This article is a stub. You...

  18. New York Natural Gas Input Supplemental Fuels (Million Cubic...

    Gasoline and Diesel Fuel Update

    Input Supplemental Fuels (Million Cubic Feet) New York Natural Gas Input Supplemental ... Referring Pages: Total Supplemental Supply of Natural Gas New York Supplemental Supplies ...

  19. New Mexico Natural Gas Input Supplemental Fuels (Million Cubic...

    Annual Energy Outlook

    Input Supplemental Fuels (Million Cubic Feet) New Mexico Natural Gas Input Supplemental ... Referring Pages: Total Supplemental Supply of Natural Gas New Mexico Supplemental Supplies ...

  20. New Jersey Natural Gas Input Supplemental Fuels (Million Cubic...

    Gasoline and Diesel Fuel Update

    Input Supplemental Fuels (Million Cubic Feet) New Jersey Natural Gas Input Supplemental ... Referring Pages: Total Supplemental Supply of Natural Gas New Jersey Supplemental Supplies ...

  1. North Carolina Natural Gas Input Supplemental Fuels (Million...

    Energy Information Administration (EIA) (indexed site)

    Input Supplemental Fuels (Million Cubic Feet) North Carolina Natural Gas Input ... Referring Pages: Total Supplemental Supply of Natural Gas North Carolina Supplemental ...

  2. North Dakota Natural Gas Input Supplemental Fuels (Million Cubic...

    Energy Information Administration (EIA) (indexed site)

    Input Supplemental Fuels (Million Cubic Feet) North Dakota Natural Gas Input Supplemental ... Referring Pages: Total Supplemental Supply of Natural Gas North Dakota Supplemental ...

  3. Uranium reference materials

    SciTech Connect

    Donivan, S.; Chessmore, R.

    1987-07-01

    The Technical Measurements Center has prepared uranium mill tailings reference materials for use by remedial action contractors and cognizant federal and state agencies. Four materials were prepared with varying concentrations of radionuclides, using three tailings materials and a river-bottom soil diluent. All materials were ground, dried, and blended thoroughly to ensure homogeneity. The analyses on which the recommended values for nuclides in the reference materials are based were performed, using independent methods, by the UNC Geotech (UNC) Chemistry Laboratory, Grand Junction, Colorado, and by C.W. Sill (Sill), Idaho National Engineering Laboratory, Idaho Falls, Idaho. Several statistical tests were performed on the analytical data to characterize the reference materials. Results of these tests reveal that the four reference materials are homogeneous and that no large systematic bias exists between the analytical methods used by Sill and those used by TMC. The average values for radionuclides of the two data sets, representing an unbiased estimate, were used as the recommended values for concentrations of nuclides in the reference materials. The recommended concentrations of radionuclides in the four reference materials are provided. Use of these reference materials will aid in providing uniform standardization among measurements made by remedial action contractors. 11 refs., 9 tabs.

  4. Fuel Model | NISAC

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Fuels Model This model informs analyses of the availability of transportation fuel in the event the fuel supply chain is disrupted. The portion of the fuel supply system...

  5. Fuel burner and combustor assembly for a gas turbine engine

    DOEpatents

    Leto, Anthony

    1983-01-01

    A fuel burner and combustor assembly for a gas turbine engine has a housing within the casing of the gas turbine engine which housing defines a combustion chamber and at least one fuel burner secured to one end of the housing and extending into the combustion chamber. The other end of the fuel burner is arranged to slidably engage a fuel inlet connector extending radially inwardly from the engine casing so that fuel is supplied, from a source thereof, to the fuel burner. The fuel inlet connector and fuel burner coact to anchor the housing against axial movement relative to the engine casing while allowing relative radial movement between the engine casing and the fuel burner and, at the same time, providing fuel flow to the fuel burner. For dual fuel capability, a fuel injector is provided in said fuel burner with a flexible fuel supply pipe so that the fuel injector and fuel burner form a unitary structure which moves with the fuel burner.

  6. Sandia Energy - Reference Model Documents

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Documents Home Stationary Power Energy Conversion Efficiency Water Power Reference Model Project (RMP) Reference Model Documents Reference Model DocumentsTara Camacho-Lopez2015-05-...

  7. reference | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    reference Home Jweers's picture Submitted by Jweers(88) Contributor 7 August, 2013 - 18:23 New Robust References citation citing developer formatting reference Semantic Mediawiki...

  8. Multifunctional reference electrode (Patent) | DOEPatents

    Office of Scientific and Technical Information (OSTI)

    Multifunctional reference electrode Title: Multifunctional reference electrode A multifunctional, low mass reference electrode of a nickel tube, thermocouple means inside the ...

  9. Advanced Fuel Cycle Cost Basis

    SciTech Connect

    D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert; E. Schneider

    2008-03-01

    This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 25 cost modules—23 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, transuranic, and high-level waste.

  10. Advanced Fuel Cycle Cost Basis

    SciTech Connect

    D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert

    2007-04-01

    This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 26 cost modules—24 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, and high-level waste.

  11. Advanced Fuel Cycle Cost Basis

    SciTech Connect

    D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert; E. Schneider

    2009-12-01

    This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 25 cost modules—23 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, transuranic, and high-level waste.

  12. Advanced Fuel Reformer Development: Putting the 'Fuel' in Fuel Cells |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Fuel Reformer Development: Putting the 'Fuel' in Fuel Cells Advanced Fuel Reformer Development: Putting the 'Fuel' in Fuel Cells Presented at the DOE-DOD Shipboard APU Workshop on March 29, 2011. apu2011_6_roychoudhury.pdf (4.83 MB) More Documents & Publications System Design - Lessons Learned, Generic Concepts, Characteristics & Impacts Fuel Cells For Transportation - 1999 Annual Progress Report Energy Conversion Team Fuel Cell Systems Annual Progress Report

  13. ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures"

    Energy Information Administration (EIA) (indexed site)

    4. Fuel Oil Consumption and Expenditure Intensities for Non-Mall Buildings, 2003" ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures" ,"per Building (gallons)","per Square Foot...

  14. ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures"

    Energy Information Administration (EIA) (indexed site)

    2. Fuel Oil Consumption and Expenditure Intensities, 1999" ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures" ,"per Building (gallons)","per Square Foot (gallons)","per Worker...

  15. California Fuel Cell Partnership: Alternative Fuels Research

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fuel Cell Partnership - Alternative Fuels Research TNS Automotive Chris White Communications Director cwhite@cafcp.org 2 TNS Automotive for California Fuel Cell Partnership ...

  16. Annual Energy Outlook 2014 foresees growth of LNG as a fuel for railroads

    Energy Information Administration (EIA) (indexed site)

    14, 2014 Annual Energy Outlook 2014 foresees growth of LNG as a fuel for railroads The U.S. Energy Information Administration expects liquefied natural gas, or LNG, to play an increasing role in powering freight locomotives in the coming years. EIA's Reference case, in its recently released Annual Energy Outlook 2014 indicates that growing natural gas production and lower natural gas spot prices compared to crude oil prices could provide significant cost savings for locomotives that use LNG as a

  17. REFERENCES Baines, W. D.

    Office of Scientific and Technical Information (OSTI)

    REFERENCES Baines, W. D. aud Peterson, E. G., 1951, "An Investigation of Flow Through ... D 50.8 m. A flow facility has been constructed for experiments with these screens. Air ...

  18. Value of Information References

    DOE Data Explorer

    Morency, Christina

    This file contains a list of relevant references on value of information (VOI) in RIS format. VOI provides a quantitative analysis to evaluate the outcome of the combined technologies (seismology, hydrology, geodesy) used to monitor Brady's Geothermal Field.

  19. Value of Information References

    DOE Data Explorer

    Morency, Christina

    2014-12-12

    This file contains a list of relevant references on value of information (VOI) in RIS format. VOI provides a quantitative analysis to evaluate the outcome of the combined technologies (seismology, hydrology, geodesy) used to monitor Brady's Geothermal Field.

  20. Precision displacement reference system

    DOEpatents

    Bieg, Lothar F.; Dubois, Robert R.; Strother, Jerry D.

    2000-02-22

    A precision displacement reference system is described, which enables real time accountability over the applied displacement feedback system to precision machine tools, positioning mechanisms, motion devices, and related operations. As independent measurements of tool location is taken by a displacement feedback system, a rotating reference disk compares feedback counts with performed motion. These measurements are compared to characterize and analyze real time mechanical and control performance during operation.

  1. Membrane reference electrode

    DOEpatents

    Redey, Laszlo; Bloom, Ira D.

    1989-01-01

    A reference electrode utilizes a small thin, flat membrane of a highly conductive glass placed on a small diameter insulator tube having a reference material inside in contact with an internal voltage lead. When the sensor is placed in a non-aqueous ionic electrolytic solution, the concentration difference across the glass membrane generates a low voltage signal in precise relationship to the concentration of the species to be measured with high spatial resolution.

  2. Membrane reference electrode

    DOEpatents

    Redey, L.; Bloom, I.D.

    1988-01-21

    A reference electrode utilizes a small thin, flat membrane of a highly conductive glass placed on a small diameter insulator tube having a reference material inside in contact with an internal voltage lead. When the sensor is placed in a non-aqueous ionic electrolytic solution, the concentration difference across the glass membrane generates a low voltage signal in precise relationship to the concentration of the species to be measured, with high spatial resolution. 2 figs.

  3. Fuel Cycle System Analysis Handbook

    SciTech Connect

    Steven J. Piet; Brent W. Dixon; Dirk Gombert; Edward A. Hoffman; Gretchen E. Matthern; Kent A. Williams

    2009-06-01

    This Handbook aims to improve understanding and communication regarding nuclear fuel cycle options. It is intended to assist DOE, Campaign Managers, and other presenters prepare presentations and reports. When looking for information, check here. The Handbook generally includes few details of how calculations were performed, which can be found by consulting references provided to the reader. The Handbook emphasizes results in the form of graphics and diagrams, with only enough text to explain the graphic, to ensure that the messages associated with the graphic is clear, and to explain key assumptions and methods that cause the graphed results. Some of the material is new and is not found in previous reports, for example: (1) Section 3 has system-level mass flow diagrams for 0-tier (once-through), 1-tier (UOX to CR=0.50 fast reactor), and 2-tier (UOX to MOX-Pu to CR=0.50 fast reactor) scenarios - at both static and dynamic equilibrium. (2) To help inform fast reactor transuranic (TRU) conversion ratio and uranium supply behavior, section 5 provides the sustainable fast reactor growth rate as a function of TRU conversion ratio. (3) To help clarify the difference in recycling Pu, NpPu, NpPuAm, and all-TRU, section 5 provides mass fraction, gamma, and neutron emission for those four cases for MOX, heterogeneous LWR IMF (assemblies mixing IMF and UOX pins), and a CR=0.50 fast reactor. There are data for the first 10 LWR recycle passes and equilibrium. (4) Section 6 provides information on the cycle length, planned and unplanned outages, and TRU enrichment as a function of fast reactor TRU conversion ratio, as well as the dilution of TRU feedstock by uranium in making fast reactor fuel. (The recovered uranium is considered to be more pure than recovered TRU.) The latter parameter impacts the required TRU impurity limits specified by the Fuels Campaign. (5) Section 7 provides flows for an 800-tonne UOX separation plant. (6) To complement 'tornado' economic uncertainty

  4. Fuel injector

    DOEpatents

    Lambeth, Malcolm David Dick

    2001-02-27

    A fuel injector comprises first and second housing parts, the first housing part being located within a bore or recess formed in the second housing part, the housing parts defining therebetween an inlet chamber, a delivery chamber axially spaced from the inlet chamber, and a filtration flow path interconnecting the inlet and delivery chambers to remove particulate contaminants from the flow of fuel therebetween.

  5. Closed Fuel Cycle Waste Treatment Strategy

    SciTech Connect

    Vienna, J. D.; Collins, E. D.; Crum, J. V.; Ebert, W. L.; Frank, S. M.; Garn, T. G.; Gombert, D.; Jones, R.; Jubin, R. T.; Maio, V. C.; Marra, J. C.; Matyas, J.; Nenoff, T. M.; Riley, B. J.; Sevigny, G. J.; Soelberg, N. R.; Strachan, D. M.; Thallapally, P. K.; Westsik, J. H.

    2015-02-01

    This study is aimed at evaluating the existing waste management approaches for nuclear fuel cycle facilities in comparison to the objectives of implementing an advanced fuel cycle in the U.S. under current legal, regulatory, and logistical constructs. The study begins with the Global Nuclear Energy Partnership (GNEP) Integrated Waste Management Strategy (IWMS) (Gombert et al. 2008) as a general strategy and associated Waste Treatment Baseline Study (WTBS) (Gombert et al. 2007). The tenets of the IWMS are equally valid to the current waste management study. However, the flowsheet details have changed significantly from those considered under GNEP. In addition, significant additional waste management technology development has occurred since the GNEP waste management studies were performed. This study updates the information found in the WTBS, summarizes the results of more recent technology development efforts, and describes waste management approaches as they apply to a representative full recycle reprocessing flowsheet. Many of the waste management technologies discussed also apply to other potential flowsheets that involve reprocessing. These applications are occasionally discussed where the data are more readily available. The report summarizes the waste arising from aqueous reprocessing of a typical light-water reactor (LWR) fuel to separate actinides for use in fabricating metal sodium fast reactor (SFR) fuel and from electrochemical reprocessing of the metal SFR fuel to separate actinides for recycle back into the SFR in the form of metal fuel. The primary streams considered and the recommended waste forms include; Tritium in low-water cement in high integrity containers (HICs); Iodine-129: As a reference case, a glass composite material (GCM) formed by the encapsulation of the silver Mordenite (AgZ) getter material in a low-temperature glass is assumed. A number of alternatives with distinct advantages are also considered including a fused silica waste form

  6. Liquid Fuels Market Module - NEMS Documentation

    Reports and Publications

    2014-01-01

    Defines the objectives of the Liquid Fuels Market Model (LFMM), describes its basic approach, and provides detail on how it works. This report is intended as a reference document for model analysts, users, and the public.

  7. BioFuel Oasis | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Zip: 94710 Product: A worker-owned cooperative to sell commercial biodiesel that meets ASTM standards. References: BioFuel Oasis1 This article is a stub. You can help OpenEI by...

  8. V Fuel Pty Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    company set up by Magnam Technologies to commercialise the vanadium redox battery. References: V-Fuel Pty Ltd1 This article is a stub. You can help OpenEI by...

  9. MB Enviro Fuels | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    processors, from small scale 150 - 600 litres per an 8 hour shift to medium scale computer operated modular facilities. References: MB Enviro Fuels1 This article is a stub....

  10. Fuel cell-fuel cell hybrid system

    DOEpatents

    Geisbrecht, Rodney A.; Williams, Mark C.

    2003-09-23

    A device for converting chemical energy to electricity is provided, the device comprising a high temperature fuel cell with the ability for partially oxidizing and completely reforming fuel, and a low temperature fuel cell juxtaposed to said high temperature fuel cell so as to utilize remaining reformed fuel from the high temperature fuel cell. Also provided is a method for producing electricity comprising directing fuel to a first fuel cell, completely oxidizing a first portion of the fuel and partially oxidizing a second portion of the fuel, directing the second fuel portion to a second fuel cell, allowing the first fuel cell to utilize the first portion of the fuel to produce electricity; and allowing the second fuel cell to utilize the second portion of the fuel to produce electricity.

  11. Overview of the BISON Multidimensional Fuel Performance Code

    SciTech Connect

    R. L. Williamson; J. D. Hales; S. R. Novascone; B. W. Spencer; D. M. Perez; G. Pastore; R. C. Martineau

    2013-10-01

    BISON is a modern multidimensional multiphysics finite-element based nuclear fuel performance code that has been under development at the Idaho National Laboratory (USA) since 2009. A brief background is provided on the code’s computational framework (MOOSE), governing equations, and material and behavioral models. Ongoing code verification and validation work is outlined, and comparative results are provided for select validation cases. Recent applications are discussed, including specific description of two applications where 3D treatment is important. A summary of future code development and validation activities is given. Numerous references to published work are provided where interested readers can find more complete information.

  12. "Analysis of SOFCs using reference electrodes?

    SciTech Connect

    Finklea, Harry; Chen,Xiaoke; Gerdes,Kirk; Pakalapati, Suryanarayana; Celik, Ismail

    2013-07-01

    Reference electrodes are frequently applied to isolate the performance of one electrode in a solid oxide fuel cell. However, reference electrode simulations raise doubt to veracity of data collected using reference electrodes. The simulations predict that the reported performance for the one electrode will frequently contain performance of both electrodes. Nonetheless, recent reports persistently treat data so collected as ideally isolated. This work confirms the predictions of the reference electrode simulations on two SOFC designs, and to provides a method of validating the data measured in the 3-electrode configuration. Validation is based on the assumption that a change in gas composition to one electrode does not affect the impedance of the other electrode at open circuit voltage. This assumption is supported by a full physics simulation of the SOFC. Three configurations of reference electrode and cell design are experimentally examined using various gas flows and two temperatures. Impedance data are subjected to deconvolution analysis and equivalent circuit fitting and approximate polarization resistances of the cathode and anode are determined. The results demonstrate that the utility of reference electrodes is limited and often wholly inappropriate. Reported impedances and single electrode polarization values must be scrutinized on this basis.

  13. FUEL ELEMENT

    DOEpatents

    Bean, R.W.

    1963-11-19

    A ceramic fuel element for a nuclear reactor that has improved structural stability as well as improved cooling and fission product retention characteristics is presented. The fuel element includes a plurality of stacked hollow ceramic moderator blocks arranged along a tubular raetallic shroud that encloses a series of axially apertured moderator cylinders spaced inwardly of the shroud. A plurality of ceramic nuclear fuel rods are arranged in the annular space between the shroud and cylinders of moderator and appropriate support means and means for directing gas coolant through the annular space are also provided. (AEC)

  14. Multifunctional reference electrode

    DOEpatents

    Redey, Laszlo; Vissers, Donald R.

    1983-01-01

    A multifunctional, low mass reference electrode of a nickel tube, thermocouple means inside the nickel tube electrically insulated therefrom for measuring the temperature thereof, a housing surrounding the nickel tube, an electrolyte having a fixed sulfide ion activity between the housing and the outer surface of the nickel tube forming the nickel/nickel sulfide/sulfide half-cell. An ion diffusion barrier is associated with the housing in contact with the electrolyte. Also disclosed is a cell using the reference electrode to measure characteristics of a working electrode.

  15. Multifunctional reference electrode

    DOEpatents

    Redey, L.; Vissers, D.R.

    1981-12-30

    A multifunctional, low mass reference electrode of a nickel tube, thermocouple means inside the nickel tube electrically insulated therefrom for measuring the temperature thereof, a housing surrounding the nickel tube, an electrolyte having a fixed sulfide ion activity between the housing and the outer surface of the nickel tube forming the nickel/nickel sulfide/sulfide half-cell are described. An ion diffusion barrier is associated with the housing in contact with the electrolyte. Also disclosed is a cell using the reference electrode to measure characteristics of a working electrode.

  16. Fuel Cells

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    and robust solid oxide fuel cell (SOFC) system. Specific objectives include achieving an efficiency of greater than 60 percent, meeting a stack cost target of 175 per kW, and ...

  17. Fuel economizer

    SciTech Connect

    Zwierzelewski, V.F.

    1984-06-26

    A fuel economizer device for use with an internal combustion engine fitted with a carburetor is disclosed. The fuel economizer includes a plate member which is mounted between the carburetor and the intake portion of the intake manifold. The plate member further has at least one aperture formed therein. One tube is inserted through the at least one aperture in the plate member. The one tube extends longitudinally in the passage of the intake manifold from the intake portion toward the exit portion thereof. The one tube concentrates the mixture of fuel and air from the carburetor and conveys the mixture of fuel and air to a point adjacent but spaced away from the inlet port of the internal combustion engine.

  18. Webinar October 13: Reference Designs for Hydrogen Fueling Stations...

    Energy Saver

    task, delivered gas or liquid hydrogen station configurations were analyzed and evaluated in terms of cost of hydrogen and capital cost. Best-performing stations were matched to ...

  19. Reference Model Development

    SciTech Connect

    Jepsen, Richard

    2011-11-02

    Presentation from the 2011 Water Peer Review in which principal investigator discusses project progress to develop a representative set of Reference Models (RM) for the MHK industry to develop baseline cost of energy (COE) and evaluate key cost component/system reduction pathways.

  20. Fuel cell CO sensor

    DOEpatents

    Grot, Stephen Andreas; Meltser, Mark Alexander; Gutowski, Stanley; Neutzler, Jay Kevin; Borup, Rodney Lynn; Weisbrod, Kirk

    1999-12-14

    The CO concentration in the H.sub.2 feed stream to a PEM fuel cell stack is monitored by measuring current and/or voltage behavior patterns from a PEM-probe communicating with the reformate feed stream. Pattern recognition software may be used to compare the current and voltage patterns from the PEM-probe to current and voltage telltale outputs determined from a reference cell similar to the PEM-probe and operated under controlled conditions over a wide range of CO concentrations in the H.sub.2 fuel stream. A CO sensor includes the PEM-probe, an electrical discharge circuit for discharging the PEM-probe to monitor the CO concentration, and an electrical purging circuit to intermittently raise the anode potential of the PEM-probe's anode to at least about 0.8 V (RHE) to electrochemically oxidize any CO adsorbed on the probe's anode catalyst.

  1. OSH technical reference manual

    SciTech Connect

    Not Available

    1993-11-01

    In an evaluation of the Department of Energy (DOE) Occupational Safety and Health programs for government-owned contractor-operated (GOCO) activities, the Department of Labor`s Occupational Safety and Health Administration (OSHA) recommended a technical information exchange program. The intent was to share written safety and health programs, plans, training manuals, and materials within the entire DOE community. The OSH Technical Reference (OTR) helps support the secretary`s response to the OSHA finding by providing a one-stop resource and referral for technical information that relates to safe operations and practice. It also serves as a technical information exchange tool to reference DOE-wide materials pertinent to specific safety topics and, with some modification, as a training aid. The OTR bridges the gap between general safety documents and very specific requirements documents. It is tailored to the DOE community and incorporates DOE field experience.

  2. Fuel oil and kerosene sales, 1990

    SciTech Connect

    Not Available

    1991-10-10

    Sales data is presented for kerosene and fuel oils. This is the second year that the survey data have appeared in a separate publication. Prior to the 1989 report, the statistics appeared in the Petroleum Marketing Annual (PMA) for reference year 1988 and the Petroleum Marketing Monthly (PMM) for reference years 1984 through 1987. 4 figs., 24 tabs.

  3. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    Prohibition of the Sale of Ethanol-Blended Gasoline A person or distributor may not offer, sell, or distribute gasoline that contains ethanol at a level greater than 10% (E10) or contains corn-based ethanol as an additive. The prohibition does not take effect until at least ten other states or a number of states with a collective population of 30 million have enacted laws preventing the sale of these fuel blends. (Reference Maine Revised Statutes Title 38, Section 585M and Title 10, Section

  4. Alignment reference device

    DOEpatents

    Patton, Gail Y.; Torgerson, Darrel D.

    1987-01-01

    An alignment reference device provides a collimated laser beam that minimizes angular deviations therein. A laser beam source outputs the beam into a single mode optical fiber. The output end of the optical fiber acts as a source of radiant energy and is positioned at the focal point of a lens system where the focal point is positioned within the lens. The output beam reflects off a mirror back to the lens that produces a collimated beam.

  5. Chapter 6 - References

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    6-1 CHAPTER 6 REFERENCES BLS (Bureau of Labor Statistics), 2002. Bureau of Labor Statistics Data, <http://www.bls.gov/data>, accessed January 25. CAIRS (Computerized Accident/Incident Reporting System), 2002. Statistics, <http://www.eh.doe.gov/cairs/stats.html>, accessed January 30. CEMRC (Carlsbad Environmental Monitoring & Research Center), 2000. Actinide Chemistry and Repository Science Laboratory Initiative, New Mexico State University, Carlsbad, New Mexico, December 15. CEQ

  6. TMI Fuel Characteristics for Disposal Criticality Analysis

    SciTech Connect

    Larry L. Taylor

    2003-09-01

    This report documents the reported contents of the Three Mile Island Unit 2 (TMI-2) canisters. proposed packaging, and degradation scenarios expected in the repository. Most fuels within the U.S. Department of Energy spent nuclear fuel inventory deal with highly enriched uranium, that in most cases require some form of neutronic poisoning inside the fuel canister. The TMI-2 fuel represents a departure from these fuel forms due to its lower enrichment (2.96% max.) values and the disrupted nature of the fuel itself. Criticality analysis of these fuel canisters has been performed over the years to reflect conditions expected during transit from the reactor to the Idaho National Engineering and Environmental Laboratory, water pool storage,1 and transport/dry-pack storage at Idaho Nuclear Technology and Engineering Center.2,3 None of these prior analyses reflect the potential disposal conditions for this fuel inside a postclosure repository.

  7. Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact Sheet Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact Sheet Fact sheet produced by the Fuel Cell ...

  8. The Hydrogen Laboratory and The Brazilian Reference Center for Hydrogen

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy | Department of Energy The Hydrogen Laboratory and The Brazilian Reference Center for Hydrogen Energy The Hydrogen Laboratory and The Brazilian Reference Center for Hydrogen Energy Presentation given by Newton Pimenta and Cristiano Pinto of the State University of Campinas at the CNG and Hydrogen Lessons Learned Workshop on December 10, 2009 cng_h2_workshop_12_ohi.pdf (621.46 KB) More Documents & Publications Overview of DOE - DOT December 2009 CNG and Hydrogen Fuels Workshop

  9. Biomass Scenario Model Documentation: Data and References (Technical

    Office of Scientific and Technical Information (OSTI)

    Report) | SciTech Connect Technical Report: Biomass Scenario Model Documentation: Data and References Citation Details In-Document Search Title: Biomass Scenario Model Documentation: Data and References The Biomass Scenario Model (BSM) is a system dynamics model that represents the entire biomass-to-biofuels supply chain, from feedstock to fuel use. The BSM is a complex model that has been used for extensive analyses; the model and its results can be better understood if input data used for

  10. Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development

    Alternative Fuels and Advanced Vehicles Data Center

    Fueling Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Hydrogen Fueling

  11. Reforming of fuel inside fuel cell generator

    DOEpatents

    Grimble, R.E.

    1988-03-08

    Disclosed is an improved method of reforming a gaseous reformable fuel within a solid oxide fuel cell generator, wherein the solid oxide fuel cell generator has a plurality of individual fuel cells in a refractory container, the fuel cells generating a partially spent fuel stream and a partially spent oxidant stream. The partially spent fuel stream is divided into two streams, spent fuel stream 1 and spent fuel stream 2. Spent fuel stream 1 is burned with the partially spent oxidant stream inside the refractory container to produce an exhaust stream. The exhaust stream is divided into two streams, exhaust stream 1 and exhaust stream 2, and exhaust stream 1 is vented. Exhaust stream 2 is mixed with spent fuel stream 2 to form a recycle stream. The recycle stream is mixed with the gaseous reformable fuel within the refractory container to form a fuel stream which is supplied to the fuel cells. Also disclosed is an improved apparatus which permits the reforming of a reformable gaseous fuel within such a solid oxide fuel cell generator. The apparatus comprises a mixing chamber within the refractory container, means for diverting a portion of the partially spent fuel stream to the mixing chamber, means for diverting a portion of exhaust gas to the mixing chamber where it is mixed with the portion of the partially spent fuel stream to form a recycle stream, means for injecting the reformable gaseous fuel into the recycle stream, and means for circulating the recycle stream back to the fuel cells. 1 fig.

  12. Reforming of fuel inside fuel cell generator

    DOEpatents

    Grimble, Ralph E.

    1988-01-01

    Disclosed is an improved method of reforming a gaseous reformable fuel within a solid oxide fuel cell generator, wherein the solid oxide fuel cell generator has a plurality of individual fuel cells in a refractory container, the fuel cells generating a partially spent fuel stream and a partially spent oxidant stream. The partially spent fuel stream is divided into two streams, spent fuel stream I and spent fuel stream II. Spent fuel stream I is burned with the partially spent oxidant stream inside the refractory container to produce an exhaust stream. The exhaust stream is divided into two streams, exhaust stream I and exhaust stream II, and exhaust stream I is vented. Exhaust stream II is mixed with spent fuel stream II to form a recycle stream. The recycle stream is mixed with the gaseous reformable fuel within the refractory container to form a fuel stream which is supplied to the fuel cells. Also disclosed is an improved apparatus which permits the reforming of a reformable gaseous fuel within such a solid oxide fuel cell generator. The apparatus comprises a mixing chamber within the refractory container, means for diverting a portion of the partially spent fuel stream to the mixing chamber, means for diverting a portion of exhaust gas to the mixing chamber where it is mixed with the portion of the partially spent fuel stream to form a recycle stream, means for injecting the reformable gaseous fuel into the recycle stream, and means for circulating the recycle stream back to the fuel cells.

  13. Analysis of advanced european nuclear fuel cycle scenarios including transmutation and economical estimates

    SciTech Connect

    Merino Rodriguez, I.; Alvarez-Velarde, F.; Martin-Fuertes, F.

    2013-07-01

    In this work the transition from the existing Light Water Reactors (LWR) to the advanced reactors is analyzed, including Generation III+ reactors in a European framework. Four European fuel cycle scenarios involving transmutation options have been addressed. The first scenario (i.e., reference) is the current fleet using LWR technology and open fuel cycle. The second scenario assumes a full replacement of the initial fleet with Fast Reactors (FR) burning U-Pu MOX fuel. The third scenario is a modification of the second one introducing Minor Actinide (MA) transmutation in a fraction of the FR fleet. Finally, in the fourth scenario, the LWR fleet is replaced using FR with MOX fuel as well as Accelerator Driven Systems (ADS) for MA transmutation. All scenarios consider an intermediate period of GEN-III+ LWR deployment and they extend for a period of 200 years looking for equilibrium mass flows. The simulations were made using the TR-EVOL code, a tool for fuel cycle studies developed by CIEMAT. The results reveal that all scenarios are feasible according to nuclear resources demand (U and Pu). Concerning to no transmutation cases, the second scenario reduces considerably the Pu inventory in repositories compared to the reference scenario, although the MA inventory increases. The transmutation scenarios show that elimination of the LWR MA legacy requires on one hand a maximum of 33% fraction (i.e., a peak value of 26 FR units) of the FR fleet dedicated to transmutation (MA in MOX fuel, homogeneous transmutation). On the other hand a maximum number of ADS plants accounting for 5% of electricity generation are predicted in the fourth scenario (i.e., 35 ADS units). Regarding the economic analysis, the estimations show an increase of LCOE (Levelized cost of electricity) - averaged over the whole period - with respect to the reference scenario of 21% and 29% for FR and FR with transmutation scenarios respectively, and 34% for the fourth scenario. (authors)

  14. ,"Total Fuel Oil Expenditures

    Energy Information Administration (EIA) (indexed site)

    . Fuel Oil Expenditures by Census Region for Non-Mall Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per...

  15. ,"Total Fuel Oil Consumption

    Energy Information Administration (EIA) (indexed site)

    0. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for Non-Mall Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  16. ,"Total Fuel Oil Expenditures

    Energy Information Administration (EIA) (indexed site)

    4. Fuel Oil Expenditures by Census Region, 1999" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per Square Foot"...

  17. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    petroleum gas (propane); coal-derived liquid fuels; hydrogen; electricity; pure biodiesel (B100); fuels, other than alcohol, derived from biological materials; and P-Series fuels. ...

  18. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    Select Fuels Clear all All Fuels GasolineE10 Low Sulfur Diesel Biodiesel Compressed ... chart. More fuel information: Biodiesel EthanolE100 Electricity Hydrogen ...

  19. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    Beginning January 1, 2017, alternative fuels will be taxed equal to the motor fuel tax on a gallon equivalent basis. Alternative fuels include natural gas, propane, hydrogen, and ...

  20. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    buses and other motor vehicles to use U.S. Environmental Protection Agency compliant alternative fuel systems, purchase alternative fuel equipment, and install fueling stations. ...

  1. ,"Total Fuel Oil Expenditures

    Energy Information Administration (EIA) (indexed site)

    A. Fuel Oil Expenditures by Census Region for All Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per...

  2. ,"Total Fuel Oil Consumption

    Energy Information Administration (EIA) (indexed site)

    A. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  3. Fuel Cell Technologies Overview

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fuel Cell Seminar Orlando, FL Dr. Sunita Satyapal U.S. Department of Energy Fuel Cell Technologies Program Program Manager 1112011 2 | Fuel Cell Technologies Program Source: US ...

  4. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    Clean Transportation Fuel Standards The Oregon Department of Environmental Quality (DEQ) administers the Oregon Clean Fuels Program (Program), which requires fuel producers and ...

  5. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    Vehicle and Fueling Infrastructure Grants and Loans The Utah Clean Fuels and Vehicle Technology Grant and Loan Program, funded through the Clean Fuels and Vehicle Technology Fund, ...

  6. Fuel Cells Market Exceeds $1.3 Billion in Worldwide Sales

    Energy.gov [DOE]

    The market for fuel cells is growing, exceeding $1.3 billion in worldwide sales during 2013, according to the recently released "Business Case for Fuel Cells" report from the Fuel Cell Technologies Office.

  7. Coal Data: A reference

    SciTech Connect

    Not Available

    1991-11-26

    The purpose of Coal Data: A Reference is to provide basic information on the mining and use of coal, an important source of energy in the United States. The report is written for a general audience. The goal is to cover basic material and strike a reasonable compromise between overly generalized statements and detailed analyses. The section ``Coal Terminology and Related Information`` provides additional information about terms mentioned in the text and introduces new terms. Topics covered are US coal deposits, resources and reserves, mining, production, employment and productivity, health and safety, preparation, transportation, supply and stocks, use, coal, the environment, and more. (VC)

  8. CO-FIRING COAL: FEEDLOT AND LITTER BIOMASS (CFB AND CLB) FUELS IN PULVERIZED FUEL AND FIXED BED BURNERS

    SciTech Connect

    Kalyan Annamalai; John Sweeten; Saqib Mukhtar; Ben Thein; Gengsheng Wei; Soyuz Priyadarsan; Senthil Arumugam; Kevin Heflin

    2003-08-28

    Intensive animal feeding operations create large amounts of animal waste that must be safely disposed of in order to avoid environmental degradation. Cattle feedlots and chicken houses are two examples. In feedlots, cattle are confined to small pens and fed a high calorie grain-diet diet in preparation for slaughter. In chicken houses, thousands of chickens are kept in close proximity. In both of these operations, millions of tons of manure are produced every year. The manure could be used as a fuel by mixing it with coal in a 90:10 blend and firing it in an existing coal suspension fired combustion systems. This technique is known as co-firing, and the high temperatures produced by the coal will allow the biomass to be completely combusted. Reburn is a process where a small percentage of fuel called reburn fuel is injected above the NO{sub x} producing, conventional coal fired burners in order to reduce NO{sub x}. The manure could also be used as reburn fuel for reducing NO{sub x} in coal fired plants. An alternate approach of using animal waste is to adopt the gasification process using a fixed bed gasifier and then use the gases for firing in gas turbine combustors. In this report, the cattle manure is referred to as feedlot biomass (FB) and chicken manure as litter biomass (LB). The report generates data on FB and LB fuel characteristics. Co-firing, reburn, and gasification tests of coal, FB, LB, coal: FB blends, and coal: LB blends and modeling on cofiring, reburn systems and economics of use of FB and LB have also been conducted. The biomass fuels are higher in ash, lower in heat content, higher in moisture, and higher in nitrogen and sulfur (which can cause air pollution) compared to coal. Small-scale cofiring experiments revealed that the biomass blends can be successfully fired, and NO{sub x} emissions will be similar to or lower than pollutant emissions when firing coal. Further experiments showed that biomass is twice or more effective than coal when

  9. REVIEW OF FAST FLUX TEST FACILITY (FFTF) FUEL EXPERIMENTS FOR STORAGE IN INTERIM STORAGE CASKS (ISC)

    SciTech Connect

    CHASTAIN, S.A.

    2005-10-24

    Appendix H, Section H.3.3.10.11 of the Final Safety Analysis Report (FSAR), provides the limits to be observed for fueled components authorized for storage in the Fast Flux Test Facility (FFTF) spent fuel storage system. Currently, the authorization basis allows standard driver fuel assemblies (DFA), as described in the FSAR Chapter 17, Section 17.5.3.1, to be stored provided decay power per assembly is {le} 250 watts, post-irradiation time is four years minimum, average assembly burn-up is 150,000 MWD/MTHM maximum and the pre-irradiation enrichment is 29.3% maximum (per H.3.3.10.11). In addition, driver evaluation (DE), core characterizer assemblies (CCA), and run-to-cladding-breach (RTCB) assemblies are included based on their similarities to a standard DFA. Ident-69 pin containers with fuel pins from these DFAs can also be stored. Section H.3.3.10.11 states that fuel types outside the specification criteria above will be addressed on a case-by-case basis. There are many different types of fuel and blanket experiments that were irradiated in the FFTF which now require offload to the spent fuel storage system. Two reviews were completed for a portion of these special type fuel components to determine if placement into the Core Component Container (CCC)/Interim Storage Cask (ISC) would require any special considerations or changes to the authorization basis. Project mission priorities coupled with availability of resources and analysts prevented these evaluations from being completed as a single effort. Areas of review have included radiological accident release consequences, radiological shielding adequacy, criticality safety, thermal limits, confinement, and stress. The results of these reviews are available in WHC-SD-FF-RPT-005, Rev. 0 and 1, ''Review of FFTF Fuel Experiments for Storage at ISA'', (Reference I), which subsequently allowed a large portion of these components to be included in the authorization basis (Table H.3.3-21). The report also identified

  10. Microsoft PowerPoint - 2013-Winter Fuels.pptx

    Gasoline and Diesel Fuel Update

    Percent change in fuel bills from last winter (forecast) g ( ) Fuel bill Base case forecast If ... narrow this winter, with natural gas price 14% higher, heating oil price down 5%, ...

  11. Fuel Cells & Alternative Fuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Cells & Alternative Fuels Fuel Cells & Alternative Fuels Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and ...

  12. Coal data: A reference

    SciTech Connect

    Not Available

    1995-02-01

    This report, Coal Data: A Reference, summarizes basic information on the mining and use of coal, an important source of energy in the US. This report is written for a general audience. The goal is to cover basic material and strike a reasonable compromise between overly generalized statements and detailed analyses. The section ``Supplemental Figures and Tables`` contains statistics, graphs, maps, and other illustrations that show trends, patterns, geographic locations, and similar coal-related information. The section ``Coal Terminology and Related Information`` provides additional information about terms mentioned in the text and introduces some new terms. The last edition of Coal Data: A Reference was published in 1991. The present edition contains updated data as well as expanded reviews and additional information. Added to the text are discussions of coal quality, coal prices, unions, and strikes. The appendix has been expanded to provide statistics on a variety of additional topics, such as: trends in coal production and royalties from Federal and Indian coal leases, hours worked and earnings for coal mine employment, railroad coal shipments and revenues, waterborne coal traffic, coal export loading terminals, utility coal combustion byproducts, and trace elements in coal. The information in this report has been gleaned mainly from the sources in the bibliography. The reader interested in going beyond the scope of this report should consult these sources. The statistics are largely from reports published by the Energy Information Administration.

  13. Antares Reference Telescope System

    SciTech Connect

    Viswanathan, V.K.; Kaprelian, E.; Swann, T.; Parker, J.; Wolfe, P.; Woodfin, G.; Knight, D.

    1983-01-01

    Antares is a 24-beam, 40-TW carbon-dioxide laser-fusion system currently nearing completion at the Los Alamos National Laboratory. The 24 beams will be focused onto a tiny target (typically 300 to 1000 ..mu..m in diameter) located approximately at the center of a 7.3-m-diameter by 9.3-m-long vacuum (10/sup -6/ torr) chamber. The design goal is to position the targets to within 10 ..mu..m of a selected nominal position, which may be anywhere within a fixed spherical region 1 cm in diameter. The Antares Reference Telescope System is intended to help achieve this goal for alignment and viewing of the various targets used in the laser system. The Antares Reference Telescope System consists of two similar electro-optical systems positioned in a near orthogonal manner in the target chamber area of the laser. Each of these consists of four subsystems: (1) a fixed 9X optical imaging subsystem which produces an image of the target at the vidicon; (2) a reticle projection subsystem which superimposes an image of the reticle pattern at the vidicon; (3) an adjustable front-lighting subsystem which illuminates the target; and (4) an adjustable back-lighting subsystem which also can be used to illuminate the target. The various optical, mechanical, and vidicon design considerations and trade-offs are discussed. The final system chosen (which is being built) and its current status are described in detail.

  14. STEP Intern Reference Check Sheet

    Energy.gov [DOE]

    STEP Intern Reference Check Sheet, from the Tool Kit Framework: Small Town University Energy Program (STEP).

  15. Diesel fuel from biomass

    SciTech Connect

    Kuester, J.L.

    1984-01-01

    A project to convert various biomass materials to diesel type transportation fuel compatible with current engine designs and the existing distribution system is described. A continuous thermochemical indirect liquefaction approach is used. The system consists of a circulating solid fluidized bed gasification system to produce a synthesis gas containing olefins, hydrogen and carbon monoxide followed by a catalytic liquefaction step to convert the synthesis gas to liquid hydrocarbon fuel. The major emphasis on the project at the present time is to maximize product yield. A level of 60 gals of diesel type fuel per ton of feedstock (dry, ash free basis) is expected. Numerous materials have been processed through the conversion system without any significant change in product quality (essentially C/sub 7/-C/sub 17/ paraffinic hydrocarbons with cetane indicies of 50+). Other tasks in progress include factor studies, process simplification, process control and scale-up to a 10 ton/day Engineering Test Facility. 18 references, 4 figures, 9 tables.

  16. Stationary Liquid Fuel Fast Reactor

    SciTech Connect

    Yang, Won Sik; Grandy, Andrew; Boroski, Andrew; Krajtl, Lubomir; Johnson, Terry

    2015-09-30

    For effective burning of hazardous transuranic (TRU) elements of used nuclear fuel, a transformational advanced reactor concept named SLFFR (Stationary Liquid Fuel Fast Reactor) was proposed based on stationary molten metallic fuel. The fuel enters the reactor vessel in a solid form, and then it is heated to molten temperature in a small melting heater. The fuel is contained within a closed, thick container with penetrating coolant channels, and thus it is not mixed with coolant nor flow through the primary heat transfer circuit. The makeup fuel is semi- continuously added to the system, and thus a very small excess reactivity is required. Gaseous fission products are also removed continuously, and a fraction of the fuel is periodically drawn off from the fuel container to a processing facility where non-gaseous mixed fission products and other impurities are removed and then the cleaned fuel is recycled into the fuel container. A reference core design and a preliminary plant system design of a 1000 MWt TRU- burning SLFFR concept were developed using TRU-Ce-Co fuel, Ta-10W fuel container, and sodium coolant. Conservative design approaches were adopted to stay within the current material performance database. Detailed neutronics and thermal-fluidic analyses were performed to develop a reference core design. Region-dependent 33-group cross sections were generated based on the ENDF/B-VII.0 data using the MC2-3 code. Core and fuel cycle analyses were performed in theta-r-z geometries using the DIF3D and REBUS-3 codes. Reactivity coefficients and kinetics parameters were calculated using the VARI3D perturbation theory code. Thermo-fluidic analyses were performed using the ANSYS FLUENT computational fluid dynamics (CFD) code. Figure 0.1 shows a schematic radial layout of the reference 1000 MWt SLFFR core, and Table 0.1 summarizes the main design parameters of SLFFR-1000 loop plant. The fuel container is a 2.5 cm thick cylinder with an inner radius of 87.5 cm. The fuel

  17. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    To qualify, fuel must also meet the U.S. Environmental Protection Agency fuel and fuel additive registration requirements. Alcohol with a proof of less than 150, fuel with a water ...

  18. Fuel Cells Fact Sheet

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fuel cells are the most energy efficient devices for extracting power from fuels. Capable of running on a variety of fuels, including hydrogen, natural gas, and biogas, fuel cells ...

  19. Alternative Fuels Data Center: Fuel Prices

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    and conventional fuel prices for biodiesel, compressed natural gas, ethanol, ... National Average Price Between July 1 and July 15, 2016 Fuel Price Biodiesel (B20) 2.54...

  20. California Fuel Cell Partnership: Alternative Fuels Research...

    Energy.gov [DOE] (indexed site)

    This presentation by Chris White of the California Fuel Cell Partnership provides information about alternative fuels research. cafcpinitiativescall.pdf (133.97 KB) More ...

  1. Early User Experience with BISON Fuel Performance Code

    SciTech Connect

    D. M. Perez

    2012-08-01

    Three Fuel Modeling Exercise II (FUMEX II) LWR fuel irradiation experiments were simulated and analyzed using the fuel performance code BISON to demonstrate code utility for modeling of the LWR fuel performance. Comparisons were made against the BISON results and the experimental data for the three assessment cases. The assessment cases reported within this report include IFA-597.3 Rod 8, Riso AN3 and Riso AN4.

  2. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    Renewable Fuel Distributor and Vehicle Manufacturer Liability Protection Renewable fuel refiners, suppliers, terminals, wholesalers, distributors, retailers, and motor vehicle manufacturers and dealers are not liable for property damages related to a customer's purchase of renewable fuel, including blends, if the consumer selected the fuel for use. Motor fuel blended with any amount of renewable fuel will not be considered a defective product provided the fuel compiles with motor fuel quality

  3. Fuel Cells at NASCAR

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation slides from the DOE Fuel Cell Technologies Office webinar "Fuel Cells at NASCAR" held on April 17, 2014.

  4. Nuclear Science References Database

    SciTech Connect

    Pritychenko, B.; Běták, E.; Singh, B.; Totans, J.

    2014-06-15

    The Nuclear Science References (NSR) database together with its associated Web interface, is the world's only comprehensive source of easily accessible low- and intermediate-energy nuclear physics bibliographic information for more than 210,000 articles since the beginning of nuclear science. The weekly-updated NSR database provides essential support for nuclear data evaluation, compilation and research activities. The principles of the database and Web application development and maintenance are described. Examples of nuclear structure, reaction and decay applications are specifically included. The complete NSR database is freely available at the websites of the National Nuclear Data Center (http://www.nndc.bnl.gov/nsr) and the International Atomic Energy Agency (http://www-nds.iaea.org/nsr)

  5. Long life reference electrode

    DOEpatents

    Yonco, Robert M.; Nagy, Zoltan

    1989-01-01

    An external, reference electrode is provided for long term use with a high temperature, high pressure system. The electrode is arranged in a vertical, electrically insulative tube with an upper portion serving as an electrolyte reservior and a lower portion in electrolytic communication with the system to be monitored. The lower end portion includes a flow restriction such as a porous plug to limit the electrolyte release into the system. A piston equalized to the system pressure is fitted into the upper portion of the tube to impart a small incremental pressure to the electrolyte. The piston is selected of suitable size and weight to cause only a slight flow of electrolyte through the porous plug into the high pressure system. This prevents contamination of the electrolyte but is of such small flow rate that operating intervals of a month or more can be achieved.

  6. Long life reference electrode

    DOEpatents

    Yonco, R.M.; Nagy, Z.

    1989-04-04

    An external, reference electrode is provided for long term use with a high temperature, high pressure system. The electrode is arranged in a vertical, electrically insulative tube with an upper portion serving as an electrolyte reservoir and a lower portion in electrolytic communication with the system to be monitored. The lower end portion includes a flow restriction such as a porous plug to limit the electrolyte release into the system. A piston equalized to the system pressure is fitted into the upper portion of the tube to impart a small incremental pressure to the electrolyte. The piston is selected of suitable size and weight to cause only a slight flow of electrolyte through the porous plug into the high pressure system. This prevents contamination of the electrolyte but is of such small flow rate that operating intervals of a month or more can be achieved. 2 figs.

  7. Long life reference electrode

    DOEpatents

    Yonco, R.M.; Nagy, Z.

    1987-07-30

    An external, reference electrode is provided for long term use with a high temperature, high pressure system. The electrode is arranged in a vertical, electrically insulative tube with an upper portion serving as an electrolyte reservoir and a lower portion in electrolytic communication with the system to be monitored. The lower end portion includes a flow restriction such as a porous plug to limit the electrolyte release into the system. A piston equalized to the system pressure is fitted into the upper portion of the tube to impart a small incremental pressure to the electrolyte. The piston is selected of suitable size and weight to cause only a slight flow of electrolyte through the porous plug into the high pressure system. This prevents contamination of the electrolyte but is of such small flow rate that operating intervals of a month or more can be achieved. 2 figs.

  8. Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development

    Alternative Fuels and Advanced Vehicles Data Center

    Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Ethanol Fueling Infrastructure

  9. Alternative Fuels Data Center: Propane Fueling Infrastructure Development

    Alternative Fuels and Advanced Vehicles Data Center

    Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Propane Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Propane Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Propane Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Propane Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Propane Fueling Infrastructure

  10. Alternative Fuels Data Center: Natural Gas Fuel Basics

    Alternative Fuels and Advanced Vehicles Data Center

    Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Fuel Basics on Google Bookmark Alternative Fuels Data Center: Natural Gas Fuel Basics on Delicious Rank Alternative Fuels Data Center: Natural Gas Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Fuel Basics on

  11. Alternative Fuels Data Center: Filling CNG Fuel Tanks

    Alternative Fuels and Advanced Vehicles Data Center

    Filling CNG Fuel Tanks to someone by E-mail Share Alternative Fuels Data Center: Filling CNG Fuel Tanks on Facebook Tweet about Alternative Fuels Data Center: Filling CNG Fuel Tanks on Twitter Bookmark Alternative Fuels Data Center: Filling CNG Fuel Tanks on Google Bookmark Alternative Fuels Data Center: Filling CNG Fuel Tanks on Delicious Rank Alternative Fuels Data Center: Filling CNG Fuel Tanks on Digg Find More places to share Alternative Fuels Data Center: Filling CNG Fuel Tanks on

  12. Alternative Fuels Data Center: Natural Gas Fuel Safety

    Alternative Fuels and Advanced Vehicles Data Center

    Natural Gas Fuel Safety to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Fuel Safety on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Fuel Safety on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Fuel Safety on Google Bookmark Alternative Fuels Data Center: Natural Gas Fuel Safety on Delicious Rank Alternative Fuels Data Center: Natural Gas Fuel Safety on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Fuel Safety on

  13. Property:EIA/861/AltFuelVehicle | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Alt Fuel Vehicle Entity operated alternative-fueled vehicles during the year (Y or N) 1 References EIA Form EIA-861 Final Data File for 2008 - F861 File...

  14. Advanced Fuels Campaign FY 2010 Accomplishments Report

    SciTech Connect

    Lori Braase

    2010-12-01

    The Fuel Cycle Research and Development (FCRD) Advanced Fuels Campaign (AFC) Accomplishment Report documents the high-level research and development results achieved in fiscal year 2010. The AFC program has been given responsibility to develop advanced fuel technologies for the Department of Energy (DOE) using a science-based approach focusing on developing a microstructural understanding of nuclear fuels and materials. The science-based approach combines theory, experiments, and multi-scale modeling and simulation aimed at a fundamental understanding of the fuel fabrication processes and fuel and clad performance under irradiation. The scope of the AFC includes evaluation and development of multiple fuel forms to support the three fuel cycle options described in the Sustainable Fuel Cycle Implementation Plan4: Once-Through Cycle, Modified-Open Cycle, and Continuous Recycle. The word “fuel” is used generically to include fuels, targets, and their associated cladding materials. This document includes a brief overview of the management and integration activities; but is primarily focused on the technical accomplishments for FY-10. Each technical section provides a high level overview of the activity, results, technical points of contact, and applicable references.

  15. Winters fuels report

    SciTech Connect

    1995-10-27

    The outlook for distillate fuel oil this winter is for increased demand and a return to normal inventory patterns, assuming a resumption of normal, cooler weather than last winter. With industrial production expected to grow slightly from last winter`s pace, overall consumption is projected to increase 3 percent from last winter, to 3.4 million barrels per day during the heating season (October 1, 1995-March 31, 1996). Much of the supply win come from stock drawdowns and refinery production. Estimates for the winter are from the Energy Information Administration`s (EIA) 4th Quarter 1995 Short-Tenn Energy Outlook (STEO) Mid-World Oil Price Case forecast. Inventories in place on September 30, 1995, of 132 million barrels were 9 percent below the unusually high year-earlier level. Inventories of high-sulfur distillate fuel oil, the principal type used for heating, were 13 percent lower than a year earlier. Supply problems are not anticipated because refinery production and the ready availability of imports should be adequate to meet demand. Residential heating off prices are expected to be somewhat higher than last winter`s, as the effects of lower crude oil prices are offset by lower distillate inventories. Heating oil is forecast to average $0.92 per gallon, the highest price since the winter of 1992-93. Diesel fuel (including tax) is predicted to be slightly higher than last year at $1.13 per gallon. This article focuses on the winter assessment for distillate fuel oil, how well last year`s STEO winter outlook compared to actual events, and expectations for the coming winter. Additional analyses include regional low-sulfur and high-sulfur distillate supply, demand, and prices, and recent trends in distillate fuel oil inventories.

  16. Feedstock Supply System Design and Economics for Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels Conversion Pathway: Fast Pyrolysis and Hydrotreating Bio-Oil Pathway "The 2017 Design Case"

    SciTech Connect

    Kevin L. Kenney; Kara G. Cafferty; Jacob J. Jacobson; Ian J. Bonner; Garold L. Gresham; J. Richard Hess; William A. Smith; David N. Thompson; Vicki S. Thompson; Jaya Shankar Tumuluru; Neal Yancey

    2014-01-01

    The U.S. Department of Energy promotes the production of liquid fuels from lignocellulosic biomass feedstocks by funding fundamental and applied research that advances the state of technology in biomass sustainable supply, logistics, conversion, and overall system sustainability. As part of its involvement in this program, Idaho National Laboratory (INL) investigates the feedstock logistics economics and sustainability of these fuels. Between 2000 and 2012, INL quantified and the economics and sustainability of moving biomass from the field or stand to the throat of the conversion process using conventional equipment and processes. All previous work to 2012 was designed to improve the efficiency and decrease costs under conventional supply systems. The 2012 programmatic target was to demonstrate a biomass logistics cost of $55/dry Ton for woody biomass delivered to fast pyrolysis conversion facility. The goal was achieved by applying field and process demonstration unit-scale data from harvest, collection, storage, preprocessing, handling, and transportation operations into INL’s biomass logistics model.

  17. Synthetic fuels

    SciTech Connect

    Not Available

    1989-01-01

    In January 1982, the Department of Energy guaranteed a loan for the construction and startup of the Great Plains project. On August 1, 1985, the partnership defaulted on the $1.54 billion loan, and DOE acquired control of, and then title to, the project. DOE continued to operate the plant, through the ANG Coal Gasification Company, and sell synthetic fuel. The DOE's ownership and divestiture of the plant is discussed.

  18. Radioactivity of spent TRIGA fuel

    SciTech Connect

    Usang, M. D. Nabil, A. R. A.; Alfred, S. L.; Hamzah, N. S.; Abi, M. J. B.; Rawi, M. Z. M.; Abu, M. P.

    2015-04-29

    Some of the oldest TRIGA fuel in the Malaysian Reaktor TRIGA PUSPATI (RTP) is approaching the limit of its end of life with burn-up of around 20%. Hence it is prudent for us to start planning on the replacement of the fuel in the reactor and other derivative activities associated with it. In this regard, we need to understand all of the risk associated with such operation and one of them is to predict the radioactivity of the fuel, so as to estimate the safety of our working conditions. The radioactivity of several fuels are measured and compared with simulation results to confirm the burnup levels of the selected fuels. The radioactivity measurement are conducted inside the water tank to reduce the risk of exposure and in this case the detector wrapped in plastics are lowered under water. In nuclear power plant, the general practice was to continuously burn the fuel. In research reactor, most operations are based on the immediate needs of the reactor and our RTP for example operate periodically. By integrating the burnup contribution for each core configuration, we simplify the simulation of burn up for each core configuration. Our results for two (2) fuel however indicates that the dose from simulation underestimate the actual dose from our measurements. Several postulates are investigated but the underlying reason remain inconclusive.

  19. Sensor Characteristics Reference Guide

    SciTech Connect

    Cree, Johnathan V.; Dansu, A.; Fuhr, P.; Lanzisera, Steven M.; McIntyre, T.; Muehleisen, Ralph T.; Starke, M.; Banerjee, Pranab; Kuruganti, T.; Castello, C.

    2013-04-01

    The Buildings Technologies Office (BTO), within the U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), is initiating a new program in Sensor and Controls. The vision of this program is: • Buildings operating automatically and continuously at peak energy efficiency over their lifetimes and interoperating effectively with the electric power grid. • Buildings that are self-configuring, self-commissioning, self-learning, self-diagnosing, self-healing, and self-transacting to enable continuous peak performance. • Lower overall building operating costs and higher asset valuation. The overarching goal is to capture 30% energy savings by enhanced management of energy consuming assets and systems through development of cost-effective sensors and controls. One step in achieving this vision is the publication of this Sensor Characteristics Reference Guide. The purpose of the guide is to inform building owners and operators of the current status, capabilities, and limitations of sensor technologies. It is hoped that this guide will aid in the design and procurement process and result in successful implementation of building sensor and control systems. DOE will also use this guide to identify research priorities, develop future specifications for potential market adoption, and provide market clarity through unbiased information

  20. Engineered fuel: Renewable fuel of the future?

    SciTech Connect

    Tomczyk, L.

    1997-01-01

    The power generation and municipal solid waste management industries share an interest in the use of process engineered fuel (PEF) comprised mainly of paper and plastics as a supplement to conventional fuels. PEF is often burned in existing boilers, making PEF an alternative to traditional refuse derived fuels (RDF). This paper describes PEF facilities and makes a comparison of PEF and RDF fuels.