National Library of Energy BETA

Sample records for reduced electricity costs

  1. Reducing Electricity Use and Costs | Department of Energy

    Energy Saver

    Electricity & Fuel » Buying & Making Electricity » Planning for Home Renewable Energy Systems Planning for Home Renewable Energy Systems Planning for a home renewable energy system is a process that includes analyzing your existing electricity use, looking at local codes and requirements, deciding if you want to operate your system on or off of the electric grid, and understanding technology options you have for your site. | Photo courtesy of Thomas Kelsey/U.S. Department of Energy

  2. Reducing Electricity Use and Costs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    to save money and reduce energy use in your home. | Photo courtesy of Dennis Schroeder, NREL. An energy audit can help you find the most effective ways to save money and reduce ...

  3. Reducing Electricity Use and Costs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Reducing energy use in your home saves you money, increases our energy security, and ... loads is the first step-saving you money by allowing you to purchase a smaller system. ...

  4. Diagnostics-while drilling: Reducing the cost of geothermal-produced electricity

    SciTech Connect

    PRAIRIE,MICHAEL R.; GLOWKA,DAVID A.

    2000-01-26

    The goal of this document is to estimate the potential impact of proposed new Diagnostics-While-Drilling technology on the cost of electricity (COE) produced with geothermal energy. A cost model that predicts the COE was developed and exercised over the range of conditions found for geothermal plants in flashed-steam, binary, and enhanced-reservoir (e.g., Hot Dry Rock) applications. The calculations were repeated assuming that DWD technology is available to reduce well costs and improve well productivity. The results indicate that DWD technology would reduce the geothermal COE by 2--31%, depending on well depth, well productivity, and the type of geothermal reservoir. For instance, for a typical 50-MW, flashed-steam geothermal power plant employing 3-MW wells, 6,000-ft deep, the model predicts an electricity cost of 4.9 cents/kwh. With the DWD technology envisioned, the electricity cost could be reduced by nearly 20%, to less than 4 cents/kwh. Such a reduction in the cost of electricity would give geothermal power a competitive edge over other types of power at many locations across the US and around the world. It is thus believed that DWD technology could significantly expand the role of geothermal energy in providing efficient, environment-friendly electric generating capacity.

  5. Reducing Power Factor Cost

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Low power factor is expensive and inefficient. Many utility companies charge you an additional fee if your power factor is less than 0.95. Low power factor also reduces your electrical system's distribu- tion capacity by increasing current flow and causing voltage drops. This fact sheet describes power factor and explains how you can improve your power factor to reduce electric bills and enhance your electrical system's capacity. REDUCING POWER FACTOR COST To understand power factor, visualize a

  6. Reducing emissions from the electricity sector: the costs and benefits nationwide and for the Empire State

    SciTech Connect

    Karen Palmer; Dallas Butraw; Jhih-Shyang Shih

    2005-06-15

    Using four models, this study looks at EPA's Clean Air Interstate Rule (CAIR) as originally proposed, which differs in only small ways from the final rule issued in March 2005, coupled with several approaches to reducing emissions of mercury including one that differs in only small ways from the final rule also issued in March 2005. This study analyzes what costs and benefits each would incur to New York State and to the nation at large. Benefits to the nation and to New York State significantly outweigh the costs associated with reductions in SO{sub 2}, NOx and mercury, and all policies show dramatic net benefits. The manner in which mercury emissions are regulated will have important implications for the cost of the regulation and for emission levels for SO{sub 2} and NOx and where those emissions are located. Contrary to EPA's findings, CAIR as originally proposed by itself would not keep summer emissions of NOx from electricity generators in the SIP region below the current SIP seasonal NOx cap. In the final CAIR, EPA added a seasonal NOx cap to address seasonal ozone problems. The CAIR with the seasonal NOx cap produces higher net benefits. The effect of the different policies on the mix of fuels used to supply electricity is fairly modest under scenarios similar to the EPA's final rules. A maximum achievable control technology (MACT) approach, compared to a trading approach as the way to achieve tighter mercury targets (beyond EPA's proposal), would preserve the role of coal in electricity generation. The evaluation of scenarios with tighter mercury emission controls shows that the net benefits of a maximum achievable control technology (MACT) approach exceed the net benefits of a cap and trade approach. 39 refs., 10 figs., 30 figs., 5 apps.

  7. SMART Wind Consortium Virtual Meeting on Installation: Reducing Electrical and Foundation Costs

    Energy.gov [DOE]

    This 90-minute SMART Wind Consortium virtual meeting is intended to foster dialogue on actions to improve safety and efficiency and to reduce installation costs for distributed wind turbines. Gary...

  8. Funding Opportunity: Geothermal Technologies Program Seeks Technologies to Reduce Levelized Cost of Electricity for Hydrothermal Development and EGS

    Energy.gov [DOE]

    The Geothermal Technologies Program seeks non-prime mover technologies that have the potential to contribute to reducing the levelized cost of electricity from new hydrothermal development to 6¢/ kWh by 2020 and Enhanced Geothermal Systems (EGS) to 6¢/ kWh by 2030.

  9. Mid-South Metallurgical Makes Electrical and Natural Gas System Upgrades to Reduce Energy Use and Achieve Cost Savings

    Energy.gov [DOE]

    This case study describes how Mid-South Metallurgical implemented several recommendations resulting from a plant-wide energy assessment from DOE's Industrial Assessment Center (IAC) at Tennessee Technological University. This included installing new furnace insulation, implementing an electrical demand system, installing energy efficient equipment on its natural gas furnace burner tubes, and upgrading its lighting. Through these upgrades, the commercial heat treating business cut its overall energy use by 22%, reduced its peak demand by 21%, and decreased its total energy costs by 18%.

  10. substantially reduced production costs

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    production costs - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy ...

  11. Illinois: High-Energy, Concentration-Gradient Cathode Material for Plug-in Hybrids and All-Electric Vehicles Could Reduce Batteries' Cost and Size

    Energy.gov [DOE]

    Batteries for electric drive vehicles and renewable energy storage will reduce petroleum usage, improving energy security and reducing harmful emissions.

  12. Cooling the greenhouse effect: Options and costs for reducing CO{sub 2} emissions from the American Electric Power Company

    SciTech Connect

    Helme, N.; Popovich, M.G.; Gille, J.

    1993-05-01

    A recent report from the National Academy of Sciences concludes that the earth is likely to face a doubling of preindustrial greenhouse gases in the next half century. This doubling could be expected to push average global temperatures. up from between 1.8 to 9 degrees Fahrenheit. Much of the potential for human impacts on the global climate is linked to fossil fuel consumption. Carbon dioxide emissions from energy consumption in the US totals about one-quarter of the world`s total emissions from energy consumption. Global warming is different from other environmental problems because CO{sub 2} emissions can be captured naturally by trees, grasses, soil, and other plants. In contrast, acid rain emissions reductions can only be accomplished through switching to lower-polluting fuels, conserving energy, or installing costly retrofit technologies. Terrestrial biota, such as trees, plants, grasses and soils, directly affect the CO{sub 2} concentrations in the atmosphere. A number of reports have concluded that forestry and land-use practices can increase CO{sub 2} sequestration and can help reduce or delay the threat of global warming.

  13. Cost Competitive Electricity from Photovoltaic Concentrators Called

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    'Imminent' - News Releases | NREL Cost Competitive Electricity from Photovoltaic Concentrators Called 'Imminent' July 13, 2005 Golden, Colo. - Solar concentrators using highly efficient photovoltaic solar cells will reduce the cost of electricity from sunlight to competitive levels soon, attendees were told at a recent international conference on the subject. Herb Hayden of Arizona Public Service (APS) and Robert McConnell and Martha Symko-Davies of the U.S. Department of Energy's National

  14. Electricity Generation Cost Simulation Model

    Energy Science and Technology Software Center

    2003-04-25

    The Electricity Generation Cost Simulation Model (GENSIM) is a user-friendly, high-level dynamic simulation model that calculates electricity production costs for variety of electricity generation technologies, including: pulverized coal, gas combustion turbine, gas combined cycle, nuclear, solar (PV and thermal), and wind. The model allows the user to quickly conduct sensitivity analysis on key variables, including: capital, O&M, and fuel costs; interest rates; construction time; heat rates; and capacity factors. The model also includes consideration ofmore » a wide range of externality costs and pollution control options for carbon dioxide, nitrogen oxides, sulfur dioxide, and mercury. Two different data sets are included in the model; one from the U.S. Department of Energy (DOE) and the other from Platt's Research Group. Likely users of this model include executives and staff in the Congress, the Administration and private industry (power plant builders, industrial electricity users and electric utilities). The model seeks to improve understanding of the economic viability of various generating technologies and their emission trade-offs. The base case results using the DOE data, indicate that in the absence of externality costs, or renewable tax credits, pulverized coal and gas combined cycle plants are the least cost alternatives at 3.7 and 3.5 cents/kwhr, respectively. A complete sensitivity analysis on fuel, capital, and construction time shows that these results coal and gas are much more sensitive to assumption about fuel prices than they are to capital costs or construction times. The results also show that making nuclear competitive with coal or gas requires significant reductions in capital costs, to the $1000/kW level, if no other changes are made. For renewables, the results indicate that wind is now competitive with the nuclear option and is only competitive with coal and gas for grid connected applications if one includes the federal production tax

  15. Electric power substation capital costs

    SciTech Connect

    Dagle, J.E.; Brown, D.R.

    1997-12-01

    The displacement or deferral of substation equipment is a key benefit associated with several technologies that are being developed with the support of the US Department of Energy`s Office of Utility Technologies. This could occur, for example, as a result of installing a distributed generating resource within an electricity distribution system. The objective of this study was to develop a model for preparing preliminary estimates of substation capital costs based on rudimentary conceptual design information. The model is intended to be used by energy systems analysts who need ``ballpark`` substation cost estimates to help establish the value of advanced utility technologies that result in the deferral or displacement of substation equipment. This cost-estimating model requires only minimal inputs. More detailed cost-estimating approaches are recommended when more detailed design information is available. The model was developed by collecting and evaluating approximately 20 sets of substation design and cost data from about 10 US sources, including federal power marketing agencies and private and public electric utilities. The model is principally based on data provided by one of these sources. Estimates prepared with the model were compared with estimated and actual costs for the data sets received from the other utilities. In general, good agreement (for conceptual level estimating) was found between estimates prepared with the cost-estimating model and those prepared by the individual utilities. Thus, the model was judged to be adequate for making preliminary estimates of typical substation costs for US utilities.

  16. Reducing Your Electricity Use | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Electricity & Fuel Appliances & Electronics Reducing Your Electricity Use Reducing Your Electricity Use An energy audit can help you find the most effective ways to save...

  17. Electric power plant capital costs

    SciTech Connect

    Dodero, G.; Castellie, D.; Coffetti, M.

    1998-07-01

    Due to the increase of technology options, it is becoming day by day more important to have an overview of electric power plants capital costs so to take the right decisions in the preliminary stages of the project choices. From 1970 through the 1980's and 1990's, the capital costs of traditional steam power plants increased steadily, due in part to the addition of more advanced, and more costly, pollution control equipment. On the other hand the availability of ample natural gas, the scaling up of gas turbine machinery and the appearance on the market of new technologies (PFB, IGCC, fuel cells, etc.) are offering new opportunities to the traditional utilities and to the new players including the independent power producers, developers and private operators. The costs indicated will be referred to the two main world markets, that is, the Western countries and Asian area. These costs are obviously for preliminary studies and project assessment. To minimize the cost/benefit ratio, the design activities of the architect-engineer consultant have a very important role. Impact of manufacturing area on main component costs and on erection works: The three main factors, which influence machinery price are: local labor cost, license or research cost and raw material cost. An additional impact on plant cost on local basis are the raw material cost for erection, erection manpower, their skill and components available/manufactured in the erection area. Local taxation and custom duties must also be considered. Labor costs in Eastern Germany are still much lower than in the West Germany, but they are not indicated in the survey. Portuguese and Greek workers have the lowest labor costs.

  18. Cost Effectiveness of Electricity Energy Efficiency Programs...

    OpenEI (Open Energy Information) [EERE & EIA]

    Effectiveness of Electricity Energy Efficiency Programs Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Cost Effectiveness of Electricity Energy Efficiency Programs...

  19. New system reduces sludge management costs

    SciTech Connect

    Roll, R.R. ); Koser, M.R. )

    1993-06-01

    This article describes a recently completed a $2.7-million project to upgrade the sludge dewatering and stabilizing system at a 48-mgd wastewater treatment facility in Niagara Fall, New York. The work was necessitated by the deteriorated condition of the plant's original vacuum filters and increasing costs to landfill the dewatered sludge. The new equipment has restored sludge production capacity while reducing the final material's moisture content. The Niagara Falls plant is one of the few municipal physical-chemical treatment plants built in this country, and is the largest still functioning. Constructed in the mid-1970s, it was designed to treat a combination of domestic sewage and industrial wastes. One third of the flow and one half of the solids are industrial in nature. The changes made reduced electrical power consumption and sanitary landfill costs.

  20. Cascaded Microinverter PV System for Reduced Cost

    SciTech Connect

    Bellus, Daniel R.; Ely, Jeffrey A.

    2013-04-29

    In this project, a team led by Delphi will develop and demonstrate a novel cascaded photovoltaic (PV) inverter architecture using advanced components. This approach will reduce the cost and improve the performance of medium and large-sized PV systems. The overall project objective is to develop, build, and test a modular 11-level cascaded three-phase inverter building block for photovoltaic applications and to develop and analyze the associated commercialization plan. The system will be designed to utilize photovoltaic panels and will supply power to the electric grid at 208 VAC, 60 Hz 3-phase. With the proposed topology, three inverters, each with an embedded controller, will monitor and control each of the cascade sections, reducing costs associated with extra control boards. This report details the final disposition on this project.

  1. Reducing home heating and cooling costs

    SciTech Connect

    Not Available

    1994-07-01

    This report is in response to a request from the House Committee on Energy and Commerce that the Energy Information Administration (EIA) undertake a neutral, unbiased analysis of the cost, safety, and health and environmental effects of the three major heating fuels: heating oil, natural gas, and electricity. The Committee also asked EIA to examine the role of conservation in the choice of heating and cooling fuel. To accommodate a wide audience, EIA decided to respond to the Committee`s request in the context of a report on reducing home heating and cooling costs. Accordingly, this report discusses ways to weatherize the home, compares the features of the three major heating and cooling fuels, and comments on the types of heating and cooling systems on the market. The report also includes a worksheet and supporting tables that will help in the selection of a heating and/or cooling system.

  2. Reduce Pumping Costs through Optimum Pipe Sizing

    SciTech Connect

    Not Available

    2005-10-01

    BestPractices Program tip sheet discussing pumping system efficiency by reducing pumping costs through optimum pipe sizing.

  3. Costing and pricing electricity in developing countries

    SciTech Connect

    Munasinghe, M.; Rungta, S.

    1984-01-01

    This book compiles the papers presented at a conference on costing and pricing electricity in developing countries. The topics discussed include: Power tariffs, an overview; electricity tariff policy; estimating and using marginal cost pricing concepts; power tariff policy of Philippines, India, Papua New Guinea, Burma, Bangladesh, Indonesia, Korea, Pakistan; Inter-American Development Bank-Electricity tariffs, policies and practices; and costs of supplying electricity and tariff policy in some other countries.

  4. Options to reduce the operating costs at fossil power stations

    SciTech Connect

    Mehl, L.; White, T.R.

    1998-12-31

    With the coming of deregulation in the electric power industry, existing power plants will have to evaluate options to reduce their operating costs in methods more commonly used in the industrial sector. Similar to organizations throughout the country, electrical generation companies are looking for ways to reduce their costs. The projected impact of figure deregulation on free enterprise production and trading have further emphasized this need. Historically, the ability to sell or dispatch electrical load based on economic advantages, has existed within local systems. Generating facilities with higher production costs must implement operating cost reductions or expect even lower capacity factors following deregulation. This paper examines various means to reducing operating costs and the methods used in their evaluation.

  5. Special Feature: Reducing Energy Costs with Better Batteries

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Reducing Energy Costs with Better Batteries Special Feature: Reducing Energy Costs with Better Batteries September 9, 2013 Contact: Linda Vu, +1 510 495 2402, lvu@lbl.gov Electricvehicles8331019248.jpg Electric vehicles lined up in Cascade Locks. Credit: Oregon Department of Transportation A better battery-one that is cheap and safe, but packs a lot of power-could lead to an electric vehicle that performs better than today's gasoline-powered cars, and costs about the same or less to consumers.

  6. EERE Success Story—Illinois: High-Energy, Concentration-Gradient Cathode Material for Plug-in Hybrids and All-Electric Vehicles Could Reduce Batteries' Cost and Size

    Energy.gov [DOE]

    Batteries for electric drive vehicles and renewable energy storage will reduce petroleum usage, improving energy security and reducing harmful emissions.

  7. LIFE Cost of Electricity, Capital and Operating Costs

    SciTech Connect

    Anklam, T

    2011-04-14

    Successful commercialization of fusion energy requires economic viability as well as technical and scientific feasibility. To assess economic viability, we have conducted a pre-conceptual level evaluation of LIFE economics. Unit costs are estimated from a combination of bottom-up costs estimates, working with representative vendors, and scaled results from previous studies of fission and fusion plants. An integrated process model of a LIFE power plant was developed to integrate and optimize unit costs and calculate top level metrics such as cost of electricity and power plant capital cost. The scope of this activity was the entire power plant site. Separately, a development program to deliver the required specialized equipment has been assembled. Results show that LIFE power plant cost of electricity and plant capital cost compare favorably to estimates for new-build LWR's, coal and gas - particularly if indicative costs of carbon capture and sequestration are accounted for.

  8. Reducing Power Factor Cost | Department of Energy

    Energy.gov [DOE] (indexed site)

    Many utility companies charge an additional fee if your power factor is less than 0.95. Low power factor also reduces your electrical system's distribution capacity by increasing ...

  9. Reducing Enzyme Costs Increases Market Potential of Biofuels, The Spectrum of Clean Energy Innovation (Fact Sheet)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Electricity & Fuel » Appliances & Electronics » Reducing Electricity Use and Costs Reducing Electricity Use and Costs Learn how <a href="/node/761951">using an advanced power strip</a> can reduce your electricity use and save up to $100 per year. Learn how using an advanced power strip can reduce your electricity use and save up to $100 per year. Reducing energy use in your home saves you money, increases our energy security, and reduces the pollution that is

  10. Using life-cycle cost management to cut costs and reduce waste

    SciTech Connect

    Gess, D.; Cohan, D.; McLearn, M.

    1995-12-01

    Increasing competition is forcing electric utility companies to reduce costs and improve efficiency. At the same time, increasing costs for waste disposal and emissions control and growing environmental regulatory pressure are providing powerful incentives for firms in virtually every industry to investigate opportunities to reduce or even eliminate the adverse environmental impacts associated with their operations. companies are also striving toward environmental stewardship to realize the potential benefits to the firms`s public image, employees, an shareholders. Motivated by these cost and environmental concerns, the Electric Power Research Institute (EPRI), Decision Focus Inc. (DFI), and a consortium of electric utility companies have developed techniques and tools to help electric utility companies to make purchase and operating decisions based on their full life-cycle costs, which explicitly include environmental, health, and safety costs. The process, called Life-Cycle Cost Management (LCCM), helps utilities to efficiently assemble the appropriate life-cycle information and bring it to bear on their business decisions. To date, several utilities have used LCCM to evaluate a range of product substitution and process improvement decisions and to implement cost-savings actions. This paper summarizes some of these applications.

  11. New Zealand Interactive Electricity Generation Cost Model 2010...

    OpenEI (Open Energy Information) [EERE & EIA]

    Interactive Electricity Generation Cost Model 2010 Jump to: navigation, search Tool Summary LAUNCH TOOL Name: New Zealand Interactive Electricity Generation Cost Model 2010 Agency...

  12. Cost analysis of energy storage systems for electric utility...

    Office of Scientific and Technical Information (OSTI)

    Cost analysis of energy storage systems for electric utility applications Citation Details In-Document Search Title: Cost analysis of energy storage systems for electric utility ...

  13. Cost and Quality of Fuels for Electric Plants - Energy Information...

    Gasoline and Diesel Fuel Update

    Electricity transactions, reliability Electricity and the environment All electricity data reports Analysis & Projections Major Topics Most popular Capacity and generation Costs, ...

  14. Reducing the Cost of Solar Cells

    SciTech Connect

    Scanlon, B.

    2012-04-01

    Solar-powered electricity prices could soon approach those of power from coal or natural gas thanks to collaborative research with solar startup Ampulse Corporation at the National Renewable Energy Laboratory. Silicon wafers account for almost half the cost of today's solar photovoltaic panels, so reducing or eliminating wafer costs is essential to bringing prices down. Current crystalline silicon technology converts energy in a highly efficient manner; however, that technology is manufactured with processes that could stand some improvement. The industry needs a method that is less complex, creates less waste and uses less energy. First, half the refined silicon is lost as dust in the wafer-sawing process, driving module costs higher. Wafers are sawn off of large cylindrical ingots, or boules, of silicon. A typical 2-meter boule loses as many as 6,000 potential wafers during sawing. Second, the wafers produced are much thicker than necessary. To efficiently convert sunlight into electricity, the wafers need be only one-tenth the typical thickness. NREL, the Oak Ridge National Laboratory and Ampulse have partnered on an approach to eliminate this waste and dramatically lower the cost of the finished solar panels. By using a chemical vapor deposition process to grow the silicon on inexpensive foil, Ampulse is able to make the solar cells just thick enough to convert most of the solar energy into electricity. No more sawdust - and no more wasting refined silicon materials. NREL developed the technology to grow high-quality silicon and ORNL developed the metal foil that has the correct crystal structure to support that growth. Ampulse is installing a pilot manufacturing line in NREL's Process Development Integration Laboratory, where solar companies can work closely with lab scientists on integrated equipment to answer pressing questions related to their technology development, as well as rapidly overcoming R and D challenges and risk. NREL's program is focused on

  15. Energy Department Awards Nearly $7 Million for Research to Reduce Costs of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Electric Vehicle Chargers | Department of Energy 7 Million for Research to Reduce Costs of Electric Vehicle Chargers Energy Department Awards Nearly $7 Million for Research to Reduce Costs of Electric Vehicle Chargers December 21, 2011 - 12:49pm Addthis As part of the Obama Administration's commitment to reduce America's dependence on oil through advanced vehicle technologies, U.S. Energy Secretary Steven Chu today announced awards totaling nearly $7 million in research and development

  16. On-Bill Financing: Reducing Cost Barriers to Energy Efficiency...

    Office of Environmental Management (EM)

    On-Bill Financing: Reducing Cost Barriers to Energy Efficiency Improvements (201) On-Bill Financing: Reducing Cost Barriers to Energy Efficiency Improvements (201) October 8...

  17. Metal and Glass Manufacturers Reduce Costs by Increasing Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Metal and Glass Manufacturers Reduce Costs by Increasing Energy Efficiency in Process Heating Systems Metal and Glass Manufacturers Reduce Costs by Increasing Energy Efficiency in...

  18. Chicago Solar Express Reduces Costs, Wait Times | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Chicago Solar Express Reduces Costs, Wait Times Chicago Solar Express Reduces Costs, Wait Times October 28, 2014 - 10:48am Addthis The Solar Express program in Chicago, ...

  19. Reducing Cost Barriers to Energy Efficiency Improvements (201...

    Energy Saver

    Reducing Cost Barriers to Energy Efficiency Improvements (201) Reducing Cost Barriers to Energy Efficiency Improvements (201) Better Buildings Residential Network Peer Exchange ...

  20. Levelized Costs for Nuclear, Gas and Coal for Electricity, under...

    Office of Scientific and Technical Information (OSTI)

    Conference: Levelized Costs for Nuclear, Gas and Coal for Electricity, under the Mexican Scenario Citation Details In-Document Search Title: Levelized Costs for Nuclear, Gas and ...

  1. Alternative Fuels Data Center: Reynolds Logistics Reduces Fuel Costs With

    Alternative Fuels and Advanced Vehicles Data Center

    EVs Reynolds Logistics Reduces Fuel Costs With EVs to someone by E-mail Share Alternative Fuels Data Center: Reynolds Logistics Reduces Fuel Costs With EVs on Facebook Tweet about Alternative Fuels Data Center: Reynolds Logistics Reduces Fuel Costs With EVs on Twitter Bookmark Alternative Fuels Data Center: Reynolds Logistics Reduces Fuel Costs With EVs on Google Bookmark Alternative Fuels Data Center: Reynolds Logistics Reduces Fuel Costs With EVs on Delicious Rank Alternative Fuels Data

  2. USDA Helps Reduce High Energy Costs in Tribal Lands | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    USDA Helps Reduce High Energy Costs in Tribal Lands USDA Helps Reduce High Energy Costs in Tribal Lands September 17, 2015 - 3:08pm Addthis On Sept. 16, 2015, the U.S. Department of Agriculture (USDA) announced five grants to help reduce energy costs for tribes in Alaska, Arizona, and South Dakota where the cost of producing electricity is extremely high. Through the High Energy Cost Grant program, the USDA will provide $7.9 million to nine grantees to help improve the environment by reducing

  3. Nitrogen Control in Electric Arc Furnace Steelmaking by Direct Reduced Iron

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fines Injection | Department of Energy Nitrogen Control in Electric Arc Furnace Steelmaking by Direct Reduced Iron Fines Injection Nitrogen Control in Electric Arc Furnace Steelmaking by Direct Reduced Iron Fines Injection This fact sheet describes a new technology with the potential to reduce operating costs and increase productivity in bar and flat-rolled products for the steel industry. Nitrogen Control in Electric Arc Furnace Steelmaking by Direct Reduced Iron Fines Injection (January

  4. Reducing LED Costs Through Innovation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Reducing LED Costs Through Innovation Reducing LED Costs Through Innovation November 19, 2013 - 3:49pm Addthis A combination solid-state laser turret cutter and stamping machine...

  5. EERE Success Story-Milestone Reached: New Process Reduces Cost...

    Energy Saver

    Reached: New Process Reduces Cost and Risk of Biofuel Production from Bio-Oil Upgrading EERE Success Story-Milestone Reached: New Process Reduces Cost and Risk of Biofuel ...

  6. Reducing Cost Barriers to Energy Efficiency Improvements (201)

    Energy.gov [DOE]

    Better Buildings Residential Network Peer Exchange Call Series: On Bill Financing: Reducing Cost Barriers to Energy Efficiency Improvements (201)

  7. Helping Alaska Native Communities Reduce Their Energy Costs | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Alaska Native Communities Reduce Their Energy Costs Helping Alaska Native Communities Reduce Their Energy Costs May 3, 2013 - 12:50pm Addthis The Energy Department is helping Alaska Native communities reduce their energy costs by investing in renewable energy and energy efficiency upgrades. | Photo courtesy of Western Community Energy. The Energy Department is helping Alaska Native communities reduce their energy costs by investing in renewable energy and energy efficiency upgrades. |

  8. Cost and quality of fuels for electric plants 1993

    SciTech Connect

    Not Available

    1994-07-01

    The Cost and Quality of Fuels for Electric Utility Plants (C&Q) presents an annual summary of statistics at the national, Census division, State, electric utility, and plant levels regarding the quantity, quality, and cost of fossil fuels used to produce electricity. The purpose of this publication is to provide energy decision-makers with accurate and timely information that may be used in forming various perspectives on issues regarding electric power.

  9. stochastic energy production cost model simulator for electric...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    energy production cost model simulator for electric power systems - Sandia Energy Energy ... Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable ...

  10. Cost and Quality of Fuels for Electric Plants - Energy Information...

    Annual Energy Outlook

    and the environment All electricity data reports Analysis & Projections Major Topics Most popular Capacity and generation Costs, revenue and expense Demand Environment Fuel use...

  11. Updated Capital Cost Estimates for Utility Scale Electricity Generating Plants

    Reports and Publications

    2013-01-01

    The current and future projected cost and performance characteristics of new electric generating capacity are a critical input into the development of energy projections and analyses.

  12. Electric power substation capital costs (Technical Report) |...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... Subject: 24 POWER TRANSMISSION AND DISTRIBUTION; POWER SUBSTATIONS; CAPITALIZED COST; CALCULATION METHODS; PLANNING; COST ESTIMATION; MATHEMATICAL MODELS Word Cloud More Like This ...

  13. Special Feature: Reducing Energy Costs with Better Batteries

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... But researchers hope that a new type of battery, called the lithium-air battery, will one day lead to a cost-effective, long-range electric vehicles that could travel 300 miles or ...

  14. Electricity Prices in a Competitive Environment: Marginal Cost Pricing

    Reports and Publications

    1997-01-01

    Presents the results of an analysis that focuses on two questions: (1) How are prices for competitive generation services likely to differ from regulated prices if competitive prices are based on marginal costs rather than regulated cost-of-service pricing? (2) What impacts will the competitive pricing of generation services (based on marginal costs) have on electricity consumption patterns, production costs, and the financial integrity of electricity suppliers?

  15. Reduce air, reduce compliance cost new patented spray booth technology

    SciTech Connect

    McGinnis, F.

    1997-12-31

    A New Paint Spray Booth System that dramatically reduces air volumes normally required for capturing and controlling paint overspray that contains either Volatile Organic Compounds (VOC) or Hazardous Air Pollutants (HAP), or both. In turn, a substantial reduction in capital equipment expenditures for air abatement systems and air make-up heaters as well as related annual operating expenses is realized.

  16. Metal and Glass Manufacturers Reduce Costs by Increasing Energy Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    in Process Heating Systems | Department of Energy Metal and Glass Manufacturers Reduce Costs by Increasing Energy Efficiency in Process Heating Systems Metal and Glass Manufacturers Reduce Costs by Increasing Energy Efficiency in Process Heating Systems Process heating plays a key role in producing steel, aluminum, and glass and in manufacturing products made from these materials. Faced with regulatory and competitive pressures to control emissions and reduce operating costs, metal and glass

  17. Wind Program Manufacturing Research Advances Processes and Reduces Costs |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Manufacturing Research Advances Processes and Reduces Costs Wind Program Manufacturing Research Advances Processes and Reduces Costs March 31, 2014 - 11:22am Addthis Tower sections being installed for a 2-MW wind turbine. Knowing that reducing the overall cost of wind energy begins on the factory floor, the Department of Energy's (DOE's) Wind Program supports research and development efforts and funding opportunities that integrate new designs, materials, and advanced

  18. Reducing LED Costs Through Innovation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Reducing LED Costs Through Innovation Reducing LED Costs Through Innovation November 27, 2013 - 12:00am Addthis Jim Brodrick, Lighting Program Manager A Wisconsin-based company is developing an innovative way to reduce manufacturing costs of light-emitting diodes (LEDs). With help from a $2.4 million Energy Department research grant that is matched dollar-for-dollar by the company, researchers at Eaton Corporation in Menomonee Falls, Wisconsin, are creating a manufacturing process that not only

  19. Energy Detectives Help Pennsylvania Town Reduce Costs

    Energy.gov [DOE]

    Judith Mondre spent the past two months learning the ins and outs of Upper Darby Township, Pa.'s energy usage. She's analyzed energy bills, observed town facilities and interviewed staff to put together a plan to help the municipality reduce its total energy usage.

  20. Improved System Performance and Reduced Cost of a Fuel Reformer...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Emissions Useful Life Requirement Improved System Performance and Reduced Cost of a Fuel Reformer, LNT, and SCR Aftertreatment System Meeting Emissions Useful Life Requirement An ...

  1. Reduce Pumping Costs Through Optimum Pipe Sizing | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Reduce Pumping Costs Through Optimum Pipe Sizing (October 2005) (209.25 KB) More Documents & Publications Select an Energy-Efficient Centrifugal Pump Effect of Intake on Compressor ...

  2. Milestone Reached: New Process Reduces Cost and Risk of Biofuel...

    Energy.gov [DOE] (indexed site)

    a bio-oil intermediate into biofuel, making the conversion process expensive. Battelle's new process substantially reduces the cost and risk of biofuel production and helps make ...

  3. EV Everywhere: Reducing Pollution with Electric Vehicles | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Benefits of Electric Vehicles » EV Everywhere: Reducing Pollution with Electric Vehicles EV Everywhere: Reducing Pollution with Electric Vehicles Plug-in electric vehicles (also known as electric cars or EVs) can help keep your town and your world clean. In general, EVs produce fewer emissions that contribute to climate change and smog than conventional vehicles. There are two general categories of vehicle emissions: direct and life cycle. Direct emissions are emitted through the

  4. Cost and quality of fuels for electric utility plants, 1992

    SciTech Connect

    Not Available

    1993-08-02

    This publication presents an annual summary of statistics at the national, Census division, State, electric utility, and plant levels regarding the quantity, quality, and cost of fossil fuels used to produce electricity. The purpose of this publication is to provide energy decision-makers with accurate and timely information that may be used in forming various perspectives on issues regarding electric power.

  5. Cost and quality of fuels for electric utility plants, 1994

    SciTech Connect

    1995-07-14

    This document presents an annual summary of statistics at the national, Census division, State, electric utility, and plant levels regarding the quantity, quality, and cost of fossil fuels used to produce electricity. Purpose of this publication is to provide energy decision-makers with accurate, timely information that may be used in forming various perspectives on issues regarding electric power.

  6. Energy Cost Savings Calculator for Air-Cooled Electric Chillers |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Air-Cooled Electric Chillers Energy Cost Savings Calculator for Air-Cooled Electric Chillers This cost calculator is a screening tool that estimates a product's lifetime energy cost savings at various efficiency levels. Learn more about the calculator assumptions and definitions. Project Type Is this a new installation or a replacement? New Replacement How many chillers will you purchase? Performance Factors Existing What is the existing design condition? Full Load

  7. Low-Cost Packaged CHP System with Reduced Emissions - Fact Sheet, 2016 |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Low-Cost Packaged CHP System with Reduced Emissions - Fact Sheet, 2016 Low-Cost Packaged CHP System with Reduced Emissions - Fact Sheet, 2016 Cummins Power Generation, in collaboration with Cummins Engine Business Unit, developed a flexible, packaged CHP system that produces 330 kW of electrical power output and 410 kW of thermal output while increasing efficiency and reducing emissions and cost. The project resulted in one of the highest-efficiency and lowest-emissions

  8. Utility Sector Impacts of Reduced Electricity Demand

    SciTech Connect

    Coughlin, Katie

    2014-12-01

    This report presents a new approach to estimating the marginal utility sector impacts associated with electricity demand reductions. The method uses publicly available data and provides results in the form of time series of impact factors. The input data are taken from the Energy Information Agency's Annual Energy Outlook (AEO) projections of how the electric system might evolve in the reference case, and in a number of side cases that incorporate different effciency and other policy assumptions. The data published with the AEO are used to define quantitative relationships between demand-side electricity reductions by end use and supply-side changes to capacity by plant type, generation by fuel type and emissions of CO2, Hg, NOx and SO2. The impact factors define the change in each of these quantities per unit reduction in site electricity demand. We find that the relative variation in these impacts by end use is small, but the time variation can be significant.

  9. Retail Infrastructure Costs Comparison for Hydrogen and Electricity for Light-Duty Vehicles: Preprint

    SciTech Connect

    Melaina, M.; Sun, Y.; Bush, B.

    2014-08-01

    Both hydrogen and plug-in electric vehicles offer significant social benefits to enhance energy security and reduce criteria and greenhouse gas emissions from the transportation sector. However, the rollout of electric vehicle supply equipment (EVSE) and hydrogen retail stations (HRS) requires substantial investments with high risks due to many uncertainties. We compare retail infrastructure costs on a common basis - cost per mile, assuming fueling service to 10% of all light-duty vehicles in a typical 1.5 million person city in 2025. Our analysis considers three HRS sizes, four distinct types of EVSE and two distinct EVSE scenarios. EVSE station costs, including equipment and installation, are assumed to be 15% less than today's costs. We find that levelized retail capital costs per mile are essentially indistinguishable given the uncertainty and variability around input assumptions. Total fuel costs per mile for battery electric vehicle (BEV) and plug-in hybrid vehicle (PHEV) are, respectively, 21% lower and 13% lower than that for hydrogen fuel cell electric vehicle (FCEV) under the home-dominant scenario. Including fuel economies and vehicle costs makes FCEVs and BEVs comparable in terms of costs per mile, and PHEVs are about 10% less than FCEVs and BEVs. To account for geographic variability in energy prices and hydrogen delivery costs, we use the Scenario Evaluation, Regionalization and Analysis (SERA) model and confirm the aforementioned estimate of cost per mile, nationally averaged, but see a 15% variability in regional costs of FCEVs and a 5% variability in regional costs for BEVs.

  10. Low-Cost Co-Production of Hydrogen and Electricity

    SciTech Connect

    Mitlitsky, Fred; Mulhauser, Sara; McElroy, Jim

    2010-09-28

    A study to further the efforts of low-cost co-production of hydrogen and electricity through the use of a distributed approach on a planar solid oxide fuel cell platform.

  11. Quantum Dot Materials Can Reduce Heat, Boost Electrical Output...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Quantum Dot Materials Can Reduce Heat, Boost Electrical Output May 23, 2005 Golden, Colo. - Researchers at the U.S. Department of Energy's National Renewable Energy Laboratory ...

  12. NREL Funds Research into Low-Cost Solar Electricity

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Funds Research into Low-Cost Solar Electricity Media contact: George Douglas (303) 275-4096 e:mail: george_douglas@nrel.gov Golden, Colo., Dec. 8, 1997 -- C Contracts worth about $60 million over three years will be awarded under the Thin Film PV (photovoltaic) Partnership program at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL). Recipients of the money will research ways to lower the cost of producing electricity from sunlight using photovoltaic semiconductors that

  13. Updated Capital Cost Estimates for Utility Scale Electricity Generating Plants

    Energy Information Administration (EIA) (indexed site)

    Updated Capital Cost Estimates for Utility Scale Electricity Generating Plants April 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Updated Capital Cost Estimates for Utility Scale Electricity Generating Plants ii This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and

  14. Reducing Your Electricity Use | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Reducing energy use in your home saves you money, increases our energy security, and reduces the pollution that is emitted from non-renewable sources of energy. If you are planning ...

  15. A rod pumping system to reduce lifting costs

    SciTech Connect

    Tait, H.C.; Hamilton, R.M.

    1983-02-01

    Rising costs of artificial lift operations are a growing concern to producers in maintaining efficient and profitable performance. A new long stroke sucker rod pumping system has been developed to minimize the impact of these rising costs. This new system results from a broad development project involving evaluation of all system components. Performance results to date confirm achievement of reduced overall operating costs as a result of the performance characteristics of this system.

  16. Technical approaches for reducing cost of power support

    SciTech Connect

    Not Available

    1984-03-01

    Methods for reducing the cost of Chinese-made power supports are discussed. A reasonable selection of functions is proposed, including protection from side collapse, anti-sliding and anti-toppling, prop extension, loading capacity and hydraulic pressure. Material costs constitute 34-44% of the total cost, and so optimisation of design and materials is required. Standardisation of hydraulic components is recommended; and the use of appropriate and effective technological and managerial techniques is advocated. (In Chinese)

  17. EERE Success Story-Chicago Solar Express Reduces Costs, Wait...

    Office of Environmental Management (EM)

    In 2012, the City of Chicago and Commonwealth Edison (ComEd) received a SunShot award to support solar photovoltaic (PV) installations by reducing market barriers and soft costs. ...

  18. Milestone Reached: New Process Reduces Cost and Risk of Biofuel...

    Office of Environmental Management (EM)

    Risk of Biofuel Production from Bio-Oil Upgrading Milestone Reached: New Process Reduces Cost and Risk of Biofuel Production from Bio-Oil Upgrading May 6, 2015 - 11:29am Addthis ...

  19. NREL to request proposals for reducing PV costs

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Request Proposals for Reducing PV Costs For more information contact: George Douglas, (303) 275-4096 Golden, Colo., May 15, 1997 -- The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) invites the photovoltaics and related industries to join its Photovoltaic Manufacturing Technology (PVMaT) program in looking for ways to improve production processes and reduce the cost of photovoltaic products. NREL will issue in the next 90 days an $8 million request for proposals

  20. New design strategy reduces time and cost of material discovery

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    design strategy New design strategy reduces time and cost of material discovery Iteratively guiding experiments toward finding materials with the desired target properties May 17, 2016 Mars Adaptive design framework. New design strategy reduces time and cost of material discovery Researchers from the US and China have recently demonstrated how an informatics-based adaptive design strategy, tightly coupled to experiments, can accelerate the discovery of new materials with targeted properties.

  1. Cogeneration of electricity: Cost-effective over long term

    SciTech Connect

    Barger, R.L.; Barham, J. )

    1991-08-01

    This article describes the determination of the cost-effectiveness of a cogeneration project five years after it became operational in 1984. The cogeneration project uses digester sludge gas from a wastewater treatment plant. The topics covered include the history of electrical cogeneration at the site, cogeneration economics in the short term and the long term, and the factors in cost-effectiveness.

  2. Cost analysis of energy storage systems for electric utility applications

    SciTech Connect

    Akhil, A.; Swaminathan, S.; Sen, R.K.

    1997-02-01

    Under the sponsorship of the Department of Energy, Office of Utility Technologies, the Energy Storage System Analysis and Development Department at Sandia National Laboratories (SNL) conducted a cost analysis of energy storage systems for electric utility applications. The scope of the study included the analysis of costs for existing and planned battery, SMES, and flywheel energy storage systems. The analysis also identified the potential for cost reduction of key components.

  3. Prospects for reducing the processing cost of lithium ion batteries

    SciTech Connect

    Wood III, David L.; Li, Jianlin; Daniel, Claus

    2014-11-06

    A detailed processing cost breakdown is given for lithium-ion battery (LIB) electrodes, which focuses on: elimination of toxic, costly N-methylpyrrolidone (NMP) dispersion chemistry; doubling the thicknesses of the anode and cathode to raise energy density; and, reduction of the anode electrolyte wetting and SEI-layer formation time. These processing cost reduction technologies generically adaptable to any anode or cathode cell chemistry and are being implemented at ORNL. This paper shows step by step how these cost savings can be realized in existing or new LIB manufacturing plants using a baseline case of thin (power) electrodes produced with NMP processing and a standard 10-14-day wetting and formation process. In particular, it is shown that aqueous electrode processing can cut the electrode processing cost and energy consumption by an order of magnitude. Doubling the thickness of the electrodes allows for using half of the inactive current collectors and separators, contributing even further to the processing cost savings. Finally wetting and SEI-layer formation cost savings are discussed in the context of a protocol with significantly reduced time. These three benefits collectively offer the possibility of reducing LIB pack cost from $502.8 kWh-1-usable to $370.3 kWh-1-usable, a savings of $132.5/kWh (or 26.4%).

  4. Prospects for reducing the processing cost of lithium ion batteries

    DOE PAGES [OSTI]

    Wood III, David L.; Li, Jianlin; Daniel, Claus

    2014-11-06

    A detailed processing cost breakdown is given for lithium-ion battery (LIB) electrodes, which focuses on: elimination of toxic, costly N-methylpyrrolidone (NMP) dispersion chemistry; doubling the thicknesses of the anode and cathode to raise energy density; and, reduction of the anode electrolyte wetting and SEI-layer formation time. These processing cost reduction technologies generically adaptable to any anode or cathode cell chemistry and are being implemented at ORNL. This paper shows step by step how these cost savings can be realized in existing or new LIB manufacturing plants using a baseline case of thin (power) electrodes produced with NMP processing and amore » standard 10-14-day wetting and formation process. In particular, it is shown that aqueous electrode processing can cut the electrode processing cost and energy consumption by an order of magnitude. Doubling the thickness of the electrodes allows for using half of the inactive current collectors and separators, contributing even further to the processing cost savings. Finally wetting and SEI-layer formation cost savings are discussed in the context of a protocol with significantly reduced time. These three benefits collectively offer the possibility of reducing LIB pack cost from $502.8 kWh-1-usable to $370.3 kWh-1-usable, a savings of $132.5/kWh (or 26.4%).« less

  5. Prospects for Reducing the Processing Cost of Lithium Ion Batteries

    SciTech Connect

    Wood III, David L; Li, Jianlin; Daniel, Claus

    2014-01-01

    A detailed processing cost breakdown is given for lithium-ion battery (LIB) electrodes, which focuses on: 1) elimination of toxic, costly N-methylpyrrolidone (NMP) dispersion chemistry; 2) doubling the thicknesses of the anode and cathode to raise energy density; and 3) reduction of the anode electrolyte wetting and SEI-layer formation time. These processing cost reduction technologies generically adaptable to any anode or cathode cell chemistry and are being implemented at ORNL. This paper shows step by step how these cost savings can be realized in existing or new LIB manufacturing plants using a baseline case of thin (power) electrodes produced with NMP processing and a standard 10-14-day wetting and formation process. In particular, it is shown that aqueous electrode processing can cut the electrode processing cost and energy consumption by an order of magnitude. Doubling the thickness of the electrodes allows for using half of the inactive current collectors and separators, contributing even further to the processing cost savings. Finally wetting and SEI-layer formation cost savings are discussed in the context of a protocol with significantly reduced time. These three benefits collectively offer the possibility of reducing LIB pack cost from $502.8 kWh-1-usable to $370.3 kWh-1-usable, a savings of $132.5/kWh (or 26.4%).

  6. Cost and Performance Assumptions for Modeling Electricity Generation Technologies

    SciTech Connect

    Tidball, Rick; Bluestein, Joel; Rodriguez, Nick; Knoke, Stu

    2010-11-01

    The goal of this project was to compare and contrast utility scale power plant characteristics used in data sets that support energy market models. Characteristics include both technology cost and technology performance projections to the year 2050. Cost parameters include installed capital costs and operation and maintenance (O&M) costs. Performance parameters include plant size, heat rate, capacity factor or availability factor, and plant lifetime. Conventional, renewable, and emerging electricity generating technologies were considered. Six data sets, each associated with a different model, were selected. Two of the data sets represent modeled results, not direct model inputs. These two data sets include cost and performance improvements that result from increased deployment as well as resulting capacity factors estimated from particular model runs; other data sets represent model input data. For the technologies contained in each data set, the levelized cost of energy (LCOE) was also evaluated, according to published cost, performance, and fuel assumptions.

  7. Reducing LED Costs Through Innovation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    LED Costs Through Innovation Reducing LED Costs Through Innovation November 19, 2013 - 3:49pm Addthis A combination solid-state laser turret cutter and stamping machine cuts a thin steel plate that will be formed into lighting fixture housing. Wisconsin-based Eaton Corporation is developing a new manufacturing process that streamlines LED fixture designs. | Photo courtesy of Eaton Corporation A combination solid-state laser turret cutter and stamping machine cuts a thin steel plate that will be

  8. A stochastic model for the measurement of electricity outage costs

    SciTech Connect

    Grosfeld-Nir, A.; Tishler, A. (Tel Aviv Univ. (Israel))

    1993-01-01

    The measurement of customer outage costs has recently become an important subject of research for electric utilities. This paper uses a stochastic dynamic model as the starting point in developing a market-based method for the evaluation of outage costs. Specifically, the model postulates that once an electricity outage occurs, all production activity stops. Full production is resumed once the electricity outage is over. This process repeats itself indefinitely. The business customer maximizes his expected discounted profits (the expected value of the firm), taking into account his limited ability to respond to repeated random electricity outages. The model is applied to 11 industrial branches in Israel. The estimates exhibit a large variation across branches. 34 refs., 3 tabs.

  9. High-Performance with Solar Electric Reduced Peak Demand: Premier...

    Energy Saver

    In addition to substantial energy savings, solar electric home projects can have major impacts such as reducing rolling black-outs in resource constrained, high-growth markets. To ...

  10. Review of cost estimates for reducing CO2 emissions. Final report, Task 9

    SciTech Connect

    Not Available

    1990-10-01

    Since the ground breaking work of William Nordhaus in 1977, cost estimates for reducing CO{sub 2} emissions have been developed by numerous groups. The various studies have reported sometimes widely divergent cost estimates for reducing CO{sub 2} emissions. Some recent analyses have indicated that large reductions in CO{sub 2} emissions could be achieved at zero or negative costs (e.g. Rocky Mountain Institute 1989). In contrast, a recent study by Alan Manne of Stanford and Richard Richels of the Electric Power Research Institute (Manne-Richels 1989) concluded that in the US the total discounted costs of reducing CO{sub 2} emissions by 20 percent below the 1990 level could be as much as 3.6 trillion dollars over the period from 1990 to 2100. Costs of this order of magnitude would represent about 5 percent of US GNP. The purpose of this briefing paper is to summarize the different cost estimates for CO{sub 2} emission reduction and to identify the key issues and assumptions that underlie these cost estimates.

  11. Resin Wafer Electrodeionization Technology Reduces the Cost of Clean

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy, Chemicals, and Industrial Process Water - Energy Innovation Portal Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Resin Wafer Electrodeionization Technology Reduces the Cost of Clean Energy, Chemicals, and Industrial Process Water Argonne National Laboratory Contact ANL About This Technology Figure 1. Argonne&#39;s patented resin wafer electrodeionization technology allows for the continuous removal of charged products like organic acids from

  12. Thermostatic/orifice trap reduces fuel, repair costs

    SciTech Connect

    Not Available

    1982-11-01

    This article is an evaluation of a steam trap that combines the continuous drain oriface with a thermostatically controlled trap oriface to efficiently remove condensate from virtually any steam system within its operating limits. This trap effectively reduces fuel and repair costs and has a capacity of 6000 il/hr, handles various pressures up to 600 psig, and operates against back pressures up to 90% of inlet pressure.

  13. Cost and Quality of Fuels for Electric Utility Plants

    Gasoline and Diesel Fuel Update

    Synthetic 1980-2005 Propane-Air 1980-2009

    1994 1995 1996 View History Net Withdrawals 0 0 1973-1996 Injections 0 0 0 1973-1996 Withdrawals 0 0 0 1973-1996

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 10 14 2 2 2015 3 4 5 3 6 9 10 13 6 7 10 9 2016 1

    1) Distribution Category UC-950 Cost and Quality of Fuels for Electric Utility Plants 2001 March 2004 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy

  14. DOE Announces $27 Million to Reduce Costs of Solar Energy Projects...

    Office of Environmental Management (EM)

    7 Million to Reduce Costs of Solar Energy Projects, Streamline Permitting and Installations DOE Announces 27 Million to Reduce Costs of Solar Energy Projects, Streamline ...

  15. Cost and Quality of Fuels for Electric Utility Plants 1997

    Gasoline and Diesel Fuel Update

    7 Tables May 1998 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Energy Information Administration/Cost

  16. Blast furnace slag use reduces well completion cost

    SciTech Connect

    McCarthy, S.M.; Daulton, D.J.; Bosworth, S.J.

    1995-04-01

    In an effort to reduce South Texas Stratton-field remedial-squeeze operations, Union Pacific Resources Co. (UPRC), in conjunction with The Western Co. of North America and Zarsky Oilfield Services, applied unique and emerging technology to its mud systems and cementing practices. Quick Quenched Blast Furnace Slag (BFS) was added to the drilling fluid (producing universal fluid) and to cement slurries to improve annular isolation, thus reducing and/or eliminating need for remedial squeeze work. By improving primary cement jobs, UPRC reduced remedial operations by 100% and overall well cost y an average $80,000 per well. This article discusses the following topics involved in BFS mud-system and cementing applications: Stratton field background including completion practices and main operational field problems; drilling fluid field characteristics; field cementing procedures and problems; universal fluid/BFS cement applications including compressive strength and annular isolation; field application case histories, and discussion of results.

  17. Reduce Pumping Costs through Optimum Pipe Sizing: Industrial Technologies Program (ITP) Energy Tips - Pumping Systems Tip Sheet #9 (Fact Sheet).

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    9 * October 2005 Reduce Pumping Costs through Optimum Pipe Sizing Every industrial facility has a piping network that carries water or other fluids. According to the U.S. Department of Energy (DOE), 16% of a typical facility's electricity costs are for its pumping systems. The power consumed to overcome the static head in a pumping system varies linearly with flow, and very little can be done to reduce the static component of the system requirement. However, there are several energy- and

  18. Applying electrical utility least-cost approach to transportation planning

    SciTech Connect

    McCoy, G.A.; Growdon, K.; Lagerberg, B.

    1994-09-01

    Members of the energy and environmental communities believe that parallels exist between electrical utility least-cost planning and transportation planning. In particular, the Washington State Energy Strategy Committee believes that an integrated and comprehensive transportation planning process should be developed to fairly evaluate the costs of both demand-side and supply-side transportation options, establish competition between different travel modes, and select the mix of options designed to meet system goals at the lowest cost to society. Comparisons between travel modes are also required under the Intermodal Surface Transportation Efficiency Act (ISTEA). ISTEA calls for the development of procedures to compare demand management against infrastructure investment solutions and requires the consideration of efficiency, socioeconomic and environmental factors in the evaluation process. Several of the techniques and approaches used in energy least-cost planning and utility peak demand management can be incorporated into a least-cost transportation planning methodology. The concepts of avoided plants, expressing avoidable costs in levelized nominal dollars to compare projects with different on-line dates and service lives, the supply curve, and the resource stack can be directly adapted from the energy sector.

  19. Reducing current reversal time in electric motor control

    DOEpatents

    Bredemann, Michael V

    2014-11-04

    The time required to reverse current flow in an electric motor is reduced by exploiting inductive current that persists in the motor when power is temporarily removed. Energy associated with this inductive current is used to initiate reverse current flow in the motor.

  20. Fact #910: February 1, 2016 Study Shows Average Cost of Electric...

    Energy.gov [DOE] (indexed site)

    site and other factors such as permit and inspection fees. Installation Costs of Electric Vehicle Charging Stations by Type, 2011-2013 (INL Study) Graph showing installation costs ...

  1. Innovative Approach Reduces Costs of Removing Contaminated Oil...

    Energy Saver

    PADUCAH, Ky. - For more than 60 years, 60 electrical distribution transformers supplied ... biphenyl (PCB), which helped with electrical insulation properties and cooling of ...

  2. EERE Success Story-Low-Cost Production of Hydrogen and Electricity...

    Energy Saver

    Low-Cost Production of Hydrogen and Electricity EERE Success Story-Low-Cost Production of Hydrogen and Electricity April 10, 2013 - 12:00am Addthis At an airport in Anchorage, ...

  3. #tipsEnergy: Ways to Save on Electricity Costs | Department of...

    Energy.gov [DOE] (indexed site)

    Electricity Costs Every month we ask you to share your energy-saving tips, and we feature ... For this month's tipsEnergy, we want to know how you save on electricity costs. Storified ...

  4. Exploring Hydrogen Generation from Biomass-Derived Sugar and Sugar Alcohols to Reduce Costs

    Energy.gov [DOE]

    New aqueous phase reforming process uses liquid feedstocks to produce energy from hydrogen with reduced costs.

  5. Cost-Benefit Analysis of Plug-In Hybrid-Electric Vehicle Technology (Presentation)

    SciTech Connect

    Pesaran, A.; Markel, T.; Simpson, A.

    2006-10-01

    Presents a cost-benefit of analysis of plug-in hybrid electric vehicle technology, including potential petroleum use reduction.

  6. Understanding the cost of power interruptions to U.S. electricity consumers

    SciTech Connect

    LaCommare, Kristina Hamachi; Eto, Joseph H.

    2004-09-01

    The massive electric power blackout in the northeastern United States and Canada on August 14-15, 2003 resulted in the U.S. electricity system being called ''antiquated'' and catalyzed discussions about modernizing the grid. Industry sources suggested that investments of $50 to $100 billion would be needed. This report seeks to quantify an important piece of information that has been missing from these discussions: how much do power interruptions and fluctuations in power quality (power-quality events) cost U.S. electricity consumers? Accurately estimating this cost will help assess the potential benefits of investments in improving the reliability of the grid. We develop a comprehensive end-use framework for assessing the cost to U.S. electricity consumers of power interruptions and power-quality events (referred to collectively as ''reliability events''). The framework expresses these costs as a function of: (1) Number of customers by type in a region; (2) Frequency and type of reliability events experienced annually (including both power interruptions and power-quality events) by these customers; (3) Cost of reliability events; and (4) Vulnerability of customers to these events. The framework is designed so that its cost estimate can be improved as additional data become available. Using our framework, we estimate that the national cost of power interruptions is about $80 billion annually, based on the best information available in the public domain. However, there are large gaps in and significant uncertainties about the information currently available. Notably, we were not able to develop an estimate of power-quality events. Sensitivity analysis of some of these uncertainties suggests that the total annual cost could range from less than $30 billion to more than $130 billion. Because of this large range and the enormous cost of the decisions that may be based on this estimate, we encourage policy makers, regulators, and industry to jointly under take the

  7. Cost Analysis of Plug-In Hybred Electric Vehicles Using GPS-Based Longitudinal Travel Data

    SciTech Connect

    Wu, Xing; Dong, Jing; Lin, Zhenhong

    2014-01-01

    Using spatial, longitudinal travel data of 415 vehicles over 3 18 months in the Seattle metropolitan area, this paper estimates the operating costs of plug-in hybrid electric vehicles (PHEVs) of various electric ranges (10, 20, 30, and 40 miles) for 3, 5, and 10 years of payback period, considering different charging infrastructure deployment levels and gasoline prices. Some key findings were made. (1) PHEVs could help save around 60% or 40% in energy costs, compared with conventional gasoline vehicles (CGVs) or hybrid electric vehicles (HEVs), respectively. However, for motorists whose daily vehicle miles traveled (DVMT) is significant, HEVs may be even a better choice than PHEV40s, particularly in areas that lack a public charging infrastructure. (2) The incremental battery cost of large-battery PHEVs is difficult to justify based on the incremental savings of PHEVs operating costs unless a subsidy is offered for largebattery PHEVs. (3) When the price of gasoline increases from $4/gallon to $5/gallon, the number of drivers who benefit from a larger battery increases significantly. (4) Although quick chargers can reduce charging time, they contribute little to energy cost savings for PHEVs, as opposed to Level-II chargers.

  8. Rural electric cooperatives and the cost structure of the electric power industry: A multiproduct analysis

    SciTech Connect

    Berry, D.M.

    1992-01-01

    Since 1935, the federal government of the United States has administered a program designed to make electricity available to rural Americans. This dissertation traces the history of the rural electrification program, as well as its costs. While the Congress intended to simply provide help in building the capital structure of rural electric distribution systems, the program continues to flourish some 35 years after these systems first fully covered the countryside. Once the rural distribution systems were built, the government began to provide cooperatives with billions of dollars in subsidized loans for the generation of electric power. Although this program costs the taxpayers nearly $1 billion per year, no one has ever tested its efficacy. The coops' owner/members do not have the right to trade their individual ownership shares. The RECs do not fully exploit the scale and scope economies observed in the investor-owned sector of this industry. This dissertation compares the relative productive efficiencies of the RECs and the investor-owned electric utilities (IOUs) in the United States. Using multiproduct translog cost functions, the estimated costs of cooperatives are compared to those of IOUs in providing identical output bundles. Three separate products are considered as outputs: (1) wholesale power; (2) power sold to large industrial customers; and (3) power sold to residential and commercial customers. It is estimated that, were the RECs forced to pay market prices for their inputs, their costs would exceed those incurred by the IOUs by about 24 percent. Several policy recommendations are made: (1) the RECs should be converted to stockholder-owned, tax-paying corporations; (2) the government should discontinue its subsidized loan program; (3) the government should sell its hydroelectric power at market prices, nullifying the current preference given to cooperatives and municipal distributors in the purchase of this currently underpriced power.

  9. Central vacuum system with programmable controller reduces energy costs 40%

    SciTech Connect

    De Silva, R.; Varnes, W.; Gaines, A.

    1985-11-01

    The B.F. Goodrich Company needed a more efficient vacuum source for the pilot plant facilities in Avon Lake, OH where new products and manufacturing procedures are developed and evaluated. Fourteen multi-stage steam jet ejector vacuum systems were installed in one building, since a number of vacuum users could be operating concurrently at different levels in the range of 15 to 150 Torr. Ejectors were normally turned on or off to provide the desired vacuum and to conserve steam. Steam is wasted, however, if all stages are on and the amount of vacuum is regulated by bleeding inert gas into the system. Water can also enter the system by kick back, if steam to the ejectors is abruptly shut off. The jet ejector vacuum systems required a steady supply of high pressure steam day and night, but fluctuating demands could create problems in the quality of vacuum obtained. Steam and maintenance costs were also significant. Goodrich decided to replace most of the steam-operated vacuum units because of the high energy requirements, and concurrently reduce hydrocarbon emissions. A major manufacturer or mechanical vacuum equipment was asked to design a vacuum system that could provide steady vacuum in the range of 10 to 250 Torr. The system had to have sufficient capacity for a number of concurrently operating processes, and handle a wide variety of hydrocarbons. The system, designed to meet these requirements and installed in June 1984, consists of a Roots-type vacuum booster with bypass valves, discharging into an intercondenser. The progammable-controlled vacuum system has reduced energy requirements by approximately 40%, and has helped in minimizing emissions. The projected pay-back for the entire system is 1 1/2 years.

  10. Gasoline Hybrid Electric Delivery Vehicles Reduce Tailpipe Emissions While

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Weekly Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 10/07/16 10/14/16 10/21/16 10/28/16 11/04/16 11/11/16 View History U.S. 24.3 25.1 24.7 24.6 24.3 24.1 1991 Maintaining Fuel Economy - News Releases | NREL

    Gasoline Hybrid Electric Delivery Vehicles Reduce Tailpipe Emissions While Maintaining Fuel Economy February 23, 2011 The U.S. Department of Energy's (DOE) National Renewable Energy

  11. Transmission cost minimization strategies for wind-electric generating facilities

    SciTech Connect

    Gonzalez, R.

    1997-12-31

    Integrating wind-electric generation facilities into existing power systems presents opportunities not encountered in conventional energy projects. Minimizing outlet cost requires probabilistic value-based analyses appropriately reflecting the wind facility`s operational characteristics. The wind resource`s intermittent nature permits relaxation of deterministic criteria addressing outlet configuration and capacity required relative to facility rating. Equivalent capacity ratings of wind generation facilities being a fraction of installed nameplate rating, outlet design studies contingency analyses can concentrate on this fractional value. Further, given its non-dispatchable, low capacity factor nature, a lower level of redundancy in outlet facilities is appropriate considering the trifling contribution to output unreliability. Further cost reduction opportunities arise from {open_quotes}wind speed/generator power output{close_quotes} and {open_quotes}wind speed/overhead conductor rating{close_quotes} functions` correlation. Proper analysis permits the correlation`s exploitation to safely increase line ratings. Lastly, poor correlation between output and utility load may permit use of smaller conductors, whose higher (mostly off-peak) losses are economically justifiable.

  12. Reduce Operating Costs with an EnergySmart School Project

    Energy.gov [DOE]

    EnergySmart Schools fact sheet on how school operations and maintenance (O&M) personnel can play a greater role in managing ever-increasing energy costs.

  13. Project Profile: Reducing the Cost of Thermal Energy Storage for Parabolic Trough Solar Power Plants

    Energy.gov [DOE]

    Abengoa, under the Thermal Storage FOA, is looking at innovative ways to reduce thermal energy storage (TES) system costs.

  14. Reduce Pumping Costs Through Optimum Pipe Sizing - Pumping Systems Tips Sheet #9

    SciTech Connect

    2005-10-01

    BestPractices Program tip sheet discussing pumping system efficiency by reducing pumping costs through optimum pipe sizing.

  15. Energy Department Awards Nearly $7 Million for Research to Reduce...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    7 Million for Research to Reduce Costs of Electric Vehicle Chargers Energy Department Awards Nearly 7 Million for Research to Reduce Costs of Electric Vehicle Chargers December ...

  16. Cost-Benefit Analysis of Plug-in Hybrid Electric Vehicle Technology

    SciTech Connect

    Simpson, A.

    2006-11-01

    This paper presents a comparison of vehicle purchase and energy costs, and fuel-saving benefits of plug-in hybrid electric vehicles relative to hybrid electric and conventional vehicles.

  17. Fact #910: February 1, 2016 Study Shows Average Cost of Electric Vehicle

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Charger Installations - Dataset | Department of Energy 0: February 1, 2016 Study Shows Average Cost of Electric Vehicle Charger Installations - Dataset Fact #910: February 1, 2016 Study Shows Average Cost of Electric Vehicle Charger Installations - Dataset Excel file and dataset for Study Shows Average Cost of Electric Vehicle Charger Installations fotw#910_web.xlsx (16.26 KB) More Documents & Publications Fact #909: January 25, 2016 Workplace Charging Accounts for About a Third of All

  18. Reducing Energy Costs and Rebuilding the Past | Department of...

    Office of Environmental Management (EM)

    to make homes and buildings more energy efficient and save money on their energy bill. ... of an opportunity provided by the Energy Department to save money on energy costs. ...

  19. Challenge Accepted: Reducing the Soft Costs of Going Solar

    Energy.gov [DOE]

    Every year, it becomes even more affordable to go solar. However, one thing remains consistent: the non-hardware, or soft costs related to permitting, installation, and maintenance account for...

  20. Energy Cost Calculator for Electric and Gas Water Heaters | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Electric and Gas Water Heaters Energy Cost Calculator for Electric and Gas Water Heaters Vary equipment size, energy cost, hours of operation, and /or efficiency level. INPUT SECTION Input the following data (if any parameter is missing, calculator will set to default value). Defaults Type of Water Heater Electric Gas Electric Average Daily Usage (gallons per day)* gallons 64* Energy Factor† 0.92 (electric) 0.61 (gas) Energy Cost $ / kWh $0.06 per kWh $.60 per therm Quantity of

  1. Treatment Resin Reduces Costs, Materials in Hanford Groundwater Cleanup -

    Energy Saver

    Materials Available | Department of Energy Program 2015 Reliability & Markets Peer Review Materials Available Transmission Reliability Program 2015 Reliability & Markets Peer Review Materials Available September 16, 2015 - 3:07pm Addthis The August 4-5, 2015 Reliability and Markets peer review included 16 presentations over six sessions. The Reliability and Markets activity of the Transmission Reliability Program researches, develops, and implements infrastructure to ensure electric

  2. Low-Cost Production of Hydrogen and Electricity | Department...

    Energy.gov [DOE] (indexed site)

    producing hydrogen and electricity. The Fuel Cell Technologies Office (FCTO) conducts comprehensive efforts to overcome the technological, economic, and institutional ...

  3. Considering the total cost of electricity from sunlight and the alternatives

    SciTech Connect

    Fthenakis, Vasilis

    2015-03-01

    Photovoltaic (PV) electricity generation has grown to about 17 GW in the United States, corresponding to one tenth of the global capacity. Most deployment in the country has happened during the last 6 years. Reflecting back, in early 2008 this author and his collaborators James Mason and Ken Zweibel, published in Scientific American and in Energy Policy a Solar Grand Plan demonstrating the feasibility of renewable energy in providing 69% of the United States electricity demand by 2050, while reducing CO2 emissions by 60% from 2005 levels; the PV contribution to this plan was assessed to be 250 GW by 2030 and 2900 GW by 2050 [1]. The DOE's more detailed SunShot vision study, released in 2012, showed the possibility of having 300 GW of PV installed in the United States by 2030, and 630 GW by 2050. Assessing the sustainability of such rapid growth of photovoltaics necessitates undertaking a careful analysis because PV markets largely are enabled by its promise to produce reliable electricity with minimum environmental burdens. Measurable aspects of sustainability include cost, resource availability, and environmental impact. The question of cost concerns the affordability of solar energy compared to other energy sources throughout the world. Environmental impacts include local-, regional-, and global-effects, as well as the usage of land and water, which must be considered in a comparable context over a long time, multigenerational horizon. As a result, the availability of material resources matters to current and future-generations under the constraint of affordability.

  4. Low-Cost Packaged CHP System with Reduced Emissions - Presentation...

    Energy.gov [DOE] (indexed site)

    Presentation on a 330 kWe Packaged CHP System with Reduced Emissions, given by John ... in Washington, D.C. on June 1-2, 2011. chpemissionspendray.pdf (963.43 KB) More ...

  5. Cost and Performance Assumptions for Modeling Electricity Generation...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ......... 196 iv List of Figures Figure 1. Power plant size ... 29 Figure 15. Overnight capital costs-solar thermal ......

  6. Utilization of UV Curing Technology to Significantly Reduce the Manufacturing Cost of LIB Electrodes

    SciTech Connect

    Voelker, Gary; Arnold, John

    2015-11-30

    Previously identified novel binders and associated UV curing technology have been shown to reduce the time required to apply and finish electrode coatings from tens of minutes to less than one second. This revolutionary approach can result in dramatic increases in process speeds, significantly reduced capital (a factor of 10 to 20) and operating costs, reduced energy requirements, and reduced environmental concerns and costs due to the virtual elimination of harmful volatile organic solvents and associated solvent dryers and recovery systems. The accumulated advantages of higher speed, lower capital and operating costs, reduced footprint, lack of VOC recovery, and reduced energy cost is a reduction of 90% in the manufacturing cost of cathodes. When commercialized, the resulting cost reduction in Lithium batteries will allow storage device manufacturers to expand their sales in the market and thereby accrue the energy savings of broader utilization of HEVs, PHEVs and EVs in the U.S., and a broad technology export market is also envisioned.

  7. As Electric Vehicles Take Charge, Costs Power Down | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    As Electric Vehicles Take Charge, Costs Power Down As Electric Vehicles Take Charge, Costs Power Down January 13, 2012 - 1:29pm Addthis Thanks to a cost-sharing project with the Energy Department, General Motors has been able to develop the capacity to build electric and hybrid motors internally. That capacity has made cars like the upcoming Chevy Spark EV (above) possible. | Image courtesy of General Motors. Thanks to a cost-sharing project with the Energy Department, General Motors has been

  8. Electricity Plant Cost Uncertainties (released in AEO2009)

    Reports and Publications

    2009-01-01

    Construction costs for new power plants have increased at an extraordinary rate over the past several years. One study, published in mid-2008, reported that construction costs had more than doubled since 2000, with most of the increase occurring since 2005. Construction costs have increased for plants of all types, including coal, nuclear, natural gas, and wind.

  9. Small Town Using Wind Power to Offset Electricity Costs

    Energy.gov [DOE]

    Wind turbines will be used to supply electricity for the town hall, maintenance building, library and help power the town's water system.

  10. Retail Infrastructure Costs Comparison for Hydrogen and Electricity...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... However, the rollout of electric vehicle supply equipment (EVSE) and hydrogen retail stations (HRS) requires substantial investments with high risks due to many uncertainties. We ...

  11. REDUCING POWER PRODUCTION COSTS BY UTILIZING PETROLEUM COKE

    SciTech Connect

    Kevin C. Galbreath; Donald L. Toman; Christopher J. Zygarlicke

    1999-09-01

    Petroleum coke, a byproduct of the petroleum-refining process, is an attractive primary or supplemental fuel for power production primarily because of a progressive and predictable increase in the production volumes of petroleum coke (1, 2). Petroleum coke is most commonly blended with coal in proportions suitable to meet sulfur emission compliance. Petroleum coke is generally less reactive than coal; therefore, the cofiring of petroleum coke with coal typically improves ignition, flame stability, and carbon loss relative to the combustion of petroleum coke alone. Although petroleum coke is a desirable fuel for producing relatively inexpensive electrical power, concerns about the effects of petroleum coke blending on combustion and pollution control processes exist in the coal-fired utility industry (3). The Energy & Environmental Research Center (EERC) completed a 2-year technical assessment of petroleum coke as a supplemental fuel. A survey questionnaire was sent to seven electric utility companies that are currently cofiring coal and petroleum coke in an effort to solicit specific suggestions on research needs and fuel selections. An example of the letter and survey questionnaire is presented in Appendix A. Interest was expressed by most utilities in evaluating the effects of petroleum coke blending on grindability, combustion reactivity, fouling, slagging, and fly ash emissions control. Unexpectedly, concern over corrosion was not expressed by the utilities contacted. Although all seven utilities responded to the question, only two utilities, Northern States Power Company (NSP) and Ameren, sent fuels to the EERC for evaluation. Both utilities sent subbituminous coals from the Power River Basin and petroleum shot coke samples. Petroleum shot coke is produced unintentionally during operational upsets in the petroleum refining process. This report evaluates the effects of petroleum shot coke blending on grindability, fuel reactivity, fouling/slagging, and

  12. Incentives to Reduce Utility Costs for Public Housing Authorities

    Energy.gov [DOE]

    Under certain circumstances, HUD incentives allow public housing capital funds and extra energy savings from energy conservation measures to be allocated by the housing authority toward needed repairs and other eligible expenses. The rate reduction incentive allows public housing authorities to retain either 50% or 100% of the savings from a renewable-energy related reduced utility rate.

  13. Low-Cost Packaged Combined Heat and Power System with Reduced Emissions

    SciTech Connect

    2010-10-01

    Fact sheet overviewing how this project will develop a flexible, packaged CHP system that increases efficiency and reduces emissions and cost.

  14. Low-Cost Packaged CHP System with Reduced Emissions - Fact Sheet...

    Energy.gov [DOE] (indexed site)

    Cummins Power Generation, in collaboration with Cummins Engine Business Unit, is ... and 410 kW of thermal output while increasing efficiency and reducing emissions and cost. ...

  15. Edison Electric Institute (EEI) Reducing Regulatory Burden RFI...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    request for information (RFI) issued by the Department of Energy (DOE). ... 5-29-12.pdf More Documents & Publications Edison Electric Institute (EEI) Regulatory Burden RFI, 77 ...

  16. Hawaii Electric Co. Inc. Smart Grid Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Reliability and Power Quality Reduced Operating and Maintenance Costs Reduced Electricity Costs for Customers Reduced Truck Fleet Fuel Usage Reduced Greenhouse Gas and...

  17. Black Hills/Colorado Electric Utility Co. Smart Grid Project...

    OpenEI (Open Energy Information) [EERE & EIA]

    Thermostats Targeted Benefits Reduced Meter Reading Costs Improved Electric Service Reliability Reduced Ancillary Service Cost Reduced Truck Fleet Fuel Usage Reduced Greenhouse...

  18. Lakeland Electric Smart Grid Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    for Customers Reduced Operating and Maintenance Costs Improved Electric Service Reliability Reduced Costs from Distribution Line Losses Reduced Truck Fleet Fuel Usage Reduced...

  19. Cutting Electricity Costs in Miami-Dade County, Florida

    Office of Energy Efficiency and Renewable Energy (EERE)

    Miami-Dade County, Florida will be piping methane gas from their regional landfill to the adjacent wastewater plant to generate a significant portion of the massive facility's future electricity...

  20. Cutting Electricity Costs in Miami-Dade County, Florida

    SciTech Connect

    Alvarez, Carlos; Oliver, LeAnn; Kronheim, Steve; Gonzalez, Jorge; Woods-Richardson, Kathleen

    2011-01-01

    Miami-Dade County, Florida will be piping methane gas from their regional landfill to the adjacent wastewater plant to generate a significant portion of the massive facility's future electricity needs.

  1. Cutting Electricity Costs in Miami-Dade County, Florida

    ScienceCinema

    Alvarez, Carlos; Oliver, LeAnn; Kronheim, Steve; Gonzalez, Jorge; Woods-Richardson, Kathleen

    2016-07-12

    Miami-Dade County, Florida will be piping methane gas from their regional landfill to the adjacent wastewater plant to generate a significant portion of the massive facility's future electricity needs.

  2. DOE Announces $27 Million to Reduce Costs of Solar Energy Projects,

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Streamline Permitting and Installations | Department of Energy 27 Million to Reduce Costs of Solar Energy Projects, Streamline Permitting and Installations DOE Announces $27 Million to Reduce Costs of Solar Energy Projects, Streamline Permitting and Installations June 1, 2011 - 10:24am Addthis As part of the Obama Administration's SunShot Initiative to make solar energy cost-competitive with fossil fuels within the decade, U.S. Department of Energy Secretary Steven Chu today announced the

  3. DOE Announces $27 Million to Reduce Costs of Solar Energy Projects,

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Streamline Permitting and Installations | Department of Energy 7 Million to Reduce Costs of Solar Energy Projects, Streamline Permitting and Installations DOE Announces $27 Million to Reduce Costs of Solar Energy Projects, Streamline Permitting and Installations June 1, 2011 - 12:00am Addthis WASHINGTON, DC - As part of the Obama Administration's SunShot Initiative to make solar energy cost-competitive with fossil fuels within the decade, U.S. Department of Energy Secretary Steven Chu today

  4. Lab Participates in Program to Reduce Electricity Use to Prevent...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Prepare Now for Annual Electricity Consumption Reduction Test set for June 23 from 1:45-3:15 ... At the end of the annual test or an actual event, an email will be sent to staff and ...

  5. Edison Electric Institute (EEI) Reducing Regulatory Burden RFI...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Reg. 75798 (Dec. 5, 2011) The Edison Electric Institute ... Department of Energy (DOE). PDF icon Reg review - DOE RFI - EEI cmts 2-3-12.pdf More Documents & Publications EEI ...

  6. Time Domain Partitioning of Electricity Production Cost Simulations

    SciTech Connect

    Barrows, C.; Hummon, M.; Jones, W.; Hale, E.

    2014-01-01

    Production cost models are often used for planning by simulating power system operations over long time horizons. The simulation of a day-ahead energy market can take several weeks to compute. Tractability improvements are often made through model simplifications, such as: reductions in transmission modeling detail, relaxation of commitment variable integrality, reductions in cost modeling detail, etc. One common simplification is to partition the simulation horizon so that weekly or monthly horizons can be simulated in parallel. However, horizon partitions are often executed with overlap periods of arbitrary and sometimes zero length. We calculate the time domain persistence of historical unit commitment decisions to inform time domain partitioning of production cost models. The results are implemented using PLEXOS production cost modeling software in an HPC environment to improve the computation time of simulations while maintaining solution integrity.

  7. Secured electrical supply at least cost: Coal, gas, nuclear, hydro

    SciTech Connect

    Gavor, J.; Stary, O.; Vasicek, J.

    1995-12-01

    Electric power sector in East Central European countries finds in a difficult period. In the situation of demand stagnation, enormous investments must be realized in a very short time. Today`s decisions in the development strategy will influence the long term future of the industry. The optimal structure of the sources is one of the most important problem to be solved. Paper describes the current structure of the sources in electric power sector in the Czech Republic. The importance of coal, oil and gas, nuclear and hydro in electric power generation is compared. Taking into account the different position in the load coverage, economy of individual sources is evaluated and basic results of discounted cash flow calculations are presented. Information on specific investment programs and projects are included and further trends are estimated.

  8. Fact #949: October 31, 2016 Reduced CO2 Emissions in the Electric Power

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Sector Will Benefit the Transportation Sector as Electrification Grows - Dataset | Department of Energy 9: October 31, 2016 Reduced CO2 Emissions in the Electric Power Sector Will Benefit the Transportation Sector as Electrification Grows - Dataset Fact #949: October 31, 2016 Reduced CO2 Emissions in the Electric Power Sector Will Benefit the Transportation Sector as Electrification Grows - Dataset Excel file and dataset for Reduced CO2 Emissions in the Electric Power Sector Will Benefit the

  9. Fact #791: August 5, 2013 Comparative Costs to Drive an Electric...

    Energy.gov [DOE] (indexed site)

    On average, it costs about three times less to drive an electric vehicle than a conventional gasoline-powered vehicle. The Department of Energy has created a new term, called the ...

  10. Considering the total cost of electricity from sunlight and the alternatives

    DOE PAGES [OSTI]

    Fthenakis, Vasilis

    2015-03-01

    Photovoltaic (PV) electricity generation has grown to about 17 GW in the United States, corresponding to one tenth of the global capacity. Most deployment in the country has happened during the last 6 years. Reflecting back, in early 2008 this author and his collaborators James Mason and Ken Zweibel, published in Scientific American and in Energy Policy a Solar Grand Plan demonstrating the feasibility of renewable energy in providing 69% of the United States electricity demand by 2050, while reducing CO2 emissions by 60% from 2005 levels; the PV contribution to this plan was assessed to be 250 GW bymore » 2030 and 2900 GW by 2050 [1]. The DOE's more detailed SunShot vision study, released in 2012, showed the possibility of having 300 GW of PV installed in the United States by 2030, and 630 GW by 2050. Assessing the sustainability of such rapid growth of photovoltaics necessitates undertaking a careful analysis because PV markets largely are enabled by its promise to produce reliable electricity with minimum environmental burdens. Measurable aspects of sustainability include cost, resource availability, and environmental impact. The question of cost concerns the affordability of solar energy compared to other energy sources throughout the world. Environmental impacts include local-, regional-, and global-effects, as well as the usage of land and water, which must be considered in a comparable context over a long time, multigenerational horizon. As a result, the availability of material resources matters to current and future-generations under the constraint of affordability.« less

  11. Fact #910: February 1, 2016 Study Shows Average Cost of Electric Vehicle

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Charger Installations | Department of Energy 0: February 1, 2016 Study Shows Average Cost of Electric Vehicle Charger Installations Fact #910: February 1, 2016 Study Shows Average Cost of Electric Vehicle Charger Installations SUBSCRIBE to the Fact of the Week The EV Project and the ChargePoint America project were conducted for the Department of Energy by Idaho National Laboratory (INL). From 2011-2013 the project installed nearly 17,000 alternating current (AC) Level 2 charging stations

  12. NREL Reduces Climate Control Loads in Electric Vehicles (Fact Sheet)

    SciTech Connect

    Not Available

    2014-08-01

    NREL demonstrates that zonal climate control can reduce air conditioning power and improve range while maintaining driver thermal sensation.

  13. Energy Department Awards More than $5 Million to Reduce Cost of Advanced

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fuel Cells | Department of Energy More than $5 Million to Reduce Cost of Advanced Fuel Cells Energy Department Awards More than $5 Million to Reduce Cost of Advanced Fuel Cells March 27, 2012 - 1:56pm Addthis The Energy Department today announced the investment of more than $5 million in two projects-led by 3M Company in St. Paul, Minnesota, and Eaton Corporation in Southfield, Michigan-that will lower the cost of advanced fuel cell systems by developing and engineering cost-effective,

  14. Electricity generator cost data from survey form EIA-860

    Gasoline and Diesel Fuel Update

    Electricity Use as an Indicator of U.S. Economic Activity Vipin Arora and Jozef Lieskovsky November 2014 Independent Statistics & Analysis www.eia.gov U.S. Energy Information Administration Washington, DC 20585 This paper is released to encourage discussion and critical comment. The analysis and conclusions expressed here are those of the authors and not necessarily those of the U.S. Energy Information Administration. WORKING PAPER SERIES December 2014 Vipin Arora and Jozef Lieskovsky | U.S.

  15. Energy Department Announces $7 Million to Reduce Non-Hardware Costs of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Solar Energy Systems | Department of Energy Million to Reduce Non-Hardware Costs of Solar Energy Systems Energy Department Announces $7 Million to Reduce Non-Hardware Costs of Solar Energy Systems November 15, 2011 - 4:52pm Addthis Washington, D.C. - As part of the U.S. Department of Energy's SunShot Initiative, Energy Secretary Steven Chu today announced up to $7 million to reduce the non-hardware costs of residential and commercial solar energy installations. Made available through the

  16. Energy Department Announces Up to $25 Million to Reduce Costs of Algal

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Biofuels | Department of Energy Up to $25 Million to Reduce Costs of Algal Biofuels Energy Department Announces Up to $25 Million to Reduce Costs of Algal Biofuels September 30, 2014 - 10:15am Addthis In support of President Obama's all-of-the-above energy strategy, the Energy Department today announced up to $25 million in funding to reduce the cost of algal biofuels to less than $5 per gasoline gallon equivalent (gge) by 2019. This funding supports the development of a bioeconomy that can

  17. Different approaches to estimating transition costs in the electric- utility industry

    SciTech Connect

    Baxter, L.W.

    1995-10-01

    The term ``transition costs`` describes the potential revenue shortfall (or welfare loss) a utility (or other actor) may experience through government-initiated deregulation of electricity generation. The potential for transition costs arises whenever a regulated industry is subject to competitive market forces as a result of explicit government action. Federal and state proposals to deregulate electricity generation sparked a national debate on transition costs in the electric-utility industry. Industry-wide transition cost estimates range from about $20 billion to $500 billion. Such disparate estimates raise important questions on estimation methods for decision makers. This report examines different approaches to estimating transition costs. The study has three objectives. First, we discuss the concept of transition cost. Second, we identify the major cost categories included in transition cost estimates and summarize the current debate on which specific costs are appropriately included in these estimates. Finally, we identify general and specific estimation approaches and assess their strengths and weaknesses. We relied primarily on the evidentiary records established at the Federal Energy Regulatory Commission and the California Public Utilities Commission to identify major cost categories and specific estimation approaches. We also contacted regulatory commission staffs in ten states to ascertain estimation activities in each of these states. We refined a classification framework to describe and assess general estimation options. We subsequently developed and applied criteria to describe and assess specific estimation approaches proposed by federal regulators, state regulators, utilities, independent power companies, and consultants.

  18. Build-it-yourself solar water heater: reduce electric use

    SciTech Connect

    Not Available

    1982-01-01

    Drawings and instructions for a simple breadbox-style solar water heater are presented. This booklet is a step-by-step guide to building a solar water heater for approximately 15 percent of the cost of most commercially-installed systems. This system does not provide as much energy as the commercially available systems. (MHR)

  19. EERE Success Story-Low-Cost Production of Hydrogen and Electricity |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Low-Cost Production of Hydrogen and Electricity EERE Success Story-Low-Cost Production of Hydrogen and Electricity April 10, 2013 - 12:00am Addthis At an airport in Anchorage, Alaska, EERE provided funds to Bloom Energy in completing a one-year demonstration of two 25-kilowatt fuel cells-providing valuable, real-world data in one of the harshest environments on earth. Each fuel cell showed an impressive peak electrical efficiency of more than 50%. The high operating

  20. Reducing the Vulnerability of Electric Power Grids to Terrorist Attacks

    SciTech Connect

    Ross Baldick; Thekla Boutsika; Jin Hur; Manho Joung; Yin Wu; Minqi Zhong

    2009-01-31

    This report describes the development of a cascading outage analyzer that, given an initial disturbance on an electric power system, checks for thermal overloads, under-frequency and over-frequency conditions, and under-voltage conditions that would result in removal of elements from the system. The analyzer simulates the successive tripping of elements due to protective actions until a post-event steady state or a system blackout is reached.

  1. Assessing strategies to address transition costs in a restructuring electricity industry

    SciTech Connect

    Baxter, L.; Hadley, S.; Hirst, E.

    1996-08-01

    Restructuring the US electricity industry has become the nation`s central energy issue for the 1990s. Restructuring proposals at the federal and state levels focus on more competitive market structures for generation and the integration of transmission within those structures. The proposed move to more competitive generation markets will expose utility costs that are above those experienced by alternative suppliers. Debate about these above-market, or transition, costs (e.g., their size,who will pay for them and how) has played a prominent role in restructuring proceedings. This paper presents results from a project to systematically assess strategies to address transition costs exposed by restructuring the electricity industry.

  2. NASA Ames Saves Energy and Reduces Project Costs with Non-Invasive Retrofit Technologies

    Energy.gov [DOE]

    Presentation—given at the Fall 2011 Federal Utility Partnership Working Group (FUPWG) meeting—covers the NASA Ames Research Center's effort to save energy and reduce project costs with non-invasive retrofit technologies.

  3. Reducing Enzyme Costs Increases the Market Potential of Biofuels (Fact Sheet)

    SciTech Connect

    Not Available

    2013-08-01

    Cellulosic ethanol prices depend heavily on the cost of the cellulase enzymes used to break down the biomass into fermentable sugars. To reduce these costs, NREL partnered with two leading enzyme companies, Novozymes and Genencor, to engineer new cellulase enzymes that are exceptionally good at breaking down cellulose. Genencor is now part of DuPont Industrial Biosciences.

  4. Fact #949: October 31, 2016 Reduced CO2 Emissions in the Electric Power

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Sector Will Benefit the Transportation Sector as Electrification Grows | Department of Energy 9: October 31, 2016 Reduced CO2 Emissions in the Electric Power Sector Will Benefit the Transportation Sector as Electrification Grows Fact #949: October 31, 2016 Reduced CO2 Emissions in the Electric Power Sector Will Benefit the Transportation Sector as Electrification Grows SUBSCRIBE to the Fact of the Week In 1973, the electric power sector produced 691 metric tons of carbon dioxide (CO2)

  5. Winning the Future: Grand Ronde Solar Projects Reduce Pollution, Cut Costs

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    | Department of Energy Grand Ronde Solar Projects Reduce Pollution, Cut Costs Winning the Future: Grand Ronde Solar Projects Reduce Pollution, Cut Costs October 20, 2014 - 5:00pm Addthis PV panels installed on Grand Ronde Tribal Housing Authority carport. Photo from GRTHA, NREL 31797 PV panels installed on Grand Ronde Tribal Housing Authority carport. Photo from GRTHA, NREL 31797 Challenge: Situated on nearly 12,000 acres in the heart of Western Oregon's scenic coastal range, the

  6. User's guide to SERICPAC: A computer program for calculating electric-utility avoided costs rates

    SciTech Connect

    Wirtshafter, R.; Abrash, M.; Koved, M.; Feldman, S.

    1982-05-01

    SERICPAC is a computer program developed to calculate average avoided cost rates for decentralized power producers and cogenerators that sell electricity to electric utilities. SERICPAC works in tandem with SERICOST, a program to calculate avoided costs, and determines the appropriate rates for buying and selling of electricity from electric utilities to qualifying facilities (QF) as stipulated under Section 210 of PURA. SERICPAC contains simulation models for eight technologies including wind, hydro, biogas, and cogeneration. The simulations are converted in a diversified utility production which can be either gross production or net production, which accounts for an internal electricity usage by the QF. The program allows for adjustments to the production to be made for scheduled and forced outages. The final output of the model is a technology-specific average annual rate. The report contains a description of the technologies and the simulations as well as complete user's guide to SERICPAC.

  7. South Mississippi Electric Power Association (SMEPA) Smart Grid...

    OpenEI (Open Energy Information) [EERE & EIA]

    Network Targeted Benefits Reduced Meter Reading Costs Improved Electric Service Reliability and Power Quality Reduced Costs from Distribution Line Losses and Theft Reduced...

  8. EERE Success Story-Element One Reduces Cost of Hydrogen Leak Detection

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Systems | Department of Energy Element One Reduces Cost of Hydrogen Leak Detection Systems EERE Success Story-Element One Reduces Cost of Hydrogen Leak Detection Systems August 25, 2014 - 1:47pm Addthis Element One, Inc. of Boulder, Colorado, has patented unique hydrogen leak detection materials that form the basis for a wide array of very low-cost hydrogen detection systems. Applied as a thin film, or incorporated into paints and inks, the materials change color and conductivity to alert

  9. Sandia National Laboratories Work to Reduce Cost of Deep-Water Offshore

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Wind | Department of Energy Work to Reduce Cost of Deep-Water Offshore Wind Sandia National Laboratories Work to Reduce Cost of Deep-Water Offshore Wind October 24, 2016 - 4:26pm Addthis Many U.S. coastal regions have both large population centers and strong offshore wind resources, making offshore wind energy an attractive solution for meeting the energy needs of coastal communities. However, the biggest barrier to realizing the potential benefits of offshore wind is its cost, particularly

  10. Improved Battery Pack Thermal Management to Reduce Cost and Increase Energy Density: Cooperative Research and Development Final Report, CRADA Number CRD-12-499

    SciTech Connect

    Smith, K.

    2013-10-01

    Under this CRADA NREL will support Creare's project for the Department of Energy entitled 'Improved Battery Pack Thermal Management to Reduce Cost and Increase Energy Density' which involves the development of an air-flow based cooling product that increases energy density, safety, and reliability of hybrid electric vehicle battery packs.

  11. Low-Cost Packaged CHP System with Reduced Emissions - Presentation by

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Cummins Power Generation, June 2011 | Department of Energy Low-Cost Packaged CHP System with Reduced Emissions - Presentation by Cummins Power Generation, June 2011 Low-Cost Packaged CHP System with Reduced Emissions - Presentation by Cummins Power Generation, June 2011 Presentation on a 330 kWe Packaged CHP System with Reduced Emissions, given by John Pendray of Cummins Power Generation, at the U.S. DOE Industrial Distributed Energy Portfolio Review Meeting in Washington, D.C. on June 1-2,

  12. A Development Path to the Efficient and Cost-Effective Bulk Storage of Electrical Energy

    SciTech Connect

    Post, R F

    2009-09-24

    Efficient and cost-effective means for storing electrical energy is becoming an increasing need in our electricity-oriented society. For example, for electric utilities an emerging need is for distributed storage systems, that is, energy storage at substations, at solar or wind-power sites, or for load-leveling at the site of major consumers of their electricity. One of the important consequences of distributed storage for the utilities would be the reduction in transmission losses that would result from having a local source of load-leveling power. For applications such as these there are three criteria that must be satisfied by any new system that is developed to meet such needs. These criteria are: (1) high 'turn-around' efficiency, that is, high efficiency of both storing and recovering the stored energy in electrical form, (2) long service life (tens of years), with low maintenance requirements, and, (3) acceptably low capital cost. An additional requirement for these particular applications is that the system should have low enough standby losses to permit operation on a diurnal cycle, that is, storing the energy during a portion of a given day (say during sunlight hours) followed several hours later by its use during night-time hours. One answer to the spectrum of energy storage needs just outlined is the 'electromechanical battery'. The E-M battery, under development for several years at the Laboratory and elsewhere in the world, has the potential to solve the above energy storage problems in a manner superior to the electro-chemical battery in the important attributes of energy recovery efficiency, cycle lifetime, and amortized capital cost. An electromechanical battery is an energy storage module consisting of a high-speed rotor, fabricated from fiber composite, and having an integrally mounted generator/motor. The rotor operates at high speed, in vacuo, inside of a hermetically sealed enclosure, supported by a 'magnetic bearing', that is, a bearing that

  13. Cost of Power Interruptions to Electricity Consumers in the UnitedStates (U.S.)

    SciTech Connect

    Hamachi LaCommare, Kristina; Eto, Joseph H.

    2006-02-16

    The massive electric power blackout in the northeastern U.S.and Canada on August 14-15, 2003 catalyzed discussions about modernizingthe U.S. electricity grid. Industry sources suggested that investments of$50 to $100 billion would be needed. This work seeks to better understandan important piece of information that has been missing from thesediscussions: What do power interruptions and fluctuations in powerquality (power-quality events) cost electricity consumers? We developed abottom-up approach for assessing the cost to U.S. electricity consumersof power interruptions and power-quality events (referred to collectivelyas "reliability events"). The approach can be used to help assess thepotential benefits of investments in improving the reliability of thegrid. We developed a new estimate based on publicly availableinformation, and assessed how uncertainties in these data affect thisestimate using sensitivity analysis.

  14. Flexible gas insulated transmission line having regions of reduced electric field

    DOEpatents

    Cookson, Alan H.; Fischer, William H.; Yoon, Kue H.; Meyer, Jeffry R.

    1983-01-01

    A gas insulated transmission line having radially flexible field control means for reducing the electric field along the periphery of the inner conductor at predetermined locations wherein the support insulators are located. The radially flexible field control means of the invention includes several structural variations of the inner conductor, wherein careful controlling of the length to depth of surface depressions produces regions of reduced electric field. Several embodiments of the invention dispose a flexible connector at the predetermined location along the inner conductor where the surface depressions that control the reduced electric field are located.

  15. NREL Releases Updated Baseline of Cost and Performance Data for Electricity

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Generation Technologies | Energy Systems Integration | NREL Releases Updated Baseline of Cost and Performance Data for Electricity Generation Technologies Webinar to be held on September 13 September 1, 2016 Graph-showing-NREL-2016-Annual-Technology-Baseline From NREL's 2016 Annual Technology Baseline, the projected Capital Expenditure (CAPEX) for electricity generating technologies in 2030. The Energy Department's National Renewable Energy Laboratory (NREL) has released the 2016 Annual

  16. NREL Releases Updated Baseline of Cost and Performance Data for Electricity

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Generation Technologies | Grid Modernization | NREL Updated Baseline of Cost and Performance Data for Electricity Generation Technologies Webinar to be held on September 13 September 1, 2016 Graph-showing-NREL-2016-Annual-Technology-Baseline From NREL's 2016 Annual Technology Baseline, the projected Capital Expenditure (CAPEX) for electricity generating technologies in 2030. The Energy Department's National Renewable Energy Laboratory (NREL) has released the 2016 Annual Technology Baseline.

  17. NREL Releases Updated Baseline of Cost and Performance Data for Electricity

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Generation Technologies - News Releases | NREL Releases Updated Baseline of Cost and Performance Data for Electricity Generation Technologies Webinar to be held on September 13 September 1, 2016 Graph-showing-NREL-2016-Annual-Technology-Baseline From NREL's 2016 Annual Technology Baseline, the projected Capital Expenditure (CAPEX) for electricity generating technologies in 2030. The Energy Department's National Renewable Energy Laboratory (NREL) has released the 2016 Annual Technology

  18. Cost and Quality of Fuels for Electric Utility Plants 2000 Tables

    Gasoline and Diesel Fuel Update

    0) Distribution Category UC-950 Cost and Quality of Fuels for Electric Utility Plants 2000 Tables August 2001 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position

  19. Cost and quality of fuels for electric utility plants: Energy data report. 1980 annual

    SciTech Connect

    Not Available

    1981-06-25

    In 1980 US electric utilities reported purchasng 594 million tons of coal, 408.5 million barrels of oil and 3568.7 billion ft/sup 3/ of gas. As compared with 1979 purchases, coal rose 6.7%, oil decreased 20.9%, and gas increased for the fourth year in a row. This volume presents tabulated and graphic data on the cost and quality of fossil fuel receipts to US electric utilities plants with a combined capacity of 25 MW or greater. Information is included on fuel origin and destination, fuel types, and sulfur content, plant types, capacity, and flue gas desulfurization method used, and fuel costs. (LCL)

  20. Electricity prices in a competitive environment: Marginal cost pricing of generation services and financial status of electric utilities. A preliminary analysis through 2015

    SciTech Connect

    1997-08-01

    The emergence of competitive markets for electricity generation services is changing the way that electricity is and will be priced in the United States. This report presents the results of an analysis that focuses on two questions: (1) How are prices for competitive generation services likely to differ from regulated prices if competitive prices are based on marginal costs rather than regulated {open_quotes}cost-of-service{close_quotes} pricing? (2) What impacts will the competitive pricing of generation services (based on marginal costs) have on electricity consumption patterns, production costs, and the financial integrity patterns, production costs, and the financial integrity of electricity suppliers? This study is not intended to be a cost-benefit analysis of wholesale or retail competition, nor does this report include an analysis of the macroeconomic impacts of competitive electricity prices.

  1. NREL and General Motors Announce R&D Partnership to Reduce Cost of

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Automotive Fuel Cells - News Releases | NREL and General Motors Announce R&D Partnership to Reduce Cost of Automotive Fuel Cells June 25, 2014 The Energy Department's National Renewable Energy Laboratory (NREL) and General Motors (GM) are partnering on a multiyear, multimillion dollar joint effort to accelerate the reduction of automotive fuel cell stack costs through fuel cell material and manufacturing research and development (R&D). Most major automakers, including GM, have made

  2. Low cost, compact, and high efficiency traction motor for electric and hybrid electric vehicles

    SciTech Connect

    Ehsani, Mark

    2002-10-07

    A new motor drive, the switched reluctance motor drive, has been developed for hybrid-electric vehicles. The motor drive has been designed, built and tested in the test bed at a near vehicle scale. It has been shown that the switched reluctance motor drive is more suitable for traction application than any other motor drive.

  3. An examination of the costs and critical characteristics of electric utility distribution system capacity enhancement projects

    SciTech Connect

    Balducci, Patrick J.; Schienbein, Lawrence A.; Nguyen, Tony B.; Brown, Daryl R.; Fathelrahman, Eihab M.

    2004-06-01

    This report classifies and analyzes the capital and total costs (e.g., income tax, property tax, depreciation, centralized power generation, insurance premiums, and capital financing) associated with 130 electricity distribution system capacity enhancement projects undertaken during 1995-2002 or planned in the 2003-2011 time period by three electric power utilities operating in the Pacific Northwest. The Pacific Northwest National Laboratory (PNNL), in cooperation with participating utilities, has developed a large database of over 3,000 distribution system projects. The database includes brief project descriptions, capital cost estimates, the stated need for each project, and engineering data. The database was augmented by additional technical (e.g., line loss, existing substation capacities, and forecast peak demand for power in the area served by each project), cost (e.g., operations, maintenance, and centralized power generation costs), and financial (e.g., cost of capital, insurance premiums, depreciations, and tax rates) data. Though there are roughly 3,000 projects in the database, the vast majority were not included in this analysis because they either did not clearly enhance capacity or more information was needed, and not available, to adequately conduct the cost analyses. For the 130 projects identified for this analysis, capital cost frequency distributions were constructed, and expressed in terms of dollars per kVA of additional capacity. The capital cost frequency distributions identify how the projects contained within the database are distributed across a broad cost spectrum. Furthermore, the PNNL Energy Cost Analysis Model (ECAM) was used to determine the full costs (e.g., capital, operations and maintenance, property tax, income tax, depreciation, centralized power generation costs, insurance premiums and capital financing) associated with delivering electricity to customers, once again expressed in terms of costs per kVA of additional capacity

  4. Milestone Reached: New Process Reduces Cost and Risk of Biofuel Production

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    from Bio-Oil Upgrading | Department of Energy Milestone Reached: New Process Reduces Cost and Risk of Biofuel Production from Bio-Oil Upgrading Milestone Reached: New Process Reduces Cost and Risk of Biofuel Production from Bio-Oil Upgrading May 6, 2015 - 11:29am Addthis Battelle’s hydrotreatment system converts bio-oil into biofuel. Photo courtesy of Battelle. Battelle's hydrotreatment system converts bio-oil into biofuel. Photo courtesy of Battelle. Battelle-a nonprofit research and

  5. EERE Success Story-Milestone Reached: New Process Reduces Cost and Risk

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Biofuel Production from Bio-Oil Upgrading | Department of Energy Milestone Reached: New Process Reduces Cost and Risk of Biofuel Production from Bio-Oil Upgrading EERE Success Story-Milestone Reached: New Process Reduces Cost and Risk of Biofuel Production from Bio-Oil Upgrading May 12, 2015 - 4:53pm Addthis Battelle-a nonprofit research and development organization that operates many of the national laboratories-reached an Energy Department project milestone to demonstrate at least 1,000

  6. Utilization of UV or EB Curing Technology to Significantly Reduce Costs and

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    VOCs in the Manufacture of Lithium-Ion Battery Electrodes | Department of Energy Utilization of UV or EB Curing Technology to Significantly Reduce Costs and VOCs in the Manufacture of Lithium-Ion Battery Electrodes Utilization of UV or EB Curing Technology to Significantly Reduce Costs and VOCs in the Manufacture of Lithium-Ion Battery Electrodes 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting es132_voelker_2012_p.pdf

  7. High-Performance with Solar Electric Reduced Peak Demand: Premier Homes

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Rancho Cordoba, CA - Building America Top Innovation | Department of Energy with Solar Electric Reduced Peak Demand: Premier Homes Rancho Cordoba, CA - Building America Top Innovation High-Performance with Solar Electric Reduced Peak Demand: Premier Homes Rancho Cordoba, CA - Building America Top Innovation Photo of homes in Premier Gardens. As the housing market continues to evolve toward zero net-energy ready homes, Building America research has provided essential guidance for integrating

  8. Life-cycle cost comparisons of advanced storage batteries and fuel cells for utility, stand-alone, and electric vehicle applications

    SciTech Connect

    Humphreys, K.K.; Brown, D.R.

    1990-01-01

    This report presents a comparison of battery and fuel cell economics for ten different technologies. To develop an equitable economic comparison, the technologies were evaluated on a life-cycle cost (LCC) basis. The LCC comparison involved normalizing source estimates to a standard set of assumptions and preparing a lifetime cost scenario for each technology, including the initial capital cost, replacement costs, operating and maintenance (O M) costs, auxiliary energy costs, costs due to system inefficiencies, the cost of energy stored, and salvage costs or credits. By considering all the costs associated with each technology over its respective lifetime, the technology that is most economical to operate over any given period of time can be determined. An analysis of this type indicates whether paying a high initial capital cost for a technology with low O M costs is more or less economical on a lifetime basis than purchasing a technology with a low initial capital cost and high O M costs. It is important to realize that while minimizing cost is important, the customer will not always purchase the least expensive technology. The customer may identify benefits associated with a more expensive option that make it the more attractive over all (e.g., reduced construction lead times, modularity, environmental benefits, spinning reserve, etc.). The LCC estimates presented in this report represent three end-use applications: utility load-leveling, stand-alone power systems, and electric vehicles.

  9. A framework and review of customer outage costs: Integration and analysis of electric utility outage cost surveys

    SciTech Connect

    Lawton, Leora; Sullivan, Michael; Van Liere, Kent; Katz, Aaron; Eto, Joseph

    2003-11-01

    A clear understanding of the monetary value that customers place on reliability and the factors that give rise to higher and lower values is an essential tool in determining investment in the grid. The recent National Transmission Grid Study recognizes the need for this information as one of growing importance for both public and private decision makers. In response, the U.S. Department of Energy has undertaken this study, as a first step toward addressing the current absence of consistent data needed to support better estimates of the economic value of electricity reliability. Twenty-four studies, conducted by eight electric utilities between 1989 and 2002 representing residential and commercial/industrial (small, medium and large) customer groups, were chosen for analysis. The studies cover virtually all of the Southeast, most of the western United States, including California, rural Washington and Oregon, and the Midwest south and east of Chicago. All variables were standardized to a consistent metric and dollar amounts were adjusted to the 2002 CPI. The data were then incorporated into a meta-database in which each outage scenario (e.g., the lost of electric service for one hour on a weekday summer afternoon) is treated as an independent case or record both to permit comparisons between outage characteristics and to increase the statistical power of analysis results. Unadjusted average outage costs and Tobit models that estimate customer damage functions are presented. The customer damage functions express customer outage costs for a given outage scenario and customer class as a function of location, time of day, consumption, and business type. One can use the damage functions to calculate outage costs for specific customer types. For example, using the customer damage functions, the cost experienced by an ''average'' customer resulting from a 1 hour summer afternoon outage is estimated to be approximately $3 for a residential customer, $1,200 for small

  10. An estimate of the cost of electricity production from hot-dry rock

    SciTech Connect

    Pierce, K.G. ); Livesay, B.J. )

    1993-01-01

    This paper gives an estimate of the cost to produce electricity from hot-dry rock (HDR). Employment of the energy in HDR for the production of electricity requires drilling multiple wells from the surface to the hot rock, connecting the wells through hydraulic fracturing, and then circulating water through the fracture system to extract heat from the rock. The basic HDR system modeled in this paper consists of an injection well, two production wells, the fracture system (or HDR reservoir), and a binary power plant. Water is pumped into the reservoir through the injection well where it is heated and then recovered through the production wells. Upon recovery, the hot water is pumped through a heat exchanger transferring heat to the binary, or working, fluid in the power plant. The power plant is a net 5.1-MW[sub e] binary plant employing dry cooling. Make-up water is supplied by a local well. In this paper, the cost of producing electricity with the basic system is estimated as the sum of the costs of the individual parts. The effects on cost of variations to certain assumptions, as well as the sensitivity of costs to different aspects of the basic system, are also investigated.

  11. An estimate of the cost of electricity production from hot-dry rock

    SciTech Connect

    Pierce, K G; Livesay, B J

    1993-01-01

    This paper gives an estimate of the cost to produce electricity from hot-dry rock (HDR). Employment of the energy in HDR for the production of electricity requires drilling multiple wells from the surface to the hot rock, connecting the wells through hydraulic fracturing, and then circulating water through the fracture system to extract heat from the rock. The basic HDR system modeled in this paper consists of an injection well, two production wells, the fracture system (or HDR reservoir), and a binary power plant. Water is pumped into the reservoir through the injection well where it is heated and then recovered through the production wells. Upon recover, the hot water is pumped through a heat exchanger transferring heat to the binary, or working, fluid in the power plant. The power plant is a net 5.1-MW binary plant employing dry cooling. Make-up water is supplied by a local well. In this paper, the cost of producing electricity with the basic system is estimated as the sum of the costs of the individual parts. The effects on cost of variations to certain assumptions, as well as the sensitivity of costs to different aspects of the basic system, are also investigated.

  12. Results from the OECD report on international projections of electricity generating costs

    SciTech Connect

    Paffenbarger, J.A.; Bertel, E.

    1998-07-01

    The International Energy Agency and Nuclear Energy Agency of the OECD have periodically undertaken a joint study on electricity generating costs in OECD Member countries and selected non-Member countries. This paper presents key results from the 1998 update of this study. Experts from 19 countries drawn from electric utility companies and government provided data on capital costs, operating and maintenance costs, and fuel costs from which levelized electricity generating costs (US cents/kWh) for baseload power plants were estimated in each country using a common set of economic assumptions. Light water nuclear power plants, pulverized coal plants, and natural gas-fired combined cycle gas turbines were the principal options evaluated. five and 10% discount rates, 40-year operating lifetime, and 75% annual load factor were the base assumptions, with sensitivity analyses on operating lifetime and load factor. Fuel costs and fuel escalation were provided individually by country, with a sensitivity case to evaluate costs assuming no real fuel price escalation over plant lifetimes. Of the three principal fuel/technology options, none is predominantly the cheapest option for all economic assumptions. However, fossil-fueled options are generally estimated to be the least expensive option. The study confirms that gas-fired combined cycles have improved their economic performance in most countries in recent years and are strong competitors to nuclear and coal-fired plants. Eleven out of the 18 countries with two or more options show gas-fired plants to be the cheapest option at 10% discount rate. Coal remains a strong competitor to gas when lower discount rates are used. Nuclear is the least expensive at both 5 and 10% discount rate in only two countries. Generally, with gas prices above 5 US$/GJ, nuclear plants constructed at overnight capital costs below 1 650 $/kWe have the potential to be competitive only at lower discount rates.

  13. Cost-effective retrofit technology for reducing peak power demand in small and medium commercial buildings

    DOE PAGES [OSTI]

    Nutaro, James J.; Fugate, David L.; Kuruganti, Teja; Sanyal, Jibonananda; Starke, Michael R.

    2015-05-27

    We describe a cost-effective retrofit technology that uses collective control of multiple rooftop air conditioning units to reduce the peak power consumption of small and medium commercial buildings. The proposed control uses a model of the building and air conditioning units to select an operating schedule for the air conditioning units that maintains a temperature set point subject to a constraint on the number of units that may operate simultaneously. A prototype of this new control system was built and deployed in a large gymnasium to coordinate four rooftop air conditioning units. Based on data collected while operating this prototype,more » we estimate that the cost savings achieved by reducing peak power consumption is sufficient to repay the cost of the prototype within a year.« less

  14. Cost-effective retrofit technology for reducing peak power demand in small and medium commercial buildings

    SciTech Connect

    Nutaro, James J.; Fugate, David L.; Kuruganti, Teja; Sanyal, Jibonananda; Starke, Michael R.

    2015-05-27

    We describe a cost-effective retrofit technology that uses collective control of multiple rooftop air conditioning units to reduce the peak power consumption of small and medium commercial buildings. The proposed control uses a model of the building and air conditioning units to select an operating schedule for the air conditioning units that maintains a temperature set point subject to a constraint on the number of units that may operate simultaneously. A prototype of this new control system was built and deployed in a large gymnasium to coordinate four rooftop air conditioning units. Based on data collected while operating this prototype, we estimate that the cost savings achieved by reducing peak power consumption is sufficient to repay the cost of the prototype within a year.

  15. Development of Advanced Technologies to Reduce Design, Fabrication and Construction Costs for Future Nuclear Power Plants

    SciTech Connect

    DiNunzio, Camillo A.; Gupta, Abhinav; Golay, Michael; Luk, Vincent; Turk, Rich; Morrow, Charles; Jin, Geum-Taek

    2002-11-30

    This report presents a summation of the third and final year of a three-year investigation into methods and technologies for substantially reducing the capital costs and total schedule for future nuclear plants. In addition, this is the final technical report for the three-year period of studies.

  16. Coal flow aids reduce coke plant operating costs and improve production rates

    SciTech Connect

    Bedard, R.A.; Bradacs, D.J.; Kluck, R.W.; Roe, D.C.; Ventresca, B.P.

    2005-06-01

    Chemical coal flow aids can provide many benefits to coke plants, including improved production rates, reduced maintenance and lower cleaning costs. This article discusses the mechanisms by which coal flow aids function and analyzes several successful case histories. 2 refs., 10 figs., 1 tab.

  17. Analysis of Strategies for Reducing Multiple Emissions from Electric Power Plants with Advanced Technology

    Reports and Publications

    2001-01-01

    This analysis responds to a request of Senators James M. Jeffords and Joseph I. Lieberman. This report describes the impacts of technology improvements and other market-based opportunities on the costs of emissions reductions from electricity generators, including nitrogen oxides, sulfur dioxide, mercury, and carbon dioxide.

  18. Photovoltaics for municipal planners. Cost-effective municipal applications of photovoltaics for electric power

    SciTech Connect

    Not Available

    1993-04-01

    This booklet is intended for city and county government personnel, as well as community organizations, who deal with supplying, regulating, or recommending electric power resources. Specifically, this document deals with photovoltaic (PV) power, or power from solar cells, which is currently the most cost-effective energy source for electricity requirements that are relatively small, located in isolated areas, or difficult to serve with conventional technology. Recently, PV has been documented to be more cost-effective than conventional alternatives (such as line extensions or engine generators) in dozens of applications within the service territories of electric, gas, and communications utilities. Here, we document numerous cost-effective urban applications, chosen by planners and utilities because they were the most cost-effective option or because they were appropriate for environmental or logistical reasons. These applications occur within various municipal departments, including utility, parks and recreation, traffic engineering, transportation, and planning, and they include lighting applications, communications equipment, corrosion protection, irrigation control equipment, remote monitoring, and even portable power supplies for emergency situations.

  19. Rappahannock Electric Cooperative Smart Grid Project | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    for Customers Reduced Operating and Maintenance Costs Increased Electric Service Reliability and Power Quality Reduced Costs from Equipment Failures, Line Losses, and Theft...

  20. Installation, Operation, and Maintenance Strategies to Reduce the Cost of Offshore Wind Energy

    SciTech Connect

    B. Maples, G. Saur, M. Hand (NREL), R. van de Pietermen and T. Obdam (Energy Research Centre)

    2013-07-09

    Currently, installation, operation, and maintenance (IO&M) costs contribute approximately 30% to the LCOE of offshore wind plants. To reduce LCOE while ensuring safety, this paper identifies principal cost drivers associated with IO&M and quantifies their impacts on LCOE. The paper identifies technology improvement opportunities and provides a basis for evaluating innovative engineering and scientific concepts developed subsequently to the study. Through the completion of a case study, an optimum IO&M strategy for a hypothetical offshore wind project is identified.

  1. Installation, Operation, and Maintenance Strategies to Reduce the Cost of Offshore Wind Energy

    SciTech Connect

    Maples, B.; Saur, G.; Hand, M.; van de Pieterman, R.; Obdam, T.

    2013-07-01

    Currently, installation, operation, and maintenance (IO&M) costs contribute approximately 30% to the LCOE of offshore wind plants. To reduce LCOE while ensuring safety, this paper identifies principal cost drivers associated with IO&M and quantifies their impacts on LCOE. The paper identifies technology improvement opportunities and provides a basis for evaluating innovative engineering and scientific concepts developed subsequently to the study. Through the completion of a case study, an optimum IO&M strategy for a hypothetical offshore wind project is identified.

  2. Cost Effectiveness Analysis of Quasi-Static Wireless Power Transfer for Plug-In Hybrid Electric Transit Buses

    SciTech Connect

    Wang, Lijuan; Gonder, Jeff; Burton, Evan; Brooker, Aaron; Meintz, Andrew; Konan, Arnaud

    2015-10-19

    This study evaluates the costs and benefits associated with the use of a stationary-wireless- power-transfer-enabled plug-in hybrid electric bus and determines the cost effectiveness relative to a conventional bus and a hybrid electric bus. A sensitivity sweep was performed over many different battery sizes, charging power levels, and number/location of bus stop charging stations. The net present cost was calculated for each vehicle design and provided the basis for design evaluation. In all cases, given the assumed economic conditions, the conventional bus achieved the lowest net present cost while the optimal plug-in hybrid electric bus scenario beat out the hybrid electric comparison scenario. The study also performed parameter sensitivity analysis under favorable and high unfavorable market penetration assumptions. The analysis identifies fuel saving opportunities with plug-in hybrid electric bus scenarios at cumulative net present costs not too dissimilar from those for conventional buses.

  3. Cost efficiency of flame-guniting the lining of open-hearth and electric steelmaking furnaces

    SciTech Connect

    Voronov, M.V.; Kozenko, N.I.; Moiseenko, V.D.; Bondarenko, A.G.

    1988-05-01

    The use of flame-guniting for lining repair to the open-hearth and electric steelmaking furnaces of a number of Soviet plants is reviewed. Equipment and technology for flame-guniting the lining of furnaces, which provide for both local and general repairs to the walls, roofs, and bottoms of furnaces, are discussed. Methods are given for calculating expenditures for repair work and determining the cost efficiency of flame guniting relative to the increased number of heats per lining life. Results are given from calculations of the projected cost-efficiency of using flame-guniting for furnace lining repair at the metallurgical plants of the Ukranian Ministry of Ferrous Metallurgy.

  4. Design of a low-cost thermoacoustic electricity generator and its experimental verification

    SciTech Connect

    Backhaus, Scott N; Yu, Z; Jaworski, A J

    2010-01-01

    This paper describes the design and testing of a low cost thermoacoustic generator. A travelling-wave thermoacoustic engine with a configuration of a looped-tube resonator is designed and constructed to convert heat to acoustic power. A commercially available, low-cost loudspeaker is adopted as the alternator to convert the engine's acoustic power to electricity. The whole system is designed using linear thermoacoustic theory. The optimization of different parts of the thermoacoustic generator, as well as the matching between the thermoacoustic engine and the alternator are discussed in detail. A detailed comparison between the preliminary test results and linear thermoacoustic predictions is provided.

  5. Impact of Generator Flexibility on Electric System Costs and Integration of Renewable Energy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Impact of Generator Flexibility on Electric System Costs and Integration of Renewable Energy D. Palchak and P. Denholm Technical Report NREL/TP-6A20-62275 July 2014 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Contract No. DE-AC36-08GO28308 National Renewable

  6. Should we transport coal, gas, or electricity: cost, efficiency, and environmental implications

    SciTech Connect

    Joule A. Bergerson; Lester B. Lave

    2005-08-15

    The authors examine the life cycle costs, environmental discharges, and deaths of moving coal via rail, coal to synthetic natural gas via pipeline, and electricity via wire from the Powder River Basin (PRB) in Wyoming to Texas. Which method has least social cost depends on how much additional investment in rail line, transmission, or pipeline infrastructure is required, as well as how much and how far energy is transported. If the existing rail lines have unused capacity, coal by rail is the cheapest method (up to 200 miles of additional track could be added). If no infrastructure exists, greater distances and larger amounts of energy favor coal by rail and gasified coal by pipeline over electricity transmission. For 1,000 miles and 9 gigawatts of power, a gas pipeline is cheapest, has less environmental discharges, uses less land, and is least obtrusive. 28 refs., 4 figs., 3 tabs.

  7. Solid-state neutron detector offers high sensitivity with reduced cost -

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy Innovation Portal Industrial Technologies Industrial Technologies Energy Analysis Energy Analysis Find More Like This Return to Search Solid-state neutron detector offers high sensitivity with reduced cost National Renewable Energy Laboratory Contact NREL About This Technology Technology Marketing Summary Neutron detectors are vital in the national security effort to detect special nuclear material at the hundreds of U.S. ports of entry. Special nuclear material emits neutrons which

  8. Veeco Develops a Tool to Reduce Epitaxy Costs and Increase LED Brightness

    Energy.gov [DOE]

    With the help of DOE funding, Veeco is working on reducing epitaxy costs and increasing LED efficiency by developing a physical vapor deposition (PVD) tool for depositing aluminum nitride buffer layers on LED substrates. PVD, also known as "sputtering," is an alternative to metal-organic chemical vapor deposition (MOCVD). PVD is a purely physical process that involves plasma sputter bombardment rather than a chemical reaction at the surface to be coated, as in MOCVD.

  9. Improved System Performance and Reduced Cost of a Fuel Reformer, LNT, and SCR Aftertreatment System Meeting Emissions Useful Life Requirement

    Energy.gov [DOE]

    An advanced exhaust aftertreatment system developed to meet EPA 2010 and final Tier 4 emission regulations show substantial improvements in system performance while reducing system cost

  10. Building Commissioning: A Golden Opportunity for Reducing Energy Costs and Greenhouse-gas Emissions

    SciTech Connect

    Mills, Evan

    2009-07-16

    available revealed over 10,000 energy-related problems, resulting in 16% median whole-building energy savings in existing buildings and 13% in new construction, with payback time of 1.1 years and 4.2 years, respectively. In terms of other cost-benefit indicators, median benefit-cost ratios of 4.5 and 1.1, and cash-on-cash returns of 91% and 23% were attained for existing and new buildings, respectively. High-tech buildings were particularly cost-effective, and saved higher amounts of energy due to their energy-intensiveness. Projects with a comprehensive approach to commissioning attained nearly twice the overall median level of savings and five-times the savings of the least-thorough projects. It is noteworthy that virtually all existing building projects were cost-effective by each metric (0.4 years for the upper quartile and 2.4 years for the lower quartile), as were the majority of new-construction projects (1.5 years and 10.8 years, respectively). We also found high cost-effectiveness for each specific measure for which we have data. Contrary to a common perception, cost-effectiveness is often achieved even in smaller buildings. Thanks to energy savings valued more than the cost of the commissioning process, associated reductions in greenhouse gas emissions come at 'negative' cost. In fact, the median cost of conserved carbon is negative - -$110 per tonne for existing buildings and -$25/tonne for new construction - as compared with market prices for carbon trading and offsets in the +$10 to +$30/tonne range. Further enhancing the value of commissioning, its non-energy benefits surpass those of most other energy-management practices. Significant first-cost savings (e.g., through right-sizing of heating and cooling equipment) routinely offset at least a portion of commissioning costs - fully in some cases. When accounting for these benefits, the net median commissioning project cost was reduced by 49% on average, while in many cases they exceeded the direct value of the

  11. EV Everywhere: Electric Drive Systems Bring Power to Plug-in Electric Vehicles

    Energy.gov [DOE]

    Find out how the Energy Department's Vehicles Technologies Office is helping reduce the cost of plug-in electric vehicles through research and development of electric drive technologies.

  12. Plug-in hybrid electric vehicles : How does one determine their potential for reducing U.S. oil dependence?

    SciTech Connect

    Vyas, A.; Santini, D.; Duoba, M.; Alexander, M.; Energy Systems; EPRI

    2008-09-01

    Estimation of the potential of plug-in hybrid electric vehicles (PHEV's) ability to reduce U.S. gasoline use is difficult and complex. Although techniques have been proposed to estimate the vehicle kilometers of travel (VKT) that can be electrified, these methods may be inadequate and/or inappropriate for early market introduction circumstances. Factors that must be considered with respect to the PHEV itself include (1) kWh battery storage capability; (2) kWh/km depletion rate of the vehicle (3) liters/km use of gasoline (4) average daily kilometers driven (5) annual share of trips exceeding the battery depletion distance (6) driving cycle(s) (7) charger location [i.e. on-board or off-board] (8) charging rate. Each of these factors is actually a variable, and many interact. Off the vehicle, considerations include (a) primary overnight charging spot [garage, carport, parking garage or lot, on street], (b) availability of primary and secondary charging locations [i.e. dwellings, workplaces, stores, etc] (c) time of day electric rates (d) seasonal electric rates (e) types of streets and highways typically traversed during most probable trips depleting battery charge [i.e. city, suburban, rural and high vs. low density]; (f) cumulative trips per day from charger origin (g) top speeds and peak acceleration rates required to make usual trips. Taking into account PHEV design trade-off possibilities (kW vs. kWh of battery, in particular), this paper attempts to extract useful information relating to these topics from the 2001 National Household Travel Survey (NHTS), and the 2005 American Housing Survey (AHS). Costs per kWh of PHEVs capable of charge depleting (CD) all-electric range (CDE, or AER) vs. those CD in 'blended' mode (CDB) are examined. Lifetime fuel savings of alternative PHEV operating/utilization strategies are compared to battery cost estimates.

  13. The role of technology in reducing health care costs. Final project report

    SciTech Connect

    Sill, A.E.; Warren, S.; Dillinger, J.D.; Cloer, B.K.

    1997-08-01

    Sandia National Laboratories applied a systems approach to identifying innovative biomedical technologies with the potential to reduce U.S. health care delivery costs while maintaining care quality. This study was conducted by implementing both top-down and bottom-up strategies. The top-down approach used prosperity gaming methodology to identify future health care delivery needs. This effort provided roadmaps for the development and integration of technology to meet perceived care delivery requirements. The bottom-up approach identified and ranked interventional therapies employed in existing care delivery systems for a host of health-related conditions. Economic analysis formed the basis for development of care pathway interaction models for two of the most pervasive, chronic disease/disability conditions: coronary artery disease (CAD) and benign prostatic hypertrophy (BPH). Societal cost-benefit relationships based on these analyses were used to evaluate the effect of emerging technology in these treatment areas. 17 figs., 48 tabs.

  14. The effect of availability improvement of a nuclear power plant on the cost of generating electricity

    SciTech Connect

    Nejat, S.M.R.

    1980-01-01

    The objective of this investigation is to study the economic benefits in operating a nuclear power plant as a result of improving the availabilitty of the secondary (steam) loop of the plant. A new method has been developed to obtain availability, frequency of failure, probability and frequency of operation, cycle time, and uptime for different capacity states of a parallel-series system having components with failure and repair rates distributed exponentially. The method has been applied to different subsystems, systems, and the seconary loop as a whole. The effect of having spare parts for several components, as measured by savings in the generation of electricity, is also studied. The Kettelle algorithm was applied to determine optimal spare part allocation in order to achieve maximum availability or minimum cost of electricity, subject to a fixed spare parts budget. It has been shown that the optimum spare parts allocation and the budget level which gives optimum availability, do not necessarily give minimum electricity cost. The savings per year for optimal spare parts allocation and different spare parts budgets were obtained. The results show that the utilty will save its customers a large amount of money if spare parts are purchased, especially at the beginning of the plant operation, and are allocated judiciously.

  15. Waste Management Strategy for Dismantling Waste to Reduce Costs for Power Plant Decommissioning - 13543

    SciTech Connect

    Larsson, Arne; Lidar, Per; Bergh, Niklas; Hedin, Gunnar

    2013-07-01

    -necks in the process causes increased space requirements and will have negative impact on the project schedule, which increases not only the cost but also the dose exposure to personnel. For these reasons it is critical to create a process that transfers material into conditioned waste ready for disposal as quickly as possible. To a certain extent the decommissioning program should be led by the waste management process. With the objective to reduce time for handling of dismantled material at site and to efficiently and environmental-friendly use waste management methods (clearance for re-use followed by clearance for recycling), the costs for the plant decommissioning could be reduced as well as time needed for performing the decommissioning project. Also, risks for delays would be reduced with a well-defined handling scheme which limits surprises. Delays are a major cost driver for decommissioning projects. (authors)

  16. Estimated parameters as independent variables - with an application to the costs of electric-generating units

    SciTech Connect

    Schmalensee, R.; Joskow, P.L.

    1984-01-01

    The cost of a piece of capital equipment, like an electric-generating unit, is a function of a variety of unit-specific attributes. Some of these attributes can be observed directly without error (such as size), but others (such as the reliability or efficiency of the equipment), cannot be. However, estimates of the unobservable quality attributes can often be obtained from time-series data on expost performance, and these estimates can in turn be used as data on the unobservable attributes that appear as exogenous variables in a cost equation. The authors consider estimation of linear models in which observation-specific (firm, plant, household, individual) attributes appear as exogenous variables, but these attributes cannot be observed directly. Rather, they assume that estimates of the relevant observation-specific attributes, along with the associated covariance matrix, can be computed using data on variables (such as ex post performance) that do not appear directly in the primary model of interest. A maximum-likelihood technique for using such estimates as independent variables in cross-section regression analysis is derived. The solution to the measurement-error problem is interpretable as nonlinear (Theil-Goldberger) mixed estimation. The method is applied to the estimation of a construction cost relationship for electric-generating units.

  17. Low cost, compact high efficiency, traction motor for electric vehicles/hybrid electric vehicles. Final report for the period September 1998 - December 1999

    SciTech Connect

    Mitchell, Jerry; Kessinger, Roy

    2000-04-28

    This final report details technical accomplishments for Phase I of the ''Low Cost, Compact High Efficiency, Traction Motor for Electric Vehicles/Hybrid Electric Vehicles'' program. The research showed that the segmented-electromagnetic array (SEMA) technology combined with an Integrated Motion Module (IMM) concept is highly suited for electric vehicles. IMMs are essentially mechatronic systems that combine the motor, sensing, power electronics, and control functions for a single axis of motion into a light-weight modular unit. The functional integration of these components makes possible significant reductions in motor/alternator size, weight, and cost, while increasing power density and electromechanical conversion efficiency.

  18. Development of Nuclear Renewable Oil Shale Systems for Flexible Electricity and Reduced Fossil Fuel Emissions

    SciTech Connect

    Daniel Curtis; Charles Forsberg; Humberto Garcia

    2015-05-01

    We propose the development of Nuclear Renewable Oil Shale Systems (NROSS) in northern Europe, China, and the western United States to provide large supplies of flexible, dispatchable, very-low-carbon electricity and fossil fuel production with reduced CO2 emissions. NROSS are a class of large hybrid energy systems in which base-load nuclear reactors provide the primary energy used to produce shale oil from kerogen deposits and simultaneously provide flexible, dispatchable, very-low-carbon electricity to the grid. Kerogen is solid organic matter trapped in sedimentary shale, and large reserves of this resource, called oil shale, are found in northern Europe, China, and the western United States. NROSS couples electricity generation and transportation fuel production in a single operation, reduces lifecycle carbon emissions from the fuel produced, improves revenue for the nuclear plant, and enables a major shift toward a very-low-carbon electricity grid. NROSS will require a significant development effort in the United States, where kerogen resources have never been developed on a large scale. In Europe, however, nuclear plants have been used for process heat delivery (district heating), and kerogen use is familiar in certain countries. Europe, China, and the United States all have the opportunity to use large scale NROSS development to enable major growth in renewable generation and either substantially reduce or eliminate their dependence on foreign fossil fuel supplies, accelerating their transitions to cleaner, more efficient, and more reliable energy systems.

  19. Power Line Damage, Electrical Outages Reduced in the ''Sleet Belt'': NICE3 Steel Project Fact Sheet

    SciTech Connect

    2000-04-25

    The AR Windamper System was developed through a grant from the Inventions and Innovation Program, to protect power transmission lines in sleet belt states and provinces by eliminating the ''galloping'' phenomenon. Wind damping products minimize power outages and reduce repair costs to transmission lines.

  20. Advanced gas turbines: The choice for low-cost, environmentally superior electric power generation

    SciTech Connect

    Zeh, C.M.

    1996-08-01

    In July 1993, the US Department of Energy (DOE) initiated an ambitious 8-year program to advance state-of-the-art gas turbine technology for land-based electric power generation. The program, known as the Advanced Turbine System (ATS) Program, is a joint government/industry program with the objective to demonstrate advanced industrial and utility gas turbine systems by the year 2000. The goals of the ATS Program are to develop gas turbine systems capable of providing low-cost electric power, while maintaining environmental superiority over competing power generation options. A progress report on the ATS Program pertaining to program status at DOE will be presented and reviewed in this paper. The technical challenges, advanced critical technology requirements, and systems designs meeting the goals of the program will be described and discussed.

  1. Use of Biostratigraphy to Increase Production, Reduce Operating Costs and Risks and Reduce Environmental Concerns in Oil Well Drilling

    SciTech Connect

    Edward Marks

    2005-09-09

    out at the top of the late Miocene, early Mohnian: Bolivina aff hughesi, Rotalia becki, Suggrunda californica, Virgulina grandis, Virgulina ticensis, Bulimina ecuadorana, Denticula lauta and Nonion medio-costatum. Please see Appendix B, Fig. 1, Neogene Zones, p. 91 and Appendix C, chart 5, p. 99 By the use of Stratigraphy, employing both Paleontology and Lithology, we can increase hydrocarbon production, reduce operating costs and risks by the identification of the productive sections, and reduce environmental concerns by drilling less dry holes needlessly.

  2. Cost Effectiveness Analysis of Quasi-Static Wireless Power Transfer for Plug-In Hybrid Electric Transit Buses: Preprint

    SciTech Connect

    Wang, Lijuan; Gonder, Jeff; Burton, Evan; Brooker, Aaron; Meintz, Andrew; Konan, Arnaud

    2015-11-11

    This study evaluates the costs and benefits associated with the use of a plug-in hybrid electric bus and determines the cost effectiveness relative to a conventional bus and a hybrid electric bus. A sensitivity sweep analysis was performed over a number of a different battery sizes, charging powers, and charging stations. The net present value was calculated for each vehicle design and provided the basis for the design evaluation. In all cases, given present day economic assumptions, the conventional bus achieved the lowest net present value while the optimal plug-in hybrid electric bus scenario reached lower lifetime costs than the hybrid electric bus. The study also performed parameter sensitivity analysis under low market potential assumptions and high market potential assumptions. The net present value of plug-in hybrid electric bus is close to that of conventional bus.

  3. Lost Economies of Integration and the Costs of Creating Markets in Electricity Restructuring: Evidence from Ontario

    SciTech Connect

    Houldin, Russell William

    2005-10-01

    The public good nature of bulk grid electricity leads to a twist on the economic debate about oligopoly and economies of scale and scope. In contestability theory, the introduction of 'competitive conditions' aims to reduce oligopoly rents; in the case of Ontario, it seems that the attempt to create a 'competitive market' has created new opportunities for rent accrual. That suggests that a return to a more integrated system might be the best course of action.

  4. Strong radial electric field shear and reduced fluctuations in a reversed-field pinch

    SciTech Connect

    Chapman, B.E.; Chiang, C.S.; Prager, S.C.; Sarff, J.S.

    1997-05-01

    A strongly sheared radial electric field is observed in enhanced confinement discharges in the MST reversed-field pinch. The strong shear develops in a narrow region in the plasma edge. Electrostatic fluctuations are reduced over the entire plasma edge with an extra reduction in the shear region. Magnetic fluctuations, resonant in the plasma core but global in extent, are also reduced. The reduction of fluctuations in the shear region is presumably due to the strong shear, but the causes of the reductions outside this region have not been established.

  5. Effects of vaporizer and evaporative condenser pinch points on geofluid effectiveness and cost of electricity for geothermal binary power plants

    SciTech Connect

    Demuth, O.J.

    1984-01-01

    A brief study was conducted in support of the DOE/DGHT Heat Cycle Research Program to investigate the influences of minimum approach temperature differences occurring in supercritical-heater/vaporizer and evaporative-condenser heat rejection systems on geothermal-electric binary power plant performance and cost of electricity. For the systems investigated optimum pinch points for minimizing cost of electricity were estimated to range from 5 to 7/sup 0/F (3 to 4/sup 0/C) for the heater vaporizer. The minimum approach of condensing temperature to wet-bulb temperature for evaporative condensers was estimated to be about 15/sup 0/F (8/sup 0/C) in order to achieve the highest plant net geofluid effectiveness, and approximately 30/sup 0/F (17/sup 0/C) to attain the minimum cost of electricity.

  6. Feasibility studies to improve plant availability and reduce total installed cost in IGCC plants

    SciTech Connect

    Sullivan, Kevin; Anasti, William; Fang, Yichuan; Subramanyan, Karthik; Leininger, Tom; Zemsky, Christine

    2015-03-30

    The main purpose of this project is to look at technologies and philosophies that would help reduce the costs of an Integrated Gasification Combined Cycle (IGCC) plant, increase its availability or do both. GE’s approach to this problem is to consider options in three different areas: 1) technology evaluations and development; 2) constructability approaches; and 3) design and operation methodologies. Five separate tasks were identified that fall under the three areas: Task 2 – Integrated Operations Philosophy; Task 3 – Slip Forming of IGCC Components; Task 4 – Modularization of IGCC Components; Task 5 – Fouling Removal; and Task 6 – Improved Slag Handling. Overall, this project produced results on many fronts. Some of the ideas could be utilized immediately by those seeking to build an IGCC plant in the near future. These include the considerations from the Integrated Operations Philosophy task and the different construction techniques of Slip Forming and Modularization (especially if the proposed site is in a remote location or has a lack of a skilled workforce). Other results include ideas for promising technologies that require further development and testing to realize their full potential and be available for commercial operation. In both areas GE considers this project to be a success in identifying areas outside the core IGCC plant systems that are ripe for cost reduction and ity improvement opportunities.

  7. Considering the total cost of electricity from sunlight and the alternatives

    SciTech Connect

    none,

    2015-04-15

    Photovoltaic (PV) electricity generation has grown to about 17 GW in the United States, corresponding to one tenth of the global capacity. Most deployment in the country has happened during the last 6 years. Reflecting back in time, in early 2008 this author and his collaborators James Mason and Ken Zweibel, published in Scientific American and in Energy Policy a Solar Grand Plan demonstrating the feasibility of renewable energy in providing 69% of the U.S. electricity demand by 2050, while reducing CO2 emissions by 60% from 2005 levels; the PV contribution to this plan was assessed to be 250 GW by 2030, and 2,900 GW by 2050 [1]. The DOEs more detailed SunShot vision study, released in 2012, showed the possibility of having 300 GW of PV installed in the United States by 2030, and 630 GW by 2050.

  8. Considering the total cost of electricity from sunlight and the alternatives

    DOE PAGES [OSTI]

    none,

    2015-04-15

    Photovoltaic (PV) electricity generation has grown to about 17 GW in the United States, corresponding to one tenth of the global capacity. Most deployment in the country has happened during the last 6 years. Reflecting back in time, in early 2008 this author and his collaborators James Mason and Ken Zweibel, published in Scientific American and in Energy Policy a Solar Grand Plan demonstrating the feasibility of renewable energy in providing 69% of the U.S. electricity demand by 2050, while reducing CO2 emissions by 60% from 2005 levels; the PV contribution to this plan was assessed to be 250 GWmore » by 2030, and 2,900 GW by 2050 [1]. The DOE’s more detailed SunShot vision study, released in 2012, showed the possibility of having 300 GW of PV installed in the United States by 2030, and 630 GW by 2050.« less

  9. Considering the total cost of electricity from sunlight and the alternatives

    SciTech Connect

    none,

    2015-04-15

    Photovoltaic (PV) electricity generation has grown to about 17 GW in the United States, corresponding to one tenth of the global capacity. Most deployment in the country has happened during the last 6 years. Reflecting back in time, in early 2008 this author and his collaborators James Mason and Ken Zweibel, published in Scientific American and in Energy Policy a Solar Grand Plan demonstrating the feasibility of renewable energy in providing 69% of the U.S. electricity demand by 2050, while reducing CO2 emissions by 60% from 2005 levels; the PV contribution to this plan was assessed to be 250 GW by 2030, and 2,900 GW by 2050 [1]. The DOE’s more detailed SunShot vision study, released in 2012, showed the possibility of having 300 GW of PV installed in the United States by 2030, and 630 GW by 2050.

  10. DOE Selects Eight Projects to Receive Funding for Reducing the Cost of CO2 Capture and Compression

    Energy.gov [DOE]

    The U.S. Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) has selected eight projects to receive funding to construct small- and large-scale pilots for reducing the cost of...

  11. A Review of Recent RTO Benefit-Cost Studies: Toward MoreComprehensive Assessments of FERC Electricity RestructuringPolicies

    SciTech Connect

    Eto, Joseph H.; Lesieutre, Bernard C.

    2005-12-01

    During the past three years, government and private organizations have issued more than a dozen studies of the benefits and costs of Regional Transmission Organizations (RTOs). Most of these studies have focused on benefits that can be readily estimated using traditional production-cost simulation techniques, which compare the cost of centralized dispatch under an RTO to dispatch in the absence of an RTO, and on costs associated with RTO start-up and operation. Taken as a whole, it is difficult to draw definitive conclusions from these studies because they have not examined potentially much larger benefits (and costs) resulting from the impacts of RTOs on reliability management, generation and transmission investment and operation, and wholesale electricity market operation. This report: (1) Describes the history of benefit-cost analysis of FERC electricity restructuring policies; (2)Reviews current practice by analyzing 11 RTO benefit-cost studies that were published between 2002 and 2004 and makes recommendations to improve the documentation of data and methods and the presentation of findings in future studies that focus primarily on estimating short-run economic impacts; and (3) Reviews important impacts of FERC policies that have been overlooked or incompletely treated by recent RTO benefit-cost studies and the challenges to crafting more comprehensive assessments of these impacts based on actual performance, including impacts on reliability management, generation and transmission investment and operation, and wholesale electricity market operation.

  12. Impact of Generator Flexibility on Electric System Costs and Integration of Renewable Energy

    SciTech Connect

    Palchak, D.; Denholm, P.

    2014-07-01

    Flexibility of traditional generators plays an important role in accommodating the increased variability and uncertainty of wind and solar on the electric power system. Increased flexibility can be achieved with changes to operational practices or upgrades to existing generation. One challenge is in understanding the value of increasing flexibility, and how this value may change given higher levels of variable generation. This study uses a commercial production cost model to measure the impact of generator flexibility on the integration of wind and solar generators. We use a system that is based on two balancing areas in the Western United States with a range of wind and solar penetrations between 15% and 60%, where instantaneous penetration of wind and solar is limited to 80%.

  13. Preconstruction schedules, costs, and permit requirements for electric power generating resources in the Pacific Northwest

    SciTech Connect

    Hendrickson, P.L.; Smith, S.A.; Thurman, A.G.; Watts, R.L.; Weakley, S.A.

    1990-07-01

    This report was prepared for the Generation Programs Branch, Office of Energy Resources, Bonneville Power Administration (BPA). The principal objective of the report is to assemble in one document preconstruction cost, schedule, and permit information for twelve specific generating resources. The report is one of many documents that provide background information for BPA's Resource Program, which is designed to identify the type and amount of new resources that BPA may have to add over the next twenty years to maintain an adequate and reliable electric power supply in the Pacific Northwest. A predecessor to this report is a 1982 report prepared by the Pacific Northwest Laboratory (PNL) for the Northwest Power Planning Council (the Council''). The 1982 report had a similar, but not identical, content and format. 306 refs., 14 figs., 22 tabs.

  14. NWTC Aerodynamics Studies Improve Energy Capture and Lower Costs of Wind-Generated Electricity

    SciTech Connect

    2015-08-01

    Researchers at the National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory (NREL) have expanded wind turbine aerodynamic research from blade and rotor aerodynamics to wind plant and atmospheric inflow effects. The energy capture from wind plants is dependent on all of these aerodynamic interactions. Research at the NWTC is crucial to understanding how wind turbines function in large, multiple-row wind plants. These conditions impact the cumulative fatigue damage of turbine structural components that ultimately effect the useful lifetime of wind turbines. This work also is essential for understanding and maximizing turbine and wind plant energy production. Both turbine lifetime and wind plant energy production are key determinants of the cost of wind-generated electricity.

  15. Impact of Generator Flexibility on Electric System Costs and Integration of Renewable Energy

    Office of Energy Efficiency and Renewable Energy (EERE)

    Flexibility of traditional generators plays an important role in accommodating the increased variability and uncertainty of wind and solar on the electric power system. Increased flexibility can be achieved with changes to operational practices or upgrades to existing generation. One challenge is in understanding the value of increasing flexibility, and how this value may change given higher levels of variable generation. This study uses a commercial production cost model to measure the impact of generator flexibility on the integration of wind and solar generators. We use a system that is based on two balancing areas in the Western United States with a range of wind and solar penetrations between 15% and 60%, where instantaneous penetration of wind and solar is limited to 80%.

  16. Minnesota Company 3M Awarded $3 Million by Energy Department to Reduce Cost of Advanced Fuel Cells

    Energy.gov [DOE]

    In support of the Obama Administration's all-of-the-above approach to American energy, the Energy Department today announced the investment of $3 million to 3M Company in St. Paul, Minnesota, to lower the cost of advanced fuel cell systems by developing cost-effective, durable, and highly efficient fuel cell components. The 3-year project will focus on boosting the performance of fuel cell systems for vehicles and stationary applications while driving down costs. These investments are a part of the Department's commitment to U.S. leadership in innovative fuel cell technologies that give American families and businesses more options to cut energy costs and reduce petroleum use.

  17. Battery-Powered Electric and Hybrid Electric Vehicle Projects to Reduce Greenhouse Gas Emissions: A Resource for Project Development

    SciTech Connect

    National Energy Technology Laboratory

    2002-07-31

    The transportation sector accounts for a large and growing share of global greenhouse gas (GHG) emissions. Worldwide, motor vehicles emit well over 900 million metric tons of carbon dioxide (CO2) each year, accounting for more than 15 percent of global fossil fuel-derived CO2 emissions.1 In the industrialized world alone, 20-25 percent of GHG emissions come from the transportation sector. The share of transport-related emissions is growing rapidly due to the continued increase in transportation activity.2 In 1950, there were only 70 million cars, trucks, and buses on the world’s roads. By 1994, there were about nine times that number, or 630 million vehicles. Since the early 1970s, the global fleet has been growing at a rate of 16 million vehicles per year. This expansion has been accompanied by a similar growth in fuel consumption.3 If this kind of linear growth continues, by the year 2025 there will be well over one billion vehicles on the world’s roads.4 In a response to the significant growth in transportation-related GHG emissions, governments and policy makers worldwide are considering methods to reverse this trend. However, due to the particular make-up of the transportation sector, regulating and reducing emissions from this sector poses a significant challenge. Unlike stationary fuel combustion, transportation-related emissions come from dispersed sources. Only a few point-source emitters, such as oil/natural gas wells, refineries, or compressor stations, contribute to emissions from the transportation sector. The majority of transport-related emissions come from the millions of vehicles traveling the world’s roads. As a result, successful GHG mitigation policies must find ways to target all of these small, non-point source emitters, either through regulatory means or through various incentive programs. To increase their effectiveness, policies to control emissions from the transportation sector often utilize indirect means to reduce emissions, such

  18. The effect of plant reliability improvement in the cost of generating electricity

    SciTech Connect

    Nejat, S.; Sanders, R.C.; Tsoulfanidis, N.

    1982-02-01

    The objective of this investigation is to study the economic benefits in operating a nuclear power plant, as a result of improving the availability of the secondary (steam) loop of the plant. A new method has been developed to obtain availability, frequency of failure, probability and frequency of operation, cycle time, and uptime for different capacity states of a parallel series system having components with failure and repair rates distributed exponentially in time. The method has been applied to different subsystems, systems, and the secondary loop of a plant as a whole. The effect of having spare parts for several components, as measured by savings in the generation of electricity, is also studied. The Kettelle algorithm was applied to determine optimal allocation of spare parts to achieve maximum availability or minimum cost of electricity, subject to a fixed spare parts budget. The savings per year for optimal spare parts allocation and different spare parts budgets were obtained. The results show that the utility will save its customers a large amount of money if spare parts are purchased, especially at the beginning of the plant operation, and are allocated judiciously.

  19. High-surface-area nitrogen-doped reduced graphene oxide for electric double-layer capacitors

    SciTech Connect

    Youn, Hee-Chang; Bak, Seong-Min; Kim, Myeong-Seong; Jaye, Cherno; Fischer, Daniel A.; Lee, Chang-Wook; Yang, Xiao-Qing; Roh, Kwang Chul; Kim, Kwang-Bum

    2015-06-08

    A two-step method consisting of solid-state microwave irradiation and heat treatment under NH₃ gas was used to prepare nitrogen-doped reduced graphene oxide (N-RGO) with a high specific surface area (1007m²g⁻¹), high electrical conductivity (1532S m⁻¹), and low oxygen content (1.5 wt%) for electric double-layer capacitor applications. The specific capacitance of N-RGO was 291 Fg⁻¹ at a current density of 1 A g⁻¹, and a capacitance of 261 F g⁻¹ was retained at 50 A g⁻¹, indicating a very good rate capability. N-RGO also showed excellent cycling stability, preserving 96% of the initial specific capacitance after 100,000 cycles. Near-edge X-ray absorption fine-structure spectroscopy evidenced the recover of π-conjugation in the carbon networks with the removal of oxygenated groups and revealed the chemical bonding of the nitrogen atoms in N-RGO. The good electrochemical performance of N-RGO is attributed to its high surface area, high electrical conductivity, and low oxygen content.

  20. High-surface-area nitrogen-doped reduced graphene oxide for electric double-layer capacitors

    DOE PAGES [OSTI]

    Youn, Hee-Chang; Bak, Seong-Min; Kim, Myeong-Seong; Jaye, Cherno; Fischer, Daniel A.; Lee, Chang-Wook; Yang, Xiao-Qing; Roh, Kwang Chul; Kim, Kwang-Bum

    2015-06-08

    A two-step method consisting of solid-state microwave irradiation and heat treatment under NH₃ gas was used to prepare nitrogen-doped reduced graphene oxide (N-RGO) with a high specific surface area (1007m²g⁻¹), high electrical conductivity (1532S m⁻¹), and low oxygen content (1.5 wt%) for electric double-layer capacitor applications. The specific capacitance of N-RGO was 291 Fg⁻¹ at a current density of 1 A g⁻¹, and a capacitance of 261 F g⁻¹ was retained at 50 A g⁻¹, indicating a very good rate capability. N-RGO also showed excellent cycling stability, preserving 96% of the initial specific capacitance after 100,000 cycles. Near-edge X-ray absorptionmore » fine-structure spectroscopy evidenced the recover of π-conjugation in the carbon networks with the removal of oxygenated groups and revealed the chemical bonding of the nitrogen atoms in N-RGO. The good electrochemical performance of N-RGO is attributed to its high surface area, high electrical conductivity, and low oxygen content.« less

  1. Method for reducing formation of electrically resistive layer on ferritic stainless steels

    SciTech Connect

    Rakowski, James M.

    2013-09-10

    A method of reducing the formation of electrically resistive scale on a an article comprising a silicon-containing ferritic stainless subjected to oxidizing conditions in service includes, prior to placing the article in service, subjecting the article to conditions under which silica, which includes silicon derived from the steel, forms on a surface of the steel. Optionally, at least a portion of the silica is removed from the surface to placing the article in service. A ferritic stainless steel alloy having a reduced tendency to form silica on at least a surface thereof also is provided. The steel includes a near-surface region that has been depleted of silicon relative to a remainder of the steel.

  2. Electric Utility Rate Design Study: economic theory of marginal-cost pricing and its application by electric utilities in France and Great Britain

    SciTech Connect

    Westfield, F.M.

    1980-08-12

    This report (1) reviews economic theory of marginal-cost pricing; and (2) examines its applications, going back to the 1960s and before, by electric utilities in France and Great Britain. An ideal pricing system for an economy is first reviewed to clarify fairly complicated ideas of economic theory for noneconomists - the industry specialist and state regulator. The concept of ideal marginal-cost pricing as applied to electricity is then developed. Next, an overview is provided of practical issues that need to be faced when the theory is implemented. Finally, the study turns to examine how the theory has actually been interpreted and applied to electricity rate design by the French and the British. Their methods of transforming theory into practice are reviewed, illustrative tariffs that incorporate their interpretation are provided.

  3. Innovative Approach Reduces Costs of Removing Contaminated Oil from Paducah Site

    Energy.gov [DOE]

    PADUCAH, Ky. – For more than 60 years, 60 electrical distribution transformers supplied some of the power to enrich uranium at the Paducah Gaseous Diffusion Plant (PGDP).

  4. Nuclear economics 2000: Deterministic and probabilistic projections of nuclear and coal electric power generation costs for the year 2000

    SciTech Connect

    Williams, K.A.; Delene, J.G.; Fuller, L.C.; Bowers, H.I.

    1987-06-01

    The total busbar electric generating costs were estimated for locations in ten regions of the United States for base-load nuclear and coal-fired power plants with a startup date of January 2000. For the Midwest region a complete data set that specifies each parameter used to obtain the comparative results is supplied. When based on the reference set of input variables, the comparison of power generation costs is found to favor nuclear in most regions of the country. Nuclear power is most favored in the northeast and western regions where coal must be transported over long distances; however, coal-fired generation is most competitive in the north central region where large reserves of cheaply mineable coal exist. In several regions small changes in the reference variables could cause either option to be preferred. The reference data set reflects the better of recent electric utility construction cost experience (BE) for nuclear plants. This study assumes as its reference case a stable regulatory environment and improved planning and construction practices, resulting in nuclear plants typically built at the present BE costs. Today's BE nuclear-plant capital investment cost model is then being used as a surrogate for projected costs for the next generation of light-water reactor plants. An alternative analysis based on today's median experience (ME) nuclear-plant construction cost experience is also included. In this case, coal is favored in all ten regions, implying that typical nuclear capital investment costs must improve for nuclear to be competitive.

  5. A NEW METHOD FOR LOW-COST PRODUCTION OF TITANIUM ALLOYS FOR REDUCING...

    Energy.gov [DOE] (indexed site)

    A novel metallurgical process for producing titanium (Ti) components could produce a ... PDF icon A New Method for Low-Cost Production of Titanium Alloys More Documents & ...

  6. Performance of reduced wall EPR insulated medium voltage power cables. Pat 1: Electrical characteristics

    SciTech Connect

    Cinquemani, P.L.; Wen, Y.; Kuchta, F.L.; Doench, C.

    1997-04-01

    Paper insulated lead covered cables (PILC) have had a long and successful heritage. After almost 100 years, this design of cable is still in operation and continues to be manufactured. However, utilities are now looking for a reliable replacement for PILC cables. This is due to two primary reasons: (1) difficulty in installing and maintaining this type of cable and (2) increasing pressure to replace these cables due to environmental concerns. To date diameter limitations of conventional extruded dielectric cables has impeded their replacement in existing PILC conduits. This paper describes a study for the evaluation for reliably reducing the insulation thickness to achieve a lower diameter cable to effectively replace PILC cable in existing conduits. Part 1 of the investigation reviews the theory of insulation wall determination and the test program carried out to evaluate electrical performance of reduced wall EPR cables. Additionally, cable design concepts and constructions are discussed. In Part 2 the mechanical performance on conventional and reduced wall EPR insulated cables are evaluated. This is reported in a separate paper.

  7. Response Surface Energy Modeling of an Electric Vehicle over a Reduced Composite Drive Cycle

    SciTech Connect

    Jehlik, Forrest; LaClair, Tim J.

    2014-04-01

    Response surface methodology (RSM) techniques were applied to develop a predictive model of electric vehicle (EV) energy consumption over the Environmental Protection Agency's (EPA) standardized drive cycles. The model is based on measurements from a synthetic composite drive cycle. The synthetic drive cycle is a minimized statistical composite of the standardized urban (UDDS), highway (HWFET), and US06 cycles. The composite synthetic drive cycle is 20 minutes in length thereby reducing testing time of the three standard EPA cycles by over 55%. Vehicle speed and acceleration were used as model inputs for a third order least squared regression model predicting vehicle battery power output as a function of the drive cycle. The approach reduced three cycles and 46 minutes of drive time to a single test of 20 minutes. Application of response surface modeling to the synthetic drive cycle is shown to predict energy consumption of the three EPA cycles within 2.6% of the actual measured values. Additionally, the response model may be used to predict energy consumption of any cycle within the speed/acceleration envelope of the synthetic cycle. This technique results in reducing test time, which additionally provides a model that may be used to expand the analysis and understanding of the vehicle under consideration.

  8. Methods for Analyzing the Benefits and Costs of Distributed Photovoltaic Generation to the U.S. Electric Utility System

    SciTech Connect

    Denholm, P.; Margolis, R.; Palmintier, B.; Barrows, C.; Ibanez, E.; Bird, L.; Zuboy, J.

    2014-09-01

    This report outlines the methods, data, and tools that could be used at different levels of sophistication and effort to estimate the benefits and costs of DGPV. In so doing, we identify the gaps in current benefit-cost-analysis methods, which we hope will inform the ongoing research agenda in this area. The focus of this report is primarily on benefits and costs from the utility or electricity generation system perspective. It is intended to provide useful background information to utility and regulatory decision makers and their staff, who are often being asked to use or evaluate estimates of the benefits and cost of DGPV in regulatory proceedings. Understanding the technical rigor of the range of methods and how they might need to evolve as DGPV becomes a more significant contributor of energy to the electricity system will help them be better consumers of this type of information. This report is also intended to provide information to utilities, policy makers, PV technology developers, and other stakeholders, which might help them maximize the benefits and minimize the costs of integrating DGPV into a changing electricity system.

  9. Costs and Emissions Associated with Plug-In Hybrid Electric Vehicle Charging in the Xcel Energy Colorado Service Territory

    SciTech Connect

    Parks, K.; Denholm, P.; Markel, T.

    2007-05-01

    The combination of high oil costs, concerns about oil security and availability, and air quality issues related to vehicle emissions are driving interest in plug-in hybrid electric vehicles (PHEVs). PHEVs are similar to conventional hybrid electric vehicles, but feature a larger battery and plug-in charger that allows electricity from the grid to replace a portion of the petroleum-fueled drive energy. PHEVs may derive a substantial fraction of their miles from grid-derived electricity, but without the range restrictions of pure battery electric vehicles. As of early 2007, production of PHEVs is essentially limited to demonstration vehicles and prototypes. However, the technology has received considerable attention from the media, national security interests, environmental organizations, and the electric power industry. The use of PHEVs would represent a significant potential shift in the use of electricity and the operation of electric power systems. Electrification of the transportation sector could increase generation capacity and transmission and distribution (T&D) requirements, especially if vehicles are charged during periods of high demand. This study is designed to evaluate several of these PHEV-charging impacts on utility system operations within the Xcel Energy Colorado service territory.

  10. DOE Announces $27 Million to Reduce Costs of Solar Energy Projects...

    Energy.gov [DOE] (indexed site)

    As part of the Obama Administration's SunShot Initiative to make solar energy cost-competitive with fossil fuels within the decade, U.S. Department of Energy Secretary Steven Chu ...

  11. OLEDWORKS DEVELOPS INNOVATIVE HIGH-PERFORMANCE DEPOSITION TECHNOLOGY TO REDUCE MANUFACTURING COST OF OLED LIGHTING

    Energy.gov [DOE]

    The high manufacturing cost of OLED lighting is a major barrier to the growth of the emerging OLED lighting industry. OLEDWorks is developing high-performance deposition technology that addresses...

  12. EERE Success Story—Challenge Accepted: Reducing the Soft Costs of Going Solar

    Energy.gov [DOE]

    Every year, it becomes even more affordable to “go solar.” However, one thing remains consistent: the non-hardware, or “soft” costs related to permitting, installation, and maintenance account for...

  13. NREL Releases New Roadmap to Reducing Solar PV "Soft Costs" by...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    recently issued a new report, "Non-Hardware ('Soft') Cost-Reduction Roadmap for Residential and Small Commercial Solar Photovoltaics, 2013-2020," funded by DOE's SunShot ...

  14. Solution of resource allocation problem for identification of cost-effective measures to reduce nuclear proliferation risks

    SciTech Connect

    Andrianov, A.; Kuptsov, I.

    2013-07-01

    This report presents a methodology of selection of cost-effective measures to reduce nuclear proliferation risks. The methodology relies on a graded security model used in practice in different applications. The method is based on the controlled finite Markov chain approach set in combination with discrete dynamic programming and MCDM (Multi Criteria Decision Making) techniques that enables the expert to select the cost-effective measures to reduce nuclear proliferation risks depending on availability of resources. The analysis performed with different number of possible measures confirms the conclusions that the implementation of extra-large costs may not produce the required effect, and the increase in resources above a certain level does not appear sensitive. Diversification in improving the effectiveness of other measures seems more rational and efficient for the whole system than the unlimited improvement of the effectiveness of only one measure.

  15. Reducing Idle Power Consumption in Office Spaces Saves U.S. Navy in Energy Costs (Fact Sheet)

    SciTech Connect

    Not Available

    2014-04-01

    As part of a two-year project to demonstrate energy efficiency measures, renewable energy generation, and energy systems integration, the National Renewable Energy Laboratory (NREL) has identified advanced plug load controls as a promising technology for reducing energy use and related costs in the U.S. Navy's Naval Facilities Engineering Command (NAVFAC) office spaces.

  16. New Report: Integrating More Wind and Solar Reduces Utilities' Carbon Emissions and Fuel Costs

    Energy.gov [DOE]

    The National Renewable Energy Laboratory (NREL) released Phase 2 of the Western Wind and Solar Integration Study (WWSIS-2), a follow-up to the initial WWSIS released in May 2010, which examined the viability, benefits, and challenges of integrating as much as 33% wind and solar power into the electricity grid of the western United States.

  17. Response model and activity analysis of the revenue reconciliation problem in the marginal cost pricing of electricity

    SciTech Connect

    Hassig, N.L.

    1980-01-01

    The objective of the research was to determine if feasible reconciliation procedures exist that meet the multiple (and sometimes competing) goals of the electricity pricing problem while staying within the constraints of the problem. The answer was that such procedures do exist. Selection among the alternative, feasible procedures depends on the weighting factors placed on the goals. One procedure did not universally satisfy all the goals; the various procedures satisfied the alternative goals to varying degrees. The selection process was sensitive to the initial conditions of the model and to the band width of the constraint boundary conditions. Discriminate analysis was used to identify the variables that contribute the most to the optimal selection process. The results of the research indicated that the variables that are the most effective in selecting among the various procedures were the following: the ratio of peak to off-peak prices, the amount of revenue adjustment required, the constraint on equity, the constraint on peak price stability, and the constraint on meeting the revenue requirement. The poicy recommendations that can be derived from this research are very relevant in light of today's energy problems. Time-of-use pricing of electricity is needed in order to signal to the consumer the true cost of electricity by season and by time of day. Marginal costs capture such costs and rates should be based on such costs. Revenue reconciliation procedures make marginal cost-based rates feasible from a regulatory requirement perspective. This research showed that such procedures are available and selection among alternative procedures depends on the preference rankings placed on the multiple, and sometimes competing goals of electricity pricing.

  18. Soft Costs Fact Sheet

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy SunShot Initiative is a collaborative national effort to make solar energy technologies cost-competitive with conventional forms of energy by the end of the decade. Reducing the total installed cost for utility-scale solar electricity to roughly 6 cents per kilowatt hour without subsidies will result in rapid, large-scale adoption of solar electricity across the United States. Reaching this goal will re-establish American technological leadership, improve the nation's energy security,

  19. Shifting the Paradigm for Long Term Monitoring at Legacy Sites to Improve Performance while Reducing Cost

    SciTech Connect

    Eddy-Dilek, Carol A.; Looney, Brian B.; Seaman, John; Kmetz, Thomas

    2013-01-10

    A major issue facing many government and private industry sites that were previously contaminated with radioactive and chemical wastes is that often the sites cannot be cleaned up enough to permit unrestricted human access. These sites will require long-term management, in some cases indefinitely, leaving site owners with the challenge of protecting human health and environmental quality in a cost effective manner. Long-term monitoring of groundwater contamination is one of the largest projected costs in the life cycle of environmental management at the Savannah River Site (SRS), the larger DOE complex, and many large federal and private sites. Currently, most monitoring strategies are focused on laboratory measurements of contaminants measured in groundwater samples collected from wells. This approach is expensive, and provides limited and lagging information about the effectiveness of cleanup activities and the behavior of the residual contamination. Over the last twenty years, DOE and other federal agencies have made significant investments in the development of various types of sensors and strategies that would allow for remote analysis of contaminants in groundwater, but these approaches do not promise significant reductions in risk or cost. Scientists at SRS have developed a new paradigm to simultaneously improve the performance of long term monitoring systems while lowering the overall cost of monitoring. This alternative approach incorporates traditional point measurements of contaminant concentration with measurements of controlling variables including boundary conditions, master variables, and traditional plume/contaminant variables. Boundary conditions are the overall driving forces that control plume movement and therefore provide leading indication to changes in plume stability. These variables include metrics associated with meteorology, hydrology, hydrogeology, and land use. Master variables are the key variables that control the chemistry of the

  20. Replacement energy costs for nuclear electricity-generating units in the United States: 1997--2001. Volume 4

    SciTech Connect

    VanKuiken, J.C.; Guziel, K.A.; Tompkins, M.M.; Buehring, W.A.

    1997-09-01

    This report updates previous estimates of replacement energy costs for potential short-term shutdowns of 109 US nuclear electricity-generating units. This information was developed to assist the US Nuclear Regulatory Commission (NRC) in its regulatory impact analyses, specifically those that examine the impacts of proposed regulations requiring retrofitting of or safety modifications to nuclear reactors. Such actions might necessitate shutdowns of nuclear power plants while these changes are being implemented. The change in energy cost represents one factor that the NRC must consider when deciding to require a particular modification. Cost estimates were derived from probabilistic production cost simulations of pooled utility system operations. Factors affecting replacement energy costs, such as random unit failures, maintenance and refueling requirements, and load variations, are treated in the analysis. This report describes an abbreviated analytical approach as it was adopted to update the cost estimates published in NUREG/CR-4012, Vol. 3. The updates were made to extend the time frame of cost estimates and to account for recent changes in utility system conditions, such as change in fuel prices, construction and retirement schedules, and system demand projects.

  1. A comparison of estimates of cost-effectiveness of alternative fuels and vehicles for reducing emissions

    SciTech Connect

    Hadder, G.R.

    1995-11-01

    The cost-effectiveness ratio (CER) is a measure of the monetary value of resources expended to obtain reductions in emissions of air pollutants. The CER can lead to selection of the most effective sequence of pollution reduction options. Derived with different methodologies and technical assumptions, CER estimates for alternative fuel vehicles (AFVs) have varied widely among pervious studies. In one of several explanations of LCER differences, this report uses a consistent basis for fuel price to re-estimate CERs for AFVs in reduction of emissions of criteria pollutants, toxics, and greenhouse gases. The re-estimated CERs for a given fuel type have considerable differences due to non-fuel costs and emissions reductions, but the CERs do provide an ordinal sense of cost-effectiveness. The category with CER less than $5,000 per ton includes compressed natural gas and ed Petroleum gas vehicles; and E85 flexible-fueled vehicles (with fuel mixture of 85 percent cellulose-derived ethanol in gasoline). The E85 system would be much less attractive if corn-derived ethanol were used. The CER for E85 (corn-derived) is higher with higher values placed on the reduction of gas emissions. CER estimates are relative to conventional vehicles fueled with Phase 1 California reformulated gasoline (RFG). The California Phase 2 RFG program will be implemented before significant market penetration by AFVs. CERs could be substantially greater if they are calculated incremental to the Phase 2 RFG program. Regression analysis suggests that different assumptions across studies can sometimes have predictable effects on the CER estimate of a particular AFV type. The relative differences in cost and emissions reduction assumptions can be large, and the effect of these differences on the CER estimate is often not predictable. Decomposition of CERs suggests that methodological differences can make large contributions to CER differences among studies.

  2. Reducing the Cost of Thermal Energy Storage for Parabolic Trough Solar Power Plants

    SciTech Connect

    Gawlik, Keith

    2013-06-25

    Thermal energy storage systems using phase change materials were evaluated for trough systems that use oil, steam, and high temperature salts as heat transfer fluids. A variety of eutectic salts and metal alloys were considered as phase change materials in a cascaded arrangement. Literature values of specific heat, latent heat, density, and other thermophysical properties were used in initial analyses. Testing laboratories were contracted to measure properties for candidate materials for comparison to the literature and for updating the models. A TRNSYS model from Phase 1 was further developed for optimizing the system, including a novel control algorithm. A concept for increasing the bulk thermal conductivity of the phase change system was developed using expanded metal sheets. Outside companies were contracted to design and cost systems using platecoil heat exchangers immersed in the phase change material. Laboratory evaluations of the one-dimensional and three-dimensional behavior of expanded metal sheets in a low conductivity medium were used to optimize the amount of thermal conductivity enhancement. The thermal energy storage systems were compared to baseline conventional systems. The best phase change system found in this project, which was for the high temperature plant, had a projected cost of $25.2 per kWhth, The best system also had a cost that was similar to the base case, a direct two-tank molten salt system.

  3. Battery Electric Vehicles can reduce greenhouse has emissions and make renewable energy cheaper in India

    SciTech Connect

    Gopal, Anand R; Witt, Maggie; Sheppard, Colin; Harris, Andrew

    2015-07-01

    India's National Mission on Electric Mobility (NMEM) sets a countrywide goal of deploying 6 to 7 million hybrid and electric vehicles (EVs) by 2020. There are widespread concerns, both within and outside the government, that the Indian grid is not equipped to accommodate additional power demand from battery electric vehicles (BEVs). Such concerns are justified on the grounds of India's notorious power sector problems pertaining to grid instability and chronic blackouts. Studies have claimed that deploying BEVs in India will only

  4. Edison Electric Institute (EEI) Reducing Regulatory Burden RFI, 76 Fed. Reg. 75798 (Dec. 5, 2011)

    Energy.gov [DOE]

    The Edison Electric Institute (EEI) is submitting these comments in response to the above-referenced request for information (RFI) issued by the Department of Energy (DOE).

  5. Development of Production PVD-AIN Buffer Layer System and Processes to Reduce Epitaxy Costs and Increase LED Efficiency

    SciTech Connect

    Cerio, Frank

    2013-09-14

    The DOE has set aggressive goals for solid state lighting (SSL) adoption, which require manufacturing and quality improvements for virtually all process steps leading to an LED luminaire product. The goals pertinent to this proposed project are to reduce the cost and improve the quality of the epitaxial growth processes used to build LED structures. The objectives outlined in this proposal focus on achieving cost reduction and performance improvements over state-of-the-art, using technologies that are low in cost and amenable to high efficiency manufacturing. The objectives of the outlined proposal focus on cost reductions in epitaxial growth by reducing epitaxy layer thickness and hetero-epitaxial strain, and by enabling the use of larger, less expensive silicon substrates and would be accomplished through the introduction of a high productivity reactive sputtering system and an effective sputtered aluminum-nitride (AlN) buffer/nucleation layer process. Success of the proposed project could enable efficient adoption of GaN on-silicon (GaN/Si) epitaxial technology on 150mm silicon substrates. The reduction in epitaxy cost per cm{sup 2} using 150mm GaN-on-Si technology derives from (1) a reduction in cost of ownership and increase in throughput for the buffer deposition process via the elimination of MOCVD buffer layers and other throughput and CoO enhancements, (2) improvement in brightness through reductions in defect density, (3) reduction in substrate cost through the replacement of sapphire with silicon, and (4) reduction in non-ESD yield loss through reductions in wafer bow and temperature variation. The adoption of 150mm GaN/Si processing will also facilitate significant cost reductions in subsequent wafer fabrication manufacturing costs. There were three phases to this project. These three phases overlap in order to aggressively facilitate a commercially available production GaN/Si capability. In Phase I of the project, the repeatability of the performance

  6. New membranes could speed the biofuels conversion process and reduce cost

    ScienceCinema

    Hu, Michael

    2016-07-12

    ORNL researchers have developed a new class of membranes that could enable faster, more cost efficient biofuels production. These membranes are tunable at the nanopore level and have potential uses in separating water from fuel and acid from bio-oils. The membrane materials technology just won an R&D 100 award. ORNL and NREL are partnering, with support from the DOE Bioenergy Technologies Office, to determine the best uses of these membranes to speed the biofuels conversion process. Development of the membranes was funded by DOE BETO and ORNL's Laboratory Directed Research and Development Program.

  7. New membranes could speed the biofuels conversion process and reduce cost

    SciTech Connect

    Hu, Michael

    2014-07-23

    ORNL researchers have developed a new class of membranes that could enable faster, more cost efficient biofuels production. These membranes are tunable at the nanopore level and have potential uses in separating water from fuel and acid from bio-oils. The membrane materials technology just won an R&D 100 award. ORNL and NREL are partnering, with support from the DOE Bioenergy Technologies Office, to determine the best uses of these membranes to speed the biofuels conversion process. Development of the membranes was funded by DOE BETO and ORNL's Laboratory Directed Research and Development Program.

  8. Low-cost household paint abatement to reduce children's blood lead levels

    SciTech Connect

    Taha, T.; Kanarek, M.S.; Schultz, B.D.; Murphy, A.

    1999-11-01

    The purpose was to examine the effectiveness of low-cost abatement on children's blood lead levels. Blood lead was analyzed before and after abatement in 37 homes of children under 7 years old with initial blood lead levels of 25--44 {micro}g/dL. Ninety-five percent of homes were built before 1950. Abatement methods used were wet-scraping and repainting deteriorated surfaces and wrapping window wells with aluminum or vinyl. A control group was retrospectively selected. Control children were under 7 years old, had initial blood lead levels of 25--44 {micro}g/dL and a follow-up level at least 28 days afterward, and did not have abatements performed in their homes between blood lead levels. After abatement, statistically significant declines occurred in the intervention children's blood lead levels. The mean decline was 22%, 1 to 6 months after treatment. After adjustment for seasonality and child's age, the mean decline was 6.0 {micro}g/dL, or 18%. The control children's blood levels did not decline significantly. There was a mean decline of 0.25 {micro}g/dL, or 0.39%. After adjustment for seasonality and age, the mean decline for control children was 1.6 {micro}g/dL, or 1.8%. Low-cost abatement and education are effective short-term interim controls.

  9. Potential for the Use of Energy Savings Performance Contracts to Reduce Energy Consumption and Provide Energy and Cost Savings in Non-Building Applications

    Energy.gov [DOE]

    Document provides information on the use of energy savings performance contracts to reduce energy consumption and provide energy and cost savings in non-building applications.

  10. A heat & mass integration approach to reduce capital and operating costs of a distillation configuration

    SciTech Connect

    Madenoor Ramapriya, Gautham; Jiang, Zheyu; Tawarmalani, Mohit; Agrawal, Rakesh

    2015-11-11

    We propose a general method to consolidate distillation columns of a distillation configuration using heat and mass integration. The proposed method encompasses all heat and mass integrations known till date, and includes many more. Each heat and mass integration eliminates a distillation column, a condenser, a reboiler and the heat duty associated with a reboiler. Thus, heat and mass integration can potentially offer significant capital and operating cost benefits. In this talk, we will study the various possible heat and mass integrations in detail, and demonstrate their benefits using case studies. This work will lay out a framework to synthesize an entire new class of useful configurations based on heat and mass integration of distillation columns.

  11. Lifecycle Cost Analysis of Hydrogen Versus Other Technologies for Electrical Energy Storage

    SciTech Connect

    Steward, D.; Saur, G.; Penev, M.; Ramsden, T.

    2009-11-01

    This report presents the results of an analysis evaluating the economic viability of hydrogen for medium- to large-scale electrical energy storage applications compared with three other storage technologies: batteries, pumped hydro, and compressed air energy storage (CAES).

  12. Lifecycle Cost Analysis of Hydrogen Versus Other Technologies for Electrical Energy Storage

    Publication and Product Library

    This report presents the results of an analysis evaluating the economic viability of hydrogen for medium- to large-scale electrical energy storage applications compared with three other storage techno

  13. Reducing Emissions of Sulfur Dioxide, Nitrogen Oxides, and Mercury from Electric Power Plants

    Reports and Publications

    2001-01-01

    This analysis responds to a request from Senators Bob Smith, George Voinovich, and Sam Brownback to examine the costs of specific multi-emission reduction strategies.

  14. Wind Turbine Control Design to Reduce Capital Costs: 7 January 2009 - 31 August 2009

    SciTech Connect

    Darrow, P. J.

    2010-01-01

    This report first discusses and identifies which wind turbine components can benefit from advanced control algorithms and also presents results from a preliminary loads case analysis using a baseline controller. Next, it describes the design, implementation, and simulation-based testing of an advanced controller to reduce loads on those components. The case-by-case loads analysis and advanced controller design will help guide future control research.

  15. Edison Electric Institute (EEI) Reducing Regulatory Burden RFI, 77 Fed. Reg. 28518 (May 15, 2012)

    Energy.gov [DOE]

    The Edison Electric Institute (EEI) is submitting these comments in response to the above-referenced request for information (RFI) issued by the Department of Energy (DOE). In the RFI, DOE is again...

  16. Abbreviated epitaxial growth mode (AGM) method for reducing cost and improving quality of LEDs and lasers

    DOEpatents

    Tansu, Nelson; Chan, Helen M; Vinci, Richard P; Ee, Yik-Khoon; Biser, Jeffrey

    2013-09-24

    The use of an abbreviated GaN growth mode on nano-patterned AGOG sapphire substrates, which utilizes a process of using 15 nm low temperature GaN buffer and bypassing etch-back and recovery processes during epitaxy, enables the growth of high-quality GaN template on nano-patterned AGOG sapphire. The GaN template grown on nano-patterned AGOG sapphire by employing abbreviated growth mode has two orders of magnitude lower threading dislocation density than that of conventional GaN template grown on planar sapphire. The use of abbreviated growth mode also leads to significant reduction in cost of the epitaxy. The growths and characteristics of InGaN quantum wells (QWs) light emitting diodes (LEDs) on both templates were compared. The InGaN QWs LEDs grown on the nano-patterned AGOG sapphire demonstrated at least a 24% enhancement of output power enhancement over that of LEDs grown on conventional GaN templates.

  17. Life-Cycle Cost Analysis Highlights Hydrogen's Potential for Electrical Energy Storage (Fact Sheet)

    SciTech Connect

    Not Available

    2010-11-01

    This fact sheet describes NREL's accomplishments in analyzing life-cycle costs for hydrogen storage in comparison with other energy storage technologies. Work was performed by the Hydrogen Technologies and Systems Center.

  18. OPTIMIZING TECHNOLOGY TO REDUCE MERCURY AND ACID GAS EMISSIONS FROM ELECTRIC POWER PLANTS

    SciTech Connect

    Jeffrey C. Quick; David E. Tabet; Sharon Wakefield; Roger L. Bon

    2005-10-01

    Maps showing potential mercury, sulfur, chlorine, and moisture emissions for U.S. coal by county of origin were made from publicly available data (plates 1, 2, 3, and 4). Published equations that predict mercury capture by emission control technologies used at U.S. coal-fired utilities were applied to average coal quality values for 169 U.S. counties. The results were used to create five maps that show the influence of coal origin on mercury emissions from utility units with: (1) hot-side electrostatic precipitator (hESP), (2) cold-side electrostatic precipitator (cESP), (3) hot-side electrostatic precipitator with wet flue gas desulfurization (hESP/FGD), (4) cold-side electrostatic precipitator with wet flue gas desulfurization (cESP/FGD), and (5) spray-dry adsorption with fabric filter (SDA/FF) emission controls (plates 5, 6, 7, 8, and 9). Net (lower) coal heating values were calculated from measured coal Btu values, and estimated coal moisture and hydrogen values; the net heating values were used to derive mercury emission rates on an electric output basis (plate 10). Results indicate that selection of low-mercury coal is a good mercury control option for plants having hESP, cESP, or hESP/FGD emission controls. Chlorine content is more important for plants having cESP/FGD or SDA/FF controls; optimum mercury capture is indicated where chlorine is between 500 and 1000 ppm. Selection of low-sulfur coal should improve mercury capture where carbon in fly ash is used to reduce mercury emissions. Comparison of in-ground coal quality with the quality of commercially mined coal indicates that existing coal mining and coal washing practice results in a 25% reduction of mercury in U.S. coal before it is delivered to the power plant. Further pre-combustion mercury reductions may be possible, especially for coal from Texas, Ohio, parts of Pennsylvania and much of the western U.S.

  19. Wind Power Impacts on Electric Power System Operating Costs: Summary and Perspective on Work to Date; Preprint

    SciTech Connect

    Smith, J. C.; DeMeo, E. A.; Parsons, B.; Milligan, M.

    2004-03-01

    Electric utility system planners and operators are concerned that variations in wind plant output may increase the operating costs of the system. This concern arises because the system must maintain an instantaneous balance between the aggregate demand for electric power and the total power generated by all power plants feeding the system. This is a highly sophisticated task that utility operators and automatic controls perform routinely, based on well-known operating characteristics for conventional power plants and a great deal of experience accumulated over many years. System operators are concerned that variations in wind plant output will force the conventional power plants to provide compensating variations to maintain system balance, thus causing the conventional power plants to deviate from operating points chosen to minimize the total cost of operating the system. The operators' concerns are compounded by the fact that conventional power plants are generally under their control and thus are dispatchable, whereas wind plants are controlled instead by nature. Although these are valid concerns, the key issue is not whether a system with a significant amount of wind capacity can be operated reliably, but rather to what extent the system operating costs are increased by the variability of the wind.

  20. Cost Benefit Analysis Modeling Tool for Electric vs. ICE Airport Ground Support Equipment Development and Results

    SciTech Connect

    James Francfort; Kevin Morrow; Dimitri Hochard

    2007-02-01

    This report documents efforts to develop a computer tool for modeling the economic payback for comparative airport ground support equipment (GSE) that are propelled by either electric motors or gasoline and diesel engines. The types of GSE modeled are pushback tractors, baggage tractors, and belt loaders. The GSE modeling tool includes an emissions module that estimates the amount of tailpipe emissions saved by replacing internal combustion engine GSE with electric GSE. This report contains modeling assumptions, methodology, a users manual, and modeling results. The model was developed based on the operations of two airlines at four United States airports.

  1. Reduced

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Reduced intermittency in the magnetic turbulence of reversed field pinch plasmas L. Marrelli and L. Frassinetti Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, Corso Stati Uniti, 4 35127 Padova, Italy a͒ P. Martin Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, Corso Stati Uniti, 4 35127 Padova, Italy a͒ and Dipartimento di Fisica G. Galilei, Universitàt di Padova, 35131 Padova, Italy D. Craig and J. S. Sarff Department of Physics and Center for Magnetic Self-Organization in

  2. Analysis of FERC's Final EIS for Electricity Open Access & Recovery of Stranded Costs

    Reports and Publications

    1996-01-01

    Reviews the Final Environmental Impact Statement (FEIS) prepared by the Federal Energy Regulatory Commission for its electricity transmission system open access prepared in April 1996 and uses the National Energy Modeling System (NEMS) to analyze the open access rule (Orders 888 and 889).

  3. Grounding electrode and method of reducing the electrical resistance of soils

    DOEpatents

    Koehmstedt, Paul L.

    1980-01-01

    A first solution of an electrolyte is injected underground into a volume of soil having negative surface charges on its particles. A cationic surfactant suspended in this solution neutralizes these surface charges of the soil particles within the volume. Following the first solution, a cationic asphalt emulsion suspended in a second solution is injected into the volume. The asphalt emulsion diffuses through the volume and electrostatically bonds with additional soil surrounding the volume such that an electrically conductive water repellant shell enclosing the volume is formed. This shell prevents the leaching of electrolyte from the volume into the additional soil. The second solution also contains a dissolved deliquescent salt which draws water into the volume prior to the formation of the shell. When electrically connected to an electrical installation such as a power line tower, the volume constitutes a grounding electrode for the tower.

  4. Electric Power Interruption Cost Estimates for Individual Industries, Sectors, and U.S. Economy

    SciTech Connect

    Balducci, Patrick J.; Roop, Joseph M.; Schienbein, Lawrence A.; DeSteese, John G.; Weimar, Mark R.

    2002-02-27

    During the last 20 years, utilities and researchers have begun to understand the value in the collection and analysis of interruption cost data. The continued investigation of the monetary impact of power outages will facilitate the advancement of the analytical methods used to measure the costs and benefits from the perspective of the energy consumer. More in-depth analysis may be warranted because of the privatization and deregulation of power utilities, price instability in certain regions of the U.S. and the continued evolution of alternative auxiliary power systems.

  5. EERE Success Story-US-ABC Collaborates to Lower Cost of Electric...

    Energy Saver

    Addthis The U.S. Advanced Battery Consortium (US-ABC) is a group that funds electrochemical storage research and ... Project Overview Positive Impact Reducing battery vehicle ...

  6. EECBG Success Story: Small Town Using Wind Power to Offset Electricity Costs

    Energy.gov [DOE]

    Carmen, Oklahoma, is not your average small town. It was the first recipient of an Energy Efficiency and Conservation block grant – and the small town of 412 is using that Recovery Act funding to cut costs through wind energy. Learn more.

  7. Modeling the performance and cost of lithium-ion batteries for electric-drive vehicles.

    SciTech Connect

    Nelson, P. A. Gallagher, K. G. Bloom, I. Dees, D. W.

    2011-10-20

    This report details the Battery Performance and Cost model (BatPaC) developed at Argonne National Laboratory for lithium-ion battery packs used in automotive transportation. The model designs the battery for a specified power, energy, and type of vehicle battery. The cost of the designed battery is then calculated by accounting for every step in the lithium-ion battery manufacturing process. The assumed annual production level directly affects each process step. The total cost to the original equipment manufacturer calculated by the model includes the materials, manufacturing, and warranty costs for a battery produced in the year 2020 (in 2010 US$). At the time this report is written, this calculation is the only publically available model that performs a bottom-up lithium-ion battery design and cost calculation. Both the model and the report have been publically peer-reviewed by battery experts assembled by the U.S. Environmental Protection Agency. This report and accompanying model include changes made in response to the comments received during the peer-review. The purpose of the report is to document the equations and assumptions from which the model has been created. A user of the model will be able to recreate the calculations and perhaps more importantly, understand the driving forces for the results. Instructions for use and an illustration of model results are also presented. Almost every variable in the calculation may be changed by the user to represent a system different from the default values pre-entered into the program. The distinct advantage of using a bottom-up cost and design model is that the entire power-to-energy space may be traversed to examine the correlation between performance and cost. The BatPaC model accounts for the physical limitations of the electrochemical processes within the battery. Thus, unrealistic designs are penalized in energy density and cost, unlike cost models based on linear extrapolations. Additionally, the

  8. Energy 101: Electric Vehicles

    ScienceCinema

    None

    2016-07-12

    This edition of Energy 101 highlights the benefits of electric vehicles, including improved fuel efficiency, reduced emissions, and lower maintenance costs. For more information on electric vehicles from the Office of Energy Efficiency and Renewable Energy, visit the Vehicle Technologies Program website: http://www1.eere.energy.gov/vehiclesandfuels/

  9. Building Technologies Office: R&D Opportunities to Reduce Energy Consumption in Miscellaneous Electric Loads (MELs)

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Office: R&D Opportunities to Reduce Energy Consumption in Miscellaneous Electric Loads (MELs) Pat Phelan (patrick.phelan@ee.doe.gov) BTO Emerging Technologies June 3, 2016 2 Why Do We Care About MELs? Problem: Fraction of energy consumption due to MELs is rising as other building technologies become more efficient. DOE Quadrennial Technology Review (2015)  60% of remaining energy consumption after 2020 R&D targets are achieved, the majority of which are MELs. FY16 Activities: * Panel

  10. Reducing Residential Peak Electricity Demand with Mechanical Pre-Cooling of Building Thermal Mass

    SciTech Connect

    Turner, Will; Walker, Iain; Roux, Jordan

    2014-08-01

    This study uses an advanced airflow, energy and humidity modelling tool to evaluate the potential for residential mechanical pre-cooling of building thermal mass to shift electricity loads away from the peak electricity demand period. The focus of this study is residential buildings with low thermal mass, such as timber-frame houses typical to the US. Simulations were performed for homes in 12 US DOE climate zones. The results show that the effectiveness of mechanical pre-cooling is highly dependent on climate zone and the selected pre-cooling strategy. The expected energy trade-off between cooling peak energy savings and increased off-peak energy use is also shown.

  11. Energy 101: Electric Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Electric Vehicles Energy 101: Electric Vehicles Addthis Description This edition of Energy 101 highlights the benefits of electric vehicles, including improved fuel efficiency, reduced emissions, and lower maintenance costs. Text Version Below is the text version for the Energy 101: Electric Vehicles video. The video opens with "Energy 101: Electric Vehicles." This is followed by various shots of different electric vehicles on the road. Wouldn't it be pretty cool to do all of your

  12. EERE Success Story-Electric Cooperatives Channel Solar Resources...

    Office of Environmental Management (EM)

    solar electricity as the cost of photovoltaic (PV) solar energy systems decline dramatically. ... This suite of materials and best practices is designed to not only reduce solar ...

  13. NSTAR Electric Company Smart Grid Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Indicators Equipment Condition Monitors Targeted Benefits Improved Electric Service Reliability and Power Quality Reduced Costs from Equipment Failures, Distribution, and Line...

  14. #AskBerkeleyLab: Batteries for Electric Cars

    SciTech Connect

    Srinivasan, Venkat

    2015-02-27

    Berkeley Lab Battery Scientist, Venkat Srinivasan, answers a question about batteries for electric cars, highlighting the lab's research into reducing costs and improving environmental impact.

  15. Magnesium and Manganese Silicides For Efficient And Low Cost Thermo-Electric Power Generation

    SciTech Connect

    Trivedi, Sudhir B.; Kutcher, Susan W.; Rosemeier, Cory A.; Mayers, David; Singh, Jogender

    2013-12-02

    Thermoelectric Power Generation (TEPG) is the most efficient and commercially deployable power generation technology for harvesting wasted heat from such things as automobile exhausts, industrial furnaces, and incinerators, and converting it into usable electrical power. We investigated the materials magnesium silicide (Mg2Si) and manganese silicide (MnSi) for TEG. MgSi2 and MnSi are environmentally friendly, have constituent elements that are abundant in the earth's crust, non-toxic, lighter and cheaper. In Phase I, we successfully produced Mg2Si and MnSi material with good TE properties. We developed a novel technique to synthesize Mg2Si with good crystalline quality, which is normally very difficult due to high Mg vapor pressure and its corrosive nature. We produced n-type Mg2Si and p-type MnSi nanocomposite pellets using FAST. Measurements of resistivity and voltage under a temperature gradient indicated a Seebeck coefficient of roughly 120 V/K on average per leg, which is quite respectable. Results indicated however, that issues related to bonding resulted in high resistivity contacts. Determining a bonding process and bonding material that can provide ohmic contact from room temperature to the operating temperature is an essential part of successful device fabrication. Work continues in the development of a process for reproducibly obtaining low resistance electrical contacts.

  16. Building America Top Innovations 2012: High-Performance with Solar Electric Reduced Peak Demand

    SciTech Connect

    none,

    2013-01-01

    This Building America Top Innovations profile describes Building America solar home research that has demonstrated the ability to reduce peak demand by 75%. Numerous field studies have monitored power production and system effectiveness.

  17. A cost effective battery bank for I sup 2 t testing and evaluation of electrical switchgear

    SciTech Connect

    Reass, W.A.

    1989-01-01

    This paper describes the electrical design and mechanical construction of a 50 kA step switched'' battery bank. Individual fuses protect each of the forty parallel isolated strings of three series (12 V) batteries. Step current waveforms of 12.5 kA, 25 kA, 37.5 kA, and 50 kA are produced by 8 sets of pneumatically driven 20 pole step switches and current limiting stainless steel trombone'' resistors. Inexpensive, yet conservatively designed, Group 65 Motorcraft car batteries are used to give an I{sup 2}t capability of better than 5 {times} 10{sup 9}. The battery bank has well over 1500 shots, with testing of commercial switchgear continuing. In addition to the battery bank engineering data, results of repetitive testing of vacuum interrupters at their I{sup 2}t limit will be provided. 8 figs.

  18. Using electronic templates and a centralized document production network to reduce cost and improve consistence between technical reports

    SciTech Connect

    Byrnes, M.E.

    1996-12-31

    In an effort to reduce the cost and improve the accuracy and consistency between technical reports being written by large companies or large Federal installations, SAIC has recently developed the Centralized Document Production Network (CDPN) Software. The CDPN Software is loaded with standardized electronic document templates along with standardized site-specific background text, tables, and figures. While users across the network are able to retrieve electronic templates and site-specific background text to support their report writing activities, modifications to the network text can only be made by designated experts which are assigned individual passwords. At this time, the CDPN software is being Beta Tested by Kaiser-Hill and Rocky Mountain Remediation Services at the US Department of Energy`s Rocky Flats Plant, in addition to multiple private sector corporations.

  19. The polyester rope taut leg mooring concept: A feasible means for reducing deepwater mooring cost and improving stationkeeping performance

    SciTech Connect

    Winkler, M.M.; McKenna, H.A.

    1995-12-01

    The polyester rope taut leg mooring system offers a unique opportunity to reduce deepwater mooring system cost, while simultaneously improving stationkeeping performance. These gains are over catenary or taut leg systems designed using all steel components. This paper builds upon work presented at prior OTC conferences and focuses on concept feasibility and implementation. Feasibility is addressed from a systems basis including fiber and rope selection, definition of mechanical properties, mooring system integration, and effects of long-term usage. Implementation is believed practical based on current technology and in-place manufacturing capability. Available cyclic tension test results for polyester rope suggest a comparable fatigue performance to wire rope. The most significant challenge facing application of the polyester taut leg mooring concept is the lack of in-service experience compared to conventional steel catenary mooring systems.

  20. Opportunities for Low Cost Titanium in Reduced Fuel Consumption, Improved Emissions, and Enhanced Durability Heavy Duty Vehicles

    SciTech Connect

    Kraft, E.H.

    2002-07-22

    The purpose of this study was to determine which components of heavy-duty highway vehicles are candidates for the substitution of titanium materials for current materials if the cost of those Ti components is very significantly reduced from current levels. The processes which could be used to produce those low cost components were also investigated. Heavy-duty highway vehicles are defined as all trucks and busses included in Classes 2C through 8. These include heavy pickups and vans above 8,500 lbs. GVWR, through highway tractor trailers. Class 8 is characterized as being a very cyclic market, with ''normal'' year volume, such as in 2000, of approximately 240,000 new vehicles. Classes 3-7 are less cyclic, with ''normal'' i.e., year 2000, volume totaling approximately 325,000 new vehicles. Classes 3-8 are powered about 88.5% by diesel engines, and Class 2C at very roughly 83% diesel. The engine portion of the study therefore focused on diesels. Vehicle production volumes were used in estimates of the market size for candidate components.

  1. Analysis of Strategies for Reducing Multiple Emissions from Electric Power Plants: SO2, Nox, CO2

    Reports and Publications

    2001-01-01

    This report responds to a request received from Senator David McIntosh on June 29, 2000 to analyze the impacts on energy consumers and producers of coordinated strategies to reduce emissions of sulfur dioxide, nitrogen oxides, and carbon dioxide at U.S. power plants.

  2. Reducing Idle Power Consumption in Office Spaces Saves U.S. Navy in Energy Costs (Fact Sheet), NREL (National Renewable Energy Laboratory)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Reducing Idle Power Consumption in Office Spaces Saves U.S. Navy in Energy Costs As part of a two-year project to demonstrate energy efficiency measures, renewable energy generation, and energy systems integration, the National Renewable Energy Laboratory (NREL) has identified advanced plug load controls as a promising technology for reducing energy use and related costs in the U.S. Navy's Naval Facilities Engineering Command (NAVFAC) office spaces. The demonstration was one of eight

  3. Using architecture information and real-time resource state to reduce power consumption and communication costs in parallel applications.

    SciTech Connect

    Brandt, James M.; Devine, Karen D.; Gentile, Ann C.; Leung, Vitus J.; Olivier, Stephen Lecler; Pedretti, Kevin; Rajamanickam, Sivasankaran; Bunde, David P.; Deveci, Mehmet; Catalyurek, Umit V.

    2014-09-01

    As computer systems grow in both size and complexity, the need for applications and run-time systems to adjust to their dynamic environment also grows. The goal of the RAAMP LDRD was to combine static architecture information and real-time system state with algorithms to conserve power, reduce communication costs, and avoid network contention. We devel- oped new data collection and aggregation tools to extract static hardware information (e.g., node/core hierarchy, network routing) as well as real-time performance data (e.g., CPU uti- lization, power consumption, memory bandwidth saturation, percentage of used bandwidth, number of network stalls). We created application interfaces that allowed this data to be used easily by algorithms. Finally, we demonstrated the benefit of integrating system and application information for two use cases. The first used real-time power consumption and memory bandwidth saturation data to throttle concurrency to save power without increasing application execution time. The second used static or real-time network traffic information to reduce or avoid network congestion by remapping MPI tasks to allocated processors. Results from our work are summarized in this report; more details are available in our publications [2, 6, 14, 16, 22, 29, 38, 44, 51, 54].

  4. ELECTRIC

    Office of Legacy Management (LM)

    you nay give us will be greatly uppreckted. VPry truly your23, 9. IX. Sin0j3, Mtinager lclectronics and Nuclear Physics Dept. omh , WESTINGHOUSE-THE NAT KING IN ELECTRICITY

  5. Cost Effective, High Efficiency Integrated Systems Approach to Auxilliary Electric Motors

    SciTech Connect

    Roy Kessinger Jr.; Keith Seymour; Kanchan Angal; Jason Wolf; Steve Brewer; Leonard Schrank

    2003-09-26

    The CARAT program, carried out by Kinetic Art & Technology Corporation (KAT), has been one of the most commercially successful KAT R&D programs to date. Based on previous development of its technology, KAT designed, constructed and tested a highly efficient motor and controller system under this CARAT program with supplemental commercial funding. Throughout this CARAT effort, the technical objectives have been refined and refocused. Some objectives have been greatly expanded, while others have been minimized. The determining factor in all decisions to refocus the objectives was the commercial need, primarily the needs of KAT manufacturing partners. Several companies are employing the resulting CARAT motor and controller designs in prototypes for commercial products. Two of these companies have committed to providing cost share in order to facilitate the development. One of these companies is a major manufacturing company developing a revolutionary new family of products requiring the ultra-high system efficiency achievable by the KAT motor and controller technologies (known as Segmented ElectroMagnetic Array, or SEMA technology). Another company requires the high efficiency, quiet operation, and control characteristics afforded by the same basic motor and controller for an advanced air filtration product. The combined annual production requirement projected by these two companies exceeds one million units by 2005.

  6. EV Everywhere: Maximizing All-Electric Range | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Reduced all-electric range in a plug-in hybrid electric vehicle will result in the internal combustion engine turning on more quickly, increasing fuel cost and emissions. There are ...

  7. Potential for the Use of Energy Savings Performance Contracts to Reduce Energy Consumption and Provide Energy and Cost Savings in Non-Building Applications

    SciTech Connect

    Williams, Charles; Green, Andrew S.; Dahle, Douglas; Barnett, John; Butler, Pat; Kerner, David

    2013-08-01

    The findings of this study indicate that potential exists in non-building applications to save energy and costs. This potential could save billions of federal dollars, reduce reliance on fossil fuels, increase energy independence and security, and reduce greenhouse gas emissions. The Federal Government has nearly twenty years of experience with achieving similar energy cost reductions, and letting the energy costs savings pay for themselves, by applying energy savings performance contracts (ESPC) inits buildings. Currently, the application of ESPCs is limited by statute to federal buildings. This study indicates that ESPCs can be a compatible and effective contracting tool for achieving savings in non-building applications.

  8. IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers

    SciTech Connect

    Melody, Moya; Dunham Whitehead, Camilla; Brown, Richard

    2010-09-30

    As American drinking water agencies face higher production costs, demand, and energy prices, they seek opportunities to reduce costs without negatively affecting the quality of the water they deliver. This guide describes resources for cost-effectively improving the energy efficiency of U.S. public drinking water facilities. The guide (1) describes areas of opportunity for improving energy efficiency in drinking water facilities; (2) provides detailed descriptions of resources to consult for each area of opportunity; (3) offers supplementary suggestions and information for the area; and (4) presents illustrative case studies, including analysis of cost-effectiveness.

  9. Optimizing Technology to Reduce Mercury and Acid Gas Emissions from Electric Power Plants

    SciTech Connect

    Jeffrey C. Quick; David E. Tabet; Sharon Wakefield; Roger L. Bon

    2005-01-31

    Revised maps and associated data show potential mercury, sulfur, and chlorine emissions for U.S. coal by county of origin. Existing coal mining and coal washing practices result in a 25% reduction of mercury in U.S. coal before it is delivered to the power plant. Selection of low-mercury coal is a good mercury control option for plants having hot-side ESP, cold-side ESP, or hot-side ESP/FGD emission controls. Chlorine content is more important for plants having cold-side ESP/FGD or SDA/FF controls; optimum net mercury capture is indicated where chlorine is between 500 and 1000 ppm. Selection of low-sulfur coal should improve mercury capture where carbon in fly ash is used to reduce mercury emissions.

  10. Making appropriate comparisons of estimated and actual costs of reducing SO{sub 2} emissions under Title IV

    SciTech Connect

    Smith, A.E.

    1998-12-31

    A current sentiment within some parts of the environmental policy community is that market-based regulatory approaches such as emissions trading have proven so effective that actual costs will be only a small fraction of what ex ante cost estimation procedures would project. With this line of reasoning, some have dismissed available cost estimates for major proposed new regulations, such as the new PM and ozone NAAQS, as not meaningful for policy decisions. The most commonly used evidence in support of this position is the experience with SO{sub 2} reductions under Title IV of the 1990 Clean Air Act Amendments. In Title IV, a market for emissions allowances has been used to achieve reductions in sulfur dioxides (SO{sub 2}) to ameliorate acid rain. It is commonly asserted today that the cost of achieving the SO{sub 2} emissions reductions has been only one-tenth or less of what Title IV was originally expected to cost. This paper demonstrates that, to the contrary, actual costs for SO{sub 2} reductions remain roughly in line with original estimates associated with Title IV. Erroneous conclusions about Title IV`s costs are due to inappropriate comparisons of a variety of different measures that appear to be comparable only because they are all stated in dollars per ton. Program cost estimates include the total costs of a fully-implemented regulatory program. The very low costs of Title IV that are commonly cited today are neither directly reflective of a fully implemented Title IV, (which is still many years away) nor reflective of all the costs already incurred. Further, a careful review of history finds that the initial cost estimates that many cite were never associated with Title IV. Technically speaking, people are comparing the estimated control costs for the most-costly power plant associated with earlier acid rain regulatory proposals with prices from a market that do not directly reflect total costs.

  11. Reducing electric sector CO{sub 2} emissions under competition: Facilitating technology development and turnover on both sides of the meter

    SciTech Connect

    Connors, S.R.

    1997-12-31

    This paper reviews the technological and institutional factors involved in achieving long-term reductions in CO{sub 2} emissions in the electric sector. A case study of the New England electric sector is used to illustrate factors associated with energy infrastructure turnover and technology development and use. Opportunities for joint implementation of CO{sub 2} reductions are identified, as well as strategies which leverage CO{sub 2} emissions reductions to achieve reductions in other emissions, and to facilitate cost and environmental risk mitigation. Impacts of environmental performance constraints on the electric industry are also identified and analyzed. 5 figs., 1 tab.

  12. NWTC Collaborative Increases Gearbox Reliability and Helps Reduce Cost of Wind Energy; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    2015-07-01

    A collaborative at the National Renewable Energy Laboratory's (NREL's) National Wind Technology Center (NWTC) leads to wind turbine gearbox reliability and lowers the cost of wind energy.

  13. Energy Assessment Training Reduces Energy Costs for the U.S. Coast Guard Sector Guam: Success Stories (Fact Sheet)

    SciTech Connect

    Not Available

    2013-05-01

    U.S. Coast Guard Sector Guam experiences considerable energy cost and use savings after implementing training from NREL's energy assessment training.

  14. Reducing Transaction Costs for Energy Efficiency Investments and Analysis of Economic Risk Associated With Building Performance Uncertainties: Small Buildings and Small Portfolios Program

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Reducing Transaction Costs for Energy Efficiency Investments and Analysis of Economic Risk Associated With Building Performance Uncertainties Small Buildings and Small Portfolios Program Rois Langner, Bob Hendron, and Eric Bonnema Technical Report NREL/TP-5500-60976 August 2014 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National

  15. Design of Electric Drive Vehicle Batteries for Long Life and Low Cost: Robustness to Geographic and Consumer-Usage Variation (Presentation)

    SciTech Connect

    Smith, K.; Markel, T.; Kim, G. H.; Pesaran, A.

    2010-10-01

    This presentation describes a battery optimization and trade-off analysis for Li-ion batteries used in EVs and PHEVs to extend their life and/or reduce cost.

  16. Department of Energy Announces up to $70 Million to Advance Technology and Reduce Cost of Geothermal Energy

    Office of Energy Efficiency and Renewable Energy (EERE)

    In support of President Obama's goal of generating 80 % of the country's electricity from clean energy sources by 2035, U.S. Department of Energy Secretary Steven Chu today announced the availability of up to $70 million in new funding over three years for technology advancements in geothermal energy to accelerate development of this promising clean energy resource.

  17. NOVEL TECHNOLOGIES DEVELOPED BY CREE LOWER THE COST OF HIGH-PERFORMANCE LED TROFFERS ON THE MARKET

    Energy.gov [DOE]

    Cree used a comprehensive approach to reduce the costs of various optical, thermal, and electrical subsystems without impacting performance, resulting in an LED troffer luminaire platform emitting...

  18. Energy Efficiency and Least-Cost Planning: The Best Way to Save Money and Reduce Energy Use in Hawaii

    SciTech Connect

    Mowris, Robert J.

    1990-05-21

    If the 500 MW geothermal project on the Big Island of Hawaii is developed as planned, the Wao Kele O Puna rain forest will be severely damaged or destroyed. If this happens the State will lose one of its most precious resources. It would be tragic for this to happen, since on a least-cost basis, the geothermal project does not make economic sense. Improving energy efficiency in the commercial and residential sectors of Hawaii can save about 500 MW of power at a cost of $700 million.

  19. A New Method of Low Cost Production of Ti Alloys to Reduce Energy Consumption of Mechanical Systems

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Univ. of Utah Ravi Chandran, Co-PI, Univ. of Utah U.S. DOE Advanced Manufacturing Office Peer Review Meeting Washington, D.C. June 14-15, 2016 This presentation does not contain any proprietary, confidential, or otherwise restricted information. Project Objective  Develop a novel low cost method for manufacturing Ti  Demonstrate the mechanical properties of Ti using the new method to be equivalent to that of wrought Ti at a fraction of its cost.  Initiate efforts to promote the use of

  20. Potential for savings in compliance costs for reducing ground-level ozone possible by instituting seasonal versus annual nitric oxide emission limits

    SciTech Connect

    Lookman, A.A.

    1996-12-31

    Ground-level ozone is formed in the atmosphere from its precursor emissions, namely nitric oxide (NO{sub x}) and volatile organic compounds (VOC), with its rate of formation dependent on atmospheric conditions. Since ozone levels tend to be highest during the summer months, seasonal controls of precursors have been suggested as a means of reducing the costs of decreasing ozone concentrations to acceptable levels. This paper attempts to quantify what the potential savings if seasonal control were instituted for coal-fired power plants, assuming that only commercially available NO{sub x} control technologies are used. Cost savings through seasonal control is measured by calculating the total annualized cost of NO{sub x} removal at a given amount of seasonal control for different target levels of annual control. For this study, it is assumed that trading of NO{sub x} emissions will be allowed, as has been proposed by the Ozone Transportation Commission (OTC). The problem has been posed as a binary integer linear programming problem, with decision variables being which control to use at each power plant. The results indicate that requiring annual limits which are lower than seasonal limits can substantially reduce compliance costs. These savings occur because requiring stringent compliance only on a seasonal basis allows power plants to use control methods for which the variable costs are paid for only part of the year, and through the use of gas-based controls, which are much cheaper to operate in the summer months.

  1. CO2 Capture Using Electric Fields: Low-Cost Electrochromic Film on Plastic for Net-Zero Energy Building

    SciTech Connect

    2010-01-01

    Broad Funding Opportunity Announcement Project: Two faculty members at Lehigh University created a new technique called supercapacitive swing adsorption (SSA) that uses electrical charges to encourage materials to capture and release CO2. Current CO2 capture methods include expensive processes that involve changes in temperature or pressure. Lehigh University’s approach uses electric fields to improve the ability of inexpensive carbon sorbents to trap CO2. Because this process uses electric fields and not electric current, the overall energy consumption is projected to be much lower than conventional methods. Lehigh University is now optimizing the materials to maximize CO2 capture and minimize the energy needed for the process.

  2. Benefit-Cost Evaluation of U.S. DOE Investment in Energy Storage Technologies for Hybrid and Electric Cars and Trucks

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    December 2013 Benefit-Cost Evaluation of U.S. DOE Investment in Energy Storage Technologies for Hybrid and Electric Cars and Trucks Final Report Prepared for Office of Energy Efficiency and Renewable Energy U.S. Department of Energy 1000 Independence Avenue SW Washington, DC 20585 Prepared by Albert N. Link Alan C. O'Connor Troy J. Scott Sara E. Casey Ross J. Loomis J. Lynn Davis RTI International 3040 Cornwallis Road Research Triangle Park, NC 27709 RTI Project Number 0213238

  3. Powerful, Efficient Electric Vehicle Chargers: Low-Cost, Highly-Integrated Silicon Carbide (SiC) Multichip Power Modules (MCPMs) for Plug-In Hybrid Electric

    SciTech Connect

    2010-09-14

    ADEPT Project: Currently, charging the battery of an electric vehicle (EV) is a time-consuming process because chargers can only draw about as much power from the grid as a hair dryer. APEI is developing an EV charger that can draw as much power as a clothes dryer, which would drastically speed up charging time. APEI's charger uses silicon carbide (SiC)-based power transistors. These transistors control the electrical energy flowing through the charger's circuits more effectively and efficiently than traditional transistors made of straight silicon. The SiC-based transistors also require less cooling, enabling APEI to create EV chargers that are 10 times smaller than existing chargers.

  4. Vehicle Cost Calculator

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Select FuelTechnology Electric Hybrid Electric Plug-in Hybrid Electric Natural Gas (CNG) Flex Fuel (E85) Biodiesel (B20) Next Vehicle Cost Calculator Update Your Widget Code This ...

  5. Vehicle Cost Calculator

    Alternative Fuels and Advanced Vehicles Data Center

    Select FuelTechnology Electric Hybrid Electric Plug-in Hybrid Electric Natural Gas (CNG) Flex Fuel (E85) Biodiesel (B20) Propane (LPG) Next Vehicle Cost Calculator Vehicle 0 City ...

  6. Reducing Enzyme Costs Increases the Market Potential of Biofuels (Fact Sheet), Innovation Impact, Bioenergy, NREL (National Renewable Energy Laboratory)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    of Energy Reducing Cyber Risk to Critical Infrastructure: NIST Framework Reducing Cyber Risk to Critical Infrastructure: NIST Framework Recognizing that the national and economic security of the United States depends on the reliable functioning of critical infrastructure, the President under Executive Order (EO) 13636 "Improving Critical Infrastructure Cybersecurity" of February 2013 directed the National Institute of Standards and Technology (NIST) to work with stakeholders to

  7. EV Everywhere: All-Electric and Plug-in Hybrid Electric Cars...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    and Plug-in Hybrid Electric Cars Find Electric Vehicle Models Vehicle Charging Saving Fuel & Vehicle Costs Electric Vehicle Stories Benefits of Electric Vehicles Electric ...

  8. Potential for the Use of Energy Savings Performance Contracts to Reduce Energy Consumption and Provide Energy and Cost Savings in Non-Building Applications

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    for the Use of Energy Savings Performance Contracts to Reduce Energy Consumption and Provide Energy and Cost Savings in Non-Building Applications A Joint Study by the United States Secretaries of Energy and Defense Authorized in the Energy Independence and Security Act 2007 by Congress Prepared by US Department of Energy Office of Energy Efficiency and Renewable Energy, Federal Energy Management Program For questions and comments please contact: Schuyler Schell Federal Energy Management Program

  9. Reducing Transaction Costs for Energy Efficiency Investments and Analysis of Economic Risk Associated With Building Performance Uncertainties: Small Buildings and Small Portfolios Program

    SciTech Connect

    Langner, R.; Hendron, B.; Bonnema, E.

    2014-08-01

    The small buildings and small portfolios (SBSP) sector face a number of barriers that inhibit SBSP owners from adopting energy efficiency solutions. This pilot project focused on overcoming two of the largest barriers to financing energy efficiency in small buildings: disproportionately high transaction costs and unknown or unacceptable risk. Solutions to these barriers can often be at odds, because inexpensive turnkey solutions are often not sufficiently tailored to the unique circumstances of each building, reducing confidence that the expected energy savings will be achieved. To address these barriers, NREL worked with two innovative, forward-thinking lead partners, Michigan Saves and Energi, to develop technical solutions that provide a quick and easy process to encourage energy efficiency investments while managing risk. The pilot project was broken into two stages: the first stage focused on reducing transaction costs, and the second stage focused on reducing performance risk. In the first stage, NREL worked with the non-profit organization, Michigan Saves, to analyze the effects of 8 energy efficiency measures (EEMs) on 81 different baseline small office building models in Holland, Michigan (climate zone 5A). The results of this analysis (totaling over 30,000 cases) are summarized in a simple spreadsheet tool that enables users to easily sort through the results and find appropriate small office EEM packages that meet a particular energy savings threshold and are likely to be cost-effective.

  10. Level 1 Electric Vehicle Charging

    Office of Environmental Management (EM)

    3 Scenario A: Making a Level 1 Electrical Outlet Available ......Costs for Scenario A (Making an Electrical Outlet Available) ......

  11. Identifying new technologies that save energy and reduce costs to the Federal sector: The New Technology Program

    SciTech Connect

    Hunt, W.D.M.; Conover, D.R.; Stockmeyer, M.K.

    1995-11-01

    In 1990 the New Technology Demonstration Program (formerly the Test Bed Demonstration Program) was initiated by the US Department of Energy`s Office (DOE`s) of Federal Energy Management Programs with the purpose of accelerating the introduction of new technologies into the Federal sector. The program has since expanded into a multi-laboratory collaborative effort that evaluates new technologies and shares the results with the Federal design and procurement communities. These evaluations are performed on a collaborative basis which typically includes technology manufacturers, Federal facilities, utilities, trade associations, research institutes, and other in partnership with DOE. The end result is a range of effective technology transfer tools that provide operations and performance data on new technologies to Federal designers, building managers, and procurement officials. These tools assist in accelerating a technology`s Federal application and realizing reductions in energy consumption and costs.

  12. Department of Energy Awards up to $38 Million to Advance Technology and Reduce Cost of Geothermal Energy

    Energy.gov [DOE]

    U.S. Energy Secretary Steven Chu today announced $38 million over three years for projects to accelerate the development of promising geothermal energy technologies and help diversify America's sources of clean, renewable energy. Thirty-two innovative projects in 14 states will develop and test new ways to locate geothermal resources and improve resource characterization, drilling, and reservoir engineering techniques, which will enable geothermal energy sources to help reduce the nation's reliance on fossil fuels.

  13. An economic feasibility analysis of distributed electric power generation based upon the Natural Gas-Fired Fuel Cell: a model of the operations cost.

    SciTech Connect

    Not Available

    1993-06-30

    This model description establishes the revenues, expenses incentives and avoided costs of Operation of a Natural Gas-Fired Fuel Cell-Based. Fuel is the major element of the cost of operation of a natural gas-fired fuel cell. Forecasts of the change in the price of this commodity a re an important consideration in the ownership of an energy conversion system. Differences between forecasts, the interests of the forecaster or geographical areas can all have significant effects on imputed fuel costs. There is less effect on judgments made on the feasibility of an energy conversion system since changes in fuel price can affect the cost of operation of the alternatives to the fuel cell in a similar fashion. The forecasts used in this model are only intended to provide the potential owner or operator with the means to examine alternate future scenarios. The operations model computes operating costs of a system suitable for a large condominium complex or a residential institution such as a hotel, boarding school or prison. The user may also select large office buildings that are characterized by 12 to 16 hours per day of operation or industrial users with a steady demand for thermal and electrical energy around the clock.

  14. Semi-exact concentric atomic density fitting: Reduced cost and increased accuracy compared to standard density fitting

    SciTech Connect

    Hollman, David S.; Schaefer, Henry F.; Valeev, Edward F.

    2014-02-14

    A local density fitting scheme is considered in which atomic orbital (AO) products are approximated using only auxiliary AOs located on one of the nuclei in that product. The possibility of variational collapse to an unphysical “attractive electron” state that can affect such density fitting [P. Merlot, T. Kjærgaard, T. Helgaker, R. Lindh, F. Aquilante, S. Reine, and T. B. Pedersen, J. Comput. Chem. 34, 1486 (2013)] is alleviated by including atom-wise semidiagonal integrals exactly. Our approach leads to a significant decrease in the computational cost of density fitting for Hartree–Fock theory while still producing results with errors 2–5 times smaller than standard, nonlocal density fitting. Our method allows for large Hartree–Fock and density functional theory computations with exact exchange to be carried out efficiently on large molecules, which we demonstrate by benchmarking our method on 200 of the most widely used prescription drug molecules. Our new fitting scheme leads to smooth and artifact-free potential energy surfaces and the possibility of relatively simple analytic gradients.

  15. Reduced computational cost, totally symmetric angular quadrature sets for discrete ordinates radiation transport. Master`s thesis

    SciTech Connect

    Oder, J.M.

    1997-12-01

    Several new quadrature sets for use in the discrete ordinates method of solving the Boltzmann neutral particle transport equation are derived. These symmetric quadratures extend the traditional symmetric quadratures by allowing ordinates perpendicular to one or two of the coordinate axes. Comparable accuracy with fewer required ordinates is obtained. Quadratures up to seventh order are presented. The validity and efficiency of the quadratures is then tested and compared with the Sn level symmetric quadratures relative to a Monte Carlo benchmark solution. The criteria for comparison include current through the surface, scalar flux at the surface, volume average scalar flux, and time required for convergence. Appreciable computational cost was saved when used in an unstructured tetrahedral cell code using highly accurate characteristic methods. However, no appreciable savings in computation time was found using the new quadratures compared with traditional Sn methods on a regular Cartesian mesh using the standard diamond difference method. These quadratures are recommended for use in three-dimensional calculations on an unstructured mesh.

  16. Modeling the Performance and Cost of Lithium-Ion Batteries for Electric-Drive Vehicles - SECOND EDITION

    SciTech Connect

    Nelson, Paul A.; Gallagher, Kevin G.; Bloom, Ira D.; Dees, Dennis W.

    2012-01-01

    This report details the Battery Performance and Cost model (BatPaC) developed at Argonne National Laboratory for lithium-ion battery packs used in automotive transportation. The model designs the battery for a specified power, energy, and type of vehicle battery. The cost of the designed battery is then calculated by accounting for every step in the lithium-ion battery manufacturing process. The assumed annual production level directly affects each process step. The total cost to the original equipment manufacturer calculated by the model includes the materials, manufacturing, and warranty costs for a battery produced in the year 2020 (in 2010 US$). At the time this report is written, this calculation is the only publicly available model that performs a bottom-up lithium-ion battery design and cost calculation. Both the model and the report have been publicly peer-reviewed by battery experts assembled by the U.S. Environmental Protection Agency. This report and accompanying model include changes made in response to the comments received during the peer-review. The purpose of the report is to document the equations and assumptions from which the model has been created. A user of the model will be able to recreate the calculations and perhaps more importantly, understand the driving forces for the results. Instructions for use and an illustration of model results are also presented. Almost every variable in the calculation may be changed by the user to represent a system different from the default values pre-entered into the program. The distinct advantage of using a bottom-up cost and design model is that the entire power-to-energy space may be traversed to examine the correlation between performance and cost. The BatPaC model accounts for the physical limitations of the electrochemical processes within the battery. Thus, unrealistic designs are penalized in energy density and cost, unlike cost models based on linear extrapolations. Additionally, the consequences on

  17. Decreasing Soft Costs for Solar Photovoltaics by Improving the Interconnection Process. A Case Study of Pacific Gas and Electric

    SciTech Connect

    Ardani, Kristen; Margolis, Robert

    2015-09-01

    As of the end of 2014, Pacific Gas and Electric (PG&E) had connected over 130,000 DG PV systems in its service territory, more than any other utility in the U.S. In this case study, we examine how PG&E achieved a faster, more efficient interconnection approval process despite rising application volumes.

  18. Final Report Providing the Design for Low-Cost Wireless Current Transducer and Electric Power Sensor Prototype

    SciTech Connect

    Kintner-Meyer, Michael CW; Burghard, Brion J.; Reid, Larry D.

    2005-01-31

    This report describes the design and development of a wireless current transducer and electric power sensor prototype. The report includes annotated schematics of the power sensor circuitry and the printed circuit board. The application program used to illustrate the functionality of the wireless sensors is described in this document as well.

  19. Nanosecond pulsed electric fields (nsPEFs) low cost generator design using power MOSFET and Cockcroft-Walton multiplier circuit as high voltage DC source

    SciTech Connect

    Sulaeman, M. Y.; Widita, R.

    2014-09-30

    Purpose: Non-ionizing radiation therapy for cancer using pulsed electric field with high intensity field has become an interesting field new research topic. A new method using nanosecond pulsed electric fields (nsPEFs) offers a novel means to treat cancer. Not like the conventional electroporation, nsPEFs able to create nanopores in all membranes of the cell, including membrane in cell organelles, like mitochondria and nucleus. NsPEFs will promote cell death in several cell types, including cancer cell by apoptosis mechanism. NsPEFs will use pulse with intensity of electric field higher than conventional electroporation, between 20–100 kV/cm and with shorter duration of pulse than conventional electroporation. NsPEFs requires a generator to produce high voltage pulse and to achieve high intensity electric field with proper pulse width. However, manufacturing cost for creating generator that generates a high voltage with short duration for nsPEFs purposes is highly expensive. Hence, the aim of this research is to obtain the low cost generator design that is able to produce a high voltage pulse with nanosecond width and will be used for nsPEFs purposes. Method: Cockcroft-Walton multiplier circuit will boost the input of 220 volt AC into high voltage DC around 1500 volt and it will be combined by a series of power MOSFET as a fast switch to obtain a high voltage with nanosecond pulse width. The motivation using Cockcroft-Walton multiplier is to acquire a low-cost high voltage DC generator; it will use capacitors and diodes arranged like a step. Power MOSFET connected in series is used as voltage divider to share the high voltage in order not to damage them. Results: This design is expected to acquire a low-cost generator that can achieve the high voltage pulse in amount of −1.5 kV with falltime 3 ns and risetime 15 ns into a 50Ω load that will be used for nsPEFs purposes. Further detailed on the circuit design will be explained at presentation.

  20. NREL Reduces Climate Control Loads in Electric Vehicles (Fact Sheet), NREL Highlights in Research & Development, NREL (National Renewable Energy Laboratory)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    demonstrates that zonal climate control can reduce air conditioning power and improve range while maintaining driver thermal sensation. When the climate control system in an electric-drive vehicle (EDV) is operating, the energy consumed has a significant impact on range. Researchers at the National Renewable Energy Laboratory (NREL) are seeking to increase in-use EDV range by minimizing climate control energy requirements. The goal is to increase EDV range by 10% during operation of the climate

  1. Realistic costs of carbon capture

    SciTech Connect

    Al Juaied, Mohammed . Belfer Center for Science and International Affiaris); Whitmore, Adam )

    2009-07-01

    There is a growing interest in carbon capture and storage (CCS) as a means of reducing carbon dioxide (CO2) emissions. However there are substantial uncertainties about the costs of CCS. Costs for pre-combustion capture with compression (i.e. excluding costs of transport and storage and any revenue from EOR associated with storage) are examined in this discussion paper for First-of-a-Kind (FOAK) plant and for more mature technologies, or Nth-of-a-Kind plant (NOAK). For FOAK plant using solid fuels the levelised cost of electricity on a 2008 basis is approximately 10 cents/kWh higher with capture than for conventional plants (with a range of 8-12 cents/kWh). Costs of abatement are found typically to be approximately US$150/tCO2 avoided (with a range of US$120-180/tCO2 avoided). For NOAK plants the additional cost of electricity with capture is approximately 2-5 cents/kWh, with costs of the range of US$35-70/tCO2 avoided. Costs of abatement with carbon capture for other fuels and technologies are also estimated for NOAK plants. The costs of abatement are calculated with reference to conventional SCPC plant for both emissions and costs of electricity. Estimates for both FOAK and NOAK are mainly based on cost data from 2008, which was at the end of a period of sustained escalation in the costs of power generation plant and other large capital projects. There are now indications of costs falling from these levels. This may reduce the costs of abatement and costs presented here may be 'peak of the market' estimates. If general cost levels return, for example, to those prevailing in 2005 to 2006 (by which time significant cost escalation had already occurred from previous levels), then costs of capture and compression for FOAK plants are expected to be US$110/tCO2 avoided (with a range of US$90-135/tCO2 avoided). For NOAK plants costs are expected to be US$25-50/tCO2. Based on these considerations a likely representative range of costs of abatement from CCS excluding

  2. EIA - Electricity Generating Capacity

    Energy Information Administration (EIA) (indexed site)

    Electricity Glossary › FAQS › Overview Data Electricity Data Browser (interactive query tool with charting & mapping) Summary Sales (consumption), revenue, prices & customers Generation and thermal output Capacity of electric power plants Consumption of fuels used to generate electricity Receipts of fossil-fuels for electricity generation Average cost of fossil-fuels for electricity generation Fossil-fuel stocks for electricity generation Cost, revenue and expense statistics for...

  3. Electricity Monthly Update

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    costs, of which fuel costs account for the lion's share. Therefore, we present below, electricity generation output by fuel type and generator type. Since the generatorfuel...

  4. Reliable, Efficient and Cost-Effective Electric Power Converter for Small Wind Turbines Based on AC-link Technology

    SciTech Connect

    Darren Hammell; Mark Holveck; DOE Project Officer - Keith Bennett

    2006-08-01

    Grid-tied inverter power electronics have been an Achilles heel of the small wind industry, providing opportunity for new technologies to provide lower costs, greater efficiency, and improved reliability. The small wind turbine market is also moving towards the 50-100kW size range. The unique AC-link power conversion technology provides efficiency, reliability, and power quality advantages over existing technologies, and Princeton Power will adapt prototype designs used for industrial asynchronous motor control to a 50kW small wind turbine design.

  5. COMPLEAT (Community-Oriented Model for Planning Least-Cost Energy Alternatives and Technologies): A planning tool for publicly owned electric utilities. [Community-Oriented Model for Planning Least-Cost Energy Alternatives and Technologies (Compleat)

    SciTech Connect

    Not Available

    1990-09-01

    COMPLEAT takes its name, as an acronym, from Community-Oriented Model for Planning Least-Cost Energy Alternatives and Technologies. It is an electric utility planning model designed for use principally by publicly owned electric utilities and agencies serving such utilities. As a model, COMPLEAT is significantly more full-featured and complex than called out in APPA's original plan and proposal to DOE. The additional complexity grew out of a series of discussions early in the development schedule, in which it became clear to APPA staff and advisors that the simplicity characterizing the original plan, while highly desirable in terms of utility applications, was not achievable if practical utility problems were to be addressed. The project teams settled on Energy 20/20, an existing model developed by Dr. George Backus of Policy Assessment Associates, as the best candidate for the kinds of modifications and extensions that would be required. The remainder of the project effort was devoted to designing specific input data files, output files, and user screens and to writing and testing the compute programs that would properly implement the desired features around Energy 20/20 as a core program. This report presents in outline form, the features and user interface of COMPLEAT.

  6. Heliostat cost reduction study.

    SciTech Connect

    Jones, Scott A.; Lumia, Ronald. (University of New Mexico, Albuquerque, NM); Davenport, Roger (Science Applications International Corporation, San Diego, CA); Thomas, Robert C. (Advanced Thermal Systems, Centennial, CO); Gorman, David; Kolb, Gregory J.; Donnelly, Matthew W.

    2007-06-01

    Power towers are capable of producing solar-generated electricity and hydrogen on a large scale. Heliostats are the most important cost element of a solar power tower plant. Since they constitute {approx} 50% of the capital cost of the plant it is important to reduce heliostat cost as much as possible to improve the economic performance of power towers. In this study we evaluate current heliostat technology and estimate a price of $126/m{sup 2} given year-2006 materials and labor costs for a deployment of {approx}600 MW of power towers per year. This 2006 price yields electricity at $0.067/kWh and hydrogen at $3.20/kg. We propose research and development that should ultimately lead to a price as low as $90/m{sup 2}, which equates to $0.056/kWh and $2.75/kg H{sup 2}. Approximately 30 heliostat and manufacturing experts from the United States, Europe, and Australia contributed to the content of this report during two separate workshops conducted at the National Solar Thermal Test Facility.

  7. Design of an Actinide Burning, Lead or Lead-Bismuth Cooled Reactor that Produces Low Cost Electricity FY-01 Annual Report, October 2001

    SciTech Connect

    Mac Donald, Philip Elsworth; Buongiorno, Jacopo; Davis, Cliff Bybee; Herring, James Stephen; Loewen, Eric Paul; Smolik, Galen Richard; Weaver, Kevan Dean; Todreas, N.

    2001-10-01

    The purpose of this collaborative Idaho National Engineering and Environmental Laboratory (INEEL) and Massachusetts Institute of Technology (MIT) Laboratory Directed Research and Development (LDRD) project is to investigate the suitability of lead or lead-bismuth cooled fast reactors for producing low-cost electricity as well as for actinide burning. The goal is to identify and analyze the key technical issues in core neutronics, materials, thermal-hydraulics, fuels, and economics associated with the development of this reactor concept. Work has been accomplished in four major areas of research: core neutronic design, plant engineering, material compatibility studies, and coolant activation. The publications derived from work on this project (since project inception) are listed in Appendix A.

  8. EPA programs to reduce NO{sub x} and particulate matter emissions from electric utility sources and the possible impact of deregulation on those EPA programs

    SciTech Connect

    Field, A.B.

    1997-12-31

    At the same time that the electric utility industry is in the midst of deregulation, it could be hit with numerous additional regulatory burdens. For example, EPA now plans to decide by July 1997 whether to make major changes to the current ozone and particulate matter ambient standards -- changes which could force utilities to reduce significantly both their nitrogen oxide (NO{sub x}) and sulfur dioxide (SO{sub 2}) emissions. Even if EPA does not adopt new ambient standards, though, many electric utilities still face the prospect of making additional NO{sub x} reductions if they are found to be contributing to ozone levels in areas that are not meeting the current ozone ambient standards. Several multi-state groups -- notably the Ozone Transport Assessment Group (OTAG) and the Northeast Ozone Transport Commission (OTC) -- are evaluating programs that could lead to calls for additional NO{sub x} reductions from power plants in ozone nonattainment areas and from plants located outside the nonattainment areas but found to be contributing to ozone levels in those areas. And these multi-state groups are motivated not only by pollution levels they see now, but also by what they fear will be increased pollution levels as a result of deregulation. This paper examines the status of the major rulemakings now underway that could force substantial additional reductions in electric utility NO{sub x} and SO{sub 2} emissions. It also discusses the impacts that deregulation could have in those rulemakings.

  9. PAFC Cost Challenges

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    PAFC Cost Challenges Sridhar Kanuri Manager, PAFC Technology *Sridhar.Kanuri@utcpower.com 2 AGENDA Purecell® 400 cost challenge Cost reduction opportunities Summary 3 PURECELL ® FUEL CELL SYSTEM First cost 2010 cost reduction is being accomplished by incremental changes in technology & low cost sourcing Technology advances are required to reduce further cost and attain UTC Power's commercialization targets 2010 First unit 2010 Last unit Commercialization target Powerplant cost 4

  10. Electricity Generating Portfolios with Small Modular Reactors...

    Energy.gov [DOE] (indexed site)

    of the levellized costs of electricity. These distributions can be used to find cost-risk minimizing portfolios of electricity generating assets including ...

  11. Reducing Peak Demand to Defer Power Plant Construction in Oklahoma

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Reducing Peak Demand to Defer Power Plant Construction in Oklahoma Located in the heart of "Tornado Alley," Oklahoma Gas & Electric Company's (OG&E) electric grid faces significant challenges from severe weather, hot summers, and about 2% annual load growth. To better control costs and manage electric reliability under these conditions, OG&E is pursuing demand response strategies made possible by implementation of smart grid technologies, tools, and techniques from

  12. SOLAR HEATING OF TANK BOTTOMS Application of Solar Heating to Asphaltic and Parrafinic Oils Reducing Fuel Costs and Greenhouse Gases Due to Use of Natural Gas and Propane

    SciTech Connect

    Eugene A. Fritzler

    2005-09-01

    The sale of crude oil requires that the crude meet product specifications for BS&W, temperature, pour point and API gravity. The physical characteristics of the crude such as pour point and viscosity effect the efficient loading, transport, and unloading of the crude oil. In many cases, the crude oil has either a very high paraffin content or asphalt content which will require either hot oiling or the addition of diluents to the crude oil to reduce the viscosity and the pour point of the oil allowing the crude oil to be readily loaded on to the transport. Marginal wells are significantly impacted by the cost of preheating the oil to an appropriate temperature to allow for ease of transport. Highly paraffinic and asphaltic oils exist throughout the D-J basin and generally require pretreatment during cold months prior to sales. The current study addresses the use of solar energy to heat tank bottoms and improves the overall efficiency and operational reliability of stripper wells.

  13. Hydrogen Threshold Cost Calculation

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Program Record (Offices of Fuel Cell Technologies) Record #: 11007 Date: March 25, 2011 Title: Hydrogen Threshold Cost Calculation Originator: Mark Ruth & Fred Joseck Approved by: Sunita Satyapal Date: March 24, 2011 Description: The hydrogen threshold cost is defined as the hydrogen cost in the range of $2.00-$4.00/gge (2007$) which represents the cost at which hydrogen fuel cell electric vehicles (FCEVs) are projected to become competitive on a cost per mile basis with the competing

  14. Hydrogen Pathway Cost Distributions

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Pathway Cost Distributions Jim Uihlein Fuel Pathways Integration Tech Team January 25, 2006 2 Outline * Pathway-Independent Cost Goal * Cost Distribution Objective * Overview * H2A Influence * Approach * Implementation * Results * Discussion Process * Summary 3 Hydrogen R&D Cost Goal * Goal is pathway independent * Developed through a well defined, transparent process * Consumer fueling costs are equivalent or less on a cents per mile basis * Evolved gasoline ICE and gasoline-electric

  15. Electric trade in the United States 1994

    SciTech Connect

    1998-08-01

    Wholesale trade in electricity plays an important role for the US electric utility industry. Wholesale, or bulk power, transactions allow electric utilities to reduce power costs, increase power supply options, and improve reliability. In 1994, the wholesale trade market totaled 1.9 trillion kilowatthours, about 66% of total sales to ultimate consumers. This publication, Electric Trade in the United States 1994 (ELECTRA), is the fifth in a series of reports on wholesale power transactions prepared by the Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA). The electric trade data are published biennially. The first report presented 1986 data, and this report provides information on the electric power industry during 1994.

  16. Roles of electricity: Electric steelmaking

    SciTech Connect

    Burwell, C.C.

    1986-07-01

    Electric steel production from scrap metal continues to grow both in total quantity and in market share. The economics of electric-steel production in general, and of electric minimills in particular, seem clearly established. The trend towards electric steelmaking provides significant economic and competitive advantages for producers and important overall economic, environmental, and energy advantages for the United States at large. Conversion to electric steelmaking offers up to a 4-to-1 advantage in terms of the overall energy used to produce a ton of steel, and s similar savings in energy cost for the producer. The amount of old scrap used to produce a ton of steel has doubled since 1967 because of the use of electric furnaces.

  17. Optimizing Electric Motor Systems at a Corporate Campus Facility |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Electric Motor Systems at a Corporate Campus Facility Optimizing Electric Motor Systems at a Corporate Campus Facility Minnesota Mining and Manufacturing (3M) conducted an in-house motor system performance optimization project. This four-page case study describes their experience. Optimizing Electric Motor Systems at a Corporate Campus Facility (May 2002) (191.7 KB) More Documents & Publications Metal and Glass Manufacturers Reduce Costs by Increasing Energy

  18. Load Leveling Battery System Costs

    Energy Science and Technology Software Center

    1994-10-12

    SYSPLAN evaluates capital investment in customer side of the meter load leveling battery systems. Such systems reduce the customer's monthly electrical demand charge by reducing the maximum power load supplied by the utility during the customer's peak demand. System equipment consists of a large array of batteries, a current converter, and balance of plant equipment and facilities required to support the battery and converter system. The system is installed on the customer's side of themore » meter and controlled and operated by the customer. Its economic feasibility depends largely on the customer's load profile. Load shape requirements, utility rate structures, and battery equipment cost and performance data serve as bases for determining whether a load leveling battery system is economically feasible for a particular installation. Life-cycle costs for system hardware include all costs associated with the purchase, installation, and operation of battery, converter, and balance of plant facilities and equipment. The SYSPLAN spreadsheet software is specifically designed to evaluate these costs and the reduced demand charge benefits; it completes a 20 year period life cycle cost analysis based on the battery system description and cost data. A built-in sensitivity analysis routine is also included for key battery cost parameters. The life cycle cost analysis spreadsheet is augmented by a system sizing routine to help users identify load leveling system size requirements for their facilities. The optional XSIZE system sizing spreadsheet which is included can be used to identify a range of battery system sizes that might be economically attractive. XSIZE output consisting of system operating requirements can then be passed by the temporary file SIZE to the main SYSPLAN spreadsheet.« less

  19. Electric avenues

    SciTech Connect

    Stone, P.; Chang, A.

    1994-12-31

    Highly efficient electric drive technology developed originally for defense applications is being applied to the development of all electric shuttle buses for the San Jose International Airport. An innovative opportunity charging system using induction chargers will be incorporated to extend operation hours. The project, if successful, is expected to reduce pollution at the airport and generate jobs for displaced defense workers.

  20. Electric trade in the United States, 1996

    SciTech Connect

    1998-12-01

    Wholesale trade in electricity plays an important role for the US electric utility industry. Wholesale, or bulk power, transactions allow electric utilities to reduce power costs, increase power supply options, and improve reliability. In 1996, the wholesale trade market totaled 2.3 trillion kilowatthours, over 73% of total sales to ultimate consumers. This publication, Electric Trade in the United States 1996 (ELECTRA), is the sixth in a series of reports on wholesale power transactions prepared by the Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA). The electric trade data are published biennially. The first report presented 1986 data, and this report provides information on the electric power industry during 1996. The electric trade data collected and presented in this report furnish important information on the wholesale structure found within the US electric power industry. The patterns of interutility trade in the report support analyses of wholesale power transactions and provide input for a broader understanding of bulk power market issues that define the emerging national electric energy policies. The report includes information on the quantity of power purchased, sold, exchanged, and wheeled; the geographical locations of transactions and ownership classes involved; and the revenues and costs. 1 fig., 43 tabs.

  1. Electricity Monthly Update

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    End Use: August 2015 Retail ratesprices and consumption In this section, we look at what electricity costs and how much is purchased. Charges for retail electric service are based...

  2. Cost Contributors to Geothermal Power Production (Conference...

    Office of Scientific and Technical Information (OSTI)

    has developed the tool Geothermal Electricity Technologies Evaluation Model (GETEM) to assess the levelized cost of electricity (LCOE) of power produced from geothermal resources. ...

  3. Hydrogen Fuel Cell Electric Vehicles (Fact Sheet)

    SciTech Connect

    Not Available

    2011-02-01

    As nations around the world pursue a variety of sustainable transportation solutions, the hydrogen fuel cell electric vehicle (FCEV) presents a promising opportunity for American consumers and automakers. FCEVs offer a sustainable transportation option, provide a cost-competitive alternative for drivers, reduce dependence on imported oil, and enable global economic leadership and job growth.

  4. Electricity Monthly Update

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    and fuel consumption In this section, we look at the resources used to produce electricity. Generating units are chosen to run primarily on their operating costs, of which...

  5. Integrated Vehicle Thermal Management - Combining Fluid Loops in Electric Drive Vehicles (Presentation)

    SciTech Connect

    Rugh, J. P.

    2013-07-01

    Plug-in hybrid electric vehicles and electric vehicles have increased vehicle thermal management complexity, using separate coolant loop for advanced power electronics and electric motors. Additional thermal components result in higher costs. Multiple cooling loops lead to reduced range due to increased weight. Energy is required to meet thermal requirements. This presentation for the 2013 Annual Merit Review discusses integrated vehicle thermal management by combining fluid loops in electric drive vehicles.

  6. 2017 Levelized Costs AEO 2012 Early Release

    Energy Information Administration (EIA) (indexed site)

    Report," collects the cost and quality of fossil fuel purchases made by electric ... a reduction of approximately 9 percent of natural gas purchases, cost, and quality data. ...

  7. Building America Top Innovations Hall of Fame Profile … High-Performance with Solar Electric Reduced Peak Demand: Premier Homes Rancho Cordoba, CA

    Energy Saver

    projects with production builders have demonstrated that high-performance homes experience significant cost trade-offs that offset other cost increases. This proved transformational, gaining builder traction with related market-based programs like ENERGY STAR for Homes and DOE Challenge Home. "Break points" or cost trade-offs that are identified during the engineering analysis of the residential construction process can yield two types of business savings: 1) reductions in costs of

  8. Using Electricity",,,"Electricity Consumption",,,"Electricity...

    Energy Information Administration (EIA) (indexed site)

    . Total Electricity Consumption and Expenditures, 2003" ,"All Buildings* Using Electricity",,,"Electricity Consumption",,,"Electricity Expenditures" ,"Number of Buildings...

  9. USING CABLE SUSPENDED SUBMERSIBLE PUMPS TO REDUCE PRODUCTION COSTS TO INCREASE ULTIMATE RECOVERY IN THE RED MOUNTAIN FIELD IN SAM JUAN BASIN REGION

    SciTech Connect

    Don L. Hanosh

    2004-08-01

    A joint venture between Enerdyne LLC, a small independent oil and gas producer, and Pumping Solutions Inc., developer of a low volume electric submersible pump, suspended from a cable, both based in Albuquerque, New Mexico, has re-established marginal oil production from the Red Mountain Oil Field, located in the San Juan Basin, New Mexico by working over 17 existing wells and installing submersible pumps.

  10. CONNECTICUT CHALLENGES TOWNS TO REDUCE ENERGY USE | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    CONNECTICUT CHALLENGES TOWNS TO REDUCE ENERGY USE CONNECTICUT CHALLENGES TOWNS TO REDUCE ENERGY USE CONNECTICUT CHALLENGES TOWNS TO REDUCE ENERGY USE With both the household use and cost of electricity increasing and an abundance of older homes, Connecticut's market was ripe for residential energy efficiency upgrades. Through a two-year pilot program, the Connecticut Neighbor to Neighbor Energy Challenge (N2N) sought to improve the state's existing residential energy efficiency programs, with

  11. Survey Reveals Projections for Lower Wind Energy Costs | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Survey Reveals Projections for Lower Wind Energy Costs Survey Reveals Projections for Lower Wind Energy Costs October 24, 2016 - 3:51pm Addthis According to a survey of 163 of the world's foremost wind power experts, continued advancements in wind energy technology are anticipated to reduce the cost of generating electricity by 24%-30% by 2030 and 35%-41% by 2050. With market growth and aggressive research and development, costs could be even lower: experts predict a 10% chance that

  12. Municipal Utilities' Investment in Smart Grid Technologies Improves Services and Lowers Costs

    Energy.gov [DOE]

    OE has released a new Smart Grid report describing the activities of three municipal utilities that received funding through the Recovery Act Smart Grid Investment Grant program. "Municipal Utilities' Investment in Smart Grid Technologies Improves Services and Lowers Costs" reports on the benefits of the cities' investments, including improved operating efficiencies, lower costs, shorter outages, and reduced peak demands and electricity consumption.

  13. New Osage Nation Facilities Deliver High Energy Performance, Comfort, and Cost Savings

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Osage Nation (OK) celebrated the opening of two state-of-the-art tribal government buildings designed with energy efficiency, comfort, and cost savings in mind. The buildings incorporate daylighting, geothermal heat pumps, fans, and other environmentally friendly design features that optimize the use of natural light, moderate heating and cooling, and reduce electricity consumption and costs.

  14. New Catalyst Reduces Wasted Carbon in Biofuel Process, Lowers Cost (Fact Sheet), Highlights in Research & Development, NREL (National Renewable Energy Laboratory)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    NREL researchers have shown that incorporating copper-modified catalysts into the dimethyl ether-to- fuels pathway increases carbon efficiency and decreases overall production costs. The biomass-to-liquid-fuel approach remains one of the most promising renewable fuel processes in terms of its immediate impact and compatibility with existing infrastructure. Methanol and dimethyl ether (DME) can be produced from biomass, and recent inves- tigations have shown that certain catalysts can convert

  15. Cost-effective particulate control options at Potomac Electric Power Company's Dickerson Station: An integrated approach to current and future particulate limits

    SciTech Connect

    Christoffersen, S.W.; Rouse, G.T.; Krasnopoler, M.J.; Chapowski, J.A.

    1998-07-01

    The Dickerson Generating Station evaluated several particulate control options to identify the most cost-effective option. The study's goals were to: eliminate the particulate scrubber and its high maintenance costs, and incorporate flexibility for low-sulfur coal and possible stricter emission limits. Each of the three Dickerson 190 MW units has a small 37-year-old electrostatic precipitator and a wet particulate scrubber. The study evaluated alternatives to replace the scrubber and enhance ESP performance: Existing ESP alternatives--Extend height of existing ESP; Flue gas conditioning. Scrubber stream alternatives--Partial-flow ESP or pulse jet baghouse. Full-flow alternatives--Supplemental ESP; COHPAC baghouse; replacement ESP or baghouse. A technical and economic prescreening eliminated some of the options. Capital, operating, and life cycle costs were estimated for the remaining options to determine the most cost-effective alternative. This paper will present the technical and economic evaluations done for this study, including performance and costs.

  16. Lightweighting Impacts on Fuel Economy, Cost, and Component Losses

    SciTech Connect

    Brooker, A. D.; Ward, J.; Wang, L.

    2013-01-01

    The Future Automotive Systems Technology Simulator (FASTSim) is the U.S. Department of Energy's high-level vehicle powertrain model developed at the National Renewable Energy Laboratory. It uses a time versus speed drive cycle to estimate the powertrain forces required to meet the cycle. It simulates the major vehicle powertrain components and their losses. It includes a cost model based on component sizing and fuel prices. FASTSim simulated different levels of lightweighting for four different powertrains: a conventional gasoline engine vehicle, a hybrid electric vehicle (HEV), a plug-in hybrid electric vehicle (PHEV), and a battery electric vehicle (EV). Weight reductions impacted the conventional vehicle's efficiency more than the HEV, PHEV and EV. Although lightweighting impacted the advanced vehicles' efficiency less, it reduced component cost and overall costs more. The PHEV and EV are less cost effective than the conventional vehicle and HEV using current battery costs. Assuming the DOE's battery cost target of $100/kWh, however, the PHEV attained similar cost and lightweighting benefits. Generally, lightweighting was cost effective when it costs less than $6/kg of mass eliminated.

  17. Startup Costs

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    1997-03-28

    This chapter discusses startup costs for construction and environmental projects, and estimating guidance for startup costs.

  18. Vehicle Technologies Office Merit Review 2014: Cost-Competitive Advanced Thermoelectric Generators for Direct Conversion of Vehicle Waste Heat into Useful Electrical Power

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by General Motors at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about cost-competitive advanced...

  19. One-Axis Trackers -- Improved Reliability, Durability, Performance, and Cost Reduction; Final Subcontract Technical Status Report, 2 May 2006 - 31 August 2007

    SciTech Connect

    Shingleton, J.

    2008-02-01

    The overall objective of this subcontract is to reduce the total cost of electricity generated by single-axis tracking solar energy systems for utility and other large-scale commercial applications by improving performance and reliability and by reducing installation time, cost, and environmental impact.

  20. Demand response compensation, net Benefits and cost allocation: comments

    SciTech Connect

    Hogan, William W.

    2010-11-15

    FERC's Supplemental Notice of Public Rulemaking addresses the question of proper compensation for demand response in organized wholesale electricity markets. Assuming that the Commission would proceed with the proposal ''to require tariff provisions allowing demand response resources to participate in wholesale energy markets by reducing consumption of electricity from expected levels in response to price signals, to pay those demand response resources, in all hours, the market price of energy for such reductions,'' the Commission posed questions about applying a net benefits test and rules for cost allocation. This article summarizes critical points and poses implications for the issues of net benefit tests and cost allocation. (author)

  1. Using Electricity",,,"Electricity Consumption",,,"Electricity...

    Energy Information Administration (EIA) (indexed site)

    A. Total Electricity Consumption and Expenditures for All Buildings, 2003" ,"All Buildings Using Electricity",,,"Electricity Consumption",,,"Electricity Expenditures" ,"Number of...

  2. Electricity",,,"Electricity Consumption",,,"Electricity Expenditures...

    Energy Information Administration (EIA) (indexed site)

    C9. Total Electricity Consumption and Expenditures, 1999" ,"All Buildings Using Electricity",,,"Electricity Consumption",,,"Electricity Expenditures" ,"Number of Buildings...

  3. Electricity",,,"Electricity Consumption",,,"Electricity Expenditures...

    Energy Information Administration (EIA) (indexed site)

    DIV. Total Electricity Consumption and Expenditures by Census Division, 1999" ,"All Buildings Using Electricity",,,"Electricity Consumption",,,"Electricity Expenditures" ,"Number...

  4. Levelized Power Generation Cost Codes

    Energy Science and Technology Software Center

    1996-04-30

    LPGC is a set of nine microcomputer programs for estimating power generation costs for large steam-electric power plants. These programs permit rapid evaluation using various sets of economic and technical ground rules. The levelized power generation costs calculated may be used to compare the relative economics of nuclear and coal-fired plants based on life-cycle costs. Cost calculations include capital investment cost, operation and maintenance cost, fuel cycle cost, decommissioning cost, and total levelized power generationmore » cost. These programs can be used for quick analyses of power generation costs using alternative economic parameters, such as interest rate, escalation rate, inflation rate, plant lead times, capacity factor, fuel prices, etc. The two major types of electric generating plants considered are pressurized water reactor (PWR) and pulverized coal-fired plants. Data are also provided for the Large Scale Prototype Breeder (LSPB) type liquid metal reactor.« less

  5. Development of standardized air-blown coal gasifier/gas turbine concepts for future electric power systems. Volume 5, Appendix D: Cost support information: Final report

    SciTech Connect

    Sadowski, R.S.; Brown, M.J.; Harriz, J.T.; Ostrowski, E.

    1991-01-01

    The cost estimate provided for the DOE sponsored study of Air Blown Coal Gasification was developed from vendor quotes obtained directly for the equipment needed in the 50 MW, 100 MW, and 200 MW sized plants and from quotes from other jobs that have been referenced to apply to the particular cycle. Quotes were generally obtained for the 100 MW cycle and a scale up/down factor was used to generate the cost estimates for the 200 MW and 50 MW cycles, respectively. Information from GTPro (property of Thermoflow, Inc.) was used to estimate the cost of the 200 MW and 50 MW gas turbine, HRSG, and steam turbines. To available the use of GTPro`s estimated values for this equipment, a comparison was made between the quotes obtained for the 100 MW cycle (ABB GT 11N combustion turbine and a HSRG) against the estimated values by GTPro.

  6. ELECTRIC INFRASTRUCTURE TECHNOLOGY, TRAINING, AND ASSESSMENT PROGRAM

    SciTech Connect

    TREMEL, CHARLES L

    2007-06-28

    The objective of this Electric Infrastructure Technology, Training and Assessment Program was to enhance the reliability of electricity delivery through engineering integration of real-time technologies for wide-area applications enabling timely monitoring and management of grid operations. The technologies developed, integrated, tested and demonstrated will be incorporated into grid operations to assist in the implementation of performance-based protection/preventive measures into the existing electric utility infrastructure. This proactive approach will provide benefits of reduced cost and improved reliability over the typical schedule-based and as needed maintenance programs currently performed by utilities. Historically, utilities have relied on maintenance and inspection programs to diagnose equipment failures and have used the limited circuit isolation devices, such as distribution main circuit breakers to identify abnormal system performance. With respect to reliable problem identification, customer calls to utility service centers are often the sole means for utilities to identify problem occurrences and determine restoration methodologies. Furthermore, monitoring and control functions of equipment and circuits are lacking; thus preventing timely detection and response to customer outages. Finally, the two-way flow of real-time system information is deficient, depriving decision makers of key information required to effectively manage and control current electric grid demands to provide reliable customer service in abnormal situations. This Program focused on advancing technologies and the engineering integration required to incorporate them into the electric grid operations to enhance electrical system reliability and reduce utility operating costs.

  7. Electricity Transmission and Distribution Technologies Available for

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Electricity Glossary › FAQS › Overview Data Electricity Data Browser (interactive query tool with charting & mapping) Summary Sales (consumption), revenue, prices & customers Generation and thermal output Capacity of electric power plants Consumption of fuels used to generate electricity Receipts of fossil-fuels for electricity generation Average cost of fossil-fuels for electricity generation Fossil-fuel stocks for electricity generation Cost, revenue and expense statistics for...

  8. Electricity Monthly Update

    Gasoline and Diesel Fuel Update

    End Use: August 2016 Retail rates/prices and consumption In this section, we look at what electricity costs and how much is purchased. Charges for retail electric service are based primarily on rates approved by state regulators. However, a number of states have allowed retail marketers to compete to serve customers and these competitive retail suppliers offer electricity at a market-based price. EIA does not directly collect retail electricity rates or prices. However, using data collected on

  9. Electricity Monthly Update

    Gasoline and Diesel Fuel Update

    cheap price of natural gas reduced coals share of electricity production. Days of Burn Days of burn Coal capacity The average number of days of burn held at electric power...

  10. Electric power monthly

    SciTech Connect

    1995-08-01

    The Energy Information Administration (EIA) prepares the Electric Power Monthly (EPM) for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. This publication provides monthly statistics for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. The EIA publishes statistics in the EPM on net generation by energy source, consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead.

  11. Electrical Motor Drive Apparatus and Method - Energy Innovation Portal

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Vehicles and Fuels Vehicles and Fuels Industrial Technologies Industrial Technologies Find More Like This Return to Search Electrical Motor Drive Apparatus and Method Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing SummaryThis invention discloses an electrical motor drive topology that can significantly reduce the inverter dc bus ripple currents and thus the requirement of the dc bus capacitance. It enables the inverter to cost-effectively operate in

  12. Factors Impacting Decommissioning Costs - 13576

    SciTech Connect

    Kim, Karen; McGrath, Richard

    2013-07-01

    The Electric Power Research Institute (EPRI) studied United States experience with decommissioning cost estimates and the factors that impact the actual cost of decommissioning projects. This study gathered available estimated and actual decommissioning costs from eight nuclear power plants in the United States to understand the major components of decommissioning costs. Major costs categories for decommissioning a nuclear power plant are removal costs, radioactive waste costs, staffing costs, and other costs. The technical factors that impact the costs were analyzed based on the plants' decommissioning experiences. Detailed cost breakdowns by major projects and other cost categories from actual power plant decommissioning experiences will be presented. Such information will be useful in planning future decommissioning and designing new plants. (authors)

  13. Electric generator

    DOEpatents

    Foster, Jr., John S.; Wilson, James R.; McDonald, Jr., Charles A.

    1983-01-01

    1. In an electrical energy generator, the combination comprising a first elongated annular electrical current conductor having at least one bare surface extending longitudinally and facing radially inwards therein, a second elongated annular electrical current conductor disposed coaxially within said first conductor and having an outer bare surface area extending longitudinally and facing said bare surface of said first conductor, the contiguous coaxial areas of said first and second conductors defining an inductive element, means for applying an electrical current to at least one of said conductors for generating a magnetic field encompassing said inductive element, and explosive charge means disposed concentrically with respect to said conductors including at least the area of said inductive element, said explosive charge means including means disposed to initiate an explosive wave front in said explosive advancing longitudinally along said inductive element, said wave front being effective to progressively deform at least one of said conductors to bring said bare surfaces thereof into electrically conductive contact to progressively reduce the inductance of the inductive element defined by said conductors and transferring explosive energy to said magnetic field effective to generate an electrical potential between undeformed portions of said conductors ahead of said explosive wave front.

  14. Cost savings from nuclear regulatory reform: An econometric model

    SciTech Connect

    Canterbery, E.R. |; Johnson, B.; Reading, D.

    1996-01-01

    The nuclear-generated power touted in the 1950s as someday being {open_quotes}too cheap to meter{close_quotes} got dismissed in the 1980s as incapable of being both safe and cost effective. Today, less than 20 percent of American`s electricity is nuclear-generated, no new plants are planned or on order, and some of the earliest units are scheduled for decommissioning within the next decade. Even so, interest in nuclear power has been revived by increasing energy demands, concerns about global warming, and the uncertainty surrounding oil resources in the Persian Gulf. As a long-term alternative to fossil fuels, atomic energy offers the important advantages of clean air and domestic availability of fuel. But these advantages will count for little unless and until the costs of nuclear power can be seen as reasonable. The authors premise is that the relevant costs are those of providing safe and environmentally clean electric energy. To the extent that increased costs have resulted from increasingly stringent regulations, they reflect the internalization of external costs. Indeed, the external costs of nuclear power (particularly safety and environmental protection) have been internalized to a greater degree than with most alternative fuel sources used by electric utilities. Nuclear construction costs are properly compared with those of alternative sources only after the latter are adjusted for environmental damage and endangerment, including, as examples, the costs of oil spills, of building double-hulled tankers, and of building off-shore offloading facilities. A shift to nuclear sources could reduce these costs whereas it would increase disposal costs for radioactive materials. The authors contend that a better understanding of nuclear plant construction costs is pivotal to a balanced evaluation of the merits of uranium relative to other fuel choices. 12 refs., 2 figs., 5 tabs.

  15. Watt Does It Cost To Use It? | Department of Energy

    Office of Environmental Management (EM)

    Summary Students learn how electrical usage is counted and priced. They measure and evaluate energy use and cost of representative household and school electrical items. Curriculum ...

  16. Lifecycle Cost Analysis of Hydrogen Versus Other Technologies...

    Energy.gov [DOE] (indexed site)

    of hydrogen for medium- to large-scale electrical energy storage applications compared ... Lifecycle Cost Analysis of Hydrogen Versus Other Technologies for Electrical Energy ...

  17. Development of Cost-Competitive Advanced Thermoelectric Generators...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    into Useful Electrical Power Development of Cost-Competitive Advanced Thermoelectric Generators for Direct Conversion of Vehicle Waste Heat into Useful Electrical Power 2012 DOE ...

  18. Technology Improvement Pathways to Cost-Effective Vehicle Electrification: Preprint

    SciTech Connect

    Brooker, A.; Thornton, M.; Rugh, J.

    2010-02-01

    This paper evaluates several approaches aimed at making plug-in electric vehicles (EV) and plug-in hybrid electric vehicles (PHEVs) cost-effective.

  19. Medium Duty Electric Vehicle Demonstration Project

    SciTech Connect

    Mackie, Robin J. D.

    2015-05-31

    The Smith Electric Vehicle Demonstration Project (SDP) was integral to the Smith business plan to establish a manufacturing base in the United States (US) and produce a portfolio of All Electric Vehicles (AEV’s) for the medium duty commercial truck market. Smith focused on the commercial depot based logistics market, as it represented the market that was most ready for the early adoption of AEV technology. The SDP enabled Smith to accelerate its introduction of vehicles and increase the size of its US supply chain to support early market adoption of AEV’s that were cost competitive, fully met the needs of a diverse set of end users and were compliant with Federal safety and emissions requirements. The SDP accelerated the development and production of various electric drive vehicle systems to substantially reduce petroleum consumption, reduce vehicular emissions of greenhouse gases (GHG), and increase US jobs.

  20. Graphene-Polypyrrole Nanocomposite as a Highly Efficient and Low Cost Electrically Switched Ion Exchanger for Removing ClO4- from Wastewater

    SciTech Connect

    Zhang, Sheng; Shao, Yuyan; Liu, Jun; Aksay, Iihan A.; Lin, Yuehe

    2011-10-10

    Perchlorate (ClO4-) contamination is now recognized as a widespread concern affecting many water utilities. In this report, graphene is employed as the scaffold to synthesize novel graphene-polypyrrole nanocomposite, which is demonstrated as excellent electrically switched ion exchanger for perchlorate removal. Scanning electron microscopy (SEM) and electrochemical measurements showed that the 3D nanostructured graphene/Ppy nanocomposite exhibited the significantly improved uptake capacity for ClO4- compared with Ppy film. X-ray photoelectron spectroscopy (XPS) confirmed the uptake and release process of ClO4- in graphene/Ppy nanocomposite. In addition, the presence of graphene substrate resulted in high stability of graphene/Ppy nanocomposite during potential cycling. The present work provides a promising method for large scale water treatment.

  1. Small Solar Electric Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Buying & Making Electricity » Small Solar Electric Systems Small Solar Electric Systems A small solar electric or photovoltaic system can be a reliable and pollution-free producer of electricity for your home or office. A small solar electric or photovoltaic (PV) system can be a reliable and pollution-free producer of electricity for your home or office. Small PV systems also provide a cost-effective power supply in locations where it is expensive or impossible to send electricity through

  2. Electric power monthly

    SciTech Connect

    Smith, Sandra R.; Johnson, Melvin; McClevey, Kenneth; Calopedis, Stephen; Bolden, Deborah

    1992-05-01

    The Electric Power Monthly is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy. This publication provides monthly statistics at the national, Census division, and State levels for net generation, fuel consumption, fuel stocks, quantity and quality of fuel, cost of fuel, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fuel are also displayed for the North American Electric Reliability Council (NERC) regions. Additionally, statistics by company and plant are published in the EPM on capability of new plants, new generation, fuel consumption, fuel stocks, quantity and quality of fuel, and cost of fuel.

  3. Energy conservation in electric distribution

    SciTech Connect

    Lee, Chong-Jin

    1994-12-31

    This paper discusses the potential for energy and power savings that exist in electric power delivery systems. These savings translate into significant financial and environmental benefits for electricity producers and consumers as well as for society in general. AlliedSignal`s knowledge and perspectives on this topic are the result of discussions with hundreds of utility executives, government officials and other industry experts over the past decade in conjunction with marketing our Amorphous Metal technology for electric distribution transformers. Amorphous metal is a technology developed by AlliedSignal that significantly reduces the energy lost in electric distribution transformers at an incremental cost of just a few cents per kilo-Watt-hour. The purpose of this paper is to discuss: Amorphous Metal Alloy Technology; Energy Savings Opportunity; The Industrial Barriers and Remedies; Worldwide Demand; and A Low Risk Strategy. I wish this presentation will help KEPCO achieve their stated aims of ensuring sound development of the national economy and enhancement of public life through the economic and stable supply of electric power. AlliedSignal Korea Ltd. in conjunction with AlliedSignal Amorphous Metals in the U.S. are here to work with KEPCO, transformer manufacturers, industry, and government agencies to achieve greater efficiency in power distribution.

  4. Electricity Monthly Update

    Gasoline and Diesel Fuel Update

    Resource Use: August 2016 Supply and fuel consumption In this section, we look at the resources used to produce electricity. Generating units are chosen to run primarily on their operating costs, of which fuel costs account for the lion's share. Therefore, we present below, electricity generation output by fuel type and generator type. Since the generator/fuel mix of utilities varies significantly by region, we also present generation output by region. Generation output by region By fuel type By

  5. Expediting environmental restoration at a reduced cost

    SciTech Connect

    Johnson, G.R.; Plack, D.A.

    1994-12-31

    With Congress appropriating approximately $1.0--1.5 Billion each year for Department of Defense (DOD) Environmental Restoration Program (DERP), every effort must be made to find ways to use these funds efficiently and effectively to nations hazardous waste sites. Each federal agency involved in environmental restoration is striving to find smarter, faster ways to accomplish this service. The Omaha District Corps of Engineers, Hazardous and Toxic Waste Branch (Omaha) and the Air Combat Command Installation Restoration Branch (ACC) have teamed up to develop and implement an innovative Accelerated Clean-up Program which with the President`s edict for expedited installation environmental restoration.

  6. Reducing Home Heating and Cooling Costs

    Energy Information Administration (EIA) (indexed site)

    public library should be able to help locate the office. Many utilities have "Demand Side Management" programs that will assist any utility customer. Depending on the local...

  7. Reducing Photovoltaic Costs | Department of Energy

    Energy Saver

    ersed e Energy Efficiency & Renewable Energy Energy Efficiency & Renewable Energy Executive summary In constructing a new research facility for its campus, the National Renewable Energy Laboratory (NREL) project team identified the opportunity to design a world-class, energy- efficient data center to support its operations. NREL's efforts resulted in a highly efficient data center that demonstrated considerable energy savings in its first 11 months of operations. Using legacy data center

  8. New Cost Tool Helps Fleet Managers Evaluate Hybrid Vehicles ...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    New Cost Tool Helps Fleet Managers Evaluate Hybrid Vehicles August 3, 2005 Golden, Colo. - A new software tool that compares the costs and emissions of hybrid electric vehicles ...

  9. Design and cost of near-term OTEC (Ocean Thermal Energy Conversion) plants for the production of desalinated water and electric power. [Ocean Thermal Energy Conversion (OTEC)

    SciTech Connect

    Rabas, T.; Panchal, C.; Genens, L.

    1990-01-01

    There currently is an increasing need for both potable water and power for many islands in the Pacific and Caribbean. The Ocean Thermal Energy Conversion (OTEC) technology fills these needs and is a viable option because of the unlimited supply of ocean thermal energy for the production of both desalinated water and electricity. The OTEC plant design must be flexible to meet the product-mix demands that can be very different from site to site. This paper describes different OTEC plants that can supply various mixes of desalinated water and vapor -- the extremes being either all water and no power or no water and all power. The economics for these plants are also presented. The same flow rates and pipe sizes for both the warm and cold seawater streams are used for different plant designs. The OTEC plant designs are characterized as near-term because no major technical issues need to be resolved or demonstrated. The plant concepts are based on DOE-sponsored experiments dealing with power systems, advanced heat exchanger designs, corrosion and fouling of heat exchange surfaces, and flash evaporation and moisture removal from the vapor using multiple spouts. In addition, the mature multistage flash evaporator technology is incorporated into the plant designs were appropriate. For the supply and discharge warm and cold uncertainties do exist because the required pipe sizes are larger than the maximum currently deployed -- 40-inch high-density polyethylene pipe at Keahole Point in Hawaii. 30 refs., 6 figs., 8 tabs.

  10. Electric Metering | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Electric Metering Electric Metering Saving Money by Saving Energy The Department of Energy has installed meters in the James Forrestal Building that will enable DOE to measure electricity use and costs in its headquarters facility. You may explore this data further by visiting our Forrestal Metering Dashboard at the following website: http://forrestal.nrel.gov The Forrestal electric meters provide daily read-outs and comparison of data on electricity consumption for overhead lighting and power

  11. Improving Vehicle Efficiency, Reducing Dependence on Foreign Oil (Fact Sheet)

    SciTech Connect

    Not Available

    2012-03-01

    This fact sheet provides an overview of the U.S. Department of Energy's Vehicle Technologies Program. Today, the United States spends about $400 billion each year on imported oil. To realize a secure energy future, America must break its dependence on imported oil and its volatile costs. The transportation sector accounts for about 70% of U.S. oil demand and holds tremendous opportunity to increase America's energy security by reducing oil consumption. That's why the U.S. Department of Energy (DOE) conducts research and development (R and D) on vehicle technologies which can stem America's dependence on oil, strengthen the economy, and protect the environment. Hybrid-electric and plug-in hybrid-electric vehicles can significantly improve fuel economy, displacing petroleum. Researchers are making batteries more affordable and recyclable, while enhancing battery range, performance, and life. This research supports President Obama's goal of putting 1 million electric vehicles on the road by 2015. The program is also working with businesses to develop domestic battery and electric-drive component plants to improve America's economic competitiveness globally. The program facilitates deployment of alternative fuels (ethanol, biodiesel, hydrogen, electricity, propane, and natural gas) and fuel infrastructures by partnering with state and local governments, universities, and industry. Reducing vehicle weight directly improves vehicle efficiency and fuel economy, and can potentially reduce vehicle operating costs. Cost-effective, lightweight, high-strength materials can significantly reduce vehicle weight without compromising safety. Improved combustion technologies and optimized fuel systems can improve near-and mid-term fuel economy by 25% for passenger vehicles and 20% for commercial vehicles by 2015, compared to 2009 vehicles. Reducing the use of oil-based fuels and lubricants in vehicles has more potential to improve the nation's energy security than any other action

  12. Biomass Derivatives Competitive with Heating Oil Costs.

    Energy Saver

    Biomass Derivatives Competitive with Heating Oil Costs Transportation fuel Heat or electricity * Data are from literature, except heating oil is adjusted from 2011 winter average * ...

  13. Interruption Cost Estimate Calculator | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Cost Estimate (ICE) Calculator This calculator is a tool designed for electric reliability planners at utilities, government organizations or other entities that are...

  14. Metal-Air Electric Vehicle Battery: Sustainable, High-Energy Density, Low-Cost Electrochemical Energy Storage Metal-Air Ionic Liquid (MAIL) Batteries

    SciTech Connect

    2009-12-21

    Broad Funding Opportunity Announcement Project: ASU is developing a new class of metal-air batteries. Metal-air batteries are promising for future generations of EVs because they use oxygen from the air as one of the batterys main reactants, reducing the weight of the battery and freeing up more space to devote to energy storage than Li-Ion batteries. ASU technology uses Zinc as the active metal in the battery because it is more abundant and affordable than imported lithium. Metal-air batteries have long been considered impractical for EV applications because the water-based electrolytes inside would decompose the battery interior after just a few uses. Overcoming this traditional limitation, ASUs new battery system could be both cheaper and safer than todays Li-Ion batteries, store from 4-5 times more energy, and be recharged over 2,500 times.

  15. Electric vehicles move closer to market

    SciTech Connect

    O`Connor, L.

    1995-03-01

    This article reports that though battery technology is currently limiting the growth of EVs, the search for improvements is spurring innovative engineering developments. As battery makers, automakers, national laboratories, and others continue their search for a practical source of electric power that will make electric vehicles (EVs) more viable, engineers worldwide are making progress in other areas of EV development. Vector control, for example, enables better regulation of motor torque and speed; composite and aluminum parts reduce the vehicle`s weight, which in turn reduces the load on the motor and battery; and flywheel energy storage systems, supercapacitors, regenerative brake systems, and hybrid/electric drive trains increase range and acceleration. Despite efforts to develop an electric vehicle from the ground up, most of the early EVs to be sold in the United States will likely be converted from gasoline-powered vehicles. Chrysler Corp., for example, is expected to sell electric versions of its minivans and build them on the same assembly line as its gasoline-powered vehicles to reduce costs. The pace of engineering development in this field is fast and furious. Indeed, it is virtually impossible to monitor all emerging EV technology. To meet their quotas, the major automakers may even consider buying credits from smaller, innovative EV manufacturers. But whatever stopgap measures vehicle makers take, technology development will be the driving force behind long-term EV growth.

  16. RESULTS FROM THE U.S. DOE 2006 SAVE ENERGY NOW ASSESSMENT INITIATIVE: DOE's Partnership with U.S. Industry to Reduce Energy Consumption, Energy Costs, and Carbon Dioxide Emissions

    SciTech Connect

    Wright, Anthony L; Martin, Michaela A; Gemmer, Bob; Scheihing, Paul; Quinn, James

    2007-09-01

    In the wake of Hurricane Katrina and other severe storms in 2005, natural gas supplies were restricted, prices rose, and industry sought ways to reduce its natural gas use and costs. In October 2005, U.S. Department of Energy (DOE) Energy Secretary Bodman launched his Easy Ways to Save Energy campaign with a promise to provide energy assessments to 200 of the largest U.S. manufacturing plants. A major thrust of the campaign was to ensure that the nation's natural gas supplies would be adequate for all Americans, especially during home heating seasons. In a presentation to the National Press Club on October 3, 2005, Secretary Bodman said: 'America's businesses, factories, and manufacturing facilities use massive amounts of energy. To help them during this period of tightening supply and rising costs, our Department is sending teams of qualified efficiency experts to 200 of the nation's most energy-intensive factories. Our Energy Saving Teams will work with on-site managers on ways to conserve energy and use it more efficiently.' DOE's Industrial Technologies Program (ITP) responded to the Secretary's campaign with its Save Energy Now initiative, featuring a new and highly cost-effective form of energy assessments. The approach for these assessments drew heavily on the existing resources of ITP's Technology Delivery component. Over the years, ITP-Technology Delivery had worked with industry partners to assemble a suite of respected software decision tools, proven assessment protocols, training curricula, certified experts, and strong partnerships for deployment. Because of the program's earlier activities and the resources that had been developed, ITP was prepared to respond swiftly and effectively to the sudden need to promote improved industrial energy efficiency. Because of anticipated supply issues in the natural gas sector, the Save Energy Now initiative strategically focused on natural gas savings and targeted the nation's largest manufacturing plants

  17. Solar PV Manufacturing Cost Model Group: Installed Solar PV System Prices (Presentation)

    SciTech Connect

    Goodrich, A. C.; Woodhouse, M.; James, T.

    2011-02-01

    EERE's Solar Energy Technologies Program is charged with leading the Secretary's SunShot Initiative to reduce the cost of electricity from solar by 75% to be cost competitive with conventional energy sources without subsidy by the end of the decade. As part of this Initiative, the program has funded the National Renewable Energy Laboratory (NREL) to develop module manufacturing and solar PV system installation cost models to ensure that the program's cost reduction targets are carefully aligned with current and near term industry costs. The NREL cost analysis team has leveraged the laboratories' extensive experience in the areas of project finance and deployment, as well as industry partnerships, to develop cost models that mirror the project cost analysis tools used by project managers at leading U.S. installers. The cost models are constructed through a "bottoms-up" assessment of each major cost element, beginning with the system's bill of materials, labor requirements (type and hours) by component, site-specific charges, and soft costs. In addition to the relevant engineering, procurement, and construction costs, the models also consider all relevant costs to an installer, including labor burdens and overhead rates, supply chain costs, and overhead and materials inventory costs, and assume market-specific profits.

  18. EV Everywhere: All-Electric and Plug-in Hybrid Electric Cars | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy EV Everywhere: All-Electric and Plug-in Hybrid Electric Cars Find Electric Vehicle Models Vehicle Charging Saving Fuel & Vehicle Costs Electric Vehicle Stories Benefits of Electric Vehicles Electric Vehicle Basics Find the best electric car to meet your needs! Search for makes and models, learn about electric vehicle (EV) charging stations, find tax incentives, explore how an EV can save you money, and discover other benefits of EVs. EV Everywhere is a Clean Energy Grand

  19. Flow-Assisted Alkaline Battery: Low-Cost Grid-Scale Electrical Storage using a Flow-Assisted Rechargeable Zinc-Manganese Dioxide Battery

    SciTech Connect

    2010-09-15

    GRIDS Project: Traditional consumer-grade disposable batteries are made of Zinc and Manganese, 2 inexpensive, abundant, and non-toxic metals. But these disposable batteries can only be used once. If they are recharged, the Zinc in the battery develops filaments called dendrites that grow haphazardly and disrupt battery performance, while the Manganese quickly loses its ability to store energy. CUNY Energy Institute is working to tame dendrite formation and to enhance the lifetime of Manganese in order to create a long-lasting, fully rechargeable battery for grid-scale energy storage. CUNY Energy Institute is also working to reduce dendrite formation by pumping fluid through the battery, enabling researchers to fix the dendrites as theyre forming. The team has already tested its Zinc battery through 3,000 recharge cycles (and counting). CUNY Energy Institute aims to demonstrate a better cycle life than lithium-ion batteries, which can be up to 20 times more expensive than Zinc-based batteries.

  20. INNOVATIVE HYBRID GAS/ELECTRIC CHILLER COGENERATION

    SciTech Connect

    Todd Kollross; Mike Connolly

    2004-06-30

    Engine-driven chillers are quickly gaining popularity in the market place (increased from 7,000 tons in 1994 to greater than 50,000 tons in 1998) due to their high efficiency, electric peak shaving capability, and overall low operating cost. The product offers attractive economics (5 year pay back or less) in many applications, based on areas cooling requirements and electric pricing structure. When heat is recovered and utilized from the engine, the energy resource efficiency of a natural gas engine-driven chiller is higher than all competing products. As deregulation proceeds, real time pricing rate structures promise high peak demand electric rates, but low off-peak electric rates. An emerging trend with commercial building owners and managers who require air conditioning today is to reduce their operating costs by installing hybrid chiller systems that combine gas and electric units. Hybrid systems not only reduce peak electric demand charges, but also allow customers to level their energy load profiles and select the most economical energy source, gas or electricity, from hour to hour. Until recently, however, all hybrid systems incorporated one or more gas-powered chillers (engine driven and/or absorption) and one or more conventional electric units. Typically, the cooling capacity of hybrid chiller plants ranges from the hundreds to thousands of refrigeration tons, with multiple chillers affording the user a choice of cooling systems. But this flexibility is less of an option for building operators who have limited room for equipment. To address this technology gap, a hybrid chiller was developed by Alturdyne that combines a gas engine, an electric motor and a refrigeration compressor within a single package. However, this product had not been designed to realize the full features and benefits possible by combining an engine, motor/generator and compressor. The purpose of this project is to develop a new hybrid chiller that can (1) reduce end-user energy

  1. Electric power monthly, April 1993

    SciTech Connect

    Not Available

    1993-05-07

    The Electric Power Monthly is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy. This publication provides monthly statistics at the US, Census division, and State levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions.

  2. Electric power monthly, May 1993

    SciTech Connect

    Not Available

    1993-05-25

    The Electric Power Monthly (EPM) is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy. This publication provides monthly statistics at the US, Census division, and State levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions.

  3. Role of Energy Storage with Renewable Electricity Generation

    SciTech Connect

    Denholm, P.; Ela, E.; Kirby, B.; Milligan, M.

    2010-01-01

    Renewable energy sources, such as wind and solar, have vast potential to reduce dependence on fossil fuels and greenhouse gas emissions in the electric sector. Climate change concerns, state initiatives including renewable portfolio standards, and consumer efforts are resulting in increased deployments of both technologies. Both solar photovoltaics (PV) and wind energy have variable and uncertain (sometimes referred to as intermittent) output, which are unlike the dispatchable sources used for the majority of electricity generation in the United States. The variability of these sources has led to concerns regarding the reliability of an electric grid that derives a large fraction of its energy from these sources as well as the cost of reliably integrating large amounts of variable generation into the electric grid. In this report, we explore the role of energy storage in the electricity grid, focusing on the effects of large-scale deployment of variable renewable sources (primarily wind and solar energy).

  4. Operating Costs

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    1997-03-28

    This chapter is focused on capital costs for conventional construction and environmental restoration and waste management projects and examines operating cost estimates to verify that all elements of the project have been considered and properly estimated.

  5. Saving Electricity | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Saving Electricity Saving Electricity Reducing energy use in your home saves you money, increases our energy security and reduces the pollution that is emitted from non-renewable sources of energy. <a href="/node/1265906">Learn more about reducing your electricity use</a>. Reducing energy use in your home saves you money, increases our energy security and reduces the pollution that is emitted from non-renewable sources of energy. Learn more about reducing your electricity

  6. Impact of residential PV adoption on Retail Electricity Rates

    SciTech Connect

    Cai, DWH; Adlakha, S; Low, SH; De Martini, P; Chandy, KM

    2013-11-01

    The price of electricity supplied from home rooftop photo voltaic (PV) solar cells has fallen below the retail price of grid electricity in some areas. A number of residential households have an economic incentive to install rooftop PV systems and reduce their purchases of electricity from the grid. A significant portion of the costs incurred by utility companies are fixed costs which must be recovered even as consumption falls. Electricity rates must increase in order for utility companies to recover fixed costs from shrinking sales bases. Increasing rates will, in turn, result in even more economic incentives for customers to adopt rooftop PV. In this paper, we model this feedback between PV adoption and electricity rates and study its impact on future PV penetration and net-metering costs. We find that the most important parameter that determines whether this feedback has an effect is the fraction of customers who adopt PV in any year based solely on the money saved by doing so in that year, independent of the uncertainties of future years. These uncertainties include possible changes in rate structures such as the introduction of connection charges, the possibility of PV prices dropping significantly in the future, possible changes in tax incentives, and confidence in the reliability and maintainability of PV. (C) 2013 Elsevier Ltd. All rights reserved.

  7. Vehicle Technologies Office: Materials for Hybrid and Electric...

    Energy Saver

    Hybrid and Electric Drive Systems Vehicle Technologies Office: Materials for Hybrid and Electric Drive Systems The Vehicle Technologies Office (VTO) is working to lower the cost ...

  8. System dynamics of the competition of municipal solid waste to landfill, electricity, and liquid fuel in California

    SciTech Connect

    Westbrook, Jessica; Malczynski, Leonard A.; Manley, Dawn Kataoka

    2014-03-01

    A quantitative system dynamics model was created to evaluate the economic and environmental tradeoffs between biomass to electricity and to liquid fuel using MSW biomass in the state of California as a case study. From an environmental perspective, landfilling represents the worst use of MSW over time, generating more greenhouse gas (GHG) emissions compared to converting MSW to liquid fuel or to electricity. MSW to ethanol results in the greatest displacement of GHG emissions per dollar spent compared to MSW to electricity. MSW to ethanol could save the state of California approximately $60 billion in energy costs by 2050 compared to landfilling, while also reducing GHG emissions state-wide by approximately 140 million metric tons during that timeframe. MSW conversion to electricity creates a significant cost within the state's electricity sector, although some conversion technologies are cost competitive with existing renewable generation.

  9. GETEM -Geothermal Electricity Technology Evaluation Model

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    1 GETEM -Geothermal Electricity Technology Evaluation Model Background: GETEM was originally developed for the Department of Energy's Geothermal Technologies Program to provide both a method for quantifying the power generation cost from geothermal energy, and a means of assessing how technology advances might impact those generation costs. Generation cost is determined as the Levelized-Cost-of-Electricity (LCOE). The model is intended to provide representative estimates of cost and performance

  10. Electrical Energy Storage A DOE ENERGY FRONTIER RESEARCH CENTER

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Electricity Glossary › FAQS › Overview Data Electricity Data Browser (interactive query tool with charting & mapping) Summary Sales (consumption), revenue, prices & customers Generation and thermal output Capacity of electric power plants Consumption of fuels used to generate electricity Receipts of fossil-fuels for electricity generation Average cost of fossil-fuels for electricity generation Fossil-fuel stocks for electricity generation Cost, revenue and expense statistics for...

  11. Electric Power Annual 2014 - U.S. Energy Information Administration

    Energy Information Administration (EIA) (indexed site)

    Electricity Glossary › FAQS › Overview Data Electricity Data Browser (interactive query tool with charting & mapping) Summary Sales (consumption), revenue, prices & customers Generation and thermal output Capacity of electric power plants Consumption of fuels used to generate electricity Receipts of fossil-fuels for electricity generation Average cost of fossil-fuels for electricity generation Fossil-fuel stocks for electricity generation Cost, revenue and expense statistics for...

  12. Electric Power Monthly - U.S. Energy Information Administration

    Energy Information Administration (EIA) (indexed site)

    Electricity Glossary › FAQS › Overview Data Electricity Data Browser (interactive query tool with charting & mapping) Summary Sales (consumption), revenue, prices & customers Generation and thermal output Capacity of electric power plants Consumption of fuels used to generate electricity Receipts of fossil-fuels for electricity generation Average cost of fossil-fuels for electricity generation Fossil-fuel stocks for electricity generation Cost, revenue and expense statistics for...

  13. Electricity - U.S. Energy Information Administration (EIA)

    Energy Information Administration (EIA) (indexed site)

    Electricity Glossary › FAQS › Overview Data Electricity Data Browser (interactive query tool with charting & mapping) Summary Sales (consumption), revenue, prices & customers Generation and thermal output Capacity of electric power plants Consumption of fuels used to generate electricity Receipts of fossil-fuels for electricity generation Average cost of fossil-fuels for electricity generation Fossil-fuel stocks for electricity generation Cost, revenue and expense statistics for...

  14. Are renewables portfolio standards cost-effective emission abatement policy?

    SciTech Connect

    Katerina Dobesova; Jay Apt; Lester B. Lave

    2005-11-15

    Renewables portfolio standards (RPS) could be an important policy instrument for 3P and 4P control. The authors examine the costs of renewable power, accounting for the federal production tax credit, the market value of a renewable credit, and the value of producing electricity without emissions of SO{sub 2}, NOx, mercury, and CO{sub 2}. The focus is on Texas, which has a large RPS and is the largest U.S. electricity producer and one of the largest emitters of pollutants and CO{sub 2}. The private and social costs of wind generation in an RPS is compared with the current cost of fossil generation, accounting for the pollution and CO{sub 2} emissions. It was found that society paid about 5.7 cents/kWh more for wind power, counting the additional generation, transmission, intermittency, and other costs. The higher cost includes credits amounting to 1.1 cents/kWh in reduced SO{sub 2}, NOx, and Hg emissions. These pollution reductions and lower CO{sub 2} emissions could be attained at about the same cost using pulverized coal (PC) or natural gas combined cycle (NGCC) plants with carbon capture and sequestration (CCS); the reductions could be obtained more cheaply with an integrated coal gasification combined cycle (IGCC) plant with CCS. 35 refs., 7 tabs.

  15. Nitrogen Control in Electric Arc Furnace Steelmaking by Direct...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Nitrogen Control in Electric Arc Furnace Steelmaking by Direct Reduced Iron Fines Injection Nitrogen Control in Electric Arc Furnace Steelmaking by Direct Reduced Iron Fines ...

  16. An integrated assessment of electric power resource options in the US Virgin Islands

    SciTech Connect

    Hill, L.J.; Chronowski, R.A.; Shapiro, A.M.

    1994-02-01

    As with other island-based, insular power systems, the avoided cost of power for the Water and Power Authority (WAPA) of the US Virgin Islands (USVI) is high relative to that of US mainland electric utilities. First, the need to produce potable water requires that WAPA`s electric generating system operate at efficiency levels lower than would result in the absence of the need to jointly produce water and power. Second, the inability to purchase power from neighboring utilities necessitates higher reserve margins. These two operating conditions suggest that integrated resource planning (IRP) should be especially attractive to WAPA. IRP is a planning paradigm that gives electric utilities more options to choose from when making resource selections and, therefore, generally results in lower costs. Utilities look to the demand side as a source of resources--i.e., demand side management (DSM)--in this planning process. They then select the least-cost mix of resource options. In this study, we take the first steps toward implementing an IRP process in the USVI. Using its existing resource base and the supply and DSM options that it has in the future, we simulated WAPA`s resource selection process over a 20-year planning horizon using SafePlan, an IRP planning model. The results suggest that WAPA can significantly reduce its cost of providing electricity by implementing DSM programs. The cost of generating electricity and the amount of kWh needed can be reduced nearly nine percent by implementing cost-effective DSM programs. Cost and kWh savings are greater under less favorable assumptions about (1) the input costs for generating electricity and (2) other conditions that WAPA will confront in the future. The results also indicate that DSM programs targeted at the residential sector can save, 500 gallons of water annually for participants in the program.

  17. Geothermal probabilistic cost study

    SciTech Connect

    Orren, L.H.; Ziman, G.M.; Jones, S.C.; Lee, T.K.; Noll, R.; Wilde, L.; Sadanand, V.

    1981-08-01

    A tool is presented to quantify the risks of geothermal projects, the Geothermal Probabilistic Cost Model (GPCM). The GPCM model is used to evaluate a geothermal reservoir for a binary-cycle electric plant at Heber, California. Three institutional aspects of the geothermal risk which can shift the risk among different agents are analyzed. The leasing of geothermal land, contracting between the producer and the user of the geothermal heat, and insurance against faulty performance are examined. (MHR)

  18. U.S. Geographic Analysis of the Cost of Hydrogen from Electrolysis

    SciTech Connect

    Saur, G.; Ainscough, C.

    2011-12-01

    This report summarizes U.S. geographic analysis of the cost of hydrogen from electrolysis. Wind-based water electrolysis represents a viable path to renewably-produced hydrogen production. It might be used for hydrogen-based transportation fuels, energy storage to augment electricity grid services, or as a supplement for other industrial hydrogen uses. This analysis focuses on the levelized production, costs of producing green hydrogen, rather than market prices which would require more extensive knowledge of an hourly or daily hydrogen market. However, the costs of hydrogen presented here do include a small profit from an internal rate of return on the system. The cost of renewable wind-based hydrogen production is very sensitive to the cost of the wind electricity. Using differently priced grid electricity to supplement the system had only a small effect on the cost of hydrogen; because wind electricity was always used either directly or indirectly to fully generate the hydrogen. Wind classes 3-6 across the U.S. were examined and the costs of hydrogen ranged from $3.74kg to $5.86/kg. These costs do not quite meet the 2015 DOE targets for central or distributed hydrogen production ($3.10/kg and $3.70/kg, respectively), so more work is needed on reducing the cost of wind electricity and the electrolyzers. If the PTC and ITC are claimed, however, many of the sites will meet both targets. For a subset of distributed refueling stations where there is also inexpensive, open space nearby this could be an alternative to central hydrogen production and distribution.

  19. NREL Helps Cool the Power Electronics in Electric Vehicles (Fact Sheet)

    SciTech Connect

    Not Available

    2011-07-01

    Researchers at the National Renewable Energy Laboratory (NREL) are developing and demonstrating innovative heat-transfer technologies for cooling power electronics devices in hybrid and electric vehicles. In collaboration with 3M and Wolverine Tube, Inc., NREL is using surface enhancements to dissipate heat more effectively, permitting a reduction in the size of power electronic systems and potentially reducing the overall costs of electric vehicles.

  20. BPA's Costs

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases BP-18 Rate Case Related Publications Meetings and Workshops Customer...

  1. Hawaii electric system reliability.

    SciTech Connect

    Silva Monroy, Cesar Augusto; Loose, Verne William

    2012-09-01

    This report addresses Hawaii electric system reliability issues; greater emphasis is placed on short-term reliability but resource adequacy is reviewed in reference to electric consumers' views of reliability %E2%80%9Cworth%E2%80%9D and the reserve capacity required to deliver that value. The report begins with a description of the Hawaii electric system to the extent permitted by publicly available data. Electrical engineering literature in the area of electric reliability is researched and briefly reviewed. North American Electric Reliability Corporation standards and measures for generation and transmission are reviewed and identified as to their appropriateness for various portions of the electric grid and for application in Hawaii. Analysis of frequency data supplied by the State of Hawaii Public Utilities Commission is presented together with comparison and contrast of performance of each of the systems for two years, 2010 and 2011. Literature tracing the development of reliability economics is reviewed and referenced. A method is explained for integrating system cost with outage cost to determine the optimal resource adequacy given customers' views of the value contributed by reliable electric supply. The report concludes with findings and recommendations for reliability in the State of Hawaii.

  2. Externalities and electric power: an integrated assessment approach

    SciTech Connect

    Lee, R.

    1995-12-31

    This paper describes an integrated assessment approach for considering the options that electric utilities have to meet the anticipated demand for their power. The objective that this paper considers is one of meeting the demand for power, with an acceptable degree of reliability, at minimum cost. The total cost is the sum of the private cost of producing the electric power plus the external costs that result from its production. These external costs, or externalities, are effects on the well-being of third parties that producers and consumers of electric power do not take into account in their decisions. The external costs include many different types of effects such as illness, ecosystem damage, and road damage. The solution to the problem of minimizing total cost is addressed in two steps. The first step uses damage function methods to establish a common metric for the weights of the different objectives (i.e., external costs). The damage function analysis also reduces the dimensionality of the analysis in the second step, and identifies criteria to include in that analysis. The second step uses multi-criteria decision methods. This analysis includes the most important externalities that the damage function analysis identifies and, in addition, potentially important factors that can not be quantified reliably using damage function methods. An example of the latter are the damages from global climate change. The two-step method that this paper describes addresses many of the limitations of the damage function method and multi-criteria methods, that arise when they are used separately. This linked method can be used by electric utilities for their integrated resource planning. It can also be adapted to other applications.

  3. Electrically heated particulate filter with reduced stress

    DOEpatents

    Gonze, Eugene V.

    2013-03-05

    A system comprises a particulate matter (PM) filter comprising an inlet for receiving exhaust gas. A zoned heater is arranged in the inlet and comprises a resistive heater comprising N zones, where N is an integer greater than one. Each of the N zones comprises M sub-zones, where M is an integer greater than one. A control module selectively activates one of the N zones to initiate regeneration in downstream portions of the PM filter from the one of the N zones and deactivates others of the N zones.

  4. Common trenching reduces damage to buried utilities

    SciTech Connect

    Alfiere, E.P.

    1982-09-01

    Since 1972 Niagara Mohawk Power Co. has established a utility corridor, installing 503 miles of buried gas mains and electric cables in a common trench. Their guidelines for common trenching included (1) the developer's responsibility for providing a subdivision map showing the location of each sidewalk, lot, and roadway, (2) an easement strip paralleling the front lot (street) line that is to be cleared and graded by the developer before construction is started, (3) an electric planning department to prepare detailed construction drawings, coordinate plans with other utilities, determine the responsibility for trenching and backfilling, and determine that all the necessary easements have been secured, and (4) construction specifications varying the width and depth of the trench with the number and type of utilties occupying the joint trench. Advantages of the common trench program comprise reduced exposure to digups, communication and concern for each utility's facility, water and sewer construction installed before the common trench, and cost sharing that would reduce each facility's construction and restoration costs.

  5. Ceramic electrical insulation for electrical coils, transformers, and magnets

    DOEpatents

    Rice, John A.; Hazelton, Craig S.; Fabian, Paul E.

    2002-01-01

    A high temperature electrical insulation is described, which is suitable for electrical windings for any number of applications. The inventive insulation comprises a cured preceramic polymer resin, which is preferably a polysiloxane resin. A method for insulating electrical windings, which are intended for use in high temperature environments, such as superconductors and the like, advantageously comprises the steps of, first, applying a preceramic polymer layer to a conductor core, to function as an insulation layer, and second, curing the preceramic polymer layer. The conductor core preferably comprises a metallic wire, which may be wound into a coil. In the preferred method, the applying step comprises a step of wrapping the conductor core with a sleeve or tape of glass or ceramic fabric which has been impregnated by a preceramic polymer resin. The inventive insulation system allows conducting coils and magnets to be fabricated using existing processing equipment, and maximizes the mechanical and thermal performance at both elevated and cryogenic temperatures. It also permits co-processing of the wire and the insulation to increase production efficiencies and reduce overall costs, while still remarkably enhancing performance.

  6. Electric power monthly, September 1993

    SciTech Connect

    Not Available

    1993-09-17

    The Electric Power Monthly (EPM) presents monthly electricity statistics. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. The EPM is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy. This publication provides monthly statistics at the US, Census division, and State levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions.

  7. Electric power monthly, August 1993

    SciTech Connect

    Not Available

    1993-08-13

    The Electric Power Monthly (EPM) presents monthly electricity statistics. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. The EPM is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy. This publication provides monthly statistics at the US, Census division, and State levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions.

  8. Reducing rotor weight

    SciTech Connect

    Cheney, M.C.

    1997-12-31

    The cost of energy for renewables has gained greater significance in recent years due to the drop in price in some competing energy sources, particularly natural gas. In pursuit of lower manufacturing costs for wind turbine systems, work was conducted to explore an innovative rotor designed to reduce weight and cost over conventional rotor systems. Trade-off studies were conducted to measure the influence of number of blades, stiffness, and manufacturing method on COE. The study showed that increasing number of blades at constant solidity significantly reduced rotor weight and that manufacturing the blades using pultrusion technology produced the lowest cost per pound. Under contracts with the National Renewable Energy Laboratory and the California Energy Commission, a 400 kW (33m diameter) turbine was designed employing this technology. The project included tests of an 80 kW (15.5m diameter) dynamically scaled rotor which demonstrated the viability of the design.

  9. Renewable Electricity: Insights for the Coming Decade

    SciTech Connect

    Stark, C.; Pless, J.; Logan, J.; Zhou, E.; Arent, D. J.

    2015-02-01

    A sophisticated set of renewable electricity (RE) generation technologies is now commercially available. Globally, RE captured approximately half of all capacity additions since 2011. The cost of RE is already competitive with fossil fuels in some areas around the world, and prices are anticipated to continue to decline over the next decade. RE options, led by wind and solar, are part of a suite of technologies and business solutions that are transforming electricity sectors around the world. Renewable deployment is expected to continue due to: increasingly competitive economics; favorable environmental characteristics such as low water use, and minimal local air pollution and greenhouse gas (GHG) emissions; complementary risk profiles when paired with natural gas generators; strong support from stakeholders. Despite this positive outlook for renewables, the collapse in global oil prices since mid-2014 and continued growth in natural gas supply in the United States--due to the development of low-cost shale gas--raise questions about the potential impacts of fossil fuel prices on RE. Today, oil plays a very minor role in the electricity sectors of most countries, so direct impacts on RE are likely to be minimal (except where natural gas prices are indexed on oil). Natural gas and RE generating options appear to be more serious competitors than oil and renewables. Low gas prices raise the hurdle for RE to be cost competitive. Additionally, although RE emits far less GHG than natural gas, both natural gas and RE offer the benefits of reducing carbon relative to coal and oil (see Section 4.1 for more detail on the GHG intensity of electricity technologies). However, many investors and decision makers are becoming aware of the complementary benefits of pairing natural gas and renewables to minimize risk of unstable fuel prices and maintain the reliability of electricity to the grid.

  10. Proposed Changes to Electricity and Renewable (Photovoltaic)...

    Gasoline and Diesel Fuel Update

    ... U.S. Energy Information Administration | 2017 Proposed Solar & Electricity Survey Form ... Fuel receipts and costs EIA-923: Natural gas receipts would no longer be reported by ...

  11. Adams Electric Cooperative - Energy Efficiency Loan Program ...

    Energy.gov [DOE] (indexed site)

    Insulation Windows Doors Other EE Program Info Sector Name Utility Administrator Adams Electric Cooperative Website http:www.adamsec.comcontentlow-cost-financing State...

  12. Buying Clean Electricity | Department of Energy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    to pay a small premium in exchange for electricity generated from clean, renewable ("green") energy sources. The premium covers the increased costs incurred by the power...

  13. Western Massachusetts Electric- Commercial Energy Efficiency Rebates

    Energy.gov [DOE]

    Western Massachusetts Electric (WMECO) helps commercial and industrial customers offset the additional costs of purchasing and installing energy efficient equipment. WMECO offers rebates for...

  14. Quantitative evaluation of savings in outage costs by using emergency actions strategy

    SciTech Connect

    Akhtar, A.; Asuhaimi, A.; Shaibon, H. [Univ. Teknologi Malaysia, Johor Bharu (Malaysia); Lo, K.L. [Univ. of Strathclyde, Glasgow (United Kingdom)

    1995-12-31

    This paper presents the results of a study carried out to assess the savings in consumer outage costs that can be accrued as a result of implementing Emergency Actions Strategy. The use of Emergency Actions Strategy plays a significant role in curtailing the consumer outage costs ensuing from unreliable electric service. In order to calculate the savings in outage costs, the probabilistic framework of the frequency and duration method has been used in conjunction with emergency actions. At first, the outage costs of various consumer sectors are estimated without considering the emergency actions. Secondly, the consumer outage costs are calculated by combining the frequency and duration method, and unserved energy with the emergency actions invoked. The results of the savings in consumer outage costs that can be accrued by utilizing Emergency Actions Strategy are presented for a synthetic system. The results of the study show that substantial savings in consumer outage costs are obtained by devising and implementing emergency actions strategy in situations of capacity outages. The results are of particular relevance and utility to the underdeveloped and developing countries where capacity shortages occur quite frequently. These results also suggest the importance of emergency actions strategy for electric utilities in reducing the consumer economic losses arising from unreliable electric service.

  15. Unbundling electricity: Ancillary services

    SciTech Connect

    Kirby, B.; Hirst, E.

    1996-06-01

    The US electricity industry, dominated by vertically integrated, retail-monopoly, regulated utilities, is undergoing enormous changes. The industry, within the next few years, will evolve into a deintegrated, competitive-market dominated, less regulated industry. Part of this process involves unbundling electric generation from transmission, which raises the issue of ancillary services. Since the Federal Energy Regulatory Commission (FERC) published its March 1995 proposed rule on open-access transmission, ancillary services have been an important topic. Ancillary services are those functions performed by the equipment and people that generate, control, transmit, and distribute electricity to support the basic services of generating capacity, energy supply, and power delivery. These services cost US electricity consumers about $12 billion a year. This article examines the functions performed by the equipment and people that generate, control, transmit, and distribute electricity to support the basic services of generating capacity, energy supply, and power delivery.

  16. Small Wind Electric Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Small Wind Electric Systems Small Wind Electric Systems Wind power is the fastest growing source of energy in the world -- efficient, cost effective, and non-polluting. If you have enough wind resource in your area and the situation is right, small wind electric systems are one of the most cost-effective home-based renewable energy systems -- with zero emissions and pollution. Small wind electric systems can: Lower your electricity bills by 50%-90% Help you avoid the high costs of having

  17. FY2014 Electric Drive Technologies Annual Progress Report

    SciTech Connect

    2014-12-01

    The Electric Drive Technologies research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research is focused on developing power electronics (PE), electric motor, and traction drive system (TDS) technologies that will reduce system cost and improve their efficiency in transforming battery energy to useful work. The R&D is also aimed at better understanding and improving how various components of tomorrow’s automobiles will function as a unified system to improve fuel efficiency.

  18. Within-Day Recharge of Plug-In Hybrid Electric Vehicles: Energy Impact of Public Charging Infrastructure

    SciTech Connect

    Dong, Jing; Lin, Zhenhong

    2012-01-01

    This paper examines the role of public charging infrastructure in increasing the share of driving on electricity that plug-in hybrid electric vehicles might exhibit, thus reducing their gasoline consumption. Vehicle activity data obtained from a global positioning system tracked household travel survey in Austin, Texas, is used to estimate gasoline and electricity consumptions of plug-in hybrid electric vehicles. Drivers within-day recharging behavior, constrained by travel activities and public charger availability, is modeled. It is found that public charging offers greater fuel savings for hybrid electric vehicles s equipped with smaller batteries, by encouraging within-day recharge, and providing an extensive public charging service is expected to reduce plug-in hybrid electric vehicles gasoline consumption by more than 30% and energy cost by 10%, compared to the scenario of home charging only.

  19. 1998 Cost and Quality Annual

    Gasoline and Diesel Fuel Update

    8) Distribution Category UC-950 Cost and Quality of Fuels for Electric Utility Plants 1998 Tables June 1999 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of

  20. EV Everywhere: Saving on Fuel and Vehicle Costs

    Energy.gov [DOE]

    Plug-in electric vehicles (also known as electric cars or EVs) can save you money, with much lower fuel costs on average than conventional gasoline vehicles. Electricity prices are lower and more stable than gasoline prices. On a national average, it costs less than half as much to travel the same distance in an EV than a conventional vehicle.

  1. Electric thermal storage demonstration program

    SciTech Connect

    Not Available

    1992-02-01

    In early 1989, MMWEC, a joint action agency comprised of 30 municipal light departments in Massachusetts and one affiliate in Rhode Island, responded to a Department of Energy request to proposal for the Least Cost Utility Planning program. The MMWEC submission was for the development of a program, focused on small rural electric utilities, to promote the use of electric thermal storage heating systems in residential applications. In this progress report, cost savings at Bolyston light department is discussed. (JL)

  2. Electric thermal storage demonstration program

    SciTech Connect

    Not Available

    1992-01-01

    In early 1989, MMWEC, a joint action agency comprised of 30 municipal light departments in Massachusetts and one affiliate in Rhode Island, responded to a Department of Energy request to proposal for the Least Cost Utility Planning program. The MMWEC submission was for the development of a program, focused on small rural electric utilities, to promote the use of electric thermal storage heating systems in residential applications. In this progress report, cost savings at Bolyston light department is discussed. (JL)

  3. Decommissioning Unit Cost Data

    SciTech Connect

    Sanford, P. C.; Stevens, J. L.; Brandt, R.

    2002-02-26

    The Rocky Flats Closure Site (Site) is in the process of stabilizing residual nuclear materials, decommissioning nuclear facilities, and remediating environmental media. A number of contaminated facilities have been decommissioned, including one building, Building 779, that contained gloveboxes used for plutonium process development but did little actual plutonium processing. The actual costs incurred to decommission this facility formed much of the basis or standards used to estimate the decommissioning of the remaining plutonium-processing buildings. Recent decommissioning activities in the first actual production facility, Building 771, implemented a number of process and procedural improvements. These include methods for handling plutonium contaminated equipment, including size reduction, decontamination, and waste packaging, as well as management improvements to streamline planning and work control. These improvements resulted in a safer working environment and reduced project cost, as demonstrated in the overall project efficiency. The topic of this paper is the analysis of how this improved efficiency is reflected in recent unit costs for activities specific to the decommissioning of plutonium facilities. This analysis will allow the Site to quantify the impacts on future Rocky Flats decommissioning activities, and to develop data for planning and cost estimating the decommissioning of future facilities. The paper discusses the methods used to collect and arrange the project data from the individual work areas within Building 771. Regression and data correlation techniques were used to quantify values for different types of decommissioning activities. The discussion includes the approach to identify and allocate overall project support, waste management, and Site support costs based on the overall Site and project costs to provide a ''burdened'' unit cost. The paper ultimately provides a unit cost basis that can be used to support cost estimates for

  4. Electric-drive tractability indicator integrated in hybrid electric vehicle tachometer

    SciTech Connect

    Tamai, Goro; Zhou, Jing; Weslati, Feisel

    2014-09-02

    An indicator, system and method of indicating electric drive usability in a hybrid electric vehicle. A tachometer is used that includes a display having an all-electric drive portion and a hybrid drive portion. The all-electric drive portion and the hybrid drive portion share a first boundary which indicates a minimum electric drive usability and a beginning of hybrid drive operation of the vehicle. The indicated level of electric drive usability is derived from at least one of a percent battery discharge, a percent maximum torque provided by the electric drive, and a percent electric drive to hybrid drive operating cost for the hybrid electric vehicle.

  5. Vehicle Technologies Office Merit Review 2016: Advanced Low-Cost SiC and GaN Wide Bandgap Inverters for Under-the-Hood Electric Vehicle Traction Drives

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Wolfspeed at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Electric Drive Systems

  6. Electric power monthly, April 1994

    SciTech Connect

    Not Available

    1994-04-01

    The Electric Power Monthly (EPM) presents monthly electricity statistics. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. This publication provides monthly statistics at the U.S., Census division, and State levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. This April 1994 issue contains 1993 year-end data and data through January 1994.

  7. Electric power monthly, May 1994

    SciTech Connect

    Not Available

    1994-05-01

    The Electric Power Monthly (EPM) presents monthly electricity statistics. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. Data in this report are presented for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. This publication provides monthly statistics for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Statistics by company and plant are published on the capability of new generating units, net generation, fuel consumption, fuel stocks, quantity and quality of fuel, and cost of fossil fuels.

  8. Competitive Electricity Prices: An Update

    Reports and Publications

    1998-01-01

    Illustrates a third impact of the move to competitive generation pricing -- the narrowing of the range of prices across regions of the country. This feature article updates information in Electricity Prices in a Competitive Environment: Marginal Cost Pricing of Generation Services and Financial Status of Electric Utilities.

  9. AEO2016 Electricity Working Group

    Energy Information Administration (EIA) (indexed site)

    Office of Electricity, Coal, Nuclear, and Renewables Analysis December 8, 2015 | Washington, DC AEO2016 Electricity Working Group WORKING GROUP PRESENTATION FOR DISCUSSION PURPOSES DO NOT QUOTE OR CITE AS RESULTS ARE SUBJECT TO CHANGE What to look for: Electricity sector in AEO2016 * Inclusion of EPA final Clean Power Plan in Reference Case * Updated cost estimates for new generating technologies * Major data update on existing coal plant status: MATS- compliant technology or retirement

  10. Engineering innovation to reduce wind power COE

    SciTech Connect

    Ammerman, Curtt Nelson

    2011-01-10

    There are enough wind resources in the US to provide 10 times the electric power we currently use, however wind power only accounts for 2% of our total electricity production. One of the main limitations to wind use is cost. Wind power currently costs 5-to-8 cents per kilowatt-hour, which is more than twice the cost of electricity generated by burning coal. Our Intelligent Wind Turbine LDRD Project is applying LANL's leading-edge engineering expertise in modeling and simulation, experimental validation, and advanced sensing technologies to challenges faced in the design and operation of modern wind turbines.

  11. Efficient, High-Torque Electric Vehicle Motor: Advanced Electric Vehicle Motors with Low or No Rare Earth Content

    SciTech Connect

    2012-01-01

    REACT Project: QM Power will develop a new type of electric motor with the potential to efficiently power future generations of EVs without the use of rare-earth-based magnets. Many of todays EV motors use rare earth magnets to efficiently provide torque to the wheels. QM Powers motors would contain magnets that use no rare earth minerals, are light and compact, and can deliver more power with greater efficiency and at reduced cost. Key innovations in this project include a new motor design with iron-based magnetic materials, a new motor control technique, and advanced manufacturing techniques that substantially reduce the cost of the motor. The ultimate goal of this project is to create a cost-effective EV motor that offers the rough peak equivalent of 270 horsepower.

  12. Oilfield Flare Gas Electricity Systems (OFFGASES Project)

    SciTech Connect

    Rachel Henderson; Robert Fickes

    2007-12-31

    strength of natural gas. The cost of producing oil is to a large extent the cost of electric power used to extract and deliver the oil. Researchers have identified stranded and flared gas in California that could generate 400 megawatts of power, and believe that there is at least an additional 2,000 megawatts that have not been identified. Since California accounts for about 14.5% of the total domestic oil production, it is reasonable to assume that about 16,500 megawatts could be generated throughout the United States. This power could restore the cost-effectiveness of thousands of oil wells, increasing oil production by millions of barrels a year, while reducing emissions and greenhouse gas emissions by burning the gas in clean distributed generators rather than flaring or venting the stranded gases. Most turbines and engines are designed for standardized, high-quality gas. However, emerging technologies such as microturbines have increased the options for a broader range of fuels. By demonstrating practical means to consume the four gas streams, the project showed that any gases whose properties are between the extreme conditions also could be utilized. The economics of doing so depends on factors such as the value of additional oil recovered, the price of electricity produced, and the alternate costs to dispose of stranded gas.

  13. ITP's Top Low- or No-Cost Improvements

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... Production schedule changes 3% Rejected after implementation failed 3% Steam LowNo Cost Improvements * Reduce Boiler Pressure * Reduce Combustion Air Flow Rate * Reduce Blowdown ...

  14. Edison Electric Institute Comments | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Comments Edison Electric Institute Comments The Edison Electric Institute (EEi) is submitting this letter and the enclosed comments in response to the above-referenced request for infonnation (RFI). DOE - Reg review - EEI cmts 7-11-16 (497.95 KB) More Documents & Publications Edison Electric Institute (EEI) Regulatory Burden RFI, 77 Fed. Reg. 47328 Edison Electric Institute (EEI) Reducing Regulatory Burden RFI, 77 Fed. Reg. 28518 (May 15, 2012) Edison Electric Institute (EEI) Reducing

  15. Liquefaction and Pipeline Costs

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Liquefaction and Pipeline Costs Bruce Kelly Nexant, Inc. Hydrogen Delivery Analysis Meeting May 8-9, 2007 Columbia, Maryland 2 Hydrogen Liquefaction Basic process Compress Cool to temperature with positive Joule- Thompson coefficient Throttle to form liquid Water cooling Nitrogen refrigerator precooler Ortho-para conversion reactors J-T valve L H 2 H 2 gas Compressor(s) 3 Hydrogen Liquefaction - Continued Electric energy requirements Isentropic demand is 3.9 kWh/kg y = 17.844x -0.1548 6 8 10 12

  16. Activity: How Much Does it Cost to Light Your School?

    Energy.gov [DOE]

    Students compute the cost of electricity used to light their classroom and their school for various lengths of time. They then compute the amount of coal needed to produce the electricity used for...

  17. Wind Electrolysis: Hydrogen Cost Optimization

    SciTech Connect

    Saur, G.; Ramsden, T.

    2011-05-01

    This report describes a hydrogen production cost analysis of a collection of optimized central wind based water electrolysis production facilities. The basic modeled wind electrolysis facility includes a number of low temperature electrolyzers and a co-located wind farm encompassing a number of 3MW wind turbines that provide electricity for the electrolyzer units.

  18. NREL: Hydrogen and Fuel Cells Research - Hydrogen Production Cost Analysis

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Hydrogen Production Cost Analysis NREL analyzed the cost of hydrogen production via wind-based water electrolysis at 42 potential sites in 11 states across the nation. This analysis included centralized plants producing the Department of Energy (DOE) target of 50,000 kg of hydrogen per day, using both wind and grid electricity. The use of wind and grid electricity can be balanced either by power or cost, including or excluding the purchase of peak summer electricity. Current wind incentives-such

  19. Florida's electric industry and solar electric technologies

    SciTech Connect

    Camejo, N.

    1983-12-01

    The Florida Electric Industry is in a process of diversifying its generation technology and its fuel mix. This is being done in an effort to reduce oil consumption, which in 1981 accounted for 46.5% of the electric generation by fuel type. This does not compare well with the rest of the nation where oil use is lower. New coal and nuclear units are coming on line, and probably more will be built in the near future. However, eventhough conservation efforts may delay their construction, new power plants will have to be built to accomodate the growing demand for electricity. Other alternatives being considered are renewable energy resources. The purpose of this paper is to present the results of a research project in which 10 electric utilities in Florida and the Florida Electric Power Coordinating Group rated six Solar Electric options. The Solar Electric options considered are: 1) Wind, 2) P.V., 3) Solar thermal-electric, 4) OTEC, 5) Ocean current, and 6) Biomass. The questionaire involved rating the economic and technical feasibility, as well as, the potential environmental impact of these options in Florida. It also involved rating the difficulty in overcoming institutional barriers and assessing the status of each option. A copy of the questionaire is included after the references. The combined capacity of the participating utilities represent over 90% of the total generating capacity in Florida. A list of the participating utilities is also included. This research was done in partial fulfillment for the Mater's of Science Degree in Coastal Zone Management. This paper is complementary to another paper (in these condensed conference proceedings) titled COASTAL ZONE ENERGY MANAGEMENT: A multidisciplinary approach for the integration of Solar Electric Systems with Florida's power generation system, which present a summary of the Master's thesis.

  20. Materials Science and Materials Chemistry for Large Scale Electrochemical Energy Storage: From Transportation to Electrical Grid

    SciTech Connect

    Liu, Jun; Zhang, Jiguang; Yang, Zhenguo; Lemmon, John P.; Imhoff, Carl H.; Graff, Gordon L.; Li, Liyu; Hu, Jian Z.; Wang, Chong M.; Xiao, Jie; Xia, Guanguang; Viswanathan, Vilayanur V.; Baskaran, Suresh; Sprenkle, Vincent L.; Li, Xiaolin; Shao, Yuyan; Schwenzer, Birgit

    2013-02-15

    Large-scale electrical energy storage has become more important than ever for reducing fossil energy consumption in transportation and for the widespread deployment of intermittent renewable energy in electric grid. However, significant challenges exist for its applications. Here, the status and challenges are reviewed from the perspective of materials science and materials chemistry in electrochemical energy storage technologies, such as Li-ion batteries, sodium (sulfur and metal halide) batteries, Pb-acid battery, redox flow batteries, and supercapacitors. Perspectives and approaches are introduced for emerging battery designs and new chemistry combinations to reduce the cost of energy storage devices.

  1. Hybrid and Plug-in Electric Vehicles

    SciTech Connect

    2014-05-20

    Hybrid and plug-in electric vehicles use electricity either as their primary fuel or to improve the efficiency of conventional vehicle designs. This new generation of vehicles, often called electric drive vehicles, can be divided into three categories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles(PHEVs), and all-electric vehicles (EVs). Together, they have great potential to reduce U.S. petroleum use.

  2. Fort Lewis electric energy baseline and efficiency resource assessment

    SciTech Connect

    Secrest, T.J.; Currie, J.W.; DeSteese, J.G.; Dirks, J.A.; Marseille, T.J.; Parker, G.B.; Richman, E.E.; Shankle, S.A.

    1991-10-01

    In support of the US DOE Federal Energy Management Program, the Pacific Northwest Laboratory is developing a fuel-neutral approach for identifying, evaluating, and acquiring all cost-effective energy projects at federal installations. Fort Lewis, a US Army installation near Tacoma, Washington, was selected as the pilot site for developing this approach. This site was chosen in conjunction with the interests of the Bonneville Power Administration to develop programs for its federal sector customers and the Army Forces Command to develop an in-house program to upgrade the energy efficiency of its installations. This report documents the electricity assessment portion of the approach, providing an estimate of the electricity use baseline and efficiency improvement potential for major sectors and end uses at the Fort. Although the assessment did not identify all possible efficiency improvement opportunities, it is estimated that electricity use can be reduced by at least 20% cost-effectively at the $0.045/kWh marginal cost of electricity in the Pacific Northwest. 12 refs., 3 figs., 7 tabs.

  3. Concentrating Solar Power Commercial Application Study: Reducing...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Concentrating Solar Power Commercial Application Study: Reducing Water Consumption of Concentrating Solar Power Electricity Generation Report to Congress U.S. Department of Energy ...

  4. Soft Costs Competitive Awards | Department of Energy

    Energy Saver

    governments, nonprofit organizations, and national laboratories to drive down the cost of solar electricity to 0.06 per kilowatt-hour or 1 per watt (not including incentives). ...

  5. Lifecycle Cost Analysis of Hydrogen Versus Other Technologies for

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Electrical Energy Storage | Department of Energy Lifecycle Cost Analysis of Hydrogen Versus Other Technologies for Electrical Energy Storage Lifecycle Cost Analysis of Hydrogen Versus Other Technologies for Electrical Energy Storage This report presents the results of an analysis evaluating the economic viability of hydrogen for medium- to large-scale electrical energy storage applications compared with three other storage technologies: batteries, pumped hydro, and compressed air energy

  6. Funding Opportunity Announcement: CSP: Concentrating Optics for Lower Levelized Energy Costs (COLLECTS)

    Energy.gov [DOE]

    Building upon the successful outcomes of the 2012 SunShot CSP Research and Development funding program, the CSP: Concentrating Optics for Lower Levelized Energy Costs (COLLECTS) funding opportunity announcement (FOA) seeks to further CSP system technologies by soliciting disruptive, transformative projects for the concentrating solar collectors in the CSP plant. These innovative projects will seek to surpass the targets set out in the SunShot Vision Study, enabling CSP to be cost-competitive with conventional forms of electric power generation. Projects will target the design and manufacturing of novel solar collectors with the ability to significantly reduce the solar field contribution to the overall levelized cost of energy of the CSP plant, and which have not been previously specifically targeted by CSP funding programs. These developments should lead to subsequent system integration, engineering scale-up, and eventual commercial production for electricity generation applications by 2020.

  7. Cycling fossil-fired units proves costly business

    SciTech Connect

    Lefton, S.; Grimsrud, P.; Besuner, P.

    1997-07-01

    Competition in the electric utility business is having a far-reaching impact. Cost-cutting measures have in major downsizing efforts in virtually every utility in the country. After several cost-cutting rounds to reduce the low hanging fruit of inefficiency, utilities are still challenged to become leaner and meaner in order to compete in a deregulated environment. The problem for many power utilities, however, is they have not precisely determined their costs in every aspect of the plant`s operation. Naturally, obtaining an accurate understanding of expenditures is the starting point for utilities that wish to develop strategic plans to better manage assets, minimize costs and maximize return on investment better understand plant O&M costs and take measures to use this knowledge to their advantage. Cycling is a major reason for the increase in O&M costs of many fossil units. Cycling, in this context, refers to the operation of generating units at varying load levels in response to changes in system-load requirements.

  8. Transparent Cost Database for Generation at Regional Level? ...

    OpenEI (Open Energy Information) [EERE & EIA]

    cost of electricity generation using different technologies. I think at all these data are national averages, however. I was wondering if such data was available at...

  9. Idaho Power Develops Renewable Integration Tool for More Cost...

    Energy.gov [DOE] (indexed site)

    Idaho Power Company (IPC) has developed a Renewables Integration Tool (RIT) that enables grid operators to use wind energy more cost-effectively to serve electricity customers in ...

  10. NETL - Bituminous Baseline Performance and Cost Interactive Tool...

    OpenEI (Open Energy Information) [EERE & EIA]

    from the Cost and Performance Baseline for Fossil Energy Plants - Bituminous Coal and Natural Gas to Electricity report. The tool provides an interactive summary of the full...

  11. The Transparent Cost Database (TCDB) | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    the database that already includes published historical and projected cost estimates for electricity generation, biofuels, and vehicle technologies. To access the TCDB at...

  12. Fuel Consumption and Cost Benefits of DOE Vehicle Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    vehicles decreases with time. * Manufacturing costs associated with batteries and electric machines fall faster than those of conventional technologies (i.e., engine,...

  13. NREL Study Suggests Cost Gap for Western Renewables Could Narrow...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    A new Energy Department study conducted by the National Renewable Energy Laboratory (NREL) indicates that by 2025 wind and solar power electricity generation could become cost-comp...

  14. Sandia Develops Stochastic Production Cost Model Simulator for...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Stochastic Production Cost Model Simulator for Electric Power Systems - Sandia Energy ... Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ...

  15. Electrical motor/generator drive apparatus and method

    DOEpatents

    Su, Gui Jia

    2013-02-12

    The present disclosure includes electrical motor/generator drive systems and methods that significantly reduce inverter direct-current (DC) bus ripple currents and thus the volume and cost of a capacitor. The drive methodology is based on a segmented drive system that does not add switches or passive components but involves reconfiguring inverter switches and motor stator winding connections in a way that allows the formation of multiple, independent drive units and the use of simple alternated switching and optimized Pulse Width Modulation (PWM) schemes to eliminate or significantly reduce the capacitor ripple current.

  16. Watt Does It Cost To Use It?

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Watt Does It Cost to Use It? Grades: 5-8, 9-12 Topic: Energy Efficiency and Conservation Author: Mark Ziesmer Owner: Alliance to Save Energy This educational material is brought to you by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy. WATT DOES IT COST TO USE IT? By Mark Ziesmer, Sultana High School Hesperia Unified School District, California Overview: Familiarize students with how electrical usage is counted, electrical pricing, and measure and evaluate

  17. Mandatory Photovoltaic System Cost Analysis | Department of Energy

    Energy.gov [DOE] (indexed site)

    to compare the cost of line extension with the cost of installing of a stand-alone photovoltaic (PV) system for remote locations with electricity needs. This ruling applies to...

  18. Webinar: Wind-to-Hydrogen Cost Modeling and Project Findings...

    Energy.gov [DOE] (indexed site)

    Below is the text version of the webinar titled "Wind-to-Hydrogen Cost Modeling and ... Low-cost wind electricity could provide regional solutions to this, and Chris and his team ...

  19. EV Everywhere: Saving on Fuel and Vehicle Costs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    EV Everywhere: Saving on Fuel and Vehicle Costs EV Everywhere: Saving on Fuel and Vehicle Costs eGallon: Compare the costs of driving with electricity What is eGallon? It is the cost of fueling a vehicle with electricity compared to a similar vehicle that runs on gasoline. Did you know? On average, it costs about half as much to drive an electric vehicle. Find out how much it costs to fuel an electric vehicle in your state regular gasoline 0 6 4 1 0 3 * 0 2 0 4 8 6 0 8 9 2 3 5 0 electric eGallon

  20. Waste heat from kitchen cuts hot water electricity 23%

    SciTech Connect

    Barber, J.

    1984-05-21

    Heat recovered from the Hamburger Hamlet's kitchen in Bethesada, Maryland and used to pre-heat the million gallons of hot water used annually reduced hot water costs 23% and paid off the investment in 1.5 years. Potomac Electric initiated the installation of an air-to-water heat pump in the restaurant kitchen above the dishwasher at a cost of about $5300, with the restaurant obliged to reimburse the utility if performance was satisfactory. Outside water recirculates through storage tanks and the ceiling heat pump until it reaches the required 140/sup 0/F. The amount of electricity needed to bring the preheated water to that temperature was $3770 lower after the installation. Cooled air exhausted from the heat pump circulates throughout the kitchen.