National Library of Energy BETA

Sample records for recovery hd-reher develop

  1. Vehicle Technologies Office Merit Review 2014: Heavy Duty Roots Expander Heat Energy Recovery (HD-REHER)

    Energy.gov [DOE]

    Presentation given by Eaton Corporation at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about heavy duty roots expander...

  2. Developing a Regional Recovery Framework

    SciTech Connect

    Lesperance, Ann M.; Olson, Jarrod; Stein, Steven L.; Clark, Rebecca; Kelly, Heather; Sheline, Jim; Tietje, Grant; Williamson, Mark; Woodcock, Jody

    2011-09-01

    Abstract A biological attack would present an unprecedented challenge for local, state, and federal agencies; the military; the private sector; and individuals on many fronts ranging from vaccination and treatment to prioritization of cleanup actions to waste disposal. To prepare the Seattle region to recover from a biological attack, the Seattle Urban Area Security Initiative (UASI) partners collaborated with military and federal agencies to develop a Regional Recovery Framework for a Biological Attack in the Seattle Urban Area. The goal was to reduce the time and resources required to recover and restore wide urban areas, military installations, and other critical infrastructure following a biological incident by providing a coordinated systems approach. Based on discussions in small workshops, tabletop exercises, and interviews with emergency response agency staff, the partners identified concepts of operation for various areas to address critical issues the region will face as recovery progresses. Key to this recovery is the recovery of the economy. Although the Framework is specific to a catastrophic, wide-area biological attack using anthrax, it was designed to be flexible and scalable so it could also serve as the recovery framework for an all-hazards approach. The Framework also served to coalesce policy questions that must be addressed for long-term recovery. These questions cover such areas as safety and health, security, financial management, waste management, legal issues, and economic development.

  3. Secondary recovery development in Ecuador

    SciTech Connect

    Arteaga, L.; Endara, J.; Alduja, F.

    1981-03-01

    The oil activity in Ecuador goes back to 1920 when the oil-bearing structures were discovered in the Peninsula of Santa Elena in the Ecuatorian coast. Since that time 2,700 oil wells have been drilled; at the present time, only 650 wells are still producing. Oil production has been decreasing in spite of artificial producing systems (sucker rod pumping, and gas lift). During the period of 1966 to 1969 a total of 8 pilot projects was performed to evaluate the possibility of using secondary recovery methods (waterflooding) in 3 different oil-bearing formations from 5 areas, and utilizing different injection patterns. The results from numerical simulation and pilot projects showed the convenience and easibility of the implmentation of secondary recovery systems (waterflooding) in the Shushufindi-Aguarico field. A detailed description is presented of the development of the secondary recovery methods in Ecuador - antecedents, pilot projects, results, etc.

  4. Recovery Act Workforce Development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Act Workforce Development Recovery Act Workforce Development Map of Smart Grid Workforce Development Map of Smart Grid Workforce Development 19 Awards Read more Map of Workforce ...

  5. Development of Marine Thermoelectric Heat Recovery Systems |...

    Energy.gov [DOE] (indexed site)

    Thermoelectric generator prototypes are evaluated in a dedicated hybrid vessel test ... More Documents & Publications Development of Marine Thermoelectric Heat Recovery Systems ...

  6. DNA damage checkpoint recovery and cancer development

    SciTech Connect

    Wang, Haiyong; Zhang, Xiaoshan; Teng, Lisong; Legerski, Randy J.

    2015-06-10

    Cell cycle checkpoints were initially presumed to function as a regulator of cell cycle machinery in response to different genotoxic stresses, and later found to play an important role in the process of tumorigenesis by acting as a guard against DNA over-replication. As a counterpart of checkpoint activation, the checkpoint recovery machinery is working in opposition, aiming to reverse the checkpoint activation and resume the normal cell cycle. The DNA damage response (DDR) and oncogene induced senescence (OIS) are frequently found in precancerous lesions, and believed to constitute a barrier to tumorigenesis, however, the DDR and OIS have been observed to be diminished in advanced cancers of most tissue origins. These findings suggest that when progressing from pre-neoplastic lesions to cancer, DNA damage checkpoint barriers are overridden. How the DDR checkpoint is bypassed in this process remains largely unknown. Activated cytokine and growth factor-signaling pathways were very recently shown to suppress the DDR and to promote uncontrolled cell proliferation in the context of oncovirus infection. In recent decades, data from cell line and tumor models showed that a group of checkpoint recovery proteins function in promoting tumor progression; data from patient samples also showed overexpression of checkpoint recovery proteins in human cancer tissues and a correlation with patients' poor prognosis. In this review, the known cell cycle checkpoint recovery proteins and their roles in DNA damage checkpoint recovery are reviewed, as well as their implications in cancer development. This review also provides insight into the mechanism by which the DDR suppresses oncogene-driven tumorigenesis and tumor progression. - Highlights: • DNA damage checkpoint works as a barrier to cancer initiation. • DDR machinary response to genotoxic and oncogenic stress in similar way. • Checkpoint recovery pathways provide active signaling in cell cycle control. • Checkpoint

  7. Develop Thermoelectric Technology for Automotive Waste Heat Recovery

    Office of Energy Efficiency and Renewable Energy (EERE)

    Develop thermoelectric technology for waste heat recovery with a 10% fuel economy improvement without increasing emissions.

  8. GE Develops High Water Recovery Technology in China | GE Global...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Develops High Water Recovery Technology in China Click to email this to a friend (Opens in ... GE Develops High Water Recovery Technology in China Technology aims to boost development ...

  9. Development of More Effective Biosurfactants for Enhanced Oil Recovery

    SciTech Connect

    McInerney, M.J.; Mouttaki, H.; Folmsbee, M.; Knapp, R.; Nagle, D.

    2003-01-24

    The overall goal of this research was to develop effective biosurfactant production for enhanced oil recovery in the United States.

  10. Recovery Act. Development and Validation of an Advanced Stimulation...

    Office of Scientific and Technical Information (OSTI)

    Geothermal Systems Citation Details In-Document Search Title: Recovery Act. Development and Validation of an Advanced Stimulation Prediction Model for Enhanced Geothermal ...

  11. Development of Thermoelectric Technology for Automotive Waste Heat Recovery

    Energy.gov [DOE]

    Overview and status of project to develop thermoelectric generator for automotive waste heat recovery and achieve at least 10% fuel economy improvement.

  12. Develop Thermoelectric Technology for Automotive Waste Heat Recovery...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications Develop Thermoelectric Technology for Automotive Waste Heat Recovery Engineering and Materials for Automotive Thermoelectric Applications Solid-State ...

  13. Develop Thermoelectric Technology for Automotive Waste Heat Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Opportunities and Challenges of Thermoelectrlic Waste Heat Recovery in the Automotive Industry On Thermoelectric Properties of p-Type Skutterudites Development of Thermoelectric ...

  14. Develop Thermoelectric Technology for Automotive Waste Heat Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Develop thermoelectric technology for waste heat recovery with a 10% fuel economy ... Engineering and Materials for Automotive Thermoelectric Applications Electrical and ...

  15. Chlorination Process Development for Zirconium Recovery from...

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Search Results Conference: Chlorination Process Development for Zirconium ... High-Level Radioactive Waste Management Conference, Charleston, SC, USA, ...

  16. Recovery Act Workforce Development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    the next generation of workers in the utility and electrical manufacturing industries. ... universities, utilities and manufacturers to develop and implement training programs. ...

  17. Development of multiapplication low-level heat recovery technology

    SciTech Connect

    Not Available

    1985-03-29

    This report summarizes work conducted to develop and demonstrate technologies for recovery of industrial waste heat. The first portion of the work, done under ERDA contract, was performed from 1976 to 1980. A system was developed for generating electric power from exhaust discharged from diesel engine generator sets used in municipal power plants. This work was of an exploratory nature and combined the technology of a low-pressure steam system with that of an organic Rankine-cycle (ORC) system in a single binary cycle system.

  18. DEVELOPMENT PROGRAM FOR PU-238 AQUEOUS RECOVERY PROCESS

    SciTech Connect

    M. PANSOY-HJELVIK; M. REIMUS; ET AL

    2000-10-01

    Aqueous processing is necessary for the removal of impurities from {sup 238}Pu dioxide ({sup 238}PuO{sub 2}) fuel due to unacceptable levels of {sup 234}U and other non-actinide impurities in the scrap fuel. Impurities at levels above General Purpose Heat Source (GPHS) fuel specifications may impair the performance.of the heat sources. Efforts at Los Alamos have focused on developing the bench scale methodology for the aqueous process steps which includes comminution, dissolution, ion exchange, precipitation, and calcination. Recently, work has been performed to qualify the bench scale methodology, to show that the developed process produces pure {sup 238}PuO{sub 2} meeting GPHS fuel specifications. In addition, this work has enabled us to determine how waste volumes may be minimized during full-scale processing. Results of process qualification for the bench scale aqueous recovery operation and waste minimization efforts are presented.

  19. Material Recovery and Waste Form Development FY 2015 Accomplishments Report

    SciTech Connect

    Todd, Terry Allen; Braase, Lori Ann

    2015-11-01

    The Material Recovery and Waste Form Development (MRWFD) Campaign under the U.S. Department of Energy (DOE) Fuel Cycle Technologies (FCT) Program is responsible for developing advanced separation and waste form technologies to support the various fuel cycle options defined in the DOE Nuclear Energy Research and Development Roadmap, Report to Congress, April 2010. The FY 2015 Accomplishments Report provides a highlight of the results of the research and development (R&D) efforts performed within the MRWFD Campaign in FY-14. Each section contains a high-level overview of the activities, results, technical point of contact, applicable references, and documents produced during the fiscal year. This report briefly outlines campaign management and integration activities, but primarily focuses on the many technical accomplishments made during FY-15. The campaign continued to utilize an engineering driven-science-based approach to maintain relevance and focus. There was increased emphasis on development of technologies that support near-term applications that are relevant to the current once-through fuel cycle.

  20. Develop Thermoelectric Technology for Automotive Waste Heat Recovery...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable Electricity ...

  1. Optimal design for sustainable development of a material recovery...

    Office of Scientific and Technical Information (OSTI)

    E-mail: nchang@even.tamuk.edu Department of Environmental Engineering, Texas A and M ... RECOVERY; NEUTRON DIFFRACTION; OPTIMIZATION; RECYCLING; SENSITIVITY ANALYSIS; SITE ...

  2. Heat recovery and seed recovery development project: preliminary design report (PDR)

    SciTech Connect

    Arkett, A. H.; Alexander, K. C.; Bolek, A. D.; Blackman, B. K.; Kurrle, P. E.; Tram, S. V.; Warren, A. M.; Ziobrowski, A. J.

    1981-06-01

    The preliminary design and performance characteristics are described of the 20 MWt heat recovery and seed recovery (HRSR) system to be fabricated, installed, and evaluated to provide a technological basis for the design of commercial size HRSR systems for coal-fired open-cycle MHD power plants. The system description and heat and material balances, equipment description and functional requirements, controls, interfacing systems, and operation and maintenance are detailed. Appendices include: (1) recommended environmental requirements for compliance with federal and state of Tennessee regulations, (2) channel and diffuser simulator, (3) equipment arrangement drawings, and (4) channel and diffuser simulator barrel drawings. (WHK)

  3. Mineral Recovery Creates Revenue Stream for Geothermal Energy Development

    Office of Energy Efficiency and Renewable Energy (EERE)

    Find out more about Notice to Issue Financial Opportunity Announcement on "Low-Temperature Mineral Recovery Program," a targeted GTO initiative focused on strategic mineral extraction as a path to optimize the value stream of low-to-moderate-tempe

  4. Recovery Act: Oxy-Combustion Technology Development for Industrial-Scale

    Office of Scientific and Technical Information (OSTI)

    Boiler Applications. Task 4 - Testing in Alstom's 15 MWth Boiler Simulation Facility (Technical Report) | SciTech Connect Recovery Act: Oxy-Combustion Technology Development for Industrial-Scale Boiler Applications. Task 4 - Testing in Alstom's 15 MWth Boiler Simulation Facility Citation Details In-Document Search Title: Recovery Act: Oxy-Combustion Technology Development for Industrial-Scale Boiler Applications. Task 4 - Testing in Alstom's 15 MWth Boiler Simulation Facility Alstom Power

  5. Recovery of uranium from seawater-status of technology and needed future research and development

    SciTech Connect

    Kelmers, A. D.

    1980-01-01

    A survey of recent publications concerning uranium recovery from seawater shows that considerable experimental work in this area is currently under way in Japan, less in European countries. Repeated screening programs have identified hydrous titanium oxide as the most promising candidate adsorbent; however, many of its properties, such as distribution coefficient, selectivity, loading, and possibly stability, appear to fall far short of those required for a practical recovery system. In addition, various evaluations of the energy efficiency of pumped or tidal power schemes for contacting the sorbent and seawater are in serious disagreement. Needed future research and development tasks have been identified. A fundamental development program to achieve significantly improved adsorbent properties would be required to permit economical recovery of uranium from seawater. Unresolved engineering aspects of such recovery systems are also identified and discussed. 63 references.

  6. Recovery Act: Oxy-Combustion Technology Development for Industrial...

    Office of Scientific and Technical Information (OSTI)

    The main project objectives include: Design and develop an innovative oxyfuel system for existing tangentially-fired boiler units that minimizes overall capital investment and ...

  7. Material Recovery and Waste Form Development FY 2014 Accomplishments Report

    SciTech Connect

    Lori Braase

    2014-11-01

    Develop advanced nuclear fuel cycle separation and waste management technologies that improve current fuel cycle performance and enable a sustainable fuel cycle, with minimal processing, waste generation, and potential for material diversion.

  8. Recovery Act:Rural Cooperative Geothermal development Electric...

    Office of Scientific and Technical Information (OSTI)

    The 240F resource was used for irrigation until developed through this project for generation of electricity. A portion of the spent geothermal fluid is now used for irrigation ...

  9. Recovery Act: Training Program Development for Commercial Building Equipment Technicians

    SciTech Connect

    Leah Glameyer

    2012-07-12

    The overall goal of this project has been to develop curricula, certification requirements, and accreditation standards for training on energy efficient practices and technologies for commercial building technicians. These training products will advance industry expertise towards net-zero energy commercial building goals and will result in a substantial reduction in energy use. The ultimate objective is to develop a workforce that can bring existing commercial buildings up to their energy performance potential and ensure that new commercial buildings do not fall below their expected optimal level of performance. Commercial building equipment technicians participating in this training program will learn how to best operate commercial buildings to ensure they reach their expected energy performance level. The training is a combination of classroom, online and on-site lessons. The Texas Engineering Extension Service (TEEX) developed curricula using subject matter and adult learning experts to ensure the training meets certification requirements and accreditation standards for training these technicians. The training targets a specific climate zone to meets the needs, specialized expertise, and perspectives of the commercial building equipment technicians in that zone. The combination of efficient operations and advanced design will improve the internal built environment of a commercial building by increasing comfort and safety, while reducing energy use and environmental impact. Properly trained technicians will ensure equipment operates at design specifications. A second impact is a more highly trained workforce that is better equipped to obtain employment. Organizations that contributed to the development of the training program include TEEX and the Texas Engineering Experiment Station (TEES) (both members of The Texas A&M University System). TEES is also a member of the Building Commissioning Association. This report includes a description of the project

  10. GE Develops High Water Recovery Technology in China | GE Global Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Develops High Water Recovery Technology in China Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) GE Develops High Water Recovery Technology in China Technology aims to boost development of China's household water purification industry SHANGHAI, September. 17, 2015 - A team of scientists led by the Coating and Membrane

  11. Recovery Act. Development of a Model Energy Conservation Training Program

    SciTech Connect

    none,

    2012-07-05

    The overall objective of this project was to develop an updated model Energy Conservation training program for stationary engineers. This revision to the IUOE National Training Fund’s existing Energy Conservation training curriculum is designed to enable stationary engineers to incorporate essential energy management into routine building operation and maintenance tasks. The curriculum uses a blended learning approach that includes classroom, hands-on, computer simulation and web-based training in addition to a portfolio requirement for a workplace-based learning application. The Energy Conservation training program goal is development of a workforce that can maintain new and existing commercial buildings at optimum energy performance levels. The grant start date was July 6, 2010 and the project continued through September 30, 2012, including a three month non-funded extension.

  12. Recovery Act: Low Cost Integrated Substrate for OLED Lighting Development

    SciTech Connect

    Benton, Scott; Bhandari, Abhinav

    2012-12-26

    PPG pursued the development of an integrated substrate, including the anode, external, and internal extraction layers. The objective of PPG's program was to achieve cost reductions by displacing the existing expensive borosilicate or double-side polished float glass substrates and developing alternative electrodes and scalable light extraction layer technologies through focused and short-term applied research. One of the key highlights of the project was proving the feasibility of using PPG's high transmission Solarphire® float glass as a substrate to consistently achieve organic lightemitting diode (OLED) devices with good performance and high yields. Under this program, four low-cost alternatives to the Indium Tin Oxide (ITO) anode were investigated using pilot-scale magnetron sputtered vacuum deposition (MSVD) and chemical vapor deposition (CVD) technologies. The anodes were evaluated by fabricating small and large phosphorescent organic lightemitting diode (PHOLED) devices at Universal Display Corporation (UDC). The device performance and life-times comparable to commercially available ITO anodes were demonstrated. A cost-benefit analysis was performed to down-select two anodes for further low-cost process development. Additionally, PPG developed and evaluated a number of scalable and compatible internal and external extraction layer concepts such as scattering layers on the outside of the glass substrate or between the transparent anode and the glass interface. In one external extraction layer (EEL) approach, sol-gel sprayed pyrolytic coatings were deposited using lab scale equipment by hand or automated spraying of sol-gel solutions on hot glass, followed by optimizing of scattering with minimal absorption. In another EEL approach, PPG tested large-area glass texturing by scratching a glass surface with an abrasive roller and acid etching. Efficacy enhancements of 1.27x were demonstrated using white PHOLED devices for 2.0mm substrates which are at par with

  13. Development of a Waste Heat Recovery System for Light Duty Diesel Engines

    Energy.gov [DOE]

    Substantial increases in engine efficiency of a light-duty diesel engine, which require utilization of the waste energy found in the coolant, EGR, and exhaust streams, may be increased through the development of a Rankine cycle waste heat recovery system

  14. emergency recovery

    National Nuclear Security Administration (NNSA)

    basis.

    Recovery includes the evaluation of the incident to identify lessons learned and development of initiatives to mitigate the effects of future...

  15. Development and Optimization of Gas-Assisted Gravity Drainage (GAGD) Process for Improved Light Oil Recovery

    SciTech Connect

    Dandina N. Rao; Subhash C. Ayirala; Madhav M. Kulkarni; Wagirin Ruiz Paidin; Thaer N. N. Mahmoud; Daryl S. Sequeira; Amit P. Sharma

    2006-09-30

    This is the final report describing the evolution of the project ''Development and Optimization of Gas-Assisted Gravity Drainage (GAGD) Process for Improved Light Oil Recovery'' from its conceptual stage in 2002 to the field implementation of the developed technology in 2006. This comprehensive report includes all the experimental research, models developments, analyses of results, salient conclusions and the technology transfer efforts. As planned in the original proposal, the project has been conducted in three separate and concurrent tasks: Task 1 involved a physical model study of the new GAGD process, Task 2 was aimed at further developing the vanishing interfacial tension (VIT) technique for gas-oil miscibility determination, and Task 3 was directed at determining multiphase gas-oil drainage and displacement characteristics in reservoir rocks at realistic pressures and temperatures. The project started with the task of recruiting well-qualified graduate research assistants. After collecting and reviewing the literature on different aspects of the project such gas injection EOR, gravity drainage, miscibility characterization, and gas-oil displacement characteristics in porous media, research plans were developed for the experimental work to be conducted under each of the three tasks. Based on the literature review and dimensional analysis, preliminary criteria were developed for the design of the partially-scaled physical model. Additionally, the need for a separate transparent model for visual observation and verification of the displacement and drainage behavior under gas-assisted gravity drainage was identified. Various materials and methods (ceramic porous material, Stucco, Portland cement, sintered glass beads) were attempted in order to fabricate a satisfactory visual model. In addition to proving the effectiveness of the GAGD process (through measured oil recoveries in the range of 65 to 87% IOIP), the visual models demonstrated three possible

  16. Development and utilization strategies for recovery and utilization of coal mine methane

    SciTech Connect

    Byrer, C.W.; Layne, A.W.; Guthrie, H.D.

    1995-10-01

    The U.S. Department of Energy (DOE), at its Morgantown Energy Technology Center, has been involved in natural gas research since the 1970`s. DOE has assessed the potential of gas in coals throughout the U.S. and promoted research and development for recovery and use of methane found in minable and unminable coalbeds. DOE efforts have focused on the use of coal mine methane for regional economic gas self-sufficiency, energy parks, self-help initiatives, and small-power generation. This paper focuses on DOE`s past and present efforts to more effectively and efficiently recover and use this valuable domestic energy source. The Climate Change Action Plan (CCAP) (1) lists a series of 50 voluntary initiatives designed to reduce greenhouse gas emissions, such as methane from mining operations, to their 1990 levels. Action No. 36 of the CCAP expands the DOE research, development, and demonstration (RD&D) efforts to broaden the range of cost-effective technologies and practices for recovering methane associated with coal mining operations. The major thrust of Action No. 36 is to reduce methane emissions associated with coal mining operations from target year 2000 levels by 1.5 MMT of carbon equivalent. Crosscutting activities in the DOE Natural Gas Program supply the utilization sectors will address RD&D to reduce methane emissions released from various mining operations, focusing on recovery and end use technology systems to effectively drain, capture, and utilize the emitted gas. Pilot projects with industry partners will develop and test the most effective methods and technology systems for economic recovery and utilization of coal mine gas emissions in regions where industry considers efforts to be presently non-economic. These existing RD&D programs focus on near-term gas recovery and gathering systems, gas upgrading, and power generation.

  17. Assessment and development of an advanced heat pump for recovery of volatile organic compounds

    SciTech Connect

    Not Available

    1992-06-01

    This report documents Phase 1 of a project conducted by Mechanical Technology Incorporated (MTI) for the assessment and development of an advanced heat pump for recovery of VOC solvents from process gas streams. In Phase 1, MTI has evaluated solvent recovery applications within New York State (NYS), identified host sites willing to implement their application, and conducted a preliminary design of the equipment required. The design and applications were evaluated for technical and economic feasibility. The solvent recovery heat pump system concept resulting from the Phase 1 work is one of a mobile unit that would service multiple stationary adsorbers. A large percentage of solvent recovery applications within the state can be serviced by on-site carbon bed adsorbers that are desorbed at frequencies ranging from once per to once per month. In this way, many users can effectively share'' the substantial capital investment associated with the system's reverse Brayton hardware, providing it can be packaged as a mobile unit. In a typical operating scenario, a carbon adsorption module will be located permanently at the industrial site. The SLA will be ducted through the adsorber and the solvents removed, thus eliminating an air emission problem. Prior to VOC breakthrough, by schedule or by request, the mobile unit would arrive at the site to recover the concentrated solvent. An engine driven, natural gas fueled system, the mobile unit utilizes conditioned engine exhaust gases as the inert gas for desorption. Hot inert gas is directed through the carbon bed, heating it and volatilizing the adsorbed solvent. Using a revere Brayton-cycle refrigeration system to create low temperatures, the solvent vapors are condensed and collected from the inert gas stream. The solvent can then be recycled to the production process or sold for other uses and the adsorber returned to service.

  18. Assessment and development of an advanced heat pump for recovery of volatile organic compounds. Final report

    SciTech Connect

    Not Available

    1992-06-01

    This report documents Phase 1 of a project conducted by Mechanical Technology Incorporated (MTI) for the assessment and development of an advanced heat pump for recovery of VOC solvents from process gas streams. In Phase 1, MTI has evaluated solvent recovery applications within New York State (NYS), identified host sites willing to implement their application, and conducted a preliminary design of the equipment required. The design and applications were evaluated for technical and economic feasibility. The solvent recovery heat pump system concept resulting from the Phase 1 work is one of a mobile unit that would service multiple stationary adsorbers. A large percentage of solvent recovery applications within the state can be serviced by on-site carbon bed adsorbers that are desorbed at frequencies ranging from once per to once per month. In this way, many users can effectively ``share`` the substantial capital investment associated with the system`s reverse Brayton hardware, providing it can be packaged as a mobile unit. In a typical operating scenario, a carbon adsorption module will be located permanently at the industrial site. The SLA will be ducted through the adsorber and the solvents removed, thus eliminating an air emission problem. Prior to VOC breakthrough, by schedule or by request, the mobile unit would arrive at the site to recover the concentrated solvent. An engine driven, natural gas fueled system, the mobile unit utilizes conditioned engine exhaust gases as the inert gas for desorption. Hot inert gas is directed through the carbon bed, heating it and volatilizing the adsorbed solvent. Using a revere Brayton-cycle refrigeration system to create low temperatures, the solvent vapors are condensed and collected from the inert gas stream. The solvent can then be recycled to the production process or sold for other uses and the adsorber returned to service.

  19. Development of a High Latent Effectiveness Energy Recovery Ventilator with Integration into Rooftop Package Equipment

    SciTech Connect

    Gregory M. Dobbs; Norberto O. Lemcoff; Frederick J. Cogswell; Jeffrey T. Benolt

    2006-03-01

    This Final Report covers the Cooperative Program carried out to design and optimize an enhanced flat-plate energy recovery ventilator and integrate it into a packaged unitary (rooftop) air conditioning unit. The project objective was to optimize the design of a flat plate energy recovery ventilator (ERV) core that compares favorably to flat plate air-to-air heat exchanger cores on the market and to cost wise to small enthalpy wheel devices. The benefits of an integrated unit incorporating an enhanced ERV core and a downsized heating/cooling unit were characterized and the design of an integrated unit considering performance and cost was optimized. Phase I was to develop and optimize the design of a membrane based heat exchanger core. Phase II was the creation and observation of a system integrated demonstrator unit consisting of the Enhanced Energy Recovery Ventilator (EERV) developed in Phase I coupled to a standard Carrier 50HJ rooftop packaged unitary air conditioning unit. Phase III was the optimization of the system prior to commercialization based on the knowledge gained in Phase II. To assure that the designs chosen have the possibility of meeting cost objectives, a preliminary manufacturability and production cost study was performed by the Center for Automation Technologies at RPI. Phase I also included a preliminary design for the integrated unit to be further developed in Phase II. This was to assure that the physical design of the heat exchanger designed in Phase I would be acceptable for use in Phase II. An extensive modeling program was performed by the Center for Building Performance & Diagnostics of CMU. Using EnergyPlus as the software, a typical office building with multiple system configurations in multiple climatic zones in the US was simulated. The performance of energy recovery technologies in packaged rooftop HVAC equipment was evaluated. The experimental program carried out in Phases II and III consisted of fabricating and testing a

  20. SRNL Development of Recovery Processes for Mark-18A Heavy Actinide Targets

    SciTech Connect

    None, None

    2015-07-14

    Savannah River National Laboratory (SRNL) and Oak Ridge National Laboratory (ORNL) are developing plans for the recovery of rare and unique isotopes contained within heavy-actinide target assemblies, specifically the Mark-18A. Mark-18A assemblies were irradiated in Savannah River Site (SRS) reactors in the 1970s under extremely high neutron-flux conditions and produced, virtually, the world's supply of plutonium-244, an isotope of key importance to high-precision actinide measurement and other scientific and nonproliferation uses; and curium highly enriched in heavy isotopes (e.g., curium-246 and curium-248). In 2015 and 2016, SRNL is pursuing tasks that would reduce program risk and budget requirements, including further characterization of unprocessed targets; engineering studies for the use of the SRNL Shielded Cells Facility (SCF) for recovery; and development of onsite and offsite shipping methods including a replacement for the heavy (70 ton) cask previously used for onsite transfer of irradiated items at SRS. A status update is provided for the characterization, including modeling using the Monte Carlo N-Particle Transport Code (MCNP); direct non-destructive assay measurements; and cask design.

  1. DEVELOPMENT AND OPTIMIZATION OF GAS-ASSISTED GRAVITY DRAINAGE (GAGD) PROCESS FOR IMPROVED LIGHT OIL RECOVERY

    SciTech Connect

    Dandina N. Rao

    2003-10-01

    This is the first Annual Technical Progress Report being submitted to the U. S. Department of Energy on the work performed under the Cooperative Agreement DE-FC26-02NT15323. This report follows two other progress reports submitted to U.S. DOE during the first year of the project: The first in April 2003 for the project period from October 1, 2002 to March 31, 2003, and the second in July 2003 for the period April 1, 2003 to June 30, 2003. Although the present Annual Report covers the first year of the project from October 1, 2002 to September 30, 2003, its contents reflect mainly the work performed in the last quarter (July-September, 2003) since the work performed during the first three quarters has been reported in detail in the two earlier reports. The main objective of the project is to develop a new gas-injection enhanced oil recovery process to recover the oil trapped in reservoirs subsequent to primary and/or secondary recovery operations. The project is divided into three main tasks. Task 1 involves the design and development of a scaled physical model. Task 2 consists of further development of the vanishing interfacial tension (VIT) technique for miscibility determination. Task 3 involves the determination of multiphase displacement characteristics in reservoir rocks. Each technical progress report, including this one, reports on the progress made in each of these tasks during the reporting period. Section I covers the scaled physical model study. A survey of literature in related areas has been conducted. Test apparatus has been under construction throughout the reporting period. A bead-pack visual model, liquid injection system, and an image analysis system have been completed and used for preliminary experiments. Experimental runs with decane and paraffin oil have been conducted in the bead pack model. The results indicate the need for modifications in the apparatus, which are currently underway. A bundle of capillary tube model has been considered and

  2. Uranium Recovery from Seawater: Development of Fiber Adsorbents Prepared via Atom-Transfer Radical Polymerization

    SciTech Connect

    Saito, Tomonori; Brown, Suree; Chatterjee, Sabornie; Kim, Jungseung; Tsouris, Costas; Mayes, Richard T; Kuo, Li-Jung; Gill, Gary; Oyola, Yatsandra; Janke, Christopher James; Dai, Sheng

    2014-01-01

    A novel adsorbent preparation method using atom-transfer radical polymerization (ATRP) combined with radiation-induced graft polymerization (RIGP) was developed to synthesize an adsorbent for uranium recovery from seawater. The ATRP method allowed a much higher degree of grafting on the adsorbent fibers (595 2818%) than that allowed by RIGP alone. The adsorbents were prepared with varied composition of amidoxime groups and hydrophilic acrylate groups. The successful preparation revealed that both ligand density and hydrophilicity were critical for optimal performance of the adsorbents. Adsorbents synthesized in this study showed a relatively high performance (141 179 mg/g at 49 62 % adsorption) in laboratory screening tests using a uranium concentration of ~6 ppm. This performance is much higher than that of known commercial adsorbents. However, actual seawater experiment showed impeded performance compared to the recently reported high-surface-area-fiber adsorbents, due to slow adsorption kinetics. The impeded performance motivated an investigation of the effect of hydrophilic block addition on the graft chain terminus. The addition of hydrophilic block on the graft chain terminus nearly doubled the uranium adsorption capacity in seawater, from 1.56 mg/g to 3.02 mg/g. The investigation revealed the importance of polymer chain conformation, in addition to ligand and hydrophilic group ratio, for advanced adsorbent synthesis for uranium recovery from seawater.

  3. Systems analysis for the development of small resource recovery systems: system performance data. Final report

    SciTech Connect

    Crnkovich, P G; Helmstetter, A J

    1980-10-01

    The technologies that should be developed to make small-scale solid waste processing facilities attractive and viable for small municipalities with solid waste between 50 and 250 tons per day are identified. The resource recovery systems investigated were divided into three categories: thermal processng, mechanical separation, and biological processing. Thermal processing systems investigated are: excess-air incineration; starved-air incineration/gasification; and pyrolysis (indirect heating). Mechanical processing systems investigated are: coarse refuse derived fuel; materials separation; dust refuse derived fuel; densified refuse derived fuel; and fine refuse derived fuel. Mechanical processing components investigated include: receiving module; primary size reduction module; combustible separation module; refuse derived fuel preparation module; fuel densification; fuel storage module; ferrous separation; and building and facilities. Pretreatment processes and principle methods of bioconversion of MSW dealing with biological processing are investigated. (MCW)

  4. DEVELOPMENT AND OPTIMIZATION OF GAS-ASSISTED GRAVITY DRAINAGE (GAGD) PROCESS FOR IMPROVED LIGHT OIL RECOVERY

    SciTech Connect

    Dandina N. Rao; Subhash C. Ayirala; Madhav M. Kulkarni; Amit P. Sharma

    2004-10-01

    This report describes the progress of the project ''Development and Optimization of Gas-Assisted Gravity Drainage (GAGD) Process for Improved Light Oil Recovery'' for the duration of the second project year (October 1, 2003--September 30, 2004). There are three main tasks in this research project. Task 1 is scaled physical model study of GAGD process. Task 2 is further development of vanishing interfacial tension (VIT) technique for miscibility determination. Task 3 is determination of multiphase displacement characteristics in reservoir rocks. In Section I, preliminary design of the scaled physical model using the dimensional similarity approach has been presented. Scaled experiments on the current physical model have been designed to investigate the effect of Bond and capillary numbers on GAGD oil recovery. Experimental plan to study the effect of spreading coefficient and reservoir heterogeneity has been presented. Results from the GAGD experiments to study the effect of operating mode, Bond number and capillary number on GAGD oil recovery have been reported. These experiments suggest that the type of the gas does not affect the performance of GAGD in immiscible mode. The cumulative oil recovery has been observed to vary exponentially with Bond and capillary numbers, for the experiments presented in this report. A predictive model using the bundle of capillary tube approach has been developed to predict the performance of free gravity drainage process. In Section II, a mechanistic Parachor model has been proposed for improved prediction of IFT as well as to characterize the mass transfer effects for miscibility development in reservoir crude oil-solvent systems. Sensitivity studies on model results indicate that provision of a single IFT measurement in the proposed model is sufficient for reasonable IFT predictions. An attempt has been made to correlate the exponent (n) in the mechanistic model with normalized solute compositions present in both fluid phases

  5. Development of an In Situ Biosurfactant Production Technology for Enhanced Oil Recovery

    SciTech Connect

    M.J. McInerney; R.M. Knapp; Kathleen Duncan; D.R. Simpson; N. Youssef; N. Ravi; M.J. Folmsbee; T.Fincher; S. Maudgalya; Jim Davis; Sandra Weiland

    2007-09-30

    The long-term economic potential for enhanced oil recovery (EOR) is large with more than 300 billion barrels of oil remaining in domestic reservoirs after conventional technologies reach their economic limit. Actual EOR production in the United States has never been very large, less than 10% of the total U. S. production even though a number of economic incentives have been used to stimulate the development and application of EOR processes. The U.S. DOE Reservoir Data Base contains more than 600 reservoirs with over 12 billion barrels of unrecoverable oil that are potential targets for microbially enhanced oil recovery (MEOR). If MEOR could be successfully applied to reduce the residual oil saturation by 10% in a quarter of these reservoirs, more than 300 million barrels of oil could be added to the U.S. oil reserve. This would stimulate oil production from domestic reservoirs and reduce our nation's dependence on foreign imports. Laboratory studies have shown that detergent-like molecules called biosurfactants, which are produced by microorganisms, are very effective in mobilizing entrapped oil from model test systems. The biosurfactants are effective at very low concentrations. Given the promising laboratory results, it is important to determine the efficacy of using biosurfactants in actual field applications. The goal of this project is to move biosurfactant-mediated oil recovery from laboratory investigations to actual field applications. In order to meet this goal, several important questions must be answered. First, it is critical to know whether biosurfactant-producing microbes are present in oil formations. If they are present, then it will be important to know whether a nutrient regime can be devised to stimulate their growth and activity in the reservoir. If biosurfactant producers are not present, then a suitable strain must be obtained that can be injected into oil reservoirs. We were successful in answering all three questions. The specific objectives

  6. Fluidized-bed waste-heat recovery system development: Final report

    SciTech Connect

    Patch, K.D.; Cole, W.E.

    1988-06-01

    A major energy loss in industry is the heat content of the flue gases from industrial process heaters. One effective way to utilize the energy, which is applicable to all processes, is to preheat the combustion air for the process heater. Although recuperators are available to preheat this air when the flue gases are clean, recuperators to recover the heat from dirty and corrosive flue gases do not exist. The Fluidized-Bed Waste-Heat Recovery (FBWHR) system is designed to preheat this combustion air using the heat available in dirty flue gas streams. In this system, recirculating alumina particles are heated by the flue gas in a raining bed. The hot particles are then removed from the bed and placed in a fluidized bed where they are fluidized by the combustion air. Through this process, the combustion air is preheated. The cooled particles are then returned to the raining bed. Initial development of this concept is for the aluminum smelting industry. In this final report, the design, development, fabrication, and installation of a full-scale FBWHR system is detailed.

  7. Recovery Act: SeaMicro Volume Server Power Reduction Research Development

    SciTech Connect

    Gary Lauterbach

    2012-03-22

    Cloud data centers are projected to be the fastest growing segment of the server market through 2015, according to IDC. Increasingly people and businesses rely on the Cloud to deliver digital content quickly and efficiently. Recovery Act funding from the Department of Energy has helped SeaMicro's technologies enhance the total cost of operation, performance and energy efficiency in large data center and Cloud environments. SeaMicro's innovative supercomputer fabric connects thousands of processor cores, memory, storage and input/output traffic. The company's fabric supports multiple processor instruction sets. Current systems featuring SeaMicro technology typically use one quarter the power and take one sixth the space of traditional servers with the same compute performance, yet deliver up to 12 times the bandwidth per core. Mozilla and eHarmony are two customers successfully using SeaMicro's technology. Numerous non-public customers have been successfully using the SeaMicro product in test and production facilities. As a result of the Recovery Act funding from the U.S. Department of Energy, more than 50 direct jobs were created at SeaMicro. To date, they primarily have been high-value, engineering jobs. Hardware, software and manufacturing engineering positions have been created, as well as sales and sales engineering. The positions have allowed SeaMicro to significantly accelerate engineering development and accelerate commercialization. As a result, commercialization and delivery to market are months ahead of initial schedule. Additional jobs were indirectly created through the development of the SeaMicro product. Through many years of research and hard work prior to receipt of public funding, SeaMicro was awarded 2 patents for its work. SeaMicro's product led the way for industry leaders to reconsider the market for low power servers and create new product lines. With valuable support of the U.S. Department of Energy and through SeaMicro's product, the market

  8. Development of a Waste Heat Recovery System for Light Duty Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Performance of an Organic Rankine Cycle Waste Heat Recovery System for Light Duty Diesel Engines A Quantum Leap for Heavy-Duty Truck Engine Efficiency - Hybrid Power System of ...

  9. SRNL Development of Recovery Processes for Mark-18A Heavy Actinide...

    Office of Scientific and Technical Information (OSTI)

    plans for the recovery of rare and unique isotopes contained within heavy-actinide target assemblies, specifically the Mark-18A. Mark-18A assemblies were irradiated in Savannah ...

  10. Program Final Report - Develop Thermoelectric Technology for Automotive Waste Heat Recovery

    SciTech Connect

    Gregory Meisner

    2011-08-31

    We conducted a vehicle analysis to assess the feasibility of thermoelectric technology for waste heat recovery and conversion to useful electrical power and found that eliminating the 500 W of electrical power generated by the alternator corresponded to about a 7% increase in fuel economy (FE) for a small car and about 6% for a full size truck. Electric power targets of 300 W were established for city and highway driving cycles for this project. We obtained critical vehicle level information for these driving cycles that enabled a high-level design and performance analysis of radiator and exhaust gas thermoelectric subsystems for several potential vehicle platforms, and we identified the location and geometric envelopes of the radiator and exhaust gas thermoelectric subsystems. Based on this analysis, we selected the Chevrolet Suburban as the most suitable demonstration vehicle for this project. Our modeling and thermal analysis assessment of a radiator-based thermoelectric generator (TEG), however, revealed severe practical limitations. Specifically the small temperature difference of 100°C or less between the engine coolant and ambient air results in a low Carnot conversion efficiency, and thermal resistance associated with air convection would reduce this conversion efficiency even further. We therefore decided not to pursue a radiator-based waste heat recovery system and focused only on the exhaust gas. Our overall approach was to combine science and engineering: (1) existing and newly developed TE materials were carefully selected and characterized by the material researcher members of our team, and most of the material property results were validated by our research partners, and (2) system engineers worked closely with vehicle engineers to ensure that accurate vehicle-level information was used for developing subsystem models and designs, and the subsystem output was analyzed for potential fuel economy gains. We incorporated material, module, subsystem

  11. Development of a tritium recovery system from CANDU tritium removal facility

    SciTech Connect

    Draghia, M.; Pasca, G.; Porcariu, F.

    2015-03-15

    The main purpose of the Tritium Recovery System (TRS) is to reduce to a maximum possible extent the release of tritium from the facility following a tritium release in confinement boundaries and also to have provisions to recover both elemental and vapors tritium from the purging gases during maintenance and components replacement from various systems processing tritium. This work/paper proposes a configuration of Tritium Recovery System wherein elemental tritium and water vapors are recovered in a separated, parallel manner. The proposed TRS configuration is a combination of permeators, a platinum microreactor (MR) and a trickle bed reactor (TBR) and consists of two branches: one branch for elemental tritium recovery from tritiated deuterium gas and the second one for tritium recovery from streams containing a significant amount of water vapours but a low amount, below 5%, of tritiated gas. The two branches shall work in a complementary manner in such a way that the bleed stream from the permeators shall be further processed in the MR and TBR in view of achieving the required decontamination level. A preliminary evaluation of the proposed TRS in comparison with state of the art tritium recovery system from tritium processing facilities is also discussed. (authors)

  12. Recovery of Uranium from Seawater: Preparation and Development of Polymer-Supported Extractants

    SciTech Connect

    Spiro, Alexandratos

    2013-12-01

    A new series of polymer-supported extractants is proposed for the removal and recovery of uranium from seawater. The objective is to produce polymers with improved stability, loading capacity, and sorption kinetics compared to what is found with amidoximes. The target ligands are diphosphonates and aminomethyldiphosphonates. Small molecule analogues, especially of aminomethyldiphos-phonates, have exceptionally high stability constants for the uranyl ion. The polymeric diphosphonates will have high affinities due to their ability to form six-membered rings with the uranyl ion while the aminomethyldiphosphonates may have yet higher affinities due to possible tridentate coordination and their greater acidity. A representative set of the polymers to be prepared are indicated.

  13. Emission assessment at the Burj Hammoud inactive municipal landfill: Viability of landfill gas recovery under the clean development mechanism

    SciTech Connect

    El-Fadel, Mutasem; Abi-Esber, Layale; Salhab, Samer

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer LFG emissions are measured at an abandoned landfill with highly organic waste. Black-Right-Pointing-Pointer Mean headspace and vent emissions are 0.240 and 0.074 l CH{sub 4}/m{sup 2} hr, respectively. Black-Right-Pointing-Pointer At sites with high food waste content, LFG generation drops rapidly after site closure. Black-Right-Pointing-Pointer The viability of LFG recovery for CDMs in developing countries is doubtful. - Abstract: This paper examines landfill gas (LFG) emissions at a large inactive waste disposal site to evaluate the viability of investment in LFG recovery through the clean development mechanism (CDM) initiative. For this purpose, field measurements of LFG emissions were conducted and the data were processed by geospatial interpolation to estimate an equivalent site emission rate which was used to calibrate and apply two LFG prediction models to forecast LFG emissions at the site. The mean CH{sub 4} flux values calculated through tessellation, inverse distance weighing and kriging were 0.188 {+-} 0.014, 0.224 {+-} 0.012 and 0.237 {+-} 0.008 l CH{sub 4}/m{sup 2} hr, respectively, compared to an arithmetic mean of 0.24 l/m{sup 2} hr. The flux values are within the reported range for closed landfills (0.06-0.89 l/m{sup 2} hr), and lower than the reported range for active landfills (0.42-2.46 l/m{sup 2} hr). Simulation results matched field measurements for low methane generation potential (L{sub 0}) values in the range of 19.8-102.6 m{sup 3}/ton of waste. LFG generation dropped rapidly to half its peak level only 4 yrs after landfill closure limiting the sustainability of LFG recovery systems in similar contexts and raising into doubt promoted CDM initiatives for similar waste.

  14. SOLVENT-BASED ENHANCED OIL RECOVERY PROCESSES TO DEVELOP WEST SAK ALASKA NORTH SLOPE HEAVY OIL RESOURCES

    SciTech Connect

    David O. Ogbe; Tao Zhu

    2004-01-01

    A one-year research program is conducted to evaluate the feasibility of applying solvent-based enhanced oil recovery processes to develop West Sak and Ugnu heavy oil resources found on the Alaska North Slope (ANS). The project objective is to conduct research to develop technology to produce and market the 300-3000 cp oil in the West Sak and Ugnu sands. During the first phase of the research, background information was collected, and experimental and numerical studies of vapor extraction process (VAPEX) in West Sak and Ugnu are conducted. The experimental study is designed to foster understanding of the processes governing vapor chamber formation and growth, and to optimize oil recovery. A specially designed core-holder and a computed tomography (CT) scanner was used to measure the in-situ distribution of phases. Numerical simulation study of VAPEX was initiated during the first year. The numerical work completed during this period includes setting up a numerical model and using the analog data to simulate lab experiments of the VAPEX process. The goal was to understand the mechanisms governing the VAPEX process. Additional work is recommended to expand the VAPEX numerical study using actual field data obtained from Alaska North Slope.

  15. Development of U and Pu Co-Recovery Process (Co-Processing) for Future Reprocessing

    SciTech Connect

    Yamamoto, K.; Yanagibashi, F.; Fujimoto, I.; Sato, T.; Ohbu, T.; Taki, K.; Hayashi, S.

    2013-07-01

    Co-processing process, which is the modified Purex process focused on co-recovery of Pu and U, has been studied at Operation Testing Laboratory, Tokai Reprocessing Plant in JAEA. The set up of the process was performed with flow-sheets study by process calculation to avoid Pu isolation in the whole process and to co-recover Pu/U product solution with a suitable Pu/U ratio (0.5< Pu/U <2). The initial Pu/U ratios of the feed solutions were taken as 1%, 3% and 20% considering the composition of the future spent fuels. The verification of the flow-sheets for each feed solutions were carried out with mixer-setters and active Pu/U feed solutions, focusing on the partitioning unit, and favorable back extraction performances of Pu accompanied by U were observed at all cases of the given feed solutions. According to these results, the co-processing process showed a good prospect to treat all kinds of future fuels from LWR, LWR-MOX and FBR, and a good prospect to be simplified by omitting the Pu/U purification cycle.

  16. Development and demonstration of a reverse-osmosis energy-recovery device. Final report

    SciTech Connect

    Andeen, G.B.; Eid, J.C.

    1982-06-01

    An energy-recovery device for a seawater reverse-osmosis (RO) system was designed, fabricated, and tested. The device, comprised of a valving system, uses waste streams from an RO system to drive a pump which, in turn, sends additional feed flows to the RO elements. Test data demonstrated that efficiencies exceeding 95% can be expected, and, hence, energy consumption in a seawater RO desalination system can be decreased by 50%. Further, conversion may be decreased from 30% in order that membrane life is extended, and the size of the main pump and prime mover can be reduced by 50%. The device was subjected to almost 1000 hours (175,000 cycles) of testing, simulating its operation in a 4800 gallon/day seawater system, producing an outlet pressure of over 850 lbs/sq-in. for an inlet pressure of 750 lbs/sq-in. The device demonstrated an ability to self-start and to be controlled. An analysis of value and costs suggested that the device would be available to systems as small as 10,000 gallons/day. The results of this work confirm that significant improvements in the energy and economic performance of seawater desalination systems can be achieved.

  17. Opportunities and Challenges of Thermoelectrlic Waste Heat Recovery...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications Development of Thermoelectric Technology for Automotive Waste Heat Recovery Develop Thermoelectric Technology for Automotive Waste Heat Recovery ...

  18. Secretary Chu Announces More than $57 Million in Recovery Act Funding to Advance Smart Grid Development

    Energy.gov [DOE]

    DOE also announces the release of a new smart grid report and the development of a smart grid clearinghouse

  19. Battleground Energy Recovery Project

    SciTech Connect

    Daniel Bullock

    2011-12-31

    In October 2009, the project partners began a 36-month effort to develop an innovative, commercial-scale demonstration project incorporating state-of-the-art waste heat recovery technology at Clean Harbors, Inc., a large hazardous waste incinerator site located in Deer Park, Texas. With financial support provided by the U.S. Department of Energy, the Battleground Energy Recovery Project was launched to advance waste heat recovery solutions into the hazardous waste incineration market, an area that has seen little adoption of heat recovery in the United States. The goal of the project was to accelerate the use of energy-efficient, waste heat recovery technology as an alternative means to produce steam for industrial processes. The project had three main engineering and business objectives: Prove Feasibility of Waste Heat Recovery Technology at a Hazardous Waste Incinerator Complex; Provide Low-cost Steam to a Major Polypropylene Plant Using Waste Heat; and ? Create a Showcase Waste Heat Recovery Demonstration Project.

  20. Enhanced oil recovery

    SciTech Connect

    Fisher, W.G.

    1982-01-01

    The principal enhanced recovery technique is waterflooding, because water generally is inexpensive to obtain and inject into the reservoir and it works. With the shortage of conventional oil in Canada there is greater emphasis being placed on other recovery schemes in addition to or in place of waterflooding. Tertiary recovery is applicable to many of the existing projects and engineers must recognize those fields that are candidates for tertiary recovery applications. The application of tertiary recovery techniques to a specific reservoir requires consideration of all methods developed to select the one most suitable. A thorough understanding of waterflooding and the factors that affect recovery is necessary before a tertiary process is considered. Factors that affect oil recovery under waterflooding are areal and vertical sweep efficiency, contact factor and displacement efficiency.

  1. Development of Nuclear Magnetic Resonance Imaging/spectroscopy for improved petroleum recovery. Final report

    SciTech Connect

    Barrufet, M.A.; Flumerfelt, F.W.; Walsh, M.P.; Watson, A.T.

    1994-04-01

    The overall objectives of this program are to develop and apply Nuclear Magnetic Resonance Imaging (NMRI) and CT X-Ray Scanning methods for determining rock, fluid, and petrophysical properties and for fundamental studies of multiphase flow behavior in porous media. Specific objectives are divided into four subtasks: (1) development of NMRI and CT scanning for the determination of rock-fluid and petrophysical properties; (2) development of NMRI and CT scanning for characterizing conventional multiphase displacement processes; (3) development of NMR and CT scanning for characterizing dispersed phase processes; and (4) miscible displacement studies.

  2. Recovery Act: Oxy-Combustion Techology Development for Industrial-Scale Boiler Applications

    SciTech Connect

    Levasseur, Armand

    2014-04-30

    Alstom Power Inc. (Alstom), under U.S. DOE/NETL Cooperative Agreement No. DE-NT0005290, is conducting a development program to generate detailed technical information needed for application of oxy-combustion technology. The program is designed to provide the necessary information and understanding for the next step of large-scale commercial demonstration of oxy combustion in tangentially fired boilers and to accelerate the commercialization of this technology. The main project objectives include: • Design and develop an innovative oxyfuel system for existing tangentially-fired boiler units that minimizes overall capital investment and operating costs. • Evaluate performance of oxyfuel tangentially fired boiler systems in pilot scale tests at Alstom’s 15 MWth tangentially fired Boiler Simulation Facility (BSF). • Address technical gaps for the design of oxyfuel commercial utility boilers by focused testing and improvement of engineering and simulation tools. • Develop the design, performance and costs for a demonstration scale oxyfuel boiler and auxiliary systems. • Develop the design and costs for both industrial and utility commercial scale reference oxyfuel boilers and auxiliary systems that are optimized for overall plant performance and cost. • Define key design considerations and develop general guidelines for application of results to utility and different industrial applications. The project was initiated in October 2008 and the scope extended in 2010 under an ARRA award. The project completion date was April 30, 2014. Central to the project is 15 MWth testing in the BSF, which provided in-depth understanding of oxy-combustion under boiler conditions, detailed data for improvement of design tools, and key information for application to commercial scale oxy-fired boiler design. Eight comprehensive 15 MWth oxy-fired test campaigns were performed with different coals, providing detailed data on combustion, emissions, and thermal behavior over a

  3. Recovery of protactinium-231 and thorium-230 from cotter concentrate: pilot plant operatins and process development

    SciTech Connect

    Hertz, M.R.; Figgins, P.E.; Deal, W.R.

    1983-02-10

    The equipment and methods used to recover and purify 339 g of thorium-230 and 890 mg of protactinium-231 from 22 of the 1251 drums of Cotter Concentrate are described. The process developed was (1) dissolution at 100/sup 0/C in concentrated nitric acid and dilution to 2 to 3 molar acid, (2) filtration to remove undissolved solids (mostly silica filter aid), (3) extraction of uranium with di-sec-butyl-phenyl phophonate (DSBPP) in carbon tetrachloride, (4) extraction of both thorium and protactinium with tri-n-octylphosphine oxide (TOPO) in carbon tetrachloride followed by selective stripping of the thorium with dilute of sulfuric acid, (5) thorium purification using oxalic acid, (6) stripping protactinium from the TOPO with oxalic acid, and (7) protactinium purification through a sequence of steps. The development of the separation procedures, the design of the pilot plant, and the operating procedures are described in detail. Analytical procedures are given in an appendix. 8 figures, 4 tables.

  4. Recovery Act. Development and Validation of an Advanced Stimulation Prediction Model for Enhanced Geothermal Systems

    SciTech Connect

    Gutierrez, Marte

    2013-12-31

    This research project aims to develop and validate an advanced computer model that can be used in the planning and design of stimulation techniques to create engineered reservoirs for Enhanced Geothermal Systems. The specific objectives of the proposal are to; Develop a true three-dimensional hydro-thermal fracturing simulator that is particularly suited for EGS reservoir creation; Perform laboratory scale model tests of hydraulic fracturing and proppant flow/transport using a polyaxial loading device, and use the laboratory results to test and validate the 3D simulator; Perform discrete element/particulate modeling of proppant transport in hydraulic fractures, and use the results to improve understand of proppant flow and transport; Test and validate the 3D hydro-thermal fracturing simulator against case histories of EGS energy production; and Develop a plan to commercialize the 3D fracturing and proppant flow/transport simulator. The project is expected to yield several specific results and benefits. Major technical products from the proposal include; A true-3D hydro-thermal fracturing computer code that is particularly suited to EGS; Documented results of scale model tests on hydro-thermal fracturing and fracture propping in an analogue crystalline rock; Documented procedures and results of discrete element/particulate modeling of flow and transport of proppants for EGS applications; and Database of monitoring data, with focus of Acoustic Emissions (AE) from lab scale modeling and field case histories of EGS reservoir creation.

  5. WETTABILITY AND PREDICTION OF OIL RECOVERY FROM RESERVOIRS DEVELOPED WITH MODERN DRILLING AND COMPLETION FLUIDS

    SciTech Connect

    Jill S. Buckley; Norman R. Morrow

    2006-01-01

    The objectives of this project are: (1) to improve understanding of the wettability alteration of mixed-wet rocks that results from contact with the components of synthetic oil-based drilling and completion fluids formulated to meet the needs of arctic drilling; (2) to investigate cleaning methods to reverse the wettability alteration of mixed-wet cores caused by contact with these SBM components; and (3) to develop new approaches to restoration of wetting that will permit the use of cores drilled with SBM formulations for valid studies of reservoir properties.

  6. Recovery Act: Oxy-Combustion Technology Development for Industrial-Scale Boiler Applications

    SciTech Connect

    Levasseur, Armand

    2014-01-01

    This Topical Report outlines guidelines and key considerations for design and operation of pulverized coal-fired boilers for oxy-combustion. The scope addressed includes only the boiler island, not the entire oxy-fired CO{sub 2} capture plant. These guidelines are primarily developed for tangential-fired boilers and focus on designs capable of dual air and oxy-fired operation. The guidelines and considerations discussed are applicable to both new units and existing boiler retrofits. These guidelines are largely based on the findings from the extensive 15 MW{sub th} pilot testing and design efforts conducted under this project. A summary level description is provided for each major aspect of boiler design impacted by oxy-combustion, and key considerations are discussed for broader application to different utility and industrial designs. Guidelines address the boiler system arrangement, firing system, boiler thermal design, ducting, materials, control system, and other key systems.

  7. Recovery Act: Develop a Modular Curriculum for Training University Students in Industry Standard CO{sub 2} Sequestration and Enhanced Oil Recovery Methodologies

    SciTech Connect

    Trentham, R. C.; Stoudt, E. L.

    2013-05-31

    CO{sub 2} Enhanced Oil Recovery, Sequestration, & Monitoring Measuring & Verification are topics that are not typically covered in Geoscience, Land Management, and Petroleum Engineering curriculum. Students are not typically exposed to the level of training that would prepare them for CO{sub 2} reservoir and aquifer sequestration related projects when they begin assignments in industry. As a result, industry training, schools & conferences are essential training venues for new & experienced personnel working on CO{sub 2} projects for the first time. This project collected and/or generated industry level CO{sub 2} training to create modules which faculties can utilize as presentations, projects, field trips and site visits for undergrad and grad students and prepare them to "hit the ground running" & be contributing participants in CO{sub 2} projects with minimal additional training. In order to create the modules, UTPB/CEED utilized a variety of sources. Data & presentations from industry CO{sub 2} Flooding Schools & Conferences, Carbon Management Workshops, UTPB Classes, and other venues was tailored to provide introductory reservoir & aquifer training, state-of-the-art methodologies, field seminars and road logs, site visits, and case studies for students. After discussions with faculty at UTPB, Sul Ross, Midland College, other universities, and petroleum industry professionals, it was decided to base the module sets on a series of road logs from Midland to, and through, a number of Permian Basin CO{sub 2} Enhanced Oil Recovery (EOR) projects, CO{sub 2} Carbon Capture and Storage (CCUS) projects and outcrop equivalents of the formations where CO{sub 2} is being utilized or will be utilized, in EOR projects in the Permian Basin. Although road logs to and through these projects exist, none of them included CO{sub 2} specific information. Over 1400 miles of road logs were created, or revised specifically to highlight CO{sub 2} EOR projects. After testing a number of

  8. Development of bonded composite doublers for the repair of oil recovery equipment.

    SciTech Connect

    Roach, David W.; Rackow, Kirk A.

    2005-06-01

    An unavoidable by-product of a metallic structure's use is the appearance of crack and corrosion flaws. Economic barriers to the replacement of these structures have created an aging infrastructure and placed even greater demands on efficient and safe repair methods. In the past decade, an advanced composite repair technology has made great strides in commercial aviation use. Extensive testing and analysis, through joint programs between the Sandia Labs FAA Airworthiness Assurance Center and the aviation industry, have proven that composite materials can be used to repair damaged aluminum structure. Successful pilot programs have produced flight performance history to establish the durability of bonded composite patches as a permanent repair on commercial aircraft structures. With this foundation in place, this effort is adapting bonded composite repair technology to civil structures. The use of bonded composite doublers has the potential to correct the difficulties associated with current repair techniques and the ability to be applied where there are no rehabilitation options. It promises to be cost-effective with minimal disruption to the users of the structure. This report concludes a study into the application of composite patches on thick steel structures typically used in mining operations. Extreme fatigue, temperature, erosive, and corrosive environments induce an array of equipment damage. The current weld repair techniques for these structures provide a fatigue life that is inferior to that of the original plate. Subsequent cracking must be revisited on a regular basis. The use of composite doublers, which do not have brittle fracture problems such as those inherent in welds, can help extend the structure's fatigue life and reduce the equipment downtime. Two of the main issues for adapting aircraft composite repairs to civil applications are developing an installation technique for carbon steel and accommodating large repairs on extremely thick structures

  9. Energy Recovery Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    global developer and manufacturer of energy recovery devices utilized in the water desalination industry. References: Energy Recovery Inc1 This article is a stub. You can help...

  10. Recovery Act

    Energy.gov [DOE]

    Recovery Act and Energy Department programs were designed to stimulate the economy while creating new power sources, conserving resources and aligning the nation to once again lead the global energy economy.

  11. Recovery Act State Memos Delaware

    Energy.gov [DOE] (indexed site)

    develop ultra-thin protective film for photovoltaic panels ...... 7 For total Recovery Act ... ultra-moisture-barrier film to enable new thin-film flexible photovoltaic products. ...

  12. DOE FY 2010 Budget Request and Recovery Act Funding for Energy Research, Development, Demonstration, and Deployment: Analysis and Recommendations

    SciTech Connect

    Anadon, Laura Diaz; Gallagher, Kelly Sims; Bunn, Matthew

    2009-06-01

    The combination of the FY 2010 budget request for the Department of Energy (DOE) and the portion of the American Recovery and Reinvestment Act of 2009 (ARRA) funds likely to be available in 2010 would (assuming that they would be split evenly between FY 2010 and FY 2011) result in a doubling in funding available for energy research, development, and deployment (ERD and D) from $3.6 billion in FY 2009 to $7.2 billion in FY 2010. Without the stimulus funds, DOE ERD and D investments in FY 2010 would decrease very slightly when compared to FY 2009. Excluding the $7.5 billion for the Advanced Technology Vehicles Manufacturing Loans in FY 2009, the FY 2010 budget request for deployment represents a 33 percent decrease from the FY 2009 levels from $520 million to $350 million. This decrease is largely due to the large amounts of funds appropriated in ARRA for DOE deployment programs, or $23.6 billion, which are three times greater than those appropriated in the FY 2009 budget. These very substantial funding amounts, coupled with the broad range of institutional innovations the administration is putting in place and movement toward putting a price on carbon emissions, will help accelerate innovation for a broad range of energy technologies. DOE's Advanced Research Projects Agency-Energy (ARPA-E) and the Energy Innovation Hubs are important initiatives that could contribute to two weak points of the government's energy innovation effort, namely funding high-risk projects in transformational technologies and in companies that have not traditionally worked with the government and strengthening the integration of basic and applied research in priority areas. Increasing the funding for different types of energy storage research, providing some support for exploring opportunities in coal-to-liquids with carbon capture and storage (CCS) and coal-and-biomass-to-liquids with CCS, and reducing funding for fission RD and D are other actions that Congress could take in the short

  13. Thermoelectric Technology for Automotive Waste Heat Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Technology for Automotive Waste Heat Recovery Thermoelectric Technology for Automotive ... More Documents & Publications Develop Thermoelectric Technology for Automotive Waste Heat ...

  14. Solvent recovery targeting

    SciTech Connect

    Ahmad, B.S.; Barton, P.I.

    1999-02-01

    One of the environmental challenges faced by the pharmaceutical and specialty chemical industries is the widespread use of organic solvents. With a solvent-based chemistry, the solvent necessarily has to be separated from the product. Chemical species in waste-solvent streams typically form multicomponent azeotropic mixtures, and this often complicates separation and, hence, recovery of solvents. A design approach is presented whereby process modifications proposed by the engineer to reduce the formation of waste-solvent streams can be evaluated systematically. This approach, called solvent recovery targeting, exploits a recently developed algorithm for elucidating the separation alternatives achievable when applying batch distillation to homogeneous multicomponent mixtures. The approach places the composition of the waste-solvent mixture correctly in the relevant residue curve map and computes the maximum amount of pure material that can be recovered via batch distillation. Solvent recovery targeting is applied to two case studies derived from real industrial processes.

  15. ARM - Recovery Act Instruments

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ActRecovery Act Instruments Recovery Act Logo Subscribe FAQs Recovery Act Instruments Recovery Act Fact Sheet March 2010 Poster (PDF, 10MB) External Resources Recovery Act - Federal Recovery Act - DOE Recovery Act - ANL Recovery Act - BNL Recovery Act - LANL Recovery Act - PNNL Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Recovery Act Instruments These pages provide a breakdown of the new instruments planned for installation among the

  16. Biomass Program Recovery Act Factsheet

    SciTech Connect

    2010-03-01

    The Biomass Program has awarded about $718 million in American Recovery and Reinvestment Act (Recovery Act) funds. The projects the Program is supporting are intended to: Accelerate advanced biofuels research, development, and demonstration; Speed the deployment and commercialization of advanced biofuels and bioproducts; Further the U.S. bioindustry through market transformation and creating or saving a range of jobs.

  17. Characterisation of metals in the electronic waste of complex mixtures of end-of-life ICT products for development of cleaner recovery technology

    SciTech Connect

    Sun, Z.H.I.; Xiao, Y.; Sietsma, J.; Agterhuis, H.; Visser, G.; Yang, Y.

    2015-01-15

    Highlights: • New characterisation methodology has been established to understand an industrially processed ICT waste. • Particle size distribution, composition, thermal–chemical behaviour and occurrence of metals were considered. • The characterisation provides direct guidelines for values recovery from the waste. - Abstract: Recycling of valuable metals from electronic waste, especially complex mixtures of end-of-life information and communication technology (ICT) products, is of great difficulty due to their complexity and heterogeneity. One of the important reasons is the lack of comprehensive characterisation on such materials, i.e. accurate compositions, physical/chemical properties. In the present research, we focus on developing methodologies for the characterisation of metals in an industrially processed ICT waste. The morphology, particle size distribution, compositional distribution, occurrence, liberation as well as the thermo-chemical properties of the ICT waste were investigated with various characterisation techniques, including X-ray Fluorescence Spectrometry (XRF), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) with energy dispersed spectroscopy (EDS). Due to the high heterogeneity of the material, special sample preparation procedures were introduced to minimise the discrepancies during compositional analyses. As a result, a clearer overview of the ICT waste has been reached. This research provides better understanding of the extractability of each metal and improves the awareness of potential obstacles for extraction. It will lead to smarter decisions during further development of a clean and effective recovery process.

  18. Model Recovery Procedure for Response to a Radiological Transportation Incident

    Energy.gov [DOE]

    This Transportation Emergency Preparedness Program (TEPP) Model Recovery Procedure contains the recommended elements for developing and conducting recovery planning at transportation incident scene...

  19. The American Recovery

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    American Recovery and Reinvestment Act Smart Grid Highlights Jumpstarting a Modern Grid October 2014 2 The Office of Electricity Delivery and Energy Reliability (OE) provides national leadership to ensure that the nation's energy delivery system is secure, resilient, and reliable. OE works to develop new technologies to improve the infrastructure that brings electricity into our homes, offices, and factories in partnership with industry, other federal agencies, and state and local governments.

  20. Recovery Act | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Recovery Act Recovery Act More Documents & Publications Overview of Recovery Act FAR Clauses Map Data: Recovery Act Funding DOE Policy Re Recovery Act Recipient Use of Recovery Act Logos on Signage

  1. U. S. Department of Energy (DOE) research and development programs for heavy oil and tar sand recovery

    SciTech Connect

    Anderson, H.R.

    1981-01-01

    The main emphasis of the DOE tar sand program described is to develop in situ techniques capable of recovering bitumen from domestic tar sand deposits. This program primarily involves field experiments of in situ techniques (in situ combustion and steam drive). Supporting activities include resource assessment, upgrading and surface processing research, and environmental permitting and control. 5 refs.

  2. Decision Point 2 of Statement of Project Objectives (SOPO) “Recovery Act: Development of ITM Oxygen Technology for Integration with Advanced Industrial Systems”

    SciTech Connect

    Armstrong, Phillip

    2011-08-01

    Air Products is carrying out a scope of work under Phase 5 of the ITM Oxygen Cooperative Agreement to design, build, and operate a ceramic membrane fabrication facility (the “CerFab”) to enable production of membrane modules to supply a conceptual 2000 ton per day (TPD) ITM Oxygen facility (the “ITM Oxygen Development Facility”), and to perform supporting development tasks in materials development an engineering development toward industrial, carbon capture and sequestration applications. Air Products is executing this project under the American Recovery and Reinvestment Act (ARRA) with the objective to accelerate the adoption of ITM Oxygen technology to help meet the country’s goals for deploying clean power plants. The objective of this Topical Report is to address the requirements of Decision Point 2, which pertains to progress in Materials Development, Engineering Development, and construction of the CerFab, with an emphasis on establishing the environmental permitting required prior to the next Decision Point. In the area of Materials Development, Air Products has specified a high pressure dilatometer system which will enable measurements of material expansion of ITM ceramic compounds at very high oxygen partial pressures consistent with CCS applications. Also in this area, Ceramatec has made significant progress in developing Advanced Architecture wafers and modules by advancing in parallel with two production methods of the Advanced Architecture components and determining the appropriate equipment required to make these components at high volume in the CerFab. Work in this area continues to refine the CerFab requirements. Under Engineering Development, Air Products has developed various concepts around use of ITM in industrial applications to reduce carbon footprint though process integrations that result in less fuel requirement. Air Products also developed notions around hybrid cryogenic air separation plants with ITM Oxygen plants for scale

  3. Waste Heat Recovery

    Office of Environmental Management (EM)

    - PRE-DECISIONAL - DRAFT 1 Waste Heat Recovery 1 Technology Assessment 2 Contents 3 1. ... 2 4 1.1. Introduction to Waste Heat Recovery ......

  4. Olefin recovery via chemical absorption

    SciTech Connect

    Barchas, R.

    1998-06-01

    The recovery of fight olefins in petrochemical plants has generally been accomplished through cryogenic distillation, a process which is very capital and energy intensive. In an effort to simplify the recovery process and reduce its cost, BP Chemicals has developed a chemical absorption technology based on an aqueous silver nitrate solution. Stone & Webster is now marketing, licensing, and engineering the technology. The process is commercially ready for recovering olefins from olefin derivative plant vent gases, such as vents from polyethylene, polypropylene, ethylene oxide, and synthetic ethanol units. The process can also be used to debottleneck C{sub 2} or C{sub 3} splinters, or to improve olefin product purity. This paper presents the olefin recovery imp technology, discusses its applications, and presents economics for the recovery of ethylene and propylene.

  5. Chemically enhanced in situ recovery

    SciTech Connect

    Sale, T.; Pitts, M.; Wyatt, K.

    1996-08-01

    Chemically enhanced recovery is a promising alternative to current technologies for management of subsurface releases of organic liquids. Through the inclusion of surfactants, solvents, polymers, and/or alkaline agents to a waterflood, the transport of targeted organic compounds can be increased and rates of recovery enhanced. By far, the vast majority of work done in the field of chemically enhanced recovery has been at a laboratory scale. The following text focuses on chemically enhanced recovery from a field application perspective with emphasis given to chlorinated solvents in a low permeability setting. While chlorinated solvents are emphasized, issues discussed are also relevant to organic liquids less dense than water such as petroleum products. Topics reviewed include: (1) Description of technology; (2) General technology considerations; (3) Low permeability media considerations; (4) Cost and reliability considerations; (5) Commercial availability; and (6) Case histories. Through this paper an appreciation is developed of both the potential and limitations of chemically enhanced recovery. Excluded from the scope of this paper is the in situ destruction of organic compounds through processes such as chemical or biological oxidation, chemically enhanced recovery of inorganic compounds, and ex situ soil treatment processes. 11 refs., 2 figs., 1 tab.

  6. American Recovery and Reinvestment Act | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    American Recovery and Reinvestment Act American Recovery and Reinvestment Act President Obama signed the American Recovery and Reinvestment Act of 2009 (Recovery Act) into law on February 17, 2009. The Recovery Act provided DOE several billion dollars in funds to accelerate research, development, demonstration, and deployment activities that support jumpstarting our economy, promoting green jobs, and focusing on addressing long-neglected challenges so our country can thrive in the twenty-first

  7. Recovery Act Funds at Work | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Information Center » 2009 Recovery Act » Recovery Act Funds at Work Recovery Act Funds at Work Funds from the American Recovery and Reinvestment Act of 2009 (Recovery Act) are being put to work to improve safety, reliability, and service in systems across the country. Central Maine Power is producing innovations in customer services, improvements in business operations, and lessons-learned that will be used for guiding future smart grid projects. Idaho Power Company is accelerating development

  8. Recovery Act Milestones

    ScienceCinema

    Rogers, Matt

    2016-07-12

    Every 100 days, the Department of Energy is held accountable for a progress report on the American Recovery and Reinvestment Act. Update at 200 days, hosted by Matt Rogers, Senior Advisor to Secretary Steven Chu for Recovery Act Implementation.

  9. Enhanced Oil Recovery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Enhanced Oil Recovery Enhanced Oil Recovery Cross-section illustrating how carbon dioxide and water can be used to flush residual oil from a subsurface rock formation between wells. Cross-section illustrating how carbon dioxide and water can be used to flush residual oil from a subsurface rock formation between wells. Crude oil development and production in U.S. oil reservoirs can include up to three distinct phases: primary, secondary, and tertiary (or enhanced) recovery. During primary

  10. CBFO selects Senior WIPP Recovery Manager

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    4, 2014 CBFO selects Senior WIPP Recovery Manager Sean Dunagan, Research and Development Manager with Sandia National Laboratories, has been appointed as the Carlsbad Field Office (CBFO) Senior WIPP Recovery Manager, effective Dec. 8, 2014. He replaces Tom Teynor, who returned to Hanford to be the Federal Project Manager of the Plutonium Finishing Plant project. Directly leading and representing the Waste Isolation Pilot Plant (WIPP) Recovery Project, Mr. Dunagan will report to CBFO Manager Joe

  11. WIPP Recovery Information

    Energy.gov [DOE]

    At the March 26, 2014 Board meeting J. R. Stroble CBFO, Provided Information on Locations to Access WIPP Recovery Information.

  12. Decision Point 3 of Statement of Project Objectives (SOPO) “Recovery Act: Development of ITM Oxygen Technology for Integration with Advanced Industrial Systems”

    SciTech Connect

    Armstrong, Phillip

    2012-03-01

    Air Products is carrying out a scope of work under Phase 5 of the ITM Oxygen Cooperative Agreement to design, build, and operate a ceramic membrane fabrication facility (the -CerFabII) to enable production of membrane modules to supply a conceptual 2000 ton per day (TPD) ITM Oxygen facility (the -ITM Oxygen Development FacilityII), and to perform supporting development tasks in materials development and engineering development toward industrial, carbon capture and sequestration applications. Air Products is executing this project under the American Recovery and Reinvestment Act (ARRA) with the objective to accelerate the adoption of ITM Oxygen technology to help meet the country’s goals for deploying clean power plants. The objective of this Topical Report is to address the requirements of Decision Point 3 (DP3), which pertains to the status of all Tasks within Phase 5 and most notably the project status of the CerFab (Task 30) prior to authorization of funds for equipment purchase and construction of the facility. The intent of the DP3 is to provide the opportunity for DOE-NETL to review the status of these tasks and to make recommendations on forward project direction, including a recommendation to pass into Budget Period 8. In the area of Materials Development, Air Products has specified a high pressure dilatometer system which will enable measurements of material expansion of ITM ceramic compounds at very high oxygen partial pressures consistent with CCS applications. Under Task 28.2, subcontractor Ceramatec has made significant progress since DP2 in materials selection and process development and improvement for advanced architecture module fabrication. Ceramatec has determined a materials specification, and has selected a process for making the material. Ceramatec has further developed and selected the process for applying the membrane to unsintered advanced architecture wafers with a Two Step process. Ceramatec has built submodules meeting leak rate

  13. Waste Heat Recovery

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    - PRE-DECISIONAL - DRAFT 1 Waste Heat Recovery 1 Technology Assessment 2 Contents 3 1. Introduction to the Technology/System ............................................................................................... 2 4 1.1. Introduction to Waste Heat Recovery .......................................................................................... 2 5 1.2. Challenges and Barriers for Waste Heat Recovery ..................................................................... 13 6 1.3. Public

  14. Recovery from chemical, biological, and radiological incidents :

    SciTech Connect

    Franco, David Oliver; Yang, Lynn I.; Hammer, Ann E.

    2012-06-01

    To restore regional lifeline services and economic activity as quickly as possible after a chemical, biological or radiological incident, emergency planners and managers will need to prioritize critical infrastructure across many sectors for restoration. In parallel, state and local governments will need to identify and implement measures to promote reoccupation and economy recovery in the region. This document provides guidance on predisaster planning for two of the National Disaster Recovery Framework Recovery Support Functions: Infrastructure Systems and Economic Recovery. It identifies key considerations for infrastructure restoration, outlines a process for prioritizing critical infrastructure for restoration, and identifies critical considerations for promoting regional economic recovery following a widearea disaster. Its goal is to equip members of the emergency preparedness community to systematically prioritize critical infrastructure for restoration, and to develop effective economic recovery plans in preparation for a widearea CBR disaster.

  15. Multi-physics modeling of thermoelectric generators for waste heat recovery applications

    Energy.gov [DOE]

    Model developed provides effective guidelines to designing thermoelectric generation systems for automotive waste heat recovery applications

  16. WIPP Recovery Progress

    Energy.gov [DOE]

    At the March 25, 2015 Board meeting J. R. Stroble CBFO, Provided Information on the Status of the Recovery Effort at the WIPP Site.

  17. EM Recovery Act Performance

    Energy.gov [DOE]

    The Office of Environmental Management's (EM) American Recovery and Reinvestment Act Program recently achieved 74 percent footprint reduction, exceeding the originally established goal of 40...

  18. Recovery Act Open House

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    light snacks for those attending. DOE ID Manager Rick Provencher discusses the non-cleanup work that was accomplished with Recovery Act funding. Editorial Date November 15, 2010...

  19. Advanced Membrane Separation Technologies for Energy Recovery

    SciTech Connect

    2009-05-01

    This factsheet describes a research project whose goal is to develop novel materials for use in membrane separation technologies for the recovery of waste energy and water from industrial process streams.

  20. An Advanced Fracture Characterization and Well Path Navigation System for Effective Re-Development and Enhancement of Ultimate Recovery from the Complex Monterey Reservoir of South Ellwood Field, Offshore California

    SciTech Connect

    Steve Horner

    2006-01-31

    Venoco Inc, intends to re-develop the Monterey Formation, a Class III basin reservoir, at South Ellwood Field, Offshore Santa Barbara, California. Well productivity in this field varies significantly. Cumulative Monterey production for individual wells has ranged from 260 STB to 8,700,000 STB. Productivity is primarily affected by how well the well path connects with the local fracture system and the degree of aquifer support. Cumulative oil recovery to date is a small percentage of the original oil in place. To embark upon successful re-development and to optimize reservoir management, Venoco intends to investigate, map and characterize field fracture patterns and the reservoir conduit system. State of the art borehole imaging technologies including FMI, dipole sonic and cross-well seismic, interference tests and production logs will be employed to characterize fractures and micro faults. These data along with the existing database will be used for construction of a novel geologic model of the fracture network. Development of an innovative fracture network reservoir simulator is proposed to monitor and manage the aquifer's role in pressure maintenance and water production. The new fracture simulation model will be used for both planning optimal paths for new wells and improving ultimate recovery. In the second phase of this project, the model will be used for the design of a pilot program for downhole water re-injection into the aquifer simultaneously with oil production. Downhole water separation units attached to electric submersible pumps will be used to minimize surface fluid handling thereby improving recoveries per well and field economics while maintaining aquifer support. In cooperation with the DOE, results of the field studies as well as the new models developed and the fracture database will be shared with other operators. Numerous fields producing from the Monterey and analogous fractured reservoirs both onshore and offshore will benefit from the

  1. AN ADVANCED FRACTURE CHARACTERIZATION AND WELL PATH NAVIGATION SYSTEM FOR EFFECTIVE RE-DEVELOPMENT AND ENHANCEMENT OF ULTIMATE RECOVERY FROM THE COMPLEX MONTEREY RESERVOIR OF SOUTH ELLWOOD FIELD, OFFSHORE CALIFORNIA

    SciTech Connect

    Steve Horner

    2005-08-01

    Venoco Inc, intends to re-develop the Monterey Formation, a Class III basin reservoir, at South Ellwood Field, Offshore Santa Barbara, California. Well productivity in this field varies significantly. Cumulative Monterey production for individual wells has ranged from 260 STB to 8,700,000 STB. Productivity is primarily affected by how well the well path connects with the local fracture system and the degree of aquifer support. Cumulative oil recovery to date is a small percentage of the original oil in place. To embark upon successful re-development and to optimize reservoir management, Venoco intends to investigate, map and characterize field fracture patterns and the reservoir conduit system. State of the art borehole imaging technologies including FMI, dipole sonic and cross-well seismic, interference tests and production logs will be employed to characterize fractures and micro faults. These data along with the existing database will be used for construction of a novel geologic model of the fracture network. Development of an innovative fracture network reservoir simulator is proposed to monitor and manage the aquifer's role in pressure maintenance and water production. The new fracture simulation model will be used for both planning optimal paths for new wells and improving ultimate recovery. In the second phase of this project, the model will be used for the design of a pilot program for downhole water re-injection into the aquifer simultaneously with oil production. Downhole water separation units attached to electric submersible pumps will be used to minimize surface fluid handling thereby improving recoveries per well and field economics while maintaining aquifer support. In cooperation with the DOE, results of the field studies as well as the new models developed and the fracture database will be shared with other operators. Numerous fields producing from the Monterey and analogous fractured reservoirs both onshore and offshore will benefit from the

  2. Recovery Act Federal Register Notices | Department of Energy

    Energy Saver

    Information Center » 2009 Recovery Act » Recovery Act Federal Register Notices Recovery Act Federal Register Notices October 12, 2011 Federal Register Notice (PDF Version) on the DOE's invitation for public comment on its request to the Office of Management and Budget (OMB) to extend for three years the Information Collection Request Title: OE Recovery Act Financial Assistance Grants, OMB Control No. 1910-5149 that DOE is developing for submission to OMB pursuant to the Paperwork Reduction Act

  3. Business Owners: Prepare a Business Recovery Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    a Business Recovery Plan Business Owners: Prepare a Business Recovery Plan Business Owners: Prepare a Business Recovery Plan Smart business owners develop and test a written business recovery plan to support them through disasters and help them stay in operation. Planning ahead will help your company get back to business more quickly. Consider your risks-How might a disaster affect your business operations? What natural disasters are most likely where you operate? Identify your critical business

  4. Biomass Production and Nitrogen Recovery

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Project Peer Review WBS 4.2.2.10: Biomass Production and Nitrogen Recovery Date: March 23, 2015 Technology Area Review: Sustainability Principal Investigator: M. Cristina Negri Organization: Argonne National Laboratory This presentation does not contain any proprietary, confidential, or otherwise restricted information Goal Statement In the context of developing tools for landscape design approach to satisfy different societal goals (energy security, environmental protection, low-cost

  5. Resource Recovery Opportunities at America's Water Resource Recovery

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Facilities | Department of Energy Resource Recovery Opportunities at America's Water Resource Recovery Facilities Resource Recovery Opportunities at America's Water Resource Recovery Facilities Breakout Session 3A-Conversion Technologies III: Energy from Our Waste (Will we Be Rich in Fuel or Knee Deep in Trash by 2025?) Resource Recovery Opportunities at America's Water Resource Recovery Facilities Todd Williams, Deputy Leader for Wastewater Infrastructure Practice, CH2M HILL

  6. Solvent recycle/recovery

    SciTech Connect

    Paffhausen, M.W.; Smith, D.L.; Ugaki, S.N.

    1990-09-01

    This report describes Phase I of the Solvent Recycle/Recovery Task of the DOE Chlorinated Solvent Substitution Program for the US Air Force by the Idaho National Engineering Laboratory, EG G Idaho, Inc., through the US Department of Energy, Idaho Operations Office. The purpose of the task is to identify and test recovery and recycling technologies for proposed substitution solvents identified by the Biodegradable Solvent Substitution Program and the Alternative Solvents/Technologies for Paint Stripping Program with the overall objective of minimizing hazardous wastes. A literature search to identify recycle/recovery technologies and initial distillation studies has been conducted. 4 refs.

  7. Synthesis and development of processes for the recovery of sulfur from acid gases. Part 1, Development of a high-temperature process for removal of H{sub 2}S from coal gas using limestone -- thermodynamic and kinetic considerations; Part 2, Development of a zero-emissions process for recovery of sulfur from acid gas streams

    SciTech Connect

    Towler, G.P.; Lynn, S.

    1993-05-01

    Limestone can be used more effectively as a sorbent for H{sub 2}S in high-temperature gas-cleaning applications if it is prevented from undergoing calcination. Sorption of H{sub 2}S by limestone is impeded by sintering of the product CaS layer. Sintering of CaS is catalyzed by CO{sub 2}, but is not affected by N{sub 2} or H{sub 2}. The kinetics of CaS sintering was determined for the temperature range 750--900{degrees}C. When hydrogen sulfide is heated above 600{degrees}C in the presence of carbon dioxide elemental sulfur is formed. The rate-limiting step of elemental sulfur formation is thermal decomposition of H{sub 2}S. Part of the hydrogen thereby produced reacts with CO{sub 2}, forming CO via the water-gas-shift reaction. The equilibrium of H{sub 2}S decomposition is therefore shifted to favor the formation of elemental sulfur. The main byproduct is COS, formed by a reaction between CO{sub 2} and H{sub 2}S that is analogous to the water-gas-shift reaction. Smaller amounts of SO{sub 2} and CS{sub 2} also form. Molybdenum disulfide is a strong catalyst for H{sub 2}S decomposition in the presence of CO{sub 2}. A process for recovery of sulfur from H{sub 2}S using this chemistry is as follows: Hydrogen sulfide is heated in a high-temperature reactor in the presence of CO{sub 2} and a suitable catalyst. The primary products of the overall reaction are S{sub 2}, CO, H{sub 2} and H{sub 2}O. Rapid quenching of the reaction mixture to roughly 600{degrees}C prevents loss Of S{sub 2} during cooling. Carbonyl sulfide is removed from the product gas by hydrolysis back to CO{sub 2} and H{sub 2}S. Unreacted CO{sub 2} and H{sub 2}S are removed from the product gas and recycled to the reactor, leaving a gas consisting chiefly of H{sub 2} and CO, which recovers the hydrogen value from the H{sub 2}S. This process is economically favorable compared to the existing sulfur-recovery technology and allows emissions of sulfur-containing gases to be controlled to very low levels.

  8. American Recovery and Reinvestment Act

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    American Recovery and Reinvestment Act American Recovery and Reinvestment Act LANL was able to accelerate demolition and cleanup thanks to a 212 million award from the American...

  9. Recovery Act | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    With the passage of the American Recovery and Reinvestment Act of 2009 (Recovery Act), the Department of Energy (Department) will have new responsibilities and receive ...

  10. Exhaust Energy Recovery

    Energy.gov [DOE]

    Exhaust energy recovery proposed to achieve 10% fuel efficiency improvement and reduce or eliminate the need for increased heat rejectioncapacity for future heavy duty engines in Class 8 Tractors

  11. Recovery Act Milestones

    Energy.gov [DOE]

    Every 100 days, the Department of Energy is held accountable for a progress report on the American Recovery and Reinvestment Act. Update at 200 days, hosted by Matt Rogers, Senior Advisor to...

  12. Enhanced Oil Recovery

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Enhanced Oil Recovery As much as two-thirds of conventional crude oil discovered in U.S. fields remains unproduced, left behind due to the physics of fluid flow. In addition, ...

  13. Exhaust Gas Energy Recovery Technology Applications

    SciTech Connect

    Wagner, Robert M; Szybist, James P

    2014-01-01

    Exhaust waste heat recovery systems have the potential to significantly improve vehicle fuel economy for conventional and hybrid electric powertrains spanning passenger to heavy truck applications. This chapter discusses thermodynamic considerations and three classes of energy recovery technologies which are under development for vehicle applications. More specifically, this chapter describes the state-of-the-art in exhaust WHR as well as challenges and opportunities for thermodynamic power cycles, thermoelectric devices, and turbo-compounding systems.

  14. Integration of a "Passive Water Recovery" MEA into a Portable...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    To overcome this barrier, the research objective of the University of North Florida and its project partners is to develop an innovative "passive-water recovery" MEA ...

  15. Recovery Act Workers Demolish Facility Tied to Project Pluto...

    Office of Environmental Management (EM)

    MB) More Documents & Publications Nuclear Rocket Development Station at the Nevada Test Site 2010 ARRA Newsletters Recovery Act Changes Hanford Skyline with Explosive Demolitions

  16. Water-related Issues Affecting Conventional Oil and Gas Recovery...

    Office of Scientific and Technical Information (OSTI)

    Water-related Issues Affecting Conventional Oil and Gas Recovery and Potential Oil-Shale Development in the Uinta Basin, Utah Michael Vanden Berg; Paul Anderson; Janae Wallace;...

  17. Treasury, Energy Announce More Than $3 Billion in Recovery Act...

    Energy Saver

    3 Billion in Recovery Act Funds for Renewable Energy Projects Treasury, Energy Announce More ... in urban and rural America by helping to develop domestic sources of clean energy. ...

  18. American Recovery and Reinvestment Act of 2009: Bioenergy Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... Consortia Process Development Unit Sustainability E85 Engine Optimization Research Intermediate Blends Testing E85 andor Blender Pumps Recovery Act Projects* Infrastructure ...

  19. Mineral Recovery from Geothermal Fluids | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Metals and Compounds from Geothermal Fluids California Simbol Mining Corp. Recovery Act: Enhanced Geothermal Systems Component Research and DevelopmentAnalysis Albuquerque, NM,...

  20. Recovery Act | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Recovery Act Recovery Act Center Map PERFORMANCE The Department estimates the $6 billion Recovery Act investment will allow us to complete work now that would cost approximately $13 billion in future years, saving $7 billion. As Recovery Act work is completed through the cleanup of contaminated sites, facilities, and material disposition, these areas will becoming available for potential reuse by other entities. Recovery Act funding is helping the Department reach our cleanup goals faster.

  1. Recovery Act State Summaries | Department of Energy

    Energy.gov [DOE] (indexed site)

    Montana Recovery Act State Memo Nebraska Recovery Act State Memo Nevada Recovery Act State Memo New Hampshire Recovery Act State Memo New Jersey Recovery Act State Memo New Mexico ...

  2. DEVELOPMENT OF IMPROVED ANAEROBIC GROWTH OF BACILLUS MOJAVENSIS STRAIN JF-2 FOR THE PURPOSE OF IMPROVED ANAEROBIC BIOSURFACTANT PRODUCTION FOR ENHANCED OIL RECOVERY

    SciTech Connect

    M.J. McInerney; M. Folmsbee; D. Nagle

    2004-05-31

    Our work focuses on the use of microorganisms to recover petroleum hydrocarbons that remain entrapped after current recovery technologies reach their economic limit. Capillary forces between the hydrocarbon and aqueous phases are largely responsible for trapping the hydrocarbons in the pores of the rock and large reductions in the interfacial tension between the hydrocarbon and aqueous phases are needed for hydrocarbon mobilization (1-3, 10, 11). Microorganisms produce a variety of biosurfactants (4), several of which generate the ultra low interfacial tensions needed for hydrocarbon mobilization (4, 5, 8). In particular, the lipopeptide biosurfactant produced by Bacillus mojavensis strain JF-2 reduces the interfacial tension between hydrocarbon and aqueous phases to very low levels (<0.016 mN/m) (8) (9). B. mojavensis JF-2 grows under the environmental conditions found in many oil reservoirs, i. e., anaerobic, NaCl concentrations up to 80 g l{sup -1}, and temperatures up to 45 C (6, 7), making it ideally suited for in situ applications. However, anaerobic growth of B. mojavensis JF-2 was inconsistent and difficult to replicate, which limited its use for in situ applications. Our initial studies revealed that enzymatic digests, such as Proteose Peptone, were required for anaerobic growth of Bacillus mojavensis JF-2. Subsequent purification of the growth-enhancing factor in Proteose Peptone resulted in the identification of the growth-enhancing factor as DNA or deoxyribonucleosides. The addition of salmon sperm DNA, herring sperm DNA, E. coli DNA or synthetic DNA (single or double stranded) to Medium E all supported anaerobic growth of JF-2. Further, we found that JF-2 required all four deoxyribonucleosides (deoxyadeonosine, deoxyguanosine, deoxycytidine and thymidine) for growth under strict anaerobic conditions. The requirement for the deoxyribonucleosides did not occur under aerobic growth conditions. DNA was not used as a sole energy source; sucrose was required

  3. Recovery of EUVL substrates

    SciTech Connect

    Vernon, S.P.; Baker, S.L.

    1995-01-19

    Mo/Si multilayers, were removed from superpolished zerodur and fused silica substrates with a dry etching process that, under suitable processing conditions, produces negligible change in either the substrate surface figure or surface roughness. Full recovery of the initial normal incidence extreme ultra-violet (EUV) reflectance response has been demonstrated on reprocessed substrates.

  4. Low and high Temperature Dual Thermoelectric Generation Waste Heat Recovery System for Light-Duty Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE)

    Developing a low and high temperature dual thermoelectric generation waste heat recovery system for light-duty vehicles.

  5. Recovery Act: State Assistance for Recovery Act Related Electricity

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Policies | Department of Energy State Assistance for Recovery Act Related Electricity Policies Recovery Act: State Assistance for Recovery Act Related Electricity Policies $44 Million for State Public Utility Commissions State public utility commissions (PUCs), which regulate and oversee electricity projects in their states, will be receiving more than $44.2 million in Recovery Act funding to hire new staff and retrain existing employees to ensure they have the capacity to quickly and

  6. New York Recovery Act Snapshot

    Energy.gov [DOE]

    The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in New York are supporting a...

  7. Engineering analysis of recovery boiler superheater corrosion

    SciTech Connect

    Fond, J.F. La; Verloop, A.; Walsh, A.R.

    1994-12-31

    The occurrence of fire-side corrosion in kraft recovery boiler superheaters has increased in recent years due to the higher demands placed on recovery boilers. Recent research has led to new fundamental understanding of the mechanisms of corrosion in recovery boiler superheaters. However, there has been a need for development of engineering tools that combine fundamental data on superheater deposit chemistry, corrosion mechanisms, and heat transfer analysis to allow practical solutions to this problem. Factors that play an important role in superheater corrosion include superheater design and boiler operating parameters. These factors are reviewed thoroughly upon initiating an engineering analysis effort. The focal point of the superheater corrosion analysis is a comprehensive computer-based heat transfer analysis. This paper describes the engineering analysis process that has been developed and illustrates its application through three case studies.

  8. Recovery Act: Oxy-Combustion Technology Development for Industrial-Scale Boiler Applications. Task 4 - Testing in Alstom's 15 MWth Boiler Simulation Facility

    SciTech Connect

    Levasseur, Armand

    2014-04-30

    Alstom Power Inc. (Alstom), under U.S. DOE/NETL Cooperative Agreement No. DE-NT0005290, is conducting a development program to generate detailed technical information needed for application of oxy-combustion technology. The program is designed to provide the necessary information and understanding for the next step of large-scale commercial demonstration of oxy combustion in tangentially fired boilers and to accelerate the commercialization of this technology. The main project objectives include: Design and develop an innovative oxyfuel system for existing tangentially-fired boiler units that minimizes overall capital investment and operating costs; Evaluate performance of oxyfuel tangentially fired boiler systems in pilot scale tests at Alstom’s 15 MWth tangentially fired Boiler Simulation Facility (BSF); Address technical gaps for the design of oxyfuel commercial utility boilers by focused testing and improvement of engineering and simulation tools; Develop the design, performance and costs for a demonstration scale oxyfuel boiler and auxiliary systems; Develop the design and costs for both industrial and utility commercial scale reference oxyfuel boilers and auxiliary systems that are optimized for overall plant performance and cost; and, Define key design considerations and develop general guidelines for application of results to utility and different industrial applications. The project was initiated in October 2008 and the scope extended in 2010 under an ARRA award. The project is scheduled for completion by April 30, 2014. Central to the project is 15 MWth testing in the BSF, which provided in-depth understanding of oxy-combustion under boiler conditions, detailed data for improvement of design tools, and key information for application to commercial scale oxy-fired boiler design. Eight comprehensive 15 MWth oxy-fired test campaigns were performed with different coals, providing detailed data on combustion, emissions, and thermal behavior over a matrix of

  9. DOE Announces $29 Million in Recovery Act Awards for Weatherization

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Training Centers | Department of Energy 9 Million in Recovery Act Awards for Weatherization Training Centers DOE Announces $29 Million in Recovery Act Awards for Weatherization Training Centers June 4, 2010 - 12:00am Addthis WASHINGTON - The U.S. Department of Energy announced today that 34 projects in 27 states have been selected to receive $29 million under the American Recovery and Reinvestment Act to develop and expand weatherization training centers across the country. These projects

  10. American Recovery and Reinvestment Act

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    American Recovery and Reinvestment Act American Recovery and Reinvestment Act LANL was able to accelerate demolition and cleanup thanks to a $212 million award from the American Recovery and Reinvestment Act. August 1, 2013 Excavation trench and enclosure at TA-21. To protect air quality, MDA B is excavated under a dome. By September 2011, all projects were complete. In 2010 and 2011, LANL received $212 million in funding from the American Recovery and Reinvestment Act to complete three

  11. Recovery Act State Memos Alabama

    Energy.gov [DOE] (indexed site)

    Updated July 2010 | Department of Energy A chart indicating the name of awardee,Recovery Act funding awarded, total project value including: cost share, headquarters location for lead applicant,brief project description,map of coverage area for those involved in the Recovery Act selections for Smart Grid Investment grant awards. There is a November 2011 Update to the "Recovery Act Selections for Smart Grid Investment Grant Awards - By Category" file. Recovery Act Selections for

  12. [Waste water heat recovery system

    SciTech Connect

    Not Available

    1993-04-28

    The production capabilities for and field testing of the heat recovery system are described briefly. Drawings are included.

  13. Recovery Act State Memos Tennessee

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Recovery Act State Memos Tennessee For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  14. URANIUM RECOVERY PROCESS

    DOEpatents

    Stevenson, J.W.; Werkema, R.G.

    1959-07-28

    The recovery of uranium from magnesium fluoride slag obtained as a by- product in the production of uranium metal by the bomb reduction prccess is presented. Generally the recovery is accomplished by finely grinding the slag, roasting ihe ground slag air, and leaching the roasted slag with a hot, aqueous solution containing an excess of the sodium bicarbonate stoichiometrically required to form soluble uranium carbonate complex. The roasting is preferably carried out at between 425 and 485 deg C for about three hours. The leaching is preferably done at 70 to 90 deg C and under pressure. After leaching and filtration the uranium may be recovered from the clear leach liquor by any desired method.

  15. Elemental sulfur recovery process

    DOEpatents

    Flytzani-Stephanopoulos, Maria; Hu, Zhicheng

    1993-01-01

    An improved catalytic reduction process for the direct recovery of elemental sulfur from various SO.sub.2 -containing industrial gas streams. The catalytic process provides combined high activity and selectivity for the reduction of SO.sub.2 to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over certain catalyst formulations based on cerium oxide. The process is a single-stage, catalytic sulfur recovery process in conjunction with regenerators, such as those used in dry, regenerative flue gas desulfurization or other processes, involving direct reduction of the SO.sub.2 in the regenerator off gas stream to elemental sulfur in the presence of a catalyst.

  16. Elemental sulfur recovery process

    DOEpatents

    Flytzani-Stephanopoulos, M.; Zhicheng Hu.

    1993-09-07

    An improved catalytic reduction process for the direct recovery of elemental sulfur from various SO[sub 2]-containing industrial gas streams. The catalytic process provides combined high activity and selectivity for the reduction of SO[sub 2] to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over certain catalyst formulations based on cerium oxide. The process is a single-stage, catalytic sulfur recovery process in conjunction with regenerators, such as those used in dry, regenerative flue gas desulfurization or other processes, involving direct reduction of the SO[sub 2] in the regenerator off gas stream to elemental sulfur in the presence of a catalyst. 4 figures.

  17. Process for LPG recovery

    SciTech Connect

    Khan, Sh. A.; Haliburton, J.

    1985-03-26

    An improved process is described for the separation and recovery of substantially all the propane and heavier hydrocarbon components in a hydrocarbon gaseous feedstream. In this process, the vapor stream from a deethanizer is cooled to liquefaction and contacted with a vapor phase from the hydrocarbon gaseous feedstream. The contact takes place within a direct heat exchanger, and the resulting vapor fraction, which is essentially ethane and methane, is the gaseous product of the process.

  18. DOE Recovery Act Field Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Recovery Act Field Projects DOE Recovery Act Field Projects DOE Recovery Act Field Projects

  19. Huntington Resource Recovery Facility Biomass Facility | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Resource Recovery Facility Biomass Facility Jump to: navigation, search Name Huntington Resource Recovery Facility Biomass Facility Facility Huntington Resource Recovery Facility...

  20. LANL exceeds Early Recovery Act recycling goals

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    LANL exceeds Early Recovery Act recycling goals LANL exceeds Early Recovery Act recycling goals Lab demolition projects under the American Recovery and Reinvestment Act have...

  1. Metal recovery from porous materials (Patent) | DOEPatents

    Office of Scientific and Technical Information (OSTI)

    Metal recovery from porous materials Title: Metal recovery from porous materials The present invention relates to recovery of metals. More specifically, the present invention ...

  2. Recovery act. Characterizing structural controls of EGS-candidate and conventional geothermal reservoirs in the Great Basin. Developing successful exploration strategies in extended terranes

    SciTech Connect

    Faulds, James

    2015-06-25

    We conducted a comprehensive analysis of the structural controls of geothermal systems within the Great Basin and adjacent regions. Our main objectives were to: 1) Produce a catalogue of favorable structural environments and models for geothermal systems. 2) Improve site-specific targeting of geothermal resources through detailed studies of representative sites, which included innovative techniques of slip tendency analysis of faults and 3D modeling. 3) Compare and contrast the structural controls and models in different tectonic settings. 4) Synthesize data and develop methodologies for enhancement of exploration strategies for conventional and EGS systems, reduction in the risk of drilling non-productive wells, and selecting the best EGS sites.

  3. Final Report - Recovery Act - Development and application of processing and process control for nano-composite materials for lithium ion batteries

    SciTech Connect

    Daniel, Claus; Armstrong, Beth L; Maxey, L Curt; Sabau, Adrian S; Wang, Hsin; Hagans, Patrick; Babinec, Sue

    2013-08-01

    Oak Ridge National Laboratory and A123 Systems, Inc. collaborated on this project to develop a better understanding, quality control procedures, and safety testing for A123 System s nanocomposite separator (NCS) technology which is a cell based patented technology and separator. NCS demonstrated excellent performance. x3450 prismatic cells were shown to survive >8000 cycles (1C/2C rate) at room temperature with greater than 80% capacity retention with only NCS present as an alternative to conventional polyolefin. However, for a successful commercialization, the coating conditions required to provide consistent and reliable product had not been optimized and QC techniques for being able to remove defective material before incorporation into a cell had not been developed. The work outlined in this report addresses these latter two points. First, experiments were conducted to understand temperature profiles during the different drying stages of the NCS coating when applied to both anode and cathode. One of the more interesting discoveries of this study was the observation of the large temperature decrease experienced by the wet coating between the end of the infrared (IR) drying stage and the beginning of the exposure to the convection drying oven. This is not a desirable situation as the temperature gradient could have a deleterious effect on coating quality. Based on this and other experimental data a radiative transfer model was developed for IR heating that also included a mass transfer module for drying. This will prove invaluable for battery coating optimization especially where IR drying is being employed. A stress model was also developed that predicts that under certain drying conditions tensile stresses are formed in the coating which could lead to cracking that is sometimes observed after drying is complete. Prediction of under what conditions these stresses form is vital to improving coating quality. In addition to understanding the drying process other

  4. Development of Thermoelectric Technology for Automotive Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Thermoelectric Technology for Automotive Waste Heat Recovery Development of Thermoelectric Technology for Automotive Waste Heat Recovery Overview and status of project to develop ...

  5. Synthesis, Development, and Testing of High-Surface-Area Polymer-Based Adsorbents for the Selective Recovery of Uranium from Seawater

    DOE PAGES [OSTI]

    Oyola, Yatsandra; Janke, Christopher J.; Dai, Sheng

    2016-02-29

    The ocean contains uranium with an approximate concentration of 3.34 ppb, which can serve as an incredible supply source to sustain nuclear energy in the United States. Unfortunately, technology currently available to recover uranium from seawater is not efficient enough and mining uranium on land is still more economical. For this study, we have developed polymer-based adsorbents with high uranium adsorption capacities by grafting amidoxime onto high-surface-area polyethylene (PE) fibers. Various process conditions have been screened, in combination with developing a rapid testing protocol (<24 h), to optimize the process. These adsorbents are synthesized through radiation-induced grafting of acrylonitrile (AN)more » and methacrylic acid (MAA) onto PE fibers, followed by the conversion of nitriles to amidoximes and basic conditioning. In addition, the uranium adsorption capacity, measured in units of gU/kgads, is greatly increased by reducing the diameter of the PE fiber or changing its morphology. An increase in the surface area of the PE polymer fiber allows for more grafting sites that are positioned in more-accessible locations, thereby increasing access to grafted molecules that would normally be located in the interior of a fiber with a larger diameter. Polymer fibers with hollow morphologies are able to adsorb beyond 1 order of magnitude more uranium from simulated seawater than current commercially available adsorbents. Finally, several high-surface-area fibers were tested in natural seawater and were able to extract 5–7 times more uranium than any adsorbent reported to date.« less

  6. New Recovery Act Funding Boosts Industrial Carbon Capture and Storage

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Research and Development | Department of Energy Recovery Act Funding Boosts Industrial Carbon Capture and Storage Research and Development New Recovery Act Funding Boosts Industrial Carbon Capture and Storage Research and Development September 7, 2010 - 12:00am Addthis Washington, D.C. - U.S. Energy Secretary Steven Chu today announced the selection of 22 projects that will accelerate carbon capture and storage research and development for industrial sources. Funded with more than $575

  7. New Recovery Act Funding Boosts Industrial Carbon Capture and Storage

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Research and Development | Department of Energy Recovery Act Funding Boosts Industrial Carbon Capture and Storage Research and Development New Recovery Act Funding Boosts Industrial Carbon Capture and Storage Research and Development September 7, 2010 - 1:00pm Addthis Washington, DC - U.S. Energy Secretary Steven Chu today announced the selection of 22 projects that will accelerate carbon capture and storage research and development for industrial sources. Funded with more than $575 million

  8. Water-related Issues Affecting Conventional Oil and Gas Recovery and Potential Oil-Shale Development in the Uinta Basin, Utah

    SciTech Connect

    Berg, Michael Vanden; Anderson, Paul; Wallace, Janae; Morgan, Craig; Carney, Stephanie

    2012-04-30

    in the subsurface of the Uinta Basin using a combination of water chemistry data collected from various sources and by analyzing geophysical well logs. By re-mapping the base of the moderately saline aquifer using more robust data and more sophisticated computer-based mapping techniques, regulators now have the information needed to more expeditiously grant water disposal permits while still protecting freshwater resources. Part 2: Eastern Uinta Basin gas producers have identified the Birds Nest aquifer, located in the Parachute Creek Member of the Green River Formation, as the most promising reservoir suitable for large-volume saline water disposal. This aquifer formed from the dissolution of saline minerals that left behind large open cavities and fractured rock. This new and complete understanding the aquifer?s areal extent, thickness, water chemistry, and relationship to Utah?s vast oil shale resource will help operators and regulators determine safe saline water disposal practices, directly impacting the success of increased hydrocarbon production in the region, while protecting potential future oil shale production. Part 3: In order to establish a baseline of water quality on lands identified by the U.S. Bureau of Land Management as having oil shale development potential in the southeastern Uinta Basin, the UGS collected biannual water samples over a three-year period from near-surface aquifers and surface sites. The near-surface and relatively shallow groundwater quality information will help in the development of environmentally sound water-management solutions for a possible future oil shale and oil sands industry and help assess the sensitivity of the alluvial and near-surface bedrock aquifers. This multifaceted study will provide a better understanding of the aquifers in Utah?s Uinta Basin, giving regulators the tools needed to protect precious freshwater resources while still allowing for increased hydrocarbon production.

  9. Inherently safe in situ uranium recovery

    DOEpatents

    Krumhansl, James L; Brady, Patrick V

    2014-04-29

    An in situ recovery of uranium operation involves circulating reactive fluids through an underground uranium deposit. These fluids contain chemicals that dissolve the uranium ore. Uranium is recovered from the fluids after they are pumped back to the surface. Chemicals used to accomplish this include complexing agents that are organic, readily degradable, and/or have a predictable lifetime in an aquifer. Efficiency is increased through development of organic agents targeted to complexing tetravalent uranium rather than hexavalent uranium. The operation provides for in situ immobilization of some oxy-anion pollutants under oxidizing conditions as well as reducing conditions. The operation also artificially reestablishes reducing conditions on the aquifer after uranium recovery is completed. With the ability to have the impacted aquifer reliably remediated, the uranium recovery operation can be considered inherently safe.

  10. Department of Energy Recovery Act Investment in Biomass Technologies

    Office of Energy Efficiency and Renewable Energy (EERE)

    The American Recovery and Reinvestment Act of 2009 (Recovery Act) provided more than $36 billion to the Department of Energy (DOE) to accelerate work on existing projects, undertake new and transformative research, and deploy clean energy technologies across the nation. Of this funding, $1029 million is supporting innovative work to advance biomass research, development, demonstration, and deployment.

  11. Department of Energy Recovery Act Investment in Biomass Technologies

    SciTech Connect

    2010-11-01

    The American Recovery and Reinvestment Act of 2009 (Recovery Act) provided more than $36 billion to the Department of Energy (DOE) to accelerate work on existing projects, undertake new and transformative research, and deploy clean energy technologies across the nation. Of this funding, $1029 million is supporting innovative work to advance biomass research, development, demonstration, and deployment.

  12. Recovery of organic acids

    DOEpatents

    Verser, Dan W. (Menlo Park, CA); Eggeman, Timothy J. (Lakewood, CO)

    2011-11-01

    A method is disclosed for the recovery of an organic acid from a dilute salt solution in which the cation of the salt forms an insoluble carbonate salt. A tertiary amine and CO.sub.2 are introduced to the solution to form the insoluble carbonate salt and a complex between the acid and an amine. A water immiscible solvent, such as an alcohol, is added to extract the acid/amine complex from the dilute salt solution to a reaction phase. The reaction phase is continuously dried and a product between the acid and the solvent, such as an ester, is formed.

  13. Pyrolysis with staged recovery

    DOEpatents

    Green, Norman W.; Duraiswamy, Kandaswamy; Lumpkin, Robert E.; Winter, Bruce L.

    1979-03-20

    In a continuous process for recovery of values contained in a solid carbonaceous material, the carbonaceous material is comminuted and then subjected to flash pyrolysis in the presence of a particulate heat source fed over an overflow weir to form a pyrolysis product stream containing a carbon containing solid residue and volatilized hydrocarbons. After the carbon containing solid residue is separated from the pyrolysis product stream, values are obtained by condensing volatilized hydrocarbons. The particulate source of heat is formed by oxidizing carbon in the solid residue.

  14. URANIUM RECOVERY PROCESS

    DOEpatents

    Bailes, R.H.; Long, R.S.; Olson, R.S.; Kerlinger, H.O.

    1959-02-10

    A method is described for recovering uranium values from uranium bearing phosphate solutions such as are encountered in the manufacture of phosphate fertilizers. The solution is first treated with a reducing agent to obtain all the uranium in the tetravalent state. Following this reduction, the solution is treated to co-precipitate the rcduced uranium as a fluoride, together with other insoluble fluorides, thereby accomplishing a substantially complete recovery of even trace amounts of uranium from the phosphate solution. This precipitate usually takes the form of a complex fluoride precipitate, and after appropriate pre-treatment, the uranium fluorides are leached from this precipitate and rccovered from the leach solution.

  15. Heat recovery casebook

    SciTech Connect

    Lawn, J.

    1980-10-01

    Plants and factories could apply a great variety of sources and uses for valuable waste heat. Applications may be evaluated on the basis of real use for a specific waste heat, high-enough temperature and quality of work, and feasibility of mechanical heat transfer method. Classification may be by temperature, application, heat-transfer equipment, etc. Many buildings and industrial processes lend themselves well to heat-recovery strategies. Five case histories describe successful systems used by the Continental Corporation Data Center; Nabisco, Inc.; Kasper Foundry Company; Seven Up Bottling Company of Indiana; and Lehr Precision Tool company. (DCK)

  16. Recovery of organic acids

    DOEpatents

    Verser, Dan W. (Golden, CO); Eggeman, Timothy J. (Lakewood, CO)

    2009-10-13

    A method is disclosed for the recovery of an organic acid from a dilute salt solution in which the cation of the salt forms an insoluble carbonate salt. A tertiary amine and CO.sub.2 are introduced to the solution to form the insoluble carbonate salt and a complex between the acid and an amine. A water immiscible solvent, such as an alcohol, is added to extract the acid/amine complex from the dilute salt solution to a reaction phase. The reaction phase is continuously dried and a product between the acid and the solvent, such as an ester, is formed.

  17. Funding Opportunity Announcement: Recovery Act ? Energy Efficiency...

    Office of Environmental Management (EM)

    Funding Opportunity Announcement: Recovery Act Energy Efficiency and Conversation Block Grants Formula Grants Funding Opportunity Announcement: Recovery Act Energy...

  18. Incorporating Energy Efficiency into Disaster Recovery Efforts...

    Energy Saver

    Disaster Recovery Efforts Incorporating Energy Efficiency into Disaster Recovery Efforts Better Buildings Residential Network Program Sustainability Peer Exchange Call Series: ...

  19. Recovery of uranium from seawater

    SciTech Connect

    Sugasaka, K.; Katoh, S.; Takai, N.; Takahashi, H.; Umezawa, Y.

    1981-01-01

    Seawater contains various elements in solution. Deuterium, lithium, and uranium are the important ingredients for energy application at present and in the future. This paper deals with the recovery of uranium from seawater, with emphasis on the development of an adsorbent with high selectivity and rate of adsorption for uranium. Polyacrylamidoxime chelating resins were synthesized from various co-polymers of acrylonitrile and cross-linking agents. The resulting resins with the chelating amidoxime group showed selective adsorption for uranium in seawater. The amount of uranium adsorbed from seawater at room temperature reached 3.2 mg/g resin after 180 days. Polyacrylamidoxime fiber, which was prepared from polyacrylonitrile fiber and hydroxylamine, showed a high rate of adsorption for uranium. The polyacrylamidoxime fiber conditioned with 1 M HC1 and 1 M NaOH adsorbed 4 mg U/g fiber from seawater in ten days. 9 figures, 6 tables.

  20. Resource recovery from coal residues

    SciTech Connect

    Jones, G. Jr.; Canon, R.M.

    1980-01-01

    Several processes are being developed to recover metals from coal combustion and conversion residues. Methods to obtain substantial amounts of aluminum, iron, and titanium from these wastes are presented. The primary purpose of our investigation is to find a process that is economically sound or one that at least will partially defray the costs of waste processing. A cursory look at the content of fly ash enables one to see the merits of recovery of these huge quantities of valuable resources. The major constituents of fly ash of most interest are aluminum (14.8%), iron (7.5%), and titanium (1.0%). If these major elements could be recovered from the fly ash produced in the United States (60 million tons/year), bauxite would not have to be imported, iron ore production could be increased, and titanium production could be doubled.

  1. Sulfur recovery process

    SciTech Connect

    Hise, R.E.; Cook, W.J.

    1991-06-04

    This paper describes a method for recovering sulfur from a process feed stream mixture of gases comprising sulfur-containing compounds including hydrogen sulfide using the Claus reaction to convert sulfur-containing compounds to elemental sulfur and crystallization to separate sulfur-containing compounds from a tail gas of the Claus reaction for further processing as a recycle stream. It comprises: providing a Claus feed stream containing a stoichiometric excess of hydrogen sulfide, the Claus feed stream including the process feed stream and the recycles stream; introducing the Claus feed stream and an oxidizing agent into a sulfur recovery unit for converting sulfur-containing compounds in the Claus feed stream to elemental sulfur; withdrawing the tail gas from the sulfur recovery unit; separating water from the tail gas to producing a dehydrated tail gas; separating sulfur-containing compounds including carbonyl sulfide from the dehydrated tail gas as an excluded material by crystallization and withdrawing an excluded material-enriched output from the crystallization to produce the recycle stream; and combining the recycle stream with the process feed stream to produce the Claus feed stream.

  2. Resource Recovery Opportunities at America's Water Resource Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    at America's Water Resource Recovery Facilities Todd Williams, Deputy Leader for Wastewater Infrastructure Practice, CH2M HILL williamsbiomass2014.pdf (1.26 MB) More ...

  3. Recovery Act Workforce Development | Department of Energy

    Office of Environmental Management (EM)

    the next generation of workers in the utility and electrical manufacturing industries. ... These workers will help to modernize the nation's electrical grid and implement smart grid ...

  4. Development of Marine Thermoelectric Heat Recovery Systems

    Energy.gov [DOE]

    Discusses benefits of integration of thermoelectrics into the marine industry, research program milestones, and prototype TEG design and integration

  5. Recovery Act State Memos Alaska

    Energy.gov [DOE] (indexed site)

    Alaska For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  6. Recovery Act State Memos Arizona

    Energy.gov [DOE] (indexed site)

    Arizona For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  7. Recovery Act State Memos Arkansas

    Energy.gov [DOE] (indexed site)

    Arkansas For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  8. Recovery Act State Memos California

    Energy.gov [DOE] (indexed site)

    California For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  9. Recovery Act State Memos Connecticut

    Energy.gov [DOE] (indexed site)

    Connecticut For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  10. Recovery Act State Memos Georgia

    Energy.gov [DOE] (indexed site)

    Georgia For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  11. Recovery Act State Memos Guam

    Energy.gov [DOE] (indexed site)

    Guam For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  12. Recovery Act State Memos Hawaii

    Energy.gov [DOE] (indexed site)

    Hawaii For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  13. Recovery Act State Memos Idaho

    Energy.gov [DOE] (indexed site)

    Idaho For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  14. Recovery Act State Memos Illinois

    Energy.gov [DOE] (indexed site)

    Illinois For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  15. Recovery Act State Memos Indiana

    Energy.gov [DOE] (indexed site)

    Indiana For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  16. Recovery Act State Memos Iowa

    Energy.gov [DOE] (indexed site)

    Iowa For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  17. Recovery Act State Memos Kansas

    Energy.gov [DOE] (indexed site)

    Kansas For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  18. Recovery Act State Memos Kentucky

    Energy.gov [DOE] (indexed site)

    Kentucky For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  19. Recovery Act State Memos Maryland

    Energy.gov [DOE] (indexed site)

    Maryland For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  20. Recovery Act State Memos Massachusetts

    Energy.gov [DOE] (indexed site)

    Massachusetts For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  1. Recovery Act State Memos Michigan

    Energy.gov [DOE] (indexed site)

    Michigan For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  2. Recovery Act State Memos Minnesota

    Energy.gov [DOE] (indexed site)

    Minnesota For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  3. Recovery Act State Memos Mississippi

    Energy.gov [DOE] (indexed site)

    Mississippi For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  4. Recovery Act State Memos Missouri

    Energy.gov [DOE] (indexed site)

    Missouri For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  5. Recovery Act State Memos Montana

    Energy.gov [DOE] (indexed site)

    Montana For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  6. Recovery Act State Memos Nebraska

    Energy.gov [DOE] (indexed site)

    Nebraska For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  7. Recovery Act State Memos Oklahoma

    Energy.gov [DOE] (indexed site)

    Oklahoma For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  8. Recovery Act State Memos Pennsylvania

    Energy.gov [DOE] (indexed site)

    Pennsylvania For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  9. Recovery Act State Memos Texas

    Energy.gov [DOE] (indexed site)

    Tennessee For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  10. Recovery Act State Memos Utah

    Energy.gov [DOE] (indexed site)

    Utah For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  11. Recovery Act State Memos Vermont

    Energy.gov [DOE] (indexed site)

    Vermont For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  12. Recovery Act State Memos Virginia

    Energy.gov [DOE] (indexed site)

    Virginia For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  13. Recovery Act State Memos Washington

    Energy.gov [DOE] (indexed site)

    Washington For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  14. Recovery Act State Memos Wyoming

    Energy.gov [DOE] (indexed site)

    Wyoming For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  15. Recovery Act | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    EV Everywhere: Electric Vehicle Benefits Recovery Act Plug-in electric vehicles (also known as electric cars or EVs) are connected, fun, and practical. They can reduce emissions, ...

  16. Register file soft error recovery

    SciTech Connect

    Fleischer, Bruce M.; Fox, Thomas W.; Wait, Charles D.; Muff, Adam J.; Watson, III, Alfred T.

    2013-10-15

    Register file soft error recovery including a system that includes a first register file and a second register file that mirrors the first register file. The system also includes an arithmetic pipeline for receiving data read from the first register file, and error detection circuitry to detect whether the data read from the first register file includes corrupted data. The system further includes error recovery circuitry to insert an error recovery instruction into the arithmetic pipeline in response to detecting the corrupted data. The inserted error recovery instruction replaces the corrupted data in the first register file with a copy of the data from the second register file.

  17. Recovery Act | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    RECIPIENTS Smart Grid Investment Grant 3,482,831,000 99 ... Transmission Planning 80,000,000 6 State Assistance for Recovery Act Related Electricity Policies ...

  18. Recovery Act | Department of Energy

    Energy.gov [DOE] (indexed site)

    to increase our supply of clean, renewable energy. July 11, 2013 Demand Response: Lessons Learned with an Eye to the Future Under the Recovery Act, the Energy Department...

  19. Recovery Newsletters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Newsletters Recovery Newsletters RSS October 1, 2011 2011 ARRA Newsletters December 1, 2010 2010 ARRA Newsletters November 1, 2009 2009 ARRA Newsletters

  20. Enhanced oil recovery system

    DOEpatents

    Goldsberry, Fred L.

    1989-01-01

    All energy resources available from a geopressured geothermal reservoir are used for the production of pipeline quality gas using a high pressure separator/heat exchanger and a membrane separator, and recovering waste gas from both the membrane separator and a low pressure separator in tandem with the high pressure separator for use in enhanced oil recovery, or in powering a gas engine and turbine set. Liquid hydrocarbons are skimmed off the top of geothermal brine in the low pressure separator. High pressure brine from the geothermal well is used to drive a turbine/generator set before recovering waste gas in the first separator. Another turbine/generator set is provided in a supercritical binary power plant that uses propane as a working fluid in a closed cycle, and uses exhaust heat from the combustion engine and geothermal energy of the brine in the separator/heat exchanger to heat the propane.

  1. Speech recovery device

    DOEpatents

    Frankle, Christen M.

    2004-04-20

    There is provided an apparatus and method for assisting speech recovery in people with inability to speak due to aphasia, apraxia or another condition with similar effect. A hollow, rigid, thin-walled tube with semi-circular or semi-elliptical cut out shapes at each open end is positioned such that one end mates with the throat/voice box area of the neck of the assistor and the other end mates with the throat/voice box area of the assisted. The speaking person (assistor) makes sounds that produce standing wave vibrations at the same frequency in the vocal cords of the assisted person. Driving the assisted person's vocal cords with the assisted person being able to hear the correct tone enables the assisted person to speak by simply amplifying the vibration of membranes in their throat.

  2. Energy recovery system

    DOEpatents

    Moore, Albert S.; Verhoff, Francis H.

    1980-01-01

    The present invention is directed to an improved wet air oxidation system and method for reducing the chemical oxygen demand (COD) of waste water used from scrubbers of coal gasification plants, with this COD reduction being sufficient to effectively eliminate waste water as an environmental pollutant. The improvement of the present invention is provided by heating the air used in the oxidation process to a temperature substantially equal to the temperature in the oxidation reactor before compressing or pressurizing the air. The compression of the already hot air further heats the air which is then passed in heat exchange with gaseous products of the oxidation reaction for "superheating" the gaseous products prior to the use thereof in turbines as the driving fluid. The superheating of the gaseous products significantly minimizes condensation of gaseous products in the turbine so as to provide a substantially greater recovery of mechanical energy from the process than heretofore achieved.

  3. A field laboratory for improved oil recovery

    SciTech Connect

    Hildebrandt, A.F.; McDonald, J.; Claridge, E.; Killough, J.

    1992-09-01

    The purpose of Annex III of the Memorandum of Understanding, undertaken by the Houston Petroleum Research Center at the University of Houston, was to develop a field laboratory for research in improved oil recovery using a Gulf Coast reservoir in Texas. The participants: (1) make a field site selection and conducted a high resolution seismic survey in the demonstration field, (2) obtained characteristics of the reservoir (3) developed an evaluation of local flood efficiency in different parts of the demonstration reservoir, (4) used diverse methodology to evaluate the potential recovery of the remaining oil in the test reservoir, (5) developed cross-well seismic tomography, and (6) will transfer the learned technologies to oil operators through publication and workshops. This abstract is an overview of these tasks.

  4. Shell boosts recovery at Kernridge

    SciTech Connect

    Moore, S.

    1984-01-01

    Since acquiring the Kernridge property in December 1979, Shell Oil Co. has drilled more than 1,800 wells and steadily increased production from 42,000 to 89,000 b/d of oil. Currently, the Kernridge Production Division of Shell California Production Inc. (SCPI), a newly formed subsidiary of Shell Oil Co., is operator for the property. The property covers approximately 35,000 mostly contiguous net acres, with production concentrated mainly on about 5,500 net acres. SCPI's four major fields in the area are the North and South Belridge, Lost Hills, and Antelope Hills. Most of the production comes from the North and South Belridge fields, which were previously held by the Belridge Oil Co. Productive horizons in the fields are the Tulare, Diatomite, Brown Shale, Antelope Shale, 64 Zone, and Agua sand. The Tulare and Diatomite are the two major reservoirs SCPI is developing. The Tulare, encountered between 400 and 1,300 ft, is made up of fine- to coarse-grained, unconsolidated sands with interbedded shales and silt stones and contains 13 /sup 0/ API oil. Using steam drive as the main recovery method, SCPI estimates an ultimate recovery from the Tulare formation of about 60% of the original 1 billion barrels in place. The Diatomite horizon, found between 800 and 3,500 ft and containing light, 28 /sup 0/ API oil, has high porosity (more than 60%), low permeability (less than 1 md), and natural fractures. Because of the Diatomite's low permeability, fracture stimulation is being used to increase well productivity. SCPI anticipates that approximately 5% of the almost 2 billion barrels of oil originally in place will be recovered by primary production.

  5. Water-related Issues Affecting Conventional Oil and Gas Recovery...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Water-related Issues Affecting Conventional Oil and Gas Recovery and Potential Oil-Shale Development in the Uinta Basin, Utah Citation Details In-Document Search ...

  6. Water-related Issues Affecting Conventional Oil and Gas Recovery...

    Office of Scientific and Technical Information (OSTI)

    Water-related Issues Affecting Conventional Oil and Gas Recovery and Potential Oil-Shale Development in the Uinta Basin, Utah Citation Details In-Document Search Title: Water-re...

  7. Unconventional gas recovery symposium. Proceedings

    SciTech Connect

    Not Available

    1982-01-01

    This conference contains 51 papers and 4 abstracts of papers presented at the symposium on unconventional gas recovery. Some of the topics covered are: coalbed methane; methane recovery; gas hydrates; hydraulic fracturing treatments; geopressured systems; foam fracturing; evaluation of Devonian shales; tight gas sands; propping agents; and economics of natural gas production. All papers have been abstracted and indexed for the Energy Data Base.

  8. Metal recovery from porous materials

    DOEpatents

    Sturcken, E.F.

    1991-01-01

    The present invention relates to recovery of metals. More specifically, the present invention relates to the recovery of plutonium and other metals from porous materials using microwaves. The United States Government has rights in this invention pursuant to Contract No. DE-AC09-89SR18035 between the US Department of Energy and Westinghouse Savannah River Company.

  9. Superconvergence of the derivative patch recovery technique and a posteriorii error estimation

    SciTech Connect

    Zhang, Z.; Zhu, J.Z.

    1995-12-31

    The derivative patch recovery technique developed by Zienkiewicz and Zhu for the finite element method is analyzed. It is shown that, for one dimensional problems and two dimensional problems using tensor product elements, the patch recovery technique yields superconvergence recovery for the derivatives. Consequently, the error estimator based on the recovered derivative is asymptotically exact.

  10. Refrigerant recovery system

    SciTech Connect

    Abraham, A.W.

    1991-08-20

    This patent describes improvement in a refrigerant recovery apparatus of the type having inlet means for connecting to a refrigerant air system to withdraw refrigerant from the system, expansion means for converting refrigerant received from the system in liquid phase to a gaseous refrigerant, a compressor having a suction chamber with a suction inlet for receiving and pressurizing the gaseous refrigerant, the compressor having a housing containing oil for lubricating the compressor, a condenser for receiving the pressurized gaseous refrigerant and condensing it to liquid refrigerant, and a storage chamber for storing the liquid refrigerant. The improvement comprises in combination: oil separator means mounted exterior of the housing to one end of an inlet line, which has another end connected to the suction inlet of the compressor for receiving the flow of refrigerant from the refrigerated air system for separating out oil mixed with the refrigerant being received from the refrigerated air system prior to the refrigerant entering the suction inlet of the compressor; and the oil separator means being mounted at a lower elevation than the suction inlet of the compressor, the inlet line being unrestricted for allowing refrigerant flow to the compressor and oil from the compressor for draining oil in the housing of the compressor above the suction inlet back through the inlet line into the oil separator means when the compressor is not operating.

  11. Energy recovery ventilator

    SciTech Connect

    Benoit, Jeffrey T.; Dobbs, Gregory M.; Lemcoff, Norberto O.

    2015-06-23

    An energy recovery heat exchanger (100) includes a housing (102). The housing has a first flowpath (144) from a first inlet (104) to a first outlet (106). The housing has a second flowpath (146) from a second inlet (108) to a second outlet (110). Either of two cores may be in an operative position in the housing. Each core has a number of first passageways having open first and second ends and closed first and second sides. Each core has a number of second such passageways interspersed with the first passageways. The ends of the second passageways are aligned with the sides of the first passageways and vice versa. A number of heat transfer member sections separate adjacent ones of the first and second passageways. An actuator is coupled to the carrier to shift the cores between first and second conditions. In the first condition, the first core (20) is in the operative position and the second core (220) is not. In the second condition, the second core is in the operative position and the first core is not. When a core is in the operative position, its first passageways are along the first flowpath and the second passageways are along the second flowpath.

  12. URANIUM RECOVERY PROCESS

    DOEpatents

    Hyman, H.H.; Dreher, J.L.

    1959-07-01

    The recovery of uranium from the acidic aqueous metal waste solutions resulting from the bismuth phosphate carrier precipitation of plutonium from solutions of neutron irradiated uranium is described. The waste solutions consist of phosphoric acid, sulfuric acid, and uranium as a uranyl salt, together with salts of the fission products normally associated with neutron irradiated uranium. Generally, the process of the invention involves the partial neutralization of the waste solution with sodium hydroxide, followed by conversion of the solution to a pH 11 by mixing therewith sufficient sodium carbonate. The resultant carbonate-complexed waste is contacted with a titanated silica gel and the adsorbent separated from the aqueous medium. The aqueous solution is then mixed with sufficient acetic acid to bring the pH of the aqueous medium to between 4 and 5, whereby sodium uranyl acetate is precipitated. The precipitate is dissolved in nitric acid and the resulting solution preferably provided with salting out agents. Uranyl nitrate is recovered from the solution by extraction with an ether such as diethyl ether.

  13. Wastewater heat recovery apparatus

    DOEpatents

    Kronberg, J.W.

    1992-09-01

    A heat recovery system is described with a heat exchanger and a mixing valve. A drain trap includes a heat exchanger with an inner coiled tube, baffle plate, wastewater inlet, wastewater outlet, cold water inlet, and preheated water outlet. Wastewater enters the drain trap through the wastewater inlet, is slowed and spread by the baffle plate, and passes downward to the wastewater outlet. Cold water enters the inner tube through the cold water inlet and flows generally upward, taking on heat from the wastewater. This preheated water is fed to the mixing valve, which includes a flexible yoke to which are attached an adjustable steel rod, two stationary zinc rods, and a pivoting arm. The free end of the arm forms a pad which rests against a valve seat. The rods and pivoting arm expand or contract as the temperature of the incoming preheated water changes. The zinc rods expand more than the steel rod, flexing the yoke and rotating the pivoting arm. The pad moves towards the valve seat as the temperature of the preheated water rises, and away as the temperature falls, admitting a variable amount of hot water to maintain a nearly constant average process water temperature. 6 figs.

  14. Wastewater heat recovery apparatus

    DOEpatents

    Kronberg, James W.

    1992-01-01

    A heat recovery system with a heat exchanger and a mixing valve. A drain trap includes a heat exchanger with an inner coiled tube, baffle plate, wastewater inlet, wastewater outlet, cold water inlet, and preheated water outlet. Wastewater enters the drain trap through the wastewater inlet, is slowed and spread by the baffle plate, and passes downward to the wastewater outlet. Cold water enters the inner tube through the cold water inlet and flows generally upward, taking on heat from the wastewater. This preheated water is fed to the mixing valve, which includes a flexible yoke to which are attached an adjustable steel rod, two stationary zinc rods, and a pivoting arm. The free end of the arm forms a pad which rests against a valve seat. The rods and pivoting arm expand or contract as the temperature of the incoming preheated water changes. The zinc rods expand more than the steel rod, flexing the yoke and rotating the pivoting arm. The pad moves towards the valve seat as the temperature of the preheated water rises, and away as the temperature falls, admitting a variable amount of hot water to maintain a nearly constant average process water temperature.

  15. Treasury, Energy Surpass $1 Billion Milestone in Recovery Act Awards for

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Clean Energy Projects | Department of Energy Surpass $1 Billion Milestone in Recovery Act Awards for Clean Energy Projects Treasury, Energy Surpass $1 Billion Milestone in Recovery Act Awards for Clean Energy Projects September 22, 2009 - 12:00am Addthis WASHINGTON- This morning, Treasury Secretary Tim Geithner and Energy Secretary Steven Chu hosted a group of clean energy developers and manufacturers at the White House to discuss how the American Recovery and Reinvestment Act (Recovery Act)

  16. material recovery | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    recovery Material Management and Minimization The Office of Material Management and Minimization (M3) presents an integrated approach to addressing the persistent threat posed by nuclear materials through a full cycle of materials management and minimization efforts. Consistent with the President's highly enriched uranium (HEU) and... Nonproliferation Working in close collaboration with DOE laboratories, DNN develops and tests new technologies to advance U.S. capabilities to monitor

  17. Resource Recovery OpportunitiesatAmericas Water Resource Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    recovery at WRRF's in the next decade Biogas with Addition of Fats, Oil & Grease (FOG) 50 dry tonsday solids > 600,000 ft 3 day of biogas 4,800day energy value 55,000 ...

  18. Recovery Act: State Assistance for Recovery Act Related Electricity Policies

    Energy.gov [DOE]

    State public utility commissions (PUCs), which regulate and oversee electricity projects in their states, will be receiving more than $44.2 million in Recovery Act funding to hire new staff and retrain existing employees to ensure they have the capacity to quickly and effectively review proposed electricity projects. The funds will help the individual state PUCs accelerate reviews of the large number of electric utility requests that are expected under the Recovery Act.

  19. Hanford Information Related to the American Recovery and Reinvestment...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Font Size Recovery.gov Banner Recovery Work Updates Recovery Act Jobs Recovery.gov Prime Contractor plus Subcontractor Jobs 1 Lives Touched2 DOE Richland Operations Office...

  20. Californium Recovery from Palladium Wire

    SciTech Connect

    Burns, Jon D.

    2014-08-01

    The recovery of 252Cf from palladium-252Cf cermet wires was investigated to determine the feasibility of implementing it into the cermet wire production operation at Oak Ridge National Laboratorys Radiochemical Engineering Development Center. The dissolution of Pd wire in 8 M HNO3 and trace amounts of HCl was studied at both ambient and elevated temperatures. These studies showed that it took days to dissolve the wire at ambient temperature and only 2 hours at 60C. Adjusting the ratio of the volume of solvent to the mass of the wire segment showed little change in the kinetics of dissolution, which ranged from 0.176 mL/mg down to 0.019 mL/mg. A successful chromatographic separation of 153Gd, a surrogate for 252Cf, from Pd was demonstrated using AG 50x8 cation exchange resin with a bed volume of 0.5 mL and an internal diameter of 0.8 cm.

  1. Economic analysis of vertical wells for coalbed methane recovery

    SciTech Connect

    Not Available

    1981-04-01

    Previous economic studies of the recovery and utilization of methane from coalbeds using vertical wells were based on drainage in advance of mining where a single seam is drained with well spacing designed for rapid predrainage. This study extends the earlier work and shows that methane recovery costs can be reduced significantly by increasing well spacing and draining multiple coalbeds. A favorable return on investment can be realized in many geologic settings using this method. Sensitivity of recovery economics to certain development costs and parametric variations are also examined as are the economics of three methane utilization options.

  2. Recovery Act Funding Opportunities Introduction | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Recovery Act Funding Opportunities Introduction Recovery Act Funding Opportunities Introduction On this page you can view a video presentation by Ed Wall, Program Manager for the ...

  3. Gas Recovery Systems | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Systems Jump to: navigation, search Name: Gas Recovery Systems Place: California Zip: 94550 Product: Turnkey landfill gas (LFG) energy extraction systems. References: Gas Recovery...

  4. COLORADO RECOVERY ACT SNAPSHOT | Department of Energy

    Energy.gov [DOE] (indexed site)

    The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Colorado are ...

  5. DELAWARE RECOVERY ACT SNAPSHOT | Department of Energy

    Energy.gov [DOE] (indexed site)

    The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Delaware are ...

  6. IOWA RECOVERY ACT SNAPSHOT | Department of Energy

    Energy.gov [DOE] (indexed site)

    The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Iowa are ...

  7. ARKANSAS RECOVERY ACT SNAPSHOT | Department of Energy

    Energy.gov [DOE] (indexed site)

    The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Arkansas are ...

  8. GUAM RECOVERY ACT SNAPSHOT | Department of Energy

    Energy.gov [DOE] (indexed site)

    The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Guam are ...

  9. CONNECTICUT RECOVERY ACT SNAPSHOT | Department of Energy

    Energy.gov [DOE] (indexed site)

    The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Connecticut are ...

  10. Optimize carbon dioxide sequestration, enhance oil recovery

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Optimize carbon dioxide sequestration, enhance oil recovery Optimize carbon dioxide sequestration, enhance oil recovery The simulation provides an important approach to estimate ...

  11. Energy Positive Water Resource Recovery Workshop Presentations...

    Office of Environmental Management (EM)

    Energy Positive Water Resource Recovery Workshop Presentations Energy Positive Water Resource Recovery Workshop Presentations Presentations: Keynote 1: Energy-Positive Water...

  12. Energy Positive Water Resource Recovery Workshop Presentations...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Positive Water Resource Recovery Workshop Presentations Energy Positive Water Resource Recovery Workshop Presentations Presentations: Keynote 1: Energy-Positive Water ...

  13. Optimize carbon dioxide sequestration, enhance oil recovery

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Optimize carbon dioxide sequestration, enhance oil recovery Optimize carbon dioxide sequestration, enhance oil recovery The simulation provides an important approach to estimate...

  14. Disaster Resiliency and Recovery: Capabilities (Fact Sheet),...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    and communities during the planning, recovery, and rebuilding stages after disaster strikes. NREL's energy disaster recovery program offers a broad range of services ...

  15. Energy Recovery Linacs for Commercial Radioisotope Production...

    Office of Scientific and Technical Information (OSTI)

    Energy Recovery Linacs for Commercial Radioisotope Production Citation Details In-Document Search Title: Energy Recovery Linacs for Commercial Radioisotope Production Photonuclear ...

  16. Clean Cities Recovery Act: Vehicle & Infrastructure Deployment...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Recovery Act: Vehicle & Infrastructure Deployment Clean Cities Recovery Act: Vehicle & Infrastructure Deployment 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit...

  17. Recovery Act Recipient Data | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Exclusion (CS) Determination, Office of Electricity Delivery and Energy Reliability (OE): American Recovery and Reinvestment Act of 2009 (Recovery Act) Smart Grid Investment ...

  18. Bonneville Power Administration Program Specific Recovery Plan...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Bonneville Power Administration Program Specific Recovery Plan Bonneville Power Administration Program Specific Recovery Plan PDF icon Microsoft Word - PSRP May 15 2009 BPA ...

  19. Western Area Power Administration Borrowing Authority, Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Western Area Power Administration Borrowing Authority, Recovery Act Western Area Power Administration Borrowing Authority, Recovery Act PDF icon Microsoft Word - PSRP May 15 2009 ...

  20. Monitoring EERE's Recovery Act Portfolio

    SciTech Connect

    2011-01-01

    Performance monitoring of Recovery Act projects within EERE has been an ongoing effort. Project recipients have been reporting technical and financial progress to project officers on a quarterly basis.

  1. Recovery Act Funding Opportunities Webcast

    Energy.gov [DOE]

    As a result of the 2009 American Reinvestment and Recovery Act, the Geothermal Technologies Office (GTO) has four open Funding Opportunity Announcements (FOAs) totaling $484 million for cost-shared...

  2. Recovery and purification of ethylene

    SciTech Connect

    Reyneke, Rian; Foral, Michael J.; Lee, Guang-Chung; Eng, Wayne W. Y.; Sinclair, Iain; Lodgson, Jeffery S.

    2008-10-21

    A process for the recovery and purification of ethylene and optionally propylene from a stream containing lighter and heavier components that employs an ethylene distributor column and a partially thermally coupled distributed distillation system.

  3. One Woman's Road to Recovery

    Energy.gov [DOE]

    Rebecca Bivens applied at Argonne and was hired in April 2009, four months after she lost her second job. She now works in safety and procurement. Her job is funded by the American Recovery and Reinvestment Act.

  4. Inherently safe in situ uranium recovery.

    SciTech Connect

    Krumhansl, James Lee; Beauheim, Richard Louis; Brady, Patrick Vane; Arnold, Bill Walter; Kanney, Joseph F.; McKenna, Sean Andrew

    2009-05-01

    Expansion of uranium mining in the United States is a concern to some environmental groups and sovereign Native American Nations. An approach which may alleviate some problems is to develop inherently safe in situ uranium recovery ('ISR') technologies. Current ISR technology relies on chemical extraction of trace levels of uranium from aquifers that, once mined, can still contain dissolved uranium and other trace metals that are a health concern. Existing ISR operations are few in number; however, high uranium prices are driving the industry to consider expanding operations nation-wide. Environmental concerns and enforcement of the new 30 ppb uranium drinking water standard may make opening new mining operations more difficult and costly. Here we propose a technological fix: the development of inherently safe in situ recovery (ISISR) methods. The four central features of an ISISR approach are: (1) New 'green' leachants that break down predictably in the subsurface, leaving uranium, and associated trace metals, in an immobile form; (2) Post-leachant uranium/metals-immobilizing washes that provide a backup decontamination process; (3) An optimized well-field design that increases uranium recovery efficiency and minimizes excursions of contaminated water; and (4) A combined hydrologic/geochemical protocol for designing low-cost post-extraction long-term monitoring. ISISR would bring larger amounts of uranium to the surface, leave fewer toxic metals in the aquifer, and cost less to monitor safely - thus providing a 'win-win-win' solution to all stakeholders.

  5. High Efficiency Microturbine with Integral Heat Recovery - Fact Sheet, 2016

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    | Department of Energy Efficiency Microturbine with Integral Heat Recovery - Fact Sheet, 2016 High Efficiency Microturbine with Integral Heat Recovery - Fact Sheet, 2016 Capstone Turbine Corporation, in collaboration with Oak Ridge National Laboratory and NASA Glenn Research Center, developed a clean, cost-effective 370 kW microturbine with 42% net electrical efficiency and 85% total CHP efficiency. The microturbine technology maximizes usable exhaust energy and achieves ultra-low emissions

  6. Recovery Act Interconnection Transmission Planning | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Recovery Act Interconnection Transmission Planning Recovery Act Interconnection Transmission Planning View a Map of the Interconnections View a Map of the Interconnections Robust and reliable transmission and distribution networks are essential to achieving the Administration's clean energy goals, including the development, integration, and delivery of new renewable and other low-carbon resources in the electricity sector, and the use of these resources to displace petroleum-based fuels in the

  7. Nuclear Material Recovery | Y-12 National Security Complex

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Recovery Nuclear Material Recovery Securing nuclear material domestically and internationally is one part of Y-12's nuclear nonproliferation business. Miscellaneous scrap material is a diverse group of scrap materials generated from reactor fuel production, weapons production, research and development activities and other uses by the U.S. Department of Energy. The majority of this material will require additional processing before it is down blended for low-enriched uranium reactor fuel. This

  8. Vehicle Technologies Office: Waste Heat Recovery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fuel Efficiency & Emissions » Vehicle Technologies Office: Waste Heat Recovery Vehicle Technologies Office: Waste Heat Recovery Along with high efficiency engine technologies and emission control, the Vehicle Technologies Office (VTO) is supporting research and development to increase vehicle fuel economy by recovering energy from engine waste heat. In current gasoline vehicles, only about 25 percent of the fuel's energy is used to drive the wheels; in contrast, more than 70 percent is lost

  9. Waste Heat Recovery Opportunities for Thermoelectric Generators

    Office of Energy Efficiency and Renewable Energy (EERE)

    Thermoelectrics have unique advantages for integration into selected waste heat recovery applications.

  10. Caustic Recovery Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Caustic Recovery Technology Caustic Recovery Technology Full Document and Summary Versions are available for download Caustic Recovery Technology (416.33 KB) Summary - Caustic Recovery Technology (53.85 KB) More Documents & Publications System Planning for Low-Activity Waste at Hanford CX-003496: Categorical Exclusion Determination 2013 Peer Review Presentations-Heat-Power and Biodeisel

  11. NREL: Technology Deployment - Disaster Recovery and Rebuilding

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Recovery and Rebuilding NREL provides expertise, tools, and innovative solutions to private industry; federal, state, and local governments; nonprofit organizations; and communities during the planning, recovery, and rebuilding stages after disaster strikes. NREL identifies disaster recovery and rebuilding opportunities to: Incorporate energy efficiency, water and fuel conservation, sustainability, and renewable energy measures into disaster recovery efforts Deploy on-site technology

  12. ADVANCED OIL RECOVERY TECHNOLOGIES FOR IMPROVED RECOVERY FROM SLOPE BASIN CLASTIC RESERVOIRS, NASH DRAW BRUSHY CANYON POOL, EDDY COUNTY, NM

    SciTech Connect

    Mark B. Murphy

    2002-12-31

    The overall objective of this project is to demonstrate that a development program based on advanced reservoir management methods can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry.

  13. Maximizing NGL recovery by refrigeration optimization

    SciTech Connect

    Baldonedo H., A.H.

    1999-07-01

    PDVSA--Petroleo y Gas, S.A. has within its facilities in Lake Maracaibo two plants that extract liquids from natural gas (NGL), They use a combined mechanic refrigeration absorption with natural gasoline. Each of these plants processes 420 MMsccfd with a pressure of 535 psig and 95 F that comes from the compression plants PCTJ-2 and PCTJ-3 respectively. About 40 MMscfd of additional rich gas comes from the high pressure system. Under the present conditions these plants produce in the order of 16,800 and 23,800 b/d of NGL respectively, with a propane recovery percentage of approximately 75%, limited by the capacity of the refrigeration system. To optimize the operation and the design of the refrigeration system and to maximize the NGL recovery, a conceptual study was developed in which the following aspects about the process were evaluated: capacity of the refrigeration system, refrigeration requirements, identification of limitations and evaluation of the system improvements. Based on the results obtained it was concluded that by relocating some condensers, refurbishing the main refrigeration system turbines and using HIGH FLUX piping in the auxiliary refrigeration system of the evaporators, there will be an increase of 85% on the propane recovery, with an additional production of 25,000 b/d of NGL and 15 MMscfd of ethane rich gas.

  14. Thermoelectric Generator Development for Automotive Waste Heat...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Generator Development for Automotive Waste Heat Recovery Thermoelectric Generator ... More Documents & Publications Develop Thermoelectric Technology for Automotive Waste Heat ...

  15. Microbial enhanced oil recovery: Entering the log phase

    SciTech Connect

    Bryant, R.S.

    1995-12-31

    Microbial enhanced oil recovery (MEOR) technology has advanced internationally since 1980 from a laboratory-based evaluation of microbial processes to field applications. In order to adequately support the decline in oil production in certain areas, research on cost-effective technologies such as microbial enhanced oil recovery processes must focus on both near-term and long-term applications. Many marginal wells are desperately in need of an inexpensive improved oil recovery technology today that can assist producers in order to prevent their abandonment. Microbial enhanced waterflooding technology has also been shown to be an economically feasible technology in the United States. Complementary environmental research and development will also be required to address any potential environmental impacts of microbial processes. In 1995 at this conference, the goal is to further document and promote microbial processes for improved oil recovery and related technology for solving environmental problems.

  16. Road to Recovery: Bringing Recovery to Small Town America

    ScienceCinema

    Nettamo, Paivi

    2012-06-14

    The Recovery Act hits the road to reach out to surrounding towns of the Savannah River Site that are struggling with soaring unemployment rates. This project helps recruit thousands of people to new jobs in environmental cleanup at the Savannah River Site.

  17. Shale oil recovery process

    DOEpatents

    Zerga, Daniel P.

    1980-01-01

    A process of producing within a subterranean oil shale deposit a retort chamber containing permeable fragmented material wherein a series of explosive charges are emplaced in the deposit in a particular configuration comprising an initiating round which functions to produce an upward flexure of the overburden and to initiate fragmentation of the oil shale within the area of the retort chamber to be formed, the initiating round being followed in a predetermined time sequence by retreating lines of emplaced charges developing further fragmentation within the retort zone and continued lateral upward flexure of the overburden. The initiating round is characterized by a plurality of 5-spot patterns and the retreating lines of charges are positioned and fired along zigzag lines generally forming retreating rows of W's. Particular time delays in the firing of successive charges are disclosed.

  18. Promising Technology: Energy Recovery Ventilation

    Energy.gov [DOE]

    Energy recovery ventilation (ERV) systems exchange heat between outgoing exhaust air and the incoming outdoor air. Using exhaust air to pre-condition supply air can reduce the capacity of the heating and cooling system and save heating and cooling energy consumption.

  19. Biosurfactant and enhanced oil recovery

    DOEpatents

    McInerney, Michael J.; Jenneman, Gary E.; Knapp, Roy M.; Menzie, Donald E.

    1985-06-11

    A pure culture of Bacillus licheniformis strain JF-2 (ATCC No. 39307) and a process for using said culture and the surfactant lichenysin produced thereby for the enhancement of oil recovery from subterranean formations. Lichenysin is an effective surfactant over a wide range of temperatures, pH's, salt and calcium concentrations.

  20. Guided wave acoustic monitoring of corrosion in recovery boiler tubing

    SciTech Connect

    Quarry, M J; Chinn, D J

    2004-02-19

    Corrosion of tubing used in black-liquor recovery boilers is a major concern in all pulp and paper mills. Extensive corrosion in recovery boiler tubes can result in a significant safety and environmental hazard. Considerable plant resources are expended to inspect recovery boiler tubing. Currently, visual and ultrasonic inspections are primarily used during the annual maintenance shutdown to monitor corrosion rates and cracking of tubing. This Department of Energy, Office of Industrial Technologies project is developing guided acoustic waves for use on recovery boiler tubing. The feature of this acoustic technique is its cost-effectiveness in inspecting long lengths of tubes from a single inspection point. A piezoelectric or electromagnetic transducer induces guided waves into the tubes. The transducer detects fireside defects from the coldside or fireside of the tube. Cracking and thinning on recovery boiler tubes have been detected with this technique in both laboratory and field applications. This technique appears very promising for recovery boiler tube application, potentially expediting annual inspection of tube integrity.

  1. Treasury, Energy Surpass $1 Billion Milestone in Recovery Act Awards for Clean Energy Projects

    Energy.gov [DOE]

    This morning, Treasury Secretary Tim Geithner and Energy Secretary Steven Chu hosted a group of clean energy developers and manufacturers at the White House to discuss how the American Recovery and Reinvestment Act (Recovery Act) is creating jobs and helping expand the development of clean, renewable domestic energy.

  2. DOE Policy Re Recovery Act Recipient Use of Recovery Act Logos on Signage |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Policy Re Recovery Act Recipient Use of Recovery Act Logos on Signage DOE Policy Re Recovery Act Recipient Use of Recovery Act Logos on Signage U.S. Department of Energy ("DOE") policy regarding use of the Recovery Act logo by Recovery Act recipients and subgrantees. DOE Policy Re Recovery Act Recipient Use of Recovery Act Logos on Signage (51.58 KB) More Documents & Publications Better Buildings Neighborhood Program Grant Recipient Management Handbook EV

  3. H-Canyon Recovery Crawler

    SciTech Connect

    Kriikku, E. M.; Hera, K. R.; Marzolf, A. D.; Phillips, M. H.

    2015-08-01

    The Nuclear Material Disposition Project group asked the Savannah River National Lab (SRNL) Research and Development Engineering (R&DE) department to help procure, test, and deploy a remote crawler to recover the 2014 Inspection Crawler (IC) that tipped over in the H-Canyon Air Exhaust Tunnel. R&DE wrote a Procurement Specification for a Recovery Crawler (RC) and SRNS Procurement Department awarded the contract to Power Equipment Manufacturing Inc. (PEM). The PEM RC was based on their standard sewer inspection crawler with custom arms and forks added to the front. The arms and forks would be used to upright the 2014 Inspection Crawler. PEM delivered the RC and associated cable reel, 2014 Inspection Crawler mockup, and manuals in late April 2015. R&DE and the team tested the crawler in May of 2015 and made modifications based on test results and Savannah River Site (SRS) requirements. R&DE delivered the RC to H-Area at the end of May. The team deployed the RC on June 9, 10, and 11, 2015 in the H-Canyon Air Exhaust Tunnel. The RC struggled with some obstacles in the tunnel, but eventually made it to the IC. The team spent approximately five hours working to upright the IC and eventually got it on its wheels. The IC travelled approximately 20 feet and struggled to drive over debris on the air tunnel floor. Unfortunately the IC tripped over trying to pass this obstacle. The team decided to leave the IC in this location and inspect the tunnel with the RC. The RC passed the IC and inspected the tunnel as it travelled toward H-Canyon. The team turned the RC around when it was about 20 feet from the H-Canyon crossover tunnel. From that point, the team drove the RC past the manway towards the new sand filter and stopped approximately 20 feet from the new sand filter. The team removed the RC from the tunnel, decontaminated the RC, and stored it the manway building, 294-2H. The RC deployment confirmed the IC was not in a condition to perform useful tunnel inspections and

  4. ARM - ARM Recovery Act Project FAQs

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    plan, contact Jimmy Voyles, ARM's Recovery Act Project Manager, at jimmy-dot-voyles-at-pnl-dot-gov. Public Q&A If you have a question about our Recovery Act efforts, send it to...

  5. Z-Bed Recovery Water Disposal

    Office of Environmental Management (EM)

    Z-Bed Recovery Water Disposal Tritium Programs Engineering Louis Boone Josh Segura ... detailed explanation of the plan to capture and dispose of Z-Bed Recovery (ZR) water. ...

  6. Exhaust Energy Recovery | Department of Energy

    Energy.gov [DOE] (indexed site)

    18-22, 2009 -- Washington D.C. ace41nelson.pdf (2.11 MB) More Documents & Publications Exhaust Energy Recovery Exhaust Energy Recovery SuperTruck Program: Engine Project Review

  7. Status report on energy recovery from municipal solid waste: technologies, lessons and issues. Information bulletin of the energy task force of the urban consortium

    SciTech Connect

    1980-01-01

    A review is presented of the lessons learned and issues raised regarding the recovery of energy from solid wastes. The review focuses on technologies and issues significant to currently operating energy recovery systems in the US - waterwall incineration, modular incineration, refuse derived fuels systems, landfill gas recovery systems. Chapters are: Energy Recovery and Solid Waste Disposal; Energy Recovery Systems; Lessons in Energy Recovery; Issues in Energy Recovery. Some basic conclusions are presented concerning the state of the art of energy from waste. Plants in shakedown or under construction, along with technologies in the development stages, are briefly described. Sources of additional information and a bibliography are included. (MCW)

  8. Heavy oil and tar sands recovery and upgrading. International technology

    SciTech Connect

    Schumacher, M.M.

    1982-01-01

    This work provides an in-depth assessment of international technology for the recovery and upgrading of heavy crude oil and tar sands. The technologies included are currently in use, under development, or planned; emphasis is placed on post-1978 activities. The heavy oil technologies and processes considered include methods relating to the exploitation of heavy oil reservoirs, such as production from underground workings, all types of improved or enhanced recovery, subsurface extraction, and well rate stimulation. The tar sands section includes sizing the resource base and reviewing and evaluating past, present, and planned research and field developments on processes for mining, producing, extracting, and upgrading very heavy oils recovered from tar sands, e.g., bitumen recovery from tar sands where primary production was impossible because of the oil's high viscosity. 616 references.

  9. President Obama Announces Over $467 Million in Recovery Act Funding for

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Geothermal and Solar Energy Projects | Department of Energy Announces Over $467 Million in Recovery Act Funding for Geothermal and Solar Energy Projects President Obama Announces Over $467 Million in Recovery Act Funding for Geothermal and Solar Energy Projects May 27, 2009 - 10:30am Addthis President Obama today announced over $467 million from the American Reinvestment and Recovery Act to expand and accelerate the development, deployment, and use of geothermal and solar energy throughout

  10. President Obama Announces Over $467 Million in Recovery Act Funding for

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Geothermal and Solar Energy Projects | Department of Energy Over $467 Million in Recovery Act Funding for Geothermal and Solar Energy Projects President Obama Announces Over $467 Million in Recovery Act Funding for Geothermal and Solar Energy Projects May 27, 2009 - 12:00am Addthis WASHINGTON - President Obama today announced over $467 million from the American Reinvestment and Recovery Act to expand and accelerate the development, deployment, and use of geothermal and solar energy

  11. President Obama Announces Over $467 Million in Recovery Act Funding for

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Geothermal and Solar Energy Projects | Department of Energy President Obama Announces Over $467 Million in Recovery Act Funding for Geothermal and Solar Energy Projects President Obama Announces Over $467 Million in Recovery Act Funding for Geothermal and Solar Energy Projects May 27, 2009 - 4:34pm Addthis President Obama today announced over $467 million from the American Reinvestment and Recovery Act to expand and accelerate the development, deployment, and use of geothermal and solar

  12. Optimize carbon dioxide sequestration, enhance oil recovery

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Optimize carbon dioxide sequestration, enhance oil recovery Optimize carbon dioxide sequestration, enhance oil recovery The simulation provides an important approach to estimate the potential of storing carbon dioxide in depleted oil fields while simultaneously maximizing oil production. January 8, 2014 Schematic of a water-alternating-with-gas flood for CO2 sequestration and enhanced oil recovery. Schematic of a water-alternating-with-gas flood for CO2 sequestration and enhanced oil recovery.

  13. Optimize carbon dioxide sequestration, enhance oil recovery

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Optimize carbon dioxide sequestration, enhance oil recovery Optimize carbon dioxide sequestration, enhance oil recovery The simulation provides an important approach to estimate the potential of storing carbon dioxide in depleted oil fields while simultaneously maximizing oil production. January 8, 2014 Schematic of a water-alternating-with-gas flood for CO2 sequestration and enhanced oil recovery. Schematic of a water-alternating-with-gas flood for CO2 sequestration and enhanced oil recovery.

  14. Recovery Act | Department of Energy

    Energy Saver

    Department of Energy Funds at Work: Smart Grid Investment Grant Profiles Recovery Act Funds at Work: Smart Grid Investment Grant Profiles DOE is partnering with regional and local utilities and co-ops across the Nation to improve the reliability of the grid and helping communities recover faster when disruptions occur. Case studies profiling some of the SGIG and SGDP grant recipients and the impact of the funding are available below for downloading. For more information about how funds from

  15. Overpulse railgun energy recovery circuit

    DOEpatents

    Honig, Emanuel M.

    1989-01-01

    In an electromagnetic launcher such as a railgun for propelling a projectile at high velocity, an overpulse energy recovery circuit is employed to transfer stored inductive energy from a source inductor to the railgun inductance to propel the projectile down the railgun. Switching circuitry and an energy transfer capacitor are used to switch the energy back to the source inductor in readiness for a repetitive projectile propelling cycle.

  16. Counterpulse railgun energy recovery circuit

    DOEpatents

    Honig, Emanuel M.

    1986-01-01

    In an electromagnetic launcher such as a railgun for propelling a projectile at high velocity, a counterpulse energy recovery circuit is employed to transfer stored inductive energy from a source inductor to the railgun inductance to propel the projectile down the railgun. Switching circuitry and an energy transfer capacitor are used to switch the energy back to the source inductor in readiness for a repetitive projectile propelling cycle.

  17. Anelastic Strain Recovery Analysis Code

    Energy Science and Technology Software Center

    1995-04-05

    ASR4 is a nonlinear least-squares regression of Anelastic Strain Recovery (ASR) data for the purpose of determining in situ stress orientations and magnitudes. ASR4 fits the viscoelastic model of Warpinski and Teufel to measure ASR data, calculates the stress orientations directly, and stress magnitudes if sufficient input data are available. The code also calculates the stress orientation using strain-rosette equations, and it calculates stress magnitudes using Blanton''s approach, assuming sufficient input data are available.

  18. WIPP Update and Status of Recovery | Department of Energy

    Energy.gov [DOE] (indexed site)

    WIPP Update and Status of Recovery More Documents & Publications WIPP Recovery Information Waste Isolation Pilot Plant Update and Status of Recovery Waste Isolation Pilot Plant...

  19. Metro Methane Recovery Facility Biomass Facility | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Methane Recovery Facility Biomass Facility Jump to: navigation, search Name Metro Methane Recovery Facility Biomass Facility Facility Metro Methane Recovery Facility Sector Biomass...

  20. Settlers Hill Gas Recovery Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Settlers Hill Gas Recovery Biomass Facility Jump to: navigation, search Name Settlers Hill Gas Recovery Biomass Facility Facility Settlers Hill Gas Recovery Sector Biomass Facility...

  1. DFW Gas Recovery Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    DFW Gas Recovery Biomass Facility Jump to: navigation, search Name DFW Gas Recovery Biomass Facility Facility DFW Gas Recovery Sector Biomass Facility Type Landfill Gas Location...

  2. Lake Gas Recovery Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Gas Recovery Biomass Facility Jump to: navigation, search Name Lake Gas Recovery Biomass Facility Facility Lake Gas Recovery Sector Biomass Facility Type Landfill Gas Location Cook...

  3. Prairie View Gas Recovery Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    View Gas Recovery Biomass Facility Jump to: navigation, search Name Prairie View Gas Recovery Biomass Facility Facility Prairie View Gas Recovery Sector Biomass Facility Type...

  4. Woodland Landfill Gas Recovery Biomass Facility | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Landfill Gas Recovery Biomass Facility Jump to: navigation, search Name Woodland Landfill Gas Recovery Biomass Facility Facility Woodland Landfill Gas Recovery Sector Biomass...

  5. Greene Valley Gas Recovery Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Valley Gas Recovery Biomass Facility Jump to: navigation, search Name Greene Valley Gas Recovery Biomass Facility Facility Greene Valley Gas Recovery Sector Biomass Facility Type...

  6. CID Gas Recovery Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    CID Gas Recovery Biomass Facility Jump to: navigation, search Name CID Gas Recovery Biomass Facility Facility CID Gas Recovery Sector Biomass Facility Type Landfill Gas Location...

  7. Olinda Landfill Gas Recovery Plant Biomass Facility | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Olinda Landfill Gas Recovery Plant Biomass Facility Jump to: navigation, search Name Olinda Landfill Gas Recovery Plant Biomass Facility Facility Olinda Landfill Gas Recovery Plant...

  8. Florida Recovery Act State Memo | Department of Energy

    Office of Environmental Management (EM)

    Florida Recovery Act State Memo Florida Recovery Act State Memo The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and ...

  9. Delaware Recovery Act State Memo | Department of Energy

    Office of Environmental Management (EM)

    Delaware Recovery Act State Memo The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery ...

  10. Recovery Act Investment Moves EM Past Milestone of 100 Project...

    Office of Environmental Management (EM)

    in place quickly to accomplish the Recovery Act Program goals." Recovery Act Investment Moves EM Past Milestone of 100 Project Completions Below: Recovery Act workers...

  11. Penobscot Energy Recovery Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Energy Recovery Biomass Facility Jump to: navigation, search Name Penobscot Energy Recovery Biomass Facility Facility Penobscot Energy Recovery Sector Biomass Facility Type...

  12. Puente Hills Energy Recovery Biomass Facility | Open Energy Informatio...

    OpenEI (Open Energy Information) [EERE & EIA]

    Puente Hills Energy Recovery Biomass Facility Jump to: navigation, search Name Puente Hills Energy Recovery Biomass Facility Facility Puente Hills Energy Recovery Sector Biomass...

  13. Recovery Act Investment Moves EM Past Milestone of 100 Project...

    Office of Environmental Management (EM)

    Workers Complete Y-12's Largest Recovery Act Project Ahead of Schedule Recovery Act Changes Hanford Skyline with Explosive Demolitions Recovery Act Funds are Helping Oak Ridge's ...

  14. Microsoft Word - Attachment 3 Recovery Act notification | Department...

    Energy Saver

    Microsoft Word - Attachment 3 Recovery Act notification Microsoft Word - Attachment 3 Recovery Act notification More Documents & Publications Microsoft Word - Attachment 3 Recovery...

  15. Recovery Act: Smart Grid Investment Grants | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Information Center Recovery Act Recovery Act: Smart Grid Investment Grants Recovery Act: Smart Grid Investment Grants Smart Grid Investment Grant Awards Recipients by State ...

  16. CSL Gas Recovery Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    CSL Gas Recovery Biomass Facility Jump to: navigation, search Name CSL Gas Recovery Biomass Facility Facility CSL Gas Recovery Sector Biomass Facility Type Landfill Gas Location...

  17. BJ Gas Recovery Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    BJ Gas Recovery Biomass Facility Jump to: navigation, search Name BJ Gas Recovery Biomass Facility Facility BJ Gas Recovery Sector Biomass Facility Type Landfill Gas Location...

  18. Southeast Resource Recovery Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Resource Recovery Biomass Facility Jump to: navigation, search Name Southeast Resource Recovery Biomass Facility Facility Southeast Resource Recovery Sector Biomass Facility Type...

  19. Sludge storage lagoon biogas recovery and use

    SciTech Connect

    Muller, D.; Norville, C. )

    1991-07-01

    The City of Memphis has two wastewater treatment plants. The SWTP employs two large anaerobic digestion sludge lagoons as part of the overall sludge treatment system. Although these lagoons are effective in concentrating and digesting sludge, they can generate offensive odors. The SWTP uses aerobic digesters to partially stabilize the sludge and help reduce objectionable odors before it enters the lagoons. The anaerobic digestion of sludge in the lagoons results in the dispersion of a large quantity of biogas into the atmosphere. The City realized that if the lagoons could be covered, the odor problem could be resolved, and at the same, time, biogas could be recovered and utilized as a source of energy. In 1987, the City commissioned ADI International to conduct a feasibility study to evaluate alternative methods of covering the lagoons and recovering and utilizing the biogas. The study recommended that the project be developed in two phases: (1) recovery of the biogas and (2) utilization of the biogas. Phase 1 consists of covering the two lagoons with an insulated membrane to control odor and temperature and collect the biogas. Phase 1 was found to be economically feasible and offered a unique opportunity for the City to save substantial operating costs at the treatment facility. The Memphis biogas recovery project is the only application in the world where a membrane cover has been used on a municipal wastewater sludge lagoon. It is also the largest lagoon cover system in the world.

  20. Drain-Water Heat Recovery | Department of Energy

    Energy Saver

    Heat & Cool Water Heating Drain-Water Heat Recovery Drain-Water Heat Recovery Diagram of a drain water heat recovery system. Diagram of a drain water heat recovery system. ...

  1. Next generation processes for NGL/LPG recovery

    SciTech Connect

    Pitman, R.N.; Hudson, H.M.; Wilkinson, J.D.; Cuellar, K.T.

    1998-12-31

    Up to now, Ortloff`s Gas Subcooled Process (GSP) and OverHead Recycle Process (OHR) have been the state-of-the-art for efficient NGL/LPG recovery from natural gas, particularly for those gases containing significant concentrations of carbon dioxide (CO{sub 2}). Ortloff has recently developed new NGL recovery processes that advance the start-of-the-art by offering higher recovery levels, improved efficiency, and even better CO{sub 2} tolerance. The simplicity of the new process designs and the significantly lower gas compression requirements of the new processes reduce the investment and operating costs for gas processing plants. For gas streams containing significant amounts of carbon dioxide, the CO{sub 2} removal equipment upstream of the NGL recovery plant can be smaller or eliminated entirely, reducing both the investment cost and the operating cost for gas processing companies. In addition, the new liquids extraction processes can be designed to efficiently recover or reject ethane, allowing the gas processor to respond quickly to changing market conditions. This next generation of NGL/LPG recovery processes is now being applied to natural gas processing here in the US and abroad. Two of the new plants currently under construction provide practical examples of the benefits of the new processes.

  2. Evaluation of the National Weatherization Assistance Program during Program Years 2009-2011 (American Recovery and Reinvestment Act Period)

    SciTech Connect

    Tonn, Bruce Edward; Rose, Erin M.; Schmoyer, Richard L.; Eisenberg, Joel Fred; Ternes, Mark P.; Schweitzer, Martin; Hendrick, Timothy P.

    2011-12-29

    This report presents the plan that was developed to evaluate the Department of Energy's Weatherization Assistance Program during the American Recovery and Reinvestment Act period.

  3. An overview of the technology for energy recovery from municipal wastes in Japan

    SciTech Connect

    Hiraoka, M.

    1985-01-01

    Since the Japanese government adopted incineration and landfill systems for treatment of municipal refuse in 1963, a large number of incinerators have been built. After the Oil Embargo in 1973, heat recovery from incinerators in large cities was emphasized, and resource and heat recovery have been developed.

  4. Improved Oil Recovery in Fluvial Dominated Deltaic Reservoirs of Kansas - Near-Term

    SciTech Connect

    A. Walton; D. McCune; D.W. Green; G.P. Willhite; L. Watney; M. Michnick; R. Reynolds

    1997-10-15

    The objective of this study is to study waterflood problems of the type found in Morrow sandstone. The major tasks undertaken are reservoir characterization and the development of a reservoir database; volumetric analysis to evaluate production performance; reservoir modeling; identification of operational problems; identification of unrecovered mobile oil and estimation of recovery factors; and identification of the most efficient and economical recovery process.

  5. Improved Oil Recovery in Fluvial Dominated Deltaic Reservoirs of Kansas - Near-Term

    SciTech Connect

    A. Walton; D. McCune; D.W. Green; G.P. Willhite; L. Watney; M. Cichnick; R. Reynolds

    1998-07-15

    The objective of this study is to study waterflood problems of the type found in Morrow sandstone. The major tasks undertaken are reservoir characterization and the development of a reservoir database; volumetric analysis to evaluate production performance; reservoir modeling; identification of operational problems; identification of unrecovered mobile oil and estimation of recovery factors; and identification of the most efficient and economical recovery process.

  6. Improved Oil Recovery in Fluvial Dominated Deltaic Reservoirs of Kansas - Near-Term

    SciTech Connect

    A. Walton; D. McCune; D.W. Green; G.P. Willhite; L. Watney; R. Reynolds; m. Michnick

    1998-04-15

    The objective of this study is to study waterflood problems of the type found in Morrow sandstone. The major tasks undertaken are reservoir characterization and the development of a reservoir database; volumetric analysis to evaluate production performance; reservoir modeling; identification of operational problems; identification of unrecovered mobile oil and estimation of recovery factors; and identification of the most efficient and economical recovery process.

  7. The Hanford Story: Recovery Act

    Energy.gov [DOE]

    This is the third chapter of The Hanford Story. This chapter is a tribute to the thousands of workers and representatives of regulatory agencies, neighboring states, Tribes, stakeholders, and surrounding communities who came together to put stimulus funding to work at Hanford. The video describes how the Department of Energy and its contractors turned a nearly $2 billion investment of American Recovery and Reinvestment Act funding in 2009 into nearly $4 billion worth of environmental cleanup work over the past two years. At the same time, Hanford workers have reduced the cleanup footprint of the Hanford Site by more than half (586 square miles to 241 sq. mi. through August -- 59 percent).

  8. Counterpulse railgun energy recovery circuit

    DOEpatents

    Honig, E.M.

    1984-09-28

    The invention presented relates to a high-power pulsing circuit and more particularly to a repetitive pulse inductive energy storage and transfer circuit for an electromagnetic launcher. In an electromagnetic launcher such as a railgun for propelling a projectile at high velocity, a counterpulse energy recovery circuit is employed to transfer stored inductive energy from a source inductor to the railgun inductance to propel the projectile down the railgun. Switching circuitry and an energy transfer capacitor are used to switch the energy back to the source inductor in readiness for a repetitive projectile propelling cycle.

  9. Overpulse railgun energy recovery circuit

    DOEpatents

    Honig, E.M.

    1984-09-28

    The invention presented relates to a high-power pulsing circuit and more particularly to a repetitive pulse inductive energy storage and transfer circuit for an electromagnetic launcher. In an electromagnetic launcher such as a railgun for propelling a projectile at high velocity, an overpulse energy recovery circuit is employed to transfer stored inductive energy from a source inductor to the railgun inductance to propel the projectile down the railgun. Switching circuitry and an energy transfer capacitor are used to switch the energy back to the source inductor in readiness for a repetitive projectile propelling cycle.

  10. Toward Local Failure Local Recovery (LFLR) Resilience Model Using...

    Office of Scientific and Technical Information (OSTI)

    Motivation for Local Failure-Local Recovery (LFLR) Architecture for LFLR Application Recovery Results Discussion Conclusions Sandia Motivation for ...

  11. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound Technology Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound ...

  12. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound ...

  13. Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound ...

  14. Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM

    SciTech Connect

    Murphy, M.B.

    1999-02-01

    Advanced reservoir characterization techniques are being used at the Nash Draw Brushy Canyon Pool project to develop reservoir management strategies for optimizing oil recovery from this Delaware reservoir. The reservoir characterization, geologic modeling, 3-D seismic interpretation, and simulation studies have provided a detailed model of the Brushy Canyon zones. This model was used to predict the success of different reservoir management scenarios and to aid in determining the most favorable combination of targeted drilling, pressure maintenance, well stimulation, and well spacing to improve recovery from this reservoir.

  15. Enhanced Oil Recovery: Aqueous Flow Tracer Measurement

    SciTech Connect

    Joseph Rovani; John Schabron

    2009-02-01

    A low detection limit analytical method was developed to measure a suite of benzoic acid and fluorinated benzoic acid compounds intended for use as tracers for enhanced oil recovery operations. Although the new high performance liquid chromatography separation successfully measured the tracers in an aqueous matrix at low part per billion levels, the low detection limits could not be achieved in oil field water due to interference problems with the hydrocarbon-saturated water using the system's UV detector. Commercial instrument vendors were contacted in an effort to determine if mass spectrometry could be used as an alternate detection technique. The results of their work demonstrate that low part per billion analysis of the tracer compounds in oil field water could be achieved using ultra performance liquid chromatography mass spectrometry.

  16. Brushing up on oil recovery

    SciTech Connect

    Mackey, J.

    1995-12-01

    To be prepared for a range of oil spills, emergency response organizations must have an arsenal of powerful and adaptable equipment. Around the coastal United States, a network of oil spill cooperatives and emergency response organizations stand ready with the technology and the know-how to respond to the first sign of an oil spill. When the telephone rings, they may be required to mop up 200 gallons of oil that leaked off the deck of a ship or to contain and skim 2,000 gallons of oil from a broken hose at a loading terminal. In a few cases each year, they may find themselves responding to a major pollution incident, one that involves hundreds of people and tons of equipment. To clean an oil spill at a New Jersey marine terminal, the local cooperative used the Lundin Oil Recovery Inc. (LORI) skimming system to separate the oil and water and the lift the oil out of the river. The LORI skimming technology is based on sound principles of fluid management - using the natural movement of water instead of trying to fight against it. A natural feeding mechanism delivers oily water through the separation process, and a simple mechanical separation and recovery device - a brush conveyor - removes the pollutants from the water.

  17. Water-related Issues Affecting Conventional Oil and Gas Recovery and

    Office of Scientific and Technical Information (OSTI)

    Potential Oil-Shale Development in the Uinta Basin, Utah (Technical Report) | SciTech Connect Technical Report: Water-related Issues Affecting Conventional Oil and Gas Recovery and Potential Oil-Shale Development in the Uinta Basin, Utah Citation Details In-Document Search Title: Water-related Issues Affecting Conventional Oil and Gas Recovery and Potential Oil-Shale Development in the Uinta Basin, Utah Saline water disposal is one of the most pressing issues with regard to increasing

  18. American Recovery and Reinvestment Act (ARRA) FEMP Technical Assistance U.S. Army – Project 276 Renewable Resource Development on Department of Defense Bases in Alaska: Challenges and Opportunities

    SciTech Connect

    Warwick, William M.

    2010-09-30

    The potential to increase utilization of renewable energy sources among military facilities in Alaska through coordinated development and operation is the premise of this task. The US Army Pacific Command requested assistance from PNNL to help develop a more complete understanding of the context for wheeling power within Alaska, including legal and regulatory barriers that may prohibit the DOD facilities from wheeling power among various locations to optimize the development and use of renewable resources.

  19. Recovery Act State Memos American Samoa

    Energy.gov [DOE] (indexed site)

    American Samoa For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  20. Recovery Act State Memos Mariana Islands

    Energy.gov [DOE] (indexed site)

    Mariana Islands For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  1. Recovery Act State Memos New Hampshire

    Energy.gov [DOE] (indexed site)

    Hampshire For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  2. Recovery Act State Memos New Jersey

    Energy.gov [DOE] (indexed site)

    Jersey For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  3. Recovery Act State Memos New Mexico

    Energy.gov [DOE] (indexed site)

    Mexico For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  4. Recovery Act State Memos New York

    Energy.gov [DOE] (indexed site)

    York For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  5. Recovery Act State Memos North Carolina

    Energy.gov [DOE] (indexed site)

    Carolina For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  6. Recovery Act State Memos North Dakota

    Energy.gov [DOE] (indexed site)

    Dakota For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  7. Recovery Act State Memos Puerto Rico

    Energy.gov [DOE] (indexed site)

    Puerto Rico For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  8. Recovery Act State Memos Rhode Island

    Energy.gov [DOE] (indexed site)

    Rhode Island For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  9. Recovery Act State Memos South Carolina

    Energy.gov [DOE] (indexed site)

    Carolina For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  10. Recovery Act State Memos South Dakota

    Energy.gov [DOE] (indexed site)

    Dakota For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  11. Recovery Act State Memos Virgin Islands

    Energy.gov [DOE] (indexed site)

    Virgin Islands For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  12. Recovery Act State Memos Washington, DC

    Energy.gov [DOE] (indexed site)

    Washington, DC For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  13. Recovery Act State Memos West Virginia

    Energy.gov [DOE] (indexed site)

    West Virginia For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  14. Los Alamos plants willows for flood recovery

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    plants willows Los Alamos plants willows for flood recovery The Laboratory's Corrective Actions Program (CAP) planted nearly 10,000 willows to help preserve the Pueblo Canyon wetland after damage from September 2013 floods. June 18, 2014 In a flood recovery effort designed to stop further erosion in Pueblo Canyon, in April, Los Alamos planted nearly 10,000 willows along the stream banks surrounding the wetland. In a flood recovery effort designed to stop further erosion in Pueblo Canyon, Los

  15. Enhanced Oil Recovery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Enhanced Oil Recovery Enhanced Oil Recovery Thanks in part to innovations supported by the Office of Fossil Energy's National Energy Technology Laboratory over the past 30 years, the United States is a world leader in the number of EOR projects and volume of oil production from this method. Fossil Energy Research Benefits - Enhanced Oil Recovery (708.07 KB) More Documents & Publications Oil Study Guide - High School Fossil Energy Today - Fourth Quarter, 2011 Fossil Energy Today - First

  16. Waste Isolation Pilot Plant Recovery Plan

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Waste Isolation Pilot Plant Recovery Plan Revision 0 September 30, 2014 [This page left blank.] EXECUTIVE SUMMARY Overview This Recovery Plan provides a safe and compliant approach to resuming operations at the Waste Isolation Pilot Plant (WIPP), the repository for disposal of the nation's defense transuranic (TRU) waste. The U.S. Department of Energy (DOE) is committed to resuming operations by the first quarter of calendar year 2016, and this Recovery Plan outlines the Department's approach to

  17. Final Report, Materials for Industrial Heat Recovery Systems, Tasks 3 and 4 Materials for Heat Recovery in Recovery Boilers

    SciTech Connect

    Keiser, James R.; Kish, Joseph R.; Singh, Preet M.; Sarma, Gorti B.; Yuan, Jerry; Gorog, J. Peter; Frederick, Laurie A.; Jette, Francois R.; Meisner, Roberta A.; Singbeil, Douglas L.

    2007-12-31

    tubes. Also, these fluctuating air flow patterns can result in deposition of black liquor on the wall tubes, and during periods when deposition is high, there is a noticeable increase in the concentrations of sulfur-bearing gases like hydrogen sulfide and methyl mercaptan. Laboratory studies have shown that chromized and aluminized surface treatments on carbon steel improve the resistance to sulfidation attack. Studies of superheater corrosion and cracking have included laboratory analyses of cracked tubes, laboratory corrosion studies designed to simulate the superheater environment and field tests to study the movement of superheater tubes and to expose a corrosion probe to assess the corrosion behavior of alternate superheater alloys, particularly alloys that would be used for superheaters operating at higher temperatures and higher pressures than most current boilers. In the laboratory corrosion studies, samples of six alternate materials were immersed in an aggressive, low melting point salt mixture and exposed for times up to 336 h, at temperatures of 510, 530 or 560°C in an inert or reactive cover gas. Using weight change and results of metallographic examination, the samples were graded on their resistance to the various environments. For the superheater corrosion probe studies, samples of the same six materials were exposed on an air-cooled corrosion probe exposed in the superheater section of a recovery boiler for 1000 h. Post exposure examination showed cracking and/or subsurface attack in the samples exposed at the higher temperatures with the attack being more severe for samples 13 exposed above the first melting temperature of the deposits that collected on the superheater tubes. From these superheater studies, a ranking was developed for the six materials tested. The task addressing cracking and corrosion of primary air port tubes that was part of this project produced results that have been extensively implemented in recovery boilers in North America

  18. Clean option: Berkeley Pit water treatment and resource recovery strategy

    SciTech Connect

    Gerber, M.A.; Orth, R.J.; Elmore, M.R.; Monzyk, B.F.

    1995-09-01

    The US Department of Energy (DOE), Office of Technology Development, established the Resource Recovery Project (RRP) in 1992 as a five-year effort to evaluate and demonstrate multiple technologies for recovering water, metals, and other industrial resources from contaminated surface and groundwater. Natural water resources located throughout the DOE complex and the and western states have been rendered unusable because of contamination from heavy metals. The Berkeley Pit, a large, inactive, open pit copper mine located in Butte, Montana, along with its associated groundwater system, has been selected by the RRP for use as a feedstock for a test bed facility located there. The test bed facility provides the infrastructure needed to evaluate promising technologies at the pilot plant scale. Data obtained from testing these technologies was used to assess their applicability for similar mine drainage water applications throughout the western states and at DOE. The objective of the Clean Option project is to develop strategies that provides a comprehensive and integrated approach to resource recovery using the Berkeley Pit water as a feedstock. The strategies not only consider the immediate problem of resource recovery from the contaminated water, but also manage the subsequent treatment of all resulting process streams. The strategies also employ the philosophy of waste minimization to optimize reduction of the waste volume requiring disposal, and the recovery and reuse of processing materials.

  19. Supercritical Recovery Systems LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Recovery Systems LLC Place: Clayton, Missouri Zip: 63105 Product: Holder of various biofuel processing technologies. Deeveloping an ethanol plant in Lacassine, Louisiana....

  20. Carbon sequestration with enhanced gas recovery: Identifying...

    Office of Scientific and Technical Information (OSTI)

    studies, we propose a field test of the Carbon Sequestration with Enhanced Gas Recovery (CSEGR) process. The objective of the field test is to evaluate the feasibility of ...

  1. Energy Recovery Associates | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - NY NJ CT PA Area Sector: Biofuels Product: Landfill Gas, Digester Gas, mixed methane and Greenhouse gases recovery and utilization equipment and projects. Number of...

  2. Hillsborough County Resource Recovery Biomass Facility | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Facility Hillsborough County Resource Recovery Sector Biomass Facility Type Municipal Solid Waste Location Hillsborough County, Florida Coordinates 27.9903597, -82.3017728...

  3. Modified Accelerated Cost-Recovery System (MACRS)

    Energy.gov [DOE]

    Under the federal Modified Accelerated Cost-Recovery System (MACRS), businesses may recover investments in certain property through depreciation deductions. The MACRS establishes a set of class...

  4. IDAHO RECOVERY ACT SNAPSHOT | Department of Energy

    Energy.gov [DOE] (indexed site)

    Idaho has substantial natural resources, including wind, geothermal, and hydroelectric power .The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on ...

  5. ARIZONA RECOVERY ACT SNAPSHOT | Department of Energy

    Energy.gov [DOE] (indexed site)

    Arizona has substantial natural resources, including coal, solar, and hydroelectric resources. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment ...

  6. GEORGIA RECOVERY ACT SNAPSHOT | Department of Energy

    Energy.gov [DOE] (indexed site)

    Georgia has substantial natural resources, including biomass and hydroelectric power .The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the ...

  7. Recovery Act Progress Update: Reactor Closure Feature

    ScienceCinema

    Cody, Tom

    2012-06-14

    A Recovery Act Progress Update. Decommissioning of two nuclear reactor sites at the Department of Energy's facilities has been approved and is underway.

  8. Bioelectrochemical Integration of Waste Heat Recovery, Waste...

    Energy.gov [DOE] (indexed site)

    Air Products and Chemicals, Inc. - Allentown, PA A microbial reverse electrodialysis technology ... Bio-Electrochemical Integration of Waste Heat Recovery, Waste-To-Energy Conversion, ...

  9. Faces of the Recovery Act: 1366 Technologies

    Office of Energy Efficiency and Renewable Energy (EERE)

    LEXINGTON, MA - At 1366 Technologies, Ely Sachs and Frank van Mierlo are using ARPA-E Recovery Act funding to dramatically reduce the costs of solar panel production.

  10. Recovery Act SGDP | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    January 25, 2013: Assistant Secretary Patricia Hoffman to Deliver Keynote Address at IEEE PES Conference on Innovative Smart Grid Technologies Blogs October 5, 2015: Recovery ...

  11. Feed Resource Recovery | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search Name: Feed Resource Recovery Place: Wellesley, Massachusetts Product: Start-up planning to convert waste to fertilizer and biomethane gas. Coordinates: 42.29776,...

  12. Cost Recovery | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    Cost Recovery Home Kyoung's picture Submitted by Kyoung(150) Contributor 9 July, 2013 - 20:57 GRR 3rd Quarter - Stakeholder Update Meeting Alaska analysis appropriations...

  13. Engine Waste Heat Recovery Concept Demonstration | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    in a Small Engine Test Cell for Enhanced Kinetic Engine Modeling Accuracy A Thermoelectric Generator with an Intermediate Heat Exchanger for Automotive Waste Heat Recovery ...

  14. Waste Heat Recovery Opportunities for Thermoelectric Generators...

    Energy.gov [DOE] (indexed site)

    Thermoelectrics have unique advantages for integration into selected waste heat recovery applications. fleurial.pdf (2.3 MB) More Documents & Publications High Reliability, High ...

  15. Faces of the Recovery Act: Sun Catalytix

    Energy.gov [DOE]

    At the Massachusetts Institute of Technology, Dan Nocera talks about Sun Catalytix, the next generation of solar energy, and ARPA-E funding through the Recovery Act.

  16. Lab completes first Recovery Act cleanup project

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    waste landfill. "The Recovery Act has been a huge boost to our overall cleanup efforts," said Michael Graham, LANL's associate director of environmental programs. "Completing...

  17. Incorporating Energy Efficiency into Disaster Recovery Efforts

    Office of Energy Efficiency and Renewable Energy (EERE)

    Better Buildings Residential Network Program Sustainability Peer Exchange Call Series: Incorporating Energy Efficiency into Disaster Recovery Efforts, Call Slides and Discussion Summary, October 9, 2014.

  18. Recovery Act Progress Update: Reactor Closure Feature

    SciTech Connect

    Cody, Tom

    2010-01-01

    A Recovery Act Progress Update. Decommissioning of two nuclear reactor sites at the Department of Energy's facilities has been approved and is underway.

  19. Energy Positive Water Resource Recovery Workshop Presentations...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Presentations Energy Positive Water Resource Recovery Workshop Presentations ...ositiveWorkshopReuse.pdf (2.28 MB) NearyWaterResourceWorkshoppresentaion2015.pdf ...

  20. Performance Engineering Research Center and RECOVERY. Performance...

    Office of Scientific and Technical Information (OSTI)

    Performance Engineering Research Center and RECOVERY. Performance Engineering Research Institution SciDAC-e Augmentation. Performance enhancement Citation Details In-Document ...

  1. Weatherization Formula Grants - American Recovery and Reinvestment...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    More Documents & Publications Microsoft Word - nDE-FOA-0000051.rtf Weatherization Formula Grants - American Recovery and Reinvestment Act (ARRA) WPN 10-9: Amendment to ...

  2. Methane Recovery from Hydrate-bearing Sediments

    SciTech Connect

    J. Carlos Santamarina; Costas Tsouris

    2011-04-30

    Gas hydrates are crystalline compounds made of gas and water molecules. Methane hydrates are found in marine sediments and permafrost regions; extensive amounts of methane are trapped in the form of hydrates. Methane hydrate can be an energy resource, contribute to global warming, or cause seafloor instability. This study placed emphasis on gas recovery from hydrate bearing sediments and related phenomena. The unique behavior of hydrate-bearing sediments required the development of special research tools, including new numerical algorithms (tube- and pore-network models) and experimental devices (high pressure chambers and micromodels). Therefore, the research methodology combined experimental studies, particle-scale numerical simulations, and macro-scale analyses of coupled processes. Research conducted as part of this project started with hydrate formation in sediment pores and extended to production methods and emergent phenomena. In particular, the scope of the work addressed: (1) hydrate formation and growth in pores, the assessment of formation rate, tensile/adhesive strength and their impact on sediment-scale properties, including volume change during hydrate formation and dissociation; (2) the effect of physical properties such as gas solubility, salinity, pore size, and mixed gas conditions on hydrate formation and dissociation, and it implications such as oscillatory transient hydrate formation, dissolution within the hydrate stability field, initial hydrate lens formation, and phase boundary changes in real field situations; (3) fluid conductivity in relation to pore size distribution and spatial correlation and the emergence of phenomena such as flow focusing; (4) mixed fluid flow, with special emphasis on differences between invading gas and nucleating gas, implications on relative gas conductivity for reservoir simulations, and gas recovery efficiency; (5) identification of advantages and limitations in different gas production strategies with

  3. Method for enhanced oil recovery

    DOEpatents

    Comberiati, Joseph R.; Locke, Charles D.; Kamath, Krishna I.

    1980-01-01

    The present invention is directed to an improved method for enhanced recovery of oil from relatively "cold" reservoirs by carbon dioxide flooding. In oil reservoirs at a temperature less than the critical temperature of 87.7.degree. F. and at a pore pressure greater than the saturation pressure of carbon dioxide at the temperature of the reservoir, the carbon dioxide remains in the liquid state which does not satisfactorily mix with the oil. However, applicants have found that carbon dioxide can be vaporized in situ in the reservoir by selectively reducing the pore pressure in the reservoir to a value less than the particular saturated vapor pressure so as to greatly enhance the mixing of the carbon dioxide with the oil.

  4. Aerobic microbial enhanced oil recovery

    SciTech Connect

    Torsvik, T.; Gilje, E.; Sunde, E.

    1995-12-31

    In aerobic MEOR, the ability of oil-degrading bacteria to mobilize oil is used to increase oil recovery. In this process, oxygen and mineral nutrients are injected into the oil reservoir in order to stimulate growth of aerobic oil-degrading bacteria in the reservoir. Experiments carried out in a model sandstone with stock tank oil and bacteria isolated from offshore wells showed that residual oil saturation was lowered from 27% to 3%. The process was time dependent, not pore volume dependent. During MEOR flooding, the relative permeability of water was lowered. Oxygen and active bacteria were needed for the process to take place. Maximum efficiency was reached at low oxygen concentrations, approximately 1 mg O{sub 2}/liter.

  5. High efficiency shale oil recovery

    SciTech Connect

    Adams, D.C.

    1992-01-01

    The overall project objective is to demonstrate the high efficiency of the Adams Counter-Current shale oil recovery process. The efficiency will first be demonstrated on a small scale, in the current phase, after which the demonstration will be extended to the operation of a small pilot plant. Thus the immediate project objective is to obtain data on oil shale retorting operations in a small batch rotary kiln that will be representative of operations in the proposed continuous process pilot plant. Although an oil shale batch sample is sealed in the batch kiln from the start until the end of the run, the process conditions for the batch are the same as the conditions that an element of oil shale would encounter in a continuous process kiln. Similar chemical and physical (heating, mixing) conditions exist in both systems. The two most important data objectives in this phase of the project are to demonstrate (1) that the heat recovery projected for this project is reasonable and (2) that an oil shale kiln will run well and not plug up due to sticking and agglomeration. The following was completed and is reported on this quarter: (1) A software routine was written to eliminate intermittently inaccurate temperature readings. (2) We completed the quartz sand calibration runs, resolving calibration questions from the 3rd quarter. (3) We also made low temperature retorting runs to identify the need for certain kiln modifications and kiln modifications were completed. (4) Heat Conductance data on two Pyrolysis runs were completed on two samples of Occidental oil shale.

  6. A field laboratory for improved oil recovery. Final report

    SciTech Connect

    Hildebrandt, A.F.; McDonald, J.; Claridge, E.; Killough, J.

    1992-09-01

    The purpose of Annex III of the Memorandum of Understanding, undertaken by the Houston Petroleum Research Center at the University of Houston, was to develop a field laboratory for research in improved oil recovery using a Gulf Coast reservoir in Texas. The participants: (1) make a field site selection and conducted a high resolution seismic survey in the demonstration field, (2) obtained characteristics of the reservoir (3) developed an evaluation of local flood efficiency in different parts of the demonstration reservoir, (4) used diverse methodology to evaluate the potential recovery of the remaining oil in the test reservoir, (5) developed cross-well seismic tomography, and (6) will transfer the learned technologies to oil operators through publication and workshops. This abstract is an overview of these tasks.

  7. Energy balance for uranium recovery from seawater

    SciTech Connect

    Schneider, E.; Lindner, H.

    2013-07-01

    The energy return on investment (EROI) of an energy resource is the ratio of the energy it ultimately produces to the energy used to recover it. EROI is a key viability measure for a new recovery technology, particularly in its early stages of development when financial cost assessment would be premature or highly uncertain. This paper estimates the EROI of uranium recovery from seawater via a braid adsorbent technology. In this paper, the energy cost of obtaining uranium from seawater is assessed by breaking the production chain into three processes: adsorbent production, adsorbent deployment and mooring, and uranium elution and purification. Both direct and embodied energy inputs are considered. Direct energy is the energy used by the processes themselves, while embodied energy is used to fabricate their material, equipment or chemical inputs. If the uranium is used in a once-through fuel cycle, the braid adsorbent technology EROI ranges from 12 to 27, depending on still-uncertain performance and system design parameters. It is highly sensitive to the adsorbent capacity in grams of U captured per kg of adsorbent as well as to potential economies in chemical use. This compares to an EROI of ca. 300 for contemporary terrestrial mining. It is important to note that these figures only consider the mineral extraction step in the fuel cycle. At a reference performance level of 2.76 g U recovered per kg adsorbent immersed, the largest energy consumers are the chemicals used in adsorbent production (63%), anchor chain mooring system fabrication and operations (17%), and unit processes in the adsorbent production step (12%). (authors)

  8. High-Performance Thermoelectric Devices Based on Abundant Silicide Materials for Vehicle Waste Heat Recovery

    Energy.gov [DOE]

    Development of high-performance thermoelectric devices for vehicle waste heat recovery will include fundamental research to use abundant promising low-cost thermoelectric materials, thermal management and interfaces design, and metrology

  9. Faces of the Recovery Act: Sun Catalytix

    ScienceCinema

    Nocera, Dave

    2013-05-29

    BOSTON- At the Massachusetts Institute of Technology, Dan Nocera talks about Sun Catalytix, the next generation of solar energy, and ARPA-E funding through the Recovery Act. To learn about more ARPA-E projects through the Recovery Act: http://arpa-e.energy.gov/FundedProjects.aspx

  10. Investigating Methods of Heat Recovery from Low-Temperature PEM Fuel Cells in CHP Applications

    SciTech Connect

    Jalalzadeh-Azar, A. A.

    2004-01-01

    Heat recovery from low-temperature proton exchange membrane (PEM) fuel cells poses a number of challenges. In response to these challenges, thermodynamic assessments of proposed heat recovery methods are studied in the context of combined heat and power (CHP) for building applications. Preheating combustion air in conjunction with desiccant dehumidification and absorption cooling technologies is one of the two strategies examined in this study. The other approach integrates the PEM fuel cell with a water-loop heat pump (WLHP) for direct heat recovery. As the primary objective, energy-saving potentials of the adopted heat recovery strategies are estimated with respect to various benchmarks. The quantified energy-saving potentials are translated into effective CHP performance indices and compared with those typically specified by the manufacturers for service hot water applications. The need for developing CHP performance protocols is also discussed in light of the proposed energy recovery techniques - thereby, accomplishing the secondary objective.

  11. Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, New Mexico, Class III

    SciTech Connect

    Murphy, Mark B.

    2002-01-16

    The overall objective of this project was to demonstrate that a development program-based on advanced reservoir management methods-can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan included developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals were (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry.

  12. R and D energy recovery LINAC at Brookhaven National Laboratory

    SciTech Connect

    Litvinenko,V.N.; Beavis, D.; Ben-Zvi, I.; Blaskiewicz, M.; Burrill, A.; Calaga, R.; Cameron, P.; Chang, X.; Drees, A.; Ganetis, G.; Gassner, D.; Hahn, H.; Hammons, L.; Hershcovitch, A.; Hseuh, H-C.; Jain, A.; Kayran, D.; Kewisch, J.; Lambiase, R.; Lederle, D.; Mahler, G.; McIntyre, G.; Meng, W.; Nehring, T.; Oerter, B.; Pai, C.; Pate, D.; Phillips, D.; Pozdeyev, E.; Rao, T.; Reich, J.; Roser, T.; Russo, T.; Smith, K.; Tuozzolo, J.; Weiss, D.; Williams, N.; Yip, K.; Zaltsman, A.; Favale, A.; Bluem, H.; Cole, M.; Holmes, D.; Rathke, J.; Schultheiss, T.; Todd, A.; Delayen, J.; Funk, L.; Phillips, L.; Preble, J.

    2008-06-23

    Collider Accelerator Department at BNL is in the final stages of developing the 20-MeV R and D energy recovery linac with super-conducting 2.5 MeV RF gun and single-mode super-conducting 5-cell RF linac. This unique facility aims to address many outstanding questions relevant for high current (up to 0.5 A of average current), high brightness energy-recovery linacs with novel ZigZag-type merger. Recent development in the R and D ERL plans include gun and 5-cell cavity (G5) test and possibility of using R and D ERL for proof-of-principle test of Coherent Electron Cooling at RHIC.

  13. ASPEN Plus Simulation of CO2 Recovery Process

    SciTech Connect

    Charles W. White III

    2003-09-30

    ASPEN Plus simulations have been created for a CO{sub 2} capture process based on adsorption by monoethanolamine (MEA). Three separate simulations were developed, one each for the flue gas scrubbing, recovery, and purification sections of the process. Although intended to work together, each simulation can be used and executed independently. The simulations were designed as template simulations to be added as a component to other more complex simulations. Applications involving simple cycle or hybrid power production processes were targeted. The default block parameters were developed based on a feed stream of raw flue gas of approximately 14 volume percent CO{sub 2} with a 90% recovery of the CO{sub 2} as liquid. This report presents detailed descriptions of the process sections as well as technical documentation for the ASPEN simulations including the design basis, models employed, key assumptions, design parameters, convergence algorithms, and calculated outputs.

  14. Investigation of Electrochemical Recovery of Zirconium from Spent Nuclear Fuels

    SciTech Connect

    Michael Simpson; II-Soon Hwang

    2014-06-01

    This project uses both modeling and experimental studies to design optimal electrochemical technology methods for recovery of zirconium from used nuclear fuel rods for more effective waste management. The objectives are to provide a means of efficiently separating zirconium into metallic high-level waste forms and to support development of a process for decontamination of zircaloy hulls to enable their disposal as low- and intermediate-level waste. Modeling work includes extension of a 3D model previously developed by Seoul National University for uranium electrorefining by adding the ability to predict zirconium behavior. Experimental validation activities include tests for recovery of zirconium from molten salt solutions and aqueous tests using surrogate materials. *This is a summary of the FY 2013 progress for I-NERI project # 2010-001-K provided to the I-NERI office.

  15. Recovery of Sugars by Solvent Extraction - Energy Innovation Portal

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Industrial Technologies Industrial Technologies Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Recovery of Sugars by Solvent Extraction Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing SummaryResearchers at the Joint BioEnergy Institute (JBEI) have developed a technology to extract 5C and 6C sugars directly at two points in an ionic liquid biomass pretreatment process and deliver a concentrated solution of fermentable

  16. Laboratory methods for enhanced oil recovery core floods

    SciTech Connect

    Robertson, E.P.; Bala, G.A.; Thomas, C.P.

    1994-03-01

    Current research at the Idaho National Engineering Laboratory (INEL) is investigating microbially enhanced oil recovery (MEOR) systems for application to oil reservoirs. Laboratory corefloods are invaluable in developing technology necessary for a field application of MEOR. Methods used to prepare sandstone cores for experimentation, coreflooding techniques, and quantification of coreflood effluent are discussed in detail. A technique to quantify the small volumes of oil associated with laboratory core floods is described.

  17. Microbial enhanced oil recovery and wettability research program

    SciTech Connect

    Thomas, C.P.; Bala, G.A.; Duvall, M.L.

    1991-07-01

    This report covers research results for the microbial enhanced oil recovery (MEOR) and wettability research program conducted by EG G Idaho, Inc. at the Idaho National Engineering Laboratory (INEL). The isolation and characterization of microbial species collected from various locations including target oil field environments is underway to develop more effective oil recovery systems for specific applications. The wettability research is a multi-year collaborative effort with the New Mexico Petroleum Recovery Research Center (NMPRRC), to evaluate reservoir wettability and its effects on oil recovery. Results from the wettability research will be applied to determine if alteration of wettability is a significant contributing mechanism for MEOR systems. Eight facultatively anaerobic surfactant producing isolates able to function in the reservoir conditions of the Minnelusa A Sands of the Powder River Basin in Wyoming were isolated from naturally occurring oil-laden environments. Isolates were characterized according to morphology, thermostability, halotolerance, growth substrates, affinity to crude oil/brine interfaces, degradative effects on crude oils, and biochemical profiles. Research at the INEL has focused on the elucidation of microbial mechanisms by which crude oil may be recovered from a reservoir and the chemical and physical properties of the reservoir that may impact the effectiveness of MEOR. Bacillus licheniformis JF-2 (ATCC 39307) has been used as a benchmark organism to quantify MEOR of medium weight crude oils (17.5 to 38.1{degrees}API) the capacity for oil recovery of Bacillus licheniformis JF-2 utilizing a sucrose-based nutrient has been elucidated using Berea sandstone cores. Spacial distribution of cells after microbial flooding has been analyzed with scanning electron microscopy. Also the effect of microbial surfactants on the interfacial tensions (IFT) of aqueous/crude oil systems has been measured. 87 refs., 60 figs., 15 tabs.

  18. Fire flood recovery process effects upon heavy oil properties

    SciTech Connect

    Reichert, C.; Fuhr, B.; Sawatzky, H.; Lefleur, R.; Verkoczy, B.; Soveran, D.; Jha, K.

    1988-06-01

    The steady decline in proven conventional oil deposits world wide has increased the emphasis on the use of heavy oil and bitumen. Most of the heavy oil and oil sand deposits share the common problem of providing very little or no primary production. They require a reduction in viscosity of the oil to make it flow. The oil in place and the reservoir characteristics are generally studied carefully to determine the design of the recovery process most applicable to the deposit and to evaluate its potential. Many of these same characteristics are also used to evaluate the oil with respect to upgrading, refining and final usage in the form of products. A variety of processes have been developed most of which utilize heat either in the form of steam or combustion to mobolize the oil in the reservoir. These processes vary considerably from rather mild conditions for steam stimulation to quite severe for combustion recovery. Figure 1 shows a typical schematic of an insitu combustion process. Many variations of forward combustion are used in the field to produce oil. Depending upon the severity of the recovery process in the recovered oil may be similar to the oil in the deposit or may be highly modified (oxidized, polymerized or upgraded). A memorandum of Understanding was signed by the Governments of the United States of America, Canada and the Provinces of Saskatchewan and Alberta to study different aspects of the problems related to the recovery of oil from heavy oil and sand deposits. One phase of the study is to determine the effects of different methods of in-situ recovery on the composition of recovered bitumen and heavy oils. This paper describes the findings from a study of fireflood process in a heavy oil deposit located in the Cummings formation of the Eyehill Field in Saskatchewan, Canada.

  19. FE Implementation of the Recovery Act | Department of Energy

    Energy Saver

    FE Implementation of the Recovery Act The American Recovery and Reinvestment Act of 2009 (Recovery Act) was signed into law by President Obama on February 17th, 2009. It is an ...

  20. Uranium at Y-12: Recovery | Y-12 National Security Complex

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Recovery Uranium at Y-12: Recovery Posted: July 22, 2013 - 3:44pm | Y-12 Report | Volume 10, Issue 1 | 2013 Recovery involves reclaiming uranium from numerous sources and ...

  1. Drain-Water Heat Recovery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Heat & Cool Water Heating Drain-Water Heat Recovery ... Diagram of a drain water heat recovery system. Any hot water ... Drain-water (or greywater) heat recovery systems capture ...

  2. Insurance recovery for manufactured gas plant liabilities

    SciTech Connect

    Koch, G.S.; Wise, K.T.; Hanser, P.

    1997-04-15

    This article addresses insurance and liability issues arising from former manufactured gas plant sites. Three issues are discussed in detail: (1) how to place a value on a potential insurance recovery or damage award, (2) how to maximize recovery through litigation or settlement, and (3) how to mediate coverage disputes to avoid litigation. The first issue, valuing potential recovery, is discussed in the most detail. An approach is outlined which includes organizing policy data, evaluating site facts relevant to coverage, estimating site costs, estimating coverage likelihoods, and assessing the expected value of litigation. Probability and cost estimate data is provided to aid in assessments.

  3. Recovery Progress Has WIPP Poised to

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy Smart Grid Demonstration Program (SGDP) Recovery Act: Smart Grid Demonstration Program (SGDP) View a Map Showing Energy Storage Projects by State View a Map Showing Energy Storage Projects by State Read more View a Map Showing Smart Grid Energy Demo Projects by State View a Map Showing Smart Grid Energy Demo Projects by State Read more View a map which combines the above two maps View the full list of selected projects The American Recovery and Reinvestment Act of 2009 (Recovery Act)

  4. Recovery News Flashes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    News Flashes Recovery News Flashes RSS January 29, 2013 "TRU" Success: SRS Recovery Act Prepares to Complete Shipment of More Than 5,000 Cubic Meters of Nuclear Waste to WIPP With the American Recovery and Reinvestment Act funding, Savannah River Site (SRS) continues to safely treat and dispose of radioactive waste created while producing materials for nuclear weapons throughout the Cold War. The DOE site in Aiken, S.C., is safely, steadily, and cost-effectively making progress to

  5. Legacy Guidance: The Buy American Provision of the Recovery Act |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Legacy Guidance: The Buy American Provision of the Recovery Act Legacy Guidance: The Buy American Provision of the Recovery Act Projects funded by the American Recovery and Reinvestment Act of 2009 (Recovery Act) were required to follow the Buy American Provision. This guidance only applied to Funding Opportunity Announcements (FOAs) associated with the Recovery Act. If the FOA received another source of funding-not from the Recovery Act-then the Buy America provision

  6. Subject: Calculation of Job Creating Through Recovery Act Funding |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Subject: Calculation of Job Creating Through Recovery Act Funding Subject: Calculation of Job Creating Through Recovery Act Funding Subject: Calculation of Job Creating Through Recovery Act Funding (192.64 KB) More Documents & Publications WPN 10-14a: Calculation of Job Creation through DOE Recovery Act Funding - Updated Calculation of Job Creation Through DOE Recovery Act Funding WPN 10-14: Calculation of Job Creation through DOE Recovery Act Funding

  7. Miscible Applied Simulation Techniques for Energy Recovery

    Energy Science and Technology Software Center

    2005-07-01

    During the use of MASTER at the New Mexico Petroleum Recovery Research Center (PRRC) as research division of New Mexico Institute of Mining and Technology a number of modification have been made to the original MASTER. We have worked at minimizing programming errors and incorporating a foaming option for surfactant solution (aqueous phase) injection altemating with gas (SAG) The original program checks and modifications performed at PRRC were under the direction of Dr. Shih-Hsien Changmore » under previous DOE contracts. The final modifications and completion of the documentation were performed by Dr. Zhengwen Zeng under DOE Contract Number DE-FG26-01BC15364. Drs. Chang and Zeng worked under Dr. Reid B. Grigg in the Gas Flooding Processes and Flow Heterogeneities Section of PRRC. This work is not intended to have any long-term support from the PRRC, but any errors should be reported to the Department of Energy for inclusion in future releases of MASTER. MASTER is an effective reservoir simulator for modeling a number of fluid flow problems and is a straight forward and economical program. We thank the Department of Energy for the original development of this program and the availability for our use.« less

  8. Secretary Chu Announces $93 Million from Recovery Act to Support Wind

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Projects | Department of Energy $93 Million from Recovery Act to Support Wind Energy Projects Secretary Chu Announces $93 Million from Recovery Act to Support Wind Energy Projects April 29, 2009 - 12:00am Addthis GOLDEN, CO - In an ongoing effort to expand domestic renewable energy, U.S. Secretary of Energy Steven Chu today announced plans to provide $93 million from the American Recovery and Reinvestment Act to support further development of wind energy in the United States during a

  9. Supporting Statement: OE Recovery Act Financial Assistance Grants...

    Office of Environmental Management (EM)

    Supporting Statement: OE Recovery Act Financial Assistance Grants OMB Control Number 1910-5149 Supporting Statement: OE Recovery Act Financial Assistance Grants OMB Control Number ...

  10. ThermoChem Recovery International Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Product: ThermoChem Recovery International is commercialising proprietary technology for chemical and energy recovery systems for the pulp and paper industry. References:...

  11. American Recovery and Reinvestment Act of 2009 | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    American Recovery and Reinvestment Act of 2009 American Recovery and Reinvestment Act of 2009 The full version of the law: "Making supplemental appropriations for job preservation ...

  12. LOW TEMPERATURE GEOTHERMAL MINERAL RECOVERY PROGRAM 02/11/2014...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    LOW TEMPERATURE GEOTHERMAL MINERAL RECOVERY PROGRAM 02112014 LOW TEMPERATURE GEOTHERMAL MINERAL RECOVERY PROGRAM 02112014 mineral-webinar.pdf (3.45 MB) More Documents & ...

  13. Ethanol Oil Recovery Systems EORS | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Systems EORS Jump to: navigation, search Name: Ethanol Oil Recovery Systems (EORS) Place: Clayton, Georgia Product: Ethanol Oil Recovery Systems (EORS), a green technology...

  14. Planet Resource Recovery Inc formerly American Biodiesel Fuels...

    OpenEI (Open Energy Information) [EERE & EIA]

    Planet Resource Recovery Inc formerly American Biodiesel Fuels Corp Jump to: navigation, search Name: Planet Resource Recovery, Inc. (formerly American Biodiesel Fuels Corp.)...

  15. Faces of the Recovery Act - May Newsletter | Department of Energy

    Energy.gov [DOE] (indexed site)

    MayNewsletter.pdf (2.37 MB) More Documents & Publications Arkansas Recovery Act State Memo Florida Recovery Act State Memo CCIsEnergyEfficiencyBuildingRetrofitProgram

  16. State Assistance for Recovery Act Related Electricity Policies: Awards

    Energy.gov [DOE]

    List of State Energy Policy Awards under the American Recovery and Reinvestment Act including State, Agency, and Recovery Act funding amounts.

  17. Iowa Recovery Act State Memo | Department of Energy

    Energy Saver

    The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Iowa are ...

  18. American Samoa Recovery Act State Memo | Department of Energy

    Energy.gov [DOE] (indexed site)

    The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in American Samoa ...

  19. EM Recovery Act Funding Payment Summary by Site | Department...

    Energy.gov [DOE] (indexed site)

    Summary table of EM Recovery Act Spending Plan which shows dollar amounts obligated to contracts, payments to date and unpaid balances by site. EM Recovery Act Funding Payment ...

  20. Alabama Recovery Act State Memo | Department of Energy

    Energy Saver

    The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Alabama are ...

  1. District of Columbia Recovery Act State Memo | Department of...

    Office of Environmental Management (EM)

    District of Columbia Recovery Act State Memo The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. ...

  2. Massachusetts Recovery Act State Memo | Department of Energy

    Energy Saver

    Massachusetts Recovery Act State Memo The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The ...

  3. Indiana Recovery Act State Memo | Department of Energy

    Energy.gov [DOE] (indexed site)

    The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Indiana are ...

  4. South Dakota Recovery Act State Memo | Department of Energy

    Energy Saver

    The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in South Dakota ...

  5. Oregon Recovery Act State Memo | Department of Energy

    Energy Saver

    The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Oregon reflect ...

  6. Puerto Rico Recovery Act State Memo | Department of Energy

    Energy Saver

    Puerto Rico Recovery Act State Memo The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The ...

  7. EM Recovery Act Lessons Learned (Johnson) | Department of Energy

    Office of Environmental Management (EM)

    More Documents & Publications Info-Exch 2012 - Thomas Johnson Presentation EM Recovery Act Funding Payment Summary by Site American Recovery and Reinvestment Act Payments Surge ...

  8. Recovery Act Workers Clear Reactor Shields from Brookhaven Lab...

    Office of Environmental Management (EM)

    Clear Reactor Shields from Brookhaven Lab Recovery Act Workers Clear Reactor Shields from Brookhaven Lab American Recovery and Reinvestment Act workers are in the final stage of ...

  9. Evaluation of Reservoir Wettability and its Effect on Oil Recovery...

    Office of Scientific and Technical Information (OSTI)

    Evaluation of Reservoir Wettability and its Effect on Oil Recovery. Citation Details In-Document Search Title: Evaluation of Reservoir Wettability and its Effect on Oil Recovery. ...

  10. SURFACTANT BASED ENHANCED OIL RECOVERY AND FOAM MOBILITY CONTROL...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: SURFACTANT BASED ENHANCED OIL RECOVERY AND FOAM MOBILITY CONTROL Citation Details In-Document Search Title: SURFACTANT BASED ENHANCED OIL RECOVERY AND FOAM ...

  11. American Recovery and Reinvestment Act of 2009: Biomass Program Investments

    SciTech Connect

    2012-06-01

    This fact sheet discusses the Biomass Program's investments using Recovery Act funding, as well as make note of how Recovery Act projects are currently doing.

  12. Louisiana Recovery Act State Memo | Department of Energy

    Energy Saver

    Louisiana Recovery Act State Memo Louisiana Recovery Act State Memo Louisiana has substantial natural resources, including abundant oil, gas, coal, biomass, and hydroelectric ...

  13. U.S. Department of Energy - American Recovery & Reinvestment...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    U.S. Department of Energy - American Recovery & Reinvestment Act U.S. Department of Energy - American Recovery & Reinvestment Act Waivers Issued by DOE under the Buy American...

  14. Powerpoint Presentation: Fossil Energy R&D American Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Powerpoint Presentation: Fossil Energy R&D American Recovery & Reinvestment Act Projects Powerpoint Presentation: Fossil Energy R&D American Recovery & Reinvestment Act Projects A ...

  15. Recovery Act Changes Hanford Skyline with Explosive Demolitions...

    Office of Environmental Management (EM)

    Changes Hanford Skyline with Explosive Demolitions Recovery Act Changes Hanford Skyline with Explosive Demolitions American Recovery and Reinvestment Act workers at the Hanford ...

  16. Progress Continues Post-Recovery Act Award at Hanford Site |...

    Office of Environmental Management (EM)

    Progress Continues Post-Recovery Act Award at Hanford Site (2.36 MB) More Documents & Publications Recovery Act Changes Hanford Skyline with Explosive Demolitions Hanford Treats ...

  17. FOIA Frequently Requested Documents: DE-EE0002884 Recovery Act...

    Office of Environmental Management (EM)

    FOIA Frequently Requested Documents: DE-EE0002884 Recovery Act - Integrated Algal Biorefinery (IABR) FOIA Frequently Requested Documents: DE-EE0002884 Recovery Act - Integrated ...

  18. Department of Energy Issues Loan Guarantee Supported by Recovery...

    Energy Saver

    Issues Loan Guarantee Supported by Recovery Act for Nevada Geothermal Project Department of Energy Issues Loan Guarantee Supported by Recovery Act for Nevada Geothermal Project ...

  19. DOE Surpasses Cleanup Target Ahead of Schedule: Recovery Act...

    Office of Environmental Management (EM)

    Recovery Act Investment Saves Money, Trains Workers, Creates Jobs DOE Surpasses Cleanup Target Ahead of Schedule: Recovery Act Investment Saves Money, Trains Workers, Creates Jobs ...

  20. Altamont Gas Recovery Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search Name Altamont Gas Recovery Biomass Facility Facility Altamont Gas Recovery Sector Biomass Facility Type Landfill Gas Location Alameda County, California Coordinates...

  1. Miami Dade County Resource Recovery Fac Biomass Facility | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Resource Recovery Fac Biomass Facility Facility Miami Dade County Resource Recovery Fac Sector Biomass Facility Type Municipal Solid Waste Location Miami-Dade County, Florida...

  2. New Fact Sheet Highlights Waste Isolation Pilot Plant Recovery...

    Office of Environmental Management (EM)

    Fact Sheet Highlights Waste Isolation Pilot Plant Recovery Progress New Fact Sheet Highlights Waste Isolation Pilot Plant Recovery Progress February 25, 2016 - 12:00pm Addthis ...

  3. President Obama Announces Over $467 Million in Recovery Act Funding...

    Energy Saver

    Over 467 Million in Recovery Act Funding for Geothermal and Solar Energy Projects President Obama Announces Over 467 Million in Recovery Act Funding for Geothermal and Solar ...

  4. President Obama Announces Over $467 Million in Recovery Act Funding...

    Office of Environmental Management (EM)

    President Obama Announces Over 467 Million in Recovery Act Funding for Geothermal and Solar Energy Projects President Obama Announces Over 467 Million in Recovery Act Funding for ...

  5. Secretary Chu Announces $93 Million from Recovery Act to Support...

    Energy Saver

    Secretary Chu Announces 93 Million from Recovery Act to Support Wind Energy Projects Secretary Chu Announces 93 Million from Recovery Act to Support Wind Energy Projects April ...

  6. Characterization and Recovery of Rare Earths from Coal and By...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Characterization and Recovery of Rare Earths from Coal and By-Products Citation Details In-Document Search Title: Characterization and Recovery of Rare Earths ...

  7. Recovery of sugars from ionic liquid biomass liquor by solvent...

    Office of Scientific and Technical Information (OSTI)

    Recovery of sugars from ionic liquid biomass liquor by solvent extraction Citation Details In-Document Search Title: Recovery of sugars from ionic liquid biomass liquor by solvent ...

  8. Recovery Act ? An Interdisciplinary Program for Education and...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    tiarravt037anderson2010o.pdf More Documents & Publications Recovery Act An Interdisciplinary Program for Education and Outreach in Transportation Electrification Recovery...

  9. Secretary Chu Announces Nearly $50 Million of Recovery Act Funding...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    50 Million of Recovery Act Funding to Accelerate Deployment of Geothermal Heat Pumps Secretary Chu Announces Nearly 50 Million of Recovery Act Funding to Accelerate Deployment of ...

  10. Buckley, J.S. 02 PETROLEUM; PETROLEUM; ENHANCED RECOVERY; ASPHALTENES...

    Office of Scientific and Technical Information (OSTI)

    Reservoir Wettability and its Effect on Oil Recovery. Buckley, J.S. 02 PETROLEUM; PETROLEUM; ENHANCED RECOVERY; ASPHALTENES; MINERALS; SURFACES; MICA; WETTABILITY We report on the...

  11. Nanjing Green Waste Recovery Engineering Co Ltd | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Nanjing Green Waste Recovery Engineering Co Ltd Jump to: navigation, search Name: Nanjing Green Waste Recovery Engineering Co. Ltd Place: Nanjing, Jiangsu Province, China Zip:...

  12. DOE Recovery Field Projects and State Memos | Department of Energy

    Energy.gov [DOE] (indexed site)

    DOE Recovery Field Projects and State Memos Click on a state to download the recovery memo for that state. View All Maps Addthis...

  13. Toward Local Failure Local Recovery (LFLR) Resilience Model Using...

    Office of Scientific and Technical Information (OSTI)

    Toward Local Failure Local Recovery (LFLR) Resilience Model Using MPI-ULFM. Citation Details In-Document Search Title: Toward Local Failure Local Recovery (LFLR) Resilience Model ...

  14. Battleground Energy Recovery Project - Presentation by the Houston...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Battleground Energy Recovery Project - Presentation by the Houston Advanced Research Center, June 2011 Battleground Energy Recovery Project - Presentation by the Houston Advanced ...

  15. Recovery Act: Clean Coal Power Initiative | Department of Energy

    Energy.gov [DOE] (indexed site)

    A report detailling the Clean Coal Power initiative funded under the American Recovery and Renewal Act of 2009. Recovery Act: Clean Coal Power Initiative More Documents &...

  16. Synchrophasor Technologies and their Deployment in the Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Synchrophasor Technologies and their Deployment in the Recovery Act Smart Grid Programs (August 2013) The American Recovery and Reinvestment Act of 2009 provided 4.5 billion for ...

  17. CLOSEOUT PROCEDURES FOR RECOVERY ACT GRANTS UNDER THE WEATHERIZATION...

    Office of Environmental Management (EM)

    CLOSEOUT PROCEDURES FOR RECOVERY ACT GRANTS UNDER THE WEATHERIZATION ASSISTANCE PROGRAM CLOSEOUT PROCEDURES FOR RECOVERY ACT GRANTS UNDER THE WEATHERIZATION ASSISTANCE PROGRAM This...

  18. High Efficiency Microturbine with Integral Heat Recovery - Fact...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    High Efficiency Microturbine with Integral Heat Recovery - Fact Sheet, 2014 High Efficiency Microturbine with Integral Heat Recovery - Fact Sheet, 2014 Capstone Turbine...

  19. Resource Conservation and Recovery Act | Department of Energy

    Energy Saver

    Resource Conservation and Recovery Act Resource Conservation and Recovery Act Hazardous wastes, mixed wastes, and non-hazardous solid wastes are generated, handled, and managed at ...

  20. Alabama Injection Project Aimed at Enhanced Oil Recovery, Testing...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Alabama Injection Project Aimed at Enhanced Oil Recovery, Testing Important Geologic CO2 Storage Alabama Injection Project Aimed at Enhanced Oil Recovery, Testing Important ...

  1. Energy Recovery Potential from Wastewater Utilities through Innovation...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Recovery Potential from Wastewater Utilities through Innovation Energy Recovery Potential from Wastewater Utilities through Innovation Breakout Session 3A-Conversion Technologies ...

  2. Wastewater heat recovery method and apparatus (Patent) | DOEPatents

    Office of Scientific and Technical Information (OSTI)

    Wastewater heat recovery method and apparatus Title: Wastewater heat recovery method and apparatus You are accessing a document from the Department of Energy's (DOE) DOE ...

  3. Recovery Act Incentives for Wind Energy Equipment Manufacturing...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Recovery Act Incentives for Wind Energy Equipment Manufacturing Recovery Act Incentives for Wind Energy Equipment Manufacturing Document that lists some of the major federal ...

  4. "Recovery Act: Advanced Energy Efficient BuildingTechnologies...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    "Recovery Act: Advanced Energy Efficient BuildingTechnologies" "Recovery Act: Advanced Energy Efficient BuildingTechnologies" Description of a FOA funding oppourtunity with funds ...

  5. Property:Heat Recovery Utility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search Property Name Heat Recovery Utility Property Type Page Description The purpose of Distributed Generation heat recovery This is a property of type Page. Retrieved from...

  6. Montgomery County Resource Recovery Biomass Facility | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Montgomery County Resource Recovery Biomass Facility Jump to: navigation, search Name Montgomery County Resource Recovery Biomass Facility Facility Montgomery County Resource...

  7. Product Recovery from HTGR Reactor Fuel Processing Salt Official...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Demonstration of Fuel and Fission Product Recovery from HTGR Reactor Fuel Processing Salt ... HTGR, MST, CST Retention: Permanent Demonstration of Fuel and Fission Product Recovery ...

  8. Recovery of Water from Boiler Flue Gas Using Condensing Heat...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers Citation Details In-Document Search Title: Recovery of Water from Boiler Flue Gas Using ...

  9. American Recovery and Reinvestment Act of 2009: Bioenergy Technologies...

    Office of Environmental Management (EM)

    American Recovery and Reinvestment Act of 2009: Bioenergy Technologies Office Investments American Recovery and Reinvestment Act of 2009: Bioenergy Technologies Office Investments ...

  10. Connecticut Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Connecticut Recovery Act State Memo (1.13 MB) More Documents & Publications CONNECTICUT RECOVERY ACT SNAPSHOT Final Report - Sun Rise New England - Open for Buisness State of the ...

  11. American Recovery & Reinvestment Act Newsletter July 2010

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    16 | EM Recovery Act Newsletter ARGONNE | BROOKHAVEN | ETEC | HANFORD | IDAHO | LANL | MOAB | MOUND | NTS DOE contractor CH2M HILL Plateau Remediation Company is using 250,000 in ...

  12. Renewable Energy Cost Recovery Incentive Payment

    Energy.gov [DOE]

    Note: Some utilities have reached their cap for incentive allocations under the Renewable Energy Cost Recovery Incentive Payment program. Some of these utilities have reduced per-customer incentive...

  13. Recovery Act Worker Update: Mike Gunnels

    ScienceCinema

    Tire, Brian

    2012-06-14

    Mike Gunnels at the Savannah River Site tells how the Recovery Act got him out of unemployment and the benefits of training and teamwork in his new job with the Department of Energy.

  14. recovery act | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    recovery act Home Graham7781's picture Submitted by Graham7781(2017) Super contributor 15 August, 2013 - 09:09 DOE Report Describes Progress in the Deployment of Synchrophasor...

  15. American Recovery and Reinvestment Act, Financial Assistance...

    Energy.gov [DOE] (indexed site)

    American Recovery and Reinvestment Act, Financial Assistance Award: 212 Degrees Consulting, LLC, Las Vegas, Nevada. Award No. DE-FC36-10GO10589, Notice of Financial Assistance ...

  16. Recovery of metals from waste streams

    SciTech Connect

    Kremer, F.

    1983-10-01

    Four commercial metal recovery technologies are described: reverse osmosis, ion exchange, electrolytic treatment, and electrodialysis. First the technology is described briefly and then a case is given for its utilization. (MHR)

  17. RECOVERY ACT: TAPOCO PROJECT: CHEOAH UPGRADE

    SciTech Connect

    Tran, Paul

    2013-02-28

    Under Funding Opportunity Announcement Number: DE-FOA-0000120, Recovery Act: Hydroelectric Facility Modernization, Alcoa Power Generating Inc. (APGI), a fully owned subsidiary of Alcoa Inc., implemented major upgrades at its Cheoah hydroelectric facility near Robbinsville, North Carolina.

  18. Lab completes Recovery Act-funded demolition

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    tug from a piece of heavy equipment, the last bit of the 24th building crashed to the ground. The final building demolished under the Recovery Act program at Los Alamos...

  19. Unconventional gas recovery: state of knowledge document

    SciTech Connect

    Geffen, C.A.

    1982-01-01

    This report is a synthesis of environmental data and information relevant to the four areas of unconventional gas recovery (UGR) resource recovery: methane from coal, tight western sands, Devonian shales and geopressurized aquifers. Where appropriate, it provides details of work reviewed; while in other cases, it refers the reader to relevant sources of information. This report consists of three main sections, 2, 3, and 4. Section 2 describes the energy resource base involved and characteristics of the technology and introduces the environmental concerns of implementing the technology. Section 3 reviews the concerns related to unconventional gas recovery systems which are of significance to the environment. The potential health and safety concerns of the recovery of natural gas from these resources are outlined in Section 4.

  20. Exhaust Energy Recovery | Department of Energy

    Energy.gov [DOE] (indexed site)

    More Documents & Publications A Quantum Leap for Heavy-Duty Truck Engine Efficiency - Hybrid Power System of Diesel and WHR-ORC Engines Cummins Waste Heat Recovery Exhaust Energy ...

  1. American Recovery & Reinvestment Act Newsletter - Issue 12

    Office of Environmental Management (EM)

    ... We also support WIPP with other containers and NQA-1 custom equipment. Recovery Act Funding Keeps Workers Employed at the Idaho Site With three of his five children in college, ...

  2. Recovery Act Reports | Department of Energy

    Energy.gov [DOE] (indexed site)

    INS-RA-12-01 Alleged Misuse of American Recovery and Reinvestment Act Grant Funds by the Western Arizona Council of Governments January 26, 2012 Audit Report: OAS-RA-L-12-03 The...

  3. Metallic Recovery and Ferrous Melting Processes

    SciTech Connect

    Luis Trueba

    2004-05-30

    The effects of melting atmosphere and charge material type on the metallic and alloy recovery of ferrous charge materials were investigated in two sets of experiments (Tasks 1 and 2). In addition, thermodynamic studies were performed (Task 3) to determine the suitability of ladle treatment for the production of ductile iron using scrap charge materials high in manganese and sulfur. Task 1--In the first set of experiments, the charge materials investigated were thin steel scrap, thick steel scrap, cast iron scrap, and pig iron in the rusty and clean states. Melting atmospheres in this set of experiments were varied by melting with and without a furnace cover. In this study, it was found that neither covered melting nor melting clean (non-rusty) ferrous charge materials improved the metallic recovery over the recovery experienced with uncovered melting or rusty charge materials. However, the silicon and manganese recoveries were greater with covered melting and clean materials. Silicon and manganese in the molten iron react with oxygen dissolved in the iron from uncovered melting and oxidized iron (surface rust). Silica and manganese silicates are formed which float to the slag decreasing recoveries of silicon and manganese. Cast iron and pig iron had higher metallic recoveries than steel scrap. Carbon recovery was affected by the carbon content of the charge materials, and not by the melting conditions. Irons with higher silicon contents had higher silicon recovery than irons with lower silicon contents. Task 2--In the second set of experiments, briquetted turnings and borings were used to evaluate the effects of briquette cleanliness, carbon additions, and melting atmosphere on metallic and alloy recovery. The melting atmosphere in this set of experiments was varied by melting in air and with an argon atmosphere using the SPAL process. In this set of experiments, carbon additions to the briquettes were found to have the greatest effect on metallic and alloy

  4. Faces of the Recovery Act: 1366 Technologies

    SciTech Connect

    Sachs, Ely; Mierlo, Frank van; Obama, Barack

    2010-01-01

    LEXINGTON, MA - At 1366 Technologies, Ely Sachs and Frank van Mierlo are using ARPA-E Recovery Act funding to dramatically reduce the costs of solar panel production. To read more about the project: http://arpa-e.energy.gov/FundedProjects.aspx#1366 To see more projects funded by the Recovery Act through ARPA-E: http://arpa-e.energy.gov/FundedProjects.aspx

  5. Department of Energy Releases WIPP Recovery Plan

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Department of Energy Releases WIPP Recovery Plan Washington, D.C. - Today, the Department of Energy (DOE) released the Waste Isolation Pilot Plant (WIPP) Recovery Plan, outlining the necessary steps to resume operations at the transuranic waste disposal site outside of Carlsbad, N.M. WIPP operations were suspended following an underground truck fire and a radiological release earlier this year. "Safety is our top priority," said Mark Whitney, Acting Assistant Secretary for DOE's Office

  6. American Reinvestment Recovery Act | Department of Energy

    Energy.gov [DOE] (indexed site)

    Office Investments | Department of Energy The Bioenergy Technologies Office rewarded about $178 million in American Recovery and Reinvestment Act of 2009 funds; the projects accelerate advanced biofuels RD&D, speed the deployment of commercialization of biofuels, and further the U.S. bioindustry through market transformation. recovery_act_factsheet.pdf (1.07 MB) More Documents & Publications Algae Biofuels Technology National Alliance for Advanced Biofuels and Bioproducts Synopsis

  7. Recovery of tritium from tritiated molecules

    DOEpatents

    Swansiger, W.A.

    1984-10-17

    This invention relates to the recovery of tritium from various tritiated molecules by reaction with uranium. More particularly, the invention relates to the recovery of tritium from tritiated molecules by reaction with uranium wherein the reaction is conducted in a reactor which permits the reaction to occur as a moving front reaction from the point where the tritium enters the reactor charged with uranium down the reactor until the uranium is exhausted.

  8. State Energy Program Recovery Act Evaluation

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of a major national evaluation of the State Energy Program (SEP), under the Office of Energy Efficiency and Renewable Energy. The National Evaluation of SEP during the American Recovery and Reinvestment Act (ARRA) provides insight into the unique program that was administered by DOE in the national effort to create jobs and promote economic recovery. The National Evaluation was a multiyear, peer-reviewed, statistically robust effort led by Oak Ridge National Laboratory. The purpose of the

  9. Oil recovery by nitrogen flooding. Final report

    SciTech Connect

    Ronde, H.; Hagoort, J.

    1992-03-01

    The general objective of the project is the Establishment of technical and economic design criteria and evaluation tools for oil and condensate recovery by Nitrogen Injection. The main objective has been divided into the following specific objectives: Determination of the effect of oil composition on the oil recovery; Investigation of the pros and cons of slim-tube experiments as a tool for the design and evaluation of nitrogen flooding; Measurement and calculation of the minimum miscibility pressures (MMP) for nitrogen flooding.

  10. Biochemically enhanced oil recovery and oil treatment

    DOEpatents

    Premuzic, Eugene T.; Lin, Mow

    1994-01-01

    This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil.

  11. Biochemically enhanced oil recovery and oil treatment

    DOEpatents

    Premuzic, E.T.; Lin, M.

    1994-03-29

    This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil. 62 figures.

  12. Faces of the Recovery Act: 1366 Technologies

    ScienceCinema

    Sachs, Ely; Mierlo, Frank van; Obama, Barack

    2016-07-12

    LEXINGTON, MA - At 1366 Technologies, Ely Sachs and Frank van Mierlo are using ARPA-E Recovery Act funding to dramatically reduce the costs of solar panel production. To read more about the project: http://arpa-e.energy.gov/FundedProjects.aspx#1366 To see more projects funded by the Recovery Act through ARPA-E: http://arpa-e.energy.gov/FundedProjects.aspx

  13. Recovery of minerals from US coals

    SciTech Connect

    Vanderborgh, N.E.

    1982-01-01

    Projections show that domestic coal will serve for the majority of energy supplies during the next decades. Thorough chemical cleaning of this coal can be accomplished in long residence time, slurry transport systems to produce high-quality fuel product. Concurrently, mineral recovery from coals will supplement existing ores. This paper describes this concept and given preliminary engineering considerations for mineral recovery during transport operations.

  14. Waste Isolation Pilot Plant Recovery Plan

    Office of Energy Efficiency and Renewable Energy (EERE)

    This Recovery Plan provides a safe and compliant approach to resuming operations at the Waste Isolation Pilot Plant (WIPP), the repository for disposal of the nation’s defense transuranic (TRU) waste. The U.S. Department of Energy (DOE) is committed to resuming operations by the first quarter of calendar year 2016, and this Recovery Plan outlines the Department’s approach to meet that schedule while prioritizing safety, health, and environmental protection.

  15. Lab completes Recovery Act-funded demolition

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Recovery Act-funded demolition completed Lab completes Recovery Act-funded demolition The building was the largest of the 24 demolished at LANL's historic Technical Area 21. January 19, 2011 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of

  16. Gills Onions Advanced Energy Recovery System

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    LEARNING FOR LOCAL LEADERS GILLS ONIONS ADVANCED ENERGY RECOVERY SYSTEM MAY 17, 2011 * INDUSTRIAL * FOODSERVICE * RETAIL * GENERATED UP TO 300,000 LBS OF ONION WASTE PER DAY (TOP, TAIL AND PEEL) * WASTE BECAME UNMANAGEABLE AND COST-PROHIBITIVE * CREATED ODOR PROBLEMS, POTENTIAL GROUND WATER CONTAMINATION SOLUTION ONION WASTE TO ENERGY ADVANCED ENERGY RECOVERY SYSTEM (AERS) * CONVERTS ONION WASTE TO RENEWABLE ENERGY, ULTRA-CLEAN BIOGAS AND CATTLE FEED * MEETS OUR GOALS FOR AIR QUALITY, ZERO WASTE

  17. Optimal recovery sequencing for critical infrastructure resilience assessment.

    SciTech Connect

    Vugrin, Eric D.; Brown, Nathanael J. K.; Turnquist, Mark Alan

    2010-09-01

    Critical infrastructure resilience has become a national priority for the U. S. Department of Homeland Security. System resilience has been studied for several decades in many different disciplines, but no standards or unifying methods exist for critical infrastructure resilience analysis. This report documents the results of a late-start Laboratory Directed Research and Development (LDRD) project that investigated the identification of optimal recovery strategies that maximize resilience. To this goal, we formulate a bi-level optimization problem for infrastructure network models. In the 'inner' problem, we solve for network flows, and we use the 'outer' problem to identify the optimal recovery modes and sequences. We draw from the literature of multi-mode project scheduling problems to create an effective solution strategy for the resilience optimization model. We demonstrate the application of this approach to a set of network models, including a national railroad model and a supply chain for Army munitions production.

  18. Catastrophic Incident Recovery: Long-Term Recovery from an Anthrax Event Symposium

    SciTech Connect

    Lesperance, Ann M.

    2008-06-30

    On March 19, 2008, policy makers, emergency managers, and medical and Public Health officials convened in Seattle, Washington, for a workshop on Catastrophic Incident Recovery: Long-Term Recovery from an Anthrax Event. The day-long symposium was aimed at generating a dialogue about restoration and recovery through a discussion of the associated challenges that impact entire communities, including people, infrastructure, and critical systems.

  19. Work Begins On First Recovery Act Funded Demolition Project at ORNL |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Work Begins On First Recovery Act Funded Demolition Project at ORNL Work Begins On First Recovery Act Funded Demolition Project at ORNL July 20, 2009 - 12:00pm Addthis OAK RIDGE, Tenn. - The Department of Energy's (DOE) Oak Ridge National Laboratory (ORNL) has begun cleanup and demolition of the former Radioisotope Development Laboratory, a long-vacant facility on the Laboratory's central campus. Contractors expect to employ approximately 30 workers for the project,

  20. Bioelectrochemical Integration of Waste Heat Recovery, Waste-to-Energy Conversion, and Waste-to-Chemical Conversion with Industrial Gas and Chemical Manufacturing Processes

    Energy.gov [DOE]

    A project to develop a microbial heat recovery cell (MHRC) system prototype using wastewater effluent samples from candidate facilities to produce either electric power or hydrogen

  1. Dutchess County Resource Recovery Task Force report: Dutchess County Pyrolysis Program

    SciTech Connect

    None

    1980-07-01

    Dutchess County initiated development of a long-range master plan for Solid Waste Management in 1971. The plan included development of a resource recovery facility to service the municipalities in the County population center. Based on early recommendations, a pyrolysis facility employing Purox technology was to be implemented. A feasibility study, paid for by County funds was completed in 1975. The study provided siting recommendations, estimation of available waste, and preliminary facility design. Because of various considerations, the project was not developed. Under the Department of Energy grant, the County reassessed the feasibility of a resource recovery facility, with emphasis on confirming previous conclusions supporting the Purox technology, waste availability, energy recovery and sale and siting of the plant. The conclusions reached in the new study were: a resource recovery facility is feasible for the County; sufficient waste for such a facility is available and subject to control; While Purox technology was feasible it is not the most appropriate available technoloy for the County; that mass burning with steam recovery is the most appropriate technology; and that resource recovery while presently more expensive than landfilling, represents the only cost effective, energy efficient, and environmentally sound way to handle the solid waste problem in the County.

  2. Low-Temperature Mineral Recovery Program FOA Selections

    Office of Energy Efficiency and Renewable Energy (EERE)

    Energy Department's geothermal technologies office awarded nine projects in low-temperature and mineral recovery.

  3. 2009 Recovery Act IMPLEMENTATION UPDATE | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    2009 Recovery Act IMPLEMENTATION UPDATE 2009 Recovery Act IMPLEMENTATION UPDATE A powerpoint presentation on the Recovery Act's progress, opportunities, and steps moving forward. 2009 Recovery Act IMPLEMENTATION UPDATE (661.03 KB) More Documents & Publications Before the Senate Small Business Committee Major Communications Report May 5, 2009 Major Communications Report April 30, 200

  4. American Recovery and Reinvestment Act Payments Surge Past $5 Billion |

    Office of Environmental Management (EM)

    Department of Energy 5 Billion American Recovery and Reinvestment Act Payments Surge Past $5 Billion More than $5 billion in Recovery Act payments are accelerating environmental cleanup American Recovery and Reinvestment Act Payments Surge Past $5 Billion (1.69 MB) More Documents & Publications American Recovery and Reinvestment Act Payments Surge Past $4

  5. WAPA Recovery Act Implementation Appropriation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    WAPA Recovery Act Implementation Appropriation WAPA Recovery Act Implementation Appropriation Microsoft Word - PSRP May 15 2009 _WAPA Implementation Approp_ Final.docx (63.72 KB) More Documents & Publications Western Area Power Administration Borrowing Authority, Recovery Act Microsoft Word - PSRP Updates 6-25-10_v2 Bonneville Power Administration Program Specific Recovery Plan

  6. Thermoelectric Generator Development for Automotive Waste Heat Recovery

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010.

  7. Recovery Act: Oxy-Combustion Technology Development for Industrial...

    Office of Scientific and Technical Information (OSTI)

    Testing in Alstom's 15 MWth Boiler Simulation Facility Levasseur, Armand 01 COAL, LIGNITE, AND PEAT; 54 ENVIRONMENTAL SCIENCES Clean Coal Technology; Coal-Fuels;...

  8. Develop Thermoelectric Technology for Automotive Waste Heat Recovery

    Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  9. Post-Shred Materials Recovery Technology Development and Demonstration

    Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  10. SOLVENT-BASED ENHANCED OIL RECOVERY PROCESSES TO DEVELOP WEST...

    Office of Scientific and Technical Information (OSTI)

    The experimental study is designed to foster understanding of the processes governing ... Numerical simulation study of VAPEX was initiated during the first year. The numerical ...

  11. Developing Low-Cost, Highly Efficient Heat Recovery for Fuel...

    Energy.gov [DOE] (indexed site)

    Illustration courtesy of FuelCell Energy, Inc. Project Description The goal of this ... It is now be- ing incorporated into FuelCell Energy's commercial Direct FuelCell ...

  12. Post-Shred Materials Recovery Technology Development and Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    -- Washington D.C. PDF icon lm29jody.pdf More Documents & Publications Overview of Recycling Technology R&D FY 2008 Progress Report for Lightweighting Materials - 11. Recycling...

  13. Develop Thermoelectric Technology for Automotive Waste Heat Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon ace050meisner2010o.pdf More...

  14. Recovery Act. Development and Validation of an Advanced Stimulation...

    Office of Scientific and Technical Information (OSTI)

    hydro-thermal fracturing simulator that is particularly suited for EGS ... results to test and validate the 3D simulator. 3) Perform discrete elementparticulate ...

  15. Develop Thermoelectric Technology for Automotive Waste Heat Recovery

    Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  16. Develop Thermoelectric Technology for Automotive Waste Heat Recovery

    Office of Energy Efficiency and Renewable Energy (EERE)

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  17. Recovery Act: Oxy-Combustion Technology Development for Industrial...

    Office of Scientific and Technical Information (OSTI)

    Guidelines address the boiler system arrangement, firing system, boiler thermal design, ... Sponsoring Org: USDOE Country of Publication: United States Language: English Subject: 42 ...

  18. Develop Thermoelectric Technology for Automotive Waste Heat Recovery

    Energy.gov [DOE]

    Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs.

  19. Recovery Act: Oxy-Combustion Technology Development for Industrial...

    Office of Scientific and Technical Information (OSTI)

    The program is designed to provide the necessary information and understanding for the next step of large-scale commercial demonstration of oxy combustion in tangentially fired ...

  20. Recovery Act: Oxy-Combustion Techology Development for Industrial...

    Office of Scientific and Technical Information (OSTI)

    The program is designed to provide the necessary information and understanding for the next step of large-scale commercial demonstration of oxy combustion in tangentially fired ...