National Library of Energy BETA

Sample records for recoverable oil estimated

  1. Technically Recoverable Shale Oil and Shale Gas Resources:

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration ...

  2. Figure 8. Technically Recoverable and Commercially Developable Oil

    Energy Information Administration (EIA) (indexed site)

    8. Technically Recoverable and Commercially Developable Oil at 95 Percent, Mean, and 5 Percent Probabilities for Given Oil Prices as a Percentage of Technically Recoverable Oil for the ANWR 1002 Area of the Alaska North Slope fig8.jpg (38547 bytes) Source: United States Geological Survey, "Economics of Undiscovered Oil in the 1002 Area of the Arctic National Wildlife Refuge," 1998

  3. Technically Recoverable Shale Oil and Shale Gas Resources:

    Annual Energy Outlook

    ... The risked shale gas resource in-place in the dry gas prospective area is 256 Tcf, with 51 Tcf estimated as the risked, technically recoverable shale gas resource. Devonian ...

  4. Technically Recoverable Shale Oil and Shale Gas Resources:

    Energy Information Administration (EIA) (indexed site)

    Argentina Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of

  5. Technically Recoverable Shale Oil and Shale Gas Resources:

    Energy Information Administration (EIA) (indexed site)

    Australia Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of

  6. Technically Recoverable Shale Oil and Shale Gas Resources:

    Energy Information Administration (EIA) (indexed site)

    Brazil Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the

  7. Technically Recoverable Shale Oil and Shale Gas Resources:

    Energy Information Administration (EIA) (indexed site)

    Canada Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the

  8. Technically Recoverable Shale Oil and Shale Gas Resources:

    Energy Information Administration (EIA) (indexed site)

    Chad Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the

  9. Technically Recoverable Shale Oil and Shale Gas Resources:

    Energy Information Administration (EIA) (indexed site)

    Eastern Europe Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or

  10. Technically Recoverable Shale Oil and Shale Gas Resources:

    Energy Information Administration (EIA) (indexed site)

    Egypt Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the

  11. Technically Recoverable Shale Oil and Shale Gas Resources:

    Energy Information Administration (EIA) (indexed site)

    India and Pakistan Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or

  12. Technically Recoverable Shale Oil and Shale Gas Resources:

    Energy Information Administration (EIA) (indexed site)

    Indonesia Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of

  13. Technically Recoverable Shale Oil and Shale Gas Resources:

    Energy Information Administration (EIA) (indexed site)

    Jordan Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the

  14. Technically Recoverable Shale Oil and Shale Gas Resources:

    Energy Information Administration (EIA) (indexed site)

    Kazakhstan Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of

  15. Technically Recoverable Shale Oil and Shale Gas Resources:

    Energy Information Administration (EIA) (indexed site)

    Libya Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the

  16. Technically Recoverable Shale Oil and Shale Gas Resources:

    Energy Information Administration (EIA) (indexed site)

    Mexico Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the

  17. Technically Recoverable Shale Oil and Shale Gas Resources:

    Energy Information Administration (EIA) (indexed site)

    Mongolia Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of

  18. Technically Recoverable Shale Oil and Shale Gas Resources:

    Energy Information Administration (EIA) (indexed site)

    Morocco Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of

  19. Technically Recoverable Shale Oil and Shale Gas Resources:

    Energy Information Administration (EIA) (indexed site)

    Northern South America Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or

  20. Technically Recoverable Shale Oil and Shale Gas Resources:

    Energy Information Administration (EIA) (indexed site)

    Western Europe Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or

  1. Technically Recoverable Shale Oil and Shale Gas Resources:

    Energy Information Administration (EIA) (indexed site)

    Oman Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the

  2. Technically Recoverable Shale Oil and Shale Gas Resources:

    Energy Information Administration (EIA) (indexed site)

    South America Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee

  3. Technically Recoverable Shale Oil and Shale Gas Resources:

    Energy Information Administration (EIA) (indexed site)

    Poland Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the

  4. Technically Recoverable Shale Oil and Shale Gas Resources:

    Energy Information Administration (EIA) (indexed site)

    Russia Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the

  5. Technically Recoverable Shale Oil and Shale Gas Resources:

    Energy Information Administration (EIA) (indexed site)

    South Africa Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee

  6. Technically Recoverable Shale Oil and Shale Gas Resources:

    Energy Information Administration (EIA) (indexed site)

    Thailand Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of

  7. Technically Recoverable Shale Oil and Shale Gas Resources:

    Energy Information Administration (EIA) (indexed site)

    Tunisia Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of

  8. Technically Recoverable Shale Oil and Shale Gas Resources:

    Energy Information Administration (EIA) (indexed site)

    Arab Emirates Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee

  9. Heavy oil reservoirs recoverable by thermal technology. Annual report

    SciTech Connect

    Kujawa, P.

    1981-02-01

    This volume contains reservoir, production, and project data for target reservoirs thermally recoverable by steam drive which are equal to or greater than 2500 feet deep and contain heavy oil in the 8 to 25/sup 0/ API gravity range. Data were collected from three source types: hands-on (A), once-removed (B), and twice-removed (C). In all cases, data were sought depicting and characterizing individual reservoirs as opposed to data covering an entire field with more than one producing interval or reservoir. The data sources are listed at the end of each case. This volume also contains a complete listing of operators and projects, as well as a bibliography of source material.

  10. Table 4.1 Technically Recoverable Crude Oil and Natural Gas Resource...

    Energy Information Administration (EIA) (indexed site)

    Region Proved Reserves 1 Unproved Resources Total Technically Recoverable Resources 2 Crude Oil and Lease Condensate (billion barrels) 48 States 3 Onshore 14.2 112.6 126.7 48 ...

  11. Technically Recoverable Shale Oil and Shale Gas Resources:

    Energy Information Administration (EIA) (indexed site)

    ... British Geological Survey, 93 p. 5 Smith, N., Turner, P., and Williams, G.. 2010. "UK Data ... Realm Energy, 2011. "Shale Oil - The Next Big Play for Tight Oil?" January 30, 27 p. 21 ...

  12. Technically Recoverable Shale Oil and Shale Gas Resources

    Energy Information Administration (EIA) (indexed site)

    ... However, this more detailed delineation of the prospective area is beyond the scope of this initial resource assessment. Study Methodology EIAARI World Shale Gas and Shale Oil ...

  13. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update

    ... hydrocarbons (e.g., viscosity) prevent oil and gas extraction technology from producing 100% of ... Economically important Carboniferous coal deposits and tight sands of the ...

  14. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update

    ... Source: CDS Oil and Gas Group, PLC, 2006 Scarce geochemical data suggest 2.5% overall ... production capacity in Chile to Louisiana, USA. 27 VII. Other South America EIAARI World ...

  15. Heavy oil reservoirs recoverable by thermal technology. Annual report

    SciTech Connect

    Kujawa, P.

    1981-02-01

    The purpose of this study was to compile data on reservoirs that contain heavy oil in the 8 to 25/sup 0/ API gravity range, contain at least ten million barrels of oil currently in place, and are non-carbonate in lithology. The reservoirs within these constraints were then analyzed in light of applicable recovery technology, either steam-drive or in situ combustion, and then ranked hierarchically as candidate reservoirs. The study is presented in three volumes. Volume I presents the project background and approach, the screening analysis, ranking criteria, and listing of candidate reservoirs. The economic and environmental aspects of heavy oil recovery are included in appendices to this volume. This study provides an extensive basis for heavy oil development, but should be extended to include carbonate reservoirs and tar sands. It is imperative to look at heavy oil reservoirs and projects on an individual basis; it was discovered that operators, and industrial and government analysts will lump heavy oil reservoirs as poor producers, however, it was found that upon detailed analysis, a large number, so categorized, were producing very well. A study also should be conducted on abandoned reservoirs. To utilize heavy oil, refiners will have to add various unit operations to their processes, such as hydrotreaters and hydrodesulfurizers and will require, in most cases, a lighter blending stock. A big problem in producing heavy oil is that of regulation; specifically, it was found that the regulatory constraints are so fluid and changing that one cannot settle on a favorable recovery and production plan with enough confidence in the regulatory requirements to commit capital to the project.

  16. Technically Recoverable Shale Oil and Shale Gas Resources:

    Annual Energy Outlook

    ... which resulted when data were judged to be inadequate to provide a useful estimate. ... Eagle Ford and Niobrara shale plays in the USA. Ecopetrol, ConocoPhillips, ExxonMobil, ...

  17. Heavy oil reservoirs recoverable by thermal technology. Annual report

    SciTech Connect

    Kujawa, P.

    1981-02-01

    This volume contains reservoir, production, and project data for target reservoirs which contain heavy oil in the 8 to 25/sup 0/ API gravity range and are susceptible to recovery by in situ combustion and steam drive. The reservoirs for steam recovery are less than 2500 feet deep to comply with state-of-the-art technology. In cases where one reservoir would be a target for in situ combustion or steam drive, that reservoir is reported in both sections. Data were collectd from three source types: hands-on (A), once-removed (B), and twice-removed (C). In all cases, data were sought depicting and characterizing individual reservoirs as opposed to data covering an entire field with more than one producing interval or reservoir. The data sources are listed at the end of each case. This volume also contains a complete listing of operators and projects, as well as a bibliography of source material.

  18. Recoverable Resource Estimate of Identified Onshore Geopressured Geothermal Energy in Texas and Louisiana (Presentation)

    SciTech Connect

    Esposito, A.; Augustine, C.

    2012-04-01

    Geopressured geothermal reservoirs are characterized by high temperatures and high pressures with correspondingly large quantities of dissolved methane. Due to these characteristics, the reservoirs provide two sources of energy: chemical energy from the recovered methane, and thermal energy from the recovered fluid at temperatures high enough to operate a binary power plant for electricity production. Formations with the greatest potential for recoverable energy are located in the gulf coastal region of Texas and Louisiana where significantly overpressured and hot formations are abundant. This study estimates the total recoverable onshore geopressured geothermal resource for identified sites in Texas and Louisiana. In this study a geopressured geothermal resource is defined as a brine reservoir with fluid temperature greater than 212 degrees F and a pressure gradient greater than 0.7 psi/ft.

  19. Geopressured Geothermal Resource and Recoverable Energy Estimate for the Wilcox and Frio Formations, Texas (Presentation)

    SciTech Connect

    Esposito, A.; Augustine, C.

    2011-10-01

    An estimate of the total and recoverable geopressured geothermal resource of the fairways in the Wilcox and Frio formations is made using the current data available. The flow rate of water and methane for wells located in the geopressured geothermal fairways is simulated over a 20-year period utilizing the TOUGH2 Reservoir Simulator and research data. The model incorporates relative permeability, capillary pressure, rock compressibility, and leakage from the bounding shale layers. The simulations show that permeability, porosity, pressure, sandstone thickness, well spacing, and gas saturation in the sandstone have a significant impact on the percent of energy recovered. The results also predict lower average well production flow rates and a significantly higher production of natural gas relative to water than in previous studies done from 1975 to 1980. Previous studies underestimate the amount of methane produced with hot brine. Based on the work completed in this study, multiphase flow processes and reservoir boundary conditions greatly influence the total quantity of the fluid produced as well as the ratio of gas and water in the produced fluid.

  20. Oil and Gas Resources of the Fergana Basin (Uzbekistan, Tadzhikistan, and Kyrgysztan)

    Reports and Publications

    1994-01-01

    Provides the most comprehensive assessment publicly available for oil and gas resources in the Fergana Basin. Includes projections of potential oil supply and U.S. Geological Survey estimates of undiscovered recoverable oil and gas.

  1. Methodology for Monthly Crude Oil Production Estimates

    Energy Information Administration (EIA) (indexed site)

    015 U.S. Energy Information Administration | Methodology for Monthly Crude Oil Production Estimates 1 Methodology for Monthly Crude Oil Production Estimates Executive summary The U.S. Energy Information Administration (EIA) relies on data from state and other federal agencies and does not currently collect survey data directly from crude oil producers. Summarizing the estimation process in terms of percent of U.S. production: * 20% is based on state agency data, including North Dakota and

  2. Oil and gas resources in the West Siberian Basin, Russia

    SciTech Connect

    1997-12-01

    The primary objective of this study is to assess the oil and gas potential of the West Siberian Basin of Russia. The study does not analyze the costs or technology necessary to achieve the estimates of the ultimate recoverable oil and gas. This study uses reservoir data to estimate recoverable oil and gas quantities which were aggregated to the field level. Field totals were summed to a basin total for discovered fields. An estimate of undiscovered oil and gas, from work of the US Geological Survey (USGS), was added to give a total basin resource volume. Recent production decline points out Russia`s need to continue development of its discovered recoverable oil and gas. Continued exploration is required to discover additional oil and gas that remains undiscovered in the basin.

  3. Production of dimensionally recoverable articles

    SciTech Connect

    Davis, F. J.; Peacock, D. G.

    1985-01-29

    First and second bodies of heat recoverable polymeric material are fusion bonded together with their directions of recovery at an angle to each other, the bond preferably being cross-linked after bonding to enable the resulting article better to withstand the recovery forces encountered in use. The invention is especially useful for making wraparound tubular enclosures for ''T''s and bends which enclosures in use will recover radially about two tubular axes.

  4. Recoverable Resource Estimate of Identified Onshore Geopressured...

    Office of Scientific and Technical Information (OSTI)

    AAPG 2012 Annual Convention and Exhibition Ariel Esposito and Chad Augustine April 24, 2012 NRELPR-6A20-54999 2 * Geopressured Geothermal o Reservoirs characterized by pore...

  5. Louisiana Crude Oil + Lease Condensate Estimated Production from Reserves

    Energy Information Administration (EIA) (indexed site)

    (Million Barrels) Estimated Production from Reserves (Million Barrels) Louisiana Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 68 2010's 66 68 70 71 69 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease

  6. Michigan Crude Oil + Lease Condensate Estimated Production from Reserves

    Energy Information Administration (EIA) (indexed site)

    (Million Barrels) Estimated Production from Reserves (Million Barrels) Michigan Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 6 2010's 6 6 7 7 8 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate

  7. Miscellaneous States Crude Oil + Lease Condensate Estimated Production from

    Energy Information Administration (EIA) (indexed site)

    Reserves (Million Barrels) Estimated Production from Reserves (Million Barrels) Miscellaneous States Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 2 2010's 2 2 3 3 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus

  8. Mississippi Crude Oil + Lease Condensate Estimated Production from Reserves

    Energy Information Administration (EIA) (indexed site)

    (Million Barrels) Estimated Production from Reserves (Million Barrels) Mississippi Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 24 2010's 24 24 28 24 25 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease

  9. Montana Crude Oil + Lease Condensate Estimated Production from Reserves

    Energy Information Administration (EIA) (indexed site)

    (Million Barrels) Estimated Production from Reserves (Million Barrels) Montana Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 29 2010's 25 24 27 30 30 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease

  10. Nebraska Crude Oil + Lease Condensate Estimated Production from Reserves

    Energy Information Administration (EIA) (indexed site)

    (Million Barrels) Estimated Production from Reserves (Million Barrels) Nebraska Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 2 2010's 2 3 3 3 3 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate

  11. New Mexico - East Crude Oil + Lease Condensate Estimated Production from

    Energy Information Administration (EIA) (indexed site)

    Reserves (Million Barrels) Estimated Production from Reserves (Million Barrels) New Mexico - East Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 58 2010's 63 70 83 98 117 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil

  12. New Mexico - West Crude Oil + Lease Condensate Estimated Production from

    Energy Information Administration (EIA) (indexed site)

    Reserves (Million Barrels) Estimated Production from Reserves (Million Barrels) New Mexico - West Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 2 2010's 2 2 3 4 7 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus

  13. Alabama Crude Oil + Lease Condensate Estimated Production from Reserves

    Energy Information Administration (EIA) (indexed site)

    (Million Barrels) Estimated Production from Reserves (Million Barrels) Alabama Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 7 2010's 7 8 10 10 9 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate

  14. Alaska Crude Oil + Lease Condensate Estimated Production from Reserves

    Energy Information Administration (EIA) (indexed site)

    (Million Barrels) Estimated Production from Reserves (Million Barrels) Alaska Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 210 2010's 195 206 191 186 182 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease

  15. Arkansas Crude Oil + Lease Condensate Estimated Production from Reserves

    Energy Information Administration (EIA) (indexed site)

    (Million Barrels) Estimated Production from Reserves (Million Barrels) Arkansas Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 6 2010's 5 6 6 4 6 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate

  16. California Crude Oil + Lease Condensate Estimated Production from Reserves

    Energy Information Administration (EIA) (indexed site)

    (Million Barrels) Estimated Production from Reserves (Million Barrels) California Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 208 2010's 198 196 198 199 203 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease

  17. Colorado Crude Oil + Lease Condensate Estimated Production from Reserves

    Energy Information Administration (EIA) (indexed site)

    (Million Barrels) Estimated Production from Reserves (Million Barrels) Colorado Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 30 2010's 33 41 52 70 102 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease

  18. Wyoming Crude Oil + Lease Condensate Estimated Production from Reserves

    Energy Information Administration (EIA) (indexed site)

    (Million Barrels) Estimated Production from Reserves (Million Barrels) Wyoming Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 51 2010's 53 55 57 64 75 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease

  19. New Mexico Crude Oil + Lease Condensate Estimated Production from Reserves

    Energy Information Administration (EIA) (indexed site)

    (Million Barrels) Estimated Production from Reserves (Million Barrels) New Mexico Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 60 2010's 65 72 86 102 124 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease

  20. North Dakota Crude Oil + Lease Condensate Estimated Production from

    Energy Information Administration (EIA) (indexed site)

    Reserves (Million Barrels) Estimated Production from Reserves (Million Barrels) North Dakota Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 84 2010's 114 152 251 314 394 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil

  1. Ohio Crude Oil + Lease Condensate Estimated Production from Reserves

    Energy Information Administration (EIA) (indexed site)

    (Million Barrels) Estimated Production from Reserves (Million Barrels) Ohio Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 4 2010's 5 4 5 7 14 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate

  2. Oklahoma Crude Oil + Lease Condensate Estimated Production from Reserves

    Energy Information Administration (EIA) (indexed site)

    (Million Barrels) Estimated Production from Reserves (Million Barrels) Oklahoma Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 63 2010's 63 79 85 113 132 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease

  3. Pennsylvania Crude Oil + Lease Condensate Estimated Production from

    Energy Information Administration (EIA) (indexed site)

    Reserves (Million Barrels) Estimated Production from Reserves (Million Barrels) Pennsylvania Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 2 2010's 3 3 5 6 7 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease

  4. Texas Crude Oil + Lease Condensate Estimated Production from Reserves

    Energy Information Administration (EIA) (indexed site)

    (Million Barrels) Estimated Production from Reserves (Million Barrels) Texas Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 401 2010's 460 534 742 931 1,160 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease

  5. Texas State Offshore Crude Oil + Lease Condensate Estimated Production from

    Energy Information Administration (EIA) (indexed site)

    Reserves (Million Barrels) Estimated Production from Reserves (Million Barrels) Texas State Offshore Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1 2010's 1 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus

  6. Utah Crude Oil + Lease Condensate Estimated Production from Reserves

    Energy Information Administration (EIA) (indexed site)

    (Million Barrels) Estimated Production from Reserves (Million Barrels) Utah Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 23 2010's 25 27 31 36 43 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate

  7. West Virginia Crude Oil + Lease Condensate Estimated Production from

    Energy Information Administration (EIA) (indexed site)

    Reserves (Million Barrels) Estimated Production from Reserves (Million Barrels) West Virginia Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1 2010's 1 2 3 7 9 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease

  8. Florida Crude Oil + Lease Condensate Estimated Production from Reserves

    Energy Information Administration (EIA) (indexed site)

    (Million Barrels) Estimated Production from Reserves (Million Barrels) Florida Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1 2010's 2 2 3 2 4 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate

  9. Illinois Crude Oil + Lease Condensate Estimated Production from Reserves

    Energy Information Administration (EIA) (indexed site)

    (Million Barrels) Estimated Production from Reserves (Million Barrels) Illinois Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 5 2010's 4 4 4 3 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate

  10. Indiana Crude Oil + Lease Condensate Estimated Production from Reserves

    Energy Information Administration (EIA) (indexed site)

    (Million Barrels) Estimated Production from Reserves (Million Barrels) Indiana Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1 2010's 1 1 1 1 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate

  11. Kansas Crude Oil + Lease Condensate Estimated Production from Reserves

    Energy Information Administration (EIA) (indexed site)

    (Million Barrels) Estimated Production from Reserves (Million Barrels) Kansas Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 40 2010's 41 41 43 46 48 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate

  12. Kentucky Crude Oil + Lease Condensate Estimated Production from Reserves

    Energy Information Administration (EIA) (indexed site)

    (Million Barrels) Estimated Production from Reserves (Million Barrels) Kentucky Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 2 2010's 1 1 1 1 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate

  13. Louisiana - North Crude Oil + Lease Condensate Estimated Production from

    Energy Information Administration (EIA) (indexed site)

    Reserves (Million Barrels) Estimated Production from Reserves (Million Barrels) Louisiana - North Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 11 2010's 10 11 12 13 13 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil

  14. Louisiana - South Onshore Crude Oil + Lease Condensate Estimated Production

    Energy Information Administration (EIA) (indexed site)

    from Reserves (Million Barrels) Estimated Production from Reserves (Million Barrels) Louisiana - South Onshore Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 48 2010's 47 47 47 47 46 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring

  15. Louisiana State Offshore Crude Oil + Lease Condensate Estimated Production

    Energy Information Administration (EIA) (indexed site)

    from Reserves (Million Barrels) Estimated Production from Reserves (Million Barrels) Louisiana State Offshore Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 9 2010's 9 10 11 11 10 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages:

  16. Lower 48 States Crude Oil + Lease Condensate Estimated Production from

    Energy Information Administration (EIA) (indexed site)

    Reserves (Million Barrels) Estimated Production from Reserves (Million Barrels) Lower 48 States Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,719 2010's 1,796 1,859 2,195 2,543 3,018 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring

  17. California - Coastal Region Onshore Crude Oil + Lease Condensate Estimated

    Energy Information Administration (EIA) (indexed site)

    Production from Reserves (Million Barrels) Estimated Production from Reserves (Million Barrels) California - Coastal Region Onshore Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 18 2010's 18 20 22 23 23 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  18. California Federal Offshore Crude Oil + Lease Condensate Estimated

    Energy Information Administration (EIA) (indexed site)

    Production from Reserves (Million Barrels) Estimated Production from Reserves (Million Barrels) California Federal Offshore Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 22 2010's 19 22 15 20 20 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  19. California State Offshore Crude Oil + Lease Condensate Estimated Production

    Energy Information Administration (EIA) (indexed site)

    from Reserves (Million Barrels) Estimated Production from Reserves (Million Barrels) California State Offshore Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 14 2010's 13 12 13 14 14 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring

  20. Texas - RRC District 1 Crude Oil + Lease Condensate Estimated Production

    Energy Information Administration (EIA) (indexed site)

    from Reserves (Million Barrels) Estimated Production from Reserves (Million Barrels) Texas - RRC District 1 Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 10 2010's 15 44 112 192 263 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring

  1. Texas - RRC District 10 Crude Oil + Lease Condensate Estimated Production

    Energy Information Administration (EIA) (indexed site)

    from Reserves (Million Barrels) Estimated Production from Reserves (Million Barrels) Texas - RRC District 10 Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 16 2010's 22 30 40 43 40 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages:

  2. Texas - RRC District 2 Onshore Crude Oil + Lease Condensate Estimated

    Energy Information Administration (EIA) (indexed site)

    Production from Reserves (Million Barrels) Estimated Production from Reserves (Million Barrels) Texas - RRC District 2 Onshore Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 10 2010's 15 46 107 170 234 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  3. Texas - RRC District 3 Onshore Crude Oil + Lease Condensate Estimated

    Energy Information Administration (EIA) (indexed site)

    Production from Reserves (Million Barrels) Estimated Production from Reserves (Million Barrels) Texas - RRC District 3 Onshore Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 40 2010's 44 40 42 48 60 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  4. Texas - RRC District 4 Onshore Crude Oil + Lease Condensate Estimated

    Energy Information Administration (EIA) (indexed site)

    Production from Reserves (Million Barrels) Estimated Production from Reserves (Million Barrels) Texas - RRC District 4 Onshore Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 14 2010's 15 17 21 23 25 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  5. Texas - RRC District 5 Crude Oil + Lease Condensate Estimated Production

    Energy Information Administration (EIA) (indexed site)

    from Reserves (Million Barrels) Estimated Production from Reserves (Million Barrels) Texas - RRC District 5 Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 3 2010's 3 4 5 6 6 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude

  6. Texas - RRC District 6 Crude Oil + Lease Condensate Estimated Production

    Energy Information Administration (EIA) (indexed site)

    from Reserves (Million Barrels) Estimated Production from Reserves (Million Barrels) Texas - RRC District 6 Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 18 2010's 18 18 19 19 20 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages:

  7. Texas - RRC District 8 Crude Oil + Lease Condensate Estimated Production

    Energy Information Administration (EIA) (indexed site)

    from Reserves (Million Barrels) Estimated Production from Reserves (Million Barrels) Texas - RRC District 8 Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 121 2010's 158 156 205 228 283 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring

  8. Texas - RRC District 9 Crude Oil + Lease Condensate Estimated Production

    Energy Information Administration (EIA) (indexed site)

    from Reserves (Million Barrels) Estimated Production from Reserves (Million Barrels) Texas - RRC District 9 Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 15 2010's 17 21 22 21 21 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages:

  9. Potential Oil Production from the Coastal Plain of the Arctic...

    Gasoline and Diesel Fuel Update

    Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge: ... of technically recoverable undiscovered oil are in the ANWR coastal plain, a 5 percent ...

  10. U.S. Crude Oil + Lease Condensate Estimated Production from Reserves...

    Energy Information Administration (EIA) (indexed site)

    Estimated Production from Reserves (Million Barrels) U.S. Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 ...

  11. Figure 8. Technically Recoverable and Commercially Developable...

    Energy Information Administration (EIA) (indexed site)

    the Alaska North Slope fig8.jpg (38547 bytes) Source: United States Geological Survey, "Economics of Undiscovered Oil in the 1002 Area of the Arctic National Wildlife Refuge," 1998

  12. Technically Recoverable Shale Oil and Shale Gas Resources:

    Energy Information Administration (EIA) (indexed site)

    By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should ...

  13. Technically Recoverable Shale Oil and Shale Gas Resources:

    Annual Energy Outlook

    ... of additional factors outside of the scope of this report that must be considered in ... Assessing those formations was beyond the scope of this supplement as in the previous ...

  14. Technically Recoverable Shale Oil and Shale Gas Resources

    Annual Energy Outlook

    logs from 100 horizontal wells showed an enormous discrepancy in production between perforation clusters that is likely due to rock heterogeneity." One reason why...

  15. Oil Spill Management Market is Estimated to Reach USD 114,441...

    OpenEI (Open Energy Information) [EERE & EIA]

    Oil Spill Management Market is Estimated to Reach USD 114,441.1 Million by 2020 Home > Groups > Renewable Energy RFPs Wayne31jan's picture Submitted by Wayne31jan(150) Contributor...

  16. Oil Shale Market is Estimated to Reach USD 7,400.70 Million by...

    OpenEI (Open Energy Information) [EERE & EIA]

    Oil Shale Market is Estimated to Reach USD 7,400.70 Million by 2022 Home > Groups > Renewable Energy RFPs Wayne31jan's picture Submitted by Wayne31jan(150) Contributor 1 July, 2015...

  17. Papuan reserves estimated at 340-411 million bbl

    SciTech Connect

    Not Available

    1992-08-31

    This paper reports that proved and probable reserves of Papua New Guinea's potentially viable fields are placed at 340 million st-tk bbl recoverable of an estimated 791 million bbl of proved and probable oil in place. If the possible category were included, the same fields contain 411 million st-tk bbl recoverable out of 1.034 billion bbl in place, a consulting firm estimated. scientific Software-Intercomp, Denver, carried out an audit for the country's Department of Minerals and Energy in 1990, 1991, and 1992. SSI used recent Society of Petroleum Engineers definitions of proved, probable, and possible. However, the economic concept was not applied to reserve categories because PNG is examining possible changes in regulations to encourage development.

  18. Crude oil and alternate energy production forecasts for the twenty-first century: The end of the hydrocarbon era

    SciTech Connect

    Edwards, J.D.

    1997-08-01

    Predictions of production rates and ultimate recovery of crude oil are needed for intelligent planning and timely action to ensure the continuous flow of energy required by the world`s increasing population and expanding economies. Crude oil will be able to supply increasing demand until peak world production is reached. The energy gap caused by declining conventional oil production must then be filled by expanding production of coal, heavy oil and oil shales, nuclear and hydroelectric power, and renewable energy sources (solar, wind, and geothermal). Declining oil production forecasts are based on current estimated ultimate recoverable conventional crude oil resources of 329 billion barrels for the United States and close to 3 trillion barrels for the world. Peak world crude oil production is forecast to occur in 2020 at 90 million barrels per day. Conventional crude oil production in the United States is forecast to terminate by about 2090, and world production will be close to exhaustion by 2100.

  19. Estimating household fuel oil/kerosine, natural gas, and LPG prices by census region

    SciTech Connect

    Poyer, D.A.; Teotia, A.P.S.

    1994-08-01

    The purpose of this research is to estimate individual fuel prices within the residential sector. The data from four US Department of Energy, Energy Information Administration, residential energy consumption surveys were used to estimate the models. For a number of important fuel types - fuel oil, natural gas, and liquefied petroleum gas - the estimation presents a problem because these fuels are not used by all households. Estimates obtained by using only data in which observed fuel prices are present would be biased. A correction for this self-selection bias is needed for estimating prices of these fuels. A literature search identified no past studies on application of the selectivity model for estimating prices of residential fuel oil/kerosine, natural gas, and liquefied petroleum gas. This report describes selectivity models that utilize the Dubin/McFadden correction method for estimating prices of residential fuel oil/kerosine, natural gas, and liquefied petroleum gas in the Northeast, Midwest, South, and West census regions. Statistically significant explanatory variables are identified and discussed in each of the models. This new application of the selectivity model should be of interest to energy policy makers, researchers, and academicians.

  20. Sacha oil field of Ecuadorian Oriente

    SciTech Connect

    Canfield, R.W.; Bonilla, G.; Robbins, R.K.

    1982-08-01

    The Sacha oil field in the Ecuadorian Oriente was discovered in early 1969. Production began in July 1972, and at the end of 1980 had exceeded 190 million bbl. Drilling through 1980 had resulted in 91 oil wells and 2 dry holes. Estimated original primary recoverable reserves surpass 632 million bbl. The field is on a very low-relief anticline about 17.5 mi (28 km) long and averaging 4 mi (6.5 km) wide. Vertical closure amounts to 200 ft (60 m) and there are 41,000 acres (16,600 ha.) of areal closure on top of the principal reservoir. The Cretaceous sandstones, at drilled depths between 9,300 and 10,100 ft (2,835 and 3,080 m) provide excellent reservoirs. The Hollin Formation, the basal Cretaceous sandstone, is the principal reservoir, having produced 80% of the oil through 1980 and containing about 68% of the original reserves.

  1. Estimated human health risks of disposing of nonhazardous oil field waste in salt caverns

    SciTech Connect

    Tomasko, D.; Elcock, D.; Veil, J.

    1997-09-01

    Argonne National Laboratory (ANL) has completed an evaluation of the possibility that adverse human health effects (carcinogenic and noncarcinogenic) could result from exposure to contaminants released from nonhazardous oil field wastes (NOW) disposed in domal salt caverns. In this assessment, several steps were used to evaluate potential human health risks: identifying potential contaminants of concern, determining how humans could be exposed to these contaminants, assessing the contaminants` toxicities, estimating contaminant intakes, and, finally, calculating human cancer and noncancer risks.

  2. Texas - RRC District 7B Crude Oil + Lease Condensate Estimated Production

    Energy Information Administration (EIA) (indexed site)

    from Reserves (Million Barrels) Estimated Production from Reserves (Million Barrels) Texas - RRC District 7B Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 10 2010's 10 11 11 11 12 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages:

  3. Texas - RRC District 7C Crude Oil + Lease Condensate Estimated Production

    Energy Information Administration (EIA) (indexed site)

    from Reserves (Million Barrels) Estimated Production from Reserves (Million Barrels) Texas - RRC District 7C Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 32 2010's 34 40 50 63 88 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages:

  4. Texas - RRC District 8A Crude Oil + Lease Condensate Estimated Production

    Energy Information Administration (EIA) (indexed site)

    from Reserves (Million Barrels) Estimated Production from Reserves (Million Barrels) Texas - RRC District 8A Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 111 2010's 108 107 108 107 108 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring

  5. U.S. Federal Offshore Crude Oil + Lease Condensate Estimated Production

    Energy Information Administration (EIA) (indexed site)

    from Reserves (Million Barrels) Estimated Production from Reserves (Million Barrels) U.S. Federal Offshore Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 599 2010's 590 504 474 489 547 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring

  6. Have We Run Out of Oil Yet? Oil Peaking Analysis from an Optimist's Perspective

    SciTech Connect

    Greene, David L; Hopson, Dr Janet L; Li, Jia

    2005-01-01

    This study addresses several questions concerning the peaking of conventional oil production from an optimist's perspective. Is the oil peak imminent? What is the range of uncertainty? What are the key determining factors? Will a transition to unconventional oil undermine or strengthen OPEC's influence over world oil markets? These issues are explored using a model combining alternative world energy scenarios with an accounting of resource depletion and a market-based simulation of transition to unconventional oil resources. No political or environmental constraints are allowed to hinder oil production, geological constraints on the rates at which oil can be produced are not represented, and when USGS resource estimates are used, more than the mean estimate of ultimately recoverable resources is assumed to exist. The issue is framed not as a question of "running out" of conventional oil, but in terms of the timing and rate of transition from conventional to unconventional oil resources. Unconventional oil is chosen because production from Venezuela's heavy-oil fields and Canada's Athabascan oil sands is already underway on a significant scale and unconventional oil is most consistent with the existing infrastructure for producing, refining, distributing and consuming petroleum. However, natural gas or even coal might also prove to be economical sources of liquid hydrocarbon fuels. These results indicate a high probability that production of conventional oil from outside of the Middle East region will peak, or that the rate of increase of production will become highly constrained before 2025. If world consumption of hydrocarbon fuels is to continue growing, massive development of unconventional resources will be required. While there are grounds for pessimism and optimism, it is certainly not too soon for extensive, detailed analysis of transitions to alternative energy sources.

  7. Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies, Class III

    SciTech Connect

    City of Long Beach; Tidelands Oil Production Company; University of Southern California; David K. Davies and Associates

    2002-09-30

    The objective of this project was to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. It was hoped that the successful application of these technologies would result in their implementation throughout the Wilmington Field and, through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs.

  8. Oil

    Energy.gov [DOE]

    The Energy Department works to ensure domestic and global oil supplies are environmentally sustainable and invests in research and technology to make oil drilling cleaner and more efficient.

  9. Estimate of the risks of disposing nonhazardous oil field wastes into salt caverns

    SciTech Connect

    Tomasko, D.; Elcock, D.; Veil, J.

    1997-12-31

    Argonne National Laboratory (ANL) has completed an evaluation of the possibility that adverse human health effects (carcinogenic and noncarcinogenic) could result from exposure to contaminants released from nonhazardous oil field wastes (NOW) disposed in domal salt caverns. Potential human health risks associated with hazardous substances (arsenic, benzene, cadmium, and chromium) in NOW were assessed under four postclosure cavern release scenarios: inadvertent cavern intrusion, failure of the cavern seal, failure of the cavern through cracks or leaky interbeds, and a partial collapse of the cavern roof. To estimate potential human health risks for these scenarios, contaminant concentrations at the receptor were calculated using a one-dimensional solution to an advection/dispersion equation that included first order degradation. Assuming a single, generic salt cavern and generic oil-field wastes, the best-estimate excess cancer risks ranged from 1.7 {times} 10{sup {minus}12} to 1.1 {times} 10{sup {minus}8} and hazard indices (referring to noncancer health effects) ranged from 7 {times} 10{sup {minus}9} to 7 {times} 10{sup {minus}4}. Under worse-case conditions in which the probability of cavern failure is 1.0, excess cancer risks ranged from 4.9 {times} 10{sup {minus}9} to 1.7 {times} 10{sup {minus}5} and hazard indices ranged from 7.0 {times} 10{sup {minus}4} to 0.07. Even under worst-case conditions, the risks are within the US Environmental Protection Agency (EPA) target range for acceptable exposure levels. From a human health risk perspective, salt caverns can, therefore, provide an acceptable disposal method for NOW.

  10. Figure 6. Projected Production for the Low Development Rate of Technically

    Energy Information Administration (EIA) (indexed site)

    Recoverable Oil 6. Projected Production for the Low Development Rate of Technically Recoverable Oil Estimated at 5 Percent, Mean, and 95 Percent Probabilities for the ANWR Coastal Plain of the Alaska North Slope fig6.jpg (41132

  11. Oil Security Metrics Model

    SciTech Connect

    Greene, David L.; Leiby, Paul N.

    2005-03-06

    A presentation to the IWG GPRA USDOE, March 6, 2005, Washington, DC. OSMM estimates oil security benefits of changes in the U.S. oil market.

  12. Process for removing copper in a recoverable form from solid scrap metal

    DOEpatents

    Hartman, Alan D.; Oden, Laurance L.; White, Jack C.

    1995-01-01

    A process for removing copper in a recoverable form from a copper/solid ferrous scrap metal mix is disclosed. The process begins by placing a copper/solid ferrous scrap metal mix into a reactor vessel. The atmosphere within the reactor vessel is purged with an inert gas or oxidizing while the reactor vessel is heated in the area of the copper/solid ferrous scrap metal mix to raise the temperature within the reactor vessel to a selected elevated temperature. Air is introduced into the reactor vessel and thereafter hydrogen chloride is introduced into the reactor vessel to obtain a desired air-hydrogen chloride mix. The air-hydrogen chloride mix is operable to form an oxidizing and chloridizing atmosphere which provides a protective oxide coating on the surface of the solid ferrous scrap metal in the mix and simultaneously oxidizes/chloridizes the copper in the mix to convert the copper to a copper monochloride gas for transport away from the solid ferrous scrap metal. After the copper is completely removed from the copper/solid ferrous scrap metal mix, the flows of air and hydrogen chloride are stopped and the copper monochloride gas is collected for conversion to a recoverable copper species.

  13. Estimate of the Geothermal Energy Resource in the Major Sedimentary Basins in the United States (Presentation)

    SciTech Connect

    Esposito, A.; Porro, C.; Augustine, C.; Roberts, B.

    2012-09-01

    Because most sedimentary basins have been explored for oil and gas, well logs, temperatures at depth, and reservoir properties such as depth to basement and formation thickness are well known. The availability of this data reduces exploration risk and allows development of geologic exploration models for each basin. This study estimates the magnitude of recoverable geothermal energy from 15 major known U.S. sedimentary basins and ranks these basins relative to their potential. The total available thermal resource for each basin was estimated using the volumetric heat-in-place method originally proposed by (Muffler, 1979). A qualitative recovery factor was determined for each basin based on data on flow volume, hydrothermal recharge, and vertical and horizontal permeability. Total sedimentary thickness maps, stratigraphic columns, cross sections, and temperature gradient information was gathered for each basin from published articles, USGS reports, and state geological survey reports. When published data were insufficient, thermal gradients and reservoir properties were derived from oil and gas well logs obtained on oil and gas commission databases. Basin stratigraphy, structural history, and groundwater circulation patterns were studied in order to develop a model that estimates resource size, temperature distribution, and a probable quantitative recovery factor.

  14. Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies, Class III

    SciTech Connect

    City of Long Beach; Tidelands Oil Production Company; University of Southern California; David K. Davies and Associates

    2002-09-30

    The objective of this project was to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. The successful application of these technologies would result in expanding their implementation throughout the Wilmington Field and, through technology transfer, to other slope and basin clastic (SBC) reservoirs.

  15. Fluvial-deltaic heavy oil reservoir, San Joaquin basin

    SciTech Connect

    Miller, D.D.; McPherson, J.G.; Covington, T.E.

    1989-03-01

    Unconsolidated arkosic sands deposited in a fluvial-deltaic geologic setting comprise the heavy oil (13/degree/ API gravity) reservoir at South Belridge field. The field is located along the western side of the San Joaquin basin in Kern County, California. More than 6000 closely spaced and shallow wells are the key to producing the estimated 1 billion bbl of ultimate recoverable oil production. Thousands of layered and laterally discontinuous reservoir sands produce from the Pleistocene Tulare Formation. The small scale of reservoir geometries is exploited by a high well density, required for optimal heavy oil production. Wells are typically spaced 200-500 ft (66-164 m) apart and drilled to 1000 ft (328 m) deep in the 14-mi/sup 2/ (36-km/sup 2/) producing area. Successful in-situ combustion, cyclic steaming, and steamflood projects have benefited from the shallow-depth, thick, layered sands, which exhibit excellent reservoir quality. The fundamental criterion for finding another South Belridge field is to realize the extraordinary development potential of shallow, heavy oil reservoirs, even when an unspectacular discovery well is drilled. The trap is a combination of structural and stratigraphic mechanisms plus influence from unconventional fluid-level and tar-seal traps. The depositional model is interpreted as a braid delta sequence that prograded from the nearby basin-margin highlands. A detailed fluvial-deltaic sedimentologic model establishes close correlation between depositional lithofacies, reservoir geometries, reservoir quality, and heavy oil producibility. Typical porosity is 35% and permeability is 3000 md.

  16. Crude Oil Production

    Gasoline and Diesel Fuel Update

    Notes: Year-to-date totals include revised monthly production estimates by state published in Petroleum Navigator. Crude oil production quantities are estimated by state and summed ...

  17. Crude Oil Production

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... Notes: Year-to-date totals include revised monthly production estimates by state published in Petroleum Navigator. Crude oil production quantities are estimated by state and summed ...

  18. Increasing Heavy Oil Reserves in the Wilmington Oil Field through Advanced Reservoir Characterization and Thermal Production Technologies

    SciTech Connect

    City of Long Beach; David K.Davies and Associates; Tidelands Oil Production Company; University of Southern California

    1999-06-25

    The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California. This is realized through the testing and application of advanced reservoir characterization and thermal production technologies. It is hoped that the successful application of these technologies will result in their implementation throughout the Wilmington Field and through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block (FB) II-A has been relatively insufficient because of several producability problems which are common in SBC reservoir; inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves.

  19. Recoverable Resource Estimate of Identified Onshore Geopressured Geothermal Energy in Texas and Louisiana (Presentation), NREL (National Renewable Energy Laboratory)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Records Management Handbook Records Management Handbook These records pertain to the sales by agencies of real and personal property surplus to the needs of the Government. Records Management Handbook (628.31 KB) More Documents & Publications Records Management Handbook PROCEDURE FOR CONDUCTING A RECORDS INVENTORY Information and Records Management Transition Guidance

    Records Management Records Management 80 Seconds Around the LMBC In 2009, Legacy Management constructed a state-of-the-art

  20. Assessing the Effect of Timing of Availability for Carbon Dioxide Storage in the Largest Oil and Gas Pools in the Alberta Basin: Description of Data and Methodology

    SciTech Connect

    Dahowski, Robert T.; Bachu, Stefan

    2007-03-05

    Carbon dioxide capture from large stationary sources and storage in geological media is a technologically-feasible mitigation measure for the reduction of anthropogenic emissions of CO2 to the atmosphere in response to climate change. Carbon dioxide (CO2) can be sequestered underground in oil and gas reservoirs, in deep saline aquifers, in uneconomic coal beds and in salt caverns. The Alberta Basin provides a very large capacity for CO2 storage in oil and gas reservoirs, along with significant capacity in deep saline formations and possible unmineable coal beds. Regional assessments of potential geological CO2 storage capacity have largely focused so far on estimating the total capacity that might be available within each type of reservoir. While deep saline formations are effectively able to accept CO2 immediately, the storage potential of other classes of candidate storage reservoirs, primarily oil and gas fields, is not fully available at present time. Capacity estimates to date have largely overlooked rates of depletion in these types of storage reservoirs and typically report the total estimated storage capacity that will be available upon depletion. However, CO2 storage will not (and cannot economically) begin until the recoverable oil and gas have been produced via traditional means. This report describes a reevaluation of the CO2 storage capacity and an assessment of the timing of availability of the oil and gas pools in the Alberta Basin with very large storage capacity (>5 MtCO2 each) that are being looked at as likely targets for early implementation of CO2 storage in the region. Over 36,000 non-commingled (i.e., single) oil and gas pools were examined with effective CO2 storage capacities being individually estimated. For each pool, the life expectancy was estimated based on a combination of production decline analysis constrained by the remaining recoverable reserves and an assessment of economic viability, yielding an estimated depletion date, or year

  1. Heading off the permanent oil crisis

    SciTech Connect

    MacKenzie, J.J.

    1996-11-01

    The 1996 spike in gasoline prices was not a signal of any fundamental worldwide shortage of crude oil. But based on a review of many studies of recoverable crude oil that have been published since the 1950s, it looks as though such a shortfall is now within sight. With world demand for oil growing at 2 percent per year, global production is likely to peak between the years 2007 and 2014. As this time approaches, we can expect prices to rise markedly and, most likely, permanently. Policy changes are needed now to ease the transition to high-priced oil. Oil production will continue, though at a declining rate, for many decades after its peak, and there are enormous amounts of coal, oil sands, heavy oil, and oil shales worldwide that could be used to produce liquid or gaseous substitutes for crude oil, albeit at higher prices. But the facilities for making such synthetic fuels are costly to build and environmentally damaging to operate, and their use would substantially increase carbon dioxide emissions (compared to emissions from products made from conventional crude oil). This paper examines ways of heading of the impending oil crisis. 8 refs., 3 figs.

  2. Thermal Enhanced Oil Recovery Using Geopressured-Geothermal Brine

    SciTech Connect

    1989-12-01

    , feasibility and economic studies, and hot water flooding design would be made for the proposed project, and geopressured production well and leases will be investigated. Phase 2--If the results of the feasibility studies warrant proceeding, geopressured production well and leases will be obtained. Phase 3--Operation of project, collection of injection and production data, reservoir and environmental monitoring and evaluation will be completed. This would be concluded by a final report including an evaluation of methodology for regional application in the Texas Gulf Coast. The project will be turned over to the operator for operation to depletion. The final report will also address the feasibility of geopressured-geothermal enhanced recovery of oil in other locations. There is a regional trend of similar reservoirs along the Texas Gulf Coast, where this technology could be immediately applied, as well as other areas, such as the San Joaquin Basin, where the country's largest heavy oil reserves are located. If this process is proven successful, many millions of barrels of oil could be added to this country's recoverable reserves. Further, hundreds of marginally economic fields may not require immediate plugging. The total estimated cost for this five-year program is approximately $16 million. Cost-sharing by the small business will reduce the DOE funds required over five years to $13 million less cost-shared oil produced. To initiate this program would require a first year funding level of approximately $1 million. This is not a formal proposal and is not a commitment by EG&G Idaho, Inc. A formal breakdown of financial information will be provided with a formal request for proposal.

  3. New CO2 Enhanced Recovery Technology Could Greatly Boost U.S. Oil |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy CO2 Enhanced Recovery Technology Could Greatly Boost U.S. Oil New CO2 Enhanced Recovery Technology Could Greatly Boost U.S. Oil March 3, 2006 - 11:40am Addthis WASHINGTON , D.C. - The Department of Energy (DOE) released today reports indicating that state-of-the-art enhanced oil recovery techniques could significantly increase recoverable oil resources of the United States in the future. According to the findings, 89 billion barrels or more could eventually be added to

  4. Vast Energy Resource in Residual Oil Zones, FE Study Says | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Vast Energy Resource in Residual Oil Zones, FE Study Says Vast Energy Resource in Residual Oil Zones, FE Study Says July 20, 2012 - 1:00pm Addthis Washington, DC - Billions of barrels of oil that could increase domestic supply, help reduce imports, and increase U.S. energy security may be potentially recoverable from residual oil zones, according to initial findings from a study supported by the U.S. Department of Energy's Office of Fossil Energy (FE). The recently completed study,

  5. Figure 7. Projected Production for the High Development Rate...

    Energy Information Administration (EIA) (indexed site)

    7. Projected Production for the High Development Rate of Technically Recoverable Oil Estimated at 5 Percent, Mean, and 95 Percent Probabilities for the ANWR Coastal Plain of the...

  6. Figure 6. Projected Production for the Low Development Rate of...

    Energy Information Administration (EIA) (indexed site)

    6. Projected Production for the Low Development Rate of Technically Recoverable Oil Estimated at 5 Percent, Mean, and 95 Percent Probabilities for the ANWR Coastal Plain of the...

  7. Optimize carbon dioxide sequestration, enhance oil recovery

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Optimize carbon dioxide sequestration, enhance oil recovery Optimize carbon dioxide sequestration, enhance oil recovery The simulation provides an important approach to estimate ...

  8. Optimize carbon dioxide sequestration, enhance oil recovery

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Optimize carbon dioxide sequestration, enhance oil recovery Optimize carbon dioxide sequestration, enhance oil recovery The simulation provides an important approach to estimate...

  9. Measurement of salinity of paleoformation waters in sedimentary basins for better evaluation of oil migration and reserve estimation

    SciTech Connect

    Eadington, P.; Lisk, M.; Kreiger, F.; Hamilton, J.; Das, M. ); Person, M. )

    1994-07-01

    Irreducible water salinity is important in determining hydrocarbon reserves since relative hydrocarbon saturation is determined indirectly as the difference between reservoir porosity and the water volume determined from its electrical conductivity. Formation water salinity may range from 0-300,000 ppm, corresponding to electrical conductivities of 0-200 mmho/cm. This range in conductivities indicates the potential errors in determining hydrocarbon volume that might arise from using inappropriate salinity estimates. Current formation waters in Mesozoic basins from Australia and Papua New Guinea generally have low salinities. Further, these Mesozoic sections typically contain siliciclastic sediments deposited when the plate was at high latitudes, and connate waters are expected to have low salinities. Irreducible water is therefore usually assigned low salinity.

  10. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect

    Scott Hara

    2001-06-27

    The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. The successful application of these technologies will result in expanding their implementation throughout the Wilmington Field and, through technology transfer, to other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block II-A (Tar II-A) has been relatively inefficient because of several producibility problems which are common in SBC reservoirs: inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery and reduce operating costs.

  11. SUBTASK 1.7 EVALUATION OF KEY FACTORS AFFECTING SUCCESSFUL OIL PRODUCTION IN THE BAKKEN FORMATION, NORTH DAKOTA PHASE II

    SciTech Connect

    Darren D. Schmidt; Steven A. Smith; James A. Sorensen; Damion J. Knudsen; John A. Harju; Edward N. Steadman

    2011-10-31

    Production from the Bakken and Three Forks Formations continues to trend upward as forecasts predict significant production of oil from unconventional resources nationwide. As the U.S. Geological Survey reevaluates the 3.65 billion bbl technically recoverable estimate of 2008, technological advancements continue to unlock greater unconventional oil resources, and new discoveries continue within North Dakota. It is expected that the play will continue to expand to the southwest, newly develop in the northeastern and northwestern corners of the basin in North Dakota, and fully develop in between. Although not all wells are economical, the economic success rate has been near 75% with more than 90% of wells finding oil. Currently, only about 15% of the play has been drilled, and recovery rates are less than 5%, providing a significant future of wells to be drilled and untouched hydrocarbons to be pursued through improved stimulation practices or enhanced oil recovery. This study provides the technical characterizations that are necessary to improve knowledge, provide characterization, validate generalizations, and provide insight relative to hydrocarbon recovery in the Bakken and Three Forks Formations. Oil-saturated rock charged from the Bakken shales and prospective Three Forks can be produced given appropriate stimulation treatments. Highly concentrated fracture stimulations with ceramic- and sand-based proppants appear to be providing the best success for areas outside the Parshall and Sanish Fields. Targeting of specific lithologies can influence production from both natural and induced fracture conductivity. Porosity and permeability are low, but various lithofacies units within the formation are highly saturated and, when targeted with appropriate technology, release highly economical quantities of hydrocarbons.

  12. Urban Mining: Quality and quantity of recyclable and recoverable material mechanically and physically extractable from residual waste

    SciTech Connect

    Di Maria, Francesco Micale, Caterina; Sordi, Alessio; Cirulli, Giuseppe; Marionni, Moreno

    2013-12-15

    Highlights: • Material recycling and recovery from residual waste by physical and mechanical process has been investigated. • About 6% of recyclable can be extracted by NIR and 2-3Dimension selector. • Another 2% of construction materials can be extracted by adopting modified soil washing process. • Extracted material quality is quite high even some residual heavy metal have been detected by leaching test. - Abstract: The mechanically sorted dry fraction (MSDF) and Fines (<20 mm) arising from the mechanical biological treatment of residual municipal solid waste (RMSW) contains respectively about 11% w/w each of recyclable and recoverable materials. Processing a large sample of MSDF in an existing full-scale mechanical sorting facility equipped with near infrared and 2-3 dimensional selectors led to the extraction of about 6% w/w of recyclables with respect to the RMSW weight. Maximum selection efficiency was achieved for metals, about 98% w/w, whereas it was lower for Waste Electrical and Electronic Equipment (WEEE), about 2% w/w. After a simulated lab scale soil washing treatment it was possible to extract about 2% w/w of inert exploitable substances recoverable as construction materials, with respect to the amount of RMSW. The passing curve showed that inert materials were mainly sand with a particle size ranging from 0.063 to 2 mm. Leaching tests showed quite low heavy metal concentrations with the exception of the particles retained by the 0.5 mm sieve. A minimum pollutant concentration was in the leachate from the 10 and 20 mm particle size fractions.

  13. Philippines: World Oil Report 1991

    SciTech Connect

    Khin, J.A. )

    1991-08-01

    This paper reports on the discovery of a major oil field in the West Linapacan area, plus encouraging signs from the Calauit 1B, both offshore Palawan, that have prompted foreign and local firms to increase exploration activity, which should result in the drilling of 22 wells this year, compared to only seven during 1990. The West Linapacan well is reported to have potential recoverable reserves of 109 million bbl, and a consortium led by Alcorn (Production) Philippines plans a two-phase development of the discovery, beginning with two or three follow-up wells. These will be part of the seven additional wells the Office of Energy Affairs has approved for 1991 or early 1992. The OEA expects production from West Linapacan to start by 1992 at an initial rate of 15,000 to 20,000 bopd.

  14. Hot Oiling Spreadsheet

    Energy Science and Technology Software Center

    1993-10-22

    One of the most common oil-field treatments is hot oiling to remove paraffin from wells. Even though the practice is common, the thermal effectiveness of the process is not commonly understood. In order for producers to easily understand the thermodynamics of hot oiling, a simple tool is needed for estimating downhole temperatures. Such a tool has been developed that can be distributed as a compiled spreadsheet.

  15. U.S. Energy Information Administration | Annual Coal Report 2015

    Energy Information Administration (EIA) (indexed site)

    5. Recoverable Coal Reserves at Producing Mines, Estimated Recoverable Reserves, and Demonstrated Reserve Base by Mining Method, 2015 (million short tons) Underground - Minable Coal Surface - Minable Coal Total Coal-Resource State Recoverable Reserves at Producing Mines Estimated Recoverable Reserves Demonstrated Reserve Base Recoverable Reserves at Producing Mines Estimated Recoverable Reserves Demonstrated Reserve Base Recoverable Reserves at Producing Mines Estimated Recoverable Reserves

  16. Optimize carbon dioxide sequestration, enhance oil recovery

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Optimize carbon dioxide sequestration, enhance oil recovery Optimize carbon dioxide sequestration, enhance oil recovery The simulation provides an important approach to estimate the potential of storing carbon dioxide in depleted oil fields while simultaneously maximizing oil production. January 8, 2014 Schematic of a water-alternating-with-gas flood for CO2 sequestration and enhanced oil recovery. Schematic of a water-alternating-with-gas flood for CO2 sequestration and enhanced oil recovery.

  17. Optimize carbon dioxide sequestration, enhance oil recovery

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Optimize carbon dioxide sequestration, enhance oil recovery Optimize carbon dioxide sequestration, enhance oil recovery The simulation provides an important approach to estimate the potential of storing carbon dioxide in depleted oil fields while simultaneously maximizing oil production. January 8, 2014 Schematic of a water-alternating-with-gas flood for CO2 sequestration and enhanced oil recovery. Schematic of a water-alternating-with-gas flood for CO2 sequestration and enhanced oil recovery.

  18. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect

    Unknown

    2001-08-08

    The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California, through the testing and application of advanced reservoir characterization and thermal production technologies. The hope is that successful application of these technologies will result in their implementation throughout the Wilmington Field and, through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block II-A (Tar II-A) has been relatively inefficient because of several producibility problems which are common in SBC reservoirs: inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery and reduce operating costs, including: (1) Development of three-dimensional (3-D) deterministic and stochastic reservoir simulation models--thermal or otherwise--to aid in reservoir management of the steamflood and post-steamflood phases and subsequent development work. (2) Development of computerized 3-D visualizations of the geologic and reservoir simulation models to aid reservoir surveillance and operations. (3) Perform detailed studies of the geochemical interactions between the steam and the formation rock and fluids. (4) Testing and proposed application of a

  19. IOGCC/DOE oil and gas environmental workshop

    SciTech Connect

    Not Available

    1991-05-16

    The Interstate Oil and Gas Compact Commission (IOGCC) in cooperation with US Department of Energy (DOE) has developed a workshop format to allow state regulatory officials and industry representatives the opportunity to participate in frank and open discussions on issues of environmental regulatory compliance. The purpose in providing this forum is to assist both groups in identifying the key barriers to the economic recoverability of domestic oil and gas resources while adequately protecting human health and the environment. The following topics were discussed, groundwater protection; temporarily abandoned and idle wells; effluent discharges; storm water runoff; monitoring and compliance; wetlands; naturally occurring radioactive materials; RCRA reauthorization and oil pollution prevention regulation. At the conclusion, all of the participants were asked to complete a questionnaire which critiqued the day activities. A discussion of each of the issues is made a part of this report as is a summary of the critique questionnaire which were received.

  20. Figure 7. Projected Production for the High Development Rate of Technically

    Energy Information Administration (EIA) (indexed site)

    Recoverable Oil 7. Projected Production for the High Development Rate of Technically Recoverable Oil Estimated at 5 Percent, Mean, and 95 Percent Probabilities for the ANWR Coastal Plain of the Alaska North Slope fig7.jpg (43335 bytes) Source

  1. Word Pro - Untitled1

    Energy Information Administration (EIA) (indexed site)

    89 Table 4.1 Technically Recoverable Crude Oil and Natural Gas Resource Estimates, 2009 Region Proved Reserves 1 Unproved Resources Total Technically Recoverable Resources 2 Crude Oil and Lease Condensate (billion barrels) 48 States 3 Onshore ........................................................................... 14.2 112.6 126.7 48 States 3 Offshore ........................................................................... 4.6 50.3 54.8 Alaska

  2. Reserve estimates in western basins: Unita Basin. Final report, Part III

    SciTech Connect

    1995-10-01

    This study characterizes an extremely large gas resource located in low permeability, sandstone reservoirs of the Mesaverde group and Wasatch formation in the Uinta Basin, Utah. Total in-place resource is estimated at 395.5 Tcf. Via application of geologic, engineering and economic criteria, the portion of this resource potentially recoverable as reserves is estimated. Those volumes estimated include probable, possible and potential categories and total 3.8 Tcf as a mean estimate of recoverable gas for all plays considered in the basin. Two plays were included in this study and each was separately analyzed in terms of its tight gas resource, established productive characteristics and future reserves potential based on a constant $2/Mcf wellhead gas price scenario. A scheme has been developed to break the overall resource estimate down into components that can be considered as differing technical and economic challenges that must be overcome in order to exploit such resources; in other words, to convert those resources to economically recoverable reserves. About 82.1% of the total evaluated resource is contained within sandstones that have extremely poor reservoir properties with permeabilities considered too low for commerciality using current frac technology.

  3. National Iranian Oil Company | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    National Iranian Oil Company is located in Tehran, Iran About The NIOC is one the largest oil companies in the world. Currently, the company estimates 137 billion barrels of liquid...

  4. Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures"

    Energy Information Administration (EIA) (indexed site)

    1. Total Fuel Oil Consumption and Expenditures, 1999" ,"All Buildings Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures" ,"Number of Buildings (thousand)","Floorspac...

  5. World oil trends

    SciTech Connect

    Anderson, A. )

    1991-01-01

    This book provides data on many facets of the world oil industry topics include; oil consumption; oils share of energy consumption; crude oil production; natural gas production; oil reserves; prices of oil; world refining capacity; and oil tankers.

  6. ,"U.S. Weekly Supply Estimates"

    Energy Information Administration (EIA) (indexed site)

    Supply Estimates" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Crude Oil Production",1,"...

  7. Crude oil and shale oil

    SciTech Connect

    Mehrotra, A.K.

    1995-06-15

    This year`s review on crude oil and shale oil has been prepared by classifying the references into the following main headings: Hydrocarbon Identification and Characterization, Trace Element Determination, Physical and Thermodynamic Properties, Viscosity, and Miscellaneous Topics. In the two-year review period, the references on shale oils were considerably less in number than those dealing with crude oils. Several new analytical methodologies and applications were reported for hydrocarbon characterization and trace element determination of crude oils and shale oils. Also included in this review are nine U.S., Canadian British and European patents. 12 refs.

  8. Increasing Waterflood Reserves in the Wilmington Oil Field Through Reservoir Characterization and Reservoir Management

    SciTech Connect

    Chris Phillips; Dan Moos; Don Clarke; John Nguyen; Kwasi Tagbor; Roy Koerner; Scott Walker

    1997-04-10

    This project is intended to increase recoverable waterflood reserves in slope and basin reservoirs through improved reservoir characterization and reservoir management. The particular application of this project is in portions of Fault Blocks IV and V of the Wilmington Oil Field, in Long Beach, California, but the approach is widely applicable in slope and basin reservoirs. Transferring technology so that it can be applied in other sections of the Wilmington Field and by operators in other slope and basin reservoirs is a primary component of the project.

  9. Selectively reducing offshore royalty rates in the Gulf of Mexico could increase oil production and federal government revenue

    SciTech Connect

    Bowsher, C.A.

    1985-05-10

    The US government leases large areas in the Outer Continental Shelf in the Gulf of Mexico for the development of oil resources and receives royalties on the oil produced. Conventional methods of oil recovery have recovered or are expected to recover about half of the 16 billion barrels of oil discovered in this area. Other oil recovery methods, collectively known as enhanced oil recovery (EOR), could potentially increase production by about 1 billion barrels of oil. EOR in the Gulf is expensive and does not appear to be economically justified in most cases. Under existing economic conditions and federal policies, GAO's review indicates that utilizing EOR methods will probably produce only about 10 percent of the additional recoverable oil. However, financial incentives in the form of royalty reductions could increase both oil production and federal government revenue if applied on a project-by-project basis. Universal applications of royalty reduction for EOR, however, while achieving increased oil production, would not increase federal government revenue. GAO recommends that the Department of the Interior's Minerals Management Service initiate action that would allow for selective royalty reductions for EOR projects in the Gulf in instances where both total oil production and federal government revenue will increase. 6 figs., 1 tab.

  10. PIA - Northeast Home Heating Oil Reserve System (Heating Oil...

    Energy Saver

    Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil)...

  11. PIA - Northeast Home Heating Oil Reserve System (Heating Oil...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil) ...

  12. Venezuelan oil

    SciTech Connect

    Martinez, A.R. )

    1989-01-01

    Oil reserves have been known to exist in Venezuela since early historical records, however, it was not until the 20th century that the extensive search for new reserves began. The 1950's marked the height of oil exploration when 200 new oil fields were discovered, as well as over 60{percent} of proven reserves. Venezuela now produces one tone in seven of crude oil consumption and the country's abundant reserves such as the Bolivar Coastal field in the West of the country and the Orinoco Belt field in the East, will ensure it's continuing importance as an oil producer well into the 21st century. This book charts the historical development of Venezuela oil and provides a chronology of all the significant events which have shaped the oil industry of today. It covers all the technical, legal, economic and political factors which have contributed to the evolution of the industry and also gives information on current oil resources and production. Those events significant to the development of the industry, those which were influential in shaping future policy and those which precipitated further action are included. The book provides a source of reference to oil companies, oil economists and petroleum geologists.

  13. ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures"

    Energy Information Administration (EIA) (indexed site)

    4. Fuel Oil Consumption and Expenditure Intensities for Non-Mall Buildings, 2003" ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures" ,"per Building (gallons)","per Square Foot...

  14. ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures"

    Energy Information Administration (EIA) (indexed site)

    2. Fuel Oil Consumption and Expenditure Intensities, 1999" ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures" ,"per Building (gallons)","per Square Foot (gallons)","per Worker...

  15. Crude Oil

    Energy Information Administration (EIA) (indexed site)

    Barrels) Product: Crude Oil Liquefied Petroleum Gases Distillate Fuel Oil Residual Fuel Oil Still Gas Petroleum Coke Marketable Petroleum Coke Catalyst Petroleum Coke Other Petroleum Products Natural Gas Coal Purchased Electricity Purchased Steam Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area 2010 2011 2012 2013 2014 2015 View History U.S. 0 0 0 0 0 0 1986-2015 East Coast (PADD 1) 0 0 0 0

  16. Low oil prices cut less into U.S. oil production

    Energy Information Administration (EIA) (indexed site)

    Low oil prices cut less into U.S. oil production U.S. crude oil production has been more resilient to lower oil prices since mid-2014 than many had expected. In its new forecast, the U.S. Energy Information Administration estimates domestic oil production averaged 9.6 million barrels per day in May the highest monthly output since 1972 despite a 60% drop in the number of rigs drilling for oil since last October. Output is up because producers are completing wells already drilled and those wells

  17. Oil and Gas News Archive | netl.doe.gov

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Oil and Gas News Archive The December, 2015 Issue of the Methane Hydrate Newsletter Fire ... that Utica Shale could hold far more natural gas and oil than previously estimated. ...

  18. Evaluating oil, gas ventures in W. Siberia: Feasibility studies

    SciTech Connect

    Krug, J.A. ); Connelly, W. )

    1993-02-08

    This article discusses the methodology and calculations used in performing the economic evaluations for a typical western Siberia oil project venture. The discussion of taxes, funds, depreciation, and costs assumes the venture is a stock company and that economics are calculated on a project basis. Most ventures available to western companies are delineated oil fields that are not yet developed or producing. The authors focus on this type of property. The required elements for an economic evaluation include original-oil-in-place (OOIP) and recoverable reserves; development plan and associated production forecast; and capital requirements and operating costs. The level of evaluation-i.e., screening, preliminary feasibility study, Technical Efficiency of Organization (TEO), or full feasibility study-determines the detail needed for each of these elements. Several economic analyses of a venture should be made to evaluate the sensitivity of alternative development plans, joint venture deal terms, capital requirements, operating costs, product prices, and taxation variables. The first three parts of this five part series dealt with (1) log and core data, (2) reservoir description and (3) flow tests and reservoir performance, and provided a technical foundation for the evaluation of oil and gas ventures in western Siberia.

  19. Alaska Oil and Gas Exploration, Development, and Permitting Project

    SciTech Connect

    Richard McMahon; Robert Crandall

    2006-03-31

    This is the final technical report for Project 15446, covering the grant period of October 2002 through March 2006. This project connects three parts of the oil exploration, development, and permitting process to form the foundation for an advanced information technology infrastructure to better support resource development and resource conservation. Alaska has nearly one-quarter of the nation's supply of crude oil, at least five billion barrels of proven reserves. The American Association of Petroleum Geologists report that the 1995 National Assessment identified the North Slope as having 7.4 billion barrels of technically recoverable oil and over 63 trillion cubic feet of natural gas. From these reserves, Alaska produces roughly one-fifth of the nation's daily crude oil production, or approximately one million barrels per day from over 1,800 active wells. The broad goal of this grant is to increase domestic production from Alaska's known producing fields through the implementation of preferred upstream management practices. (PUMP). Internet publication of extensive and detailed geotechnical data is the first task, improving the permitting process is the second task, and building an advanced geographical information system to offer continuing support and public access of the first two goals is the third task. Excellent progress has been made on all three tasks; the technical objectives as defined by the approved grant sub-tasks have been met. The end date for the grant was March 31, 2006.

  20. Estimating Methods

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    1997-03-28

    Based on the project's scope, the purpose of the estimate, and the availability of estimating resources, the estimator can choose one or a combination of techniques when estimating an activity or project. Estimating methods, estimating indirect and direct costs, and other estimating considerations are discussed in this chapter.

  1. Increasing Waterflooding Reservoirs in the Wilmington Oil Field through Improved Reservoir Characterization and Reservoir Management, Class III

    SciTech Connect

    Koerner, Roy; Clarke, Don; Walker, Scott; Phillips, Chris; Nguyen, John; Moos, Dan; Tagbor, Kwasi

    2001-08-07

    This project was intended to increase recoverable waterflood reserves in slope and basin reservoirs through improved reservoir characterization and reservoir management. The particular application of this project is in portions of Fault Blocks IV and V of the Wilmington Oil Field, in Long Beach, California, but the approach is widely applicable in slope and basin reservoirs, transferring technology so that it can be applied in other sections of the Wilmington field and by operators in other slope and basin reservoirs is a primary component of the project.

  2. Word Pro - Untitled1

    Energy Information Administration (EIA) (indexed site)

    Technically Recoverable Crude Oil and Natural Gas Resource Estimates, 2009 Crude Oil and Lease Condensate, Total Technically Dry Natural Gas, Total Technically Recoverable Resources Recoverable Resources Crude Oil and Lease Condensate by Type Dry Natural Gas by Type 88 U.S. Energy Information Administration / Annual Energy Review 2011 58% 25% 18% 48 States¹ Onshore 48 States¹ Offshore Alaska 20% 13% 13% 54% 48 States¹ Onshore 48 States¹ Offshore Gas Alaska Tight Gas, Shale Gas, and Coalbed

  3. Oil and gas developments in South America, Central America, Caribbean area, and Mexico in 1986

    SciTech Connect

    Wiman, W.D.

    1987-10-01

    Exploration activity in South America, Central America, the Caribbean area, and Mexico in 1986 was considerably reduced compared to 1985. Brazil, Colombia, Ecuador, Guatemala, and Venezuela had increased oil production, with Colombia showing a dramatic 71% increase attributed mainly to bringing on-stream the pipeline connecting Occidental-Shell-Ecopetrol's Cano Limon complex to the port of Covenas. Significant discoveries were reported from Argentina in the Olmedo, Oran, and San Jorge basins; Brazil in the offshore Campos and Amazon basins; Colombia in the Llanos basin; Ecuador in the Oriente basin; Mexico in the Bay of Campeche; Peru in the Ucayali basin; and Venezuela in the Eastern Venezuela basin. Eastern Venezuela's Furrial discovery is reported to have recoverable reserves of more than 1 million bbl of oil, and Shell's Ucayali basin discovery is reported to hold more than 7 tcf of gas. 7 figures, 10 tables.

  4. Summary of 1998 crude oil reserve changes. Statistical series number 99-18A

    SciTech Connect

    1999-11-01

    During the year, the Alberta Energy and Utilities Board`s Resource Appraisal Group and Reservoir Development Group designates new oil pools, revises reserves in existing pools because of new drilling or reassessment of reserves, and approves various schemes for improving ultimate oil recovery. This document summarizes those changes in sections covering the following: Pools in which recoverable reserves were revised as a result of pool development or reservoir re-evaluation; new pools declared during the year; pools which lost their confidential status; pool name changes; and schemes which received enhanced recovery recognition during the year. Information presented by name of pool includes reserve levels in previous years and amount of change, as well as reason for change.

  5. Elements of oil-tanker transportation

    SciTech Connect

    Marks, A.

    1982-01-01

    Historical, economic, and statistical aspects of oil tanker transportation are discussed. In addition, oil tanker applied technology using a Hewlett-Packard 67 calculator is detailed. HP-67 programs are given in addition to theoretical formulas, references and examples need to solve the equations using any calculator. The contents include: berthing energy computation; Poisson distribution computation for estimating berth requirements; ship collision probability computation; spill risk analysis; oil spill movement computation; tanker characteristic computations; and ASTM measurement computations. (JMT)

  6. ,"Total Fuel Oil Expenditures

    Energy Information Administration (EIA) (indexed site)

    . Fuel Oil Expenditures by Census Region for Non-Mall Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per...

  7. ,"Total Fuel Oil Consumption

    Energy Information Administration (EIA) (indexed site)

    0. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for Non-Mall Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  8. ,"Total Fuel Oil Expenditures

    Energy Information Administration (EIA) (indexed site)

    4. Fuel Oil Expenditures by Census Region, 1999" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per Square Foot"...

  9. ,"Total Fuel Oil Expenditures

    Energy Information Administration (EIA) (indexed site)

    A. Fuel Oil Expenditures by Census Region for All Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per...

  10. ,"Total Fuel Oil Consumption

    Energy Information Administration (EIA) (indexed site)

    A. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  11. IOGCC/DOE oil and gas environmental workshop

    SciTech Connect

    Not Available

    1991-12-31

    The Interstate Oil and Gas Compact Commission (IOGCC) in cooperation with US Department of Energy (DOE) has developed a workshop format to allow state regulatory officials and industry representatives the opportunity to participate in frank and open discussions on issues of environmental regulatory compliance. The purpose of providing this forum is to assist both groups in identifying the key barriers to the economic recoverability of domestic oil and gas resources while adequately protecting human health and the environment. The IOGCC and DOE staff worked with key state and industry representatives to develop a list of appropriate regulatory and industry representatives to be invited to participate. These same industry and regulatory representatives also provided a prioritized list of topics to be discussed at this workshop. After the topic leader set out the issue, views of those present were solicited. In almost every case, both the industry representatives and the regulatory personnel spoke with candor in discussing the problems. Common points of discussion for each topic were: (1) conflicting state and federal regulations; (2) conflicting regulations or permit requirements established by different state agencies; (3) increasing compliance costs; and (4) regulatory constraints that will result in ``no net growth`` in California oil and gas production and more likely a net decrease. This report contains a copy of the written presentation for each topic as well as a summary of the participants discussion.

  12. War curbs oil exports by Iran and Iraq

    SciTech Connect

    Not Available

    1980-09-29

    A discussion of the effects of the war between Iran and Iraq on oil exports from the area covers damage (extent unknown) to the Abadan, Iran, and Basra, Iraq, oil refineries, to the Iraqi petrochemical complex under construction at Basra, to oil export terminals at Kharg Island and Mina-al-Bakr, and to other oil facilities; war-caused reductions in oil production, refining, shipping, and export, estimated at 2.05-3.35 million bbl/day; the possible effects of the war on OPEC's decisions concerning oil production and pricing; the significance of the Strait of Hormuz for the export of oil by several countries in addition to the belligerents; the U.S. and non-Communist oil stocks which might enable the world to avoid an oil shortage if the war is ended in the near future; and the long-term effects of the war on Iran's and Iraq's oil industries.

  13. Oil discoveries in the hadramaut; How Canadian Oxy scored in Yemen

    SciTech Connect

    Mills, S.J. )

    1992-03-09

    On Dec. 18, 1991, Canadian Occidental Petroleum Ltd., announced that commerciality had been declared on three fields within the Masila Block in the Republic of Yemen. The discovery and successful delineation of Sunah, Heijah, and Camaal fields-with estimated recoverable reserves of 235 million bbl-represents the climacteric of an exploration program which commenced in 1987 on large tract of acreage located in the eastern part of what was then the Peoples Democratic Republic of Yemen. Drilling operations continue, and one further discovery has been announced recently. This article summarizes the exploration history of the Masila Block and discusses some of the results of the program to date.

  14. A nuclear wind/solar oil-shale system for variable electricity and liquid fuels production

    SciTech Connect

    Forsberg, C.

    2012-07-01

    The recoverable reserves of oil shale in the United States exceed the total quantity of oil produced to date worldwide. Oil shale contains no oil, rather it contains kerogen which when heated decomposes into oil, gases, and a carbon char. The energy required to heat the kerogen-containing rock to produce the oil is about a quarter of the energy value of the recovered products. If fossil fuels are burned to supply this energy, the greenhouse gas releases are large relative to producing gasoline and diesel from crude oil. The oil shale can be heated underground with steam from nuclear reactors leaving the carbon char underground - a form of carbon sequestration. Because the thermal conductivity of the oil shale is low, the heating process takes months to years. This process characteristic in a system where the reactor dominates the capital costs creates the option to operate the nuclear reactor at base load while providing variable electricity to meet peak electricity demand and heat for the shale oil at times of low electricity demand. This, in turn, may enable the large scale use of renewables such as wind and solar for electricity production because the base-load nuclear plants can provide lower-cost variable backup electricity. Nuclear shale oil may reduce the greenhouse gas releases from using gasoline and diesel in half relative to gasoline and diesel produced from conventional oil. The variable electricity replaces electricity that would have been produced by fossil plants. The carbon credits from replacing fossil fuels for variable electricity production, if assigned to shale oil production, results in a carbon footprint from burning gasoline or diesel from shale oil that may half that of conventional crude oil. The U.S. imports about 10 million barrels of oil per day at a cost of a billion dollars per day. It would require about 200 GW of high-temperature nuclear heat to recover this quantity of shale oil - about two-thirds the thermal output of existing

  15. Ecuador steps up pace of oil development activity

    SciTech Connect

    Not Available

    1992-03-23

    This paper reports that oil companies operating in Ecuador plan to quicken the pace of oil development this year. After delays in 1991, companies plan a series of projects to develop reserves discovered the past 3 years estimated at more than 600 million bbl. Oil and Gas Journal estimated Ecuador's proved crude reserves at 1.55 billion bbl as of Jan. 1, 1992. The development push is part of a larger effort needed to ensure Ecuador's status as an oil exporter into the next century. Ecuador is the smallest crude oil producer and exporter in the Organization of Petroleum Exporting Countries.

  16. ALASKA OIL AND GAS EXPLORATION, DEVELOPMENT, AND PERMITTING PROJECT

    SciTech Connect

    Richard McMahon; Robert Crandall; Chas Dense; Sean Weems

    2003-11-19

    This is the second technical report, covering the period from April 1, 2003 through September 30, 2003. This project brings together three parts of the oil exploration, development, and permitting process to form the foundation for a more fully integrated information technology infrastructure for the State of Alaska. The geo-technical component is a shared effort between the State Department of Administration and the US Department of Energy. The Alaska Oil and Gas Conservation Commission is rapidly converting high volumes of paper documents and geo-technical information to formats suitable for search and retrieval over the Internet. The permitting component is under the lead of the DNR Office of Project Management and Permitting. A web-based system will enable the public and other review participants to track permit status, submit and view comments, and obtain important project information on-line. By automating several functions of the current manual process, permit applications will be completed more quickly and accurately, and agencies will be able to complete reviews with fewer delays. Structural changes are taking place in terms of organization, statutory authority, and regulatory requirements. Geographic Information Systems are a central component to the organization of information, and the delivery of on-line services. Progress has been made to deploy the foundation system for the shared GIS based on open GIS protocols to the extent feasible. Alaska has nearly one-quarter of the nation's supply of crude oil, at least five billion barrels of proven reserves. The American Association of Petroleum Geologists report that the 1995 National Assessment identified the North Slope as having 7.4 billion barrels of technically recoverable oil and over 63 trillion cubic feet of natural gas. From these reserves, Alaska produces roughly one-fifth of the nation's daily crude oil production, or approximately one million barrels per day from over 1,800 active wells.

  17. Jordan ships oil shale to China

    SciTech Connect

    Not Available

    1986-12-01

    Jordan and China have signed an agreement to develop oil shale processing technology that could lead to a 200 ton/day oil shale plant in Jordan. China will process 1200 tons of Jordanian oil shale at its Fu Shun refinery. If tests are successful, China could build the demonstration plant in Jordan's Lajjun region, where the oil shale resource is estimated at 1.3 billion tons. China plans to send a team to Jordan to conduct a plant design study. A Lajjun oil shale complex could produce as much as 50,000 b/d of shale oil. An earlier 500 ton shipment of shale is said to have yielded promising results.

  18. FCC Pilot Plant Results with Vegetable Oil and Pyrolysis Oil...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    FCC Pilot Plant Results with Vegetable Oil and Pyrolysis Oil Feeds FCC Pilot Plant Results with Vegetable Oil and Pyrolysis Oil Feeds Breakout Session 2: Frontiers and Horizons ...

  19. Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures...

    Energy Information Administration (EIA) (indexed site)

    . Total Fuel Oil Consumption and Expenditures for Non-Mall Buildings, 2003" ,"All Buildings* Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures" ,"Number of Buildings...

  20. Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures...

    Energy Information Administration (EIA) (indexed site)

    A. Total Fuel Oil Consumption and Expenditures for All Buildings, 2003" ,"All Buildings Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures" ,"Number of Buildings...

  1. Oil Bypass Filter Technology Performance Evaluation - First Quarterly Report

    SciTech Connect

    Zirker, L.R.; Francfort, J.E.

    2003-01-31

    This report details the initial activities to evaluate the performance of the oil bypass filter technology being tested by the Idaho National Engineering and Environmental Laboratory (INEEL) for the U.S. Department of Energy's FreedomCAR & Vehicle Technologies Program. Eight full-size, four-cycle diesel-engine buses used to transport INEEL employees on various routes have been equipped with oil bypass systems from the puraDYN Corporation. Each bus averages about 60,000 miles a year. The evaluation includes an oil analysis regime to monitor the presence of necessary additives in the oil and to detect undesirable contaminants. Very preliminary economic analysis suggests that the oil bypass system can reduce life-cycle costs. As the evaluation continues and oil avoidance costs are quantified, it is estimated that the bypass system economics may prove increasingly favorable, given the anticipated savings in operational costs and in reduced use of oil and waste oil avoidance.

  2. Oil Bypass Filter Technology Performance Evaluation - January 2003 Quarterly Report

    SciTech Connect

    Laurence R. Zirker; James E. Francfort

    2003-01-01

    This report details the initial activities to evaluate the performance of the oil bypass filter technology being tested by the Idaho National Engineering and Environmental Laboratory (INEEL) for the U.S. Department of Energy's FreedomCAR & Vehicle Technologies Program. Eight full-size, four-cycle diesel-engine buses used to transport INEEL employees on various routes have been equipped with oil bypass systems from the puraDYN Corporation. Each bus averages about 60,000 miles a year. The evaluation includes an oil analysis regime to monitor the presence of necessary additives in the oil and to detect undesirable contaminants. Very preliminary economic analysis suggests that the oil bypass system can reduce life-cycle costs. As the evaluation continues and oil avoidance costs are quantified, it is estimated that the bypass system economics may prove increasingly favorable, given the anticipated savings in operational costs and in reduced use of oil and waste oil avoidance.

  3. Top 100 Oil and Gas Fields of 2009

    Energy Information Administration (EIA) (indexed site)

    Top 100 Oil and Gas Fields of 2009 Introduction This supplement to the Energy Information Administration's summary of U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Proved Reserves, 2009 ranks the United States' largest oil and gas fields by their estimated 2009 proved reserves. The Top 100's Share of U.S. Proved Reserves in 2009 The Top 100 oil fields and Top 100 gas fields each accounted for about 60 percent of the respective total proved reserves of the United States. The Top 100 oil

  4. Crude Oil | NISAC

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    NISACCrude Oil content top National Transportation Fuels Model Posted by tmanzan on Oct 3, ... by the network model (see figure) spans from oil fields to fuel distribution terminals. ...

  5. Crude Oil Domestic Production

    Energy Information Administration (EIA) (indexed site)

    Data Series: Crude Oil Domestic Production Refinery Crude Oil Inputs Refinery Gross Inputs Refinery Operable Capacity (Calendar Day) Refinery Percent Operable Utilization Net ...

  6. Oil and Gas

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Oil and Gas Oil and Gas R&D focus on the use of conventional and unconventional fossil fuels, including associated environmental challenges Contact thumbnail of Business ...

  7. NETL: Oil & Gas

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Oil & Gas Efficient recovery of our nation's fossil fuel resources in an environmentally ... and challenging locations of many of our remaining oil and natural gas accumulations. ...

  8. Assessment of Alaska's North Slope Oil Field Capacity to Sequester CO{sub 2}

    SciTech Connect

    Umekwe, Pascal; Mongrain, Joanna; Ahmadi, Mohabbat; Hanks, Catherine

    2013-03-15

    The capacity of 21 major fields containing more than 95% of the North Slope of Alaska's oil were investigated for CO{sub 2} storage by injecting CO{sub 2} as an enhanced oil recovery (EOR) agent. These fields meet the criteria for the application of miscible and immiscible CO{sub 2}-EOR methods and contain about 40 billion barrels of oil after primary and secondary recovery. Volumetric calculations from this study indicate that these fields have a static storage capacity of 3 billion metric tons of CO{sub 2}, assuming 100% oil recovery, re-pressurizing the fields to pre-fracturing pressure and applying a 50% capacity reduction to compensate for heterogeneity and for water invasion from the underlying aquifer. A ranking produced from this study, mainly controlled by field size and fracture gradient, identifies Prudhoe, Kuparuk, and West Sak as possessing the largest storage capacities under a 20% safety factor on pressures applied during storage to avoid over-pressurization, fracturing, and gas leakage. Simulation studies were conducted using CO{sub 2} Prophet to determine the amount of oil technically recoverable and CO{sub 2} gas storage possible during this process. Fields were categorized as miscible, partially miscible, and immiscible based on the miscibility of CO{sub 2} with their oil. Seven sample fields were selected across these categories for simulation studies comparing pure CO{sub 2} and water-alternating-gas injection. Results showed that the top two fields in each category for recovery and CO{sub 2} storage were Alpine and Point McIntyre (miscible), Prudhoe and Kuparuk (partially miscible), and West Sak and Lisburne (immiscible). The study concludes that 5 billion metric tons of CO{sub 2} can be stored while recovering 14.2 billion barrels of the remaining oil.

  9. Biochemically enhanced oil recovery and oil treatment

    DOEpatents

    Premuzic, Eugene T.; Lin, Mow

    1994-01-01

    This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil.

  10. Biochemically enhanced oil recovery and oil treatment

    DOEpatents

    Premuzic, E.T.; Lin, M.

    1994-03-29

    This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil. 62 figures.

  11. Petroleum resources of South America: Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, and Peru. Foreign Energy Supply Assessment Program series

    SciTech Connect

    Dietzman, W.D.; Rafidi, N.R.

    1983-01-01

    This report is an analysis of discovered crude oil reserves, undiscovered recoverable crude oil resources, and estimated annual oil field production. The countries analyzed are Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, and Peru. All of the countries in this report have a history of petroleum exploration and development. Also, they maintain policies which support the search for, and exploitation of, petroleum resources. This systematic assessment provides estimates of the quantities of remaining known petroleum reserves and undiscovered recoverable resources. The future feasible production rates from the respective countries are also discussed. The FESAP assessments are limited to petroleum resources recoverable by conventional primary and secondary extraction technology. It is estimated that over 29.4 billion barrels of recoverable oil (both discovered and undiscovered) originally existed within the sedimentary basins of these countries, as follows: Argentina (9.4 billion barrels); Brazil (6.5 billion barrels); Colombia (5.0 billion barrels); Peru (3.6 billion barrels); Ecuador (over 3.0 billion barrels); Chile (1.1 billion barrels); and Bolivia (over 0.8 billion barrels). Through 1982, about 10.2 billion barrels of the oil had been produced. Thus, some 19.2 billion barrels constitute the remaining recoverable petroleum resource base. It is estimated that the most likely volume of crude oil remaining to be found in the seven countries is 12 billion barrels. 91 refs., 59 figs., 82 tabs.

  12. 4 oil firms turn secret on reserves

    SciTech Connect

    Schaffer, P.

    1980-04-14

    US oil companies are complying with Saudi Arabia's and Indonesia's request by not revealing the companies' shares of oil reserves, adding to supply uncertainties and increasing the power of the producing countries. The information blackout reduces the reserve estimates filed by Exxon, Mobil, Standard Oil of California, and Texaco with the Securities and Exchange Commission, which plans to deal with the reporting problem on a case-by-case basis. Unless the companies decide the information can be disclosed to DOE's Financial Reporting System, a legal battle will ensue. A summary of reserve reports indicates a trend in declining production relative to new discoveries as well. (DCK)

  13. Oil Production

    Energy Science and Technology Software Center

    1989-07-01

    A horizontal and slanted well model was developed and incorporated into BOAST, a black oil simulator, to predict the potential production rates for such wells. The HORIZONTAL/SLANTED WELL MODEL can be used to calculate the productivity index, based on the length and location of the wellbore within the block, for each reservoir grid block penetrated by the horizontal/slanted wellbore. The well model can be run under either pressure or rate constraints in which wellbore pressuresmore » can be calculated as an option of infinite-conductivity. The model can simulate the performance of multiple horizontal/slanted wells in any geometric combination within reservoirs.« less

  14. Property description and fact-finding report for NPR-3 Natrona County, Wyoming. Addendum to 22 August 1996 study of alternatives for future operations of the naval petroleum and oil shale reserves NPR-3

    SciTech Connect

    1997-05-01

    The U.S. Department of Energy has asked Gustavson Associates, Inc. to serve as an Independent Petroleum Consultant under contract DE-AC01-96FE64202. This authorizes a study and recommendations regarding future development of Naval Petroleum Reserve No. 3 (NPR-3) in Natrona County, Wyoming. The report that follows is the Phase I fact-finding and property description for that study. The United States of America owns 100 percent of the mineral rights and surface rights in 9,321-acre NPR-3. This property comprises the Teapot Dome oil field and related production, processing and other facilities. Discovered in 1914, this field has 632 wells producing 1,807 barrels of oil per day. Production revenues are about $9.5 million per year. Remaining recoverable reserves are approximately 1.3 million barrels of oil. Significant plugging and abandonment (P&A) and environmental liabilities are present.

  15. Development of the oil-water monitor

    SciTech Connect

    Swanson, C.

    1990-04-02

    The oil-water monitor is a device invented by Dr. Claude Swanson of Applied Physics Technology to respond to the petroleum-loss problem in crude oil transfers. It is a device which measures water content in crude oil and other petroleum products, in a flowing pipe such as a pipeline or tanker manifold. It is capable of accurately measuring the water contamination levels in crude oil shipments, in real time as the crude oil flows through the loading manifold into the tanker, or at the receiving point as the oil is off-loaded It has application in the verification of oil volumes and concentration of contaminants at petroleum transfer points. The industry-estimated level of water loss at transfer points due to inadequate monitoring technology amounts to several billion dollars per year, so there is a definite perceived need within the petroleum community for this type of accurate water monitoring technology. The device has been patented, and initial feasibility experiments have been conducted. The present research is directed toward developing and demonstrating a bench model prototype of the oil-water monitor, complete with the computer software and automated microwave equipment and electronics which will demonstrate the performance of the invention, for implementation in full-scale fielded systems. 3 figs.

  16. World Crude Oil Prices

    Energy Information Administration (EIA) (indexed site)

    World Crude Oil Prices (Dollars per Barrel) The data on this page are no longer available.

  17. Eco Oil 4

    SciTech Connect

    Brett Earl; Brenda Clark

    2009-10-26

    This article describes the processes, challenges, and achievements of researching and developing a biobased motor oil.

  18. ALASKA OIL AND GAS EXPLORATION, DEVELOPMENT, AND PERMITTING PROJECT

    SciTech Connect

    Richard McMahon; Robert Crandall; Chas Dense; Sean Weems

    2003-08-04

    The objective of this project is to eliminate three closely inter-related barriers to oil production in Alaska through the use of a geographic information system (GIS) and other information technology strategies. These barriers involve identification of oil development potential from existing wells, planning projects to efficiently avoid conflicts with other interests, and gaining state approvals for exploration and development projects. Each barrier is the result of either current labor-intensive methods or poorly accessible information. This project brings together three parts of the oil exploration, development, and permitting process to form the foundation for a more fully integrated information technology infrastructure for the State of Alaska. This web-based system will enable the public and other review participants to track permit status, submit and view comments, and obtain important project information online. By automating several functions of the current manual process, permit applications will be completed more quickly and accurately, and agencies will be able to complete reviews with fewer delays. The application will include an on-line diagnostic Coastal Project Questionnaire to determine the suite of permits required for a specific project. The application will also automatically create distribution lists based on the location and type of project, populate document templates for project review start-ups, public notices and findings, allow submission of e-comments, and post project status information on the Internet. Alaska has nearly one-quarter of the nation's supply of crude oil, at least five billion barrels of proven reserves. The American Association of Petroleum Geologists report that the 1995 National Assessment identified the North Slope as having 7.4 billion barrels of technically recoverable oil and over 63 trillion cubic feet of natural gas. From these reserves, Alaska produces roughly one-fifth of the nation's daily crude oil production

  19. Heavy oil production from Alaska

    SciTech Connect

    Mahmood, S.M.; Olsen, D.K.

    1995-12-31

    North Slope of Alaska has an estimated 40 billion barrels of heavy oil and bitumen in the shallow formations of West Sak and Ugnu. Recovering this resource economically is a technical challenge for two reasons: (1) the geophysical environment is unique, and (2) the expected recovery is a low percentage of the oil in place. The optimum advanced recovery process is still undetermined. Thermal methods would be applicable if the risks of thawing the permafrost can be minimized and the enormous heat losses reduced. Use of enriched natural gas is a probable recovery process for West Sak. Nearby Prudhoe Bay field is using its huge natural gas resources for pressure maintenance and enriched gas improved oil recovery (IOR). Use of carbon dioxide is unlikely because of dynamic miscibility problems. Major concerns for any IOR include close well spacing and its impact on the environment, asphaltene precipitation, sand production, and fines migration, in addition to other more common production problems. Studies have indicated that recovering West Sak and Lower Ugnu heavy oil is technically feasible, but its development has not been economically viable so far. Remoteness from markets and harsh Arctic climate increase production costs relative to California heavy oil or Central/South American heavy crude delivered to the U.S. Gulf Coast. A positive change in any of the key economic factors could provide the impetus for future development. Cooperation between the federal government, state of Alaska, and industry on taxation, leasing, and permitting, and an aggressive support for development of technology to improve economics is needed for these heavy oil resources to be developed.

  20. Costs of U.S. Oil Dependence: 2005 Update

    SciTech Connect

    Greene, D.L.

    2005-03-08

    For thirty years, dependence on oil has been a significant problem for the United States. Oil dependence is not simply a matter of how much oil we import. It is a syndrome, a combination of the vulnerability of the U.S. economy to higher oil prices and oil price shocks and a concentration of world oil supplies in a small group of oil producing states that are willing and able to use their market power to influence world oil prices. Although there are vitally important political and military dimensions to the oil dependence problem, this report focuses on its direct economic costs. These costs are the transfer of wealth from the United States to oil producing countries, the loss of economic potential due to oil prices elevated above competitive market levels, and disruption costs caused by sudden and large oil price movements. Several enhancements have been made to methods used in past studies to estimate these costs, and estimates of key parameters have been updated based on the most recent literature. It is estimated that oil dependence has cost the U.S. economy $3.6 trillion (constant 2000 dollars) since 1970, with the bulk of the losses occurring between 1979 and 1986. However, if oil prices in 2005 average $35-$45/bbl, as recently predicted by the U.S. Energy Information Administration, oil dependence costs in 2005 will be in the range of $150-$250 billion. Costs are relatively evenly divided between the three components. A sensitivity analysis reflecting uncertainty about all the key parameters required to estimate oil dependence costs suggests that a reasonable range of uncertainty for the total costs of U.S. oil dependence over the past 30 years is $2-$6 trillion (constant 2000 dollars). Reckoned in terms of present value using a discount rate of 4.5%, the costs of U.S. oil dependence since 1970 are $8 trillion, with a reasonable range of uncertainty of $5 to $13 trillion.

  1. Mega borg oil spill: Fate and effect studies

    SciTech Connect

    Not Available

    1992-09-28

    The Mega Borg, a Norwegian tanker, released an estimated 5.1 million gallons (gal) of Palanca Angola crude oil into the Gulf of Mexico during a lightering accident and subsequent fire. The collection of reports was designed to provide a comprehensive overview of the spill chronology, the fate of the oil released, and subsequent studies that were conducted to assess the impacts of the oil spill on the environment and its biota.

  2. ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy...

    Energy Information Administration (EIA) (indexed site)

    A. Fuel Oil Consumption (Btu) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy Intensity (thousand Btu...

  3. Life-Cycle Assessment of Pyrolysis Bio-Oil Production*

    SciTech Connect

    Steele, Philip; Puettmann, Maureen E.; Penmetsa, Venkata Kanthi; Cooper, Jerome E.

    2012-07-01

    As part ofthe Consortium for Research on Renewable Industrial Materials' Phase I life-cycle assessments ofbiofuels, lifecycle inventory burdens from the production of bio-oil were developed and compared with measures for residual fuel oil. Bio-oil feedstock was produced using whole southern pine (Pinus taeda) trees, chipped, and converted into bio-oil by fast pyrolysis. Input parameters and mass and energy balances were derived with Aspen. Mass and energy balances were input to SimaPro to determine the environmental performance of bio-oil compared with residual fuel oil as a heating fuel. Equivalent functional units of 1 MJ were used for demonstrating environmental preference in impact categories, such as fossil fuel use and global warming potential. Results showed near carbon neutrality of the bio-oil. Substituting bio-oil for residual fuel oil, based on the relative carbon emissions of the two fuels, estimated a reduction in CO2 emissions by 0.075 kg CO2 per MJ of fuel combustion or a 70 percent reduction in emission over residual fuel oil. The bio-oil production life-cycle stage consumed 92 percent of the total cradle-to-grave energy requirements, while feedstock collection, preparation, and transportation consumed 4 percent each. This model provides a framework to better understand the major factors affecting greenhouse gas emissions related to bio-oil production and conversion to boiler fuel during fast pyrolysis.

  4. Running Out of and Into Oil: Analyzing Global Oil Depletion and Transition Through 2050

    SciTech Connect

    Greene, D.L.

    2003-11-14

    This report presents a risk analysis of world conventional oil resource production, depletion, expansion, and a possible transition to unconventional oil resources such as oil sands, heavy oil and shale oil over the period 2000 to 2050. Risk analysis uses Monte Carlo simulation methods to produce a probability distribution of outcomes rather than a single value. Probability distributions are produced for the year in which conventional oil production peaks for the world as a whole and the year of peak production from regions outside the Middle East. Recent estimates of world oil resources by the United States Geological Survey (USGS), the International Institute of Applied Systems Analysis (IIASA), the World Energy Council (WEC) and Dr. C. Campbell provide alternative views of the extent of ultimate world oil resources. A model of oil resource depletion and expansion for twelve world regions is combined with a market equilibrium model of conventional and unconventional oil supply and demand to create a World Energy Scenarios Model (WESM). The model does not make use of Hubbert curves but instead relies on target reserve-to-production ratios to determine when regional output will begin to decline. The authors believe that their analysis has a bias toward optimism about oil resource availability because it does not attempt to incorporate political or environmental constraints on production, nor does it explicitly include geologic constraints on production rates. Global energy scenarios created by IIASA and WEC provide the context for the risk analysis. Key variables such as the quantity of undiscovered oil and rates of technological progress are treated as probability distributions, rather than constants. Analyses based on the USGS and IIASA resource assessments indicate that conventional oil production outside the Middle East is likely to peak sometime between 2010 and 2030. The most important determinants of the date are the quantity of undiscovered oil, the rate at

  5. Market analysis of shale oil co-products. Appendices

    SciTech Connect

    Not Available

    1980-12-01

    Data are presented in these appendices on the marketing and economic potential for soda ash, aluminia, and nahcolite as by-products of shale oil production. Appendices 1 and 2 contain data on the estimated capital and operating cost of an oil shales/mineral co-products recovery facility. Appendix 3 contains the marketing research data.

  6. Chris Smith Deputy Assistant Secretary for Oil and Natural Gas

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    American families are estimated to save approximately 1.7 trillion at the pump, and cut oil consumption by 12 billion barrels. The Administration is also investing in advanced...

  7. Apparatus for distilling shale oil from oil shale

    SciTech Connect

    Shishido, T.; Sato, Y.

    1984-02-14

    An apparatus for distilling shale oil from oil shale comprises: a vertical type distilling furnace which is divided by two vertical partitions each provided with a plurality of vent apertures into an oil shale treating chamber and two gas chambers, said oil shale treating chamber being located between said two gas chambers in said vertical type distilling furnace, said vertical type distilling furnace being further divided by at least one horizontal partition into an oil shale distilling chamber in the lower part thereof and at least one oil shale preheating chamber in the upper part thereof, said oil shale distilling chamber and said oil shale preheating chamber communication with each other through a gap provided at an end of said horizontal partition, an oil shale supplied continuously from an oil shale supply port provided in said oil shale treating chamber at the top thereof into said oil shale treating chamber continuously moving from the oil shale preheating chamber to the oil shale distilling chamber, a high-temperature gas blown into an oil shale distilling chamber passing horizontally through said oil shale in said oil shale treating chamber, thereby said oil shale is preheated in said oil shale preheating chamber, and a gaseous shale oil is distilled from said preheated oil shale in said oil shale distilling chamber; and a separator for separating by liquefaction a gaseous shale oil from a gas containing the gaseous shale oil discharged from the oil shale preheating chamber.

  8. Crude Oil Characteristics Research

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    SAE Plan June 29, 2015 Page 1 Crude Oil Characteristics Research Sampling, Analysis and Experiment (SAE) Plan The U.S. is experiencing a renaissance in oil and gas production. The Energy Information Administration projects that U.S. oil production will reach 9.3 million barrels per day in 2015 - the highest annual average level of oil production since 1972. This domestic energy boom is due primarily to new unconventional production of light sweet crude oil from tight-oil formations like the

  9. Oil- and gas-supply modeling

    SciTech Connect

    Gass, S.I.

    1982-05-01

    The symposium on Oil and Gas Supply Modeling, held at the Department of Commerce, Washington, DC (June 18-20, 1980), was funded by the Energy Information Administration of the Department of Energy and co-sponsored by the National Bureau of Standards' Operations Research Division. The symposium was organized to be a forum in which the theoretical and applied state-of-the-art of oil and gas supply models could be presented and discussed. Speakers addressed the following areas: the realities of oil and gas supply, prediction of oil and gas production, problems in oil and gas modeling, resource appraisal procedures, forecasting field size and production, investment and production strategies, estimating cost and production schedules for undiscovered fields, production regulations, resource data, sensitivity analysis of forecasts, econometric analysis of resource depletion, oil and gas finding rates, and various models of oil and gas supply. This volume documents the proceedings (papers and discussion) of the symposium. Separate abstracts have been prepared for individual papers for inclusion in the Energy Data Base.

  10. Fuel Oil Use in Manufacturing

    Energy Information Administration (EIA) (indexed site)

    logo Return to: Manufacturing Home Page Fuel Oil Facts Oil Price Effect Fuel Switching Actual Fuel Switching Storage Capacity Fuel Oil Use in Manufacturing Why Look at Fuel Oil?...

  11. Bridging the Gap between Chemical Flooding and Independent Oil Producers

    SciTech Connect

    Stan McCool; Tony Walton; Paul Willhite; Mark Ballard; Miguel Rondon; Kaixu Song; Zhijun Liu; Shahab Ahmend; Peter Senior

    2012-03-31

    Ten Kanas oil reservoirs/leases were studied through geological and engineering analysis to assess the potential performance of chemical flooding to recover oil. Reservoirs/leases that have been efficiently waterflooded have the highest performance potential for chemical flooding. Laboratory work to identify efficient chemical systems and to test the oil recovery performance of the systems was the major effort of the project. Efficient chemical systems were identified for crude oils from nine of the reservoirs/leases. Oil recovery performance of the identified chemical systems in Berea sandstone rocks showed 90+ % recoveries of waterflood residual oil for seven crude oils. Oil recoveries increased with the amount of chemical injected. Recoveries were less in Indiana limestone cores. One formulation recovered 80% of the tertiary oil in the limestone rock. Geological studies for nine of the oil reservoirs are presented. Pleasant Prairie, Trembley, Vinland and Stewart Oilfields in Kansas were the most favorable of the studied reservoirs for a pilot chemical flood from geological considerations. Computer simulations of the performance of a laboratory coreflood were used to predict a field application of chemical flooding for the Trembley Oilfield. Estimates of field applications indicated chemical flooding is an economically viable technology for oil recovery.

  12. Identification, Verification, and Compilation of Produced Water Management Practices for Conventional Oil and Gas Production Operations

    SciTech Connect

    Rachel Henderson

    2007-09-30

    The project is titled 'Identification, Verification, and Compilation of Produced Water Management Practices for Conventional Oil and Gas Production Operations'. The Interstate Oil and Gas Compact Commission (IOGCC), headquartered in Oklahoma City, Oklahoma, is the principal investigator and the IOGCC has partnered with ALL Consulting, Inc., headquartered in Tulsa, Oklahoma, in this project. State agencies that also have partnered in the project are the Wyoming Oil and Gas Conservation Commission, the Montana Board of Oil and Gas Conservation, the Kansas Oil and Gas Conservation Division, the Oklahoma Oil and Gas Conservation Division and the Alaska Oil and Gas Conservation Commission. The objective is to characterize produced water quality and management practices for the handling, treating, and disposing of produced water from conventional oil and gas operations throughout the industry nationwide. Water produced from these operations varies greatly in quality and quantity and is often the single largest barrier to the economic viability of wells. The lack of data, coupled with renewed emphasis on domestic oil and gas development, has prompted many experts to speculate that the number of wells drilled over the next 20 years will approach 3 million, or near the number of current wells. This level of exploration and development undoubtedly will draw the attention of environmental communities, focusing their concerns on produced water management based on perceived potential impacts to fresh water resources. Therefore, it is imperative that produced water management practices be performed in a manner that best minimizes environmental impacts. This is being accomplished by compiling current best management practices for produced water from conventional oil and gas operations and to develop an analysis tool based on a geographic information system (GIS) to assist in the understanding of watershed-issued permits. That would allow management costs to be kept in line with

  13. Sound Oil Company

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... Ward Oil Co., 24 DOE 81,002 (1994); see also Belcher Oil Co., 15 DOE 81,018 (1987) ... months relief because of flood); Utilities Bd. of Citronelle-Gas, 4 DOE 81,205 (1979) ...

  14. South American oil

    SciTech Connect

    Not Available

    1992-06-01

    GAO reviewed the petroleum industries of the following eight South American Countries that produce petroleum but are not major exporters: Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Peru, and Trinidad and Tobago. This report discusses the amount of crude oil the United States imports from the eight countries, expected crude oil production for these countries through the year 2010, and investment reforms that these countries have recently made in their petroleum industries. In general, although the United States imports some oil from these countries, as a group, the eight countries are currently net oil importers because combined domestic oil consumption exceeds oil production. Furthermore, the net oil imports are expected to continue to increase through the year 2010, making it unlikely that the United States will obtain increased oil shipments from these countries.

  15. Enhanced Oil Recovery

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Enhanced Oil Recovery As much as two-thirds of conventional crude oil discovered in U.S. fields remains unproduced, left behind due to the physics of fluid flow. In addition, ...

  16. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect

    Scott Hara

    2004-03-05

    The overall objective of this project is to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involves improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective is to transfer technology which can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The thermal recovery operations in the Tar II-A and Tar V have been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the

  17. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect

    Scott Hara

    2003-09-04

    The overall objective of this project is to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involves improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective is to transfer technology which can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The thermal recovery operations in the Tar II-A and Tar V have been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the

  18. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect

    Scott Hara

    2003-06-04

    The overall objective of this project is to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involves improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective is to transfer technology which can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The thermal recovery operations in the Tar II-A and Tar V have been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the

  19. Vegetable oils for tractors

    SciTech Connect

    Moroney, M.

    1981-11-14

    Preliminary tests by the Agricultural Institute, show that tractors can be run on a 50:50 rape oil-diesel mixture or on pure rape oil. In fact, engine power actually increased slightly with the 50:50 blend but decreased fractionally with pure rape oil. Research at the North Dakota State University on using sunflower oil as an alternative to diesel fuel is also noted.

  20. SRC residual fuel oils

    SciTech Connect

    Tewari, K.C.; Foster, E.P.

    1985-10-15

    Coal solids (SRC) and distillate oils are combined to afford single-phase blends of residual oils which have utility as fuel oils substitutes. The components are combined on the basis of their respective polarities, that is, on the basis of their heteroatom content, to assure complete solubilization of SRC. The resulting composition is a fuel oil blend which retains its stability and homogeneity over the long term.

  1. SRC Residual fuel oils

    DOEpatents

    Tewari, Krishna C.; Foster, Edward P.

    1985-01-01

    Coal solids (SRC) and distillate oils are combined to afford single-phase blends of residual oils which have utility as fuel oils substitutes. The components are combined on the basis of their respective polarities, that is, on the basis of their heteroatom content, to assure complete solubilization of SRC. The resulting composition is a fuel oil blend which retains its stability and homogeneity over the long term.

  2. Oil-futures markets

    SciTech Connect

    Prast, W.G.; Lax, H.L.

    1983-01-01

    This book on oil futures trading takes a look at a market and its various hedging strategies. Growing interest in trading of commodity futures has spread to petroleum, including crude oil, and key refined products such as gasoline and heating oil. This book describes how the international petroleum trade is structured, examines the working of oil futures markets in the United States and the United Kingdom, and assesses the possible courses of further developments.

  3. INCREASING WATERFLOOD RESERVES IN THE WILMINGTON OIL FIELD THROUGH IMPROVED RESERVOIR CHARACTERIZATION AND RESERVOIR MANAGEMENT

    SciTech Connect

    Scott Walker; Chris Phillips; Roy Koerner; Don Clarke; Dan Moos; Kwasi Tagbor

    2002-02-28

    This project increased recoverable waterflood reserves in slope and basin reservoirs through improved reservoir characterization and reservoir management. The particular application of this project is in portions of Fault Blocks IV and V of the Wilmington Oil Field, in Long Beach, California, but the approach is widely applicable in slope and basin reservoirs. Transferring technology so that it can be applied in other sections of the Wilmington Field and by operators in other slope and basin reservoirs is a primary component of the project. This project used advanced reservoir characterization tools, including the pulsed acoustic cased-hole logging tool, geologic three-dimensional (3-D) modeling software, and commercially available reservoir management software to identify sands with remaining high oil saturation following waterflood. Production from the identified high oil saturated sands was stimulated by recompleting existing production and injection wells in these sands using conventional means as well as a short radius redrill candidate. Although these reservoirs have been waterflooded over 40 years, researchers have found areas of remaining oil saturation. Areas such as the top sand in the Upper Terminal Zone Fault Block V, the western fault slivers of Upper Terminal Zone Fault Block V, the bottom sands of the Tar Zone Fault Block V, and the eastern edge of Fault Block IV in both the Upper Terminal and Lower Terminal Zones all show significant remaining oil saturation. Each area of interest was uncovered emphasizing a different type of reservoir characterization technique or practice. This was not the original strategy but was necessitated by the different levels of progress in each of the project activities.

  4. Biochemical upgrading of oils

    DOEpatents

    Premuzic, Eugene T. (East Moriches, NY); Lin, Mow S. (Rocky Point, NY)

    1999-01-12

    A process for biochemical conversion of heavy crude oils is provided. The process includes contacting heavy crude oils with adapted biocatalysts. The resulting upgraded oil shows, a relative increase in saturated hydrocarbons, emulsions and oxygenates and a decrease in compounds containing in organic sulfur, organic nitrogen and trace metals. Adapted microorganisms which have been modified under challenged growth processes are also disclosed.

  5. Biochemical upgrading of oils

    DOEpatents

    Premuzic, E.T.; Lin, M.S.

    1999-01-12

    A process for biochemical conversion of heavy crude oils is provided. The process includes contacting heavy crude oils with adapted biocatalysts. The resulting upgraded oil shows, a relative increase in saturated hydrocarbons, emulsions and oxygenates and a decrease in compounds containing organic sulfur, organic nitrogen and trace metals. Adapted microorganisms which have been modified under challenged growth processes are also disclosed. 121 figs.

  6. Preliminary evaluation of shale-oil resources in Missouri

    SciTech Connect

    Nuelle, L.M.; Sumner, H.S.

    1981-02-01

    This report is a preliminary overview of oil-shale potential in Missouri. Two types of oil shales occur in Missouri: (1) the platform marine type, represented by the Devonian Chattanooga Shale, and (2) black shales in Pennsylvanian cyclothems, many of which overlie currently mined coal beds. The Chattanooga Shale contains black, fissile, carbonaceous shales and reaches a thickness of around 70 ft in southwestern Missouri. Oil-yield data from Missouri are not available, but based on yields from other states, the Chattanooga of southwest Missouri is estimated to contain between 2.6 and 15.8 billion barrels of oil. Preliminary estimates of the black, hard, fissile, carbonaceous Pennsylvanian shales indicate they contain between 100 and 200 billion barrels of shale oil. Many of these units directly overlie currently mined coal seams and could be recovered with the coal, but they are now discarded as overburden. These shales also contain significant amounts of phosphates and uranium. Other Paleozoic units with limited oil-shale potential are the Ordovician Decorah and Maquoketa Formations and the Upper Devonian Grassy Creek Shale. Ambitious research programs are needed to evaluate Missouri oil-shale resources. Further investigations should include economic and technological studies and the drilling, mapping, and sampling of potential oil-shale units. Shrinking supplies of crude oil make such studies desirable.

  7. Utah Heavy Oil Program

    SciTech Connect

    J. Bauman; S. Burian; M. Deo; E. Eddings; R. Gani; R. Goel; C.K. Huang; M. Hogue; R. Keiter; L. Li; J. Ruple; T. Ring; P. Rose; M. Skliar; P.J. Smith; J.P. Spinti; P. Tiwari; J. Wilkey; K. Uchitel

    2009-10-20

    The Utah Heavy Oil Program (UHOP) was established in June 2006 to provide multidisciplinary research support to federal and state constituents for addressing the wide-ranging issues surrounding the creation of an industry for unconventional oil production in the United States. Additionally, UHOP was to serve as an on-going source of unbiased information to the nation surrounding technical, economic, legal and environmental aspects of developing heavy oil, oil sands, and oil shale resources. UHOP fulGilled its role by completing three tasks. First, in response to the Energy Policy Act of 2005 Section 369(p), UHOP published an update report to the 1987 technical and economic assessment of domestic heavy oil resources that was prepared by the Interstate Oil and Gas Compact Commission. The UHOP report, entitled 'A Technical, Economic, and Legal Assessment of North American Heavy Oil, Oil Sands, and Oil Shale Resources' was published in electronic and hard copy form in October 2007. Second, UHOP developed of a comprehensive, publicly accessible online repository of unconventional oil resources in North America based on the DSpace software platform. An interactive map was also developed as a source of geospatial information and as a means to interact with the repository from a geospatial setting. All documents uploaded to the repository are fully searchable by author, title, and keywords. Third, UHOP sponsored Give research projects related to unconventional fuels development. Two projects looked at issues associated with oil shale production, including oil shale pyrolysis kinetics, resource heterogeneity, and reservoir simulation. One project evaluated in situ production from Utah oil sands. Another project focused on water availability and produced water treatments. The last project considered commercial oil shale leasing from a policy, environmental, and economic perspective.

  8. The economic impact of proposed regulations on the discharge of drilling muds and cuttings from the offshore facilities on US undiscovered crude oil reserves

    SciTech Connect

    Not Available

    1989-01-13

    This paper presents the results of an assessment of the potential economic impact of proposed regulations. on the discharge of drilling fluids (muds) and cuttings on US offshore undiscovered crude oil resources. These regulations include proposed Best Available Technology economically achievable (BAT) and New Source Performance Standards (NSPS) effluent limitations under the Clean Water Act governing the discharge of drilling fluids and drill cuttings from offshore oil and gas drilling operations. The impact of the proposed RAT/NSPS regulations for the drilling fluids and drill cuttings disposal on the cost of funding, developing, and producing Lower-48 offshore undiscovered crude oil resources will depend significantly on operators perceptions on the chances of failing toxicity or static sheen tests. If operators, in economically justifying their projects, assume that the fluids fail one of these tests, thereby prohibiting them from being discharged, up to 11% of the economically recoverable offshore resource would be considered uneconomic to produce. This would amount to 845 million barrels of oil at an oil price around $25 per barrel. On the other hand, if operators are willing co take their chances and see if their fluids fail one of these tests, then, based on EPA`s assumptions concerning forecast fluid use and static sheen and toxicity test failure rates, up to 4% of the offshore undiscovered resource would be impacted, amounting to lost reserves of up to 270 million barrels.

  9. ?-Fe{sub 2}O{sub 3} nanoparticles: An easily recoverable effective photo-catalyst for the degradation of rose bengal and methylene blue dyes in the waste-water treatment plant

    SciTech Connect

    Dutta, Amit Kumar; Maji, Swarup Kumar; Adhikary, Bibhutosh

    2014-01-01

    Graphical abstract: - Highlights: ?-Fe{sub 2}O{sub 3} NPs from a single-source precursor and characterized by XRD, TEM, UVvis spectra. The NPs were tested as effective photocatalyst toward degradation of RB and MB dyes. The possible pathway of the photocatalytic decomposition process has been discussed. The active species, OH, was detected by TA photoluminescence probing techniques. - Abstract: ?-Fe{sub 2}O{sub 3} nanoparticles (NPs) were synthesized from a single-source precursor complex [Fe{sub 3}O(C{sub 6}H{sub 5}COO){sub 6}(H{sub 2}O){sub 3}]NO{sub 3} by a simple thermal decomposition process and have been characterized by X-ray diffraction analysis (XRD), transmission electron microscopy (TEM) and UVvis spectroscopic techniques. The NPs were highly pure and well crystallized having hexagonal morphology with an average particle size of 35 nm. The prepared ?-Fe{sub 2}O{sub 3} (maghemite) NPs show effective photo-catalytic activity toward the degradation of rose bengal (RB) and methylene blue (MB) dyes under visible light irradiation and can easily be recoverable in the presence of magnetic field for successive re-uses. The possible photo-catalytic decomposition mechanism is discussed through the detection of hydroxyl radical (OH) by terephthalic acid photo-luminescence probing technique.

  10. US Crude oil exports

    Gasoline and Diesel Fuel Update

    2014 EIA Energy Conference U.S. Crude Oil Exports July 14, 2014 By Lynn D. Westfall U.S. Energy Information Administration U.S. crude oil production has grown by almost 50% since 2008 and is up by 1.0 million b/d (14%) since April of 2013 U.S. crude oil production million barrels of oil per day Source: U.S. Energy Information Administration Lynn Westfall, 2014 EIA Energy Conference, U.S. Crude Oil Exports, July 14, 2014 2 0 2 4 6 8 10 12 1970 1972 1974 1976 1978 1980 1982 1984 1986 1988 1990

  11. Investigation and development of alternative methods for shale oil processing and analysis. Final technical report, October 1979--April 1983

    SciTech Connect

    Evans, R.A.

    1998-06-01

    Oil shale, a carbonaceous rock which occurs abundantly in the earth`s crust, has been investigated for many years as an alternate source of fuel oil. The insoluble organic matter contained in such shales is termed {open_quotes}Kerogen{close_quotes} from the Greek meaning oil or oil forming. The kerogen in oil shale breaks down into oil-like products when subjected to conditions simulating destructive distillation. These products have been the subject of extensive investigations by several researchers and many of the constituents of shale oil have been identified. (1) Forsman (2) estimates that the kerogen content of the earth is roughly 3 {times} 10{sup 15} tons as compared to total coal reserves of about 5 {times} 10{sup 12}. Although the current cost per barrel estimate for commercial production of shale oil is higher than that of fossil oil, as our oil reserves continue to dwindle, shale oil technology will become more and more important. When oil shale is heated, kerogen is said to undergo chemical transformation to usable oil in two steps (3): Kerogen (in oil shale) 300-500{degrees}C bitumen. Crude shale oil and other products. The crude shale oil so obtained differs from fossil oil in that: (1) kerogen is thought to have been produced from the aging of plant matter over many years; (2) shale oil has a higher nitrogen content than fossil oil; (3) non-hydrocarbons are present to a much greater extent in shale oil; and (4) the hydrocarbons in shale oil are much more unsaturated than those in fossil oil (petroleum).

  12. Soviet Union oil sector outlook grows bleaker still

    SciTech Connect

    Not Available

    1991-08-12

    This paper reports on the outlook for the U.S.S.R's oil sector which grows increasingly bleak and with it prospects for the Soviet economy. Plunging Soviet oil production and exports have analysts revising near term oil price outlooks, referring to the Soviet oil sector's self-destructing and Soviet oil production in a freefall. County NatWest, Washington, citing likely drops in Soviet oil production and exports (OGJ, Aug. 5, p. 16), has jumped its projected second half spot price for West Texas intermediate crude by about $2 to $22-23/bbl. Smith Barney, New York, forecasts WTI postings at $24-25/bbl this winter, largely because of seasonally strong world oil demand and the continued collapse in Soviet oil production. It estimates the call on oil from the Organization of Petroleum Exporting Countries at more than 25 million b/d in first quarter 1992. That would be the highest level of demand for OPEC oil since 1980, Smith Barney noted.

  13. Feasibility study of heavy oil recovery in the Appalachian, Black Warrior, Illinois, and Michigan basins

    SciTech Connect

    Olsen, D.K.; Rawn-Schatzinger, V.; Ramzel, E.B.

    1992-07-01

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Appalachian, Black Warrior, Illinois, and Michigan basins cover most of the depositional basins in the Midwest and Eastern United States. These basins produce sweet, paraffinic light oil and are considered minor heavy oil (10{degrees} to 20{degrees} API gravity or 100 to 100,000 cP viscosity) producers. Heavy oil occurs in both carbonate and sandstone reservoirs of Paleozoic Age along the perimeters of the basins in the same sediments where light oil occurs. The oil is heavy because escape of light ends, water washing of the oil, and biodegradation of the oil have occurred over million of years. The Appalachian, Black Warrior, Illinois, and Michigan basins' heavy oil fields have produced some 450,000 bbl of heavy oil of an estimated 14,000,000 bbl originally in place. The basins have been long-term, major light-oil-producing areas and are served by an extensive pipeline network connected to refineries designed to process light sweet and with few exceptions limited volumes of sour or heavy crude oils. Since the light oil is principally paraffinic, it commands a higher price than the asphaltic heavy crude oils of California. The heavy oil that is refined in the Midwest and Eastern US is imported and refined at select refineries. Imports of crude of all grades accounts for 37 to >95% of the oil refined in these areas. Because of the nature of the resource, the Appalachian, Black Warrior, Illinois and Michigan basins are not expected to become major heavy oil producing areas. The crude oil collection system will continue to degrade as light oil production declines. The demand for crude oil will increase pipeline and tanker transport of imported crude to select large refineries to meet the areas' liquid fuels needs.

  14. Feasibility study of heavy oil recovery in the Appalachian, Black Warrior, Illinois, and Michigan basins

    SciTech Connect

    Olsen, D.K.; Rawn-Schatzinger, V.; Ramzel, E.B.

    1992-07-01

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Appalachian, Black Warrior, Illinois, and Michigan basins cover most of the depositional basins in the Midwest and Eastern United States. These basins produce sweet, paraffinic light oil and are considered minor heavy oil (10{degrees} to 20{degrees} API gravity or 100 to 100,000 cP viscosity) producers. Heavy oil occurs in both carbonate and sandstone reservoirs of Paleozoic Age along the perimeters of the basins in the same sediments where light oil occurs. The oil is heavy because escape of light ends, water washing of the oil, and biodegradation of the oil have occurred over million of years. The Appalachian, Black Warrior, Illinois, and Michigan basins` heavy oil fields have produced some 450,000 bbl of heavy oil of an estimated 14,000,000 bbl originally in place. The basins have been long-term, major light-oil-producing areas and are served by an extensive pipeline network connected to refineries designed to process light sweet and with few exceptions limited volumes of sour or heavy crude oils. Since the light oil is principally paraffinic, it commands a higher price than the asphaltic heavy crude oils of California. The heavy oil that is refined in the Midwest and Eastern US is imported and refined at select refineries. Imports of crude of all grades accounts for 37 to >95% of the oil refined in these areas. Because of the nature of the resource, the Appalachian, Black Warrior, Illinois and Michigan basins are not expected to become major heavy oil producing areas. The crude oil collection system will continue to degrade as light oil production declines. The demand for crude oil will increase pipeline and tanker transport of imported crude to select large refineries to meet the areas` liquid fuels needs.

  15. Crude Oil Analysis Database

    DOE Data Explorer

    Shay, Johanna Y.

    The composition and physical properties of crude oil vary widely from one reservoir to another within an oil field, as well as from one field or region to another. Although all oils consist of hydrocarbons and their derivatives, the proportions of various types of compounds differ greatly. This makes some oils more suitable than others for specific refining processes and uses. To take advantage of this diversity, one needs access to information in a large database of crude oil analyses. The Crude Oil Analysis Database (COADB) currently satisfies this need by offering 9,056 crude oil analyses. Of these, 8,500 are United States domestic oils. The database contains results of analysis of the general properties and chemical composition, as well as the field, formation, and geographic location of the crude oil sample. [Taken from the Introduction to COAMDATA_DESC.pdf, part of the zipped software and database file at http://www.netl.doe.gov/technologies/oil-gas/Software/database.html] Save the zipped file to your PC. When opened, it will contain PDF documents and a large Excel spreadsheet. It will also contain the database in Microsoft Access 2002.

  16. Oil exploration and development in Marib/Al Jawf basin, Yemen Arab Republic

    SciTech Connect

    Maycock, I.D.

    1988-02-01

    In 1981, Yemen Hunt Oil Company (YHOC) negotiated a production-sharing agreement covering 12,600 km/sup 2/ in the northeast part of the Yemen Arab Republic. A reconnaissance seismic program of 1864 km acquired in 1982 revealed the presence of a major half graben, designated the Marib/Al Jawf basin by YHOC. A sedimentary section up to 18,000 ft thick has been recognized. Geologic field mapping identified Jurassic carbonates covered by Cretaceous sands overlying Permian glaciolacustrine sediments, Paleozoic sandstones, or Precambrian basement. The first well, Alif-1, drilled in 1984, aimed at a possible Jurassic carbonate objective, encountered hydrocarbon-bearing sands in the Jurassic-Cretaceous transition between 5000 and 6000 ft. Appraisal and development drilling followed. The Alif field is believed to contain in excess of 400 million bbl of recoverable oil. Subsequent wildcat drilling has located additional accumulations while further amplifying basin stratigraphy. Rapid basin development took place in the Late Jurassic culminating with the deposition of Tithonian salt. The evaporites provide an excellent seal for hydrocarbons apparently sourced from restricted basin shales and trapped in rapidly deposited clastics.

  17. Intricate Puzzle of Oil and Gas Reserves Growth

    Reports and Publications

    1997-01-01

    This article begins with a background discussion of the methods used to estimate proved oil and gas reserves and ultimate recovery, which is followed by a discussion of the factors that affect the ultimate recovery estimates of a field or reservoir.

  18. Chemically assisted in situ recovery of oil shale

    SciTech Connect

    Ramierz, W.F.

    1993-12-31

    The purpose of the research project was to investigate the feasibility of the chemically assisted in situ retort method for recovering shale oil from Colorado oil shale. The chemically assisted in situ procedure uses hydrogen chloride (HCl), steam (H{sub 2}O), and carbon dioxide (CO{sub 2}) at moderate pressure to recovery shale oil from Colorado oil shale at temperatures substantially lower than those required for the thermal decomposition of kerogen. The process had been previously examined under static, reaction-equilibrium conditions, and had been shown to achieve significant shale oil recoveries from powdered oil shale. The purpose of this research project was to determine if these results were applicable to a dynamic experiment, and achieve penetration into and recovery of shale oil from solid oil shale. Much was learned about how to perform these experiments. Corrosion, chemical stability, and temperature stability problems were discovered and overcome. Engineering and design problems were discovered and overcome. High recovery (90% of estimated Fischer Assay) was observed in one experiment. Significant recovery (30% of estimated Fischer Assay) was also observed in another experiment. Minor amounts of freed organics were observed in two more experiments. Penetration and breakthrough of solid cores was observed in six experiments.

  19. Anomalously high yields from high clay oil sand deposits - The KpX process

    SciTech Connect

    Keane, J.

    1995-12-31

    Using a new process, an excess oil yield was recovered from the Cold Lake, Alberta oil sands deposits far above what was expected. The yield was 12.5% instead of the expected 6.9% per the Dean-Stark analysis by AOSTRA. The mass balance that was performed for the new process is the subject of this paper. The effect is to multiply the recoverable oil value by 1.81 and thus improve the economics of Alberta`s oil sands reserves. The process has been shown to recover all of the solvents used in the extraction step plus the so called {open_quotes}insoluble hydrocarbons,{close_quotes} which are bound to the clay and are not normally found by Dean-Stark analysis. This result is in line with previous results from multiple samples of oil-soaked bentonite from California, but is not consistent with Athabasca sand analyses nor actual production recoveries when using Dean-Stark for analysis or hot water extraction. The membrane-like-material (MLM) process, as presented at the 1991 UNITAR Conference, has now been modified to eliminate halogens and the resulting performance has been greatly enhanced for operation on oil sands with fine clays. The extraction method uses a non-permeable liquid membrane acting to substitute oil for water at the molecular interface between the substrate and the oil layer. This process uses no heat other than solvent recovery, which would be done during the upgrade step. The solvent system uses only a small amount of p-xylene to form the MLM, with an MLM forming compound extract of bitumen from a source in China. This source of the bitumen extract seems to provide superior performance in the extraction process as compared with Athabasca bitumen as the source. The clay fines settle rapidly from the process water with further treatment using direct nucleate flotation, a second non-permeable liquid membrane made as an aqueous system allows the process water to be recycled, thus greatly reducing the need for tailings ponds.

  20. Shale oil dearsenation process

    SciTech Connect

    Brickman, F.E.; Degnan, T.F.; Weiss, C.S.

    1984-10-29

    This invention relates to processing shale oil and in particular to processing shale oil to reduce the arsenic content. Specifically, the invention relates to treating shale oil by a combination of processes - coking and water washing. Many shale oils produced by conventional retorting processes contain inorganic materials, such as arsenic, which interfere with subsequent refining or catalytic hydroprocessing operations. Examples of these hydroprocessing operations are hydrogenation, denitrogenation, and desulfurization. From an environmental standpoint, removal of such contaminants may be desirable even if the shale oil is to be used directly as a fuel. Hence, it is desirable that contaminants such as arsenic be removed, or reduced to low levels, prior to further processing of the shale oil or prior to its use as a fuel.

  1. Residential heating oil price

    Energy Information Administration (EIA) (indexed site)

    heating oil price decreases The average retail price for home heating oil fell 7.6 cents from a week ago to $2.97 per gallon. That's down $1.05 from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $2.94 per gallon, down 6.7 cents from last week, and down $1.07

  2. Residential heating oil price

    Energy Information Administration (EIA) (indexed site)

    heating oil price decreases The average retail price for home heating oil fell 6.3 cents from a week ago to $2.91 per gallon. That's down $1.10 from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $2.88 per gallon, down 6.8 cents from last week, and down $1.13

  3. Residential heating oil price

    Energy Information Administration (EIA) (indexed site)

    heating oil price decreases The average retail price for home heating oil fell 7.5 cents from a week ago to $2.84 per gallon. That's down $1.22 from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $2.80 per gallon, down 7.4 cents from last week, and down $1.23

  4. Residential heating oil price

    Energy Information Administration (EIA) (indexed site)

    heating oil price decreases The average retail price for home heating oil fell 4.1 cents from a week ago to $2.89 per gallon, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $2.84 per gallon, down 5.4 cents from last week

  5. Residential heating oil price

    Energy Information Administration (EIA) (indexed site)

    heating oil price decreases The average retail price for home heating oil fell 3.6 cents from a week ago to $3.04 per gallon. That's down 99.4 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $3.01 per gallon, down 3.6 cents from last week, and down $1.01

  6. Vegetable oil fuel

    SciTech Connect

    Bartholomew, D.

    1981-04-01

    In this article, the future role of renewable agricultural resources in providing fuel is discussed. it was only during this century that U.S. farmers began to use petroleum as a fuel for tractors as opposed to forage crop as fuel for work animals. Now farmers may again turn to crops as fuel for agricultural production - the possible use of sunflower oil, soybean oil and rapeseed oil as substitutes for diesel fuel is discussed.

  7. Oil & Gas Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Oil & Gas Research Unconventional Resources NETL's onsite research in unconventional resources is focused on developing the data and modeling tools needed to predict and quantify ...

  8. Crude Oil Prices

    Energy Information Administration (EIA) (indexed site)

    Information AdministrationPetroleum Marketing Annual 2001 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

  9. Crude Oil Prices

    Energy Information Administration (EIA) (indexed site)

    Information AdministrationPetroleum Marketing Annual 1998 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

  10. Crude Oil Prices

    Energy Information Administration (EIA) (indexed site)

    Information AdministrationPetroleum Marketing Annual 1999 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

  11. Upgrading heavy gas oils

    SciTech Connect

    Ferguson, S.; Reese, D.D.

    1986-05-20

    A method is described of neutralizing the organic acidity in heavy gas oils to produce a neutralization number less than 1.0 whereby they are rendered suitable as lube oil feed stocks which consists essentially of treating the heavy gas oils with a neutralizing amount of monoethanolamine to form an amine salt with the organic acids and then heating the thus-neutralized heavy gas oil at a temperature at least about 25/sup 0/F greater than the boiling point of water and for a time sufficient to convert the amine salts to amides.

  12. Mapping and Assessment of the United States Ocean Wave Energy Resource

    SciTech Connect

    Hagerman, G.; Scott, G.

    2011-12-01

    This project estimates the naturally available and technically recoverable U.S. wave energy resources.

  13. Spreading of oil spilled under ice

    SciTech Connect

    Yapa, P.D.; Chowdhury, T. )

    1990-12-01

    A new set of equations is presented to describe the process of oil spreading under ice in clam waters. These equations consider the gravity (buoyancy)-inertia phase, the gravity (buoyancy)-viscous phase, and the termination of spreading during the buoyancy-surface-tension phase. The derivation considers both the constant discharge mode and the constant volume mode. Therefore, a complete description of the spreading phenomena from the time of initial spill to the termination of spreading is presented. Laboratory experiments were conducted using both real ice covers in a cold room and artificial ice covers. The experiments included different ice-cover roughnesses from smooth to rough, oils of different viscosities, and a variety of discharge conditions. The experimental data show close agreement with the theory. These equations can be used during cleanup or environmental impact assessment to estimate the area of an oil slick with respect to time.

  14. Oil Shale and Oil Sands Development Robert Keiter; John Ruple...

    Office of Scientific and Technical Information (OSTI)

    Conjunctive Surface and Groundwater Management in Utah: Implications for Oil Shale and Oil Sands Development Robert Keiter; John Ruple; Heather Tanana; Rebecca Holt 29 ENERGY...

  15. Oil shale technology

    SciTech Connect

    Lee, S. (Akron Univ., OH (United States). Dept. of Chemical Engineering)

    1991-01-01

    Oil shale is undoubtedly an excellent energy source that has great abundance and world-wide distribution. Oil shale industries have seen ups and downs over more than 100 years, depending on the availability and price of conventional petroleum crudes. Market forces as well as environmental factors will greatly affect the interest in development of oil shale. Besides competing with conventional crude oil and natural gas, shale oil will have to compete favorably with coal-derived fuels for similar markets. Crude shale oil is obtained from oil shale by a relatively simple process called retorting. However, the process economics are greatly affected by the thermal efficiencies, the richness of shale, the mass transfer effectiveness, the conversion efficiency, the design of retort, the environmental post-treatment, etc. A great many process ideas and patents related to the oil shale pyrolysis have been developed; however, relatively few field and engineering data have been published. Due to the vast heterogeneity of oil shale and to the complexities of physicochemical process mechanisms, scientific or technological generalization of oil shale retorting is difficult to achieve. Dwindling supplied of worldwide petroleum reserves, as well as the unprecedented appetite of mankind for clean liquid fuel, has made the public concern for future energy market grow rapidly. the clean coal technology and the alternate fuel technology are currently of great significance not only to policy makers, but also to process and chemical researchers. In this book, efforts have been made to make a comprehensive text for the science and technology of oil shale utilization. Therefore, subjects dealing with the terminological definitions, geology and petrology, chemistry, characterization, process engineering, mathematical modeling, chemical reaction engineering, experimental methods, and statistical experimental design, etc. are covered in detail.

  16. Future oil and gas potential in southern Caspian basin

    SciTech Connect

    O'Connor, R.B. Jr.; Castle, R.A.; Nelson, D.R. )

    1993-05-03

    Turkmenistan is the most southerly C.I.S. Republic and lies on the southeastern border of the Caspian Sea. On January 23, 1993 an important bidding round was held for producing and shut-in oil and gas fields in the western part of the country. Nine international companies registered for the round, and winning bids were submitted on three of four blocks. A bid on block 1, the only block not to be awarded, was rejected as being insufficient. The purpose of this article and another planned for later this year is to present background information on the huge oil and gas potential of western Turkmenistan and to put the recent bidding round into perspective. The current official estimate of remaining reserves on the blocks just tendered is 2.7 billion bbl of oil equivalent, roughly half of which is oil. The authors believe this to be a very conservative estimate as they shall attempt to demonstrate.

  17. Stochastic Energy Deployment System (SEDS) World Oil Model (WOM)

    SciTech Connect

    2009-08-07

    The function of the World Oil Market Model (WOMM) is to calculate a world oil price. SEDS will set start and end dates for the forecast period, and a time increment (assumed to be 1 year in the initial version). The WOMM will then randomly select an Annual Energy Outlook (AEO) oil price case and calibrate itself to that case. As it steps through each year, the WOMM will generate a stochastic supply shock to OPEC output and accept a new estimate of U.S. petroleum demand from SEDS. The WOMM will then calculate a new oil market equilibrium for the current year. The world oil price at the new equilibrium will be sent back to SEDS. When the end year is reached, the process will begin again with the selection of a new AEO forecast. Iterations over forecasts will continue until SEDS has completed all its simulation runs.

  18. Stochastic Energy Deployment System (SEDS) World Oil Model (WOM)

    Energy Science and Technology Software Center

    2009-08-07

    The function of the World Oil Market Model (WOMM) is to calculate a world oil price. SEDS will set start and end dates for the forecast period, and a time increment (assumed to be 1 year in the initial version). The WOMM will then randomly select an Annual Energy Outlook (AEO) oil price case and calibrate itself to that case. As it steps through each year, the WOMM will generate a stochastic supply shock tomore » OPEC output and accept a new estimate of U.S. petroleum demand from SEDS. The WOMM will then calculate a new oil market equilibrium for the current year. The world oil price at the new equilibrium will be sent back to SEDS. When the end year is reached, the process will begin again with the selection of a new AEO forecast. Iterations over forecasts will continue until SEDS has completed all its simulation runs.« less

  19. Balancing oil and environment... responsibly.

    SciTech Connect

    Weimer, Walter C.; Teske, Lisa

    2007-01-25

    Balancing Oil and Environment…Responsibly As the price of oil continues to skyrocket and global oil production nears the brink, pursuing unconventional oil supplies, such as oil shale, oil sands, heavy oils, and oils from biomass and coal has become increasingly attractive. Of particular significance to the American way is that our continent has significant quantities of these resources. Tapping into these new resources, however, requires cutting-edge technologies for identification, production, processing and environmental management. This job needs a super hero or two for a job of this size and proportion…

  20. oil and gas portfolio reports

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Natural Gas & Oil Program Research Portfolio Reports The Office of Fossil Energy (FE)... focus areas: Unconventional Oil & Gas Resources; Ultra-Deepwater; and Small Producers. ...

  1. Oil pollution in Shijiu Harbor studied

    SciTech Connect

    Miao Lutian

    1983-11-09

    This article describes an experimental model designed to forecast oil pollution in the newly constructed Shijiu Harbor, using a mixture of 30% used machine oil and 70% light diesel, in amounts of 200 kg per test. Plastic bags filled with the mixture are slit open and cast into the water generally along the axis of the major ocean current. Small boats are used to collect water specimens to trace the experimental pollutant. The density distribution and the horizontal diffusion coefficient are calculated to produce equations to study effects of the surface wind speed, the depth of the water, and the tidal waves on the oil drift. Each test is completed in about 2 hours. On the basis of statistical data of large Chinese harbors published by the ministry and related reports of foreign countries, the mean annual oil pollution load of Shijiu Harbor is computed in terms of the total estimated tonnage of cargo ships, tugboats, oil tankers, and fishing boats. The forecast model, the equations, and the computation processes are described in some detail.

  2. Oil Refund Decisions

    Office of Energy Efficiency and Renewable Energy (EERE)

    During the period 1973 through 1981, the Federal government imposed price and allocation controls of crude oil and refined petroleum products, such as gasoline and heating oil. During that period and for many years afterwards, the DOE had an enforcement program. When a firm was found to have overcharged, the DOE generally required the firm to make refunds to its customers.

  3. Vegetable oil as fuel

    SciTech Connect

    Not Available

    1980-11-01

    A review is presented of various experiments undertaken over the past few years in the U.S. to test the performance of vegetable oils in diesel engines, mainly with a view to on-farm energy self-sufficiency. The USDA Northern Regional Research Center in Peoria, Illinois, is screening native U.S. plant species as potential fuel oil sources.

  4. GEOGRAPHIC INFORMATION SYSTEM APPROACH FOR PLAY PORTFOLIOS TO IMPROVE OIL PRODUCTION IN THE ILLINOIS BASIN

    SciTech Connect

    Beverly Seyler; John Grube

    2004-12-10

    Oil and gas have been commercially produced in Illinois for over 100 years. Existing commercial production is from more than fifty-two named pay horizons in Paleozoic rocks ranging in age from Middle Ordovician to Pennsylvanian. Over 3.2 billion barrels of oil have been produced. Recent calculations indicate that remaining mobile resources in the Illinois Basin may be on the order of several billion barrels. Thus, large quantities of oil, potentially recoverable using current technology, remain in Illinois oil fields despite a century of development. Many opportunities for increased production may have been missed due to complex development histories, multiple stacked pays, and commingled production which makes thorough exploitation of pays and the application of secondary or improved/enhanced recovery strategies difficult. Access to data, and the techniques required to evaluate and manage large amounts of diverse data are major barriers to increased production of critical reserves in the Illinois Basin. These constraints are being alleviated by the development of a database access system using a Geographic Information System (GIS) approach for evaluation and identification of underdeveloped pays. The Illinois State Geological Survey has developed a methodology that is being used by industry to identify underdeveloped areas (UDAs) in and around petroleum reservoirs in Illinois using a GIS approach. This project utilizes a statewide oil and gas Oracle{reg_sign} database to develop a series of Oil and Gas Base Maps with well location symbols that are color-coded by producing horizon. Producing horizons are displayed as layers and can be selected as separate or combined layers that can be turned on and off. Map views can be customized to serve individual needs and page size maps can be printed. A core analysis database with over 168,000 entries has been compiled and assimilated into the ISGS Enterprise Oracle database. Maps of wells with core data have been generated

  5. U.S. monthly oil production tops 8 million barrels per day for the first time since 1988

    Energy Information Administration (EIA) (indexed site)

    oil production tops 8 million barrels per day for the first time since 1988 Estimated U.S. crude oil production in November topped 8 million barrels per day for the first time in 25 years, according to the new monthly energy forecast from the U.S. Energy Information Administration. Rising oil output from tight oil formations in North Dakota and Texas are playing a key role, with annual U.S. oil production expected to increase to an average of 8.5 million barrels per day next year. More oil

  6. Corrosivity Of Pyrolysis Oils

    SciTech Connect

    Keiser, James R; Bestor, Michael A; Lewis Sr, Samuel Arthur; Storey, John Morse

    2011-01-01

    Pyrolysis oils from several sources have been analyzed and used in corrosion studies which have consisted of exposing corrosion coupons and stress corrosion cracking U-bend samples. The chemical analyses have identified the carboxylic acid compounds as well as the other organic components which are primarily aromatic hydrocarbons. The corrosion studies have shown that raw pyrolysis oil is very corrosive to carbon steel and other alloys with relatively low chromium content. Stress corrosion cracking samples of carbon steel and several low alloy steels developed through-wall cracks after a few hundred hours of exposure at 50 C. Thermochemical processing of biomass can produce solid, liquid and/or gaseous products depending on the temperature and exposure time used for processing. The liquid product, known as pyrolysis oil or bio-oil, as produced contains a significant amount of oxygen, primarily as components of water, carboxylic acids, phenols, ketones and aldehydes. As a result of these constituents, these oils are generally quite acidic with a Total Acid Number (TAN) that can be around 100. Because of this acidity, bio-oil is reported to be corrosive to many common structural materials. Despite this corrosive nature, these oils have the potential to replace some imported petroleum. If the more acidic components can be removed from this bio-oil, it is expected that the oil could be blended with crude oil and then processed in existing petroleum refineries. The refinery products could be transported using customary routes - pipelines, barges, tanker trucks and rail cars - without a need for modification of existing hardware or construction of new infrastructure components - a feature not shared by ethanol.

  7. Final report on development and testing of the microwave oil-water monitor

    SciTech Connect

    Swanson, C.

    1991-06-15

    The oil-water monitor is a device invented by Dr. Claude Swanson of Applied Physics Technology to respond to the petroleum-loss problem in crude oil transfers. It is a device which measures water content in crude oil and other petroleum products, in a flowing pipe such as a pipeline or tanker manifold. It is capable of accurately measuring the water contamination levels in crude oil shipments, in real time as the crude oil flows through the loading manifold into the tanker, or at the receiving point as the oil is off-loaded. The oil-water monitor has application in the verification of oil volumes and concentration of contaminants at petroleum transfer points. The industry-estimated level of water loss at transfer points due to inadequate monitoring technology amounts to several billion dollars per year, so there is a definite perceived need within the petroleum community for this type of accurate water monitoring technology. News articles indicating the importance of this problem are shown. The microwave oil-water monitor measures the water content in the oil, whether in the form of small droplets or large globules. Therefore it can be applied to the crude oil as it flows through crude oil pipes into the ship, or at transfer points in a crude oil distribution system. 4 refs., 18 figs.

  8. Crude Oil plus Lease Condensate Estimated Production, Wet After Lease

    Energy Information Administration (EIA) (indexed site)

    Separation 1,929 1,991 2,065 2,386 2,729 3,200 2009-2014 Federal Offshore U.S. 599 590 504 474 489 547 2009-2014 Pacific (California) 22 19 22 15 20 20 2009-2014 Gulf of Mexico (Louisiana & Alabama) 522 518 432 387 398 449 2009-2014 Gulf of Mexico (Texas) 55 53 50 72 71 78 2009-2014 Alaska 210 195 206 191 186 182 2009-2014 Lower 48 States 1,719 1,796 1,859 2,195 2,543 3,018 2009-2014 Alabama 7 7 8 10 10 9 2009-2014 Arkansas 6 5 6 6 4 6 2009-2014 California 208 198 196 198 199 203

  9. China shows increasing interest in heavy oil and oil sands

    SciTech Connect

    Not Available

    1986-12-01

    China and Canadian and US groups are cooperating in several areas to develop the heavy oil, asphalt, and oil sand deposits of China. The agreements dealing with exploration and upgrading are briefly described. The majority of the paper describes the occurrences of heavy oil, asphalt, and oil sands in China. 1 figure.

  10. U.S. oil dependence 2014: Is energy independence in sight?

    SciTech Connect

    Greene, David L.; Liu, Changzheng

    2015-06-10

    The importance of reducing U.S. oil dependence may have changed in light of developments in the world oil market over the past two decades. Since 2005, increased domestic production and decreased oil use have cut U.S. import dependence in half. The direct costs of oil dependence to the U.S. economy are estimated under four U.S. Energy Information Administration Scenarios to 2040. The key premises of the analysis are that the primary oil market failure is the use of market power by OPEC and that U.S. economic vulnerability is a result of the quantity of oil consumed, the lack of readily available, economical substitutes and the quantity of oil imported. Monte Carlo simulations of future oil market conditions indicate that the costs of U.S. oil dependence are likely to increase in constant dollars but decrease relative to U.S. gross domestic product unless oil resources are larger than estimated by the U.S. Energy Information Administration. In conclusion, reducing oil dependence therefore remains a valuable goal for U.S. energy policy and an important co-benefit of mitigating greenhouse gas emissions.

  11. U.S. oil dependence 2014: Is energy independence in sight?

    DOE PAGES [OSTI]

    Greene, David L.; Liu, Changzheng

    2015-06-10

    The importance of reducing U.S. oil dependence may have changed in light of developments in the world oil market over the past two decades. Since 2005, increased domestic production and decreased oil use have cut U.S. import dependence in half. The direct costs of oil dependence to the U.S. economy are estimated under four U.S. Energy Information Administration Scenarios to 2040. The key premises of the analysis are that the primary oil market failure is the use of market power by OPEC and that U.S. economic vulnerability is a result of the quantity of oil consumed, the lack of readilymore » available, economical substitutes and the quantity of oil imported. Monte Carlo simulations of future oil market conditions indicate that the costs of U.S. oil dependence are likely to increase in constant dollars but decrease relative to U.S. gross domestic product unless oil resources are larger than estimated by the U.S. Energy Information Administration. In conclusion, reducing oil dependence therefore remains a valuable goal for U.S. energy policy and an important co-benefit of mitigating greenhouse gas emissions.« less

  12. Primary oil-shale resources of the Green River Formation in the eastern Uinta Basin, Utah

    SciTech Connect

    Trudell, L.G.; Smith, J.W.; Beard, T.N.; Mason, G.M.

    1983-04-01

    Resources of potential oil in place in the Green River Formation are measured and estimated for the primary oil-shale resource area east of the Green River in Utah's Uinta Basin. The area evaluated (Ts 7-14 S, Rs 19-25 E) includes most of, and certainly the best of Utah's oil-shale resource. For resource evaluation the principal oil-shale section is divided into ten stratigraphic units which are equivalent to units previously evaluated in the Piceance Creek Basin of Colorado. Detailed evaluation of individual oil-shale units sampled by cores, plus estimates by extrapolation into uncored areas indicate a total resource of 214 billion barrels of shale oil in place in the eastern Uinta Basin.

  13. Crude oil resource appraisal in the United States

    SciTech Connect

    Uri, N.D.

    1980-07-01

    Past experience supported an optimistic view of US oil resources prior to the Arab embargo of 1973, although some were aware that exploration and production were declining. An approach to estimating producible reserves, combining the engineering and econometric techniques, uses geologic estimates and a structural model to project when production will peak, the quantity that will be produced, and the time distribution of production. The results indicate that aggregate production will increase with the real price of oil. At $45 per barrel, 20 to 30 billion more barrels will be produced. 18 references. (DCK)

  14. Oil shale research in China

    SciTech Connect

    Jianqiu, W.; Jialin, Q. (Beijing Graduate School, Petroleum Univ., Beijing (CN))

    1989-01-01

    There have been continued efforts and new emergence in oil shale research in Chine since 1980. In this paper, the studies carried out in universities, academic, research and industrial laboratories in recent years are summarized. The research areas cover the chemical structure of kerogen; thermal behavior of oil shale; drying, pyrolysis and combustion of oil shale; shale oil upgrading; chemical utilization of oil shale; retorting waste water treatment and economic assessment.

  15. Crude Oil Prices

    Energy Information Administration (EIA) (indexed site)

    20.86 20.67 20.47 20.24 20.32 19.57 See footnotes at end of table. 21. Domestic Crude Oil First Purchase Prices Energy Information Administration Petroleum Marketing Annual...

  16. Oil & Natural Gas Technology

    Office of Scientific and Technical Information (OSTI)

    IN SITU THERMAL PROCESSING OF OIL SHALESANDS Authors: Michal Hradisky and Philip J. Smith DOE Award No.: DE-FE0001243 Reporting Period: October 1, 2009 - September 30, 2011 ...

  17. Hydroprocessing hydrocarbon oils

    SciTech Connect

    Simpson, H.D.; Borgens, P.B.

    1990-07-10

    This patent describes a catalytic hydroprocess of a hydrocarbon oil containing nitrogen or sulfur. It comprises: contacting a catalytic composition with the hydrocarbon oil under hydroprocessing conditions so as to produce a product hydrocarbon oil containing less nitrogen or sulfur than the hydrocarbon oil, the catalytic composition prepared by the method comprising the steps of impregnating porous refractory support particles with an aqueous impregnating solution comprising one or more Group VIB metal components, one or more phosphorus components and citric acid, the citric acid in a mole ratio to the Group VIB metal components calculated as the Group VIB metal trioxide of less than 1 to 1. The solution has a pH less than 1.0 and calcining the impregnated support particles to produce a catalytic composition containing a Group VIB metal component and a phosphorous component on the porous refractory oxide support.

  18. Oil Market Assessment

    Reports and Publications

    2001-01-01

    Based on Energy Information Administration (EIA) contacts and trade press reports, overall U.S. and global oil supplies appear to have been minimally impacted by yesterday's terrorist attacks on the World Trade Center and the Pentagon.

  19. enhanced_oil_current_proj | netl.doe.gov

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Enhanced Oil Recovery and Other Oil Resources Enhanced Oil Recovery and Other Oil Resources CO2 EOR | Other EOR & Oil Resources | Environmental | Completed Project Number Project ...

  20. Oil & Gas Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Oil & Gas Research Unconventional Resources NETL's onsite research in unconventional resources is focused on developing the data and modeling tools needed to predict and quantify potential risks associated with oil and gas resources in shale reservoirs that require hydraulic fracturing or other engineering measures to produce. Fugitive Emissions | Produced Water Management | Subsurface Fluid & Gas Migration | Induced Seismicity Offshore Resources Building the scientific understanding and

  1. Process for preparing lubricating oil from used waste lubricating oil

    DOEpatents

    Whisman, Marvin L.; Reynolds, James W.; Goetzinger, John W.; Cotton, Faye O.

    1978-01-01

    A re-refining process is described by which high-quality finished lubricating oils are prepared from used waste lubricating and crankcase oils. The used oils are stripped of water and low-boiling contaminants by vacuum distillation and then dissolved in a solvent of 1-butanol, 2-propanol and methylethyl ketone, which precipitates a sludge containing most of the solid and liquid contaminants, unspent additives, and oxidation products present in the used oil. After separating the purified oil-solvent mixture from the sludge and recovering the solvent for recycling, the purified oil is preferably fractional vacuum-distilled, forming lubricating oil distillate fractions which are then decolorized and deodorized to prepare blending stocks. The blending stocks are blended to obtain a lubricating oil base of appropriate viscosity before being mixed with an appropriate additive package to form the finished lubricating oil product.

  2. Oil/gas collector/separator for underwater oil leaks

    DOEpatents

    Henning, Carl D.

    1993-01-01

    An oil/gas collector/separator for recovery of oil leaking, for example, from an offshore or underwater oil well. The separator is floated over the point of the leak and tethered in place so as to receive oil/gas floating, or forced under pressure, toward the water surface from either a broken or leaking oil well casing, line, or sunken ship. The separator is provided with a downwardly extending skirt to contain the oil/gas which floats or is forced upward into a dome wherein the gas is separated from the oil/water, with the gas being flared (burned) at the top of the dome, and the oil is separated from water and pumped to a point of use. Since the density of oil is less than that of water it can be easily separated from any water entering the dome.

  3. $100 billion mistake: is the windfall revenue estimate too high

    SciTech Connect

    Samuelson, R.J.

    1980-04-26

    An economic analysis of the Windfall Profits Tax (as proposed at the time) suggests that the estimate of a $227 billion revenue over the next decade may be as much as $100 billion too high. This judgment is based on provisions in the law allowing states to deduct severance taxes up to 15 percent on oil before federal taxes are paid and offering tax incentives for tertiary projects. The arithmetic, particularly in the case of enhanced oil recovery, illustrates how the incentives could shift more production from a 70% to a 30% tax rate than the Federal government had estimated. (DCK)

  4. Finding Hidden Oil and Gas Reserves

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Finding Hidden Oil and Gas Reserves Finding Hidden Oil and Gas Reserves Key Challenges: Seismic imaging methods, vital in our continuing search for deep offshore oil and gas...

  5. Microsoft Word - Heating Oil Season.docx

    Energy.gov [DOE] (indexed site)

    4-2015 Heating Oil Season Northeast Home Heating Oil Reserve Trigger Mechanism (Cents per Gallon, Except Where Noted) Week Residential Heating Oil Price Average Brent Spot Price ...

  6. Deepwater Oil & Gas Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Deepwater Oil & Gas Resources Deepwater Oil & Gas Resources The United States has significant natural gas and oil reserves. But many of these resources are increasingly harder to...

  7. Deepwater Oil & Gas Resources | Department of Energy

    Office of Environmental Management (EM)

    Deepwater Oil & Gas Resources Deepwater Oil & Gas Resources The United States has significant natural gas and oil reserves. But many of these resources are increasingly harder to ...

  8. Heating Oil Reserve History | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Heating Oil Reserve History Heating Oil Reserve History Creation of an emergency reserve of heating oil was directed by President Clinton on July 10, 2000, when he directed ...

  9. United Oil Company | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Oil Company Jump to: navigation, search Name: United Oil Company Place: Pittsburgh, Pennsylvania Product: Vegetable-Oil producer Biodiesel producer based in Pittsburgh, PA...

  10. Oil shale mining studies and analyses of some potential unconventional uses for oil shale

    SciTech Connect

    McCarthy, H.E.; Clayson, R.L.

    1989-07-01

    Engineering studies and literature review performed under this contract have resulted in improved understanding of oil shale mining costs, spent shale disposal costs, and potential unconventional uses for oil shale. Topics discussed include: costs of conventional mining of oil shale; a mining scenario in which a minimal-scale mine, consistent with a niche market industry, was incorporated into a mine design; a discussion on the benefits of mine opening on an accelerated schedule and quantified through discounted cash flow return on investment (DCFROI) modelling; an estimate of the costs of disposal of spent shale underground and on the surface; tabulation of potential increases in resource recovery in conjunction with underground spent shale disposal; the potential uses of oil shale as a sulfur absorbent in electric power generation; the possible use of spent shale as a soil stabilizer for road bases, quantified and evaluated for potential economic impact upon representative oil shale projects; and the feasibility of co-production of electricity and the effect of project-owned and utility-owned power generation facilities were evaluated. 24 refs., 5 figs., 19 tabs.

  11. Oil shale ash-layer thickness and char combustion kinetics

    SciTech Connect

    Aldis, D.F.; Singleton, M.F.; Watkins, B.E.; Thorsness, C.B.; Cena, R.J.

    1992-04-15

    A Hot-Recycled-Solids (HRS) oil shale retort is being studied at Lawrence Livermore National Laboratory. In the HRS process, raw shale is heated by mixing it with burnt retorted shale. Retorted shale is oil shale which has been heated in an oxygen deficient atmosphere to pyrolyze organic carbon, as kerogen into oil, gas, and a nonvolatile carbon rich residue, char. In the HRS retort process, the char in the spent shale is subsequently exposed to an oxygen environment. Some of the char, starting on the outer surface of the shale particle, is burned, liberating heat. In the HRS retort, the endothermic pyrolysis step is supported by heat from the exothermic char combustion step. The rate of char combustion is controlled by three resistances; the resistance of oxygen mass transfer through the gas film surrounding the solid particle, resistance to mass transfer through a ash layer which forms on the outside of the solid particles as the char is oxidized and the resistance due to the intrinsic chemical reaction rate of char and oxygen. In order to estimate the rate of combustion of the char in a typical oil shale particle, each of these resistances must be accurately estimated. We begin by modeling the influence of ash layer thickness on the over all combustion rate of oil shale char. We then present our experimental measurements of the ash layer thickness of oil shale which has been processed in the HRS retort.

  12. State Energy Production Estimates

    Annual Energy Outlook

    Production Estimates 1960 Through 2014 2014 Summary Tables U.S. Energy Information Administration | State Energy Data 2014: Production 1 Table P1. Energy Production Estimates in ...

  13. Super-giant oil fields and future prospects in the Middle East

    SciTech Connect

    Christian, L.; Johnston, D.

    1995-06-01

    Upper Jurassic carbonates, Lower Cretaceous sands, Lower Cretaceous carbonates and Tertiary carbonates of the Middle East contain more than 50% of the worlds oil. Our area of interest covers SE Turkey and Syria in the north to the borders of Yemen and Oman in the south, and from the Red Sea across Saudi Arabia, the Emirates and the Arabian/Persian Gulf to Iran in the East. There are over 80 fields in this region with over 1 billion barrels of recoverable reserves. Yet only around 30,000 wells have been drilled in this territory. Regional structure and stratigraphy are discussed within the context of three major plays in the region as well as a new play in the Permo-Carboniferous. Numerous opportunities are available and countries such as Iraq and Iran may one day open their doors more to the industry than is presently the case. The dramatic petroleum geology of the region will stamp its influence on the nature of business and opportunities for years to come. While fiscal systems here already offer some of the toughest terms in the world, future deals in the more prolific areas will be even tougher. But, the economies of Middle Eastern scale will provide some of the great mega-opportunities of future international exploration.

  14. STEO December 2012 - oil production

    Energy Information Administration (EIA) (indexed site)

    Rise in 2012 U.S. oil production largest since 1859, output in 2013 seen topping 7 million bpd U.S. crude oil production is now expected to rise by about 760,000 barrels per day in 2012, the biggest annual increase in oil output since U.S. commercial crude oil production began in 1859. American oil producers are expected to pump a daily average of 6.4 million barrels of crude oil this year, according to the U.S. Energy Information Administrator's new monthly energy forecast. The annual increase

  15. Going Global: Tight Oil Production

    Gasoline and Diesel Fuel Update

    GOING GLOBAL: TIGHT OIL PRODUCTION Leaping out of North America and onto the World Stage JULY 2014 GOING GLOBAL: TIGHT OIL PRODUCTION Jamie Webster, Senior Director Global Oil Markets Jamie.webster@ihs.com 1 GOING GLOBAL: TIGHT OIL PRODUCTION Key Message: Tight Oil Will Have Unconventional Effects Tight Oil Production will change in the coming decades. It will be:  More global, as it leaps out of North America  More inclusive, as companies come to the US for experience and US companies go

  16. Williston basin oil exploration: Past, present, and future

    SciTech Connect

    Jennings, A.H.

    1991-06-01

    Past: In 1951, modern oil exploration came to the Williston basin with the discovery of Paleozoic oil on the large Nesson anticline. This was quickly followed by similar discoveries on Cedar Creek and Poplar anticlines. To the north, the Canadians, lacking large structures, concentrated on Paleozoic stratigraphic traps and were highly successful. US explorationists quickly followed, finding similar traps on the basin's northeastern flank and center. The 1960s saw multiple Devonian salt dissolution structures produce on the western flank. To the northwest, shallow Mississippian and deeper Ordovician pays were found on small structural closures. These later were combined with pays in the Devonian and Silurian to give multiple pay potential. In the basin center large buried structures, visible only to seismic, were located. The 1970s revealed an Ordovician subcrop trap on the southeast flank. Centrally, a Jurassic astrobleme with Mississippian oil caused a flurry of leasing and deep drilling. The 1982 collapse of oil prices essentially halted exploration. 1987 saw a revival when horizontal drilling for the Mississippian Bakken fractured shale promised viable economics. Present: Today, emphasis is on Bakken horizontal drilling in the deeper portion of the basin. Next in importance is shallow drilling such as on the northeastern flank. Future: An estimated on billion barrels of new oil awaits discovery in the Williston basin. Additional exploration in already established production trends will find some of this oil. Most of this oil, however, will almost certainly be found by following up the numerous geological leads hinted at by past drilling.

  17. Enhanced Microbial Pathways for Methane Production from Oil Shale

    SciTech Connect

    Paul Fallgren

    2009-02-15

    Methane from oil shale can potentially provide a significant contribution to natural gas industry, and it may be possible to increase and continue methane production by artificially enhancing methanogenic activity through the addition of various substrate and nutrient treatments. Western Research Institute in conjunction with Pick & Shovel Inc. and the U.S. Department of Energy conducted microcosm and scaled-up reactor studies to investigate the feasibility and optimization of biogenic methane production from oil shale. The microcosm study involving crushed oil shale showed the highest yield of methane was produced from oil shale pretreated with a basic solution and treated with nutrients. Incubation at 30 C, which is the estimated temperature in the subsurface where the oil shale originated, caused and increase in methane production. The methane production eventually decreased when pH of the system was above 9.00. In the scaled-up reactor study, pretreatment of the oil shale with a basic solution, nutrient enhancements, incubation at 30 C, and maintaining pH at circumneutral levels yielded the highest rate of biogenic methane production. From this study, the annual biogenic methane production rate was determined to be as high as 6042 cu. ft/ton oil shale.

  18. Navigation and vessel inspection circular No. 12-92. Guidelines for the classification and inspection of oil spill removal organizations (osros). Final report

    SciTech Connect

    1992-12-04

    The purpose of the circular is to facilitate the preparation and review of vessel and facility response plans by providing guidance on the classification of oil spill removal organizations. The guidelines propose a method of estimating the capacity of oil spill removal organizations to contain and remove oil from the water and shorelines.

  19. Abandoned Texas oil fields

    SciTech Connect

    Not Available

    1980-12-01

    Data for Texas abandoned oil fields were primarily derived from two sources: (1) Texas Railroad Commission (TRRC), and (2) Dwight's ENERGYDATA. For purposes of this report, abandoned oil fields are defined as those fields that had no production during 1977. The TRRC OILMASTER computer tapes were used to identify these abandoned oil fields. The tapes also provided data on formation depth, gravity of oil production, location (both district and county), discovery date, and the cumulative production of the field since its discovery. In all, the computer tapes identified 9211 abandoned fields, most of which had less than 250,000 barrel cumulative production. This report focuses on the 676 abandoned onshore Texas oil fields that had cumulative production of over 250,000 barrels. The Dwight's ENERGYDATA computer tapes provided production histories for approximately two-thirds of the larger fields abandoned in 1966 and thereafter. Fields which ceased production prior to 1966 will show no production history nor abandonment date in this report. The Department of Energy hopes the general availability of these data will catalyze the private sector recovery of this unproduced resource.

  20. Enhanced Oil Recovery to Fuel Future Oil Demands | GE Global...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Enhanced Oil Recovery to Fuel Future Oil Demands Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) ...

  1. International Oil and Gas Board International Oil and Gas Board...

    OpenEI (Open Energy Information) [EERE & EIA]

    Petroleum Company Syrian Petroleum Company Damascus Syria Syria http www spc sy com en production activities1 en php Yemen Ministry of Oil and Minerals Yemen Ministry of Oil and...

  2. Western states enhanced oil shale recovery program: Shale oil production facilities conceptual design studies report

    SciTech Connect

    Not Available

    1989-08-01

    This report analyzes the economics of producing syncrude from oil shale combining underground and surface processing using Occidental's Modified-In-Situ (MIS) technology and Lawrence Livermore National Laboratory's (LLNL) Hot Recycled Solids (HRS) retort. These retorts form the basic technology employed for oil extraction from oil shale in this study. Results are presented for both Commercial and Pre-commercial programs. Also analyzed are Pre-commercialization cost of Demonstration and Pilot programs which will confirm the HRS and MIS concepts and their mechanical designs. These programs will provide experience with the circulating Fluidized Bed Combustor (CFBC), the MIS retort, the HRS retort and establish environmental control parameters. Four cases are considered: commercial size plant, demonstration size plant, demonstration size plant minimum CFBC, and a pilot size plant. Budget cost estimates and schedules are determined. Process flow schemes and basic heat and material balances are determined for the HRS system. Results consist of summaries of major equipment sizes, capital cost estimates, operating cost estimates and economic analyses. 35 figs., 35 tabs.

  3. History of western oil shale

    SciTech Connect

    Russell, P.L.

    1980-01-01

    The history of oil shale in the United States since the early 1900's is detailed. Research on western oil shale probably began with the work of Robert Catlin in 1915. During the next 15 years there was considerable interest in the oil shales, and oil shale claims were located, and a few recovery plants were erected in Colorado, Nevada, Utah, Wyoming, and Montana. Little shale soil was produced, however, and the major oil companies showed little interest in producing shale oil. The early boom in shale oil saw less than 15 plants produce a total of less than 15,000 barrels of shale oil, all but about 500 barrels of which was produced by the Catlin Operation in Nevada and by the US Bureau of Mines Rulison, Colorado operation. Between 1930 and 1944 plentiful petroleum supplies at reasonable prices prevent any significant interest in shale oil, but oil shortages during World War II caused a resurgence of interest in oil shale. Between 1940 and 1969, the first large-scale mining and retorting operations in soil shale, and the first attempts at true in situ recovery of shale oil began. Only 75,000 barrels of shale oil were produced, but major advancements were made in developing mine designs and technology, and in retort design and technology. The oil embargo of 1973 together with a new offering of oil shale leases by the Government in 1974 resulted in the most concentrated efforts for shale oil production to date. These efforts and the future prospects for shale oil as an energy source in the US are discussed.

  4. Completed Enhanced Oil Recovery and Other Oil Resoureces Projects

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Completed Enhanced Oil Recovery and Other Oil Resoureces Projects Active | Completed Projects Completed Enhanced Oil Recovery and Other Oil Resources Projects Project Number Project Name Primary Performer 10122-39 Novel Engineered Osmosis Technology: A Comprehensive Approach to the Treatment and Reuse of Produced Water and Drilling Wastewater Colorado School of Mines 11123-03 Cost-Effective Treatment of Produced Water Using Co-Produced Energy Sources - Phase II: Field Scale Demo and

  5. Oil production history in Albania oil fields and their perspective

    SciTech Connect

    Marko, D.; Moci, A.

    1995-12-31

    In this paper we will make a general presentation for oil fields in Albania, actual state, and their perspective.

  6. Saturday effects in tanker oil spills

    SciTech Connect

    Goodstein, E. )

    1992-11-01

    This paper documents a [open quotes]Saturday effect[close quotes] in the timing of tanker oil spills -- certain types of spills happen much more frequently on this day than one would expect if the spills were uniformly distributed. The phenomenon is restricted to Europe and North America, and is associated with [open quotes]vessel guidance[close quotes] accidents -- groundings, collisions, and rammings. Eliminating the Saturday effect would reduce tanker oil spills by around 163,000 gallons per year. Several policy responses are considered, including a Saturday harbor tax. A lower bound for an efficient tax is estimated to be $780 for a 20 million gal cargo. 23 refs., 2 figs., 3 tabs.

  7. Cost Estimation Package

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    1997-03-28

    This chapter focuses on the components (or elements) of the cost estimation package and their documentation.

  8. US crude oil, natural gas, and natural gas liquids reserves

    SciTech Connect

    Not Available

    1990-10-05

    This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1989, and production volumes for the year 1989 for the total United States and for selected states and state sub-divisions. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), its two major components (nonassociated and associated-dissolved gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, two components of natural gas liquids, lease condensate and natural gas plant liquids, have their reserves and production reported separately. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. 28 refs., 9 figs., 15 tabs.

  9. Calculation of resistivity of irreducible water for reserves estimation

    SciTech Connect

    Krieger, F.W.; Eadington, P.J.; Lisk, M.

    1996-12-31

    A new fluid inclusion technique that allows determination of the resistivity of irreducible water trapped during oil accumulation has been developed. The technique is directly applicable to problems associated with the evaluation of oil accumulations which arise when the salinity and thus the resistivity of present day formation waters differ from those of the irreducible water trapped during oil accumulation. It is possible by measuring the ice melting temperature of samples of formation water trapped during creation of three phase, oil-water-vapour inclusions to calculate a salinity for the irreducible water and thus calculate a resistivity to be used in reserves calculations. Salinities of 71,000 to 85,000 parts per million have been measured on three phase inclusions in oil zone samples from the Papuan Foldbelt. Present day salinities in the Papuan Foldbelt are about 10,000-12,000 parts per million indicating that oil charge occurred before the present day hydrologic system was emplaced. Using salinity data from three phase inclusions results in resistivity values of about 0.05 ohm/m for irreducible water while present day formation waters have a resistivity of about 0.3 ohm/m at formation temperatures of 60{degrees}C. Using the water saturation calculated from three phase fluid inclusion salinity data compared with using the water saturation from present day formation water results in an estimated 25 % increase in reserves for oil fields studied in the Papuan Foldbelt.

  10. Calculation of resistivity of irreducible water for reserves estimation

    SciTech Connect

    Krieger, F.W.; Eadington, P.J.; Lisk, M. )

    1996-01-01

    A new fluid inclusion technique that allows determination of the resistivity of irreducible water trapped during oil accumulation has been developed. The technique is directly applicable to problems associated with the evaluation of oil accumulations which arise when the salinity and thus the resistivity of present day formation waters differ from those of the irreducible water trapped during oil accumulation. It is possible by measuring the ice melting temperature of samples of formation water trapped during creation of three phase, oil-water-vapour inclusions to calculate a salinity for the irreducible water and thus calculate a resistivity to be used in reserves calculations. Salinities of 71,000 to 85,000 parts per million have been measured on three phase inclusions in oil zone samples from the Papuan Foldbelt. Present day salinities in the Papuan Foldbelt are about 10,000-12,000 parts per million indicating that oil charge occurred before the present day hydrologic system was emplaced. Using salinity data from three phase inclusions results in resistivity values of about 0.05 ohm/m for irreducible water while present day formation waters have a resistivity of about 0.3 ohm/m at formation temperatures of 60[degrees]C. Using the water saturation calculated from three phase fluid inclusion salinity data compared with using the water saturation from present day formation water results in an estimated 25 % increase in reserves for oil fields studied in the Papuan Foldbelt.

  11. Heavy oil and coal conversion via the Aurabon process

    SciTech Connect

    Luebke, C.P.; Humbach, M.J.; Thompson, G.J.; Gatsis, J.G.

    1986-01-01

    Although time estimates vary, all forecasts point to a reduction in the availability of light crude oils. As the light crude supplies diminish, the role of resid upgrading in the refinery flow scheme must increase to allow the refinery the ability to convert heavier crudes into transportation fuels.

  12. Distributed Bio-Oil Reforming

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Distributed Bio-Oil Reforming R. Evans, S. Czernik, R. French, M. Ratcliff National ... GAS 7 BIOMASS BIO-OIL CHAR For reactor or export Gas recycle For fluidization or export ...

  13. Assessment of heavy oil conversion

    SciTech Connect

    Gleim, W.T.K.

    1983-08-01

    Removal of benzene insoluble asphaltene components greatly facilitates and improves the subsequent upgrading of residual oils, the desulfurization in particular. For the upgrading of Venezualean oils, the Aurobon process is still the only feasible solution.

  14. AEO Early Release 2013 - oil

    Energy Information Administration (EIA) (indexed site)

    Growing U.S. oil output and rising vehicle fuel economy to cut U.S. reliance on foreign oil The United States is expected to continue cutting its dependence on petroleum and liquid ...

  15. Oil and Gas

    Energy Saver

    RD&D Leases in the United States Oil Shale RD&D Leases in the United States This paper describes the original plans, progress and accomplishments, and future plans for nine oil shale research, development and demonstration (RD&D) projects on six existing RD&D leases awarded in 2006 and 2007 by the United States Department of the Interior, Bureau of Land Management (BLM) to Shell, Chevron, EGL (now AMSO), and OSEC (now Enefit American, respectively); as well as three pending

  16. Nineteenth oil shale symposium proceedings

    SciTech Connect

    Gary, J.H.

    1986-01-01

    This book contains 23 selections. Some of the titles are: Effects of maturation on hydrocarbon recoveries from Canadian oil shale deposits; Dust and pressure generated during commercial oil shale mine blasting: Part II; The petrosix project in Brazil - An update; Pathway of some trace elements during fluidized-bed combustion of Israeli Oil Shale; and Decommissioning of the U.S. Department of Energy Anvil Points Oil Shale Research Facility.

  17. Heating Oil and Propane Update

    Annual Energy Outlook

    Maps of states participating in Winter Fuels Survey Residential propane PADD map Residential heating oil PADD map

  18. Residential heating oil prices available

    Energy Information Administration (EIA) (indexed site)

    Residential heating oil prices available The average retail price for home heating oil is $2.30 per gallon, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region currently average $2.23

  19. Residential heating oil prices available

    Energy Information Administration (EIA) (indexed site)

    heating oil prices available The average retail price for home heating oil is $2.41 per gallon, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region currently average $2.35 per gallon. This is Marcela Rourk with EIA, in Washington.

  20. Oil shale: Technology status report

    SciTech Connect

    Not Available

    1986-10-01

    This report documents the status of the US Department of Energy's (DOE) Oil Shale Program as of the end of FY 86. The report consists of (1) a status of oil shale development, (2) a description of the DOE Oil Shale Program, (3) an FY 86 oil shale research summary, and (4) a summary of FY 86 accomplishments. Discoveries were made in FY 86 about the physical and chemical properties and behavior of oil shales, process chemistry and kinetics, in situ retorting, advanced processes, and the environmental behavior and fate of wastes. The DOE Oil Shale Program shows an increasing emphasis on eastern US oil shales and in the development of advanced oil shale processing concepts. With the award to Foster Wheeler for the design of oil shale conceptual plants, the first step in the development of a systems analysis capability for the complete oil shale process has been taken. Unocal's Parachute Creek project, the only commercial oil shale plant operating in the United States, is operating at about 4000 bbl/day. The shale oil is upgraded at Parachute Creek for input to a conventional refinery. 67 refs., 21 figs., 3 tabs.

  1. EIA Corrects Errors in Its Drilling Activity Estimates Series

    Reports and Publications

    1998-01-01

    The Energy Information Administration (EIA) has published monthly and annual estimates of oil and gas drilling activity since 1978. These data are key information for many industry analysts, serving as a leading indicator of trends in the industry and a barometer of general industry status.

  2. EIA Completes Corrections to Drilling Activity Estimates Series

    Reports and Publications

    1999-01-01

    The Energy Information Administration (EIA) has published monthly and annual estimates of oil and gas drilling activity since 1978. These data are key information for many industry analysts, serving as a leading indicator of trends in the industry and a barometer of general industry status.

  3. Salinity, temperature, oil composition, and oil recovery by waterflooding

    SciTech Connect

    Tang, G.Q.; Morrow, N.R.

    1997-11-01

    The effect of aging and displacement temperatures and brine and oil composition on wettability and the recovery of crude oil by spontaneous imbibition and waterflooding has been investigated. This study is based on displacement tests in Berea sandstone with three crude oils and three reservoir brines (RB`s). Salinity was varied by changing the concentration of total dissolved solids (TDS`s) of the synthetic brine in proportion. Salinity of the connate and invading brines can have a major influence on wettability and oil recovery at reservoir temperature. Oil recovery increased over that for the RB with dilution of both the initial (connate) and invading brine or dilution of either. Aging and displacement temperatures were varied independently. For all crude oils, water wetness and oil recovery increased with increase in displacement temperature. Removal of light components from the crude oil resulted in increased water wetness. Addition of alkanes to the crude oil reduced the water wetness, and increased oil recovery. Relationships between waterflood recovery and rate and extent of oil recovery by spontaneous imbibition are summarized.

  4. A study of the effects of enhanced oil recovery agents on the quality of Strategic Petroleum Reserves crude oil. [Physical and chemical interactions of Enhanced Oil Recovery reagents with hydrocarbons present in petroleum

    SciTech Connect

    Kabadi, V.N.

    1992-10-01

    The project was initiated on September 1, 1990. The objective of the project was to carry out a literature search to estimate the types and extents of long time interactions of enhanced oil recovery (EOR) agents, such as surfactants, caustics and polymers, with crude oil. This information is necessary to make recommendations about mixing EOR crude oil with crude oils from primary and secondary recovery processes in the Strategic Petroleum Reserve (SPR). Data were sought on both adverse and beneficial effects of EOR agents that would impact handling, transportation and refining of crude oil. An extensive literature search has been completed, and the following informations has been compiled: (1) a listing of existing EOR test and field projects; (2) a listing of currently used EOR agents; and (3) evidence of short and long term physical and chemical interactions of these EOR-agents with hydrocarbons, and their effects on the quality of crude oil at long times. This information is presented in this report. Finally some conclusions are derived and recommendations are made. Although the conclusions are based mostly on extrapolations because of lack of specific data, it is recommended that the enhancement of the rates of biodegradation of oil catalyzed by the EOR agents needs to be further studied. There is no evidence of substantial long term effects on crude oil because of other interactions. Some recommendations are also made regarding the types of studies that would be necessary to determine the effect of certain EOR agents on the rates of biodegradation of crude oil.

  5. Dying for oil

    SciTech Connect

    Sachs, A.

    1996-05-01

    This article discusses the fight and execution of Ken Saro-Wiwa, the Ogoni leader who defended his people`s land on the Niger delta against oil development encouraged by the government and persued by the Royal/Dutch Shell Co. Political reprocussions and heightened vigilance of environmental activists are discussed at length.

  6. African oil plays

    SciTech Connect

    Clifford, A.J. )

    1989-09-01

    The vast continent of Africa hosts over eight sedimentary basins, covering approximately half its total area. Of these basins, only 82% have entered a mature exploration phase, 9% have had little or no exploration at all. Since oil was first discovered in Africa during the mid-1950s, old play concepts continue to bear fruit, for example in Egypt and Nigeria, while new play concepts promise to become more important, such as in Algeria, Angola, Chad, Egypt, Gabon, and Sudan. The most exciting developments of recent years in African oil exploration are: (1) the Gamba/Dentale play, onshore Gabon; (2) the Pinda play, offshore Angola; (3) the Lucula/Toca play, offshore Cabinda; (4) the Metlaoui play, offshore Libya/Tunisia; (5) the mid-Cretaceous sand play, Chad/Sudan; and (6) the TAG-I/F6 play, onshore Algeria. Examples of these plays are illustrated along with some of the more traditional oil plays. Where are the future oil plays likely to develop No doubt, the Saharan basins of Algeria and Libya will feature strongly, also the presalt of Equatorial West Africa, the Central African Rift System and, more speculatively, offshore Ethiopia and Namibia, and onshore Madagascar, Mozambique, and Tanzania.

  7. World Oil Transit Chokepoints

    Reports and Publications

    2012-01-01

    Chokepoints are narrow channels along widely used global sea routes, some so narrow that restrictions are placed on the size of vessel that can navigate through them. They are a critical part of global energy security due to the high volume of oil traded through their narrow straits.

  8. Structural Oil Pan With Integrated Oil Filtration And Cooling System

    DOEpatents

    Freese, V, Charles Edwin

    2000-05-09

    An oil pan for an internal combustion engine includes a body defining a reservoir for collecting engine coolant. The reservoir has a bottom and side walls extending upwardly from the bottom to present a flanged lip through which the oil pan may be mounted to the engine. An oil cooler assembly is housed within the body of the oil pan for cooling lubricant received from the engine. The body includes an oil inlet passage formed integrally therewith for receiving lubricant from the engine and delivering lubricant to the oil cooler. In addition, the body also includes an oil pick up passage formed integrally therewith for providing fluid communication between the reservoir and the engine through the flanged lip.

  9. Check Estimates and Independent Costs

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    1997-03-28

    Check estimates and independent cost estimates (ICEs) are tools that can be used to validate a cost estimate. Estimate validation entails an objective review of the estimate to ensure that estimate criteria and requirements have been met and well documented, defensible estimate has been developed. This chapter describes check estimates and their procedures and various types of independent cost estimates.

  10. Assessment of opportunities to increase the recovery and recycling rates of waste oils

    SciTech Connect

    Graziano, D.J.; Daniels, E.J.

    1995-08-01

    Waste oil represents an important energy resource that, if properly managed and reused, would reduce US dependence on imported fuels. Literature and current practice regarding waste oil generation, regulations, collection, and reuse were reviewed to identify research needs and approaches to increase the recovery and recycling of this resource. The review revealed the need for research to address the following three waste oil challenges: (1) recover and recycle waste oil that is currently disposed of or misused; (2) identify and implement lubricating oil source and loss reduction opportunities; and (3) develop and foster an effective waste oil recycling infrastructure that is based on energy savings, reduced environment at impacts, and competitive economics. The United States could save an estimated 140 {times} 1012 Btu/yr in energy by meeting these challenges.

  11. Process for upgrading heavy oils

    SciTech Connect

    LePage, J.F.; Marlino, G.

    1983-07-05

    The viscosity of heavy oils is reduced in order to facilitate pipe line transportation thereof. A fraction of the heavy oil is deasphalted in the presence of C/sub 5/-C/sub 7/ hydrocarbons, a portion of the separated asphalt is converted to synthesis gas, at least a portion of said gas is used to manufacture an alcohol mixture including methanol and C/sub 2/ to C/sub 10/ alcohols, which mixture is admixed with the heavy oil before transportation thereof. This procedure is more beneficial to the transported heavy oil than the prior processes which do not comprise the conversion of the asphalt fraction of the heavy oil.

  12. U.S. crude oil, natural gas, and natural gas liquids reserves 1997 annual report

    SciTech Connect

    Wood, John H.; Grape, Steven G.; Green, Rhonda S.

    1998-12-01

    This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1997, as well as production volumes for the US and selected States and State subdivisions for the year 1997. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1997 is provided. 21 figs., 16 tabs.

  13. State Energy Production Estimates

    Energy Information Administration (EIA) (indexed site)

    Energy Production Estimates 1960 Through 2012 2012 Summary Tables Table P1. Energy Production Estimates in Physical Units, 2012 Alabama 19,455 215,710 9,525 0 Alaska 2,052 351,259...

  14. Aerobic microbial enhanced oil recovery

    SciTech Connect

    Torsvik, T.; Gilje, E.; Sunde, E.

    1995-12-31

    In aerobic MEOR, the ability of oil-degrading bacteria to mobilize oil is used to increase oil recovery. In this process, oxygen and mineral nutrients are injected into the oil reservoir in order to stimulate growth of aerobic oil-degrading bacteria in the reservoir. Experiments carried out in a model sandstone with stock tank oil and bacteria isolated from offshore wells showed that residual oil saturation was lowered from 27% to 3%. The process was time dependent, not pore volume dependent. During MEOR flooding, the relative permeability of water was lowered. Oxygen and active bacteria were needed for the process to take place. Maximum efficiency was reached at low oxygen concentrations, approximately 1 mg O{sub 2}/liter.

  15. Types of Cost Estimates

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    1997-03-28

    The chapter describes the estimates required on government-managed projects for both general construction and environmental management.

  16. A study of the effects of enhanced oil recovery agents on the quality of Strategic Petroleum Reserves crude oil. Final technical report

    SciTech Connect

    Kabadi, V.N.

    1992-10-01

    The project was initiated on September 1, 1990. The objective of the project was to carry out a literature search to estimate the types and extents of long time interactions of enhanced oil recovery (EOR) agents, such as surfactants, caustics and polymers, with crude oil. This information is necessary to make recommendations about mixing EOR crude oil with crude oils from primary and secondary recovery processes in the Strategic Petroleum Reserve (SPR). Data were sought on both adverse and beneficial effects of EOR agents that would impact handling, transportation and refining of crude oil. An extensive literature search has been completed, and the following informations has been compiled: (1) a listing of existing EOR test and field projects; (2) a listing of currently used EOR agents; and (3) evidence of short and long term physical and chemical interactions of these EOR-agents with hydrocarbons, and their effects on the quality of crude oil at long times. This information is presented in this report. Finally some conclusions are derived and recommendations are made. Although the conclusions are based mostly on extrapolations because of lack of specific data, it is recommended that the enhancement of the rates of biodegradation of oil catalyzed by the EOR agents needs to be further studied. There is no evidence of substantial long term effects on crude oil because of other interactions. Some recommendations are also made regarding the types of studies that would be necessary to determine the effect of certain EOR agents on the rates of biodegradation of crude oil.

  17. Comparative assessment of the trace-element composition of coals, crude oils, and oil shales

    SciTech Connect

    M.Y. Shpirt; S.A. Punanova

    2007-10-15

    A comparative analysis of the amounts of 42 trace elements in coals, crude oils, and oil and black shales was performed. The degree of concentration of trace elements by caustobioliths and their ashes relative to their abundance in argillaceous rocks and the Earth's crust was calculated. Typomorphic trace elements were distinguished, of which many turned out to be common for the different kinds of caustobioliths in question. The trace elements were classified according to their concentration factors in different caustobioliths. The ash of crude oils is enriched in trace elements (Cs, V, Mo, Cu, Ag, Au, Zn, Hg, Se, Cr, Co, Ni, U) to the greatest extent (concentration factor above 3.5) and that of oil shales is enriched to the least extent (Re, Cs, Hg, Se). The ratios between typomorphic trace elements in general strongly differ from those in the Earth's crust and argillaceous rocks and are not identical in different caustobioliths. Quantitative parameters that make it possible to calculate a change in these ratios on passing from one caustobiolith type to another were proposed and the relative trace-element affinity of different caustobioliths was estimated.

  18. Unconventional Oil and Gas Resources

    SciTech Connect

    2006-09-15

    World oil use is projected to grow to 98 million b/d in 2015 and 118 million b/d in 2030. Total world natural gas consumption is projected to rise to 134 Tcf in 2015 and 182 Tcf in 2030. In an era of declining production and increasing demand, economically producing oil and gas from unconventional sources is a key challenge to maintaining global economic growth. Some unconventional hydrocarbon sources are already being developed, including gas shales, tight gas sands, heavy oil, oil sands, and coal bed methane. Roughly 20 years ago, gas production from tight sands, shales, and coals was considered uneconomic. Today, these resources provide 25% of the U.S. gas supply and that number is likely to increase. Venezuela has over 300 billion barrels of unproven extra-heavy oil reserves which would give it the largest reserves of any country in the world. It is currently producing over 550,000 b/d of heavy oil. Unconventional oil is also being produced in Canada from the Athabasca oil sands. 1.6 trillion barrels of oil are locked in the sands of which 175 billion barrels are proven reserves that can be recovered using current technology. Production from 29 companies now operating there exceeds 1 million barrels per day. The report provides an overview of continuous petroleum sources and gives a concise overview of the current status of varying types of unconventional oil and gas resources. Topics covered in the report include: an overview of the history of Oil and Natural Gas; an analysis of the Oil and Natural Gas industries, including current and future production, consumption, and reserves; a detailed description of the different types of unconventional oil and gas resources; an analysis of the key business factors that are driving the increased interest in unconventional resources; an analysis of the barriers that are hindering the development of unconventional resources; profiles of key producing regions; and, profiles of key unconventional oil and gas producers.

  19. Documentation of the Oil and Gas Supply Module (OGSM)

    SciTech Connect

    1998-01-01

    The purpose of this report is to define the objectives of the Oil and Gas Supply Model (OGSM), to describe the model`s basic approach, and to provide detail on how the model works. This report is intended as a reference document for model analysts, users, and the public. Projected production estimates of US crude oil and natural gas are based on supply functions generated endogenously within National Energy Modeling System (NEMS) by the OGSM. OGSM encompasses domestic crude oil and natural gas supply by both conventional and nonconventional recovery techniques. Nonconventional recovery includes enhanced oil recovery (EOR), and unconventional gas recovery (UGR) from tight gas formations, Devonian/Antrim shale and coalbeds. Crude oil and natural gas projections are further disaggregated by geographic region. OGSM projects US domestic oil and gas supply for six Lower 48 onshore regions, three offshore regions, and Alaska. The general methodology relies on forecasted profitability to determine exploratory and developmental drilling levels for each region and fuel type. These projected drilling levels translate into reserve additions, as well as a modification of the production capacity for each region. OGSM also represents foreign trade in natural gas, imports and exports by entry region. Foreign gas trade may occur via either pipeline (Canada or Mexico), or via transport ships as liquefied natural gas (LNG). These import supply functions are critical elements of any market modeling effort.

  20. Biggest oil spill tackled in gulf amid war, soft market

    SciTech Connect

    Not Available

    1991-02-04

    Industry is scrambling to cope with history's biggest oil spill against the backdrop of a Persian Gulf war and a softening oil market. U.S. and Saudi Arabian officials accused Iraq of unleashing an oil spill of about 11 million bbl into the Persian Gulf off Kuwait last week by releasing crude from the giant Sea Island tanker loading terminal at Mina al Ahmadi. Smart bombs delivered by U.S. aircraft hit two onshore tank farm manifold stations, cutting off the terminal's source of oil flow Jan. 26. A small volume of oil was still leaking from 13 mile feeder pipelines to the terminal at presstime. Press reports quoted U.S. military and Saudi officials as estimating the slick at 35 miles long and 10 miles wide but breaking up in some areas late last week. Meantime, Iraq reportedly opened the valves at its Mina al Bakr marine terminal at Fao to spill crude into the northern gulf. BBC reported significant volumes of crude in the water off Fao 24 hr after the terminal valves were opened. Mina al Bakr is a considerably smaller terminal than Sea Island, suggesting that the resulting flow of oil would be smaller than that at Sea Island.

  1. Propagation of prices in the oil industry. [Monograph

    SciTech Connect

    Kisselgoff, A.

    1980-01-01

    The main thrust of this report is the development of a price record that would provide a basis for the identification of the areas of activity in the oil industry in which significant price changes have occurred, with expectation that this type of information could serve as a useful ingredient in the policy-making process. The study presents estimates of the selling price of a barrel of oil at three stages of operations of the industry - the wellhead, the refinery, and the end-use levels. Prices of individual classes of petroleum products at refineries and at the end-use level were also estimated. The price data are provided for benchmark years 1958, 1963, 1967, and 1972, as well as for 1973, 1974, 1975, and 1976 when crude oil prices rose considerably. The estimating procedure is briefly described in the study. The examination of the transmission of prices from market to market within the oil industry shows that the steep rise in 1973-1974 prices paid by end-users of petroleum products was due not only to the large increases in crude oil prices but also to the sizable increases in gross operating margins-labor costs, transportation, profits, etc. - at the refinery and distribution levels. In the post-embargo years of 1975 and 1976, prices continued to advance but at a slower pace. The refiners' gross margins in 1975, however, declined somewhat; they rose significantly above the 1974 level in 1976. The marketers' margins made further gains in 1975, but exhibited a decrease in 1976. The study includes a short discussion of the effects of rising oil prices in 1973-1976 on the profitability of the petroleum industry and the general price level.

  2. California - Los Angeles Basin Onshore Crude Oil + Lease Condensate

    Energy Information Administration (EIA) (indexed site)

    Estimated Production from Reserves (Million Barrels) Estimated Production from Reserves (Million Barrels) California - Los Angeles Basin Onshore Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 15 2010's 15 15 15 15 15 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next

  3. California - San Joaquin Basin Onshore Crude Oil + Lease Condensate

    Energy Information Administration (EIA) (indexed site)

    Estimated Production from Reserves (Million Barrels) Estimated Production from Reserves (Million Barrels) California - San Joaquin Basin Onshore Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 161 2010's 152 149 148 147 151 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next

  4. Gulf of Mexico Federal Offshore - Texas Crude Oil + Lease Condensate

    Energy Information Administration (EIA) (indexed site)

    Estimated Production from Reserves (Million Barrels) Estimated Production from Reserves (Million Barrels) Gulf of Mexico Federal Offshore - Texas Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 55 2010's 53 50 72 71 78 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next

  5. Layman's guide to oil and gas investments and royalty income

    SciTech Connect

    Brown, T.E.; Miller, S.

    1985-01-01

    This thoroughly revised second edition explains the basics of what oil and gas are, where they can be found, the people who find and produce it, the deal process, detecting the ''wormy'' and fraudulent deal, and what tax advantages you might expect. Government controls, oil and reserve estimates, leasing updated to 1985. New material includes effects of the dramatic drop in drilling costs over the last three years, new deductions and write-offs, sample tax calculations, rights and royalties, conservation rules, regulations, and laws, a thorough examination of lease agreement clauses, and a special section on OTC energy stocks.

  6. U.S. monthly oil production tops 8 million barrels per day for the first time since 1988

    Energy Information Administration (EIA) (indexed site)

    2014 hurricane season could lead to offshore oil, gas production shut-ins The government's weather experts are predicting a relatively mild hurricane season, but U.S. oil and natural gas production in the Gulf of Mexico could still be disrupted. The U.S. Energy Information Administration's mean estimate is that about 12 million barrels of offshore crude oil production and 30 billion cubic feet of natural gas production will go offline during the 2014 hurricane season. That's about 40 percent

  7. Influence of corn oil recovery on life-cycle greenhouse gas emissions of corn ethanol and corn oil biodiesel

    DOE PAGES [OSTI]

    Wang, Zhichao; Dunn, Jennifer B.; Han, Jeongwoo; Wang, Michael

    2015-11-04

    Corn oil recovery and conversion to biodiesel has been widely adopted at corn ethanol plants recently. The US EPA has projected 2.6 billion liters of biodiesel will be produced from corn oil in 2022. Corn oil biodiesel may qualify for federal renewable identification number (RIN) credits under the Renewable Fuel Standard, as well as for low greenhouse gas (GHG) emission intensity credits under California’s Low Carbon Fuel Standard. Because multiple products [ethanol, biodiesel, and distiller’s grain with solubles (DGS)] are produced from one feedstock (corn), however, a careful co-product treatment approach is required to accurately estimate GHG intensities of bothmore » ethanol and corn oil biodiesel and to avoid double counting of benefits associated with corn oil biodiesel production. This study develops four co-product treatment methods: (1) displacement, (2) marginal, (3) hybrid allocation, and (4) process-level energy allocation. Life-cycle GHG emissions for corn oil biodiesel were more sensitive to the choice of co-product allocation method because significantly less corn oil biodiesel is produced than corn ethanol at a dry mill. Corn ethanol life-cycle GHG emissions with the displacement, marginal, and hybrid allocation approaches are similar (61, 62, and 59 g CO2e/MJ, respectively). Although corn ethanol and DGS share upstream farming and conversion burdens in both the hybrid and process-level energy allocation methods, DGS bears a higher burden in the latter because it has lower energy content per selling price as compared to corn ethanol. As a result, with the process-level allocation approach, ethanol’s life-cycle GHG emissions are lower at 46 g CO2e/MJ. Corn oil biodiesel life-cycle GHG emissions from the marginal, hybrid allocation, and process-level energy allocation methods were 14, 59, and 45 g CO2e/MJ, respectively. Sensitivity analyses were conducted to investigate the influence corn oil yield, soy biodiesel, and defatted DGS displacement

  8. Influence of corn oil recovery on life-cycle greenhouse gas emissions of corn ethanol and corn oil biodiesel

    SciTech Connect

    Wang, Zhichao; Dunn, Jennifer B.; Han, Jeongwoo; Wang, Michael

    2015-11-04

    Corn oil recovery and conversion to biodiesel has been widely adopted at corn ethanol plants recently. The US EPA has projected 2.6 billion liters of biodiesel will be produced from corn oil in 2022. Corn oil biodiesel may qualify for federal renewable identification number (RIN) credits under the Renewable Fuel Standard, as well as for low greenhouse gas (GHG) emission intensity credits under California’s Low Carbon Fuel Standard. Because multiple products [ethanol, biodiesel, and distiller’s grain with solubles (DGS)] are produced from one feedstock (corn), however, a careful co-product treatment approach is required to accurately estimate GHG intensities of both ethanol and corn oil biodiesel and to avoid double counting of benefits associated with corn oil biodiesel production. This study develops four co-product treatment methods: (1) displacement, (2) marginal, (3) hybrid allocation, and (4) process-level energy allocation. Life-cycle GHG emissions for corn oil biodiesel were more sensitive to the choice of co-product allocation method because significantly less corn oil biodiesel is produced than corn ethanol at a dry mill. Corn ethanol life-cycle GHG emissions with the displacement, marginal, and hybrid allocation approaches are similar (61, 62, and 59 g CO2e/MJ, respectively). Although corn ethanol and DGS share upstream farming and conversion burdens in both the hybrid and process-level energy allocation methods, DGS bears a higher burden in the latter because it has lower energy content per selling price as compared to corn ethanol. As a result, with the process-level allocation approach, ethanol’s life-cycle GHG emissions are lower at 46 g CO2e/MJ. Corn oil biodiesel life-cycle GHG emissions from the marginal, hybrid allocation, and process-level energy allocation methods were 14, 59, and 45 g CO2e/MJ, respectively. Sensitivity analyses were conducted to investigate the influence corn oil yield, soy biodiesel, and

  9. Strategic Significance of Americas Oil Shale Resource

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... Early products de- rived from shale oil included kerosene and lamp oil, paraffin, fuel oil, lubricating oil and grease, naphtha, illuminating gas, and ammonium sulfate fertilizer. ...

  10. Florida Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Florida Natural Gas Number of Oil Wells (Number of ... Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Florida ...

  11. About the Oil and Gas Field Code Master List

    Annual Energy Outlook

    ... Oil and Gas Board of Alabama Alaska Alaska Oil and Gas Conservation Commission Arizona Arizona Oil and Gas Conservation Commission Arkansas Arkansas Oil and Gas Commission ...

  12. Louisiana - North Crude Oil + Lease Condensate Proved Reserves...

    Energy Information Administration (EIA) (indexed site)

    Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Louisiana - North Crude Oil ... Crude Oil plus Lease Condensate Proved Reserves, as of Dec. 31 North Louisiana Crude Oil ...

  13. Crude Oil and Petroleum Products Total Stocks Stocks by Type

    Energy Information Administration (EIA) (indexed site)

    Product: Crude Oil and Petroleum Products Crude Oil All Oils (Excluding Crude Oil) Pentanes Plus Liquefied Petroleum Gases EthaneEthylene PropanePropylene Normal ButaneButylene ...

  14. Oil taxation and risks

    SciTech Connect

    Rodriguez-Padilla, V. )

    1992-01-01

    The relationship between the taxation system and the division of risks between the host country governments and the international companies is discussed. The analysis underscores the effect of taxation on the geological and political risks. These two cases are evaluated in two West-African oil-producing countries. It emerges from this that too heavy and regressive taxes greatly increase the risks supported by the two partners. The progressive character of the taxation is a necessary but not a sufficient condition for the reduction of public and private risks. A taxation burden well-balanced among small and large deposits is the best way to reduce the risk due to taxation. The oil-producing countries of this region had made great advances in developing neutral taxation systems but in most cases they must progress further. 15 refs., 3 figs., 1 tab.

  15. Shale oil recovery process

    DOEpatents

    Zerga, Daniel P.

    1980-01-01

    A process of producing within a subterranean oil shale deposit a retort chamber containing permeable fragmented material wherein a series of explosive charges are emplaced in the deposit in a particular configuration comprising an initiating round which functions to produce an upward flexure of the overburden and to initiate fragmentation of the oil shale within the area of the retort chamber to be formed, the initiating round being followed in a predetermined time sequence by retreating lines of emplaced charges developing further fragmentation within the retort zone and continued lateral upward flexure of the overburden. The initiating round is characterized by a plurality of 5-spot patterns and the retreating lines of charges are positioned and fired along zigzag lines generally forming retreating rows of W's. Particular time delays in the firing of successive charges are disclosed.

  16. Oil shale retort apparatus

    DOEpatents

    Reeves, Adam A.; Mast, Earl L.; Greaves, Melvin J.

    1990-01-01

    A retorting apparatus including a vertical kiln and a plurality of tubes for delivering rock to the top of the kiln and removal of processed rock from the bottom of the kiln so that the rock descends through the kiln as a moving bed. Distributors are provided for delivering gas to the kiln to effect heating of the rock and to disturb the rock particles during their descent. The distributors are constructed and disposed to deliver gas uniformly to the kiln and to withstand and overcome adverse conditions resulting from heat and from the descending rock. The rock delivery tubes are geometrically sized, spaced and positioned so as to deliver the shale uniformly into the kiln and form symmetrically disposed generally vertical paths, or "rock chimneys", through the descending shale which offer least resistance to upward flow of gas. When retorting oil shale, a delineated collection chamber near the top of the kiln collects gas and entrained oil mist rising through the kiln.

  17. Enhanced oil recovery

    SciTech Connect

    Fisher, W.G.

    1982-01-01

    The principal enhanced recovery technique is waterflooding, because water generally is inexpensive to obtain and inject into the reservoir and it works. With the shortage of conventional oil in Canada there is greater emphasis being placed on other recovery schemes in addition to or in place of waterflooding. Tertiary recovery is applicable to many of the existing projects and engineers must recognize those fields that are candidates for tertiary recovery applications. The application of tertiary recovery techniques to a specific reservoir requires consideration of all methods developed to select the one most suitable. A thorough understanding of waterflooding and the factors that affect recovery is necessary before a tertiary process is considered. Factors that affect oil recovery under waterflooding are areal and vertical sweep efficiency, contact factor and displacement efficiency.

  18. Emulsified industrial oils recycling

    SciTech Connect

    Gabris, T.

    1982-04-01

    The industrial lubricant market has been analyzed with emphasis on current and/or developing recycling and re-refining technologies. This task has been performed for the United States and other industrialized countries, specifically France, West Germany, Italy and Japan. Attention has been focused at emulsion-type fluids regardless of the industrial application involved. It was found that emulsion-type fluids in the United States represent a much higher percentage of the total fluids used than in other industrialized countries. While recycling is an active matter explored by the industry, re-refining is rather a result of other issues than the mere fact that oil can be regenerated from a used industrial emulsion. To extend the longevity of an emulsion is a logical step to keep expenses down by using the emulsion as long as possible. There is, however, another important factor influencing this issue: regulations governing the disposal of such fluids. The ecological question, the respect for nature and the natural balances, is often seen now as everybody's task. Regulations forbid dumping used emulsions in the environment without prior treatment of the water phase and separation of the oil phase. This is a costly procedure, so recycling is attractive since it postpones the problem. It is questionable whether re-refining of these emulsions - as a business - could stand on its own if these emulsions did not have to be taken apart for disposal purposes. Once the emulsion is separated into a water and an oil phase, however, re-refining of the oil does become economical.

  19. Retrofitting heavy oil processes

    SciTech Connect

    Hamilton, G.L.; Fitzgerald, M.; D'Amico, V.

    1986-01-01

    Refiners, faced with the need to process the bottom end of the heavy high sulfur crude oil barrel in today's uncertain economic environment, are reluctant to commit large amounts of money to expensive upgrading processes. In order to conserve scarce capital while improving operating margins, additional valuable products can be produced by retrofits such as conversion of an idle crude unit to visbreaking, delayed coking or deasphalting service, or conversion of hydrodesulfurizers to mild hydrocracking.

  20. Oil Price Volatility

    Gasoline and Diesel Fuel Update

    Speculation and Oil Price Volatility Robert J. Weiner Robert J. Weiner Professor of International Business, Public Policy & Professor of International Business, Public Policy & Public Administration, and International Affairs Public Administration, and International Affairs George Washington University; George Washington University; Membre Associ Membre Associ é é , GREEN, Universit , GREEN, Universit é é Laval Laval EIA Annual Conference Washington Washington 7 April 2009 7 April

  1. Horizontal oil well applications and oil recovery assessment. Volume 2: Applications overview, Final report

    SciTech Connect

    Deskins, W.G.; McDonald, W.J.; Knoll, R.G.; Springer, S.J.

    1995-03-01

    Horizontal technology has been applied in over 110 formations in the USA. Volume 1 of this study addresses the overall success of horizontal technology, especially in less-publicized formations, i.e., other than the Austin Chalk, Bakken, and Niobrara. Operators in the USA and Canada were surveyed on a formation-by-formation basis by means of a questionnaire. Response data were received describing horizontal well projects in 58 formations in the USA and 88 in Canada. Operators` responses were analyzed for trends in technical and economic success based on lithology (clastics and carbonates) and resource type (light oil, heavy oil, and gas). The potential impact of horizontal technology on reserves was also estimated. A forecast of horizontal drilling activity over the next decade was developed.

  2. High oil production continues to cut U.S. oil imports

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    High oil production continues to cut U.S. oil imports High U.S. crude oil production will help further reduce America's reliance on oil imports during the next two years. In its ...

  3. U.S. oil imports to decline with rising oil production through...

    Gasoline and Diesel Fuel Update

    oil imports to decline with rising oil production through 2014 The United States will need fewer oil imports over the next two years because of rising U.S. oil production. The new ...

  4. Crude Oil Movements of Crude Oil by Rail

    Gasoline and Diesel Fuel Update

    Product: Crude Oil Fuel Ethanol Biodiesel Period-Unit: Monthly-Thousand Barrels Annual-Thousand Barrels Download Series History Download Series History Definitions, Sources & Notes ...

  5. Crude Oil Prices Table 21. Domestic Crude Oil First Purchase...

    Energy Information Administration (EIA) (indexed site)

    Information Administration Petroleum Marketing Annual 1995 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

  6. Chedabucto Bay 1992 shoreline oil conditions survey: Long-term fate of bunker C oil from the arrow spill in Chedabucto Bay, Nova Scotia

    SciTech Connect

    Owens, E.H.; McGuire, B.E.; Humphrey, B.

    1994-03-01

    The report presents a description of the activities related to and a summary of the information generated by a field survey carried out in Chedabucto Bay, Nova Scotia, for Environment Canada from June to September 1992. The objective of the survey was to locate and document any residual oil on the shores of Chedabucto Bay. The grounding of the tanker Arrow in February 1970 resulted in the release of more than 11 million liters of Bunker C fuel oil. This oil was stranded over an estimated 305 km of shoreline in the Chedabucto Bay area.

  7. Method of operating an oil shale kiln

    DOEpatents

    Reeves, Adam A.

    1978-05-23

    Continuously determining the bulk density of raw and retorted oil shale, the specific gravity of the raw oil shale and the richness of the raw oil shale provides accurate means to control process variables of the retorting of oil shale, predicting oil production, determining mining strategy, and aids in controlling shale placement in the kiln for the retorting.

  8. The twentieth oil shale symposium proceedings

    SciTech Connect

    Gary, J.H.

    1987-01-01

    This book contains 20 selections. Some of the titles are: The technical contributions of John Ward Smith in oil shale research; Oil shale rubble fires: ignition and extinguishment; Fragmentation of eastern oil shale for in situ recovery; A study of thermal properties of Chinese oil shale; and Natural invasion of native plants on retorted oil shale.

  9. International Oil Supplies and Demands

    SciTech Connect

    Not Available

    1992-04-01

    The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--1990 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world's dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group's thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

  10. International Oil Supplies and Demands

    SciTech Connect

    Not Available

    1991-09-01

    The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--90 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world's dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group's thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

  11. The social costs to the US of monopolization of the world oil market, 1972--1991

    SciTech Connect

    Greene, D.L.; Leiby, P.N.

    1993-03-01

    The partial monopolization of the world oil market by the OPEC cartel has produced significant economic costs to the economies of the world. This paper reports estimates of the costs of monopolization of oil to the US over the period 1972--1991. Two fundamental assumptions of the analysis are, (1) that OPEC has acted as a monopoly, albeit with limited control, knowledge, and ability to act and, (2) that the US and other consuming nations could, through collective (social) action affect the cartel's ability to act as a monopoly. We measure total costs by comparing actual costs for the 1972--1991 period to a hypothetical more competitive'' world oil market scenario. By measuring past costs we avoid the enormous uncertainties about the future course of the world oil market and leave to the reader's judgment the issue of how much the future will be like the past. We note that total cost numbers cannot be used to determine the value of reducing US oil use by one barrel. They are useful for describing the overall size of the petroleum problem and are one important factor in deciding how much effort should be devoted to solving it. Monopoly pricing of oil transfers wealth from US oil consumers to foreign oil producers and, by increasing theeconomic scarcity of oil, reduces the economy's potential to produce. The actions of the OPEC cartel have also produced oil price shocks, both upward and downward, that generate additional costs because of the economy's inherent inability to adjust quickly to a large change in energy prices. Estimated total costs to the United States from these three sources for the 1972--1991 period are put at $4.1 trillion in 1990$($1.2 T wealth transfer, $0.8 T macroeconomic adjustment costs, $2.1 T potential GNP losses). The cost of the US's primary oil supply contingency program is small ($10 B) by comparison.

  12. The social costs to the US of monopolization of the world oil market, 1972--1991

    SciTech Connect

    Greene, D.L.; Leiby, P.N.

    1993-03-01

    The partial monopolization of the world oil market by the OPEC cartel has produced significant economic costs to the economies of the world. This paper reports estimates of the costs of monopolization of oil to the US over the period 1972--1991. Two fundamental assumptions of the analysis are, (1) that OPEC has acted as a monopoly, albeit with limited control, knowledge, and ability to act and, (2) that the US and other consuming nations could, through collective (social) action affect the cartel`s ability to act as a monopoly. We measure total costs by comparing actual costs for the 1972--1991 period to a hypothetical ``more competitive`` world oil market scenario. By measuring past costs we avoid the enormous uncertainties about the future course of the world oil market and leave to the reader`s judgment the issue of how much the future will be like the past. We note that total cost numbers cannot be used to determine the value of reducing US oil use by one barrel. They are useful for describing the overall size of the petroleum problem and are one important factor in deciding how much effort should be devoted to solving it. Monopoly pricing of oil transfers wealth from US oil consumers to foreign oil producers and, by increasing theeconomic scarcity of oil, reduces the economy`s potential to produce. The actions of the OPEC cartel have also produced oil price shocks, both upward and downward, that generate additional costs because of the economy`s inherent inability to adjust quickly to a large change in energy prices. Estimated total costs to the United States from these three sources for the 1972--1991 period are put at $4.1 trillion in 1990$($1.2 T wealth transfer, $0.8 T macroeconomic adjustment costs, $2.1 T potential GNP losses). The cost of the US`s primary oil supply contingency program is small ($10 B) by comparison.

  13. Residential heating oil price decrease

    Energy Information Administration (EIA) (indexed site)

    Residential heating oil price decrease The average retail price for home heating oil fell 1.4 cents from a week ago to $2.39 per gallon. That's down 4.4 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $2.33 per gallon, down 4-tenths of a cent from last week, and down 4.4

  14. Residential heating oil price decreases

    Energy Information Administration (EIA) (indexed site)

    heating oil price increases The average retail price for home heating oil rose 6-tenths of a cent from a week ago to $2.18 per gallon. That's down 79 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region are at $2.13 per gallon, unchanged from last week, and down 88

  15. Residential heating oil price decreases

    Energy Information Administration (EIA) (indexed site)

    heating oil price decreases The average retail price for home heating oil fell 1.9 cents from a week ago to $2.16 per gallon. That's down 75 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region are at $2.11 per gallon, down 2.8 cents from last week, and down 77

  16. Residential heating oil price decreases

    Energy Information Administration (EIA) (indexed site)

    heating oil price decreases The average retail price for home heating oil fell 5.1 cents from a week ago to $2.11 per gallon. That's down 72 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region are at $2.05 per gallon, down 5.3 cents from last week, and down 75

  17. Residential heating oil price decreases

    Energy Information Administration (EIA) (indexed site)

    heating oil price decreases The average retail price for home heating oil fell 5 cents from a week ago to $2.06 per gallon. That's down 75 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region are at $2.01 per gallon, down 4.1 cents from last week, and down 78

  18. Residential heating oil price decreases

    Energy Information Administration (EIA) (indexed site)

    heating oil price decreases The average retail price for home heating oil fell 1.8 cents from a week ago to $2.82 per gallon. That's down $1.36 from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $2.79 per gallon, down 1.5 cents from last week, and down $1.34

  19. Residential heating oil price decreases

    Energy Information Administration (EIA) (indexed site)

    heating oil price increases The average retail price for home heating oil rose 1.8 cents from a week ago to $2.08 per gallon. That's down 72 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region are at $2.02 per gallon, up 3-tenths of a cent from last week, and down 76

  20. Residential heating oil price decreases

    Energy Information Administration (EIA) (indexed site)

    heating oil price decreases The average retail price for home heating oil fell 1.9 cents from a week ago to $2.80 per gallon. That's down $1.44 from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $2.78 per gallon, down 1.2 cents from last week, and down $1.40

  1. Residential heating oil price decreases

    Energy Information Administration (EIA) (indexed site)

    heating oil price increases The average retail price for home heating oil rose 1 cent from a week ago to $2.09 per gallon. That's down 82 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region are at $2.02 per gallon, up 8-tenths of a cent from last week, and down 85

  2. Residential heating oil price decreases

    Energy Information Administration (EIA) (indexed site)

    Residential heating oil price increases The average retail price for home heating oil rose 1.1 cents from a week ago to $2.10 per gallon. That's down 94 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region are at $2.04 per gallon, up 2.3 cents from last week, and down 95

  3. Residential heating oil price decreases

    Energy Information Administration (EIA) (indexed site)

    Residential heating oil price decreases The average retail price for home heating oil fell 9-tenths of a cent from a week ago to $2.09 per gallon. That's down $1.09 from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region are at $2.04 per gallon, down 1-tenth of a cent from last week, and down $1.11

  4. Residential heating oil price decreases

    Energy Information Administration (EIA) (indexed site)

    Residential heating oil price decreases The average retail price for home heating oil fell 5-tenths of a cent from a week ago to $2.09 per gallon. That's down $1.20 from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region are at $2.03 per gallon, down 9-tenths of a cent from last week, and down $1.22

  5. Residential heating oil price decreases

    Energy Information Administration (EIA) (indexed site)

    Residential heating oil price increases The average retail price for home heating oil rose 6-tenths of a cent from a week ago to $2.10 per gallon. That's down $1.11 from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region are at $2.04 per gallon, up 5-tenths of a cent from last week, and down $1.14

  6. Residential heating oil price decreases

    Energy Information Administration (EIA) (indexed site)

    Residential heating oil price increases The average retail price for home heating oil rose 2.6 cents from a week ago to $2.12 per gallon. That's down 91 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region are at $2.06 per gallon, up 2.1 cents from last week, and down 94

  7. Residential heating oil price decreases

    Energy Information Administration (EIA) (indexed site)

    Residential heating oil price increases The average retail price for home heating oil rose 1 cent from a week ago to $2.13 per gallon. That's down 80 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region are at $2.07 per gallon, up 9-tenths of a cent from last week, and down 83

  8. Residential heating oil price decreases

    Energy Information Administration (EIA) (indexed site)

    heating oil price decreases The average retail price for home heating oil fell 10.5 cents from a week ago to $2.93 per gallon, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $2.90 per gallon, down 10.4 cents from last week. This is Marcela Rourk

  9. Residential heating oil price decreases

    Energy Information Administration (EIA) (indexed site)

    Residential heating oil price decreases The average retail price for home heating oil fell 1.1 cents from a week ago to $2.38 per gallon. That's down 2.3 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $2.33 per gallon, down 5-tenths of a cent from last week, and down 1.6

  10. Residential heating oil price decreases

    Energy Information Administration (EIA) (indexed site)

    heating oil price decreases The average retail price for home heating oil fell 2.3 cents from a week ago to $2.38 per gallon. That's down 99 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $2.32 per gallon, down 3.1 cents from last week, and down $1.00

  11. Residential heating oil price decreases

    Energy Information Administration (EIA) (indexed site)

    heating oil price decreases The average retail price for home heating oil fell 1.5 cents from a week ago to $2.36 per gallon. That's down 97 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $2.31 per gallon, down 2-tenths of a cent from last week, and down 96

  12. Residential heating oil price decreases

    Energy Information Administration (EIA) (indexed site)

    heating oil price decreases The average retail price for home heating oil fell 3 cents from a week ago to $2.33 per gallon. That's down 89 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $2.28 per gallon, down 3.5 cents from last week, and down 9

  13. Residential heating oil price decreases

    Energy Information Administration (EIA) (indexed site)

    heating oil price decreases The average retail price for home heating oil fell 7.6 cents from a week ago to $2.26 per gallon. That's down 89 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $2.19 per gallon, down 8.9 cents from last week, and down 92

  14. Residential heating oil price decreases

    Energy Information Administration (EIA) (indexed site)

    heating oil price decreases The average retail price for home heating oil fell 4.5 cents from a week ago to $2.21 per gallon. That's down 87 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $2.15 per gallon, down 3.6 cents from last week, and down 89

  15. Residential heating oil price decreases

    Energy Information Administration (EIA) (indexed site)

    heating oil price decreases The average retail price for home heating oil fell 3.5 cents from a week ago to $2.18 per gallon. That's down 87 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $2.13 per gallon, down 2.2 cents from last week, and down 88

  16. Residential heating oil price decreases

    Energy Information Administration (EIA) (indexed site)

    5, 2014 Residential heating oil price decreases The average retail price for home heating oil fell 1.9 cents from a week ago to $3.43 per gallon. That's down 39 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $3.38 per gallon, down 2.6 cents from last week, and down 38.7

  17. Residential heating oil price decreases

    Energy Information Administration (EIA) (indexed site)

    7, 2014 Residential heating oil price decreases The average retail price for home heating oil fell 7.8 cents from a week ago to $3.14 per gallon. That's down 81.1 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $3.12 per gallon, down 6.5 cents from last week, and down 79.9

  18. Residential heating oil price increases

    Energy Information Administration (EIA) (indexed site)

    Residential heating oil price increases The average retail price for home heating oil rose 1.4 cents from a week ago to $2.38 per gallon. That's down 4.9 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region rose to $2.32 per gallon, up 3 cents from last week, and down 5.2 cents

  19. Residential heating oil prices available

    Energy Information Administration (EIA) (indexed site)

    Residential heating oil price increases The average retail price for home heating oil rose half of a cent from a week ago to $2.40 per gallon. That's down 2.6 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region rose to $2.33 per gallon, up 6-tenths of a cent from last week, and down 3.4

  20. Residential heating oil prices available

    Energy Information Administration (EIA) (indexed site)

    heating oil prices available The average retail price for home heating oil is $3.52 per gallon. That's down 32.7 cents from a year ago, based on the U.S. Energy Information Administration's weekly residential heating fuel price survey. Heating oil prices in the New England region are at $3.48 per gallon, down 29.1 cents from a year ago. This is Marcela Rourk, with EIA, in Washington

  1. Residential heating oil prices decline

    Energy Information Administration (EIA) (indexed site)

    heating oil price decreases The average retail price for home heating oil fell 2 cents from a week ago to $3.36 per gallon. That's down 52.5 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $3.31 per gallon, down 1.3 cents from last week, and down 52.6

  2. Residential heating oil prices decline

    Energy Information Administration (EIA) (indexed site)

    heating oil price decreases The average retail price for home heating oil fell 6.3 cents from a week ago to $3.08 per gallon. That's down 90.3 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $3.05 per gallon, down 6.8 cents from last week, and down 91.6

  3. Residential heating oil prices decline

    Energy Information Administration (EIA) (indexed site)

    2, 2014 Residential heating oil prices decline The average retail price for home heating oil is $3.48 per gallon. That's down 4.5 cents from a week ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region are at $3.43 per gallon, down 5.7 cents from last week. This is Amerine Woodyard

  4. Residential heating oil prices decrease

    Energy Information Administration (EIA) (indexed site)

    heating oil prices decrease The average retail price for home heating oil fell 1.7 cents from a week ago to $4.02 per gallon. That's up 1.7 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to 4.01 per gallon, down 6-tenths of a cent from last week, and up 5.8

  5. Residential heating oil prices decrease

    Energy Information Administration (EIA) (indexed site)

    9, 2014 Residential heating oil price decreases The average retail price for home heating oil fell 2.9 cents from a week ago to $3.45 per gallon. That's down 36.6 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $3.41 per gallon, down 3 cents from last week, and down 35

  6. Residential heating oil prices increase

    Energy Information Administration (EIA) (indexed site)

    heating oil prices increase The average retail price for home heating oil rose 5.4 cents from a week ago to $4.04 per gallon. That's up 4.9 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region rose to 4.02 per gallon, up 5.6 cents from last week, and up 8

  7. Residential heating oil prices increase

    Energy Information Administration (EIA) (indexed site)

    3, 2014 Residential heating oil prices increase The average retail price for home heating oil rose 4.4 cents from a week ago to $4.06 per gallon. That's up 4.1 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region rose to 4.03 per gallon, up 2.5 cents from last week, and up 6

  8. Residential heating oil prices increase

    Energy Information Administration (EIA) (indexed site)

    heating oil prices increase The average retail price for home heating oil rose 12 cents from a week ago to $4.18 per gallon. That's up 13 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region rose to 4.13 per gallon, up 9.8 cents from last week, and up 12.9 cents from a

  9. Residential heating oil prices increase

    Energy Information Administration (EIA) (indexed site)

    heating oil prices increase The average retail price for home heating oil rose 3.9 cents last week to $3.96 per gallon. That's down 2.6 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. The price for heating oil in the New England region averaged 3.92 per gallon, up 5.2 cents from last week, and 1.7

  10. Residential heating oil prices increase

    Energy Information Administration (EIA) (indexed site)

    heating oil prices increase The average retail price for home heating oil rose 2.9 cents from a week ago to $3.98 per gallon. That's up 6-tenths of a penny from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region rose to 3.96 per gallon, up 4.1 cents from last week, and up 4.8

  11. Reservoir Temperature Estimator

    Energy Science and Technology Software Center

    2014-12-08

    The Reservoir Temperature Estimator (RTEst) is a program that can be used to estimate deep geothermal reservoir temperature and chemical parameters such as CO2 fugacity based on the water chemistry of shallower, cooler reservoir fluids. This code uses the plugin features provided in The Geochemist’s Workbench (Bethke and Yeakel, 2011) and interfaces with the model-independent parameter estimation code Pest (Doherty, 2005) to provide for optimization of the estimated parameters based on the minimization of themore » weighted sum of squares of a set of saturation indexes from a user-provided mineral assemblage.« less

  12. STEO September 2012 - oil production

    Energy Information Administration (EIA) (indexed site)

    oil production forecast to rise almost 700,000 bpd this year, help cut U.S. petroleum imports U.S. crude oil production is expected to average 6.3 million barrels per day in 2012. That's up nearly 700,000 barrels per day from last year and the highest annual oil output since 1997 says the U.S. Energy Information Administration in its new monthly short-term energy outlook for September. EIA analyst Sam Gorgen explains: "Higher oil supplies, especially from North Dakota and Texas, boosted

  13. Brushing up on oil recovery

    SciTech Connect

    Mackey, J.

    1995-12-01

    To be prepared for a range of oil spills, emergency response organizations must have an arsenal of powerful and adaptable equipment. Around the coastal United States, a network of oil spill cooperatives and emergency response organizations stand ready with the technology and the know-how to respond to the first sign of an oil spill. When the telephone rings, they may be required to mop up 200 gallons of oil that leaked off the deck of a ship or to contain and skim 2,000 gallons of oil from a broken hose at a loading terminal. In a few cases each year, they may find themselves responding to a major pollution incident, one that involves hundreds of people and tons of equipment. To clean an oil spill at a New Jersey marine terminal, the local cooperative used the Lundin Oil Recovery Inc. (LORI) skimming system to separate the oil and water and the lift the oil out of the river. The LORI skimming technology is based on sound principles of fluid management - using the natural movement of water instead of trying to fight against it. A natural feeding mechanism delivers oily water through the separation process, and a simple mechanical separation and recovery device - a brush conveyor - removes the pollutants from the water.

  14. Oil cooled, hermetic refrigerant compressor

    DOEpatents

    English, William A.; Young, Robert R.

    1985-01-01

    A hermetic refrigerant compressor having an electric motor and compressor assembly in a hermetic shell is cooled by oil which is first cooled in an external cooler 18 and is then delivered through the shell to the top of the motor rotor 24 where most of it is flung radially outwardly within the confined space provided by the cap 50 which channels the flow of most of the oil around the top of the stator 26 and then out to a multiplicity of holes 52 to flow down to the sump and provide further cooling of the motor and compressor. Part of the oil descends internally of the motor to the annular chamber 58 to provide oil cooling of the lower part of the motor, with this oil exiting through vent hole 62 also to the sump. Suction gas with entrained oil and liquid refrigerant therein is delivered to an oil separator 68 from which the suction gas passes by a confined path in pipe 66 to the suction plenum 64 and the separated oil drops from the separator to the sump. By providing the oil cooling of the parts, the suction gas is not used for cooling purposes and accordingly increase in superheat is substantially avoided in the passage of the suction gas through the shell to the suction plenum 64.

  15. Oil cooled, hermetic refrigerant compressor

    DOEpatents

    English, W.A.; Young, R.R.

    1985-05-14

    A hermetic refrigerant compressor having an electric motor and compressor assembly in a hermetic shell is cooled by oil which is first cooled in an external cooler and is then delivered through the shell to the top of the motor rotor where most of it is flung radially outwardly within the confined space provided by the cap which channels the flow of most of the oil around the top of the stator and then out to a multiplicity of holes to flow down to the sump and provide further cooling of the motor and compressor. Part of the oil descends internally of the motor to the annular chamber to provide oil cooling of the lower part of the motor, with this oil exiting through vent hole also to the sump. Suction gas with entrained oil and liquid refrigerant therein is delivered to an oil separator from which the suction gas passes by a confined path in pipe to the suction plenum and the separated oil drops from the separator to the sump. By providing the oil cooling of the parts, the suction gas is not used for cooling purposes and accordingly increase in superheat is substantially avoided in the passage of the suction gas through the shell to the suction plenum. 3 figs.

  16. Solar retorting of oil shale

    DOEpatents

    Gregg, David W.

    1983-01-01

    An apparatus and method for retorting oil shale using solar radiation. Oil shale is introduced into a first retorting chamber having a solar focus zone. There the oil shale is exposed to solar radiation and rapidly brought to a predetermined retorting temperature. Once the shale has reached this temperature, it is removed from the solar focus zone and transferred to a second retorting chamber where it is heated. In a second chamber, the oil shale is maintained at the retorting temperature, without direct exposure to solar radiation, until the retorting is complete.

  17. Fuel Oil and Kerosene Sales

    Reports and Publications

    2015-01-01

    Provides information, illustrations and state-level statistical data on end-use sales of kerosene; No.1, No. 2, and No. 4 distillate fuel oil; and residual fuel oil. State-level kerosene sales include volumes for residential, commercial, industrial, farm, and all other uses. State-level distillate sales include volumes for residential, commercial, industrial, oil company, railroad, vessel bunkering, military, electric utility, farm, on-highway, off-highway construction, and other uses. State-level residual fuel sales include volumes for commercial, industrial, oil company, vessel bunkering, military, electric utility, and other uses.

  18. Heating Oil and Propane Update

    Gasoline and Diesel Fuel Update

    The Federal forms below are required for State Energy Officials participating in the State Heating Oil and Propane Program (SHOPP) to execute their cooperative agreements with the ...

  19. Heating Oil and Propane Update

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Holiday Release Schedule The Heating Oil and Propane Update is produced during the winter heating season, which extends from October through March of each year. The standard ...

  20. Oil market outlook and drivers

    Gasoline and Diesel Fuel Update

    Oil inventories in industrialized countries to reach record high at end of 2015 The amount of year-end oil inventories held in industrialized countries is expected to be the highest on record in 2015. In its monthly forecast, the U.S. Energy Information Administration said it expects commercial oil inventories in the United States and other industrialized countries to total 2.83 billion barrels at the end of this year almost 90 million barrels more than at the end of 2014. Global oil production

  1. Petroleum resources of Venezuela and Trinidad and Tobago

    SciTech Connect

    Not Available

    1983-07-01

    The status of known and ultimately recoverable crude oil and natural gas resources of the Federal Republics of Venezuela, and Trinidad and Tobago (hereafter referred to as Trinidad) is set forth in this report. The rates that oil resources may be available to world markets are also covered in the report. A section on the petroleum geology of the region is included. The Republics of Venezuela and Trinidad share a common and ancient petroleum history. Over a century of exploration and development have resulted in the cumulative production of nearly 39 billion barrels of oil from Venezuela and over 2 billion barrels from Trinidad. Both republics have passed their peak status as oil producers. Venezuela reached its peak as the second largest producer in the world in the mid-fifties, and Trinidad attained its highest status as the eighth largest oil producer in the early forties. The report concludes that Venezuela and Trinidad have depleted slightly less than one-half of their ultimately recoverable crude oil resources. Based on feasible production rates and estimates of remaining recoverable resources, nearly two-thirds of Venezuela's oil resources and about three-fourths of Trinidad's oil resources may be depleted by the year 2000. The natural gas resources of both countries are underutilized and underdeveloped.

  2. Processing of heavy oil utilizing the Aurabon process. Final report

    SciTech Connect

    Not Available

    1982-01-01

    This report contains estimates of the product yields and product properties from four separate, commercial-scale Aurabon heavy oil upgrading complexes capable of producing low-sulfur, hydrogen-rich products from various fractions of either a Venezuelan Boscan or a Canadian Lloydminster heavy oil feedstock. These estimates formed the basis for the development of the necessary process engineering work, including the general equipment specifications for the major equipment items included in each processing unit, required to determine cost and utilities estimates, construction labor requirements, and an estimated construction cost schedule for each of the four upgrading complexes. In addition to the above information, estimates of the yields and properties of the products produced during the upgrading of the heavy portion of the Aurabon product by both the hydrocracking and fluidized catalytic cracking processes are also included in this report. Consistent with the provisions of the executed contract for this work, those portions of the engineering work which were considered proprietary to UOP, including the heat and material balances, process flow diagrams, piping and instrument diagrams, and general equipment specifications developed for each process unit contained in the heavy oil upgrading facilities have not been included in this report. This report does, however, contain sufficient non-proprietary information to provide the reader with a general understanding of the Aurabon process and detailed information regarding the performance of the process when upgrading the two heavy oil feedstocks studied. UOP has allowed the consulting firms of Walk, Haydel and Associates of New Orleans, Louisiana and Texas Consultants, Inc. of Houston, Texas to review various portions of the engineering work developed by UOP under this contract. 1 reference, 13 figures, 22 tables.

  3. U.S. Department of Energy FreedomCAR & Vehicle Technologies Program: Oil Bypass Filter Technology Evaluation Seventh Quarterly Report April - June 2004

    SciTech Connect

    Larry Zirker; James Francfort; Jordan Fielding

    2004-08-01

    This Oil Bypass Filter Technology Evaluation quarterly report (April–June 2004) details the ongoing fleet evaluation of an oil bypass filter technology by the Idaho National Engineering and Environmental Laboratory (INEEL) for the U.S. Department of Energy’s (DOE) FreedomCAR & Vehicle Technologies Program. Eight INEEL four-cycle diesel engine buses used to transport INEEL employees on various routes and six INEEL Chevrolet Tahoes with gasoline engines are equipped with oil bypass filter systems from the puraDYN Corporation. The bypass filters are reported to have engine oil filtering capability of <1 micron and a built-in additive package to facilitate extended oil-drain intervals. This quarter, the eight diesel engine buses traveled 85,632 miles. As of the end of June 2004, the eight buses have accumulated 498,814 miles since the beginning of the test and 473,192 miles without an oil change. This represents an avoidance of 39 oil changes, which equates to 1,374 quarts (343 gallons) of new oil not consumed and, furthermore, 1,374 quarts of waste oil not generated. One bus had its oil changed due to the degraded quality of the engine oil. Also this quarter, the six Tahoe test vehicles traveled 48,193 miles; to date, the six Tahoes have accumulated 109,708 total test miles. The oil for all six of the Tahoes was changed this quarter due to low Total Base Numbers (TBN). The oil used initially in the Tahoe testing was recycled oil; the recycled oil has been replaced with Castrol virgin oil, and the testing was restarted. However, the six Tahoe’s did travel a total of 98,266 miles on the initial engine oil. This represents an avoidance of 26 oil changes, which equates to 130 quarts (32.5 gallons) of new oil not consumed and, consequently, 130 quarts of waste oil not generated. Based on the number of oil changes avoided by the test buses and Tahoes to date, the potential engine oil savings if an oil bypass filter system were used was estimated for the INEEL, DOE

  4. Implications of lifting the ban on the export of Alaskan crude oil

    SciTech Connect

    Not Available

    1990-03-26

    Present legislation effectively bans the export of crude oil produced in the United States. The ban has been in effect for years and is particularly stringent with respect to crude oil produced in Alaska, particularly on the North Slope. The Alaska crude export ban is specifically provided for in the Trans-Alaska Pipeline Authorization Act of 1973 and in other legislation. It was imposed for two reasons. The first was to reduce US dependence on imported crude oil. The Arab oil embargo had been imposed shortly before the Act was passed and a greater measure of energy independence was considered imperative at that time. The second reason was to assure that funds expended in building an Alaskan pipeline would benefit domestic users rather than simply employed to facilitate shipments to other countries. The main objective of this report is to estimate the potential impacts on crude oil prices that would result from lifting the export ban Alaskan crude oil. The report focuses on the Japanese market and the US West Coast market. Japan is the principal potential export market for Alaskan crude oil. Exports to that market would also affect the price of Alaskan crude oil as well as crude oil and product prices on the West Coast and the volume of petroleum imported in that area. 3 figs., 8 tabs.

  5. heavy_oil | netl.doe.gov

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Much of America's heavy oil is produced via a costly steam injection enhanced oil recovery (EOR) method to produce a crude oil grade that is lower in quality and thus sells for ...

  6. ,"U.S. Crude Oil Imports"

    Energy Information Administration (EIA) (indexed site)

    ... Imports from Ghana of Crude Oil (Thousand Barrels per Day)","U.S. Imports from Guatemala of Crude Oil (Thousand Barrels per Day)","U.S. Imports from Guinea of Crude Oil ...

  7. ,"U.S. Crude Oil Imports"

    Energy Information Administration (EIA) (indexed site)

    ... Imports from Ghana of Crude Oil (Thousand Barrels)","U.S. Imports from Guatemala of Crude Oil (Thousand Barrels)","U.S. Imports from Guinea of Crude Oil (Thousand ...

  8. Oman Oil Company | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Oil Company (S.A.O.C.) Name: Oman Oil Company (S.A.O.C.) Place: Muscat, Oman Product: Oil exploration and production Year Founded: 1966 Phone Number: + 968 - 2457 3100 Website:...

  9. Compare All CBECS Activities: Fuel Oil Use

    Gasoline and Diesel Fuel Update

    Fuel Oil Use Compare Activities by ... Fuel Oil Use Total Fuel Oil Consumption by Building Type Commercial buildings in the U.S. used a total of approximately 1.3 billion gallons...

  10. ,"U.S. Crude Oil Imports"

    Energy Information Administration (EIA) (indexed site)

    ... Imports from Oman of Crude Oil (Thousand Barrels)","U.S. Imports from Papua New Guinea of Crude Oil (Thousand Barrels)","U.S. Imports from Peru of Crude Oil (Thousand ...

  11. heavy_oil | netl.doe.gov

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Heavy Oil Heavy oil is a vast U.S. oil resource that is underexploited because its highly viscous nature renders it difficult to produce and to refine. As higher-gravity crudes ...

  12. Iran Oil and Gas | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Iran Oil and Gas Jump to: navigation, search Logo: Iran Oil and Gas Name: Iran Oil and Gas Address: Unit 16, 3rd Fl., Bldg. No. 2, 9th Narenjestan St., North Pasdaran Ave. Place:...

  13. Upgrading residual oil

    SciTech Connect

    Angevine, P.J.; Stein, T.R.

    1982-04-13

    Residual oil fractions are upgraded in that Conradson Carbon Residue (CCR) is selectively removed without undue hydrogen consumption by hydroprocessing with a catalyst comprising a single metal such as molybdenum, tungsten, nickel, iron or palladium or multimetallic combination of such metals, excluding, however, active desulfurization compositions such as nickel molybdenum and nickel-tungsten. Said catalyst is characterized as having greater than about 50% of its pore volume contribution in pores having diameters in the range of between about 100 and 200 angstroms. The product of such hydroprocessing is a particularly preferable feedstock for coking to give more liquid yield and less coke make.

  14. Estimating Specialty Costs

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    1997-03-28

    Specialty costs are those nonstandard, unusual costs that are not typically estimated. Costs for research and development (R&D) projects involving new technologies, costs associated with future regulations, and specialty equipment costs are examples of specialty costs. This chapter discusses those factors that are significant contributors to project specialty costs and methods of estimating costs for specialty projects.

  15. US crude oil, natural gas, and natural gas liquids reserves 1996 annual report

    SciTech Connect

    1997-12-01

    The EIA annual reserves report series is the only source of comprehensive domestic proved reserves estimates. This publication is used by the Congress, Federal and State agencies, industry, and other interested parties to obtain accurate estimates of the Nation`s proved reserves of crude oil, natural gas, and natural gas liquids. These data are essential to the development, implementation, and evaluation of energy policy and legislation. This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1996, as well as production volumes for the US and selected States and State subdivisions for the year 1996. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1996 is provided. 21 figs., 16 tabs.

  16. U.S. crude oil, natural gas, and natural gas liquids reserves 1995 annual report

    SciTech Connect

    1996-11-01

    The EIA annual reserves report series is the only source of comprehensive domestic proved reserves estimates. This publication is used by the Congress, Federal and State agencies, industry, and other interested parties to obtain accurate estimates of the Nation`s proved reserves of crude oil, natural gas, and natural gas liquids. These data are essential to the development, implementation, and evaluation of energy policy and legislation. This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1995, as well as production volumes for the US and selected States and State subdivisions for the year 1995. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1995 is provided. 21 figs., 16 tabs.

  17. Enhanced Oil Recovery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Enhanced Oil Recovery Enhanced Oil Recovery Cross-section illustrating how carbon dioxide and water can be used to flush residual oil from a subsurface rock formation between wells. Cross-section illustrating how carbon dioxide and water can be used to flush residual oil from a subsurface rock formation between wells. Crude oil development and production in U.S. oil reservoirs can include up to three distinct phases: primary, secondary, and tertiary (or enhanced) recovery. During primary

  18. Distillate Fuel Oil Sales for Residential Use

    Energy Information Administration (EIA) (indexed site)

    End Use/ Product: Residential - Distillate Fuel Oil Residential - No. 1 Residential - No. 2 Residential - Kerosene Commercial - Distillate Fuel Oil Commercial - No. 1 Distillate Commercial - No. 2 Distillate Commercial - No. 2 Fuel Oil Commercial - Ultra Low Sulfur Diesel Commercial - Low Sulfur Diesel Commercial - High Sulfur Diesel Commercial - No. 4 Fuel Oil Commercial - Residual Fuel Oil Commercial - Kerosene Industrial - Distillate Fuel Oil Industrial - No. 1 Distillate Industrial - No. 2

  19. US crude oil, natural gas, and natural gas liquids reserves, 1992 annual report

    SciTech Connect

    Not Available

    1993-10-18

    This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1992, as well as production volumes for the United States, and selected States and State subdivisions for the year 1992. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), its two major components (nonassociated and associated-dissolved gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, two components of natural gas liquids, lease condensate and natural gas plant liquids, have their reserves and production data presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1992 is provided.

  20. Accounting for Depletion of Oil and Gas Resources in Malaysia

    SciTech Connect

    Othman, Jamal Jafari, Yaghoob

    2012-12-15

    Since oil and gas are non-renewable resources, it is important to identify the extent to which they have been depleted. Such information will contribute to the formulation and evaluation of appropriate sustainable development policies. This paper provides an assessment of the changes in the availability of oil and gas resources in Malaysia by first compiling the physical balance sheet for the period 2000-2007, and then assessing the monetary balance sheets for the said resource by using the Net Present Value method. Our findings show serious reduction in the value of oil reserves from 2001 to 2005, due to changes in crude oil prices, and thereafter the depletion rates decreased. In the context of sustainable development planning, albeit in the weak sustainability sense, it will be important to ascertain if sufficient reinvestments of the estimated resource rents in related or alternative capitals are being attempted by Malaysia. For the study period, the cumulative resource rents were to the tune of RM61 billion. Through a depletion or resource rents policy, the estimated quantum may guide the identification of a reinvestment threshold (after considering needed capital investment for future development of the industry) in light of ensuring the future productive capacity of the economy at the time when the resource is exhausted.

  1. Gulf of Mexico Federal Offshore - Louisiana and Alabama Crude Oil + Lease

    Energy Information Administration (EIA) (indexed site)

    Condensate Estimated Production from Reserves (Million Barrels) Estimated Production from Reserves (Million Barrels) Gulf of Mexico Federal Offshore - Louisiana and Alabama Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 522 2010's 518 432 387 398 449 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  2. Petroleum industry in Illinois, 1984. Oil and gas developments. Waterflood operations

    SciTech Connect

    Van Den Berg, J.; Treworgy, J.D.; Elyn, J.R.

    1986-01-01

    The report includes statistical information regarding the petroleum industry in Illinois during 1984. Illinois produced 28,873,000 barrels of crude oil in 1984. The value of this crude is estimated to be $830 million. New test holes drilled for oil and gas numbered 2732 - 4.1% more than in 1983. These tests resulted in 1575 oil wells, 21 gas wells, and 1136 dry holes. In addition, 28 former dry holes were reworked or deepened and completed as producers, and 9 former producers were reworked or deepened and completed as producers in new pay zones. In oil and gas exploration and development, including service wells and structure tests, total footage drilled in 1984 was 6,868,485 feet, 5.5% more than in 1983. Ten oil fields, 50 new pay zones in fields, and 51 extensions to fields were discovered in 1984.

  3. Petroleum geology of Giant oil and gas fields in Turpan Basin Xinjiang China

    SciTech Connect

    Boliang, Hu; Jiajing, Yang,

    1995-08-01

    Turpan Basin is the smallest and the last development basin in three big basins of Xinjiang autonomous region, P.R. China. Since April, 1989, the Shanshan oilfield was discovered, the Oinling, Wenjisang, Midang, Baka, Qiudong and North Putaogou fields were discovered. In 1994, the crude oil productivity of Turpan Basin was a Million tons, with an estimated output of 3 million tons per year by 1995; obviously a key oil productive base in the west basins of China, Tarim, Jungar, Chaidam, Hexi, Erduos and Sichuan Basins. The Turpan Basin is an intermontane basin in a eugeosyncline foldbelt of the north Tianshan Mountains. The oil and gas was produced from the payzone of the Xishanyao, Sanjianfang and Qiketai Formatiosn of the Middle Jurassic series. The geochemical characteristics of the crude oil and gas indicate they derive from the Middle to Lower Jurassic coal series, in which contains the best oil-prone source rocks in the basin.

  4. The impacts on U.S. energy markets and the economy of reducing oil imports. Service report

    SciTech Connect

    1996-09-01

    The General Accounting Office (GAO) has responded to a request from Representative John Kasich by requesting that the Energy Information Administration (EIA) use the National Energy Modeling System (NEMS) to estimate the cost to the U.S. economy of reducing oil imports. The analysis summarized by this paper focuses on two approaches toward a target reduction in oil imports: (1) a set of cases with alternative world crude oil price trajectories, and (2) two cases which investigates the use of an oil import fee.

  5. Oil & Gas Research | Department of Energy

    Energy Saver

    DOE is conducting groundbreaking research to unlock the energy potential of gas hydrates. Read more Unconventional Oil and Natural Gas Unconventional Oil and Natural Gas DOE ...

  6. ,"Total Crude Oil and Petroleum Products Exports"

    Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","Total Crude Oil and Petroleum Products ... "Back to Contents","Data 1: Total Crude Oil and Petroleum Products Exports" ...

  7. Biomass Derivatives Competitive with Heating Oil Costs.

    Energy Saver

    Biomass Derivatives Competitive with Heating Oil Costs Transportation fuel Heat or electricity * Data are from literature, except heating oil is adjusted from 2011 winter average * ...

  8. SciTech Connect: "oil shale"

    Office of Scientific and Technical Information (OSTI)

    oil shale" Find + Advanced Search Term Search Semantic Search Advanced Search All Fields: "oil shale" Semantic Semantic Term Title: Full Text: Bibliographic Data: Creator ...

  9. Oil and Gas Gateway | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    States, oil and gas boards and commissions are the place for finding data related to oil and gas activities. These activities include well records, permitting, and production...

  10. Oil and Gas Research| GE Global Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Oil & Gas We're balancing the increasing demand for finite resources with technology that ensures access to energy for generations to come. Home > Innovation > Oil & Gas ...

  11. Modeling a set of heavy oil aqueous pyrolysis experiments

    SciTech Connect

    Thorsness, C.B.; Reynolds, J.G.

    1996-11-01

    Aqueous pyrolysis experiments, aimed at mild upgrading of heavy oil, were analyzed using various computer models. The primary focus of the analysis was the pressure history of the closed autoclave reactors obtained during the heating of the autoclave to desired reaction temperatures. The models used included a means of estimating nonideal behavior of primary components with regard to vapor liquid equilibrium. The modeling indicated that to match measured autoclave pressures, which often were well below the vapor pressure of water at a given temperature, it was necessary to incorporate water solubility in the oil phase and an activity model for the water in the oil phase which reduced its fugacity below that of pure water. Analysis also indicated that the mild to moderate upgrading of the oil which occurred in experiments that reached 400{degrees}C or more using a FE(III) 2-ethylhexanoate could be reasonably well characterized by a simple first order rate constant of 1.7xl0{sup 8} exp(-20000/T)s{sup {minus}l}. Both gas production and API gravity increase were characterized by this rate constant. Models were able to match the complete pressure history of the autoclave experiments fairly well with relatively simple equilibria models. However, a consistent lower than measured buildup in pressure at peak temperatures was noted in the model calculations. This phenomena was tentatively attributed to an increase in the amount of water entering the vapor phase caused by a change in its activity in the oil phase.

  12. Seismic properties of a Venezuelan heavy oil in water emulsion

    SciTech Connect

    Maldonado, F.; Liu, Y.; Mavko, G.; Mukerji, T.

    1996-08-01

    Several procedures for the production of low-viscosity, surfactant-stabilized, easy-transportable dispersions of heavy crude oil in water-briefly, oil in water (or o/w) emulsions - have been recently patented. Some of them propose to form the o/w emulsion in the reservoir, after the injection of a mixture of water and surfactants, increasing significantly the per well daily production. Progression of the o/w emulsion front, through the reservoir to the production wells, can be monitored in seismic planar slices with successive 3D seismic surveys (413 seismic), if enough contrast exists between the seismic velocity value of the o/w emulsion and the one of the oil in place. To facilitate the analysis of the contrast, this study presents high frequency acoustic velocity measurements performed in the laboratory. The experimental setup includes two reflectors and an ultrasonic transducer with double burst train emission. The estimated velocity precision is 0.02%. The measured samples are: a Venezuelan heavy o/w emulsion, a mixture of the same heavy oil and gasoil and a saturated sandstone core containing the o/w emulsion. Additionally, seismic velocities of the actual pore fluids - live oil and five o/w emulsion - and saturated sandstone are calculated using the above laboratory measurements, Wood`s equation, and Gassman`s and Biot`s models.

  13. Measuring Dependence on Imported Oil

    Reports and Publications

    1995-01-01

    U.S. dependence on imported oil can be measured in at least two ways. The differences hinge largely on whether oil imports are defined as net imports (total imports minus exports) or as total imports. EIA introduces a revised table that expresses dependence on imports in terms of both measures.

  14. Conversion of heavy hydrocarbon oils

    SciTech Connect

    Chen, N.Y.; Pelrine, B.P.; Yan, T.Y.

    1982-12-14

    This invention provides a process for upgrading a heavy hydrocarbon oil to motor fuel products. The heavy hydrocarbon oil is admixed with a metal halide catalyst and a solvent component under supercritical conditions to form (1) a dense-gas solvent phase which contains refined hydrocarbon crackate, and which is substantially free of metal halide catalyst content; and (2) a residual asphaltic phase.

  15. Fluidized-bed retorting of Colorado oil shale: Topical report. [None

    SciTech Connect

    Albulescu, P.; Mazzella, G.

    1987-06-01

    In support of the research program in converting oil shale into useful forms of energy, the US Department of Energy is developing systems models of oil shale processing plants. These models will be used to project the most attractive combination of process alternatives and identify future direction for R and D efforts. With the objective of providing technical and economic input for such systems models, Foster Wheeler was contracted to develop conceptual designs and cost estimates for commercial scale processing plants to produce syncrude from oil shales via various routes. This topical report summarizes the conceptual design of an integrated oil shale processing plant based on fluidized bed retorting of Colorado oil shale. The plant has a nominal capacity of 50,000 barrels per operating day of syncrude product, derived from oil shale feed having a Fischer Assay of 30 gallons per ton. The scope of the plant encompasses a grassroots facility which receives run of the mine oil shale, delivers product oil to storage, and disposes of the processed spent shale. In addition to oil shale feed, the battery limits input includes raw water, electric power, and natural gas to support plant operations. Design of the individual processing units was based on non-confidential information derived from published literature sources and supplemented by input from selected process licensors. The integrated plant design is described in terms of the individual process units and plant support systems. The estimated total plant investment is similarly detailed by plant section and an estimate of the annual operating requirements and costs is provided. In addition, the process design assumptions and uncertainties are documented and recommendations for process alternatives, which could improve the overall plant economics, are discussed.

  16. 9000 wells planned for heavy oil field. [Canada

    SciTech Connect

    Not Available

    1981-05-01

    Beginning in 1983, Esso Resources Canada Ltd. will begin drilling the first of an estimated 9000 directional crude bitumen wells in the tar sands at Cold Lake, Alberta, Canada, the final wells being drilled in the year 2008. The area, covering 50 sq miles of extreme E. Alberta along the Saskatchewan border, contains one of the richest deposits of heavy oil sands in Canada. The company and future partners will drill the bitumen wells directionally into the shallow clearwater formation, which can be reached at approx. 100 m (330 ft). The formation contains an estimated 80 billion bbl of crude bitumen at a rate of 60,000 bpd for 25 yr. This volume of crude will be refined in an upgrading plant to 140,000 bpd of synthetic crude oil. When completed, the Cold Lake project will be one of the largest facilities for producing crude bitumen from wells in the world.

  17. Heavy oil transportation by pipeline

    SciTech Connect

    Gerez, J.M.; Pick, A.R.

    1996-12-31

    Worldwide there are a number of pipelines used to transport heavy crude oils. The operations are facilitated in a variety of ways. For example, the Alyeska pipeline is an insulated pipeline transporting warm oil over 800 miles. This 48-inch line experiences limited heat loss due to the insulation, volume of oil contained, and heat gain due to friction and pumping. Some European trunk lines periodically handle heavy and waxy crudes. This is achieved by proper sizing of batches, following waxy crudes with non-waxy crudes, and increased use of scrapers. In a former Soviet republic, the transportation of heavy crude oil by pipeline has been facilitated by blending with a lighter Siberian crude. The paper describes the pipeline transport of heavy crudes by Interprovincial Pipe Line Inc. The paper describes enhancing heavy oil transportation by emulsion formation, droplet suspension, dilution, drag reducing agents, and heating.

  18. Process for oil shale retorting

    DOEpatents

    Jones, John B.; Kunchal, S. Kumar

    1981-10-27

    Particulate oil shale is subjected to a pyrolysis with a hot, non-oxygenous gas in a pyrolysis vessel, with the products of the pyrolysis of the shale contained kerogen being withdrawn as an entrained mist of shale oil droplets in a gas for a separation of the liquid from the gas. Hot retorted shale withdrawn from the pyrolysis vessel is treated in a separate container with an oxygenous gas so as to provide combustion of residual carbon retained on the shale, producing a high temperature gas for the production of some steam and for heating the non-oxygenous gas used in the oil shale retorting process in the first vessel. The net energy recovery includes essentially complete recovery of the organic hydrocarbon material in the oil shale as a liquid shale oil, a high BTU gas, and high temperature steam.

  19. DOE - Fossil Energy: Squeezing Oil Out of Rock

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    2-Squeezing Out Oil An Energy Lesson Looking Down an Oil Well Looking Down an Oil Well Squeezing Oil out of Rocks Imagine trying to force oil through a rock. Can't be done, you ...

  20. Fuel oil quality task force

    SciTech Connect

    Laisy, J.; Turk, V.

    1997-09-01

    In April, 1996, the R.W. Beckett Corporation became aware of a series of apparently unrelated symptoms that made the leadership of the company concerned that there could be a fuel oil quality problem. A task force of company employees and industry consultants was convened to address the topic of current No. 2 heating oil quality and its effect on burner performance. The task force studied changes in fuel oil specifications and trends in properties that have occurred over the past few years. Experiments were performed at Beckett and Brookhaven National Laboratory to understand the effect of changes in some fuel oil properties. Studies by other groups were reviewed, and field installations were inspected to gain information about the performance of fuel oil that is currently being used in the U.S. and Canada. There was a special concern about the use of red dye in heating oils and the impact of sulfur levels due to the October, 1993 requirement of low sulfur (<0.05%) for on-highway diesel fuel. The results of the task force`s efforts were published in July, 1996. The primary conclusion of the task force was that there is not a crisis or widespread general problem with fuel oil quality. Localized problems that were seen may have been related to refinery practices and/or non-traditional fuel sources. System cleanliness is very important and the cause of many oil burner system problems. Finally, heating oil quality should get ongoing careful attention by Beckett engineering personnel and heating oil industry groups.

  1. RESEARCH OIL RECOVERY MECHANISMS IN HEAVY OIL RESERVOIRS

    SciTech Connect

    Anthony R. Kovscek; William E. Brigham

    1999-06-01

    The United States continues to rely heavily on petroleum fossil fuels as a primary energy source, while domestic reserves dwindle. However, so-called heavy oil (10 to 20{sup o}API) remains an underutilized resource of tremendous potential. Heavy oils are much more viscous than conventional oils. As a result, they are difficult to produce with conventional recovery methods such as pressure depletion and water injection. Thermal recovery is especially important for this class of reservoirs because adding heat, usually via steam injection, generally reduces oil viscosity dramatically. This improves displacement efficiency. The research described here was directed toward improved understanding of thermal and heavy-oil production mechanisms and is categorized into: (1) flow and rock properties; (2) in-situ combustion; (3) additives to improve mobility control; (4) reservoir definition; and (5) support services. The scope of activities extended over a three-year period. Significant work was accomplished in the area of flow properties of steam, water, and oil in consolidated and unconsolidated porous media, transport in fractured porous media, foam generation and flow in homogeneous and heterogeneous porous media, the effects of displacement pattern geometry and mobility ratio on oil recovery, and analytical representation of water influx. Significant results are described.

  2. Oil Stop Valve : Oil Spill Containment Research and Development Project.

    SciTech Connect

    Bourn, Robert D.

    1982-07-01

    This report summarizes the research and development project conducted by the Civil Engineering Section, Division of Substation and Control Engineering, to determine the effectiveness of the oil stop valve for use in the Bonneville Power Administration's Oil Spill Containment and Countermeasure Program. The most attractive alternative to lagoons and separator tanks was found in the oil stop valve manufactured by AFL/Clark Industries of Riviera Beach, Florida. This small, direct-acting and relatively inexpensive valve requires little maintenance and can either be employed independently, using existing drain lines for effluent storage, or in conjunction with oil separator tanks and lagoon systems. The AFL/Clark valve requires no power and has only one moving part, a ballasted float having a specific gravity between that of oil and water. In water, the float rides above the throat of the discharge pipe allowing water to flow out. When oil enters the water the float begins losing its relative bouyancy and sinks until it seats itself over the throat of the outlet, closing the valve. Usually installed in a manhole within a typical storm drainage system, the valve backs spilled oil into drainways and contains it for temporary storage within the switchyard.

  3. DOE to Purchase Heating Oil for the Northeast Home Heating Oil Reserve |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Purchase Heating Oil for the Northeast Home Heating Oil Reserve DOE to Purchase Heating Oil for the Northeast Home Heating Oil Reserve June 23, 2008 - 1:29pm Addthis WASHINGTON, DC -The U.S. Department of Energy (DOE) today issued a solicitation seeking to purchase heating oil for the Northeast Home Heating Oil Reserve (NEHHOR) using $3 million in appropriated funds. The Northeast Home Heating Oil Reserve provides an important safety cushion for millions of Americans

  4. Decline in U.S. oil production wont be as steep

    Energy Information Administration (EIA) (indexed site)

    Decline in U.S. oil production won't be as steep Although total U.S. crude oil production is expected to continue declining, the drop in output this year and in 2017 won't be as steep, because of improved efficiency at drilling rigs and more drilling overall. In its new monthly forecast, the U.S. Energy Information Administration revised up its estimate for domestic daily oil output for this year by about 100,000 barrels to 8.8 million barrels per day. Daily production for next year was given a

  5. U.S. oil production forecast revised up for 2016 and 2017

    Energy Information Administration (EIA) (indexed site)

    oil production forecast revised up for 2016 and 2017 U.S. crude oil production is expected to be higher this year and in 2017 than previously forecast, because of a slower decline in onshore production. In its new monthly forecast, the U.S. Energy Information Administration revised up its estimate for domestic oil production by about 110,000 barrels per day for 2016 and by 150,000 barrels per day next year. EIA said increased drilling activity in the Permian Basin area located in West Texas and

  6. Internal Revenue Service, Section 6166, and oil and gas: legislation by interpretation

    SciTech Connect

    Choate, G.M.; Massoglia, D.J.

    1983-06-01

    The importance of adequate estate planning regarding oil and gas properties has increased with the rise in world oil prices. The Internal Revenue Code, Sections 6166 and 6166A, which permit a deferment of estate tax payments by taxing future business earnings instead, inadvertently prohibits the estates of those who were actively engaged in the oil and gas industry as sole proprietors. Legislative reform is deemed to be necessary in order to allow Congress' original intentions to be realized. The background of the Code is discussed as well as the qualifications necessary in the IRS' estimation of electing those eligible for deferments. 25 references.

  7. Cost Estimating Guide

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    2011-05-09

    This Guide provides uniform guidance and best practices that describe the methods and procedures that could be used in all programs and projects at DOE for preparing cost estimates. No cancellations.

  8. Cost Estimating Guide

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    2011-05-09

    This Guide provides uniform guidance and best practices that describe the methods and procedures that could be used in all programs and projects at DOE for preparing cost estimates.

  9. Cost Estimating Guide

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    1997-03-28

    The objective of this Guide is to improve the quality of cost estimates and further strengthen the DOE program/project management system. The original 25 separate chapters and three appendices have been combined to create a single document.

  10. Derived Annual Estimates

    Energy Information Administration (EIA) (indexed site)

    74-1988 For Methodology Concerning the Derived Estimates Total Consumption of Offsite-Produced Energy for Heat and Power by Industry Group, 1974-1988 Total Energy *** Electricity...

  11. Independent Cost Estimate (ICE)

    Energy.gov [DOE]

    Independent Cost Estimate (ICE). On August 8-12, the Office of Project Management Oversight and Assessments (PM) will conduct an ICE on the NNSA Albuquerque Complex Project (NACP) at Albuquerque, NM. This estimate will support the Critical Decision (CD) for establishing the performance baseline and approval to start construction (CD-2/3). This project is at CD-1, with a total project cost range of $183M to $251M.

  12. Water issues associated with heavy oil production.

    SciTech Connect

    Veil, J. A.; Quinn, J. J.; Environmental Science Division

    2008-11-28

    Crude oil occurs in many different forms throughout the world. An important characteristic of crude oil that affects the ease with which it can be produced is its density and viscosity. Lighter crude oil typically can be produced more easily and at lower cost than heavier crude oil. Historically, much of the nation's oil supply came from domestic or international light or medium crude oil sources. California's extensive heavy oil production for more than a century is a notable exception. Oil and gas companies are actively looking toward heavier crude oil sources to help meet demands and to take advantage of large heavy oil reserves located in North and South America. Heavy oil includes very viscous oil resources like those found in some fields in California and Venezuela, oil shale, and tar sands (called oil sands in Canada). These are described in more detail in the next chapter. Water is integrally associated with conventional oil production. Produced water is the largest byproduct associated with oil production. The cost of managing large volumes of produced water is an important component of the overall cost of producing oil. Most mature oil fields rely on injected water to maintain formation pressure during production. The processes involved with heavy oil production often require external water supplies for steam generation, washing, and other steps. While some heavy oil processes generate produced water, others generate different types of industrial wastewater. Management and disposition of the wastewater presents challenges and costs for the operators. This report describes water requirements relating to heavy oil production and potential sources for that water. The report also describes how water is used and the resulting water quality impacts associated with heavy oil production.

  13. Enhanced oil recovery system

    DOEpatents

    Goldsberry, Fred L.

    1989-01-01

    All energy resources available from a geopressured geothermal reservoir are used for the production of pipeline quality gas using a high pressure separator/heat exchanger and a membrane separator, and recovering waste gas from both the membrane separator and a low pressure separator in tandem with the high pressure separator for use in enhanced oil recovery, or in powering a gas engine and turbine set. Liquid hydrocarbons are skimmed off the top of geothermal brine in the low pressure separator. High pressure brine from the geothermal well is used to drive a turbine/generator set before recovering waste gas in the first separator. Another turbine/generator set is provided in a supercritical binary power plant that uses propane as a working fluid in a closed cycle, and uses exhaust heat from the combustion engine and geothermal energy of the brine in the separator/heat exchanger to heat the propane.

  14. Oil field management system

    DOEpatents

    Fincke, James R.

    2003-09-23

    Oil field management systems and methods for managing operation of one or more wells producing a high void fraction multiphase flow. The system includes a differential pressure flow meter which samples pressure readings at various points of interest throughout the system and uses pressure differentials derived from the pressure readings to determine gas and liquid phase mass flow rates of the high void fraction multiphase flow. One or both of the gas and liquid phase mass flow rates are then compared with predetermined criteria. In the event such mass flow rates satisfy the predetermined criteria, a well control system implements a correlating adjustment action respecting the multiphase flow. In this way, various parameters regarding the high void fraction multiphase flow are used as control inputs to the well control system and thus facilitate management of well operations.

  15. HDH{trademark} commercial application

    SciTech Connect

    Marzin, R.; Solari, B.; Duque, J.

    1995-12-31

    Venezuela has approximately 28% of the world reserves of heavy crude oil and natural bitumen. The amount of future recoverable oil reserves is estimated to be 44 GM{sup 3}. The Venezuelan oil industry is now facing the challenge of introducing this cheap source of energy into a fuel market that has grown in environmentally restrictive legislation affecting the refining industry. This challenge calls for the use of the right type of resid upgrading technology, that both will improve its environmental performance and ensure its economic and financial viability. This paper describes two technologies to reduce high sulfur fuel oil production while incorporating more heavy crude into refineries.

  16. International oil companies in the Far East

    SciTech Connect

    Mlotok, P.

    1984-10-01

    All of the major international oil companies have extensive operations in the Far East, and in most cases, these operations account for a significant part of their worldwide earnings. In the refining and marketing end of the business, near-term profitability could be hampered by problems in the Singapore refining center. An expansion of Indonesian refining capacity has reduced profits from processing arrangements, and new Saudi product exports will enter Singapore starting this year. Longer term, however, the strong economic growth in the region renders it a highly attractive area in which to operate. On the producing end, rising output will boost profits for the international oil companies in Indonesia and Malaysia. Caltex (a 50/50 joint venture between Chevron and Texaco) is one of the largest marketers in the Far East. It will not initially be affected greatly by the Singapore refinery problem, as its production from this area goes directly into its own marketing system rather than into the open market. Exxon is a medium-size marketer with especially strong positions in Japan, Malaysia and Thailand. However, the company could be vulnerable to near-term problems in Singapore. Mobil, another medium-size marketer, has a very strong position in Japan but problems in Australia. As those problems are corrected, earnings should grow over time. The Royal Dutch Shell Group is one of the largest marketers in the Far East, with good positions in Singapore, Malaysia and Australia. Shell will have difficulty adjusting to the changing conditions in Singapore, but once this is complete, downstream earnings growth should resume. British Petroleum (BP) has a smaller upstream and downstream presence than the other international oils. Estimated 1983 Far East earnings are tabulated for these five companies. 5 figures.

  17. Oil shale combustion/retorting

    SciTech Connect

    Not Available

    1983-05-01

    The Morgantown Energy Technology Center (METC) conducted a number of feasibility studies on the combustion and retorting of five oil shales: Celina (Tennessee), Colorado, Israeli, Moroccan, and Sunbury (Kentucky). These studies generated technical data primarily on (1) the effects of retorting conditions, (2) the combustion characteristics applicable to developing an optimum process design technology, and (3) establishing a data base applicable to oil shales worldwide. During the research program, METC applied the versatile fluidized-bed process to combustion and retorting of various low-grade oil shales. Based on METC's research findings and other published information, fluidized-bed processes were found to offer highly attractive methods to maximize the heat recovery and yield of quality oil from oil shale. The principal reasons are the fluidized-bed's capacity for (1) high in-bed heat transfer rates, (2) large solid throughput, and (3) selectivity in aromatic-hydrocarbon formation. The METC research program showed that shale-oil yields were affected by the process parameters of retorting temperature, residence time, shale particle size, fluidization gas velocity, and gas composition. (Preferred values of yields, of course, may differ among major oil shales.) 12 references, 15 figures, 8 tables.

  18. Comparative dermotoxicity of shale oils

    SciTech Connect

    Holland, L.M.; Wilson, J.S.; Foreman, M.E.

    1980-01-01

    When shale oils are applied at higher dose levels the standard observation of tumor production and latency are often obscured by a severe inflammatory response leading to epidermal degeneration. The two experiments reported here are still in progress, however the interim results are useful in assessing both the phlogistic and tumorigenic properties of three shale oils. Three shale oils were tested in these experiments. The first crude oil (OCSO No. 6) was produced in a modified in situ report at Occidental Oil Company's Logan Wash site near Debeque, Colorado. The second crude oil (PCSO II) was produced in the above ground Paraho vertical-kiln retort located at Anvil Points near Rifle, Colorado and the third oil was the hydrotreated daughter product of the Paraho crude (PCSO-UP). Experiment I was designed to determine the highest dose level at which tumor latency could be measured without interference from epidermal degeneration. Experiment II was designed to determine the effect of application frequency on both tumor response and inflammatory phenomena. Complete epidermal degeneration was used as the only measure of severe inflammation. Relative tumorigenicity was based on the number of tumor bearing mice without regard to multiple tumors on individual animals. In both experiments, tumor occurrence was confirmed one week after initial appearance. The sex-related difference in inflammatory response is striking and certanly has significance for experimental design. An increased phlogistic sensitivity expressed in male mice could affect the meaning of an experiment where only one sex was used.

  19. Correlations estimate volume distilled using gravity, boiling point

    SciTech Connect

    Moreno, A.; Consuelo Perez de Alba, M. del; Manriquez, L.; Guardia Mendoz, P. de la

    1995-10-23

    Mathematical nd graphic correlations have been developed for estimating cumulative volume distilled as a function of crude API gravity and true boiling point (TBP). The correlations can be used for crudes with gravities of 21--34{degree} API and boiling points of 150--540 C. In distillation predictions for several mexican and Iraqi crude oils, the correlations have exhibited accuracy comparable to that of laboratory measurements. The paper discusses the need for such a correlation and the testing of the correlation.

  20. A stochastic approach to quantifying the blur with uncertainty estimation for high-energy X-ray imaging systems

    DOE PAGES [OSTI]

    Fowler, Michael J.; Howard, Marylesa; Luttman, Aaron; Mitchell, Stephen E.; Webb, Timothy J.

    2015-06-03

    One of the primary causes of blur in a high-energy X-ray imaging system is the shape and extent of the radiation source, or ‘spot’. It is important to be able to quantify the size of the spot as it provides a lower bound on the recoverable resolution for a radiograph, and penumbral imaging methods – which involve the analysis of blur caused by a structured aperture – can be used to obtain the spot’s spatial profile. We present a Bayesian approach for estimating the spot shape that, unlike variational methods, is robust to the initial choice of parameters. The posteriormore » is obtained from a normal likelihood, which was constructed from a weighted least squares approximation to a Poisson noise model, and prior assumptions that enforce both smoothness and non-negativity constraints. A Markov chain Monte Carlo algorithm is used to obtain samples from the target posterior, and the reconstruction and uncertainty estimates are the computed mean and variance of the samples, respectively. Lastly, synthetic data-sets are used to demonstrate accurate reconstruction, while real data taken with high-energy X-ray imaging systems are used to demonstrate applicability and feasibility.« less

  1. A stochastic approach to quantifying the blur with uncertainty estimation for high-energy X-ray imaging systems

    SciTech Connect

    Fowler, Michael J.; Howard, Marylesa; Luttman, Aaron; Mitchell, Stephen E.; Webb, Timothy J.

    2015-06-03

    One of the primary causes of blur in a high-energy X-ray imaging system is the shape and extent of the radiation source, or ‘spot’. It is important to be able to quantify the size of the spot as it provides a lower bound on the recoverable resolution for a radiograph, and penumbral imaging methods – which involve the analysis of blur caused by a structured aperture – can be used to obtain the spot’s spatial profile. We present a Bayesian approach for estimating the spot shape that, unlike variational methods, is robust to the initial choice of parameters. The posterior is obtained from a normal likelihood, which was constructed from a weighted least squares approximation to a Poisson noise model, and prior assumptions that enforce both smoothness and non-negativity constraints. A Markov chain Monte Carlo algorithm is used to obtain samples from the target posterior, and the reconstruction and uncertainty estimates are the computed mean and variance of the samples, respectively. Lastly, synthetic data-sets are used to demonstrate accurate reconstruction, while real data taken with high-energy X-ray imaging systems are used to demonstrate applicability and feasibility.

  2. Characterization of oil and gas reservoirs and recovery technology deployment on Texas State Lands

    SciTech Connect

    Tyler, R.; Major, R.P.; Holtz, M.H.

    1997-08-01

    Texas State Lands oil and gas resources are estimated at 1.6 BSTB of remaining mobile oil, 2.1 BSTB, or residual oil, and nearly 10 Tcf of remaining gas. An integrated, detailed geologic and engineering characterization of Texas State Lands has created quantitative descriptions of the oil and gas reservoirs, resulting in delineation of untapped, bypassed compartments and zones of remaining oil and gas. On Texas State Lands, the knowledge gained from such interpretative, quantitative reservoir descriptions has been the basis for designing optimized recovery strategies, including well deepening, recompletions, workovers, targeted infill drilling, injection profile modification, and waterflood optimization. The State of Texas Advanced Resource Recovery program is currently evaluating oil and gas fields along the Gulf Coast (South Copano Bay and Umbrella Point fields) and in the Permian Basin (Keystone East, Ozona, Geraldine Ford and Ford West fields). The program is grounded in advanced reservoir characterization techniques that define the residence of unrecovered oil and gas remaining in select State Land reservoirs. Integral to the program is collaboration with operators in order to deploy advanced reservoir exploitation and management plans. These plans are made on the basis of a thorough understanding of internal reservoir architecture and its controls on remaining oil and gas distribution. Continued accurate, detailed Texas State Lands reservoir description and characterization will ensure deployment of the most current and economically viable recovery technologies and strategies available.

  3. ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy...

    Energy Information Administration (EIA) (indexed site)

    in this table do not include enclosed malls and strip malls. In the 1999 CBECS, total fuel oil consumption in malls was not statistically significant. (*)Value rounds to zero...

  4. Residential heating oil price decreases

    Energy Information Administration (EIA) (indexed site)

    heating oil price decreases The average retail price for home heating oil fell 8 cents from a week ago to $3.21 per gallon. That's down 98.7 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $3.18 per gallon, down 8.1 cents from last week, and down 96.1 cents from a year ago. This is Marcela Rourk

  5. Residential heating oil price decreases

    Energy Information Administration (EIA) (indexed site)

    heating oil price decreases The average retail price for home heating oil fell 17.7 cents from a week ago to $3.03 per gallon. That's down $1.09 from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $2.99 per gallon, down 18.2 cents from last week, and down $1.08 from a year ago. This is Marcela Rourk

  6. Residential heating oil price decreases

    Energy Information Administration (EIA) (indexed site)

    heating oil price decreases The average retail price for home heating oil fell 3.8 cents from a week ago to $3.33 per gallon. That's down 59.1 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $3.28 per gallon, down 3.7 cents from last week, and down 58.8 cents from a year ago. This is Marcela Rourk, with EIA, in Washington.

  7. Residential heating oil price decreases

    Energy Information Administration (EIA) (indexed site)

    6, 2014 Residential heating oil price decreases The average retail price for home heating oil rose 1.6 cents from a week ago to $4.24 per gallon. That's up 8.9 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region rose to 4.16 per gallon, up 6-tenths of a cent from last week, and up 3.9 cents from a year ago. This is Marcela Rourk, with EIA, in Washington. For more information, contact

  8. Residential heating oil price decreases

    Energy Information Administration (EIA) (indexed site)

    4 Residential heating oil price decreases The average retail price for home heating oil fell 1.6 cents from a week ago to $3.42 per gallon. That's down 39.5 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $3.37 per gallon, down 1.2 cents from last week, and down 39.7 cents from a year ago. This is Marcela Rourk, with EIA, in Washington. For more information, contact Marcela

  9. Residential heating oil price decreases

    Energy Information Administration (EIA) (indexed site)

    heating oil price decreases The average retail price for home heating oil fell 10.5 cents from a week ago to $3.22 per gallon. That's down 73.6 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $3.19 per gallon, down 9 cents from last week, and down 73.1 cents from a year ago. This is Marcela Rourk, with EIA, in Washington.

  10. Residential heating oil price increases

    Energy Information Administration (EIA) (indexed site)

    heating oil price increases The average retail price for home heating oil rose 11.2 cents from a week ago to $2.91 per gallon. That's down $1.33 from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region rose to $2.87 per gallon, up 9.8 cents from last week, and down $1.29 from a year ago. This is Marcela Rourk with EIA, in Washington.

  11. Residential heating oil price increases

    Energy Information Administration (EIA) (indexed site)

    9, 2015 Residential heating oil price increases The average retail price for home heating oil rose 11.7 cents from a week ago to $3.03 per gallon. That's down $1.20 from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region rose to $2.99 per gallon, up 12 cents from last week, and down $1.16 from a year ago. This is Marcela Rourk

  12. Residential heating oil price increases

    Energy Information Administration (EIA) (indexed site)

    5, 2015 Residential heating oil price increases The average retail price for home heating oil rose 14.7 cents from a week ago to $3.19 per gallon. That's down $1.06 from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region rose to $3.15 per gallon, up 15.9 cents from last week, and down $1.00 from a year ago. This is Marcela Rourk

  13. Residential heating oil price increases

    Energy Information Administration (EIA) (indexed site)

    heating oil price increases The average retail price for home heating oil rose 10.3 cents from a week ago to $3.29 per gallon. That's down 93.7 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region rose to $3.26 per gallon, up 10.4 cents from last week, and down 89.3 cents from a year ago. This is Marcela Rourk

  14. Residential heating oil price increases

    Energy Information Administration (EIA) (indexed site)

    Residential heating oil price increases The average retail price for home heating oil rose 6.3 cents from a week ago to $2.36 per gallon. That's down 7.6 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region rose to $2.29 per gallon, up 4.9 cents from last week, and down 8.9 cents from a year ago. This is Marcela Rourk, with EIA, in Washington. For more information, contact Marcela Rourk at

  15. Residential heating oil price increases

    Energy Information Administration (EIA) (indexed site)

    Residential heating oil price increases The average retail price for home heating oil rose 1.2 cents from a week ago to $2.39 per gallon. That's down 3 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region rose to $2.33 per gallon, up 1.1 cents from last week, and down 3.9 cents from a year ago.

  16. Residential heating oil prices decline

    Energy Information Administration (EIA) (indexed site)

    9, 2014 Residential heating oil price decreases The average retail price for home heating oil fell 3.3 cents from a week ago to $3.38 per gallon. That's down 43.9 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $3.33 per . gallon, down 3.5 cents from last week, and down 44.6 cents from a year ago

  17. Residential heating oil prices decrease

    Energy Information Administration (EIA) (indexed site)

    5, 2014 Residential heating oil prices decrease The average retail price for home heating oil fell 1.8 cents from a week ago to $4.00 per gallon. That's down 2-tenths of a cent from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to 4.01 per gallon, down 8-tenths of a cent from last week, and up 4.4

  18. Residential heating oil prices increase

    Energy Information Administration (EIA) (indexed site)

    5, 2014 Residential heating oil prices increase The average retail price for home heating oil rose 6.5 cents from a week ago to $4.24 per gallon. That's up 14.9 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region rose to 4.17 per gallon, up 4.1 cents from last week, and up 13.4 cents from a year ago. This is Amerine Woodyard, with EIA, in Washington. For more information, contact Marcela

  19. Residential heating oil prices increase

    Energy Information Administration (EIA) (indexed site)

    4, 2013 Residential heating oil prices increase The average retail price for home heating oil rose 2.9 cents from last week to $3.92 per gallon. That's down 11 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. The price for heating oil in the New England region averaged 3.87 per gallon, up 2.5 cents from last week, but down 7.1 cents from a year earlier. This is Marlana Anderson

  20. Combustion heater for oil shale

    DOEpatents

    Mallon, Richard G.; Walton, Otis R.; Lewis, Arthur E.; Braun, Robert L.

    1985-01-01

    A combustion heater for oil shale heats particles of spent oil shale containing unburned char by burning the char. A delayed fall is produced by flowing the shale particles down through a stack of downwardly sloped overlapping baffles alternately extending from opposite sides of a vertical column. The delayed fall and flow reversal occurring in passing from each baffle to the next increase the residence time and increase the contact of the oil shale particles with combustion supporting gas flowed across the column to heat the shale to about 650.degree.-700.degree. C. for use as a process heat source.