National Library of Energy BETA

Sample records for receiver power tower

  1. SunTower Power Tower and Receiver

    Energy.gov [DOE]

    This photograph shows a Sierra SunTower power tower, one of two towers at eSolar’s 5 megawatt (MW) commercial CSP plant in Lancaster, California.

  2. Structural Design Considerations for Tubular Power Tower Receivers Operating at 650 Degrees C: Preprint

    SciTech Connect

    Neises, T. W.; Wagner, M. J.; Gray, A. K.

    2014-04-01

    Research of advanced power cycles has shown supercritical carbon dioxide power cycles may have thermal efficiency benefits relative to steam cycles at temperatures around 500 - 700 degrees C. To realize these benefits for CSP, it is necessary to increase the maximum outlet temperature of current tower designs. Research at NREL is investigating a concept that uses high-pressure supercritical carbon dioxide as the heat transfer fluid to achieve a 650 degrees C receiver outlet temperature. At these operating conditions, creep becomes an important factor in the design of a tubular receiver and contemporary design assumptions for both solar and traditional boiler applications must be revisited and revised. This paper discusses lessons learned for high-pressure, high-temperature tubular receiver design. An analysis of a simplified receiver tube is discussed, and the results show the limiting stress mechanisms in the tube and the impact on the maximum allowable flux as design parameters vary. Results of this preliminary analysis indicate an underlying trade-off between tube thickness and the maximum allowable flux on the tube. Future work will expand the scope of design variables considered and attempt to optimize the design based on cost and performance metrics.

  3. Concentrating Solar Power Projects - Power Tower Projects | Concentrat...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    The receiver at the top of the tower is glowing. Stretched-membrane heliostats with silvered polymer reflectors surround the Solar Two power tower in Daggett, California. Credit: ...

  4. Solar power tower

    SciTech Connect

    None, None

    2009-01-18

    The solar power tower section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  5. Concentrating Solar Power: Power Towers

    Office of Energy Efficiency and Renewable Energy (EERE)

    This video provides an overview of the principles, applications, and benefits of generating electricity using power towers, a concentrating solar power (CSP) technology. A brief animation explains...

  6. High-Temperatuer Solar Selective Coating Development for Power Tower Receivers

    Office of Energy Efficiency and Renewable Energy (EERE)

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  7. Concentrating Solar Power Tower Technology

    Energy.gov [DOE]

    In this b-roll, solar power towers' are systems that use an array of mirrors to focus the sun's energy on a tower-mounted heat exchanger to generate electricity.

  8. SMUD Kokhala Power Tower Study

    SciTech Connect

    Price, Henry W.; Whitney, Daniel D.; Beebe, H.I.

    1997-06-01

    Kokhala is the name of a new hybridized power tower design which integrates a nitrate-salt solar power tower with a gas turbine combined-cycle power plant. This integration achieves high value energy, low costs, and lower investor risk than a conventional solar only power tower plant. One of the primary advantages of this system is that it makes small power tower plants much more economically competitive with conventional power generation technologies. This paper is an overview of a study that performed a conceptual evaluation of a small (30 MWe) commercial plant suitable for the Sacramento Municipal Utility District`s (SMUD) Rancho Seco power plant site near Sacramento, California. This paper discusses the motivation for using a small hybrid solar plant and provides an overview of the analysis methodology used in the study. The results indicate that a power tower integrated with an advanced gas turbine, combined with Sacramento`s summer solar resource, could produce a low- risk, economically viable power generation project in the near future.

  9. Integrated Layout and Optimization Tool for Solar Power Towers |

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Concentrating Solar Power | NREL Integrated Layout and Optimization Tool for Solar Power Towers The Solar Power Tower Integrated Layout and Optimization Tool (SolarPILOT(tm)) generates and characterizes power tower (central receiver) systems. This software was developed by the National Renewable Energy Laboratory (NREL). SolarPILOT consists of a graphical user interface (GUI) and an application programming interface (API) through which external programs can access SolarPILOT's functionality.

  10. Concentrating Solar Power Tower System Basics | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Tower System Basics Concentrating Solar Power Tower System Basics August 20, 2013 - 5:06pm Addthis In power tower concentrating solar power systems, numerous large, flat, ...

  11. Power Towers for Utilities

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    and Application Center for Hydrogen Energy Research Programs ARPA-E Basic Energy Sciences ... Sea State Contour) Code Online Abstracts and Reports Water Power Personnel ...

  12. Power Tower Technology Roadmap and cost reduction plan.

    SciTech Connect

    Mancini, Thomas R.; Gary, Jesse A.; Kolb, Gregory J.; Ho, Clifford Kuofei

    2011-04-01

    Concentrating solar power (CSP) technologies continue to mature and are being deployed worldwide. Power towers will likely play an essential role in the future development of CSP due to their potential to provide dispatchable solar electricity at a low cost. This Power Tower Technology Roadmap has been developed by the U.S. Department of Energy (DOE) to describe the current technology, the improvement opportunities that exist for the technology, and the specific activities needed to reach the DOE programmatic target of providing competitively-priced electricity in the intermediate and baseload power markets by 2020. As a first step in developing this roadmap, a Power Tower Roadmap Workshop that included the tower industry, national laboratories, and DOE was held in March 2010. A number of technology improvement opportunities (TIOs) were identified at this workshop and separated into four categories associated with power tower subsystems: solar collector field, solar receiver, thermal energy storage, and power block/balance of plant. In this roadmap, the TIOs associated with power tower technologies are identified along with their respective impacts on the cost of delivered electricity. In addition, development timelines and estimated budgets to achieve cost reduction goals are presented. The roadmap does not present a single path for achieving these goals, but rather provides a process for evaluating a set of options from which DOE and industry can select to accelerate power tower R&D, cost reductions, and commercial deployment.

  13. Assessment of Parabolic Trough and Power Tower Solar Technology...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    of Parabolic Trough and Power Tower Solar Technology Cost and Performance Forecasts ... of Parabolic Trough and Power Tower Solar Technology Cost and Performance Forecasts ...

  14. Executive Summary: Assessment of Parabolic Trough and Power Tower...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    of Parabolic Trough and Power Tower Solar Technology Cost and Performance Forecasts ... of Parabolic Trough and Power Tower Solar Technology Cost and Performance Forecasts ...

  15. Conversion Tower for Dispatchable Solar Power: High-Efficiency Solar-Electric Conversion Power Tower

    SciTech Connect

    2012-01-11

    HEATS Project: Abengoa Solar is developing a high-efficiency solar-electric conversion tower to enable low-cost, fully dispatchable solar energy generation. Abengoa’s conversion tower utilizes new system architecture and a two-phase thermal energy storage media with an efficient supercritical carbon dioxide (CO2) power cycle. The company is using a high-temperature heat-transfer fluid with a phase change in between its hot and cold operating temperature. The fluid serves as a heat storage material and is cheaper and more efficient than conventional heat-storage materials, like molten salt. It also allows the use of a high heat flux solar receiver, advanced high thermal energy density storage, and more efficient power cycles.

  16. Concentrating Solar Power Tower Plant Illustration

    Office of Energy Efficiency and Renewable Energy (EERE)

    This graphic illustrates numerous large, flat, sun-tracking mirrors, known as heliostats, that focus sunlight onto a receiver at the top of a tower. A heat-transfer fluid heated in the receiver is used to generate steam, which, in turn, is used in a conventional turbine generator to produce electricity.

  17. Power Tower System Concentrating Solar Power Basics | Department...

    Energy.gov [DOE] (indexed site)

    In power tower concentrating solar power systems, a large number of flat, sun-tracking ... Crescent Dunes Solar Energy Project is a 110 megawatt solar thermal power plant located in ...

  18. Solar Power Tower Design Basis Document, Revision 0

    SciTech Connect

    ZAVOICO,ALEXIS B.

    2001-07-01

    This report contains the design basis for a generic molten-salt solar power tower. A solar power tower uses a field of tracking mirrors (heliostats) that redirect sunlight on to a centrally located receiver mounted on top a tower, which absorbs the concentrated sunlight. Molten nitrate salt, pumped from a tank at ground level, absorbs the sunlight, heating it up to 565 C. The heated salt flows back to ground level into another tank where it is stored, then pumped through a steam generator to produce steam and make electricity. This report establishes a set of criteria upon which the next generation of solar power towers will be designed. The report contains detailed criteria for each of the major systems: Collector System, Receiver System, Thermal Storage System, Steam Generator System, Master Control System, and Electric Heat Tracing System. The Electric Power Generation System and Balance of Plant discussions are limited to interface requirements. This design basis builds on the extensive experience gained from the Solar Two project and includes potential design innovations that will improve reliability and lower technical risk. This design basis document is a living document and contains several areas that require trade-studies and design analysis to fully complete the design basis. Project- and site-specific conditions and requirements will also resolve open To Be Determined issues.

  19. Utility-Scale Power Tower Solar Systems: Performance Acceptance...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Utility-Scale Power Tower Solar Systems: Performance Acceptance Test Guidelines David ... DE-AC36-08GO28308 Utility-Scale Power Tower Solar Systems: Performance Acceptance Test ...

  20. Don Ana Sun Tower Solar Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Don Ana Sun Tower Sector Solar Facility Type Concentrating Solar Power Developer NRG EnergyeSolar Location Dona Ana County, New Mexico Coordinates 32.485767,...

  1. Solar Power Tower Integrated Layout and Optimization Tool Background...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Solar Power Tower Integrated Layout and Optimization Tool Background SolarPILOT(tm) offers several unique capabilities compared to other software tools. Unlike exclusively ...

  2. CDX 4608, Guard Tower Power and Fiber Reroute (4608)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Guard Tower Power and Fiber Reroute (4608) Y-12 Site Office Oak Ridge, Anderson County, Tennessee The proposed action is to design and re-route power and fiber to 9949-AR (Guard...

  3. Cooling tower fill fouling control in a geothermal power plant

    SciTech Connect

    Yu, F.P.; Ginn, L.D.; McCoy, W.F.; Castanieto, H.

    1998-12-31

    Since its first introduction to the market in the 1970s, cooling tower film fill technology has significantly increased thermal performance and reduced the size of cooling towers. However, the narrow spaces between film fill sheets make them susceptible to fouling. Without proper chemical treatment, deposits can accumulate within the film fill resulting in reduced tower efficiency, increased fouling and plugging of the fill. These phenomena could eventually lead to collapse of the tower structure, This paper describes a new approach to remedy the high efficiency film fill fouling problem in a geothermal power plant. The plant has a long history of fill fouling problems due to a very complex make-up water chemistry and desert-related environmental conditions. In recent years, various biocide and biodispersant treatments have significantly improved fouling control by slowing down tower fill deposition rates. However, no program has been successful in reducing fill weights, especially during the summer months. Within six weeks after starting a new control program, the average weight of the tower fill deposits dropped 22% and thermal performance of the cooling tower increased 20%. The treatment resulted in significant improvements in cooling tower operation and power production efficiency.

  4. Alpine SunTower Solar Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    www.renewableenergyfocus.comview2513pge-and-nrg-energy-collaborate-on-92-mw-solar-thermal-power Retrieved from "http:en.openei.orgwindex.php?titleAlpineSunTowerSola...

  5. Project Profile: Brayton Cycle Baseload Power Tower | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Wilson Solarpower, under the Baseload CSP FOA, proposed a utility-scale, Brayton cycle baseload power tower system with a capacity factor of at least 75% and LCOE of 0.09kWh. ...

  6. Conversion of Solar Two to a Kokhala hybrid power tower

    SciTech Connect

    Price, H.W.

    1997-06-01

    The continued drop in energy prices and restructuring of the utility industry have reduced the likelihood that a follow-on commercial 100-MW, power tower project will be built immediately following the Solar Two demonstration project. Given this, it would be desirable to find a way to extend the life of the Solar Two project to allow the plant to operate as a showcase for future power tower projects. This paper looks at the possibility of converting Solar Two into a commercial Kokhala hybrid power tower plant at the end of its demonstration period in 1998. The study identifies two gas turbines that could be integrated into a Kokhala cycle at Solar Two and evaluates the design, expected performance, and economics of each of the systems. The study shows that a commercial Kokhala project at Solar Two could produce power at a cost of less than 7 e/kWhr.

  7. MULTI-TUBE POWER LEADS TOWER FOR BEPCII IR MAGNETS.

    SciTech Connect

    JIA,L.X.; ZHANG,X.B.; WANG,L.; WANG,T.H.; YAO,Z.L.

    2004-05-11

    A power lead tower containing the multi-tube power leads is designed and under fabrication for the superconducting IR quadrupole magnets in the Beijing Electron Position Collider Upgrade (BEPCII). The lead tower consists of six pairs of gas-cooled leads for seven superconducting coils at various operating currents. The power lead is designed in a modular fashion, which can be easily applied to suit different operating current. The end copper block of the tube lead has a large cold mass that provide a large time constant in case of cooling flow interruption. A novel cryogenic electrical isolator is used for the leads.

  8. Solar Two: A successful power tower demonstration project

    SciTech Connect

    REILLY,HUGH E.; PACHECO,JAMES E.

    2000-03-02

    Solar Two, a 10MWe power tower plant in Barstow, California, successfully demonstrated the production of grid electricity at utility-scale with a molten-salt solar power tower. This paper provides an overview of the project, from inception in 1993 to closure in the spring of 1999. Included are discussions of the goals of the Solar Two consortium, the planned-vs.-actual timeline, plant performance, problems encountered, and highlights and successes of the project. The paper concludes with a number of key results of the Solar Two test and evaluation program.

  9. Conceptual Design of a 100 MWe Modular Molten Salt Power Tower Plant

    SciTech Connect

    James E. Pacheco; Carter Moursund, Dale Rogers, David Wasyluk

    2011-09-20

    A conceptual design of a 100 MWe modular molten salt solar power tower plant has been developed which can provide capacity factors in the range of 35 to 75%. Compared to single tower plants, the modular design provides a higher degree of flexibility in achieving the desired customer's capacity factor and is obtained simply by adjusting the number of standard modules. Each module consists of a standard size heliostat field and receiver system, hence reengineering and associated unacceptable performance uncertainties due to scaling are eliminated. The modular approach with multiple towers also improves plant availability. Heliostat field components, receivers and towers are shop assembled allowing for high quality and minimal field assembly. A centralized thermal-storage system stores hot salt from the receivers, allowing nearly continuous power production, independent of solar energy collection, and improved parity with the grid. A molten salt steam generator converts the stored thermal energy into steam, which powers a steam turbine generator to produce electricity. This paper describes the conceptual design of the plant, the advantages of modularity, expected performance, pathways to cost reductions, and environmental impact.

  10. ZERO-POWER RADIO RECEIVER

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ZERO-POWER RADIO RECEIVER Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2016-8737 M U.S. Patent No. U.S. 7,397,301; 8,687,674; 9,460,321 Technology Readiness Level: 6 Prototype system is tested in a relevant environment Sandia has developed a miniature, zero-power radio

  11. Executive Summary: Assessment of Parabolic Trough and Power Tower Solar Technology Cost and Performance Forecasts

    SciTech Connect

    Not Available

    2003-10-01

    Sargent& Lundy LLC conducted an independent analysis of parabolic trough and power tower solar technology cost and performance.

  12. Assessment of Parabolic Trough and Power Tower Solar Technology Cost and Performance Forecasts

    SciTech Connect

    Not Available

    2003-10-01

    Sargent and Lundy LLC conducted an independent analysis of parabolic trough and power tower solar technology cost and performance.

  13. Brayton Cycle Baseload Power Tower CSP System

    Office of Energy Efficiency and Renewable Energy (EERE)

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  14. Brayton-Cycle Baseload Power Tower CSP System

    SciTech Connect

    Anderson, Bruce

    2013-12-31

    The primary objectives of Phase 2 of this Project were: 1. Engineer, fabricate, and conduct preliminary testing on a low-pressure, air-heating solar receiver capable of powering a microturbine system to produce 300kWe while the sun is shining while simultaneously storing enough energy thermally to power the system for up to 13 hours thereafter. 2. Cycle-test a high-temperature super alloy, Haynes HR214, to determine its efficacy for the system’s high-temperature heat exchanger. 3. Engineer the thermal energy storage system This Phase 2 followed Wilson’s Phase 1, which primarily was an engineering feasibility study to determine a practical and innovative approach to a full Brayton-cycle system configuration that could meet DOE’s targets. Below is a summary table of the DOE targets with Wilson’s Phase 1 Project results. The results showed that a Brayton system with an innovative (low pressure) solar receiver with ~13 hours of dry (i.e., not phase change materials or molten salts but rather firebrick, stone, or ceramics) has the potential to meet or exceed DOE targets. Such systems would consist of pre-engineered, standardized, factory-produced modules to minimize on-site costs while driving down costs through mass production. System sizes most carefully analyzed were in the range of 300 kWe to 2 MWe. Such systems would also use off-the-shelf towers, blowers, piping, microturbine packages, and heliostats. Per DOE’s instructions, LCOEs are based on the elevation and DNI levels of Daggett, CA, for a 100 MWe power plant following 2 GWe of factory production of the various system components. Success criteria DOE targets Wilson system LCOE DOE’s gas price $6.75/MBtu 9 cents/kWh 7.7 cents/kWh LCOE Current gas price $4.71/MBtu NA 6.9 cents/kWh Capacity factor 75% (6500hr) 75-100% Solar fraction 85% (5585hr) >5585hr Receiver cost $170/kWe $50/kWe Thermal storage cost $20/kWhth $13/kWhth Heliostat cost $120/m2 $89.8/m2

  15. High-Temperatuer Solar Selective Coating Development for Power...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    High-Temperatuer Solar Selective Coating Development for Power Tower Receivers High-Temperatuer Solar Selective Coating Development for Power Tower Receivers This presentation was ...

  16. An evaluation of possible next-generation high temperature molten-salt power towers.

    SciTech Connect

    Kolb, Gregory J.

    2011-12-01

    Since completion of the Solar Two molten-salt power tower demonstration in 1999, the solar industry has been developing initial commercial-scale projects that are 3 to 14 times larger. Like Solar Two, these initial plants will power subcritical steam-Rankine cycles using molten salt with a temperature of 565 C. The main question explored in this study is whether there is significant economic benefit to develop future molten-salt plants that operate at a higher receiver outlet temperature. Higher temperatures would allow the use of supercritical steam cycles that achieve an improved efficiency relative to today's subcritical cycle ({approx}50% versus {approx}42%). The levelized cost of electricity (LCOE) of a 565 C subcritical baseline plant was compared with possible future-generation plants that operate at 600 or 650 C. The analysis suggests that {approx}8% reduction in LCOE can be expected by raising salt temperature to 650 C. However, most of that benefit can be achieved by raising the temperature to only 600 C. Several other important insights regarding possible next-generation power towers were also drawn: (1) the evaluation of receiver-tube materials that are capable of higher fluxes and temperatures, (2) suggested plant reliability improvements based on a detailed evaluation of the Solar Two experience, and (3) a thorough evaluation of analysis uncertainties.

  17. System and method for aligning heliostats of a solar power tower

    DOEpatents

    Convery, Mark R.

    2013-01-01

    Disclosed is a solar power tower heliostat alignment system and method that includes a solar power tower with a focal area, a plurality of heliostats that each reflect sunlight towards the focal area of the solar power tower, an off-focal area location substantially close to the focal area of the solar power tower, a communication link between the off-focal area location and a misaligned heliostat, and a processor that interprets the communication between the off-focal area location and the misaligned heliostat to identify the misaligned heliostat from the plurality of heliostats and that determines a correction for the identified misaligned heliostat to realign the misaligned heliostat to reflect sunlight towards the focal area of the solar power tower.

  18. NREL: Concentrating Solar Power Research - Particle Receiver...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Particle Receiver Integrated with a Fluidized Bed-Novel Components to Overcome Existing Barriers Advancing concentrating solar power (CSP) systems to the target cost of 0.06 per...

  19. An Evaluation of Molten-Salt Power Towers Including Results of the Solar Two Project

    SciTech Connect

    REILLY, HUGH E.; KOLB, GREGORY J.

    2001-11-01

    This report utilizes the results of the Solar Two project, as well as continuing technology development, to update the technical and economic status of molten-salt power towers. The report starts with an overview of power tower technology, including the progression from Solar One to the Solar Two project. This discussion is followed by a review of the Solar Two project--what was planned, what actually occurred, what was learned, and what was accomplished. The third section presents preliminary information regarding the likely configuration of the next molten-salt power tower plant. This section draws on Solar Two experience as well as results of continuing power tower development efforts conducted jointly by industry and Sandia National Laboratories. The fourth section details the expected performance and cost goals for the first commercial molten-salt power tower plant and includes a comparison of the commercial performance goals to the actual performance at Solar One and Solar Two. The final section summarizes the successes of Solar Two and the current technology development activities. The data collected from the Solar Two project suggest that the electricity cost goals established for power towers are reasonable and can be achieved with some simple design improvements.

  20. Zero-power receiver - Energy Innovation Portal

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    60,321 Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories Find More Like This Return to Search Zero-power receiver United States Patent

  1. Microsoft Word - PowerTower_work_2009.doc

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... conditions due to rapid degradation of steam temperature and pressure. Receiver trip leads to a turbine trip because there is no buffer storage between the receiver and turbine. ...

  2. Biocide usage in cooling towers in the electric power and petroleum refining industries

    SciTech Connect

    Veil, J.; Rice, J.K.; Raivel, M.E.S.

    1997-11-01

    Cooling towers users frequently apply biocides to the circulating cooling water to control growth of microorganisms, algae, and macroorganisms. Because of the toxic properties of biocides, there is a potential for the regulatory controls on their use and discharge to become increasingly more stringent. This report examines the types of biocides used in cooling towers by companies in the electric power and petroleum refining industries, and the experiences those companies have had in dealing with agencies that regulate cooling tower blowdown discharges. Results from a sample of 67 electric power plants indicate that the use of oxidizing biocides (particularly chlorine) is favored. Quaternary ammonia salts (quats), a type of nonoxidizing biocide, are also used in many power plant cooling towers. The experience of dealing with regulators to obtain approval to discharge biocides differs significantly between the two industries. In the electric power industry, discharges of any new biocide typically must be approved in writing by the regulatory agency. The approval process for refineries is less formal. In most cases, the refinery must notify the regulatory agency that it is planning to use a new biocide, but the refinery does not need to get written approval before using it. The conclusion of the report is that few of the surveyed facilities are having any difficulty in using and discharging the biocides they want to use.

  3. Concentrating Solar Power Central Receiver Panel Component Fabrication and Testing FINAL REPORT

    SciTech Connect

    McDowell, Michael W; Miner, Kris

    2013-03-30

    The objective of this project is to complete a design of an advanced concentrated solar panel and demonstrate the manufacturability of key components. Then confirm the operation of the key components under prototypic solar flux conditions. This work is an important step in reducing the levelized cost of energy (LCOE) from a central receiver solar power plant. The key technical risk to building larger power towers is building the larger receiver systems. Therefore, this proposed technology project includes the design of an advanced molten salt prototypic sub-scale receiver panel that can be utilized into a large receiver system. Then complete the fabrication and testing of key components of the receive design that will be used to validate the design. This project shall have a significant impact on solar thermal power plant design. Receiver panels of suitable size for utility scale plants are a key element to a solar power tower plant. Many subtle and complex manufacturing processes are involved in producing a reliable, robust receiver panel. Given the substantial size difference between receiver panels manufactured in the past and those needed for large plant designs, the manufacture and demonstration on prototype receiver panel components with representative features of a full-sized panel will be important to improving the build process for commercial success. Given the thermal flux limitations of the test facility, the panel components cannot be rendered full size. Significance changes occurred in the projects technical strategies from project initiation to the accomplishments described herein. The initial strategy was to define cost improvements for the receiver, design and build a scale prototype receiver and test, on sun, with a molten salt heat transport system. DOE had committed to constructing a molten salt heat transport loop to support receiver testing at the top of the NSTTF tower. Because of funding constraints this did not happen. A subsequent plan to

  4. Economic evaluation of solar-only and hybrid power towers using molten salt technology

    SciTech Connect

    Kolb, G.J.

    1996-12-01

    Several hybrid and solar-only configurations for molten-salt power towers were evaluated with a simple economic model, appropriate for screening analysis. The solar specific aspects of these plants were highlighted. In general, hybrid power towers were shown to be economically superior to solar-only plants with the same field size. Furthermore, the power-booster hybrid approach was generally preferred over the fuel-saver hybrid approach. Using today`s power tower technology, economic viability for the solar power-boost occurs at fuel costs in the neighborhood of $2.60/MBtu to $4.40/ MBtu (low heating value) depending on whether coal-based or gas-turbine-based technology is being offset. The cost Of CO[sub 2] avoidance was also calculated for solar cases in which the fossil fuel cost was too low for solar to be economically viable. The avoidance costs are competitive with other proposed methods of removing CO[sub 2] from fossil-fired power plants.

  5. Zero-Power Radio Receiver - Energy Innovation Portal

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Zero-Power Radio Receiver Sandia National Laboratories Contact SNL About This Technology Publications: PDF Document Publication Market Sheet (324 KB) Technology Marketing SummarySandia has developed a miniature, zero-power radio receiver that can be easily integrated in a wide range of devices to provide continuous wireless connectivity. The underlying principle behind the Zero-Power Receiver is that the powered radio frequency electronics that are used in most wireless receivers can be replaced

  6. Design considerations for concentrating solar power tower systems employing molten salt.

    SciTech Connect

    Moore, Robert Charles; Siegel, Nathan Phillip; Kolb, Gregory J.; Vernon, Milton E.; Ho, Clifford Kuofei

    2010-09-01

    The Solar Two Project was a United States Department of Energy sponsored project operated from 1996 to 1999 to demonstrate the coupling of a solar power tower with a molten nitrate salt as a heat transfer media and for thermal storage. Over all, the Solar Two Project was very successful; however many operational challenges were encountered. In this work, the major problems encountered in operation of the Solar Two facility were evaluated and alternative technologies identified for use in a future solar power tower operating with a steam Rankine power cycle. Many of the major problems encountered can be addressed with new technologies that were not available a decade ago. These new technologies include better thermal insulation, analytical equipment, pumps and values specifically designed for molten nitrate salts, and gaskets resistant to thermal cycling and advanced equipment designs.

  7. Molten Salt Power Tower Cost Model for the System Advisor Model (SAM)

    SciTech Connect

    Turchi, C. S.; Heath, G. A.

    2013-02-01

    This report describes a component-based cost model developed for molten-salt power tower solar power plants. The cost model was developed by the National Renewable Energy Laboratory (NREL), using data from several prior studies, including a contracted analysis from WorleyParsons Group, which is included herein as an Appendix. The WorleyParsons' analysis also estimated material composition and mass for the plant to facilitate a life cycle analysis of the molten salt power tower technology. Details of the life cycle assessment have been published elsewhere. The cost model provides a reference plant that interfaces with NREL's System Advisor Model or SAM. The reference plant assumes a nominal 100-MWe (net) power tower running with a nitrate salt heat transfer fluid (HTF). Thermal energy storage is provided by direct storage of the HTF in a two-tank system. The design assumes dry-cooling. The model includes a spreadsheet that interfaces with SAM via the Excel Exchange option in SAM. The spreadsheet allows users to estimate the costs of different-size plants and to take into account changes in commodity prices. This report and the accompanying Excel spreadsheet can be downloaded at https://sam.nrel.gov/cost.

  8. Current and future costs for parabolic trough and power tower systems in the US market.

    SciTech Connect

    Turchi, Craig; Kolb, Gregory J.; Mehos, Mark Steven; Ho, Clifford Kuofei

    2010-08-01

    NREL's Solar Advisor Model (SAM) is employed to estimate the current and future costs for parabolic trough and molten salt power towers in the US market. Future troughs are assumed to achieve higher field temperatures via the successful deployment of low melting-point, molten-salt heat transfer fluids by 2015-2020. Similarly, it is assumed that molten salt power towers are successfully deployed at 100MW scale over the same time period, increasing to 200MW by 2025. The levelized cost of electricity for both technologies is predicted to drop below 11 cents/kWh (assuming a 10% investment tax credit and other financial inputs outlined in the paper), making the technologies competitive in the marketplace as benchmarked by the California MPR. Both technologies can be deployed with large amounts of thermal energy storage, yielding capacity factors as high as 65% while maintaining an optimum LCOE.

  9. Current and Future Costs for Parabolic Trough and Power Tower Systems in the US Market: Preprint

    SciTech Connect

    Turchi, C.; Mehos, M.; Ho, C. K.; Kolb, G. J.

    2010-10-01

    NREL's Solar Advisor Model (SAM) is employed to estimate the current and future costs for parabolic trough and molten salt power towers in the US market. Future troughs are assumed to achieve higher field temperatures via the successful deployment of low melting-point, molten-salt heat transfer fluids by 2015-2020. Similarly, it is assumed that molten salt power towers are successfully deployed at 100MW scale over the same time period, increasing to 200MW by 2025. The levelized cost of electricity for both technologies is predicted to drop below 11 cents/kWh (assuming a 10% investment tax credit and other financial inputs outlined in the paper), making the technologies competitive in the marketplace as benchmarked by the California MPR. Both technologies can be deployed with large amounts of thermal energy storage, yielding capacity factors as high as 65% while maintaining an optimum LCOE.

  10. Incorporating supercritical steam turbines into molten-salt power tower plants :

    SciTech Connect

    Pacheco, James Edward; Wolf, Thorsten; Muley, Nishant

    2013-03-01

    Sandia National Laboratories and Siemens Energy, Inc., examined 14 different subcritical and supercritical steam cycles to determine if it is feasible to configure a molten-salt supercritical steam plant that has a capacity in the range of 150 to 200 MWe. The effects of main steam pressure and temperature, final feedwater temperature, and hot salt and cold salt return temperatures were determined on gross and half-net efficiencies. The main steam pressures ranged from 120 bar-a (subcritical) to 260 bar-a (supercritical). Hot salt temperatures of 566 and 600ÀC were evaluated, which resulted in main steam temperatures of 553 and 580ÀC, respectively. Also, the effects of final feedwater temperature (between 260 and 320ÀC) were evaluated, which impacted the cold salt return temperature. The annual energy production and levelized cost of energy (LCOE) were calculated using the System Advisory Model on 165 MWe subcritical plants (baseline and advanced) and the most promising supercritical plants. It was concluded that the supercritical steam plants produced more annual energy than the baseline subcritical steam plant for the same-size heliostat field, receiver, and thermal storage system. Two supercritical steam plants had the highest annual performance and had nearly the same LCOE. Both operated at 230 bar-a main steam pressure. One was designed for a hot salt temperature of 600ÀC and the other 565ÀC. The LCOEs for these plants were about 10% lower than the baseline subcritical plant operating at 120 bar-a main steam pressure and a hot salt temperature of 565ÀC. Based on the results of this study, it appears economically and technically feasible to incorporate supercritical steam turbines in molten-salt power tower plants.

  11. A new code for the design and analysis of the heliostat field layout for power tower system

    SciTech Connect

    Wei, Xiudong; Lu, Zhenwu; Yu, Weixing; Wang, Zhifeng

    2010-04-15

    A new code for the design and analysis of the heliostat field layout for power tower system is developed. In the new code, a new method for the heliostat field layout is proposed based on the edge ray principle of nonimaging optics. The heliostat field boundary is constrained by the tower height, the receiver tilt angle and size and the heliostat efficiency factor which is the product of the annual cosine efficiency and the annual atmospheric transmission efficiency. With the new method, the heliostat can be placed with a higher efficiency and a faster response speed of the design and optimization can be obtained. A new module for the analysis of the aspherical heliostat is created in the new code. A new toroidal heliostat field is designed and analyzed by using the new code. Compared with the spherical heliostat, the solar image radius of the field is reduced by about 30% by using the toroidal heliostat if the mirror shape and the tracking are ideal. In addition, to maximize the utilization of land, suitable crops can be considered to be planted under heliostats. To evaluate the feasibility of the crop growth, a method for calculating the annual distribution of sunshine duration on the land surface is developed as well. (author)

  12. Project Profile: Advanced Nitrate Salt Central Receiver Power...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    receiver coolant, thermal storage medium, and heat transport fluid in the steam generator. ... thermal storage, steam generator, and power cycle configuration based on dry cooling. ...

  13. NREL: Concentrating Solar Power Research - Receiver R&D

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    power conversion systems must operate at high temperatures without depending on water and fluids. And advanced receivers will need to be developed to integrate with these...

  14. Baseload Nitrate Salt Central Receiver Power Plant Design Final Report

    SciTech Connect

    Tilley, Drake; Kelly, Bruce; Burkholder, Frank

    2014-12-12

    The objectives of the work were to demonstrate that a 100 MWe central receiver plant, using nitrate salt as the receiver coolant, thermal storage medium, and heat transport fluid in the steam generator, can 1) operate, at full load, for 6,400 hours each year using only solar energy, and 2) satisfy the DOE levelized energy cost goal of $0.09/kWhe (real 2009 $). To achieve these objectives the work incorporated a large range of tasks relating to many different aspects of a molten salt tower plant. The first Phase of the project focused on developing a baseline design for a Molten Salt Tower and validating areas for improvement. Tasks included a market study, receiver design, heat exchanger design, preliminary heliostat design, solar field optimization, baseline system design including PFDs and P&IDs and detailed cost estimate. The baseline plant met the initial goal of less than $0.14/kWhe, and reinforced the need to reduce costs in several key areas to reach the overall $0.09/kWhe goal. The major improvements identified from Phase I were: 1) higher temperature salt to improve cycle efficiency and reduce storage requirements, 2) an improved receiver coating to increase the efficiency of the receiver, 3) a large receiver design to maximize storage and meet the baseload hours objective, and 4) lower cost heliostat field. The second Phase of the project looked at advancing the baseline tower with the identified improvements and included key prototypes. To validate increasing the standard solar salt temperature to 600 °C a dynamic test was conducted at Sandia. The results ultimately proved the hypothesis incorrect and showed high oxide production and corrosion rates. The results lead to further testing of systems to mitigate the oxide production to be able to increase the salt temperature for a commercial plant. Foster Wheeler worked on the receiver design in both Phase I and Phase II looking at both design and lowering costs utilizing commercial fossil boiler

  15. CSP Tower Air Brayton Combustor

    Energy.gov [DOE]

    This fact sheet describes a concentrating solar power tower air Brayton combustor project awarded under the DOE's 2012 SunShot CSP R&D award program. The team, led by the Southwest Research Institute, is working to develop an external combustor that allows for the mixing of CSP-heated air with natural gas in hybridized power plants. This project aims to increase the temperature capabilities of the CSP tower air receiver and gas turbine to 1,000ºC and achieve energy conversion efficiencies greater than 50%.

  16. Suction-recirculation device for stabilizing particle flows within a solar powered solid particle receiver

    DOEpatents

    Kolb, Gregory J.

    2012-02-07

    A suction-recirculation device for stabilizing the flow of a curtain of blackened heat absorption particles falling inside of a solar receiver with an open aperture. The curtain of particles absorbs the concentrated heat from a solar mirror array reflected up to the receiver on a solar power tower. External winds entering the receiver at an oblique angle can destabilize the particle curtain and eject particles. A fan and ductwork is located behind the back wall of the receiver and sucks air out through an array of small holes in the back wall. Any entrained particles are separated out by a conventional cyclone device. Then, the air is recirculated back to the top of the receiver by injecting the recycled air through an array of small holes in the receiver's ceiling and upper aperture front wall. Since internal air is recirculated, heat losses are minimized and high receiver efficiency is maintained. Suction-recirculation velocities in the range of 1-5 m/s are sufficient to stabilize the particle curtain against external wind speeds in excess of 10 m/s.

  17. Utility-Scale Power Tower Solar Systems: Performance Acceptance Test Guidelines

    SciTech Connect

    Kearney, D.

    2013-03-01

    The purpose of these Guidelines is to provide direction for conducting performance acceptance testing for large power tower solar systems that can yield results of a high level of accuracy consistent with good engineering knowledge and practice. The recommendations have been developed under a National Renewable Energy Laboratory (NREL) subcontract and reviewed by stakeholders representing concerned organizations and interests throughout the concentrating solar power (CSP) community. An earlier NREL report provided similar guidelines for parabolic trough systems. These Guidelines recommend certain methods, instrumentation, equipment operating requirements, and calculation methods. When tests are run in accordance with these Guidelines, we expect that the test results will yield a valid indication of the actual performance of the tested equipment. But these are only recommendations--to be carefully considered by the contractual parties involved in the Acceptance Tests--and we expect that modifications may be required to fit the particular characteristics of a specific project.

  18. Hybrid solar central receiver for combined cycle power plant

    DOEpatents

    Bharathan, Desikan; Bohn, Mark S.; Williams, Thomas A.

    1995-01-01

    A hybrid combined cycle power plant including a solar central receiver for receiving solar radiation and converting it to thermal energy. The power plant includes a molten salt heat transfer medium for transferring the thermal energy to an air heater. The air heater uses the thermal energy to preheat the air from the compressor of the gas cycle. The exhaust gases from the gas cycle are directed to a steam turbine for additional energy production.

  19. Hybrid solar central receiver for combined cycle power plant

    DOEpatents

    Bharathan, D.; Bohn, M.S.; Williams, T.A.

    1995-05-23

    A hybrid combined cycle power plant is described including a solar central receiver for receiving solar radiation and converting it to thermal energy. The power plant includes a molten salt heat transfer medium for transferring the thermal energy to an air heater. The air heater uses the thermal energy to preheat the air from the compressor of the gas cycle. The exhaust gases from the gas cycle are directed to a steam turbine for additional energy production. 1 figure.

  20. Sensible heat transfer receiver for solar dynamic space power system

    SciTech Connect

    Perez-davis, M.E.; Gaier, J.R.; Petrefski, C.

    1991-01-01

    A sensible heat receiver considered in this study uses a vapor grown carbon fiber-carbon (VGCF/C) composite as the thermal storage media and was designed for a 7 kW Brayton engine. The proposed heat receiver stores the required energy to power the system during eclipse in the VGCF/C composite. The heat receiver thermal analysis was conducted through the Systems Improved Numerical Differencing Analyzer and Fluid Integrator (SINDA) software package. The sensible heat receiver compares well with other latent and advanced sensible heat receivers analyzed in other studies while avoiding the problems associated with latent heat storage salts and liquid metal heat pipes. The concept also satisfies the design requirements for a 7 kW Brayton engine system. The weight and size of the system can be optimized by changes in geometry and technology advances for this new material.

  1. Life Cycle Greenhouse Gas Emissions of Trough and Tower Concentrating Solar Power Electricity Generation: Systematic Review and Harmonization

    SciTech Connect

    Burkhardt, J. J.; Heath, G.; Cohen, E.

    2012-04-01

    In reviewing life cycle assessment (LCA) literature of utility-scale concentrating solar power (CSP) systems, this analysis focuses on reducing variability and clarifying the central tendency of published estimates of life cycle greenhouse gas (GHG) emissions through a meta-analytical process called harmonization. From 125 references reviewed, 10 produced 36 independent GHG emissions estimates passing screens for quality and relevance: 19 for parabolic trough (trough) technology and 17 for power tower (tower) technology. The interquartile range (IQR) of published estimates for troughs and towers were 83 and 20 grams of carbon dioxide equivalent per kilowatt-hour (g CO2-eq/kWh),1 respectively; median estimates were 26 and 38 g CO2-eq/kWh for trough and tower, respectively. Two levels of harmonization were applied. Light harmonization reduced variability in published estimates by using consistent values for key parameters pertaining to plant design and performance. The IQR and median were reduced by 87% and 17%, respectively, for troughs. For towers, the IQR and median decreased by 33% and 38%, respectively. Next, five trough LCAs reporting detailed life cycle inventories were identified. The variability and central tendency of their estimates are reduced by 91% and 81%, respectively, after light harmonization. By harmonizing these five estimates to consistent values for global warming intensities of materials and expanding system boundaries to consistently include electricity and auxiliary natural gas combustion, variability is reduced by an additional 32% while central tendency increases by 8%. These harmonized values provide useful starting points for policy makers in evaluating life cycle GHG emissions from CSP projects without the requirement to conduct a full LCA for each new project.

  2. The design of future central receiver power plants based on lessons learned from the Solar One Pilot Plant

    SciTech Connect

    Kolb, G.J.

    1991-01-01

    The 10-MW{sub e} Solar One Pilot Plant was the world's largest solar central receiver power plant. During its power production years it delivered over 37,000 MWhrs (net) to the utility grid. In this type of electric power generating plant, large sun-tracking mirrors called heliostats reflect and concentrate sunlight onto a receiver mounted on top a of a tower. The receiver transforms the solar energy into thermal energy that heats water, turning it into superheated steam that drives a turbine to generate electricity. The Solar One Pilot Plant successfully demonstrated the feasibility of generating electricity with a solar central receiver power plant. During the initial 2 years the plant was tested and 4 years the plant was operated as a power plant, a great deal of data was collected relating to the efficiency and reliability of the plant's various systems. This paper summarizes these statistics and compares them to goals developed by the US Department of Energy. Based on this comparison, improvements in the design and operation of future central receiver plants are recommended. Research at Sandia National Laboratories and the US utility industry suggests that the next generation of central receiver power plants will use a molten salt heat transfer fluid rather than water/steam. Sandia has recently completed the development of the hardware needed in a molten salt power plant. Use of this new technology is expected to solve many of the performance problems encountered at Solar One. Projections for the energy costs from these future central receiver plants are also presented. For reference, these projections are compared to the current energy costs from the SEGS parabolic trough plants now operating in Southern California.

  3. High-Temperature Solar Selective Coating Development for Power Tower Receivers- FY13 Q1

    Energy.gov [DOE]

    This document summarizes the progress of this Sandia National Laboratories/NREL project, funded by SunShot, for the first quarter of fiscal year 2013.

  4. Project Profile: High-Temperature Solar Selective Coating Development for Power Tower Receivers

    Office of Energy Efficiency and Renewable Energy (EERE)

    -- This project is inactive -- Sandia National Laboratories (SNL), under the National Laboratory R&D competitive funding opportunity, is developing, characterizing, and refining advanced solar-selective coatings with high solar-weighted absorptivity (a > 0.95) and low emittance (e

  5. High-Temperature Solar Selective Coating Development for Power Tower Receivers- FY13 Q2

    Office of Energy Efficiency and Renewable Energy (EERE)

    This document summarizes the progress of this SNL project, funded by SunShot, for the second quarter of fiscal year 2013.

  6. Power efficiency for very high temperature solar thermal cavity receivers

    DOEpatents

    McDougal, Allan R.; Hale, Robert R.

    1984-01-01

    This invention is an improved solar energy cavity receiver for exposing materials and components to high temperatures. The receiver includes a housing having an internal reflective surface defining a cavity and having an inlet for admitting solar radiation thereto. A photothermal absorber is positioned in the cavity to receive radiation from the inlet. A reflective baffle is positioned between the absorber and the inlet to severely restrict the re-radiation of energy through the inlet. The front surface of the baffle defines a narrow annulus with the internal reflective surface of the housing. The front surface of the baffle is contoured to reflect incoming radiation onto the internal surface of the housing, from which it is reflected through the annulus and onto the front surface of the absorber. The back surface of the baffle intercepts infrared radiation from the front of the absorber. With this arrangement, a high percentage of the solar power input is retained in the cavity; thus, high internal temperatures are attained.

  7. Convection towers

    DOEpatents

    Prueitt, Melvin L.

    1995-01-01

    Convection towers which are capable of cleaning the pollution from large quantities of air, of generating electricity, and of producing fresh water utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity, and condensers produce fresh water.

  8. Convection towers

    DOEpatents

    Prueitt, Melvin L.

    1994-01-01

    Convection towers which are capable of cleaning the pollution from large quantities of air and of generating electricity utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity. Other embodiments may also provide fresh water, and operate in an updraft mode.

  9. Convection towers

    DOEpatents

    Prueitt, M.L.

    1996-01-16

    Convection towers which are capable of cleaning the pollution from large quantities of air, of generating electricity, and of producing fresh water utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity, and condensers produce fresh water. 6 figs.

  10. Convection towers

    DOEpatents

    Prueitt, Melvin L.

    1996-01-01

    Convection towers which are capable of cleaning the pollution from large quantities of air, of generating electricity, and of producing fresh water utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity, and condensers produce fresh water.

  11. Wind tower service lift

    DOEpatents

    Oliphant, David; Quilter, Jared; Andersen, Todd; Conroy, Thomas

    2011-09-13

    An apparatus used for maintaining a wind tower structure wherein the wind tower structure may have a plurality of legs and may be configured to support a wind turbine above the ground in a better position to interface with winds. The lift structure may be configured for carrying objects and have a guide system and drive system for mechanically communicating with a primary cable, rail or other first elongate member attached to the wind tower structure. The drive system and guide system may transmit forces that move the lift relative to the cable and thereby relative to the wind tower structure. A control interface may be included for controlling the amount and direction of the power into the guide system and drive system thereby causing the guide system and drive system to move the lift relative to said first elongate member such that said lift moves relative to said wind tower structure.

  12. Building a Better Transmission Tower

    Energy.gov [DOE]

    Find out how new power lines may now require fewer towers per mile, reducing their environmental footprint and price, which in turn helps minimize costs for electric consumers.

  13. Portland Company to Receive $1.3 Million to Improve Hydro Power...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Portland Company to Receive 1.3 Million to Improve Hydro Power Technologies Portland Company to Receive 1.3 Million to Improve Hydro Power Technologies September 15, 2009 -...

  14. 41 Offshore Wind Power R&D Projects Receive Energy Department...

    Energy Saver

    1 Offshore Wind Power R&D Projects Receive Energy Department Funding 41 Offshore Wind Power R&D Projects Receive Energy Department Funding September 7, 2011 - 3:02pm Addthis ...

  15. Small-Particle Solar Receiver for High-Temperature Brayton Power...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Small-Particle Solar Receiver for High-Temperature Brayton Power Cycles Small-Particle Solar Receiver for High-Temperature Brayton Power Cycles This fact sheet describes a ...

  16. Convection towers

    DOEpatents

    Prueitt, M.L.

    1994-02-08

    Convection towers which are capable of cleaning the pollution from large quantities of air and of generating electricity utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity. Other embodiments may also provide fresh water, and operate in an updraft mode. 5 figures.

  17. Central receiver solar thermal power system, Phase 1: CDRL Item 2, pilot plant preliminary design report. Volume VII. Pilot plant cost and commercial plant cost and performance

    SciTech Connect

    Hallet, Jr., R. W.; Gervais, R. L.

    1980-05-01

    Detailed cost and performance data for the proposed tower focus pilot plant and commercial plant are given. The baseline central receiver concept defined by the MDAC team consists of the following features: (A) an external receiver mounted on a tower, and located in a 360/sup 0/ array of sun-tracking heliostats which comprise the collector subsystem. (B) feedwater from the electrical power generation subsystem is pumped through a riser to the receiver, where the feedwater is converted to superheated steam in a single pass through the tubes of the receiver panels. (C) The steam from the receiver is routed through a downcomer to the ground and introduced to a turbine directly for expansion and generation of electricity, and/or to a thermal storage subsystem, where the steam is condensed in charging heat exchangers to heat a dual-medium oil and rock thermal storage unit (TSU). (D) Extended operation after daylight hours is facilitated by discharging the TSU to generate steam for feeding the admission port of the turbine. (E) Overall control of the system is provided by a master control unit, which handles the interactions between subsystems that take place during startup, shutdown, and transitions between operating modes. (WHK)

  18. Energy Department Receives EPA Award for Top Green Power Purchase...

    Energy.gov [DOE] (indexed site)

    Green power is electricity that is generated from environmentally preferable renewable resources, such as wind, solar, geothermal, biogas, eligible biomass, and low-impact hydro. ...

  19. Gaskell Sun Tower and 2 others Solar Power Plant | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Sector Solar Facility Type Concentrating Solar Power Facility Status Proposed Developer NRG EnergyeSolar Location Kern County, California Coordinates 35.4937274, -118.8596804...

  20. Portland Company to Receive $1.3 Million to Improve Hydro Power

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Technologies | Department of Energy Portland Company to Receive $1.3 Million to Improve Hydro Power Technologies Portland Company to Receive $1.3 Million to Improve Hydro Power Technologies September 15, 2009 - 12:00am Addthis Washington, DC - US Energy Secretary Steven Chu today awarded more than $1.3 million to Ocean Renewable Power Company in Portland, Maine to improve the efficiency, flexibility, and environmental performance of hydroelectric energy. The investment will further the

  1. Cooling Tower Report, October 2008 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Cooling Tower Report, October 2008 Cooling Tower Report, October 2008 Electricity Reliability Impacts of a Mandatory Cooling Tower Rule for Existing Steam Generation Units Cooling Tower Report, October 2008 (1.94 MB) More Documents & Publications 2011: Air Quality Regulations Report Electricity Baseline Report for the US Power System 2011 Air Quality Regulations Report

  2. Project Profile: A Small-Particle Solar Receiver for High-Temperature Brayton Power Cycles

    Energy.gov [DOE]

    San Diego State University (SDSU), under the 2012 SunShot Concentrating Solar Power (CSP) R&D funding opportunity announcement (FOA), is demonstrating a new receiver design that uses air as the heat-transfer fluid. The university's innovative small-particle heat-exchange receiver (SPHER) uses carbon particles to enhance performance and achieve higher thermal efficiency.

  3. Cooling Towers: Understanding Key Components of Cooling Towers...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Cooling Towers: Understanding Key Components of Cooling Towers and How to Improve Water Efficiency Cooling Towers: Understanding Key Components of Cooling Towers and How to Improve ...

  4. Vortex-augmented cooling tower - windmill combination

    DOEpatents

    McAllister, J.E. Jr.

    1982-09-02

    A cooling tower for cooling large quantities of effluent water from a production facility by utilizing natural wind forces includes the use of a series of helically directed air inlet passages extending outwardly from the base of the tower to introduce air from any direction in a swirling vortical pattern while the force of the draft created in the tower makes it possible to place conventional power generating windmills in the air passage to provide power as a by-product.

  5. Small-Particle Solar Receiver for High-Temperature Brayton Power Cycles

    Office of Energy Efficiency and Renewable Energy (EERE)

    This fact sheet describes a scattering solar thermal concentrators project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The team, led by San Diego State University, is working to validate, through on-sun testing, the viability of the Small Particle Heat Exchange Receiver concept. If successful, this project team would build the first large-scale, pressurized, high-temperature, gas-cooled solar receiver capable of being deployed commercially.

  6. Life Cycle Environmental Impacts Resulting from the Manufacture of the Heliostat Field for a Reference Power Tower Design in the United States: Preprint

    SciTech Connect

    Heath, G.; Burkhardt, J.; Turchi, C.

    2012-10-01

    Life cycle assessment (LCA) is recognized as a useful analytical approach for quantifying environmental impacts of renewable energy technologies, including concentrating solar power (CSP). An LCA accounts for impacts from all stages in the development, operation, and decommissioning of a CSP plant, including such upstream stages as the extraction of raw materials used in system components, manufacturing of those components, and construction of the plant. The National Renewable Energy Laboratory is conducting a series of LCA studies for various CSP technologies. This paper contributes to a thorough LCA of a 100 MWnet molten salt power tower CSP plant by estimating the environmental impacts resulting from the manufacture of heliostats. Three life cycle metrics are evaluated: greenhouse gas emissions, water consumption, and cumulative energy demand. The heliostat under consideration (the 148 m2 Advanced Thermal Systems heliostat) emits 5,300 kg CO2eq, consumes 274 m3 of water, and requires 159,000 MJeq during its manufacture. Future work will incorporate the results from this study into the LCA model used to estimate the life cycle impacts of the entire 100 MWnet power tower CSP plant.

  7. Fill fouling experiences on both mechanical and natural draft towers

    SciTech Connect

    Fraze, R.O. )

    1992-01-01

    Fouling of the film fill in cooling towers is becoming an increasingly serious problem in the Utility Industry. This paper discusses Florida Power Corporation's experience with fouling of film type fill in two mechanical draft and two natural draft towers. The two mechanical draft towers were placed in service as helper towers at the Anclote Plant in 1981. The two natural draft towers went into service at the Crystal River North Site in 1982 and 1984 for closed cycle cooling. All the towers are on salt water systems.

  8. An economic analysis of a quad-panel Direct Absorption Receiver for a commercial-scale central receiver power plant

    SciTech Connect

    Kolb, G.J.; Chavez, J.M.

    1990-01-01

    The Direct Absorption Receiver (DAR) concept was proposed in the mid-1970s as an alternative advanced receiver concept to simplify and reduce the cost of solar central receiver systems. Rather than flowing through tubes exposed to the concentrated solar flux, the heat absorbing fluid (molten nitrate salt) would flow in a thin film down a flat, nearly vertical panel and absorb the flux directly. Potential advantages of the DAR over conventional tubular designs include a substantially simplified design, improved thermal performance, increased reliability and operating life, as well as reduced capital and operating costs. However, before commercial-scale designs can be realized, a method for controlling droplet ejection from the panel must be developed. In this paper, we present a new DAR design, which has the potential to control these droplets. The design employs four flat panels that are sloped backwards 5 degrees, wind spoilers, and air curtains. A systems analysis is presented indicating that the levelized-energy cost of the quad geometry should be very similar to cylindrical geometry that was originally proposed for the DAR concept. 19 refs., 5 figs., 3 tabs.

  9. Line-focus solar central power system, phase I. Subsystem experiment: receiver heat transfer

    SciTech Connect

    Slemmons, A J

    1980-04-01

    Wind-tunnel tests confirmed that heat losses due to natural convection are negligible in the line-focus, solar-powered receiver. Anomalies in the forced-convection tests prevented definitive conclusions regarding the more important forced convection. Flow-visualization tests using a water table show much lower velocities inside the receiver cavity than outside, supporting the supposition that the forced-heat transfer should be less than that from a standard exposed cylinder. Furthermore, the water-table tests showed ways to decrease the low velocities in the cavity should this be desired. Further wind-tunnel testing should be done to confirm estimates and to support advanced design. This testing can be done in standard wind tunnels since only the forced convection is of concern.

  10. Armor Tower, Inc.

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Mr. Edward Rosenbloom Chief Executive Officer Armor Tower, Inc. P.O. Box 49779 Charlotte, North Carolina 28277 WEL-2015-06 Dear Mr. Rosenbloom: The Office of Enterprise Assessments' Office of Enforcement has completed an investigation into an electrical shock incident involving an Armor Tower, Inc. (Armor Tower) employee at the Brookhaven National Laboratory (BNL). Armor Tower is a second-tier subcontractor to Brookhaven Science Associates, LLC (BSA), which is the Department of Energy's (DOE)

  11. CXAllenRadioTower2.pdf

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Allen Radio Tower Construction Project Program or Field Office: Southwestern Power Administration Location(s) (City/County/State): Allen, Pontotoc County, Oklahoma SWPA F 450.4 (Rev 05/14) Proposed Action Description: Southwestern Power Administration proposes to modify and reconstruct its Allen Radio Tower communications site as part of the Spectrum Relocation project. Categorical Exclusion(s) Applied: I 0 CFR I 02 1, Appendix B to SubQart D, Part Bl. I 0- Siting, construction and operation of

  12. Solar Central Receiver Hybrid Power Systems sodium-cooled receiver concept. Final report. Volume II, Book 2. Conceptual design, Sections 5 and 6

    SciTech Connect

    1980-01-01

    The overall, long-term objective of the Solar Central Receiver Hybrid Power System program is to identify, characterize, and ultimately demonstrate the viability and cost effectiveness of solar/fossil, steam Rankine cycle, hybrid power systems that: (1) consist of a combined solar central receiver energy source and a nonsolar energy source at a single, common site, (2) may operate in the base, intermediate, and peaking capacity modes, (3) produce the rated output independent of variations in solar insolation, (4) provide a significant savings (50% or more) in fuel consumption, and (5) produce power at the minimum possible cost in mills/kWh. It is essential that these hybrid concepts be technically feasible and economically competitive with other systems in the near to mid-term time period (1985-1990) on a commercial scale. The program objective for Phase I is to identify and conceptually characterize solar/fossil steam Rankine cycle, commercial-scale, power plant systems that are economically viable and technically feasible. This volume contains the detailed conceptual design and cost/performance estimates and an assessment of the commercial scale solar central receiver hybrid power system. (WHK)

  13. Project Profile: CSP Tower Air Brayton Combustor | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Concentrating Solar Power Project Profile: CSP Tower Air Brayton Combustor Project ... research that are in progress. SunShot Home About the SunShot Initiative Concentrating ...

  14. Improved power efficiency for very-high-temperature solar-thermal-cavity receivers

    DOEpatents

    McDougal, A.R.; Hale, R.R.

    1982-04-14

    This invention is an improved solar energy cavity receiver for exposing materials and components to high temperatures. The receiver includes a housing having an internal reflective surface defining a cavity and having an inlet for admitting solar radiation thereto. A photothermal absorber is positiond in the cavity to receive radiation from the inlet. A reflective baffle is positioned between the absorber and the inlet to severely restrict the re-radiation of energy through the inlet. The front surface of the baffle defines a narrow annulus with the internal reflective surface of the housing. The front surface of the baffle is contoured to reflect incoming radiation onto the internal surface of the housing, from which it is reflected through the annulus and onto the front surface of the absorber. The back surface of the baffle intercepts radiation from the front of the absorber. With this arrangement, a high percentage of the solar power input is retained in the cavity; thus, high internal temperatues are attained.

  15. Improved high temperature solar absorbers for use in Concentrating Solar Power central receiver applications.

    SciTech Connect

    Stechel, Ellen Beth; Ambrosini, Andrea; Hall, Aaron Christopher; Lambert, Timothy L.; Staiger, Chad Lynn; Bencomo, Marlene

    2010-09-01

    Concentrating solar power (CSP) systems use solar absorbers to convert the heat from sunlight to electric power. Increased operating temperatures are necessary to lower the cost of solar-generated electricity by improving efficiencies and reducing thermal energy storage costs. Durable new materials are needed to cope with operating temperatures >600 C. The current coating technology (Pyromark High Temperature paint) has a solar absorptance in excess of 0.95 but a thermal emittance greater than 0.8, which results in large thermal losses at high temperatures. In addition, because solar receivers operate in air, these coatings have long term stability issues that add to the operating costs of CSP facilities. Ideal absorbers must have high solar absorptance (>0.95) and low thermal emittance (<0.05) in the IR region, be stable in air, and be low-cost and readily manufacturable. We propose to utilize solution-based synthesis techniques to prepare intrinsic absorbers for use in central receiver applications.

  16. Solar Power

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Solar Power Solar Power Project Opportunities Abound in the Region The WIPP site is receives abundant solar energy with 6-7 kWh/sq meter power production potential As the accompanying map of New Mexico shows, the WIPP site enjoys abundant year-round sunshine. With an average solar power production potential of 6-7 kWh/sq meter per day, one exciting project being studied for location at WIPP is a 30-50 MW Solar Power Tower: The American Solar Energy Society (ASES) is is a national trade

  17. Vortex-augmented cooling tower-windmill combination

    DOEpatents

    McAllister, Jr., John E.

    1985-01-01

    A cooling tower for cooling large quantities of effluent water from a production facility by utilizing natural wind forces includes the use of a series of helically directed air inlet passages extending outwardly from the base of the tower to introduce air from any direction in a swirling vortical pattern while the force of the draft created in the tower makes it possible to place conventional power generating windmills in the air passages to provide power as a by-product.

  18. Vortex-augmented cooling tower-windmill combination

    SciTech Connect

    McAllister Jr., J. E.

    1985-02-12

    A cooling tower for cooling large quantities of effluent water from a production facility by utilizing natural wind forces includes the use of a series of helically directed air inlet passages extending outwardly from the base of the tower to introduce air from any direction in a swirling vortical pattern while the force of the draft created in the tower makes it possible to place conventional power generating windmills in the air passages to provide power as a by-product.

  19. Sandia's Continuously Recirculating Falling-Particle Receiver...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Continuously Recirculating Falling-Particle Receiver Emplaced at Top of Solar Tower - Sandia Energy ... Batteries Electric Drive Systems Hydrogen Materials & Components Compatibility ...

  20. Solar Central Receiver Hybrid Power Systems sodium-cooled receiver concept. Final report. Volume II, Book 1. Conceptual design, Sections 1 through 4

    SciTech Connect

    1980-01-01

    The overall, long-term objective of the Solar Central Receiver Hybrid Power System program is to identify, characterize, and ultimately demonstrate the viability and cost effectiveness of solar/fossil, steam Rankine cycle, hybrid power systems that: (1) consist of a combined solar central receiver energy source and a nonsolar energy source at a single, common site, (2) may operate in the base, intermediate, and peaking capacity modes, (3) produce the rated output independent of variations in solar insolation, (4) provide a significant savings (50% or more) in fuel consumption, and (5) produce power at the minimum possible cost in mills/kWh. It is essential that these hybrid concepts be technically feasible and economically competitive with other systems in the near to mid-term time period (1985-1990) on a commercial scale. The program objective for Phase I is to identify and conceptually characterize solar/fossil steam Rankine cycle, commercial-scale, power plant systems that are economically viable and technically feasible. This volume presents in detail the market analysis, parametric analysis, and the selection process for the preferred system. (WHK)

  1. Ultrasonic power transfer from a spherical acoustic wave source to a free-free piezoelectric receiver: Modeling and experiment

    SciTech Connect

    Shahab, S.; Gray, M.; Erturk, A.

    2015-03-14

    Contactless powering of small electronic components has lately received growing attention for wireless applications in which battery replacement or tethered charging is undesired or simply impossible, and ambient energy harvesting is not a viable solution. As an alternative to well-studied methods of contactless energy transfer, such as the inductive coupling method, the use of ultrasonic waves transmitted and received by piezoelectric devices enables larger power transmission distances, which is critical especially for deep-implanted electronic devices. Moreover, energy transfer by means of acoustic waves is well suited in situations where no electromagnetic fields are allowed. The limited literature of ultrasonic acoustic energy transfer is mainly centered on proof-of-concept experiments demonstrating the feasibility of this method, lacking experimentally validated modeling efforts for the resulting multiphysics problem that couples the source and receiver dynamics with domain acoustics. In this work, we present fully coupled analytical, numerical, and experimental multiphysics investigations for ultrasonic acoustic energy transfer from a spherical wave source to a piezoelectric receiver bar that operates in the 33-mode of piezoelectricity. The fluid-loaded piezoelectric receiver under free-free mechanical boundary conditions is shunted to an electrical load for quantifying the electrical power output for a given acoustic source strength of the transmitter. The analytical acoustic-piezoelectric structure interaction modeling framework is validated experimentally, and the effects of system parameters are reported along with optimal electrical loading and frequency conditions of the receiver.

  2. Wet cooling towers: rule-of-thumb design and simulation (Technical...

    Office of Scientific and Technical Information (OSTI)

    provides information useful in power plant cycle optimization, including tower dimensions, water consumption rate, exit air temperature, power requirements and construction cost. ...

  3. Tower Camera Handbook

    SciTech Connect

    Moudry, D

    2005-01-01

    The tower camera in Barrow provides hourly images of ground surrounding the tower. These images may be used to determine fractional snow cover as winter arrives, for comparison with the albedo that can be calculated from downward-looking radiometers, as well as some indication of present weather. Similarly, during spring time, the camera images show the changes in the ground albedo as the snow melts. The tower images are saved in hourly intervals. In addition, two other cameras, the skydeck camera in Barrow and the piling camera in Atqasuk, show the current conditions at those sites.

  4. Power Tower | Department of Energy

    Energy.gov [DOE] (indexed site)

    Plant (Baseload CSP FOA) Abengoa Solar: Reducing the Cost of Thermal Energy Storage for Parabolic Trough ... for TES and HTF Containment Materials (National Laboratory R&D) ...

  5. Final report on the power production phase of the 10 MW/sub e/ Solar Thermal Central Receiver Pilot Plant

    SciTech Connect

    Radosevich, L.G.

    1988-03-01

    This report describes the evaluations of the power production testing of Solar One, the 10 MW/sub e/ Solar Thermal Central Receiver Pilot Plant near Barstow, California. The Pilot Plant, a cooperative project of the US Department of Energy and utility firms led by the Southern California Edison Company, began a three year period of power production operation in August 1984. During this period, plant performance indicators, such as capacity factor, system efficiency, and availability, were studied to assess the operational capability of the Pilot Plant to reliably supply electrical power. Also studied was the long-term performance of such key plant components as the heliostats and the receiver. During the three years of power production, the Pilot Plant showed an improvement in performance. Considerable increases in capacity factor, system efficiency, and availability were achieved. Heliostat operation was reliable, and only small amounts of mirror corrosion were observed. Receiver tube leaks did occur, however, and were the main cause of the plant's unscheduled outages. The Pilot Plant provided valuable lessons which will aid in the design of future solar central receiver plants. 53 refs., 46 figs., 4 tabs.

  6. Small-Particle Solar Receiver for High-Temperature Brayton Power Cycles (Fact Sheet)

    SciTech Connect

    Not Available

    2012-09-01

    San Diego State University is one of the 2012 SunShot CSP R&D awardees for their advanced receivers. This fact sheet explains the motivation, description, and impact of the project.

  7. High-Efficiency Receivers for Supercritical Carbon Dioxide Cycles, Concentrating Solar Power (Fact Sheet)

    SciTech Connect

    Not Available

    2012-09-01

    Brayton Energy is one of the 2012 SunShot CSP R&D awardees for their advanced receivers. This fact sheet explains the motivation, description, and impact of the project.

  8. Evaluation of annual efficiencies of high temperature central receiver concentrated solar power plants with thermal energy storage.

    SciTech Connect

    Ehrhart, Brian David; Gill, David Dennis

    2013-07-01

    The current study has examined four cases of a central receiver concentrated solar power plant with thermal energy storage using the DELSOL and SOLERGY computer codes. The current state-of-the-art base case was compared with a theoretical high temperature case which was based on the scaling of some input parameters and the estimation of other parameters based on performance targets from the Department of Energy SunShot Initiative. This comparison was done for both current and high temperature cases in two configurations: a surround field with an external cylindrical receiver and a north field with a single cavity receiver. There is a fairly dramatic difference between the design point and annual average performance, especially in the solar field and receiver subsystems, and also in energy losses due to the thermal energy storage being full to capacity. Additionally, there are relatively small differences (<2%) in annual average efficiencies between the Base and High Temperature cases, despite an increase in thermal to electric conversion efficiency of over 8%. This is due the increased thermal losses at higher temperature and operational losses due to subsystem start-up and shut-down. Thermal energy storage can mitigate some of these losses by utilizing larger thermal energy storage to ensure that the electric power production system does not need to stop and re-start as often, but solar energy is inherently transient. Economic and cost considerations were not considered here, but will have a significant impact on solar thermal electric power production strategy and sizing.

  9. Composite Tower Solutions | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    needs, including meteorological towers, weather towers, and data collection and instrumentation towers. Coordinates: 40.233765, -111.668509 Show Map Loading map......

  10. China Solar Tower Development | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Tower Development Jump to: navigation, search Name: China Solar Tower Development Place: China Sector: Solar Product: Joint venture for development of solar towers in China,...

  11. Preliminary design of the Carrisa Plains solar central receiver power plant. Volume III, Book 3. Appendices. Part 2

    SciTech Connect

    Lee, S. K.

    1983-12-31

    The auxiliary heat transport systems of the Carrisa Plains Solar Power Plant (CPSPP) comprise facilities which are used to support plant operation and provide plant safety and maintenance. The facilities are the sodium purification system, argon cover gas system, sodium receiving and filling system, sodium-water reaction product receiving system, and safety and maintenance equipment. The functions of the facilities of the auxiliary system are described. Design requirements are established based on plant operating parameters. Descriptions are given on the system which will be adequate to perform the function and satisfy the requirements. Valve and equipment lists are included in the appendix.

  12. The Damaging Effects of Earthquake Excitation on Concrete Cooling Towers

    SciTech Connect

    Abedi-Nik, Farhad; Sabouri-Ghomi, Saeid

    2008-07-08

    Reinforced concrete cooling towers of hyperbolic shell configuration find widespread application in utilities engaged in the production of electric power. In design of critical civil infrastructure of this type, it is imperative to consider all the possible loading conditions that the cooling tower may experience, an important loading condition in many countries is that of the earthquake excitation, whose influence on the integrity and stability of cooling towers is profound. Previous researches have shown that the columns supporting a cooling tower are sensitive to earthquake forces, as they are heavily loaded elements that do not possess high ductility, and understanding the behavior of columns under earthquake excitation is vital in structural design because they provide the load path for the self weight of the tower shell. This paper presents the results of a finite element investigation of a representative 'dry' cooling tower, using realistic horizontal and vertical acceleration data obtained from the recent and widely-reported Tabas, Naghan and Bam earthquakes in Iran. The results of both linear and nonlinear analyses are reported in the paper, the locations of plastic hinges within the supporting columns are identified and the ramifications of the plastic hinges on the stability of the cooling tower are assessed. It is concluded that for the (typical) cooling tower configuration analyzed, the columns that are instrumental in providing a load path are influenced greatly by earthquake loading, and for the earthquake data used in this study the representative cooling tower would be rendered unstable and would collapse under the earthquake forces considered.

  13. High temperature performance of high-efficiency, multi-layer solar selective coatings for tower applications

    SciTech Connect

    Gray, M. H.; Tirawat, R.; Kessinger, K. A.; Ndione, P. F.

    2015-05-01

    The roadmap to next-generation concentrating solar power plants anticipates a progression to central towers with operating temperatures in excess of 650°C. These higher temperatures are required to drive higher power-cycle efficiencies, resulting in lower cost energy. However, these conditions also place a greater burden on the materials making up the receiver. Any novel absorber material developed for next-generation receivers must be stable in air, cost effective, and survive thousands of heating and cooling cycles. The collection efficiency of a power tower plant can be increased if the energy absorbed by the receiver is maximized while the heat loss from the receiver to the environment is minimized. Thermal radiation losses can be significant (>7% annual energy loss) with receivers at temperatures above 650°C. We present progress toward highly efficient and durable solar selective absorbers (SSAs) intended for operating temperatures from 650°C to 1000°C. Selective efficiency (ηsel) is defined as the energy retained by the absorber, accounting for both absorptance and emittance, relative to the energy incident on the surface. The low emittance layers of multilayer SSAs are binary compounds of refractory metals whose material properties indicate that coatings formed of these materials should be oxidation resistant in air to 800-1200°C. On this basis, we initially developed a solar selective coating for parabolic troughs. This development has been successfully extended to meet the absorptance and emittance objectives for the more demanding, high temperature regime. We show advancement in coating materials, processing and designs resulting in the initial attainment of target efficiencies ηsel > 0.91 for proposed tower conditions. Additionally, spectral measurements show that these coatings continue to perform at targeted levels after cycling to temperatures of 1000°C in environments of nitrogen and forming gas.

  14. High temperature performance of high-efficiency, multi-layer solar selective coatings for tower applications

    SciTech Connect

    Gray, M. H.; Tirawat, R.; Kessinger, K. A.; Ndione, P. F.

    2015-05-01

    The roadmap to next-generation concentrating solar power plants anticipates a progression to central towers with operating temperatures in excess of 650C. These higher temperatures are required to drive higher power-cycle efficiencies, resulting in lower cost energy. However, these conditions also place a greater burden on the materials making up the receiver. Any novel absorber material developed for next-generation receivers must be stable in air, cost effective, and survive thousands of heating and cooling cycles. The collection efficiency of a power tower plant can be increased if the energy absorbed by the receiver is maximized while the heat loss from the receiver to the environment is minimized. Thermal radiation losses can be significant (>7% annual energy loss) with receivers at temperatures above 650C. We present progress toward highly efficient and durable solar selective absorbers (SSAs) intended for operating temperatures from 650C to 1000C. Selective efficiency (?sel) is defined as the energy retained by the absorber, accounting for both absorptance and emittance, relative to the energy incident on the surface. The low emittance layers of multilayer SSAs are binary compounds of refractory metals whose material properties indicate that coatings formed of these materials should be oxidation resistant in air to 800-1200C. On this basis, we initially developed a solar selective coating for parabolic troughs. This development has been successfully extended to meet the absorptance and emittance objectives for the more demanding, high temperature regime. We show advancement in coating materials, processing and designs resulting in the initial attainment of target efficiencies ?sel > 0.91 for proposed tower conditions. Additionally, spectral measurements show that these coatings continue to perform at targeted levels after cycling to temperatures of 1000C in environments of nitrogen and forming gas.

  15. High temperature performance of high-efficiency, multi-layer solar selective coatings for tower applications

    DOE PAGES [OSTI]

    Gray, M. H.; Tirawat, R.; Kessinger, K. A.; Ndione, P. F.

    2015-05-01

    The roadmap to next-generation concentrating solar power plants anticipates a progression to central towers with operating temperatures in excess of 650°C. These higher temperatures are required to drive higher power-cycle efficiencies, resulting in lower cost energy. However, these conditions also place a greater burden on the materials making up the receiver. Any novel absorber material developed for next-generation receivers must be stable in air, cost effective, and survive thousands of heating and cooling cycles. The collection efficiency of a power tower plant can be increased if the energy absorbed by the receiver is maximized while the heat loss from themore » receiver to the environment is minimized. Thermal radiation losses can be significant (>7% annual energy loss) with receivers at temperatures above 650°C. We present progress toward highly efficient and durable solar selective absorbers (SSAs) intended for operating temperatures from 650°C to 1000°C. Selective efficiency (ηsel) is defined as the energy retained by the absorber, accounting for both absorptance and emittance, relative to the energy incident on the surface. The low emittance layers of multilayer SSAs are binary compounds of refractory metals whose material properties indicate that coatings formed of these materials should be oxidation resistant in air to 800-1200°C. On this basis, we initially developed a solar selective coating for parabolic troughs. This development has been successfully extended to meet the absorptance and emittance objectives for the more demanding, high temperature regime. We show advancement in coating materials, processing and designs resulting in the initial attainment of target efficiencies ηsel > 0.91 for proposed tower conditions. Additionally, spectral measurements show that these coatings continue to perform at targeted levels after cycling to temperatures of 1000°C in environments of nitrogen and forming gas.« less

  16. Comments Received on the RFI on the Possible Establishment of a Reserve of Large Power Transformers

    Energy.gov [DOE]

    On July 9, 2015, the Office of Electricity Delivery and Energy Reliability issued a Request for Information (RFI), asking for comments on the possible establishment of a reserve of large power transformers that would support the nation’s bulk power system. On September 23, 2015, the Office of Electricity Delivery and Energy Reliability reopened the comment period for a period of 14 days. Large power transformers (LPTs), which are a critical component of the power grid, are a concern because transformer failures can interrupt electricity service to a large number of customers and replacing one quickly could be difficult. The RFI responded to the recommendation in the Energy Department’s Quadrennial Energy Review to evaluate a national initiative to mitigate the risks associated with the loss of transformers. The submitted comments are available below.

  17. Central solar energy receiver

    DOEpatents

    Drost, M. Kevin

    1983-01-01

    An improved tower-mounted central solar energy receiver for heating air drawn through the receiver by an induced draft fan. A number of vertically oriented, energy absorbing, fin-shaped slats are radially arranged in a number of concentric cylindrical arrays on top of the tower coaxially surrounding a pipe having air holes through which the fan draws air which is heated by the slats which receive the solar radiation from a heliostat field. A number of vertically oriented and wedge-shaped columns are radially arranged in a number of concentric cylindrical clusters surrounding the slat arrays. The columns have two mirror-reflecting sides to reflect radiation into the slat arrays and one energy absorbing side to reduce reradiation and reflection from the slat arrays.

  18. Fluidized-bed technology enabling the integration of high temperature solar receiver CSP systems with steam and advanced power cycles

    SciTech Connect

    Sakadjian, B.; Hu, S.; Maryamchik, M.; Flynn, T.; Santelmann, K.; Ma, Z.

    2015-05-01

    Solar Particle Receivers (SPR) are under development to drive concentrating solar plants (CSP) towards higher operating temperatures to support higher efficiency power conversion cycles. The novel high temperature SPR-based CSP system uses solid particles as the heat transfer medium (HTM) in place of the more conventional fluids such as molten salt or steam used in current state-of-the-art CSP plants. The solar particle receiver (SPR) is designed to heat the HTM to temperatures of 800 °C or higher which is well above the operating temperatures of nitrate-based molten salt thermal energy storage (TES) systems. The solid particles also help overcome some of the other challenges associated with molten salt-based systems such as freezing, instability and degradation. The higher operating temperatures and use of low cost HTM and higher efficiency power cycles are geared towards reducing costs associated with CSP systems. This paper describes the SPR-based CSP system with a focus on the fluidized-bed (FB) heat exchanger and its integration with various power cycles. The SPR technology provides a potential pathway to achieving the levelized cost of electricity (LCOE) target of $0.06/kWh that has been set by the U.S. Department of Energy's SunShot initiative.

  19. Fluidized-bed technology enabling the integration of high temperature solar receiver CSP systems with steam and advanced power cycles

    SciTech Connect

    Sakadjian, B.; Hu, S.; Maryamchik, M.; Flynn, T.; Santelmann, K.; Ma, Z.

    2015-06-05

    Solar Particle Receivers (SPR) are under development to drive concentrating solar plants (CSP) towards higher operating temperatures to support higher efficiency power conversion cycles. The novel high temperature SPR-based CSP system uses solid particles as the heat transfer medium (HTM) in place of the more conventional fluids such as molten salt or steam used in current state-of-the-art CSP plants. The solar particle receiver (SPR) is designed to heat the HTM to temperatures of 800 °C or higher which is well above the operating temperatures of nitrate-based molten salt thermal energy storage (TES) systems. The solid particles also help overcome some of the other challenges associated with molten salt-based systems such as freezing, instability and degradation. The higher operating temperatures and use of low cost HTM and higher efficiency power cycles are geared towards reducing costs associated with CSP systems. This paper describes the SPR-based CSP system with a focus on the fluidized-bed (FB) heat exchanger and its integration with various power cycles. Furthermore, the SPR technology provides a potential pathway to achieving the levelized cost of electricity (LCOE) target of $0.06/kWh that has been set by the U.S. Department of Energy's SunShot initiative.

  20. Fluidized-bed technology enabling the integration of high temperature solar receiver CSP systems with steam and advanced power cycles

    DOE PAGES [OSTI]

    Sakadjian, B.; Hu, S.; Maryamchik, M.; Flynn, T.; Santelmann, K.; Ma, Z.

    2015-06-05

    Solar Particle Receivers (SPR) are under development to drive concentrating solar plants (CSP) towards higher operating temperatures to support higher efficiency power conversion cycles. The novel high temperature SPR-based CSP system uses solid particles as the heat transfer medium (HTM) in place of the more conventional fluids such as molten salt or steam used in current state-of-the-art CSP plants. The solar particle receiver (SPR) is designed to heat the HTM to temperatures of 800 °C or higher which is well above the operating temperatures of nitrate-based molten salt thermal energy storage (TES) systems. The solid particles also help overcome somemore » of the other challenges associated with molten salt-based systems such as freezing, instability and degradation. The higher operating temperatures and use of low cost HTM and higher efficiency power cycles are geared towards reducing costs associated with CSP systems. This paper describes the SPR-based CSP system with a focus on the fluidized-bed (FB) heat exchanger and its integration with various power cycles. Furthermore, the SPR technology provides a potential pathway to achieving the levelized cost of electricity (LCOE) target of $0.06/kWh that has been set by the U.S. Department of Energy's SunShot initiative.« less

  1. Preliminary design of the Carrisa Plains solar central receiver power plant. Volume III, Book 3. Appendices, Part 1

    SciTech Connect

    Mouradian, E. M.

    1983-12-31

    Thermal analyses for the preliminary design phase of the Receiver of the Carrizo Plains Solar Power Plant are presented. The sodium reference operating conditions (T/sub in/ = 610/sup 0/F, T/sub out/ = 1050/sup 0/F) have been considered. Included are: Nominal flux distribution on receiver panal, Energy input to tubes, Axial temperature distribution; sodium and tubes, Sodium flow distribution, Sodium pressure drop, orifice calculations, Temperature distribution in tube cut (R-0), Backface structure, and Nonuniform sodium outlet temperature. Transient conditions and panel front face heat losses are not considered. These are to be addressed in a subsequent design phase. Also to be considered later are the design conditions as variations from the nominal reference (operating) condition. An addendum, designated Appendix C, has been included describing panel heat losses, panel temperature distribution, and tube-manifold joint thermal model.

  2. Use of nanofiltration to reduce cooling tower water consumption.

    SciTech Connect

    Altman, Susan Jeanne; Ciferno, Jared

    2010-10-01

    Nanofiltration (NF) can effectively treat cooling-tower water to reduce water consumption and maximize water usage efficiency of thermoelectric power plants. A pilot is being run to verify theoretical calculations. A side stream of water from a 900 gpm cooling tower is being treated by NF with the permeate returning to the cooling tower and the concentrate being discharged. The membrane efficiency is as high as over 50%. Salt rejection ranges from 77-97% with higher rejection for divalent ions. The pilot has demonstrated a reduction of makeup water of almost 20% and a reduction of discharge of over 50%.

  3. Use of nanofiltration to reduce cooling tower water usage.

    SciTech Connect

    Sanchez, Andres L.; Everett, Randy L.; Jensen, Richard Pearson; Cappelle, Malynda A.; Altman, Susan Jeanne

    2010-09-01

    Nanofiltration (NF) can effectively treat cooling-tower water to reduce water consumption and maximize water usage efficiency of thermoelectric power plants. A pilot is being run to verify theoretical calculations. A side stream of water from a 900 gpm cooling tower is being treated by NF with the permeate returning to the cooling tower and the concentrate being discharged. The membrane efficiency is as high as over 50%. Salt rejection ranges from 77-97% with higher rejection for divalent ions. The pilot has demonstrated a reduction of makeup water of almost 20% and a reduction of discharge of over 50%.

  4. PowerPoint Presentation

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    High-Temperature Solar Selective Coating Development for Power Tower Receivers CSP: LDPD_Ambrosini_A Duration: 3 years (ending Dec. 2015) DOE Funding: $2,517,000 Andrea Ambrosini, Sandia National Laboratories energy.gov/sunshot energy.gov/sunshot CSP Program Summit 2016 2 Team and Acknowledgments Clifford Ho Aaron Hall Timothy Lambert Antoine Boubault John Lewis Lam Banh James Pacheco Cheryl Ghanbari David Adams David Saiz Danae Davis Andrew Hunt Marlene Knight Bonnie McKenzie Landon Davis Pylin

  5. Improved Concentrating Solar Power Systems - Energy Innovation Portal

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Solar Thermal Solar Thermal Energy Storage Energy Storage Find More Like This Return to Search Improved Concentrating Solar Power Systems National Renewable Energy Laboratory Contact NREL About This Technology Technology Marketing Summary Concentrating Solar Power (CSP) systems utilize solar energy to drive a thermal power cycle for the generation of electricity. CSP technologies include parabolic trough, linear Fresnel, central receiver or "power tower", and dish/engine systems.

  6. Accident Investigation of the September 20, 2012 Fatal Fall from the Dworshak-Taft #1 Transmission Tower, at the Bonneville Power Marketing Administration

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report is an independent product of the Level l Accident Investigation Board appointed by Brad Bea, Chief Safety Officer, Bonneville Power Administration. The Board was appointed to perform a Levell Accident Investigation and to prepare an investigation report in accordance with Bonneville Power Administration Manual, Chapter 181, Accident Investigation and Reporting

  7. EA-1629:Southwestern Power Administration Utility Corridor and Tower Site Vegetation Management; Ozark-St. Francis National Forest, Pope and Searcy Counties, Arkansas

    Energy.gov [DOE]

    U.S. Forest Service prepared an EA that evaluated the potential environmental impacts of amending a Southwestern Area Power Administration (SWPA) permit to allow herbicide application within SWPA transmission line rights-of-way in the Ozark-St. Francis National Forest. SWPA initially was a cooperating agency, and later ended its involvement in preparing the EA.

  8. Central solar-energy receiver

    DOEpatents

    Not Available

    1981-10-27

    An improved tower-mounted central solar energy receiver for heating air drawn through the receiver by an induced draft fan is described. A number of vertically oriented, energy absorbing, fin-shaped slats are radially arranged in a number of concentric cylindrical arrays on top of the tower coaxially surrounding a pipe having air holes through which the fan draws air which is heated by the slats which receive the solar radiation from a heliostat field. A number of vertically oriented and wedge-shaped columns are radially arranged in a number of concentric cylindrical clusters surrounding the slat arrays. The columns have two mirror-reflecting sides to reflect radiation into the slat arrays and one energy absorbing side to reduce reradiation and reflection from the slat arrays.

  9. How to Build a Tower

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Volunteers - Sign Up About Science Bowl Curriculum and Activities How to Build a Motor The Great Marble Drop How to Build a Turbine How to Build a Tower Classroom...

  10. SOUTHWESTERN POWER ADMINISTRATION CATEGORICAL EXCLUSION (CX) DETERMINATION

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ADMINISTRATION CATEGORICAL EXCLUSION (CX) DETERMINATION Southwestern Western Power Administration proposes to modify and/or construct several Oklahoma and Arkansas communication tower facilities as part of the Spectrum Relocation Project. Communication tower facility modifications and construction activities include new tower construction, various levels of existing tower removals and/or replacements and, in some instances, facility site expansion or land disposition. PROPOSED BY: Southwestern

  11. Tower Temperature and Humidity Sensors (TWR) Handbook

    SciTech Connect

    Cook, DR

    2010-02-01

    Three tall towers are installed at the Atmospheric Radiation Measurement (ARM) Climate Research Facility: a 60-meter triangular tower at the Southern Great Plains (SGP) Central Facility (CF), a 21-meter walkup scaffolding tower at the SGP Okmulgee forest site (E21), and a 40-meter triangular tower at the North Slope of Alaska (NSA) Barrow site. The towers are used for meteorological, radiological, and other measurements.

  12. Power line detection system

    DOEpatents

    Latorre, V.R.; Watwood, D.B.

    1994-09-27

    A short-range, radio frequency (RF) transmitting-receiving system that provides both visual and audio warnings to the pilot of a helicopter or light aircraft of an up-coming power transmission line complex. Small, milliwatt-level narrowband transmitters, powered by the transmission line itself, are installed on top of selected transmission line support towers or within existing warning balls, and provide a continuous RF signal to approaching aircraft. The on-board receiver can be either a separate unit or a portion of the existing avionics, and can also share an existing antenna with another airborne system. Upon receipt of a warning signal, the receiver will trigger a visual and an audio alarm to alert the pilot to the potential power line hazard. 4 figs.

  13. Power line detection system

    DOEpatents

    Latorre, Victor R.; Watwood, Donald B.

    1994-01-01

    A short-range, radio frequency (RF) transmitting-receiving system that provides both visual and audio warnings to the pilot of a helicopter or light aircraft of an up-coming power transmission line complex. Small, milliwatt-level narrowband transmitters, powered by the transmission line itself, are installed on top of selected transmission line support towers or within existing warning balls, and provide a continuous RF signal to approaching aircraft. The on-board receiver can be either a separate unit or a portion of the existing avionics, and can also share an existing antenna with another airborne system. Upon receipt of a warning signal, the receiver will trigger a visual and an audio alarm to alert the pilot to the potential power line hazard.

  14. Cooling Towers: Understanding Key Components of Cooling Towers and How to

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Improve Water Efficiency | Department of Energy Cooling Towers: Understanding Key Components of Cooling Towers and How to Improve Water Efficiency Cooling Towers: Understanding Key Components of Cooling Towers and How to Improve Water Efficiency Fact sheet covers the key components of cooling towers and how to improve water efficiency. Download the cooling towers fact sheet. (3.16 MB) More Documents & Publications Guidelines for Estimating Unmetered Industrial Water Use Side Stream

  15. Phase Change Material Tower

    Office of Energy Efficiency and Renewable Energy (EERE)

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  16. Solar Two Tower System

    Energy.gov [DOE]

    In this photograph of a concentrating solar power (CSP) technology, stretched membrane heliostats with silvered polymer reflectors will be used as demonstration units at the Solar Two central...

  17. Phase Change Material Tower

    Office of Environmental Management (EM)

    for Dispatchable Solar Power" Award: 3,875,104 from ... solar thermal electricity at a significantly ... conductivity (100x molten salt) allows high efficiency at ...

  18. Add helper cooling towers to control discharge temperatures

    SciTech Connect

    Lander, J.; Christensen, G.

    1993-04-01

    This article describes the retrofitting of helper cooling towers to the Crystal River energy complex to reduce thermal pollution to the Gulf of Mexico. The topics of the article include the design concept, evaluation of design alternatives, a project description, economic evaluation, marine organism control, power requirements, and auxiliary systems.

  19. Sandia Energy Concentrating Solar Power

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    feed 0 Sandia's Continuously Recirculating Falling-Particle Receiver Emplaced at Top of Solar Tower http:energy.sandia.govsandias-continuously-recirculating-falling-particle-r...

  20. Short range micro-power impulse radar with high resolution swept range gate with damped transmit and receive cavities

    DOEpatents

    McEwan, T.E.

    1998-06-30

    A radar range finder and hidden object locator is based on ultra-wide band radar with a high resolution swept range gate. The device generates an equivalent time amplitude scan with atypical range of 4 inches to 20 feet, and an analog range resolution as limited by a jitter of on the order of 0.01 inches. A differential sampling receiver is employed to effectively eliminate ringing and other aberrations induced in the receiver by the near proximity of the transmit antenna, so a background subtraction is not needed, simplifying the circuitry while improving performance. Uses of the invention include a replacement of ultrasound devices for fluid level sensing, automotive radar, such as cruise control and parking assistance, hidden object location, such as stud and rebar finding. Also, this technology can be used when positioned over a highway lane to collect vehicle count and speed data for traffic control. Techniques are used to reduce clutter in the receive signal, such as decoupling the receive and transmit cavities by placing a space between them, using conductive or radiative damping elements on the cavities, and using terminating plates on the sides of the openings. 20 figs.

  1. Short range micro-power impulse radar with high resolution swept range gate with damped transmit and receive cavities

    DOEpatents

    McEwan, Thomas E.

    1998-01-01

    A radar range finder and hidden object locator is based on ultra-wide band radar with a high resolution swept range gate. The device generates an equivalent time amplitude scan with atypical range of 4 inches to 20 feet, and an analog range resolution as limited by a jitter of on the order of 0.01 inches. A differential sampling receiver is employed to effectively eliminate ringing and other aberrations induced in the receiver by the near proximity of the transmit antenna, so a background subtraction is not needed, simplifying the circuitry while improving performance. Uses of the invention include a replacement of ultrasound devices for fluid level sensing, automotive radar, such as cruise control and parking assistance, hidden object location, such as stud and rebar finding. Also, this technology can be used when positioned over a highway lane to collect vehicle count and speed data for traffic control. Techniques are used to reduce clutter in the receive signal, such as decoupling the receive and transmit cavities by placing a space between them, using conductive or radiative damping elements on the cavities, and using terminating plates on the sides of the openings.

  2. Best Management Practice #10: Cooling Tower Management

    Office of Energy Efficiency and Renewable Energy (EERE)

    Cooling towers dissipate heat from recirculating water used to cool chillers, air conditioners, or other process equipment to the ambient air. Heat is rejected to the environment from cooling towers through the process of evaporation. Therefore, by design, cooling towers use significant amounts of water.

  3. CALUTRON RECEIVER

    DOEpatents

    Barnes, S.W.

    1959-06-16

    An improved receiver and receiver mount for calutrons are described. The receiver can be manipulated from outside the tank by a single control to position it with respect to the beam. A door can be operated exteriorly also to prevent undesired portions of the beam from entering the receiver. The receiver has an improved pocket which is more selective in the ions collected. (T.R.H.)

  4. Final Report- Optimizing the CSP Tower Air Brayton Cycle System to Meet the SunShot Objectives

    Energy.gov [DOE]

    Awardee: Southwest Research InstituteLocation: San Antonio, TXSubprogram: Concentrating Solar PowerFunding Program: SunShot Concentrating Solar Power R&DProject: Optimizing the CSP Tower Air...

  5. Feasibility Study of Economics and Performance of Solar Photovoltaics at the Tower Road Site in Aurora, Colorado. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect

    Van Geet, O.; Mosey, G.

    2013-03-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Tower Road site in Aurora, Colorado, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this report is to assess the site for a possible photovoltaic (PV) system installation and estimate the cost, performance, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site. This study did not assess environmental conditions at the site.

  6. Fuel Cells for Backup Power in Telecommunications Facilities...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Telecommunications providers rely on backup power to maintain a constant power supply, to prevent power outages, and to ensure the operability of cell towers, equipment, and ...

  7. 2004 Savannah River Cooling Tower Collection (U)

    SciTech Connect

    Garrett, Alfred; Parker, Matthew J.; Villa-Aleman, E.

    2005-05-01

    The Savannah River National Laboratory (SRNL) collected ground truth in and around the Savannah River Site (SRS) F-Area cooling tower during the spring and summer of 2004. The ground truth data consisted of air temperatures and humidity inside and around the cooling tower, wind speed and direction, cooling water temperatures entering; inside adn leaving the cooling tower, cooling tower fan exhaust velocities and thermal images taken from helicopters. The F-Area cooling tower had six cells, some of which were operated with fans off during long periods of the collection. The operating status (fan on or off) for each of the six cells was derived from operations logbooks and added to the collection database. SRNL collected the F-Area cooling tower data to produce a database suitable for validation of a cooling tower model used by one of SRNL's customer agencies. SRNL considers the data to be accurate enough for use in a model validation effort. Also, the thermal images of the cooling tower decks and throats combined with the temperature measurements inside the tower provide valuable information about the appearance of cooling towers as a function of fan operating status and time of day.

  8. CALUTRON RECEIVERS

    DOEpatents

    Schmidt, F.H.; Stone, K.F.

    1958-09-01

    S>This patent relates to improvements in calutron devices and, more specifically, describes a receiver fer collecting the ion curreot after it is formed into a beam of non-homogeneous isotropic cross-section. The invention embodies a calutron receiver having an ion receiving pocket for separately collecting and retaining ions traveling in a selected portion of the ion beam and anelectrode for intercepting ions traveling in another selected pontion of the ion beam. The electrode is disposed so as to fix the limit of one side of the pontion of the ion beam admitted iato the ion receiving pocket.

  9. BREN Tower: A Monument to the Material Culture of Radiation Dosimetry Research

    SciTech Connect

    Susan Edwards

    2008-05-30

    With a height of more than 1,500 feet, the BREN (Bare Reactor Experiment, Nevada) Tower dominates the surrounding desert landscape of the Nevada Test Site. Associated with the nuclear research and atmospheric testing programs carried out during the 1950s and 1960s, the tower was a vital component in a series of experiments aimed at characterizing radiation fields from nuclear detonations. Research programs conducted at the tower provided the data for the baseline dosimetry studies crucial to determining the radiation dose rates received by the atomic bomb survivors of Hiroshima and Nagasaki, Japan. Today, BREN Tower stands as a monument to early dosimetry research and one of the legacies of the Cold War.

  10. Airfoils for Enhanced Wind Turbine and Cooling Tower Efficiency - Energy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Innovation Portal Wind Energy Wind Energy Find More Like This Return to Search Airfoils for Enhanced Wind Turbine and Cooling Tower Efficiency National Renewable Energy Laboratory Contact NREL About This Technology Technology Marketing Summary Wind power and capacity has risen dramatically with a 2015 increase in global capacity of 23.2%, according to Navigant's 2016 World Wind Energy Market Update. This growth in wind capacity has occurred due to the increase in both on- and off-shore wind

  11. NREL: Technology Deployment - Resource Maps for Taller Towers Reveal New

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Areas for Wind Project Development Resource Maps for Taller Towers Reveal New Areas for Wind Project Development News Mapping the Frontier of New Wind Power Potential Publications Southeastern Wind Coalition fact sheets Southeast Wind Energy Fact Sheet Enabling Wind Power Nationwide Wind Vision: A New Era for Wind Power in the United States Sponsors AWS Truepower Southeastern Wind Coalition Key Partners U.S. Department of Energy Contact Ian Baring-Gould, 303-384-7021 A picture of a tall wind

  12. Advanced Supercritical Carbon Dioxide Power Cycle Configurations for Use in Concentrating Solar Power Systems: Preprint

    SciTech Connect

    Ma, Z.; Turchi, C. S.

    2011-03-01

    The research will characterize and evaluate advanced S-CO2 Brayton cycle power generation with a modular power tower CSP system.

  13. ARM - Campaign Instrument - aerosol-tower-eml

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    (AEROSOL-TOWER-EML) Instrument Categories Aerosols Campaigns Remote Cloud Sensing (RCS) Field Evaluation Download Data Southern Great Plains, 1994.04.01 - 1994.05.31...

  14. GreenTower | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Sector: Solar Product: Developer of a solar chimney technology, with greenhouses for food production. Hopes to deploy this in Namibia. References: GreenTower1 This article...

  15. CALUTRON RECEIVERS

    DOEpatents

    MacKenzie, K.R.

    1958-09-16

    A novel calutron receiver is described for collecting the constituent material of two closely adjacent selected portions of an ion beam in separate compartments. The receiver is so conntructed that ion scatter and intermixing of the closely adjacent beam portions do nnt occur when the ions strike the receiver structure, and the beam is sharply separated Into the two compartments. In essence, these desirable results are achieved by inclining the adjoining wall of one compartment with respect to the approaching ions to reduce possible rebounding of ions from the compartment into the adjacent compartment.

  16. Wind turbine tower for storing hydrogen and energy

    DOEpatents

    Fingersh, Lee Jay

    2008-12-30

    A wind turbine tower assembly for storing compressed gas such as hydrogen. The tower assembly includes a wind turbine having a rotor, a generator driven by the rotor, and a nacelle housing the generator. The tower assembly includes a foundation and a tubular tower with one end mounted to the foundation and another end attached to the nacelle. The tower includes an in-tower storage configured for storing a pressurized gas and defined at least in part by inner surfaces of the tower wall. In one embodiment, the tower wall is steel and has a circular cross section. The in-tower storage may be defined by first and second end caps welded to the inner surface of the tower wall or by an end cap near the top of the tower and by a sealing element attached to the tower wall adjacent the foundation, with the sealing element abutting the foundation.

  17. Enforcement Letter, Armor Tower, Inc. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Armor Tower, Inc. Enforcement Letter, Armor Tower, Inc. December 4, 2015 Worker Safety and Health Enforcement Letter issued to Armor Tower, Inc. On December 4, 2015, the U.S. Department of Energy (DOE) Office of Enterprise Assessments' Office of Enforcement issued an Enforcement Letter (WEL-2015-06) to Armor Tower, Inc., relating to a worker electrical shock that occurred while working on a meteorological tower at DOE's Brookhaven National Laboratory. Enforcement Letter, Armor Tower, Inc.

  18. Cooling tower environmental considerations for cogeneration projects

    SciTech Connect

    Weaver, K.L.; Putnam, R.A.; Schott, G.A.

    1994-12-31

    Careful consideration must be given to the potential environmental impacts resulting from cooling tower operations in cogeneration projects. Concerns include visible plumes, fogging and icing of nearby roadways, emissions, water use, aesthetics, and noise. These issues must be properly addressed in order to gain public acceptance and allow for easier permitting of the facility. This paper discusses the various evaporative type cooling tower technologies from an environmental standpoint. In addition, typical concerns and questions raised by the public are presented, along with suggested guidelines for addressing these concerns. The use of modeling to predict the potential environmental impacts from cooling tower operations is sometimes required by regulatory agencies as a condition for obtaining approval for the facility. This paper discusses two of the models that are currently available for predicting cooling tower environmental impacts such as fogging, icing, salt deposition, and visible plumes. The lack of standardized models for cooling tower noise predictions, and the means by which the modeling requirements may be achieved are also addressed. An overview of the characteristics of cooling tower noise, the various measures used for noise control and the interdependency of the control measures and other cooling tower performance parameters are presented. Guidance is provided to design cost effective, low noise installations. The requirements for cooling tower impact assessments to support permitting of a cogeneration facility are also presented.

  19. Tower Water-Vapor Mixing Ratio

    SciTech Connect

    Guastad, Krista; Riihimaki, Laura; none,

    2013-04-01

    The purpose of the Tower Water-Vapor Mixing Ratio (TWRMR) value-added product (VAP) is to calculate water-vapor mixing ratio at the 25-meter and 60-meter levels of the meteorological tower at the Southern Great Plains (SGP) Central Facility.

  20. Hydrogen Storage in Wind Turbine Towers: Cost Analysis and Conceptual...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    in Wind Turbine Towers: Cost Analysis and Conceptual Design Hydrogen Storage in Wind Turbine Towers: Cost Analysis and Conceptual Design Preprint 34851.pdf (366.26 KB) More ...

  1. Tower Temperature and Humidity Sensors (TWR) Handbook (Technical...

    Office of Scientific and Technical Information (OSTI)

    (ARM) Climate Research Facility: a 60-meter triangular tower at the Southern Great Plains (SGP) Central Facility (CF), a 21-meter walkup scaffolding tower at the SGP Okmulgee ...

  2. Technical Evaluation of Side Stream Filtration for Cooling Towers...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Technical Evaluation of Side Stream Filtration for Cooling Towers Technical Evaluation of Side Stream Filtration for Cooling Towers Fact sheet provides an overview of side stream ...

  3. Flue gas injection control of silica in cooling towers. (Technical...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Flue gas injection control of silica in cooling towers. Citation Details In-Document Search Title: Flue gas injection control of silica in cooling towers. ...

  4. Use of nanofiltration to reduce cooling tower water consumption...

    Office of Scientific and Technical Information (OSTI)

    Use of nanofiltration to reduce cooling tower water consumption. Citation Details In-Document Search Title: Use of nanofiltration to reduce cooling tower water consumption. ...

  5. Coagulation chemistries for silica removal from cooling tower...

    Office of Scientific and Technical Information (OSTI)

    Coagulation chemistries for silica removal from cooling tower water. Citation Details In-Document Search Title: Coagulation chemistries for silica removal from cooling tower water. ...

  6. Cooling tower water treatment and reuse. (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Cooling tower water treatment and reuse. Citation Details In-Document Search Title: Cooling tower water treatment and reuse. No abstract prepared. Authors: Brady, Patrick Vane ; ...

  7. PowerPoint Presentation

    Office of Scientific and Technical Information (OSTI)

    ... ii i J U.5. Department of Energy SunShot Analysis iij Receiver Hot salt storage tank Steam generator Tower ... values from current state to future states - If future state is ...

  8. System requirements specification for a solar central receiver system integrated with a cogeneration facility for copper smelting. Final report

    SciTech Connect

    Not Available

    1981-08-01

    Detailed calculations are presented that cover the pressure drops in the pipelines added to the Hidalgo smelting plant due to the solar air system and the addition of a feedwater heater and superheater. A series of calculations is also given that addresses the performance of the flash smelting process. Additional calculations deal with the heat and mass balances for the steam system. Data on an analysis of the gas turbine and a system performance source code are included. Some specific data on power into the solar receiver from the user selected heliostat field are given for 170-meter, 190-meter, and 210-meter towers. Seven major trade areas addressed include: receiver operating pressure and temperature; selection of process heat air temperature; design point receiver power; thermal energy storage subsystem capacity; solar heliostat field optimization; gas turbine configuration and control; and tower height optimization. Analysis of the performance data of the smelting process and thermal analysis data of the cavity solar receiver for the Hidalgo smelter are given. (MCW)

  9. CALUTRON RECEIVER

    DOEpatents

    Barnes, S.W.

    1959-08-25

    An improvement in a calutron receiver for collecting the isotopes ts described. The electromagnetic separation of the isotopes produces a mass spectrum of closely adjacent beams of ions at the foci regions, and a dividing wall between the two pockets is arranged at an angle. Substantially all of the tons of the less abundant isotope enter one of the pockets and strike one side of the wall directly, while substantially none of the tons entering the other pocket strikes the wall directly.

  10. Tall Tower Wind Energy Monitoring and Numerical Model Validation in Northern Nevada

    SciTech Connect

    Koracin, D.; Kaplan, M.; Smith, C.; McCurdy, G.; Wolf, A.; McCord, T.; King, K.; Belu, R.; Horvath, K.

    2015-10-01

    The main objectives of this project were to conduct a tall-tower and sodar field campaign in complex terrain, investigate wind properties relevant to wind energy assessment, and evaluate high-resolution models with fixed and adaptive grid structures. Two 60-m towers at Virginia Peak ridges near Washoe Valley, Nevada, were instrumented with cup and vane anemometers as well as sonic anemometers, and an acoustic sounder (hereafter sodar) was installed near one of the towers. The towers were located 2,700 m apart with a vertical distance of 140 m elevation between their bases. Each tower had a downhill exposure of rolling complex terrain, with the nearby valley floor 3,200 m to the west and 800 m below the summit. Cup anemometers were installed at both towers at 20, 40, and 60 m, wind vanes at 20 and 60 m, and sonic anemometers at 20 and 60 m. The sodar measurements were nominally provided every 10 m in vertical distance from 40 to 200 m with the quality of the data generally decreasing with height. Surface air temperature, atmospheric pressure, and radiation measurements were conducted at 1.5 m AGL at both of the towers. Although the plan was to conduct a 1-year period of data collection, we extended the period (October 5, 2012 through February 24, 2014) to cover for possible data loss from instrument or communication problems. We also present a preliminary analysis of the towers and sodar data, including a detailed inventory of available and missing data as well as outliers. The analysis additionally includes calculation of the Weibull parameters, turbulence intensity, and initial computation of wind power density at various heights.

  11. The Tower Shielding Facility: Its glorious past

    SciTech Connect

    Muckenthaler, F.J.

    1997-05-07

    The Tower Shielding Facility (TSF) is the only reactor facility in the US that was designed and built for radiation-shielding studies in which both the reactor source and shield samples could be raised into the air to allow measurements to be made without interference from ground scattering or other spurious effects. The TSF proved its usefulness as many different programs were successfully completed. It became active in work for the Defense Atomic Support Agency (DASA) Space Nuclear Auxiliary Power, Defense Nuclear Agency, Liquid Metal Fast Breeder Reactor Program, the Gas-Cooled and High-Temperature Gas-Cooled Reactor programs, and the Japanese-American Shielding Program of Experimental Research, just to mention a few of the more extensive ones. The history of the TSF as presented in this report describes the various experiments that were performed using the different reactors. The experiments are categorized as to the programs which they supported and placed in corresponding chapters. The experiments are described in modest detail, along with their purpose when appropriate. Discussion of the results is minimal, but references are given to more extensive topical reports.

  12. Microsoft Word - Cooling Tower Report.doc

    Office of Environmental Management (EM)

    ... White Paper, p. 4) Based on the best ... their worst (i.e., hot and humid, so that the cooling tower water is at its warmest), ... offshore oil and gas extraction facilities. ...

  13. American Tower Company | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Company Jump to: navigation, search Name: American Tower Company Address: P.O. Box 29 Place: Shelby, Ohio Zip: 44875 Sector: Wind energy Product: Agriculture;Business and legal...

  14. SunShot Concentrating Solar Power Program

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Ranga Pitchumani Thermochemical Energy Storage Workshop January 8, 2013 CSP ... CSP Systems Power Towers Dishengine Systems Parabolic Trough Linear Fresnel Project ...

  15. Environmentally Protective Power Generation EPPG | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Environmentally Protective Power Generation (EPPG) Place: Tucson, Arizona Sector: Wind energy Product: Seeking financing for a Tower system, about which little has been disclosed,...

  16. Research Staff | Concentrating Solar Power | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... departments, such as Human Resources, Information ... Robert helps to develop low-cost, high-performance, ... Power Tower layout and optimization tool called SolarPILOT ...

  17. Seismic response of offshore guyed towers

    SciTech Connect

    Jain, A.K.; Bisht, R.S.

    1993-12-31

    Seismic stresses in the offshore Guyed Tower assumes importance because of its flexural modes having smaller periods (in the range of 1 to 3 sec), which may attract considerable seismic forces. Since the displacement of the offshore Guyed Tower is generally guided by the rigid body mode corresponding to the fundamental period which lies between 20 to 40 sec., seismic excitation is relatively unimportant in relation to the towers` overall displacement behavior. The response of offshore Guyed Tower to ransom ground motion (E1 Centro earthquake, 1940) is investigated. The guyed tower is modeled as a uniform shear beam with a rotational spring at the base of the tower. The guylines are represented by a linearized spring whose force-excursion relationship is derived from a separate static analysis of the guylines. The dynamic equation of motion duly takes into account the pressure-drag effect produced due to fluid-structure interaction. The response is obtained in tim- domain using Newmark`s {beta} Time Integration Scheme.

  18. Energy 101: Concentrating Solar Power

    Energy.gov [DOE]

    From towers to dishes to linear mirrors to troughs, concentrating solar power (CSP) technologies reflect and collect solar heat to generate electricity. A single CSP plant can generate enough power...

  19. ARM: Three Meter Tower: video camera (Dataset) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ARM: Three Meter Tower: video camera Citation Details In-Document Search Title: ARM: Three Meter Tower: video camera Three Meter Tower: video camera Authors: Scott Smith ; Martin...

  20. ARM: Three Meter Tower: video camera (Dataset) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Three Meter Tower: video camera Citation Details In-Document Search Title: ARM: Three Meter Tower: video camera Three Meter Tower: video camera Authors: Scott Smith ; Martin...

  1. ARM: Forty Meter Tower: video camera (Dataset) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Forty Meter Tower: video camera Citation Details In-Document Search Title: ARM: Forty Meter Tower: video camera Forty Meter Tower: video camera Authors: Scott Smith ; Martin...

  2. Radiation receiver

    DOEpatents

    Hunt, Arlon J.

    1983-01-01

    The apparatus for collecting radiant energy and converting same to alternate energy form includes a housing having an interior space and a radiation transparent window allowing, for example, solar radiation to be received in the interior space of the housing. Means are provided for passing a stream of fluid past said window and for injecting radiation absorbent particles in said fluid stream. The particles absorb the radiation and because of their very large surface area, quickly release the heat to the surrounding fluid stream. The fluid stream particle mixture is heated until the particles vaporize. The fluid stream is then allowed to expand in, for example, a gas turbine to produce mechanical energy. In an aspect of the present invention properly sized particles need not be vaporized prior to the entrance of the fluid stream into the turbine, as the particles will not damage the turbine blades. In yet another aspect of the invention, conventional fuel injectors are provided to inject fuel into the fluid stream to maintain the proper temperature and pressure of the fluid stream should the source of radiant energy be interrupted. In yet another aspect of the invention, an apparatus is provided which includes means for providing a hot fluid stream having hot particles disbursed therein which can radiate energy, means for providing a cooler fluid stream having cooler particles disbursed therein, which particles can absorb radiant energy and means for passing the hot fluid stream adjacent the cooler fluid stream to warm the cooler fluid and cooler particles by the radiation from the hot fluid and hot particles.

  3. Radiation receiver

    DOEpatents

    Hunt, A.J.

    1983-09-13

    The apparatus for collecting radiant energy and converting same to alternate energy form includes a housing having an interior space and a radiation transparent window allowing, for example, solar radiation to be received in the interior space of the housing. Means are provided for passing a stream of fluid past said window and for injecting radiation absorbent particles in said fluid stream. The particles absorb the radiation and because of their very large surface area, quickly release the heat to the surrounding fluid stream. The fluid stream particle mixture is heated until the particles vaporize. The fluid stream is then allowed to expand in, for example, a gas turbine to produce mechanical energy. In an aspect of the present invention properly sized particles need not be vaporized prior to the entrance of the fluid stream into the turbine, as the particles will not damage the turbine blades. In yet another aspect of the invention, conventional fuel injectors are provided to inject fuel into the fluid stream to maintain the proper temperature and pressure of the fluid stream should the source of radiant energy be interrupted. In yet another aspect of the invention, an apparatus is provided which includes means for providing a hot fluid stream having hot particles disbursed therein which can radiate energy, means for providing a cooler fluid stream having cooler particles disbursed therein, which particles can absorb radiant energy and means for passing the hot fluid stream adjacent the cooler fluid stream to warm the cooler fluid and cooler particles by the radiation from the hot fluid and hot particles. 5 figs.

  4. Project Profile: Fractal-Like Receiver Designs for High-Temperature High-Efficiency Operation (SuNLaMP)

    Energy.gov [DOE]

    This project designs, develops, and tests novel particle receivers with configurations that use light-trapping geometries. Particle receivers drop sand-like ceramic particles through a beam of concentrated sunlight atop a power tower. The particles absorb heat at temperatures near 800°C, then store the heat in an insulated container below the receiver. This thermal energy can be converted into electricity using a traditional power cycle at a later time. By capturing more sunlight, researchers increase the effective solar absorbance and efficiency of high-temperature particle receivers. Zig-zag release patterns and multi-drop curtain configurations will be compared to baseline planar curtain configurations. This project builds off of the High-Temperature Falling Particle Receiver project in the 2012 Concentrating Solar Power (CSP) SunShot R&D funding program. Using particles as the heat transfer media provides an opportunity to integrate with high-temperature, high-efficiency power cycles. Furthermore, particles remain stable at ultra-high temperatures and avoid corrosion concerns that plague many liquids above 700°C.

  5. Multichannel homodyne receiver

    DOEpatents

    Landt, J.A.

    1981-01-19

    A homodyne radar transmitter/receiver device which produces a single combined output which contains modulated backscatter information for all phase conditions of both modulated and unmodulated backscatter signals is described. The device utilizes taps along coaxial transmission lines, strip transmission line, and waveguides which are spaced by 1/8 wavelength or 1/6 wavelength, etc. This greatly reduces costs by eliminating separate transmission and reception antennas and an expensive arrangement of power splitters and mixers utilized in the prior art.

  6. Multichannel homodyne receiver

    DOEpatents

    Landt, Jeremy A. (Los Alamos, NM)

    1982-01-01

    A homodyne radar transmitter/receiver device which produces a single combined output which contains modulated backscatter information for all phase conditions of both modulated and unmodulated backscatter signals. The device utilizes taps along coaxial transmission lines, strip transmission line, and waveguides which are spaced by 1/8 wavelength or 1/6 wavelength, etc. This greatly reduces costs by eliminating separate transmission and reception antennas and an expensive arrangement of power splitters and mixers utilized in the prior art.

  7. Side Stream Filtration for Cooling Towers

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Side Stream Filtration for Cooling Towers Prepared for the U.S. Department of Energy Federal Energy Management Program By Pacifc Northwest National Laboratory X. Duan, J.L. Williamson, K.L McMordie Stoughton and B.K. Boyd October 2012 FEDERAL ENERGY MANAGEMENT PROGRAM i Contact Will Lintner, PE Federal Energy Management Program U.S. Department of Energy 1000 Independence Ave. SW Washington, DC 20585-0121 Phone: (202) 586-3120 E-mail: william.lintner@ee.doe.gov Cover photo: Cooling Towers. Photo

  8. Lifting system and apparatus for constructing wind turbine towers

    DOEpatents

    Livingston, Tracy; Schrader, Terry; Goldhardt, James; Lott, James

    2011-02-01

    The disclosed invention is utilized for mounting a wind turbine and blade assembly on the upper end of a wind turbine tower. The invention generally includes a frame or truss that is pivotally secured to the top bay assembly of the tower. A transverse beam is connected to the frame or truss and extends fore of the tower when the frame or truss is in a first position and generally above the tower when in a second position. When in the first position, a wind turbine or blade assembly can be hoisted to the top of the tower. The wind turbine or blade assembly is then moved into position for mounting to the tower as the frame or truss is pivoted to a second position. When the turbine and blade assembly are secured to the tower, the frame or truss is disconnected from the tower and lowered to the ground.

  9. Flue gas injection control of silica in cooling towers. (Technical...

    Office of Scientific and Technical Information (OSTI)

    Flue gas injection control of silica in cooling towers. Citation Details In-Document Search Title: Flue gas injection control of silica in cooling towers. You are accessing a ...

  10. Boise Air Traffic Control Tower: High Performance and sustainable Building Guiding Principles Technical Assistance

    SciTech Connect

    Fowler, Kimberly M.; Goel, Supriya; Henderson, Jordan W.

    2013-09-01

    Overview of energy efficiency opportunities for new FAA tower construction using the Boise Air Traffic Control Tower as an example.

  11. New North Dakota Factory to Produce Wind Towers, Jobs

    Energy.gov [DOE]

    Wind tower factory could bring back some of the jobs lost when a machine manufacturing plant closed.

  12. Fuel Cells for Backup Power in Telecommunications Facilities (Fact Sheet)

    Office of Energy Efficiency and Renewable Energy (EERE)

    Telecommunications providers rely on backup power to maintain a constant power supply, to prevent power outages, and to ensure the operability of cell towers, equipment, and networks. The backup power supply that best meets these objectives is fuel cell technology.

  13. Fuel Cells for Backup Power in Telecommunications Facilities (Fact Sheet)

    SciTech Connect

    Not Available

    2009-04-01

    Telecommunications providers rely on backup power to maintain a constant power supply, to prevent power outages, and to ensure the operability of cell towers, equipment, and networks. The backup power supply that best meets these objectives is fuel cell technology.

  14. Coagulation chemistries for silica removal from cooling tower water.

    SciTech Connect

    Nyman, May Devan; Altman, Susan Jeanne; Stewart, Tom

    2010-02-01

    The formation of silica scale is a problem for thermoelectric power generating facilities, and this study investigated the potential for removal of silica by means of chemical coagulation from source water before it is subjected to mineral concentration in cooling towers. In Phase I, a screening of many typical as well as novel coagulants was carried out using concentrated cooling tower water, with and without flocculation aids, at concentrations typical for water purification with limited results. In Phase II, it was decided that treatment of source or make up water was more appropriate, and that higher dosing with coagulants delivered promising results. In fact, the less exotic coagulants proved to be more efficacious for reasons not yet fully determined. Some analysis was made of the molecular nature of the precipitated floc, which may aid in process improvements. In Phase III, more detailed study of process conditions for aluminum chloride coagulation was undertaken. Lime-soda water softening and the precipitation of magnesium hydroxide were shown to be too limited in terms of effectiveness, speed, and energy consumption to be considered further for the present application. In Phase IV, sodium aluminate emerged as an effective coagulant for silica, and the most attractive of those tested to date because of its availability, ease of use, and low requirement for additional chemicals. Some process optimization was performed for coagulant concentration and operational pH. It is concluded that silica coagulation with simple aluminum-based agents is effective, simple, and compatible with other industrial processes.

  15. Northern Cheyenne Tribe - Wind Power Project

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Northern Cheyenne Tribe Wind Power Project Program Review 2006 Ingrid Gardner Project Overview * Project began in 2002 * Sole decision maker and final authority » NORTHERN CHEYENNE TRIBE * Technical Participant » Distributed Generation Systems, Inc. * Tribal Participant » TRIBAL EDA COMMITTEE » TRIBAL EDA PLANNER Project Design * Development Phase Approach - Long Term Wind Data Collected »RAWS SITE »AIR QUALITY SITES »ON-SITE MET TOWERS 50 meter tower 20 meter tower Project Design Cont. *

  16. Side Stream Filtration for Cooling Towers

    SciTech Connect

    2012-10-20

    This technology evaluation assesses side stream filtration options for cooling towers, with an objective to assess key attributes that optimize energy and water savings along with providing information on specific technology and implementation options. This information can be used to assist Federal sites to determine which options may be most appropriate for their applications. This evaluation provides an overview of the characterization of side stream filtration technology, describes typical applications, and details specific types of filtration technology.

  17. Wet/dry cooling tower and method

    DOEpatents

    Glicksman, Leon R.; Rohsenow, Warren R.

    1981-01-01

    A wet/dry cooling tower wherein a liquid to-be-cooled is flowed along channels of a corrugated open surface or the like, which surface is swept by cooling air. The amount of the surface covered by the liquid is kept small compared to the dry part thereof so that said dry part acts as a fin for the wet part for heat dissipation.

  18. Towering Cumulus Stage Mature Stage Dissipating Stage

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Towering Cumulus Stage Mature Stage Dissipating Stage 40,000 ft. 20,000 ft. 32 F o 32 F o 32 F o Atmospheric Radiation Measurement Program Facilities Newsletter - June 1999 ARM Facilities Newsletter is published by Argonne National Laboratory, a multiprogram laboratory operated by The University of Chicago under contract W-31-109-Eng-38 with the U.S. Department of Energy. Technical Contact: Douglas L. Sisterson Editor: Donna J. Holdridge What's New The Mesoscale Convective Systems (MCSs)

  19. Cooling tower and plume modeling for satellite remote sensing applications

    SciTech Connect

    Powers, B.J.

    1995-05-01

    It is often useful in nonproliferation studies to be able to remotely estimate the power generated by a power plant. Such information is indirectly available through an examination of the power dissipated by the plant. Power dissipation is generally accomplished either by transferring the excess heat generated into the atmosphere or into bodies of water. It is the former method with which we are exclusively concerned in this report. We discuss in this report the difficulties associated with such a task. In particular, we primarily address the remote detection of the temperature associated with the condensed water plume emitted from the cooling tower. We find that the effective emissivity of the plume is of fundamental importance for this task. Having examined the dependence of the plume emissivity in several IR bands and with varying liquid water content and droplet size distributions, we conclude that the plume emissivity, and consequently the plume brightness temperature, is dependent upon not only the liquid water content and band, but also upon the droplet size distribution. Finally, we discuss models dependent upon a detailed point-by-point description of the hydrodynamics and thermodynamics of the plume dynamics and those based upon spatially integrated models. We describe in detail a new integral model, the LANL Plume Model, which accounts for the evolution of the droplet size distribution. Some typical results obtained from this model are discussed.

  20. SunLab: Advancing Concentrating Solar Power Technology

    SciTech Connect

    1998-11-24

    Concentrating solar power (CSP) technologies, including parabolic troughs, power towers, and dish/engines, have the potential to provide the world with tens of thousands of megawatts of clean, renewable, cost-competitive power.

  1. Side Stream Filtration for Cooling Towers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Side Stream Filtration for Cooling Towers Side Stream Filtration for Cooling Towers Report assesses side stream filtration options for cooling towers with an objective to assess key attributes that optimize energy and water savings and provide information about specific technology and implementation options. This information can be used to assist Federal sites to determine which options may be most appropriate for their applications. This report provides an overview of the characterization of

  2. Technical Evaluation of Side Stream Filtration for Cooling Towers

    SciTech Connect

    2012-10-01

    Cooling towers are an integral component of many refrigeration systems, providing comfort or process cooling across a broad range of applications. Cooling towers represent the point in a cooling system where heat is dissipated to the atmosphere through evaporation. Cooling towers are commonly used in industrial applications and in large commercial buildings to release waste heat extracted from a process or building system through evaporation of water.

  3. Water-Efficient Technology Opportunity: Advanced Cooling Tower Controls |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Advanced Cooling Tower Controls Water-Efficient Technology Opportunity: Advanced Cooling Tower Controls The Federal Energy Management Program (FEMP) identified advanced cooling tower controls as a water-saving technology that is relevant to the federal sector, is commercially available, and offers significant water-savings potential. This overview provides agencies with key information to deploy innovative products and systems that may otherwise be overlooked. It also

  4. Upcoming Funding Opportunity for Tower Manufacturing and Installation...

    Energy Saver

    and Lower Cost of Energy" intends to support partnerships that lead to innovative designs and processes for wind turbine tower manufacturing and turbine system installation. ...

  5. NASA's Solar Tower Test of the 1-Meter Aeroshell

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    NASA's Solar Tower Test of the 1-Meter Aeroshell - Sandia Energy Energy Search Icon Sandia ... Applications National Solar Thermal Test Facility Nuclear Energy Systems ...

  6. Tower Water-Vapor Mixing Ratio (Technical Report) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Tower Water-Vapor Mixing Ratio Citation Details In-Document Search Title: Tower Water-Vapor Mixing Ratio The purpose of the Tower Water-Vapor Mixing Ratio (TWRMR) value-added ...

  7. Shipping and Receiving

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    page: Transport Policy Shipping to the ALS Shipping from the ALS Shipping Hazardous Materials Contacts: ALS Shipping & Receiving (small packages) LBNL Shipping & Receiving (large...

  8. Meteorological Towers Display for Windows NT

    Energy Science and Technology Software Center

    1999-05-20

    The Towers Display Program provides a convenient means of graphically depicting current wind speed and direction from a network of meteorological monitoring stations. The program was designed primarily for emergency response applications and, therefore, plots observed wind directions as a transport direction, i.e., the direction toward which the wind would transport a release of an atmospheric contaminant. Tabular summaries of wind speed and direction as well as temperature, relative humidity, and atmospheric turbulence measured atmore » each monitoring station can be displayed. The current implementation of the product at SRS displays data from eight Weather INformation and Display (WIND) System meteorological towers at SRS, meteorological stations established jointly by SRS/WSRC and the Augusta/Richmond County Emergency Management Agency in Augusta, GA, and National Weather Service stations in Augusta, GA. Wind speed and direction are plotted in a Beaufort scale format at the location of the station on a geographic map of the area. A GUI provides for easy specification of a desired date and time for the data to be displayed.« less

  9. Project Profile: Solar Power Tower Improvements with the Potential...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Publications, Patents, and Awards At this time, this project does not have published articles, patents, or awards. Learn about other DOE competitive awards for concentrating solar ...

  10. Property:CoolingTowerWaterUseWinterConsumed | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    gTowerWaterUseWinterConsumed Property Type Number Description Cooling Tower Water use (winter average) (afday) Consumed. Retrieved from "http:en.openei.orgw...

  11. Property:CoolingTowerWaterUseSummerGross | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Property Name CoolingTowerWaterUseSummerGross Property Type Number Description Cooling Tower Water use (summer average) (afday) Gross. Retrieved from "http:en.openei.orgw...

  12. Property:CoolingTowerWaterUseAnnlAvgConsumed | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Property Name CoolingTowerWaterUseAnnlAvgConsumed Property Type Number Description Cooling Tower Water use (annual average) (afday) Consumed. Retrieved from "http:...

  13. Property:CoolingTowerWaterUseSummerConsumed | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Property Name CoolingTowerWaterUseSummerConsumed Property Type Number Description Cooling Tower Water use (summer average) (afday) Consumed. Retrieved from "http:...

  14. Purification of water from cooling towers and other heat exchange systems

    DOEpatents

    Sullivan; Enid J. , Carlson; Bryan J. , Wingo; Robert M. , Robison; Thomas W.

    2012-08-07

    The amount of silica in cooling tower water is reduced by passing cooling tower water through a column of silica gel.

  15. New CREW Database Receives First Set of Data

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    CREW Database Receives First Set of Data - Sandia Energy Energy Search Icon Sandia Home ... Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ...

  16. Receiver R&D for CSP Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Concentrating Solar Power Receiver R&D for CSP Systems Receiver R&D for CSP Systems The ... SunShot Home About the SunShot Initiative Concentrating Solar Power Systems Components ...

  17. Researching power plant water recovery

    SciTech Connect

    2008-04-01

    A range of projects supported by NETl under the Innovations for Existing Plant Program are investigating modifications to power plant cooling systems for reducing water loss, and recovering water from the flue gas and the cooling tower. This paper discusses two technologies showing particular promise condense water that is typically lost to evaporation, SPX technologies' Air2Air{sup trademark} condenses water from a cooling tower, while Lehigh University's process condenses water and acid in flue gas. 3 figs.

  18. Tower reactors for bioconversion of lignocellulosic material

    DOEpatents

    Nguyen, Quang A.

    1998-01-01

    An apparatus for enzymatic hydrolysis and fermentation of pretreated lignocellulosic material, in the form of a tower bioreactor, having mixers to achieve intermittent mixing of the material. Precise mixing of the material is important for effective heat and mass transfer requirements without damaging or denaturing the enzymes or fermenting microorganisms. The pretreated material, generally in the form of a slurry, is pumped through the bioreactor, either upwards of downwards, and is mixed periodically as it passes through the mixing zones where the mixers are located. For a thin slurry, alternate mixing can be achieved by a pumping loop which also serves as a heat transfer device. Additional heat transfer takes place through the reactor heat transfer jackets.

  19. Tower reactors for bioconversion of lignocellulosic material

    DOEpatents

    Nguyen, Quang A.

    1999-01-01

    An apparatus for enzymatic hydrolysis and fermentation of pretreated lignocellulosic material, in the form of a tower bioreactor, having mixers to achieve intermittent mixing of the material. Precise mixing of the material is important for effective heat and mass transfer requirements without damaging or denaturing the enzymes or fermenting microorganisms. The pretreated material, generally in the form of a slurry, is pumped through the bioreactor, either upwards or downwards, and is mixed periodically as it passes through the mixing zones where the mixers are located. For a thin slurry, alternate mixing can be achieved by a pumping loop which also serves as a heat transfer device. Additional heat transfer takes place through the reactor heat transfer jackets.

  20. Tower reactors for bioconversion of lignocellulosic material

    DOEpatents

    Nguyen, Q.A.

    1998-03-31

    An apparatus is disclosed for enzymatic hydrolysis and fermentation of pretreated lignocellulosic material. The apparatus consists of a tower bioreactor which has mixers to achieve intermittent mixing of the material. Precise mixing of the material is important for effective heat and mass transfer requirements without damaging or denaturing the enzymes or fermenting microorganisms. The pretreated material, generally in the form of a slurry, is pumped through the bioreactor, either upwards or downwards, and is mixed periodically as it passes through the mixing zones where the mixers are located. For a thin slurry, alternate mixing can be achieved by a pumping loop which also serves as a heat transfer device. Additional heat transfer takes place through the reactor heat transfer jackets. 5 figs.

  1. Tower reactors for bioconversion of lignocellulosic material

    DOEpatents

    Nguyen, Q.A.

    1999-03-30

    An apparatus is described for enzymatic hydrolysis and fermentation of pretreated lignocellulosic material, in the form of a tower bioreactor, having mixers to achieve intermittent mixing of the material. Precise mixing of the material is important for effective heat and mass transfer requirements without damaging or denaturing the enzymes or fermenting microorganisms. The pretreated material, generally in the form of a slurry, is pumped through the bioreactor, either upwards or downwards, and is mixed periodically as it passes through the mixing zones where the mixers are located. For a thin slurry, alternate mixing can be achieved by a pumping loop which also serves as a heat transfer device. Additional heat transfer takes place through the reactor heat transfer jackets. 5 figs.

  2. Solar heat receiver

    DOEpatents

    Hunt, Arlon J.; Hansen, Leif J.; Evans, David B.

    1985-01-01

    A receiver for converting solar energy to heat a gas to temperatures from 700.degree.-900.degree. C. The receiver is formed to minimize impingement of radiation on the walls and to provide maximum heating at and near the entry of the gas exit. Also, the receiver is formed to provide controlled movement of the gas to be heated to minimize wall temperatures. The receiver is designed for use with gas containing fine heat absorbing particles, such as carbon particles.

  3. Solar heat receiver

    DOEpatents

    Hunt, A.J.; Hansen, L.J.; Evans, D.B.

    1982-09-29

    A receiver is described for converting solar energy to heat a gas to temperatures from 700 to 900/sup 0/C. The receiver is formed to minimize impingement of radiation on the walls and to provide maximum heating at and near the entry of the gas exit. Also, the receiver is formed to provide controlled movement of the gas to be heated to minimize wall temperatures. The receiver is designed for use with gas containing fine heat absorbing particles, such as carbon particles.

  4. NREL National Wind Technology Center (NWTC): M2 Tower; Boulder, Colorado (Data)

    DOE Data Explorer

    Jager, D.; Andreas, A.

    The National Wind Technology Center (NWTC), located at the foot of the Rocky Mountains near Boulder, Colorado, is a world-class research facility managed by NREL for the U.S. Department of Energy. NWTC researchers work with members of the wind energy industry to advance wind power technologies that lower the cost of wind energy through research and development of state-of-the-art wind turbine designs. NREL's Measurement and Instrument Data Center provides data from NWTC's M2 tower which are derived from instruments mounted on or near an 82 meter (270 foot) meteorological tower located at the western edge of the NWTC site and about 11 km (7 miles) west of Broomfield, and approximately 8 km (5 miles) south of Boulder, Colorado. The data represent the mean value of readings taken every two seconds and averaged over one minute. The wind speed and direction are measured at six heights on the tower and air temperature is measured at three heights. The dew point temperature, relative humidity, barometric pressure, totalized liquid precipitation, and global solar radiation are also available.

  5. NREL National Wind Technology Center (NWTC): M2 Tower; Boulder, Colorado (Data)

    DOE Data Explorer

    Jager, D.; Andreas, A.

    1996-09-24

    The National Wind Technology Center (NWTC), located at the foot of the Rocky Mountains near Boulder, Colorado, is a world-class research facility managed by NREL for the U.S. Department of Energy. NWTC researchers work with members of the wind energy industry to advance wind power technologies that lower the cost of wind energy through research and development of state-of-the-art wind turbine designs. NREL's Measurement and Instrument Data Center provides data from NWTC's M2 tower which are derived from instruments mounted on or near an 82 meter (270 foot) meteorological tower located at the western edge of the NWTC site and about 11 km (7 miles) west of Broomfield, and approximately 8 km (5 miles) south of Boulder, Colorado. The data represent the mean value of readings taken every two seconds and averaged over one minute. The wind speed and direction are measured at six heights on the tower and air temperature is measured at three heights. The dew point temperature, relative humidity, barometric pressure, totalized liquid precipitation, and global solar radiation are also available.

  6. falling-particle receiver

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas ...

  7. Wind Turbine Tower for Storing Hydrogen and Energy - Energy Innovation...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wind Energy Wind Energy Hydrogen and Fuel Cell Hydrogen and Fuel Cell Energy Storage Energy Storage Find More Like This Return to Search Wind Turbine Tower for Storing Hydrogen and ...

  8. 2010sr27[cooling_tower_complete].doc

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ames-r.giusti@srs.gov Paivi Nettamo, SRNS, (803) 952-6938 paivi.nettamo@srs.gov K Cooling Tower Project Reaches Completion Aiken, S.C. - One of the most visual milestones of...

  9. Exxon's guyed tower nears load-out date

    SciTech Connect

    Glasscock, M.S.; Finn, L.D.

    1983-04-01

    Exxon's Lena guyed tower, installed in 1,000ft. water in the Gulf of Mexico, is discussed. The Lena tower is designed to move in response to wave forces rather than resist them rigidly, as is the case with conventional platforms. Selection of tower components to satisfy requirements resulted in a complex geometry which presented design challenges. Buoyancy will serve as a stabilizing force for the tower by adding to the restoring force of the guying system. Flexible J-tube pipeline risers were developed to avoid excessive stresses in the pipelines and J-tube pipelines and J-tubes at the mudline. Exxon's Lena platform is to-date in the second deepest water in the world, and at 1,305 ft total height, is the tallest.

  10. Coupled optical/thermal/fluid analysis and design requirements for operation and testing of a supercritical CO2 solar receiver.

    SciTech Connect

    Khivsara, Sagar

    2015-01-01

    Recent studies have evaluated closed-loop supercritical carbon dioxide (s-CO2) Brayton cycles to be a higher energy-density system in comparison to conventional superheated steam Rankine systems. At turbine inlet conditions of 923K and 25 MPa, high thermal efficiency (~50%) can be achieved. Achieving these high efficiencies will make concentrating solar power (CSP) technologies a competitive alternative to current power generation methods. To incorporate a s-CO2 Brayton power cycle in a solar power tower system, the development of a solar receiver capable of providing an outlet temperature of 923 K (at 25 MPa) is necessary. To satisfy the temperature requirements of a s-CO2 Brayton cycle with recuperation and recompression, it is required to heat s-CO2 by a temperature of ~200 K as it passes through the solar receiver. Our objective was to develop an optical-thermal-fluid model to design and evaluate a tubular receiver that will receive a heat input ~1 MWth from a heliostat field. We also undertook the documentation of design requirements for the development, testing and safe operation of a direct s-CO2 solar receiver. The main purpose of this document is to serve as a reference and guideline for design and testing requirements, as well as to address the technical challenges and provide initial parameters for the computational models that will be employed for the development of s-CO2 receivers.

  11. Environmental Impacts from the Operation of Cooling Towers at SRP

    SciTech Connect

    Smith, F.G. III

    2001-06-26

    An assessment has been made of the environmental effects that would occur from the operation of cooling towers at the SRP reactors. A more realistic numerical model of the cooling tower plume has been used to reassess the environmental impacts. The following effects were considered: (1) the occurrence of fog and ice and their impact on nearby structures, (2) drift and salt deposition from the plume, (3) the length and height of the visible plume, and (4) the possible dose from tritium.

  12. Hydrogen Storage in Wind Turbine Towers: Cost Analysis and Conceptual

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Design | Department of Energy in Wind Turbine Towers: Cost Analysis and Conceptual Design Hydrogen Storage in Wind Turbine Towers: Cost Analysis and Conceptual Design Preprint 34851.pdf (366.26 KB) More Documents & Publications U.S. Wind Energy Manufacturing & Supply Chain: A Competitiveness Analysis Final Report DE-EE0005380 - Assessment of Offshore Wind Farm Effects on Sea Surface, Subsurface and Airborne Electronic Systems Technical Assessment of Cryo-Compressed Hydrogen Storage

  13. Upcoming Funding Opportunity for Tower Manufacturing and Installation |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Tower Manufacturing and Installation Upcoming Funding Opportunity for Tower Manufacturing and Installation December 18, 2013 - 11:25am Addthis The DOE Wind Program has issued a Notice of Intent for a funding opportunity that it intends to post early in 2014, pending Congressional appropriations. The funding opportunity, tentatively titled "U.S. Wind Manufacturing: Taller Hub Heights to Access Higher Wind Resources, and Lower Cost of Energy" intends to support

  14. Collector/Receiver Characterization (Fact Sheet)

    SciTech Connect

    Not Available

    2010-08-01

    Fact sheet describing NREL CSP Program capabilities for collector/receiver characterization: determining optical efficiency, measuring heat loss, developing and testing concentrators, concentrating the sun's power, and optically characterizing CSP plants.

  15. Data-fusion receiver

    SciTech Connect

    Gabelmann, Jeffrey M.; Kattner, J. Stephen; Houston, Robert A.

    2006-12-19

    This invention is an ultra-low frequency electromagnetic telemetry receiver which fuses multiple input receive sources to synthesize a decodable message packet from a noise corrupted telemetry message string. Each block of telemetry data to be sent to the surface receiver from a borehole tool is digitally encoded into a data packet prior to transmission. The data packet is modulated onto the ULF EM carrier wave and transmitted from the borehole to the surface and then are simultaneously detected by multiple receive sensors disbursed within the rig environment. The receive sensors include, but are not limited to, electric field and magnetic field sensors. The spacing of the surface receive elements is such that noise generators are unequally coupled to each receive element due to proximity and/or noise generator type (i.e. electric or magnetic field generators). The receiver utilizes a suite of decision metrics to reconstruct the original, non noise-corrupted data packet from the observation matrix via the estimation of individual data frames. The receiver will continue this estimation process until: 1) the message validates, or 2) a preset "confidence threshold" is reached whereby frames within the observation matrix are no longer "trusted".

  16. A novel power block for CSP systems

    SciTech Connect

    Mittelman, Gur; Epstein, Michael

    2010-10-15

    Concentrating Solar Thermal Power (CSP) and in particular parabolic trough, is a proven large-scale solar power technology. However, CSP cost is not yet competitive with conventional alternatives unless subsidized. Current CSP plants typically include a condensing steam cycle power block which was preferably designed for a continuous operation and higher operating conditions and therefore, limits the overall plant cost effectiveness and deployment. The drawbacks of this power block are as follows: (i) no power generation during low insolation periods (ii) expensive, large condenser (typically water cooled) due to the poor extracted steam properties (high specific volume, sub-atmospheric pressure) and (iii) high installation and operation costs. In the current study, a different power block scheme is proposed to eliminate these obstacles. This power block includes a top Rankine cycle with a back pressure steam turbine and a bottoming Kalina cycle comprising another back pressure turbine and using ammonia-water mixture as a working fluid. The bottoming (moderate temperature) cycle allows power production during low insolation periods. Because of the superior ammonia-water vapor properties, the condensing system requirements are much less demanding and the operation costs are lowered. Accordingly, air cooled condensers can be used with lower economical penalty. Another advantage is that back pressure steam turbines have a less complex design than condensing steam turbines which make their costs lower. All of these improvements could make the combined cycle unit more cost effective. This unit can be applicable in both parabolic trough and central receiver (solar tower) plants. The potential advantage of the new power block is illustrated by a detailed techno-economical analysis of two 50 MW parabolic trough power plants, comparing between the standard and the novel power block. The results indicate that the proposed plant suggests a 4-11% electricity cost saving

  17. CALUTRON RECEIVER STRUCTURE

    DOEpatents

    Roush, J.L.

    1959-09-01

    A receiver is described for collecting isotopes in a calutron The receiver has several compartments, formed by a sertes of parallel metal plates and an open front. Each plate has flanges which space it from the other plates and a flexible extension pressing against a common supporting red to maintain the plate in assembled relation when all but the last rod is removed. The plates may be removed individualy from the front of the receiver, cleaned ard replaced without disturbing the alignment of the other plates.

  18. High-Flux Microchannel Solar Receiver

    Office of Energy Efficiency and Renewable Energy (EERE)

    This fact sheet describes a high-flux, microchannel solar receiver project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The team, led by Oregon State University, is working to demonstrate a microchannel-based solar receiver capable of absorbing high solar flux, while using a variety of liquid and gaseous working fluids. High-flux microchannel receivers have the potential to dramatically reduce the size and cost of a solar receiver by minimizing re-radiation and convective losses.

  19. Workers Safely Tear Down Towers at Manhattan Project Site | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Safely Tear Down Towers at Manhattan Project Site Workers Safely Tear Down Towers at Manhattan Project Site August 21, 2014 - 12:00pm Addthis Workers observe the demolition of the West Water Tower at Los Alamos National Laboratory. Workers observe the demolition of the West Water Tower at Los Alamos National Laboratory. The East Water Tower falls. The East Water Tower falls. EM’s federal team for the demolition project, from left, Fire Coordinator Allan Trujillo, DOE Intern Kathy

  20. Ultrasonic pulser-receiver

    DOEpatents

    Taylor, Steven C.

    2006-09-12

    Ultrasonic pulser-receiver circuitry, for use with an ultrasonic transducer, the circuitry comprising a circuit board; ultrasonic pulser circuitry supported by the circuit board and configured to be coupled to an ultrasonic transducer and to cause the ultrasonic transducer to emit an ultrasonic output pulse; receiver circuitry supported by the circuit board, coupled to the pulser circuitry, including protection circuitry configured to protect against the ultrasonic pulse and including amplifier circuitry configured to amplify an echo, received back by the transducer, of the output pulse; and a connector configured to couple the ultrasonic transducer directly to the circuit board, to the pulser circuitry and receiver circuitry, wherein impedance mismatches that would result if the transducer was coupled to the circuit board via a cable can be avoided.

  1. Solar energy receiver

    DOEpatents

    Schwartz, Jacob

    1978-01-01

    An improved long-life design for solar energy receivers provides for greatly reduced thermally induced stress and permits the utilization of less expensive heat exchanger materials while maintaining receiver efficiencies in excess of 85% without undue expenditure of energy to circulate the working fluid. In one embodiment, the flow index for the receiver is first set as close as practical to a value such that the Graetz number yields the optimal heat transfer coefficient per unit of pumping energy, in this case, 6. The convective index for the receiver is then set as closely as practical to two times the flow index so as to obtain optimal efficiency per unit mass of material.

  2. Raman Lidar Receives Improvements

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    2 Raman Lidar Receives Improvements The Raman lidar at the SGP central facility is receiving upgrades to its environmental controls. This ground-based remote sensing instrument uses a laser to measure vertical profiles of water vapor mixing ratio, as well as many cloud and aerosol quantities. The lidar is housed in a shipping container (Figure 1) that has its own heating and air conditioning unit to maintain the stable temperature and humidity levels required by the computer and laser equipment.

  3. Yoho receives NNSA Fellowship

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Yoho receives NNSA Fellowship Yoho receives NNSA Fellowship Michael Yoho was one of four students selected nationwide for the NNIS fellowship. July 15, 2014 Michael Yoho Michael Yoho The NNIS Fellowship program is designed to meet NNSA's needs for appropriately trained personnel in research and development in areas pertinent to nuclear nonproliferation and international safeguards. Michael Yoho, a doctoral candidate at the University of Texas at Austin and graduate research assistant in the

  4. SunLab: Concentrating Solar Power Program Overview

    SciTech Connect

    1998-11-24

    DOE's Concentrating Solar Power (CSP) program is collaborating with its partners in the private sector to develop two new solar technologies -- power towers and dish/engines -- to meet the huge commercial potential for solar power. Concentrating solar power plants produce electric power by first converting the sun's energy into heat, and then to electricity in a conventional generator.

  5. Tri-Lateral Noor al Salaam High Concentration Solar Central Receiver Program

    SciTech Connect

    Blackmon, James B

    2008-03-31

    This report documents the efforts conducted primarily under the Noor al Salaam (“Light of Peace”) program under DOE GRANT NUMBER DE-FC36-02GO12030, together with relevant technical results from a closely related technology development effort, the U.S./Israel Science and Technology Foundation (USISTF) High Concentration Solar Central Receiver program. These efforts involved preliminary design, development, and test of selected prototype power production subsystems and documentation of an initial version of the system definition for a high concentration solar hybrid/gas electrical power plant to be built in Zaafarana, Egypt as a first step in planned commercialization. A major part of the planned work was halted in 2007 with an amendment in October 2007 requiring that we complete the technical effort by December 31, 2007 and provide a final report to DOE within the following 90 days. This document summarizes the work conducted. The USISTF program was a 50/50 cost-shared program supported by the Department of Commerce through the U.S./Israel Science and Technology Commission (USISTC). The USISTC was cooperatively developed by President Clinton and the late Prime Minister Rabin of Israel "to encourage technological collaboration" and "support peace in the Middle East through economic development". The program was conducted as a follow-on effort to Israel's Magnet/CONSOLAR Program, which was an advanced development effort to design, fabricate, and test a solar central receiver and secondary optics for a "beam down" central receiver concept. The status of these hardware development programs is reviewed, since they form the basis for the Noor al Salaam program. Descriptions are provided of the integrated system and the major subsystems, including the heliostat, the high temperature air receiver, the power conversion unit, tower and tower reflector, compound parabolic concentrator, and the master control system. One objective of the USISTF program was to conduct

  6. Central Receiver Test Facility

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    and Application Center for Hydrogen Energy Research Programs ARPA-E Basic Energy Sciences ... Sea State Contour) Code Online Abstracts and Reports Water Power Personnel ...

  7. CSP Tower Air Brayton Combustor (Fact Sheet)

    SciTech Connect

    Not Available

    2012-09-01

    Southwest Research Institute is one of the 2012 SunShot CSP R&D awardees for their advanced power cycles. This fact sheet explains the motivation, description, and impact of the project.

  8. Property:CoolingTowerWaterUseWinterGross | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    lingTowerWaterUseWinterGross Property Type Number Description Cooling Tower Water use (winter average) (afday) Gross. Retrieved from "http:en.openei.orgwindex.php?titleProper...

  9. Property:CoolingTowerWaterUseAnnlAvgGross | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Property Name CoolingTowerWaterUseAnnlAvgGross Property Type Number Description Cooling Tower Water use (annual average) (afday) Gross. Retrieved from "http:en.openei.orgw...

  10. Power Line Integrity Monitor and Repeater

    Energy Science and Technology Software Center

    2005-09-30

    The Idaho National Laboratory (INL) has developed a power system integrity monitor and repeater that provide real time status of the integrity of the physical structure of power poles and transmission towers. It may be applied to other structures, such as pipelines or cell towers, which have multiple segments that can cover hundreds of miles. Sensors and on-board processing provide indication of tampering or impending damage to the structure with information provided to the centralmore » operations center or supervisory control and data acquisition (SCADA) for mitigative actions. This software runs on a series of small, inexpensive, low power electronic sensor platforms that are mounted on each tower of an electric power transmission or distribution system for the purpose of communicating system integrity to a central location. The software allows each platform to: 1) interface with sensors that monitor tower integrity, 2) record and analyze events, 3) communicate sensor information to other sensor platforms located on adjacent towers or to a central monitoring location, and 4) derive, conserve, and store platform power from the transmission of electric power.« less

  11. Historic American engineering record. Nevada national security site, Bren Tower Complex. Written historical and descriptive data and field records

    SciTech Connect

    Edwards, Susan R.; Goldenberg, Nancy

    2013-08-01

    The BREN (Bare Reactor Experiment, Nevada) Tower Complex is significant for its role in the history of nuclear testing, radiation dosimetry studies, and early field testing of the Strategic Missile Defense System designs. At the time it was built in 1962, the 1,527 ft (465 m) BREN Tower was the tallest structure west of the Mississippi River and exceeded the height of the Empire State Building by 55 ft (17 m). It remains the tallest ever erected specifically for scientific purposes and was designed and built to facilitate the experimental dosimetry studies necessary for the development of accurate radiation dose rates for the survivors of Hiroshima and Nagasaki. The tower was a key component of the Atomic Bomb Casualty Commission’s (ABCC) mission to predict the health effects of radiation exposure. Moved to its current location in 1966, the crucial dosimetry studies continued with Operation HENRE (High Energy Neutron Reactions Experiment). These experiments and the data they generated became the basis for a dosimetry system called the Tentative 1965 Dose or more commonly the T65D model. Used to estimate radiation doses received by individuals, the T65D model was applied until the mid-1980s when it was replaced by a new dosimetry system known as DS86 based on the Monte Carlo method of dose rate calculation. However, the BREN Tower data are still used for verification of the validity of the DS86 model. In addition to its importance in radiation heath effects research, the BREN Tower Complex is also significant for its role in the Brilliant Pebbles research project, a major component of the Strategic Defense Initiative popularly known as the “Star Wars” Initiative. Instigated under the Reagan Administration, the program’s purpose was to develop a system to shield the United States and allies from a ballistic missile attack. The centerpiece of the Strategic Defense System was space-based, kinetic-kill vehicles. In 1991, BREN Tower was used for the tether tests

  12. Concentrating Solar Power Facilities and Solar Potential | Department...

    Energy.gov [DOE] (indexed site)

    Concentrating Solar Power Facilities and CSP Energy Potential Gradient Click icons to filter by CSP Plant Type All Plants In Operation New in 2014 In Progress Tower and Heliostat ...

  13. Project Profile: High-Temperature Falling-Particle Receiver ...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Concentrating Solar Power Project Profile: High-Temperature Falling-Particle Receiver ... research that are in progress. SunShot Home About the SunShot Initiative Concentrating ...

  14. Solar central receiver systems comparative economics

    SciTech Connect

    Eicker, P J

    1980-04-01

    Several major conceptual design studies of solar central receiver systems and components have been completed in the last year. The results of these studies are used to compare the projected cost of electric power generation using central receiver systems with that of more conventional power generation. The cost estimate for a molten salt central receiver system is given. Levelized busbar energy cost is shown as a function of annual capacity factor indicating the fraction of the cost due to each of the subsystems. The estimated levelized busbar energy cost for a central receiver (70 to 90 mills per kilowatt hour) is compared with the levelized busbar energy cost for a new coal fired Rankine cycle plant. Sensitivities to the initial cost of coal and the delta fuel escalation are shown. (WHK)

  15. Steam-Electric Power-Plant-Cooling Handbook

    SciTech Connect

    Sonnichsen, J.C.; Carlson, H.A.; Charles, P.D.; Jacobson, L.D.; Tadlock, L.A.

    1982-02-01

    The Steam-Electric Power Plant Cooling Handbook provides summary data on steam-electric power plant capacity, generation and number of plants for each cooling means, by Electric Regions, Water Resource Regions and National Electric Reliability Council Areas. Water consumption by once-through cooling, cooling ponds and wet evaporative towers is discussed and a methodology for computation of water consumption is provided for a typical steam-electric plant which uses a wet evaporative tower or cooling pond for cooling.

  16. A handbook for solar central receiver design

    SciTech Connect

    Falcone, P.K.

    1986-12-01

    This Handbook describes central receiver technology for solar thermal power plants. It contains a description and assessment of the major components in a central receiver system configured for utility scale production of electricity using Rankine-cycle steam turbines. It also describes procedures to size and optimize a plant and discussed examples from recent system analyses. Information concerning site selection criteria, cost estimation, construction, and operation and maintenance is also included, which should enable readers to perform design analyses for specific applications.

  17. Concentrating Solar Power

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Concentrating Solar Power Concentrating solar power (CSP) technologies use mirrors to focus and concentrate sunlight onto a receiver, from which a heat transfer fluid carries the ...

  18. Czanderna Receives Research Award

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Czanderna Receives Research Award For more information contact: e:mail: Public Affairs Golden, Colo., May 5, 1999 — A scientist at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) was recognized for his contributions to the science and technology of energy-related research. The Energy Technology Division (ETD) of The Electrochemical Society selected Dr. Al Czanderna for its Fourth Research Award in recognition of his outstanding solar research. During his 21-year

  19. Ultra-wideband receiver

    DOEpatents

    McEwan, T.E.

    1996-06-04

    An ultra-wideband (UWB) receiver utilizes a strobed input line with a sampler connected to an amplifier. In a differential configuration, {+-}UWB inputs are connected to separate antennas or to two halves of a dipole antenna. The two input lines include samplers which are commonly strobed by a gating pulse with a very low duty cycle. In a single ended configuration, only a single strobed input line and sampler is utilized. The samplers integrate, or average, up to 10,000 pulses to achieve high sensitivity and good rejection of uncorrelated signals. 21 figs.

  20. Ultra-wideband receiver

    DOEpatents

    McEwan, Thomas E.

    1994-01-01

    An ultra-wideband (UWB) receiver utilizes a strobed input line with a sampler connected to an amplifier. In a differential configuration, .+-.UWB inputs are connected to separate antennas or to two halves of a dipole antenna. The two input lines include samplers which are commonly strobed by a gating pulse with a very low duty cycle. In a single ended configuration, only a single strobed input line and sampler is utilized. The samplers integrate, or average, up to 10,000 pulses to achieve high sensitivity and good rejection of uncorrelated signals.

  1. Ultra-wideband receiver

    DOEpatents

    McEwan, T.E.

    1994-09-06

    An ultra-wideband (UWB) receiver utilizes a strobed input line with a sampler connected to an amplifier. In a differential configuration, [+-] UWB inputs are connected to separate antennas or to two halves of a dipole antenna. The two input lines include samplers which are commonly strobed by a gating pulse with a very low duty cycle. In a single ended configuration, only a single strobed input line and sampler is utilized. The samplers integrate, or average, up to 10,000 pulses to achieve high sensitivity and good rejection of uncorrelated signals. 16 figs.

  2. Ultra-wideband receiver

    DOEpatents

    McEwan, Thomas E.

    1996-01-01

    An ultra-wideband (UWB) receiver utilizes a strobed input line with a sampler connected to an amplifier. In a differential configuration, .+-.UWB inputs are connected to separate antennas or to two halves of a dipole antenna. The two input lines include samplers which are commonly strobed by a gating pulse with a very low duty cycle. In a single ended configuration, only a single strobed input line and sampler is utilized. The samplers integrate, or average, up to 10,000 pulses to achieve high sensitivity and good rejection of uncorrelated signals.

  3. Southwestern Power Administration

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    SWPA Crime Witness Program 918-728-5742 Crime Witness Program Southwestern needs your help. Because much of our electrical transmission lines and equipment is located in secluded, rural areas, we need help protecting it from crimes such as: Shooting at Southwestern's insulators, power lines, transmission towers, or substation equipment Dumping waste or other materials on Southwestern property Vandalizing Southwestern's property, buildings, or vehicles Stealing Southwestern's equipment, supplies,

  4. Ivanpah: World's Largest Concentrating Solar Power Plant

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Ivanpah Solar Energy Generating System has the capacity to generate 392 megawattsof clean electricity -- enough to power 94,400 average American homes. As the first commercial deployment of innovative power tower CSP technology in the United States, the Ivanpah project was the recipient of a $1.6 billion loan guarantee from the Department’s Loan Programs Office (LPO).

  5. Conceptual design of the solar repowering system for West Texas Utilities Company Paint Creek Power Station Unit No. 4

    SciTech Connect

    Not Available

    1980-07-15

    A conceptual design of a sodium-cooled, solar, central-receiver repowering system for West Texas Utilities' Paint Creek Unit 4 was prepared, solely under funds provided by West Texas Utilities (WTU), the Energy Systems Group (ESG) of Rockwell International, and four other support groups. A central-receiver repowering system is one in which a tower, surrounded by a large field of mirrors, is placed adjacent to an existing electric power plant. A receiver, located on top of the tower, absorbs solar energy reflected onto it by the mirrors and converts this solar energy to heat energy. The heat energy is transported by the liquid sodium to a set of sodium-to-steam steam generators. The steam generators produce steam at the same temperature and pressure as that produced by the fossil boiler in the existing plant. When solar energy is available, steam is produced by the solar part of the plant, thus displacing steam from the fossil boiler, and reducing the consumption of fossil fuel while maintaining the original plant output. A means for storing the solar energy is usually provided, so that some energy obtained from the solar source can be used to displace natural gas or oil fuels when the sun is not shining. This volume presents an executive summary of the conceptual design, performance, economics, development plans, and site owner's assessment. (WHK)

  6. WIPP Receives Top Safety Award

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Waste Isolation Pilot Plant (WIPP) received top accolades from New Mexico's leading mining ... contractor, for receiving the New Mexico Mining Association (NMMA) and New Mexico BMS ...

  7. Cooling-tower fan airfoils - Energy Innovation Portal

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    99,524 Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories Find More Like This Return to Search Cooling-tower fan airfoils United States

  8. Technical Evaluation of Side Stream Filtration for Cooling Towers

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Cooling Towers (photo from Pacific Northwest National Laboratory) * Scaling: Scaling is the precipitation of dissolved mineral components that have become saturated in solution, which can lower effciency of the system. * Fouling: Fouling occurs when suspended particles or biologic growth forms an insulating flm on heat transfer surfaces. Common foulants include organic matter, process oils, and silt, which can also lower system performance. * Microbiological Activity: Microbiological activity

  9. GEOTHERMAL ENERGY; 20 FOSSIL-FUELED POWER PLANTS; MECHANICAL...

    Office of Scientific and Technical Information (OSTI)

    DRAFT COOLING TOWERS; PERFORMANCE; SIMULATION; COST; DESIGN; HEAT TRANSFER; OPERATION; WATER REQUIREMENTS; COOLING TOWERS; ENERGY TRANSFER; MECHANICAL STRUCTURES; TOWERS...

  10. High Flux Microchannel Solar Receiver Development with Adaptive Flow

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Control | Department of Energy High Flux Microchannel Solar Receiver Development with Adaptive Flow Control High Flux Microchannel Solar Receiver Development with Adaptive Flow Control This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23-25, 2013 near Phoenix, Arizona. csp_review_meeting_042313_drost.pdf (1.81 MB) More Documents & Publications Microchannel Receiver Development - FY12 Q4 Microchannel Receiver Development - FY13

  11. High-Temperature Falling-Particle Receiver | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    High-Temperature Falling-Particle Receiver High-Temperature Falling-Particle Receiver This fact sheet summarizes the Sandia National Laboratories (SNL) project for the DOE Solar Program through the 2012 SunShot Concentrating Solar Power R&D awards. 55460.pdf (478.53 KB) More Documents & Publications High-Temperature Falling-Particle Receiver - FY13 Q2 High-Temperature Falling-Particle Receiver - FY13 Q3 SunShot Solar Projects Download

  12. NREL Particle Receiver Will Enable High-Temperature CSP (Fact Sheet)

    SciTech Connect

    Not Available

    2014-08-01

    Near-blackbody enclosed particle receiver can support high-temperature thermal energy storage and high-efficiency power cycles.

  13. National-Scale Wind Resource Assessment for Power Generation (Presentation)

    SciTech Connect

    Baring-Gould, E. I.

    2013-08-01

    This presentation describes the current standards for conducting a national-scale wind resource assessment for power generation, along with the risk/benefit considerations to be considered when beginning a wind resource assessment. The presentation describes changes in turbine technology and viable wind deployment due to more modern turbine technology and taller towers and shows how the Philippines national wind resource assessment evolved over time to reflect changes that arise from updated technologies and taller towers.

  14. Reduction in performance due to recirculation in mechanical-draft cooling towers

    SciTech Connect

    Kroger, D.G. )

    1989-01-01

    The influence of recirculating warm plume air on the performance of mechanical-draft cooling towers is investigated analytically, numerically and experimentally. It is shown that the amount of recirculation that occurs is a function of the flow and the thermal and geometric characteristics of the tower. The presence of a wind wall tends to reduce the mount of recirculation. An equation is presented with which the performance effectiveness due to recirculation can be evaluated approximately for a mechanical-draft cooling tower.

  15. AmeriFlux US-Skr Shark River Slough (Tower SRS-6) Everglades...

    Office of Scientific and Technical Information (OSTI)

    The tower was offline until the following October in order to continue temporally consistent measurements. In post-hurricane conditions, ecosystem respiration rates and solar ...

  16. Land-Use Requirements for Solar Power Plants in the United States

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    GWhyr for CSP towers and CPV installations to 5.5 acresGWhyr for small 2-axis flat panel PV power plants. Across all solar technologies, the total area generation-weighted...

  17. Solar Heat-Pipe Receiver Wick Modeling

    SciTech Connect

    Andraka, C.E.

    1998-12-21

    Stirling-cycle engines have been identified as a promising technology for the conversion of concentrated solar energy into usable electrical power. In previous experimented work, we have demonstrated that a heat pipe receiver can significantly improve system performance-over a directly-illuminated heater head. The design and operating conditions of a heat pipe receiver differ significantly from typical laboratory heat pipes. New wick structures have been developed to exploit the characteristics of the solar generation system. Typically, these wick structures allow vapor generation within the wick. Conventional heat pipe models do not handle this enhancement yet it can more than double the performance of the wick. In this study, I develop a steady-state model of a boiling-enhanced wick for a solar heat pipe receiver. The model is used for design-point calculations and is written in FORTRAN90. Some limited comparisons have been made with actual test data.

  18. Energy 101: Concentrating Solar Power

    ScienceCinema

    None

    2016-07-12

    From towers to dishes to linear mirrors to troughs, concentrating solar power (CSP) technologies reflect and collect solar heat to generate electricity. A single CSP plant can generate enough power for about 90,000 homes. This video explains what CSP is, how it works, and how systems like parabolic troughs produce renewable power. For more information on the Office of Energy Efficiency and Renewable Energy's CSP research, see the Solar Energy Technology Program's Concentrating Solar Power Web page at http://www1.eere.energy.gov/solar/csp_program.html.

  19. ON THE STRUCTURE AND STABILITY OF MAGNETIC TOWER JETS

    SciTech Connect

    Huarte-Espinosa, M.; Frank, A.; Blackman, E. G.; Ciardi, A.; Hartigan, P.; Lebedev, S. V.; Chittenden, J. P.

    2012-09-20

    Modern theoretical models of astrophysical jets combine accretion, rotation, and magnetic fields to launch and collimate supersonic flows from a central source. Near the source, magnetic field strengths must be large enough to collimate the jet requiring that the Poynting flux exceeds the kinetic energy flux. The extent to which the Poynting flux dominates kinetic energy flux at large distances from the engine distinguishes two classes of models. In magneto-centrifugal launch models, magnetic fields dominate only at scales {approx}< 100 engine radii, after which the jets become hydrodynamically dominated (HD). By contrast, in Poynting flux dominated (PFD) magnetic tower models, the field dominates even out to much larger scales. To compare the large distance propagation differences of these two paradigms, we perform three-dimensional ideal magnetohydrodynamic adaptive mesh refinement simulations of both HD and PFD stellar jets formed via the same energy flux. We also compare how thermal energy losses and rotation of the jet base affects the stability in these jets. For the conditions described, we show that PFD and HD exhibit observationally distinguishable features: PFD jets are lighter, slower, and less stable than HD jets. Unlike HD jets, PFD jets develop current-driven instabilities that are exacerbated as cooling and rotation increase, resulting in jets that are clumpier than those in the HD limit. Our PFD jet simulations also resemble the magnetic towers that have been recently created in laboratory astrophysical jet experiments.

  20. Method and system for simulating heat and mass transfer in cooling towers

    DOEpatents

    Bharathan, Desikan; Hassani, A. Vahab

    1997-01-01

    The present invention is a system and method for simulating the performance of a cooling tower. More precisely, the simulator of the present invention predicts values related to the heat and mass transfer from a liquid (e.g., water) to a gas (e.g., air) when provided with input data related to a cooling tower design. In particular, the simulator accepts input data regarding: (a) cooling tower site environmental characteristics; (b) cooling tower operational characteristics; and (c) geometric characteristics of the packing used to increase the surface area within the cooling tower upon which the heat and mass transfer interactions occur. In providing such performance predictions, the simulator performs computations related to the physics of heat and mass transfer within the packing. Thus, instead of relying solely on trial and error wherein various packing geometries are tested during construction of the cooling tower, the packing geometries for a proposed cooling tower can be simulated for use in selecting a desired packing geometry for the cooling tower.

  1. Project Profile: High-Efficiency Receivers for Supercritical...

    Energy Saver

    Brayton logo --This project is inactive -- Brayton Energy, under the 2012 SunShot Concentrating Solar Power (CSP) R&D FOA, is building and testing a new solar receiver that uses ...

  2. Project Profile: Advanced Low-Cost Receivers for Parabolic Troughs...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Norwich Technologies logo -- This project is inactive -- Norwich Technologies, under the 2012 SunShot Concentrating Solar Power (CSP) R&D FOA, is developing a novel receiver for ...

  3. Use of Air2Air Technology to Recover Fresh-Water from the Normal Evaporative Cooling Loss at Coal-Based Thermoelectric Power Plants

    SciTech Connect

    Ken Mortensen

    2009-06-30

    This program was undertaken to build and operate the first Air2Air{trademark} Water Conservation Cooling Tower at a power plant, giving a validated basis and capability for water conservation by this method. Air2Air{trademark} water conservation technology recovers a portion of the traditional cooling tower evaporate. The Condensing Module provides an air-to-air heat exchanger above the wet fill media, extracting the heat from the hot saturated moist air leaving in the cooling tower and condensing water. The rate of evaporate water recovery is typically 10%-25% annually, depending on the cooling tower location (climate).

  4. Energy 101: Concentrating Solar Power | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Concentrating Solar Power Energy 101: Concentrating Solar Power Addthis Description From towers to dishes to linear mirrors to troughs, concentrating solar power (CSP) technologies reflect and collect solar heat to generate electricity. A single CSP plant can generate enough power for about 90,000 homes. This video explains what CSP is, how it works, and how systems like parabolic troughs produce renewable power. Text Version Below is the text version for the Energy 101: Concentrating Solar

  5. Hanford Projects Receive Sustainability Awards

    Energy.gov [DOE]

    RICHLAND, WASH. – Hanford’s Department of Energy offices and their contractors received special recognition Tuesday for their part in promoting sustainability.

  6. Verification of BModes: Rotary Beam and Tower Modal Analysis Code; Preprint

    SciTech Connect

    Bir, G.

    2010-04-01

    This paper describes verification of BModes, a finite-element code developed to provide coupled modes for the blades and tower of a wind turbine. The blades, which may be rotating or non-rotating, and the towers, whether onshore or offshore, are modeled using specialized 15-dof beam finite elements. Both blade and tower models allow a tip attachment, which is assumed to be rigid body with six moments of inertia, and a mass centroid that may be offset from the blade or tower axis. Examples of tip attachments are aerodynamic brakes for blades and nacelle-rotor subassembly for towers. BModes modeling allows for tower supports including tension wires, floating platforms, and monopiles on elastic foundations. Coupled modes (implying coupling of flap, lag, axial, and torsional motions) are required for modeling major flexible components in a modal-based, aeroelastic code such as FAST1. These are also required for validation of turbine models using experimental data, modal-based fatigue analysis, controls design, and understanding aeroelastic-stability behavior of turbines. Verification studies began with uniform tower models, with and without tip inertia, and progressed to realistic towers. For the floating turbine, we accounted for the effects of hydrodynamic inertia, hydrostatic restoring, and mooring lines stiffness. For the monopole-supported tower, we accounted for distributed hydrodynamic mass on the submerged part of the tower and for distributed foundation stiffness. Finally, we verified a model of a blade carrying tip mass and rotating at different speeds (verifications of other blade models, rotating or non-rotating, have been reported in another paper.) Verifications were performed by comparing BModes-generated modes with analytical results, if available, or with MSC.ADAMS results. All results in general show excellent agreement.

  7. UWB delay and multiply receiver

    DOEpatents

    Dallum, Gregory E.; Pratt, Garth C.; Haugen, Peter C.; Romero, Carlos E.

    2013-09-10

    An ultra-wideband (UWB) delay and multiply receiver is formed of a receive antenna; a variable gain attenuator connected to the receive antenna; a signal splitter connected to the variable gain attenuator; a multiplier having one input connected to an undelayed signal from the signal splitter and another input connected to a delayed signal from the signal splitter, the delay between the splitter signals being equal to the spacing between pulses from a transmitter whose pulses are being received by the receive antenna; a peak detection circuit connected to the output of the multiplier and connected to the variable gain attenuator to control the variable gain attenuator to maintain a constant amplitude output from the multiplier; and a digital output circuit connected to the output of the multiplier.

  8. Statistical and Spectral Analysis of Wind Characteristics Relevant to Wind Energy Assessment Using Tower Measurements in Complex Terrain

    DOE PAGES [OSTI]

    Belu, Radian; Koracin, Darko

    2013-01-01

    The main objective of the study was to investigate spatial and temporal characteristics of the wind speed and direction in complex terrain that are relevant to wind energy assessment and development, as well as to wind energy system operation, management, and grid integration. Wind data from five tall meteorological towers located in Western Nevada, USA, operated from August 2003 to March 2008, used in the analysis. The multiannual average wind speeds did not show significant increased trend with increasing elevation, while the turbulence intensity slowly decreased with an increase were the average wind speed. The wind speed and direction weremore » modeled using the Weibull and the von Mises distribution functions. The correlations show a strong coherence between the wind speed and direction with slowly decreasing amplitude of the multiday periodicity with increasing lag periods. The spectral analysis shows significant annual periodicity with similar characteristics at all locations. The relatively high correlations between the towers and small range of the computed turbulence intensity indicate that wind variability is dominated by the regional synoptic processes. Knowledge and information about daily, seasonal, and annual wind periodicities are very important for wind energy resource assessment, wind power plant operation, management, and grid integration.« less

  9. WIPP Receives 100th Shipment

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Waste Isolation Pilot Plant Receives 100 th Shipment CARLSBAD, N.M., October 19, 2000 - The 100 th shipment of defense-generated transuranic radioactive waste has arrived safely at...

  10. WIPP Receives 200th Shipment

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    200 th Shipment CARLSBAD, N.M., April 18, 2001 - The U.S. Department of Energy's (DOE) Waste Isolation Pilot Plant (WIPP) today received its 200 th shipment of defense- generated...

  11. receive DOE Early Career Award

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    will receive financial assistance, still to be determined, to cover year-round salary plus research expenses. The funding is for the first year of planned five-year...

  12. Wind for Schools Project Power System Brief, Wind Powering America Fact Sheet Series

    SciTech Connect

    Baring-Gould, I.

    2009-05-01

    Wind Powering America's (WPA's) Wind for Schools project uses a basic system configuration for each school project. The system incorporates a single SkyStream wind turbine, a 70-ft guyed tower, disconnect boxes at the base of the turbine and at the school, and an interconnection to the school's electrical system. This document provides a detailed description of each system component.

  13. Simulations on Head-Tail Radio Galaxies Using Magnetic Tower Model

    SciTech Connect

    Gan, Zhaoming; Li, Hui; Li, Shengtai; Yuan, Feng

    2015-08-19

    The presentation is a series of slides showing diagrams, equations, and various photographs. In summary, a detailed comparison was carried out between hydrodynamic jet and MHD jet models (the magnetic tower jet, more precisely), in an effort to understand the underlying physics of observed radio galaxies, and also its possible indications for jet feedback. It was found that the results of magnetic tower model usually lie in a reasonable regime, and in several aspects, the magnetic tower jet seems more preferred than pure hydrodynamic jet models.

  14. Concentrating Solar Power Projects by Project Name | Concentrating Solar

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Power | NREL Project Name In this section, you can select a concentrating solar power (CSP) project from the alphabetical listing of project names below. You can then review a profile covering project basics, participating organizations, and power plant configuration data for the solar field, power block, and thermal energy storage. Abhijeet Solar Project ACME Solar Tower Agua Prieta II Airlight Energy Ait-Baha Pilot Plant Alba Nova 1 Andasol-1 (AS-1) Andasol-2 (AS-2) Andasol-3 (AS-3)

  15. Conceptual design of the solar repowering system for West Texas Utilities Company Paint Creek Power Station Unit No. 4. Final report

    SciTech Connect

    Not Available

    1980-07-15

    A conceptual design of a sodium-cooled, solar, central-receiver repowering system for West Texas Utilities' Paint Creek Unit 4 was prepared. The existing Paint Creek Unit 4 is a natural-gas-fired, baseload unit with a dependable net power output of 110 MWe. It is a reheat unit, has a main steam temperature and pressure of 538/sup 0/C (1000/sup 0/F) and 12.41 MPa (1800 psig), respectively, has a reheat temperature of 538/sup 0/C (1000/sup 0/F), and was placed in operation in 1972. On this conceptual design study program, a large number of trade studies and optimizations were carried out, in order to derive the most cost-effective design that had the greatest potential for widespread application and commercialization. As a result of these studies, the optimum power level for the solar part of the plant was determined to be 60 MWe, and provisions were made to store enough solar energy, so that the solar part of the plant would produce, on March 21 (equinox), 60 MWe of electric power for a period of 4 h after sunset. The tower in this system is 154 m (505 ft) high to the midpoint of the receiver, and is surrounded by 7882 heliostats (mirrors), each of which is 6.7 m (22 ft) by 7.3 m (24 ft). The mirror field occupies 1.74 x 10/sup 6/ m/sup 2/ (430 acres), and extends 1040 m (3400 ft) to the north of the tower, 550 m (1800 ft) to the south of the tower, and is bounded on the east and west by Lake Stamford. The receiver, which is of the external type, is 15.4 m (50.5 ft) high by 14 m (45.9 ft) in diameter, and is capable of absorbing a maximum of 226 MW of thermal energy. The set of sodium-to-steam generators consists of an evaporator, a superheater, and a reheater, the power ratings of which are 83.2, 43.7, and 18.1 MWt, respectively. Conceptual design, system characteristics, economic analysis, and development plans are detailed. (WHK)

  16. Power coefficient of tornado-type wind turbines

    SciTech Connect

    Rangwalla, A.A.; Hsu, C.T.

    1983-11-01

    In a tornado-type wind turbine the wind collecting tower is equipped with adjustable vanes that can be opened on the windward side and closed on the leeward side. The wind enters the tower tangentially through these open vanes and exits from the top. As a result, a vortex is formed inside the tower. A vertical axis turbine which is located underneath the tower floor admits air vertically and exhausts it into the vortex core. The pressure drop in the vortex core can be high, depending upon the vortex concentration, thus enhancing manyfold the total pressure drop across the turbine. The power coefficient C /SUB p/ of this system depends mainly on how low a pressure can be created in the vortex core. A maximum C /SUB p/ of about 2.5 was obtained by Yen for a spiral shaped tower. This is about 6.25 times the C /SUB p/ of conventional windmills. Analytical studies have been carried out by several investigators to study the C /SUB p/ of this vortex machine. Loth considered the conservation of angular momentum and obtained a C /SUB p/ based on the tower frontal area, which is not impressive.

  17. Light received an expanded definition, Compton received a Nobel Prize |

    Office of Scientific and Technical Information (OSTI)

    OSTI, US Dept of Energy Office of Scientific and Technical Information Light received an expanded definition, Compton received a Nobel Prize Back to the OSTI News Listing for 2012 Arthur H. Compton discovered that light cannot be explained simply as a wave phenomenon, but also must be considered as a stream of particles. His confirmation of the dual nature of electromagnetic radiation earned Compton a share of the Nobel Prize in Physics in 1927. Read more about Compton and get resources with

  18. High Temperature Falling Particle Receiver

    Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  19. Sandia Physicist Receives IEEE Award

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Models for Integrating EnergyWater Facilities Atmospheric Radiation Measurement Climate ... of superpower pulsed-power generators and to the realization of the Z ...

  20. SNR Denton US LLP 1301 K Street, NW Suite 600, East Tower Washington...

    Energy.gov [DOE] (indexed site)

    SNR Denton US LLP 1301 K Street, NW Suite 600, East Tower Washington, DC 20005-3364 USA Thomas C. Jensen Partner thomas.jensen@snrdenton.com D +1 202 408 3956 M 703 304 5211 T +1 ...

  1. Estimation of Blade and Tower Properties for the Gearbox Research Collaborative Wind Turbine

    SciTech Connect

    Bir, G.S.; Oyague, F.

    2007-11-01

    This report documents the structural and modal properties of the blade and tower of a 3-bladed 750-kW upwind turbine to develop an aeroelastic model of the wind turbine.

  2. UWB communication receiver feedback loop

    DOEpatents

    Spiridon, Alex; Benzel, Dave; Dowla, Farid U.; Nekoogar, Faranak; Rosenbury, Erwin T.

    2007-12-04

    A novel technique and structure that maximizes the extraction of information from reference pulses for UWB-TR receivers is introduced. The scheme efficiently processes an incoming signal to suppress different types of UWB as well as non-UWB interference prior to signal detection. Such a method and system adds a feedback loop mechanism to enhance the signal-to-noise ratio of reference pulses in a conventional TR receiver. Moreover, sampling the second order statistical function such as, for example, the autocorrelation function (ACF) of the received signal and matching it to the ACF samples of the original pulses for each transmitted bit provides a more robust UWB communications method and system in the presence of channel distortions.

  3. NREL: Concentrating Solar Power Research - Projects

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    in its CSP deployment efforts in the following areas: Collectors Receivers Power block Thermal energy storage Analysis. NREL received funding from DOE for concentrating solar...

  4. CBFO Manager Receives ESGR Award

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    U.S. Department of Energy Carlsbad Field Office Waste Isolation Pilot Plant P.O. Box 3090 Carlsbad, New Mexico 88221 For Immediate Release CBFO Manager Receives ESGR Honor CARLSBAD, N.M., July 8, 2013 - Department of Energy (DOE) Carlsbad Field Office (CBFO) Manager Joe Franco receives the Employer Support of the Guard and Reserve (ESGR) Seven Seals Award in June at a New Mexico ESGR recognition event in Carlsbad, N.M. From left: Assistant Adjutant General for Air and Commander of the New

  5. RFID receiver apparatus and method

    DOEpatents

    Scott, Jeffrey Wayne

    2006-12-26

    An RFID backscatter interrogator for transmitting data to an RFID tag, generating a carrier for the tag, and receiving data from the tag modulated onto the carrier, the interrogator including a single grounded-coplanar wave-guide circuit board and at least one surface mount integrated circuit supported by the circuit board.

  6. National Solar Thermal Test Facility

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    National Solar Thermal Test Facility Illuminated receiver on top of tower Permalink Gallery High-Temperature Falling Particle Receiver Reaches New Limits Concentrating Solar Power, ...

  7. Project Profile: Particle Receiver Integrated with a Fluidized Bed

    Energy.gov [DOE]

    The National Renewable Energy Laboratory (NREL) and its partners, under the 2012 SunShot Concentrating Solar Power (CSP) R&D funding opportunity announcement (FOA), are developing a novel receiver that uses falling particles instead of liquid for the heat-transfer fluid (HTF). The research team aims to build a receiver that operates at higher temperatures and efficiencies than the current state-of-the-art technology.

  8. Comments Received on Proposed Rulemaking for regulation implementing

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    section 216(h): Coordination of Federal Transmission Permitting on Federal Lands | Department of Energy Received on Proposed Rulemaking for regulation implementing section 216(h): Coordination of Federal Transmission Permitting on Federal Lands Comments Received on Proposed Rulemaking for regulation implementing section 216(h): Coordination of Federal Transmission Permitting on Federal Lands Section 1221(a) of EPAct 2005, which added section 216(h) to the Federal Power Act, stated that the

  9. Three Offshore Wind Advanced Technology Demonstration Projects Receive

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Phase 2 Funding | Department of Energy Three Offshore Wind Advanced Technology Demonstration Projects Receive Phase 2 Funding Three Offshore Wind Advanced Technology Demonstration Projects Receive Phase 2 Funding September 11, 2014 - 3:16pm Addthis The U.S. Department of Energy (DOE) awarded additional funding to three of the seven projects from the Offshore Wind Advanced Technology Demonstration Funding Opportunity. Dominion Virginia Power, Fishermen's Energy of New Jersey, and Principle

  10. National Lab Employee Receives Honor for Energy Innovations | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy National Lab Employee Receives Honor for Energy Innovations National Lab Employee Receives Honor for Energy Innovations October 26, 2016 - 12:30pm Addthis SunShot Initiative awardee Dr. Dileep Singh of Argonne National Laboratory has been named a fellow of ASM International for his contributions to the science and technology behind concentrating solar power (CSP) and other energy innovations. This award is one of the highest honors in the field of materials science. Dr. Singh is the

  11. SAW correlator spread spectrum receiver

    DOEpatents

    Brocato, Robert W

    2014-04-01

    A surface acoustic wave (SAW) correlator spread-spectrum (SS) receiver is disclosed which utilizes a first demodulation stage with a chip length n and a second demodulation stage with a chip length m to decode a transmitted SS signal having a code length l=n.times.m which can be very long (e.g. up to 2000 chips or more). The first demodulation stage utilizes a pair of SAW correlators which demodulate the SS signal to generate an appropriate code sequence at an intermediate frequency which can then be fed into the second demodulation stage which can be formed from another SAW correlator, or by a digital correlator. A compound SAW correlator comprising two input transducers and a single output transducer is also disclosed which can be used to form the SAW correlator SS receiver, or for use in processing long code length signals.

  12. Hybrid sodium heat pipe receivers for dish/Stirling systems

    SciTech Connect

    Laing, D.; Reusch, M.

    1997-12-31

    The design of a hybrid solar/gas heat pipe receiver for the SBP 9 kW dish/Stirling system using a United Stirling AB V160 Stirling engine and the results of on-sun testing in alternative and parallel mode will be reported. The receiver is designed to transfer a thermal power of 35 kW. The heat pipe operates at around 800 C, working fluid is sodium. Operational options are solar-only, gas augmented and gas-only mode. Also the design of a second generation hybrid heat pipe receiver currently developed under a EU-funded project, based on the experience gained with the first hybrid receiver, will be reported. This receiver is designed for the improved SPB/L. and C.-10 kW dish/Stirling system with the reworked SOLO V161 Stirling engine.

  13. Digital-data receiver synchronization

    DOEpatents

    Smith, Stephen F.; Turner, Gary W.

    2005-08-02

    Digital-data receiver synchronization is provided with composite phase-frequency detectors, mutually cross-connected comparison feedback or both to provide robust reception of digital data signals. A single master clock can be used to provide frequency signals. Advantages can include fast lock-up time in moderately to severely noisy conditions, greater tolerance to noise and jitter when locked, and improved tolerance to clock asymmetries.

  14. receive DOE Early Career Award

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    researcher Joel Rowland to receive DOE Early Career Award May 8, 2014 Research focuses on land surface dynamics in Arctic environments LOS ALAMOS, N.M., May 8, 2014-Los Alamos National Laboratory researcher Joel Rowland is one of 35 national recipients of 2014 Early Career Research Program awards from the Department of Energy. Rowland's research was recognized by DOE's Office of Biological and Environmental Research for incorporating hydrological controls on carbon cycling in flood plain

  15. Eddy Correlation Systems Receive Upgrade

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Eddy Correlation Systems Receive Upgrade Eight eddy correlation (ECOR) flux measurement systems are now deployed throughout the ARM SGP CART site. These systems are used to determine the flux (flow) of sensible heat, the flux of latent heat, and air momentum just above cropland a few hundred feet upwind of the ECOR locations. (Sensible heat is energy we feel as warmth. Latent heat is the energy that evaporated water vapor measured in the atmosphere.) The ECOR systems actually measure wind

  16. Particle Receiver Integrated with Fludized Bed | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Particle Receiver Integrated with Fludized Bed Particle Receiver Integrated with Fludized Bed This fact sheet describes a project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program to NREL which features a particle receiver with a fluidized bed. The research team is working to develop a technology that uses gas/solid, two-phase flow as a heat-transfer fluid and separated, stable, solid particles as a thermal energy storage medium. This project provides a pathway

  17. High-Efficiency Receivers for Supercritical Carbon Dioxide Cycles |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy High-Efficiency Receivers for Supercritical Carbon Dioxide Cycles High-Efficiency Receivers for Supercritical Carbon Dioxide Cycles This fact sheet describes a project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The team, led by Brayton Energy, aims to develop and demonstrate a low-cost, high-efficiency solar receiver that is compatible with s-CO2 cycles and modern thermal storage subsystems. Supercritical CO2 Brayton-cycle

  18. Project Profile: Direct Supercritical Carbon Dioxide Receiver Development

    Energy.gov [DOE]

    -- This project is inactive -- The National Renewable Energy Laboratory (NREL), under the National Laboratory R&D competitive funding opportunity, is working to develop, characterize, and experimentally demonstrate a novel high-temperature receiver technology using supercritical carbon dioxide (s-CO2) directly as the heat transfer fluid (HTF). A high-temperature receiver that is compatible with s-CO2 enables a significant increase in power cycle efficiency and reduces solar-field size, thereby decreasing the installed cost of concentrating solar power (CSP) systems.

  19. Advanced Low-Cost Receivers for Parabolic Troughs

    Energy.gov [DOE]

    This fact sheet describes an advanced, low-cost receiver project for parabolic troughs, awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. Norwich Technologies is designing a novel receiver that addresses these issues for parabolic trough concentrating solar power systems. This technology represents significant operational and cost advances in the most trusted and broadly implemented form of CSP and provides a viable pathway to achieving SunShot’s $0.06/kWh goal for utility-scale CSP systems.

  20. Microsoft Word - CX-Driscoll Sustation Tower.doc

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Official File United States Government Department of Energy Bonneville Power Administration DATE: 6HSWHPEHU REPLY TO ATTN OF: .(& SUBJECT: (QYLURQPHQWDO &OHDUDQFH 0HPRUDQGXP -LP ...

  1. 2014 News | Concentrating Solar Power | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    4 News Below are news stories related to Concentrating Solar Power. RSS Learn about RSS. September 16, 2014 NREL Forges Foundation for Advanced Concentrating Solar Power Receivers ...

  2. Technology to Facilitate the Use of Impaired Waters in Cooling Towers

    SciTech Connect

    Colborn, Robert

    2012-04-30

    The project goal was to develop an effective silica removal technology and couple that with existing electro-dialysis reversal (EDR) technology to achieve a cost effective treatment for impaired waters to allow for their use in the cooling towers of coal fired power plants. A quantitative target of the program was a 50% reduction in the fresh water withdrawal at a levelized cost of water of $3.90/Kgal. Over the course of the program, a new molybdenum-modified alumina was developed that significantly outperforms existing alumina materials in silica removal both kinetically and thermodynamically. The Langmuir capacity is 0.11g silica/g adsorbent. Moreover, a low cost recycle/regeneration process was discovered to allow for multiple recycles with minimal loss in activity. On the lab scale, five runs were carried out with no drop in performance between the second and fifth run in ability to absorb the silica from water. The Mo-modified alumina was successfully prepared on a multiple kilogram scale and a bench scale model column was used to remove 100 ppm of silica from 400 liters of simulated impaired water. Significant water savings would result from such a process and the regeneration process could be further optimized to reduce water requirements. Current barriers to implementation are the base cost of the adsorbent material and the fine powder form that would lead to back pressure on a large column. If mesoporous materials become more commonly used in other areas and the price drops from volume and process improvements, then our material would also lower in price because the amount of molybdenum needed is low and no additional processing is required. There may well be engineering solutions to the fine powder issue; in a simple concept experiment, we were able to pelletize our material with Boehmite, but lost performance due to a dramatic decrease in surface area.

  3. Solar central receiver heliostat reflector assembly

    DOEpatents

    Horton, Richard H.; Zdeb, John J.

    1980-01-01

    A heliostat reflector assembly for a solar central receiver system comprises a light-weight, readily assemblable frame which supports a sheet of stretchable reflective material and includes mechanism for selectively applying tension to and positioning the sheet to stretch it to optical flatness. The frame is mounted on and supported by a pipe pedestal assembly that, in turn, is installed in the ground. The frame is controllably driven in a predetermined way by a light-weight drive system so as to be angularly adjustable in both elevation and azimuth to track the sun and efficiently continuously reflect the sun's rays to a focal zone, i.e. central receiver, which forms part of a solar energy utilization system, such as a solar energy fueled electrical power generation system. The frame may include a built-in system for testing for optical flatness of the reflector. The preferable geometric configuration of the reflector is octagonal; however, it may be other shapes, such as hexagonal, pentagonal or square. Several different embodiments of means for tensioning and positioning the reflector to achieve optical flatness are disclosed. The reflector assembly is based on the stretch frame concept which provides an extremely light-weight, simple, low-cost reflector assembly that may be driven for positioning and tracking by a light-weight, inexpensive drive system.

  4. 24 m meteorological tower data report period: January through December, 1996

    SciTech Connect

    Freeman, D.; Bowen, J.; Egami, R.; Coulombe, W.; Crow, D.; Cristani, B.; Schmidt, S.

    1997-12-01

    This report was prepared by the Desert Research Institute (DRI) for the US Department of Energy (DOE). It summarizes meteorological data collected at the 24 meter tower at the Nevada Test Site Hazardous Material Spill Center (HAZMAT) located at Frenchman Flat near Mercury, Nevada, approximately 75 miles northwest of Las Vegas, Nevada. The tower was originally installed in July, 1993 to characterize baseline conditions for an EPA sponsored experimental research program at the HAZMAT. This report presents results of the monitoring for January--December, 1996, providing: a status of the measurement systems during the report period and a summary of the meteorological conditions at the HAZMAT during the report period. The scope of the report is limited to summary data analyses and does not include extensive meteorological analysis. The tower was instrumented at 8 levels. Wind speed, wind direction, and temperature were measured at all 8 levels. Relative humidity was measured at 3 levels. Solar and net radiation were measured at 2 meters above the ground. Barometric pressure was measured at the base of the tower and soil temperature was measured near the base of the tower.

  5. Wireless power transfer system

    DOEpatents

    Wu, Hunter; Sealy, Kylee; Gilchrist, Aaron

    2016-02-23

    A system includes a first stage of an inductive power transfer system with an LCL load resonant converter with a switching section, an LCL tuning circuit, and a primary receiver pad. The IPT system includes a second stage with a secondary receiver pad, a secondary resonant circuit, a secondary rectification circuit, and a secondary decoupling converter. The secondary receiver pad connects to the secondary resonant circuit. The secondary resonant circuit connects to the secondary rectification circuit. The secondary rectification circuit connects to the secondary decoupling converter. The second stage connects to a load. The load includes an energy storage element. The second stage and load are located on a vehicle and the first stage is located at a fixed location. The primary receiver pad wirelessly transfers power to the secondary receiver pad across a gap when the vehicle positions the secondary receiver pad with respect to the primary receiver pad.

  6. Photonic-powered cable assembly

    DOEpatents

    Sanderson, Stephen N.; Appel, Titus James; Wrye, IV, Walter C.

    2013-01-22

    A photonic-cable assembly includes a power source cable connector ("PSCC") coupled to a power receive cable connector ("PRCC") via a fiber cable. The PSCC electrically connects to a first electronic device and houses a photonic power source and an optical data transmitter. The fiber cable includes an optical transmit data path coupled to the optical data transmitter, an optical power path coupled to the photonic power source, and an optical feedback path coupled to provide feedback control to the photonic power source. The PRCC electrically connects to a second electronic device and houses an optical data receiver coupled to the optical transmit data path, a feedback controller coupled to the optical feedback path to control the photonic power source, and a photonic power converter coupled to the optical power path to convert photonic energy received over the optical power path to electrical energy to power components of the PRCC.

  7. Photonic-powered cable assembly

    DOEpatents

    Sanderson, Stephen N; Appel, Titus James; Wrye, IV, Walter C

    2014-06-24

    A photonic-cable assembly includes a power source cable connector ("PSCC") coupled to a power receive cable connector ("PRCC") via a fiber cable. The PSCC electrically connects to a first electronic device and houses a photonic power source and an optical data transmitter. The fiber cable includes an optical transmit data path coupled to the optical data transmitter, an optical power path coupled to the photonic power source, and an optical feedback path coupled to provide feedback control to the photonic power source. The PRCC electrically connects to a second electronic device and houses an optical data receiver coupled to the optical transmit data path, a feedback controller coupled to the optical feedback path to control the photonic power source, and a photonic power converter coupled to the optical power path to convert photonic energy received over the optical power path to electrical energy to power components of the PRCC.

  8. Final Report- High-Efficiency Low-Cost Solar Receiver for use in a Supercritical CO2 Recompression Cycle

    Office of Energy Efficiency and Renewable Energy (EERE)

    This project has performed solar receiver designs for two supercritical carbon dioxide (sCO2) power cycles. The first half of the program focused on a nominally 2 MWe power cycle, with a receiver designed for test at the Sandia Solar Thermal Test Facility. This led to an economical cavity-type receiver. The second half of the program focused on a 10 MWe power cycle, incorporating a surround open receiver. Rigorous component life and performance testing was performed in support of both receiver designs. The receiver performance objectives are set to conform to the US DOE goals of 6¢/kWh by 2020.

  9. Characteristics study of Transmission Line Mechanical Research Center (TLMRC) wind tower data

    SciTech Connect

    Shan, L. )

    1992-10-01

    To initiate and develop EPRI's wind loading research program, an experimental wind tower was erected at the TLMRC site. A number of anemometers were placed at different elevation levels of the wind tower. Strain gages were also mounted on the leg posts of the tower. The purposes of this experiment were to establish the wind characteristics at the TLMRC site, and to gain experience using different types of instrumentation and data acquisition techniques in field-wind loading experiments. Three sets of wind data collected from the TLMRC wind tower were validated and analyzed in this study. Since the characteristics of wind and response data can be described in different terms and by various methods, the study describes the concept, Identifies the focal point, and discusses the results of each method used in this report. In addition, some comments are provided on how to conduct the field-wind loading experiments as well as how to analyze the wind and response data. The results of this study show that: (1) the magnitudes of wind velocity and direction can vary considerably during a short period of time; (2) the mean vertical wind profile does not hold constant as usually assumed; (3) the turbulence intensity and the gust factor increase as the height above ground decreases; (4) the averaging time can greatly influence the results of wind data analysis; (5) although wind contains lime energy beyond 1 Hz, structural responses above 1 Hz can be excited; (6) strong relationships exist between the wind velocity and the responses in the leg posts of the wind tower. System identification, a tool for establishing models of dynamic systems based in observed data, is successfully used in a trial application which estimates the relationship between the wind velocity and the responses in the wind tower.

  10. Felt-metal-wick heat-pipe solar receiver

    SciTech Connect

    Andraka, C.E.; Adkins, D.R.; Moss, T.A.; Cole, H.M.; Andreas, N.H.

    1994-12-31

    Reflux heat-pipe receivers have been identified as a desirable interface to couple a Stirling-cycle engine with a parabolic dish solar concentrator. The reflux receiver provides power nearly isothermally to the engine heater heads while decoupling the heater head design from the solar absorber surface design. The independent design of the receiver and engine heater head leads to higher system efficiency. Heat pipe reflux receivers have been demonstrated at approximately 65 kW{sub t} power throughput. Several 25 to 30-kW{sub e} Stirling-cycle engines are under development, and will soon be incorporated in commercial dish-Stirling systems. These engines will require reflux receivers with power throughput limits reaching 90-kW{sub t}. The extension of heat pipe technology from 60 kW{sub t} to 100 kW{sub t} is not trivial. Current heat pipe wick technology is pushed to its limits. It is necessary to develop and test advanced wick structure technologies to perform this task. Sandia has developed and begun testing a Bekaert Corporation felt metal wick structure fabricated by Porous Metal Products Inc. This wick is about 95% porous, and has liquid permeability a factor of 2 to 8 times higher than conventional technologies for a given maximum pore radius. The wick has been successfully demonstrated in a bench-scale heat pipe, and a full-scale on-sun receiver has been fabricated. This report details the wick design, characterization and installation into a heat pipe receiver, and the results of the bench-scale tests are presented. The wick performance is modeled, and the model results are compared to test results.

  11. AmeriFlux US-Ha1 Harvard Forest EMS Tower (HFR1)

    SciTech Connect

    Munger, J. William

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Ha1 Harvard Forest EMS Tower (HFR1). Site Description - The Harvard Forest tower is on land owned by Harvard University. The site is designated as an LTER site. Most of the surrounding area was cleared for agrigulture during European settlement in 1600-1700. The site has been regrowing since before 1900 (based on tree ring chronologies) and is now predominantly red oak and red maple, with patches of mature hemlock stand and individual white pine. Overstory trees were uprooted by hurricane in 1938. Climate measurements have been made at Harvard Forest since 1964.

  12. AEETES---A solar reflux receiver thermal performance numerical model

    SciTech Connect

    Hogan, R.E. Jr.

    1991-01-01

    Reflux solar receivers for dish-Stirling electric power generation systems are currently being investigated by several companies and laboratories. In support of these efforts, the AEETES thermal performance numerical model has been developed to predict thermal performance of pool-boiler and heat-pipe reflux receivers. The formulation of the AEETES numerical model, which is applicable to axisymmetric geometries with asymmetric incident fluxes, is presented in detail. Thermal efficiency predictions agree to within 4.1% with test data from on-sun tests of a pool-boiler reflux receiver. Predicted absorber and sidewall temperatures agree with thermocouple data to within 3.3.% and 7.3%, respectively. The importance of accounting for the asymmetric incident fluxes is demonstrated in comparisons with predictions using azimuthally averaged variables. The predicted receiver heat losses are characterized in terms of convective, solar and infrared radiative, and conductive heat transfer mechanisms. 27 refs., 9 figs., 4 tabs.

  13. Oak Ridge’s EM Program Demolishes North America’s Tallest Water Tower

    Office of Energy Efficiency and Renewable Energy (EERE)

    OAK RIDGE, Tenn. – Oak Ridge’s EM program recently demolished one of the most iconic structures at the East Tennessee Technology Park (ETTP). The 382-foot checkerboard water tower — the tallest in North America — dominated the site’s skyline since its construction in 1958.

  14. Impact of environmental concerns on cooling-tower design and operation

    SciTech Connect

    Hensley, J.C.

    1981-01-01

    New and sometimes unexpected environmental concerns surface from time to time, and each has its special effect on the selection, pricing, and operation of cooling towers. This paper discusses the following concerns, which are either current or are becoming significant: water conservation, energy conservation, noise, drift, blowdown, visual impact, and construction materials that are environmentally sensitive. 3 refs.

  15. Experimental optimization of cooling-tower-fan control based on field data. Master's thesis

    SciTech Connect

    Herman, D.L.

    1991-04-01

    Energy costs continue to play an important role in the decision-making process for building design and operation. Since the chiller, cooling tower fans, and associated pumps consume the largest fraction of energy in a heating, ventilating, and air-conditioning (HVAC) system, the control of these components is of major importance in determining building energy use. A significant control parameter for the chilled water system is the minimum entering condenser water set point temperature at which the cooling tower fans are cycled on and off, several studies have attempted to determine the optimum value for this minimum set point temperature, but direct measurements are not available to validate these studies. The purpose of this study was to experimentally determine the optimum minimum entering condenser water set point temperature from field data based on minimum energy consumption and to validate a chilled water system analytical model previously developed in earlier work. The total chiller system electrical consumption (chiller and cooling tower fan energy) was measured for four entering condensor water set point temperatures (70, 75, 80, and 85 deg F). The field results were compared to results obtained using an analytical model previously developed in a thesis entitled Optimized Design of a Commercial Building Chiller/Cooling Tower System, written by Joyce.

  16. Celebrating the Completion of the World's Largest Concentrating Solar Power

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Plant | Department of Energy the Completion of the World's Largest Concentrating Solar Power Plant Celebrating the Completion of the World's Largest Concentrating Solar Power Plant February 13, 2014 - 9:21am Addthis Aerial view, Ivanpah 1 of 5 Aerial view, Ivanpah An aerial view of the Ivanpah Solar Power Facility at sunrise, with left to right Tower 1, 2 and 3. Image: Gilles Mingasson/Getty Images for Bechtel Harnessing the Power of the Sun 2 of 5 Harnessing the Power of the Sun The top of

  17. A STUDY ON LEGIONELLA PNEUMOPHILA, WATER CHEMISTRY, AND ATMOSPHERIC CONDITIONS IN COOLING TOWERS AT THE SAVANNAH RIVER SITE

    SciTech Connect

    Smith, C.; Brigmon, R.

    2009-10-20

    Legionnaires disease is a pneumonia caused by the inhalation of the bacterium Legionella pneumophila. The majority of illnesses have been associated with cooling towers since these devices can harbor and disseminate the bacterium in the aerosolized mist generated by these systems. Historically, Savannah River Site (SRS) cooling towers have had occurrences of elevated levels of Legionella in all seasons of the year and in patterns that are difficult to predict. Since elevated Legionella in cooling tower water are a potential health concern a question has been raised as to the best control methodology. In this work we analyze available chemical, biological, and atmospheric data to determine the best method or key parameter for control. The SRS 4Q Industrial Hygiene Manual, 4Q-1203, 1 - G Cooling Tower Operation and the SRNL Legionella Sampling Program, states that 'Participation in the SRNL Legionella Sampling Program is MANDATORY for all operating cooling towers'. The resulting reports include L. pneumophila concentration information in cells/L. L. pneumophila concentrations >10{sup 7} cells/L are considered elevated and unsafe so action must be taken to reduce these densities. These remedial actions typically include increase biocide addition or 'shocking'. Sometimes additional actions are required if the problem persists including increase tower maintenance (e.g. cleaning). Evaluation of 14 SRS cooling towers, seven water quality parameters, and five Legionella serogroups over a three-plus year time frame demonstrated that cooling tower water Legionella densities varied widely though out this time period. In fact there was no one common consistent significant variable across all towers. The significant factors that did show up most frequently were related to suspended particulates, conductivity, pH, and dissolved oxygen, not chlorine or bromine as might be expected. Analyses of atmospheric data showed that there were more frequent significant elevated Legionella

  18. Testing of Stirling engine solar reflux heat-pipe receivers

    SciTech Connect

    Rawlinson, S.; Cordeiro, P.; Dudley, V.; Moss, T.

    1993-07-01

    Alkali metal heat-pipe receivers have been identified as a desirable interface to couple a Stirling-cycle engine with a parabolic dish solar concentrator. The reflux receiver provides power nearly isothermally to the engine heater heads while de-coupling the heater head design from the solar absorber surface design. The independent design of the receiver and engine heater head leads to high system efficiency. Heat pipe reflux receivers have been demonstrated at approximately 30 kW{sub t} power throughput by others. This size is suitable fm engine output powers up to 10 kW{sub e}. Several 25-kW{sub e}, Stirling-cycle engines exist, as well as designs for 75-kW{sub t} parabolic dish solar concentrators. The extension of heat pipe technology from 30 kW{sub t} to 75 kW{sub t} is not trivial. Heat pipe designs are pushed to their limits, and it is critical to understand the flux profiles expected from the dish, and the local performance of the wick structure. Sandia has developed instrumentation to monitor and control the operation of heat pipe reflux receivers to test their throughput limits, and analytical models to evaluate receiver designs. In the past 1.5 years, several heat pipe receivers have been tested on Sandia`s test bed concentrators (TBC`s) and 60-kW{sub t} solar furnace. A screen-wick heat pipe developed by Dynatherm was tested to 27.5 kW{sub t} throughput. A Cummins Power Generation (CPG)/Thermacore 30-kW{sub t} heat pipe was pushed to a throughput of 41 kW{sub t} to verify design models. A Sandia-design screen-wick and artery 75-kW{sub t} heat pipe and a CPG/Thermacore 75-kW{sub t} sintered-wick heat pipe were also limit tested on the TBC. This report reviews the design of these receivers, and compares test results with model predictions.

  19. CFD MODELING AND ANALYSIS FOR A-AREA AND H-AREA COOLING TOWERS

    SciTech Connect

    Lee, S.; Garrett, A.; Bollinger, J.

    2009-09-02

    Mechanical draft cooling towers are designed to cool process water via sensible and latent heat transfer to air. Heat and mass transfer take place simultaneously. Heat is transferred as sensible heat due to the temperature difference between liquid and gas phases, and as the latent heat of the water as it evaporates. Mass of water vapor is transferred due to the difference between the vapor pressure at the air-liquid interface and the partial pressure of water vapor in the bulk of the air. Equations to govern these phenomena are discussed here. The governing equations are solved by taking a computational fluid dynamics (CFD) approach. The purpose of the work is to develop a three-dimensional CFD model to evaluate the flow patterns inside the cooling tower cell driven by cooling fan and wind, considering the cooling fans to be on or off. Two types of the cooling towers are considered here. One is cross-flow type cooling tower located in A-Area, and the other is counterflow type cooling tower located in H-Area. The cooling tower located in A-Area is mechanical draft cooling tower (MDCT) consisting of four compartment cells as shown in Fig. 1. It is 13.7m wide, 36.8m long, and 9.4m high. Each cell has its own cooling fan and shroud without any flow communications between two adjacent cells. There are water distribution decks on both sides of the fan shroud. The deck floor has an array of about 25mm size holes through which water droplet falls into the cell region cooled by the ambient air driven by fan and wind, and it is eventually collected in basin area. As shown in Fig. 1, about 0.15-m thick drift eliminator allows ambient air to be humidified through the evaporative cooling process without entrainment of water droplets into the shroud exit. The H-Area cooling tower is about 7.3 m wide, 29.3 m long, and 9.0 m high. Each cell has its own cooling fan and shroud, but each of two corner cells has two panels to shield wind at the bottom of the cells. There is some

  20. Mechanism of Hydrogen Formation in Solar Parabolic Trough Receivers

    SciTech Connect

    Moens, L.; Blake, D. M.

    2008-03-01

    Solar parabolic trough systems for electricity production are receiving renewed attention, and new solar plants are under construction to help meet the growing demands of the power market in the Western United States. The growing solar trough industry will rely on operating experience it has gained over the last two decades. Recently, researchers found that trough plants that use organic heat transfer fluids (HTF) such as Therminol VP-1 are experiencing significant heat losses in the receiver tubes. The cause has been traced back to the accumulation of excess hydrogen gas in the vacuum annulus that surrounds the steel receiver tube, thus compromising the thermal insulation of the receiver. The hydrogen gas is formed during the thermal decomposition of the organic HTF that circulates inside the receiver loop, and the installation of hydrogen getters inside the annulus has proven to be insufficient for controlling the hydrogen build-up over the lifetime of the receivers. This paper will provide an overview of the chemical literature dealing with the thermal decomposition of diphenyl oxide and biphenyl, the two constituents of Therminol VP-1.

  1. Atmospheric transmission model for a solar beam propagating between a heliostat and a receiver

    SciTech Connect

    Pitman, C.L.; Vant-Hull, L.L.

    1982-01-01

    Formulae are presented that provide estimates of the transmittance for a solar beam propagating between a heliostat and a central receiver. These formulae are wavelength independent, functional fits to the tabulated data of Vittitoe and Biggs, which in turn are from numerical integrations of spectral transmittance data calculated with the aid of the computer code LOWTRAN 3. The formulae allow for interpolation and extrapolation, and they have a form characteristic of atmospheric transmission models. The transmittance model contains five explicit physical variables (the site elevation H, the atmospheric water vapor density rho, the scattering coefficient ..beta.., the tower height h, and the slant range R) and three implicit variables (the season of the year, the climatic region, and the site elevation H) because rho and ..beta.. are dependent on these three variables.

  2. Argonne receives 2014 Illinois Governor's Sustainability Award...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Argonne receives 2014 Illinois Governor's Sustainability Award By Else Tennessen * ... Illinois Sustainable Technology Center's 2014 Illinois Governor's Sustainability Award. ...

  3. Husavik Geothermal Power Station | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    processes (afday) Daily Operation Water Use (afday) Well Field Water Use (afday) Cooling Tower Water use (annual average) (afday) Cooling Tower Water use (summer average) (af...

  4. Mutnovskaya Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    processes (afday) Daily Operation Water Use (afday) Well Field Water Use (afday) Cooling Tower Water use (annual average) (afday) Cooling Tower Water use (summer average) (af...

  5. Mataloko Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    processes (afday) Daily Operation Water Use (afday) Well Field Water Use (afday) Cooling Tower Water use (annual average) (afday) Cooling Tower Water use (summer average) (af...

  6. Mendeleevskaya Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    processes (afday) Daily Operation Water Use (afday) Well Field Water Use (afday) Cooling Tower Water use (annual average) (afday) Cooling Tower Water use (summer average) (af...

  7. HL Power Geothermal Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    processes (afday) Daily Operation Water Use (afday) Well Field Water Use (afday) Cooling Tower Water use (annual average) (afday) Cooling Tower Water use (summer average) (af...

  8. Development of a control algorithm for a molten-salt solar central receiver in a cylindrical configuration

    SciTech Connect

    Kolb, G.J.

    1991-01-01

    A control algorithm is proposed for a molten-salt solar central receiver in a cylindrical configuration. The algorithm simultaneously regulates the receiver outlet temperature and limits thermal-fatigue damage of the receiver tubes to acceptable levels. The algorithm is similar to one that was successfully tested for a receiver in a cavity configuration at the Central Receiver Test Facility in 1988. Due to the differences in the way solar flux is introduced on the receivers during cloud-induced transients, the cylindrical receiver will be somewhat more difficult to control than the cavity receiver. However, simulations of a proposed cylindrical receiver at the Solar Two power plant have indicated that automatic control during severe cloud transients is feasible. This paper also provides important insights regarding receiver design and lifetime as well as a strategy for reducing the power consumed by the molten-salt pumps. 14 refs., 7 figs., 2 tabs.

  9. Solar powered Stirling engine

    SciTech Connect

    Meijer, R.J.

    1987-11-24

    In a solar dish module which comprises a dish which receives incident solar rays and reflects them to a focus at which is located the combination of a receiver and a heat engine organized and arranged so that the heat energy of the reflected solar rays collected at the receiver powers the engine, and wherein the receiver and heat engine are supported from the dish by a framework, the improvement is described which comprises journal means for journaling at least the engine on the framework to maintain certain predetermined spatial orientation for the engine in relation to the direction of gravity irrespective of spatial orientation of the dish.

  10. Method of aligning and locating the mirrors of a collector field with respect to a receptor tower

    SciTech Connect

    Smith, O.J.

    1980-08-26

    A method of surveying a solar field which has a large number of heliostats using a laser beam which originates directly below the heat receptor on the tower and can be controlled to aim towards any one of the mirrors in the field is described. The reflected light from this mirror is analyzed, with an array of photocells which are mounted on the doors which close across the window of the heat receptor, to control both the azimuth and elevation of both the mirror and the laser gun in order to cause the beam to be aimed at the center of the mirror and the laser image centered on the receptor. This permits surveying the field for the purpose of using computer control of the mirror during normal daytime operation. Moreover, not only is the array of photocells on the window used for surveying the field during night time operation, but they are also used to determine the coordinate transformation between the geometry of the field and the geometry of the earth by tracking the sun during daytime operation. Lastly the system with a microprocessor on each heliostat is used for tracking the sun in an open control mode for all normal hours of operation of the power plant.

  11. NETL RESEARCHER RECEIVES AWARD FOR OUTSTANDING INNOVATION IN ENERGY

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    RECEIVES AWARD FOR OUTSTANDING INNOVATION IN ENERGY Morgantown, W.Va. - The Carnegie Science Center has honored Dr. Shiwoo Lee of the National Energy Technology Laboratory (NETL) with an Outstanding Innovation in Energy Award. Dr. Lee was chosen in recognition of his development of a manufacturing method that significantly improves the efficiency of solid oxide fuel cells (SOFCs)-an efficient, combustion-less, virtually pollution-free power source capable of using fossil fuels. Dr. Lee will

  12. Power plant cumulative environmental impact report. Final report

    SciTech Connect

    Not Available

    1982-02-01

    This report presents the results of studies conducted by the Power Plant Siting Program (PPSP) to determine the cumulative impact of power plants on Maryland's environment. Included in this report are: (1) current and projected power demands and consumption in Maryland; (2) current and planned power generation; (3) air impacts; (4) aquatic effects; (5) radiological effects; (6) social and economic considerations; (7) noise impacts; (8) groundwater effects; (9) solid waste management concerns; (10) transmission line impacts; and (11) descriptions of cooling towers in Maryland. Also contained is the 1982 Ten Year Plan of Maryland Electric Utilities.

  13. Validation of SWAY Wind Turbine Response in FAST, with a Focus on the Influence of Tower Wind Loads: Preprint

    SciTech Connect

    Koh, J. H.; Robertson, A.; Jonkman, J.; Driscoll, R.; Yin Kwee Ng, E.

    2015-04-23

    Need to modify simulated system behavior to the measured data, but the tower wind loads improved the comparison for nonoperating conditions. the SWAY system in both turbine operating and nonoperating conditions. Mixed results were observed when comparing the simulated system behavior to the measured data, but the tower wind loads improved the comparison for nonoperating conditions. without the new tower-load capability to examine its influence on the response characteristics of the system. This is important in situations when the turbine is parked in survival conditions. The simulation results were then compared to measured data from the SWAY system in both turbine operating and nonoperating conditions. Mixed results were observed when comparing the simulated system behavior to the measured data, but the tower wind loads improved the comparison for nonoperating conditions.

  14. Geothermal Power Generation Plant

    SciTech Connect

    Boyd, Tonya

    2013-12-01

    Oregon Institute of Technology (OIT) drilled a deep geothermal well on campus (to 5,300 feet deep) which produced 196°F resource as part of the 2008 OIT Congressionally Directed Project. OIT will construct a geothermal power plant (estimated at 1.75 MWe gross output). The plant would provide 50 to 75 percent of the electricity demand on campus. Technical support for construction and operations will be provided by OIT’s Geo-Heat Center. The power plant will be housed adjacent to the existing heat exchange building on the south east corner of campus near the existing geothermal production wells used for heating campus. Cooling water will be supplied from the nearby cold water wells to a cooling tower or air cooling may be used, depending upon the type of plant selected. Using the flow obtained from the deep well, not only can energy be generated from the power plant, but the “waste” water will also be used to supplement space heating on campus. A pipeline will be construction from the well to the heat exchanger building, and then a discharge line will be construction around the east and north side of campus for anticipated use of the “waste” water by facilities in an adjacent sustainable energy park. An injection well will need to be drilled to handle the flow, as the campus existing injection wells are limited in capacity.

  15. Tracking of smokestack and cooling tower plumes using wind measurements at different levels

    SciTech Connect

    Miller, R.L.; Patrinos, A.A.N.

    1980-08-01

    Relationships between cooling tower and smokestack plumes at the Bowen Electric Generating Plant in northwestern Georgia and wind direction measurements at levels from the surface at 850 mb (approx. 1.5 km) are examined. The wind measurements play an important role in estimating plume directions which in turn are utilized to establish control and target (upwind and downwind) areas for a study of plant-induced precipitation modification. Fifty-two plume observations were made during a three week period in December 1979. Results indicate that a windset (4.5 km from the plant) mounted at a level approximating that of the cooling tower plume is a better predictor of plume direction than surface windsets (1.0 km from the plant) or 850 mb level winds. However, an apparent topographical influence on the wind direction measurements at the plume-level windset site somewhat limits its plume tracking capability, at least for ambient winds from the SW quadrant.

  16. The trigger and data acquisition for the NEMO-Phase 2 tower

    SciTech Connect

    Pellegrino, C.; Biagi, S.; Fusco, L. A.; Margiotta, A.; Spurio, M.; Chiarusi, T.; and others

    2014-11-18

    In the framework of the Phase 2 of the NEMO neutrino telescope project, a tower with 32 optical modules is being operated since march 2013. A new scalable Trigger and Data Acquisition System (TriDAS) has been developed and extensively tested with the data from this tower. Adopting the all-data-to-shore concept, the NEMO TriDAS is optimized to deal with a continuous data-stream from off-shore to on-shore with a large bandwidth. The TriDAS consists of four computing layers: (i) data aggregation of isochronal hits from all optical modules; (ii) data filtering by means of concurrent trigger algorithms; (iii) composition of the filtered events into post-trigger files; (iv) persistent data storage. The TriDAS implementation is reported together with a review of dedicated on-line monitoring tools.

  17. Project Profile: High-Efficiency Receivers for Supercritical Carbon Dioxide Cycles

    Energy.gov [DOE]

    Brayton Energy, under the 2012 SunShot Concentrating Solar Power (CSP) R&D FOA, is building and testing a new solar receiver that uses supercritical carbon dioxide (s-CO2) as the heat-transfer...

  18. From: No Towers To: Congestion Study Comments Subject: No NIETC"s

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    No Towers To: Congestion Study Comments Subject: No NIETC"s Date: Tuesday, September 23, 2014 11:58:10 PM I am opposed to the establishment of National Interest Energy Transmission Corridors (NIETC's) for the following reasons. First, the easements place an undo burden on landowners on and near the transmission lines. The compensation cannot begin to cover the all of the losses, tangible and intangible that landowners would suffer. Second, I believe that condemning private property for

  19. Simulation of lightning attachment to open ground, tall towers and aircraft

    SciTech Connect

    Ratnamahilan, P.; Hoole, P. . Dept. of Electrical and Telecommunications Engineering); Ratnajeevan, S.; Hoole, H. . Dept. of Engineering)

    1993-04-01

    The characteristics of lightning waveforms are important in taking protective measures against it. However, many of these characteristics cannot be measured. This paper employs a mathematical model of lightning currents to write a software package to simulate all manner of lightning flashes. The capabilities available to us through this are demonstrated by extracting the behavior of lightning waveforms following attachment to open ground, tall towers and aircraft.

  20. Small businesses serving LANL receive DOE awards

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Small businesses serving LANL receive DOE awards Small businesses serving LANL receive DOE awards Eberline Services, HukariAscendent Inc. and ARSEC Environmental LLC received Department of Energy small business awards for fiscal year 2011. June 11, 2012 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics

  1. Balancing radar receiver channels with commutation. (Conference...

    Office of Scientific and Technical Information (OSTI)

    Title: Balancing radar receiver channels with commutation. Abstract not provided. Authors: Doerry, Armin Walter Publication Date: 2015-01-01 OSTI Identifier: 1244859 Report ...

  2. High-Temperature Falling-Particle Receiver

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    In contrast, direct absorption receivers using solid particles that fall through a beam of concentrated solar radiation for direct heat absorption and storage have the potential to ...

  3. shipping and Receiving Services | The Ames Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    (your name) ISU Campus, 2405 Kooser Dr. Ames, IA 50011-3020 Services: Shipping Orders Packaging Services Pool Eqpt. Area (reutilization) Receiving Hold Eqpt. Area (for future...

  4. Area businesses receive Venture Acceleration Fund awards

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Latest Issue:October 1, 2016 all issues All Issues submit Area businesses receive Venture Acceleration Fund awards Money helps implement economic development plans and spur ...

  5. Container Technologies Industries, LLC receives small business...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Container Technologies ... Container Technologies Industries, LLC receives small business award The mp4 video format is not supported by this browser. Download video Captions: On...

  6. WIPP Receives New Emergency Response Vehicle

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    February 19, 2015 WIPP Receives New Emergency Response Vehicle WIPP recently placed a new emergency response vehicle into service. The new fire engine "Engine 24" will enhance...

  7. Department of Energy Receives Highest Transportation Industry...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    WASHINGTON, DC - The U.S. Department of Energy (DOE) today received the Transportation Community Awareness and Emergency Response (TRANSCAER) Chairman's Award, one of industry's ...

  8. Hanford Contractor Receives Awards for Safety

    Energy.gov [DOE]

    RICHLAND, Wash. – A Hanford site contractor supporting EM’s cleanup program has again received a prestigious safety award from DOE’s Voluntary Protection Program (VPP).

  9. Sandia Computational Mathematician Receives DOE's EO Lawrence...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... Pavel Bochev (in Sandia's Computational Mathematics Dept.) has received an EO Lawrence Award for his pioneering theoretical and practical advances in numerical methods for partial ...

  10. EERE Success Story-Utilities in California and Washington Receive Honors

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    for Innovative Wind Deployment | Department of Energy Utilities in California and Washington Receive Honors for Innovative Wind Deployment EERE Success Story-Utilities in California and Washington Receive Honors for Innovative Wind Deployment August 22, 2013 - 12:00am Addthis EERE recognized utilities in California and Washington with the 2013 Public Power Wind award for outstanding efforts to accelerate the use of wind energy. Created in 2003 by the Department's Wind Powering America

  11. Project Profile: Refractory Solar Selective Coatings (SuNLaMP...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    tower receivers in concentrated solar power (CSP) plants. ... light is concentrated and converted to thermal energy. ... and nanocomposite materials synthesis to manufacture ...

  12. Lab Characterization | Concentrating Solar Power | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    houses the parabolic-trough receiver test stand, which researchers use to analyze the steady-state, off-sun thermal losses of receivers used in solar parabolic trough power plants. ...

  13. Liquid cooled fiber thermal radiation receiver

    DOEpatents

    Butler, Barry L.

    1987-01-01

    A radiation-to-thermal receiver apparatus for collecting radiation and converting it to thermal energy is disclosed. The invention includes a fibrous mat material which captures radiation striking the receiver. Captured radiation is removed from the fibrous mat material by a transparent fluid within which the material is bathed.

  14. Liquid cooled fiber thermal radiation receiver

    DOEpatents

    Butler, B.L.

    1985-03-29

    A radiation-to-thermal receiver apparatus for collecting radiation and converting it to thermal energy is disclosed. The invention includes a fibrous mat material which captures radiation striking the receiver. Captured radiation is removed from the fibrous mat material by a transparent fluid within which the material is bathed.

  15. Connecticut Weatherization Project Improves Lives, Receives National

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Recognition | Department of Energy Connecticut Weatherization Project Improves Lives, Receives National Recognition Connecticut Weatherization Project Improves Lives, Receives National Recognition May 6, 2014 - 12:24pm Addthis Donna Hawkins Technology Transfer Specialist, Weatherization Assistance Program Harris Walker Communications Specialist, Weatherization and Intergovernmental Program MORE WEATHERIZATION STORIES Improving Energy Efficiency and Creating Jobs through Weatherization

  16. EPA RE-Powering Americas Lands: Kansas City Municipal Farm...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... to determine an annual energy load of 927 MWh per year and a peak monthly average power ... 0 0 0 0 0 0 0 0 0 0 0 0 0 Radio Tower (usage in 2013) 1,795 954 976 1,248 1,337 1,284 ...

  17. EIS-0077-S: Bonneville Power Administration Crow Butte Slough Crossing

    Energy.gov [DOE]

    The Bonneville Power Administration developed this SEIS to evaluate potential impacts resulting from construction of a 4,700-foot segment of the Ashe-Slatt transmission line at Crow Butte Slough, overhead on towers on the existing right-of-way. This SEIS is a supplement to DOE/EIS-0077, Ashe-Slatt (Pebble Springs) 500-kilovolt Transmission Line, originally filed as FES 75-79.

  18. Water Power News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    four entities selected to receive 7.4 million to spur innovation of next-generation water power component technologies, designed for manufacturability and built specifically...

  19. Sacred Power Corporation | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search Name: Sacred Power Corporation Place: Albuquerque, New Mexico Zip: 87104 Sector: Solar Product: Solar distributor. Received support and advice...

  20. Idaho Power- Irrigation Efficiency Rewards Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Through Idaho Power's Irrigation Efficiency Rewards program, agricultural irrigation customers can qualify to receive an incentive for a portion of the cost to install a new, more efficient...

  1. Idaho Power- Irrigation Efficiency Rewards Rebate Program

    Energy.gov [DOE]

    Through Idaho Power's Irrigation Efficiency Rewards program, agricultural irrigation customers qualify to receive an incentive for a portion of the cost to install a new, more efficient irrigation...

  2. PowerPoint Presentation

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Shaun Sullivan Brayton Energy HIGH-EFFICIENCY LOW-COST SOLAR RECEIVER FOR USE IN A SUPERCRITICAL CO 2 RECOMPRESSION CYCLE LOW-COST METAL HYDRIDE THERMAL ENERGY STORAGE SYSTEM FOR CSP SYSTEMS SOLAR RECEIVER WITH INTEGRATED THERMAL STORAGE FOR A SUPERCRITICAL CO 2 POWER CYCLE Dr. Ragaiy Zidan Savannah River National Lab. energy.gov/sunshot energy.gov/sunshot CSP Program Summit 2016 2 HIGH-EFFICIENCY LOW-COST SOLAR RECEIVER FOR USE IN A SUPERCRITICAL CO 2 RECOMPRESSION CYCLE energy.gov/sunshot

  3. Strategic Petroleum Reserve Receives Prestigious Environmental Award

    Energy.gov [DOE]

    The Department of Energy's Office of Fossil Energy announced today that the Strategic Petroleum Reserve has received the Most Valuable Pollution Prevention Project (MVP2) award from the National Pollution Prevention Roundtable for lowering potential greenhouse gas emissions.

  4. Direct Thermal Receivers Using Near Blackbody Configurations...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Contact NREL About This Technology Figure 1. Schematic of the cylinder acting as a near-blackbody receiver when solar radiation enters the cylinder&39;s left end
    Figure 1. ...

  5. EM Field Office Manager Receives Military Honor

    Energy.gov [DOE]

    EM Carlsbad Field Office (CBFO) Manager Joe Franco receives the Employer Support of the Guard and Reserve (ESGR) Seven Seals Award in June at a ESGR recognition event in Carlsbad, N.M.

  6. Lab suppliers receive Department of Energy awards

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Services of Santa Fe received DOE's Small Business of the Year award. Eberline conducted environmental drilling services at the Lab as well as gamma-ray spectroscopy analysis. The...

  7. LM Receives Sustainability Award | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Receives Sustainability Award LM Receives Sustainability Award January 8, 2013 - 1:17pm Addthis Award ceremony (left to right): Melvin G. Williams, Jr., Associate Deputy Secretary, U.S. Department of Energy (DOE); Mary Sizemore, Environmental Management System (EMS) Coordinator, Office of Legacy Management (LM) contractor; Tracy Ribeiro, EMS Coordinator, LM; Tom Pauling, Director of Site Operations, LM; Dave Geiser, Director, LM; and Jennifer MacDonald, Director, Sustainability Performance

  8. Flexible receiver adapter formal design review

    SciTech Connect

    Krieg, S.A.

    1995-06-13

    This memo summarizes the results of the Formal (90%) Design Review process and meetings held to evaluate the design of the Flexible Receiver Adapters, support platforms, and associated equipment. The equipment is part of the Flexible Receiver System used to remove, transport, and store long length contaminated equipment and components from both the double and single-shell underground storage tanks at the 200 area tank farms.

  9. New Lab facility receives green building recognition

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    New Lab Facility Receives Green Building Recognition Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:November 2, 2016 all issues All Issues » submit New Lab facility receives green building recognition The Radiological Laboratory Utility Office Building is the first to achieve Leadership in Energy and Environmental Design status and LEED Gold certification from the U.S. Green Building Council. August 1, 2012 dummy image Read our

  10. Klimov receives Alexander von Humboldt award

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Klimov Receives Alexander Von Humboldt Award Klimov receives Alexander von Humboldt award The German government grants the award in recognition of a researcher whose discoveries, theories or insights have had a significant impact on his or her own discipline and who is expected to continue producing cutting-edge achievements in the future. May 16, 2013 Victor Klimov Victor Klimov Klimov is an expert in nanocrystal quantum dots and optical amplification in nanocrystals. Victor Klimov of Physical

  11. Los Alamos scientist receives prestigious fellowship

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Los Alamos scientist receives prestigious fellowship Los Alamos scientist receives prestigious fellowship The American Association for the Advancement of Science (AAAS) has awarded the distinction of Fellow to Dave Morris. January 11, 2016 Dave Morris Dave Morris Contact Nick Njegomir Communications Office (505) 665-9394 Email "The AAAS fellowship is a great honor that recognizes Dave's prominence as a chemistry researcher and a scientific leader," said Carol Burns, Deputy Principal

  12. Fry receives Charles W. Briggs Award

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Fry receives Charles W. Briggs Award Fry receives Charles W. Briggs Award The ASTM International Committee E07 on Nondestructive Testing has honored David Fry with the Charles W. Briggs Award. June 2, 2014 David Fry David Fry Fry was recognized for his continuous and outstanding contributions to the standards development work of the committee through its subcommittees, sections and task groups. The ASTM International Committee E07 on Nondestructive Testing has honored David Fry of Applied

  13. Mudundi R. Raju receives Padma Shri award

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Mudundi R. Raju receives Padma Shri award Mudundi R. Raju receives Padma Shri award The government of India honored Mudundi Raju for his distinguished service in science and engineering, providing cancer radiation treatment to the poor of rural India. July 18, 2013 President of India Pranab Mukherjee presents the Padma Shri award to former Los Alamos National Laboratory scientist Mudundi Raju. President of India Pranab Mukherjee presents the Padma Shri award to former Los Alamos National

  14. Tom Harper receives cyber security award

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Harper receives cyber security award Tom Harper receives cyber security award The Charlene Douglass Memorial Award recognizes an individual's expertise, dedication, and significant contributions to information security. June 8, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los

  15. A Single Tower Configuration of the Modular Gamma Box Counter System - 13392

    SciTech Connect

    Morris, K.; Nakazawa, D.; Francalangia, J.; Gonzalez, H.

    2013-07-01

    Canberra's Standard Gamma Box Counter System is designed to perform accurate quantitative assays of gamma emitting nuclides for a wide range of large containers including B-25 crates and ISO shipping containers. Using a modular building-block approach, the system offers tremendous flexibility for a variety of measurement situations with wide ranges of sample activities and throughput requirements, as well as the opportunity to modify the configuration for other applications at a later date. The typical configuration consists of two opposing towers each equipped with two high purity germanium detectors, and an automated container trolley. This paper presents a modified configuration, consisting of a single tower placed inside a measurement trailer with three detector assemblies, allowing for additional vertical segmentation as well as a viewing a container outside the trailer through the trailer wall. An automatic liquid nitrogen fill system is supplied for each of the detectors. The use of a forklift to move the container for horizontal segmentation is accommodated by creating an additional operational and calibration set-up in the NDA 2000 software to allow for the operator to rotate the container and assay the opposite side, achieving the same sensitivity as a comparable two-tower system. This Segmented Gamma Box Counter System retains the core technologies and design features of the standard configuration. The detector assemblies are shielded to minimize interference from environmental and plant background, and are collimated to provide segmentation of the container. The assembly positions can also be modified in height and distance from the container. The ISOCS calibration software provides for a flexible approach to providing the calibrations for a variety of measurement geometries. The NDA 2000 software provides seamless operation with the current configuration, handling the data acquisition and analysis. In this paper, an overview of this system is discussed

  16. AmeriFlux US-Ho1 Howland Forest (main tower)

    DOE Data Explorer

    Hollinger, David [USDA Forest Service; Hollinger, David [USDA Forest Service

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Ho1 Howland Forest (main tower). Site Description - Closed conifer forest, minimal disturbance. References: Fernandez et al. (1993), Canadian Journal of Soil Science 73 317-328. Hollinger et al. (1999), Global Change Biology 5: 891-902. Savage KE, Davidson EA (2001), Global Biogeochemical Cycles 15 337-350. Scott et al. (2004), Environmental Management, Vol. 33, Supplement 1, pp. S9-S22. Hollinger et al. (2004), Global Change Biology 10: 1689-1706.

  17. AmeriFlux US-Ho2 Howland Forest (west tower)

    SciTech Connect

    Hollinger, David; Hollinger, David

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Ho2 Howland Forest (west tower). Site Description - Closed conifer forest, minimal disturbance. References: Fernandez et al. (1993), Canadian Journal of Soil Science 73 317-328. Hollinger et al. (1999), Global Change Biology 5: 891-902. Savage KE, Davidson EA (2001), Global Biogeochemical Cycles 15 337-350. Scott et al. (2004), Environmental Management, Vol. 33, Supplement 1, pp. S9-S22. Hollinger et al. (2004), Global Change Biology 10: 1689-1706.

  18. Solar-Augment Potential of U.S. Fossil-Fired Power Plants

    SciTech Connect

    Turchi, C.; Langle, N.; Bedilion, R.; Libby, C.

    2011-02-01

    Concentrating Solar Power (CSP) systems utilize solar thermal energy for the generation of electric power. This attribute makes it relatively easy to integrate CSP systems with fossil-fired power plants. The 'solar-augment' of fossil power plants offers a lower cost and lower risk alternative to stand-alone solar plant construction. This study ranked the potential to add solar thermal energy to coal-fired and natural gas combined cycle (NGCC) plants found throughout 16 states in the southeast and southwest United States. Each generating unit was ranked in six categories to create an overall score ranging from Excellent to Not Considered. Separate analysis was performed for parabolic trough and power tower technologies due to the difference in the steam temperatures that each can generate. The study found a potential for over 11 GWe of parabolic trough and over 21 GWe of power tower capacity. Power towers offer more capacity and higher quality integration due to the greater steam temperatures that can be achieved. The best sites were in the sunny southwest, but all states had at least one site that ranked Good for augmentation.

  19. Near-Blackbody Enclosed Particle Receiver

    Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  20. Particle Receiver Integrated with Fludized Bed

    Office of Environmental Management (EM)

    face major challenges to satisfy the SunShot performance targets for a concentrating solar power (CSP) plant, which include high-temperature stability (>650C), low freezing...

  1. Deputy Administrator Greg Delwiche receives Presidential Rank...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    the natural environment within which the power system exists." His approachability, honesty and transparency in decision-making have contributed to positive and productive...

  2. Liquid cooled, linear focus solar cell receiver

    DOEpatents

    Kirpich, Aaron S.

    1985-01-01

    Separate structures for electrical insulation and thermal conduction are established within a liquid cooled, linear focus solar cell receiver for use with parabolic or Fresnel optical concentrators. The receiver includes a V-shaped aluminum extrusion having a pair of outer faces each formed with a channel receiving a string of solar cells in thermal contact with the extrusion. Each cell string is attached to a continuous glass cover secured within the channel with spring clips to isolate the string from the external environment. Repair or replacement of solar cells is effected simply by detaching the spring clips to remove the cover/cell assembly without interrupting circulation of coolant fluid through the receiver. The lower surface of the channel in thermal contact with the cells of the string is anodized to establish a suitable standoff voltage capability between the cells and the extrusion. Primary electrical insulation is provided by a dielectric tape disposed between the coolant tube and extrusion. Adjacent solar cells are soldered to interconnect members designed to accommodate thermal expansion and mismatches. The coolant tube is clamped into the extrusion channel with a releasably attachable clamping strip to facilitate easy removal of the receiver from the coolant circuit.

  3. Liquid cooled, linear focus solar cell receiver

    DOEpatents

    Kirpich, A.S.

    1983-12-08

    Separate structures for electrical insulation and thermal conduction are established within a liquid cooled, linear focus solar cell receiver for use with parabolic or Fresnel optical concentrators. The receiver includes a V-shaped aluminum extrusion having a pair of outer faces each formed with a channel receiving a string of solar cells in thermal contact with the extrusion. Each cell string is attached to a continuous glass cover secured within the channel with spring clips to isolate the string from the external environment. Repair or replacement of solar cells is effected simply by detaching the spring clips to remove the cover/cell assembly without interrupting circulation of coolant fluid through the receiver. The lower surface of the channel in thermal contact with the cells of the string is anodized to establish a suitable standoff voltage capability between the cells and the extrusion. Primary electrical insulation is provided by a dielectric tape disposed between the coolant tube and extrusion. Adjacent solar cells are soldered to interconnect members designed to accommodate thermal expansion and mismatches. The coolant tube is clamped into the extrusion channel with a releasably attachable clamping strip to facilitate easy removal of the receiver from the coolant circuit.

  4. Dish/stirling hybrid-receiver

    DOEpatents

    Mehos, Mark S.; Anselmo, Kenneth M.; Moreno, James B.; Andraka, Charles E.; Rawlinson, K. Scott; Corey, John; Bohn, Mark S.

    2002-01-01

    A hybrid high-temperature solar receiver is provided which comprises a solar heat-pipe-receiver including a front dome having a solar absorber surface for receiving concentrated solar energy, a heat pipe wick, a rear dome, a sidewall joining the front and the rear dome, and a vapor and a return liquid tube connecting to an engine, and a fossil fuel fired combustion system in radial integration with the sidewall for simultaneous operation with the solar heat pipe receiver, the combustion system comprising an air and fuel pre-mixer, an outer cooling jacket for tangentially introducing and cooling the mixture, a recuperator for preheating the mixture, a burner plenum having an inner and an outer wall, a porous cylindrical metal matrix burner firing radially inward facing a sodium vapor sink, the mixture ignited downstream of the matrix forming combustion products, an exhaust plenum, a fossil-fuel heat-input surface having an outer surface covered with a pin-fin array, the combustion products flowing through the array to give up additional heat to the receiver, and an inner surface covered with an extension of the heat-pipe wick, a pin-fin shroud sealed to the burner and exhaust plenums, an end seal, a flue-gas diversion tube and a flue-gas valve for use at off-design conditions to limit the temperature of the pre-heated air and fuel mixture, preventing pre-ignition.

  5. Characteristics study of Transmission Line Mechanical Research Center (TLMRC) wind tower data. Notes on field-wind loading experiments

    SciTech Connect

    Shan, L.

    1992-10-01

    To initiate and develop EPRI`s wind loading research program, an experimental wind tower was erected at the TLMRC site. A number of anemometers were placed at different elevation levels of the wind tower. Strain gages were also mounted on the leg posts of the tower. The purposes of this experiment were to establish the wind characteristics at the TLMRC site, and to gain experience using different types of instrumentation and data acquisition techniques in field-wind loading experiments. Three sets of wind data collected from the TLMRC wind tower were validated and analyzed in this study. Since the characteristics of wind and response data can be described in different terms and by various methods, the study describes the concept, Identifies the focal point, and discusses the results of each method used in this report. In addition, some comments are provided on how to conduct the field-wind loading experiments as well as how to analyze the wind and response data. The results of this study show that: (1) the magnitudes of wind velocity and direction can vary considerably during a short period of time; (2) the mean vertical wind profile does not hold constant as usually assumed; (3) the turbulence intensity and the gust factor increase as the height above ground decreases; (4) the averaging time can greatly influence the results of wind data analysis; (5) although wind contains lime energy beyond 1 Hz, structural responses above 1 Hz can be excited; (6) strong relationships exist between the wind velocity and the responses in the leg posts of the wind tower. System identification, a tool for establishing models of dynamic systems based in observed data, is successfully used in a trial application which estimates the relationship between the wind velocity and the responses in the wind tower.

  6. Comparison of Triton SODAR Data to Meteorological Tower Wind Measurement Data in Hebei Province, China

    SciTech Connect

    Yuechun, Y.; Jixue, W.; Hongfang, W.; Guimin, L.; Bolin, Y.; Scott, G.; Elliott, D.; Kline, D.

    2012-01-01

    With the increased interest in remote sensing of wind information in recent years, it is important to determine the reliability and accuracy of new wind measurement technologies if they are to replace or supplement conventional tower-based measurements. In view of this, HydroChina Corporation and the United States National Renewable Energy Laboratory (NREL) conducted a comparative test near a wind farm in Hebei Province, China. We present the results of an analysis characterizing the measurement performance of a state-of-the-art Sound Detection and Ranging (sodar) device when compared to a traditional tower measurement program. NREL performed the initial analysis of a three-month period and sent the results to HydroChina. When another month of data became available, HydroChina and their consultant Beijing Millenium Engineering Software (MLN) repeated NREL's analysis on the complete data set, also adding sensitivity analysis for temperature, humidity, and wind speed (Section 6). This report presents the results of HydroChina's final analysis of the four-month period.

  7. AmeriFlux US-Skr Shark River Slough (Tower SRS-6) Everglades

    DOE Data Explorer

    Barr, Jordan G. [Everglades National Park; Fuentes, Jose [Pennsylvania State University

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Skr Shark River Slough (Tower SRS-6) Everglades. Site Description - The Florida Everglades Shark River Slough Mangrove Forest site is located along the Shark River in the western region of Everglades National Park. Also referred to as site SRS6 of the Florida Coastal Everglades LTER program, freshwater in the mangrove riverine floods the forest floor under a meter of water twice per day. Transgressive discharge of freshwater from the Shark river follows annual rainfall distributions between the wet and dry seasons. Hurricane Wilma struck the site in October of 2005 causing significant damage. The tower was offline until the following October in order to continue temporally consistent measurements. In post-hurricane conditions, ecosystem respiration rates and solar irradiance transfer increased. 2007- 2008 measurements indicate that these factors led to an decline in both annual -NEE and daily NEE from pre-hurricane conditions in 2004-2005.

  8. 10-MWe solar thermal central receiver pilot plant

    SciTech Connect

    Bartel, J.J.; Skvanna, P.E.

    1984-02-01

    The Solar One Project is the world's largest solar electric generating station. This pilot-scale research and development experiment is a cooperative effort of government and private industry to demonstrate technical feasibility, economic potential, and environmental acceptability of the solar thermal central receiver concept. The project, which is formally known as the 10-MW Solar Thermal Central Receiver Pilot Plant, has been constructed in the Mojave Desert on 130 acres of Southern California Edison Company's Cool Water Generating Station near Barstow, California, and will supply 10 MW of electrical power to the Edison grid. Solar One is a joint project of the Department of Energy (DOE), Southern California Edison (SCE), the Los Angeles Department of Water and Power (LADWP), and the California Energy Commission. The solar portion of the facility was designed and constructed under the direction of the DOE, and the turbine-generator facilities, including the control building, were designed and constructed by SCE. This paper presents an overview of the project, discusses the costs and schedule, highlights the planned test program including operation and maintenance, and briefly discusses the experiences through October 1982.

  9. Advanced conceptual design of the solar-repowering system for West Texas Utilities Company, Paint Creek Power Station Unit No. 4. Final report

    SciTech Connect

    Not Available

    1982-05-07

    The results of the conceptual design study reported include the development of a workable design for a sodium-cooled tower focus repowering system, the costs required to construct that design, and the determination of the benefits which could be obtained. A number of trade studies and optimizations were carried out in order to derive the most cost-effective design that also had the greatest potential for widespread application and commercialization. These studies are identified and their results are presented and discussed. The overall plant design is described and diagrammed, as are each of the subsystems: the heliostats, external receiver, master control, heat transport, thermal storage, electric power generating, and steam generating subsystems. Each subsystem's cost is summarized by major component. The subsystem is then described with its major components in terms of physical characteristics, requirements, and performance. An economic analysis is presented based on the internal rate of return to the project owner, and development plans are described. Appended is the system requirements specification. The testing and results for a sodium-cooled receiver panel are described. (LEW)

  10. WATER POWER SOLAR POWER WIND POWER

    Energy Saver

    coloring book get curren WATER POWER SOLAR POWER WIND POWER Be part of the Clean Energy Generation YOUR HOUSE BIOMASS ENERGY GEOTHERMAL ENERGY Clean energy can come from the sun. ...

  11. San Jacinto-Tizate Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    processes (afday) Daily Operation Water Use (afday) Well Field Water Use (afday) Cooling Tower Water use (annual average) (afday) Cooling Tower Water use (summer average) (af...

  12. Travale 3 Geothermal Power Station | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    processes (afday) Daily Operation Water Use (afday) Well Field Water Use (afday) Cooling Tower Water use (annual average) (afday) Cooling Tower Water use (summer average) (af...

  13. Ribeira Grande Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    processes (afday) Daily Operation Water Use (afday) Well Field Water Use (afday) Cooling Tower Water use (annual average) (afday) Cooling Tower Water use (summer average) (af...

  14. Pico Vermelho Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    processes (afday) Daily Operation Water Use (afday) Well Field Water Use (afday) Cooling Tower Water use (annual average) (afday) Cooling Tower Water use (summer average) (af...

  15. Olkaria I - Modular/ Wellhead Geothermal Power Plant | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    processes (afday) Daily Operation Water Use (afday) Well Field Water Use (afday) Cooling Tower Water use (annual average) (afday) Cooling Tower Water use (summer average) (af...

  16. Onikobe Onikobe Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    processes (afday) Daily Operation Water Use (afday) Well Field Water Use (afday) Cooling Tower Water use (annual average) (afday) Cooling Tower Water use (summer average) (af...

  17. Olkaria I Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    processes (afday) Daily Operation Water Use (afday) Well Field Water Use (afday) Cooling Tower Water use (annual average) (afday) Cooling Tower Water use (summer average) (af...

  18. Oserian 306 Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    processes (afday) Daily Operation Water Use (afday) Well Field Water Use (afday) Cooling Tower Water use (annual average) (afday) Cooling Tower Water use (summer average) (af...

  19. Gunun-Salak Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    processes (afday) Daily Operation Water Use (afday) Well Field Water Use (afday) Cooling Tower Water use (annual average) (afday) Cooling Tower Water use (summer average) (af...

  20. Olkaria II Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    processes (afday) Daily Operation Water Use (afday) Well Field Water Use (afday) Cooling Tower Water use (annual average) (afday) Cooling Tower Water use (summer average) (af...

  1. U.S. Department of Energy Southwestern Power Administration

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Nixa Land Purchase and Communication Tower Construction Project Program or Field Office: ... ofland & construct an access road, a communication tower facility, & to utilize a portion ...

  2. Baseload Concentrating Solar Power Generation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Concentrating Solar Power » Baseload Concentrating Solar Power Generation Baseload Concentrating Solar Power Generation Baseload Concentrating Solar Power Generation In 2010, DOE issued the Baseload Concentrating Solar Power (CSP) Generation funding opportunity announcement (FOA). The following projects were selected under this competitive solicitation: Abengoa: Advanced Nitrate Salt Central Receiver Power Plant eSolar: Modular and Scalable Baseload Molten Salt Plant Conceptual Design and

  3. Water Power

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Stationary PowerEnergy Conversion EfficiencyWater Power Water Power Tara Camacho-Lopez 2016-06-01T22:32:54+00:00 Enabling a successful water power industry. Hydropower ...

  4. 13 Early-Career Scientists Receive Top Presidential Award | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy 3 Early-Career Scientists Receive Top Presidential Award 13 Early-Career Scientists Receive Top Presidential Award July 26, 2012 - 12:37pm Addthis The Department awardees are being recognized for their efforts in a variety of fields – from advances in power electronics for the electric grid to innovations in scientific computation to new physics developments. | Photo courtesy of Argonne National Laboratory. The Department awardees are being recognized for their efforts in a

  5. Resolution of critical environmental issues with WARP{trademark} wind power systems

    SciTech Connect

    Weisbrich, A.L.; Rainey, D.L.; Burns, R.E.

    1996-11-01

    A modular patented wind power technology, the TARP{trademark} Windframe{trademark}, forms the basis for environmentally complying electric energy generation and power plants. A TARP Windframe provides two highly amplified wind flow fields to a set of two tailored conventional, low risk, small diameter wind turbines. It also serves as a support for the wind turbines, yaw assembly and protective housing for a core tower and other internal sub-systems. Wind Amplified Rotor Platforms (WARP{trademark}) Systems are tall TARP module arrays about a core tower. These intelligent towers can be flexibly and incrementally deployed into multi-megawatt size wind power plants. While heavily building on proven windmill technology, WARP systems may be shown to surpass current technology windmills in all aspects of system characteristics. WARPs have improved features as a result of amplified gearless and shrouded turbine performance, user friendly operation and maintenance, and high reliability and operation and maintenance, and high reliability and low risk due to small, simple and robust dynamic components. Environmental benefits include an order of magnitude less land requirement, absence of bird kill potential, attractive appearance, lower far field noise and EMI/TV interference, and improved rotor safety through containment means. Operation under extreme icing is also afforded due to both rotor shielding and inherent self-sustaining tower anti-icing shielding and inherent self-sustaining tower anti-icing capability. This avoids the large rotor imbalance and ice shedding predicaments of conventional windmills. System components are suited for low cost volume production, ease of transportation, erection and servicing.

  6. April 2013 Most Viewed Documents for Power Generation And Distribution |

    Office of Scientific and Technical Information (OSTI)

    OSTI, US Dept of Energy Office of Scientific and Technical Information April 2013 Most Viewed Documents for Power Generation And Distribution Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A. (1994) 719 Seventh Edition Fuel Cell Handbook NETL (2004) 628 ASPEN Plus Simulation of CO2 Recovery Process Charles W. White III (2003) 343 Wet cooling towers: rule-of-thumb design and

  7. December 2015 Most Viewed Documents for Power Generation And Distribution |

    Office of Scientific and Technical Information (OSTI)

    OSTI, US Dept of Energy Office of Scientific and Technical Information December 2015 Most Viewed Documents for Power Generation And Distribution Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A. (1994) 740 Load flow analysis: Base cases, data, diagrams, and results Portante, E.C.; Kavicky, J.A.; VanKuiken, J.C.; Peerenboom, J.P. (1997) 224 Wet cooling towers: rule-of-thumb

  8. July 2013 Most Viewed Documents for Power Generation And Distribution |

    Office of Scientific and Technical Information (OSTI)

    OSTI, US Dept of Energy Office of Scientific and Technical Information July 2013 Most Viewed Documents for Power Generation And Distribution Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A. (1994) 535 ASPEN Plus Simulation of CO2 Recovery Process Charles W. White III (2003) 165 Wet cooling towers: rule-of-thumb design and simulation Leeper, S.A. (1981) 154 Load flow

  9. June 2014 Most Viewed Documents for Power Generation And Distribution |

    Office of Scientific and Technical Information (OSTI)

    OSTI, US Dept of Energy Office of Scientific and Technical Information June 2014 Most Viewed Documents for Power Generation And Distribution Seventh Edition Fuel Cell Handbook NETL (2004) 118 Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A. (1994) 89 ASPEN Plus Simulation of CO2 Recovery Process Charles W. White III (2003) 85 Wet cooling towers: rule-of-thumb design and

  10. June 2015 Most Viewed Documents for Power Generation And Distribution |

    Office of Scientific and Technical Information (OSTI)

    OSTI, US Dept of Energy Office of Scientific and Technical Information June 2015 Most Viewed Documents for Power Generation And Distribution Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A. (1994) 504 Wet cooling towers: rule-of-thumb design and simulation Leeper, S.A. (1981) 240 ASPEN Plus Simulation of CO2 Recovery Process Charles W. White III (2003) 160 Load flow

  11. March 2015 Most Viewed Documents for Power Generation And Distribution |

    Office of Scientific and Technical Information (OSTI)

    OSTI, US Dept of Energy Office of Scientific and Technical Information 5 Most Viewed Documents for Power Generation And Distribution Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A. (1994) 317 ASPEN Plus Simulation of CO2 Recovery Process Charles W. White III (2003) 254 Wet cooling towers: rule-of-thumb design and simulation Leeper, S.A. (1981) 234 Load flow analysis: Base

  12. Most Viewed Documents for Power Generation and Distribution: September 2014

    Office of Scientific and Technical Information (OSTI)

    | OSTI, US Dept of Energy Office of Scientific and Technical Information for Power Generation and Distribution: September 2014 Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A. (1994) 96 ASPEN Plus Simulation of CO2 Recovery Process Charles W. White III (2003) 73 Wet cooling towers: rule-of-thumb design and simulation Leeper, S.A. (1981) 70 Seventh Edition Fuel Cell Handbook

  13. September 2013 Most Viewed Documents for Power Generation And Distribution

    Office of Scientific and Technical Information (OSTI)

    | OSTI, US Dept of Energy Office of Scientific and Technical Information September 2013 Most Viewed Documents for Power Generation And Distribution Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A. (1994) 200 Wet cooling towers: rule-of-thumb design and simulation Leeper, S.A. (1981) 103 ASPEN Plus Simulation of CO2 Recovery Process Charles W. White III (2003) 76 Feed-pump

  14. September 2015 Most Viewed Documents for Power Generation And Distribution

    Office of Scientific and Technical Information (OSTI)

    | OSTI, US Dept of Energy Office of Scientific and Technical Information September 2015 Most Viewed Documents for Power Generation And Distribution Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A. (1994) 700 Wet cooling towers: rule-of-thumb design and simulation Leeper, S.A. (1981) 190 Load flow analysis: Base cases, data, diagrams, and results Portante, E.C.; Kavicky,

  15. PROJECT PROFILE: Solar Electric Power Association (Solar Market Pathways) |

    Energy Saver

    Dynamics LLC (T2M2) PROJECT PROFILE: Solar Dynamics LLC (T2M2) Funding Opportunity: Technology to Market 2 SunShot Subprogram: Technology to Market Location: Broomfield, CO SunShot Award Amount: $799,981 Awardee Cost Share: $199,995 This project will develop a new kind of concentrating solar power (CSP) system that can be used in place of peaking natural gas power plants. A new molten-salt tower peaker concept is being developed that can provide the same capacity and ancillary benefits and is

  16. Linear Fresnel Power Plant Illustration

    Energy.gov [DOE]

    With this concentrating solar power (CSP) graphic, flat or slightly curved mirrors mounted on trackers on the ground are configured to reflect sunlight onto a receiver tube fixed in space above these mirrors. A small parabolic mirror is sometimes added atop the receiver to further focus the sunlight. Linear CSP collectors capture the sun's energy with large mirrors that reflect and focus the sunlight onto a linear receiver tube. The receiver contains a fluid that is heated by the sunlight and then used to create superheated steam that spins a turbine that drives a generator to produce electricity.

  17. Environmental assessment of air quality, noise and cooling tower drift from the Jersey City Total Energy Demonstration

    SciTech Connect

    Davis, W.T.; Kolb, J.O.

    1980-06-01

    This assessment covers three specific effects from the operation of the Total Energy (TE) demonstration: (1) air quality from combustion emissions of 600 kW diesel engines and auxiliary boilers fueled with No. 2 distillate oil, (2) noise levels from TE equipment operation, (3) cooling tower drift from two, 2220 gpm, forced-draft cooling towers. For the air quality study, measurements were performed to determine both the combustion emission rates and ground-level air quality at the Demonstration site. Stack analysis of NO/sub x/, SO/sub 2/, CO, particulates, and total hydrocarbons characterized emission rates over a range of operating conditions. Ground-level air quality was monitored during two six-week periods during the summer and winter of 1977. The noise study was performed by measuring sound levels in db(A) in the area within approximately 60 m of the CEB. The noise survey investigated the effects on noise distribution of different wind conditions, time of day or night, and condition of doors - open or closed - near the diesel engines in the CEB. In the cooling tower study, drift emission characteristics were measured to quantify the drift emission before and after cleaning of the tower internals to reduce fallout of large drift droplets in the vicinity of the CEB.

  18. Signal processor for processing ultrasonic receiver signals

    DOEpatents

    Fasching, George E.

    1980-01-01

    A signal processor is provided which uses an analog integrating circuit in conjunction with a set of digital counters controlled by a precision clock for sampling timing to provide an improved presentation of an ultrasonic transmitter/receiver signal. The signal is sampled relative to the transmitter trigger signal timing at precise times, the selected number of samples are integrated and the integrated samples are transferred and held for recording on a strip chart recorder or converted to digital form for storage. By integrating multiple samples taken at precisely the same time with respect to the trigger for the ultrasonic transmitter, random noise, which is contained in the ultrasonic receiver signal, is reduced relative to the desired useful signal.

  19. CFD analysis of coverplate receiver flow

    SciTech Connect

    Popp, O.; Zimmermann, H.; Kutz, J.

    1998-01-01

    The flow field in a preswirled cooling air supply to a turbine rotor has been investigated by means of CFD simulations. Coefficients for system efficiency are derived. The influences of various geometric parameters for different configurations have been correlated with the help of appropriate coefficients. For some of the most important geometric parameters of the coverplate receiver, design recommendations have been made. For the preswirl nozzles, the potential of efficiency improvement by contour design is highlighted.

  20. Insights from the operation of Solar One and their implications for future central receiver plants

    SciTech Connect

    Kolb, G.J.; Alpert, D.J. ); Lopez, C.W. )

    1991-01-01

    The Solar One Pilot Plant successfully demonstrated the feasibility of generating electricity with a solar central receiver power plant. During the six years the plant was operated, a great deal of data was collected relating to the efficiency and availability of the plant's various systems. This paper summarizes these statistics and compares them to goals developed by the Department of Energy. Based on this comparison, and recent research, the authors identify key improvements in the design and operation for future central receiver power plants. These improvements are expected to solve many of the performance problems encountered at Solar One. Projections of the cost of energy for these future plants are also presented.

  1. Life Cycle Greenhouse Gas Emissions of Trough and Tower Concentrating Solar Power Electricity Generation: Systematic Review and Harmonization

    Energy.gov [DOE]

    As clean energy increasingly becomes part of the national dialogue, lenders, utilities, and lawmakers need the most comprehensive and accurate information on GHG emissions from various sources of energy to inform policy, planning, and investment decisions. The National Renewable Energy Laboratory (NREL) recently led the Life Cycle Assessment (LCA) Harmonization Project, a study that gives decision makers and investors more precise estimates of life cycle GHG emissions for renewable and conventional generation, clarifying inconsistent and conflicting estimates in the published literature, and reducing uncertainty.

  2. AUTOMATED DEAD-END ULTRAFILTRATION FOR ENHANCED SURVEILLANCE OF LEGIONELLA 2 PNEUMOPHILA AND LEGIONELLA SPP. IN COOLING TOWER WATERS

    SciTech Connect

    Brigmon, R.; Leskinen, S.; Kearns, E.; Jones, W.; Miller, R.; Betivas, C.; Kingsley, M.; Lim, D.

    2011-10-10

    Detection of Legionella pneumophila in cooling towers and domestic hot water systems involves concentration by centrifugation or membrane filtration prior to inoculation onto growth media or analysis using techniques such as PCR or immunoassays. The Portable Multi-use Automated Concentration System (PMACS) was designed for concentrating microorganisms from large volumes of water in the field and was assessed for enhancing surveillance of L. pneumophila at the Savannah River Site, SC. PMACS samples (100 L; n = 28) were collected from six towers between August 2010 and April 2011 with grab samples (500 ml; n = 56) being collected before and after each PMACS sample. All samples were analyzed for the presence of L. pneumophila by direct fluorescence immunoassay (DFA) using FITC-labeled monoclonal antibodies targeting serogroups 1, 2, 4 and 6. QPCR was utilized for detection of Legionella spp. in the same samples. Counts of L. pneumophila from DFA and of Legionella spp. from qPCR were normalized to cells/L tower water. Concentrations were similar between grab and PMACS samples collected throughout the study by DFA analysis (P = 0.4461; repeated measures ANOVA). The same trend was observed with qPCR. However, PMACS concentration proved advantageous over membrane filtration by providing larger volume, more representative samples of the cooling tower environment, which led to reduced variability among sampling events and increasing the probability of detection of low level targets. These data highlight the utility of the PMACS for enhanced surveillance of L. pneumophila by providing improved sampling of the cooling tower environment.

  3. PowerPoint Presentation

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Low-Cost Receiver for Parabolic Trough Solar Power- Design for Manufacturing SunShot SolarMat award DE-EE0006813 2.5 Years ($1.4M DoE SunShot Funding) Joel Stettenheim, President & Principal Investigator 2 CSP Program Summit 2016 - 50+ PhD researchers, 40,000 ft 2 SOA fabrication and laboratory facilities - development partnership with the Liu Group at Dartmouth related to novel air stable solar selective coating - third party testing and validation of novel receiver - replacing partnership

  4. Sinem Geothermal Power Plant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    (afday) Cooling Tower Water use (summer average) (afday) Cooling Tower Water use (winter average) (afday) Types of Water 350x500px This article is a stub. You can help...

  5. Advanced motor driven clamped borehole seismic receiver

    DOEpatents

    Engler, B.P.; Sleefe, G.E.; Striker, R.P.

    1993-02-23

    A borehole seismic tool is described including a borehole clamp which only moves perpendicular to the borehole. The clamp is driven by an electric motor, via a right angle drive. When used as a seismic receiver, the tool has a three part housing, two of which are hermetically sealed. Accelerometers or geophones are mounted in one hermetically sealed part, the electric motor in the other hermetically sealed part, and the clamp and right angle drive in the third part. Preferably the tool includes cable connectors at both ends. Optionally a shear plate can be added to the clamp to extend the range of the tool.

  6. Advanced motor driven clamped borehole seismic receiver

    DOEpatents

    Engler, Bruce P.; Sleefe, Gerard E.; Striker, Richard P.

    1993-01-01

    A borehole seismic tool including a borehole clamp which only moves perpendicular to the borehole. The clamp is driven by an electric motor, via a right angle drive. When used as a seismic receiver, the tool has a three part housing, two of which are hermetically sealed. Accelerometers or geophones are mounted in one hermetically sealed part, the electric meter in the other hermetically sealed part, and the clamp and right angle drive in the third part. Preferably the tool includes cable connectors at both ends. Optionally a shear plate can be added to the clamp to extend the range of the tool.

  7. Mudundi R. Raju receives Padma Shri

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Mudundi R. Raju receives Padma Shri award July 18, 2013 Los Alamos retiree brings medical advances to poor of India LOS ALAMOS, N.M., July 18, 2013-The government of India honored former Los Alamos scientist and Laboratory Fellow Mudundi Raju with a Padma Shri award this year for his distinguished service in science and engineering, providing cancer radiation treatment to the poor of rural India. "The aim of science is to improve the human condition," said Nobel Laureate Ilya

  8. Line Focus Receiver Infrared Temperature Survey System

    Energy Science and Technology Software Center

    2010-06-01

    For ongoing maintenance and performance purposes, solar parabolic trough field operators desire to know that the Heat Collection Elements (HCEs) are performing properly. Measuring their temperature is one way of doing this One 30MW field can contain approximately 10,000 HCE's. This software interfaces with a GPS receiver and an infrared camera. It takes global positioning data from the GPS and uses this information to automate the infrared image capture and temperature analysis of individual solarmore » parabolic HCEs in a solar parabolic trough field With this software system an entire 30MW field can be surveyed in 2-3 days.« less

  9. Waste Receiving and Processing Facility - Hanford Site

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Receiving and Processing Facility About Us About Hanford Cleanup Hanford History Hanford Site Wide Programs Contact Us 100 Area 118-K-1 Burial Ground 200 Area 222-S Laboratory 242-A Evaporator 300 Area 324 Building 325 Building 400 Area/Fast Flux Test Facility 618-10 and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage Building and Interim Storage Area Canyon Facilities Cold Test Facility D and DR Reactors Effluent Treatment Facility Environmental Restoration Disposal

  10. Full-wave receiver architecture for the homodyne motion sensor

    DOEpatents

    Haugen, Peter C; Dallum, Gregory E; Welsh, Patrick A; Romero, Carlos E

    2013-11-19

    A homodyne motion sensor or detector based on ultra-wideband radar utilizes the entire received waveform through implementation of a voltage boosting receiver. The receiver includes a receiver input and a receiver output. A first diode is connected to the receiver output. A first charge storage capacitor is connected from between the first diode and the receiver output to ground. A second charge storage capacitor is connected between the receiver input and the first diode. A second diode is connected from between the second charge storage capacitor and the first diode to ground. The dual diode receiver performs voltage boosting of a RF signal received at the receiver input, thereby enhancing receiver sensitivity.

  11. Full-wave receiver architecture for the homodyne motion sensor

    DOEpatents

    Haugen, Peter C.; Dallum, Gregory E.; Welsh, Patrick A.; Romero, Carlos E.

    2015-09-29

    A homodyne motion sensor or detector based on ultra-wideband radar utilizes the entire received waveform through implementation of a voltage boosting receiver. The receiver includes a receiver input and a receiver output. A first diode is connected to the receiver output. A first charge storage capacitor is connected from between the first diode and the receiver output to ground. A second charge storage capacitor is connected between the receiver input and the first diode. A second diode is connected from between the second charge storage capacitor and the first diode to ground. The dual diode receiver performs voltage boosting of a RF signal received at the receiver input, thereby enhancing receiver sensitivity.

  12. Thermal performance simulation of a solar cavity receiver under windy conditions

    SciTech Connect

    Fang, J.B.; Wei, J.J.; Dong, X.W.; Wang, Y.S.

    2011-01-15

    Solar cavity receiver plays a dominant role in the light-heat conversion. Its performance can directly affect the efficiency of the whole power generation system. A combined calculation method for evaluating the thermal performance of the solar cavity receiver is raised in this paper. This method couples the Monte-Carlo method, the correlations of the flow boiling heat transfer, and the calculation of air flow field. And this method can ultimately figure out the surface heat flux inside the cavity, the wall temperature of the boiling tubes, and the heat loss of the solar receiver with an iterative solution. With this method, the thermal performance of a solar cavity receiver, a saturated steam receiver, is simulated under different wind environments. The highest wall temperature of the boiling tubes is about 150 C higher than the water saturation temperature. And it appears in the upper middle parts of the absorbing panels. Changing the wind angle or velocity can obviously affect the air velocity inside the receiver. The air velocity reaches the maximum value when the wind comes from the side of the receiver (flow angle {alpha} = 90 ). The heat loss of the solar cavity receiver also reaches a maximum for the side-on wind. (author)

  13. Los Alamos National Laboratory receives Star Status recognition...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    LANL receives recognition for safety excellence Los Alamos National Laboratory receives Star Status recognition for safety excellence from Department of Energy Los Alamos becomes...

  14. Y-12 employees receive awards recognizing excellence in nuclear...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    receive ... Y-12 employees receive awards recognizing excellence in nuclear weapons program Posted: October 6, 2014 - 9:09am Defense Programs 2013 Award of Excellence recipient ...

  15. LANL spinoff receives NIH grant for respiratory disease diagnostic...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    LANL spinoff receives NIH grant LANL spinoff receives NIH grant for respiratory disease diagnostic device Mesa Tech has been awarded a grant to develop an inexpensive, ...

  16. Chemical Scientist Hendrik Bluhm Receives Bessel Research Award

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Chemical Scientist Hendrik Bluhm Receives Bessel Research Award Chemical Scientist Hendrik Bluhm Receives Bessel Research Award Print Friday, 24 May 2013 00:00 Hendrik Bluhm of the ...

  17. Abrikosov receives Ukrainian Gold Medal | Argonne National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Abrikosov receives Ukrainian Gold Medal By Lynn Tefft Hoff * July 28, 2015 Tweet ... Abrikosov has received the Gold Medal of Vernadsky of the National Academy of Sciences of ...

  18. Y-12 Steam Plant Project Received National Recognition for Project...

    National Nuclear Security Administration (NNSA)

    Steam Plant Project Received National Recognition for Project Management Excellence March 23, 2011 Y-12 steam plant project receives national recognition for project management ...

  19. DOE's Jefferson Lab Receives Approval To Start Construction of...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    DOE's Jefferson Lab Receives Approval To Start Construction of 310 Million Upgrade DOE's Jefferson Lab Receives Approval To Start Construction of 310 Million Upgrade NEWPORT ...

  20. EM Receives Several Honors in 2011 DOE Sustainability Awards...

    Energy Saver

    Receives Several Honors in 2011 DOE Sustainability Awards EM Receives Several Honors in 2011 DOE Sustainability Awards November 4, 2011 - 12:00pm Addthis Several EM employees, ...

  1. DOE Announces First Companies to Receive Industrial Energy Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    DOE Announces First Companies to Receive Industrial Energy Efficiency Certification DOE Announces First Companies to Receive Industrial Energy Efficiency Certification December 9,...

  2. Seventy-three New Mexico students receive Los Alamos Employees...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Seventy-three students receive LAESF scholarships Seventy-three New Mexico students receive Los Alamos Employees' Scholarship Fund scholarships Raymond Fasano of Bernalillo High...

  3. Laboratory researcher Joel Rowland to receive DOE Early Career...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Rowland to receive DOE Early Career Award Laboratory researcher Joel Rowland to receive DOE Early Career Award Rowland's research was recognized by DOE for incorporating...

  4. Receiver Operating Characteristic (ROC) Curves: An Analysis Tool...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Receiver Operating Characteristic (ROC) Curves: An Analysis Tool for Detection Performance Citation Details In-Document Search Title: Receiver Operating ...

  5. Perovskite Power

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Perovskite Power 1663 Los Alamos science and technology magazine Latest Issue:October 2015 past issues All Issues submit Perovskite Power A breakthrough in the production of...

  6. first power

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    first power - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy ... Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water ...

  7. clean power

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    clean power - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy ... Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water ...

  8. Water Power

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Water Power bernadette Permalink Gallery Bernie Hernandez-Sanchez wins HENAAC Award for outstanding technical achievement News, Water Power Bernie Hernandez-Sanchez wins HENAAC ...

  9. High power connection system

    DOEpatents

    Schaefer, Christopher E.; Beer, Robert C.; McCall, Mark D.

    2000-01-01

    A high power connection system adapted for automotive environments which provides environmental and EMI shielding includes a female connector, a male connector, and a panel mount. The female connector includes a female connector base and a snap fitted female connector cover. The male connector includes a male connector base and a snap fitted male connector cover. The female connector base has at least one female power terminal cavity for seatably receiving a respective female power terminal. The male connector base has at least one male power terminal cavity for seatably receiving a respective male power terminal. The female connector is covered by a cover seal and a conductive shroud. A pair of lock arms protrude outward from the front end of the male connector base, pass through the panel mount and interface with a lever of a lever rotatably connected to the shroud to thereby mechanically assist mating of the male and female connectors. Safety terminals in the male and female connectors provide a last-to-connect-first-to-break connection with an HVIL circuit.

  10. Southwestern Power Administration

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    May 22, 2014 Lake Texoma Hydropower Generation to Remain Low for Near Future TULSA, OK - Southwestern Power Administration (Southwestern) announced today that in response to continuing drought conditions in the Lake Texoma watershed, Southwestern is working with its customers which receive electricity from Denison Dam at Lake Texoma to keep hydropower generation levels low in the summer of 2014, so that storage can be preserved for times when electricity demand is at its highest. "Our

  11. Measuring the Optical Performance of Evacuated Receivers via an Outdoor Thermal Transient Test: Preprint

    SciTech Connect

    Kutscher, C.; Burkholder, F.; Netter, J.

    2011-08-01

    Modern parabolic trough solar collectors operated at high temperatures to provide the heat input to Rankine steam power cycles employ evacuated receiver tubes along the collector focal line. High performance is achieved via the use of a selective surface with a high absorptance for incoming short-wave solar radiation and a low emittance for outgoing long-wave infrared radiation, as well as the use of a hard vacuum to essentially eliminate convective and conductive heat losses. This paper describes a new method that determines receiver overall optical efficiency by exposing a fluid-filled, pre-cooled receiver to one sun outdoors and measuring the slope of the temperature curve at the point where the receiver temperature passes the glass envelope temperature (that is, the point at which there is no heat gain or loss from the absorber). This transient test method offers the potential advantages of simplicity, high accuracy, and the use of the actual solar spectrum.

  12. Critical issues in the development of hybrid solar/gas receivers for dish/Stirling systems

    SciTech Connect

    Adkins, D.R.; Rawlinson, K.S.

    1991-12-31

    A hybrid solar/gas receiver system will allow Stirling engines to operate with combined solar and gas power sources. One of the most attractive options for building a hybrid system is to integrate a gas-fired heat pipe directly into a heat-pipe solar receiver. Before this union can take place, however, a number of technical issues must be resolved. A design must be found that properly distributes the heat-pipe`s working fluid over the heated surfaces and prevents fluid from accumulating at undesirable locations in the heat pipe. Experience that has been gained in developing solar receivers and gas-fired heat pipes under recent Department of Energy solar-thermal dish-electric programs is used in this paper to address many of the technical obstacles to building receiver systems. 16 refs.

  13. Final Report- High Flux Microchannel Receiver Development with Adaptive Flow Control

    Office of Energy Efficiency and Renewable Energy (EERE)

    This project is focused on the demonstration of a microchannelbased solar receiver (MSR). The MSR concept consists of using a modular arrangement of arrayed microchannels to heat a working fluid in a concentrating solar receiver, allowing a much higher solar flux on the receiver and consequently a significant reduction in thermal losses, size, and cost. Others have shown that the ability to operate with a high incident flux is the key to improving receiver efficiency, allowing the use of high temperature heat transfer fluids, which in turn improve the energy conversion efficiency of the power block. We are developing two design concepts, one using typical liquid heat transfer fluids such as molten salts and the second using gaseous heat transfer fluids such as supercritical CO2 (sCO2). In each case the objective of the project is a laboratory demonstration of the technology that if successful will move the technology to a TRL 3.

  14. Critical issues in the development of hybrid solar/gas receivers for dish/Stirling systems

    SciTech Connect

    Adkins, D.R.; Rawlinson, K.S.

    1991-01-01

    A hybrid solar/gas receiver system will allow Stirling engines to operate with combined solar and gas power sources. One of the most attractive options for building a hybrid system is to integrate a gas-fired heat pipe directly into a heat-pipe solar receiver. Before this union can take place, however, a number of technical issues must be resolved. A design must be found that properly distributes the heat-pipe's working fluid over the heated surfaces and prevents fluid from accumulating at undesirable locations in the heat pipe. Experience that has been gained in developing solar receivers and gas-fired heat pipes under recent Department of Energy solar-thermal dish-electric programs is used in this paper to address many of the technical obstacles to building receiver systems. 16 refs.

  15. Session: What have studies of communications towers suggested regarding the impact of guy wires and lights on birds and bats

    SciTech Connect

    Kerlinger, Paul

    2004-09-01

    This session at the Wind Energy and Birds/Bats workshop consisted of one presentation followed by a discussion/question and answer period. The paper ''Wind turbines and Avian Risk: Lessons from Communications Towers'' was given by Paul Kerlinger. The presenter outlined lessons that have been learned from research on communications (not cell) towers and about the impacts of guy wires and lights on birds and bats and how they could be useful to wind energy developers. The paper also provided specific information about a large 'fatality' event that occurred at the Mountaineer, WC wind energy site in May 2003, and a table of Night Migrant Carcass search findings for various wind sites in the US.

  16. ARRA FEMP Technical Assistance -- Federal Aviation Administration Project 209 -- Control Tower and Support Building, Palm Springs, CA

    SciTech Connect

    Arends, J.; Sandusky, William F.

    2010-03-31

    This report represents findings of a design review team that evaluated construction documents (at the 100% level) and operating specifications for a new control tower and support building that will be built in Palm Springs, California by the Federal Aviation Administration (FAA). The focus of the review was to identify measures that could be incorporated into the final design and operating specifications that would result in additional energy savings for the FAA that would not have otherwise occurred.

  17. System using a megawatt class millimeter wave source and a high-power rectenna to beam power to a suspended platform

    DOEpatents

    Caplan, Malcolm; Friedman, Herbert W.

    2005-07-19

    A system for beaming power to a high altitude platform is based upon a high power millimeter gyrotron source, optical transmission components, and a high-power receiving antenna (i.e., a rectenna) capable of rectifying received millimeter energy and converting such energy into useable electrical power.

  18. NREL: Concentrating Solar Power Research - News Release Archives

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    4 September 16, 2014 NREL Forges Foundation for Advanced Concentrating Solar Power Receivers NREL's Thermal Systems Group is performing research and development on components for ...

  19. Low temperature solar-to-electric power conversion system

    SciTech Connect

    Vitale, N.G.

    1993-07-20

    An electric power generating apparatus is described, including: a solar collector; a primary thermal loop including primary thermal fluid; a cavity receiver to receive reflected solar energy from the solar reflector, convert the solar energy into thermal energy, and transmit the thermal energy to the primary thermal fluid by heating the primary thermal fluid not to exceed a given temperature, the given temperature being substantially equal to 700 F; a Stirling engine receiving the primary thermal fluid heated by the cavity receiver, including means to generate mechanical power and means to generate electrical power from the means to generate mechanical power.

  20. Concentrating Solar Power: Advanced Projects Offering Low LCOE...

    Energy.gov [DOE] (indexed site)

    Building upon the successful outcomes of the 2012 SunShot Concentrating Solar Power (CSP) ... system of a CSP plant, including solar collectors, receivers and heat transfer ...

  1. Top 10 Things You Didn't Know About Concentrating Solar Power | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Concentrating Solar Power Top 10 Things You Didn't Know About Concentrating Solar Power October 31, 2013 - 12:03pm Addthis Concentrating Solar Power Facilities and CSP Energy Potential Gradient Click icons to filter by CSP Plant Type All Plants In Operation New in 2014 In Progress Tower and Heliostat Trough or Fresnel Parabolic Dish Concentrating Solar Energy Potential (watt hours/m²/day) 2500 4000 6000 8000 Map by Daniel Wood. Erin R. Pierce Erin R. Pierce Former Digital

  2. Optimization Under Uncertainty for Water Consumption in a Pulverized Coal Power Plant

    SciTech Connect

    Juan M. Salazara; Stephen E. Zitney; Urmila M. Diwekara

    2009-01-01

    Pulverized coal (PC) power plants are widely recognized as major water consumers whose operability has started to be affected by drought conditions across some regions of the country. Water availability will further restrict the retrofitting of existing PC plants with water-expensive carbon capture technologies. Therefore, national efforts to reduce water withdrawal and consumption have been intensified. Water consumption in PC plants is strongly associated to losses from the cooling water cycle, particularly water evaporation from cooling towers. Accurate estimation of these water losses requires realistic cooling tower models, as well as the inclusion of uncertainties arising from atmospheric conditions. In this work, the cooling tower for a supercritical PC power plant was modeled as a humidification operation and used for optimization under uncertainty. Characterization of the uncertainty (air temperature and humidity) was based on available weather data. Process characteristics including boiler conditions, reactant ratios, and pressure ratios in turbines were calculated to obtain the minimum water consumption under the above mentioned uncertainties. In this study, the calculated conditions predicted up to 12% in reduction in the average water consumption for a 548 MW supercritical PC power plant simulated using Aspen Plus. Optimization under uncertainty for these large-scale PC plants cannot be solved with conventional stochastic programming algorithms because of the computational expenses involved. In this work, we discuss the use of a novel better optimization of nonlinear uncertain systems (BONUS) algorithm which dramatically decreases the computational requirements of the stochastic optimization.

  3. Optimization under Uncertainty for Water Consumption in a Pulverized Coal Power Plant

    SciTech Connect

    Juan M. Salazar; Stephen E. Zitney; Urmila Diwekar

    2009-01-01

    Pulverized coal (PC) power plants are widely recognized as major water consumers whose operability has started to be affected by drought conditions across some regions of the country. Water availability will further restrict the retrofitting of existing PC plants with water-expensive carbon capture technologies. Therefore, national efforts to reduce water withdrawal and consumption have been intensified. Water consumption in PC plants is strongly associated to losses from the cooling water cycle, particularly water evaporation from cooling towers. Accurate estimation of these water losses requires realistic cooling tower models, as well as the inclusion of uncertainties arising from atmospheric conditions. In this work, the cooling tower for a supercritical PC power plant was modeled as a humidification operation and used for optimization under uncertainty. Characterization of the uncertainty (air temperature and humidity) was based on available weather data. Process characteristics including boiler conditions, reactant ratios, and pressure ratios in turbines were calculated to obtain the minimum water consumption under the above mentioned uncertainties. In this study, the calculated conditions predicted up to 12% in reduction in the average water consumption for a 548 MW supercritical PC power plant simulated using Aspen Plus. Optimization under uncertainty for these large-scale PC plants cannot be solved with conventional stochastic programming algorithms because of the computational expenses involved. In this work, we discuss the use of a novel better optimization of nonlinear uncertain systems (BONUS) algorithm which dramatically decreases the computational requirements of the stochastic optimization.

  4. Advanced Thermal Storage for Central Receivers with Supercritical Coolants

    SciTech Connect

    Kelly, Bruce D.

    2010-06-15

    The principal objective of the study is to determine if supercritical heat transport fluids in a central receiver power plant, in combination with ceramic thermocline storage systems, offer a reduction in levelized energy cost over a baseline nitrate salt concept. The baseline concept uses a nitrate salt receiver, two-tank (hot and cold) nitrate salt thermal storage, and a subcritical Rankine cycle. A total of 6 plant designs were analyzed, as follows: Plant Designation Receiver Fluid Thermal Storage Rankine Cycle Subcritical nitrate salt Nitrate salt Two tank nitrate salt Subcritical Supercritical nitrate salt Nitrate salt Two tank nitrate salt Supercritical Low temperature H2O Supercritical H2O Two tank nitrate salt Supercritical High temperature H2O Supercritical H2O Packed bed thermocline Supercritical Low temperature CO2 Supercritical CO2 Two tank nitrate salt Supercritical High temperature CO2 Supercritical CO2 Packed bed thermocline Supercritical Several conclusions have been drawn from the results of the study, as follows: 1) The use of supercritical H2O as the heat transport fluid in a packed bed thermocline is likely not a practical approach. The specific heat of the fluid is a strong function of the temperatures at values near 400 °C, and the temperature profile in the bed during a charging cycle is markedly different than the profile during a discharging cycle. 2) The use of supercritical CO2 as the heat transport fluid in a packed bed thermocline is judged to be technically feasible. Nonetheless, the high operating pressures for the supercritical fluid require the use of pressure vessels to contain the storage inventory. The unit cost of the two-tank nitrate salt system is approximately $24/kWht, while the unit cost of the high pressure thermocline system is nominally 10 times as high. 3) For the supercritical fluids, the outer crown temperatures of the receiver tubes are in the range of 700 to 800 °C. At temperatures of 700 °C and above

  5. Performance and Reliability of Multijunction III-V Modules for Concentrator Dish and Central Receiver Applications

    SciTech Connect

    Verlinden, P. J.; Lewandowski, A.; Bingham, C.; Kinsey, G. S.; Sherif, R. A.; Laisch, J. B.

    2006-01-01

    Over the last 15 years, Solar Systems have developed a dense array receiver PV technology for 500X concentrator reflective dish applications. This concentrator PV technology has been successfully deployed at six different locations in Australia, counting for more than 1 MWp of installed peak power. A new Multijunction III-V receiver to replace the current silicon Point-Contact solar cells has recently been developed. The new receiver technology is based on high-efficiency (>32%) Concentrator Ultra Triple Junction (CUTJ) solar cells from Spectrolab, resulting in system power and energy performance improvement of more than 50% compared to the silicon cells. The 0.235 m{sup 2} concentrator PV receiver, designed for continuous 500X operation, is composed of 64 dense array modules, and made of series and parallel-connected solar cells, totaling approximately 1,500 cells. The individual dense array modules have been tested under high intensity pulsed light, as well as with concentrated sunlight at the Solar Systems research facility and at the National Renewable Energy Laboratory's High Flux Solar Furnace. The efficiency of the dense array modules ranges from 30% to 36% at 500X (50 W/cm{sup 2}, AM1.5D low AOD, 21C). The temperature coefficients for power, voltage and current, as well as the influence of Air Mass on the cell responsivity, were measured. The reliability of the dense array multijunction III-V modules has been studied with accelerated aging tests, such as thermal cycling, damp heat and high-temperature soak, and with real-life high-intensity exposure. The first 33 kWp multijunction III-V receiver was recently installed in a Solar Systems dish and tested in real-life 500X concentrated sunlight conditions. Receiver efficiencies of 30.3% and 29.0% were measured at Standard Operating Conditions and Normal Operating Conditions respectively.

  6. Power converter connection configuration

    DOEpatents

    Beihoff, Bruce C.; Kehl, Dennis L.; Gettelfinger, Lee A.; Kaishian, Steven C.; Phillips, Mark G.; Radosevich, Lawrence D.

    2008-11-11

    EMI shielding is provided for power electronics circuits and the like via a direct-mount reference plane support and shielding structure. The thermal support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support forms a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  7. Fusion Power

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Power www.pppl.gov FACT SHEET FUSION POWER Check us out on YouTube. http:www.youtube.comppplab Find us on Facebook. http:www.facebook.comPPPLab Follow us on Twitter. @PPPLab ...

  8. Wind Power

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wind Power As the accompanying map of New Mexico shows, the best wind power generation potential near WIPP is along the Delaware Mountain ridge line of the southern Guadalupe ...

  9. TVA - Green Power Providers | Department of Energy

    Energy.gov [DOE] (indexed site)

    these payments out over the life of the program. All new participants in the Generation Power Providers program will receive a 1,000 incentive to offset the upfront cost....

  10. Point Power Systems | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    systems, ranging from 1-6kW. It has received support from Environmental Business Cluster, a California-based incubator. References: Point Power Systems1 This article is a...

  11. Power supply

    DOEpatents

    Yakymyshyn, Christopher Paul; Hamilton, Pamela Jane; Brubaker, Michael Allen

    2007-12-04

    A modular, low weight impedance dropping power supply with battery backup is disclosed that can be connected to a high voltage AC source and provide electrical power at a lower voltage. The design can be scaled over a wide range of input voltages and over a wide range of output voltages and delivered power.

  12. Towering oak, the sun - porch house winner of the ''1982 German research award''

    SciTech Connect

    Berndt, G.W.P.

    1983-12-01

    The design for this energy-efficient house was developed to suit a benign climate with much rain, wind, and fog. The building's basic construction guarantees the most limited energy-use possible. This is achieved through a unique houseform, which encloses and warms the living spaces with a thick thermal coat: walls = 6'' semi-rigid glass fiber boards, R-19; roof = 10'' foil faced fiber glass, R = 30. Windows are located only on the south side, to ensure optimal sun-ray capture. The housefront consists of a ''sun-porch'' (Sonnenhof), which is a further development of the well-known German ''Wintergarten'' (winter garden). In this climate region, one can only expect a yearly average of five days with a summer temperature of over 25/sup 0/C (77/sup 0/F); however, with a ''sun-porch'' the summer can make itself at home. In winter, the ''sun-porch'' protects against storms and always offers temperatures above the 7/sup 0/C (45/sup 0/F) minimum, a product of the compact roof and double glass with selective coating. On sunny winter days, one may even dine on the balconies. The estimation technique represented here is based on a procedure devised at the Los Alamos Scientific Laboratory, New Mexico, (Passive Solar Handbook, Vol. 2, J.D. Balcomb). ''Towering Oak's'' solar savings fraction = 49.0%; heating load = 2.56 BTU/sq. ft. Better results have yet to be achieved in Germany. In the USA, this could be increased to a solar fraction of up to 90%. Some modifications would, however, be necessary to suit the local climate (sun control devices, etc.).

  13. The Cryogenic Dark Matter Search: First 5-Tower Data and Improved Understanding of Ionization Collection

    SciTech Connect

    Bailey, Catherine N.

    2010-01-01

    The Cryogenic Dark Matter Search (CDMS) is searching for Weakly Interacting Massive Particles (WIMPs) with cryogenic particle detectors. These detectors have the ability to discriminate between nuclear recoil candidate and electron recoil background events by collecting both phonon and ionization energy from recoils in the detector crystals. The CDMS-II experiment has completed analysis of the first data runs with 30 semiconductor detectors at the Soudan Underground Laboratory, resulting in a world leading WIMP-nucleon spin-independent cross section limit for WIMP masses above 44 GeV/c{sup 2}. As CDMS aims to achieve greater WIMP sensitivity, it is necessary to increase the detector mass and discrimination between signal and background events. Incomplete ionization collection results in the largest background in the CDMS detectors as this causes electron recoil background interactions to appear as false candidate events. Two primary causes of incomplete ionization collection are surface and bulk trapping. Recent work has been focused on reducing surface trapping through the modification of fabrication methods for future detectors. Analyzing data taken with test devices has shown that hydrogen passivation of the amorphous silicon blocking layer worsens surface trapping. Additional data has shown that the iron-ion implantation used to lower the critical temperature of the tungsten transition-edge sensors causes a degradation of the ionization collection. Using selective implantation on future detectors may improve ionization collection for events near the phonon side detector surface. Bulk trapping is minimized by neutralizing ionized lattice impurities. Detector investigations at testing facilities and in situ at the experimental site have provided methods to optimize the neutralization process and monitor running conditions to maintain full ionization collection. This work details my contribution to the 5-tower data taking, monitoring, and analysis effort as well

  14. DOE Headquarters Receives Energy Star Recognition from EPA |...

    Office of Environmental Management (EM)

    Headquarters Receives Energy Star Recognition from EPA DOE Headquarters Receives Energy Star Recognition from EPA July 9, 2008 - 2:15pm Addthis WASHINGTON - U.S. Secretary of ...

  15. Seventy-Five Students to Receive Nuclear Energy Scholarships...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Seventy-Five Students to Receive Nuclear Energy Scholarships and Fellowships Seventy-Five Students to Receive Nuclear Energy Scholarships and Fellowships May 9, 2014 - 11:17am...

  16. Westinghouse receives high marks for management, operation of...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Receives High Marks For Management, Operation of WIPP CARLSBAD, N.M., January 11, 2000 - The Westinghouse Waste Isolation Division (WID) received high marks from the U.S....

  17. Sixty-Eight Students to Receive Nuclear Energy Scholarships and...

    Energy Saver

    Sixty-Eight Students to Receive Nuclear Energy Scholarships and Fellowships Sixty-Eight Students to Receive Nuclear Energy Scholarships and Fellowships July 17, 2013 - 10:30am ...

  18. High-Efficiency Receivers for Supercritical Carbon Dioxide Cycles...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    More Documents & Publications High-Efficiency Low-Cost Solar Receiver for Use in a Supercritical CO2 Recompression Cycle - FY13 Q1 High-Efficiency Receivers for...

  19. Energy-Department Supported Scientist Receives Nobel Prize for...

    Energy.gov [DOE] (indexed site)

    scientists to receive the Nobel Prize in Physics for their invention of the blue light ... scientists to receive the Nobel Prize in Physics for their invention of the blue light ...

  20. Department of Energy Receives 2013 Partners in Conservation Award...

    Energy Saver

    Receives 2013 Partners in Conservation Award Department of Energy Receives 2013 Partners in Conservation Award June 5, 2014 - 11:38am Addthis The Department of Energy (DOE), along ...