National Library of Energy BETA

Sample records for rankine cycle orc

  1. Development of a Direct Evaporator for the Organic Rankine Cycle

    SciTech Connect (OSTI)

    Donna Post Guillen; Helge Klockow; Matthew Lehar; Sebastian Freund; Jennifer Jackson

    2011-02-01

    This paper describes research and development currently underway to place the evaporator of an Organic Rankine Cycle (ORC) system directly in the path of a hot exhaust stream produced by a gas turbine engine. The main goal of this research effort is to improve cycle efficiency and cost by eliminating the usual secondary heat transfer loop. The project’s technical objective is to eliminate the pumps, heat exchangers and all other added cost and complexity of the secondary loop by developing an evaporator that resides in the waste heat stream, yet virtually eliminates the risk of a working fluid leakage into the gaseous exhaust stream. The research team comprised of Idaho National Laboratory and General Electric Company engineers leverages previous research in advanced ORC technology to develop a new direct evaporator design that will reduce the ORC system cost by up to 15%, enabling the rapid adoption of ORCs for waste heat recovery.

  2. Organic rankine cycle fluid

    DOE Patents [OSTI]

    Brasz, Joost J.; Jonsson, Ulf J.

    2006-09-05

    A method of operating an organic rankine cycle system wherein a liquid refrigerant is circulated to an evaporator where heat is introduced to the refrigerant to convert it to vapor. The vapor is then passed through a turbine, with the resulting cooled vapor then passing through a condenser for condensing the vapor to a liquid. The refrigerant is one of CF.sub.3CF.sub.2C(O)CF(CF.sub.3).sub.2, (CF.sub.3).sub.2 CFC(O)CF(CF.sub.3).sub.2, CF.sub.3(CF.sub.2).sub.2C(O)CF(CF.sub.3).sub.2, CF.sub.3(CF.sub.2).sub.3C(O)CF(CG.sub.3).sub.2, CF.sub.3(CF.sub.2).sub.5C(O)CF.sub.3, CF.sub.3CF.sub.2C(O)CF.sub.2CF.sub.2CF.sub.3, CF.sub.3C(O)CF(CF.sub.3).sub.2.

  3. Waste Heat-to-Power Using Scroll Expander for Organic Rankine Bottoming Cycle

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Dieckmann, TIAX LLC, Principal Investigator (Presenter) U.S. DOE Advanced Manufacturing Office Program Review Meeting Washington, D.C. June 14-15, 2016 Waste Heat-to-Power Using Scroll Expander for Organic Rankine Bottoming Cycle DE-EE0005767 TIAX LLC and Keurig Green Mountain (field test site) July 1, 2013 - June 30, 2017 Project Objective  Primary objective - develop scroll expander technology for organic Rankine cycle (ORC) for power generation from recovered waste heat, with power outputs

  4. Rankine cycle system and method

    DOE Patents [OSTI]

    Ernst, Timothy C.; Nelson, Christopher R.

    2014-09-09

    A Rankine cycle waste heat recovery system uses a receiver with a maximum liquid working fluid level lower than the minimum liquid working fluid level of a sub-cooler of the waste heat recovery system. The receiver may have a position that is physically lower than the sub-cooler's position. A valve controls transfer of fluid between several of the components in the waste heat recovery system, especially from the receiver to the sub-cooler. The system may also have an associated control module.

  5. Modifications and Optimization of the Organic Rankine Cycle ...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Modifications and Optimization of the Organic Rankine Cycle Modifications and Optimization of the Organic Rankine Cycle organicrankinecycle.pdf More Documents & Publications A...

  6. Combined rankine and vapor compression cycles

    DOE Patents [OSTI]

    Radcliff, Thomas D.; Biederman, Bruce P.; Brasz, Joost J.

    2005-04-19

    An organic rankine cycle system is combined with a vapor compression cycle system with the turbine generator of the organic rankine cycle generating the power necessary to operate the motor of the refrigerant compressor. The vapor compression cycle is applied with its evaporator cooling the inlet air into a gas turbine, and the organic rankine cycle is applied to receive heat from a gas turbine exhaust to heat its boiler within one embodiment, a common condenser is used for the organic rankine cycle and the vapor compression cycle, with a common refrigerant, R-245a being circulated within both systems. In another embodiment, the turbine driven generator has a common shaft connected to the compressor to thereby eliminate the need for a separate motor to drive the compressor. In another embodiment, an organic rankine cycle system is applied to an internal combustion engine to cool the fluids thereof, and the turbo charged air is cooled first by the organic rankine cycle system and then by an air conditioner prior to passing into the intake of the engine.

  7. Transposed critical temperature Rankine thermodynamic cycle

    SciTech Connect (OSTI)

    Pope, W.L.; Doyle, P.A.

    1980-04-01

    The transposed critical temperature (TPCT) is shown to be an extremely important thermodynamic property in the selection of the working fluid and turbine states for optimized geothermal power plants operating on a closed organic (binary) Rankine cycle. When the optimum working fluid composition and process states are determined for given source and sink conditions (7 parameter optimization), turbine inlet states are found to be consistently adjacent to the low pressure side of the working fluids' TPCT line on pressure-enthalpy coordinates. Although the TPCT concepts herein may find numerous future applications in high temperature, advanced cycles for fossil or nuclear fired steam power plants and in supercritical organic Rankine heat recovery bottoming cycles for Diesel engines, this discussion is limited to moderate temperature (150 to 250/sup 0/C) closed simple organic Rankine cycle geothermal power plants. Conceptual design calculations pertinent to the first geothermal binary cycle Demonstration Plant are included.

  8. Rankine cycle waste heat recovery system

    DOE Patents [OSTI]

    Ernst, Timothy C.; Nelson, Christopher R.

    2014-08-12

    This disclosure relates to a waste heat recovery (WHR) system and to a system and method for regulation of a fluid inventory in a condenser and a receiver of a Rankine cycle WHR system. Such regulation includes the ability to regulate the pressure in a WHR system to control cavitation and energy conversion.

  9. Rankine cycle waste heat recovery system

    DOE Patents [OSTI]

    Ernst, Timothy C.; Nelson, Christopher R.

    2016-05-10

    This disclosure relates to a waste heat recovery (WHR) system and to a system and method for regulation of a fluid inventory in a condenser and a receiver of a Rankine cycle WHR system. Such regulation includes the ability to regulate the pressure in a WHR system to control cavitation and energy conversion.

  10. Cascaded organic rankine cycles for waste heat utilization

    DOE Patents [OSTI]

    Radcliff, Thomas D.; Biederman, Bruce P.; Brasz, Joost J.

    2011-05-17

    A pair of organic Rankine cycle systems (20, 25) are combined and their respective organic working fluids are chosen such that the organic working fluid of the first organic Rankine cycle is condensed at a condensation temperature that is well above the boiling point of the organic working fluid of the second organic Rankine style system, and a single common heat exchanger (23) is used for both the condenser of the first organic Rankine cycle system and the evaporator of the second organic Rankine cycle system. A preferred organic working fluid of the first system is toluene and that of the second organic working fluid is R245fa.

  11. Rankine bottoming cycle safety analysis. Final report

    SciTech Connect (OSTI)

    Lewandowski, G.A.

    1980-02-01

    Vector Engineering Inc. conducted a safety and hazards analysis of three Rankine Bottoming Cycle Systems in public utility applications: a Thermo Electron system using Fluorinal-85 (a mixture of 85 mole % trifluoroethanol and 15 mole % water) as the working fluid; a Sundstrand system using toluene as the working fluid; and a Mechanical Technology system using steam and Freon-II as the working fluids. The properties of the working fluids considered are flammability, toxicity, and degradation, and the risks to both plant workers and the community at large are analyzed.

  12. Organic rankine cycle waste heat applications

    DOE Patents [OSTI]

    Brasz, Joost J.; Biederman, Bruce P.

    2007-02-13

    A machine designed as a centrifugal compressor is applied as an organic rankine cycle turbine by operating the machine in reverse. In order to accommodate the higher pressures when operating as a turbine, a suitable refrigerant is chosen such that the pressures and temperatures are maintained within established limits. Such an adaptation of existing, relatively inexpensive equipment to an application that may be otherwise uneconomical, allows for the convenient and economical use of energy that would be otherwise lost by waste heat to the atmosphere.

  13. Method for processing LNG for rankine cycle

    SciTech Connect (OSTI)

    Aoki, I.; Matsumoto, O.

    1983-06-14

    A method is disclosed for processing lng using a mixed heat medium for performing a rankine cycle to gasify the lng. The medium is prepared by batch distillation using only lng. The method comprises the steps of condensing an upflow vapor in a single distillation column employing part of the lng in an lng batch distillation cycle, venting one fraction having low boiling point components mainly containing methane, and accumulating the other fractions containing ethane and components heavier than ethane. The supply of lng to be distilled in the column is halted. A total condensing operation is performed in which the other fractions are sequentially condensed by part of the lng at the condenser to sequentially recover and mix each component with the other fractions. Lng is added as the methane component to the recovered mixture of components to prepare a mixed heat medium consisting of components selected from hydrocarbons having 1-6 carbon atoms, or hydrocarbons having 1-6 carbon atoms and nitrogen. The mixed heat medium is stored. A mixed heat medium vapor generated by heat input to the stored mixed heat medium is condensed by lng and returned to the mixed heat medium; collection and complete gasification of the low boiling point components mainly containing methane and the lng is gasified by condensation to provide an lng vapor gas. Lng is gasified by performing the rankine cycle with the mixed heat medium.

  14. Development of an ORC system to improve HD truck fuel efficiency

    Energy.gov [DOE]

    Describes a waste heat recovery system developed for a class 8 truck engine using an organic Rankine cycle (ORC), which promises fuel economy benefits of up to 6% at cruise conditions

  15. Investigations of supercritical CO2 Rankine cycles for geothermal...

    Office of Scientific and Technical Information (OSTI)

    brayton cycle while lower efficiencies can be attained with the transcritical CO2 Rankine cycle. Authors: Sabau, Adrian S 1 ; Yin, Hebi 1 ; Qualls, A L 1 ; McFarlane,...

  16. Performance of an Organic Rankine Cycle Waste Heat Recovery System...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Performance of an Organic Rankine Cycle Waste Heat Recovery System for Light Duty Diesel Engines Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research ...

  17. Organic Rankine Cycle Turbine for Exhaust Energy Recovery in...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Turbine for Exhaust Energy Recovery in a Heavy Truck Engine Organic Rankine Cycle Turbine for Exhaust Energy Recovery in a Heavy Truck Engine Presentation given at the 16th ...

  18. Final Report: Modifications and Optimization of the Organic Rankine Cycle to Improve the Recovery of Waste Heat

    SciTech Connect (OSTI)

    Donna Post Guillen; Jalal Zia

    2013-09-01

    This research and development (R&D) project exemplifies a shared public private commitment to advance the development of energy efficient industrial technologies that will reduce the U.S. dependence upon foreign oil, provide energy savings and reduce greenhouse gas emissions. The purpose of this project was to develop and demonstrate a Direct Evaporator for the Organic Rankine Cycle (ORC) for the conversion of waste heat from gas turbine exhaust to electricity. In conventional ORCs, the heat from the exhaust stream is transferred indirectly to a hydrocarbon based working fluid by means of an intermediate thermal oil loop. The Direct Evaporator accomplishes preheating, evaporation and superheating of the working fluid by a heat exchanger placed within the exhaust gas stream. Direct Evaporation is simpler and up to 15% less expensive than conventional ORCs, since the secondary oil loop and associated equipment can be eliminated. However, in the past, Direct Evaporation has been avoided due to technical challenges imposed by decomposition and flammability of the working fluid. The purpose of this project was to retire key risks and overcome the technical barriers to implementing an ORC with Direct Evaporation. R&D was conducted through a partnership between the Idaho National Laboratory (INL) and General Electric (GE) Global Research Center (GRC). The project consisted of four research tasks: (1) Detailed Design & Modeling of the ORC Direct Evaporator, (2) Design and Construction of Partial Prototype Direct Evaporator Test Facility, (3) Working Fluid Decomposition Chemical Analyses, and (4) Prototype Evaluation. Issues pertinent to the selection of an ORC working fluid, along with thermodynamic and design considerations of the direct evaporator, were identified. The FMEA (Failure modes and effects analysis) and HAZOP (Hazards and operability analysis) safety studies performed to mitigate risks are described, followed by a discussion of the flammability analysis of the

  19. Emissions-critical charge cooling using an organic rankine cycle

    DOE Patents [OSTI]

    Ernst, Timothy C.; Nelson, Christopher R.

    2014-07-15

    The disclosure provides a system including a Rankine power cycle cooling subsystem providing emissions-critical charge cooling of an input charge flow. The system includes a boiler fluidly coupled to the input charge flow, an energy conversion device fluidly coupled to the boiler, a condenser fluidly coupled to the energy conversion device, a pump fluidly coupled to the condenser and the boiler, an adjuster that adjusts at least one parameter of the Rankine power cycle subsystem to change a temperature of the input charge exiting the boiler, and a sensor adapted to sense a temperature characteristic of the vaporized input charge. The system includes a controller that can determine a target temperature of the input charge sufficient to meet or exceed predetermined target emissions and cause the adjuster to adjust at least one parameter of the Rankine power cycle to achieve the predetermined target emissions.

  20. Organic rankine cycle system for use with a reciprocating engine

    DOE Patents [OSTI]

    Radcliff, Thomas D.; McCormick, Duane; Brasz, Joost J.

    2006-01-17

    In a waste heat recovery system wherein an organic rankine cycle system uses waste heat from the fluids of a reciprocating engine, provision is made to continue operation of the engine even during periods when the organic rankine cycle system is inoperative, by providing an auxiliary pump and a bypass for the refrigerant flow around the turbine. Provision is also made to divert the engine exhaust gases from the evaporator during such periods of operation. In one embodiment, the auxiliary pump is made to operate simultaneously with the primary pump during normal operations, thereby allowing the primary pump to operate at lower speeds with less likelihood of cavitation.

  1. Method of optimizing performance of Rankine cycle power plants

    DOE Patents [OSTI]

    Pope, William L.; Pines, Howard S.; Doyle, Padraic A.; Silvester, Lenard F.

    1982-01-01

    A method for efficiently operating a Rankine cycle power plant (10) to maximize fuel utilization efficiency or energy conversion efficiency or minimize costs by selecting a turbine (22) fluid inlet state which is substantially in the area adjacent and including the transposed critical temperature line (46).

  2. High-Temperature Components for Rankine-Cycle-Based Waste Heat Recovery Systems on Combustion Engines

    Energy.gov [DOE]

    This poster reports on recent developments, achievements, and capabilities within a virtual environment to predict the dynamic behavior of the Rankine cycle within real driving cycles.

  3. Energy recovery system using an organic rankine cycle

    DOE Patents [OSTI]

    Ernst, Timothy C

    2013-10-01

    A thermodynamic system for waste heat recovery, using an organic rankine cycle is provided which employs a single organic heat transferring fluid to recover heat energy from two waste heat streams having differing waste heat temperatures. Separate high and low temperature boilers provide high and low pressure vapor streams that are routed into an integrated turbine assembly having dual turbines mounted on a common shaft. Each turbine is appropriately sized for the pressure ratio of each stream.

  4. Modifications and Optimization of the Organic Rankine Cycle

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Modifications and Optimization of the Organic Rankine Cycle Improved Recovery of Waste Heat in Industrial Processes Introduction Waste heat from turbines and engines used in industrial ap- plications along with waste heat from industrial processes are exceptionally abundant sources of energy. If even a fraction of this waste heat could be economically converted to useful elec- tricity, it would have a tangible and very positive impact on the economic health, energy consumption, and carbon

  5. Rankine cycle waste heat recovery system

    DOE Patents [OSTI]

    Ernst, Timothy C.; Nelson, Christopher R.

    2015-09-22

    A waste heat recovery (WHR) system connects a working fluid to fluid passages formed in an engine block and/or a cylinder head of an internal combustion engine, forming an engine heat exchanger. The fluid passages are formed near high temperature areas of the engine, subjecting the working fluid to sufficient heat energy to vaporize the working fluid while the working fluid advantageously cools the engine block and/or cylinder head, improving fuel efficiency. The location of the engine heat exchanger downstream from an EGR boiler and upstream from an exhaust heat exchanger provides an optimal position of the engine heat exchanger with respect to the thermodynamic cycle of the WHR system, giving priority to cooling of EGR gas. The configuration of valves in the WHR system provides the ability to select a plurality of parallel flow paths for optimal operation.

  6. Milestone Report #2: Direct Evaporator Leak and Flammability Analysis Modifications and Optimization of the Organic Rankine Cycle to Improve the Recovery of Waste Heat

    SciTech Connect (OSTI)

    Donna Post Guillen

    2013-09-01

    The direct evaporator is a simplified heat exchange system for an Organic Rankine Cycle (ORC) that generates electricity from a gas turbine exhaust stream. Typically, the heat of the exhaust stream is transferred indirectly to the ORC by means of an intermediate thermal oil loop. In this project, the goal is to design a direct evaporator where the working fluid is evaporated in the exhaust gas heat exchanger. By eliminating one of the heat exchangers and the intermediate oil loop, the overall ORC system cost can be reduced by approximately 15%. However, placing a heat exchanger operating with a flammable hydrocarbon working fluid directly in the hot exhaust gas stream presents potential safety risks. The purpose of the analyses presented in this report is to assess the flammability of the selected working fluid in the hot exhaust gas stream stemming from a potential leak in the evaporator. Ignition delay time for cyclopentane at temperatures and pressure corresponding to direct evaporator operation was obtained for several equivalence ratios. Results of a computational fluid dynamic analysis of a pinhole leak scenario are given.

  7. Modifications and Optimization of the Organic Rankine Cycle to Improve the Recovery of Waste Heat

    SciTech Connect (OSTI)

    2008-12-01

    This factsheet describes a research project to optimize the Organic Rankine Cycle for the conversion of low-temperature waste heat from gas turbine or reciprocating engine exhaust to electricity.

  8. Investigations of supercritical CO2 Rankine cycles for geothermal power plants

    SciTech Connect (OSTI)

    Sabau, Adrian S; Yin, Hebi; Qualls, A L; McFarlane, Joanna

    2011-01-01

    Supercritical CO2 Rankine cycles are investigated for geothermal power plants. The system of equations that describe the thermodynamic cycle is solved using a Newton-Rhapson method. This approach allows a high computational efficiency of the model when thermophysical properties of the working fluid depend strongly on the temperature and pressure. Numerical simulation results are presented for different cycle configurations in order to assess the influences of heat source temperature, waste heat rejection temperatures and internal heat exchanger design on cycle efficiency. The results show that thermodynamic cycle efficiencies above 10% can be attained with the supercritical brayton cycle while lower efficiencies can be attained with the transcritical CO2 Rankine cycle.

  9. Altheim geothermal Plant for electricity production by Organic Rankine Cycle turbogenerator

    SciTech Connect (OSTI)

    Pernecker, Gerhard; Ruhland, Johannes

    1996-01-24

    The paper describes the plan of the town Altheim in Upper Austria to produce electricity by an Organic Rankine Cycle-turbogenerator in the field of utilization of low temperatured thermal water. The aim of the project is to improve the technical and economic situation of the geothermal plant.

  10. Method of optimizing performance of Rankine cycle power plants. [US DOE Patent

    DOE Patents [OSTI]

    Pope, W.L.; Pines, H.S.; Doyle, P.A.; Silvester, L.F.

    1980-06-23

    A method is described for efficiently operating a Rankine cycle power plant to maximize fuel utilization efficiency or energy conversion efficiency or minimize costs by selecting a turbine fluid inlet state which is substantially on the area adjacent and including the transposed critical temperature line.

  11. Advanced fusion MHD power conversion using the CFAR (compact fusion advanced Rankine) cycle concept

    SciTech Connect (OSTI)

    Hoffman, M.A.; Campbell, R.; Logan, B.G.; Lawrence Livermore National Lab., CA )

    1988-10-01

    The CFAR (compact fusion advanced Rankine) cycle concept for a tokamak reactor involves the use of a high-temperature Rankine cycle in combination with microwave superheaters and nonequilibrium MHD disk generators to obtain a compact, low-capital-cost power conversion system which fits almost entirely within the reactor vault. The significant savings in the balance-of-plant costs are expected to result in much lower costs of electricity than previous concepts. This paper describes the unique features of the CFAR cycle and a high- temperature blanket designed to take advantage of it as well as the predicted performance of the MHD disk generators using mercury seeded with cesium. 40 refs., 8 figs., 3 tabs.

  12. Refinery chooses ORC to convert process waste heat to electric power

    SciTech Connect (OSTI)

    Makansi, J.

    1985-03-01

    The organic Rankine-cycle (ORC) waste-heat-recovery system is one of several concepts that DOE, energy-systems suppliers, and others have been developing to make use of low-level waste-heat streams at process and manufacturing plants. Now, several years after the oil crisis of the 1970s accelerated this development, one ORC system has found a home in the energy-intensive refining industry. Mobil Oil Corp has been generating electric power with an ORC system supplied by Turbonetics Energy Inc, a subsidiary of Mechanical Technology Inc (MTI), Latham, NY - at its Torrence (Calif) refinery complex for about nine months. Two modules, each rated at 1070 kW, recover heat from a 300F vapor product stream leaving a fluidcatalytic-cracking (FCC) unit. As a result, cooling duty on the existing overhead coolers has been reduced by about 70-million Btu/hr.

  13. System and method for regulating EGR cooling using a rankine cycle

    DOE Patents [OSTI]

    Ernst, Timothy C.; Morris, Dave

    2015-12-22

    This disclosure relates to a waste heat recovery (WHR) system and method for regulating exhaust gas recirculation (EGR) cooling, and more particularly, to a Rankine cycle WHR system and method, including a recuperator bypass arrangement to regulate EGR exhaust gas cooling for engine efficiency improvement and thermal management. This disclosure describes other unique bypass arrangements for increased flexibility in the ability to regulate EGR exhaust gas cooling.

  14. Performance evaluation of a low-temperature solar Rankine cycle system utilizing R245fa

    SciTech Connect (OSTI)

    Wang, X.D.; Zhao, L.; Wang, J.L.; Zhang, W.Z.; Zhao, X.Z.; Wu, W.

    2010-03-15

    A low-temperature solar Rankine system utilizing R245fa as the working fluid is proposed and an experimental system is designed, constructed and tested. Both the evacuated solar collectors and the flat plate solar collectors are used in the experimental system; meanwhile, a rolling-piston R245fa expander is also mounted in the system. The new designed R245fa expander works stably in the experiment, with an average expansion power output of 1.73 kW and an average isentropic efficiency of 45.2%. The overall power generation efficiency estimated is 4.2%, when the evacuated solar collector is utilized in the system, and with the condition of flat plate solar collector, it is about 3.2%. The experimental results show that using R245fa as working fluid in the low-temperature solar power Rankine cycle system is feasible and the performance is acceptable. (author)

  15. ORC Closed Loop Control Systems for Transient and Steady State...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ORC Closed Loop Control Systems for Transient and Steady State Duty Cycles ORC Closed Loop Control Systems for Transient and Steady State Duty Cycles System-level models using ...

  16. ORC Closed Loop Control Systems for Transient and Steady State Duty Cycles

    Energy.gov [DOE]

    System-level models using iterative concept analysis are being used on a closed loop controlled, waste heat recovery system running automatically over various drive cycles.

  17. Technology for industrial waste heat recovery by organic Rankine cycle systems. Final report

    SciTech Connect (OSTI)

    Cain, W.G.; Drake, R.L.; Prisco, C.J.

    1984-10-01

    Four different aspects of ORC technology were studied: possible destructive chemical reaction between an aluminum turbine wheel and R-113 working fluid under wheel-to-rotor rub conditions; possible chemical reaction between stainless steel or carbon steel and any of five different ORC working fluids under rotor-stator rub conditions; effects on electric generator properties of extended exposure to an environment of saturated R-113 vapor/fluid; and operational proof tests under laboratory conditions of two 1070 kW, ORC, R-113 hermetic turbogenerator power module systems.

  18. Rankine cycle condenser pressure control using an energy conversion device bypass valve

    DOE Patents [OSTI]

    Ernst, Timothy C; Nelson, Christopher R; Zigan, James A

    2014-04-01

    The disclosure provides a waste heat recovery system and method in which pressure in a Rankine cycle (RC) system of the WHR system is regulated by diverting working fluid from entering an inlet of an energy conversion device of the RC system. In the system, an inlet of a controllable bypass valve is fluidly coupled to a working fluid path upstream of an energy conversion device of the RC system, and an outlet of the bypass valve is fluidly coupled to the working fluid path upstream of the condenser of the RC system such that working fluid passing through the bypass valve bypasses the energy conversion device and increases the pressure in a condenser. A controller determines the temperature and pressure of the working fluid and controls the bypass valve to regulate pressure in the condenser.

  19. Exhaust Heat Driven Rankine Cycle for a Heavy Duty Diesel Engine

    Energy.gov [DOE]

    Presents progress to date and plans to develop a viable Rankine engine to harness useful brake power from wasted heat energy in heavy duty truck engine exhaust

  20. Modeling Energy Recovery Using Thermoelectric Conversion Integrated with an Organic Rankine Bottoming Cycle

    SciTech Connect (OSTI)

    Miller, Erik W.; Hendricks, Terry J.; Peterson, Richard B.

    2009-07-01

    Hot engine exhaust represents a resource that is often rejected to the environment without further utilization. This resource is most prevalent in the transportation sector, but stationary engine-generator systems also typically do not utilize this resource. Engine exhaust is a source of high grade thermal energy that can potentially be utilized by various approaches to produce electricity or to drive heating and cooling systems. This paper describes a model system that employs thermoelectric conversion as a topping cycle integrated with an organic Rankine bottoming cycle for waste heat utilization. This approach is being developed to fully utilize the thermal energy contained in hot exhaust streams. The model is composed of a high temperature heat exchanger which extracts thermal energy for driving the thermoelectric conversion elements. However, substantial sensible heat remains in the exhaust stream after emerging from the heat exchanger. The model incorporates a closely integrated bottoming cycle to utilize this remaining thermal energy in the exhaust stream. The model has many interacting parameters that define combined system quantities such as overall output power, efficiency, and total energy utilization factors. In addition, the model identifies a maximum power operating point for the system. That is, the model can identify the optimal amount of heat to remove from the exhaust flow to run through the thermoelectric elements. Removing too much or too little heat from the exhaust stream in this stage will reduce overall cycle performance. The model has been developed such that heat exchanger UAh values, thermal resistances, ZT values, and multiple thermoelectric elements can be investigated in the context of system operation. The model also has the ability to simultaneously determine the effect of each cycle design parameter on the performance of the overall system, thus giving the ability to utilize as much waste heat as possible. Key analysis results are

  1. ECONOMICS AND FEASIBILITY OF RANKINE CYCLE IMPROVEMENTS FOR COAL FIRED POWER PLANTS

    SciTech Connect (OSTI)

    Richard E. Waryasz; Gregory N. Liljedahl

    2004-09-08

    ALSTOM Power Inc.'s Power Plant Laboratories (ALSTOM) has teamed with the U.S. Department of Energy National Energy Technology Laboratory (DOE NETL), American Electric Company (AEP) and Parsons Energy and Chemical Group to conduct a comprehensive study evaluating coal fired steam power plants, known as Rankine Cycles, equipped with three different combustion systems: Pulverized Coal (PC), Circulating Fluidized Bed (CFB), and Circulating Moving Bed (CMB{trademark}). Five steam cycles utilizing a wide range of steam conditions were used with these combustion systems. The motivation for this study was to establish through engineering analysis, the most cost-effective performance potential available through improvement in the Rankine Cycle steam conditions and combustion systems while at the same time ensuring that the most stringent emission performance based on CURC (Coal Utilization Research Council) 2010 targets are met: > 98% sulfur removal; < 0.05 lbm/MM-Btu NO{sub x}; < 0.01 lbm/MM-Btu Particulate Matter; and > 90% Hg removal. The final report discusses the results of a coal fired steam power plant project, which is comprised of two parts. The main part of the study is the analysis of ten (10) Greenfield steam power plants employing three different coal combustion technologies: Pulverized Coal (PC), Circulating Fluidized Bed (CFB), and Circulating Moving Bed (CMB{trademark}) integrated with five different steam cycles. The study explores the technical feasibility, thermal performance, environmental performance, and economic viability of ten power plants that could be deployed currently, in the near, intermediate, and long-term time frame. For the five steam cycles, main steam temperatures vary from 1,000 F to 1,292 F and pressures from 2,400 psi to 5,075 psi. Reheat steam temperatures vary from 1,000 F to 1,328 F. The number of feedwater heaters varies from 7 to 9 and the associated feedwater temperature varies from 500 F to 626 F. The main part of the study

  2. Waste Heat-to-Power in Small Scale Industry Using Scroll Expander for Organic Rankine Bottoming Cycle

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Heat-to-Power ADVANCED MANUFACTURING OFFICE Waste Heat-to- Power in Small Scale Industry Using Scroll Expander for Organic Rankine Bottoming Cycle Development of an Efficient, Cost- Effective System to Recover Medium- Grade Industrial Waste Heat. There is a signifcant opportunity to recover waste heat that is exhausted in various manufacturing industries, including food processing. A large portion of unrecovered industrial waste heat is considered to be low temperature, which has less recovery

  3. Organic Rankine-Cycle Power Systems Working Fluids Study: Topical report No. 3, 2-methylpyridine/water

    SciTech Connect (OSTI)

    Cole, R.L.; Demirgian, J.C.; Allen, J.W.

    1987-09-01

    A mixture of 35 mole percent (mol %) 2-methylpyridine and 65 mol % water was tested at 575, 625, and 675/degree/F in a dynamic loop. Samples of the degraded fluid were chemically analyzed to determine the identities of major degradation products and the quantity of degradation. Computed degradation rates were found to be higher than those for Fluorinol 85 or toluene. For this reason (and other reasons, related to fluid handling), other fluids are recommended as the first choice for service in organic Rankine-cycle systems in preference to 2-methylpyridine/water. 7 refs., 39 figs., 39 tabs.

  4. Scaling of Thermal-Hydraulic Experiments for a Space Rankine Cycle and Selection of a Preconceptual Scaled Experiment Design

    SciTech Connect (OSTI)

    Sulfredge, CD

    2006-01-27

    To assist with the development of a space-based Rankine cycle power system using liquid potassium as the working fluid, a study has been conducted on possible scaled experiments with simulant fluids. This report will consider several possible working fluids and describe a scaling methodology to achieve thermal-hydraulic similarity between an actual potassium system and scaled representations of the Rankine cycle boiler or condenser. The most practical scaling approach examined is based on the selection of perfluorohexane (FC-72) as the simulant. Using the scaling methodology, a series of possible solutions have been calculated for the FC-72 boiler and condenser. The possible scaled systems will then be compared and preconceptual specifications and drawings given for the most promising design. The preconceptual design concept will also include integrating the scaled boiler and scaled condenser into a single experimental loop. All the preconceptual system specifications appear practical from a fabrication and experimental standpoint, but further work will be needed to arrive at a final experiment design.

  5. Improving the efficiency and availability analysis of a modified reheat regenerative Rankine cycle

    SciTech Connect (OSTI)

    Bassily, A.M.

    1999-07-01

    Reheating in a reheat regenerative steam power cycle increases efficiency by increasing the average temperature of heat reception, but also increases the irreversibility of feed water heaters by raising the temperature of the superheated steam used for the regenerative process. This paper introduces some modifications to the regular reheat regenerative steam power cycle that reduce the irreversibility of the regenerative process. An availability analysis of the modified cycle and the regular reheat regenerative cycle as well as a comparison study between both cycles is done. The results indicate that a gain in energy efficiency of up to 2.5% as the steam generator pressure varies is obtained when applying such modifications at the same conditions of pressure, temperature's number of reheating stages, and feed water heaters. The availability analysis showed that such increase in efficiency is due to the reduction of the irreversibility of the regeneration process of the modified cycle.

  6. High-Temperature Components for Rankine-Cycle-Based Waste Heat...

    Energy.gov (indexed) [DOE]

    More Documents & Publications Biodiesel Impact on Engine Lubricant Oil Dilution Statistical Analysis of Transient Cycle Test Results in a 40 CFR Part 1065 Engine Dynamometer Test ...

  7. Investigating potential efficiency improvement for light-duty transportation applications through simulation of an organic Rankine cycle for waste-heat recovery

    SciTech Connect (OSTI)

    Edwards, Kevin Dean; Wagner, Robert M

    2010-01-01

    Modern diesel engines used in light-duty transportation applications have peak brake thermal efficiencies in the range of 40-42% for high-load operation with substantially lower efficiencies at realistic road-load conditions. Thermodynamic energy and exergy analysis reveals that the largest losses from these engines are due to heat loss and combustion irreversibility. Substantial improvement in overall engine efficiency requires reducing or recovering these losses. Unfortunately, much of the heat transfer either occurs at relatively low temperatures resulting in large entropy generation (such as in the air-charge cooler), is transferred to low-exergy flow streams (such as the oil and engine coolant), or is radiated or convected directly to the environment. While there are significant opportunities for recovery from the exhaust and EGR cooler for heavy-duty applications, the potential benefits of such a strategy for light-duty applications are unknown due to transient operation, low-load operation at typical driving conditions, and the added mass of the system. We have developed an organic Rankine cycle model using GT-Suite to investigate the potential for efficiency improvement through waste-heat recovery from the exhaust and EGR cooler of a light-duty diesel engine. Results from steady-state and drive-cycle simulations are presented, and we discuss strategies to address operational difficulties associated with transient drive cycles and competition between waste-heat recovery systems, turbochargers, aftertreatment devices, and other systems for the limited thermal resources.

  8. Test Requirements and Conceptual Design for a Potassium Test Loop to Support an Advanced Potassium Rankine Cycle Power Conversion Systems

    SciTech Connect (OSTI)

    Yoder, JR.G.L.

    2006-03-08

    Parameters for continuing the design and specification of an experimental potassium test loop are identified in this report. Design and construction of a potassium test loop is part of the Phase II effort of the project ''Technology Development Program for an Advanced Potassium Rankine Power Conversion System''. This program is supported by the National Aeronautics and Space Administration. Design features for the potassium test loop and its instrumentation system, specific test articles, and engineered barriers for ensuring worker safety and protection of the environment are described along with safety and environmental protection requirements to be used during the design process. Information presented in the first portion of this report formed the basis to initiate the design phase of the program; however, the report is a living document that can be changed as necessary during the design process, reflecting modifications as additional design details are developed. Some portions of the report have parameters identified as ''to be determined'' (TBD), reflecting the early stage of the overall process. In cases where specific design values are presently unknown, the report attempts to document the quantities that remain to be defined in order to complete the design of the potassium test loop and supporting equipment.

  9. Variable pressure supercritical Rankine cycle for integrated natural gas and power production from the geopressured geothermal resource

    SciTech Connect (OSTI)

    Goldsberry, F.L.

    1982-03-01

    A small-scale power plant cycle that utilizes both a variable pressure vaporizer (heater) and a floating pressure (and temperature) air-cooled condenser is described. Further, it defends this choice on the basis of classical thermodynamics and minimum capital cost by supporting these conclusions with actual comparative examples. The application suggested is for the geopressured geothermal resource. The arguments cited in this application apply to any process (petrochemical, nuclear, etc.) involving waste heat recovery.

  10. Solar Trough Organic Rankine Electricity System (STORES) Stage 1: Power Plant Optimization and Economics; November 2000 -- May 2005

    SciTech Connect (OSTI)

    Prabhu, E.

    2006-03-01

    Report regarding a Stage 1 Study to further develop the concept of the Solar Trough Organic Rankine Cycle Electricity Systems (STORES).

  11. RAPID/Roadmap/14-OR-c | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Geothermal Hydropower Solar Tools Contribute Contact Us Underground Injection Control Permit (14-OR-c) 14ORCUndergroundInjectionControlPermit (1).pdf Error creating...

  12. RAPID/Roadmap/4-OR-c | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    OR-c < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  13. RAPID/Roadmap/6-OR-c | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Tools Contribute Contact Us Drinking Water Permit (6-OR-c) 06ORCDrinkingWaterPermit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number...

  14. Rankine-Brayton engine powered solar thermal aircraft

    DOE Patents [OSTI]

    Bennett, Charles L.

    2009-12-29

    A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  15. The Oak Ridge Competitive Electricity Dispatch (ORCED) Model

    SciTech Connect (OSTI)

    Hadley, Stanton W

    2008-06-01

    The Oak Ridge Competitive electricity Dispatch (ORCED) model has been used for multiple analyses of the impacts of different technologies and policies on the electricity grid. The model was developed over ten years ago and has been greatly enhanced since the initial documentation from June 1998 (ORNL/CON-464). The report gives guidance on the workflow and methodologies used, but does not provide a complete user's manual detailing steps necessary to operate the model. It lists the major resources used, shows the main inputs and outputs of the model, and describes how it can be used for a variety of analyses.

  16. Rankine: A computer software package for the analysis and design of steam power generating units

    SciTech Connect (OSTI)

    Somerton, C.W.; Brouillette, T.; Pourciau, C.; Strawn, D.; Whitehouse, L.

    1987-04-01

    A software package has been developed for the analysis of steam power systems. Twenty-eight configurations are considered, all based upon the simple Rankine cycle with various additional components such as feedwater heaters and reheat legs. The package is demonstrated by two examples. In the first, the optimum operating conditions for a simple reheat cycle are determined by using the program. The second example involves calculating the exergetic efficiency of an actual steam power system.

  17. File:08-OR-c - Oregon CPCN Process.pdf | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    modified from its original state, some details may not fully reflect the modified file. Image title Lucidchart Author None Short title 08-OR-c - Certificate of Public Convenience...

  18. Staging Rankine Cycles Using Ammonia for OTEC Power Production

    SciTech Connect (OSTI)

    Bharathan, D.

    2011-03-01

    Recent focus on renewable power production has renewed interest in looking into ocean thermal energy conversion (OTEC) systems. Early studies in OTEC applicability indicate that the island of Hawaii offers a potential market for a nominal 40-MWe system. a 40-MWe system represents a large leap in the current state of OTEC technology. Lockheed Martin Inc. is currently pursuing a more realistic goal of developing a 10-MWe system under U.S. Navy funding (Lockheed 2009). It is essential that the potential risks associated with the first-of-its-kind plant should be minimized for the project's success. Every means for reducing costs must also be pursued without increasing risks. With this in mind, the potential for increasing return on the investment is assessed both in terms of effective use of the seawater resource and of reducing equipment costs.

  19. Organic Rankine Cycle for Light Duty Passenger Vehicles | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    More Documents & Publications Vehicle Fuel Economy Improvement through Thermoelectric Waste Heat Recovery Automotive Thermoelectric Generator Design Issues Engineering and ...

  20. Rankine cycle load limiting through use of a recuperator bypass

    DOE Patents [OSTI]

    Ernst, Timothy C.

    2011-08-16

    A system for converting heat from an engine into work includes a boiler coupled to a heat source for transferring heat to a working fluid, a turbine that transforms the heat into work, a condenser that transforms the working fluid into liquid, a recuperator with one flow path that routes working fluid from the turbine to the condenser, and another flow path that routes liquid working fluid from the condenser to the boiler, the recuperator being configured to transfer heat to the liquid working fluid, and a bypass valve in parallel with the second flow path. The bypass valve is movable between a closed position, permitting flow through the second flow path and an opened position, under high engine load conditions, bypassing the second flow path.

  1. Modifications and Optimization of the Organic Rankine Cycle

    Energy.gov [DOE]

    Fact sheet overviewing the improved recovery of waste heat from turbines and engines used in industrial processes

  2. Waste Heat-to-Power Using Scroll Expander for Organic Rankine...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Different working fluids - but, many ORC's use HFC-245fa Pressure ratiobuilt-in volume ratio mismatch - larger pressure ratio than practical scroll built-in volume ratio ...

  3. Technology Development Program for an Advanced Potassium Rankine Power Conversion System Compatible with Several Space Reactor Designs

    SciTech Connect (OSTI)

    Yoder, G.L.

    2005-10-03

    This report documents the work performed during the first phase of the National Aeronautics and Space Administration (NASA), National Research Announcement (NRA) Technology Development Program for an Advanced Potassium Rankine Power Conversion System Compatible with Several Space Reactor Designs. The document includes an optimization of both 100-kW{sub e} and 250-kW{sub e} (at the propulsion unit) Rankine cycle power conversion systems. In order to perform the mass optimization of these systems, several parametric evaluations of different design options were investigated. These options included feed and reheat, vapor superheat levels entering the turbine, three different material types, and multiple heat rejection system designs. The overall masses of these Nb-1%Zr systems are approximately 3100 kg and 6300 kg for the 100- kW{sub e} and 250-kW{sub e} systems, respectively, each with two totally redundant power conversion units, including the mass of the single reactor and shield. Initial conceptual designs for each of the components were developed in order to estimate component masses. In addition, an overall system concept was presented that was designed to fit within the launch envelope of a heavy lift vehicle. A technology development plan is presented in the report that describes the major efforts that are required to reach a technology readiness level of 6. A 10-year development plan was proposed.

  4. Study of Supercritical Carbon Dioxide Power Cycle for Low Grade Heat Conversion

    SciTech Connect (OSTI)

    Vidhi, Rachana; Goswami, Yogi D.; Chen, Huijuan; Stefanakos, Elias; Kuravi, Sarada; Sabau, Adrian S

    2011-01-01

    Research on supercritical carbon dioxide power cycles has been mainly focused on high temperature applications, such as Brayton cycle in a nuclear power plant. This paper conducts a comprehensive study on the feasibility of a CO2-based supercritical power cycle for low-grade heat conversion. Energy and exergy analyses of the cycle were conducted to discuss the obstacles as well as the potentials of using supercritical carbon dioxide as the working fluid for supercritical Rankine cycle, Carbon dioxide has desirable qualities such as low critical temperature, stability, little environmental impact and low cost. However, the low critical temperature might be a disadvantage for the condensation process. Comparison between a carbon dioxide-based supercritical Rankine cycle and an organic fluid-based supercritical Rankine cycle showed that the former needs higher pressure to achieve the same efficiency and a heat recovery system is necessary to desuperheat the turbine exhaust and pre-heat the pressure charged liquid.

  5. Organic Rankine Cycle Turbine for Exhaust Energy Recovery in a Heavy Truck Engine

    Energy.gov [DOE]

    Presentation given at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010.

  6. Performance of an Organic Rankine Cycle Waste Heat Recovery System for Light Duty Diesel Engines

    Office of Energy Efficiency and Renewable Energy (EERE)

    Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010.

  7. CX-100562 Categorical Exclusion Determination | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    2 Categorical Exclusion Determination CX-100562 Categorical Exclusion Determination Waste Heat-to-Power Using Scroll Expander for Organic Rankine Bottoming Cycle Award Number: DE-EE0005767 CX(s) Applied: A9, B3.11 Advanced Manufacturing Offices Date: 03/03/2016 Location(s): MA Office(s): Golden Field Office The U.S. Department of Energy (DOE) is proposing to provide federal funding to TIAX LLC to develop a novel, scalable scroll expander for organic Rankine cycle (ORC) waste-heat-recovery

  8. Supercritical Water Reactor Cycle for Medium Power Applications

    SciTech Connect (OSTI)

    BD Middleton; J Buongiorno

    2007-04-25

    Scoping studies for a power conversion system based on a direct-cycle supercritical water reactor have been conducted. The electric power range of interest is 5-30 MWe with a design point of 20 MWe. The overall design objective is to develop a system that has minimized physical size and performs satisfactorily over a broad range of operating conditions. The design constraints are as follows: Net cycle thermal efficiency {ge}20%; Steam turbine outlet quality {ge}90%; and Pumping power {le}2500 kW (at nominal conditions). Three basic cycle configurations were analyzed. Listed in order of increased plant complexity, they are: (1) Simple supercritical Rankine cycle; (2) All-supercritical Brayton cycle; and (3) Supercritical Rankine cycle with feedwater preheating. The sensitivity of these three configurations to various parameters, such as reactor exit temperature, reactor pressure, condenser pressure, etc., was assessed. The Thermoflex software package was used for this task. The results are as follows: (a) The simple supercritical Rankine cycle offers the greatest hardware simplification, but its high reactor temperature rise and reactor outlet temperature may pose serious problems from the viewpoint of thermal stresses, stability and materials in the core. (b) The all-supercritical Brayton cycle is not a contender, due to its poor thermal efficiency. (c) The supercritical Rankine cycle with feedwater preheating affords acceptable thermal efficiency with lower reactor temperature rise and outlet temperature. (d) The use of a moisture separator improves the performance of the supercritical Rankine cycle with feedwater preheating and allows for a further reduction of the reactor outlet temperature, thus it was selected for the next step. Preliminary engineering design of the supercritical Rankine cycle with feedwater preheating and moisture separation was performed. All major components including the turbine, feedwater heater, feedwater pump, condenser, condenser pump

  9. Vehicle Technologies Office Merit Review 2016: Affordable Rankine Cycle (ARC) Waste Heat Recovery for Heavy Duty Trucks

    Energy.gov [DOE]

    Presentation given by Eaton at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Combustion Engines 

  10. EXPERIMENTAL AND THEORETICAL INVESTIGATIONS OF NEW POWER CYCLES AND ADVANCED FALLING FILM HEAT EXCHANGERS

    SciTech Connect (OSTI)

    Arsalan Razani; Kwang J. Kim

    2001-12-01

    The final report for the DOE/UNM grant number DE-FG26-98FT40148 discusses the accomplishments of both the theoretical analysis of advanced power cycles and experimental investigation of advanced falling film heat exchangers. This final report also includes the progress report for the third year (period of October 1, 2000 to September 30, 2001). Four new cycles were studied and two cycles were analyzed in detail based on the second law of thermodynamics. The first cycle uses a triple combined cycle, which consists of a topping cycle (Brayton/gas), an intermediate cycle (Rankine/steam), and a bottoming cycle (Rankine/ammonia). This cycle can produce high efficiency and reduces the irreversibility of the Heat Recovery Steam Generator (HRSC) of conventional combined power cycles. The effect of important system parameters on the irreversibility distribution of all components in the cycle under reasonable practical constraints was evaluated. The second cycle is a combined cycle, which consists of a topping cycle (Brayton/gas) and a bottoming cycle (Rankine/ammonia) with integrated compressor inlet air cooling. This innovative cycle can produce high power and efficiency. This cycle is also analyzed and optimized based on the second the second law to obtain the irreversibility distribution of all components in the cycle. The results of the studies have been published in peer reviewed journals and ASME conference proceeding. Experimental investigation of advanced falling film heat exchangers was conducted to find effective additives for steam condensation. Four additives have been selected and tested in a horizontal tube steam condensation facility. It has been observed that heat transfer additives have been shown to be an effective way to increase the efficiency of conventional tube bundle condenser heat exchangers. This increased condensation rate is due to the creation of a disturbance in the liquid condensate surround the film. The heat transfer through such a film has

  11. Central heat engine cost and availability study

    SciTech Connect (OSTI)

    Not Available

    1987-11-01

    This report documents the performance and cost of commercially available heat engines for use at solar power plants. The scope of inquiry spans power ratings of 500 kW to 50 MW and peak cycle temperatures of 750 /sup 0/F to 1200 /sup 0/F. Data were collected by surveying manufacturers of steam turbines, organic Rankine (ORC) systems, and ancillary equipment (steam condensers, cooling towers, pumps, etc.). Methods were developed for estimating design-point and off-design efficiencies of steam Rankine cycle (SRC) and ORC systems. In the size-temperature range of interest, SRC systems were found to be the only heat engines requiring no additional development effort, and SRC capital and operating cost estimates were developed. Commercially available steam turbines limit peak cycle temperatures to about 1000 /sup 0/F in this size range, which in turn limits efficiency. Other systems were identified that could be prototyped using existing turbomachines. These systems include ORC, advanced SRC, and various configurations employing Brayton cycle equipment, i.e., gas turbines. The latter are limited to peak cycle temperatures of 1500 /sup 0/F in solar applications, based on existing heat-exchanger technology. The advanced systems were found to offer performance advantages over SRC in specific cases. 7 refs., 30 figs., 20 tabs.

  12. SUPERCRITICAL STEAM CYCLE FOR NUCLEAR POWER PLANT

    SciTech Connect (OSTI)

    Tsiklauri, Georgi V.; Talbert, Robert J.; Schmitt, Bruce E.; Filippov, Gennady A.; Bogojavlensky, Roald G.; Grishanin, Evgeny I.

    2005-07-01

    Revolutionary improvement of the nuclear plant safety and economy with light water reactors can be reached with the application of micro-fuel elements (MFE) directly cooled by a supercritical pressure light-water coolant-moderator. There are considerable advantages of the MFE as compared with the traditional fuel rods, such as: Using supercritical and superheated steam considerably increases the thermal efficiency of the Rankine cycle up to 44-45%. Strong negative coolant and void reactivity coefficients with a very short thermal delay time allow the reactor to shutdown quickly in the event of a reactivity or power excursion. Core melting and the creation of corium during severe accidents are impossible. The heat transfer surface area is larger by several orders of magnitude due to the small spherical dimensions of the MFE. The larger heat exchange surface significantly simplifies residual heat removal by natural convection and radiation from the core to a subsequent passive system of heat removal.

  13. Combined cycle phosphoric acid fuel cell electric power system

    SciTech Connect (OSTI)

    Mollot, D.J.; Micheli, P.L.

    1995-12-31

    By arranging two or more electric power generation cycles in series, combined cycle systems are able to produce electric power more efficiently than conventional single cycle plants. The high fuel to electricity conversion efficiency results in lower plant operating costs, better environmental performance, and in some cases even lower capital costs. Despite these advantages, combined cycle systems for the 1 - 10 megawatt (MW) industrial market are rare. This paper presents a low noise, low (oxides of nitrogen) NOx, combined cycle alternative for the small industrial user. By combining a commercially available phosphoric acid fuel cell (PAFC) with a low-temperature Rankine cycle (similar to those used in geothermal applications), electric conversion efficiencies between 45 and 47 percent are predicted. While the simple cycle PAFC is competitive on a cost of energy basis with gas turbines and diesel generators in the 1 to 2 MW market, the combined cycle PAFC is competitive, on a cost of energy basis, with simple cycle diesel generators in the 4 to 25 MW market. In addition, the efficiency and low-temperature operation of the combined cycle PAFC results in a significant reduction in carbon dioxide emissions with NO{sub x} concentration on the order of 1 parts per million (per weight) (ppmw).

  14. Development and test of a high COP Rankine heat pump for generation of process steam. Final report, Phase 2: fabrication and test

    SciTech Connect (OSTI)

    Smoak, J.A.; Koebbeman, W.F.

    1984-10-01

    The steps taken to assemble and test the Rankine-driven heat pump are described. The following were performed: component bench tests, skid assembly, skid tests, system assembly, preliminary (cold) tests, alarms and safeties checkout, and hot tests. The test configurations are presented. Results are discussed for performance, endurance, and special tests. The systems cost analysis is included. (MHR)

  15. A combined power and ejector refrigeration cycle for low temperature heat sources

    SciTech Connect (OSTI)

    Zheng, B.; Weng, Y.W.

    2010-05-15

    A combined power and ejector refrigeration cycle for low temperature heat sources is under investigation in this paper. The proposed cycle combines the organic Rankine cycle and the ejector refrigeration cycle. The ejector is driven by the exhausts from the turbine to produce power and refrigeration simultaneously. A simulation was carried out to analyze the cycle performance using R245fa as the working fluid. A thermal efficiency of 34.1%, an effective efficiency of 18.7% and an exergy efficiency of 56.8% can be obtained at a generating temperature of 395 K, a condensing temperature of 298 K and an evaporating temperature of 280 K. Simulation results show that the proposed cycle has a big potential to produce refrigeration and most exergy losses take place in the ejector. (author)

  16. High-potential Working Fluids for Next Generation Binary Cycle Geothermal Power Plants

    SciTech Connect (OSTI)

    Zia, Jalal; Sevincer, Edip; Chen, Huijuan; Hardy, Ajilli; Wickersham, Paul; Kalra, Chiranjeev; Laursen, Anna Lis; Vandeputte, Thomas

    2013-06-29

    A thermo-economic model has been built and validated for prediction of project economics of Enhanced Geothermal Projects. The thermo-economic model calculates and iteratively optimizes the LCOE (levelized cost of electricity) for a prospective EGS (Enhanced Geothermal) site. It takes into account the local subsurface temperature gradient, the cost of drilling and reservoir creation, stimulation and power plant configuration. It calculates and optimizes the power plant configuration vs. well depth. Thus outputs from the model include optimal well depth and power plant configuration for the lowest LCOE. The main focus of this final report was to experimentally validate the thermodynamic properties that formed the basis of the thermo-economic model built in Phase 2, and thus build confidence that the predictions of the model could be used reliably for process downselection and preliminary design at a given set of geothermal (and/or waste heat) boundary conditions. The fluid and cycle downselected was based on a new proprietary fluid from a vendor in a supercritical ORC cycle at a resource condition of 200�C inlet temperature. The team devised and executed a series of experiments to prove the suitability of the new fluid in realistic ORC cycle conditions. Furthermore, the team performed a preliminary design study for a MW-scale turbo expander that would be used for a supercritical ORC cycle with this new fluid. The following summarizes the main findings in the investigative campaign that was undertaken: 1. Chemical compatibility of the new fluid with common seal/gasket/Oring materials was found to be problematic. Neoprene, Viton, and silicone materials were found to be incompatible, suffering chemical decomposition, swelling and/or compression set issues. Of the materials tested, only TEFLON was found to be compatible under actual ORC temperature and pressure conditions. 2. Thermal stability of the new fluid at 200�C and 40 bar was found to be acceptable after 399

  17. Multiple reheat helium Brayton cycles for sodium fast reactors

    SciTech Connect (OSTI)

    Haihua Zhao; Per F. Peterson

    2008-07-01

    Sodium fast reactors (SFR) traditionally adopt the steam Rankine cycle for power conversion. The resulting potential for water-sodium reaction remains a continuing concern which at least partly delays the SFR technology commercialization and is a contributor to higher capital cost. Supercritical CO2 provides an alternative, but is also capable of sustaining energetic chemical reactions with sodium. Recent development on advanced inert-gas Brayton cycles could potentially solve this compatibility issue, increase thermal efficiency, and bring down the capital cost close to light water reactors. In this paper, helium Brayton cycles with multiple reheat and intercooling states are presented for SFRs with reactor outlet temperatures in the range of 510°C to 650°C. The resulting thermal efficiencies range from 39% and 47%, which is comparable with supercritical recompression CO2 cycles (SCO2 cycle). A systematic comparison between multiple reheat helium Brayton cycle and the SCO2 cycle is given, considering compatibility issues, plant site cooling temperature effect on plant efficiency, full plant cost optimization, and other important factors. The study indicates that the multiple reheat helium cycle is the preferred choice over SCO2 cycle for sodium fast reactors.

  18. Modeling and analysis of advanced binary cycles

    SciTech Connect (OSTI)

    Gawlik, K.

    1997-12-31

    A computer model (Cycle Analysis Simulation Tool, CAST) and a methodology have been developed to perform value analysis for small, low- to moderate-temperature binary geothermal power plants. The value analysis method allows for incremental changes in the levelized electricity cost (LEC) to be determined between a baseline plant and a modified plant. Thermodynamic cycle analyses and component sizing are carried out in the model followed by economic analysis which provides LEC results. The emphasis of the present work is on evaluating the effect of mixed working fluids instead of pure fluids on the LEC of a geothermal binary plant that uses a simple Organic Rankine Cycle. Four resources were studied spanning the range of 265{degrees}F to 375{degrees}F. A variety of isobutane and propane based mixtures, in addition to pure fluids, were used as working fluids. This study shows that the use of propane mixtures at a 265{degrees}F resource can reduce the LEC by 24% when compared to a base case value that utilizes commercial isobutane as its working fluid. The cost savings drop to 6% for a 375{degrees}F resource, where an isobutane mixture is favored. Supercritical cycles were found to have the lowest cost at all resources.

  19. Assessment of dynamic energy conversion systems for radioisotope heat sources

    SciTech Connect (OSTI)

    Thayer, G.R.; Mangeng, C.A.

    1985-06-01

    The use of dynamic conversion systems to convert the heat generated in a 7500 W(t) 90 Sr radioisotopic heat source to electricity is examined. The systems studies were Stirling; Brayton Cycle; three organic Rankines (ORCs) (Barber-Nichols/ORMAT, Sundstrand, and TRW); and an organic Rankine plus thermoelectrics. The systems were ranked for a North Warning System mission using a Los Alamos Multiattribute Decision Theory code. Three different heat source designs were used: case I with a beginning of life (BOL) source temperature of 640 C, case II with a BOL source temperature of 745/sup 0/C, and case III with a BOL source temperature of 945/sup 0/C. The Stirling engine system was the top-ranked system of cases I and II, closely followed by the ORC systems in case I and ORC plus thermoelectrics in case II. The Brayton cycle system was top-ranked for case III, with the Stirling engine system a close second. The use of /sup 238/Pu in heat source sizes of 7500 W(t) was examined and found to be questionable because of cost and material availability and because of additional requirements for analysis of safeguards and critical mass.

  20. Development of multiapplication low-level heat recovery technology

    SciTech Connect (OSTI)

    Not Available

    1985-03-29

    This report summarizes work conducted to develop and demonstrate technologies for recovery of industrial waste heat. The first portion of the work, done under ERDA contract, was performed from 1976 to 1980. A system was developed for generating electric power from exhaust discharged from diesel engine generator sets used in municipal power plants. This work was of an exploratory nature and combined the technology of a low-pressure steam system with that of an organic Rankine-cycle (ORC) system in a single binary cycle system.

  1. UGE Scheduler Cycle Time

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    UGE Scheduler Cycle Time UGE Scheduler Cycle Time Genepool Cycle Time Genepool Daily Genepool Weekly Phoebe Cycle Time Phoebe Daily Phoebe Weekly What is the Scheduler Cycle? The...

  2. Tsiklauri-Durst combined cycle (T-D Cycle{trademark}) application for nuclear and fossil-fueled power generating plants

    SciTech Connect (OSTI)

    Tsiklauri, B.; Korolev, V.N.; Durst, B.M.; Shen, P.K.

    1998-07-01

    The Tsiklauri-Durst combined cycle is a combination of the best attributes of both nuclear power and combined cycle gas power plants. A technology patented in 1994 by Battelle Memorial Institute offers a synergistic approach to power generation. A typical combined cycle is defined as the combination of gas turbine Brayton Cycle, topping steam turbine Rankine Cycle. Exhaust from the gas turbine is used in heat recovery steam generators to produce steam for a steam turbine. In a standard combined cycle gas turbine-steam turbine application, the gas turbine generates about 65 to 70 percent of system power. The thermal efficiency for such an installation is typically about 45 to 50 percent. A T-D combined cycle takes a new, creative approach to combined cycle design by directly mixing high enthalpy steam from the heat recovery steam generator, involving the steam generator at more than one pressure. Direct mixing of superheated and saturated steam eliminates the requirement for a large heat exchanger, making plant modification simple and economical.

  3. DESIGN OF HYBRID POWER GENERATION CYCLES EMPLOYING AMMONIA-WATER-CARBON DIOXIDE MIXTURES

    SciTech Connect (OSTI)

    Ashish Gupta

    2002-06-01

    A power cycle generates electricity from the heat of combustion of fossil fuels. Its efficiency is governed by the cycle configuration, the operating parameters, and the working fluid. Typical. designs use pure water as the fluid. in the last two decades, hybrid cycles based on ammonia-water, and carbon-dioxide mixtures as the working fluid have been proposed. These cycles may improve the power generation efficiency of Rankine cycles by 15%. Improved efficiency is important for two reasons: it lowers the cost of electricity being produced, and by reducing the consumption of fossil fuels per unit power, it reduces the generation of environmental pollutants. The goal of this project is to develop a computational optimization-based method for the design and analysis of hybrid bottoming power cycles to minimize the usage of fossil fuels. The development of this methodology has been achieved by formulating this task as that of selecting the least cost power cycle design from all possible configurations. They employ a detailed thermodynamic property prediction package they have developed under a DOE-FETC grant to model working fluid mixtures. Preliminary results from this work suggest that a pure NH{sub 3} cycle outperforms steam or the expensive Kalina cycle.

  4. INTEGRATED PYROLYSIS COMBINED CYCLE BIOMASS POWER SYSTEM CONCEPT DEFINITION

    SciTech Connect (OSTI)

    Eric Sandvig; Gary Walling; Robert C. Brown; Ryan Pletka; Desmond Radlein; Warren Johnson

    2003-03-01

    Advanced power systems based on integrated gasification/combined cycles (IGCC) are often presented as a solution to the present shortcomings of biomass as fuel. Although IGCC has been technically demonstrated at full scale, it has not been adopted for commercial power generation. Part of the reason for this situation is the continuing low price for coal. However, another significant barrier to IGCC is the high level of integration of this technology: the gas output from the gasifier must be perfectly matched to the energy demand of the gas turbine cycle. We are developing an alternative to IGCC for biomass power: the integrated (fast) pyrolysis/ combined cycle (IPCC). In this system solid biomass is converted into liquid rather than gaseous fuel. This liquid fuel, called bio-oil, is a mixture of oxygenated organic compounds and water that serves as fuel for a gas turbine topping cycle. Waste heat from the gas turbine provides thermal energy to the steam turbine bottoming cycle. Advantages of the biomass-fueled IPCC system include: combined cycle efficiency exceeding 37 percent efficiency for a system as small as 7.6 MW{sub e}; absence of high pressure thermal reactors; decoupling of fuel processing and power generation; and opportunities for recovering value-added products from the bio-oil. This report provides a technical overview of the system including pyrolyzer design, fuel clean-up strategies, pyrolysate condenser design, opportunities for recovering pyrolysis byproducts, gas turbine cycle design, and Rankine steam cycle. The report also reviews the potential biomass fuel supply in Iowa, provide and economic analysis, and present a summery of benefits from the proposed system.

  5. Control system options and strategies for supercritical CO2 cycles.

    SciTech Connect (OSTI)

    Moisseytsev, A.; Kulesza, K. P.; Sienicki, J. J.; Nuclear Engineering Division; Oregon State Univ.

    2009-06-18

    The Supercritical Carbon Dioxide (S-CO{sub 2}) Brayton Cycle is a promising alternative to Rankine steam cycle and recuperated gas Brayton cycle energy converters for use with Sodium-Cooled Fast Reactors (SFRs), Lead-Cooled Fast Reactors (LFRs), as well as other advanced reactor concepts. The S-CO{sub 2} Brayton Cycle offers higher plant efficiencies than Rankine or recuperated gas Brayton cycles operating at the same liquid metal reactor core outlet temperatures as well as reduced costs or size of key components especially the turbomachinery. A new Plant Dynamics Computer Code has been developed at Argonne National Laboratory for simulation of a S-CO{sub 2} Brayton Cycle energy converter coupled to an autonomous load following liquid metal-cooled fast reactor. The Plant Dynamics code has been applied to investigate the effectiveness of a control strategy for the S-CO{sub 2} Brayton Cycle for the STAR-LM 181 MWe (400 MWt) Lead-Cooled Fast Reactor. The strategy, which involves a combination of control mechanisms, is found to be effective for controlling the S-CO{sub 2} Brayton Cycle over the complete operating range from 0 to 100 % load for a representative set of transient load changes. While the system dynamic analysis of control strategy performance for STARLM is carried out for a S-CO{sub 2} Brayton Cycle energy converter incorporating an axial flow turbine and compressors, investigations of the S-CO{sub 2} Brayton Cycle have identified benefits from the use of centrifugal compressors which offer a wider operating range, greater stability near the critical point, and potentially further cost reductions due to fewer stages than axial flow compressors. Models have been developed at Argonne for the conceptual design and performance analysis of centrifugal compressors for use in the SCO{sub 2} Brayton Cycle. Steady state calculations demonstrate the wider operating range of centrifugal compressors versus axial compressors installed in a S-CO{sub 2} Brayton Cycle as

  6. Advanced Multi-Effect Distillation System for Desalination Using Waste Heat fromGas Brayton Cycles

    SciTech Connect (OSTI)

    Haihua Zhao; Per F. Peterson

    2012-10-01

    Generation IV high temperature reactor systems use closed gas Brayton Cycles to realize high thermal efficiency in the range of 40% to 60%. The waste heat is removed through coolers by water at substantially greater average temperature than in conventional Rankine steam cycles. This paper introduces an innovative Advanced Multi-Effect Distillation (AMED) design that can enable the production of substantial quantities of low-cost desalinated water using waste heat from closed gas Brayton cycles. A reference AMED design configuration, optimization models, and simplified economics analysis are presented. By using an AMED distillation system the waste heat from closed gas Brayton cycles can be fully utilized to desalinate brackish water and seawater without affecting the cycle thermal efficiency. Analysis shows that cogeneration of electricity and desalinated water can increase net revenues for several Brayton cycles while generating large quantities of potable water. The AMED combining with closed gas Brayton cycles could significantly improve the sustainability and economics of Generation IV high temperature reactors.

  7. UGE Scheduler Cycle Time

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    UGE Scheduler Cycle Time UGE Scheduler Cycle Time Genepool Cycle Time Genepool Scheduler Cycle Time Genepool Jobs Dispatched / Hour What is the Scheduler Cycle? The Univa Grid Engine Scheduler cycle performs a number of important tasks, including: Prioritizing Jobs Reserving Resources for jobs requesting more resources (slots / memory) Dispatching jobs or tasks to the compute nodes Evaluating job dependencies The "cycle time" is the length of time it takes the scheduler to complete all

  8. Performance improvement options for the supercritical carbon dioxide brayton cycle.

    SciTech Connect (OSTI)

    Moisseytsev, A.; Sienicki, J. J.; Nuclear Engineering Division

    2008-07-17

    The supercritical carbon dioxide (S-CO{sub 2}) Brayton cycle is under development at Argonne National Laboratory as an advanced power conversion technology for Sodium-Cooled Fast Reactors (SFRs) as well as other Generation IV advanced reactors as an alternative to the traditional Rankine steam cycle. For SFRs, the S-CO{sub 2} Brayton cycle eliminates the need to consider sodium-water reactions in the licensing and safety evaluation, reduces the capital cost of the SFR plant, and increases the SFR plant efficiency. Even though the S-CO{sub 2} cycle has been under development for some time and optimal sets of operating parameters have been determined, those earlier development and optimization studies have largely been directed at applications to other systems such as gas-cooled reactors which have higher operating temperatures than SFRs. In addition, little analysis has been carried out to investigate cycle configurations deviating from the selected 'recompression' S-CO{sub 2} cycle configuration. In this work, several possible ways to improve S-CO{sub 2} cycle performance for SFR applications have been identified and analyzed. One set of options incorporates optimization approaches investigated previously, such as variations in the maximum and minimum cycle pressure and minimum cycle temperature, as well as a tradeoff between the component sizes and the cycle performance. In addition, the present investigation also covers options which have received little or no attention in the previous studies. Specific options include a 'multiple-recompression' cycle configuration, intercooling and reheating, as well as liquid-phase CO{sub 2} compression (pumping) either by CO{sub 2} condensation or by a direct transition from the supercritical to the liquid phase. Some of the options considered did not improve the cycle efficiency as could be anticipated beforehand. Those options include: a double recompression cycle, intercooling between the compressor stages, and reheating

  9. 2013 Planning Cycle

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Projects Expand Projects Skip navigation links Ancillary and Control Area Services (ACS) Practices Forum Attachment K 2015 Planning Cycle 2014 Planning Cycle 2013 Planning...

  10. 2014 Planning Cycle

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Projects Expand Projects Skip navigation links Ancillary and Control Area Services (ACS) Practices Forum Attachment K 2015 Planning Cycle 2014 Planning Cycle 2013 Planning...

  11. 2015 Planning Cycle

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Projects Expand Projects Skip navigation links Ancillary and Control Area Services (ACS) Practices Forum Attachment K 2015 Planning Cycle 2014 Planning Cycle 2013 Planning...

  12. Fuel Cycle Subcommittee

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Report to NEAC Fuel Cycle Subcommittee Meeting of October 22, 2015 Washington, DC December ... The agenda for the October 22, 2015 Fuel Cycle Subcommittee meeting is given below. ...

  13. Use of Multiple Reheat Helium Brayton Cycles to Eliminate the Intermediate Heat Transfer Loop for Advanced Loop Type SFRs

    SciTech Connect (OSTI)

    Haihua Zhao; Hongbin Zhang; Samuel E. Bays

    2009-05-01

    The sodium intermediate heat transfer loop is used in existing sodium cooled fast reactor (SFR) plant design as a necessary safety measure to separate the radioactive primary loop sodium from the water of the steam Rankine power cycle. However, the intermediate heat transfer loop significantly increases the SFR plant cost and decreases the plant reliability due to the relatively high possibility of sodium leakage. A previous study shows that helium Brayton cycles with multiple reheat and intercooling for SFRs with reactor outlet temperature in the range of 510°C to 650°C can achieve thermal efficiencies comparable to or higher than steam cycles or recently proposed supercritical CO2 cycles. Use of inert helium as the power conversion working fluid provides major advantages over steam or CO2 by removing the requirement for safety systems to prevent and mitigate the sodium-water or sodium-CO2 reactions. A helium Brayton cycle power conversion system therefore makes the elimination of the intermediate heat transfer loop possible. This paper presents a pre-conceptual design of multiple reheat helium Brayton cycle for an advanced loop type SFR. This design widely refers the new horizontal shaft distributed PBMR helium power conversion design features. For a loop type SFR with reactor outlet temperature 550°C, the design achieves 42.4% thermal efficiency with favorable power density comparing with high temperature gas cooled reactors.

  14. Supercritical binary geothermal cycle experiments with mixed-hydrocarbon working fluids and a vertical, in-tube, counterflow condenser

    SciTech Connect (OSTI)

    Demuth, O.J.; Bliem, C.J.; Mines, G.L.; Swank, W.D.

    1985-12-01

    The objective is improved utilization of moderate temperature geothermal resources. Current testing involves supercritical vaporization and counterflow in-tube condensing in an organic Rankine cycle. This report presents a description of the test facility and results from a part of the program in which the condenser was oriented in a vertical attitude. Results of the experiments for the supercritical heaters and the countercurrent, vertical, in-tube condenser are given for both pure and mixed-hydrocarbon working fluids. The heater and condenser behavior predicted by the Heat Transfer Research, Inc. computer codes used for correlation of the data was in excellent agreement with experimental results. A special series of tests, conducted with propane and up to approximately 40% isopentane concentration, indicated that a close approach to ''integral'' condensation was occurring in the vertically-oriented condenser.

  15. Fuel Cycle Subcommittee

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    to NEAC Fuel Cycle Subcommittee Meeting of May 1, 2014 Washington, DC May 28, 2014 Al ... for the May 1, 2014 Fuel Cycle Subcommittee meeting and list of presenters is given below. ...

  16. Fuel Cycle Subcommittee

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    NEAC Fuel Cycle Subcommittee Meeting of October 30, 2014 Washington, DC December 1, 2014 ... 1 The agenda for the October 30, 2014 Fuel Cycle Subcommittee meeting is given below. ...

  17. ARM - The Hydrologic Cycle

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Hydrologic Cycle Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans The Hydrologic Cycle The hydrologic cycle is the cycle through which water passes from sea to land and from land to sea. Water vapor enters the air through the evaporation of water. Water vapor in the air eventually condenses

  18. Water Cycle Pilot Study

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    1 Water Cycle Pilot Study To learn more about Earth's water cycle, the U.S. Department of Energy (DOE) has established a multi-laboratory science team representing five DOE national laboratories: Argonne, Brookhaven, Lawrence Berkeley, Los Alamos, and Oak Ridge. The science team will conduct a three- year Water Cycle Pilot Study within the ARM SGP CART site, primarily in the Walnut River Watershed east of Wichita, Kansas. The host facility in the Walnut River Watershed is the Atmospheric

  19. 10 MWe power cycle

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    MWe power cycle - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy ...

  20. "Integrated Gasification Combined Cycle"

    U.S. Energy Information Administration (EIA) (indexed site)

    Plant",,,"X" " - CCS","X" "Integrated Gasification Combined Cycle" " - Advanced ... of Plant",,,"X" "Advanced Nuclear","X" "Biomass" " - Pulverized Coal",,,"X" " - Fuel ...

  1. Power Plant Cycling Costs

    SciTech Connect (OSTI)

    Kumar, N.; Besuner, P.; Lefton, S.; Agan, D.; Hilleman, D.

    2012-07-01

    This report provides a detailed review of the most up to date data available on power plant cycling costs. The primary objective of this report is to increase awareness of power plant cycling cost, the use of these costs in renewable integration studies and to stimulate debate between policymakers, system dispatchers, plant personnel and power utilities.

  2. Life Cycle Cost Estimate

    Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    Life-cycle costs (LCCs) are all the anticipated costs associated with a project or program alternative throughout its life. This includes costs from pre-operations through operations or to the end of the alternative.This chapter discusses life cycle costs and the role they play in planning.

  3. Control of flow through a vapor generator

    DOE Patents [OSTI]

    Radcliff, Thomas D.

    2005-11-08

    In a Rankine cycle system wherein a vapor generator receives heat from exhaust gases, provision is made to avoid overheating of the refrigerant during ORC system shut down while at the same time preventing condensation of those gases within the vapor generator when its temperature drops below a threshold temperature by diverting the flow of hot gases to ambient and to thereby draw ambient air through the vapor generator in the process. In one embodiment, a bistable ejector is adjustable between one position, in which the hot gases flow through the vapor generator, to another position wherein the gases are diverted away from the vapor generator. Another embodiment provides for a fixed valve ejector with a bias towards discharging to ambient, but with a fan on the downstream side of said vapor generator for overcoming this bias.

  4. Terrestrial Carbon Cycle

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    cycle Terrestrial Carbon Cycle "Only about half of the CO2 released into the atmosphere by human activities currently resides in the atmosphere, the rest absorbed on land and in the oceans. The period over which the carbon will be sequestered is unclear, and the efficiency of future sinks is unknown." US Carbon Cycle Research Plan "We" desire to be able to predict the future spatial and temporal distribution of sources and sinks of atmospheric CO2 and their interaction

  5. Duty Cycle Software Model

    Energy Science and Technology Software Center (OSTI)

    2010-12-31

    The Software consists of code which is capable of processing a large volume of data to create a “duty cycle” which is representative of how equipment will function under certain conditions.

  6. Forest Carbon Cycle

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    forest carbon cycle Forest Carbon Cycle Terrestrial carbon stocks above- and belowground (in humus and litter layers, woody debris, and mineral soil) are not only sensitive to physical environmental controls (e.g., temperature, precipitation, soil moisture) but also to land use history/management, disturbance, "quality" of carbon input (a reflection of plant carbon allocation and species controls), and the microbial community. The relative importance of these controls on soil carbon

  7. Fast Reactor Fuel Cycle Cost Estimates for Advanced Fuel Cycle...

    Office of Scientific and Technical Information (OSTI)

    Title: Fast Reactor Fuel Cycle Cost Estimates for Advanced Fuel Cycle Studies Authors: Harrison, Thomas J 1 + Show Author Affiliations ORNL ORNL Publication Date: 2013-01-01 ...

  8. Helium process cycle

    DOE Patents [OSTI]

    Ganni, Venkatarao

    2008-08-12

    A unique process cycle and apparatus design separates the consumer (cryogenic) load return flow from most of the recycle return flow of a refrigerator and/or liquefier process cycle. The refrigerator and/or liquefier process recycle return flow is recompressed by a multi-stage compressor set and the consumer load return flow is recompressed by an independent consumer load compressor set that maintains a desirable constant suction pressure using a consumer load bypass control valve and the consumer load return pressure control valve that controls the consumer load compressor's suction pressure. The discharge pressure of this consumer load compressor is thereby allowed to float at the intermediate pressure in between the first and second stage recycle compressor sets. Utilizing the unique gas management valve regulation, the unique process cycle and apparatus design in which the consumer load return flow is separate from the recycle return flow, the pressure ratios of each recycle compressor stage and all main pressures associated with the recycle return flow are allowed to vary naturally, thus providing a naturally regulated and balanced floating pressure process cycle that maintains optimal efficiency at design and off-design process cycle capacity and conditions automatically.

  9. Helium process cycle

    DOE Patents [OSTI]

    Ganni, Venkatarao

    2007-10-09

    A unique process cycle and apparatus design separates the consumer (cryogenic) load return flow from most of the recycle return flow of a refrigerator and/or liquefier process cycle. The refrigerator and/or liquefier process recycle return flow is recompressed by a multi-stage compressor set and the consumer load return flow is recompressed by an independent consumer load compressor set that maintains a desirable constant suction pressure using a consumer load bypass control valve and the consumer load return pressure control valve that controls the consumer load compressor's suction pressure. The discharge pressure of this consumer load compressor is thereby allowed to float at the intermediate pressure in between the first and second stage recycle compressor sets. Utilizing the unique gas management valve regulation, the unique process cycle and apparatus design in which the consumer load return flow is separate from the recycle return flow, the pressure ratios of each recycle compressor stage and all main pressures associated with the recycle return flow are allowed to vary naturally, thus providing a naturally regulated and balanced floating pressure process cycle that maintains optimal efficiency at design and off-design process cycle capacity and conditions automatically.

  10. Superfluid thermodynamic cycle refrigerator

    DOE Patents [OSTI]

    Swift, G.W.; Kotsubo, V.Y.

    1992-12-22

    A cryogenic refrigerator cools a heat source by cyclically concentrating and diluting the amount of [sup 3]He in a single phase [sup 3]He-[sup 4]He solution. The [sup 3]He in superfluid [sup 4]He acts in a manner of an ideal gas in a vacuum. Thus, refrigeration is obtained using any conventional thermal cycle, but preferably a Stirling or Carnot cycle. A single phase solution of liquid [sup 3]He at an initial concentration in superfluid [sup 4]He is contained in a first variable volume connected to a second variable volume through a superleak device that enables free passage of [sup 4]He while restricting passage of [sup 3]He. The [sup 3]He is compressed (concentrated) and expanded (diluted) in a phased manner to carry out the selected thermal cycle to remove heat from the heat load for cooling below 1 K. 12 figs.

  11. Superfluid thermodynamic cycle refrigerator

    DOE Patents [OSTI]

    Swift, Gregory W.; Kotsubo, Vincent Y.

    1992-01-01

    A cryogenic refrigerator cools a heat source by cyclically concentrating and diluting the amount of .sup.3 He in a single phase .sup.3 He-.sup.4 He solution. The .sup.3 He in superfluid .sup.4 He acts in a manner of an ideal gas in a vacuum. Thus, refrigeration is obtained using any conventional thermal cycle, but preferably a Stirling or Carnot cycle. A single phase solution of liquid .sup.3 He at an initial concentration in superfluid .sup.4 He is contained in a first variable volume connected to a second variable volume through a superleak device that enables free passage of .sup.4 He while restricting passage of .sup.3 He. The .sup.3 He is compressed (concentrated) and expanded (diluted) in a phased manner to carry out the selected thermal cycle to remove heat from the heat load for cooling below 1 K.

  12. Cycles in fossil diversity

    SciTech Connect (OSTI)

    Rohde, Robert A.; Muller, Richard A.

    2004-10-20

    It is well-known that the diversity of life appears to fluctuate during the course the Phanerozoic, the eon during which hard shells and skeletons left abundant fossils (0-542 Ma). Using Sepkoski's compendium of the first and last stratigraphic appearances of 36380 marine genera, we report a strong 62 {+-} 3 Myr cycle, which is particularly strong in the shorter-lived genera. The five great extinctions enumerated by Raup and Sepkoski may be an aspect of this cycle. Because of the high statistical significance, we also consider contributing environmental factors and possible causes.

  13. Scale Resistant Heat Exchanger for Low Temperature Geothermal Binary Cycle Power Plant

    SciTech Connect (OSTI)

    Hays, Lance G.

    2014-11-18

    Phase 1 of the investigation of improvements to low temperature geothermal power systems was completed. The improvements considered were reduction of scaling in heat exchangers and a hermetic turbine generator (eliminating seals, seal system, gearbox, and lube oil system). A scaling test system with several experiments was designed and operated at Coso geothermal resource with brine having a high scaling potential. Several methods were investigated at the brine temperature of 235 ºF. One method, circulation of abradable balls through the brine passages, was found to substantially reduce scale deposits. The test heat exchanger was operated with brine outlet temperatures as low as 125 ºF, which enables increased heat input available to power conversion systems. For advanced low temperature cycles, such as the Variable Phase Cycle (VPC) or Kalina Cycle, the lower brine temperature will result in a 20-30% increase in power production from low temperature resources. A preliminary design of an abradable ball system (ABS) was done for the heat exchanger of the 1 megawatt VPC system at Coso resource. The ABS will be installed and demonstrated in Phase 2 of this project, increasing the power production above that possible with the present 175 ºF brine outlet limit. A hermetic turbine generator (TGH) was designed and manufacturing drawings produced. This unit will use the working fluid (R134a) to lubricate the bearings and cool the generator. The 200 kW turbine directly drives the generator, eliminating a gearbox and lube oil system. Elimination of external seals eliminates the potential of leakage of the refrigerant or hydrocarbon working fluids, resulting in environmental improvement. A similar design has been demonstrated by Energent in an ORC waste heat recovery system. The existing VPC power plant at Coso was modified to enable the “piggyback” demonstration of the TGH. The existing heat exchanger, pumps, and condenser will be operated to provide the required

  14. Steam Generator Component Model in a Combined Cycle of Power Conversion Unit for Very High Temperature Gas-Cooled Reactor

    SciTech Connect (OSTI)

    Oh, Chang H; Han, James; Barner, Robert; Sherman, Steven R

    2007-06-01

    The Department of Energy and the Idaho National Laboratory are developing a Next Generation Nuclear Plant (NGNP), Very High Temperature Gas-Cooled Reactor (VHTR) to serve as a demonstration of state-of-the-art nuclear technology. The purpose of the demonstration is two fold 1) efficient low cost energy generation and 2) hydrogen production. Although a next generation plant could be developed as a single-purpose facility, early designs are expected to be dual-purpose. While hydrogen production and advanced energy cycles are still in its early stages of development, research towards coupling a high temperature reactor, electrical generation and hydrogen production is under way. A combined cycle is considered as one of the power conversion units to be coupled to the very high-temperature gas-cooled reactor (VHTR). The combined cycle configuration consists of a Brayton top cycle coupled to a Rankine bottoming cycle by means of a steam generator. A detailed sizing and pressure drop model of a steam generator is not available in the HYSYS processes code. Therefore a four region model was developed for implementation into HYSYS. The focus of this study was the validation of a HYSYS steam generator model of two phase flow correlations. The correlations calculated the size and heat exchange of the steam generator. To assess the model, those calculations were input into a RELAP5 model and its results were compared with HYSYS results. The comparison showed many differences in parameters such as the heat transfer coefficients and revealed the different methods used by the codes. Despite differences in approach, the overall results of heat transfer were in good agreement.

  15. Map of Geothermal Facilities/Data | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    TW 1 1988 Don A. Cambell Geothermal Power Plant Binary Ormat Ormat Ormat 2013 Dora-1 Geothermal Energy Power Plant Binary Cycle Power Plant, ORC Menderes Geothermal Menderes...

  16. Installed Geothermal Capacity/Data | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    TW 1 1988 Don A. Cambell Geothermal Power Plant Binary Ormat Ormat Ormat 2013 Dora-1 Geothermal Energy Power Plant Binary Cycle Power Plant, ORC Menderes Geothermal Menderes...

  17. Deniz Geothermal Power Plant | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Plant Information Facility Type Binary Cycle Power Plant, ORC Owner MAREN Developer MAREN Energy Purchaser TEDAS Number of Units 1 Commercial Online Date 2012 Power Plant Data Type...

  18. Pamukoren Geothermal Power Plant | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Facility Type Binary Cycle Power Plant, ORC Owner CELIKLER Developer MTA-CELIKLER Energy Purchaser TEDAS Number of Units 1 Commercial Online Date 2013 Power Plant Data Type...

  19. Dora-3 Geothermal Power Plant | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Binary Cycle Power Plant, ORC Owner Menderes Geothermal Developer Menderes Geothermal Energy Purchaser TEDAS Number of Units 2 Commercial Online Date 2013 Power Plant Data Type...

  20. Performance and market evaluation of the bladeless turbine

    SciTech Connect (OSTI)

    Garrett-Price, B.A.; Barnhart, J.S.; Eschbach, E.J.

    1982-10-01

    The three-inch diameter prototype bladeless turbine was tested with air over a range of inlet pressures from 20 to 100 psia and speeds of 10, 20, 30 and 40 thousand rpm. The peak efficiency of 22.5 percent was recorded at a pressure of 98 psia and a speed of 40,000 rpm. Efficiency increased slightly with speed and inlet pressure over the range of test conditions. The test program was somewhat hindered by mechanical failures. The turbine bearings in particular were unreliable, with two instances of outright failure and numerous cases of erratic performance. A model of the bladeless turbine was developed to aid in interpreting the experimental results. A macroscopic approach, incorporating several favorable assumptions, was taken to place a reasonable upper bound on turbine efficiency. The model analytically examines the flow through the air inlet nozzles and the interaction between the fluid jet and the turbine blades. The analysis indicates that the maximum possible efficiency of a tangential flow turbine with straight axial blades is 50 percent. This is a direct consequence of turning the fluid only 90 degrees relative to the turbine blade. The adoption of the bladeless turbine as the expander in an Organic Rankine Cycle (ORC) will depend to a great extent on the efficiency of the turbine. The market potential for ORC technology will also impact the adoption of the bladeless turbine. Other expanders have demonstrated efficiencies of 60 to 80% in ORC systems. The Gamell turbine had a peak test efficiency of 22.5% and a maximum theoretical efficiency of 50%. Costs of the turbine are highly uncertain, relying to a great extent on cost reductions achieved through quantity production and through learning.

  1. Concept Design for a High Temperature Helium Brayton Cycle with Interstage Heating and Cooling

    SciTech Connect (OSTI)

    Wright, Steven A.; Vernon, Milton E.; Pickard, Paul S.

    2013-12-01

    The primary metric for the viability of these next generation nuclear power plants will be the cost of generated electricity. One important component in achieving these objectives is the development of power conversion technologies that maximize the electrical power output of these advanced reactors for a given thermal power. More efficient power conversion systems can directly reduce the cost of nuclear generated electricity and therefore advanced power conversion cycle research is an important area of investigation for the Generation IV Program. Brayton cycles using inert or other gas working fluids, have the potential to take advantage of the higher outlet temperature range of Generation IV systems and allow substantial increases in nuclear power conversion efficiency, and potentially reductions in power conversion system capital costs compared to the steam Rankine cycle used in current light water reactors. For the Very High Temperature Reactor (VHTR), Helium Brayton cycles which can operate in the 900 to 950 C range have been the focus of power conversion research. Previous Generation IV studies examined several options for He Brayton cycles that could increase efficiency with acceptable capital cost implications. At these high outlet temperatures, Interstage Heating and Cooling (IHC) was shown to provide significant efficiency improvement (a few to 12%) but required increased system complexity and therefore had potential for increased costs. These scoping studies identified the potential for increased efficiency, but a more detailed analysis of the turbomachinery and heat exchanger sizes and costs was needed to determine whether this approach could be cost effective. The purpose of this study is to examine the turbomachinery and heat exchanger implications of interstage heating and cooling configurations. In general, this analysis illustrates that these engineering considerations introduce new constraints to the design of IHC systems that may require

  2. Stirling cycle engine

    DOE Patents [OSTI]

    Lundholm, Gunnar

    1983-01-01

    In a Stirling cycle engine having a plurality of working gas charges separated by pistons reciprocating in cylinders, the total gas content is minimized and the mean pressure equalization among the serial cylinders is improved by using two piston rings axially spaced at least as much as the piston stroke and by providing a duct in the cylinder wall opening in the space between the two piston rings and leading to a source of minimum or maximum working gas pressure.

  3. Power Plant Cycling Costs

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Power Plant Cycling Costs April 2012 N. Kumar, P. Besuner, S. Lefton, D. Agan, and D. Hilleman Intertek APTECH Sunnyvale, California NREL Technical Monitor: Debra Lew Subcontract Report NREL/SR-5500-55433 July 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov

  4. Nuclear Fuel Cycle

    SciTech Connect (OSTI)

    Dale, Deborah J.

    2014-10-28

    These slides will be presented at the training course “International Training Course on Implementing State Systems of Accounting for and Control (SSAC) of Nuclear Material for States with Small Quantity Protocols (SQP),” on November 3-7, 2014 in Santa Fe, New Mexico. The slides provide a basic overview of the Nuclear Fuel Cycle. This is a joint training course provided by NNSA and IAEA.

  5. Stirling cycle engine

    SciTech Connect (OSTI)

    Lundholm, G.

    1983-11-29

    In a Stirling cycle engine having a plurality of working gas charges separated by pistons reciprocating in cylinders, the total gas content is minimized and the mean pressure equalization among the serial cylinders is improved by using two piston rings axially spaced at least as much as the piston stroke and by providing a duct in the cylinder wall opening in the space between the two piston rings and leading to a source of minimum or maximum working gas pressure. 1 fig.

  6. Exhaust Energy Recovery

    Energy.gov [DOE]

    Application of organic Rankine cycle to achieve 10% fuel economy improvement in heavy-duty diesel engine

  7. Geopressure geothermal energy conversion: the supercritical propane cycle for power generation

    SciTech Connect (OSTI)

    Goldsberry, F.L.; Bebout, D.G.; Bachman, A.L.

    1981-01-01

    The development of the geopressure geothermal unconventional gas resource has been the object of a drilling and reservoir testing program. One aspect of the assessment has been to look at the geothermal component of the energy base as a source of power generation. The basic production unit for the resource has been estimated to be a well capable of producing fluid at a rate of 15,000 to 40,000 BPD at temperatures of 240 to 360/sup 0/F (.0276 to .0736 M/sup 3//sec at 338 to 455/sup 0/K). The spacing of these wells will be approximately 2 to 4 km for effective reservoir drainage. This limits the generation capacity, per well from 700 to 3000 kW per site. It is assumed that interconnecting pipelines to carry brine from each well to a central location and then return it to salt water disposal wells will be impractical. Single well power plants with electrical gathering systems are considered to be the probable mode of development. The thermodynamic envelope within which the plant must operate is defined by the linear cooling curve of the brine and the ambient air temperature. The low resource temperature calls for a Rankine cycle. A supercritical propane cycle was selected. The only component of the thermal power system subject to uncertainty is the brine/propane heater. At the present time a scale/corrosion pilot plant is being operated on a number of geopressure test wells to determine inexpensive scale and corrosion inhibitors that may be used to reduce fouling of the exchanger tubes.

  8. Geothermal Life Cycle Calculator

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    2014-03-11

    This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOEs Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.

  9. Stirling cycle machine

    SciTech Connect (OSTI)

    Burnett, S.C.; Purcell, J.R.; Creedon, W.P.; Joshi, C.H.

    1990-06-05

    This patent describes an improvement in a Stirling cycle machine including first and second variable-volume, compression-expansion chambers containing a gas a regenerator interconnecting the chambers and for conducting the gas therebetween, and eccentric drive means for driving the first and second chambers. It comprises: the eccentric drive means comprising a pair of rotatably mounted shafts, at least one pair of eccentric disks fixed on the shafts in phase with each other, and means for causing the shafts and thereby the eccentric disks to rotate in opposite directions.

  10. Geothermal Life Cycle Calculator

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    2014-03-11

    This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOE’s Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.

  11. Geothermal Life Cycle Calculator

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOEs Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.

  12. Open cycle thermoacoustics

    SciTech Connect (OSTI)

    Reid, Robert Stowers

    2000-01-01

    A new type of thermodynamic device combining a thermodynamic cycle with the externally applied steady flow of an open thermodynamic process is discussed and experimentally demonstrated. The gas flowing through this device can be heated or cooled in a series of semi-open cyclic steps. The combination of open and cyclic flows makes possible the elimination of some or all of the heat exchangers (with their associated irreversibility). Heat is directly exchanged with the process fluid as it flows through the device when operating as a refrigerator, producing a staging effect that tends to increase First Law thermodynamic efficiency. An open-flow thermoacoustic refrigerator was built to demonstrate this concept. Several approaches are presented that describe the physical characteristics of this device. Tests have been conducted on this refrigerator with good agreement with a proposed theory.

  13. Stirling cycle rotary engine

    SciTech Connect (OSTI)

    Chandler, J.A.

    1988-06-28

    A Stirling cycle rotary engine for producing mechanical energy from heat generated by a heat source external to the engine, the engine including: an engine housing having an interior toroidal cavity with a central housing axis for receiving a working gas, the engine housing further having a cool as inlet port, a compressed gas outlet port, a heated compressed gas inlet port, and a hot exhaust gas outlet port at least three rotors each fixedly mounted to a respective rotor shaft and independently rotatable within the toroidal cavity about the central axis; each of the rotors including a pair of rotor blocks spaced radially on diametrically opposing sides of the respective rotor shaft, each rotor block having a radially fixed curva-linear outer surface for sealed rotational engagement with the engine housing.

  14. Fuel Cycle Technologies | Department of Energy

    Office of Environmental Management (EM)

    Initiatives Fuel Cycle Technologies Fuel Cycle Technologies Fuel Cycle Technologies Preparing for Tomorrow's Energy Demands Powerful imperatives drive the continued need for...

  15. Life Cycle Inventory Database | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Commercial Buildings Past Projects Life Cycle Inventory Database Life Cycle Inventory Database The U.S. Life Cycle Inventory (LCI) Database serves as a central repository for ...

  16. D-Cycle- 4-Differential-Stroke Cycle

    Office of Energy Efficiency and Renewable Energy (EERE)

    The D-Cycle offers the opportunity to use less fuel and gain more power while being able to be retrofit to an OEM and aftermarket engines

  17. Advanced regenerative absorption refrigeration cycles

    DOE Patents [OSTI]

    Dao, Kim

    1990-01-01

    Multi-effect regenerative absorption cycles which provide a high coefficient of performance (COP) at relatively high input temperatures. An absorber-coupled double-effect regenerative cycle (ADR cycle) (10) is provided having a single-effect absorption cycle (SEA cycle) (11) as a topping subcycle and a single-effect regenerative absorption cycle (1R cycle) (12) as a bottoming subcycle. The SEA cycle (11) includes a boiler (13), a condenser (21), an expansion device (28), an evaporator (31), and an absorber (40), all operatively connected together. The 1R cycle (12) includes a multistage boiler (48), a multi-stage resorber (51), a multisection regenerator (49) and also uses the condenser (21), expansion device (28) and evaporator (31) of the SEA topping subcycle (11), all operatively connected together. External heat is applied to the SEA boiler (13) for operation up to about 500 degrees F., with most of the high pressure vapor going to the condenser (21) and evaporator (31) being generated by the regenerator (49). The substantially adiabatic and isothermal functioning of the SER subcycle (12) provides a high COP. For higher input temperatures of up to 700 degrees F., another SEA cycle (111) is used as a topping subcycle, with the absorber (140) of the topping subcycle being heat coupled to the boiler (13) of an ADR cycle (10). The 1R cycle (12) itself is an improvement in that all resorber stages (50b-f) have a portion of their output pumped to boiling conduits (71a-f) through the regenerator (49), which conduits are connected to and at the same pressure as the highest pressure stage (48a) of the 1R multistage boiler (48).

  18. Minimize Boiler Short Cycling Losses

    Office of Energy Efficiency and Renewable Energy (EERE)

    This tip sheet on minimizing boiler short cycling losses provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  19. Life Cycle Asset Management

    Directives, Delegations, and Requirements [Office of Management (MA)]

    1998-10-14

    (The following directives are deleted or consolidated into this Order and shall be phased out as noted in Paragraph 2: DOE 1332.1A; DOE 4010.1A; DOE 4300.1C; DOE 4320.1B; DOE 4320.2A; DOE 4330.4B; DOE 4330.5; DOE 4540.1C; DOE 4700.1). This Order supersedes specific project management provisions within DOE O 430.1A, LIFE CYCLE ASSET MANAGEMENT. The specific paragraphs canceled by this Order are 6e(7); 7a(3); 7b(11) and (14); 7c(4),(6),(7),(11), and (16); 7d(4) and (8); 7e(3),(10), and (17); Attachment 1, Definitions (item 30 - Line Item Project, item 42 - Project, item 48 - Strategic System); and Attachment 2, Contractor Requirements Document (paragraph 1d regarding a project management system). The remainder of DOE O 430.1A remains in effect. Cancels DOE O 430.1. Canceled by DOE O 413.3.

  20. RAPID/Roadmap/3-OR-c | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Encroachments include the building of new approaches, the installation, maintenance, and operation of utility facilities such as pipe lines, pole lines, buried cable,...

  1. RAPID/Roadmap/8-OR-c | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    c < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  2. CX-010694: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Waste Heat-to-Power in Small-Scale Industry Using Scroll Expander for Organic Rankine ... develop a scalable scroll expander for Organic Rankine Cycle waste heat recovery systems ...

  3. Fuel cycle cost uncertainty from nuclear fuel cycle comparison

    SciTech Connect (OSTI)

    Li, J.; McNelis, D.; Yim, M.S.

    2013-07-01

    This paper examined the uncertainty in fuel cycle cost (FCC) calculation by considering both model and parameter uncertainty. Four different fuel cycle options were compared in the analysis including the once-through cycle (OT), the DUPIC cycle, the MOX cycle and a closed fuel cycle with fast reactors (FR). The model uncertainty was addressed by using three different FCC modeling approaches with and without the time value of money consideration. The relative ratios of FCC in comparison to OT did not change much by using different modeling approaches. This observation was consistent with the results of the sensitivity study for the discount rate. Two different sets of data with uncertainty range of unit costs were used to address the parameter uncertainty of the FCC calculation. The sensitivity study showed that the dominating contributor to the total variance of FCC is the uranium price. In general, the FCC of OT was found to be the lowest followed by FR, MOX, and DUPIC. But depending on the uranium price, the FR cycle was found to have lower FCC over OT. The reprocessing cost was also found to have a major impact on FCC.

  4. Preliminary studies on the heat exchanger option for S-CO{sub 2} power conversion cycle coupled to water cooled SMR

    SciTech Connect (OSTI)

    Ahn, Y.; Lee, J.; Lee, J. I.

    2012-07-01

    For more than a half century, the steam Rankine cycle had been the major power conversion cycle for a nuclear power plant. However, as the interest on the next generation reactors grows, a variety of alternative power conversion systems have been studied. Among them, the S-CO{sub 2} cycle (Supercritical carbon dioxide Brayton cycle) is considered as a promising candidate due to several benefits such as 1) Relatively high thermal efficiency at relatively low turbine inlet temperature, 2) High efficiency with simple lay-out 3) Compactness of turbo-machineries. 4) Compactness of total cycle combined with PCHE (Printed Circuit Heat Exchanger). According to the conventional classification of heat exchangers (HE), there are three kind of HE, 1) Tubular HEs, 2) Plate-type HEs, 3) Extended surface HEs. So far, the researcher has mostly assumed PCHE type HE for the S-CO{sub 2} cycle due to its compactness with reasonably low pressure drop. However, PCHE is currently one of the most expensive components in the cycle, which can have a negative effect on the economics of the cycle. Therefore, an alternative for the HE should be seriously investigated. By comparing the operating condition (pressure and temperature) there are three kind of HE in the S-CO{sub 2} cycle, 1) IHX (Intermediate Heat exchanger) 2) Recuperator and 3) Pre-cooler. In each heat exchanger, hot side and cold side coolants are different, i.e. reactor coolant to S-CO{sub 2} (IHX), S-CO{sub 2} to S-CO{sub 2}(Recuperator), S-CO{sub 2} to water (Pre-cooler). By considering all the attributes mentioned above, all existing types of heat exchangers are compared to find a possible alternative to PCHE. The comparing factors are 1) Size(volume), 2) Cost. Plate fin type HEs are considered to be the most competitive heat exchanger regarding the size and the cost after some improvements on the design limit are made. (authors)

  5. Program Evaluation: Program Life Cycle

    Energy.gov [DOE]

    In general, different types of evaluation are carried out over different parts of a program's life cycle (e.g., Creating a program, Program is underway, or Closing out or end of program)....

  6. Minimize Boiler Short Cycling Losses

    SciTech Connect (OSTI)

    Not Available

    2006-01-01

    This revised ITP tip sheet on minimizing boiler short cycling losses provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  7. Photovoltaics: Life-cycle Analyses

    SciTech Connect (OSTI)

    Fthenakis V. M.; Kim, H.C.

    2009-10-02

    Life-cycle analysis is an invaluable tool for investigating the environmental profile of a product or technology from cradle to grave. Such life-cycle analyses of energy technologies are essential, especially as material and energy flows are often interwoven, and divergent emissions into the environment may occur at different life-cycle-stages. This approach is well exemplified by our description of material and energy flows in four commercial PV technologies, i.e., mono-crystalline silicon, multi-crystalline silicon, ribbon-silicon, and cadmium telluride. The same life-cycle approach is applied to the balance of system that supports flat, fixed PV modules during operation. We also discuss the life-cycle environmental metrics for a concentration PV system with a tracker and lenses to capture more sunlight per cell area than the flat, fixed system but requires large auxiliary components. Select life-cycle risk indicators for PV, i.e., fatalities, injures, and maximum consequences are evaluated in a comparative context with other electricity-generation pathways.

  8. SANDIA REPORT

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ... significantly higher than traditional steam Rankine cycles. ... Both heat exchanger capital costs and power plant operating ... Brayton cycle in order to test a recuperator at full load. ...

  9. Rankin CSD 98 | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    - Yankton School District Wind Project

  10. Solar Fuels and Carbon Cycle 2.0 (Carbon Cycle 2.0) (Conference...

    Office of Scientific and Technical Information (OSTI)

    Solar Fuels and Carbon Cycle 2.0 (Carbon Cycle 2.0) Citation Details In-Document Search Title: Solar Fuels and Carbon Cycle 2.0 (Carbon Cycle 2.0) Paul Alivisatos, LBNL Director...

  11. New Cycle Capital LLC | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Cycle Capital LLC Jump to: navigation, search Name: New Cycle Capital, LLC. Place: San Francisco, California Zip: 94103 Product: San Francisco-based venture capitalist firm...

  12. Carbon Cycle Engineering | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Cycle Engineering Jump to: navigation, search Name: Carbon Cycle Engineering Address: 13725 Dutch Creek Road Place: Athens, Ohio Zip: 45701 Sector: Biofuels, Biomass, Efficiency,...

  13. Answering Key Fuel Cycle Questions

    SciTech Connect (OSTI)

    Piet, S.J.; Dixon, B.W.; Bennett, R.G.; Smith, J.D.; Hill, R.N.

    2004-10-03

    Given the range of fuel cycle goals and criteria, and the wide range of fuel cycle options, how can the set of options eventually be narrowed in a transparent and justifiable fashion? It is impractical to develop all options. We suggest an approach that starts by considering a range of goals for the Advanced Fuel Cycle Initiative (AFCI) and then posits seven questions, such as whether Cs and Sr isotopes should be separated from spent fuel and, if so, what should be done with them. For each question, we consider which of the goals may be relevant to eventually providing answers. The AFCI program has both ''outcome'' and ''process'' goals because it must address both waste already accumulating as well as completing the fuel cycle in connection with advanced nuclear power plant concepts. The outcome objectives are waste geologic repository capacity and cost, energy security and sustainability, proliferation resistance, fuel cycle economics, and safety. The process objectives are rea diness to proceed and adaptability and robustness in the face of uncertainties.

  14. Modeling the Nuclear Fuel Cycle

    SciTech Connect (OSTI)

    Jacob J. Jacobson; A. M. Yacout; G. E. Matthern; S. J. Piet; A. Moisseytsev

    2005-07-01

    The Advanced Fuel Cycle Initiative is developing a system dynamics model as part of their broad systems analysis of future nuclear energy in the United States. The model will be used to analyze and compare various proposed technology deployment scenarios. The model will also give a better understanding of the linkages between the various components of the nuclear fuel cycle that includes uranium resources, reactor number and mix, nuclear fuel type and waste management. Each of these components is tightly connected to the nuclear fuel cycle but usually analyzed in isolation of the other parts. This model will attempt to bridge these components into a single model for analysis. This work is part of a multi-national laboratory effort between Argonne National Laboratory, Idaho National Laboratory and United States Department of Energy. This paper summarizes the basics of the system dynamics model and looks at some results from the model.

  15. SNMR pulse sequence phase cycling

    DOE Patents [OSTI]

    Walsh, David O; Grunewald, Elliot D

    2013-11-12

    Technologies applicable to SNMR pulse sequence phase cycling are disclosed, including SNMR acquisition apparatus and methods, SNMR processing apparatus and methods, and combinations thereof. SNMR acquisition may include transmitting two or more SNMR pulse sequences and applying a phase shift to a pulse in at least one of the pulse sequences, according to any of a variety cycling techniques. SNMR processing may include combining SNMR from a plurality of pulse sequences comprising pulses of different phases, so that desired signals are preserved and indesired signals are canceled.

  16. Simple ocean carbon cycle models

    SciTech Connect (OSTI)

    Caldeira, K.; Hoffert, M.I.; Siegenthaler, U.

    1994-02-01

    Simple ocean carbon cycle models can be used to calculate the rate at which the oceans are likely to absorb CO{sub 2} from the atmosphere. For problems involving steady-state ocean circulation, well calibrated ocean models produce results that are very similar to results obtained using general circulation models. Hence, simple ocean carbon cycle models may be appropriate for use in studies in which the time or expense of running large scale general circulation models would be prohibitive. Simple ocean models have the advantage of being based on a small number of explicit assumptions. The simplicity of these ocean models facilitates the understanding of model results.

  17. Advanced Nuclear Fuel Cycle Options

    SciTech Connect (OSTI)

    Roald Wigeland; Temitope Taiwo; Michael Todosow; William Halsey; Jess Gehin

    2010-06-01

    A systematic evaluation has been conducted of the potential for advanced nuclear fuel cycle strategies and options to address the issues ascribed to the use of nuclear power. Issues included nuclear waste management, proliferation risk, safety, security, economics and affordability, and sustainability. The two basic strategies, once-through and recycle, and the range of possibilities within each strategy, are considered for all aspects of the fuel cycle including options for nuclear material irradiation, separations if needed, and disposal. Options range from incremental changes to today’s implementation to revolutionary concepts that would require the development of advanced nuclear technologies.

  18. U.S. Life Cycle Inventory Database Roadmap (Brochure) | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Life Cycle Inventory Database Roadmap (Brochure) U.S. Life Cycle Inventory Database Roadmap (Brochure) Life cycle inventory data are the primary inputs for conducting life cycle ...

  19. GAX absorption cycle design process

    SciTech Connect (OSTI)

    Priedeman, D.K.; Christensen, R.N.

    1999-07-01

    This paper presents an absorption system design process that relies on computer simulations that are validated by experimental findings. An ammonia-water absorption heat pump cycle at 3 refrigeration tons (RT) and chillers at 3.3 RT and 5 RT (10.5 kW, 11.6 kW, and 17.6 kW) were initially modeled and then built and tested. The experimental results were used to calibrate both the cycle simulation and the component simulations, yielding computer design routines that could accurately predict component and cycle performance. Each system was a generator-absorber heat exchange (GAX) cycle, and all were sized for residential and light commercial use, where very little absorption equipment is currently used. The specific findings of the 5 RT (17.6 kW) chiller are presented. Modeling incorporated a heat loss from the gas-fired generator and pressure drops in both the evaporator and absorber. Simulation results and experimental findings agreed closely and validated the modeling method and simulation software.

  20. Multi-cycle boiling water reactor fuel cycle optimization

    SciTech Connect (OSTI)

    Ottinger, K.; Maldonado, G.I.

    2013-07-01

    In this work a new computer code, BWROPT (Boiling Water Reactor Optimization), is presented. BWROPT uses the Parallel Simulated Annealing (PSA) algorithm to solve the out-of-core optimization problem coupled with an in-core optimization that determines the optimum fuel loading pattern. However it uses a Haling power profile for the depletion instead of optimizing the operating strategy. The result of this optimization is the optimum new fuel inventory and the core loading pattern for the first cycle considered in the optimization. Several changes were made to the optimization algorithm with respect to other nuclear fuel cycle optimization codes that use PSA. Instead of using constant sampling probabilities for the solution perturbation types throughout the optimization as is usually done in PSA optimizations the sampling probabilities are varied to get a better solution and/or decrease runtime. The new fuel types available for use can be sorted into an array based on any number of parameters so that each parameter can be incremented or decremented, which allows for more precise fuel type selection compared to random sampling. Also, the results are sorted by the new fuel inventory of the first cycle for ease of comparing alternative solutions. (authors)

  1. Advanced Fuel Cycle Cost Basis

    SciTech Connect (OSTI)

    D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert; E. Schneider

    2008-03-01

    This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 25 cost modules—23 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, transuranic, and high-level waste.

  2. Advanced Fuel Cycle Cost Basis

    SciTech Connect (OSTI)

    D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert

    2007-04-01

    This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 26 cost modules—24 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, and high-level waste.

  3. Advanced Fuel Cycle Cost Basis

    SciTech Connect (OSTI)

    D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert; E. Schneider

    2009-12-01

    This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 25 cost modules—23 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, transuranic, and high-level waste.

  4. Binary Cycle Power Plant | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    binary-cycle power plants in the future will be binary-cycle plants1 Enel's Salts Wells Geothermal Plant in Nevada: This plant is a binary system that is rated at 13 MW...

  5. Fuel Cycle Research and Development Program

    Office of Environmental Management (EM)

    James C. Bresee, ScD, JD Advisory Board Member Office of Nuclear Energy July 29, 2009 July 29, 2009 Fuel Cycle Research and Development DM 195665 2 Outline Fuel Cycle R&D Mission ...

  6. Integrated Climate and Carbon-cycle Model

    Energy Science and Technology Software Center (OSTI)

    2006-03-06

    The INCCA model is a numerical climate and carbon cycle modeling tool for use in studying climate change and carbon cycle science. The model includes atmosphere, ocean, land surface, and sea ice components.

  7. Fuel Cycle Research and Development Presentation Title

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Materials Recovery and Waste Form Development Campaign Overview Jim Bresee, DOE NE NEET Webinar September 17, 2014 Campaign Objectives  Develop advanced fuel cycle material recovery and waste management technologies that improve current fuel cycle performance and enable a sustainable fuel cycle, with minimal processing, waste generation, and potential for material diversion to provide options for future fuel cycle policy decisions  Campaign strategy is based on developing: - Technologies

  8. Development Plan for the Fuel Cycle Simulator

    SciTech Connect (OSTI)

    Brent Dixon

    2011-09-01

    The Fuel Cycle Simulator (FCS) project was initiated late in FY-10 as the activity to develop a next generation fuel cycle dynamic analysis tool for achieving the Systems Analysis Campaign 'Grand Challenge.' This challenge, as documented in the Campaign Implementation Plan, is to: 'Develop a fuel cycle simulator as part of a suite of tools to support decision-making, communication, and education, that synthesizes and visually explains the multiple attributes of potential fuel cycles.'

  9. MHD Integrated Topping Cycle Project

    SciTech Connect (OSTI)

    Not Available

    1992-07-01

    This eighteenth quarterly technical progress report of the MHD Integrated Topping cycle Project presents the accomplishments during the period November 1, 1991 to January 31, 1992. The precombustor is fully assembled. Manufacturing of all slagging stage components has been completed. All cooling panels were welded in place and the panel/shell gap was filled with RTV. Final combustor assembly is in progress. The low pressure cooling subsystem (LPCS) was delivered to the CDIF. Second stage brazing issues were resolved. The construction of the two anode power cabinets was completed.

  10. MHD Integrated Topping Cycle Project

    SciTech Connect (OSTI)

    Not Available

    1992-03-01

    The Magnetohydrodynamics (MHD) Integrated Topping Cycle (ITC) Project represents the culmination of the proof-of-concept (POC) development stage in the US Department of Energy (DOE) program to advance MHD technology to early commercial development stage utility power applications. The project is a joint effort, combining the skills of three topping cycle component developers: TRW, Avco/TDS, and Westinghouse. TRW, the prime contractor and system integrator, is responsible for the 50 thermal megawatt (50 MW{sub t}) slagging coal combustion subsystem. Avco/TDS is responsible for the MHD channel subsystem (nozzle, channel, diffuser, and power conditioning circuits), and Westinghouse is responsible for the current consolidation subsystem. The ITC Project will advance the state-of-the-art in MHD power systems with the design, construction, and integrated testing of 50 MW{sub t} power train components which are prototypical of the equipment that will be used in an early commercial scale MHD utility retrofit. Long duration testing of the integrated power train at the Component Development and Integration Facility (CDIF) in Butte, Montana will be performed, so that by the early 1990's, an engineering data base on the reliability, availability, maintainability and performance of the system will be available to allow scaleup of the prototypical designs to the next development level. This Sixteenth Quarterly Technical Progress Report covers the period May 1, 1991 to July 31, 1991.

  11. Technology development life cycle processes.

    SciTech Connect (OSTI)

    Beck, David Franklin

    2013-05-01

    This report and set of appendices are a collection of memoranda originally drafted in 2009 for the purpose of providing motivation and the necessary background material to support the definition and integration of engineering and management processes related to technology development. At the time there was interest and support to move from Capability Maturity Model Integration (CMMI) Level One (ad hoc processes) to Level Three. As presented herein, the material begins with a survey of open literature perspectives on technology development life cycles, including published data on %E2%80%9Cwhat went wrong.%E2%80%9D The main thrust of the material presents a rational expose%CC%81 of a structured technology development life cycle that uses the scientific method as a framework, with further rigor added from adapting relevant portions of the systems engineering process. The material concludes with a discussion on the use of multiple measures to assess technology maturity, including consideration of the viewpoint of potential users.

  12. MHD Integrated Topping Cycle Project

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    The overall objective of the project is to design and construct prototypical hardware for an integrated MHD topping cycle, and conduct long duration proof-of-concept tests of integrated system at the US DOE Component Development and Integration Facility in Butte, Montana. The results of the long duration tests will augment the existing engineering design data base on MHD power train reliability, availability, maintainability, and performance, and will serve as a basis for scaling up the topping cycle design to the next level of development, an early commercial scale power plant retrofit. The components of the MHD power train to be designed, fabricated, and tested include: A slagging coal combustor with a rated capacity of 50 MW thermal input, capable of operation with an Eastern (Illinois {number sign}6) or Western (Montana Rosebud) coal, a segmented supersonic nozzle, a supersonic MHD channel capable of generating at least 1.5 MW of electrical power, a segmented supersonic diffuser section to interface the channel with existing facility quench and exhaust systems, a complete set of current control circuits for local diagonal current control along the channel, and a set of current consolidation circuits to interface the channel with the existing facility inverter.

  13. Nuclear Fuel Cycle | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Cycle Nuclear Fuel Cycle This is an illustration of a nuclear fuel cycle that shows the required steps to process natural uranium from ore for preparation for fuel to be loaded in nuclear reactors. This is an illustration of a nuclear fuel cycle that shows the required steps to process natural uranium from ore for preparation for fuel to be loaded in nuclear reactors. The mission of NE-54 is primarily focused on activities related to the front end of the nuclear fuel cycle which includes mining,

  14. Advanced Fuel Cycle Economic Sensitivity Analysis

    SciTech Connect (OSTI)

    David Shropshire; Kent Williams; J.D. Smith; Brent Boore

    2006-12-01

    A fuel cycle economic analysis was performed on four fuel cycles to provide a baseline for initial cost comparison using the Gen IV Economic Modeling Work Group G4 ECON spreadsheet model, Decision Programming Language software, the 2006 Advanced Fuel Cycle Cost Basis report, industry cost data, international papers, the nuclear power related cost study from MIT, Harvard, and the University of Chicago. The analysis developed and compared the fuel cycle cost component of the total cost of energy for a wide range of fuel cycles including: once through, thermal with fast recycle, continuous fast recycle, and thermal recycle.

  15. VISION: Verifiable Fuel Cycle Simulation Model

    SciTech Connect (OSTI)

    Jacob J. Jacobson; Abdellatif M. Yacout; Gretchen E. Matthern; Steven J. Piet; David E. Shropshire

    2009-04-01

    The nuclear fuel cycle is a very complex system that includes considerable dynamic complexity as well as detail complexity. In the nuclear power realm, there are experts and considerable research and development in nuclear fuel development, separations technology, reactor physics and waste management. What is lacking is an overall understanding of the entire nuclear fuel cycle and how the deployment of new fuel cycle technologies affects the overall performance of the fuel cycle. The Advanced Fuel Cycle Initiatives systems analysis group is developing a dynamic simulation model, VISION, to capture the relationships, timing and delays in and among the fuel cycle components to help develop an understanding of how the overall fuel cycle works and can transition as technologies are changed. This paper is an overview of the philosophy and development strategy behind VISION. The paper includes some descriptions of the model and some examples of how to use VISION.

  16. Fuel Cycle System Analysis Handbook

    SciTech Connect (OSTI)

    Steven J. Piet; Brent W. Dixon; Dirk Gombert; Edward A. Hoffman; Gretchen E. Matthern; Kent A. Williams

    2009-06-01

    This Handbook aims to improve understanding and communication regarding nuclear fuel cycle options. It is intended to assist DOE, Campaign Managers, and other presenters prepare presentations and reports. When looking for information, check here. The Handbook generally includes few details of how calculations were performed, which can be found by consulting references provided to the reader. The Handbook emphasizes results in the form of graphics and diagrams, with only enough text to explain the graphic, to ensure that the messages associated with the graphic is clear, and to explain key assumptions and methods that cause the graphed results. Some of the material is new and is not found in previous reports, for example: (1) Section 3 has system-level mass flow diagrams for 0-tier (once-through), 1-tier (UOX to CR=0.50 fast reactor), and 2-tier (UOX to MOX-Pu to CR=0.50 fast reactor) scenarios - at both static and dynamic equilibrium. (2) To help inform fast reactor transuranic (TRU) conversion ratio and uranium supply behavior, section 5 provides the sustainable fast reactor growth rate as a function of TRU conversion ratio. (3) To help clarify the difference in recycling Pu, NpPu, NpPuAm, and all-TRU, section 5 provides mass fraction, gamma, and neutron emission for those four cases for MOX, heterogeneous LWR IMF (assemblies mixing IMF and UOX pins), and a CR=0.50 fast reactor. There are data for the first 10 LWR recycle passes and equilibrium. (4) Section 6 provides information on the cycle length, planned and unplanned outages, and TRU enrichment as a function of fast reactor TRU conversion ratio, as well as the dilution of TRU feedstock by uranium in making fast reactor fuel. (The recovered uranium is considered to be more pure than recovered TRU.) The latter parameter impacts the required TRU impurity limits specified by the Fuels Campaign. (5) Section 7 provides flows for an 800-tonne UOX separation plant. (6) To complement 'tornado' economic uncertainty

  17. Answering Key Fuel Cycle Questions

    SciTech Connect (OSTI)

    Steven J. Piet; Brent W. Dixon; J. Stephen Herring; David E. Shropshire; Mary Lou Dunzik-Gougar

    2003-10-01

    The Advanced Fuel Cycle Initiative (AFCI) program has both “outcome” and “process” goals because it must address both waste already accumulating as well as completing the fuel cycle in connection with advanced nuclear power plant concepts. The outcome objectives are waste geological repository capacity and cost, energy security and sustainability, proliferation resistance, fuel cycle economics, and safety. The process objectives are readiness to proceed and adaptability and robustness in the face of uncertainties. A classic decision-making approach to such a multi-attribute problem would be to weight individual quantified criteria and calculate an overall figure of merit. This is inappropriate for several reasons. First, the goals are not independent. Second, the importance of different goals varies among stakeholders. Third, the importance of different goals is likely to vary with time, especially the “energy future.” Fourth, some key considerations are not easily or meaningfully quantifiable at present. Instead, at this point, we have developed 16 questions the AFCI program should answer and suggest an approach of determining for each whether relevant options improve meeting each of the program goals. We find that it is not always clear which option is best for a specific question and specific goal; this helps identify key issues for future work. In general, we suggest attempting to create as many win-win decisions (options that are attractive or neutral to most goals) as possible. Thus, to help clarify why the program is exploring the options it is, and to set the stage for future narrowing of options, we have developed 16 questions, as follows: · What are the AFCI program goals? · Which potential waste disposition approaches do we plan for? · What are the major separations, transmutation, and fuel options? · How do we address proliferation resistance? · Which potential energy futures do we plan for? · What potential external triggers do we

  18. Safeguards Considerations for Thorium Fuel Cycles

    DOE PAGES-Beta [OSTI]

    Worrall, Louise G.; Worrall, Andrew; Flanagan, George F.; Croft, Steven

    2016-04-21

    We report that by around 2025, thorium-based fuel cycles are likely to be deployed internationally. States such as China and India are pursuing research, development, and deployment pathways toward a number of commercial-scale thorium fuel cycles, and they are already building test reactors and the associated fuel cycle infrastructure. In the future, the potential exists for these emerging programs to sell, export, and deploy thorium fuel cycle technology in other states. Without technically adequate international safeguards protocols and measures in place, any future potential clandestine misuse of these fuel cycles could go undetected, compromising the deterrent value of these protocolsmore » and measures. The development of safeguards approaches for thorium-based fuel cycles is therefore a matter of some urgency. Yet, the focus of the international safeguards community remains mainly on safeguarding conventional 235U- and 239Pu-based fuel cycles while the safeguards challenges of thorium-uranium fuel cycles remain largely uninvestigated. This raises the following question: Is the International Atomic Energy Agency and international safeguards system ready for thorium fuel cycles? Furthermore, is the safeguards technology of today sufficiently mature to meet the verification challenges posed by thorium-based fuel cycles? In defining these and other related research questions, the objectives of this paper are to identify key safeguards considerations for thorium-based fuel cycles and to call for an early dialogue between the international safeguards and the nuclear fuel cycle communities to prepare for the potential safeguards challenges associated with these fuel cycles. In this paper, it is concluded that directed research and development programs are required to meet the identified safeguards challenges and to take timely action in preparation for the international deployment of thorium fuel cycles.« less

  19. Efficiency combined cycle power plant

    SciTech Connect (OSTI)

    Pavel, J.; Meyers, G.A.; Baldwin, T.S.

    1990-06-12

    This patent describes a method of operating a combined cycle power plant. It comprises: flowing exhaust gas from a combustion turbine through a heat recovery steam generator (HRSG); flowing feed water through an economizer section of the HRSG at a flow rate and providing heated feed water; flowing a first portion of the heated feed water through an evaporator section of the HRSG and producing saturated steam at a production rate, the flow rate of the feed water through the economizer section being greater than required to sustain the production rate of steam in the evaporator section; flowing fuel for the turbine through a heat exchanger; and, flowing a second portion of the heated feed water provided by the economizer section through the heat exchanger then to an inlet of the economizer section, thereby heating the fuel flowing through the heat exchanger.

  20. MHD Integrated Topping Cycle Project

    SciTech Connect (OSTI)

    Not Available

    1992-07-01

    This seventeenth quarterly technical progress report of the MHD Integrated Topping Cycle Project presents the accomplishments during the period August 1, 1991 to October 31, 1991. Manufacturing of the prototypical combustor pressure shell has been completed including leak, proof, and assembly fit checking. Manufacturing of forty-five cooling panels was also completed including leak, proof, and flow testing. All precombustor internal components (combustion can baffle and swirl box) were received and checked, and integration of the components was initiated. A decision was made regarding the primary and backup designs for the 1A4 channel. The assembly of the channel related prototypical hardware continued. The cathode wall electrical wiring is now complete. The mechanical design of the diffuser has been completed.

  1. Technical Cost Modeling - Life Cycle Analysis Basis for Program...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    More Documents & Publications Technical Cost Modeling - Life Cycle Analysis Basis for Program Focus Technical Cost Modeling - Life Cycle Analysis Basis for Program Focus Life Cycle ...

  2. Fuel Cycle Assessment: Evaluation and Analyses using ORION for...

    Office of Scientific and Technical Information (OSTI)

    Fuel Cycle Assessment: Evaluation and Analyses using ORION for US Fuel Cycle Options Citation Details In-Document Search Title: Fuel Cycle Assessment: Evaluation and Analyses using ...

  3. Minimize Boiler Short Cycling Losses | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Minimize Boiler Short Cycling Losses Minimize Boiler Short Cycling Losses This tip sheet on minimizing boiler short cycling losses provides how-to advice for improving industrial...

  4. WASTE HEAT-TO-POWER IN SMALL-SCALE INDUSTRY USING SCROLL EXPANDER FOR

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ORGANIC RANKINE BOTTOMING CYCLE | Department of Energy WASTE HEAT-TO-POWER IN SMALL-SCALE INDUSTRY USING SCROLL EXPANDER FOR ORGANIC RANKINE BOTTOMING CYCLE WASTE HEAT-TO-POWER IN SMALL-SCALE INDUSTRY USING SCROLL EXPANDER FOR ORGANIC RANKINE BOTTOMING CYCLE TIAX LLC - Lexington, MA Medium-grade waste heat can be converted to electric power using a novel, scalable scroll expander having an isentropic expansion efficiency of 75% to 80% for a broad range of organic Rankine cycle boiler

  5. ARM - What is the Carbon Cycle?

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans What is the Carbon Cycle? Oceanic Properties Future Trends Carbon Cycle Balance Destination of Atmospheric Carbon Sources of Atmospheric Carbon The cycling of carbon from the atmosphere to organic compounds and back again not only involves

  6. Variants of closing the nuclear fuel cycle

    SciTech Connect (OSTI)

    Andrianova, E. A. Davidenko, V. D.; Tsibulskiy, V. F.; Tsibulskiy, S. V.

    2015-12-15

    Influence of the nuclear energy structure, the conditions of fuel burnup, and accumulation of new fissile isotopes from the raw isotopes on the main parameters of a closed fuel cycle is considered. The effects of the breeding ratio, the cooling time of the spent fuel in the external fuel cycle, and the separation of the breeding area and the fissile isotope burning area on the parameters of the fuel cycle are analyzed.

  7. Fuel Cycle Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fuel Cycle Technologies Fuel Cycle Technologies Fuel Cycle Technologies Preparing for Tomorrow's Energy Demands Powerful imperatives drive the continued need for nuclear power, among them the need for reliable, baseload electricity and the threat of global climate change. As the only large-scale source of nearly greenhouse gas-free energy, nuclear power is an essential part of our all-of-the-above energy strategy, generating about 20 percent of our nation's electricity and more than 60 percent

  8. Duty Cycle Software - Energy Innovation Portal

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Find More Like This Return to Search Duty Cycle Software National Renewable Energy ... NREL scientists have created unique software to analyze large amounts of data, which ...

  9. Fuel Cycle Research and Development Presentation Title

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Accident Tolerant LWR Fuels - Update and Status David Henderson, Acting Director, Fuel ... Questions Deputy Assistant Secretary for Fuel Cycle Technologies John Herczeg (Andrew ...

  10. Emissions Modeling: GREET Life Cycle Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Emissions Modeling: GREET Life Cycle Analysis Michael Wang, Amgad Elgowainy, Jeongwoo Han ... Assumptions Approach: build LCA modeling capacity with the GREET model - Build a ...

  11. Variable pressure power cycle and control system

    DOE Patents [OSTI]

    Goldsberry, Fred L.

    1984-11-27

    A variable pressure power cycle and control system that is adjustable to a variable heat source is disclosed. The power cycle adjusts itself to the heat source so that a minimal temperature difference is maintained between the heat source fluid and the power cycle working fluid, thereby substantially matching the thermodynamic envelope of the power cycle to the thermodynamic envelope of the heat source. Adjustments are made by sensing the inlet temperature of the heat source fluid and then setting a superheated vapor temperature and pressure to achieve a minimum temperature difference between the heat source fluid and the working fluid.

  12. NEAC Fuel Cycle Technologies Subcommittee Report Presentation...

    Energy.gov (indexed) [DOE]

    and Joint Fuel Cycle Study Accident Tolerant Fuel (ATF) Update ... EChem and Aqueous performance 4 Accident Tolerant Fuel (ATF) Update Comments ...

  13. Fuel Cycle Technology Documents | Department of Energy

    Energy Savers

    Technology Documents Fuel Cycle Technology Documents June 22, 2015 Development of Light Water Reactor Fuels with Enhanced Accident Tolerance - Report to Congress This report ...

  14. Stirling Cycles Inc | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    search Name: Stirling Cycles Inc Place: California Product: A company developing Stirling engine technology at Idealab, acquired by Infinia in June 2007. References:...

  15. Kalex Advanced Low Temp Geothemal Power Cycle

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    RelevanceImpact of Research (2) * Innovation: - Advanced Cycle designs offer ... in risk capital requirements leading to lower cost geothermal projects * GTO Goal: - ...

  16. Splitting the Cycle the Right Way

    Energy.gov [DOE]

    The unique opposed-cylinder configuration of the TourEngine allows superior thermal management and efficient gas transfer compared to other split-cycle designs.

  17. recuperative heat transfer within the Brayton cycle

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    recuperative heat transfer within the Brayton cycle - Sandia Energy Energy Search Icon ... SunShot Grand Challenge: Regional Test Centers recuperative heat transfer within the ...

  18. S and H Cycle Engine

    SciTech Connect (OSTI)

    Strobl, William C.; Holland, Joe P.

    2002-07-01

    Our thirst for energy is increasing at an astounding rate. World population growth is estimated to increase by 40% (to 8.5 billion) by 2050, with annual electrical energy usage estimated increase by 100% (to 25 terawatt-hours). We must find new means and fuels as well as significantly improve the efficiency of current power plants to accommodate this growing electrical energy demand. This demand is also growing in the field of space flight. Present energy and propulsion systems are limited in the amount of power (energy) that can be generated by today's technology. This limits the distance that can be safely traveled by manned and un-manned space systems. Space flight is primarily governed by two factors: time and energy. Increasing energy of space propulsion systems will decrease flight time or allow reaching farther out into space safely for manned exploration of our solar system. For example, a round trip manned mission to Mars would take about 400 days with a NERVA type thermal nuclear rocket. To reduce the 400 days to 80 days would require an increase of energy by a factor of five. We need to develop space propulsion systems with much greater energy capability than we have today to satisfy the expansion of space exploration. The S and H Cycle nuclear engine provides a revolutionary technological approach that can contribute significantly toward solving the World electrical energy and the space travel energy requirements. (authors)

  19. Permafrost soils and carbon cycling

    DOE PAGES-Beta [OSTI]

    Ping, C. L.; Jastrow, J. D.; Jorgenson, M. T.; Michaelson, G. J.; Shur, Y. L.

    2015-02-05

    Knowledge of soils in the permafrost region has advanced immensely in recent decades, despite the remoteness and inaccessibility of most of the region and the sampling limitations posed by the severe environment. These efforts significantly increased estimates of the amount of organic carbon stored in permafrost-region soils and improved understanding of how pedogenic processes unique to permafrost environments built enormous organic carbon stocks during the Quaternary. This knowledge has also called attention to the importance of permafrost-affected soils to the global carbon cycle and the potential vulnerability of the region's soil organic carbon (SOC) stocks to changing climatic conditions. Inmore » this review, we briefly introduce the permafrost characteristics, ice structures, and cryopedogenic processes that shape the development of permafrost-affected soils, and discuss their effects on soil structures and on organic matter distributions within the soil profile. We then examine the quantity of organic carbon stored in permafrost-region soils, as well as the characteristics, intrinsic decomposability, and potential vulnerability of this organic carbon to permafrost thaw under a warming climate. Overall, frozen conditions and cryopedogenic processes, such as cryoturbation, have slowed decomposition and enhanced the sequestration of organic carbon in permafrost-affected soils over millennial timescales. Due to the low temperatures, the organic matter in permafrost soils is often less humified than in more temperate soils, making some portion of this stored organic carbon relatively vulnerable to mineralization upon thawing of permafrost.« less

  20. Permafrost soils and carbon cycling

    DOE PAGES-Beta [OSTI]

    Ping, C. L.; Jastrow, J. D.; Jorgenson, M. T.; Michaelson, G. J.; Shur, Y. L.

    2014-10-30

    Knowledge of soils in the permafrost region has advanced immensely in recent decades, despite the remoteness and inaccessibility of most of the region and the sampling limitations posed by the severe environment. These efforts significantly increased estimates of the amount of organic carbon (OC) stored in permafrost-region soils and improved understanding of how pedogenic processes unique to permafrost environments built enormous OC stocks during the Quaternary. This knowledge has also called attention to the importance of permafrost-affected soils to the global C cycle and the potential vulnerability of the region's soil OC stocks to changing climatic conditions. In this review,more » we briefly introduce the permafrost characteristics, ice structures, and cryopedogenic processes that shape the development of permafrost-affected soils and discuss their effects on soil structures and on organic matter distributions within the soil profile. We then examine the quantity of OC stored in permafrost-region soils, as well as the characteristics, intrinsic decomposability, and potential vulnerability of this OC to permafrost thaw under a warming climate.« less

  1. MHD Integrated Topping Cycle Project

    SciTech Connect (OSTI)

    Not Available

    1992-02-01

    This fourteenth quarterly technical progress report of the MHD Integrated Topping Cycle Project presents the accomplishments during the period November 1, 1990 to January 31, 1991. Testing of the High Pressure Cooling Subsystem electrical isolator was completed. The PEEK material successfully passed the high temperature, high pressure duration tests (50 hours). The Combustion Subsystem drawings were CADAM released. The procurement process is in progress. An equipment specification and RFP were prepared for the new Low Pressure Cooling System (LPCS) and released for quotation. Work has been conducted on confirmation tests leading to final gas-side designs and studies to assist in channel fabrication.The final cathode gas-side design and the proposed gas-side designs of the anode and sidewall are presented. Anode confirmation tests and related analyses of anode wear mechanisms used in the selection of the proposed anode design are presented. Sidewall confirmation tests, which were used to select the proposed gas-side design, were conducted. The design for the full scale CDIF system was completed. A test program was initiated to investigate the practicality of using Avco current controls for current consolidation in the power takeoff (PTO) regions and to determine the cause of past current consolidation failures. Another important activity was the installation of 1A4-style coupons in the 1A1 channel. A description of the coupons and their location with 1A1 channel is presented herein.

  2. Birdsville Geothermal Power Station | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Artesian Basin Plant Information Facility Type Binary Cycle Power Plant, ORC Owner Ergon Energy Number of Units 1 Commercial Online Date 1992 Power Plant Data Type of Plant Number...

  3. Fuel cycles for the 80's

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    Papers presented at the American Nuclear Society's topical meeting on the fuel cycle are summarized. Present progress and goals in the areas of fuel fabrication, fuel reprocessing, spent fuel storage, accountability, and safeguards are reported. Present governmental policies which affect the fuel cycle are also discussed. Individual presentations are processed for inclusion in the Energy Data Base.(DMC)

  4. Physics challenges for advanced fuel cycle assessment

    SciTech Connect (OSTI)

    Giuseppe Palmiotti; Massimo Salvatores; Gerardo Aliberti

    2014-06-01

    Advanced fuel cycles and associated optimized reactor designs will require substantial improvements in key research area to meet new and more challenging requirements. The present paper reviews challenges and issues in the field of reactor and fuel cycle physics. Typical examples are discussed with, in some cases, original results.

  5. Triple-effect absorption chiller cycles

    SciTech Connect (OSTI)

    DeVault, R.C. ); Grossman, G. )

    1992-01-01

    Gas-fired absorption chillers are widely used for air-conditioning buildings. Even the highest efficiency double-effect absorption chillers used more primary energy for air-conditioning buildings than the better electric chillers. Two different triple-effect absorption chiller cycles are capable of substantial performance improvement over equivalent double-effect cycles. One cycle uses two condensers and two absorbers to achieve the triple effect.'' A second cycle, the Double-Condenser Coupled Triple-Effect, uses three condensers as well as a third condenser subcooler (which exchanges heat with the lowest temperature first-effect generator). These triple-effect absorption cycles have the potential to be as energy efficient (on a primary fuel basis) as the best electric chillers. 19 refs.

  6. Triple-effect absorption chiller cycles

    SciTech Connect (OSTI)

    DeVault, R.C.; Grossman, G.

    1992-06-01

    Gas-fired absorption chillers are widely used for air-conditioning buildings. Even the highest efficiency double-effect absorption chillers used more primary energy for air-conditioning buildings than the better electric chillers. Two different triple-effect absorption chiller cycles are capable of substantial performance improvement over equivalent double-effect cycles. One cycle uses two condensers and two absorbers to achieve the ``triple effect.`` A second cycle, the Double-Condenser Coupled Triple-Effect, uses three condensers as well as a third condenser subcooler (which exchanges heat with the lowest temperature first-effect generator). These triple-effect absorption cycles have the potential to be as energy efficient (on a primary fuel basis) as the best electric chillers. 19 refs.

  7. Pipeline bottoming cycle study. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    The technical and economic feasibility of applying bottoming cycles to the prime movers that drive the compressors of natural gas pipelines was studied. These bottoming cycles convert some of the waste heat from the exhaust gas of the prime movers into shaft power and conserve gas. Three typical compressor station sites were selected, each on a different pipeline. Although the prime movers were different, they were similar enough in exhaust gas flow rate and temperature that a single bottoming cycle system could be designed, with some modifications, for all three sites. Preliminary design included selection of the bottoming cycle working fluid, optimization of the cycle, and design of the components, such as turbine, vapor generator and condensers. Installation drawings were made and hardware and installation costs were estimated. The results of the economic assessment of retrofitting bottoming cycle systems on the three selected sites indicated that profitability was strongly dependent upon the site-specific installation costs, how the energy was used and the yearly utilization of the apparatus. The study indicated that the bottoming cycles are a competitive investment alternative for certain applications for the pipeline industry. Bottoming cycles are technically feasible. It was concluded that proper design and operating practices would reduce the environmental and safety hazards to acceptable levels. The amount of gas that could be saved through the year 2000 by the adoption of bottoming cycles for two different supply projections was estimated as from 0.296 trillion ft/sup 3/ for a low supply projection to 0.734 trillion ft/sup 3/ for a high supply projection. The potential market for bottoming cycle equipment for the two supply projections varied from 170 to 500 units of varying size. Finally, a demonstration program plan was developed.

  8. Back end of an enduring fuel cycle

    SciTech Connect (OSTI)

    Pillay, K.K.S.

    1998-03-01

    An enduring nuclear fuel cycle is an essential part of sustainable consumption, the process whereby world`s riches are consumed in a responsible manner so that future generations can continue to enjoy at least some of them. In many countries, the goal of sustainable development has focused attention on the benefits of nuclear technologies. However, sustenance of the nuclear fuel cycle is dependent on sensible management of all the resources of the fuel cycle, including energy, spent fuels, and all of its side streams. The nuclear fuel cycle for energy production has suffered many traumas since the mid seventies. The common basis of technologies producing nuclear explosives and consumable nuclear energy has been a preoccupation for some, predicament for others, and a perception problem for many. It is essential to reestablish a reliable back end of the nuclear fuel cycle that can sustain the resource requirements of an enduring full cycle. This paper identifies some pragmatic steps necessary to reverse the trend and to maintain a necessary fuel cycle option for the future.

  9. Thermodynamic analysis of adsorption refrigeration cycles

    SciTech Connect (OSTI)

    Saha, B.B.; Akisawa, Atsushi; Kashiwagi, Takao

    1997-12-31

    High- and mid-temperature waste heat can be recovered by using existing heat pump technologies. However, heat utilization near environmental temperatures still faces technical hurdles. Silica gel-water adsorption cycles have a distinct advantage over other systems in their ability to be driven by near-ambient temperature heat. Waste heat (above 60 C) can be exploited by using conventional silica gel-water adsorption chiller. The advanced silica gel-water adsorption chiller can operate effectively by utilizing low-grade waste heat ({approximately}50 C) as the driving source with a cooling source of 30 C. In this paper, the effect of operating temperatures on cycle performance is discussed from the thermodynamic viewpoint. The temperature effectiveness and the entropy generation number on cycle time are analyzed. For a comparatively short cycle time, adsorber/desorber heat exchanger temperature effectiveness reaches up to 92% after only 200 sec. The entropy generation number N{sub s} is defined by the ratio between irreversibility generated during a cycle and availability of the heat transfer fluid. The result showed that for the advanced adsorption cycle the entropy generation number N{sub s} is smaller for hot water temperature between 45 to 55 C with a cooling source of 30 C, while for the conventional cycle N{sub s} is smaller for hot water temperature between 65 to 75 C /with the same cooling source temperature.

  10. Waste Stream Analyses for Nuclear Fuel Cycles

    SciTech Connect (OSTI)

    N. R. Soelberg

    2010-08-01

    A high-level study was performed in Fiscal Year 2009 for the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE) Advanced Fuel Cycle Initiative (AFCI) to provide information for a range of nuclear fuel cycle options (Wigeland 2009). At that time, some fuel cycle options could not be adequately evaluated since they were not well defined and lacked sufficient information. As a result, five families of these fuel cycle options are being studied during Fiscal Year 2010 by the Systems Analysis Campaign for the DOE NE Fuel Cycle Research and Development (FCRD) program. The quality and completeness of data available to date for the fuel cycle options is insufficient to perform quantitative radioactive waste analyses using recommended metrics. This study has been limited thus far to qualitative analyses of waste streams from the candidate fuel cycle options, because quantitative data for wastes from the front end, fuel fabrication, reactor core structure, and used fuel for these options is generally not yet available.

  11. A combined cycle engine test facility

    SciTech Connect (OSTI)

    Engers, R.; Cresci, D.; Tsai, C.

    1995-09-01

    Rocket-Based Combined-Cycle (RBCC) engines intended for missiles and/or space launch applications incorporate features of rocket propulsion systems operating in concert with airbreathing engine cycles. Performance evaluation of these types of engines, which are intended to operate from static sea level take-off to supersonic cruise or accerlerate to orbit, requires ground test capabilities which integrate rocket component testing with airbreathing engine testing. A combined cycle engine test facility has been constructed in the General Applied Science Laboratories, Inc. (GASL) Aeropropulsion Test Laboratory to meet this requirement. The facility was designed to support the development of an innovative combined cycle engine concept which features a rocket based ramjet combustor. The test requirements included the ability to conduct tests in which the propulsive force was generated by rocket only, the ramjet only and simultaneous rocket and ramjet power (combined cycle) to evaluate combustor operation over the entire engine cycle. The test facility provides simulation over the flight Mach number range of 0 to 8 and at various trajectories. The capabilities of the combined cycle engine test facility are presented.

  12. FUEL CYCLE POTENTIAL WASTE FOR DISPOSITION

    SciTech Connect (OSTI)

    Jones, R.; Carter, J.

    2010-10-13

    The United States (U.S.) currently utilizes a once-through fuel cycle where used nuclear fuel (UNF) is stored on-site in either wet pools or in dry storage systems with ultimate disposal in a deep mined geologic repository envisioned. Within the Department of Energy's (DOE) Office of Nuclear Energy (DOE-NE), the Fuel Cycle Research and Development Program (FCR&D) develops options to the current commercial fuel cycle management strategy to enable the safe, secure, economic, and sustainable expansion of nuclear energy while minimizing proliferation risks by conducting research and development of advanced fuel cycles, including modified open and closed cycles. The safe management and disposition of used nuclear fuel and/or nuclear waste is a fundamental aspect of any nuclear fuel cycle. Yet, the routine disposal of used nuclear fuel and radioactive waste remains problematic. Advanced fuel cycles will generate different quantities and forms of waste than the current LWR fleet. This study analyzes the quantities and characteristics of potential waste forms including differing waste matrices, as a function of a variety of potential fuel cycle alternatives including: (1) Commercial UNF generated by uranium fuel light water reactors (LWR). Four once through fuel cycles analyzed in this study differ by varying the assumed expansion/contraction of nuclear power in the U.S; (2) Four alternative LWR used fuel recycling processes analyzed differ in the reprocessing method (aqueous vs. electro-chemical), complexity (Pu only or full transuranic (TRU) recovery) and waste forms generated; (3) Used Mixed Oxide (MOX) fuel derived from the recovered Pu utilizing a single reactor pass; and (4) Potential waste forms generated by the reprocessing of fuels derived from recovered TRU utilizing multiple reactor passes.

  13. FUEL CYCLE POTENTIAL WASTE FOR DISPOSITION

    SciTech Connect (OSTI)

    Carter, J.

    2011-01-03

    The United States (U.S.) currently utilizes a once-through fuel cycle where used nuclear fuel (UNF) is stored on-site in either wet pools or in dry storage systems with ultimate disposal in a deep mined geologic repository envisioned. Within the Department of Energy's (DOE) Office of Nuclear Energy (DOE-NE), the Fuel Cycle Research and Development Program (FCR&D) develops options to the current commercial fuel cycle management strategy to enable the safe, secure, economic, and sustainable expansion of nuclear energy while minimizing proliferation risks by conducting research and development of advanced fuel cycles, including modified open and closed cycles. The safe management and disposition of used nuclear fuel and/or nuclear waste is a fundamental aspect of any nuclear fuel cycle. Yet, the routine disposal of used nuclear fuel and radioactive waste remains problematic. Advanced fuel cycles will generate different quantities and forms of waste than the current LWR fleet. This study analyzes the quantities and characteristics of potential waste forms including differing waste matrices, as a function of a variety of potential fuel cycle alternatives including: (1) Commercial UNF generated by uranium fuel light water reactors (LWR). Four once through fuel cycles analyzed in this study differ by varying the assumed expansion/contraction of nuclear power in the U.S. (2) Four alternative LWR used fuel recycling processes analyzed differ in the reprocessing method (aqueous vs. electro-chemical), complexity (Pu only or full transuranic (TRU) recovery) and waste forms generated. (3) Used Mixed Oxide (MOX) fuel derived from the recovered Pu utilizing a single reactor pass. (4) Potential waste forms generated by the reprocessing of fuels derived from recovered TRU utilizing multiple reactor passes.

  14. International Nuclear Fuel Cycle Fact Book

    SciTech Connect (OSTI)

    Leigh, I.W.; Patridge, M.D.

    1991-05-01

    As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need has developed for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book was compiled to meet that need. The information contained in the International Nuclear Fuel Cycle Fact Book has been obtained from many unclassified sources: nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECN/NEA activities reports; not reflect any one single source but frequently represent a consolidation/combination of information.

  15. Separations Needs for the Alternate Chemical Cycles

    SciTech Connect (OSTI)

    Frederick F. Stewart

    2007-05-01

    The bulk of the efforts for the development of a hydrogen production plant supported by the Nuclear Hydrogen Initiative (NHI) have been directed towards the sulfur-iodine (S-I) thermochemical cycle. However, it was judged prudent to re-investigate alternate chemical cycles in light of new developments and technical accomplishments derived from the current S-I work. This work analyzes the available data for the promising alternate chemical cycles to provide an understanding of their inherent chemical separations needs. None of the cycles analyzed have separations that are potential “show stoppers”; although some of the indicated separations will be challenging to perform. The majority of the separations involve processes that are either more achievable or more developed

  16. World nuclear fuel cycle requirements 1991

    SciTech Connect (OSTI)

    Not Available

    1991-10-10

    The nuclear fuel cycle consists of mining and milling uranium ore, processing the uranium into a form suitable for generating electricity, burning'' the fuel in nuclear reactors, and managing the resulting spent nuclear fuel. This report presents projections of domestic and foreign requirements for natural uranium and enrichment services as well as projections of discharges of spent nuclear fuel. These fuel cycle requirements are based on the forecasts of future commercial nuclear power capacity and generation published in a recent Energy Information Administration (EIA) report. Also included in this report are projections of the amount of spent fuel discharged at the end of each fuel cycle for each nuclear generating unit in the United States. The International Nuclear Model is used for calculating the projected nuclear fuel cycle requirements. 14 figs., 38 tabs.

  17. Techno-Economics & Life Cycle Assessment (Presentation)

    SciTech Connect (OSTI)

    Dutta, A.; Davis, R.

    2011-12-01

    This presentation provides an overview of the techno-economic analysis (TEA) and life cycle assessment (LCA) capabilities at the National Renewable Energy Laboratory (NREL) and describes the value of working with NREL on TEA and LCA.

  18. Energy flow, nutrient cycling, and ecosystem resilience

    SciTech Connect (OSTI)

    DeAngelis, D.L.

    1980-08-01

    The resilience, defined here as the speed with which a system returns to equilibrium state following a perturbation, is investigated for both food web energy models and nutrient cycling models. Previous simulation studies of food web energy models have shown that resilience increases as the flux of energy through the food web per unit amount of energy in the steady state web increases. Studies of nutrient cycling models have shown that resilience increases as the mean number of cycles that nutrient (or other mineral) atoms make before leaving the system decreases. In the present study these conclusions are verified analytically for general ecosystem models. The behavior of resilience in food web energy models and nutrient cycling models is a reflection of the time that a given unit, whether of energy or matter, spends in the steady state system. The shorter this residence time is, the more resilient the system is.

  19. Updating the LED Life Cycle Assessment

    Energy Savers

    Part 2: LED Manufacturing and Performance 7 Goal of the New Study Review new literature on the life- cycle assessment of LED products. Determine if newer A-19 products...

  20. Obligations Notification Cycle and New Obligations Presentation

    National Nuclear Security Administration (NNSA)

    Obligations Notification Cycle and Obligations Notification Cycle and New Obligations New Obligations Bill Benton, DOE/SO-62 Pat Tana, NRC/NSIR Michelle Romano, NAC/NMMSS Obligations Accounting Implementation Workshop Obligations Accounting Implementation Workshop January 13, 2004 January 13, 2004 Crowne Crowne Plaza Plaza Ravinia Ravinia Atlanta, Georgia Atlanta, Georgia Notifications Notifications * There are issues! - Timeliness - Information (or lack thereof) - Other? * DOE Facilities - Bill

  1. NEAC Fuel Cycle Technologies Subcommittee Report

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Report Presentation to the Nuclear Energy Advisory Committee Washington, D.C. December 11, 2015 Al Sattelberger Fuel Cycle Technologies Subcommittee Members  Carol Burns  Margaret Chu  Raymond Juzaitis  Chris Kouts  Sekazi Mtingwa  Ron Omberg  Joy Rempe  Dominique Warin  Al Sattelberger (Chair) Fuel Cycle Technologies Subcommittee  One day meeting on October 22, 2015  Highlights: - Aqueous Separations Research - MELCOR Overview and Applicability to ATF Response -

  2. NEAC Fuel Cycle Technologies Subcommittee Report

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Nuclear Energy Advisory Committee Washington, D.C. June 17, 2016 Al Sattelberger Fuel Cycle Technologies Subcommittee Members  Carol Burns  Margaret Chu  Raymond Juzaitis  Chris Kouts  Sekazi Mtingwa  Ron Omberg  Joy Rempe  Dominique Warin  Al Sattelberger (Chair) Fuel Cycle Technologies Subcommittee  One day meeting on April 6, 2016  Highlights: - Advanced Reactor Program - HQ Perspective - 3D-Printed Centrifugal Contactors - Advances in Separations Science -

  3. Carbon Capture (Carbon Cycle 2.0)

    ScienceCinema (OSTI)

    Smit, Berend

    2016-07-12

    Berend Smit speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 3, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

  4. Supercritical CO2 Tech Team | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    offered by the sCO2 Brayton Cycle technology (compared to the widely-used steam turbine Rankin Cycle.) Benefits of the sCO2 Brayton Cycle for energy production Economic ...

  5. A Novel Split-Cycle Engine | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Splitting the Cycle the Right Way Splitting the Cycle the Right Way Improving Diesel Engine Sweet-spot Efficiency and Adapting it to Improve Duty-cycle MPG - plus Increasing ...

  6. Rapid Cycling Synchrotron Option for Project X (Conference) ...

    Office of Scientific and Technical Information (OSTI)

    Rapid Cycling Synchrotron Option for Project X Citation Details In-Document Search Title: Rapid Cycling Synchrotron Option for Project X This paper presents an 8 GeV Rapid Cycling ...

  7. Identification of fuel cycle simulator functionalities for analysis of transition to a new fuel cycle

    DOE PAGES-Beta [OSTI]

    Brown, Nicholas R.; Carlsen, Brett W.; Dixon, Brent W.; Feng, Bo; Greenberg, Harris R.; Hays, Ross D.; Passerini, Stefano; Todosow, Michael; Worrall, Andrew

    2016-06-09

    Dynamic fuel cycle simulation tools are intended to model holistic transient nuclear fuel cycle scenarios. As with all simulation tools, fuel cycle simulators require verification through unit tests, benchmark cases, and integral tests. Model validation is a vital aspect as well. Although compara-tive studies have been performed, there is no comprehensive unit test and benchmark library for fuel cycle simulator tools. The objective of this paper is to identify the must test functionalities of a fuel cycle simulator tool within the context of specific problems of interest to the Fuel Cycle Options Campaign within the U.S. Department of Energy smore » Office of Nuclear Energy. The approach in this paper identifies the features needed to cover the range of promising fuel cycle options identified in the DOE-NE Fuel Cycle Evaluation and Screening (E&S) and categorizes these features to facilitate prioritization. Features were categorized as essential functions, integrating features, and exemplary capabilities. One objective of this paper is to propose a library of unit tests applicable to each of the essential functions. Another underlying motivation for this paper is to encourage an international dialog on the functionalities and standard test methods for fuel cycle simulator tools.« less

  8. IS SOLAR CYCLE 24 PRODUCING MORE CORONAL MASS EJECTIONS THAN CYCLE 23?

    SciTech Connect (OSTI)

    Wang, Y.-M.; Colaninno, R. E-mail: robin.colaninno@nrl.navy.mil

    2014-04-01

    Although sunspot numbers are roughly a factor of two lower in the current cycle than in cycle 23, the rate of coronal mass ejections (CMEs) appears to be at least as high in 2011-2013 as during the corresponding phase of the previous cycle, according to three catalogs that list events observed with the Large Angle and Spectrometric Coronagraph (LASCO). However, the number of CMEs detected is sensitive to such factors as the image cadence and the tendency (especially by human observers) to under-/overcount small or faint ejections during periods of high/low activity. In contrast to the total number, the total mass of CMEs is determined mainly by larger events. Using the mass measurements of 11,000 CMEs given in the manual CDAW catalog, we find that the mass loss rate remains well correlated with the sunspot number during cycle 24. In the case of the automated CACTus and SEEDS catalogs, the large increase in the number of CMEs during cycle 24 is almost certainly an artifact caused by the near-doubling of the LASCO image cadence after mid-2010. We confirm that fast CMEs undergo a much stronger solar-cycle variation than slow ones, and that the relative frequency of slow and less massive CMEs increases with decreasing sunspot number. We conclude that cycle 24 is not only producing fewer CMEs than cycle 23, but that these ejections also tend to be slower and less massive than those observed one cycle earlier.

  9. Fuel Cycle Research & Development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fuel Cycle Research & Development Fuel Cycle Research & Development Fuel Cycle Research & Development The mission of the Fuel Cycle Research and Development (FCRD) program is to conduct research and development to help develop sustainable fuel cycles, as described in the Nuclear Energy Research and Development Roadmap. Sustainable fuel cycle options are those that improve uranium resource utilization, maximize energy generation, minimize waste generation, improve safety, and limit

  10. Technical Cost Modeling - Life Cycle Analysis Basis for Program...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    More Documents & Publications Technical Cost Modeling - Life Cycle Analysis Basis for Program Focus Technical Cost Modeling - Life Cycle Analysis Basis for Program Focus Polymer ...

  11. Technical Cost Modeling - Life Cycle Analysis Basis for Program...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    More Documents & Publications Technical Cost Modeling - Life Cycle Analysis Basis for Program Focus Technical Cost Modeling - Life Cycle Analysis Basis for Program Focus ...

  12. Safeguards Considerations for Thorium Fuel Cycles (Journal Article...

    Office of Scientific and Technical Information (OSTI)

    and deployment pathways toward a number of commercial-scale thorium fuel cycles, and they are already building test reactors and the associated fuel cycle infrastructure. ...

  13. The Effects of Climate Sensitivity and Carbon Cycle Interactions...

    Office of Scientific and Technical Information (OSTI)

    Sensitivity and Carbon Cycle Interactions on Mitigation Policy Stringency Citation Details In-Document Search Title: The Effects of Climate Sensitivity and Carbon Cycle ...

  14. Report of the Fuel Cycle Research and Development Subcommittee...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of the Fuel Cycle Research and Development Subcommittee of the Nuclear Energy Advisory Committee Report of the Fuel Cycle Research and Development Subcommittee of the Nuclear...

  15. Life Cycle Greenhouse Gas Perspective on Exporting Liquefied...

    Office of Environmental Management (EM)

    Life Cycle Greenhouse Gas Perspective on Exporting Liquefied Natural Gas from the United States Life Cycle Greenhouse Gas Perspective on Exporting Liquefied Natural Gas from the ...

  16. A Flashing Binary Combined Cycle For Geothermal Power Generation...

    Open Energy Information (Open El) [EERE & EIA]

    Flashing Binary Combined Cycle For Geothermal Power Generation Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: A Flashing Binary Combined Cycle...

  17. Sandia Energy - Sandia's Brayton-Cycle Turbine Boosts Small Nuclear...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Brayton-Cycle Turbine Boosts Small Nuclear Reactor Efficiency Home Energy Nuclear Energy News Energy Efficiency News & Events Sandia's Brayton-Cycle Turbine Boosts Small Nuclear...

  18. Advances in Hydrogen Isotope Separation Using Thermal Cycling...

    Office of Environmental Management (EM)

    Hydrogen Isotope Separation Using Thermal Cycling Absorption Process (TCAP) Advances in Hydrogen Isotope Separation Using Thermal Cycling Absorption Process (TCAP) Presentation ...

  19. Convectively driven PCR thermal-cycling (Patent) | DOEPatents

    Office of Scientific and Technical Information (OSTI)

    Convectively driven PCR thermal-cycling Title: Convectively driven PCR thermal-cycling A polymerase chain reaction system provides an upper temperature zone and a lower temperature ...

  20. Theory, modeling and evaluations for the fuel cycle (Conference...

    Office of Scientific and Technical Information (OSTI)

    Theory, modeling and evaluations for the fuel cycle Citation Details In-Document Search Title: Theory, modeling and evaluations for the fuel cycle Authors: Talou, Patrick 1 + ...

  1. Rotary Vapor Compression Cycle Technology: A Pathway to Ultra...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Rotary Vapor Compression Cycle Technology: A Pathway to Ultra-Efficient Air Conditioning, Heating and Refrigeration Rotary Vapor Compression Cycle Technology: A Pathway to...

  2. NREL: Energy Analysis - Life Cycle Assessments of Energy Technologies

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ... Clean Products and Processes, by Pamela Spath and Margaret Mann. "Life Cycle Assessment of a Natural Gas Combined Cycle Power Generation System," by Pamela Spath and Margaret Mann. ...

  3. Fuel Cycle Research & Development Documents | Department of Energy

    Energy Savers

    Research & Development Fuel Cycle Research & Development Documents Fuel Cycle Research & Development Documents June 22, 2015 Development of Light Water Reactor Fuels with ...

  4. Closing the Lithium-ion Battery Life Cycle: Poster handout |...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Closing the Lithium-ion Battery Life Cycle: Poster handout Title Closing the Lithium-ion Battery Life Cycle: Poster handout Publication Type Miscellaneous Year of Publication 2014...

  5. Nuclear Fuel Cycle & Vulnerabilities (Technical Report) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Nuclear Fuel Cycle & Vulnerabilities Citation Details In-Document Search Title: Nuclear Fuel Cycle & Vulnerabilities The objective of safeguards is the timely detection of ...

  6. Life-Cycle Assessment of Energy and Environmental Impacts of...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products PDF icon ...

  7. From Protein Structure to Function: Ring Cycle for Dilating and...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    From Protein Structure to Function: Ring Cycle for Dilating and Constricting the Nuclear Pore From Protein Structure to Function: Ring Cycle for Dilating and Constricting the...

  8. Thermochemical cycle of a mixed metal oxide for augmentation...

    Office of Scientific and Technical Information (OSTI)

    Thermochemical cycle of a mixed metal oxide for augmentation of thermal energy storage in solid particles. Citation Details In-Document Search Title: Thermochemical cycle of a ...

  9. Light-Duty Reactivity Controlled Compression Ignition Drive Cycle...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Ignition Drive Cycle Fuel Economy and Emissions Estimates Light-Duty Reactivity Controlled Compression Ignition Drive Cycle Fuel Economy and Emissions Estimates Vehicle ...

  10. Safeguards Considerations for Thorium Fuel Cycles (Journal Article...

    Office of Scientific and Technical Information (OSTI)

    remains mainly on safeguarding conventional 235U- and 239Pu-based fuel cycles while the safeguards challenges of thorium-uranium fuel cycles remain largely uninvestigated. ...

  11. Theory, modeling and evaluations for the fuel cycle (Conference...

    Office of Scientific and Technical Information (OSTI)

    Conference: Theory, modeling and evaluations for the fuel cycle Citation Details In-Document Search Title: Theory, modeling and evaluations for the fuel cycle You are accessing a ...

  12. NEAC Fuel Cycle Research and Development Subcommittee Report...

    Office of Environmental Management (EM)

    Fuel Cycle Research and Development Subcommittee Report for December 11, 2015 Meeting NEAC Fuel Cycle Research and Development Subcommittee Report for December 11, 2015 Meeting PDF ...

  13. Life Cycle Greenhouse Gas Emissions from Electricity Generation...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Source: Sathaye et al. (2011) Life cycle GHG emissions from renewable electricity ... LCA of Energy Systems Life Cycle Greenhouse Gas Emissions from Electricity Generation As ...

  14. Bioproduct Life Cycle Analysis with the GREETTM Model

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Bioproduct Life Cycle Analysis with the GREET TM Model Jennifer B. Dunn Biofuel Life Cycle Analysis Team Lead Systems Assessment Group Argonne National Laboratory Biomass 2014 July ...

  15. Bioproduct Life Cycle Analysis with the GREET Model | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Bioeconomy Bioproduct Life Cycle Analysis with the GREETTM Model Jennifer B. Dunn, Biofuel Life Cycle Analysis Team Lead, Argonne National Laboratory PDF icon ...

  16. Economizer refrigeration cycle space heating and cooling system and process

    DOE Patents [OSTI]

    Jardine, D.M.

    1983-03-22

    This invention relates to heating and cooling systems and more particularly to an improved system utilizing a Stirling Cycle engine heat pump in a refrigeration cycle. 18 figs.

  17. Influence of drought on growing season carbon and water cycling...

    Office of Scientific and Technical Information (OSTI)

    Influence of drought on growing season carbon and water cycling with changing land cover ... Title: Influence of drought on growing season carbon and water cycling with changing land ...

  18. Parametric Study of NOx Adsorber Regeneration in Transient Cycles...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Parametric Study of NOx Adsorber Regeneration in Transient Cycles Parametric Study of NOx Adsorber Regeneration in Transient Cycles 2002 DEER Conference Presentation: Oak Ridge ...

  19. Sustainable Thorium Nuclear Fuel Cycles: A Comparison of Intermediate...

    Office of Scientific and Technical Information (OSTI)

    Sustainable Thorium Nuclear Fuel Cycles: A Comparison of Intermediate and Fast Neutron Spectrum Systems Title: Sustainable Thorium Nuclear Fuel Cycles: A Comparison of Intermediate ...

  20. High-potential Working Fluids for Next Generation Binary Cycle...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    High-potential Working Fluids for Next Generation Binary Cycle Geothermal Power Plants High-potential Working Fluids for Next Generation Binary Cycle Geothermal Power Plants DOE ...

  1. Analysis of Energy, Environmental and Life Cycle Cost Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy, Environmental and Life Cycle Cost Reduction Potential of Ground Source Heat Pump (GSHP) in Hot and Humid Climate Analysis of Energy, Environmental and Life Cycle Cost ...

  2. Integrated vacuum absorption steam cycle gas separation (Patent...

    Office of Scientific and Technical Information (OSTI)

    vacuum absorption steam cycle gas separation Citation Details In-Document Search Title: Integrated vacuum absorption steam cycle gas separation Methods and systems for separating ...

  3. Economizer refrigeration cycle space heating and cooling system and process

    DOE Patents [OSTI]

    Jardine, Douglas M.

    1983-01-01

    This invention relates to heating and cooling systems and more particularly to an improved system utilizing a Stirling Cycle engine heat pump in a refrigeration cycle.

  4. Indirect ( n , γ ) cross sections of thorium cycle nuclei using...

    Office of Scientific and Technical Information (OSTI)

    Indirect ( n , ) cross sections of thorium cycle nuclei using the surrogate method Title: Indirect ( n , ) cross sections of thorium cycle nuclei using the surrogate method ...

  5. MHK Technologies/Open Cycle OTEC | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Cycle OTEC < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Open Cycle OTEC.jpg Technology Profile Primary Organization Ocean Engineering and...

  6. MHK Technologies/Kalina Cycle OTEC | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Kalina Cycle OTEC < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Kalina Cycle OTEC.jpg Technology Profile Primary Organization Ocean...

  7. MHK Technologies/Closed Cycle OTEC | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Closed Cycle OTEC < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Closed Cycle OTEC.jpg Technology Profile Primary Organization Marine...

  8. Federal Register Notice for Life Cycle Greenhouse Gas Perspective...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Life Cycle Greenhouse Gas Perspective on Exporting Liquefied Natural Gas from the United States Federal Register Notice for Life Cycle Greenhouse Gas Perspective on Exporting Liquefied ...

  9. Nuclear Fuel Cycle & Vulnerabilities (Technical Report) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Nuclear Fuel Cycle & Vulnerabilities Citation Details In-Document Search Title: Nuclear Fuel Cycle & Vulnerabilities You are accessing a document from the ...

  10. VERA Core Simulator Methodology for PWR Cycle Depletion (Conference...

    Office of Scientific and Technical Information (OSTI)

    VERA Core Simulator Methodology for PWR Cycle Depletion Citation Details In-Document Search Title: VERA Core Simulator Methodology for PWR Cycle Depletion Authors: Kochunas, ...

  11. Truck Duty Cycle and Performance Data Collection and Analysis...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    More Documents & Publications Heavy Duty & Medium Duty Drive Cycle Data Collection for Modeling Expansion Truck Duty Cycle and Performance Data Collection and Analysis Program 2010 ...

  12. Effect of organics on nuclear cycles

    SciTech Connect (OSTI)

    Riddle, J.M. . Chemistry Services Section)

    1992-07-01

    Organics entering the nuclear cycle undergo hydrolysis or radiolysis and form carboxylic acids, acetic, formic, and propionic acids being the most prominent. Sequestered sulfur, halogens, metal species, and silica may also be released. The corrosion effects of halogens and sulfate are reasonably well understood. Historically, organic acids at low levels (e.g., 10 to 50 ppb) in nuclear cycles have been viewed as a nuisance or as potentially detrimental. This study reviews literature references of the effects of organics in nuclear cycles. Sources of organics and corrosion effects on plant materials are given from various references. Acetate can neutralize caustic in PWR steam generator crevices, whereas formate and oxalate as sodium salts can decompose to sodium carbonate. Sodium carbonate in crevices hydrolyzes to carbon dioxide and sodium hydroxide, which promotes SCC and IGA of Alloy 600. Formate and oxalate can act as oxygen scavengers in the BWR cycle and mitigate IGSCC of austenitic stainless steel. No firm evidence exists that organic acids have caused corrosion in turbines, piping, or heat exchangers in nuclear cycles, although organic acids at high levels can cause specific corrosion effects as a result of low pH.

  13. International nuclear fuel cycle fact book

    SciTech Connect (OSTI)

    Leigh, I.W.

    1988-01-01

    As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need has developed for a ready source or information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book was compiled to meet that need. The information contained has been obtained from nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NEA activities reports; proceedings of conferences and workshops; and so forth. Sources do not agree completely with each other, and the data listed herein does not reflect any one single source but frequently is consolidation/combination of information. Lack of space as well as the intent and purpose of the Fact Book limit the given information to that pertaining to the Nuclear Fuel Cycle and to data considered of primary interest or most helpful to the majority of users.

  14. Interstitial computing : utilizing spare cycles on supercomputers.

    SciTech Connect (OSTI)

    Clearwater, Scott Harvey; Kleban, Stephen David

    2003-06-01

    This paper presents an analysis of utilizing unused cycles on supercomputers through the use of many small jobs. What we call 'interstitial computing,' is important to supercomputer centers for both productivity and political reasons. Interstitial computing makes use of the fact that small jobs are more or less fungible consumers of compute cycles that are more efficient for bin packing than the typical jobs on a supercomputer. An important feature of interstitial computing is that it not have a significant impact on the makespan of native jobs on the machine. Also, a facility can obtain higher utilizations that may only be otherwise possible with more complicated schemes or with very long wait times. The key contribution of this paper is that it provides theoretical and empirical guidelines for users and administrators for how currently unused supercomputer cycles may be exploited. We find that that interstitial computing is a more effective means for increasing machine utilization than increasing native job run times or size.

  15. International Nuclear Fuel Cycle Fact Book

    SciTech Connect (OSTI)

    Leigh, I.W.

    1992-05-01

    As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need exists costs for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book has been compiled to meet that need. The information contained in the International Nuclear Fuel Cycle Fact Book has been obtained from many unclassified sources: nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NMEA activities reports; and proceedings of conferences and workshops. The data listed typically do not reflect any single source but frequently represent a consolidation/combination of information.

  16. Methods and compositions for rapid thermal cycling

    SciTech Connect (OSTI)

    Beer, Neil Reginald; Benett, William J.; Frank, James M.; Deotte, Joshua R.; Spadaccini, Christopher

    2015-10-27

    The rapid thermal cycling of a material is targeted. A microfluidic heat exchanger with an internal porous medium is coupled to tanks containing cold fluid and hot fluid. Fluid flows alternately from the cold tank and the hot tank into the porous medium, cooling and heating samples contained in the microfluidic heat exchanger's sample wells. A valve may be coupled to the tanks and a pump, and switching the position of the valve may switch the source and direction of fluid flowing through the porous medium. A controller may control the switching of valve positions based on the temperature of the samples and determined temperature thresholds. A sample tray for containing samples to be thermally cycled may be used in conjunction with the thermal cycling system. A surface or internal electrical heater may aid in heating the samples, or may replace the necessity for the hot tank.

  17. International Nuclear Fuel Cycle Fact Book

    SciTech Connect (OSTI)

    Leigh, I W; Mitchell, S J

    1990-01-01

    As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need has developed for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book was compiled to meet that need. The information contained in the International Nuclear Fuel Cycle Fact Book has been obtained from many unclassified sources: nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NEA activities reports; proceedings of conferences and workshops, etc. The data listed do not reflect any one single source but frequently represent a consolidation/combination of information.

  18. Methods and compositions for rapid thermal cycling

    DOE Patents [OSTI]

    Beer, Neil Reginald; Benett, William J; Frank, James M; Deotte, Joshue R; Spadaccini, Christopher

    2015-11-06

    The rapid thermal cycling of a material is targeted. A microfluidic heat exchanger with an internal porous medium is coupled to tanks containing cold fluid and hot fluid. Fluid flows alternately from the cold tank and the hot tank into the porous medium, cooling and heating samples contained in the microfluidic heat exchanger's sample wells. A valve may be coupled to the tanks and a pump, and switching the position of the valve may switch the source and direction of fluid flowing through the porous medium. A controller may control the switching of valve positions based on the temperature of the samples and determined temperature thresholds. A sample tray for containing samples to be thermally cycled may be used in conjunction with the thermal cycling system. A surface or internal electrical heater may aid in heating the samples, or may replace the necessity for the hot tank.

  19. Standardized verification of fuel cycle modeling

    DOE PAGES-Beta [OSTI]

    Feng, B.; Dixon, B.; Sunny, E.; Cuadra, A.; Jacobson, J.; Brown, N. R.; Powers, J.; Worrall, A.; Passerini, S.; Gregg, R.

    2016-04-05

    A nuclear fuel cycle systems modeling and code-to-code comparison effort was coordinated across multiple national laboratories to verify the tools needed to perform fuel cycle analyses of the transition from a once-through nuclear fuel cycle to a sustainable potential future fuel cycle. For this verification study, a simplified example transition scenario was developed to serve as a test case for the four systems codes involved (DYMOND, VISION, ORION, and MARKAL), each used by a different laboratory participant. In addition, all participants produced spreadsheet solutions for the test case to check all the mass flows and reactor/facility profiles on a year-by-yearmore » basis throughout the simulation period. The test case specifications describe a transition from the current US fleet of light water reactors to a future fleet of sodium-cooled fast reactors that continuously recycle transuranic elements as fuel. After several initial coordinated modeling and calculation attempts, it was revealed that most of the differences in code results were not due to different code algorithms or calculation approaches, but due to different interpretations of the input specifications among the analysts. Therefore, the specifications for the test case itself were iteratively updated to remove ambiguity and to help calibrate interpretations. In addition, a few corrections and modifications were made to the codes as well, which led to excellent agreement between all codes and spreadsheets for this test case. Although no fuel cycle transition analysis codes matched the spreadsheet results exactly, all remaining differences in the results were due to fundamental differences in code structure and/or were thoroughly explained. As a result, the specifications and example results are provided so that they can be used to verify additional codes in the future for such fuel cycle transition scenarios.« less

  20. AFIP-6 MKII First Cycle Report

    SciTech Connect (OSTI)

    N.E. Woolstenhulme

    2012-03-01

    The first fuel plate frame assembly of the AFIP-6 MKII experiment was irradiated as planned from December, 2011 through February, 2012 in the center flux trap of the Advanced Test Reactor during cycle 151A. Following irradiation in this cycle and while reconfiguring the experiment in the ATR canal, a non-fueled component (the bottom plate) of the first fuel plate frame assembly became separated from the rail sides. There is no evidence that the fueled region of the fuel plate frame assembly was compromised by this incident or the irradiation conditions. The separation of this component was determined to have been caused by flow induced vibrations, where vortex shedding frequencies were resonant with a natural frequency of the bottom plate component. This gave way to amplification, fracture, and separation from the assembly. Although parallel flow induced vibrations were analyzed, vortex shedding flow induced vibrations was an unfamiliar failure mode that was difficult to identify. Both the once-irradiated first fuel plate and un-irradiated second fuel plate frame assemblies were planned for irradiation in the subsequent cycle 151B. The AFIP-6 MKII experiment was excluded from irradiation in cycle 151B because non-trivial design modifications would be needed to mitigate this type of incident during the second irradiation cycle. All items of the experiment hardware were accounted for and cycle 151B occurred with a non-fueled AFIP backup assembly in the center flux trap. Options for completion of the AFIP-6 MKII experiment campaign are presented and future preventative actions are recommended.

  1. New Regenerative Cycle for Vapor Compression Refrigeration

    SciTech Connect (OSTI)

    Bergander, Mark J [Magnetic Development, Inc.; Butrymowicz, Dariusz [Polish Academy of Scinces

    2010-01-26

    This project was a continuation of Category 1 project, completed in August 2005. Following the successful bench model demonstration of the technical feasibility and economic viability, the main objective in this stage was to fabricate the prototype of the heat pump, working on the new thermodynamic cycle. This required further research to increase the system efficiency to the level consistent with theoretical analysis of the cycle. Another group of objectives was to provide the foundation for commercialization and included documentation of the manufacturing process, preparing the business plan, organizing sales network and raising the private capital necessary to acquire production facilities.

  2. Fossil plant cycling impacts on feedwater heaters

    SciTech Connect (OSTI)

    O`Connor, D.

    1995-12-01

    As the U.S. electric utility industry faces the most challenging period in its history, EPRI research is focused on providing products and services that help utilities meet these challenges. Currently, a dominant issue for fossil plants is the need to reduce operation and maintenance costs in order to maintain their profitability in an increasingly competitive business environment. Cycling operation can significantly effect plant O&M costs and must, therefore be done in the most effective and efficient manner. Ongoing R&D is providing new products and strategies addressing cycling operation that utilities can implement to optimize O&M costs for least-cost power production.

  3. Global Impacts (Carbon Cycle 2.0)

    ScienceCinema (OSTI)

    Gadgil, Ashok [EETD and UC Berkeley

    2016-07-12

    Ashok Gadgil, Faculty Senior Scientist and Acting Director, EETD, also Professor of Environmental Engineering, UC Berkeley, speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 2, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

  4. Plutonium transmutation in thorium fuel cycle

    SciTech Connect (OSTI)

    Necas, Vladimir; Breza, Juraj |; Darilek, Petr

    2007-07-01

    The HELIOS spectral code was used to study the application of the thorium fuel cycle with plutonium as a supporting fissile material in a once-through scenario of the light water reactors PWR and VVER-440 (Russian design). Our analysis was focused on the plutonium transmutation potential and the plutonium radiotoxicity course of hypothetical thorium-based cycles for current nuclear power reactors. The paper shows a possibility to transmute about 50% of plutonium in analysed reactors. Positive influence on radiotoxicity after 300 years and later was pointed out. (authors)

  5. Combined cycle comes to the Philippines

    SciTech Connect (OSTI)

    1995-03-01

    The first combined cycle power station in the Philippines has gone into operation at National Power Corporation`s (NPC) Limay Bataan site, some 40 km west of Manila. The plant comprises two 300 MW blocks in 3+3+1 configuration, based on ABB Type GT11N gas turbines. It was built by a consortium of ABB, with their Japanese licensee Kawasaki Heavy Industries, and Marubeni Corporation. This paper discusses Philippine power production, design and operation of the Limay Bataan plant, and conversion of an existing turbine of the nuclear plant project that was abandoned earlier, into a combined cycle operation. 6 figs.

  6. Investigating potential light-duty efficiency improvements through simulation of turbo-compounding and waste-heat recovery systems

    SciTech Connect (OSTI)

    Edwards, Kevin Dean; Wagner, Robert M; Briggs, Thomas E

    2010-01-01

    Modern diesel engines used in light-duty transportation applications have peak brake thermal efficiencies in the range of 40-42% for high-load operation with substantially lower efficiencies at realistic road-load conditions. Thermodynamic energy and exergy analysis reveals that the largest losses from these engines are due to combustion irreversibility and heat loss to the coolant, through the exhaust, and by direct convection and radiation to the environment. Substantial improvement in overall engine efficiency requires reducing or recovering these losses. Unfortunately, much of the heat transfer either occurs at relatively low temperatures resulting in large entropy generation (such as in the air-charge cooler), is transferred to low-exergy flow streams (such as the oil and engine coolant), or is radiated or convected directly to the environment. While there are significant opportunities for recovery from the exhaust and EGR cooler for heavy-duty applications, achieving similar benefits for light-duty applications is complicated by transient, low-load operation at typical driving conditions and competition with the turbocharger and aftertreatment system for the limited thermal resources. We have developed an organic Rankine cycle model using GT-Suite to investigate the potential for efficiency improvement through waste-heat recovery from the exhaust and EGR cooler of a light-duty diesel engine. The model is used to examine the effects of efficiency-improvement strategies such as cylinder deactivation, use of advanced materials and improved insulation to limit ambient heat loss, and turbo-compounding on the steady-state performance of the ORC system and the availability of thermal energy for downstream aftertreatment systems. Results from transient drive-cycle simulations are also presented, and we discuss strategies to address operational difficulties associated with transient drive cycles and balancing the thermal requirements of waste-heat recovery

  7. Highly efficient 6-stroke engine cycle with water injection

    DOE Patents [OSTI]

    Szybist, James P; Conklin, James C

    2012-10-23

    A six-stroke engine cycle having improved efficiency. Heat is recovered from the engine combustion gases by using a 6-stroke engine cycle in which combustion gases are partially vented proximate the bottom-dead-center position of the fourth stroke cycle, and water is injected proximate the top-dead-center position of the fourth stroke cycle.

  8. JGI's Carbon Cycling Studies on Restored Marshes

    SciTech Connect (OSTI)

    Tringe, Susannah; Theroux, Susanna

    2015-06-02

    DOE Joint Genome Institute Metagenome Program Head, Susannah Tringe, and postdoc, Susie Theroux, discuss the lessons to be learned from studying the microbial diversity of marshes that have been converted to other uses, and are now being restored, as well as the potential impacts on the global carbon cycle.

  9. Convectively driven PCR thermal-cycling

    DOE Patents [OSTI]

    Benett, William J.; Richards, James B.; Milanovich, Fred P.

    2003-07-01

    A polymerase chain reaction system provides an upper temperature zone and a lower temperature zone in a fluid sample. Channels set up convection cells in the fluid sample and move the fluid sample repeatedly through the upper and lower temperature zone creating thermal cycling.

  10. Optimum cycle chemistry for fossil plants

    SciTech Connect (OSTI)

    Dooley, R.B.; Pate, R.

    1995-01-01

    At the time of the last International Fossil Plant Cycle Chemistry Conference in 1991, the vision for cycle chemistry indicated that the fossil plant would become a cleaner place for high purity water and steam, and that the boiler would cease to be the {open_quotes}filter{close_quotes} in the cycle. It was suggested that chemical cleans for drum boilers should be performed on a 10 year basis or greater, and that for once-through units cleans should be eliminated. Without full support of utility management and investment in carefully chosen chemistry and power cycle materials, there would be no chance of success. Three years later it is gratifying to report that the news and progress is very good. Advancements have been achieved in each area and the vision is becoming clearer and more believable by the utilities. This paper will provide the status on the major changes that have taken place and delineate the further needed activities to the end of the century and beyond. A continuing vision is also provided.

  11. Combined cycle power plant incorporating coal gasification

    DOE Patents [OSTI]

    Liljedahl, Gregory N.; Moffat, Bruce K.

    1981-01-01

    A combined cycle power plant incorporating a coal gasifier as the energy source. The gases leaving the coal gasifier pass through a liquid couplant heat exchanger before being used to drive a gas turbine. The exhaust gases of the gas turbine are used to generate both high pressure and low pressure steam for driving a steam turbine, before being exhausted to the atmosphere.

  12. Effect of additives on lithium cycling efficiency

    SciTech Connect (OSTI)

    Hirai, Toshiro; Yoshimatsu, Isamu; Yamaki, J. )

    1994-09-01

    Lithium cycling efficiency was evaluated for LiAsF[sub 6]-ethylene carbonate/2-methyltetrahydrofuran mixed-solvent electrolyte (LiAsF[sub 6]-EC/2MeTHF) with several additives: tetraalkylammonium chlorides with a long n-alkyl chain and three methyl groups. The ammonium chlorides with n-alkyl group longer than n-C[sub 12]H[sub 25]- increased lithium cycling efficiency. Cetyltrimethylammonium chloride (CTAC) produced the best improvement in lithium cycling efficiency. A figure of merit (FOM) of lithium for 0.01 M CTAC was 46, which was 1.5 times the FOM for the corresponding additive-free electrolyte. The LiAsF[sub 6]-EC/2MeTHF with CTAC showed an increase in FOM with stack pressure, but the effect was less than that for the additive-free LiAsF[sub 6]-EC/2MeTHF. Scanning electron microscope observation showed that the addition of CTAC decreased the needle-like lithium deposition and increased particulate lithium deposition. This deposition morphology may be the main cause of the increase in FOM. The additive had no effect on rate capability for cell cycling at 3 mA/cm[sup 2] discharge and 1 mA/cm[sup 2] charge.

  13. Low chemical concentrating steam generating cycle

    DOE Patents [OSTI]

    Mangus, James D. (Greensburg, PA)

    1983-01-01

    A steam cycle for a nuclear power plant having two optional modes of operation. A once-through mode of operation uses direct feed of coolant water to an evaporator avoiding excessive chemical concentration buildup. A recirculation mode of operation uses a recirculation loop to direct a portion of flow from the evaporator back through the evaporator to effectively increase evaporator flow.

  14. Dynamic Analysis of Fuel Cycle Transitioning

    SciTech Connect (OSTI)

    Brent Dixon; Steve Piet; David Shropshire; Gretchen Matthern

    2009-09-01

    This paper examines the time-dependent dynamics of transitioning from a once-through fuel cycle to a closed fuel cycle. The once-through system involves only Light Water Reactors (LWRs) operating on uranium oxide fuel UOX), while the closed cycle includes both LWRs and fast spectrum reactors (FRs) in either a single-tier system or two-tier fuel system. The single-tier system includes full transuranic recycle in FRs while the two-tier system adds one pass of mixed oxide uranium-plutonium (MOX U-Pu) fuel in the LWR. While the analysis primarily focuses on burner fast reactors, transuranic conversion ratios up to 1.0 are assessed and many of the findings apply to any fuel cycle transitioning from a thermal once-through system to a synergistic thermal-fast recycle system. These findings include uranium requirements for a range of nuclear electricity growth rates, the importance of back end fuel cycle facility timing and magnitude, the impact of employing a range of fast reactor conversion ratios, system sensitivity to used fuel cooling time prior to recycle, impacts on a range of waste management indicators, and projected electricity cost ranges for once-through, single-tier and two-tier systems. The study confirmed that significant waste management benefits can be realized as soon as recycling is initiated, but natural uranium savings are minimal in this century. The use of MOX in LWRs decouples the development of recycle facilities from fast reactor fielding, but also significantly delays and limits fast reactor deployment. In all cases, fast reactor deployment was significantly below than predicted by static equilibrium analyses.

  15. Solar spectral irradiance changes during cycle 24

    SciTech Connect (OSTI)

    Marchenko, S. V.; DeLand, M. T.

    2014-07-10

    We use solar spectra obtained by the Ozone Monitoring Instrument (OMI) on board the Aura satellite to detect and follow long-term (years) and short-term (weeks) changes in the solar spectral irradiance (SSI) in the 265-500 nm spectral range. During solar Cycle 24, in the relatively line-free regions the SSI changed by ∼0.6% ± 0.2% around 265 nm. These changes gradually diminish to 0.15% ± 0.20% at 500 nm. All strong spectral lines and blends, with the notable exception of the upper Balmer lines, vary in unison with the solar 'continuum'. Besides the lines with strong chromospheric components, the most involved species include Fe I blends and all prominent CH, NH, and CN spectral bands. Following the general trend seen in the solar 'continuum', the variability of spectral lines also decreases toward longer wavelengths. The long-term solar cycle SSI changes are closely, to within the quoted 0.1%-0.2% uncertainties, matched by the appropriately adjusted short-term SSI variations derived from the 27 day rotational modulation cycles. This further strengthens and broadens the prevailing notion about the general scalability of the UV SSI variability to the emissivity changes in the Mg II 280 nm doublet on timescales from weeks to years. We also detect subtle deviations from this general rule: the prominent spectral lines and blends at λ ≳ 350 nm show slightly more pronounced 27 day SSI changes when compared to the long-term (years) trends. We merge the solar data from Cycle 21 with the current Cycle 24 OMI and GOME-2 observations and provide normalized SSI variations for the 170-795 nm spectral region.

  16. Internal cycle modeling and environmental assessment of multiple cycle consumer products

    SciTech Connect (OSTI)

    Tsiliyannis, C.A.

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer Dynamic flow models are presented for remanufactured, reused or recycled products. Black-Right-Pointing-Pointer Early loss and stochastic return are included for fast and slow cycling products. Black-Right-Pointing-Pointer The reuse-to-input flow ratio (Internal Cycle Factor, ICF) is determined. Black-Right-Pointing-Pointer The cycle rate, which is increasing with the ICF, monitors eco-performance. Black-Right-Pointing-Pointer Early internal cycle losses diminish the ICF, the cycle rate and performance. - Abstract: Dynamic annual flow models incorporating consumer discard and usage loss and featuring deterministic and stochastic end-of-cycle (EOC) return by the consumer are developed for reused or remanufactured products (multiple cycle products, MCPs), including fast and slow cycling, short and long-lived products. It is shown that internal flows (reuse and overall consumption) increase proportionally to the dimensionless internal cycle factor (ICF) which is related to environmental impact reduction factors. The combined reuse/recycle (or cycle) rate is shown capable for shortcut, albeit effective, monitoring of environmental performance in terms of waste production, virgin material extraction and manufacturing impacts of all MCPs, a task, which physical variables (lifetime, cycling frequency, mean or total number of return trips) and conventional rates, via which environmental policy has been officially implemented (e.g. recycling rate) cannot accomplish. The cycle rate is shown to be an increasing (hyperbolic) function of ICF. The impact of the stochastic EOC return characteristics on total reuse and consumption flows, as well as on eco-performance, is assessed: symmetric EOC return has a small, positive effect on performance compared to deterministic, while early shifted EOC return is more beneficial. In order to be efficient, environmental policy should set higher minimum reuse targets for higher trippage MCPs. The

  17. Systems Analyses of Advanced Brayton Cycles

    SciTech Connect (OSTI)

    A.D. Rao; D.J. Francuz; J.D. Maclay; J. Brouwer; A. Verma; M. Li; G.S. Samuelsen

    2008-09-30

    The main objective is to identify and assess advanced improvements to the Brayton Cycle (such as but not limited to firing temperature, pressure ratio, combustion techniques, intercooling, fuel or combustion air augmentation, enhanced blade cooling schemes) that will lead to significant performance improvements in coal based power systems. This assessment is conducted in the context of conceptual design studies (systems studies) that advance state-of-art Brayton cycles and result in coal based efficiencies equivalent to 65% + on natural gas basis (LHV), or approximately an 8% reduction in heat rate of an IGCC plant utilizing the H class steam cooled gas turbine. H class gas turbines are commercially offered by General Electric and Mitsubishi for natural gas based combined cycle applications with 60% efficiency (LHV) and it is expected that such machine will be offered for syngas applications within the next 10 years. The studies are being sufficiently detailed so that third parties will be able to validate portions or all of the studies. The designs and system studies are based on plants for near zero emissions (including CO{sub 2}). Also included in this program is the performance evaluation of other advanced technologies such as advanced compression concepts and the fuel cell based combined cycle. The objective of the fuel cell based combined cycle task is to identify the desired performance characteristics and design basis for a gas turbine that will be integrated with an SOFC in Integrated Gasification Fuel Cell (IGFC) applications. The goal is the conceptualization of near zero emission (including CO{sub 2} capture) integrated gasification power plants producing electricity as the principle product. The capability of such plants to coproduce H{sub 2} is qualitatively addressed. Since a total systems solution is critical to establishing a plant configuration worthy of a comprehensive market interest, a baseline IGCC plant scheme is developed and used to study

  18. Supercritical carbon dioxide cycle control analysis.

    SciTech Connect (OSTI)

    Moisseytsev, A.; Sienicki, J. J.

    2011-04-11

    This report documents work carried out during FY 2008 on further investigation of control strategies for supercritical carbon dioxide (S-CO{sub 2}) Brayton cycle energy converters. The main focus of the present work has been on investigation of the S-CO{sub 2} cycle control and behavior under conditions not covered by previous work. An important scenario which has not been previously calculated involves cycle operation for a Sodium-Cooled Fast Reactor (SFR) following a reactor scram event and the transition to the primary coolant natural circulation and decay heat removal. The Argonne National Laboratory (ANL) Plant Dynamics Code has been applied to investigate the dynamic behavior of the 96 MWe (250 MWt) Advanced Burner Test Reactor (ABTR) S-CO{sub 2} Brayton cycle following scram. The timescale for the primary sodium flowrate to coast down and the transition to natural circulation to occur was calculated with the SAS4A/SASSYS-1 computer code and found to be about 400 seconds. It is assumed that after this time, decay heat is removed by the normal ABTR shutdown heat removal system incorporating a dedicated shutdown heat removal S-CO{sub 2} pump and cooler. The ANL Plant Dynamics Code configured for the Small Secure Transportable Autonomous Reactor (SSTAR) Lead-Cooled Fast Reactor (LFR) was utilized to model the S-CO{sub 2} Brayton cycle with a decaying liquid metal coolant flow to the Pb-to-CO{sub 2} heat exchangers and temperatures reflecting the decaying core power and heat removal by the cycle. The results obtained in this manner are approximate but indicative of the cycle transient performance. The ANL Plant Dynamics Code calculations show that the S-CO{sub 2} cycle can operate for about 400 seconds following the reactor scram driven by the thermal energy stored in the reactor structures and coolant such that heat removal from the reactor exceeds the decay heat generation. Based on the results, requirements for the shutdown heat removal system may be defined

  19. Solar Fuels and Carbon Cycle 2.0 (Carbon Cycle 2.0)

    ScienceCinema (OSTI)

    Alivisatos, Paul

    2016-07-12

    Paul Alivisatos, LBNL Director speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 4, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

  20. Computational Study of Cycle--to--Cycle Variation in Dual--Fuel Engines

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    | Argonne Leadership Computing Facility Study of Cycle--to--Cycle Variation in Dual--Fuel Engines PI Name: Ravichandra Jupudi PI Email: ravichandra.js@ge.com Institution: General Electric Global Research Allocation Program: ALCC Allocation Hours at ALCF: 25 Million Year: 2016 Research Domain: Engineering Premixed staged combustion (PSC), where fuel is burned in stages, is a new technology that has the potential to improve efficiency while reducing pollutant formation in combustion turbine

  1. Stabilized free-piston Stirling cycle machine

    SciTech Connect (OSTI)

    Emigh, S.G.; White, M.A.; Kennewich, P.R.

    1990-11-06

    This patent describes a free piston Stirling cycle machine. It comprises: a displacer cylinder having a central cylindrical axis; a displacer located within the displacer cylinder and movably mounted along the axis; an enclosed gas spring; working gas means including an enclosed volume of pressurized working gas directed to opposite axial ends of the displacer for cyclically reciprocating the displacer along its axis in a Stirling cycle mode of operation; counterbalance means mounted for axial motion directly related to that of the displacer, stabilizer means mechanically coupled to the counterbalance means for cyclically constraining reciprocating axial motion of the counterbalance means in a repetitive pattern; and hydrostatic fluid means operatively coupling the counterbalance means to the gas spring for accommodating fluid volumetric displacement due to engine operation, the hydrostatic fluid means also being operably coupling the displacer and counterbalance means for imparting axial movement between them.

  2. Fuel Cycle Technologies 2014 Achievement Report

    SciTech Connect (OSTI)

    Hong, Bonnie C.

    2015-01-01

    The Fuel Cycle Technologies (FCT) program supports the Department of Energy’s (DOE’s) mission to: “Enhance U.S. security and economic growth through transformative science, technology innovation, and market solutions to meet our energy, nuclear security, and environmental challenges.” Goal 1 of DOE’s Strategic Plan is to innovate energy technologies that enhance U.S. economic growth and job creation, energy security, and environmental quality. FCT does this by investing in advanced technologies that could transform the nuclear fuel cycle in the decades to come. Goal 2 of DOE’s Strategic Plan is to strengthen national security by strengthening key science, technology, and engineering capabilities. FCT does this by working closely with the National Nuclear Security Administration and the U.S Department of State to develop advanced technologies that support the Nation’s nuclear nonproliferation goals.

  3. High efficiency Brayton cycles using LNG

    SciTech Connect (OSTI)

    Morrow, Charles W.

    2006-04-18

    A modified, closed-loop Brayton cycle power conversion system that uses liquefied natural gas as the cold heat sink media. When combined with a helium gas cooled nuclear reactor, achievable efficiency can approach 68 76% (as compared to 35% for conventional steam cycle power cooled by air or water). A superheater heat exchanger can be used to exchange heat from a side-stream of hot helium gas split-off from the primary helium coolant loop to post-heat vaporized natural gas exiting from low and high-pressure coolers. The superheater raises the exit temperature of the natural gas to close to room temperature, which makes the gas more attractive to sell on the open market. An additional benefit is significantly reduced costs of a LNG revaporization plant, since the nuclear reactor provides the heat for vaporization instead of burning a portion of the LNG to provide the heat.

  4. Optimization of life cycle management costs

    SciTech Connect (OSTI)

    Banerjee, A.K.

    1994-12-31

    As can be seen from the case studies, a LCM program needs to address and integrate, in the decision process, technical, political, licensing, remaining plant life, component replacement cycles, and financial issues. As part of the LCM evaluations, existing plant programs, ongoing replacement projects, short and long-term operation and maintenance issues, and life extension strategies must be considered. The development of the LCM evaluations and the cost benefit analysis identifies critical technical and life cycle cost parameters. These {open_quotes}discoveries{close_quotes} result from the detailed and effective use of a consistent, quantifiable, and well documented methodology. The systematic development and implementation of a plant-wide LCM program provides for an integrated and structured process that leads to the most practical and effective recommendations. Through the implementation of these recommendations and cost effective decisions, the overall power production costs can be controlled and ultimately lowered.

  5. Fuel cycle for a fusion neutron source

    SciTech Connect (OSTI)

    Ananyev, S. S. Spitsyn, A. V. Kuteev, B. V.

    2015-12-15

    The concept of a tokamak-based stationary fusion neutron source (FNS) for scientific research (neutron diffraction, etc.), tests of structural materials for future fusion reactors, nuclear waste transmutation, fission reactor fuel production, and control of subcritical nuclear systems (fusion–fission hybrid reactor) is being developed in Russia. The fuel cycle system is one of the most important systems of FNS that provides circulation and reprocessing of the deuterium–tritium fuel mixture in all fusion reactor systems: the vacuum chamber, neutral injection system, cryogenic pumps, tritium purification system, separation system, storage system, and tritium-breeding blanket. The existing technologies need to be significantly upgraded since the engineering solutions adopted in the ITER project can be only partially used in the FNS (considering the capacity factor higher than 0.3, tritium flow up to 200 m{sup 3}Pa/s, and temperature of reactor elements up to 650°C). The deuterium–tritium fuel cycle of the stationary FNS is considered. The TC-FNS computer code developed for estimating the tritium distribution in the systems of FNS is described. The code calculates tritium flows and inventory in tokamak systems (vacuum chamber, cryogenic pumps, neutral injection system, fuel mixture purification system, isotope separation system, tritium storage system) and takes into account tritium loss in the fuel cycle due to thermonuclear burnup and β decay. For the two facility versions considered, FNS-ST and DEMO-FNS, the amount of fuel mixture needed for uninterrupted operation of all fuel cycle systems is 0.9 and 1.4 kg, consequently, and the tritium consumption is 0.3 and 1.8 kg per year, including 35 and 55 g/yr, respectively, due to tritium decay.

  6. TITAN'S TRANSPORT-DRIVEN METHANE CYCLE

    SciTech Connect (OSTI)

    Mitchell, Jonathan L.

    2012-09-10

    The mechanisms behind the occurrence of large cloud outbursts and precipitation on Titan have been disputed. A global- and annual-mean estimate of surface fluxes indicated only 1% of the insolation, or {approx}0.04 W m{sup -2}, is exchanged as sensible and/or latent fluxes. Since these fluxes are responsible for driving atmospheric convection, it has been argued that moist convection should be quite rare and precipitation even rarer, even if evaporation globally dominates the surface-atmosphere energy exchange. In contrast, climate simulations indicate substantial cloud formation and/or precipitation. We argue that the top-of-atmosphere (TOA) radiative imbalance is diagnostic of horizontal heat transport by Titan's atmosphere, and thus constrains the strength of the methane cycle. Simple calculations show the TOA radiative imbalance is {approx}0.5-1 W m{sup -2} in Titan's equatorial region, which implies 2-3 MW of latitudinal heat transport by the atmosphere. Our simulation of Titan's climate suggests this transport may occur primarily as latent heat, with net evaporation at the equator and net accumulation at higher latitudes. Thus, the methane cycle could be 10-20 times previous estimates. Opposing seasonal transport at solstices, compensation by sensible heat transport, and focusing of precipitation by large-scale dynamics could further enhance the local, instantaneous strength of Titan's methane cycle by a factor of several. A limited supply of surface liquids in regions of large surface radiative imbalance may throttle the methane cycle, and if so, we predict more frequent large storms over the lakes district during Titan's northern summer.

  7. Capturing Innovation In Biofuel Life Cycle Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    CAPTURING INNOVATION IN BIOFUEL LIFE CYCLE ANALYSIS drhgfdjhngngfmhgmghmghjmghfmf JENNIFER B. DUNN Biofuel Analysis Team Lead Energy Systems Division Argonne National Laboratory Bioenergy 2016 July 13, 2016 1-B: INNOVATION AND SUSTAINABILITY: CAPTURING SOCIAL AND ENVIRONMENTAL BENEFITS AS PART OF BIOENERGY'S VALUE PROPOSITION The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy

  8. GREET Life-Cycle Analysis of Biofuels

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    BETO Project Peer Review GREET Life-Cycle Analysis of Biofuels March 24, 2015 Analysis and Sustainability Michael Wang, Jennifer B. Dunn Argonne National Laboratory Key acronyms list AD Anaerobic digestion FR Forest residue AEO Annual Energy Outlook FTD Fischer Tropsch Diesel AEZ Agricultural Ecological Zone FN Fuel gas/natural gas AGE Air emissions, greenhouse gas emissions, energy consumption FY Fiscal year ALU Algal lipid upgrading GHG Greenhouse gas AHTL Algal hydrothermal liquefaction GREET

  9. Nuclear reactors and the nuclear fuel cycle

    SciTech Connect (OSTI)

    Pearlman, H

    1989-11-01

    According to the author, the first sustained nuclear fission chain reaction was not at the University of Chicago, but at the Oklo site in the African country of Gabon. Proof of this phenomenon is provided by mass spectrometric and analytical chemical measurements by French scientists. The U.S. experience in developing power-producing reactors and their related fuel and fuel cycles is discussed.

  10. Current Comparison of Advanced Nuclear Fuel Cycles

    SciTech Connect (OSTI)

    Steven Piet; Trond Bjornard; Brent Dixon; Robert Hill; Gretchen Matthern; David Shropshire

    2007-04-01

    This paper compares potential nuclear fuel cycle strategies – once-through, recycling in thermal reactors, sustained recycle with a mix of thermal and fast reactors, and sustained recycle with fast reactors. Initiation of recycle starts the draw-down of weapons-usable material and starts accruing improvements for geologic repositories and energy sustainability. It reduces the motivation to search for potential second geologic repository sites. Recycle in thermal-spectru

  11. Financing Strategies for Nuclear Fuel Cycle Facility

    SciTech Connect (OSTI)

    David Shropshire; Sharon Chandler

    2005-12-01

    To help meet our nation’s energy needs, reprocessing of spent nuclear fuel is being considered more and more as a necessary step in a future nuclear fuel cycle, but incorporating this step into the fuel cycle will require considerable investment. This report presents an evaluation of financing scenarios for reprocessing facilities integrated into the nuclear fuel cycle. A range of options, from fully government owned to fully private owned, was evaluated using a DPL (Dynamic Programming Language) 6.0 model, which can systematically optimize outcomes based on user-defined criteria (e.g., lowest life-cycle cost, lowest unit cost). Though all business decisions follow similar logic with regard to financing, reprocessing facilities are an exception due to the range of financing options available. The evaluation concludes that lowest unit costs and lifetime costs follow a fully government-owned financing strategy, due to government forgiveness of debt as sunk costs. Other financing arrangements, however, including regulated utility ownership and a hybrid ownership scheme, led to acceptable costs, below the Nuclear Energy Agency published estimates. Overwhelmingly, uncertainty in annual capacity led to the greatest fluctuations in unit costs necessary for recovery of operating and capital expenditures; the ability to determine annual capacity will be a driving factor in setting unit costs. For private ventures, the costs of capital, especially equity interest rates, dominate the balance sheet; the annual operating costs dominate the government case. It is concluded that to finance the construction and operation of such a facility without government ownership could be feasible with measures taken to mitigate risk, and that factors besides unit costs should be considered (e.g., legal issues, social effects, proliferation concerns) before making a decision on financing strategy.

  12. Tropical Cloud Life Cycle and Overlap Structure

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Tropical Cloud Life Cycle and Overlap Structure Vogelmann, Andrew Brookhaven National Laboratory Jensen, Michael Brookhaven National Laboratory Kollias, Pavlos Brookhaven National Laboratory Luke, Edward Brookhaven National Laboratory Boer, Erwin LUEBEC Category: Cloud Properties The profile of cloud microphysical properties and how the clouds are overlapped within a vertical column have a profound impact on the radiative transfer and subsequent general circulation model simulations. We will

  13. Watts Bar Operating Cycles Simulated to Present

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Coming in our next issue of Tech Notes: Fuel Performance Predictions with VERA Watts Bar Operating Cycles Simulated to Present Among the most important accomplishments during CASL Phase 1 is the development and deployment of CASL's Virtual Environment for Reactor Applications (VERA), a high-fidelity, multi-physics engineering tool that utilizes modest high- performance computing (HPC) systems and engineering-scale clusters to simultaneously simulate the local fuel rod neutronics and coolant

  14. Major marine source rocks and stratigraphic cycles

    SciTech Connect (OSTI)

    Duval, B.C.

    1995-11-01

    The identification of continental encroachment cycles and subcycles by using sequence stratigraphy can assist explorationists in locating source rocks. The continental encroachment cycles are associated with the breakup of the supercontinents and fit a smooth long-term eustatic curve. They are first order, with a duration greater than 50 m.y., and are composed of transgressive and regressive phases inducing major changes in shoreline. The limit between the transgressive and regressive phases corresponds to a major downlap surface, and major marine source rocks are often found in association with this surface, particularly in the northern hemisphere. Potential {open_quotes}secondary{close_quotes} source rock intervals can also be sought by sequence stratigraphy because each continental encroachment cycle is composed of several subcycles, and the same configuration of a regressive forestepping phase overlying a transgressive backstepping phase also creates a downlap surface that may correspond with organic-rich intervals. The stratigraphic distribution of source rocks and related reserves fits reasonably well with continental encroachment cycles and subcycles. For instance, source rocks of Silurian, Upper Jurassic, and Middle-Upper Cretaceous are associated with eustatic highs and bear witness to this relationship. The recognition and mapping of such downlap surfaces is therefore a useful step to help map source rocks. The interpretation of sequence stratigraphy from regional seismic lines, properly calibrated with geochernical data whenever possible, can be of considerable help in the process. Several examples from around the world illustrate the power of the method: off-shore of eastern Venezuela, coastal basin of Angola, western Africa, the North Sea, south Algeria, and the North Caucasian trough.

  15. POSSIBLE CHROMOSPHERIC ACTIVITY CYCLES IN AD LEO

    SciTech Connect (OSTI)

    Buccino, Andrea P.; Petrucci, Romina; Mauas, Pablo J. D.; Jofr, Emiliano

    2014-01-20

    AD Leo (GJ388) is an active dM3 flare star that has been extensively observed both in the quiescent and flaring states. Since this active star is near the fully convective boundary, studying its long-term chromospheric activity in detail could be an appreciable contribution to dynamo theory. Here, using the Lomb-Scargle periodogram, we analyze the Ca IIK line-core fluxes derived from CASLEO spectra obtained between 2001 and 2013 and the V magnitude from the ASAS database between 2004 and 2010. From both of these totally independent time series, we obtain a possible activity cycle with a period of approximately seven years and a less significant shorter cycle of approximately two years. A tentative interpretation is that a dynamo operating near the surface could be generating the longer cycle, while a second dynamo operating in the deep convection zone could be responsible for the shorter one. Based on the long duration of our observing program at CASLEO and the fact that we observe different spectral features simultaneously, we also analyze the relation between simultaneous measurements of the Na I index (R{sub D}{sup ?}), H?, and Ca IIK fluxes at different activity levels of AD Leo, including flares.

  16. HUMID AIR TURBINE CYCLE TECHNOLOGY DEVELOPMENT PROGRAM

    SciTech Connect (OSTI)

    Richard Tuthill

    2002-07-18

    The Humid Air Turbine (HAT) Cycle Technology Development Program focused on obtaining HAT cycle combustor technology that will be the foundation of future products. The work carried out under the auspices of the HAT Program built on the extensive low emissions stationary gas turbine work performed in the past by Pratt & Whitney (P&W). This Program is an integral part of technology base development within the Advanced Turbine Systems Program at the Department of Energy (DOE) and its experiments stretched over 5 years. The goal of the project was to fill in technological data gaps in the development of the HAT cycle and identify a combustor configuration that would efficiently burn high moisture, high-pressure gaseous fuels with low emissions. The major emphasis will be on the development of kinetic data, computer modeling, and evaluations of combustor configurations. The Program commenced during the 4th Quarter of 1996 and closed in the 4th Quarter of 2001. It teamed the National Energy Technology Laboratory (NETL) with P&W, the United Technologies Research Center (UTRC), and a subcontractor on-site at UTRC, kraftWork Systems Inc. The execution of the program started with bench-top experiments that were conducted at UTRC for extending kinetic mechanisms to HAT cycle temperature, pressure, and moisture conditions. The fundamental data generated in the bench-top experiments was incorporated into the analytical tools available at P&W to design the fuel injectors and combustors. The NETL then used the hardware to conduct combustion rig experiments to evaluate the performance of the combustion systems at elevated pressure and temperature conditions representative of the HAT cycle. The results were integrated into systems analysis done by kraftWork to verify that sufficient understanding of the technology had been achieved and that large-scale technological application and demonstration could be undertaken as follow-on activity. An optional program extended the

  17. Mixtures of SF6 CO2 as working fluids for geothermal power plants...

    Office of Scientific and Technical Information (OSTI)

    13 and 15% mole content of SF6 in a CO2- SF6 mixture for a Brayton cycle and a Rankine cycle, respectively. Authors: Yin, Hebi 1 ; Sabau, Adrian S 1 ; Conklin, Jim...

  18. Rankin County, Mississippi: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    County, Mississippi Brandon, Mississippi Florence, Mississippi Flowood, Mississippi Jackson, Mississippi Pearl, Mississippi Pelahatchie, Mississippi Puckett, Mississippi...

  19. Evaluation of alternative thermochemical cycles-part III further development of the Cu-Cl cycle.

    SciTech Connect (OSTI)

    Lewis, M. A.; Ferrandon, M. S.; Tatterson, D. F.; Mathias, P.; Chemical Sciences and Engineering Division

    2009-01-01

    This is the third in a series of papers on alternative cycle evaluation. Part I described the evaluation methodology. Part II described the down-selection process where the most promising of the nine alternative cycles was determined. The Cu-Cl cycle was selected for further development because it alone meets the four criteria used. The current results indicate that the cycle is chemically viable, feasible with respect to engineering, energy-efficient, and capable of meeting DOE's timeline for an Integrated Laboratory Scale (ILS) demonstration. All of the reactions have been proven and the remaining technical challenges should be met with current technologies. The maximum temperature requirement is around 550 C (823 K), which can be obtained with a variety of heat sources. The lower temperature should mitigate the demands on the materials of construction. This paper, Part III, describes the procedure used to develop the Cu-Cl cycle beyond the relatively simple Level 3 efficiency calculation completed by the universities. The optimization process consisted of (i) updating the thermodynamic database used in the Aspen Plus{reg_sign} simulation, (ii) developing a robust flowsheet and optimizing the energy usage therein, (iii) designing a conceptual process incorporating the Aspen Plus{reg_sign} mass and energy flows, and then (iv) estimating the hydrogen production costs. The results presented here are preliminary because further optimization is ongoing.

  20. Innovative thermal cooling cycles for use in cogeneration

    SciTech Connect (OSTI)

    Skalafuris, A.

    1990-08-01

    This report discusses working fluids, the use in thermodynamic cycles and cogeneration. An emphasis is put on energy efficiency of the cycles and alternative fluids. 16 refs., 9 figs., 6 tabs. (CBS)

  1. Life-Cycle Analysis Results of Geothermal Systems in Comparison...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Life-Cycle Analysis Results of Geothermal Systems in Comparison to Other Power Systems Life-Cycle Analysis Results of Geothermal Systems in Comparison to Other Power Systems A ...

  2. Cycling on the Rise: Public Bicycles and other European Experiences...

    Open Energy Information (Open El) [EERE & EIA]

    and the building of local partnerships, might increase the modal share of cycling. We had big expectations at the beginning of the project regarding cycling planning, but could not...

  3. U.S. Life Cycle Inventory Database Roadmap (Brochure)

    SciTech Connect (OSTI)

    Deru, M.

    2009-08-01

    Life cycle inventory data are the primary inputs for conducting life cycle assessment studies. Studies based on high-quality data that are consistent, accurate, and relevant allow for robust, defensible, and meaningful results.

  4. Day4 Energy Certus Life Cycle JV | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Day4 Energy Certus Life Cycle JV Jump to: navigation, search Name: Day4 Energy & Certus Life Cycle JV Place: Italy Product: JV company will develop photovoltaic power projects in...

  5. Life Cycle Assessment of Coal-fired Power Production (Technical...

    Office of Scientific and Technical Information (OSTI)

    Life Cycle Assessment of Coal-fired Power Production Citation Details In-Document Search Title: Life Cycle Assessment of Coal-fired Power Production You are accessing a document ...

  6. Life-Cycle Assessment of Energy and Environmental Impacts of...

    Energy Savers

    Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products This March 28, ...

  7. Tribal Renewable Energy Webinar: The Life Cycle of Tribal Clean...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    The Life Cycle of Tribal Clean Energy Tribal Renewable Energy Webinar: The Life Cycle of Tribal Clean Energy June 29, 2016 11:00AM to 12:30PM MDT According to DOE's National ...

  8. Bioproduct Life Cycle Analysis with the GREET Model

    Office of Energy Efficiency and Renewable Energy (EERE)

    Breakout Session 2B—Integration of Supply Chains II: Bioproducts—Enabling Biofuels and Growing the Bioeconomy Bioproduct Life Cycle Analysis with the GREET Model Jennifer B. Dunn, Biofuel Life Cycle Analysis Team Lead, Argonne National Laboratory

  9. U.S. Life Cycle Inventory Database Roadmap

    SciTech Connect (OSTI)

    none,

    2009-08-01

    Life cycle inventory data are the primary inputs for conducting life cycle assessment studies. Studies based on high-quality data that are consistent, accurate, and relevant allow for robust, defensible, and meaningful results.

  10. Life-Cycle Assessment of Energy and Environmental Impacts of...

    Energy Savers

    Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products Part I: Review of the Life-Cycle Energy Consumption of Incandescent, Compact Fluorescent, and LED ...

  11. Sol-Cycle: Biking Across America for Science Education | Department...

    Office of Environmental Management (EM)

    Sol-Cycle: Biking Across America for Science Education Sol-Cycle: Biking Across America for Science Education May 1, 2015 - 1:10pm Addthis Rachel Woods-Robinson and Elizabeth Case, ...

  12. Rain or Shine: We Cycle for Science | Department of Energy

    Office of Environmental Management (EM)

    Rain or Shine: We Cycle for Science Rain or Shine: We Cycle for Science July 2, 2015 - 10:39am Addthis Elizabeth and Rachel visit a YWCA in Waterloo, Iowa. | Photo courtesy of ...

  13. Ring Cycle for Dilating and Constricting the Nuclear Pore

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Ring Cycle for Dilating and Constricting the Nuclear Pore Ring Cycle for Dilating and Constricting the Nuclear Pore Print Thursday, 13 June 2013 09:30 Pictured is an illustration...

  14. CHP Industrial Bottoming and Topping Cycle with Energy Information...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    illustrates the CHP bottoming cycle. 3 In a bottoming cycle, which is also referred to as Waste Heat to Power (WHP), fuel is first used to provide thermal input to a furnace or...

  15. Life-Cycle Analysis Results of Geothermal Systems in Comparison...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Life-Cycle Analysis Results of Geothermal Systems in Comparison to Other Power Systems A life-cycle energy and greenhouse gas emissions analysis has been conducted with Argonne ...

  16. Full Fuel-Cycle Comparison of Forklift Propulsion Systems

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    3 Full Fuel-Cycle Comparison of Forklift Propulsion Systems Energy Systems Division About ... UChicago Argonne, LLC. ANLESD08-3 Full Fuel-Cycle Comparison of Forklift Propulsion ...

  17. Microsoft Word - Fuel Cycle Subcomm report final v2.docx

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of the Fuel Cycle Subcommittee of NEAC June 15, 2011 Washington, D.C. Members: Burton ... Ron Omberg Joy Rempe Dominique Warin Fuel Cycle Subcommittee Report 6152011 2 I. ...

  18. Proliferation prevention in the commercial fuel cycle

    SciTech Connect (OSTI)

    Sutcliffe, W G

    1999-04-09

    This website contains the papers presented on November 17, 1998 during the session, "Proliferation Prevention in the Commercial Fuel Cycle," at the American Nuclear Society meeting in Washington, DC. The abstracts are in a separate section; individual papers also contain the author's bio and e-mail address. In the session planning phase, it was suggested that the following questions and other relevant issues be addressed: * What are the difficulties and issues with defining and enforcing international standards for the physical protection of Pu and HEU (beyond the Convention on the Physical protection of Nuclear Material, which primarily addresses transportation)? * How do we (or can we) keep nuclear technology in general, and reprocessing and enrichment technologies in particular, from spreading to undesirable organizations (including governments), in light of Article IV of the NPT? Specifically, can we (should we) prevent the construction of light-water reactors in Iran; and should we support the construction of light-water reactors in North Korea? * Are there more proliferation-resistant fuel cycles that would be appropriate in developing countries? * Can the concept of "nonproliferation credentials" be defined in a useful way? * Is there historical evidence to indicate that reprocessing (or enrichment of HEU) in the US, Japan, or the EURATOM countries has impacted the acquisition (or attempted acquisition) of nuclear weapons by other nations or groups? * What is the impact of a fissile material cutoff treaty (FMCT) be on commercial nuclear fuel cycles? * Does MOX spent fuel present a greater proliferation risk than LEU spent fuel? Although the authors did not explicitly attempt to answer all these questions, they did enlighten us about a number of these and related issues.

  19. International nuclear fuel cycle fact book. Revision 6

    SciTech Connect (OSTI)

    Harmon, K.M.; Lakey, L.T.; Leigh, I.W.; Jeffs, A.G.

    1986-01-01

    The International Fuel Cycle Fact Book has been compiled in an effort to provide (1) an overview of worldwide nuclear power and fuel cycle programs and (2) current data concerning fuel cycle and waste management facilities, R and D programs and key personnel. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2.

  20. Safeguards Considerations for Thorium Fuel Cycles (Journal Article) | DOE

    Office of Scientific and Technical Information (OSTI)

    PAGES Safeguards Considerations for Thorium Fuel Cycles This content will become publicly available on April 21, 2017 « Prev Next » Title: Safeguards Considerations for Thorium Fuel Cycles We report that by around 2025, thorium-based fuel cycles are likely to be deployed internationally. States such as China and India are pursuing research, development, and deployment pathways toward a number of commercial-scale thorium fuel cycles, and they are already building test reactors and the

  1. Drive Cycle Analysis Tool - DriveCAT | NREL

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Drive Cycle Analysis Tool - DriveCAT National Renewable Energy Laboratory Use the Drive Cycle Analysis Tool (DriveCAT) to find drive cycle data for modeling, simulating, and testing vehicle systems and components, or to understand the real-world benefits of drive cycles for specific vehicle applications. This tool was created by NREL's fleet test and evaluation team, which conducts in-service performance evaluations of advanced medium- and heavy-duty fleet vehicles. Evaluation results help

  2. Life-Cycle Analysis of Geothermal Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Cycle Analysis of Geothermal Technologies Life-Cycle Analysis of Geothermal Technologies The results and tools from this project will help GTP and stakeholders determine and communicate GT energy and GHG benefits and water impacts. The life-cycle analysis (LCA) approach is taken to address these effects. analysis_wang_lifecycle_analysis.pdf (878.83 KB) More Documents & Publications AAPG Low-Temperature Webinar GREET Development and Applications for Life-Cycle Analysis of Vehicle/Fuel Systems

  3. PIA - Savannah River Nuclear Solution (SRNS) Procurement Cycle System (PCS)

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    | Department of Energy Procurement Cycle System (PCS) PIA - Savannah River Nuclear Solution (SRNS) Procurement Cycle System (PCS) PIA - Savannah River Nuclear Solution (SRNS) Procurement Cycle System (PCS) PIA - Savannah River Nuclear Solution (SRNS) Procurement Cycle System (PCS) (3.36 MB) More Documents & Publications PIA - Savannah River Nuclear Solutions (SRNS) Human Resource Management System (HRMS) PIA - Savannah River Nuclear Solution (SRNS) MedGate Occupational Health and Safety

  4. Nuclear Weapons Life Cycle | National Nuclear Security Administration |

    National Nuclear Security Administration (NNSA)

    (NNSA) Nuclear Weapons Life Cycle Nuclear weapons are developed, produced, and maintained in the stockpile, and then retired and dismantled. This sequence of events is known as the nuclear weapons life cycle. The Department of Energy (DOE) through the National Nuclear Security Administration (NNSA) and in partnership with Department of Defense (DoD) conducts activities in a joint nuclear weapons life cycle process. The major steps, or phases, of the life cycle are described below. Currently,

  5. A Revolutionary Hybrid Thermodynamic Cycle for Bianary Geothermal Power |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy A Revolutionary Hybrid Thermodynamic Cycle for Bianary Geothermal Power A Revolutionary Hybrid Thermodynamic Cycle for Bianary Geothermal Power A Revolutionary Hybrid Thermodynamic Cycle for Bianary Geothermal Power presentation at the April 2013 peer review meeting held in Denver, Colorado. hybrid_therm_cycle_peer2013.pdf (571.03 KB) More Documents & Publications Working Fluids and Their Effect on Geothermal Turbines Tailored Working Fluids for Enhanced Binary

  6. Capturing Innovation in Biofuel Life Cycle Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Capturing Innovation in Biofuel Life Cycle Analysis Capturing Innovation in Biofuel Life Cycle Analysis Breakout Session 1B: Innovation and Sustainability: Capturing Social and Environmental Benefits As Part of Bioenergy's Value Proposition Capturing Innovation in Biofuel Life Cycle Analysis Jennifer Dunn, Biofuel Life Cycle Analysis Team Lead and Environmental Analyst, Argonne National Laboratory dunn_bioenergy_2016.pdf (968.09 KB) More Documents & Publications Quantitative Analysis of

  7. Future nuclear fuel cycles: prospects and challenges

    SciTech Connect (OSTI)

    Boullis, Bernard

    2008-07-01

    Solvent extraction has played, from the early steps, a major role in the development of nuclear fuel cycle technologies, both in the front end and back end. Today's stakes in the field of energy enhance further than before the need for a sustainable management of nuclear materials. Recycling actinides appears as a main guideline, as much for saving resources as for minimizing the final waste impact, and many options can be considered. Strengthened by the important and outstanding performance of recent PUREX processing plants, solvent-extraction processes seem a privileged route to meet the new and challenging requirements of sustainable future nuclear systems. (author)

  8. Induced natural convection thermal cycling device

    DOE Patents [OSTI]

    Heung, Leung Kit

    2002-08-13

    A device for separating gases, especially isotopes, by thermal cycling of a separation column using a pressure vessel mounted vertically and having baffled sources for cold and heat. Coils at the top are cooled with a fluid such as liquid nitrogen. Coils at the bottom are either electrical resistance coils or a tubular heat exchange. The sources are shrouded with an insulated "top hat" and simultaneously opened and closed at the outlets to cool or heat the separation column. Alternatively, the sources for cold and heat are mounted separately outside the vessel and an external loop is provided for each circuit.

  9. A general simulation model for Stirling cycles

    SciTech Connect (OSTI)

    Schulz, S.; Schwendig, F.

    1996-01-01

    A mathematical model for the calculation of the Stirling cycle and of similar processes is presented. The model comprises a method to reproduce schematically any kind of process configuration, including free piston engines. The differential balance equations describing the process are solved by a stable integration algorithm. Heat transfer and pressure loss are calculated by using new correlations, which consider the special conditions of the periodic compression/expansion respectively of the oscillating flow. A comparison between experimental data achieved by means of a test apparatus and calculated data shows a good agreement.

  10. Managing biogeochemical cycles to reduce greenhouse gases

    SciTech Connect (OSTI)

    Post, Wilfred M; Venterea, Rodney

    2012-01-01

    This special issue focuses on terrestrial biogeochemical cycles as they relate to North America-wide budgeting and future projection of biogenic greenhouse gases (GHGs). Understanding the current magnitude and providing guidance on the future trajectories of atmospheric concentrations of these gases requires investigation of their (i) biogeochemical origins, (ii) response to climate feedbacks and other environmental factors, and (iii) susceptibility to management practices. This special issue provides a group of articles that present the current state of continental scale sources and sinks of biogenic GHGs and the potential to better manage them in the future.

  11. The DOE water cycle pilot study.

    SciTech Connect (OSTI)

    Miller, N. L.; King, A. W.; Miller, M. A.; Springer, E. P.; Wesely, M. L.; Bashford, K. E.; Conrad, M. E.; Costigan, K.; Foster, P. N.; Gibbs, H. K.; Jin, J.; Klazura, J.; Lesht, B. M.; Machavaram, M. V.; Pan, F.; Song, J.; Troyan, D.; Washngton-Allen, R. A.; Environmental Research; LBNL; ORNL; BNL; LANL

    2005-03-01

    In 1999, the U.S. Global Change Research Program (USGCRP) formed a Water Cycle Study Group (Hornberger et al. 2001) to organize research efforts in regional hydrologic variability, the extent to which this variability is caused by human activity, and the influence of ecosystems. The USGCRP Water Cycle Study Group was followed by a U.S. Department of Energy (DOE) Water Cycle Research Plan (Department of Energy 2002) that outlined an approach toward improving seasonal-to-interannual hydroclimate predictability and closing a regional water budget. The DOE Water Cycle Research Plan identified key research areas, including a comprehensive long-term observational database to support model development, and to develop a better understanding of the relationship between the components of local water budgets and large scale processes. In response to this plan, a multilaboratory DOE Water Cycle Pilot Study (WCPS) demonstration project began with a focus on studying the water budget and its variability at multiple spatial scales. Previous studies have highlighted the need for continued efforts to observationally close a local water budget, develop a numerical model closure scheme, and further quantify the scales in which predictive accuracy are optimal. A concerted effort within the National Oceanic and Atmospheric Administration (NOAA)-funded Global Energy and Water Cycle Experiment (GEWEX) Continental-scale International Project (GCIP) put forth a strategy to understand various hydrometeorological processes and phenomena with an aim toward closing the water and energy budgets of regional watersheds (Lawford 1999, 2001). The GCIP focus on such regional budgets includes the measurement of all components and reduction of the error in the budgets to near zero. To approach this goal, quantification of the uncertainties in both measurements and modeling is required. Model uncertainties within regional climate models continue to be evaluated within the Program to Intercompare

  12. Battery Electrode Materials with High Cycle Lifetimes

    SciTech Connect (OSTI)

    Prof. Brent Fultz

    2001-06-29

    In an effort to understand the capacity fade of nickel-metal hydride (Ni-MH) batteries, we performed a systematic study of the effects of solute additions on the cycle life of metal hydride electrodes. We also performed a series of measurements on hydrogen absorption capacities of novel carbon and graphite-based materials including graphite nanofibers and single-walled carbon nanotubes. Towards the end of this project we turned our attention to work on Li-ion cells with a focus on anode materials.

  13. Advanced Supercritical Carbon Dioxide Brayton Cycle Development

    SciTech Connect (OSTI)

    Anderson, Mark; Sienicki, James; Moisseytsev, Anton; Nellis, Gregory; Klein, Sanford

    2015-10-21

    Fluids operating in the supercritical state have promising characteristics for future high efficiency power cycles. In order to develop power cycles using supercritical fluids, it is necessary to understand the flow characteristics of fluids under both supercritical and two-phase conditions. In this study, a Computational Fluid Dynamic (CFD) methodology was developed for supercritical fluids flowing through complex geometries. A real fluid property module was implemented to provide properties for different supercritical fluids. However, in each simulation case, there is only one species of fluid. As a result, the fluid property module provides properties for either supercritical CO2 (S-CO2) or supercritical water (SCW). The Homogeneous Equilibrium Model (HEM) was employed to model the two-phase flow. HEM assumes two phases have same velocity, pressure, and temperature, making it only applicable for the dilute dispersed two-phase flow situation. Three example geometries, including orifices, labyrinth seals, and valves, were used to validate this methodology with experimental data. For the first geometry, S-CO2 and SCW flowing through orifices were simulated and compared with experimental data. The maximum difference between the mass flow rate predictions and experimental measurements is less than 5%. This is a significant improvement as previous works can only guarantee 10% error. In this research, several efforts were made to help this improvement. First, an accurate real fluid module was used to provide properties. Second, the upstream condition was determined by pressure and density, which determines supercritical states more precise than using pressure and temperature. For the second geometry, the flow through labyrinth seals was studied. After a successful validation, parametric studies were performed to study geometric effects on the leakage rate. Based on these parametric studies, an optimum design strategy for the see

  14. Cycle accurate and cycle reproducible memory for an FPGA based hardware accelerator

    DOE Patents [OSTI]

    Asaad, Sameh W.; Kapur, Mohit

    2016-03-15

    A method, system and computer program product are disclosed for using a Field Programmable Gate Array (FPGA) to simulate operations of a device under test (DUT). The DUT includes a device memory having a number of input ports, and the FPGA is associated with a target memory having a second number of input ports, the second number being less than the first number. In one embodiment, a given set of inputs is applied to the device memory at a frequency Fd and in a defined cycle of time, and the given set of inputs is applied to the target memory at a frequency Ft. Ft is greater than Fd and cycle accuracy is maintained between the device memory and the target memory. In an embodiment, a cycle accurate model of the DUT memory is created by separating the DUT memory interface protocol from the target memory storage array.

  15. Life Cycle Greenhouse Gas Emissions from Solar Photovoltaics (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-11-01

    The National Renewable Energy Laboratory (NREL) recently led the Life Cycle Assessment (LCA) Harmonization Project, a study that helps to clarify inconsistent and conflicting life cycle GHG emission estimates in the published literature and provide more precise estimates of life cycle GHG emissions from PV systems.

  16. NEAC Fuel Cycle Research and Development Subcommittee Report for December

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    11, 2015 Meeting | Department of Energy Fuel Cycle Research and Development Subcommittee Report for December 11, 2015 Meeting NEAC Fuel Cycle Research and Development Subcommittee Report for December 11, 2015 Meeting Fuel Cycle Research and Development Subcommittee Report (146.05

  17. Cell cycle nucleic acids, polypeptides and uses thereof

    DOE Patents [OSTI]

    Gordon-Kamm, William J.; Lowe, Keith S.; Larkins, Brian A.; Dilkes, Brian R.; Sun, Yuejin

    2007-08-14

    The invention provides isolated nucleic acids and their encoded proteins that are involved in cell cycle regulation. The invention further provides recombinant expression cassettes, host cells, transgenic plants, and antibody compositions. The present invention provides methods and compositions relating to altering cell cycle protein content, cell cycle progression, cell number and/or composition of plants.

  18. Equipment considerations for a binary cycle geothermal power plant

    SciTech Connect (OSTI)

    Thorleifson, W.C.; Ibe, A.P.

    1982-10-01

    The binary cycle geothermal power plant incorporates existing hydrocarbon handling technology proven in use by the petrochemical industry. Equipment sizing and hydrocarbon cycle control on the commercial plant scale, however, introduce some unknowns. This report discusses the various technical factors considered in the design, selection, and sizing of the major equipment for use in the Heber Binary Cycle Geothermal Demonstration Power Plant.

  19. A Future with (out) Carbon Cycle 2.0 (Carbon Cycle 2.0)

    ScienceCinema (OSTI)

    Collins, Bill

    2011-06-08

    Bill Collins, Head of LBNL's Climate Sciences Department, speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 1, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

  20. A Call to Action: Carbon Cycle 2.0 (Carbon Cycle 2.0)

    ScienceCinema (OSTI)

    Alivisatos, Paul

    2016-07-12

    Berkeley Lab Director Paul Alivisatos speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 1, 2010. Humanity emits more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences.Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

  1. Life cycle assessment of electronic waste treatment

    SciTech Connect (OSTI)

    Hong, Jinglan; Shi, Wenxiao; Wang, Yutao; Chen, Wei; Li, Xiangzhi

    2015-04-15

    Highlights: • Life cycle assessment of electronic waste recycling is quantified. • Key factors for reducing the overall environmental impact are indentified. • End-life disposal processes provide significant environmental benefits. • Efficiently reduce the improper disposal amount of e-waste is highly needed. • E-waste incineration can generate significant environmental burden. - Abstract: Life cycle assessment was conducted to estimate the environmental impact of electronic waste (e-waste) treatment. E-waste recycling with an end-life disposal scenario is environmentally beneficial because of the low environmental burden generated from human toxicity, terrestrial ecotoxicity, freshwater ecotoxicity, and marine ecotoxicity categories. Landfill and incineration technologies have a lower and higher environmental burden than the e-waste recycling with an end-life disposal scenario, respectively. The key factors in reducing the overall environmental impact of e-waste recycling are optimizing energy consumption efficiency, reducing wastewater and solid waste effluent, increasing proper e-waste treatment amount, avoiding e-waste disposal to landfill and incineration sites, and clearly defining the duties of all stakeholders (e.g., manufacturers, retailers, recycling companies, and consumers)

  2. Comprehensive Fuel Cycle - Community Perspective - 13093

    SciTech Connect (OSTI)

    McLeod, Richard V.; Frazier, Timothy A.

    2013-07-01

    Should a five-county region surrounding the Department of Energy's Savannah River Site ('SRS') use its assets to help provide solutions to closing the nation's nuclear fuel cycle? That question has been the focus of a local ad hoc multi-disciplinary community task force (Tier I) that has been at work in recent months outlining issues and identifying unanswered questions to determine if assuming a leadership role in closing the nuclear fuel cycle is in the community's interest. If so, what are the terms and conditions under which we the community would agree to participate? Our starting point was the President's Blue Ribbon Commission on America's Nuclear Future ('Commission') which made a total of eight (8) recommendations in its final report. There are several recommendations that are directly relevant to the Tier I group and potential efforts of the Region. These are the 'consent-based approach', the creation of an independent nuclear waste management entity funded from the existing nuclear waste fee; the 'prompt efforts to develop one or more consolidated storage facilities', and 'continued U.S. innovation in nuclear energy technology and for workforce development'. (authors)

  3. (Coordinated research on fuel cycle cost)

    SciTech Connect (OSTI)

    Cantor, R.A.; Shelton, R.B.; Krupnick, A.J.

    1990-11-05

    The Department of Energy (DOE) and the Commission of the European Communities (CEC) have been exploring the possibility of parallel studies on the externals costs of employing fuel cycles to deliver energy services. These studies are of particular importance following the activities of the US National Energy Strategy (NES), where the potential discrepancies between market prices and the social costs of energy services were raised as significant policy concerns. To respond to these concerns, Oak Ridge National Laboratory (ORNL) and Resources for the Future (RFF) have begun a collaborative effort for the DOE to investigate the external costs, or externalities, generated by cradle to grave fuel cycle activities. Upon initiating this project, the CEC expressed an interest to the DOE that Europe should conduct a parallel study and that the two studies should be highly coordinated for consistency in the results. This series of meetings with members of the CEC was undertaken to resolve some issues implied by pursuing parallel, coordinated studies; issues that were previously defined by the August meetings. In addition, it was an opportunity for some members of the US research team and the DOE sponsor to meet with their European counterparts for the study, as well as persons in charge of research areas that ultimately would play a key role in the European study.

  4. Continuous chain bit with downhole cycling capability

    DOE Patents [OSTI]

    Ritter, Don F.; St. Clair, Jack A.; Togami, Henry K.

    1983-01-01

    A continuous chain bit for hard rock drilling is capable of downhole cycling. A drill head assembly moves axially relative to a support body while the chain on the head assembly is held in position so that the bodily movement of the chain cycles the chain to present new composite links for drilling. A pair of spring fingers on opposite sides of the chain hold the chain against movement. The chain is held in tension by a spring-biased tensioning bar. A head at the working end of the chain supports the working links. The chain is centered by a reversing pawl and piston actuated by the pressure of the drilling mud. Detent pins lock the head assembly with respect to the support body and are also operated by the drilling mud pressure. A restricted nozzle with a divergent outlet sprays drilling mud into the cavity to remove debris. Indication of the centered position of the chain is provided by noting a low pressure reading indicating proper alignment of drilling mud slots on the links with the corresponding feed branches.

  5. Regenerator optimization for Stirling cycle refrigeration

    SciTech Connect (OSTI)

    Colgate, S.A.; Petschek, A.G.

    1993-08-01

    A cryogenic regenerator for a Stirling cycle is designed using a fractional loss or entropy gain as the criterion of performance. The gas losses are treated separately from heat storage medium losses. For the optimum channel flow nonturbulent design, the maximization of heat transfer from the gas to the wall and the minimization of entropy production by friction leads to a gas flow velocity criterion of sound speed times loss fraction. This velocity with a given frequency leads to a Stirling cycle dead volume ratio and consequently a channel of specified length and width. The thermal properties of the channel wall must then accommodate this cyclic heat flow without substantially increasing the loss fraction. It is found that stainless steel or plastics are adequate for 30 to 300 K, but that lower temperature stages 4 to 30 K require either a special lead alloy of moderate conductivity or a segmented anisotropic construction of alternate highly conducting lead layers and alternate insulating glass or epoxy fiber glass spacers. An overall efficiency of {congruent} 50% of Carnot is predicted at a frequency of 30 Hz and a pressure of one atmosphere.

  6. Comparison of PWR-IMF and FR fuel cycles

    SciTech Connect (OSTI)

    Darilek, Petr; Zajac, Radoslav; Breza, Juraj |; Necas, Vladimir

    2007-07-01

    The paper gives a comparison of PWR (Russia origin VVER-440) cycle with improved micro-heterogeneous inert matrix fuel assemblies and FR cycle. Micro-heterogeneous combined assembly contains transmutation pins with Pu and MAs from burned uranium reprocessing and standard uranium pins. Cycle analyses were performed by HELIOS spectral code and SCALE code system. Comparison is based on fuel cycle indicators, used in the project RED-IMPACT - part of EU FP6. Advantages of both closed cycles are pointed out. (authors)

  7. Fuel cycle centers revisited: Consolidation of fuel cycle activities in a few countries

    SciTech Connect (OSTI)

    Kratzer, M.B.

    1996-07-01

    Despite varied expressions, the general impression remains that the international fuel cycle center concept, whatever its merits, is visionary. It also is quite possibly unattainable in light of strong national pressures toward independence and self-sufficiency in all things nuclear. Is the fuel cycle center an idea that has come and gone? Is it an idea whose time has not yet come? Or is it, as this paper suggests, an idea that has already arrived on the scene, attracting little attention or even acknowledgement of its presence? The difficult in answering this questions arises, in part, from the fact that despite its long and obvious appeal, there has been very little systematic analysis of the concept itself. Such obvious questions as how many and where fuel cycle centers should be located; what characteristics should the hot country or countries possess; and what are the institutional forms or features that endow the concept with enhanced proliferation protection have rarely been seriously and systematically addressed. The title of this paper focuses on limiting the geographic spread of fuel cycle facilities, and some may suggest that doing so does not necessarily call for any type of international or multinational arrangements applicable to those that exist. It is a premise of this paper, however, that a restriction on the number of countries possessing sensitive fuel cycle facilities necessarily involves some degree of multinationalization. This is not only because in every instance a nonproliferation pledge and international or multinational safeguards, or both, will be applied to the facility, but also because a restriction on the number of countries possessing these facilities implies that those in existence will serve a multinational market. This feature in itself is an important form of international auspices. Thus, the two concepts--limitation and multinationalization--if not necessarily one and the same, are at least de facto corollaries.

  8. Assessment of transition fuel cycle performance with and without a modified-open fuel cycle

    SciTech Connect (OSTI)

    Feng, B.; Kim, T. K.; Taiwo, T. A.

    2012-07-01

    The impacts of a modified-open fuel cycle (MOC) option as a transition step from the current once-through cycle (OTC) to a full-recycle fuel cycle (FRC) were assessed using the nuclear systems analysis code DANESS. The MOC of interest for this study was mono-recycling of plutonium in light water reactors (LWR-MOX). Two fuel cycle scenarios were evaluated with and without the MOC option: a 2-stage scenario with a direct path from the current fleet to the final FRC, and a 3-stage scenario with the MOC option as a transition step. The FRC reactor (fast reactor) was assumed to deploy in 2050 for both scenarios, and the MOC reactor in the 3-stage scenario was assumed to deploy in 2025. The last LWRs (using either UOX or MOX fuels) come online in 2050 and are decommissioned by 2110. Thus, the FRC is achieved after 2110. The reprocessing facilities were assumed to be available 2 years prior to the deployment of the MOC and FRC reactors with maximum reprocessing capacities of 2000 tHM/yr and 500 tHM/t for LWR-UOX and LWR-MOX used nuclear fuels (UNFs), respectively. Under a 1% nuclear energy demand growth assumption, both scenarios were able to sustain a full transition to the FRC without delay. For the 3-stage scenario, the share of LWR-MOX reactors reaches a peak of 15% of installed capacity, which resulted in 10% lower cumulative uranium consumption and SWU requirements compared to the 2-stage scenario during the transition period. The peak UNF storage requirement decreases by 50% in the 3-stage scenario, largely due to the earlier deployment of the reprocessing plants to support the MOC fuel cycle. (authors)

  9. Quadrupole magnet for a rapid cycling synchrotron

    SciTech Connect (OSTI)

    Witte, H.; Berg, J. S.

    2015-05-03

    Rapid Cycling Synchrotrons (RCS) feature interleaved warm and cold dipole magnets; the field of the warm magnets is used to modulate the average bending field depending on the particle energy. It has been shown that RCS can be an attractive option for fast acceleration of particles, for example, muons, which decay quickly. In previous studies it was demonstrated that in principle warm dipole magnets can be designed which can provide the required ramp rates, which are equivalent to frequencies of about 1 kHz. To reduce the losses it is beneficial to employ two separate materials for the yoke; it was also shown that by employing an optimized excitation coil geometry the eddy current losses are acceptable. In this paper we show that the same principles can be applied to quadrupole magnets targeting 30 T/m with a repetition rate of 1kHz and good field quality.

  10. Stirling cycle simulation without differential coefficients

    SciTech Connect (OSTI)

    Organ, A.J.

    1995-12-31

    With a simple transformation, the gas processes in the Stirling machine are described for all time and location in an algebraic equation free of differential coefficients of the unknowns. Local instantaneous heat transfer and friction are represented in function of local instantaneous Reynolds number, N{sub re}. The method avoids problems of numerical discretization, stability, convergence, artificial dispersion and diffusion. The paper presents the algebra of the transformation. Specimen solutions cover the temperature field of the gas circuit (exchangers and regenerator) over a representative cycle. When programmed for workstation the core code occupies some 2 dozen lines, and processing calls for seconds of CPU time. Availability of the solution means that intimate details of the gas processes are susceptible to examination using the most basic of computing facilities.

  11. Stirling cycle piston and valving method

    SciTech Connect (OSTI)

    Mitchell, M.P.; Bauwens, L.

    1990-05-22

    This patent describes a device of the Stirling cycle type for converting energy between heat and work. It comprises: compression and expansion chambers, means for decreasing the volume of one of the chambers while increasing the volume of the other chamber, gas storage means comprising first and second regenerator means, each connected to the expansion chamber and to the compression chamber, a quantity of compressible gas confined for circulation through the chambers and gas storage means, control means for communicating the first regenerator means only to the expansion chamber while communicating the second regenerator means only to the compression chamber and subsequently communicating the second regenerator means only to the expansion chamber while communicating the first regenerator means only to the compression chamber with intermediate steps of closing one of the regenerator means while exchanging fluid between the chambers through the other regenerator means.

  12. Organic flash cycles for efficient power production

    DOE Patents [OSTI]

    Ho, Tony; Mao, Samuel S.; Greif, Ralph

    2016-03-15

    This disclosure provides systems, methods, and apparatus related to an Organic Flash Cycle (OFC). In one aspect, a modified OFC system includes a pump, a heat exchanger, a flash evaporator, a high pressure turbine, a throttling valve, a mixer, a low pressure turbine, and a condenser. The heat exchanger is coupled to an outlet of the pump. The flash evaporator is coupled to an outlet of the heat exchanger. The high pressure turbine is coupled to a vapor outlet of the flash evaporator. The throttling valve is coupled to a liquid outlet of the flash evaporator. The mixer is coupled to an outlet of the throttling valve and to an outlet of the high pressure turbine. The low pressure turbine is coupled to an outlet of the mixer. The condenser is coupled to an outlet of the low pressure turbine and to an inlet of the pump.

  13. Rapid pressure cycle effects on flexible pipe

    SciTech Connect (OSTI)

    Hill, R.T.; Upchurch, J.L.; McMahan, J.M. Jr.

    1995-12-01

    The use of subsea satellite wells tied back to a central manifold unit is a field development concept currently being used by operating companies for staged production of either commingled oil or gas. Remote platform operated control systems that couple the satellite wells and manifold require that safe operating pressure cycle parameters be established for all subsea components. Because of start-up and shut-in procedures, extreme pressure variations in the form of rapid pressurization and depressurization must be considered. This paper describes the test procedures, equipment and results specific to the evaluation of high pressure non-bonded flexible pipe used for subsea production jumpers between satellite wells and manifold system. Recommendation of safe rates of pressurization and depressurization are included.

  14. Off-Cycle Benchmarking of PHEVs; Wide Range of Temperatures...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Off-Cycle Benchmarking of PHEVs; Wide Range of Temperatures and Aggressive Driving Cycles Off-Cycle Benchmarking of PHEVs; Wide Range of Temperatures and Aggressive Driving ...

  15. Effects of External EGR Loop on Cycle-to-Cycle Dynamics of Dilute SI Combustion

    SciTech Connect (OSTI)

    Kaul, Brian C.; Finney, Charles E. A.; Wagner, Robert; Edwards, Michelle L.

    2014-01-01

    Operation of spark-ignition (SI) engines with high levels of charge dilution through exhaust gas recirculation (EGR) achieves significant efficiency gains while maintaining stoichiometric operation for compatibility with three-way catalysts. Dilution levels, however, are limited by cyclic variability including significant numbers of misfires that becomes significant with increasing dilution. This variability has been shown to have both stochastic and deterministic components. Stochastic effects include turbulence, mixing variations, and the like, while the deterministic effect is primarily due to the nonlinear dependence of flame propagation rates and ignition characteristics on the charge composition, which is influenced by the composition of residual gases from prior cycles. The dynamics of operation with an external EGR loop differ substantially from those of dilute operation without external recirculation, both in time-scale and cylinder synchronization effects, especially when misfires are encountered. This paper examines these differences and the implications for prior-cycle-based control strategies.

  16. Generating clock signals for a cycle accurate, cycle reproducible FPGA based hardware accelerator

    DOE Patents [OSTI]

    Asaad, Sameth W.; Kapur, Mohit

    2016-01-05

    A method, system and computer program product are disclosed for generating clock signals for a cycle accurate FPGA based hardware accelerator used to simulate operations of a device-under-test (DUT). In one embodiment, the DUT includes multiple device clocks generating multiple device clock signals at multiple frequencies and at a defined frequency ratio; and the FPG hardware accelerator includes multiple accelerator clocks generating multiple accelerator clock signals to operate the FPGA hardware accelerator to simulate the operations of the DUT. In one embodiment, operations of the DUT are mapped to the FPGA hardware accelerator, and the accelerator clock signals are generated at multiple frequencies and at the defined frequency ratio of the frequencies of the multiple device clocks, to maintain cycle accuracy between the DUT and the FPGA hardware accelerator. In an embodiment, the FPGA hardware accelerator may be used to control the frequencies of the multiple device clocks.

  17. Nitrogen expander cycles for large capacity liquefaction of natural gas

    SciTech Connect (OSTI)

    Chang, Ho-Myung; Park, Jae Hoon; Gwak, Kyung Hyun; Choe, Kun Hyung

    2014-01-29

    Thermodynamic study is performed on nitrogen expander cycles for large capacity liquefaction of natural gas. In order to substantially increase the capacity, a Brayton refrigeration cycle with nitrogen expander was recently added to the cold end of the reputable propane pre-cooled mixed-refrigerant (C3-MR) process. Similar modifications with a nitrogen expander cycle are extensively investigated on a variety of cycle configurations. The existing and modified cycles are simulated with commercial process software (Aspen HYSYS) based on selected specifications. The results are compared in terms of thermodynamic efficiency, liquefaction capacity, and estimated size of heat exchangers. The combination of C3-MR with partial regeneration and pre-cooling of nitrogen expander cycle is recommended to have a great potential for high efficiency and large capacity.

  18. Life-cycle environmental analysis--A three dimensional view

    SciTech Connect (OSTI)

    Sutherlin, K.L.; Black, R.E. )

    1993-01-01

    Both the US Air Force and the US Army have recently increased their emphasis on life-cycles of weapons systems. Along with that emphasis, there has also been an increase in emphasis in life-cycle National Environmental Policy Act (NEPA) documentation. Conflicts and inefficiencies arise when a weapon system is fielded and prompts the need for a site-specific environmental analysis. In their research and experience, the authors found no real link between life-cycle environmental analysis and site-specific environmental analyses required at various points within the life-cycle of a weapon. This other look at the relation between life-cycle and site-specific environmental analyses has the potential to increase efficiency in NEPA compliance actions and save tax dollars in the process. The authors present a three-dimensional model that relates life-cycle analyses to site-specific analyses.

  19. Coupling fuel cycles with repositories: how repository institutional choices may impact fuel cycle design

    SciTech Connect (OSTI)

    Forsberg, C.; Miller, W.F.

    2013-07-01

    The historical repository siting strategy in the United States has been a top-down approach driven by federal government decision making but it has been a failure. This policy has led to dispatching fuel cycle facilities in different states. The U.S. government is now considering an alternative repository siting strategy based on voluntary agreements with state governments. If that occurs, state governments become key decision makers. They have different priorities. Those priorities may change the characteristics of the repository and the fuel cycle. State government priorities, when considering hosting a repository, are safety, financial incentives and jobs. It follows that states will demand that a repository be the center of the back end of the fuel cycle as a condition of hosting it. For example, states will push for collocation of transportation services, safeguards training, and navy/private SNF (Spent Nuclear Fuel) inspection at the repository site. Such activities would more than double local employment relative to what was planned for the Yucca Mountain-type repository. States may demand (1) the right to take future title of the SNF so if recycle became economic the reprocessing plant would be built at the repository site and (2) the right of a certain fraction of the repository capacity for foreign SNF. That would open the future option of leasing of fuel to foreign utilities with disposal of the SNF in the repository but with the state-government condition that the front-end fuel-cycle enrichment and fuel fabrication facilities be located in that state.

  20. Kalex Advanced Low Temp Geothemal Power Cycle | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Kalex Advanced Low Temp Geothemal Power Cycle Kalex Advanced Low Temp Geothemal Power Cycle Kalex Advanced Low Temp Geothemal Power Cycle presentation at the April 2013 peer review meeting held in Denver, Colorado. kalex_low_temp_peer2013.pdf (173.69 KB) More Documents & Publications Osmotic Heat Engine for Energy Production from Low Temperature Geothemal Resources Chena Hot Springs Resort - Electric Power Generation Using Geothermal Fluid Coproduced from Oil and/or Gas Wells Single-well Low

  1. Pilot Application to Nuclear Fuel Cycle Options | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Pilot Application to Nuclear Fuel Cycle Options Pilot Application to Nuclear Fuel Cycle Options A Screening Method for Guiding R&D Decisions: Pilot Application to Screen Nuclear Fuel Cycle Options The Department of Energy's Office of Nuclear Energy (DOE-NE) invests in research and development (R&D) to ensure that the United States will maintain its domestic nuclear energy capability and scientific and technical leadership in the international community of nuclear power nations in the

  2. High Current Density, Long Duration Cycling of Soluble Organic Active

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Species for Non-Aqueous Redox Flow Batteries - Joint Center for Energy Storage Research 15, 2016, Research Highlights High Current Density, Long Duration Cycling of Soluble Organic Active Species for Non-Aqueous Redox Flow Batteries Chemical structures of phenothiazine derivatives investigated and cycling performance of the most soluble derivative (MEEPT): (a) Charge-discharge curves; (b) capacities and efficiencies as a function of cycle number. Scientific Achievement We simultaneously

  3. Building Life Cycle Cost Programs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Building Life Cycle Cost Programs Building Life Cycle Cost Programs The National Institute of Standards and Technology (NIST) developed the Building Life Cycle Cost (BLCC) Programs to provide computational support for the analysis of capital investments in buildings. They include BLCC, the Energy Escalation Rate Calculator, Handbook 135, and the Annual Supplement to Handbook 135. BLCC5 Program Register and download. BLCC 5.3-16 (for Windows or Mac OS X). BLCC version 5.3-16 contains the

  4. Lessons Learned: Devolping Thermochemical Cycles for Solar Heat Storage Applications

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Developing Thermochemical Cycles for Solar Heat Storage Applications General Atomics Bunsen Wong IFT\P2013-001 Workshop on TES for CSP - January 8, 2013 Outline * Introduction * Case Study I: Solid Oxide Decomposition * Case Study II: Sulfur Based Cycle * Conclusions 2 Solar heat is used to drive the reduction step of a thermochemical cycle 3 Thermal Reduction Chemical Storage Re- oxidation * Energy is stored in chemical bonds * Energy is recovered upon chemical re-oxidation heat heat

  5. Life Cycle Assessment of Hydrogen Production via Natural Gas Steam

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Reforming | Department of Energy Hydrogen Production via Natural Gas Steam Reforming Life Cycle Assessment of Hydrogen Production via Natural Gas Steam Reforming A life cycle assessment of hydrogen production via natural gas steam reforming was performed to examine the net emissions of greenhouse gases as well as other major environmental consequences. 27637.pdf (521.41 KB) More Documents & Publications Life Cycle Assessment of Renewable Hydrogen Production via Wind/Electrolysis:

  6. Fuel Cycle Comparison of Distributed Power Generation Technologies |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Cycle Comparison of Distributed Power Generation Technologies Fuel Cycle Comparison of Distributed Power Generation Technologies This 2008 report by Argonne National Laboratory examines backup power and prime power systems and addresses the potential energy and environmental effects of substituting fuel cells for existing combustion technologies based on microturbines and internal combustion engines. Fuel Cycle Comparison of Distributed Power Generation Technologies

  7. FUEL CYCLE TECHNOLOGIES QUALITY ASSURANCE PROGRAM DOCUMENT | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy FUEL CYCLE TECHNOLOGIES QUALITY ASSURANCE PROGRAM DOCUMENT FUEL CYCLE TECHNOLOGIES QUALITY ASSURANCE PROGRAM DOCUMENT The purpose of this Fuel Cycle Technologies (FCT) Quality Assurance Program Document (QAPD) is to define qualityassurance (QA) requirements for the FCT Program. These requirements are applicable to FCT activities and Participants (see definition) to the extent defined herein. In developing these requirements, it is recognized that each Department of Energy (DOE)

  8. Hybrid solar central receiver for combined cycle power plant

    DOE Patents [OSTI]

    Bharathan, Desikan; Bohn, Mark S.; Williams, Thomas A.

    1995-01-01

    A hybrid combined cycle power plant including a solar central receiver for receiving solar radiation and converting it to thermal energy. The power plant includes a molten salt heat transfer medium for transferring the thermal energy to an air heater. The air heater uses the thermal energy to preheat the air from the compressor of the gas cycle. The exhaust gases from the gas cycle are directed to a steam turbine for additional energy production.

  9. Hybrid solar central receiver for combined cycle power plant

    DOE Patents [OSTI]

    Bharathan, D.; Bohn, M.S.; Williams, T.A.

    1995-05-23

    A hybrid combined cycle power plant is described including a solar central receiver for receiving solar radiation and converting it to thermal energy. The power plant includes a molten salt heat transfer medium for transferring the thermal energy to an air heater. The air heater uses the thermal energy to preheat the air from the compressor of the gas cycle. The exhaust gases from the gas cycle are directed to a steam turbine for additional energy production. 1 figure.

  10. Analytical Approaches To Environmental and Social Life Cycle Assessments

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Being Used in Germany | Department of Energy Analytical Approaches To Environmental and Social Life Cycle Assessments Being Used in Germany Analytical Approaches To Environmental and Social Life Cycle Assessments Being Used in Germany Breakout Session 1B: Innovation and Sustainability: Capturing Social and Environmental Benefits As Part of Bioenergy's Value Proposition Analytical Approaches To Environmental and Social Life Cycle Assessments Being Used in Germany Daniela Thran, Head of

  11. Sustainable Thorium Nuclear Fuel Cycles: A Comparison of Intermediate and

    Office of Scientific and Technical Information (OSTI)

    Fast Neutron Spectrum Systems (Journal Article) | DOE PAGES Sustainable Thorium Nuclear Fuel Cycles: A Comparison of Intermediate and Fast Neutron Spectrum Systems « Prev Next » Title: Sustainable Thorium Nuclear Fuel Cycles: A Comparison of Intermediate and Fast Neutron Spectrum Systems This paper presents analyses of possible reactor representations of a nuclear fuel cycle with continuous recycling of thorium and produced uranium (mostly U-233) with thorium-only feed. The analysis was

  12. Advances in Hydrogen Isotope Separation Using Thermal Cycling Absorption

    Office of Environmental Management (EM)

    Process (TCAP) | Department of Energy Hydrogen Isotope Separation Using Thermal Cycling Absorption Process (TCAP) Advances in Hydrogen Isotope Separation Using Thermal Cycling Absorption Process (TCAP) Presentation from the 32nd Tritium Focus Group Meeting held in Germantown, Maryland on April 23-25, 2013. Advances in Hydrogen Isotope Separation Using Thermal Cycling Absorption Process (TCAP) (1.74 MB) More Documents & Publications A New Hydrogen Processing Demonstration System Initial

  13. Technical Cost Modeling - Life Cycle Analysis Basis for Program Focus |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy 0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. lm001_das_2010_o.pdf (421.39 KB) More Documents & Publications Technical Cost Modeling - Life Cycle Analysis Basis for Program Focus Technical Cost Modeling - Life Cycle Analysis Basis for Program Focus Life Cycle Modeling of Propulsion Materials

  14. Analysis of Energy, Environmental and Life Cycle Cost Reduction...

    Open Energy Information (Open El) [EERE & EIA]

    Environmental and Life Cycle Cost Reduction Potential of Ground Source Heat Pump (GSHP) in Hot and Humid Climate Geothermal Project Jump to: navigation, search Last modified on...

  15. NREL: U.S. Life Cycle Inventory Database Home Page

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    U.S. Life-Cycle Inventory Database Buildings Research Photo of a green field with an ocean in the background. U.S. Life Cycle Inventory Database NREL and its partners created the U.S. Life Cycle Inventory (LCI) Database to help life cycle assessment (LCA) practitioners answer questions about environmental impact. This database provides individual gate-to-gate, cradle-to-gate and cradle-to-grave accounting of the energy and material flows into and out of the environment that are associated with

  16. Life-Cycle Assessment of Energy and Environmental Impacts of...

    Office of Scientific and Technical Information (OSTI)

    Part 2: LED Manufacturing and Performance Scholand, Michael; Dillon, Heather E. 32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION; ENVIRONMENTAL IMPACTS; LIFE CYCLE;...

  17. Assessment for advanced fuel cycle options in CANDU

    SciTech Connect (OSTI)

    Morreale, A.C.; Luxat, J.C.; Friedlander, Y.

    2013-07-01

    The possible options for advanced fuel cycles in CANDU reactors including actinide burning options and thorium cycles were explored and are feasible options to increase the efficiency of uranium utilization and help close the fuel cycle. The actinide burning TRUMOX approach uses a mixed oxide fuel of reprocessed transuranic actinides from PWR spent fuel blended with natural uranium in the CANDU-900 reactor. This system reduced actinide content by 35% and decreased natural uranium consumption by 24% over a PWR once through cycle. The thorium cycles evaluated used two CANDU-900 units, a generator and a burner unit along with a driver fuel feedstock. The driver fuels included plutonium reprocessed from PWR, from CANDU and low enriched uranium (LEU). All three cycles were effective options and reduced natural uranium consumption over a PWR once through cycle. The LEU driven system saw the largest reduction with a 94% savings while the plutonium driven cycles achieved 75% savings for PWR and 87% for CANDU. The high neutron economy, online fuelling and flexible compact fuel make the CANDU system an ideal reactor platform for many advanced fuel cycles.

  18. Truck Duty Cycle and Performance Data Collection and Analysis...

    Energy.gov (indexed) [DOE]

    Collection and Analysis Program Heavy Duty & Medium Duty Drive Cycle Data Collection for Modeling Expansion Roadmap and Technical White Papers for 21st Century Truck Partnership

  19. Department of Energy Awards $15 Million for Nuclear Fuel Cycle...

    Energy.gov (indexed) [DOE]

    including spent fuel separations technology, advanced nuclear fuel development, fast burner reactors and advanced transmutation systems, advanced fuel cycle systems analysis, ...

  20. Solar spectral irradiance changes during cycle 24 (Journal Article...

    Office of Scientific and Technical Information (OSTI)

    Title: Solar spectral irradiance changes during cycle 24 We use solar spectra obtained by the Ozone Monitoring Instrument (OMI) on board the Aura satellite to detect and follow ...

  1. NREL Calculates Emissions and Costs of Power Plant Cycling Necessary...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    "Grid operators have always cycled power plants to accommodate fluctuations in electricity demand as well as abrupt outages at conventional power plants, and grid operators use the ...

  2. NETL - Petroleum-Based Fuels Life Cycle Greenhouse Gas Analysis...

    Open Energy Information (Open El) [EERE & EIA]

    search Tool Summary LAUNCH TOOL Name: NETL - Petroleum-Based Fuels Life Cycle Greenhouse Gas Analysis 2005 Baseline Model AgencyCompany Organization: National Energy Technology...

  3. Life-Cycle Analysis Results of Geothermal Systems in Comparison...

    Energy.gov (indexed) [DOE]

    ... We were unable to find any life cycle assessment studies of conventional biomass power plants that included plant infrastructure data. One study addressed a biomass gasification-to...

  4. Drive Cycle Analysis, Measurement of Emissions and Fuel Consumption...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Drive Cycle Analysis, Measurement of Emissions and Fuel Consumption of a PHEV School Bus ... Measurement of Emissions and Fuel Consumption of a PHEV School Bus Robb Barnitt and ...

  5. Indirect-fired gas turbine dual fuel cell power cycle

    DOE Patents [OSTI]

    Micheli, Paul L.; Williams, Mark C.; Sudhoff, Frederick A.

    1996-01-01

    A fuel cell and gas turbine combined cycle system which includes dual fuel cell cycles combined with a gas turbine cycle wherein a solid oxide fuel cell cycle operated at a pressure of between 6 to 15 atms tops the turbine cycle and is used to produce CO.sub.2 for a molten carbonate fuel cell cycle which bottoms the turbine and is operated at essentially atmospheric pressure. A high pressure combustor is used to combust the excess fuel from the topping fuel cell cycle to further heat the pressurized gas driving the turbine. A low pressure combustor is used to combust the excess fuel from the bottoming fuel cell to reheat the gas stream passing out of the turbine which is used to preheat the pressurized air stream entering the topping fuel cell before passing into the bottoming fuel cell cathode. The CO.sub.2 generated in the solid oxide fuel cell cycle cascades through the system to the molten carbonate fuel cell cycle cathode.

  6. NREL: Energy Analysis - Nuclear Power Results - Life Cycle Assessment...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ... and Climate Change Mitigation: Renewable Energy in the Context of Sustainable Development Life Cycle Greenhouse Gas Emissions from Nuclear Electricity Generation: Systematic Review ...

  7. Cycle chemistry related issues in fossil power plants

    SciTech Connect (OSTI)

    James, K.L.; Chhatre, R.M.

    1994-12-31

    Maximizing the availability and useful life of a fossil power plant can be achieved by the reduction of corrosion. Poorly defined chemistry limits and inadequate response to cycle chemistry excursions have cost the utility industry billions of dollars in lost revenue and repair/replacement costs of damage equipment. The Cycle Chemistry related corrosion problems can be minimized by maintaining feed water, boiler water, and steam purity. Pacific Gas and Electric Company`s approach to reduce cycle chemistry related damage, as well as their participation in the Electric Power Research Institute`s Cycle Chemistry Improvement Program demonstration are reviewed in this paper.

  8. NREL: Energy Analysis - Biopower Results - Life Cycle Assessment...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    To better understand on biopower systems, NREL completed a comprehensive review and analysis of life cycle assessments (LCA) on co-fired (with coal), direct combustion, ...

  9. Supercritical CO2 Power Cycles: Design Considerations for Concentratin...

    Office of Scientific and Technical Information (OSTI)

    for Concentrating Solar Power Citation Details In-Document Search Title: Supercritical CO2 Power Cycles: Design Considerations for Concentrating Solar Power A comparison of ...

  10. Quantifying Cradle-to-Farm Gate Life Cycle Impacts Associated...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Quantifying Cradle-to-Farm Gate Life Cycle Impacts Associated with Fertilizer used for Corn, Soybean, and Stover Production Fertilizer use can cause environmental problems, ...

  11. Heavy Duty & Medium Duty Drive Cycle Data Collection for Modeling...

    Energy.gov (indexed) [DOE]

    Program Truck Duty Cycle and Performance Data Collection and Analysis Program Vehicle Technologies Office Merit Review 2014: Powertrain Controls Optimization for Heavy Duty ...

  12. Updated Uranium Fuel Cycle Environmental Impacts for Advanced Reactor Designs

    SciTech Connect (OSTI)

    Nitschke, R.

    2004-10-03

    The purpose of this project was to update the environmental impacts from the uranium fuel cycle for select advanced (GEN III+) reactor designs.

  13. NREL: Energy Analysis - Ocean Energy Results - Life Cycle Assessment...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    To better understand ocean energy systems, NREL completed a comprehensive review and analysis of life cycle assessments on wave and tidal power systems published between 1980 and ...

  14. High Rate and Stable Cycling of Lithium Metal Anode (Journal...

    Office of Scientific and Technical Information (OSTI)

    Title: High Rate and Stable Cycling of Lithium Metal Anode Lithium (Li) metal is an ideal anode material for rechargeable batteries. However, dendritic Li growth and limited ...

  15. Assessment of Possible Cycle Lengths for Fully Encapsulated Microstruc...

    Office of Scientific and Technical Information (OSTI)

    light water reactor Concepts Citation Details In-Document Search Title: Assessment of Possible Cycle Lengths for Fully Encapsulated Microstructure fueled light water reactor ...

  16. Life Cycle Water Consumption and Water Resource Assessment for...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Life Cycle Water Consumption and Water Resource Assessment for Utility-Scale Geothermal Systems: An In-Depth Analysis of Historical and Forthcoming EGS Projects ...

  17. Power Cycle Testing of Power Switches: A Literature Survey

    DOE PAGES-Beta [OSTI]

    GopiReddy, Lakshmi Reddy; Tolbert, Leon M.; Ozpineci, Burak

    2014-09-18

    Reliability of power converters and lifetime prediction has been a major topic of research in the last few decades, especially for traction applications. The main failures in high power semiconductors are caused by thermomechanical fatigue. Power cycling and temperature cycling are the two most common thermal acceleration tests used in assessing reliability. The objective of this paper is to study the various power cycling tests found in the literature and to develop generalized steps in planning application specific power cycling tests. A comparison of different tests based on the failures, duration, test circuits, and monitored electrical parameters is presented.

  18. GREET Development and Applications for Life-Cycle Analysis of...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of VehicleFuel Systems 2013 DOE Hydrogen and Fuel Cells Program and Vehicle ... More Documents & Publications Fuel-Cycle Energy and Emissions Analysis with the GREET ...

  19. The Application of CYCLUS to Fuel Cycle Transition Analysis ...

    Office of Scientific and Technical Information (OSTI)

    Resource Relation: Conference: Presented at: GLOBAL 2015, 21st International Conference & Exhibition: "Nuclear Fuel Cycle for a Low-Carbon Future", Paris, France, Sep 20 - Sep 24, ...

  20. Nuclear Fuel Cycle Option Catalog SAND2015-2174 W

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    of Energy which provided information about the potential benefits and challenges of nuclear fuel cycle options (i.e., the complete nuclear energy system from mining to disposal). ...

  1. Safety and Regulatory Issues of the Thorium Fuel Cycle (Technical...

    Office of Scientific and Technical Information (OSTI)

    Possible scenarios for using thorium in the nuclear fuel cycle include use in different nuclear reactor types (light water, high temperature gas cooled, fast spectrum sodium, ...

  2. NREL: Energy Analysis - Wind Power Results - Life Cycle Assessment...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ... IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation: Wind Energy OpenEI: Data, Visualization, and Bibliographies The median published life cycle GHG ...

  3. ARM - Field Campaign - Aerosol Life Cycle IOP at BNL

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Cycle IOP at BNL Campaign Links Images Wiki 2011 ASR STM Presentation: Sedlacek 2011 ASR STM Presentation: Springston 2010 ASR Fall Meeting: Sedlacek News, June 14, 2011: ...

  4. Potential synergy: the thorium fuel cycle and rare earths processing...

    Office of Scientific and Technical Information (OSTI)

    The use of thorium in nuclear power programs has been evaluated on a recurring basis. A ... Resource Relation: Conference: GLOBAL 2013: International Nuclear Fuel Cycle Conference - ...

  5. Life Cycle Assessment of Hydrogen Production via Natural Gas...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    More Documents & Publications Life Cycle Assessment of Renewable Hydrogen Production via WindElectrolysis: Milestone Completion Report Fuel Use and Greenhouse Gas Emissions from ...

  6. Life Cycle Assessment of Renewable Hydrogen Production viaWind...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Renewable Hydrogen Production via WindElectrolysis: Milestone Completion Report Life Cycle Assessment of Renewable Hydrogen Production via WindElectrolysis: Milestone Completion ...

  7. Life-Cycle Assessment of Energy and Environmental Impacts of...

    Office of Scientific and Technical Information (OSTI)

    Sponsoring Org: USDOE Country of Publication: United States Language: English Subject: 32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION; ENVIRONMENTAL IMPACTS; LIFE CYCLE; ...

  8. NREL: Energy Analysis - Life Cycle Assessment Harmonization Results...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ... The published life cycle greenhouse gas (GHG) estimates for hydropower, ocean, geothermal, biopower, solar (crystalline silicon photovoltaic, thin film photovoltaic, and ...

  9. High-Efficiency Receivers for Supercritical Carbon Dioxide Cycles |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy High-Efficiency Receivers for Supercritical Carbon Dioxide Cycles High-Efficiency Receivers for Supercritical Carbon Dioxide Cycles This fact sheet describes a project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The team, led by Brayton Energy, aims to develop and demonstrate a low-cost, high-efficiency solar receiver that is compatible with s-CO2 cycles and modern thermal storage subsystems. Supercritical CO2 Brayton-cycle

  10. Fuel cycle assessment: A compendium of models, methodologies, and approaches

    SciTech Connect (OSTI)

    Not Available

    1994-07-01

    The purpose of this document is to profile analytical tools and methods which could be used in a total fuel cycle analysis. The information in this document provides a significant step towards: (1) Characterizing the stages of the fuel cycle. (2) Identifying relevant impacts which can feasibly be evaluated quantitatively or qualitatively. (3) Identifying and reviewing other activities that have been conducted to perform a fuel cycle assessment or some component thereof. (4) Reviewing the successes/deficiencies and opportunities/constraints of previous activities. (5) Identifying methods and modeling techniques/tools that are available, tested and could be used for a fuel cycle assessment.

  11. ARM - Field Campaign - Water Cycle Pilot Study Intensive Observations

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    govCampaignsWater Cycle Pilot Study Intensive Observations ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Water Cycle Pilot Study Intensive Observations 2002.04.01 - 2002.06.30 Lead Scientist : Marvin Wesely For data sets, see below. Abstract The U.S. DOE Water Cycle Pilot Study (WCPS) is a 3-year feasibility investigation focused on accurately evaluating the water cycle components and using stable

  12. A Revolutionary Hybrid Thermodynamic Cycle for Bianary Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... inputoutput volumetric flow ratio due to evaporation of a pure fluid. ... effectiveness for optimal performance of the Harris power cycle by selection of a binary working fluid. ...

  13. Fuel Cycle Research and Development Advanced Fuels Campaign

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    near-term accident tolerant LWR fuel technology n Perform research and development of long-term transmutation options 2 ATF AFC Fuel Development Life Cycle Irradiation ...

  14. Life Cycle Nitrogen Trifluoride Emissions from Photovoltaics

    SciTech Connect (OSTI)

    Fthenakis, V.

    2010-10-25

    Amorphous- and nanocrystalline-silicon thin-film photovoltaic modules are made in high-throughput manufacturing lines that necessitate quickly cleaning the reactor. Using NF{sub 3}, a potent greenhouse gas, as the cleaning agent triggered concerns as recent reports reveal that the atmospheric concentrations of this gas have increased significantly. We quantified the life-cycle emissions of NF{sub 3} in photovoltaic (PV) manufacturing, on the basis of actual measurements at the facilities of a major producer of NF{sub 3} and of a manufacturer of PV end-use equipment. From these, we defined the best practices and technologies that are the most likely to keep worldwide atmospheric concentrations of NF{sub 3} at very low radiative forcing levels. For the average U.S. insolation and electricity-grid conditions, the greenhouse gas (GHG) emissions from manufacturing and using NF{sub 3} in current PV a-Si and tandem a-Si/nc-Si facilities add 2 and 7 g CO{sub 2eq}/kWh, which can be displaced within the first 1-4 months of the PV system life.

  15. Metal Cycling by Bacteria: Moving Electrons Around

    SciTech Connect (OSTI)

    Nealson, Ken

    2009-07-06

    About 20 years ago, Shewanella oneidensis MR-1 was isolated from a manganese-rich lack in upstate New York, and subsequently shown to utilize solid forms of oxidized manganese or iron as an electron acceptor. Recent studies of metal-reducing bacterial have unveiled a number of unexpected properties of microbes that have enlarged our view of microbes and their role(s) in natural ecosystems. For example, the processes of metal reduction themselves are fundamental to the carbon cycle in many lakes and sediments, where iron and manganese account for the major portion of organic carbon oxidation in many sediments. On more modest spatial scales, iron and manganese reduction can be linked to the oxidation of a wide variety of carbon compounds, many of them recalcitrant and/or toxic. One remarkable property of metal reducers is their ability to reduce solid, often highly crystalline substrates such as iron and manganese oxides and oxyhydroxides. It is now clear that this is done via the utilization of enzymes located on the outer wall of the bacteria - enzymes that apparently interact directly with these solid substrates. Molecular and genomic studies combined have revealed the genes and protoeins responsible for these activities, and many facets of the regulation. This talk focuses on the general features and properties of these remarkable organisms that seem to communicate via electron transfer across a wide variety of soluable, insoluable, and even "inert" substrates, and the way that these processes may be mechanistically linked.

  16. Metal Cycling by Bacteria: Moving Electrons Around

    ScienceCinema (OSTI)

    Nealson, Ken

    2016-07-12

    About 20 years ago, Shewanella oneidensis MR-1 was isolated from a manganese-rich lack in upstate New York, and subsequently shown to utilize solid forms of oxidized manganese or iron as an electron acceptor. Recent studies of metal-reducing bacterial have unveiled a number of unexpected properties of microbes that have enlarged our view of microbes and their role(s) in natural ecosystems. For example, the processes of metal reduction themselves are fundamental to the carbon cycle in many lakes and sediments, where iron and manganese account for the major portion of organic carbon oxidation in many sediments. On more modest spatial scales, iron and manganese reduction can be linked to the oxidation of a wide variety of carbon compounds, many of them recalcitrant and/or toxic. One remarkable property of metal reducers is their ability to reduce solid, often highly crystalline substrates such as iron and manganese oxides and oxyhydroxides. It is now clear that this is done via the utilization of enzymes located on the outer wall of the bacteria - enzymes that apparently interact directly with these solid substrates. Molecular and genomic studies combined have revealed the genes and protoeins responsible for these activities, and many facets of the regulation. This talk focuses on the general features and properties of these remarkable organisms that seem to communicate via electron transfer across a wide variety of soluable, insoluable, and even "inert" substrates, and the way that these processes may be mechanistically linked.

  17. World nuclear fuel cycle requirements 1990

    SciTech Connect (OSTI)

    Not Available

    1990-10-26

    This analysis report presents the projected requirements for uranium concentrate and uranium enrichment services to fuel the nuclear power plants expected to be operating under three nuclear supply scenarios. Two of these scenarios, the Lower Reference and Upper Reference cases, apply to the United States, Canada, Europe, the Far East, and other countries with free market economies (FME countries). A No New Orders scenario is presented only for the United States. These nuclear supply scenarios are described in Commercial Nuclear Power 1990: Prospects for the United States and the World (DOE/EIA-0438(90)). This report contains an analysis of the sensitivities of the nuclear fuel cycle projections to different levels and types of projected nuclear capacity, different enrichment tails assays, higher and lower capacity factors, changes in nuclear fuel burnup levels, and other exogenous assumptions. The projections for the United States generally extend through the year 2020, and the FME projections, which include the United States, are provided through 2010. The report also presents annual projections of spent nuclear fuel discharges and inventories of spent fuel. Appendix D includes domestic spent fuel projections through the year 2030 for the Lower and Upper Reference cases and through 2040, the last year in which spent fuel is discharged, for the No New Orders case. These disaggregated projections are provided at the request of the Department of Energy's Office of Civilian Radioactive Waste Management.

  18. Transport of lead in PWR secondary cycles

    SciTech Connect (OSTI)

    Sawochka, S.G.; Clouse, M.E.; Miller, M.R. )

    1991-04-01

    Since lead can accelerate IGA/IGSCC of Alloy 600 steam generator tubing, lead transport studies were performed at several pressurized water reactors to establish a basis for recommendations regarding transport reduction techniques. Special emphasis was given to sampling and analysis procedures since lead concentrations in the feedwater generally were very low, i.e., 5 to 20 parts per trillion. Lead sources were determined to be highly distributed in the secondary cycle, e.g., turbine and pump bearings and seals and valve packing materials. The major materials of construction (carbon steel, stainless steel, and copper alloy tubing) were not major lead sources in the study plants. Most of the lead that entered the steam generators via the feedwater deposited on the tubes or in the sludge pile leading to concentrations in the range of 1000 ppM. The ubiquitous nature of the lead release phenomenon is expected to lead to significant difficulties in identifying techniques for reducing lead concentrations in the steam generator sludge. 8 refs., 19 figs., 13 tabs.

  19. Nuclear fuel cycle facility accident analysis handbook

    SciTech Connect (OSTI)

    1998-03-01

    The purpose of this Handbook is to provide guidance on how to calculate the characteristics of releases of radioactive materials and/or hazardous chemicals from nonreactor nuclear facilities. In addition, the Handbook provides guidance on how to calculate the consequences of those releases. There are four major chapters: Hazard Evaluation and Scenario Development; Source Term Determination; Transport Within Containment/Confinement; and Atmospheric Dispersion and Consequences Modeling. These chapters are supported by Appendices, including: a summary of chemical and nuclear information that contains descriptions of various fuel cycle facilities; details on how to calculate the characteristics of source terms for releases of hazardous chemicals; a comparison of NRC, EPA, and OSHA programs that address chemical safety; a summary of the performance of HEPA and other filters; and a discussion of uncertainties. Several sample problems are presented: a free-fall spill of powder, an explosion with radioactive release; a fire with radioactive release; filter failure; hydrogen fluoride release from a tankcar; a uranium hexafluoride cylinder rupture; a liquid spill in a vitrification plant; and a criticality incident. Finally, this Handbook includes a computer model, LPF No.1B, that is intended for use in calculating Leak Path Factors. A list of contributors to the Handbook is presented in Chapter 6. 39 figs., 35 tabs.

  20. Sulfuric acid-sulfur heat storage cycle

    DOE Patents [OSTI]

    Norman, John H.

    1983-12-20

    A method of storing heat is provided utilizing a chemical cycle which interconverts sulfuric acid and sulfur. The method can be used to levelize the energy obtained from intermittent heat sources, such as solar collectors. Dilute sulfuric acid is concentrated by evaporation of water, and the concentrated sulfuric acid is boiled and decomposed using intense heat from the heat source, forming sulfur dioxide and oxygen. The sulfur dioxide is reacted with water in a disproportionation reaction yielding dilute sulfuric acid, which is recycled, and elemental sulfur. The sulfur has substantial potential chemical energy and represents the storage of a significant portion of the energy obtained from the heat source. The sulfur is burned whenever required to release the stored energy. A particularly advantageous use of the heat storage method is in conjunction with a solar-powered facility which uses the Bunsen reaction in a water-splitting process. The energy storage method is used to levelize the availability of solar energy while some of the sulfur dioxide produced in the heat storage reactions is converted to sulfuric acid in the Bunsen reaction.

  1. Closed Fuel Cycle Waste Treatment Strategy

    SciTech Connect (OSTI)

    Vienna, J. D.; Collins, E. D.; Crum, J. V.; Ebert, W. L.; Frank, S. M.; Garn, T. G.; Gombert, D.; Jones, R.; Jubin, R. T.; Maio, V. C.; Marra, J. C.; Matyas, J.; Nenoff, T. M.; Riley, B. J.; Sevigny, G. J.; Soelberg, N. R.; Strachan, D. M.; Thallapally, P. K.; Westsik, J. H.

    2015-02-01

    This study is aimed at evaluating the existing waste management approaches for nuclear fuel cycle facilities in comparison to the objectives of implementing an advanced fuel cycle in the U.S. under current legal, regulatory, and logistical constructs. The study begins with the Global Nuclear Energy Partnership (GNEP) Integrated Waste Management Strategy (IWMS) (Gombert et al. 2008) as a general strategy and associated Waste Treatment Baseline Study (WTBS) (Gombert et al. 2007). The tenets of the IWMS are equally valid to the current waste management study. However, the flowsheet details have changed significantly from those considered under GNEP. In addition, significant additional waste management technology development has occurred since the GNEP waste management studies were performed. This study updates the information found in the WTBS, summarizes the results of more recent technology development efforts, and describes waste management approaches as they apply to a representative full recycle reprocessing flowsheet. Many of the waste management technologies discussed also apply to other potential flowsheets that involve reprocessing. These applications are occasionally discussed where the data are more readily available. The report summarizes the waste arising from aqueous reprocessing of a typical light-water reactor (LWR) fuel to separate actinides for use in fabricating metal sodium fast reactor (SFR) fuel and from electrochemical reprocessing of the metal SFR fuel to separate actinides for recycle back into the SFR in the form of metal fuel. The primary streams considered and the recommended waste forms include; Tritium in low-water cement in high integrity containers (HICs); Iodine-129: As a reference case, a glass composite material (GCM) formed by the encapsulation of the silver Mordenite (AgZ) getter material in a low-temperature glass is assumed. A number of alternatives with distinct advantages are also considered including a fused silica waste form

  2. Why reconsider the thorium fuel cycle?

    SciTech Connect (OSTI)

    Krahn, S.; Croff, A.; Ault, T.; Wymer, R.

    2013-07-01

    In this paper we have endeavored to present the available technical information on the potential use of Th in nuclear fuel cycle (FC) applications as compared to U without subjective evaluations. Where helpful, we have compared the technical attributes of Th-232 as a fertile isotope and U-233 as a fissile isotope with other similar isotopes (i.e., U-238, and U-235 and Pu-239, respectively). In addition, we have summarized (a) experience gained to-date with fabricating and reprocessing of Th-232/U-233 fuels, (b) factors concerning Th fuel irradiation in both test reactors and power reactors, and (c) differences in the backend of the FC with emphasis on repository risks. As might be expected, many technical aspects of Th vs. U have not changed since the sixties. However, there are some factors elaborated in this paper that have changed. Changes potentially encouraging Th use are: (a) the ability to recover large amounts of Th as a byproduct with small attendant costs and environmental impacts, (b) the potential to produce fewer minor actinides (MA) and less Pu during power production, and (c) increased concerns about proliferation which might be somewhat mitigated by the high radioactivity and amenability to isotopic dilution of U-233. Changes challenging Th utilization are: (a) obtaining sufficient experience handling Th/U-233 fuels, (b) the existence of large inventories of depleted U and continuing discovery of large U resources, and (c) recognition that the extent to which U-233 might mitigate proliferation concerns is not as large as originally hoped.

  3. Open cycle ocean thermal energy conversion system

    DOE Patents [OSTI]

    Wittig, J. Michael

    1980-01-01

    An improved open cycle ocean thermal energy conversion system including a flash evaporator for vaporizing relatively warm ocean surface water and an axial flow, elastic fluid turbine having a vertical shaft and axis of rotation. The warm ocean water is transmitted to the evaporator through a first prestressed concrete skirt-conduit structure circumferentially situated about the axis of rotation. The unflashed warm ocean water exits the evaporator through a second prestressed concrete skirt-conduit structure located circumferentially about and radially within the first skirt-conduit structure. The radially inner surface of the second skirt conduit structure constitutes a cylinder which functions as the turbine's outer casing and obviates the need for a conventional outer housing. The turbine includes a radially enlarged disc element attached to the shaft for supporting at least one axial row of radially directed blades through which the steam is expanded. A prestressed concrete inner casing structure of the turbine has upstream and downstream portions respectively situated upstream and downstream from the disc element. The radially outer surfaces of the inner casing portions and radially outer periphery of the axially interposed disc cooperatively form a downwardly radially inwardly tapered surface. An annular steam flowpath of increasing flow area in the downward axial direction is radially bounded by the inner and outer prestressed concrete casing structures. The inner casing portions each include a transversely situated prestressed concrete circular wall for rotatably supporting the turbine shaft and associated structure. The turbine blades are substantially radially coextensive with the steam flowpath and receive steam from the evaporator through an annular array of prestressed concrete stationary vanes which extend between the inner and outer casings to provide structural support therefor and impart a desired flow direction to the steam.

  4. Regenerator optimization for Stirling cycle refrigeration II

    SciTech Connect (OSTI)

    Colgate, S.A.; Petschek, A.G.

    1994-07-01

    A cryogenic regenerator for a Stirling cycle is discussed using fractional loss or entropy gain as the criterion of performance. The gas losses are treated separately from heat storage medium losses. We argue that the optimum design corresponds to uniform channel flow with minimum turbulence where the gas velocity and channel width are optimized as a function of gas temperature. The maximization of heat transfer from the gas to the wall and the minimization of entropy production by friction leads to a gas flow velocity equal to sound speed times loss fraction, 1/{sigma}. This velocity and an axial thermal conductivity in the gas leads to a minimum channel width and characteristic length, L=T(dz/dT). A particular scaling of width, W{sup 2} = W{sub o}{sup 2}T{sup 1/2}, and length, L = L{sub o} T{sup {minus}1/2} leads to a design where longitudinal conduction decreases as T{sup 3/2} and the remaining two losses, transverse conduction and friction are equal and constant. The loss fraction, 1/{sigma}, must be made quite small, {approximately}(1/60) in order that the cumulative losses for a large temperature ratio like 300K to 4K, be small enough, like 20% to 40%. This is because half the entropy generated as a loss must be transported first to the cold end before returning to the hot end before being rejected. The dead volume ratio then determines the minimum frequency and with it and the pressure the necessary wall properties. The thermal properties of the channel wall must then accommodate this cyclic heat flow without substantially increasing the loss fraction. This generation of entropy in the walls is derived in terms of the wall heat capacity and thermal conductivity.

  5. On-Going Comparison of Advanced Fuel Cycle Options

    SciTech Connect (OSTI)

    Piet, S.J.; Bennett, R.G.; Dixon, B.W.; Herring, J.S.; Shropshire, D.E.; Roth, M.; Smith, J.D.; Finck, P.; Hill, R.; Laidler, J.; Pasamehmetoglu, K.

    2004-10-03

    This paper summarizes the current comprehensive comparison of four major fuel cycle strategies: once-through, thermal recycle, thermal+fast recycle, fast recycle. It then proceeds to summarize comparison of the major technology options for the key elements of the fuel cycle that can implement each of the four strategies - separation processing, transmutation reactors, and fuels.

  6. Software Requirements Specification Verifiable Fuel Cycle Simulation (VISION) Model

    SciTech Connect (OSTI)

    D. E. Shropshire; W. H. West

    2005-11-01

    The purpose of this Software Requirements Specification (SRS) is to define the top-level requirements for a Verifiable Fuel Cycle Simulation Model (VISION) of the Advanced Fuel Cycle (AFC). This simulation model is intended to serve a broad systems analysis and study tool applicable to work conducted as part of the AFCI (including costs estimates) and Generation IV reactor development studies.

  7. Environmental Emissions from Energy Technology Systems: The Total Fuel Cycle

    SciTech Connect (OSTI)

    San Martin, Robert L.

    1989-01-01

    This is a summary report that compares emissions during the entire project life cycle for a number of fossil-fueled and renewable electric power systems, including geothermal steam (probably modeled after The Geysers). The life cycle is broken into Fuel Extraction, Construction, and Operation. The only emission covered is carbon dioxide.

  8. Environmental Emissions From Energy Technology Systems: The Total Fuel Cycle

    SciTech Connect (OSTI)

    San Martin, Robert L.

    1989-04-01

    This is a summary report that compares emissions during the entire project life cycle for a number of fossil-fueled and renewable electric power systems, including geothermal steam (probably modeled after The Geysers). The life cycle is broken into Fuel Extraction, Construction, and Operation. The only emission covered is carbon dioxide. (DJE 2005)

  9. Advanced nuclear fuel cycles - Main challenges and strategic choices

    SciTech Connect (OSTI)

    Le Biez, V.; Machiels, A.; Sowder, A.

    2013-07-01

    A graphical conceptual model of the uranium fuel cycles has been developed to capture the present, anticipated, and potential (future) nuclear fuel cycle elements. The once-through cycle and plutonium recycle in fast reactors represent two basic approaches that bound classical options for nuclear fuel cycles. Chief among these other options are mono-recycling of plutonium in thermal reactors and recycling of minor actinides in fast reactors. Mono-recycling of plutonium in thermal reactors offers modest savings in natural uranium, provides an alternative approach for present-day interim management of used fuel, and offers a potential bridging technology to development and deployment of future fuel cycles. In addition to breeder reactors' obvious fuel sustainability advantages, recycling of minor actinides in fast reactors offers an attractive concept for long-term management of the wastes, but its ultimate value is uncertain in view of the added complexity in doing so,. Ultimately, there are no simple choices for nuclear fuel cycle options, as the selection of a fuel cycle option must reflect strategic criteria and priorities that vary with national policy and market perspectives. For example, fuel cycle decision-making driven primarily by national strategic interests will likely favor energy security or proliferation resistance issues, whereas decisions driven primarily by commercial or market influences will focus on economic competitiveness.

  10. HRSGs, steam turbines, and auxiliaries for combined cycles

    SciTech Connect (OSTI)

    Makansi, J.

    1994-09-01

    This article examines current steam turbine/boiler technology and how it fits in with current combined-cycle powerplants. It seems fair to state that the world's continued interest in combined-cycle (CC) powerplants is fed in part by the rapidly advancing gas-turbine (GT) technology. The steam cycle simply plays a subservient role--for example, as GT exhaust temperatures arise, steam-cycle components are selected to match them. And certainly from today's vantage point, one can extrapolate a future of GTs continuing to lead and steam cycles following, as GT technology moves to higher firing temperatures and more efficient and powerful machines. But here's the important questions: is the next incremental efficiency advance most economically obtained in the GT Brayton cycle or the steam cycle That's a tough question to answer today because GT technology has enjoyed the limelight--and deservedly so. Of course, the emerging fully competitive environment for electricity generation--and wholesale and retail delivery--underscores the need for efficiency. New components--such as those for recovering more heat from the GT exhaust through sub-dew point cooling--could emerge in the steam cycle in the next few years.

  11. Alteration of cell cycle progression by Sindbis virus infection

    SciTech Connect (OSTI)

    Yi, Ruirong; Saito, Kengo; Isegawa, Naohisa; Shirasawa, Hiroshi

    2015-07-10

    We examined the impact of Sindbis virus (SINV) infection on cell cycle progression in a cancer cell line, HeLa, and a non-cancerous cell line, Vero. Cell cycle analyses showed that SINV infection is able to alter the cell cycle progression in both HeLa and Vero cells, but differently, especially during the early stage of infection. SINV infection affected the expression of several cell cycle regulators (CDK4, CDK6, cyclin E, p21, cyclin A and cyclin B) in HeLa cells and caused HeLa cells to accumulate in S phase during the early stage of infection. Monitoring SINV replication in HeLa and Vero cells expressing cell cycle indicators revealed that SINV which infected HeLa cells during G{sub 1} phase preferred to proliferate during S/G{sub 2} phase, and the average time interval for viral replication was significantly shorter in both HeLa and Vero cells infected during G{sub 1} phase than in cells infected during S/G{sub 2} phase. - Highlights: • SINV infection was able to alter the cell cycle progression of infected cancer cells. • SINV infection can affect the expression of cell cycle regulators. • SINV infection exhibited a preference for the timing of viral replication among the cell cycle phases.

  12. Life cycle assessment of a biomass gasification combined-cycle power system

    SciTech Connect (OSTI)

    Mann, M.K.; Spath, P.L.

    1997-12-01

    The potential environmental benefits from biomass power are numerous. However, biomass power may also have some negative effects on the environment. Although the environmental benefits and drawbacks of biomass power have been debated for some time, the total significance has not been assessed. This study serves to answer some of the questions most often raised in regard to biomass power: What are the net CO{sub 2} emissions? What is the energy balance of the integrated system? Which substances are emitted at the highest rates? What parts of the system are responsible for these emissions? To provide answers to these questions, a life cycle assessment (LCA) of a hypothetical biomass power plant located in the Midwest United States was performed. LCA is an analytical tool for quantifying the emissions, resource consumption, and energy use, collectively known as environmental stressors, that are associated with converting a raw material to a final product. Performed in conjunction with a technoeconomic feasibility study, the total economic and environmental benefits and drawbacks of a process can be quantified. This study complements a technoeconomic analysis of the same process, reported in Craig and Mann (1996) and updated here. The process studied is based on the concept of power Generation in a biomass integrated gasification combined cycle (BIGCC) plant. Broadly speaking, the overall system consists of biomass production, its transportation to the power plant, electricity generation, and any upstream processes required for system operation. The biomass is assumed to be supplied to the plant as wood chips from a biomass plantation, which would produce energy crops in a manner similar to the way food and fiber crops are produced today. Transportation of the biomass and other materials is by both rail and truck. The IGCC plant is sized at 113 MW, and integrates an indirectly-heated gasifier with an industrial gas turbine and steam cycle. 63 refs., 34 figs., 32 tabs.

  13. Increasing water cycle extremes in California and relation to ENSO cycle under global warming

    SciTech Connect (OSTI)

    Yoon, Jin-Ho; Wang, S-Y; Gillies, Robert R.; Kravitz, Benjamin S.; Hipps, Lawrence; Rasch, Philip J.

    2015-10-21

    California has experienced its most severe drought in recorded history since the winter of 2013-2014. The long duration of drought has stressed statewide water resources and the economy, while fueling an extraordinary increase in wildfires. The effects of global warming on the regional climate include a hotter and drier climate, as well as earlier snowmelt, both of which exacerbate drought conditions. However, connections between a changing climate and how climate oscillations modulate regional water cycle extremes are not well understood. Here we analyze large-ensemble simulations of future climate change in California using the Community Earth System Model version 1 (CESM1) and multiple climate models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5). Both intense drought and excessive flooding are projected to increase by at least 50% toward the end of the 21st century. The projected increase in water cycle extremes is associated with tighter relation to El Niño and Southern Oscillation (ENSO), particularly extreme El Niño and La Niña events, which modulates California’s climate not only through its warm and cold phases, but also ENSO’s precursor patterns.

  14. Increasing water cycle extremes in California and relation to ENSO cycle under global warming

    SciTech Connect (OSTI)

    Yoon, Jin -Ho; Wang, S. -Y. Simon; Gillies, Robert R.; Kravitz, Benjamin S.; Hipps, Lawrence; Rasch, Philip J.

    2015-10-21

    California has experienced its most severe drought in recorded history since the winter of 2013-2014. The long duration of drought has stressed statewide water resources and the economy, while fueling an extraordinary increase in wildfires. The effects of global warming on the regional climate include a hotter and drier climate, as well as earlier snowmelt, both of which exacerbate drought conditions. However, connections between a changing climate and how climate oscillations modulate regional water cycle extremes are not well understood. Here we analyze large-ensemble simulations of future climate change in California using the Community Earth System Model version 1 (CESM1) and multiple climate models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5). Both intense drought and excessive flooding are projected to increase by at least 50% toward the end of the 21st century. Furthermore, the projected increase in water cycle extremes is associated with tighter relation to El Niño and Southern Oscillation (ENSO), particularly extreme El Niño and La Niña events, which modulates California’s climate not only through its warm and cold phases, but also ENSO’s precursor patterns.

  15. Increasing water cycle extremes in California and relation to ENSO cycle under global warming

    DOE PAGES-Beta [OSTI]

    Yoon, Jin -Ho; Wang, S. -Y. Simon; Gillies, Robert R.; Kravitz, Benjamin S.; Hipps, Lawrence; Rasch, Philip J.

    2015-10-21

    California has experienced its most severe drought in recorded history since the winter of 2013-2014. The long duration of drought has stressed statewide water resources and the economy, while fueling an extraordinary increase in wildfires. The effects of global warming on the regional climate include a hotter and drier climate, as well as earlier snowmelt, both of which exacerbate drought conditions. However, connections between a changing climate and how climate oscillations modulate regional water cycle extremes are not well understood. Here we analyze large-ensemble simulations of future climate change in California using the Community Earth System Model version 1 (CESM1)more » and multiple climate models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5). Both intense drought and excessive flooding are projected to increase by at least 50% toward the end of the 21st century. Furthermore, the projected increase in water cycle extremes is associated with tighter relation to El Niño and Southern Oscillation (ENSO), particularly extreme El Niño and La Niña events, which modulates California’s climate not only through its warm and cold phases, but also ENSO’s precursor patterns.« less

  16. Sensitivity analysis and optimization of the nuclear fuel cycle

    SciTech Connect (OSTI)

    Passerini, S.; Kazimi, M. S.; Shwageraus, E.

    2012-07-01

    A sensitivity study has been conducted to assess the robustness of the conclusions presented in the MIT Fuel Cycle Study. The Once Through Cycle (OTC) is considered as the base-line case, while advanced technologies with fuel recycling characterize the alternative fuel cycles. The options include limited recycling in LWRs and full recycling in fast reactors and in high conversion LWRs. Fast reactor technologies studied include both oxide and metal fueled reactors. The analysis allowed optimization of the fast reactor conversion ratio with respect to desired fuel cycle performance characteristics. The following parameters were found to significantly affect the performance of recycling technologies and their penetration over time: Capacity Factors of the fuel cycle facilities, Spent Fuel Cooling Time, Thermal Reprocessing Introduction Date, and in core and Out-of-core TRU Inventory Requirements for recycling technology. An optimization scheme of the nuclear fuel cycle is proposed. Optimization criteria and metrics of interest for different stakeholders in the fuel cycle (economics, waste management, environmental impact, etc.) are utilized for two different optimization techniques (linear and stochastic). Preliminary results covering single and multi-variable and single and multi-objective optimization demonstrate the viability of the optimization scheme. (authors)

  17. Technology Insights and Perspectives for Nuclear Fuel Cycle Concepts

    SciTech Connect (OSTI)

    S. Bays; S. Piet; N. Soelberg; M. Lineberry; B. Dixon

    2010-09-01

    The following report provides a rich resource of information for exploring fuel cycle characteristics. The most noteworthy trends can be traced back to the utilization efficiency of natural uranium resources. By definition, complete uranium utilization occurs only when all of the natural uranium resource can be introduced into the nuclear reactor long enough for all of it to undergo fission. Achieving near complete uranium utilization requires technologies that can achieve full recycle or at least nearly full recycle of the initial natural uranium consumed from the Earth. Greater than 99% of all natural uranium is fertile, and thus is not conducive to fission. This fact requires the fuel cycle to convert large quantities of non-fissile material into fissile transuranics. Step increases in waste benefits are closely related to the step increase in uranium utilization going from non-breeding fuel cycles to breeding fuel cycles. The amount of mass requiring a disposal path is tightly coupled to the quantity of actinides in the waste stream. Complete uranium utilization by definition means that zero (practically, near zero) actinide mass is present in the waste stream. Therefore, fuel cycles with complete (uranium and transuranic) recycle discharge predominately fission products with some actinide process losses. Fuel cycles without complete recycle discharge a much more massive waste stream because only a fraction of the initial actinide mass is burned prior to disposal. In a nuclear growth scenario, the relevant acceptable frequency for core damage events in nuclear reactors is inversely proportional to the number of reactors deployed in a fuel cycle. For ten times the reactors in a fleet, it should be expected that the fleet-average core damage frequency be decreased by a factor of ten. The relevant proliferation resistance of a fuel cycle system is enhanced with: decreasing reliance on domestic fuel cycle services, decreasing adaptability for technology misuse

  18. Concentrating Solar Power Projects - Crescent Dunes Solar Energy...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Turbine Capacity (Gross): 110.0 MW Turbine Capacity (Net): 110.0 MW Turbine Manufacturer: Alstom Output Type: Steam Rankine Power Cycle Pressure: 115.0 bar Cooling Method: Hybrid ...

  19. Concentrating Solar Power Projects - Solana Generating Station...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Turbine Capacity (Gross): 280.0 MW Turbine Capacity (Net): 250.0 MW Turbine Description: 2x140 MWe gross Output Type: Steam Rankine Power Cycle Pressure: 100.0 bar Cooling Method: ...

  20. Development of a Waste Heat Recovery System for Light Duty Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Performance of an Organic Rankine Cycle Waste Heat Recovery System for Light Duty Diesel Engines A Quantum Leap for Heavy-Duty Truck Engine Efficiency - Hybrid Power System of ...

  1. Freepower Ltd | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Name: Freepower Ltd Place: Andover, United Kingdom Zip: SP10 3TY Sector: Renewable Energy Product: Develops a 120kW Organic Rankine Cycle Turbine Generator that uses heat from...

  2. WASTE HEAT-TO-POWER IN SMALL-SCALE INDUSTRY USING SCROLL EXPANDER...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    WASTE HEAT-TO-POWER IN SMALL-SCALE INDUSTRY USING SCROLL EXPANDER FOR ORGANIC RANKINE BOTTOMING CYCLE WASTE HEAT-TO-POWER IN SMALL-SCALE INDUSTRY USING SCROLL EXPANDER FOR ORGANIC ...

  3. Engine cycle design considerations for nuclear thermal propulsion systems

    SciTech Connect (OSTI)

    Pelaccio, D.G.; Scheil, C.M.; Collins, J.T. )

    1993-01-20

    A top-level study was performed which addresses nuclear thermal propulsion system engine cycle options and their applicability to support future Space Exploration Initiative manned lunar and Mars missions. Technical and development issues associated with expander, gas generator, and bleed cycle near-term, solid core nuclear thermal propulsion engines are identified and examined. In addition to performance and weight the influence of the engine cycle type on key design selection parameters such as design complexity, reliability, development time, and cost are discussed. Representative engine designs are presented and compared. Their applicability and performance impact on typical near-term lunar and Mars missions are shown.

  4. Evaluation of Waste Arising from Future Nuclear Fuel Cycle

    SciTech Connect (OSTI)

    Jubin, Robert Thomas; Taiwo, Temitope; Wigeland, Roald

    2015-01-01

    A comprehensive study was recently completed at the request of the US Department of Energy Office of Nuclear Energy (DOE-NE) to evaluate and screen nuclear fuel cycles. The final report was issued in October 2014. Uranium- and thorium-based fuel cycles were evaluated using both fast and thermal spectrum reactors. Once-through, limited-recycle, and continuous-recycle cases were considered. This study used nine evaluation criteria to identify promising fuel cycles. Nuclear waste management was one of the nine evaluation criteria. The waste generation criterion from this study is discussed herein.

  5. Climate-Carbon Cycle Interactions Dr. John P. Krasting

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Modeling of Climate-Carbon Cycle Interactions Dr. John P. Krasting geophysical fluid dynamics Laboratory Wednesday, Jan 23, 2013 - 4:15PM MBG AUDITORIUM Refreshments at 4:00PM The PrinceTon Plasma Physics laboraTory is a U.s. DeParTmenT of energy faciliTy The interactions between Earth's carbon cycle and climate are key to understanding both past and future climate change. NOAA-GFDL developed two coupled climate- carbon cycle models - or Earth System Models (ESMs) - that are able to simulate

  6. 2013 Fuel Cycle Technologies Annual Review MeetingTransactions Report

    SciTech Connect (OSTI)

    Not Listed

    2013-11-01

    The Fuel Cycle Technologies (FCT) program of the Department of Energy (DOE) Office of Nuclear Energy (NE) is charged with identifying promising sustainable fuel cycles and developing strategies for effective disposition of used fuel and high-level nuclear waste, enabling policymakers to make informed decisions about these critical issues. Sustainable fuel cycles will improve uranium resource utilization, maximize energy generation while minimizing waste, improve safety, and limit proliferation risk. To achieve its mission, FCT has initiated numerous activities in each of the technical campaign areas, of which this report provides a sample.

  7. Building Life Cycle Cost Programs Troubleshooting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Building Life Cycle Cost Programs Troubleshooting Building Life Cycle Cost Programs Troubleshooting Having trouble with the Building Life Cycle Cost (BLCC) Programs software? See the problems and solutions below to troubleshoot BLCC software issues. Problem: Receiving "Error loading the jvm.dll" error message when attempting to install the BLCC software. Solution: The BLCC installer looks for a valid jvm.dll file in the jre path under bin/server or bin/client. So check what path is set

  8. COLLOQUIUM: Ensemble Modeling of Climate-Carbon Cycle Interactions |

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Princeton Plasma Physics Lab January 23, 2013, 4:15pm to 6:30pm Colloquia MBG Auditorium COLLOQUIUM: Ensemble Modeling of Climate-Carbon Cycle Interactions Dr. John Krasting Geophysical Fluid Dynamics Laboratory Abstract: PDF icon COLL.01.23.13.pdf The interactions between Earth's carbon cycle and climate are key to understanding both past and future climate change. NOAA-GFDL developed two coupled climate-carbon cycle models - or Earth System Models (ESMs) - that are able to simulate these

  9. SES Performance Cycle - Aggregate Results FY 2013 | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Responsible Contacts Erin Moore Deputy Director, Office of Executive Resources E-mail Erin.Moore@hq.doe.gov Phone (202) 586-9558 More Documents & Publications SES Performance Cycle ...

  10. Building Life-Cycle Cost (BLCC) Program | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    useful for evaluating the costs and benefits of energy and water conservation and renewable energy projects. The life-cycle cost (LCC) of two or more alternative designs are...

  11. Mobile Facility Records Annual Climate Cycle in Niger, Africa

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Mobile Facility Records Annual Climate Cycle in Niger, Africa Because dust can block ... These data are being used by scientists to study the nature of dust storms, how far they ...

  12. Erratum: "'Water-cycle' mechanism for writing and erasingnanostructur...

    Office of Scientific and Technical Information (OSTI)

    Erratum: "'Water-cycle' mechanism for writing and erasing nanostructures at the LaAlO3SrTiO3 interface" Appl. Phys. Lett. 97, 173110 (2010) Citation Details In-Document Search ...

  13. Lithium / Sulfur Cells with Long Cycle Life and High Specific...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Lithium Sulfur Cells with Long Cycle Life and High Specific Energy Lawrence Berkeley ... Song, M-K., Zhang, Y., Cairns, E.J., "A long-life, high-rate lithiumsulfur cell: a ...

  14. Sustainable Thorium Nuclear Fuel Cycles: A Comparison of Intermediate...

    Office of Scientific and Technical Information (OSTI)

    1 eV and 105 eV, perform as well as fast spectrum systems in this fuel cycle. ... continuously refueled molten salt reactors, and a sodium-cooled reactor with hydride fuel. ...

  15. Thermal Cycling Combined with Dynamic Mechanical Load: Preliminary Report

    Energy.gov [DOE]

    This PowerPoint presentation summarizes the efforts of the team led by ESPEC Corp. to investigate thermal cycling combined with dynamic mechanical load, a solar project funded by the SunShot Initiative.

  16. Rapid first-cycle lithiation strategy for enhanced performance...

    Office of Scientific and Technical Information (OSTI)

    performance of Li-MoS2 batteries as identified by in situ studies. Citation Details In-Document Search Title: Rapid first-cycle lithiation strategy for enhanced performance of ...

  17. Atmospheric carbon dioxide and the global carbon cycle

    SciTech Connect (OSTI)

    Trabalka, J R

    1985-12-01

    This state-of-the-art volume presents discussions on the global cycle of carbon, the dynamic balance among global atmospheric CO2 sources and sinks. Separate abstracts have been prepared for the individual papers. (ACR)

  18. Duty Cycle Analysis & Tools: Maximizing Vehicle Performance (Presentation)

    SciTech Connect (OSTI)

    Walkowicz, K.

    2009-10-28

    Shows that the benefits of using hybrid vehicle trucks in fleets depends on the duty cycle, or how the vehicles will be driven (e.g., stop and go) over a particular route (e.g., urban or rural).

  19. Summary and recommendations: Total fuel cycle assessment workshop

    SciTech Connect (OSTI)

    1995-08-01

    This report summarizes the activities of the Total Fuel Cycle Assessment Workshop held in Austin, Texas, during October 6--7, 1994. It also contains the proceedings from that workshop.

  20. Assessment of Possible Cycle Lengths for Fully-Ceramic Micro...

    Office of Scientific and Technical Information (OSTI)

    Light Water Reactor Concepts Citation Details In-Document Search Title: Assessment of Possible Cycle Lengths for Fully-Ceramic Micro-Encapsulated Fuel-Based Light Water Reactor ...

  1. Improving the Cycling Life of Aluminum and Germanium Thin Films...

    Office of Scientific and Technical Information (OSTI)

    in Li-Ion Batteries. Citation Details In-Document Search Title: Improving the Cycling Life of Aluminum and Germanium Thin Films for use as Anodic Materials in Li-Ion Batteries. ...

  2. Improving the Cycling Life of Aluminum and Germanium Thin Films...

    Office of Scientific and Technical Information (OSTI)

    Li-Ion Batteries. Citation Details In-Document Search Title: Improving the Cycling Life of Aluminum and Germanium Thin Films for use as Anodic Materials in Li-Ion Batteries. You ...

  3. Sol-Cycle: Biking Across America for Science Education | Department...

    Energy.gov (indexed) [DOE]

    California and one in Chico, California. The Sol Cycle is central to each lesson -- the solar panel converts sunlight to electricity, turning the motor to make the wheels spin....

  4. Operation and analysis of a supercritical CO2 Brayton cycle.

    SciTech Connect (OSTI)

    Wright, Steven Alan; Radel, Ross F.; Vernon, Milton E.; Pickard, Paul S.; Rochau, Gary Eugene

    2010-09-01

    Sandia National Laboratories is investigating advanced Brayton cycles using supercritical working fluids for use with solar, nuclear or fossil heat sources. The focus of this work has been on the supercritical CO{sub 2} cycle (S-CO2) which has the potential for high efficiency in the temperature range of interest for these heat sources, and is also very compact, with the potential for lower capital costs. The first step in the development of these advanced cycles was the construction of a small scale Brayton cycle loop, funded by the Laboratory Directed Research & Development program, to study the key issue of compression near the critical point of CO{sub 2}. This document outlines the design of the small scale loop, describes the major components, presents models of system performance, including losses, leakage, windage, compressor performance, and flow map predictions, and finally describes the experimental results that have been generated.

  5. High-Efficiency Receivers for Supercritical Carbon Dioxide Cycles...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    2012. progressreportsunshotbraytonfy12q4.pdf More Documents & Publications High-Efficiency Low-Cost Solar Receiver for Use in a Supercritical CO2 Recompression Cycle - FY13 Q1...

  6. High-Efficiency Receivers for Supercritical Carbon Dioxide Cycles...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    More Documents & Publications High-Efficiency Low-Cost Solar Receiver for Use in a Supercritical CO2 Recompression Cycle - FY13 Q1 High-Efficiency Receivers for...

  7. Project Profile: Brayton Cycle Baseload Power Tower | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Wilson Solarpower, under the Baseload CSP FOA, proposed a utility-scale, Brayton cycle baseload power tower system with a capacity factor of at least 75% and LCOE of 0.09kWh. ...

  8. Statistical Analysis of Transient Cycle Test Results in a 40...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Statistical Analysis of Transient Cycle Test Results in a 40 ... of calibration and measurement methods deer09shade.pdf ... Evaluation of a Partial Flow Dilution System for Transient ...

  9. The very high cycle fatigue behavior of tool steel materials...

    Office of Scientific and Technical Information (OSTI)

    Title: The very high cycle fatigue behavior of tool steel materials Authors: Shyam, Amit 1 ; Blau, Peter Julian 1 ; Jordan, Tyson L 1 ; Yang, Nan 2 ; Pollard, Michael J 3 ...

  10. A Comparison Study of Various Nuclear Fuel Cycle Alternatives

    SciTech Connect (OSTI)

    Kwon, Eun-ha; Ko, Won-il

    2007-07-01

    As a nation develops its nuclear strategies, it must consider various aspects of nuclear energy such as sustainability, environmental-friendliness, proliferation-resistance, economics, technologies, and so on. Like all the policy decision, however, a nuclear fuel cycle option can not be superior in all aspects; the nation must identify its top priority and accordingly evaluate all the possible nuclear fuel cycle options. For such a purpose, this paper takes four different fuel cycle options that are likely adopted by the Korean government, considering the current status of nuclear power generation and the 3. Comprehensive Nuclear Energy Promotion Plan (CNEPP) - Once-through Cycle, DUPIC Recycle, Thermal Recycle and GEN-IV Recycle. The paper then evaluates each option in terms of resource utilization and waste generation. The analysis shows that the GEN-IV Recycle appears to be most competitive from these aspects. (authors)

  11. FY 2007 Total System Life Cycle Cost, Pub 2008

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Analysis of the Total System Life Cycle Cost (TSLCC) of the Civilian Radioactive Waste Management Program presents the Office of Civilian Radioactive Waste Management’s (OCRWM) May 2007 total...

  12. The tricarboxylic acid cycle in Shewanella oneidensis is independent...

    Office of Scientific and Technical Information (OSTI)

    of Fur and RyhB control Citation Details In-Document Search Title: The tricarboxylic acid cycle in Shewanella oneidensis is independent of Fur and RyhB control It is well ...

  13. High-Efficiency Receivers for Supercritical Carbon Dioxide Cycles...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    The team, led by Brayton Energy, aims to develop and demonstrate a low-cost, high-efficiency solar receiver that is compatible with s-CO2 cycles and modern thermal storage ...

  14. Renormalization Group Flows, Cycles, andc-Theorem Folklore Curtright, Thomas L.; Jin, Xiang; Zachos, Cosmas K. Not Available American Physical Society None...

  15. Minimize Boiler Short Cycling Losses - Steam Tip Sheet #16

    SciTech Connect (OSTI)

    2012-01-01

    This revised AMO tip sheet on minimizing boiler short cycling losses provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  16. Minimize Boiler Short Cycling Losses - Steam Tip Sheet #16

    SciTech Connect (OSTI)

    2006-01-01

    This revised AMO tip sheet on minimizing boiler short cycling losses provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  17. A Statistical Characterization of School Bus Drive Cycles Collected...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ... Timoney, D., "Examination of Low-cost Systems for the Determination of Kinematic ... of Drive Cycles on the Performance of a PEM Fuel Cell System for Automotive Applications," SAE ...

  18. COLLOQUIUM: Human Impacts on the Earth's Geologic Carbon Cycle...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    January 15, 2014, 4:00pm to 5:30pm Colloquia MBG Auditorium COLLOQUIUM: Human Impacts on ... Human Impacts on the Earth's Geologic Carbon Cycle Colloquium Committee: The Princeton ...

  19. Solar High Temperature Water-Splitting Cycle with Quantum Boost

    SciTech Connect (OSTI)

    Taylor, Robin; Davenport, Roger; Talbot, Jan; Herz, Richard; Genders, David; Symons, Peter; Brown, Lloyd

    2014-04-25

    A sulfur family chemical cycle having ammonia as the working fluid and reagent was developed as a cost-effective and efficient hydrogen production technology based on a solar thermochemical water-splitting cycle. The sulfur ammonia (SA) cycle is a renewable and sustainable process that is unique in that it is an all-fluid cycle (i.e., with no solids handling). It uses a moderate temperature solar plant with the solar receiver operating at 800°C. All electricity needed is generated internally from recovered heat. The plant would operate continuously with low cost storage and it is a good potential solar thermochemical hydrogen production cycle for reaching the DOE cost goals. Two approaches were considered for the hydrogen production step of the SA cycle: (1) photocatalytic, and (2) electrolytic oxidation of ammonium sulfite to ammonium sulfate in aqueous solutions. Also, two sub-cycles were evaluated for the oxygen evolution side of the SA cycle: (1) zinc sulfate/zinc oxide, and (2) potassium sulfate/potassium pyrosulfate. The laboratory testing and optimization of all the process steps for each version of the SA cycle were proven in the laboratory or have been fully demonstrated by others, but further optimization is still possible and needed. The solar configuration evolved to a 50 MW(thermal) central receiver system with a North heliostat field, a cavity receiver, and NaCl molten salt storage to allow continuous operation. The H2A economic model was used to optimize and trade-off SA cycle configurations. Parametric studies of chemical plant performance have indicated process efficiencies of ~20%. Although the current process efficiency is technically acceptable, an increased efficiency is needed if the DOE cost targets are to be reached. There are two interrelated areas in which there is the potential for significant efficiency improvements: electrolysis cell voltage and excessive water vaporization. Methods to significantly reduce water evaporation are

  20. Lessons Learned: Devolping Thermochemical Cycles for Solar Heat Storage

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Applications | Department of Energy Lessons Learned: Devolping Thermochemical Cycles for Solar Heat Storage Applications Lessons Learned: Devolping Thermochemical Cycles for Solar Heat Storage Applications This presentation summarizes the introduction given by Bunsen Wong during the Thermochemical Energy Storage Workshop on January 8, 2013. tces_workshop_2013_wong.pdf (1.61 MB) More Documents & Publications Thermochemical Energy Storage CX-100323 Categorical Exclusion Determination