National Library of Energy BETA

Sample records for range electric vehicles

  1. ETA-UTP004 - Electric Vehicle Constant Speed Range Tests

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    4 Revision 0 Effective March 23, 2001 Electric Vehicle Constant Speed Range Tests Prepared by Electric Transportation Applications Prepared by: ...

  2. ETA-TP004 - Electric Vehicle Constant Speed Range Tests

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    NTP004 Revision 3 Effective February 1, 2008 Electric Vehicle Constant Speed Range Tests Prepared by Electric Transportation Applications Prepared by: ...

  3. Partnership Helps Alleviate Electric Vehicle Range Anxiety (Fact Sheet)

    SciTech Connect

    Not Available

    2012-04-01

    NREL, Clean Cities, and industry leaders join forces to create the first comprehensive online locator for electric vehicle charging stations.

  4. Fact #939: August 22, 2016 All-Electric Vehicle Ranges Can Exceed...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    9: August 22, 2016 All-Electric Vehicle Ranges Can Exceed Those of Some Gasoline Vehicles - Dataset Fact 939: August 22, 2016 All-Electric Vehicle Ranges Can Exceed Those of Some ...

  5. Fuel Cell Electric Vehicles Make Rapid Progress in Range, Durability...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    project to demonstrate and evaluate hydrogen fuel cell electric vehicles (FCEVs) and hydrogen ... and help the industry bring these technologies into the marketplace at lower cost. ...

  6. Fact #797: September 16, 2013 Driving Ranges for Electric Vehicles...

    Energy.gov [DOE] (indexed site)

    The figure below shows the Environmental Protection Agency (EPA) driving ranges for ... not directly match EPA-stated ranges that were obtained through actual vehicle testing. ...

  7. Fact #939: August 22, 2016 All-Electric Vehicle Ranges Can Exceed Those of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Some Gasoline Vehicles | Department of Energy 9: August 22, 2016 All-Electric Vehicle Ranges Can Exceed Those of Some Gasoline Vehicles Fact #939: August 22, 2016 All-Electric Vehicle Ranges Can Exceed Those of Some Gasoline Vehicles SUBSCRIBE to the Fact of the Week Although most electric vehicles (EV) have shorter ranges than gasoline vehicles, there are EVs with ranges equal to or greater than some gasoline-powered models. For the 2016 model year (MY) the maximum range for an all-electric

  8. ETA-HTP04 - Hybrid Electric Vehicle Constant Speed Range Tests...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    4 Revision 1 Effective October 1, 2005 Hybrid Electric Vehicle Constant Speed Range Tests Prepared by Electric Transportation Applications Prepared by: ...

  9. Fact #939: August 22, 2016 All-Electric Vehicle Ranges Can Exceed Those of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Some Gasoline Vehicles - Dataset | Department of Energy 9: August 22, 2016 All-Electric Vehicle Ranges Can Exceed Those of Some Gasoline Vehicles - Dataset Fact #939: August 22, 2016 All-Electric Vehicle Ranges Can Exceed Those of Some Gasoline Vehicles - Dataset Excel file and dataset for All-Electric Vehicle Ranges Can Exceed Those of Some Gasoline Vehicles fotw#939_web.xlsx (17.16 KB) More Documents & Publications Fact #936: August 1, 2016 California Had the Highest Concentration of

  10. Sensitivity of Battery Electric Vehicle Economics to Drive Patterns, Vehicle Range, and Charge Strategies

    SciTech Connect

    Neubauer, J.; Brooker, A.; Wood, E.

    2012-07-01

    Battery electric vehicles (BEVs) offer the potential to reduce both oil imports and greenhouse gas emissions, but high upfront costs discourage many potential purchasers. Making an economic comparison with conventional alternatives is complicated in part by strong sensitivity to drive patterns, vehicle range, and charge strategies that affect vehicle utilization and battery wear. Identifying justifiable battery replacement schedules and sufficiently accounting for the limited range of a BEV add further complexity to the issue. The National Renewable Energy Laboratory developed the Battery Ownership Model to address these and related questions. The Battery Ownership Model is applied here to examine the sensitivity of BEV economics to drive patterns, vehicle range, and charge strategies when a high-fidelity battery degradation model, financially justified battery replacement schedules, and two different means of accounting for a BEV's unachievable vehicle miles traveled (VMT) are employed. We find that the value of unachievable VMT with a BEV has a strong impact on the cost-optimal range, charge strategy, and battery replacement schedule; that the overall cost competitiveness of a BEV is highly sensitive to vehicle-specific drive patterns; and that common cross-sectional drive patterns do not provide consistent representation of the relative cost of a BEV.

  11. Fact #939: August 22, 2016 All-Electric Vehicle Ranges Can Exceed...

    Energy.gov [DOE] (indexed site)

    For the 2016 model year (MY) the maximum range for an all-electric vehicle (AEV) is 294 miles while the minimum range for a gasoline model is 240 miles. Plug-in hybrid electric ...

  12. NREL Uses Fuel Cells to Increase the Range of Battery Electric Vehicles (Fact Sheet)

    SciTech Connect

    Not Available

    2014-01-01

    NREL analysis identifies potential cost-effective scenarios for using small fuel cell power units to increase the range of medium-duty battery electric vehicles.

  13. Socially optimal electric driving range of plug-in hybrid electric vehicles

    SciTech Connect

    Kontou, Eleftheria; Yin, Yafeng; Lin, Zhenhong

    2015-07-25

    This study determines the optimal electric driving range of plug-in hybrid electric vehicles (PHEVs) that minimizes the daily cost borne by the society when using this technology. An optimization framework is developed and applied to datasets representing the US market. Results indicate that the optimal range is 16 miles with an average social cost of 3.19 per day when exclusively charging at home, compared to 3.27 per day of driving a conventional vehicle. The optimal range is found to be sensitive to the cost of battery packs and the price of gasoline. When workplace charging is available, the optimal electric driving range surprisingly increases from 16 to 22 miles, as larger batteries would allow drivers to better take advantage of the charging opportunities to achieve longer electrified travel distances, yielding social cost savings. If workplace charging is available, the optimal density is to deploy a workplace charger for every 3.66 vehicles. Moreover, the diversification of the battery size, i.e., introducing a pair and triple of electric driving ranges to the market, could further decrease the average societal cost per PHEV by 7.45% and 11.5% respectively.

  14. Socially optimal electric driving range of plug-in hybrid electric vehicles

    DOE PAGES [OSTI]

    Kontou, Eleftheria; Yin, Yafeng; Lin, Zhenhong

    2015-07-25

    Our study determines the optimal electric driving range of plug-in hybrid electric vehicles (PHEVs) that minimizes the daily cost borne by the society when using this technology. An optimization framework is developed and applied to datasets representing the US market. Results indicate that the optimal range is 16 miles with an average social cost of 3.19 per day when exclusively charging at home, compared to 3.27 per day of driving a conventional vehicle. The optimal range is found to be sensitive to the cost of battery packs and the price of gasoline. Moreover, when workplace charging is available, the optimalmore » electric driving range surprisingly increases from 16 to 22 miles, as larger batteries would allow drivers to better take advantage of the charging opportunities to achieve longer electrified travel distances, yielding social cost savings. If workplace charging is available, the optimal density is to deploy a workplace charger for every 3.66 vehicles. Finally, the diversification of the battery size, i.e., introducing a pair and triple of electric driving ranges to the market, could further decrease the average societal cost per PHEV by 7.45% and 11.5% respectively.« less

  15. Socially optimal electric driving range of plug-in hybrid electric vehicles

    SciTech Connect

    Kontou, Eleftheria; Yin, Yafeng; Lin, Zhenhong

    2015-07-25

    Our study determines the optimal electric driving range of plug-in hybrid electric vehicles (PHEVs) that minimizes the daily cost borne by the society when using this technology. An optimization framework is developed and applied to datasets representing the US market. Results indicate that the optimal range is 16 miles with an average social cost of 3.19 per day when exclusively charging at home, compared to 3.27 per day of driving a conventional vehicle. The optimal range is found to be sensitive to the cost of battery packs and the price of gasoline. Moreover, when workplace charging is available, the optimal electric driving range surprisingly increases from 16 to 22 miles, as larger batteries would allow drivers to better take advantage of the charging opportunities to achieve longer electrified travel distances, yielding social cost savings. If workplace charging is available, the optimal density is to deploy a workplace charger for every 3.66 vehicles. Finally, the diversification of the battery size, i.e., introducing a pair and triple of electric driving ranges to the market, could further decrease the average societal cost per PHEV by 7.45% and 11.5% respectively.

  16. Fact #938: August 15, 2016 Median All-Electric Vehicle Range...

    Energy.gov [DOE] (indexed site)

    In model year 2011, there were just three different models of all-electric vehicles (AEV) ... Model Range (Miles) 2011 smart fortwo electric drive coupe 63 MY 2011 Median 73 miles ...

  17. Fact #938: August 15, 2016 Median All-Electric Vehicle Range...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    8: August 15, 2016 Median All-Electric Vehicle Range Grew from 73 Miles in Model Year 2011 to 83.5 Miles in Model Year 2016 - Dataset Fact 938: August 15, 2016 Median All-Electric ...

  18. Fact #938: August 15, 2016 Median All-Electric Vehicle Range Grew from 73

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Miles in Model Year 2011 to 83.5 Miles in Model Year 2016 | Department of Energy 8: August 15, 2016 Median All-Electric Vehicle Range Grew from 73 Miles in Model Year 2011 to 83.5 Miles in Model Year 2016 Fact #938: August 15, 2016 Median All-Electric Vehicle Range Grew from 73 Miles in Model Year 2011 to 83.5 Miles in Model Year 2016 SUBSCRIBE to the Fact of the Week In model year 2011, there were just three different models of all-electric vehicles (AEV) available and their ranges on a

  19. Fact #938: August 15, 2016 Median All-Electric Vehicle Range Grew from 73

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Miles in Model Year 2011 to 83.5 Miles in Model Year 2016 - Dataset | Department of Energy 8: August 15, 2016 Median All-Electric Vehicle Range Grew from 73 Miles in Model Year 2011 to 83.5 Miles in Model Year 2016 - Dataset Fact #938: August 15, 2016 Median All-Electric Vehicle Range Grew from 73 Miles in Model Year 2011 to 83.5 Miles in Model Year 2016 - Dataset Excel file and dataset for Median All-Electric Vehicle Range Grew from 73 Miles in Model Year 2011 to 83.5 Miles in Model Year

  20. NREL Reveals Links Among Climate Control, Battery Life, and Electric Vehicle Range (Fact Sheet)

    SciTech Connect

    Not Available

    2012-06-01

    Researchers at the National Renewable Energy Laboratory (NREL) are providing new insights into the relationships between the climate-control systems of plug-in electric vehicles and the distances these vehicles can travel on a single charge. In particular, NREL research has determined that 'preconditioning' a vehicle-achieving a comfortable cabin temperature and preheating or precooling the battery while the vehicle is still plugged in-can extend its driving range and improve battery life over the long term.

  1. Hybrid Electric Vehicle Basics | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Hybrid Electric Vehicle Basics Today's hybrid electric vehicles (HEVs) range from small passenger cars to sport utility vehicles (SUVs) and large trucks. Though they often look ...

  2. Electric vehicles

    SciTech Connect

    Not Available

    1990-03-01

    Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. This paper discusses these concepts.

  3. Optimizing and Diversifying Electric Vehicle Driving Range for U.S. Drivers

    SciTech Connect

    Lin, Zhenhong

    2014-01-01

    Properly determining the driving range is critical for accurately predicting the sales and social benefits of battery electric vehicles (BEVs). This study proposes a framework for optimizing the driving range by minimizing the sum of battery price, electricity cost, and range limitation cost referred to as the range-related cost as a measurement of range anxiety. The objective function is linked to policy-relevant parameters, including battery cost and price markup, battery utilization, charging infrastructure availability, vehicle efficiency, electricity and gasoline prices, household vehicle ownership, daily driving patterns, discount rate, and perceived vehicle lifetime. Qualitative discussion of the framework and its empirical application to a sample (N=36,664) representing new car drivers in the United States is included. The quantitative results strongly suggest that ranges of less than 100 miles are likely to be more popular in the BEV market for a long period of time. The average optimal range among U.S. drivers is found to be largely inelastic. Still, battery cost reduction significantly drives BEV demand toward longer ranges, whereas improvement in the charging infrastructure is found to significantly drive BEV demand toward shorter ranges. The bias of a single-range assumption and the effects of range optimization and diversification in reducing such biases are both found to be significant.

  4. Optimizing and Diversifying Electric Vehicle Driving Range for U.S. Drivers

    DOE PAGES [OSTI]

    Lin, Zhenhong

    2014-08-11

    Properly determining the driving range is critical for accurately predicting the sales and social benefits of battery electric vehicles (BEVs). This study proposes a framework for optimizing the driving range by minimizing the sum of battery price, electricity cost, and range limitation cost referred to as the "range-related cost" as a measurement of range anxiety. The objective function is linked to policy-relevant parameters, including battery cost and price markup, battery utilization, charging infrastructure availability, vehicle efficiency, electricity and gasoline prices, household vehicle ownership, daily driving patterns, discount rate, and perceived vehicle lifetime. Qualitative discussion of the framework and its empiricalmore » application to a sample (N=36664) representing new car drivers in the United States is included. The quantitative results strongly suggest that ranges of less than 100 miles are likely to be more popular in the BEV market for a long period of time. The average optimal range among U.S. drivers is found to be largely inelastic. Still, battery cost reduction significantly drives BEV demand toward longer ranges, whereas improvement in the charging infrastructure is found to significantly drive BEV demand toward shorter ranges. In conclusion, the bias of a single-range assumption and the effects of range optimization and diversification in reducing such biases are both found to be significant.« less

  5. Optimizing and Diversifying Electric Vehicle Driving Range for U.S. Drivers

    SciTech Connect

    Lin, Zhenhong

    2014-08-11

    Properly determining the driving range is critical for accurately predicting the sales and social benefits of battery electric vehicles (BEVs). This study proposes a framework for optimizing the driving range by minimizing the sum of battery price, electricity cost, and range limitation cost referred to as the "range-related cost" as a measurement of range anxiety. The objective function is linked to policy-relevant parameters, including battery cost and price markup, battery utilization, charging infrastructure availability, vehicle efficiency, electricity and gasoline prices, household vehicle ownership, daily driving patterns, discount rate, and perceived vehicle lifetime. Qualitative discussion of the framework and its empirical application to a sample (N=36664) representing new car drivers in the United States is included. The quantitative results strongly suggest that ranges of less than 100 miles are likely to be more popular in the BEV market for a long period of time. The average optimal range among U.S. drivers is found to be largely inelastic. Still, battery cost reduction significantly drives BEV demand toward longer ranges, whereas improvement in the charging infrastructure is found to significantly drive BEV demand toward shorter ranges. In conclusion, the bias of a single-range assumption and the effects of range optimization and diversification in reducing such biases are both found to be significant.

  6. Electric Vehicles

    SciTech Connect

    Ozpineci, Burak

    2014-05-02

    Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

  7. Electric Vehicles

    ScienceCinema

    Ozpineci, Burak

    2016-07-12

    Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

  8. Project Milestone. Analysis of Range Extension Techniques for Battery Electric Vehicles

    SciTech Connect

    Neubauer, Jeremy; Wood, Eric; Pesaran, Ahmad

    2013-07-01

    This report documents completion of the July 2013 milestone as part of NREL’s Vehicle Technologies Annual Operating Plan with the U.S. Department of Energy. The objective was to perform analysis on range extension techniques for battery electric vehicles (BEVs). This work represents a significant advancement over previous thru-life BEV analyses using NREL’s Battery Ownership Model, FastSim,* and DRIVE.* Herein, the ability of different charging infrastructure to increase achievable travel of BEVs in response to real-world, year-long travel histories is assessed. Effects of battery and cabin thermal response to local climate, battery degradation, and vehicle auxiliary loads are captured. The results reveal the conditions under which different public infrastructure options are most effective, and encourage continued study of fast charging and electric roadway scenarios.

  9. Battery Electric Vehicles: Range Optimization and Diversification for the U.S. Drivers

    SciTech Connect

    Lin, Zhenhong

    2012-01-01

    Properly selecting the driving range is critical for accurately predicting the market acceptance and the resulting social benefits of BEVs. Analysis of transportation technology transition could be biased against battery electric vehicles (BEV) and mislead policy making, if BEVs are not represented with optimal ranges. This study proposes a coherent method to optimize the BEV driving range by minimizing the range-related cost, which is formulated as a function of range, battery cost, energy prices, charging frequency, access to backup vehicles, and the cost and refueling hassle of operating the backup vehicle. This method is implemented with a sample of 36,664 drivers, representing U.S. new car drivers, based on the 2009 National Household Travel Survey data. Key findings are: 1) Assuming the near term (2015) battery cost at $405/kWh, about 98% of the sampled drivers are predicted to prefer a range below 200 miles, and about 70% below 100 miles. The most popular 20-mile band of range is 57 to77 miles, unsurprisingly encompassing the Leaf s EPA-certified 73-mile range. With range limited to 4 or 7 discrete options, the majority are predicted to choose a range below 100 miles. 2) Found as a statistically robust rule of thumb, the BEV optimal range is approximately 0.6% of one s annual driving distance. 3) Reducing battery costs could motivate demand for larger range, but improving public charging may cause the opposite. 4) Using a single range to represent BEVs in analysis could significantly underestimate their competitiveness e.g. by $3226/vehicle if BEVs are represented with 73-mile range only or by $7404/BEV if with 150-mile range only. Range optimization and diversification into 4 or 7 range options reduce such analytical bias by 78% or 90%, respectively.

  10. Overcoming the Range Limitation of Medium-Duty Battery Electric Vehicles through the use of Hydrogen Fuel-Cells

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    NREL/CP-5400-60053. Posted with permission. Presented at the SAE 2013 Commercial Vehicle Engineering Congress. 2013-01-2471 Published 09/24/2013 doi:10.4271/2013-01-2471 saecomveh.saejournals.org Overcoming the Range Limitation of Medium-Duty Battery Electric Vehicles through the use of Hydrogen Fuel-Cells Eric Wood, Lijuan Wang, Jeffrey Gonder, and Michael Ulsh National Renewable Energy Laboratory ABSTRACT Battery electric vehicles possess great potential for decreasing lifecycle costs in

  11. On-road evaluation of advanced hybrid electric vehicles over a wide range of ambient temperatures.

    SciTech Connect

    Carlson, R.; Duoba, M. J.; Bocci, D.; Lohse-Busch, H.

    2007-01-01

    In recent years, Hybrid Electric Vehicles (HEV's) have become a production viable and effective mode of efficient transportation. HEV's can provide increased fuel economy over convention technology vehicle, but these advantages can be affected dramatically by wide variations in operating temperatures. The majority of data measured for benchmarking HEV technologies is generated from ambient test cell temperatures at 22 C. To investigate cold and hot temperature affects on HEV operation and efficiency, an on-road evaluation protocol is defined and conducted over a six month study at widely varying temperatures. Two test vehicles, the 2007 Toyota Camry HEV and 2005 Ford Escape HEV, were driven on a pre-defined urban driving route in ambient temperatures ranging from -14 C to 31 C. Results from the on-road evaluation were also compared and correlated to dynamometer testing of the same drive cycle. Results from this on-road evaluation show the battery power control limits and engine operation dramatically change with temperature. These changes decrease fuel economy by more than two times at -14 C as compared to 25 C. The two vehicles control battery temperature in different manners. The Escape HEV uses the air conditioning system to provide cool air to the batteries at high temperatures and is therefore able to maintain battery temperature to less than 33 C. The Camry HEV uses cabin air to cool the batteries. The observed maximum battery temperature was 44 C.

  12. VIA Motors electric vehicle platform | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    VIA Motors electric vehicle platform VIA Motors electric vehicle platform extended range electric vehicle technologies VIA Motors electric vehicle platform (1.1 MB) More Documents ...

  13. Optimizing and Diversifying the Electric Range of Plug-in Hybrid Electric Vehicles for U.S. Drivers

    SciTech Connect

    Lin, Zhenhong

    2012-01-01

    To provide useful information for automakers to design successful plug-in hybrid electric vehicle (PHEV) products and for energy and environmental analysts to understand the social impact of PHEVs, this paper addresses the question of how many of the U.S. consumers, if buying a PHEV, would prefer what electric ranges. The Market-oriented Optimal Range for PHEV (MOR-PHEV) model is developed to optimize the PHEV electric range for each of 36,664 sampled individuals representing U.S. new vehicle drivers. The optimization objective is the minimization of the sum of costs on battery, gasoline, electricity and refueling hassle. Assuming no battery subsidy, the empirical results suggest that: 1) the optimal PHEV electric range approximates two thirds of one s typical daily driving distance in the near term, defined as $450/kWh battery delivered price and $4/gallon gasoline price. 2) PHEVs are not ready to directly compete with HEVs at today s situation, defined by the $600/kWh battery delivered price and the $3-$4/gallon gasoline price, but can do so in the near term. 3) PHEV10s will be favored by the market over longer-range PHEVs in the near term, but longer-range PHEVs can dominate the PHEV market if gasoline prices reach as high as $5-$6 per gallon and/or battery delivered prices reach as low as $150-$300/kWh. 4) PHEVs can become much more attractive against HEVs in the near term if the electric range can be extended by only 10% with multiple charges per day, possible with improved charging infrastructure or adapted charging behavior. 5) the impact of a $100/kWh decrease in battery delivered prices on the competiveness of PHEVs against HEVs can be offset by about $1.25/gallon decrease in gasoline prices, or about 7/kWh increase in electricity prices. This also means that the impact of a $1/gallon decrease in gasoline prices can be offset by about 5/kWh decrease in electricity prices.

  14. Overcoming the Range Limitation of Medium-Duty Battery Electric Vehicles through the use of Hydrogen Fuel-Cells

    SciTech Connect

    Wood, E.; Wang, L.; Gonder, J.; Ulsh, M.

    2013-10-01

    Battery electric vehicles possess great potential for decreasing lifecycle costs in medium-duty applications, a market segment currently dominated by internal combustion technology. Characterized by frequent repetition of similar routes and daily return to a central depot, medium-duty vocations are well positioned to leverage the low operating costs of battery electric vehicles. Unfortunately, the range limitation of commercially available battery electric vehicles acts as a barrier to widespread adoption. This paper describes the National Renewable Energy Laboratory's collaboration with the U.S. Department of Energy and industry partners to analyze the use of small hydrogen fuel-cell stacks to extend the range of battery electric vehicles as a means of improving utility, and presumably, increasing market adoption. This analysis employs real-world vocational data and near-term economic assumptions to (1) identify optimal component configurations for minimizing lifecycle costs, (2) benchmark economic performance relative to both battery electric and conventional powertrains, and (3) understand how the optimal design and its competitiveness change with respect to duty cycle and economic climate. It is found that small fuel-cell power units provide extended range at significantly lower capital and lifecycle costs than additional battery capacity alone. And while fuel-cell range-extended vehicles are not deemed economically competitive with conventional vehicles given present-day economic conditions, this paper identifies potential future scenarios where cost equivalency is achieved.

  15. Fact #854 January 5, 2015 Driving Ranges for All-Electric Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    (62 miles) while the Tesla Model S with an 85 kW-hr battery pack has a range of 265 miles. ... Both Tesla models exceed 200 miles of range. Driving Ranges for Model Year 2014 Electric ...

  16. Electric Drive Vehicles Overview

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Electric Vehicles & Charging Stations Alleyn Harned Executive Director aharned@vacleancities.org October 19, 2016 Federal Agency Workplace Charging Workshop Clean Cities / 2 Agenda NREL Image Gallery #14922 & #23854  EVSE & PEV Basics  PEV Models  AFDC Station Locator  Policies & Incentives  Readiness Efforts Clean Cities / 3 * Hybrid Electric - Battery assisted - Gasoline engine * Plug-in Electric - Gasoline backup for limited electric range (53 miles) - 10 to 20

  17. A First Preliminary Look: Are Corridor Charging Stations Used to Extend the Range of Electric Vehicles in The EV Project?

    SciTech Connect

    John Smart

    2013-01-01

    A preliminary analysis of data from The EV Project was performed to begin answering the question: are corridor charging stations used to extend the range of electric vehicles? Data analyzed were collected from Blink brand electric vehicle supply equipment (EVSE) units based in California, Washington, and Oregon. Analysis was performed on data logged between October 1, 2012 and January 1, 2013. It should be noted that as additional AC Level 2 EVSE and DC fast chargers are deployed, and as drivers become more familiar with the use of public charging infrastructure, future analysis may have dissimilar conclusions.

  18. Fact #854 January 5, 2015 Driving Ranges for All-Electric Vehicles in Model Year 2014 Vary from 62 to 265 Miles – Dataset

    Energy.gov [DOE]

    Excel file with dataset for Driving Ranges for All-Electric Vehicles in Model Year 2014 Vary from 62 to 265 Miles

  19. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Energy.gov [DOE] (indexed site)

    Confidential, 4222013 2013 DOE VEHICLE TECHNOLOGIES PROGRAM REVIEW PRESENTATION Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification...

  20. AVTA: 2010 Electric Vehicles International Neighborhood Electric Vehicle Testing Results

    Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe testing results of the 2010 Electric Vehicles International neighborhood electric vehicle. Neighborhood electric vehicles reach speeds of no more than 35 miles per hour and are only allowed on roads with speed limits of up to 35 miles per hour. This research was conducted by Idaho National Laboratory.

  1. Vehicle Technologies Office: AVTA - Electric Vehicle Charging...

    Energy Saver

    Charging Equipment (EVSE) Testing Data Vehicle Technologies Office: AVTA - Electric Vehicle Charging Equipment (EVSE) Testing Data Electric vehicle chargers (otherwise known as ...

  2. Richmond Electric Vehicle Initiative Electric Vehicle Readiness...

    Energy.gov [DOE] (indexed site)

    The REVi plan addresses the electric vehicle market in Richmond and then addresses a regional plan, policies, and analysis of the the communities readiness. Richmond EV Initiative ...

  3. Fact #854 January 5, 2015 Driving Ranges for All-Electric Vehicles in Model Year 2014 Vary from 62 to 265 Miles

    Energy.gov [DOE]

    Driving ranges for all-electric vehicles vary considerably. Based on the official Environmental Protection Agency (EPA) range values reported on window stickers, the Mitsubishi i-MiEV has the...

  4. Electric vehicle climate control

    SciTech Connect

    Dauvergne, J.

    1994-04-01

    EVs have insufficient energy sources for a climatic comfort system. The heat rejection of the drivetrain is dispersed in the vehicle (electric motor, batteries, electronic unit for power control). Its level is generally low (no more than 2-kW peaks) and variable according to the trip profile, with no heat rejection at rest and a maximum during regenerative braking. Nevertheless, it must be used for heating. It is not realistic to have the A/C compressor driven by the electric traction motor: the motor does not operate when the vehicle is at rest, precisely when maximum cooling power is required. The same is true for hybrid vehicles during electric operation. It is necessary to develop solutions that use stored onboard energy either from the traction batteries or specific storage source. In either case, it is necessary to design the climate control system to use the energy efficiently to maximize range and save weight. Heat loss through passenger compartment seals and the walls of the passenger compartment must be limited. Plastic body panes help to reduce heat transfer, and heat gain is minimized with insulating glazing. This article describes technical solutions to solve the problem of passenger thermal comfort. However, the heating and A/C systems of electrically operated vehicles may have marginal performance at extreme outside temperatures.

  5. Energy 101: Electric Vehicles

    ScienceCinema

    None

    2016-07-12

    This edition of Energy 101 highlights the benefits of electric vehicles, including improved fuel efficiency, reduced emissions, and lower maintenance costs. For more information on electric vehicles from the Office of Energy Efficiency and Renewable Energy, visit the Vehicle Technologies Program website: http://www1.eere.energy.gov/vehiclesandfuels/

  6. Vehicle Technologies Office Merit Review 2015: Multi-Speed Range Electric Motor R&D

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about multi-speed...

  7. Vehicle Technologies Office: Plug-In Electric Vehicles and Batteries...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Plug-In Electric Vehicles and Batteries Vehicle Technologies Office: Plug-In Electric Vehicles and Batteries Vehicle Technologies Office: Plug-In Electric Vehicles and Batteries ...

  8. Electric Vehicle Supply Equipment

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    in Procurement of Electric Vehicle Supply Equipment This Guidance provides a description of the types of requirements to be included in an employer's workplace charging request for ...

  9. NREL Uses Fuel Cells to Increase the Range of Battery Electric Vehicles (Fact Sheet), NREL Highlights in Research & Development, NREL (National Renewable Energy Laboratory)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    NREL analysis identifies potential cost-effective scenarios for using small fuel cell power units to increase the range of medium-duty battery electric vehicles. Battery electric vehicles (BEVs) offer great potential for decreasing lifecycle costs in medium-duty applications, a market segment currently dominated by internal combustion technology. Charac- terized by frequent repetition of similar routes and daily return to a central depot, medium-duty vocations such as parcel delivery are well

  10. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Energy.gov [DOE] (indexed site)

    Peer Evaluation Meeting arravt072vssmackie2013o.pdf More Documents & Publications Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector...

  11. Electric-Drive Vehicle Basics (Brochure)

    SciTech Connect

    Not Available

    2011-04-01

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  12. EV Everywhere: Maximizing Electric Cars' Range in Extreme Temperatures...

    Energy Saver

    Electric Vehicle Basics EV Everywhere: Maximizing Electric Cars' Range in Extreme Temperatures EV Everywhere: Maximizing Electric Cars' Range in Extreme Temperatures The ...

  13. Vehicle Technologies Office: AVTA - Electric Vehicle Community...

    Energy.gov [DOE] (indexed site)

    project of electric drive vehicles and charging infrastructure ever, the VTO-supported EV Project wrote a number of white papers on plug-in electric vehicle community readiness. ...

  14. Vehicle Technologies Office - AVTA: All Electric USPS Long Life Vehicle

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Conversions | Department of Energy USPS Long Life Vehicle Conversions Vehicle Technologies Office - AVTA: All Electric USPS Long Life Vehicle Conversions The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The

  15. Vehicle Technologies Office - AVTA: Hybrid-Electric Delivery Vehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Delivery Vehicles Vehicle Technologies Office - AVTA: Hybrid-Electric Delivery Vehicles The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following set of reports (part of the medium and

  16. Vehicle Technologies Office - AVTA: Hybrid-Electric Tractor Vehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Tractor Vehicles Vehicle Technologies Office - AVTA: Hybrid-Electric Tractor Vehicles The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following set of reports (part of the medium and

  17. Richmond Electric Vehicle Initiative Electric Vehicle Readiness Plan |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Richmond Electric Vehicle Initiative Electric Vehicle Readiness Plan Richmond Electric Vehicle Initiative Electric Vehicle Readiness Plan The REVi plan addresses the electric vehicle market in Richmond and then addresses a regional plan, policies, and analysis of the the communities readiness. Richmond EV Initiative (18.61 MB) More Documents & Publications EV Community Readiness projects: South Florida Regional Planning Council; Virginia Department of Mines, Minerals

  18. BEEST: Electric Vehicle Batteries

    SciTech Connect

    2010-07-01

    BEEST Project: The U.S. spends nearly a $1 billion per day to import petroleum, but we need dramatically better batteries for electric and plug-in hybrid vehicles (EV/PHEV) to truly compete with gasoline-powered cars. The 10 projects in ARPA-E’s BEEST Project, short for “Batteries for Electrical Energy Storage in Transportation,” could make that happen by developing a variety of rechargeable battery technologies that would enable EV/PHEVs to meet or beat the price and performance of gasoline-powered cars, and enable mass production of electric vehicles that people will be excited to drive.

  19. Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies...

    Office of Environmental Management (EM)

    Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP) Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP) Describes ...

  20. NREL: Transportation Research - Hybrid Electric Fleet Vehicle...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Hybrid Electric Fleet Vehicle Testing How Hybrid Electric Vehicles Work Hybrid electric vehicles combine a primary power source, an energy storage system, and an electric motor to ...

  1. Hybrid electric vehicles TOPTEC

    SciTech Connect

    1994-06-21

    This one-day TOPTEC session began with an overview of hybrid electric vehicle technology. Updates were given on alternative types of energy storage, APU control for low emissions, simulation programs, and industry and government activities. The keynote speech was about battery technology, a key element to the success of hybrids. The TOPEC concluded with a panel discussion on the mission of hybrid electric vehicles, with a perspective from industry and government experts from United States and Canada on their view of the role of this technology.

  2. American Electric Vehicles Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Vehicles Inc Jump to: navigation, search Name: American Electric Vehicles Inc Place: Palmer Lake, Colorado Zip: 80133 Sector: Vehicles Product: American Electric Vehicles (AEV)...

  3. Simple Electric Vehicle Simulation

    Energy Science and Technology Software Center

    1993-07-29

    SIMPLEV2.0 is an electric vehicle simulation code which can be used with any IBM compatible personal computer. This general purpose simulation program is useful for performing parametric studies of electric and series hybrid electric vehicle performance on user input driving cycles.. The program is run interactively and guides the user through all of the necessary inputs. Driveline components and the traction battery are described and defined by ASCII files which may be customized by themore » user. Scaling of these components is also possible. Detailed simulation results are plotted on the PC monitor and may also be printed on a printer attached to the PC.« less

  4. EVI Electric Vehicles International | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    EVI Electric Vehicles International Jump to: navigation, search Name: EVI (Electric Vehicles International) Place: Stockton, California Product: California-based Electric Vehicle...

  5. Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Program (VTP) | Department of Energy Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP) Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP) Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options. 52723.pdf (1.06 MB) More Documents & Publications Sample Employee Newsletter Articles for Plug-In Electric

  6. Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    and plug-in electric vehicles use electricity as their primary fuel or to improve the effciency of conventional vehicle designs. This new generation of vehicles, often called ...

  7. Electric Vehicle Battery Performance

    Energy Science and Technology Software Center

    1992-02-20

    DIANE is used to analyze battery performance in electric vehicle (EV) applications. The principal objective of DIANE is to enable the prediction of EV performance on the basis of laboratory test data for batteries. The model provides a second-by-second simulation of battery voltage and current for any specified velocity/time or power/time profile. Two releases are included with the package. Diane21 has a graphics capability; DIANENP has no graphics capability.

  8. Electric Vehicles | Argonne National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    2015 Chevrolet Spark EV 2015 Kia Soul Electric 2015 Mercedes-Benz B-Class Electric Drive 2015 Volkswagen e-Golf 2014 BMW i3 BEV 2014 Smart Electric Drive 2013 Ford Focus Electric 2013 Nissan Leaf SV 2012 Mitsubishi I-MiEV 2012 Nissan Leaf Conventional Vehicles Conventional Start-Stop Vehicles Alternative Fuel Vehicles Facilities Publications News About Us For ES Employees Staff Directory About Us For ES Employees Staff Directory Argonne National Laboratory Energy Systems Research Facilities

  9. AVTA: Neighborhood Electric Vehicle Specifications and Test Procedures |

    Energy Saver

    Department of Energy Neighborhood Electric Vehicle Specifications and Test Procedures AVTA: Neighborhood Electric Vehicle Specifications and Test Procedures NEVAmerica Technical Specifications (135.99 KB) NEVAmerica Test Sequence (66.19 KB) ETA-NTP002 Implementation of SAE Standard J1666 May 93 - Electric Vehicle Acceleration, Gradeability, and Deceleration Test Procedure (334.01 KB) ETA-NTP004 Electric Vehicle Constant Speed Range Test (138.66 KB) ETA-NTP005 Electric Vehicle Rough Road

  10. Electric and Hybrid Electric Vehicle Sales: December 2010 - June...

    Energy.gov [DOE] (indexed site)

    Sales data for various models of electric and hybrid electric vehicles from December 2010 through June 2013. Electric and Hybrid Electric Vehicle Sales: December 2010 - June 2013 ...

  11. Solar Electrical Vehicles | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Electrical Vehicles Jump to: navigation, search Name: Solar Electrical Vehicles Place: Westlake Village, California Zip: 91361 Sector: Solar, Vehicles Product: US-based...

  12. Miles Electric Vehicles | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Electric Vehicles Jump to: navigation, search Name: Miles Electric Vehicles Place: Santa Monica, California Zip: 90405 Sector: Vehicles Product: California-based developer of...

  13. Electric Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Electric Vehicles Electric Vehicles Electric Vehicles Title XVII Clean Energy Projects Loan Guarantee Program The Title XVII innovative clean energy projects loan program (Title XVII) provides loan guarantees to accelerate the deployment of innovative clean energy technology. Loan guarantees are made to qualified projects and applicants who apply for funding in response to open technology-specific solicitations. On June 21, 2016, LPO published a supplement to its existing Renewable Energy and

  14. AVTA: Full-Size Electric Vehicle Specifications and Test Procedures |

    Energy Saver

    Incidents in Plug-in Electric Vehicles (EV) | Department of Energy Battery Testing - Best Practices for Responding to Emergency Incidents in Plug-in Electric Vehicles (EV) AVTA: Battery Testing - Best Practices for Responding to Emergency Incidents in Plug-in Electric Vehicles (EV) The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results

  15. Modec Ltd formerly Electric Mercury Vehicles | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Zip: CV3 2NT Sector: Vehicles Product: The company designs and develops electric delivery vehicles. It has a range of vehicles with an array of leasing and financing options....

  16. The Electric Vehicle Company | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    to: navigation, search Name: The Electric Vehicle Company Product: Holding company of battery-powered electric automobile manufacturers. References: The Electric Vehicle...

  17. Electric and Hybrid Vehicle Technology: TOPTEC

    SciTech Connect

    Not Available

    1992-01-01

    Today, growing awareness of environmental and energy issues associated with the automobile has resulted in renewed interest in the electric vehicle. In recognition of this, the Society of Automotive Engineers has added a TOPTEC on electric vehicles to the series of technical symposia focused on key issues currently facing industry and government. This workshop on the Electric and Hybrid Vehicle provides an opportunity to learn about recent progress in these rapidly changing technologies. Research and development of both the vehicle and battery system has accelerated sharply and in fact, the improved technologies of the powertrain system make the performance of today's electric vehicle quite comparable to the equivalent gasoline vehicle, with the exception of driving range between refueling'' stops. Also, since there is no tailpipe emission, the electric vehicle meets the definition of Zero Emission Vehicle: embodied in recent air quality regulations. The discussion forum will include a review of the advantages and limitations of electric vehicles, where the technologies are today and where they need to be in order to get to production level vehicles, and the service and maintenance requirements once they get to the road. There will be a major focus on the status of battery technologies, the various approaches to recharge of the battery systems and the activities currently underway for developing standards throughout the vehicle and infrastructure system. Intermingled in all of this technology discussion will be a view of the new relationships emerging between the auto industry, the utilities, and government. Since the electric vehicle and its support system will be the most radical change ever introduced into the private vehicle sector of the transportation system, success in the market requires an understanding of the role of all of the partners, as well as the new technologies involved.

  18. Electric and Hybrid Vehicle Technology: TOPTEC

    SciTech Connect

    Not Available

    1992-12-01

    Today, growing awareness of environmental and energy issues associated with the automobile has resulted in renewed interest in the electric vehicle. In recognition of this, the Society of Automotive Engineers has added a TOPTEC on electric vehicles to the series of technical symposia focused on key issues currently facing industry and government. This workshop on the Electric and Hybrid Vehicle provides an opportunity to learn about recent progress in these rapidly changing technologies. Research and development of both the vehicle and battery system has accelerated sharply and in fact, the improved technologies of the powertrain system make the performance of today`s electric vehicle quite comparable to the equivalent gasoline vehicle, with the exception of driving range between ``refueling`` stops. Also, since there is no tailpipe emission, the electric vehicle meets the definition of ``Zero Emission Vehicle: embodied in recent air quality regulations. The discussion forum will include a review of the advantages and limitations of electric vehicles, where the technologies are today and where they need to be in order to get to production level vehicles, and the service and maintenance requirements once they get to the road. There will be a major focus on the status of battery technologies, the various approaches to recharge of the battery systems and the activities currently underway for developing standards throughout the vehicle and infrastructure system. Intermingled in all of this technology discussion will be a view of the new relationships emerging between the auto industry, the utilities, and government. Since the electric vehicle and its support system will be the most radical change ever introduced into the private vehicle sector of the transportation system, success in the market requires an understanding of the role of all of the partners, as well as the new technologies involved.

  19. EV Everywhere: Maximizing Electric Cars' Range in Extreme Temperatures

    Energy.gov [DOE]

    As with conventional vehicles, the efficiency and all-electric driving range of plug-in electric vehicles (also known as electric cars or EVs) varies substantially based on driving conditions and habits. Using the economy mode, avoiding hard braking, using accessories wisely, and observing the speed limit will help EV drivers maximize their all-electric range.

  20. Integrated Vehicle Thermal Management - Combining Fluid Loops in Electric Drive Vehicles (Presentation)

    SciTech Connect

    Rugh, J. P.

    2013-07-01

    Plug-in hybrid electric vehicles and electric vehicles have increased vehicle thermal management complexity, using separate coolant loop for advanced power electronics and electric motors. Additional thermal components result in higher costs. Multiple cooling loops lead to reduced range due to increased weight. Energy is required to meet thermal requirements. This presentation for the 2013 Annual Merit Review discusses integrated vehicle thermal management by combining fluid loops in electric drive vehicles.

  1. Hybrid and Plug-in Electric Vehicles

    SciTech Connect

    2014-05-20

    Hybrid and plug-in electric vehicles use electricity either as their primary fuel or to improve the efficiency of conventional vehicle designs. This new generation of vehicles, often called electric drive vehicles, can be divided into three categories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles(PHEVs), and all-electric vehicles (EVs). Together, they have great potential to reduce U.S. petroleum use.

  2. Alternative Fuels Data Center: Hybrid Electric Vehicles

    Alternative Fuels and Advanced Vehicles Data Center

    Hybrid Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Hybrid Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Hybrid Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Hybrid Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Hybrid Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Hybrid Electric Vehicles on Digg Find More places to share Alternative Fuels Data Center: Hybrid Electric

  3. Hybrid and Plug-In Electric Vehicles (Brochure)

    SciTech Connect

    Not Available

    2011-05-01

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  4. Hybrid and Plug-In Electric Vehicles (Brochure)

    SciTech Connect

    Not Available

    2011-10-01

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  5. Advanced Electric Drive Vehicles

    Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  6. Advanced Electric Drive Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE)

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  7. Energy 101: Electric Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Electric Vehicles Energy 101: Electric Vehicles Addthis Description This edition of Energy 101 highlights the benefits of electric vehicles, including improved fuel efficiency, reduced emissions, and lower maintenance costs. Text Version Below is the text version for the Energy 101: Electric Vehicles video. The video opens with "Energy 101: Electric Vehicles." This is followed by various shots of different electric vehicles on the road. Wouldn't it be pretty cool to do all of your

  8. Vehicle Technologies Office Merit Review 2015: Electric Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Electric Vehicle Mile Traveled (eVMT): On-road Results and Analysis Vehicle Technologies Office Merit Review 2015: Electric Vehicle Mile Traveled (eVMT): On-road Results and ...

  9. Vehicle Technologies Office: AVTA - Plug-in Electric Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Plug-in Electric Vehicle On-Road Demonstration Data Vehicle Technologies Office: AVTA - Plug-in Electric Vehicle On-Road Demonstration Data Through the American Recovery and ...

  10. 1997 hybrid electric vehicle specifications

    SciTech Connect

    Sluder, S.; Larsen, R.; Duoba, M.

    1996-10-01

    The US DOE sponsors Advanced Vehicle Technology competitions to help educate the public and advance new vehicle technologies. For several years, DOE has provided financial and technical support for the American Tour de Sol. This event showcases electric and hybrid electric vehicles in a road rally across portions of the northeastern United States. The specifications contained in this technical memorandum apply to vehicles that will be entered in the 1997 American Tour de Sol. However, the specifications were prepared to be general enough for use by other teams and individuals interested in developing hybrid electric vehicles. The purpose of the specifications is to ensure that the vehicles developed do not present a safety hazard to the teams that build and drive them or to the judges, sponsors, or public who attend the competitions. The specifications are by no means the definitive sources of information on constructing hybrid electric vehicles - as electric and hybrid vehicles technologies advance, so will the standards and practices for their construction. In some cases, the new standards and practices will make portions of these specifications obsolete.

  11. Advanced Electric Drive Vehicles

    Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  12. Electric Vehicles | Department of Energy

    Energy.gov [DOE] (indexed site)

    ... Tesla: In January 2010, the Department of Energy issued a 465 million loan to Tesla Motors to produce specially designed, all-electric plug-in vehicles and to develop a ...

  13. Electric vehicles | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    existence in the mid-19th century, when electricity was among the preferred methods for motor vehicle propulsion, providing a level of comfort and ease of operation that could not...

  14. Electric vehicles move closer to market

    SciTech Connect

    O`Connor, L.

    1995-03-01

    This article reports that though battery technology is currently limiting the growth of EVs, the search for improvements is spurring innovative engineering developments. As battery makers, automakers, national laboratories, and others continue their search for a practical source of electric power that will make electric vehicles (EVs) more viable, engineers worldwide are making progress in other areas of EV development. Vector control, for example, enables better regulation of motor torque and speed; composite and aluminum parts reduce the vehicle`s weight, which in turn reduces the load on the motor and battery; and flywheel energy storage systems, supercapacitors, regenerative brake systems, and hybrid/electric drive trains increase range and acceleration. Despite efforts to develop an electric vehicle from the ground up, most of the early EVs to be sold in the United States will likely be converted from gasoline-powered vehicles. Chrysler Corp., for example, is expected to sell electric versions of its minivans and build them on the same assembly line as its gasoline-powered vehicles to reduce costs. The pace of engineering development in this field is fast and furious. Indeed, it is virtually impossible to monitor all emerging EV technology. To meet their quotas, the major automakers may even consider buying credits from smaller, innovative EV manufacturers. But whatever stopgap measures vehicle makers take, technology development will be the driving force behind long-term EV growth.

  15. Technology Roadmap - Electric and Plug-in Hybrid Electric Vehicles...

    OpenEI (Open Energy Information) [EERE & EIA]

    Roadmap - Electric and Plug-in Hybrid Electric Vehicles Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Technology Roadmap - Electric and Plug-in Hybrid Electric...

  16. Vehicle Technologies Office: AVTA - Electric Vehicle Charging Equipment

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    (EVSE) Testing Data | Department of Energy Charging Equipment (EVSE) Testing Data Vehicle Technologies Office: AVTA - Electric Vehicle Charging Equipment (EVSE) Testing Data Electric vehicle chargers (otherwise known as Electric Vehicle Supply Equipment - EVSE) are a fundamental part of the plug-in electric vehicle system. Currently, there are three major types of EVSE: AC Level 1, AC Level 2, and DC Fast Charging. For an overview of the types of EVSE, see the Alternative Fuel Data Center's

  17. Vehicle to Electric Vehicle Supply Equipment Smart Grid Communications...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    INLEXT-11-23221 Vehicle to Electric Vehicle Supply Equipment Smart Grid Communications Interface Research and Testing Report Final Report Kevin Morrow Dimitri Hochard Jeff Wishart ...

  18. AVTA: EVSE Testing - NYSERDA Electric Vehicle Charging Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Testing - NYSERDA Electric Vehicle Charging Infrastructure Reports AVTA: EVSE Testing - NYSERDA Electric Vehicle Charging Infrastructure Reports The Vehicle Technologies Office's ...

  19. Electric Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Electric Vehicles Electric Vehicles Addthis BMW i8 1 of 13 BMW i8 The BMW i8 is a plug-in hybrid electric car packed with power. It goes 0-60 mph in 4.2 seconds according the automaker. Photo | BMW Date taken: 2016-09-07 12:40 McLaren P1 Bahrain 2 of 13 McLaren P1 Bahrain This limited production plug-in hybrid electric vehicle can reach speeds up to 217 mph according the automaker. Photo | McLaren Automotive Date taken: 2016-09-07 12:40 Porsche 918 Spyder 3 of 13 Porsche 918 Spyder The Spyder is

  20. Vehicle Technologies Office: 2015 Electric Drive Technologies...

    Office of Environmental Management (EM)

    Electric Drive Technologies Annual R&D Progress Report Vehicle Technologies Office: 2015 Electric Drive Technologies Annual R&D Progress Report The Electric Drive Technologies ...

  1. Vehicle Technologies Office: Electric Drive Systems Research...

    Energy.gov [DOE] (indexed site)

    Vehicle Technologies Office: Electric Drive Systems Research and Development Electric drive technologies, including the electric motor, inverter, boost converter, and on-board ...

  2. Electric drive mechanism for vehicles

    SciTech Connect

    Bader, C.

    1983-06-21

    An electric drive mechanism is disclosed for vehicles, especially buses with overhead trolley routes, which routes are provided with relatively short interruptions in the overhead trolley. The drive mechanism includes a flywheel two externally excited electric motors which are adapted to be switched over from prime mover operation to generator operation, and which motors are effective as a ward-leonard drive during flywheel operation. The first electric motor is constructed for half of a maximum drive power and the second electric motor is likewise constructed for half or for square root 2/2 times the maximum drive power. Both electric motors are connected electrically in parallel during operation from the main electrical supply. The first and second motors are electrically connected in parallel during operation of the vehicle from the main electrical supply when a change-speed transmission is provided for connecting a drive shaft of one of the motors with driven vehicle wheels. A planetary gear transmission and a further transmission are provided for mechanically connecting the drive shaft of one of the motors with the second motor and with the flywheel.

  3. INFOGRAPHIC: The Fuel Cell Electric Vehicle | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    INFOGRAPHIC: The Fuel Cell Electric Vehicle INFOGRAPHIC: The Fuel Cell Electric Vehicle INFOGRAPHIC: The Fuel Cell Electric Vehicle This infographic shows how fuel cell electric ...

  4. EV Everywhere: Maximizing All-Electric Range | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Reduced all-electric range in a plug-in hybrid electric vehicle will result in the internal combustion engine turning on more quickly, increasing fuel cost and emissions. There are ...

  5. Electric and Gasoline Vehicle Fuel Efficiency Analysis

    Energy Science and Technology Software Center

    1995-05-24

    EAGLES1.1 is PC-based interactive software for analyzing performance (e.g., maximum range) of electric vehicles (EVs) or fuel economy (e.g., miles/gallon) of gasoline vehicles (GVs). The EV model provides a second by second simulation of battery voltage and current for any specified vehicle velocity/time or power/time profile. It takes into account the effects of battery depth-of-discharge (DOD) and regenerative braking. The GV fuel economy model which relates fuel economy, vehicle parameters, and driving cycle characteristics, canmore » be used to investigate the effects of changes in vehicle parameters and driving patterns on fuel economy. For both types of vehicles, effects of heating/cooling loads on vehicle performance can be studied. Alternatively, the software can be used to determine the size of battery needed to satisfy given vehicle mission requirements (e.g., maximum range and driving patterns). Options are available to estimate the time necessary for a vehicle to reach a certain speed with the application of a specified constant power and to compute the fraction of time and/or distance in a drivng cycle for speeds exceeding a given value.« less

  6. Vehicle Technologies Office: AVTA- Neighborhood All-Electric Vehicles

    Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. Data on the following vehicles is available in downloadable form: 2013 BRP Commander Electric, 2010 Electric Vehicles International E-Mega, 2009 Vantage Pickup EVX1000, and 2009 Vantage Van EVC1000.

  7. Vehicle Technologies Office - AVTA: Hybrid-Electric Tractor Vehicles...

    Energy.gov [DOE] (indexed site)

    Coca-Cola Refreshments Class 8 Diesel Electric Hybrid Tractor Evaluation (1.99 MB) More Documents & Publications Vehicle Technologies Office - AVTA: Hybrid-Electric Delivery ...

  8. Hitachi Electric Vehicle Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Vehicle Ltd Jump to: navigation, search Name: Hitachi Electric Vehicle, Ltd Place: Japan Product: String representation "A Japan-based c ... le automobiles." is too long....

  9. Vehicle Technologies Office Merit Review 2014: Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification

    Energy.gov [DOE]

    Presentation given by Smith Electric Vehicles at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Smith Electric...

  10. AVTA: 2012 Nissan Leaf All-Electric Vehicle Testing Reports ...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Nissan Leaf All-Electric Vehicle Testing Reports AVTA: 2012 Nissan Leaf All-Electric Vehicle Testing Reports The Vehicle Technologies Office's Advanced Vehicle Testing Activity ...

  11. Fuel Savings from Hybrid Electric Vehicles

    SciTech Connect

    Bennion, K.; Thornton, M.

    2009-03-01

    NREL's study shows that hybrid electric vehicles can significantly reduce oil imports for use in light-duty vehicles, particularly if drivers switch to smaller, more fuel-efficient vehicles overall.

  12. Orlando Plugs into Electric Vehicle Charging Stations | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Orlando Plugs into Electric Vehicle Charging Stations Orlando Plugs into Electric Vehicle Charging Stations September 8, 2010 - 2:00pm Addthis Nearly 300 electric vehicle charging ...

  13. Fact Sheet for Supplement for Electric Vehicle Charging | Department...

    Energy Saver

    Fact Sheet for Supplement for Electric Vehicle Charging Fact Sheet for Supplement for Electric Vehicle Charging Fact Sheet for Supplement for Electric Vehicle Charging (379.47 KB) ...

  14. How Would You Use a Neighborhood Electric Vehicle? | Department...

    Energy.gov [DOE] (indexed site)

    We know many of you are driving hybrid electric vehicles, but what do you think about neighborhood electric vehicles? How would you use a neighborhood electric vehicle? Each ...

  15. AVTA: Plug-in Hybrid Electric Vehicle Specifications and Test...

    Energy Saver

    Plug-in Hybrid Electric Vehicle Specifications and Test Procedures AVTA: Plug-in Hybrid Electric Vehicle Specifications and Test Procedures Plug-in Hybrid Electric Vehicle Test ...

  16. Energy Jobs: Electric Vehicle Charging Station Installer | Department...

    Office of Environmental Management (EM)

    Electric Vehicle Charging Station Installer Energy Jobs: Electric Vehicle Charging Station Installer October 28, 2014 - 3:23pm Addthis As the demand for electric vehicles goes up, ...

  17. Vehicle Technologies Office - AVTA: All Electric USPS Long Life...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    USPS Long Life Vehicle Conversions Vehicle Technologies Office - AVTA: All Electric USPS Long Life Vehicle Conversions The Vehicle Technologies Office's Advanced Vehicle Testing ...

  18. Help Your Employer Install Electric Vehicle Charging

    Energy.gov [DOE]

    Educate your employer about the benefits of installing plug-in electric vehicle (PEV) workplace charging. Use the resources below and the Plug-in Electric Vehicle (PEV) Handbook for Workplace...

  19. NREL: Transportation Research - Electric Vehicle Technologies...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Electric Vehicle Technologies and Targets The U.S. Department of Energy and the cross-agency EV Everywhere Grand Challenge initiative have set goals for plug-in electric vehicles ...

  20. Plug-in Electric Vehicle Outreach

    Energy.gov [DOE] (indexed site)

    Plug-in Electric Vehicle Outreach Resources for Employees After you've installed plug-in electric vehicle (PEV) charging stations at your work site, you'll want to educate your ...

  1. Urban Electric Vehicle (UEV) Technical Specifications

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    URBAN ELECTRIC VEHICLE (UEV) TECHNICAL SPECIFICATIONS Effective January 1, 2003 Prepared by Electric Transportation Applications UEV AMERICA January 1, 2003 TECHNICAL ...

  2. NEV America: Neighborhood Electric Vehicle Technical Specification

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    NEV AMERICA: NEIGHBORHOOD ELECTRIC VEHICLE TECHNICAL SPECIFICATION Revision 3 Effective September 21, 2007 Prepared by Electric Transportation Applications NEV AMERICA September ...

  3. Celebrating Electric Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Electric Vehicles Celebrating Electric Vehicles September 29, 2015 - 4:01pm Addthis The United States has the largest electric vehicle fleet in the world, which includes cars like the Chevrolet Volt. | Photo courtesy of General Motors The United States has the largest electric vehicle fleet in the world, which includes cars like the Chevrolet Volt. | Photo courtesy of General Motors Paul Lester Paul Lester Digital Content Specialist, Office of Public Affairs KEY FACTS More than 1 million plug-in

  4. Fuel Cell Electric Vehicle (FCEV) Evaluation

    SciTech Connect

    Kurtz, Jennifer; Sprik, Sam; Ainscough, Chris; Saur, Genevieve

    2015-12-15

    Overview of NREL's fuel cell electric vehicle (FCEV) evaluation activities presented to the Interagency Working Group on December 15, 2015.

  5. Performance testing of the AC propulsion ELX electric vehicle

    SciTech Connect

    Kramer, W.E.; MacDowall, R.D.; Burke, A.F.

    1994-06-01

    Performance testing of the AC Propulsion ELX electric vehicle is described. Test data are presented and analyzed. The ELX vehicle is the first of a series of electric vehicles of interest to the California Air Resources Board. The test series is being conducted under a Cooperative Research and Development Agreement (CRADA) between the US Department of energy and the California Air Resources Board. The tests which were conducted showed that the AC Propulsion ELX electric vehicle has exceptional acceleration and range performance. when the vehicle`s battery was fully charged, the vehicle can accelerate from 0 to 96 km/h in about 10 seconds. Energy consumption and range tests using consecutive FUDS and HWFET Driving cycles (the all-electric cycle) indicate that the energy economy of the AC Propulsion ELX electric vehicle with regenerative braking is 97 W{center_dot}h/km, with a range of 153 km (95 miles). Computer simulations performed using the SIMPLEV Program indicate that the vehicle would have a range of 327 km (203 miles) on the all-electric cycle if the lead acid batteries were replaced with NiMH batteries having an energy density of 67 W{center_dot}h/kg. Comparisons of FUDS test data with and without regenerative braking indicated that regenerative braking reduced the energy consumption of the ELX vehicle by approximately 25%.

  6. Plug-In Electric Vehicle Handbook for Electrical Contractors (Brochure)

    SciTech Connect

    Not Available

    2012-04-01

    This handbook answers basic questions about plug-in electric vehicles, charging stations, charging equipment, charging equipment installation, and training for electrical contractors.

  7. Hybrid Electric Vehicles | Argonne National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    2015 Honda Accord Hybrid 2013 Chevrolet Malibu Eco 2013 Ford Cmax Hybrid 2013 Honda CIvic Hybrid 2013 Volkswagen Jetta Hybrid 2011 Hyundai Sonata 2010 Ford Fusion Hybrid 2010 Honda CR-Z 2010 Honda Insight 2010 Mercedes S400h BlueHybrid 2010 Toyota Prius Plug-In Hybrid Electric Vehicles Electric Vehicles Conventional Vehicles Conventional Start-Stop Vehicles Alternative Fuel Vehicles Facilities Publications News About Us For ES Employees Staff Directory About Us For ES Employees Staff Directory

  8. Vehicle Technologies Office Merit Review 2015: Electric Vehicle Mile

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Traveled (eVMT): On-road Results and Analysis | Department of Energy Electric Vehicle Mile Traveled (eVMT): On-road Results and Analysis Vehicle Technologies Office Merit Review 2015: Electric Vehicle Mile Traveled (eVMT): On-road Results and Analysis Presentation given by Idaho National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation meeting about Electric Vehicle Mile Traveled (eVMT): on-road results and

  9. Hybrid and Plug-In Electric Vehicles (Brochure)

    SciTech Connect

    Not Available

    2014-05-01

    Hybrid and plug-in electric vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), all-electric vehicles (EVs). Together, they have great potential to cut U.S. petroleum use and vehicle emissions.

  10. Advanced Electric Drive Vehicles … A Comprehensive Education...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications Advanced Electric Drive Vehicles A Comprehensive Education, Training, and Outreach Program Advanced Electric Drive Vehicles A Comprehensive ...

  11. Vehicle Technologies Office Merit Review 2015: Electric Vehicle Grid Integration

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about electric...

  12. Electric Drive Vehicle Demonstration and Vehicle Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt066vsskarner2011o.pdf (914.05 KB

  13. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Energy.gov [DOE] (indexed site)

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt072vssmackie2011o.pdf (335.31 KB

  14. AVTA: 2009 Vantage Neighborhood Electric Vehicle Testing Results

    Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe testing results of two 2009 Vantage neighborhood electric vehicles (a pickup truck style and a van style). Neighborhood electric vehicles reach speeds of no more than 35 miles per hour and are only allowed on roads with speed limits of up to 35 miles per hour. This research was conducted by Idaho National Laboratory.

  15. AVTA: 2013 BRP Neighborhood Electric Vehicle Testing Results

    Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe testing results of the 2013 BRP neighborhood electric vehicle. Neighborhood electric vehicles reach speeds of no more than 35 miles per hour and are only allowed on roads with speed limits of up to 35 miles per hour. This research was conducted by Idaho National Laboratory.

  16. Vehicle Technologies Office - AVTA: All Electric Delivery Trucks |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Delivery Trucks Vehicle Technologies Office - AVTA: All Electric Delivery Trucks The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following set of reports (part of the medium and heavy-duty

  17. Society of Indian Electric Vehicle Manufacturers | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Indian Electric Vehicle Manufacturers Jump to: navigation, search Name: Society of Indian Electric Vehicle Manufacturers Place: New Delhi, Delhi (NCT), India Sector: Vehicles...

  18. Pihsiang Electric Vehicle Manufacturing Co Ltd | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Electric Vehicle Manufacturing Co Ltd Jump to: navigation, search Name: Pihsiang Electric Vehicle Manufacturing Co Ltd Place: Taiwan Sector: Vehicles Product: Taiwan-based maker of...

  19. Suzhou Eagle Electric Vehicle Manufacturing Co Ltd | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Suzhou Eagle Electric Vehicle Manufacturing Co Ltd Jump to: navigation, search Name: Suzhou Eagle Electric Vehicle Manufacturing Co Ltd Place: Suzhou, China Sector: Vehicles...

  20. Vehicle Technologies Office Merit Review 2014: Smith Electric...

    Energy.gov [DOE] (indexed site)

    Smith Electric Vehicles at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Smith Electric Vehicles:...

  1. Wanxiang Electric Vehicle Co Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Electric Vehicle Co Ltd Jump to: navigation, search Name: Wanxiang Electric Vehicle Co., Ltd Place: Hangzhou, Zhejiang Province, China Zip: 311215 Sector: Vehicles Product: A...

  2. ANSI Electric Vehicle Standards Roadmap | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ANSI Electric Vehicle Standards Roadmap ANSI Electric Vehicle Standards Roadmap 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and ...

  3. Energy Department Awards Will Promote Electric Vehicles in 24...

    Office of Environmental Management (EM)

    Will Promote Electric Vehicles in 24 States and Train a Workforce for Advanced Vehicle Development Energy Department Awards Will Promote Electric Vehicles in 24 States and Train a ...

  4. Vehicle Technologies Office - AVTA: Hybrid-Electric Delivery...

    Energy.gov [DOE] (indexed site)

    Delivery Vehicles (4.63 MB) More Documents & Publications Vehicle Technologies Office - AVTA: Hybrid-Electric Tractor Vehicles Medium and Heavy-Duty Vehicle Field Evaluations ...

  5. ETA-HTP03 - Implementation of SAE J1634 May93 - Electric Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    3 Revision 0 Effective May 1, 2004 Implementation of SAE J1634 May93 - "Electric Vehicle Energy Consumption and Range Test Procedure" Prepared by Electric Transportation ...

  6. ETA-UTP003 - Implementation of SAE J1634 May93 - Electric Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    3 Revision 0 Effective March 23, 2001 Implementation of SAE J1634 May93 - "Electric Vehicle Energy Consumption and Range Test Procedure" Prepared by Electric Transportation ...

  7. EV Everywhere: Find Electric Vehicle Models | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Find Electric Vehicle Models EV Everywhere: Find Electric Vehicle Models Search Car: Year: -- ALL -- Make: -- ALL -- Market Class: -- ALL -- All-Electric Range: Min -- ALL -- 10 miles 20 miles 30 miles 40 miles 50 miles 60 miles 70 miles 80 miles 90 miles 100 miles 110 miles 120 miles 130+ miles Gasoline Back-Up Available: -- ALL -- No Yes Reset To find out if a plug-in electric vehicle (EV) will work for you, use the menus to the left to sort the available EV models on the market by year, make,

  8. Electric Drive Vehicle Demonstration and Vehicle Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon vssarravt066karner2010p...

  9. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Energy.gov [DOE] (indexed site)

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt072vssmackie2012o.pdf (1.42 MB

  10. Electric Drive Vehicle Demonstration and Vehicle Infrastructure...

    Energy.gov [DOE] (indexed site)

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt066vsskarner2012o.pdf (2.12 MB

  11. Visualizing Electric Vehicle Sales | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Visualizing Electric Vehicle Sales Visualizing Electric Vehicle Sales July 25, 2013 - 2:48pm Addthis Data compiled by Yan (Joann) Zhou at Argonne National Laboratory. (*) Sales from the second quarter of 2013 for Tesla Model S are based off of estimates provided by the Hybrid Market Dashboard. Data updated 1/20/15. Daniel Wood Daniel Wood Data Visualization and Cartographic Specialist, Office of Public Affairs More on eGallon: Read more about electric vehicle sales and eGallon's continued

  12. One Million Electric Vehicles By 2015

    SciTech Connect

    none,

    2011-02-01

    February 2011 status report on the steps needed to achieve President Obama's goal of putting one million electric vehicles on the road by 2015.

  13. Plug-In Hybrid Electric Vehicles (Presentation)

    SciTech Connect

    Markel, T.

    2006-05-08

    Provides an overview on the current status, long-term prospects, and key challenges in the development of plug-in hybrid electric vehicle technology.

  14. Advanced Electric Drive Vehicles ? A Comprehensive Education...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    D.C. PDF icon tiarravt034ferdowsi2010o.pdf More Documents & Publications Advanced Electric Drive Vehicles A Comprehensive Education, Training, and Outreach Program...

  15. Wireless Power Transfer for Electric Vehicles

    SciTech Connect

    Scudiere, Matthew B; McKeever, John W

    2011-01-01

    As Electric and Hybrid Electric Vehicles (EVs and HEVs) become more prevalent, there is a need to change the power source from gasoline on the vehicle to electricity from the grid in order to mitigate requirements for onboard energy storage (battery weight) as well as to reduce dependency on oil by increasing dependency on the grid (our coal, gas, and renewable energy instead of their oil). Traditional systems for trains and buses rely on physical contact to transfer electrical energy to vehicles in motion. Until recently, conventional magnetically coupled systems required a gap of less than a centimeter. This is not practical for vehicles of the future.

  16. Vehicle Technologies Office: 2014 Electric Drive Technologies...

    Energy.gov [DOE] (indexed site)

    Electric Drive Technologies research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge ...

  17. GC GUIDANCE ON ELECTRIC VEHICLE RECHARGING STATIONS

    Office of Environmental Management (EM)

    ELECTRIC VEHICLE RECHARGING STATIONS Several National Laboratory contractors have asked us whether Department of Energy ("Department" or "DOE") appropriated funds may be used to ...

  18. Fact #796: September 9, 2013 Electric Vehicle and Plug-In Hybrid Electric Vehicle Sales History

    Office of Energy Efficiency and Renewable Energy (EERE)

    Electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) have been available in the U.S. in limited numbers for many years. The introduction of the Nissan Leaf and Chevrolet Volt at the...

  19. Alternative Fuels Data Center: All-Electric Vehicles

    Alternative Fuels and Advanced Vehicles Data Center

    Hybrids Plug-In Hybrids All-Electric Vehicles All-Electric Vehicles All-electric vehicles (EVs) use a battery to store the electrical energy that powers the motor. EVs are ...

  20. Fact #798: September 23, 2013 Plug-in Hybrid Vehicle Driving Range

    Energy.gov [DOE]

    For the 2013 model year (MY) there are four plug-in hybrid electric vehicles (PHEVs) available to consumers. PHEVs offer a limited amount of all-electric driving range that is drawn from a plug and...

  1. Visualizing Electric Vehicle Sales | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Visualizing Electric Vehicle Sales Visualizing Electric Vehicle Sales Data compiled by Yan (Joann) Zhou at Argonne National Laboratory. (*) Sales from the second quarter of 2013 for Tesla Model S are based off of estimates provided by the Hybrid Market Dashboard. Data updated 1/20/15

  2. Vehicle to Electric Vehicle Supply Equipment Smart Grid Communications Interface Research and Testing Report

    SciTech Connect

    Kevin Morrow; Dimitri Hochard; Jeff Wishart

    2011-09-01

    Plug-in electric vehicles (PEVs), including battery electric, plug-in hybrid electric, and extended range electric vehicles, are under evaluation by the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) and other various stakeholders to better understand their capability and potential petroleum reduction benefits. PEVs could allow users to significantly improve fuel economy over a standard hybrid electric vehicles, and in some cases, depending on daily driving requirements and vehicle design, PEVs may have the ability to eliminate petroleum consumption entirely for daily vehicle trips. The AVTA is working jointly with the Society of Automotive Engineers (SAE) to assist in the further development of standards necessary for the advancement of PEVs. This report analyzes different methods and available hardware for advanced communications between the electric vehicle supply equipment (EVSE) and the PEV; particularly Power Line Devices and their physical layer. Results of this study are not conclusive, but add to the collective knowledge base in this area to help define further testing that will be necessary for the development of the final recommended SAE communications standard. The Idaho National Laboratory and the Electric Transportation Applications conduct the AVTA for the United States Department of Energy's Vehicle Technologies Program.

  3. Thermal Batteries for Electric Vehicles

    SciTech Connect

    2011-11-21

    HEATS Project: UT Austin will demonstrate a high-energy density and low-cost thermal storage system that will provide efficient cabin heating and cooling for EVs. Compared to existing HVAC systems powered by electric batteries in EVs, the innovative hot-and-cold thermal batteries-based technology is expected to decrease the manufacturing cost and increase the driving range of next-generation EVs. These thermal batteries can be charged with off-peak electric power together with the electric batteries. Based on innovations in composite materials offering twice the energy density of ice and 10 times the thermal conductivity of water, these thermal batteries are expected to achieve a comparable energy density at 25% of the cost of electric batteries. Moreover, because UT Austin’s thermal energy storage systems are modular, they may be incorporated into the heating and cooling systems in buildings, providing further energy efficiencies and positively impacting the emissions of current building heating/cooling systems.

  4. Level 1 Electric Vehicle Charging

    Office of Environmental Management (EM)

    3 Scenario A: Making a Level 1 Electrical Outlet Available ......Costs for Scenario A (Making an Electrical Outlet Available) ......

  5. Hyundai Tucson Fuel Cell Electric Vehicle visits Department of...

    Energy.gov [DOE] (indexed site)

    The vehicle is the first commercially leased fuel cell electric vehicle (FCEV), beyond the demonstration scale. The Tucson Fuel Cell vehicle, developed by Hyundai, is powered by a ...

  6. Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles

    Alternative Fuels and Advanced Vehicles Data Center

    Plug-In Hybrid Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles on Digg Find More places to share

  7. Fuel Cell and Battery Electric Vehicles Compared | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    and Battery Electric Vehicles Compared Fuel Cell and Battery Electric Vehicles Compared Presented by Sandy Thomas at the National Hydrogen Assocation Conference and Hydrogen Expo thomas_fcev_vs_battery_evs.pdf (281 KB) More Documents & Publications An Energy Evolution:Alternative Fueled Vehicle Comparisons Fuel Cell and Battery Electric Vehicles Compared INFOGRAPHIC: The Fuel Cell Electric Vehicle Asia/ITS

  8. Consumer preferences for electric vehicles. Final report

    SciTech Connect

    Garrison, W.L.; Calfee, J.E.; Bruck, H.W.

    1986-06-01

    A small-sample survey of consumer preferences for a second car - featuring both conventional and electric vehicle choices - indicates a proelectric bias. The potential of electric cars in the utility market largely depends on dramatic improvements in battery technology and the right mix of electricity and gasoline prices.

  9. DOE Releases New Video on Electric Vehicles, Highlights Administration...

    Office of Environmental Management (EM)

    Releases New Video on Electric Vehicles, Highlights Administration Support for U.S. Auto Industry in Detroit Economic Club Speech DOE Releases New Video on Electric Vehicles, ...

  10. Driving Change in Residential Energy Efficiency: Electric Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Driving Change in Residential Energy Efficiency: Electric Vehicles Advanced Programs (301) Driving Change in Residential Energy Efficiency: Electric Vehicles Advanced Programs ...

  11. System Simulations of Hybrid Electric Vehicles with Focus on...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    System Simulations of Hybrid Electric Vehicles with Focus on Emissions System Simulations of Hybrid Electric Vehicles with Focus on Emissions Comparative simulations of hybrid ...

  12. China Lithium Energy Electric Vehicle Investment Group CLEEVIG...

    OpenEI (Open Energy Information) [EERE & EIA]

    Lithium Energy Electric Vehicle Investment Group CLEEVIG Jump to: navigation, search Name: China Lithium Energy Electric Vehicle Investment Group (CLEEVIG) Place: Beijing, China...

  13. GC GUIDANCE ON ELECTRIC VEHICLE RECHARGING STATIONS | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    GUIDANCE ON ELECTRIC VEHICLE RECHARGING STATIONS GC GUIDANCE ON ELECTRIC VEHICLE RECHARGING STATIONS Several National Laboratory contractors have asked whether appropriated funds ...

  14. Level 1 Electric Vehicle Charging Stations at the Workplace ...

    Energy Saver

    Level 1 Electric Vehicle Charging Stations at the Workplace Level 1 Electric Vehicle Charging Stations at the Workplace Workplace charging programs are successful when ...

  15. Workplace Charging Challenge Plug-In Electric Vehicle Support...

    Office of Environmental Management (EM)

    Plug-In Electric Vehicle Support Networks Workplace Charging Challenge Plug-In Electric Vehicle Support Networks When promoting PEV deployment, it can be helpful to tap into ...

  16. Alternative Fuels Data Center: Electric Vehicle Charging Station...

    Alternative Fuels and Advanced Vehicles Data Center

    Electric Vehicle Charging Station Locations to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Charging Station Locations on Facebook Tweet about ...

  17. Vehicle Technologies Office: Materials for Hybrid and Electric...

    Energy Saver

    Hybrid and Electric Drive Systems Vehicle Technologies Office: Materials for Hybrid and Electric Drive Systems The Vehicle Technologies Office (VTO) is working to lower the cost ...

  18. The Facts On Electric Vehicles: Interview with Pat Davis | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Electric vehicles have been an extremely hot topic lately and no stranger to the Energy Blog. When the first public curbside electric vehicle charging station rolled out in ...

  19. AVTA: Full-Size Electric Vehicle Specifications and Test Procedures...

    Energy Saver

    Full-Size Electric Vehicle Specifications and Test Procedures AVTA: Full-Size Electric Vehicle Specifications and Test Procedures EV America Test Specifications (97.12 KB) ...

  20. Electric Vehicle Deployment: Policy Questions and Impacts to...

    Energy Saver

    Vehicle Deployment: Policy Questions and Impacts to the U.S. Electric Grid - EAC Recommendations (November 2011) Electric Vehicle Deployment: Policy Questions and Impacts to the ...

  1. AVTA: Urban Electric Vehicle Specifications and Test Procedures...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Urban Electric Vehicle Specifications and Test Procedures AVTA: Urban Electric Vehicle Specifications and Test Procedures UEVAmerica Specifications (252.08 KB) ETA-UTP001 ...

  2. National Fuel Cell Electric Vehicle Learning Demonstration Final...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Electric Vehicle Learning Demonstration Final Report National Fuel Cell Electric Vehicle Learning Demonstration Final Report This report discusses key analysis results based on ...

  3. Celebrate EV Everywhere by Sharing Your Electric Vehicle Story...

    Energy Saver

    Celebrate EV Everywhere by Sharing Your Electric Vehicle Story Celebrate EV Everywhere by Sharing Your Electric Vehicle Story September 15, 2015 - 11:00am Addthis Explore this ...

  4. Vehicle Technologies Office: Electric Motors Research and Development...

    Office of Environmental Management (EM)

    Vehicle Technologies Office: Electric Motors Research and Development Vehicle Technologies Office: Electric Motors Research and Development To reach the EV Everywhere Grand ...

  5. Fact #855 January 12, 2015 Electric Vehicle Chargers by Network...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    5 January 12, 2015 Electric Vehicle Chargers by Network and State Fact 855 January 12, 2015 Electric Vehicle Chargers by Network and State The Department of Energy's Alternative ...

  6. EERE Success Story-Nevada Strengthens Electric Vehicle Infrastructure...

    Office of Environmental Management (EM)

    Nevada Strengthens Electric Vehicle Infrastructure on Major U.S. Highway EERE Success Story-Nevada Strengthens Electric Vehicle Infrastructure on Major U.S. Highway December 15, ...

  7. Plug-in Electric Vehicle Policy Effectiveness: Literature Review...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Plug-in Electric Vehicle Policy Effectiveness: Literature Review Title Plug-in Electric Vehicle Policy Effectiveness: Literature Review Publication Type Report Year of Publication ...

  8. Alternative Fuels Data Center: Electric Vehicle Charging Stations

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Electric Vehicle Charging Stations to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Charging Stations on Facebook Tweet about Alternative Fuels Data ...

  9. Evaluating Electric Vehicle Charging Impacts and Customer Charging...

    Energy Saver

    Evaluating Electric Vehicle Charging Impacts and Customer Charging Behaviors: Experiences from Six Smart Grid Investment Grant Projects (December 2014) Evaluating Electric Vehicle ...

  10. Fact #750: October 22, 2012 Electric Vehicle Energy Requirements...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    0: October 22, 2012 Electric Vehicle Energy Requirements for Combined CityHighway Driving Fact 750: October 22, 2012 Electric Vehicle Energy Requirements for Combined City...

  11. Fact #855 January 12, 2015 Electric Vehicle Chargers by Network...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    5 January 12, 2015 Electric Vehicle Chargers by Network and State - Dataset Fact 855 January 12, 2015 Electric Vehicle Chargers by Network and State - Dataset Excel file with ...

  12. DOE Announces Webinars on Electric Vehicle Charging at Colleges...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Electric Vehicle Charging at Colleges, a Hydrogen Leak Detector and More DOE Announces Webinars on Electric Vehicle Charging at Colleges, a Hydrogen Leak Detector and More March 7, ...

  13. Evaluating Electric Vehicle Charging Impacts and Customer Charging...

    Office of Environmental Management (EM)

    December 2014 Evaluating Electric Vehicle Charging Impacts and Customer Charging Behaviors Page i U.S. Department of Energy |December 2014 Evaluating Electric Vehicle Charging ...

  14. Fact #875: June 1, 2015 Hybrid Electric Vehicle Penetration by...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    5: June 1, 2015 Hybrid Electric Vehicle Penetration by State, 2014 - Dataset Fact 875: June 1, 2015 Hybrid Electric Vehicle Penetration by State, 2014 - Dataset Excel file and ...

  15. Fact #875: June 1, 2015 Hybrid Electric Vehicle Penetration by...

    Energy.gov [DOE] (indexed site)

    Hybrid Electric Light Vehicle Registrations per Thousand People by State, 2014 Map of United States with the number of hybrid electric light vehicle registrations per thousand ...

  16. Demonstrating Electric Vehicles in Canada | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Demonstrating Electric Vehicles in Canada Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Demonstrating Electric Vehicles in Canada AgencyCompany Organization: Natural...

  17. Alliance for Chinese Electric Vehicle Development and Commercializatio...

    OpenEI (Open Energy Information) [EERE & EIA]

    Alliance for Chinese Electric Vehicle Development and Commercialization Jump to: navigation, search Name: Alliance for Chinese Electric Vehicle Development and Commercialization...

  18. Electric vehicle test report, Cutler-Hammer Corvette

    SciTech Connect

    Not Available

    1981-01-01

    The work described was part of the effort to characterize vehicles for the state-of-the-art assessment of electric vehicles. The vehicle evaluated was a Chevrolet Corvette converted to electric operation. The vehicle was based on a standard production 1967 chassis and body. The original internal combustion engine was replaced by an electric traction motor. Eighteen batteries supplied the electrical energy. A controller, an onboard battery charger, and several dashboard instruments completed the conversion. The remainder of the vehicle, and in particular the remainder of the drive-train (clutch, driveshaft, and differential), was stock, except for the transmission. The overall objective of the tests was to develop performance data at the system and subsystem level. The emphasis was on the electrical portion of the drive train, although some analysis and discussion of the mechanical elements are included. There was no evaluation of other aspects of the vehicle such as braking, ride, handling, passenger accomodations, etc. Included are a description of the vehicle, the tests performed and a discussion of the results. Tests were conducted both on the road (actually a mile long runway) and in a chassis dynamometer equipped laboratory. The majority of the tests performed were according to SAE Procedure J227a and included maximum effort accelerations, constant-speed range, and cyclic range. Some tests that are not a part of the SAE Procedure J227a are described and the analysis of the data from all tests is discussed. (LCL)

  19. Powertrain system for a hybrid electric vehicle

    DOEpatents

    Reed, Jr., Richard G. (Royal Oak, MI); Boberg, Evan S. (Hazel Park, MI); Lawrie, Robert E. (Whitmore Lake, MI); Castaing, Francois J. (Bloomfield Township, MI)

    1999-08-31

    A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration.

  20. Powertrain system for a hybrid electric vehicle

    DOEpatents

    Reed, R.G. Jr.; Boberg, E.S.; Lawrie, R.E.; Castaing, F.J.

    1999-08-31

    A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration. 34 figs.

  1. ,"NYSERDA Electric Vehicle Charging Infrastructure Report"

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Weekends start at 6:00am on Saturday and end 6:00am Monday local time." "NYSERDA Electric Vehicle Charging Infrastructure Report" ,,"Report period: January 2014 through March 2014 ...

  2. ,"NYSERDA Electric Vehicle Charging Infrastructure Report"

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Weekends start at 6:00am on Saturday and end 6:00am Monday local time." "NYSERDA Electric Vehicle Charging Infrastructure Report" ,,"Report period: October 2014 through December ...

  3. ,"NYSERDA Electric Vehicle Charging Infrastructure Report"

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Weekends start at 6:00am on Saturday and end 6:00am Monday local time." "NYSERDA Electric Vehicle Charging Infrastructure Report" ,,"Report period: July 2014 through September 2014 ...

  4. ,"NYSERDA Electric Vehicle Charging Infrastructure Report"

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Weekends start at 6:00am on Saturday and end 6:00am Monday local time." "NYSERDA Electric Vehicle Charging Infrastructure Report" ,,"Report period: April 2014 through June 2014 " " ...

  5. NREL: Transportation Research - Electric Vehicle Grid Integration

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Electric Vehicle Grid Integration Illustration of a house with a roof-top photovoltaic system. A wind turbine and utility towers appear in the background. A car, parked in the ...

  6. ,"NYSERDA Electric Vehicle Charging Infrastructure Report"

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Weekends start at 6:00am on Saturday and end 6:00am Monday local time." "NYSERDA Electric Vehicle Charging Infrastructure Report" ,,"Report period: October 2013 through December ...

  7. Energy 101: Electric Vehicles | Department of Energy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    That means as the owner of an all-electric vehicle, you never have to fuel up at the gas pump -- instead, you just recharge the battery at home or at charging stations along your ...

  8. Fuel Cell and Battery Electric Vehicles Compared

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Level PHEVs Fuel Cell and Battery Electric Vehicles Compared By C. E. (Sandy) Thomas, ... Goal: 80% below 1990 Scenario Pollution - Fuel Cell 2000 2010 2020 2030 2040 2050 2060 ...

  9. American Electric Vehicles, Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Inc Jump to: navigation, search Name: American Electric Vehicles, Inc Address: P.O. Box 509 707 County Line Rd. Place: Palmer Lake, CO Zip: 80133 Region: Rockies Area...

  10. EV Everywhere: Reducing Pollution with Electric Vehicles | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Benefits of Electric Vehicles » EV Everywhere: Reducing Pollution with Electric Vehicles EV Everywhere: Reducing Pollution with Electric Vehicles Plug-in electric vehicles (also known as electric cars or EVs) can help keep your town and your world clean. In general, EVs produce fewer emissions that contribute to climate change and smog than conventional vehicles. There are two general categories of vehicle emissions: direct and life cycle. Direct emissions are emitted through the

  11. Wireless Charging for Electric Vehicles | Department of Energy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wireless Charging for Electric Vehicles Wireless Charging for Electric Vehicles Addthis Description Below is the text version for the "Wireless Charging for Electric Vehicles" video. The video opens with a shot of an electric vehicle, showing the parts involved in charging: the transmitting plate, receiving plate, controller, and battery. Nay Chehab, Vehicle Technologies Office Charging is getting a whole lot easier for electric vehicles. Pretty soon you won't even have to plug-in to

  12. AVTA: 2011 Nissan Leaf All-Electric Vehicle Testing Reports

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe results of testing done on an all-electric 2011 Nissan Leaf. The baseline performance testing provides a point of comparison for the other test results. Taken together, these reports give an overall view of how this vehicle functions under extensive testing. This research was conducted by Idaho National Laboratory.

  13. Level 1 Electric Vehicle Charging at the Workplace | Department...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications Workplace Charging Presentation Workplace Charging Toolkit: Workshop Outreach Presentation Template Richmond Electric Vehicle Initiative Electric ...

  14. ETA-UTP005 - Electric Vehicle Endurance Course Test

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    5 Revision 0 Effective March 23, 2001 "Electric Vehicle Endurance Course Test" Prepared by Electric Transportation Applications Prepared by: ...

  15. Fact Sheet: Accelerating the Development and Deployment of Advanced Technology Vehicles, including Battery Electric and Fuel Cell Electric Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    FACT SHEET Accelerating the Development and Deployment of Advanced Technology Vehicles, including Battery Electric and Fuel Cell Electric Vehicles President Obama's proposed changes to advanced vehicle tax credits as part of the Administration's Fiscal Year 2016 Revenue Proposals: 1 Provide a Tax Credit for the Production of Advanced Technology Vehicles Current Law A tax credit is allowed for plug-in electric drive motor vehicles. A plug-in electric drive motor vehicle is a vehicle that has at

  16. EV Everywhere: Electric Vehicle Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    EV Everywhere: Electric Vehicle Basics EV Everywhere: Electric Vehicle Basics Just as there are a variety of technologies available in conventional vehicles, plug-in electric vehicles (also known as electric cars or EVs) have different capabilities that can accommodate different drivers' needs. EVs' major feature is that drivers can plug them in to charge from an off-board electric power source. This distinguishes them from hybrid electric vehicles, which supplement an internal combustion engine

  17. Electric vehicle fleet operations in the United States

    SciTech Connect

    Francfort, J.E.; O`Hara, D.

    1997-10-01

    The United States Department of Energy (DOE) is actively supporting the development and commercialization of advanced electric vehicles, and advanced batteries and propulsion systems. As part of this effort, the DOE Field Operations Program is performing commercial validation of electric vehicles. These efforts have included on-board data acquisition of electric vehicle operations and baseline performance testing. The baseline performance tests focus on parameters such as range, acceleration, and battery charging. This testing, performed in conjunction with EV America, has included the baseline performance testing of 14 electric vehicles will also be baseline performance tested. The baseline performance testing has documented annual improvements in performance. This and additional information is made available to the public via the internet homepage (http://ev.inel.gov). The Field Operations Program continues to support the development of electric vehicles and infrastructure in conjunction with its new qualified vehicle test partners: Electric Transportation Application of Phoenix, and Southern California Edison. The Field Operations Program is managed by the Lockheed Martin Idaho Technologies Company, at the Idaho National Engineering Laboratory. 4 refs., 5 figs., 2 tabs.

  18. Electrical system for a motor vehicle

    DOEpatents

    Tamor, M.A.

    1999-07-20

    In one embodiment of the present invention, an electrical system for a motor vehicle comprises a capacitor, an engine cranking motor coupled to receive motive power from the capacitor, a storage battery and an electrical generator having an electrical power output, the output coupled to provide electrical energy to the capacitor and to the storage battery. The electrical system also includes a resistor which limits current flow from the battery to the engine cranking motor. The electrical system further includes a diode which allows current flow through the diode from the generator to the battery but which blocks current flow through the diode from the battery to the cranking motor. 2 figs.

  19. Hybrid electric vehicle power management system

    SciTech Connect

    Bissontz, Jay E.

    2015-08-25

    Level voltage levels/states of charge are maintained among a plurality of high voltage DC electrical storage devices/traction battery packs that are arrayed in series to support operation of a hybrid electric vehicle drive train. Each high voltage DC electrical storage device supports a high voltage power bus, to which at least one controllable load is connected, and at least a first lower voltage level electrical distribution system. The rate of power transfer from the high voltage DC electrical storage devices to the at least first lower voltage electrical distribution system is controlled by DC-DC converters.

  20. Electrical system for a motor vehicle

    DOEpatents

    Tamor, Michael Alan

    1999-01-01

    In one embodiment of the present invention, an electrical system for a motor vehicle comprises a capacitor, an engine cranking motor coupled to receive motive power from the capacitor, a storage battery and an electrical generator having an electrical power output, the output coupled to provide electrical energy to the capacitor and to the storage battery. The electrical system also includes a resistor which limits current flow from the battery to the engine cranking motor. The electrical system further includes a diode which allows current flow through the diode from the generator to the battery but which blocks current flow through the diode from the battery to the cranking motor.

  1. Think City Electric Vehicle Demonstration Program

    SciTech Connect

    Ford Motor Company

    2005-03-01

    The THINK city Electric Vehicle (EV) Demonstration Program Project, initiated late 2001, has been successfully completed as of April 2005. US. Partners include Federal, State and Municipal agencies as well as commercial partners. Phase I, consisting of placement of the vehicles in demonstration programs, was completed in 2002. Phase II, the monitoring of these programs was completed in 2004. Phase III, the decommissioning and/or exporting of vehicles concluded in 2005. Phase I--the Program successfully assigned 192 EV's with customers (including Hertz) in the state of California, 109 in New York (including loaner and demo vehicles), 16 in Georgia, 7 to customers outside of the US and 52 in Ford's internal operations in Dearborn Michigan for a total of 376 vehicles. The Program was the largest operating Urban EV Demonstration Project in the United States. Phase II--the monitoring of the operational fleet was ongoing and completed in 2004, and all vehicles were returned throughout 2004 and 2005. The Department of Energy (DOE) was involved with the monitoring of the New York Power Authority/THINK Clean Commute Program units through partnership with Electric Transportation Engineering Corporation (ETEC), which filed separate reports to DOE. The remainder of the field fleet was monitored through Ford's internal operations. Vehicles were retired from lease operation throughout the program for various operator reasons. Some of the vehicles were involved in re-leasing operations. At the end of the program, 376 vehicles had been involved, 372 of which were available for customer use while 4 were engineering prototype and study vehicles. Phase III--decommissioning and/or export of vehicles. In accordance with the NHTSA requirement, City vehicles could not remain in the United States past their three-year allowed program timeframe. At the end of leases, City vehicles have been decommissioned and/or exported to KamKorp in Norway.

  2. Medium Duty Electric Vehicle Demonstration Project

    SciTech Connect

    Mackie, Robin J. D.

    2015-05-31

    The Smith Electric Vehicle Demonstration Project (SDP) was integral to the Smith business plan to establish a manufacturing base in the United States (US) and produce a portfolio of All Electric Vehicles (AEV’s) for the medium duty commercial truck market. Smith focused on the commercial depot based logistics market, as it represented the market that was most ready for the early adoption of AEV technology. The SDP enabled Smith to accelerate its introduction of vehicles and increase the size of its US supply chain to support early market adoption of AEV’s that were cost competitive, fully met the needs of a diverse set of end users and were compliant with Federal safety and emissions requirements. The SDP accelerated the development and production of various electric drive vehicle systems to substantially reduce petroleum consumption, reduce vehicular emissions of greenhouse gases (GHG), and increase US jobs.

  3. Innovation in Electric Vehicle Technology? Easy as A123 | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    in Electric Vehicle Technology? Easy as A123 Innovation in Electric Vehicle Technology? Easy as A123 May 2, 2011 - 3:45pm Addthis A123 battery in passenger vehicle application | ...

  4. Alternative Fuels Data Center: Innovations Improve Electric Vehicle

    Alternative Fuels and Advanced Vehicles Data Center

    Charging Infrastructure Innovations Improve Electric Vehicle Charging Infrastructure to someone by E-mail Share Alternative Fuels Data Center: Innovations Improve Electric Vehicle Charging Infrastructure on Facebook Tweet about Alternative Fuels Data Center: Innovations Improve Electric Vehicle Charging Infrastructure on Twitter Bookmark Alternative Fuels Data Center: Innovations Improve Electric Vehicle Charging Infrastructure on Google Bookmark Alternative Fuels Data Center: Innovations

  5. Impact of Solar Control PVB Glass on Vehicle Interior Temperatures, Air-Conditioning Capacity, Fuel Consumption, and Vehicle Range

    SciTech Connect

    Rugh, J.; Chaney, L.; Venson, T.; Ramroth, L.; Rose, M.

    2013-04-01

    The objective of the study was to assess the impact of Saflex1 S-series Solar Control PVB (polyvinyl butyral) configurations on conventional vehicle fuel economy and electric vehicle (EV) range. The approach included outdoor vehicle thermal soak testing, RadTherm cool-down analysis, and vehicle simulations. Thermal soak tests were conducted at the National Renewable Energy Laboratory's Vehicle Testing and Integration Facility in Golden, Colorado. The test results quantified interior temperature reductions and were used to generate initial conditions for the RadTherm cool-down analysis. The RadTherm model determined the potential reduction in air-conditioning (A/C) capacity, which was used to calculate the A/C load for the vehicle simulations. The vehicle simulation tool identified the potential reduction in fuel consumption or improvement in EV range between a baseline and modified configurations for the city and highway drive cycles. The thermal analysis determined a potential 4.0% reduction in A/C power for the Saflex Solar PVB solar control configuration. The reduction in A/C power improved the vehicle range of EVs and fuel economy of conventional vehicles and plug-in hybrid electric vehicles.

  6. Modular Electric Vehicle Program (MEVP). Final technical report

    SciTech Connect

    1994-03-01

    The Modular Electric Vehicle Program (MEVP) was an EV propulsion system development program in which the technical effort was contracted by DOE to Ford Motor Company. The General Electric Company was a major subcontractor to Ford for the development of the electric subsystem. Sundstrand Power Systems was also a subcontractor to Ford, providing a modified gas turbine engine APU for emissions and performance testing as well as a preliminary design and producibility study for a Gas Turbine-APU for potential use in hybrid/electric vehicles. The four-year research and development effort was cost-shared between Ford, General Electric, Sundstrand Power Systems and DOE. The contract was awarded in response to Ford`s unsolicited proposal. The program objective was to bring electric vehicle propulsion system technology closer to commercialization by developing subsystem components which can be produced from a common design and accommodate a wide range of vehicles; i.e., modularize the components. This concept would enable industry to introduce electric vehicles into the marketplace sooner than would be accomplished via traditional designs in that the economies of mass production could be realized across a spectrum of product offerings. This would eliminate the need to dedicate the design and capital investment to a limited volume product offering which would increase consumer cost and/or lengthen the time required to realize a return on the investment.

  7. Electric machine for hybrid motor vehicle

    SciTech Connect

    Hsu, John Sheungchun

    2007-09-18

    A power system for a motor vehicle having an internal combustion engine and an electric machine is disclosed. The electric machine has a stator, a permanent magnet rotor, an uncluttered rotor spaced from the permanent magnet rotor, and at least one secondary core assembly. The power system also has a gearing arrangement for coupling the internal combustion engine to wheels on the vehicle thereby providing a means for the electric machine to both power assist and brake in relation to the output of the internal combustion engine.

  8. Novolyte Charging Up Electric Vehicle Sector | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Novolyte Charging Up Electric Vehicle Sector Novolyte Charging Up Electric Vehicle Sector August 11, 2010 - 10:15am Addthis Electric vehicles are powered by electricity that comes in the form of electrically charged molecules known as ions. Those ions need a substance to transport them throughout the system as they travel from the anode to the cathode and back again. That substance is an electrolyte. | Staff Photo Illustration Electric vehicles are powered by electricity that comes in the form

  9. Challenges for the vehicle tester in characterizing hybrid electric vehicles

    SciTech Connect

    Duoba, M.

    1997-08-01

    Many problems are associated with applying test methods, like the Federal Test Procedure (FTP), for HEVs. Although there has been considerable progress recently in the area of HEV test procedure development, many challenges are still unsolved. A major hurdle to overcoming the challenges of developing HEV test procedures is the lack of HEV designs available for vehicle testing. Argonne National Laboratory has tested hybrid electric vehicles (HEVs) built by about 50 colleges and universities from 1994 to 1997 in annual vehicle engineering competitions sponsored in part by the U.S. Department of Energy (DOE). From this experience, the Laboratory has gathered information about the basics of HEV testing and issues important to successful characterization of HEVs. A collaboration between ANL and the Society of Automotive Engineer`s (SAE) HEV Test Procedure Task Force has helped guide the development of test protocols for their proposed procedures (draft SAE J1711) and test methods suited for DOE vehicle competitions. HEVs use an electrical energy storage device, which requires that HEV testing include more time and effort to deal with the effects of transient energy storage as the vehicle is operating in HEV mode. HEV operation with electric-only capability can be characterized by correcting the HEV mode data using results from electric-only operation. HEVs without electric-only capability require multiple tests conducted to form data correlations that enable the tester to find the result that corresponds to a zero net change in SOC. HEVs that operate with a net depletion of charge cannot be corrected for battery SOC and are characterized with emissions and fuel consumption results coupled with the electrical energy usage rate. 9 refs., 8 figs.

  10. Alternative Fuels Data Center: Sacramento Powers up with Electric Vehicles

    Alternative Fuels and Advanced Vehicles Data Center

    Sacramento Powers up with Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Sacramento Powers up with Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Sacramento Powers up with Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Sacramento Powers up with Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Sacramento Powers up with Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Sacramento Powers

  11. DOE Releases New Analysis Showing Significant Advances in Electric Vehicle

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Deployment | Department of Energy Analysis Showing Significant Advances in Electric Vehicle Deployment DOE Releases New Analysis Showing Significant Advances in Electric Vehicle Deployment February 8, 2011 - 12:00am Addthis WASHINGTON - The U.S. Department of Energy today released One Million Electric Vehicles by 2015 (pdf - 220 kb), an analysis of advances in electric vehicle deployment and progress to date in meeting President Obama's goal of putting one million electric vehicles on the

  12. Vehicle Technologies Office: Materials for Hybrid and Electric Drive

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Systems | Department of Energy Hybrid and Electric Drive Systems Vehicle Technologies Office: Materials for Hybrid and Electric Drive Systems The Vehicle Technologies Office (VTO) is working to lower the cost and increase the convenience of electric drive vehicles, which include hybrid and plug-in electric vehicles. These vehicles use advanced power electronics and electric motors that face barriers because their subcomponents have specific material limitations. Novel propulsion materials

  13. Battery availability for near-term (1998) electric vehicles

    SciTech Connect

    Burke, A.F.

    1991-06-01

    Battery Requirements were determined for a wide spectrum of electric vehicles ranging from 2-passenger sports cars and microvans to full-size vans with a payload of 500 kg. All the vehicles utilize ac, high voltage (340--360 V) powertrains and have acceleration performance (0--80 km/h in less than 15 seconds) expected to be the norm in 1988 electric vehicles. Battery packs were configured for each of the vehicles using families of sealed lead-acid and nickel-cadmium modules which are either presently available in limited quantities or are being developed by battery companies which market a similar battery technology. It was found that the battery families available encompass the Ah cell sizes required for the various vehicles and that they could be packaged in the space available in each vehicle. The acceleration performance and range of the vehicles were calculated using the SIMPLEV simulation program. The results showed that all the vehicles had the required acceleration characteristics and ranges between 80--160 km (50--100 miles) with the ranges using nickel-cadmium batteries being 40--60% greater than those using lead-acid batteries. Significant changes in the design of electric vehicles over the last fifteen years are noted. These changes make the design of the batteries more difficult by increasing the peak power density required from about 60 W/kg to 100--150 W/kg and by reducing the Ah cell size needed from about 150 Ah to 30--70 Ah. Both of these changes in battery specifications increase the difficulty of achieving low $/kWh cost and long cycle life. This true for both lead-acid and nickel-cadmium batteries. 25 refs., 6 figs., 16 tabs.

  14. Vehicle Technologies Office: AVTA - Plug-in Electric Vehicle On-Road

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Demonstration Data | Department of Energy Plug-in Electric Vehicle On-Road Demonstration Data Vehicle Technologies Office: AVTA - Plug-in Electric Vehicle On-Road Demonstration Data Through the American Recovery and Reinvestment Act, the Vehicle Technologies Office (VTO) accelerated the electrification of the nation's vehicle fleet. VTO invested $400 million in 18 projects to demonstrate plug-in electric vehicles (PEVs, also known as electric cars) and infrastructure, including 10

  15. Plug-In Hybrid Electric Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Plug-In Hybrid Electric Vehicles Plug-In Hybrid Electric Vehicles A new study released on Plug-in Hybrid Electric Vehicles (PHEVs) found there is enough electric capacity to power plug-in vehicles across much of the nation. The Office of Electricity Delivery and Energy Reliability supported researchers at the Pacific Northwest National Laboratory to develop this study that found "off-peak" electricity production and transmission capacity could fuel 84 percent of the 198 million cars,

  16. EV Everywhere: Electric Vehicle Benefits | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Benefits EV Everywhere: Electric Vehicle Benefits EV Everywhere: Electric Vehicle Benefits Plug-in electric vehicles (also known as electric cars or EVs) are connected, fun, and practical. They can reduce emissions and even save you money. Fueling with electricity offers some advantages not available in conventional internal combustion engine vehicles. Because electric motors react quickly, EVs are very responsive and have very good torque. EVs are often more digitally connected than

  17. Chapter 8: Advancing Clean Transportation and Vehicle Systems and Technologies | Fuel Cell Electric Vehicles Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fuel Cell Electric Vehicles Chapter 8: Technology Assessments Introduction to the Technology/System Overview of Fuel Cell Electric Vehicles Energy planning models demonstrate that electric drive vehicles and low-carbon fuels are needed to address climate change, energy security, and criteria pollutant emissions goals, among others. 1,2,3,4,5 Hydrogen fuel cell electric vehicles (FCEVs) are a promising electric vehicle technology that could meet petroleum and emission reduction goals and be

  18. EV Everywhere: Electric Drive Systems Bring Power to Plug-in Electric Vehicles

    Energy.gov [DOE]

    Find out how the Energy Department's Vehicles Technologies Office is helping reduce the cost of plug-in electric vehicles through research and development of electric drive technologies.

  19. Development of High Energy Lithium Batteries for Electric Vehicles...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications Vehicle Technologies Office Merit Review 2015: High Energy Lithium Batteries for Electric Vehicles FY 2011 Annual Progress Report for Energy Storage ...

  20. Tianjin Qingyuan Electric Vehicle Co Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    to: navigation, search Name: Tianjin Qingyuan Electric Vehicle Co Ltd Place: Tianjin Economic Development Area, Tianjin Municipality, China Zip: 300457 Sector: Vehicles Product:...

  1. EV-Everywhere: Making Electric Vehicles More Affordable

    Energy.gov [DOE]

    Highlighting your ideas on ways to make electric vehicles as affordable and convenient as today’s gasoline-powered vehicles.

  2. Medium- and Heavy-Duty Electric Drive Vehicle Simulation and...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications Medium- and Heavy-Duty Electric Drive Vehicle Simulation and Analysis Medium and Heavy-Duty Vehicle Field Evaluations Battery Pack Requirements and ...

  3. Electric Drive Vehicle Climate Control Load Reduction | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Climate Control Load Reduction Electric Drive Vehicle Climate Control Load Reduction 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review ...

  4. High-Voltage Solid Polymer Batteries for Electric Drive Vehicles...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications High-Voltage Solid Polymer Batteries for Electric Drive Vehicles Vehicle Technologies Office Merit Review 2014: High-Voltage Solid Polymer Batteries ...

  5. Electric Vehicle Preparedness - Implementation Approach for Electric Vehicles at Naval Air Station Whidbey Island. Task 4

    SciTech Connect

    Schey, Stephen; Francfort, Jim

    2015-06-01

    Several U.S. Department of Defense base studies have been conducted to identify potential U.S. Department of Defense transportation systems that are strong candidates for introduction or expansion of plug-in electric vehicles (PEVs). This study is focused on the Naval Air Station Whidbey Island (NASWI) located in Washington State. Task 1 consisted of a survey of the non-tactical fleet of vehicles at NASWI to begin the review of vehicle mission assignments and types of vehicles in service. In Task 2, daily operational characteristics of vehicles were identified to select vehicles for further monitoring and attachment of data loggers. Task 3 recorded vehicle movements in order to characterize the vehicles’ missions. The results of the data analysis and observations were provided. Individual observations of the selected vehicles provided the basis for recommendations related to PEV adoption, i.e., whether a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV) (collectively PEVs) can fulfill the mission requirements. It also provided the basis for recommendations related to placement of PEV charging infrastructure. This report focuses on an implementation plan for the near-term adoption of PEVs into the NASWI fleet.

  6. Highway vehicle electric drive in the United States : 2009 status and issues.

    SciTech Connect

    Santini, D. J.; Energy Systems

    2011-02-16

    The status of electric drive technology in the United States as of early 2010 is documented. Rapidly evolving electric drive technologies discussed include hybrid electric vehicles, multiple types of plug-in hybrid electric vehicles, and battery electric vehicles. Recent trends for hybrids are quantified. Various plug-in vehicles entering the market in the near term are examined. The technical and economic requirements for electric drive to more broadly succeed in a wider range of highway vehicle applications are described, and implications for the most promising new markets are provided. Federal and selected state government policy measures promoting and preparing for electric drive are discussed. Taking these into account, judgment on areas where increased Clean Cities funds might be most productively focused over the next five years are provided. In closing, the request by Clean Cities for opinion on the broad range of research needs providing near-term support to electric drive is fulfilled.

  7. Hydrogen Fuel Cell Electric Vehicles (Fact Sheet)

    SciTech Connect

    Not Available

    2011-02-01

    As nations around the world pursue a variety of sustainable transportation solutions, the hydrogen fuel cell electric vehicle (FCEV) presents a promising opportunity for American consumers and automakers. FCEVs offer a sustainable transportation option, provide a cost-competitive alternative for drivers, reduce dependence on imported oil, and enable global economic leadership and job growth.

  8. DOE Hybrid and Electric Vehicle Test Platform

    SciTech Connect

    Gao, Yimin

    2012-03-31

    Based on the contract NT-42790 to the Department of Energy, “Plug-in Hybrid Ethanol Research Platform”, Advanced Vehicle Research Center (AVRC) Virginia has successfully developed the phase I electric drive train research platform which has been named as Laboratory Rapid Application Testbed (LabRAT). In phase II, LabRAT is to be upgraded into plug-in hybrid research platform, which will be capable of testing power systems for electric vehicles, and plug-in hybrid electric vehicles running on conventional as well as alternative fuels. LabRAT is configured as a rolling testbed with plentiful space for installing various component configurations. Component connections are modularized for flexibility and are easily replaced for testing various mechanisms. LabRAT is designed and built as a full functional vehicle chassis with a steering system, brake system and four wheel suspension. The rear drive axle offers maximum flexibility with a quickly changeable gear ratio final drive to accommodate different motor speed requirements. The electric drive system includes an electric motor which is mechanically connected to the rear axle through an integrated speed/torque sensor. Initially, a 100 kW UQM motor and corresponding UQM motor controller is used which can be easily replaced with another motor/controller combination. A lithium iron phosphate (LiFePO4) battery pack is installed, which consists of 108 cells of 100 AH capacity, giving the total energy capacity of 32.5 kWh. Correspondingly, a fully functional battery management system (BMS) is installed to perform battery cell operation monitoring, cell voltage balancing, and reporting battery real time operating parameters to vehicle controller. An advanced vehicle controller ECU is installed for controlling the drive train. The vehicle controller ECU receives traction or braking torque command from driver through accelerator and brake pedal position sensors and battery operating signals from the BMS through CAN BUS

  9. Load calculation and system evaluation for electric vehicle climate control

    SciTech Connect

    Aceves-Saborio, S.; Comfort, W.J. III

    1993-10-27

    Providing air conditioning for electric vehicles (EVs) represents an important challenge, because vapor compression air conditioners, which are common in gasoline powered vehicles, may consume a substantial part of the total energy stored in the EV battery. This report consists of two major parts. The first part is a cooling and heating load calculation for electric vehicles. The second part is an evaluation of several systems that can be used to provide the desired cooling and heating in EVs. Four cases are studied. Short range and full range EVs are each analyzed twice, first with the regular vehicle equipment, and then with a fan and heat reflecting windows, to reduce hot soak. Recent legislation has allowed the use of combustion heating whenever the ambient temperature drops below 5{degrees}C. This has simplified the problem of heating, and made cooling the most important problem. Therefore, systems described in this project are designed for cooling, and their applicability to heating at temperatures above 5{degrees}C is described. If the air conditioner systems cannot be used to cover the whole heating load at 5{degrees}C, then the vehicle requires a complementary heating system (most likely a heat recovery system or electric resistance heating). Air conditioners are ranked according to their overall weight. The overall weight is calculated by adding the system weight and the weight of the battery necessary to provide energy for system operation.

  10. High-Voltage Solid Polymer Batteries for Electric Drive Vehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy High-Voltage Solid Polymer Batteries for Electric Drive Vehicles High-Voltage Solid Polymer Batteries for Electric Drive Vehicles 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting es129_eitouni_2012_p.pdf (644.7 KB) More Documents & Publications High-Voltage Solid Polymer Batteries for Electric Drive Vehicles Vehicle Technologies Office Merit Review 2014: High-Voltage Solid Polymer Batteries for

  11. National Drive Electric Week: Celebrating the Growth of Electric Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE)

    As we bid farewell to summer and transition to fall, there are many things to look forward to, such as kids in school, cooler temperatures, colorful leaves, and National Drive Electric Week. This year’s celebration spans eight days from Sept. 10-18, with nearly 200 events across the country to familiarize people with the power, convenience, and widespread availability of electric vehicles.

  12. Novel 3-D Printed Inverters for Electric Vehicles Can Improve...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Novel 3-D Printed Inverters for Electric Vehicles Can Improve EV Power and Efficiency Novel 3-D Printed Inverters for Electric Vehicles Can Improve EV Power and Efficiency April...

  13. Preparing for the Arrival of Electric Vehicle | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Preparing for the Arrival of Electric Vehicle This webinar covers how to prepare for electric vehicles and elements of developing an EV infrastructure plan. Presentation (1.84 MB) ...

  14. Saving Money with Electric Vehicles | Department of Energy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Saving Money with Electric Vehicles September 16, 2015 - 10:04am Addthis If you thought owning an electric vehicle wasn't an affordable option for you, think again. Shannon ...

  15. Revolution...Now Rewind: Revving up the Electric Vehicle Market...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Revving up the Electric Vehicle Market Revolution...Now Rewind: Revving up the Electric Vehicle Market October 5, 2016 - 3:00pm Addthis RevolutionNow Rewind: Revving up the ...

  16. VP 100: President Obama Hails Electric-Vehicle Battery Plant...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    President Obama Hails Electric-Vehicle Battery Plant VP 100: President Obama Hails Electric-Vehicle Battery Plant July 15, 2010 - 5:05pm Addthis Stephen Graff Former Writer & ...

  17. Electric Vehicle Battery Testing: It's Hot Stuff! | Department...

    Energy Saver

    Electric Vehicle Battery Testing: It's Hot Stuff Electric Vehicle Battery Testing: It's Hot Stuff May 26, 2011 - 2:45pm Addthis NREL's Large-Volume Battery Calorimeter has the ...

  18. Medium- and Heavy-Duty Electric Drive Vehicle Simulation and...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Medium- and Heavy-Duty Electric Drive Vehicle Simulation and Analysis Medium- and Heavy-Duty Electric Drive Vehicle Simulation and Analysis 2012 DOE Hydrogen and Fuel Cells Program ...

  19. Energy Department Partners with EU on Electric Vehicle and Smart...

    Energy Saver

    Partners with EU on Electric Vehicle and Smart Grid Coordination Energy Department Partners with EU on Electric Vehicle and Smart Grid Coordination July 19, 2013 - 5:17pm Addthis ...

  20. Electric Vehicle Technology and Batteries | GE Global Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    A Recipe for Powering Next-Generation Electric Vehicles Click to email this to a friend ... A Recipe for Powering Next-Generation Electric Vehicles GE and Lawrence Berkeley ...

  1. Plug-In Hybrid Electric Vehicle Basics | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Plug-In Hybrid Electric Vehicle Basics Imagine being able to just plug in your car to recharge the battery Plug-in hybrid electric vehicles-also known as PHEVs-are in line to be ...

  2. Do You Drive a Hybrid Electric Vehicle? | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Drive a Hybrid Electric Vehicle? Do You Drive a Hybrid Electric Vehicle? July 9, 2009 - 1:34am Addthis In Tuesday's entry, Francis X. Vogel from the Wisconsin Clean Cities ...

  3. Electric Vehicle Charging: Coming to a Federal Workplace Near...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Electric Vehicle Charging: Coming to a Federal Workplace Near You Electric Vehicle Charging: Coming to a Federal Workplace Near You October 20, 2016 - 12:45pm Addthis Sarah Olexsak ...

  4. Maximizing the Benefits of Plug-in Electric Vehicles - Continuum...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    In fact, most usage scenarios show that PEVs may actually benefit the utility grid." A photo of two electric vehicles in a research facility. Electric vehicle charging stations in ...

  5. An electric vehicle vision of the future

    SciTech Connect

    Sperling, D.

    1995-12-01

    We are at the cusp of a technological revolution in automotive technology. The opportunity for creating a more diverse, efficient, and environmentally benign transportation system is before us. Electric drive options are especially attractive. Vehicles powered by batteries, fuel cells, or some combination of these are quite, produce much less pollution and greenhouse gases than internal combustion engines, and require little or no petroleum. I will address vehicle technology futures in terms of new government initiatives and current regulatory activities in California and Washington DC. I will put these initiatives and opportunities in a political and economic framework.

  6. Modeling Grid-Connected Hybrid Electric Vehicles Using ADVISOR

    SciTech Connect

    Markel, T.; Wipke, K.

    2001-01-01

    Presents an electric utility grid-connected energy management strategy for a parallel hybrid electric vehicle using ADVISOR, a modeling tool.

  7. High-Voltage Solid Polymer Batteries for Electric Drive Vehicles...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: High-Voltage Solid Polymer Batteries for Electric Drive Vehicles Citation Details In-Document Search Title: High-Voltage Solid Polymer Batteries for Electric ...

  8. Vehicle Technologies Office Merit Review 2014: Electric Drive...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Electric Drive and Advanced Battery and Components Testbed (EDAB) Vehicle Technologies Office Merit Review 2014: Electric Drive and Advanced Battery and Components Testbed (EDAB) ...

  9. Ultracapacitor Applications and Evaluation for Hybrid Electric Vehicles (Presentation)

    SciTech Connect

    Pesaran, A.; Gonder, J.; Keyser, M.

    2009-04-01

    Describes the use of ultracapacitors in advanced hybrid and electric vehicles and discusses thermal and electrical testing of lithium ion capacitors for HEV applications.

  10. EV America: Hybrid Electric Vehicle (HEV) Technical Specifications...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    EV AMERICA: HYBRID ELECTRIC VEHICLE (HEV) TECHNICAL SPECIFICATIONS Revision 1 Effective November 1, 2005 Prepared by Electric Transportation Applications HEV AMERICA November 1, ...

  11. ETA-HTP02 Hybrid Electric Vehicle Acceleration, Gradeability...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Effective November 1, 2004 Implementation of SAE Standard J1666 May93 "Hybrid Electric Vehicle Acceleration, Gradeability, and Deceleration Test Procedure" Prepared by Electric ...

  12. ETA-NTP005 Electric Vehicle Rough Ride Course Test

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    NTP005 Revision 2 Effective December 1, 2004 Electric Vehicle Rough Road Course Test Prepared by Electric Transportation Applications Prepared by: ...

  13. Computer-Aided Engineering for Electric-Drive Vehicle Batteries

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Computer-Aided Engineering for Electric-Drive Vehicle Batteries - Sandia Energy Energy ... Energy Storage Components and Systems Batteries Electric Drive Systems Hydrogen Materials ...

  14. Electric Vehicle and Infrastructure Codes and Standards Citations (Brochure)

    SciTech Connect

    Not Available

    2010-07-01

    This document lists codes and standards typically used for U.S. electric vehicle and infrastructure projects.

  15. System Simulations of Hybrid Electric Vehicles with Focus on Emissions

    Energy.gov [DOE]

    Comparative simulations of hybrid electric vehicles with gasoline and diesel engines will be conducted with focus on emissions control.

  16. Indiana Advanced Electric Vehicle Training and Education Consortium

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    (I-AEVtec) | Department of Energy Indiana Advanced Electric Vehicle Training and Education Consortium (I-AEVtec) Indiana Advanced Electric Vehicle Training and Education Consortium (I-AEVtec) 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt032_ti_caruthers_2012_o.pdf (3.4 MB) More Documents & Publications Indiana Advanced Electric Vehicle Training and Education Consortium (I-AEVtec) Indiana Advanced Electric

  17. Communities Plug In To Electric Vehicle Readiness | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Communities Plug In To Electric Vehicle Readiness Communities Plug In To Electric Vehicle Readiness September 16, 2014 - 4:24pm Addthis The City of Auburn Hills, Michigan, participated in one of 16 Clean Cities plug-in electric vehicle (PEV) community-readiness projects across the country. | Photo courtesy of City of Auburn Hills. The City of Auburn Hills, Michigan, participated in one of 16 Clean Cities plug-in electric vehicle (PEV) community-readiness projects across the country. | Photo

  18. California Statewide Plug-In Electric Vehicle Infrastructure Assessment

    SciTech Connect

    Melaina, Marc; Helwig, Michael

    2014-05-01

    The California Statewide Plug-In Electric Vehicle Infrastructure Assessment conveys to interested parties the Energy Commission’s conclusions, recommendations, and intentions with respect to plug-in electric vehicle (PEV) infrastructure development. There are several relatively low-risk and high-priority electric vehicle supply equipment (EVSE) deployment options that will encourage PEV sales and

  19. Electric vehicles. (Bibliography from the Global Mobility database). Published Search

    SciTech Connect

    1995-01-01

    The bibliography contains citations concerning design techniques of electric and hybrid vehicles for road transportation. Topics include drive, control, and braking systems for electric vehicle operation; and battery charging, onboard recharging, monitoring methods and systems. The impact of electric vehicles on the environment is also presented. (Contains 250 citations and includes a subject term index and title list.)

  20. Electric vehicles. (Bibliography from the Global Mobility database). Published Search

    SciTech Connect

    1995-10-01

    The bibliography contains citations concerning design techniques of electric and hybrid vehicles for road transportation. Topics include drive, control, and braking systems for electric vehicle operation; and battery charging, onboard recharging, monitoring methods and systems. The impact of electric vehicles on the environment is also presented. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  1. Electric vehicles. (Bibliography from the Global Mobility database). Published Search

    SciTech Connect

    1997-02-01

    The bibliography contains citations concerning design techniques of electric and hybrid vehicles for road transportation. Topics include drive, control, and braking systems for electric vehicle operation; and battery charging, onboard recharging, monitoring methods and systems. The impact of electric vehicles on the environment is also presented. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  2. Comparison of advanced battery technologies for electric vehicles

    SciTech Connect

    Dickinson, B.E.; Lalk, T.R.; Swan, D.H.

    1993-12-31

    Battery technologies of different chemistries, manufacture and geometry were evaluated as candidates for use in Electric Vehicles (EV). The candidate batteries that were evaluated include four single cell and seven multi-cell modules representing four technologies: Lead-Acid, Nickel-Cadmium, Nickel-Metal Hydride and Zinc-Bromide. A standard set of testing procedures for electric vehicle batteries, based on industry accepted testing procedures, and any tests which were specific to individual battery types were used in the evaluations. The batteries were evaluated by conducting performance tests, and by subjecting them to cyclical loading, using a computer controlled charge--discharge cycler, to simulate typical EV driving cycles. Criteria for comparison of batteries were: performance, projected vehicle range, cost, and applicability to various types of EVs. The four battery technologies have individual strengths and weaknesses and each is suited to fill a particular application. None of the batteries tested can fill every EV application.

  3. AVTA: 2013 Nissan Leaf All-Electric Vehicle Testing Reports

    Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe early results of testing done on an all-electric 2013 Nissan Leaf. Baseline data, which provides a point of comparison for the other test results, was collected at two different research laboratories. Baseline and other data collected at Idaho National Laboratory is in the attached documents. Baseline and battery testing data collected at Argonne National Laboratory is available in summary and CSV form on the Argonne Downloadable Dynometer Database site (http://www.anl.gov/energy-systems/group/downloadable-dynamometer-databas...). Taken together, these reports give an overall view of how this vehicle functions under extensive testing.

  4. Repurposing of Batteries from Electric Vehicles

    SciTech Connect

    Viswanathan, Vilayanur V.; Kintner-Meyer, Michael CW

    2015-06-11

    Energy storage for stationary use is gaining traction both at the grid scale and distributed level. As renewable energy generation increases, energy storage is needed to compensate for the volatility of renewable over various time scales. This requires energy storage that is tailored for various energy to power (E/P) ratios. Other applications for energy storage include peak shaving, time shifting, load leveling, VAR control, frequency regulation, spinning reserves and other ancillary applications. While the need for energy storage for stationary applications is obvious, the regulations that determine the economic value of adding storage are at various stages of development. This has created a reluctance on the part of energy storage manufacturers to develop a suite of storage systems that can address the myriad of applications associated with stationary applications. Deployment of battery energy storage systems in the transportation sector is ahead of the curve with respect to the stationary space. Batteries, along with battery management systems (BMS) have been deployed for hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs) and electric vehicles (EVs). HEVs have now been deployed for 12 years, while PHEVs for 8 and EVs for 4 years. Some of the batteries are approaching end of life within the vehicle, and are ready to be taken off for recycling and disposal. Performance within a vehicle is non-negotiable in terms of miles traveled per charge, resulting in the batteries retaining a significant portion of their life. For stationary applications, the remaining energy and power of the battery can still be used by grouping together a few of these batteries. This enables getting the most of these batteries, while ensuring that performance is not compromised in either the automotive or stationary applications. This work summarizes the opportunities for such re-purposing of automotive batteries, along with the advantages and limitations

  5. Vehicle Technologies Office: AVTA- Electric Vehicle Community and Fleet Readiness Data and Reports

    Energy.gov [DOE]

    Making plug-in electric vehicles (PEVs, also known as electric cars) as affordable and convenient as conventional vehicles, as described in the EV Everywhere Grand Challenge, requires understanding...

  6. Sample Employee Newsletter Articles: Plug-In Electric Vehicles 101

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Vehicles 101 This document introduces the basics of Plug-In Electric Vehicles (PEV) and includes a list of engaging top 10 facts about PEVs that will peak the interest of your employees.  Vehicle Basics: Hybrid and Plug-In Electric Vehicles Use this article to explain the difference between various ways of referring to electric drive vehicles.  Energy 101: Plug-In Electric Vehicles (with video) Your employees have seen your workplace charging installation, now use this article and video to

  7. Fact #796: September 9, 2013 Electric Vehicle and Plug-In Hybrid...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    6: September 9, 2013 Electric Vehicle and Plug-In Hybrid Electric Vehicle Sales History Fact 796: September 9, 2013 Electric Vehicle and Plug-In Hybrid Electric Vehicle Sales ...

  8. Plug-In Hybrid Electric Vehicles | Argonne National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Plug-In Hybrid Electric Vehicles 2014 BMW i3-REX 2013 Chevrolet Volt 2013 Ford Cmax Energi 2013 Ford Fusion Energi 2013 Toyota Prius 2012 Chevrolet Volt 2012 Toyota Prius Electric Vehicles Conventional Vehicles Conventional Start-Stop Vehicles Alternative Fuel Vehicles Facilities Publications News About Us For ES Employees Staff Directory About Us For ES Employees Staff Directory Argonne National Laboratory Energy Systems Research Facilities Publications News Research Advanced Materials and

  9. Fact #750: October 22, 2012 Electric Vehicle Energy Requirements for

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Combined City/Highway Driving | Department of Energy 0: October 22, 2012 Electric Vehicle Energy Requirements for Combined City/Highway Driving Fact #750: October 22, 2012 Electric Vehicle Energy Requirements for Combined City/Highway Driving The efficiencies of electric vehicles can vary significantly; however, compared with conventional vehicles, they are very efficient-converting about 60% of the energy from the grid to power at the wheels. There are energy losses of about 16-19% from

  10. Electric vehicle system for charging and supplying electrical power

    DOEpatents

    Su, Gui Jia

    2010-06-08

    A power system that provides power between an energy storage device, an external charging-source/load, an onboard electrical power generator, and a vehicle drive shaft. The power system has at least one energy storage device electrically connected across a dc bus, at least one filter capacitor leg having at least one filter capacitor electrically connected across the dc bus, at least one power inverter/converter electrically connected across the dc bus, and at least one multiphase motor/generator having stator windings electrically connected at one end to form a neutral point and electrically connected on the other end to one of the power inverter/converters. A charging-sourcing selection socket is electrically connected to the neutral points and the external charging-source/load. At least one electronics controller is electrically connected to the charging-sourcing selection socket and at least one power inverter/converter. The switch legs in each of the inverter/converters selected by the charging-source/load socket collectively function as a single switch leg. The motor/generators function as an inductor.

  11. 2006 Toyota Highlander-6395 Hyrid Electric Vehicle Battery Test Results

    SciTech Connect

    Tyler Gray; Chester Motloch; James Francfort

    2010-01-01

    The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Toyota Highlander hybrid electric vehicle (Vin Number JTEDW21A160006395). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

  12. 2007 Nissan Altima-7982 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect

    Tyler Grey; Chester Motloch; James Francfort

    2010-01-01

    The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Nissan Altima hybrid electric vehicle (Vin Number 1N4CL21E27C177982). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

  13. 2006 Toyota Highlander-5681 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect

    Tyler Gray; Chester Motloch; James Francfort

    2010-01-01

    The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Toyota Highlander hybrid electric vehicle (Vin Number JTEDW21A860005681). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

  14. 2007 Toyota Camry-7129 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect

    Tyler Gray; Chester Motloch; James Francfort

    2010-01-01

    The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Toyota Camry hybrid electric vehicle (Vin Number JTNBB46K773007129). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

  15. Electric Adsorption Heat Pump for Electric Vehicles: Electric-Powered Adsorption Heat Pump for Electric Vehicles

    SciTech Connect

    2011-11-21

    HEATS Project: PNNL is developing a new class of advanced nanomaterial called an electrical metal organic framework (EMOF) for EV heating and cooling systems. The EMOF would function similar to a conventional heat pump, which circulates heat or cold to the cabin as needed. However, by directly controlling the EMOF's properties with electricity, the PNNL design is expected to use much less energy than traditional heating and cooling systems. The EMOF-based heat pumps would be light, compact, efficient, and run using virtually no moving parts.

  16. Optimal Decentralized Protocol for Electric Vehicle Charging

    SciTech Connect

    Gan, LW; Topcu, U; Low, SH

    2013-05-01

    We propose a decentralized algorithm to optimally schedule electric vehicle (EV) charging. The algorithm exploits the elasticity of electric vehicle loads to fill the valleys in electric load profiles. We first formulate the EV charging scheduling problem as an optimal control problem, whose objective is to impose a generalized notion of valley-filling, and study properties of optimal charging profiles. We then give a decentralized algorithm to iteratively solve the optimal control problem. In each iteration, EVs update their charging profiles according to the control signal broadcast by the utility company, and the utility company alters the control signal to guide their updates. The algorithm converges to optimal charging profiles (that are as "flat" as they can possibly be) irrespective of the specifications (e.g., maximum charging rate and deadline) of EVs, even if EVs do not necessarily update their charging profiles in every iteration, and use potentially outdated control signal when they update. Moreover, the algorithm only requires each EV solving its local problem, hence its implementation requires low computation capability. We also extend the algorithm to track a given load profile and to real-time implementation.

  17. AVTA: Testing Results on the USPS Long-life Vehicle Conversions to All-Electric

    Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe results of testing conversions to all-electric vehicles of the U.S. Postal Service's standard Long-Life Vehicle used for postal deliveries. The conversions were done by different companies and can be compared to understand the benefits of various electric drive and battery technologies. This research was conducted by Idaho National Laboratory.

  18. AVTA: Reports on Plug-in Electric Vehicle Readiness at 3 DOD Facilities

    Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports analyze data and survey results on readiness for the use of plug-in electric vehicles on the Naval Air Station Jacksonville, Naval Station Mayport, and Joint Base Lewis McChord, as informed by the AVTA's testing on plug-in electric vehicle charging equipment. This research was conducted by Idaho National Laboratory.

  19. AVTA: 2013 Ford Focus All-Electric Vehicle Testing Reports

    Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. ...

  20. Smith Electric Vehicles SEV Group Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    SEV Group Ltd Jump to: navigation, search Name: Smith Electric Vehicles (SEV) Group Ltd Place: Tyne & Wear, United Kingdom Zip: NE38 9DA Sector: Vehicles Product: UK-based...

  1. Plug-in hybrid electric vehicle R&D plan

    SciTech Connect

    None, None

    2007-06-01

    FCVT, in consultation with industry and other appropriate DOE offices, developed the Draft Plug-In Hybrid Electric Vehicle R&D Plan to accelerate the development and deployment of technologies critical for plug-in hybrid vehicles.

  2. Electric Vehicle Supply Equipment (EVSE) Test Report: Voltec...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    VEhICLE TEChNOLOgIES pROgRAm Electric Vehicle Supply Equipment (EVSE) Test Report: Voltec 240V EVSE Features Integrated Flashlight 25ft of coiled cable Auto-reset EVSE ...

  3. Electric Vehicle Preparedness - Task 2: Identification of Joint...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    PROGRAM Electric Vehicle Preparedness Task 2: Identification of Joint Base Lewis McChord Vehicles for Installation of Data Loggers June 2013 Prepared for: Joint Base Lewis McChord ...

  4. Electric Vehicle Charging Stations, Coming Soon to a City Near...

    Energy Saver

    Vehicle Charging Stations, Coming Soon to a City Near You Electric Vehicle Charging Stations, Coming Soon to a City Near You October 19, 2010 - 10:00am Addthis Erin R. Pierce Erin ...

  5. Sample Employee Newsletter Articles for Plug-In Electric Vehicle...

    Energy.gov [DOE] (indexed site)

    Sample Employee Newsletter Articles: Plug-In Electric Vehicle Calculators, Maps and Tools Vehicle Cost Calculator Helps You Add Up the Savings The eGallon: How Much Cheaper Is It ...

  6. Vehicle Technologies Office Merit Review 2016: Electric Drive...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications Vehicle Technologies Office Merit Review 2015: Electric Drive Inverter R&D Inverter R&D Vehicle Technologies Office Merit Review 2014: Inverter R&D

  7. Electric vehicle drive train with contactor protection

    DOEpatents

    Konrad, Charles E.; Benson, Ralph A.

    1994-01-01

    A drive train for an electric vehicle includes a traction battery, a power drive circuit, a main contactor for connecting and disconnecting the traction battery and the power drive circuit, a voltage detector across contacts of the main contactor, and a controller for controlling the main contactor to prevent movement of its contacts to the closed position when the voltage across the contacts exceeds a predetermined threshold, to thereby protect the contacts of the contactor. The power drive circuit includes an electric traction motor and a DC-to-AC inverter with a capacitive input filter. The controller also inhibits the power drive circuit from driving the motor and thereby discharging the input capacitor if the contacts are inadvertently opened during motoring. A precharging contactor is controlled to charge the input filter capacitor prior to closing the main contactor to further protect the contacts of the main contactor.

  8. Electric vehicle drive train with contactor protection

    DOEpatents

    Konrad, C.E.; Benson, R.A.

    1994-11-29

    A drive train for an electric vehicle includes a traction battery, a power drive circuit, a main contactor for connecting and disconnecting the traction battery and the power drive circuit, a voltage detector across contacts of the main contactor, and a controller for controlling the main contactor to prevent movement of its contacts to the closed position when the voltage across the contacts exceeds a predetermined threshold, to thereby protect the contacts of the contactor. The power drive circuit includes an electric traction motor and a DC-to-AC inverter with a capacitive input filter. The controller also inhibits the power drive circuit from driving the motor and thereby discharging the input capacitor if the contacts are inadvertently opened during motoring. A precharging contactor is controlled to charge the input filter capacitor prior to closing the main contactor to further protect the contacts of the main contactor. 3 figures.

  9. NREL Works to Increase Electric Vehicle Efficiency Through Enhanced Thermal Management (Fact Sheet)

    SciTech Connect

    Not Available

    2014-06-01

    Researchers at NREL are providing new insight into how heating and cooling systems affect the distance that electric vehicles can travel on a single charge. Electric vehicle range can be reduced by as much as 68% per charge because of climate-control demands. NREL engineers are investigating opportunities to change this dynamic and increase driving range by improving vehicle thermal management. NREL experts are collaborating with automotive industry partners to investigate promising thermal management technologies and strategies, including zone-based cabin temperature controls, advanced heating and air conditioning controls, seat-based climate controls, vehicle thermal preconditioning, and thermal load reduction technologies.

  10. Advanced Electric Drive Vehicles … A Comprehensive Education, Training,

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    and Outreach Program | Department of Energy Vehicles … A Comprehensive Education, Training, and Outreach Program Advanced Electric Drive Vehicles … A Comprehensive Education, Training, and Outreach Program 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt034_ti_ferdowsi_2012_o.pdf (1.02 MB) More Documents & Publications Advanced Electric Drive Vehicles … A Comprehensive Education, Training, and Outreach

  11. Fast Charging Electric Vehicle Research & Development Project

    SciTech Connect

    Heny, Michael

    2014-03-31

    The research and development project supported the engineering, design and implementation of on-road Electric Vehicle (“EV”) charging technologies. It included development of potential solutions for DC fast chargers (“DCFC”) capable of converting high voltage AC power to the DC power required by EVs. Additional development evaluated solutions related to the packaging of power electronic components and enclosure design, as well as for the design and evaluation of EV charging stations. Research compared different charging technologies to identify optimum applications in a municipal fleet. This project collected EV usage data and generated a report demonstrating that EVs, when supported by adequate charging infrastructure, are capable of replacing traditional internal combustion vehicles in many municipal applications. The project’s period of performance has demonstrated various methods of incorporating EVs into a municipal environment, and has identified three general categories for EV applications: - Short Commute: Defined as EVs performing in limited duration, routine commutes. - Long Commute: Defined as tasks that require EVs to operate in longer daily mileage patterns. - Critical Needs: Defined as the need for EVs to be ready at every moment for indefinite periods. Together, the City of Charlottesville, VA (the “City”) and Aker Wade Power Technologies, LLC (“Aker Wade”) concluded that the EV has a viable position in many municipal fleets but with limited recommendation for use in Critical Needs applications such as Police fleets. The report also documented that, compared to internal combustion vehicles, BEVs have lower vehicle-related greenhouse gas (“GHG”) emissions and contribute to a reduction of air pollution in urban areas. The enhanced integration of EVs in a municipal fleet can result in reduced demand for imported oil and reduced municipal operating costs. The conclusions indicated in the project’s Engineering Report (see

  12. Minimization of Impact from Electric Vehicle Supply Equipment to the

    Office of Scientific and Technical Information (OSTI)

    Electric Grid Using a Dynamically Controlled Battery Bank for Peak Load Shaving (Conference) | SciTech Connect Minimization of Impact from Electric Vehicle Supply Equipment to the Electric Grid Using a Dynamically Controlled Battery Bank for Peak Load Shaving Citation Details In-Document Search Title: Minimization of Impact from Electric Vehicle Supply Equipment to the Electric Grid Using a Dynamically Controlled Battery Bank for Peak Load Shaving This research presents a comparison of two

  13. Electric Vehicle Service Personnel Training Program

    SciTech Connect

    Bernstein, Gerald

    2013-06-21

    As the share of hybrid, plug-in hybrid (PHEV), electric (EV) and fuel-cell (FCV) vehicles grows in the national automotive fleet, an entirely new set of diagnostic and technical skills needs to be obtained by the maintenance workforce. Electrically-powered vehicles require new diagnostic tools, technique and vocabulary when compared to existing internal combustion engine-powered models. While the manufacturers of these new vehicles train their own maintenance personnel, training for students, independent working technicians and fleet operators is less focused and organized. This DOE-funded effort provided training to these three target groups to help expand availability of skills and to provide more competition (and lower consumer cost) in the maintenance of these hybrid- and electric-powered vehicles. Our approach was to start locally in the San Francisco Bay Area, one of the densest markets in the United States for these types of automobiles. We then expanded training to the Los Angeles area and then out-of-state to identify what types of curriculum was appropriate and what types of problems were encountered as training was disseminated. The fact that this effort trained up to 800 individuals with sessions varying from 2- day workshops to full-semester courses is considered a successful outcome. Diverse programs were developed to match unique time availability and educational needs of each of the three target audiences. Several key findings and observations arising from this effort include: • Recognition that hybrid and PHEV training demand is immediate; demand for EV training is starting to emerge; while demand for FCV training is still over the horizon • Hybrid and PHEV training are an excellent starting point for all EV-related training as they introduce all the basic concepts (electric motors, battery management, controllers, vocabulary, testing techniques) that are needed for all EVs, and these skills are in-demand in today’s market. • Faculty

  14. Clean Cities Plug-In Electric Vehicle Handbook for Electrical Contractors

    SciTech Connect

    2012-04-01

    This handbook answers basic questions about plug-in electric vehicles, charging stations, charging equipment, charging equipment installation, and training for electrical contractors.

  15. Housing assembly for electric vehicle transaxle

    DOEpatents

    Kalns, Ilmars

    1981-01-01

    Disclosed is a drive assembly (10) for an electrically powered vehicle (12). The assembly includes a transaxle (16) having a two-speed transmission (40) and a drive axle differential (46) disposed in a unitary housing assembly (38), an oil-cooled prime mover or electric motor (14) for driving the transmission input shaft (42), an adapter assembly (24) for supporting the prime mover on the transaxle housing assembly, and a hydraulic system (172) providing pressurized oil flow for cooling and lubricating the electric motor and transaxle and for operating a clutch (84) and a brake (86) in the transmission to shift between the two-speed ratios of the transmission. The adapter assembly allows the prime mover to be supported in several positions on the transaxle housing. The brake is spring-applied and locks the transmission in its low-speed ratio should the hydraulic system fail. The hydraulic system pump is driven by an electric motor (212) independent of the prime mover and transaxle.

  16. Climate Control Load Reduction Strategies for Electric Drive Vehicles in Warm Weather

    SciTech Connect

    Jeffers, M. A.; Chaney, L.; Rugh, J. P.

    2015-04-30

    Passenger compartment climate control is one of the largest auxiliary loads on a vehicle. Like conventional vehicles, electric vehicles (EVs) require climate control to maintain occupant comfort and safety, but cabin heating and air conditioning have a negative impact on driving range for all electric vehicles. Range reduction caused by climate control and other factors is a barrier to widespread adoption of EVs. Reducing the thermal loads on the climate control system will extend driving range, thereby reducing consumer range anxiety and increasing the market penetration of EVs. Researchers at the National Renewable Energy Laboratory have investigated strategies for vehicle climate control load reduction, with special attention toward EVs. Outdoor vehicle thermal testing was conducted on two 2012 Ford Focus Electric vehicles to evaluate thermal management strategies for warm weather, including solar load reduction and cabin pre-ventilation. An advanced thermal test manikin was used to assess a zonal approach to climate control. In addition, vehicle thermal analysis was used to support testing by exploring thermal load reduction strategies, evaluating occupant thermal comfort, and calculating EV range impacts. Through stationary cooling tests and vehicle simulations, a zonal cooling configuration demonstrated range improvement of 6%-15%, depending on the drive cycle. A combined cooling configuration that incorporated thermal load reduction and zonal cooling strategies showed up to 33% improvement in EV range.

  17. NREL Helps Communities Assess Their Readiness for Electric Vehicles - News

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Releases | NREL Helps Communities Assess Their Readiness for Electric Vehicles The PEV Scorecard gives local leaders tips for improvement February 14, 2013 The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) has launched a new tool to help local and regional leaders assess the readiness of their communities for the arrival of plug-in electric vehicles (PEVs). The Plug-In Electric Vehicle Community Readiness Scorecard (PEV Scorecard), developed by NREL for DOE's

  18. NREL: Hydrogen and Fuel Cells Research - Fuel Cell Electric Vehicle

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Evaluations Fuel Cell Electric Vehicle Evaluations NREL's technology validation team analyzes hydrogen fuel cell electric vehicles (FCEVs) operating in a real-world setting to identify the current status of the technology, compare it to Department of Energy (DOE) performance and durability targets, and evaluate progress between multiple generations of technology, some of which will include commercial FCEVs for the first time. Current fuel cell electric vehicle evaluations build on the

  19. AVTA: Urban Electric Vehicle Specifications and Test Procedures |

    Energy Saver

    Department of Energy Urban Electric Vehicle Specifications and Test Procedures AVTA: Urban Electric Vehicle Specifications and Test Procedures UEVAmerica Specifications (252.08 KB) ETA-UTP001 Implementation of SAE Standard J1263, Feb. 1996 - Road Load Measurement and Dynamometer Simulation Using Coastdown Techniques (50.53 KB) ETA-UTP002 Implementation of SAE Standard J1666, May 1993 - Electric Vehicle Acceleration, Gradeability, and Deceleration Test Procedure (65.68 KB) ETA-UTP003

  20. Fact #702: November 21, 2011 Consumer Preferences on Electric Vehicle

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Charging | Department of Energy 2: November 21, 2011 Consumer Preferences on Electric Vehicle Charging Fact #702: November 21, 2011 Consumer Preferences on Electric Vehicle Charging Data from a survey conducted between November 2010 and May 2011 show consumer preferences on electric vehicle (EV) charging times. Respondents from 17 different countries were asked for their longest acceptable charge time for an EV. In Taiwan, the country with the greatest number of respondents accepting longer

  1. EA-1678: Nissan North America, Inc., Advanced Technology Electric Vehicle

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Manufacturing Plant in Smyrna, TN | Department of Energy ATVM » ATVM Environmental Compliance » EA-1678: Nissan North America, Inc., Advanced Technology Electric Vehicle Manufacturing Plant in Smyrna, TN EA-1678: Nissan North America, Inc., Advanced Technology Electric Vehicle Manufacturing Plant in Smyrna, TN November 2, 2009 EA-1678: Final Environmental Assessment Loan To Nissan North America, Inc., for Advanced Technology Electric Vehicle Manufacturing Project in Smyrna, Tennessee

  2. What Are Your Thoughts on Electric Vehicles? | Department of Energy

    Energy Saver

    Thoughts on Electric Vehicles? What Are Your Thoughts on Electric Vehicles? October 21, 2010 - 7:30am Addthis On Tuesday, Erin told you about some pilot programs to install residential and commercial charging stations throughout the United States. These pilot programs will help researchers determine where the best locations are for these charging stations (outside the home). With the ramp-up in charging stations, tell us: What are your thoughts on electric vehicles? Each Thursday, you have the

  3. Highlighting Hydrogen: Hawaii's Success with Fuel Cell Electric Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Offers Opportunity Nationwide | Department of Energy Highlighting Hydrogen: Hawaii's Success with Fuel Cell Electric Vehicles Offers Opportunity Nationwide Highlighting Hydrogen: Hawaii's Success with Fuel Cell Electric Vehicles Offers Opportunity Nationwide September 11, 2014 - 2:38pm Addthis A fuel cell electric vehicle (FCEV) in Hawaii. Engineers from Idaho National Laboratory and National Renewable Energy Laboratory identified a new way to launch economically viable hydrogen fueling

  4. Load calculation and system evaluation for electric vehicle climate control

    SciTech Connect

    Aceves, S.M.; Comfort, W.J. III

    1994-09-12

    This paper presents an analysis of the applicability of alternative systems for electric vehicle (EV) heating and air conditioning (HVAC). The paper consists of two parts. The first part is a cooling and heating load calculation for electric vehicles. The second part is an evaluation of several systems that can provide the desired cooling and heating in EVs. These systems are ranked according to their overall weight The overall weight is calculated by adding the system weight and the weight of the battery necessary to provide energy for system operation. The system with the minimum overall weight is considered to be the best, because minimum vehicle weight decreases the energy required for propulsion, and therefore increases the vehicle range. Three systems are considered as the best choices for EV HVAC. These are, vapor compression, ice storage and adsorption systems. These systems are evaluated, including calculations of system weight, system volume, and COP. The paper also includes a calculation on how the battery energy storage capacity affects the overall system weights and the selection of the optimum system. The results indicate that, at the conditions analyzed in this paper, an ice storage system has the minimum weight of all the systems considered. Vapor compression air conditioners become the system with the minimum weight for battery storage capacities above 230 kJ/kg.

  5. Advanced Electric Drive Vehicles … A Comprehensive Education...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    A Comprehensive Education, Training, and Outreach Program Advanced Electric Drive Vehicles A Comprehensive Education, Training, and Outreach Program US-India S&T Agreement

  6. eGallon and Electric Vehicle Sales: The Big Picture

    Office of Energy Efficiency and Renewable Energy (EERE)

    This month, we're updating eGallon prices and taking a look at how the U.S. electric vehicle market continues to strengthen.

  7. Alternative Fuels Data Center: Charging Plug-In Electric Vehicles...

    Alternative Fuels and Advanced Vehicles Data Center

    ... Refer to these resources from the National Institute of Science and Technology (NIST): NIST Handbook 130 Method of Sale for Electrical Energy as Vehicle Fuel Handbook 44 Device ...

  8. Environmental Assessment of Plug-In Hybrid Electric Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Environmental Assessment of Plug-In Hybrid Electric Vehicles Volume 1: Nationwide Greenhouse Gas Emissions (3.06 MB) More Documents & Publications Alternative Transportation ...

  9. Driving Change in Residential Energy Efficiency: Electric Vehicles (301)

    Office of Energy Efficiency and Renewable Energy (EERE)

    Better Buildings Residential Network Peer Exchange Call Series: Driving Change in Residential Energy Efficiency: Electric Vehicles (301), call slides and discussion summary.

  10. Electric Vehicle Grid Integration for Sustainable Military Installations (Presentation)

    SciTech Connect

    Simpson, M.

    2011-05-05

    This presentation discusses electric vehicle grid integration for sustainable military installations. Fort Carson Military Reservation in Colorado Springs is used as a case study.

  11. Flywheel Energy Storage Device for Hybrid and Electric Vehicles...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy Storage Energy Storage Find More Like This Return to Search Flywheel Energy Storage Device for Hybrid and Electric Vehicles Oak Ridge National Laboratory Contact ORNL About ...

  12. Electric Vehicle Battery Thermal Issues and Thermal Management Techniques (Presentation)

    SciTech Connect

    Rugh, J. P.; Pesaran, A.; Smith, K.

    2013-07-01

    This presentation examines the issues concerning thermal management in electric drive vehicles and management techniques for improving the life of a Li-ion battery in an EDV.

  13. Communication and Control of Electric Vehicles Supporting Renewables: Preprint

    SciTech Connect

    Markel, T.; Kuss, M.; Denholm, P.

    2009-08-01

    Discusses the technologies needed, potential scenarios, limitations, and opportunities for using grid-connected renewable energy to fuel the electric vehicles of the future.

  14. Washington DC's First Electric Vehicle Charging Station | Department...

    Energy.gov [DOE] (indexed site)

    Street signage for Washington, DC's first electric vehicle charging station located on the northwest corner of the intersection of U and 14th streets. | Department of Energy Photo ...

  15. Vehicle Technologies Office - AVTA: All Electric Delivery Trucks...

    Energy.gov [DOE] (indexed site)

    Smith Newton all-electric delivery trucks in a variety of fleets. This research was conducted by the National Renewable Energy Laboratory (NREL). Smith Newton Vehicle Performance ...

  16. Website Reveals Early Lessons in Electric Vehicle Deployment...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Website Reveals Early Lessons in Electric Vehicle Deployment New web page is an online blueprint for community leaders February 22, 2011 Cities and states have new blueprints to ...

  17. SERA Scenarios of Early Market Fuel Cell Electric Vehicle Introduction...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    SERA Scenarios of Early Market Fuel Cell Electric Vehicle Introductions: Modeling Framework, Regional Markets, and Station Clustering ICEPAG Conference University of California, ...

  18. Microsoft Word - 1 Million Electric Vehicle Report Final

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    the road by 2015 represents a key milestone toward dramatically reducing dependence on oil and ensuring that America leads in the growing electric vehicle manufacturing industry. ...

  19. Flex Your Electric Vehicle Knowledge Muscle On Jeopardy! Tonight...

    Energy.gov [DOE] (indexed site)

    on how GM's Chevy Volt is using Argonne's breakthrough battery technology, and this interview with Argonne's Jeff Chamberlain on electric vehicle research and development, helpful. ...

  20. NREL Team Investigates Secondary Uses for Electric Drive Vehicle...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Team Investigates Secondary Uses for Electric Drive Vehicle Batteries April 5, 2011 The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL), industry and ...

  1. Now Available: Evaluating Electric Vehicle Charging Impacts and...

    Energy.gov [DOE] (indexed site)

    Under OE's Smart Grid Investment Grant (SGIG) program, six utilities evaluated operations and customer charging behaviors for in-home and public electric vehicle charging stations. ...

  2. Fact #795: September 2, 2013 Electric Vehicle Charging Stations...

    Energy.gov [DOE] (indexed site)

    Charger installations have risen in nearly all states, but a dozen states, shown in the graph below, account for a majority of all installations. Electric Vehicle Charging Stations ...

  3. Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Electric...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Electric Availability to someone by E-mail Share Alternative Fuels ...

  4. Plug-In Electric Vehicle Handbook for Public Charging Station...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Public Charging Station Hosts Plug-In Electric Vehicle Handbook for Public Charging Station Hosts 2 Table of Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3 ...

  5. Electric Vehicle Supply Equipment (EVSE) Test Report: Schneider...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Schneider Electric EVSE Features Charge Delay Option Power Light Indicator Eight-segment ... ambient temperature (F) 64 Test Vehicle 1,3 Make and model 2012 Chevrolet Volt ...

  6. DOE Hosts Workshop on Transition to Electric Vehicles | Department...

    Energy.gov [DOE] (indexed site)

    Washington, DC - On Thursday, July 22, 2010, the Department of Energy will host an electric vehicle workshop at DOE Headquarters in Washington, DC, bringing together more than 150 ...

  7. Plug-In Electric Vehicle Handbook for Consumers (Spanish Version...

    Alternative Fuels and Advanced Vehicles Data Center

    ... El Crdito Federal por Vehculos Enchufables con Motor de Direccin Elctrica que Califiquen (Qualified Plug-In Electric Drive Motor Vehicle Tax Credit) est disponible para ...

  8. Guiding Principles to Promote Electric Vehicles and Charging...

    Office of Environmental Management (EM)

    This commitment signified the beginning of a collaboration between the government and industry to increase the deployment of electric vehicle charging infrastructure. Building on ...

  9. Electric Drive Vehicle Level Control Development Under Various...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Level Control Development Under Various Thermal Conditions Electric Drive Vehicle Level Control Development Under Various Thermal Conditions 2012 DOE Hydrogen and Fuel Cells ...

  10. Plug-in Electric Vehicle Infrastructure: A Foundation for Electrified...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    40-47951 April 2010 Plug-in Electric Vehicle Infrastructure: A Foundation for Electrified Transportation Preprint T. Markel To be presented at the MIT Energy Initiative ...

  11. Electric Vehicle Supply Equipment (EVSE) Test Report: AeroVironment

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    pROGRAM Electric Vehicle Supply Equipment (EVSE) Test Report: AeroVironment EVSE Features LED status light EVSE Specifcations Grid connection Hardwired Connector type J1772 Test ...

  12. Hybrid Electric Vehicle, Winner of the "FutureCar Challenge

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Hybrid Electric Vehicle, Winner of the "FutureCar Challenge," to Recharge at the National Renewable Energy Laboratory, One of Only Three Stops Between Sacramento, Calif. and ...

  13. Grid-Interactive Electric Vehicle DC-Link Photovoltaic Charging...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Find More Like This Return to Search Grid-Interactive Electric Vehicle DC-Link Photovoltaic Charging System University of Colorado Contact CU About This Technology Publications: ...

  14. Driving Change in Residential Energy Efficiency: Electric Vehicles...

    Energy.gov [DOE] (indexed site)

    Change in Residential Energy Efficiency: Electric Vehicles (301), call slides and discussion summary. Call Slides and Discussion Summary (4.41 MB) More Documents & Publications ...

  15. AVTA: EVSE Testing- NYSERDA Electric Vehicle Charging Infrastructure Reports

    Energy.gov [DOE]

    These reports describe the charging patterns of drivers participating in the New York State Energy Research and Development Authority's (NYSERDA) electric vehicle (EV) infrastructure project.

  16. Plug-in electric vehicle market penetration and incentives: a...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Book Title Mitigation and Adaptation Strategies for Global Change Volume 20 Publisher Springer Keywords global vehicle sales, government incentive policies, plug-in electric...

  17. Plug-In Electric Vehicle Fast Charge Station Operational Analysis...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Battery, Hybrid and Fuel Cell Electric Vehicle Symposium ... Proper integration of a solar array and stationary battery ... a viable alternative to petroleum-fueled automobiles ...

  18. 2007 Toyota Camry-6330 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect

    Tyler Gray; Chester Motloch; James Francfort

    2010-01-01

    The U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) conducts several different types of tests on hybrid electric vehicles (HEVs), including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Toyota Camry hybrid electric vehicle (Vin Number JTNBB46K673006330). Testing was performed by the Electric Transportation Engineering Corporation. The AVTA is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct AVTA for the U.S. Department of Energy.

  19. Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation

    Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  20. Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation

    Office of Energy Efficiency and Renewable Energy (EERE)

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  1. Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation

    Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  2. Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification

    Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  3. Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification

    Office of Energy Efficiency and Renewable Energy (EERE)

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  4. Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification

    Office of Energy Efficiency and Renewable Energy (EERE)

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  5. Electric vehicle drive train with rollback detection and compensation

    DOEpatents

    Konrad, Charles E. (Roanoke, VA)

    1994-01-01

    An electric vehicle drive train includes a controller for detecting and compensating for vehicle rollback, as when the vehicle is started upward on an incline. The vehicle includes an electric motor rotatable in opposite directions corresponding to opposite directions of vehicle movement. A gear selector permits the driver to select an intended or desired direction of vehicle movement. If a speed and rotational sensor associated with the motor indicates vehicle movement opposite to the intended direction of vehicle movement, the motor is driven to a torque output magnitude as a nonconstant function of the rollback speed to counteract the vehicle rollback. The torque function may be either a linear function of speed or a function of the speed squared.

  6. Electric vehicle drive train with rollback detection and compensation

    DOEpatents

    Konrad, C.E.

    1994-12-27

    An electric vehicle drive train includes a controller for detecting and compensating for vehicle rollback, as when the vehicle is started upward on an incline. The vehicle includes an electric motor rotatable in opposite directions corresponding to opposite directions of vehicle movement. A gear selector permits the driver to select an intended or desired direction of vehicle movement. If a speed and rotational sensor associated with the motor indicates vehicle movement opposite to the intended direction of vehicle movement, the motor is driven to a torque output magnitude as a nonconstant function of the rollback speed to counteract the vehicle rollback. The torque function may be either a linear function of speed or a function of the speed squared. 6 figures.

  7. Electric-drive tractability indicator integrated in hybrid electric vehicle tachometer

    SciTech Connect

    Tamai, Goro; Zhou, Jing; Weslati, Feisel

    2014-09-02

    An indicator, system and method of indicating electric drive usability in a hybrid electric vehicle. A tachometer is used that includes a display having an all-electric drive portion and a hybrid drive portion. The all-electric drive portion and the hybrid drive portion share a first boundary which indicates a minimum electric drive usability and a beginning of hybrid drive operation of the vehicle. The indicated level of electric drive usability is derived from at least one of a percent battery discharge, a percent maximum torque provided by the electric drive, and a percent electric drive to hybrid drive operating cost for the hybrid electric vehicle.

  8. Vehicle Technologies Office Merit Review 2015: Electric Drive...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Electric Drive Inverter R&D Vehicle Technologies Office Merit Review 2015: Electric Drive Inverter R&D Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and ...

  9. Clean Cities Coalitions Charge Up Plug-In Electric Vehicles ...

    Office of Environmental Management (EM)

    May 9, 2013 - 4:22pm Addthis Workers put the finishing touches on installing a plug-in electric vehicle charger that is part of the West Coast Electric Highway. | Photo courtesy of ...

  10. Microsoft Word - 1 Million Electric Vehicle Report Final | Department...

    Energy.gov [DOE] (indexed site)

    1 Million Electric Vehicle Report Final (219.14 KB) More Documents & Publications FY 2012 Annual Progress Report for Energy Storage R&D Hybrid Electric Systems Revolution Now: The ...

  11. Evaluation of electric vehicle battery systems through in-vehicle testing: Third annual report, April 1989

    SciTech Connect

    Blickwedel, T.W.; Thomas, W.A.; Whitehead, G.D.

    1989-04-01

    This third annual summary report documents the performance from October 1986 through September 1987 of the Tennessee Valley Authority's ongoing project to evaluate near-term electric vehicle traction battery packs. Detailed test procedures and test data are available from EPRI in an informal data report. The purpose of this field test activity is to provide an impartial life evaluation and comparison of the performance of various battery systems in a real-world operating environment. Testing includes initial acceptance testing of battery components and systems, daily in-vehicle operation of the batteries, monthly in-vehicle driving range tests, and periodic static (constant current) discharge tests under computer control. This year's report gives the final results on a NiZn, NiCd, Gel Cell, and two lead-acid battery packs. Specific energy and monthly driving ranges (SAE J227a ''C'' cycle and 35 mi/h constant speed cycles) are maintained throughout battery life. Vehicle range test data is analyzed statistically and variable conditions are normalized for comparative purposes. Battery modules in the pack are replaced when their measured ampere-hour capacity at a fixed discharge rate drops to 60 percent of the manufacturer's rated value. The life of a test battery pack is terminated when 25 percent of the modules in the pack have been replaced or require replacement. 26 figs., 8 tabs.

  12. Vehicle Technologies Office: 2014 Electric Drive Technologies Annual

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Progress Report | Department of Energy Electric Drive Technologies Annual Progress Report Vehicle Technologies Office: 2014 Electric Drive Technologies Annual Progress Report The Electric Drive Technologies research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research is focused on developing power electronics (PE), electric motor, and traction drive system

  13. Analysis of data from electric and hybrid electric vehicle student competitions

    SciTech Connect

    Wipke, K.B.; Hill, N.; Larsen, R.P.

    1994-01-01

    The US Department of Energy sponsored several student engineering competitions in 1993 that provided useful information on electric and hybrid electric vehicles. The electrical energy usage from these competitions has been recorded with a custom-built digital meter installed in every vehicle and used under controlled conditions. When combined with other factors, such as vehicle mass, speed, distance traveled, battery type, and type of components, this information provides useful insight into the performance characteristics of electrics and hybrids. All the vehicles tested were either electric vehicles or hybrid vehicles in electric-only mode, and had an average energy economy of 7.0 km/kwh. Based on the performance of the ``ground-up`` hybrid electric vehicles in the 1993 Hybrid Electric Vehicle Challenge, data revealed a I km/kwh energy economy benefit for every 133 kg decrease in vehicle mass. By running all the electric vehicles at a competition in Atlanta at several different constant speeds, the effects of rolling resistance and aerodynamic drag were evaluated. On average, these vehicles were 32% more energy efficient at 40 km/h than at 72 km/h. The results of the competition data analysis confirm that these engineering competitions not only provide an educational experience for the students, but also show technology performance and improvements in electric and hybrid vehicles by setting benchmarks and revealing trends.

  14. Environmental Assessment of the US Department of Energy Electric and Hybrid Vehicle Program

    SciTech Connect

    Singh, M.K.; Bernard, M.J. III; Walsh, R.F

    1980-11-01

    This environmental assessment (EA) focuses on the long-term (1985-2000) impacts of the US Department of Energy (DOE) electric and hybrid vehicle (EHV) program. This program has been designed to accelerate the development of EHVs and to demonstrate their commercial feasibility as required by the Electric and Hybrid Vehicle Research, Development and Demonstration Act of 1976 (P.L. 94-413), as amended (P.L. 95-238). The overall goal of the program is the commercialization of: (1) electric vehicles (EVs) acceptable to broad segments of the personal and commercial vehicle markets, (2) hybrid vehicles (HVs) with range capabilities comparable to those of conventional vehicles (CVs), and (3) advanced EHVs completely competitive with CVs with respect to both cost and performance. Five major EHV projects have been established by DOE: market demonstration, vehicle evaluation and improvement, electric vehicle commercialization, hybrid vehicle commercialization, and advanced vehicle development. Conclusions are made as to the effects of EV and HV commercialization on the: consumption and importation of raw materials; petroleum and total energy consumption; ecosystems impact from the time of obtaining raw material through vehicle use and materials recycling; environmental impacts on air and water quality, land use, and noise; health and safety aspects; and socio-economic factors. (LCL)

  15. Vehicle Technologies Office Merit Review 2015: Electric Drive Vehicle Climate Control Load Reduction

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about electric...

  16. Vehicle Technologies Office Merit Review 2014: Electric Drive Vehicle Climate Control Load Reduction

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about electric...

  17. NRELs Isothermal Battery Calorimeters are Crucial Tools for Advancing Electric-Drive Vehicles (Fact Sheet), Innovation Impact: Transportation, NREL (National Renewable Energy Laboratory)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Isothermal Battery Calorimeters are Crucial Tools for Advancing Electric-Drive Vehicles With average U.S. gasoline prices hovering in the $3 to $4 per gallon range and higher fuel economy standards taking effect, drivers and automakers are thinking more about electric vehicles, hybrid electric vehicles, and plug-in hybrids. But before more Americans switch to electric-drive vehicles, automakers need batteries that can deliver the range, performance, reliability, price, and safety that drivers

  18. Hybrid Electric and Plug-in Hybrid Electric Vehicle Testing Activities

    SciTech Connect

    Donald Karner

    2007-12-01

    The Advanced Vehicle Testing Activity (AVTA) conducts hybrid electric vehicle (HEV) and plug-in hybrid electric vehicle (PHEV) testing in order to provide benchmark data for technology modeling and research and development programs, and to be an independent source of test data for fleet managers and other early adaptors of advanced-technology vehicles. To date, the AVTA has completed baseline performance testing on 12 HEV models and accumulated 2.7 million fleet testing miles on 35 HEVs. The HEV baseline performance testing includes dynamometer and closed-track testing to document HEV performance in a controlled environment. During fleet testing, two of each HEV model accumulate 160,000 test miles within 36 months, during which maintenance and repair events and fuel use were recorded. Three models of PHEVs, from vehicle converters Energy CS and Hymotion and the original equipment manufacturer Renault, are currently in testing. The PHEV baseline performance testing includes 5 days of dynamometer testing with a minimum of 26 test drive cycles, including the Urban Dynamometer Driving Schedule, the Highway Fuel Economy Driving Schedule, and the US06 test cycle, in charge-depleting and charge-sustaining modes. The PHEV accelerated testing is conducted with dedicated drivers for 4,240 miles, over a series of 132 driving loops that range from 10 to 200 miles over various combinations of defined 10-mile urban and 10-mile highway loops, with 984 hours of vehicle charging. The AVTA is part of the U.S. Department of Energy’s FreedomCAR and Vehicle Technologies Program. These AVTA testing activities were conducted by the Idaho National Laboratory and Electric Transportation Applications, with dynamometer testing conducted at Argonne National Laboratory. This paper discusses the testing methods and results.

  19. Electric Vehicle-Smart Grid Interoperability | Argonne National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Electrical Contractors Plug-In Electric Vehicle Handbook for Electrical Contractors 2 Table of Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3 PEV Basics . . . . . . . . . . . . . . . . . . . . . . . . . 4 Charging Basics . . . . . . . . . . . . . . . . . . . . . 6 Installing and Maintaining EVSE . . . . . . . 9 EVSE Training for Electrical Contractors . . . . . . . . . . . . . . . . 18 Electrifying the Future . . . . . . . . . . . . . . . 19 Clean Cities Helps Deploy PEV

  20. Lightweight Sealed Steel Fuel Tanks for Advanced Hybrid Electric Vehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Sealed Steel Fuel Tanks for Advanced Hybrid Electric Vehicles Lightweight Sealed Steel Fuel Tanks for Advanced Hybrid Electric Vehicles 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting lm066_yaccarino_2012_o.pdf (3.73 MB) More Documents & Publications A Review of Stress Corrosion Cracking/Fatigue Modeling for Light Water Reactor Cooling System Components Report on Assessment of

  1. Fuel Cell Electric Vehicles and Hydrogen Infrastructure: Deployment and

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Issues | Department of Energy Electric Vehicles and Hydrogen Infrastructure: Deployment and Issues Fuel Cell Electric Vehicles and Hydrogen Infrastructure: Deployment and Issues This presentation by Bill Elrick of the California Fuel Cell Partnership was given at the DOE Hydrogen Compression, Storage, and Dispensing Workshop on March 19, 2013. csd_workshop_2_elrick.pdf (1004.25 KB) More Documents & Publications FCEVs and Hydrogen in California Vision for Rollout of Fuel Cell Vehicles and

  2. Battery Second Use Offsets Electric Vehicle Expenses, Improves Grid

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Stability - News Feature | NREL Battery Second Use Offsets Electric Vehicle Expenses, Improves Grid Stability June 22, 2015 Photo of a man in a lab, holding cables. NREL's Jeremy Neubauer measures battery voltage in an environmental chamber at the Thermal Test Facility. NREL is identifying battery second use (B2U) strategies capable of offsetting vehicle expenses while improving utility grid stability. Photo by Dennis Schroeder Plug-in electric vehicles (PEVs) have the potential to

  3. Autonomous Intelligent Plug-In Hybrid Electric Vehicles (PHEVs) |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Autonomous Intelligent Plug-In Hybrid Electric Vehicles (PHEVs) Autonomous Intelligent Plug-In Hybrid Electric Vehicles (PHEVs) 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting vss092_malikopoulos_2012_p.pdf (922.92 KB) More Documents & Publications Autonomous Intelligent Hybrid Propulsion Systems The Meritor Dual Mode Hybrid Powertrain CRADA The Meritor Dual Mode Hybrid Powertrain CRADA

  4. Fact #919: April 4, 2016 Plug-in Electric Vehicle Charging Options and

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Times Vary Considerably | Department of Energy 9: April 4, 2016 Plug-in Electric Vehicle Charging Options and Times Vary Considerably Fact #919: April 4, 2016 Plug-in Electric Vehicle Charging Options and Times Vary Considerably SUBSCRIBE to the Fact of the Week There are currently four basic power levels for charging plug-in electric vehicles (PEVs). Level 1 charging is the slowest, adding just two to five miles of range per hour but requiring only a standard 120 volt household outlet.

  5. Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation

    Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  6. Electric Drive Vehicle Level Control Development Under Various Thermal

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Conditions | Department of Energy Level Control Development Under Various Thermal Conditions Electric Drive Vehicle Level Control Development Under Various Thermal Conditions 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting vss070_kim_2012_o.pdf (1.63 MB) More Documents & Publications Vehicle Technologies Office Merit Review 2014: Vehicle Level Model and Control Development and Validation Under Various Thermal

  7. Roadmap for Testing and Validation of Electric Vehicle Communication Standards

    SciTech Connect

    Pratt, Richard M.; Tuffner, Francis K.; Gowri, Krishnan

    2012-07-12

    Vehicle to grid communication standards are critical to the charge management and interoperability among plug-in electric vehicles (PEVs), charging stations and utility providers. The Society of Automobile Engineers (SAE), International Organization for Standardization (ISO), International Electrotechnical Commission (IEC) and the ZigBee Alliance are developing requirements for communication messages and protocols. While interoperability standards development has been in progress for more than two years, no definitive guidelines are available for the automobile manufacturers, charging station manufacturers or utility backhaul network systems. At present, there is a wide range of proprietary communication options developed and supported in the industry. Recent work by the Electric Power Research Institute (EPRI), in collaboration with SAE and automobile manufacturers, has identified performance requirements and developed a test plan based on possible communication pathways using power line communication (PLC). Though the communication pathways and power line communication technology options are identified, much work needs to be done in developing application software and testing of communication modules before these can be deployed in production vehicles. This paper presents a roadmap and results from testing power line communication modules developed to meet the requirements of SAE J2847/1 standard.

  8. EV Everywhere: Electric Vehicle Stories | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Stories EV Everywhere: Electric Vehicle Stories Drivers of electric vehicles who work at DOE and its national laboratories share their experiences. Read the text version. One of the biggest drivers of people purchasing a plug-in electric vehicle (also known as an electric car or EV) is hearing about it from a family member, friend, co-worker or neighbor. Now with the help of new EV Everywhere decals you can further spread the word about the nationwide effort to drive the transition to

  9. Hybrid and Plug-In Electric Vehicle Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Vehicles & Fuels » Vehicles » Hybrid and Plug-In Electric Vehicle Basics Hybrid and Plug-In Electric Vehicle Basics August 20, 2013 - 9:13am Addthis Text Version Photo of hands holding a battery pack (grey rectangular box) for a hybrid electric vehicle. Hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and all-electric vehicles (EVs)-also called electric drive vehicles collectively-use electricity either as their primary fuel or to improve the efficiency of

  10. AVTA: 2014 Smart Electric Drive Coupe All-Electric Vehicle Testing Reports

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. ...

  11. NREL: Learning - Hybrid Electric Vehicle Basics

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Series design-In this design, the primary engine is connected to a generator that produces electricity. The electricity charges the batteries, which drive an electric motor that ...

  12. Evaluating Electric Vehicle Charging Impacts and Customer Charging

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Behaviors: Experiences from Six Smart Grid Investment Grant Projects (December 2014) | Department of Energy Evaluating Electric Vehicle Charging Impacts and Customer Charging Behaviors: Experiences from Six Smart Grid Investment Grant Projects (December 2014) Evaluating Electric Vehicle Charging Impacts and Customer Charging Behaviors: Experiences from Six Smart Grid Investment Grant Projects (December 2014) The electric power industry expects a 400% growth in annual sales of plug-in

  13. Vehicle Technologies Office: 2011 Advanced Power Electronics and Electric

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Motors R&D Annual Progress Report | Department of Energy Power Electronics and Electric Motors R&D Annual Progress Report Vehicle Technologies Office: 2011 Advanced Power Electronics and Electric Motors R&D Annual Progress Report The Advanced Power Electronics and Electric Motors (APEEM) program within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing

  14. Vehicle Technologies Office: 2012 Advanced Power Electronics and Electric

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Motors R&D Annual Progress Report | Department of Energy Power Electronics and Electric Motors R&D Annual Progress Report Vehicle Technologies Office: 2012 Advanced Power Electronics and Electric Motors R&D Annual Progress Report The Advanced Power Electronics and Electric Motors (APEEM) program within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing

  15. Vehicle Technologies Office: 2013 Advanced Power Electronics and Electric

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Motors R&D Annual Progress Report | Department of Energy Advanced Power Electronics and Electric Motors R&D Annual Progress Report Vehicle Technologies Office: 2013 Advanced Power Electronics and Electric Motors R&D Annual Progress Report The Advanced Power Electronics and Electric Motors (APEEM) technology area within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on

  16. Electric vehicle regenerative antiskid braking and traction control system

    DOEpatents

    Cikanek, S.R.

    1995-09-12

    An antiskid braking and traction control system for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes one or more sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensors and determining if regenerative antiskid braking control, requiring hydraulic braking control, or requiring traction control are required. The processor then employs a control strategy based on the determined vehicle state and provides command signals to a motor controller to control the operation of the electric traction motor and to a brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative antiskid braking control, hydraulic braking control, and traction control. 10 figs.

  17. Electric vehicle regenerative antiskid braking and traction control system

    DOEpatents

    Cikanek, Susan R.

    1995-01-01

    An antiskid braking and traction control system for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes one or more sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensors and determining if regenerative antiskid braking control, requiring hydrualic braking control, or requiring traction control are required. The processor then employs a control strategy based on the determined vehicle state and provides command signals to a motor controller to control the operation of the electric traction motor and to a brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative antiskid braking control, hydraulic braking control, and traction control.

  18. AVTA: Plug-in Hybrid Electric Vehicle Specifications and Test Procedures |

    Energy Saver

    Department of Energy Plug-in Hybrid Electric Vehicle Specifications and Test Procedures AVTA: Plug-in Hybrid Electric Vehicle Specifications and Test Procedures Plug-in Hybrid Electric Vehicle Test Plan DRAFT - Integrated Test Plan and Evaluation Program for Review for Plug-in Hybrid Electric Vehicles (PHEVs) (2.33 MB) More Documents & Publications AVTA: Hybrid Electric Vehicle Specifications and Test Procedures Vehicle Technologies Office: 2010 Vehicle and Systems Simulation and Testing

  19. Hybrid and Plug-In Electric Vehicles (Spanish Version); Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    SciTech Connect

    2015-08-01

    This is a Spanish-language brochure about hybrid and plug-in electric vehicles, which use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), all-electric vehicles (EVs). Together, they have great potential to cut U.S. petroleum use and vehicle emissions.

  20. Vehicle Technologies Office: AVTA- All-Electric Vehicle (Car) Performance Data

    Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. Downloadable performance and testing data on the all-electric versions of the following vehicles is available: 2014 Smart Electric Drive Coupe, 2013 Ford Focus, 2013 Nissan Leaf, 2012 Mitsubishi i-MiEV, 2012 Nissan Leaf, 2011 Nissan Leaf, 2010 USPS eLLV Conversions, and 2009 BMW Mini-E.

  1. Electric Vehicle Manufacturing Taking Off in the U.S. | Department...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Electric Vehicle Manufacturing Taking Off in the U.S. Electric Vehicle Manufacturing Taking Off in the U.S. May 30, 2014 - 11:22am Addthis Electric Vehicle Manufacturing Taking Off ...

  2. US-China_Fact_Sheet_Electric_Vehicles.pdf | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ElectricVehicles.pdf US-ChinaFactSheetElectricVehicles.pdf US-ChinaFactSheetElectricVehicles.pdf More Documents & Publications THE WHITE HOUSE FACT SHEET: U.S.-China Clean...

  3. Analysis of Electric Vehicle Battery Performance Targets

    Office of Energy Efficiency and Renewable Energy (EERE)

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  4. Electric Drive Vehicle Climate Control Load Reduction

    Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  5. 2011 Hyundai Sonata 3539 - Hybrid Electric Vehicle Battery Test Results

    SciTech Connect

    Matthew Shirk; Tyler Gray; Jeffrey Wishart

    2014-09-01

    The U.S. Department of Energy’s Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles, including testing hybrid electric vehicle batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Hyundai Sonata Hybrid (VIN KMHEC4A47BA003539). Battery testing was performed by Intertek Testing Services NA. The Idaho National Laboratory and Intertek collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

  6. Fact #919: April 4, 2016 Plug-in Electric Vehicle Charging Options...

    Energy.gov [DOE] (indexed site)

    per charge time, vehicle charge ports, and vehicle manufacturers that use charge ports. ... Infrastructure to Charge Plug-In Electric Vehicles," website accessed 3042016. ...

  7. Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle...

    Alternative Fuels and Advanced Vehicles Data Center

    a maximum speed greater than 25 miles per hour must meet Federal Motor Vehicle Safety Standard 305, Electric Powered Vehicles: Electrolyte Spillage and Electrical Shock Prevention. ...

  8. Consumer Views on Plug-in Electric Vehicles … National Benchmark...

    Alternative Fuels and Advanced Vehicles Data Center

    ... consistently park their vehicles near electrical outlets at home. * 51% of respondents ... However, a majority (57%) stated they could park their vehicles near electrical outlets at ...

  9. Low-cost conformable storage to maximize vehicle range

    SciTech Connect

    Graham, R.P.

    1998-01-01

    Liquefied petroleum gas (LPG) and compressed natural gas (CNG) are currently the leading fuel contenders for converting vehicles from gasoline and diesel to alternative fuels. Two factors that inhibit conversion are additional vehicle costs and reduced range compared to gasoline. In overcoming these barriers, a key element of the alternative fuel system becomes the storage tank for these pressurized fuels. Using cylindrical pressure vessels is the conventional approach, but they do not package well in the available vehicle volume. Thiokol Corporation has developed and is now producing a conformable (non-cylindrical) aluminum storage system for LPG vans. This system increases fuel storage in a given rectangular envelope. The goal of this project was to develop the technology for a lower cost conformable tank made of injection-molded plastic. Much of the cost of the aluminum conformable tank is in the fabrication because several weld seams are required. The injection-molding process has the potential to greatly reduce the fabrication costs. The requirements of a pressurized fuel tank on a vehicle necessitate the proper combination of material properties. Material selection and tank design must be optimized for maximum internal volume and minimum material use to be competitive with other technologies. The material and the design must also facilitate the injection-molding process. Prototype tanks must be fabricated to reveal molding problems, prove solutions, and measure results. In production, efficient fabrication will be key to making these tanks cost competitive. The work accomplished during this project has demonstrated that conformable LPG tanks can be molded with thermoplastics. However, to achieve a competitive tank, improvements are needed in the effective material strength. If these improvements can be made, molded plastics should produce a lower cost tank that can store more LPG on a vehicle than conventional cylinders.

  10. Electric Vehicle Service Personnel Training Program

    Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  11. Electric Vehicle Charging Infrastructure Deployment Guidelines...

    OpenEI (Open Energy Information) [EERE & EIA]

    Municipal Fleets ... further results Find Another Tool FIND TRANSPORTATION TOOLS A major component of winning public acceptance for plug-in vehicles is the streamlining of the...

  12. Advanced Electric Drive Vehicle Education Program | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt031tiebron2011p.pdf (248.66 KB

  13. Electric Vehicle Service Personnel Training Program | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt040tibernstein2011p.pdf (562.3 KB

  14. Advanced Electric Drive Vehicle Education Program

    Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  15. Transatlantic Workshop on Electric Vehicles and Grid Connectivity

    Energy.gov [DOE]

    The U.S.-EU Energy Council convened equipment suppliers and manufacturers, utilities, policymakers, standards organizations, and government agencies to discuss mutually beneficial near-term actions to accelerate the introduction of electric vehicles to the market.

  16. Plug-In Electric Vehicle Handbook for Consumers

    SciTech Connect

    2015-02-09

    This handbook is designed to answer a consumer's basic questions, as well as point them to additional information they need, to make the best decision about whether an electric-drive vehicle is right for them.

  17. NREL: Learning - Plug-In Hybrid Electric Vehicle Basics

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Credit: Keith Wipke Image of the cutaway top view of a passenger vehicle showing the drive train that contains an electric motor and a small internal combustion engine side by side ...

  18. Guiding Principles to Promote Electric Vehicles and Charging Infrastructure

    Energy.gov [DOE]

    On July 21, 2016, the White House announced that nearly 50 industry members signed on to Guiding Principles to Promote Electric Vehicles and Charging Infrastructure. This commitment signified the...

  19. DOE Issues Guidance on Electric Vehicle Recharging Stations

    Energy.gov [DOE]

    The U.S. Department of Energy recently issued guidance to its national laboratory management and operating (M&O) contractors on the installation and operation of electric vehicle recharging...

  20. High-Voltage Solid Polymer Batteries for Electric Drive Vehicles...

    Office of Scientific and Technical Information (OSTI)

    Title: High-Voltage Solid Polymer Batteries for Electric Drive Vehicles The purpose of this project was for Seeo to develop a high energy lithium based technology with targets of ...

  1. Smith Electric Vehicles US SEV US | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    US SEV US Jump to: navigation, search Name: Smith Electric Vehicles US (SEV-US) Place: Kansas City, Missouri Zip: 64163 Product: Kansas-based company owned by US investors and the...

  2. Route-Based Control of Hybrid Electric Vehicles: Preprint

    SciTech Connect

    Gonder, J. D.

    2008-01-01

    Today's hybrid electric vehicle controls cannot always provide maximum fuel savings over all drive cycles. Route-based controls could improve HEV fuel efficiency by 2%-4% and help save nearly 6.5 million gallons of fuel annually.

  3. Electric Vehicle Supply Equipment (EVSE) Test Report: Eaton

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    2,500 3,000 Time (s) Power (Watts) Charge Start EVSE Power In EVSE Power Out Electric Vehicle Supply Equipment (EVSE) Test Report: Eaton EVSE Tested Eaton Residential ...

  4. Holiday Shopping and Electric Vehicles | GE Global Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    cost-effectively, and with the lowest impact to the grid - while making sure your packages and FedEx's electric-vehicle delivery trucks don't get stranded. How do we do it? ...

  5. Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    DOE Webinar Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol U.S. DOE WEBINAR ON H2 FUELING PROTOCOLS: PARTICIPANTS Rob Burgess Moderator Jesse Schneider TIR J2601, ...

  6. AVTA: Neighborhood Electric Vehicle Specifications and Test Procedures...

    Energy.gov [DOE] (indexed site)

    NEVAmerica Technical Specifications (135.99 KB) NEVAmerica Test Sequence (66.19 KB) ETA-NTP002 Implementation of SAE Standard J1666 May 93 - Electric Vehicle Acceleration, ...

  7. AVTA: Hybrid Electric Vehicle Specifications and Test Procedures...

    Energy.gov [DOE] (indexed site)

    (118.71 KB) ETA-HTP02 Implementation of SAE Standard J1666 May 1993 - Hybrid Electric Vehicle Acceleration, Gradeability, and Deceleration Test Procedure (230.69 KB) ETA-HTP03 ...

  8. Plug-In Electric Vehicle Handbook for Consumers (Brochure)

    SciTech Connect

    Not Available

    2015-02-01

    This handbook is designed to answer a consumer's basic questions, as well as point them to additional information they need, to make the best decision about whether an electric-drive vehicle is right for them.

  9. Fact #666: March 14, 2011 Survey says Electric Vehicle Prices...

    Energy.gov [DOE] (indexed site)

    NovemberDecember 2010 surveys of 1,716 drivers and 123 automobile industry executives indicate that both groups believe a low electric vehicle price would motivate consumers to ...

  10. Electric Vehicle Supply Equipment (EVSE) Test Report: Siemens...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    2,500 3,000 Time (s) Power (Watts) Charge Start EVSE Power In EVSE Power Out Electric Vehicle Supply Equipment (EVSE) Test Report: Siemens-VersiCharge EVSE Tested ...

  11. Electric Vehicle Preparedness - Task 1: Assessment of Data and...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof. INLEXT-13-29360 Electric Vehicle ...

  12. Electric Vehicle Supply Equipment (EVSE) Test Report: SPX

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    2,500 3,000 Time (s) Power (Watts) Charge Start EVSE Power In EVSE Power Out Electric Vehicle Supply Equipment (EVSE) Test Report: SPX EVSE Tested SPX Residential Wall-Mount ...

  13. NREL Innovation Improves Safety of Electric Vehicle Batteries...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Innovation Improves Safety of Electric Vehicle Batteries October 30, 2015 A man holds a sheet of copper discs. NREL Senior Engineer Mathew Keyser holds a sheet of copper discs, one ...

  14. Medium- and Heavy-Duty Electric Drive Vehicle Simulation and...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Medium- and Heavy-Duty Electric Drive Vehicle Simulation and Analysis PI: Jeff Gonder (NREL) Team: Laurie Ramroth and Aaron Brooker May 15, 2012 Project ID : VSS043 This ...

  15. NREL Works to Increase Electric Vehicle Efficiency Through Enhanced...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    FS-6A42-62241 * June 2014 NREL prints on paper that contains recycled content. NREL Works to Increase Electric Vehicle Efficiency Through Enhanced Thermal Management Researchers at ...

  16. Medium- and Heavy-Duty Electric Drive Vehicle Simulation and...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Medium- and Heavy-Duty Electric Drive Vehicle Simulation and Analysis DOE VTP Annual Merit Review PI: Robb A. Barnitt Organization: NREL May 10, 2011 Project ID: VSS043 This ...

  17. Advanced High-Performance Batteries for Electric Vehicle (EV...

    Energy.gov [DOE] (indexed site)

    High-Performance Batteries for Electric Vehicle (EV) Applications Ionel C. Stefan, Principal Investigator Amprius, Inc. June 6-10, 2016 ES241 This presentation does not contain any ...

  18. Electric Vehicle Preparedness - Task 1: Assessment of Data and...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof. INLEXT-13-29359 Electric Vehicle ...

  19. Plug-in Electric Vehicles Charge Forward in Oregon | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... EV Everywhere Charges Up the Workplace Project Overview Positive Impact More plug-in hybrid and all-electric vehicles in Oregon. Oregon is planning for the large-scale deployment ...

  20. High-Voltage Solid Polymer Batteries for Electric Drive Vehicles...

    Office of Scientific and Technical Information (OSTI)

    Voltage Solid Polymer Batteries for Electric Drive Vehicles Eitouni, Hany; Yang, Jin; Pratt, Russell; Wang, Xiao; Grape, Ulrik The purpose of this project was for Seeo to develop a...

  1. New Energy 101 Video: Electric Vehicles | Department of Energy

    Energy Saver

    With all-electric vehicles, you never have to fuel up at the gas pump-instead, you just recharge the batteries at home or at charging stations on your route. Compared to ...

  2. Plug-In Electric Vehicle Handbook for Consumers (Brochure)

    SciTech Connect

    Not Available

    2011-09-01

    Plug-in electric vehicles (PEVs) are entering the automobile market and are viable alternatives to conventional vehicles. This guide for consumers describes the basics of PEV technology, PEV benefits, how to select the right PEV, charging a PEV, and PEV maintenance.

  3. Plug-In Electric Vehicle Handbook for Fleet Managers (Brochure)

    SciTech Connect

    Not Available

    2012-04-01

    Plug-in electric vehicles (PEVs) are entering the automobile market and are viable alternatives to conventional vehicles. This guide for fleet managers describes the basics of PEV technology, PEV benefits for fleets, how to select the right PEV, charging a PEV, and PEV maintenance.

  4. Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicles

    Alternative Fuels and Advanced Vehicles Data Center

    Plug-In Hybrid Electric Vehicles Icon of a plug in an electrical outlet and a fuel pump. ... All-Electric Vehicles Icon of a plug in an electrical outlet. EVs use a battery to store ...

  5. AVTA: 2009 BWM Mini-E All-Electric Vehicle Testing Report

    Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe results of testing done on an all-electric 2009 BMW Mini-e, a demonstration vehicle not available on the market. The baseline performance testing provides a point of comparison for the other test results. This research was conducted by Idaho National Laboratory.

  6. Energy Department and Edison Electric Institute Sign Agreement to Advance Electric Vehicle Technologies

    Energy.gov [DOE]

    Today Energy Secretary Ernest Moniz signed a Memorandum of Understanding between the Department and the Edison Electric Institute, strengthening collaborative action to accelerate plug-in electric vehicle and charging infrastructure deployment.

  7. Thermal Management of Power Electronics and Electric Motors for Electric-Drive Vehicles (Presentation)

    SciTech Connect

    Narumanchi, S.

    2014-09-01

    This presentation is an overview of the power electronics and electric motor thermal management and reliability activities at NREL. The focus is on activities funded by the Department of Energy Vehicle Technologies Office Advanced Power Electronics and Electric Motors Program.

  8. Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Fuel Cell Electric Vehicle Hydrogen Fueling Protocol Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol Download the webinar slides from the U.S. Department of Energy Fuel Cell Technologies Office webinar, "Hydrogen Refueling Protocols," held February 22, 2013. Hydrogen Refueling Protocols Webinar Slides (3.49 MB) More Documents & Publications Introduction to SAE Hydrogen Fueling Standardization Developing SAE Safety Standards for Hydrogen and

  9. Argonne Lab's Breakthrough Cathode Technology Powers Electric Vehicles of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Today | Department of Energy Argonne Lab's Breakthrough Cathode Technology Powers Electric Vehicles of Today Argonne Lab's Breakthrough Cathode Technology Powers Electric Vehicles of Today February 14, 2011 - 6:15pm Addthis Jeff Chamberlain Speaks at Brookings Battery Forum | Photo Courtesy of Audra Capas, 5StarPR Jeff Chamberlain Speaks at Brookings Battery Forum | Photo Courtesy of Audra Capas, 5StarPR David Moore Presidential Management Fellow, Office of Energy Efficiency & Renewable

  10. The Future of Electric Vehicles and Arizona State University's MAIL

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Battery | Department of Energy The Future of Electric Vehicles and Arizona State University's MAIL Battery The Future of Electric Vehicles and Arizona State University's MAIL Battery August 11, 2010 - 4:26pm Addthis Cody Friesen and his team at Arizona State University | Photo Credit Arizona State University Cody Friesen and his team at Arizona State University | Photo Credit Arizona State University Andy Oare Andy Oare Former New Media Strategist, Office of Public Affairs What does this

  11. Vehicle Technologies Office: 2010 Advanced Power Electronics and Electric

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Motors R&D Annual Progress Report | Department of Energy Power Electronics and Electric Motors R&D Annual Progress Report Vehicle Technologies Office: 2010 Advanced Power Electronics and Electric Motors R&D Annual Progress Report The APEEM subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE) and

  12. U.S. Department of Energy FreedomCAR and Vehicle Technologies Program Advanced Vehicle Testing Activity Federal Fleet Use of Electric Vehicles

    SciTech Connect

    Mindy Kirpatrick; J. E. Francfort

    2003-11-01

    vehicles, usually because of range limitations. Twelve fleets reported experiencing at least one charge depletion while driving, whereas nine fleets reported not having this problem. Twenty-four of the 25 fleets responded that the electric vehicles were easy to use and 22 fleets indicated that the payload was adequate. Thirteen fleets reported charging problems; eleven fleets reported no charging problems. Nine fleets reported the vehicles broke down while driving; 14 fleets reported no onroad breakdowns. Some of the breakdowns while driving, however, appear to include normal flat tires and idiot lights coming on. In spite of operation and charging problems, 59% of the fleets responded that they were satisfied, very satisfied, or extremely satisfied with the performance of the electric vehicles. As of September 2003, 74 of the electric vehicles were still being used and 107 had been returned to the manufacturers because the leases had concluded.

  13. A Comparative Study on Emerging Electric Vehicle Technology Assessments

    SciTech Connect

    Ford, Jonathan; Khowailed, Gannate; Blackburn, Julia; Sikes, Karen

    2011-03-01

    Numerous organizations have published reports in recent years that investigate the ever changing world of electric vehicle (EV) technologies and their potential effects on society. Specifically, projections have been made on greenhouse gas (GHG) emissions associated with these vehicles and how they compare to conventional vehicles or hybrid electric vehicles (HEVs). Similar projections have been made on the volumes of oil that these vehicles can displace by consuming large amounts of grid electricity instead of petroleum-based fuels. Finally, the projected rate that these new vehicle fleets will enter the market varies significantly among organizations. New ideas, technologies, and possibilities are introduced often, and projected values are likely to be refined as industry announcements continue to be made. As a result, over time, a multitude of projections for GHG emissions, oil displacement, and market penetration associated with various EV technologies has resulted in a wide range of possible future outcomes. This leaves the reader with two key questions: (1) Why does such a collective range in projected values exist in these reports? (2) What assumptions have the greatest impact on the outcomes presented in these reports? Since it is impractical for an average reader to review and interpret all the various vehicle technology reports published to date, Sentech Inc. and the Oak Ridge National Laboratory have conducted a comparative study to make these interpretations. The primary objective of this comparative study is to present a snapshot of all major projections made on GHG emissions, oil displacement, or market penetration rates of EV technologies. From the extensive data found in relevant publications, the key assumptions that drive each report's analysis are identified and 'apples-to-apples' comparisons between all major report conclusions are attempted. The general approach that was taken in this comparative study is comprised of six primary steps: (1

  14. Low-Speed Electric Vehicles: Coming to a Neighborhood Near You?

    Energy.gov [DOE]

    On one of the Navy bases I visited were electric golf carts also known as neighborhood electric vehicles or NEVs.

  15. Electric and hybrid vehicle program; Site Operator Program

    SciTech Connect

    Warren, J.F.

    1992-05-01

    Activities during the second quarter included the second meeting of the Site Operators in Phoenix, AZ in late April. The meeting was held in conjunction with the Solar and Electric 500 Race activities. Delivery of vehicles ordered previously has begun, although two of the operators are experiencing some delays in receiving their vehicles. Public demonstration activities continue, with an apparent increasing level of awareness and interest being displayed by the public. Initial problems with the Site Operator Database have been corrected and revised copies of the program have been supplied to the Program participants. Operating and Maintenance data is being supplied and submitted to INEL on a monthly basis. Interest in the Site Operator Program is being reflected in requests for information from several organizations from across the country, representing a wide diversity of interests. These organizations have been referred to existing Site Operators with the explanation that the program will not be adding new participants, but that most of the existing organizations are willing to work with other groups. The exception to this was the addition of Potomac Electric Power Company (PEPCO) to the program. PEPCO has been awarded a subcontract to operate and maintain the DOE owned G-Van and Escort located in Washington, DC. They will provide data on these vehicles, as well as a Solectria Force which PEPCO has purchased. The Task Force intends to be actively involved in the infrastructure development in a wide range of areas. These include, among others, personnel development, safety, charging, and servicing. Work continues in these areas. York Technical College (YORK) has completed the draft outline for the EV Technician course. This is being circulated to organizations around the country for comments. Kansas State University (KSU) is working with a private sector company to develop a energy dispensing meter for opportunity charging in public areas.

  16. Project Fever - Fostering Electric Vehicle Expansion in the Rockies

    SciTech Connect

    Swalnick, Natalia

    2013-06-30

    Project FEVER (Fostering Electric Vehicle Expansion in the Rockies) is a part of the Clean Cities Community Readiness and Planning for Plug-in Electric Vehicles and Charging Infrastructure Funding Opportunity funded by the U.S. Department of Energy (DOE) for the state of Colorado. Tasks undertaken in this project include: Electric Vehicle Grid Impact Assessment; Assessment of Electrical Permitting and Inspection for EV/EVSE (electric vehicle/electric vehicle supply equipment); Assessment of Local Ordinances Pertaining to Installation of Publicly Available EVSE;Assessment of Building Codes for EVSE; EV Demand and Energy/Air Quality Impacts Assessment; State and Local Policy Assessment; EV Grid Impact Minimization Efforts; Unification and Streamlining of Electrical Permitting and Inspection for EV/EVSE; Development of BMP for Local EVSE Ordinances; Development of BMP for Building Codes Pertaining to EVSE; Development of Colorado-Specific Assessment for EV/EVSE Energy/Air Quality Impacts; Development of State and Local Policy Best Practices; Create Final EV/EVSE Readiness Plan; Develop Project Marketing and Communications Elements; Plan and Schedule In-person Education and Outreach Opportunities.

  17. Emissions Associated with Electric Vehicle Charging: Impact of Electricity Generation Mix, Charging Infrastructure Availability, and Vehicle Type

    Alternative Fuels and Advanced Vehicles Data Center

    Emissions Associated with Electric Vehicle Charging: Impact of Electricity Generation Mix, Charging Infrastructure Availability, and Vehicle Type Joyce McLaren, John Miller, Eric O'Shaughnessy, Eric Wood, and Evan Shapiro National Renewable Energy Laboratory Technical Report NREL/TP-6A20-64852 April 2016 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at

  18. Advanced Electric Drive Vehicle Education Program | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt031tiebron2012o.pdf (1.45 MB

  19. Electric Vehicle Service Personnel Training Program | Department...

    Energy.gov [DOE] (indexed site)

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt040tibernstein2012o.pdf (1.35 MB

  20. Fact #877: June 15, 2015 Which States Have More Battery Electric Vehicles than Plug-in Hybrids?

    Energy.gov [DOE]

    Plug-in electric vehicles (PEVs) include both battery electric vehicles (BEVs) which run only on electricity, and plug-in hybrid electric vehicles (PHEVs) which run on electricity and/or gasoline....

  1. 2011 Hyundai Sonata 4932 - Hybrid Electric Vehicle Battery Test Results

    SciTech Connect

    Tyler Gray; Matthew Shirk; Jeffrey Wishart

    2013-07-01

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Hyundai Sonata Hybrid HEV (VIN KMHEC4A43BA004932). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the AVTA for the Vehicle Technologies Program of the DOE.

  2. Permit for Charging Equipment Installation: Electric Vehicle...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    out of the 2011 edition of the National Electrical Code (NEC) NFPA 70, Article 625 ... Please refer to the current edition of the electrical code adopted by the local ...

  3. Cost-Benefit Analysis of Plug-in Hybrid Electric Vehicle Technology

    SciTech Connect

    Simpson, A.

    2006-11-01

    This paper presents a comparison of vehicle purchase and energy costs, and fuel-saving benefits of plug-in hybrid electric vehicles relative to hybrid electric and conventional vehicles.

  4. AVTA: Reports on Plug-in Electric Vehicle Readiness at 3 DOD...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Reports on Plug-in Electric Vehicle Readiness at 3 DOD Facilities AVTA: Reports on Plug-in Electric Vehicle Readiness at 3 DOD Facilities The Vehicle Technologies Office's Advanced ...

  5. Electric vehicles: Likely consequences of US and other nations` programs and policies

    SciTech Connect

    Chan, Kwai-Cheung

    1994-12-30

    This report examines international electric vehicle development and commercialization programs. The study encompassed a review of current barriers to widespread electric vehicle implementation, field visits in seven nations and the United States to examine electric vehicle programs and policies, and analyses of electric vehicle effects on economics, energy, and the environment.

  6. Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT) (Presentation)

    SciTech Connect

    Pesaran, A. A.

    2011-05-01

    This presentation describes NREL's computer aided engineering program for electric drive vehicle batteries.

  7. U.S. Fuel Cell Electric Vehicle Demonstration Project 2010 Status Update (Presentation)

    SciTech Connect

    Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.

    2010-10-21

    This presentation summarizes U.S. Fuel Cell Electric Vehicle Demonstration Project 2010 Status Update.

  8. EAGLES 1.1: A microcomputer software package for analyzing fuel efficiency of electric and gasoline vehicles

    SciTech Connect

    Marr, W.M.

    1994-05-15

    As part of the U.S. Department of Energy`s electric/hybrid vehicle research program, Argonne National Laboratory has developed a computer software package called EAGLES. This paper describes the capability of the software and its many features and potential applications. EAGLES version 1.1 is an interactive microcomputer software package for the analysis of battery performance in electric-vehicle applications, or the estimation of fuel economy for a gasoline vehicle. The principal objective of the electric-vehicle analysis is to enable the prediction of electric-vehicle performance (e.g., vehicle range) on the basis of laboratory test data for batteries. The model provides a second-by-second simulation of battery voltage and current for any specified velocity/time or power/time profile, taking into consideration the effects of battery depth-of-discharge and regenerative braking. Alternatively, the software package can be used to determine the size of the battery needed to satisfy given vehicle mission requirements (e.g., range and driving patterns). For gasoline-vehicle analysis, an empirical model relating fuel economy, vehicle parameters, and driving-cycle characteristics is included in the software package. For both types of vehicles, effects of heating/cooling loads on vehicle performance can be simulated. The software package includes many default data sets for vehicles, driving cycles, and battery technologies. EAGLES 1.1 is written in the FORTRAN language for use on IBM-compatible microcomputers.

  9. EERE Success Story-Nevada Strengthens Electric Vehicle Infrastructure on

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Major U.S. Highway | Department of Energy Nevada Strengthens Electric Vehicle Infrastructure on Major U.S. Highway EERE Success Story-Nevada Strengthens Electric Vehicle Infrastructure on Major U.S. Highway December 15, 2015 - 3:55pm Addthis Paul Thomsen, Director of the Nevada Governor’s Office of Energy, announces the new Nevada Electric Highway Joint Initiative in Carson City, Nevada. He was joined at the event by Carson City Mayor Bob Crowell, left, NV Energy CEO Paul Caudill, and

  10. Vehicle Technologies Office: AVTA- Plug-In Hybrid Electric Vehicles Performance and Testing Data

    Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. Data on the plug-in hybrid electric version of the following vehicles is available: 2013 Ford Fusion Energi, 2013 Ford C-Max Energi Fleet, 2013 Ford C-Max Energi, 2012 Chevrolet Volt, 2012 Toyota Prius, 2013 Toyota Prius, 2013 Chevrolet Volt, 2011 Chrysler Town & Country, 2010 Quantum Escape, and 2010 Ford Escape Advanced Research Vehicle.

  11. Alternative Fuels Data Center: Electric Vehicles Take Center Stage in North

    Alternative Fuels and Advanced Vehicles Data Center

    Texas Electric Vehicles Take Center Stage in North Texas to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicles Take Center Stage in North Texas on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicles Take Center Stage in North Texas on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicles Take Center Stage in North Texas on Google Bookmark Alternative Fuels Data Center: Electric Vehicles Take Center Stage in North Texas on Delicious Rank

  12. Alternative Fuels Data Center: Hybrid and Electric Vehicles Boom Coast to

    Alternative Fuels and Advanced Vehicles Data Center

    Coast Hybrid and Electric Vehicles Boom Coast to Coast to someone by E-mail Share Alternative Fuels Data Center: Hybrid and Electric Vehicles Boom Coast to Coast on Facebook Tweet about Alternative Fuels Data Center: Hybrid and Electric Vehicles Boom Coast to Coast on Twitter Bookmark Alternative Fuels Data Center: Hybrid and Electric Vehicles Boom Coast to Coast on Google Bookmark Alternative Fuels Data Center: Hybrid and Electric Vehicles Boom Coast to Coast on Delicious Rank Alternative

  13. City of Las Vegas Plug-in Hybrid Electric Vehicle Demonstration Program

    SciTech Connect

    2013-12-31

    The City of Las Vegas was awarded Department of Energy (DOE) project funding in 2009, for the City of Las Vegas Plug-in Hybrid Electric Vehicle Demonstration Program. This project allowed the City of Las Vegas to purchase electric and plug-in hybrid electric vehicles and associated electric vehicle charging infrastructure. The City anticipated the electric vehicles having lower overall operating costs and emissions similar to traditional and hybrid vehicles.

  14. The impact of electric vehicles on CO{sub 2} emissions. Final report

    SciTech Connect

    Bentley, J.M.; Teagan, P.; Walls, D.; Balles, E.; Parish, T.

    1992-05-01

    A number of recent studies have examined the greenhouse gas emissions of various light duty vehicle alternatives in some detail. These studies have highlighted the extreme range of predicted net greenhouse gas emissions depending on scenarios for fuel types, vehicle and power generation efficiencies, the relative greenhouse contributions of emitted gases and a number of uncertainties in fuel chain efficiencies. Despite the potential range of results, most studies have confirmed that electric vehicles generally have significant potential for reducing greenhouse gas emissions relative to gasoline and most alternative fuels under consideration. This report summarizes the results of a study which builds on previous efforts with a particular emphasis on: (1) A detailed analysis of ICEV, FCV, and EV vehicle technology and electric power generation technology. Most previous transportation greenhouse studies have focused on characterization of fuel chains that have relatively high efficiency (65--85%) when compared with power generation (30--40%) and vehicle driveline (13--16%) efficiencies. (2) A direct comparison of EVs, FCVs with gasoline and dedicated alternative fuel, ICEVs using equivalent vehicle technology assumptions with careful attention to likely technology improvements in both types of vehicles. (3) Consideration of fuel cell vehicles and associated hydrogen infrastructure. (4) Extension of analyses for several decades to assess the prospects for EVs with a longer term prospective.

  15. The impact of electric vehicles on CO[sub 2] emissions

    SciTech Connect

    Bentley, J.M.; Teagan, P.; Walls, D.; Balles, E.; Parish, T. , Inc., Cambridge, MA )

    1992-05-01

    A number of recent studies have examined the greenhouse gas emissions of various light duty vehicle alternatives in some detail. These studies have highlighted the extreme range of predicted net greenhouse gas emissions depending on scenarios for fuel types, vehicle and power generation efficiencies, the relative greenhouse contributions of emitted gases and a number of uncertainties in fuel chain efficiencies. Despite the potential range of results, most studies have confirmed that electric vehicles generally have significant potential for reducing greenhouse gas emissions relative to gasoline and most alternative fuels under consideration. This report summarizes the results of a study which builds on previous efforts with a particular emphasis on: (1) A detailed analysis of ICEV, FCV, and EV vehicle technology and electric power generation technology. Most previous transportation greenhouse studies have focused on characterization of fuel chains that have relatively high efficiency (65--85%) when compared with power generation (30--40%) and vehicle driveline (13--16%) efficiencies. (2) A direct comparison of EVs, FCVs with gasoline and dedicated alternative fuel, ICEVs using equivalent vehicle technology assumptions with careful attention to likely technology improvements in both types of vehicles. (3) Consideration of fuel cell vehicles and associated hydrogen infrastructure. (4) Extension of analyses for several decades to assess the prospects for EVs with a longer term prospective.

  16. 2007 Nissan Altima-2351 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect

    Tyler Gray; Chester Motloch; James Francfort

    2010-01-01

    The U.S. Department of Energy's (DOE) Advanced Vehicle Testing Activity (AVTA) conducts several different types of tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of on-road accelerated testing. This report documents the battery testing performed and the battery testing results for the 2007 Nissan Altima HEV, number 2351 (VIN 1N4CL21E87C172351). The battery testing was performed by the Electric Transportation Engineering Corporation (eTec). The Idaho National Laboratory and eTec conduct the AVTA for DOE’s Vehicle Technologies Program.

  17. Statistical Characterization of Medium-Duty Electric Vehicle Drive Cycles

    SciTech Connect

    Prohaska, Robert; Duran, Adam; Ragatz, Adam; Kelly, Kenneth

    2015-05-03

    In an effort to help commercialize technologies for electric vehicles (EVs) through deployment and demonstration projects, the U.S. Department of Energy's (DOE's) American Recovery and Reinvestment Act (ARRA) provided funding to participating U.S. companies to cover part of the cost of purchasing new EVs. Within the medium- and heavy-duty commercial vehicle segment, both Smith Electric Newton and and Navistar eStar vehicles qualified for such funding opportunities. In an effort to evaluate the performance characteristics of the new technologies deployed in these vehicles operating under real world conditions, data from Smith Electric and Navistar medium-duty EVs were collected, compiled, and analyzed by the National Renewable Energy Laboratory's (NREL) Fleet Test and Evaluation team over a period of 3 years. More than 430 Smith Newton EVs have provided data representing more than 150,000 days of operation. Similarly, data have been collected from more than 100 Navistar eStar EVs, resulting in a comparative total of more than 16,000 operating days. Combined, NREL has analyzed more than 6 million kilometers of driving and 4 million hours of charging data collected from commercially operating medium-duty electric vehicles in various configurations. In this paper, extensive duty-cycle statistical analyses are performed to examine and characterize common vehicle dynamics trends and relationships based on in-use field data. The results of these analyses statistically define the vehicle dynamic and kinematic requirements for each vehicle, aiding in the selection of representative chassis dynamometer test cycles and the development of custom drive cycles that emulate daily operation. In this paper, the methodology and accompanying results of the duty-cycle statistical analysis are presented and discussed. Results are presented in both graphical and tabular formats illustrating a number of key relationships between parameters observed within the data set that relate to

  18. Extending the Temperature Range of Electric Submersible Pumps...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ESP; 2010 Geothermal Technology Program Peer Review Report Extending the Temperature Range of Electric Submersible Pumps to 338 C - Hotline IV - High-temperature ESP; 2010 ...

  19. AVTA: Hybrid Electric Vehicle Specifications and Test Procedures |

    Energy Saver

    Department of Energy Hybrid Electric Vehicle Specifications and Test Procedures AVTA: Hybrid Electric Vehicle Specifications and Test Procedures Fleet Test and Evaluation Procedure (231.85 KB) HEVAmerica Technical Specifications (164.3 KB) HEV Baseline Test Sequence (46.65 KB) HEV End of Life Test Sequence (29.89 KB) ETA-HTP01 Implementation of SAE Standard J1263 February 1996 - Road Load Measurement and Dynamometer Simulation Using Coastdown Techniques (118.71 KB) ETA-HTP02 Implementation

  20. DOE Releases New Video on Electric Vehicles, Highlights Administration

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Support for U.S. Auto Industry in Detroit Economic Club Speech | Department of Energy Releases New Video on Electric Vehicles, Highlights Administration Support for U.S. Auto Industry in Detroit Economic Club Speech DOE Releases New Video on Electric Vehicles, Highlights Administration Support for U.S. Auto Industry in Detroit Economic Club Speech January 9, 2012 - 5:05pm Addthis Washington D.C. - U.S. Energy Secretary Steven Chu will travel to Detroit, Mich., this week to highlight the

  1. Price Incentivised Electric Vehicle Charge Control for Community Voltage Regulation

    SciTech Connect

    Kelly, Damian; Baroncelli, Fabio; Fowler, Christopher; Boundy, David; Pratt, Annabelle

    2014-11-03

    With the growing availability of Electric Vehicles, there is a significant opportunity to use battery 'smart-charging' for voltage regulation. This work designs and experimentally evaluates a system for price-incentivised electric vehicle charging. The system is designed to eliminate negative impacts to the user while minimising the cost of charging and achieving a more favourable voltage behaviour throughout the local grid over time. The practical issues associated with a real-life deployment are identified and resolved. The efficacy of the system is evaluated in the challenging scenario in which EVs are deployed in six closely distributed homes, serviced by the same low voltage residential distribution feeder.

  2. Development of auxiliary power units for electric hybrid vehicles. Interim report, July 1993-February 1994

    SciTech Connect

    Owens, E.C.; Steiber, J.

    1997-06-01

    Larger urban commercial vehicles (such as shuttle and transit buses), various delivery and service vehicles (such as panel and step vans), and garbage trucks and school buses are particularly well suited for electric drive propulsion systems due to their relatively short operating routes, and operation and maintenance from central sites. Furthermore, these vehicles contribute a proportionately large amount to metropolitan air pollution by virtue of their continuous operation in those areas. It is necessary to develop auxiliary power units (APUs) that minimize emissions and in addition, increase range of electric vehicles. This report focuses on the first phase study of the development of APUs for large, electric drive commercial vehicles, intended primarily for metropolitan applications. This paper (1) summarizes the differences between available mobile APUs and Electric Vehicle APU requirements, (2) describes the major components in APUs, and (3) discusses APU integration issues. During this phase, three potential APU manufacturers were identified and selected for development of prototype units at 25 kW and 50 kW power levels.

  3. Device to facilitate moving an electrical cable of an electric vehicle charging station and method of providing the same

    SciTech Connect

    Karner, Donald B

    2014-04-29

    Some embodiments include a device to facilitate moving an electrical cable of an electric vehicle charging station. Other embodiments of related systems and methods are also disclosed.

  4. Fact #919: April 4, 2016 Plug-in Electric Vehicle Charging Options...

    Energy.gov [DOE] (indexed site)

    Plug-in Electric Vehicle Charging Options and Times Vary Considerably fotw919web.xlsx (372.17 KB) More Documents & Publications Codes and Standards Support Vehicle ...

  5. In-Use Performance Results of Medium Duty Electric Vehicles (Presentation)

    SciTech Connect

    Walkowicz, K.

    2012-07-01

    This presentation describes a DOE program to monitor and report on vehicle performance and energy utilization of medium-duty and heavy-duty electric vehicles.

  6. Commercial Electric Vehicle (EV) Development and Manufacturing Program

    SciTech Connect

    Leeve, Dion

    2014-06-30

    Navistar with the Department of Energy’s assistance undertook this effort to achieve the project objectives as listed in the next section. A wholly owned subsidiary of Navistar, Workhorse Sales Corporation was the original grant awardee and upon their discontinuation as a standalone business entity, Navistar assumed the role of principal investigator. The intent of the effort, as part of the American Recovery and Reinvestment Act (ARRA) was to produce zero emission vehicles that could meet the needs of the marketplace while reducing carbon emissions to zero. This effort was predicated upon the assumption that concurrent development activities in the lithium ion battery industry investigations would significantly increase their production volumes thus leading to substantial reductions in their manufacturing costs. As a result of this development effort much was learned about the overall system compatibility between the electric motor, battery pack, and charging capabilities. The original system was significantly revised and improved during the execution of this development effort. The overall approach that was chosen was to utilize a British zero emissions, class 2 truck that had been developed for their market, homologate it and modify it to meet the product requirements as specified in the grant details. All of these specific goals were achieved. During the course of marketing and selling the product valuable information was obtained as relates to customer expectations, price points, and product performance expectations, specifically those customer expectations about range requirements in urban delivery situations. While the grant requirements specified a range of 100 miles on a single charge, actual customer usage logs indicate a range of 40 miles or less is typical for their applications. The price point, primarily due to battery pack costs, was significantly higher than the mass market could bear. From Navistar’s and the overall industry’s perspective

  7. Vehicle Technologies Office: AVTA- Hybrid Electric Vehicles Performance and Testing Data

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. This page provides data on the hybrid electric versions of the Volkswagen Jetta, Ford C-Max, Chevrolet Malibu, Honda Civic, Hyundai Sonata, Honda CRZ, Honda Civic with Advanced Experimental Ultra Lead Acid Battery, Mercedes Benz, Toyota Prius Gen III, Ford Fusion, Honda Insight and Honda CR-Z.

  8. Wireless Electric Charging: The Future of Plug-In Electric Vehicles...

    Office of Environmental Management (EM)

    In the future, the engineers hope to reach 10kW and eventually 19kW to facilitate faster charging. What if charging your plug-in electric vehicle was as easy as parking it? No need ...

  9. Vehicle Technologies Office: 2008 Advanced Power Electronics and Electric

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Machinery R&D Annual Progress Report | Department of Energy Power Electronics and Electric Machinery R&D Annual Progress Report Vehicle Technologies Office: 2008 Advanced Power Electronics and Electric Machinery R&D Annual Progress Report 2008_apeem_report.pdf (6.95 MB) More Documents & Publications Characterization and Development of Advanced Heat Transfer Technologies An integrated approach towards efficient, scalable, and low cost thermoelectric waste heat recovery devices

  10. Low cost, compact, and high efficiency traction motor for electric and hybrid electric vehicles

    SciTech Connect

    Ehsani, Mark

    2002-10-07

    A new motor drive, the switched reluctance motor drive, has been developed for hybrid-electric vehicles. The motor drive has been designed, built and tested in the test bed at a near vehicle scale. It has been shown that the switched reluctance motor drive is more suitable for traction application than any other motor drive.

  11. Alternative Fuels Data Center: Electric Vehicle Charging for Multi-Unit

    Alternative Fuels and Advanced Vehicles Data Center

    Dwellings Electricity Printable Version Share this resource Send a link to Alternative Fuels Data Center: Electric Vehicle Charging for Multi-Unit Dwellings to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Charging for Multi-Unit Dwellings on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Charging for Multi-Unit Dwellings on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Charging for Multi-Unit Dwellings on Google Bookmark

  12. High reduction transaxle for electric vehicle

    DOEpatents

    Kalns, Ilmars

    1987-01-01

    A drivetrain (12) includes a transaxle assembly (16) for driving ground engaging wheels of a land vehicle powered by an AC motor. The transaxle includes a ratio change section having planetary gear sets (24, 26) and brake assemblies (28, 30). Sun gears (60, 62) of the gear sets are directly and continuously connected to an input drive shaft (38) driven by the motor. A first drive (78a) directly and continuously connects a planetary gear carrier (78) of gear sets (24) with a ring gear (68) of gear set (26). A second drive (80a) directly and continuously connects a planetary gear carrier (80) of gear set (26) with a sun gear (64) of a final speed reduction gear set (34) having a planetary gear carrier directly and continuously connected to a differential (22). Brakes (28, 30) are selectively engageable to respectively ground a ring gear 66 of gear set 24 and ring gear 68 of gear set 26.

  13. Thermal Storage System for Electric Vehicle Cabin Heating Component and System Analysis

    SciTech Connect

    LaClair, Tim J; Gao, Zhiming; Abdelaziz, Omar; Wang, Mingyu; WolfeIV, Edward; Craig, Timothy

    2016-01-01

    Cabin heating of current electric vehicle (EV) designs is typically provided using electrical energy from the traction battery, since waste heat is not available from an engine as in the case of a conventional automobile. In very cold climatic conditions, the power required for space heating of an EV can be of a similar magnitude to that required for propulsion of the vehicle. As a result, its driving range can be reduced very significantly during the winter season, which limits consumer acceptance of EVs and results in increased battery costs to achieve a minimum range while ensuring comfort to the EV driver. To minimize the range penalty associated with EV cabin heating, a novel climate control system that includes thermal energy storage from an advanced phase change material (PCM) has been designed for use in EVs and plug-in hybrid electric vehicles (PHEVs). The present paper focuses on the modeling and analysis of this electrical PCM-Assisted Thermal Heating System (ePATHS) and is a companion to the paper Design and Testing of a Thermal Storage System for Electric Vehicle Cabin Heating. A detailed heat transfer model was developed to simulate the PCM heat exchanger that is at the heart of the ePATHS and was subsequently used to analyze and optimize its design. The results from this analysis were integrated into a MATLAB Simulink system model to simulate the fluid flow, pressure drop and heat transfer in all components of the ePATHS. The system model was then used to predict the performance of the climate control system in the vehicle and to evaluate control strategies needed to achieve the desired temperature control in the cabin. The analysis performed to design the ePATHS is described in detail and the system s predicted performance in a vehicle HVAC system is presented.

  14. Battery Test Manual For Plug-In Hybrid Electric Vehicles

    SciTech Connect

    Jeffrey R. Belt

    2010-12-01

    This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Program. It is based on technical targets established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, a revision including some modifications and clarifications of these procedures is expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices.

  15. Battery Test Manual For Plug-In Hybrid Electric Vehicles

    SciTech Connect

    Jeffrey R. Belt

    2010-09-01

    This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Program. It is based on technical targets established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, a revision including some modifications and clarifications of these procedures is expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices.

  16. Adaptive powertrain control for plugin hybrid electric vehicles

    SciTech Connect

    Kedar-Dongarkar, Gurunath; Weslati, Feisel

    2013-10-15

    A powertrain control system for a plugin hybrid electric vehicle. The system comprises an adaptive charge sustaining controller; at least one internal data source connected to the adaptive charge sustaining controller; and a memory connected to the adaptive charge sustaining controller for storing data generated by the at least one internal data source. The adaptive charge sustaining controller is operable to select an operating mode of the vehicle's powertrain along a given route based on programming generated from data stored in the memory associated with that route. Further described is a method of adaptively controlling operation of a plugin hybrid electric vehicle powertrain comprising identifying a route being traveled, activating stored adaptive charge sustaining mode programming for the identified route and controlling operation of the powertrain along the identified route by selecting from a plurality of operational modes based on the stored adaptive charge sustaining mode programming.

  17. Electric and hybrid electric vehicles: A technology assessment based on a two-stage Delphi study

    SciTech Connect

    Vyas, A.D.; Ng, H.K.; Santini, D.J.; Anderson, J.L.

    1997-12-01

    To address the uncertainty regarding future costs and operating attributes of electric and hybrid electric vehicles, a two stage, worldwide Delphi study was conducted. Expert opinions on vehicle attributes, current state of the technology, possible advancements, costs, and market penetration potential were sought for the years 2000, 2010, and 2020. Opinions related to such critical components as batteries, electric drive systems, and hybrid vehicle engines, as well as their respective technical and economic viabilities, were also obtained. This report contains descriptions of the survey methodology, analytical approach, and results of the analysis of survey data, together with a summary of other factors that will influence the degree of market success of electric and hybrid electric vehicle technologies. Responses by industry participants, the largest fraction among all the participating groups, are compared with the overall responses. An evaluation of changes between the two Delphi stages is also summarized. An analysis of battery replacement costs for various types is summarized, and variable operating costs for electric and hybrid vehicles are compared with those of conventional vehicles. A market penetration analysis is summarized, in which projected market shares from the survey are compared with predictions of shares on the basis of two market share projection models that use the cost and physical attributes provided by the survey. Finally, projections of market shares beyond the year 2020 are developed by use of constrained logit models of market shares, statistically fitted to the survey data.

  18. National Fuel Cell Electric Vehicle Learning Demonstration Final Report

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report discusses key analysis results based on data from early 2005 through September 2011 from the US DOE’s Controlled Hydrogen Fleet and Infrastructure Validation and Demonstration Project, also referred to as the National Fuel Cell Electric Vehicle (FCEV) Learning Demonstration.

  19. U.S.-China Electric Vehicle and Battery Technology Workshop

    Energy.gov [DOE]

    DOE's Office of Policy and International Affairs and China's Ministry of Science and Technology convened a 3-day workshop at Argonne National Laboratory that brought together more than 100 U.S. and Chinese experts from government, industry, and academia to discuss progress made in the electric vehicle industry to date and opportunities for increased collaboration.

  20. Electric Vehicle Supply Equipment (EVSE) Test Report: Blink

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Charge End EVSE Power In EVSE Power Out 20 30 40 50 60 70 0 500 1,000 1,500 2,000 2,500 3,000 Time (s) Power (Watts) Charge Start EVSE Power In EVSE Power Out Electric Vehicle ...