Second Generation Fractional Quantum Hall Effect
U.S. Department of Energy (DOE) all webpages (Extended Search)
Generation Fractional Quantum Hall Effect - Sandia Energy Energy Search Icon Sandia Home ... Second Generation Fractional Quantum Hall Effect HomeHighlights - Energy Research...
Unconventional Quantum Hall Effect and Tunable Spin Hall Effect...
Office of Scientific and Technical Information (OSTI)
to an Isolated MoS2 Trilayer Title: Unconventional Quantum Hall Effect and Tunable Spin Hall Effect in Dirac Materials: Application to an Isolated MoS2 Trilayer Authors: Li, ...
Quantum Hall effects in a Weyl semimetal: Possible application...
Office of Scientific and Technical Information (OSTI)
Quantum Hall effects in a Weyl semimetal: Possible application in pyrochlore iridates Title: Quantum Hall effects in a Weyl semimetal: Possible application in pyrochlore iridates ...
Microscopic theory of quantum anomalous Hall effect in graphene...
Office of Scientific and Technical Information (OSTI)
Microscopic theory of quantum anomalous Hall effect in graphene Citation Details In-Document Search Title: Microscopic theory of quantum anomalous Hall effect in graphene Authors: ...
The quantum Hall effect helicity
Shrivastava, Keshav N.
2015-04-16
The quantum Hall effect in semiconductor heterostructures is explained by two signs in the angular momentum j=l±s and g=(2j+1)/(2l+1) along with the Landau factor (n+1/2). These modifications in the existing theories explain all of the fractional charges. The helicity which is the sign of the product of the linear momentum with the spin p.s plays an important role for the understanding of the data at high magnetic fields. In particular it is found that particles with positive sign in the spin move in one direction and those with negative sign move in another direction which explains the up and down stream motion of the particles.
Robert B. Laughlin and the Fractional Quantum Hall Effect
Office of Scientific and Technical Information (OSTI)
Robert B. Laughlin and the Fractional Quantum Hall Effect Resources with Additional Information Robert B. Laughlin Photo Courtesy of LLNL Robert B. Laughlin shared the 1998 Nobel...
Robert B. Laughlin and the Fractional Quantum Hall Effect
Office of Scientific and Technical Information (OSTI)
In 1983, Laughlin, then at the Lawrence Livermore National Laboratory, provided the ... quantum Hall effect.'1 ' "My presence at Livermore was crucial to my work," says Laughlin. ...
Non-abelian fractional quantum hall effect for fault-resistant...
Office of Scientific and Technical Information (OSTI)
Non-abelian fractional quantum hall effect for fault-resistant topological quantum computation. Citation Details In-Document Search Title: Non-abelian fractional quantum hall...
Fractional Quantum Hall Effect at Landau Level Filling v=4/11...
Office of Scientific and Technical Information (OSTI)
Fractional Quantum Hall Effect at Landau Level Filling v411. Citation Details In-Document Search Title: Fractional Quantum Hall Effect at Landau Level Filling v411. Abstract...
Quantum Anomalous Hall Effect in Hg_1-yMn_yTe Quantum Wells
Liu, Chao-Xing; Qi, Xiao-Liang; Dai, Xi; Fang, Zhong; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.
2010-03-19
The quantum Hall effect is usually observed when the two-dimensional electron gas is subjected to an external magnetic field, so that their quantum states form Landau levels. In this work we predict that a new phenomenon, the quantum anomalous Hall effect, can be realized in Hg{sub 1-y}Mn{sub y}Te quantum wells, without the external magnetic field and the associated Landau levels. This effect arises purely from the spin polarization of the Mn atoms, and the quantized Hall conductance is predicted for a range of quantum well thickness and the concentration of the Mn atoms. This effect enables dissipationless charge current in spintronics devices.
Quantum anomalous Hall effect in single-layer and bilayer graphene...
Office of Scientific and Technical Information (OSTI)
Quantum anomalous Hall effect in single-layer and bilayer graphene Citation Details In-Document Search Title: Quantum anomalous Hall effect in single-layer and bilayer graphene ...
Quantum Hall effect in semiconductor systems with quantum dots and antidots
Beltukov, Ya. M.; Greshnov, A. A.
2015-04-15
The integer quantum Hall effect in systems of semiconductor quantum dots and antidots is studied theoretically as a factor of temperature. It is established that the conditions for carrier localization in quantum-dot systems favor the observation of the quantum Hall effect at higher temperatures than in quantum-well systems. The obtained numerical results show that the fundamental plateau corresponding to the transition between the ground and first excited Landau levels can be retained up to a temperature of T ∼ 50 K, which is an order of magnitude higher than in the case of quantum wells. Implementation of the quantum Hall effect at such temperatures requires quantum-dot systems with controllable characteristics, including the optimal size and concentration and moderate geometrical and composition fluctuations. In addition, ordered arrangement is desirable, hence quantum antidots are preferable.
Quantum anomalous Hall effect in topological insulator memory
Jalil, Mansoor B. A.; Tan, S. G.; Siu, Z. B.
2015-05-07
We theoretically investigate the quantum anomalous Hall effect (QAHE) in a magnetically coupled three-dimensional-topological insulator (3D-TI) system. We apply the generalized spin-orbit coupling Hamiltonian to obtain the Hall conductivity σ{sup xy} of the system. The underlying topology of the QAHE phenomenon is then analyzed to show the quantization of σ{sup xy} and its relation to the Berry phase of the system. Finally, we analyze the feasibility of utilizing σ{sup xy} as a memory read-out in a 3D-TI based memory at finite temperatures, with comparison to known magnetically doped 3D-TIs.
Quantum Hall effect in graphene decorated with disordered multilayer patches
Nam, Youngwoo; Sun, Jie Lindvall, Niclas; Kireev, Dmitry; Yurgens, August; Jae Yang, Seung; Rae Park, Chong; Woo Park, Yung
2013-12-02
Quantum Hall effect (QHE) is observed in graphene grown by chemical vapour deposition using platinum catalyst. The QHE is even seen in samples which are irregularly decorated with disordered multilayer graphene patches and have very low mobility (<500 cm{sup 2}V{sup −1}s{sup −1}). The effect does not seem to depend on electronic mobility and uniformity of the resulting material, which indicates the robustness of QHE in graphene.
Fractionally charged skyrmions in fractional quantum Hall effect
Balram, Ajit C.; Wurstbauer, U.; Wójs, A.; Pinczuk, A.; Jain, J. K.
2015-11-26
The fractional quantum Hall effect has inspired searches for exotic emergent topological particles, such as fractionally charged excitations, composite fermions, abelian and nonabelian anyons and Majorana fermions. Fractionally charged skyrmions, which support both topological charge and topological vortex-like spin structure, have also been predicted to occur in the vicinity of 1/3 filling of the lowest Landau level. The fractional skyrmions, however, are anticipated to be exceedingly fragile, suppressed by very small Zeeman energies. Here we show that, slightly away from 1/3 filling, the smallest manifestations of the fractional skyrmion exist in the excitation spectrum for a broad range of Zeeman energies, and appear in resonant inelastic light scattering experiments as well-defined resonances slightly below the long wavelength spin wave mode. The spectroscopy of these exotic bound states serves as a sensitive tool for investigating the residual interaction between composite fermions, responsible for delicate new fractional quantum Hall states in this filling factor region.
Hall effect in quantum critical charge-cluster glass
Bozovic, Ivan; Wu, Jie; Bollinger, Anthony T.; Sun, Yujie
2016-04-04
Upon doping, cuprates undergo a quantum phase transition from an insulator to a d-wave superconductor. The nature of this transition and of the insulating state is vividly debated. Here, we study the Hall effect in La2-xSrxCuO4 (LSCO) samples doped near the quantum critical point at x ≈ 0.06. Dramatic fluctuations in the Hall resistance appear below TCG ≈ 1.5 K and increase as the sample is cooled down further, signaling quantum critical behavior. We explore the doping dependence of this effect in detail, by studying a combinatorial LSCO library in which the Sr content is varied in extremely fine steps,more » Δx ≈ 0.00008. Furthermore, we observe that quantum charge fluctuations wash out when superconductivity emerges but can be restored when the latter is suppressed by applying a magnetic field, showing that the two instabilities compete for the ground state.« less
PREPRINT QUASIPARTICLE AGGREGATION I N THE FRACTIONAL QUANTUM HALL EFFECT
U.S. Department of Energy (DOE) all webpages (Extended Search)
91618 PREPRINT QUASIPARTICLE AGGREGATION I N THE FRACTIONAL QUANTUM HALL EFFECT R. B. Laughlin This paper was prepared for submittal to the Proceedings of the 17th International Conference on the Physics of Semi conductors San Francisco, California August 6-10, 1984 October 10, 1984 This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be made before publication, this preprint is made available with the un- derstanding that it will not be cited or
Vortex equations governing the fractional quantum Hall effect
Medina, Luciano
2015-09-15
An existence theory is established for a coupled non-linear elliptic system, known as “vortex equations,” describing the fractional quantum Hall effect in 2-dimensional double-layered electron systems. Via variational methods, we prove the existence and uniqueness of multiple vortices over a doubly periodic domain and the full plane. In the doubly periodic situation, explicit sufficient and necessary conditions are obtained that relate the size of the domain and the vortex numbers. For the full plane case, existence is established for all finite-energy solutions and exponential decay estimates are proved. Quantization phenomena of the magnetic flux are found in both cases.
Fractionally charged skyrmions in fractional quantum Hall effect
Balram, Ajit C.; Wurstbauer, U.; Wójs, A.; Pinczuk, A.; Jain, J. K.
2015-11-26
The fractional quantum Hall effect has inspired searches for exotic emergent topological particles, such as fractionally charged excitations, composite fermions, abelian and nonabelian anyons and Majorana fermions. Fractionally charged skyrmions, which support both topological charge and topological vortex-like spin structure, have also been predicted to occur in the vicinity of 1/3 filling of the lowest Landau level. The fractional skyrmions, however, are anticipated to be exceedingly fragile, suppressed by very small Zeeman energies. Here we show that, slightly away from 1/3 filling, the smallest manifestations of the fractional skyrmion exist in the excitation spectrum for a broad range of Zeemanmore » energies, and appear in resonant inelastic light scattering experiments as well-defined resonances slightly below the long wavelength spin wave mode. The spectroscopy of these exotic bound states serves as a sensitive tool for investigating the residual interaction between composite fermions, responsible for delicate new fractional quantum Hall states in this filling factor region.« less
Quantum corrections to conductivity under conditions of the integer quantum Hall effect
Greshnov, A. A.
2012-06-15
Quantum corrections to the conductivity of a two-dimensional electron gas under conditions of the integer quantum Hall effect have been studied. It is shown that violation of the one-parameter scaling under conditions of quantizing magnetic fields, {omega}{sub c}{tau} Much-Greater-Than 1, occurs at a level of the perturbation theory. The results of diagrammatic calculation of the quantum correction are in agreement with the numerical dependences of the peaks in the longitudinal conductivity on the effective size of the sample, in contrast to earlier calculations based on the unitary nonlinear {sigma}-model. Due to this, consideration of Landau quantization represents a criterion for correct description of the quantum Hall effect.
Topological Hubbard Model and Its High-Temperature Quantum Hall...
Office of Scientific and Technical Information (OSTI)
Topological Hubbard Model and Its High-Temperature Quantum Hall Effect Title: Topological Hubbard Model and Its High-Temperature Quantum Hall Effect Authors: Neupert, Titus ; ...
Engineering the quantum anomalous Hall effect in graphene with uniaxial strains
Diniz, G. S. Guassi, M. R.; Qu, F.
2013-12-28
We theoretically investigate the manipulation of the quantum anomalous Hall effect (QAHE) in graphene by means of the uniaxial strain. The values of Chern number and Hall conductance demonstrate that the strained graphene in presence of Rashba spin-orbit coupling and exchange field, for vanishing intrinsic spin-orbit coupling, possesses non-trivial topological phase, which is robust against the direction and modulus of the strain. Besides, we also find that the interplay between Rashba and intrinsic spin-orbit couplings results in a topological phase transition in the strained graphene. Remarkably, as the strain strength is increased beyond approximately 7%, the critical parameters of the exchange field for triggering the quantum anomalous Hall phase transition show distinct behaviors—decrease (increase) for strains along zigzag (armchair) direction. Our findings open up a new platform for manipulation of the QAHE by an experimentally accessible strain deformation of the graphene structure, with promising application on novel quantum electronic devices with high efficiency.
A novel method of including Landau level mixing in numerical studies of the quantum Hall effect
Wooten, Rachel; Quinn, John; Macek, Joseph
2013-12-04
Landau level mixing should influence the quantum Hall effect for all except the strongest applied magnetic fields. We propose a simple method for examining the effects of Landau level mixing by incorporating multiple Landau levels into the Haldane pseudopotentials through exact numerical diagonalization. Some of the resulting pseudopotentials for the lowest and first excited Landau levels will be presented.
Fractional quantum Hall effect at Landau level filling ν = 4/11
Pan, W.; Baldwin, K. W.; West, K. W.; Pfeiffer, L. N.; Tsui, D. C.
2015-01-09
In this study, we report low temperature electronic transport results on the fractional quantum Hall effect of composite fermions at Landau level filling ν = 4/11 in a very high mobility and low density sample. Measurements were carried out at temperatures down to 15mK, where an activated magnetoresistance Rxx and a quantized Hall resistance Rxy, within 1% of the expected value of h/(4/11)e2, were observed. The temperature dependence of the Rxx minimum at 4/11 yields an activation energy gap of ~ 7 mK. Developing Hall plateaus were also observed at the neighboring states at ν = 3/8 and 5/13.
Fractional quantum Hall effect at Landau level filling ν = 4/11
Pan, W.; Baldwin, K. W.; West, K. W.; Pfeiffer, L. N.; Tsui, D. C.
2015-01-09
In this study, we report low temperature electronic transport results on the fractional quantum Hall effect of composite fermions at Landau level filling ν = 4/11 in a very high mobility and low density sample. Measurements were carried out at temperatures down to 15mK, where an activated magnetoresistance R_{xx} and a quantized Hall resistance R_{xy}, within 1% of the expected value of h/(4/11)e^{2}, were observed. The temperature dependence of the R_{xx} minimum at 4/11 yields an activation energy gap of ~ 7 mK. Developing Hall plateaus were also observed at the neighboring states at ν = 3/8 and 5/13.
Arapov, Yu. G.; Gudina, S. V.; Neverov, V. N.; Podgornykh, S. M.; Popov, M. R. Harus, G. I.; Shelushinina, N. G.; Yakunin, M. V.; Mikhailov, N. N.; Dvoretsky, S. A.
2015-12-15
The longitudinal and Hall magnetoresistances of HgTe/HgCdTe heterostructures with an inverted energy spectrum (the HgTe quantum well width is d = 20.3 nm) are measured in the quantum-Hall-effect regime at T = 2–50 K in magnetic fields up to B = 9 T. Analysis of the temperature dependences of conductivity in the transition region between the first and second plateaus of the quantum Hall effect shows the feasibility of the scaling regime for a plateau–plateau quantum phase transition in 2D-structures on the basis of mercury telluride.
Hall effect in quantum critical charge-cluster glass (Journal...
Office of Scientific and Technical Information (OSTI)
Upon doping, cuprates undergo a quantum phase transition from an insulator to a d-wave superconductor. The nature of this transition and of the insulating state is vividly debated. ...
Phase transitions in quantum Hall multiple layer systems
Pusep, Yu A.; Fernandes dos Santos, L.; Smirnov, D.; Bakarov, A. K.; Toropov, A. I.
2013-12-04
Polarized photoluminescence from multiple well electron systems was studied in the regime of the integer quantum Hall effect. Two quantum Hall ferromagnetic ground states assigned to the uncorrelated miniband quantum Hall state and to the spontaneous interwell phase coherent dimer quantum Hall state were observed. The photoluminescence associated with these states exhibits features caused by finite-size skyrmions. The depolarization of the ferromagnetic ground state was observed in bilayer system.
Quantum Hall effect in HgTe quantum wells at nitrogen temperatures
Kozlov, D. A. Kvon, Z. D.; Mikhailov, N. N.; Dvoretskii, S. A.; Weishäupl, S.; Krupko, Y.; Portal, J.-C.
2014-09-29
We report on the observation of quantized Hall plateaus in a system of two-dimensional Dirac fermions, implemented in a 6.6 nm HgTe quantum well at magnetic fields up to 34 T at nitrogen temperatures. The activation energies determined from the temperature dependence of the longitudinal resistivity are found to be almost equal for the filling factors ν of 1 and 2. This indicates that the large values of the g-factor (about 30–40) remain unchanged at very strong magnetic fields.
Field effect in the quantum Hall regime of a high mobility graphene wire
Barraud, C., E-mail: cbarraud@phys.ethz.ch, E-mail: clement.barraud@univ-paris-diderot.fr; Choi, T.; Ihn, T.; Ensslin, K. [Solid State Physics Laboratory, ETH Zrich, CH-8093 Zrich (Switzerland); Butti, P.; Shorubalko, I. [Swiss Federal Laboratories of Materials Science and Technologies, EMPA Elect. Metrol. Reliabil. Lab., CH-8600 Dbendorf (Switzerland); Taniguchi, T.; Watanabe, K. [National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044 (Japan)
2014-08-21
In graphene-based electronic devices like in transistors, the field effect applied thanks to a gate electrode allows tuning the charge density in the graphene layer and passing continuously from the electron to the hole doped regime across the Dirac point. Homogeneous doping is crucial to understand electrical measurements and for the operation of future graphene-based electronic devices. However, recently theoretical and experimental studies highlighted the role of the electrostatic edge due to fringing electrostatic field lines at the graphene edges [P. Silvestrov and K. Efetov, Phys. Rev. B 77, 155436 (2008); F. T. Vasko and I. V. Zozoulenko, Appl. Phys. Lett. 97, 092115 (2010)]. This effect originates from the particular geometric design of the samples. A direct consequence is a charge accumulation at the graphene edges giving a value for the density, which deviates from the simple picture of a plate capacitor and also varies along the width of the graphene sample. Entering the quantum Hall regime would, in principle, allow probing this accumulation thanks to the extreme sensitivity of this quantum effect to charge density and the charge distribution. Moreover, the presence of an additional and counter-propagating edge channel has been predicted [P. Silvestrov and K. Efetov, Phys. Rev. B 77, 155436 (2008)] giving a fundamental aspect to this technological issue. In this article, we investigate this effect by tuning a high mobility graphene wire into the quantum Hall regime in which charge carriers probe the electrostatic potential at high magnetic field close to the edges. We observe a slight deviation to the linear shift of the quantum Hall plateaus with magnetic field and we study its evolution for different filling factors, which correspond to different probed regions in real space. We discuss the possible origins of this effect including an increase of the charge density towards the edges.
Position-Momentum Duality and Fractional Quantum Hall Effect in Chern Insulators
Claassen, Martin; Lee, Ching-Hua; Thomale, Ronny; Qi, Xiao-Liang; Devereaux, Thomas P
2015-06-11
We develop a first quantization description of fractional Chern insulators that is the dual of the conventional fractional quantum Hall (FQH) problem, with the roles of position and momentum interchanged. In this picture, FQH states are described by anisotropic FQH liquids forming in momentum-space Landau levels in a fluctuating magnetic field. The fundamental quantum geometry of the problem emerges from the interplay of single-body and interaction metrics, both of which act as momentum-space duals of the geometrical picture of the anisotropic FQH effect. We then present a novel broad class of ideal Chern insulator lattice models that act as dualsmore » of the isotropic FQH effect. The interacting problem is well-captured by Haldane pseudopotentials and affords a detailed microscopic understanding of the interplay of interactions and non-trivial quantum geometry.« less
Position-Momentum Duality and Fractional Quantum Hall Effect in Chern Insulators
Claassen, Martin; Lee, Ching-Hua; Thomale, Ronny; Qi, Xiao-Liang; Devereaux, Thomas P
2015-06-11
We develop a first quantization description of fractional Chern insulators that is the dual of the conventional fractional quantum Hall (FQH) problem, with the roles of position and momentum interchanged. In this picture, FQH states are described by anisotropic FQH liquids forming in momentum-space Landau levels in a fluctuating magnetic field. The fundamental quantum geometry of the problem emerges from the interplay of single-body and interaction metrics, both of which act as momentum-space duals of the geometrical picture of the anisotropic FQH effect. We then present a novel broad class of ideal Chern insulator lattice models that act as duals of the isotropic FQH effect. The interacting problem is well-captured by Haldane pseudopotentials and affords a detailed microscopic understanding of the interplay of interactions and non-trivial quantum geometry.
Koirala, Nikesh; Han, Myung -Geun; Brahlek, Matthew; Salehi, Maryam; Wu, Liang; Dai, Jixia; Waugh, Justin; Nummy, Thomas; Moon, Jisoo; Zhu, Yimei; et al
2015-11-19
Material defects remain as the main bottleneck to the progress of topological insulators (TIs). In particular, efforts to achieve thin TI samples with dominant surface transport have always led to increased defects and degraded mobilities, thus making it difficult to probe the quantum regime of the topological surface states. Here, by utilizing a novel buffer layer scheme composed of an In2Se3/(Bi0.5In0.5)2Se3 heterostructure, we introduce a quantum generation of Bi2Se3 films with an order of magnitude enhanced mobilities than before. Furthermore, this scheme has led to the first observation of the quantum Hall effect in Bi2Se3.
Koirala, Nikesh; Han, Myung -Geun; Brahlek, Matthew; Salehi, Maryam; Wu, Liang; Dai, Jixia; Waugh, Justin; Nummy, Thomas; Moon, Jisoo; Zhu, Yimei; Dessau, Daniel; Wu, Weida; Armitage, N. Peter; Oh, Seongshik
2015-11-19
Material defects remain as the main bottleneck to the progress of topological insulators (TIs). In particular, efforts to achieve thin TI samples with dominant surface transport have always led to increased defects and degraded mobilities, thus making it difficult to probe the quantum regime of the topological surface states. Here, by utilizing a novel buffer layer scheme composed of an In_{2}Se_{3}/(Bi_{0.5}In_{0.5})_{2}Se_{3} heterostructure, we introduce a quantum generation of Bi_{2}Se_{3} films with an order of magnitude enhanced mobilities than before. Furthermore, this scheme has led to the first observation of the quantum Hall effect in Bi_{2}Se_{3}.
Mogi, M. Yoshimi, R.; Yasuda, K.; Kozuka, Y.; Tsukazaki, A.; Takahashi, K. S.; Kawasaki, M.; Tokura, Y.
2015-11-02
Quantum anomalous Hall effect (QAHE), which generates dissipation-less edge current without external magnetic field, is observed in magnetic-ion doped topological insulators (TIs) such as Cr- and V-doped (Bi,Sb){sub 2}Te{sub 3}. The QAHE emerges when the Fermi level is inside the magnetically induced gap around the original Dirac point of the TI surface state. Although the size of gap is reported to be about 50 meV, the observable temperature of QAHE has been limited below 300 mK. We attempt magnetic-Cr modulation doping into topological insulator (Bi,Sb){sub 2}Te{sub 3} films to increase the observable temperature of QAHE. By introducing the rich-Cr-doped thin (1 nm) layers at the vicinity of both the surfaces based on non-Cr-doped (Bi,Sb){sub 2}Te{sub 3} films, we have succeeded in observing the QAHE up to 2 K. The improvement in the observable temperature achieved by this modulation-doping appears to be originating from the suppression of the disorder in the surface state interacting with the rich magnetic moments. Such a superlattice designing of the stabilized QAHE may pave a way to dissipation-less electronics based on the higher-temperature and zero magnetic-field quantum conduction.
Intrinsic quantum anomalous Hall effect in the kagome lattice Cs2LiMn3F12
Xu, Gang; Lian, Biao; Zhang, Shou -Cheng
2015-10-27
In a kagome lattice, the time reversal symmetry can be broken by a staggered magnetic flux emerging from ferromagnetic ordering and intrinsic spin-orbit coupling, leading to several well-separated nontrivial Chern bands and intrinsic quantum anomalous Hall effect. Based on this idea and ab initio calculations, we propose the realization of the intrinsic quantum anomalous Hall effect in the single layer Cs2Mn3F12 kagome lattice and on the (001) surface of a Cs2LiMn3F12 single crystal by modifying the carrier coverage on it, where the band gap is around 20 meV. Furthermore, a simplified tight binding model based on the in-plane ddσ antibondingmore » states is constructed to understand the topological band structures of the system.« less
Arapov, Yu. G.; Gudina, S. V. Klepikova, A. S.; Neverov, V. N.; Shelushinina, N. G.; Yakunin, M. V.
2015-02-15
The dependences of the longitudinal and Hall resistances on a magnetic field in the integer quantum Hall effect regime in n-InGaAs/GaAs heterostructures with a double quantum well are measured in the range of magnetic fields B = 0–16 T and temperatures T = 0.05–4.2 K, before and after infrared illumination. Analysis of the temperature dependence of the width of transitions between plateaus of the quantum Hall effect is performed in the scope of the scaling hypothesis allowing for electron-electron interaction effects.
Isotropic Hall effect and ''freeze-in'' of carriers in the InGaAs self-assembled quantum wires
Kunets, Vas. P.; Prosandeev, S.; Mazur, Yu. I.; Ware, M. E.; Teodoro, M. D.; Dorogan, V. G.; Lytvyn, P. M.; Salamo, G. J.
2011-10-15
Using molecular beam epitaxy, we prepared an anisotropic media consisting of InGaAs quantum wires epitaxially grown on GaAs (311)A. Anisotropy is observed in the lateral conductivity and photoluminescence polarization. However, an isotropic Hall effect is observed in the same samples. We show that the Hall effect in this anisotropic heterostructure remains isotropic regardless of the change of the doping in GaAs barriers and regardless of the InGaAs coverage, whereas the conductivity anisotropy experiences a strong change under these actions. In addition, we observed an anomalous increase in carrier density, ''freeze-in,'' at low temperatures. In order to explain this, we generalized the theory of Look [D. C. Look, Phys. Rev B 42, 3578 (1990)] by considering the low field magneto-transport in anisotropic media. This theory confirms that the Hall constant remains isotropic in anisotropic semiconductor heterostructures, agreeing with our experiment and explains the anomalous behavior of carriers as a result of multi-band conductivity.
Anomalous spin precession and spin Hall effect in semiconductor...
Office of Scientific and Technical Information (OSTI)
SciTech Connect Search Results Journal Article: Anomalous spin precession and spin Hall effect in semiconductor quantum wells Citation Details In-Document Search Title: Anomalous ...
Effective Field Theory of Fractional Quantized Hall Nematics (Journal
Office of Scientific and Technical Information (OSTI)
Article) | SciTech Connect Effective Field Theory of Fractional Quantized Hall Nematics Citation Details In-Document Search Title: Effective Field Theory of Fractional Quantized Hall Nematics We present a Landau-Ginzburg theory for a fractional quantized Hall nematic state and the transition to it from an isotropic fractional quantum Hall state. This justifies Lifshitz-Chern-Simons theory - which is shown to be its dual - on a more microscopic basis and enables us to compute a ground state
Duong, Le Quy; Das, Tanmoy; Feng, Y. P.; Lin, Hsin
2015-05-07
We study the evolution of quantum anomalous Hall (QAH) effect for a Z{sub 2} topological insulator (TI) thin films in a proximity induced magnetic phase by a realistic layered k·p model with interlayer coupling. We examine three different magnetic configurations in which ferromagnetic (FM) layer(s) is added either from one side (FM-TI), from both sides (FM-TI-FM), or homogeneously distributed (magnetically doped) in a TI slab. We map out the thickness-dependent topological phase diagram under various experimental conditions. The critical magnetic exchange energy for the emergence of QAH effect in the latter two cases decreases monotonically with increasing number of quintuple layers (QLs), while it becomes surprisingly independent of the film thickness in the former case. The gap size of the emergent QAH insulator depends on the non-magnetic “parent” gap of the TI thin film and is tuned by the FM exchange energy, opening a versatile possibility to achieve room-temperature QAH insulator in various topological nanomaterials. Finally, we find that the emergent spin-texture in the QAH effect is very unconventional, non-“hedgehog” type; and it exhibits a chiral out-of-plane spin-flip texture within the same valence band which is reminiscent of dynamical “skyrmion” pattern, except our results are in the momentum space.
Intrinsic quantum anomalous Hall effect in the kagome lattice Cs_{2}LiMn_{3}F_{12}
Xu, Gang; Lian, Biao; Zhang, Shou -Cheng
2015-10-27
In a kagome lattice, the time reversal symmetry can be broken by a staggered magnetic flux emerging from ferromagnetic ordering and intrinsic spin-orbit coupling, leading to several well-separated nontrivial Chern bands and intrinsic quantum anomalous Hall effect. Based on this idea and ab initio calculations, we propose the realization of the intrinsic quantum anomalous Hall effect in the single layer Cs_{2}Mn_{3}F_{12} kagome lattice and on the (001) surface of a Cs_{2}LiMn_{3}F_{12} single crystal by modifying the carrier coverage on it, where the band gap is around 20 meV. Furthermore, a simplified tight binding model based on the in-plane ddσ antibonding states is constructed to understand the topological band structures of the system.
Metal-to-insulator switching in quantum anomalous Hall states
Kou, Xufeng; Pan, Lei; Wang, Jing; Fan, Yabin; Choi, Eun Sang; Lee, Wei -Li; Nie, Tianxiao; Murata, Koichi; Shao, Qiming; Zhang, Shou -Cheng; et al
2015-10-07
After decades of searching for the dissipationless transport in the absence of any external magnetic field, quantum anomalous Hall effect (QAHE) was recently achieved in magnetic topological insulator films. However, the universal phase diagram of QAHE and its relation with quantum Hall effect (QHE) remain to be investigated. Here, we report the experimental observation of the giant longitudinal resistance peak and zero Hall conductance plateau at the coercive field in the six quintuple-layer (Cr0.12Bi0.26Sb0.62)2Te3 film, and demonstrate the metal-to-insulator switching between two opposite QAHE plateau states up to 0.3 K. Moreover, the universal QAHE phase diagram is confirmed through themore » angle-dependent measurements. Our results address that the quantum phase transitions in both QAHE and QHE regimes are in the same universality class, yet the microscopic details are different. Additionally, the realization of the QAHE insulating state unveils new ways to explore quantum phase-related physics and applications.« less
Metal-to-insulator switching in quantum anomalous Hall states
Kou, Xufeng; Pan, Lei; Wang, Jing; Fan, Yabin; Choi, Eun Sang; Lee, Wei -Li; Nie, Tianxiao; Murata, Koichi; Shao, Qiming; Zhang, Shou -Cheng; Wang, Kang L.
2015-10-07
After decades of searching for the dissipationless transport in the absence of any external magnetic field, quantum anomalous Hall effect (QAHE) was recently achieved in magnetic topological insulator films. However, the universal phase diagram of QAHE and its relation with quantum Hall effect (QHE) remain to be investigated. Here, we report the experimental observation of the giant longitudinal resistance peak and zero Hall conductance plateau at the coercive field in the six quintuple-layer (Cr_{0.12}Bi_{0.26}Sb_{0.62})_{2}Te_{3} film, and demonstrate the metal-to-insulator switching between two opposite QAHE plateau states up to 0.3 K. Moreover, the universal QAHE phase diagram is confirmed through the angle-dependent measurements. Our results address that the quantum phase transitions in both QAHE and QHE regimes are in the same universality class, yet the microscopic details are different. Additionally, the realization of the QAHE insulating state unveils new ways to explore quantum phase-related physics and applications.
Contactless measurement of alternating current conductance in quantum Hall structures
Drichko, I. L.; Diakonov, A. M.; Malysh, V. A.; Smirnov, I. Yu.; Ilyinskaya, N. D.; Usikova, A. A.; Galperin, Y. M.; Kummer, M.; Känel, H. von
2014-10-21
We report a procedure to determine the frequency-dependent conductance of quantum Hall structures in a broad frequency domain. The procedure is based on the combination of two known probeless methods—acoustic spectroscopy and microwave spectroscopy. By using the acoustic spectroscopy, we study the low-frequency attenuation and phase shift of a surface acoustic wave in a piezoelectric crystal in the vicinity of the electron (hole) layer. The electronic contribution is resolved using its dependence on a transverse magnetic field. At high frequencies, we study the attenuation of an electromagnetic wave in a coplanar waveguide. To quantitatively calibrate these data, we use the fact that in the quantum-Hall-effect regime the conductance at the maxima of its magnetic field dependence is determined by extended states. Therefore, it should be frequency independent in a broad frequency domain. The procedure is verified by studies of a well-characterized p-SiGe/Ge/SiGe heterostructure.
Admittance of multiterminal quantum Hall conductors at kilohertz frequencies
Hernndez, C.; Consejo, C.; Chaubet, C.; Degiovanni, P.
2014-03-28
We present an experimental study of the low frequency admittance of quantum Hall conductors in the [100?Hz, 1?MHz] frequency range. We show that the frequency dependence of the admittance of the sample strongly depends on the topology of the contacts connections. Our experimental results are well explained within the Christen and Bttiker approach for finite frequency transport in quantum Hall edge channels taking into account the influence of the coaxial cables capacitance. In the Hall bar geometry, we demonstrate that there exists a configuration in which the cable capacitance does not influence the admittance measurement of the sample. In this case, we measure the electrochemical capacitance of the sample and observe its dependence on the filling factor.
Rankin, R.A.; Kotter, D.K.
1997-05-13
The Hall-Effect Arc Protector is used to protect sensitive electronics from high energy arcs. The apparatus detects arcs by monitoring an electrical conductor, of the instrument, for changes in the electromagnetic field surrounding the conductor which would be indicative of a possible arcing condition. When the magnitude of the monitored electromagnetic field exceeds a predetermined threshold, the potential for an instrument damaging are exists and the control system logic activates a high speed circuit breaker. The activation of the breaker shunts the energy imparted to the input signal through a dummy load to the ground. After the arc condition is terminated, the normal signal path is restored. 2 figs.
Rankin, Richard A.; Kotter, Dale K.
1997-01-01
The Hall-Effect Arc Protector is used to protect sensitive electronics from high energy arcs. The apparatus detects arcs by monitoring an electrical conductor, of the instrument, for changes in the electromagnetic field surrounding the conductor which would be indicative of a possible arcing condition. When the magnitude of the monitored electromagnetic field exceeds a predetermined threshold, the potential for an instrument damaging are exists and the control system logic activates a high speed circuit breaker. The activation of the breaker shunts the energy imparted to the input signal through a dummy load to the ground. After the arc condition is terminated, the normal signal path is restored.
Measurement-only topological quantum computation via anyonic...
Office of Scientific and Technical Information (OSTI)
Subject: 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; ANYONS; HALL EFFECT; INTERFEROMETRY; QUANTUM COMPUTERS; QUANTUM MECHANICS; QUANTUM TELEPORTATION; TOPOLOGY; ...
Reduced spin-Hall effects from magnetic proximity (Journal Article...
Office of Scientific and Technical Information (OSTI)
Reduced spin-Hall effects from magnetic proximity Prev Next Title: Reduced spin-Hall effects from magnetic proximity Authors: Zhang, Wei ; Jungfleisch, Matthias B. ; Jiang, ...
Charge carrier coherence and Hall effect in organic semiconductors...
Office of Scientific and Technical Information (OSTI)
Charge carrier coherence and Hall effect in organic semiconductors Citation Details In-Document Search Title: Charge carrier coherence and Hall effect in organic semiconductors ...
A spin-filter made of quantum anomalous Hall insulator nanowires
Wu, Jiansheng
2014-07-28
Topological end states (TES) in quantum anomalous Hall insulator nanowires can induce tunneling within the gap. Such TES are spin polarized, thus the induced current is spin polarized as well, which can be used to construct a spin-filter applied in spintronics. An interferometry device is designed to control the polarized current as well. The advantage and finite size effect on this system are discussed.
The fluctuation induced Hall effect
Shen, W.; Prager, S.C.
1993-02-01
The fluctuation induced Hall term, [le][approximately][ovr J] [times] [approximately][ovr B][ge], has been measured in the MST reversed field pinch. The term is of interest as a possible source of current self-generation (dynamo). It is found to be non-negligible, but small in that it can account for less than 25% of the dynamo driven current.
The fluctuation induced Hall effect
Shen, W.; Prager, S.C.
1993-02-01
The fluctuation induced Hall term, {le}{approximately}{ovr J} {times} {approximately}{ovr B}{ge}, has been measured in the MST reversed field pinch. The term is of interest as a possible source of current self-generation (dynamo). It is found to be non-negligible, but small in that it can account for less than 25% of the dynamo driven current.
Formation of quantum spin Hall state on Si surface and energy gap scaling
Office of Scientific and Technical Information (OSTI)
with strength of spin orbit coupling (Journal Article) | SciTech Connect Formation of quantum spin Hall state on Si surface and energy gap scaling with strength of spin orbit coupling Citation Details In-Document Search Title: Formation of quantum spin Hall state on Si surface and energy gap scaling with strength of spin orbit coupling For potential applications in spintronics and quantum computing, it is desirable to place a quantum spin Hall insulator [i.e., a 2D topological insulator
Precise quantization of anomalous Hall effect near zero magnetic field
Bestwick, A. J.; Fox, E. J.; Kou, Xufeng; Pan, Lei; Wang, Kang L.; Goldhaber-Gordon, D.
2015-05-04
In this study, we report a nearly ideal quantum anomalous Hall effect in a three-dimensional topological insulator thin film with ferromagnetic doping. Near zero applied magnetic field we measure exact quantization in the Hall resistance to within a part per 10,000 and a longitudinal resistivity under 1 Ω per square, with chiral edge transport explicitly confirmed by nonlocal measurements. Deviations from this behavior are found to be caused by thermally activated carriers, as indicated by an Arrhenius law temperature dependence. Using the deviations as a thermometer, we demonstrate an unexpected magnetocaloric effect and use it to reach near-perfect quantization by cooling the sample below the dilution refrigerator base temperature in a process approximating adiabatic demagnetization refrigeration.
Fractional quantum Hall junctions and two-channel Kondo models
Sandler, Nancy P.; Fradkin, Eduardo
2001-06-15
A mapping between fractional quantum Hall (FQH) junctions and the two-channel Kondo model is presented. We discuss this relation in detail for the particular case of a junction of a FQH state at {nu}=1/3 and a normal metal. We show that in the strong coupling regime this junction has a non-Fermi-liquid fixed point. At this fixed point the electron Green{close_quote}s function has a branch cut and the impurity entropy is equal to S=1/2ln2. We construct the space of perturbations at the strong coupling fixed point and find that the dimension of the tunneling operator is 1/2. These properties are strongly reminiscent of the non-Fermi-liquid fixed points of a number of quantum impurity models, particularly the two-channel Kondo model. However we have found that, in spite of these similarities, the Hilbert spaces of these two systems are quite different. In particular, although in a special limit the Hamiltonians of both systems are the same, their Hilbert spaces are not since they are determined by physically distinct boundary conditions. As a consequence the spectrum of operators in the two problems is different.
Formation of quantum spin Hall state on Si surface and energy...
Office of Scientific and Technical Information (OSTI)
Si surface and energy gap scaling with strength of spin orbit coupling Title: Formation of quantum spin Hall state on Si surface and energy gap scaling with strength of spin orbit ...
AC-magnetotransport of a 2DEG in the quantum Hall regime
Hernndez, C.; Chaubet, C.
2014-05-15
In this paper we present an ac-magneto-transport study of a two-dimensional electron gas (2DEG) in the quantum Hall effect (QHE) regime, for frequencies in the range [100Hz, 1MHz]. We present a new approach to understand admittance measurements based in the Landauer-Buttiker formalism for QHE edge channels and taking into account the capacitance and the topology of the cables connected to the contacts used in the measurements. Our model predicts an universal behavior with the a-dimensional parameter RC? where R is the 2 wires resistance of the 2DEG, C the capacitance cables and the angular frequency, in agreement with experiments.
Charge carrier coherence and Hall effect in organic semiconductors
Yi, H. T.; Gartstein, Y. N.; Podzorov, V.
2016-03-30
Hall effect measurements are important for elucidating the fundamental charge transport mechanisms and intrinsic mobility in organic semiconductors. However, Hall effect studies frequently reveal an unconventional behavior that cannot be readily explained with the simple band-semiconductor Hall effect model. Here, we develop an analytical model of Hall effect in organic field-effect transistors in a regime of coexisting band and hopping carriers. The model, which is supported by the experiments, is based on a partial Hall voltage compensation effect, occurring because hopping carriers respond to the transverse Hall electric field and drift in the direction opposite to the Lorentz force actingmore » on band carriers. We show that this can lead in particular to an underdeveloped Hall effect observed in organic semiconductors with substantial off-diagonal thermal disorder. Lastly, our model captures the main features of Hall effect in a variety of organic semiconductors and provides an analytical description of Hall mobility, carrier density and carrier coherence factor.« less
Anomalous Hall effect in YIG|Pt bilayers
Meyer, Sibylle Schlitz, Richard; Geprägs, Stephan; Opel, Matthias; Huebl, Hans; Goennenwein, Sebastian T. B.; Gross, Rudolf
2015-03-30
We measure the ordinary and the anomalous Hall effect in a set of yttrium iron garnet|platinum (YIG|Pt) bilayers via magnetization orientation dependent magnetoresistance experiments. Our data show that the presence of the ferrimagnetic insulator YIG leads to an anomalous Hall effect like voltage in Pt, which is sensitive to both Pt thickness and temperature. Interpretation of the experimental findings in terms of the spin Hall anomalous Hall effect indicates that the imaginary part of the spin mixing conductance G{sub i} plays a crucial role in YIG|Pt bilayers. In particular, our data suggest a sign change in G{sub i} between 10 K and 300 K. Additionally, we report a higher order Hall effect contribution, which appears in thin Pt films on YIG at low temperatures.
Kim, Sang-Il; Seo, Min-Su; Park, Seung-Young; Kim, Dong-Jun; Park, Byong-Guk
2015-05-07
The dependence of the measured DC voltage on the non-magnetic material (NM) in NM/CoFeB and CoFeB/NM bilayers is studied under ferromagnetic resonance conditions in a TE{sub 011} resonant cavity. The directional change of the inverse spin Hall effect (ISHE) voltage V{sub ISHE} for the stacking order of the bilayer can separate the pure V{sub ISHE} and the anomalous Hall effect (AHE) voltage V{sub AHE} utilizing the method of addition and subtraction. The Ta and Ti NMs show a broad deviation of the spin Hall angle θ{sub ISH}, which originates from the AHE in accordance with the high resistivity of NMs. However, the Pt and Pd NMs show that the kinds of NMs with low resistivity are consistent with the previously reported θ{sub ISH} values. Therefore, the characteristics that NM should simultaneously satisfy to obtain a reasonable V{sub ISHE} value in bilayer systems are large θ{sub ISH} and low resistivity.
Experimental Observation of the Inverse Spin Hall Effect at Room Temperature
Liu, Baoli; Shi, Junren; Wang, Wenxin; Zhao, Hongming; Li, Dafang; Zhang, Shoucheng; Xue, Qikun; Chen, Dongmin; /Beijing, Inst. Phys.
2010-03-16
We observe the inverse spin Hall effect in a two-dimensional electron gas confined in Al-GaAs/InGaAs quantum wells. Specifically, they find that an inhomogeneous spin density induced by the optical injection gives rise to an electric current transverse to both the spin polarization and its gradient. The spin Hall conductivity can be inferred from such a measurement through the Einstein relation and the onsager relation, and is found to have the order of magnitude of 0.5(e{sup 2}/h). The observation is made at the room temperature and in samples with macroscopic sizes, suggesting that the inverse spin Hall effects is a robust macroscopic transport phenomenon.
Hall effect measurements on InAs nanowires
Bloemers, Ch.; Grap, T.; Lepsa, M. I.; Moers, J.; Gruetzmacher, D.; Lueth, H.; Trellenkamp, St.; Schaepers, Th.
2012-10-08
We have processed Hall contacts on InAs nanowires grown by molecular beam epitaxy using an electron beam lithography process with an extremely high alignment accuracy. The carrier concentrations determined from the Hall effect measurements on these nanowires are lower by a factor of about 4 in comparison with those measured by the common field-effect technique. The results are used to evaluate quantitatively the charging effect of the interface and surface states.
Elyasi, Mehrdad; Bhatia, Charanjit S.; Yang, Hyunsoo
2015-02-14
We have proposed a method to synchronize multiple spin-transfer torque oscillators based on spin pumping, inverse spin Hall, and spin Hall effects. The proposed oscillator system consists of a series of nano-magnets in junction with a normal metal with high spin-orbit coupling, and an accumulative feedback loop. We conduct simulations to demonstrate the effect of modulated charge currents in the normal metal due to spin pumping from each nano-magnet. We show that the interplay between the spin Hall effect and inverse spin Hall effect results in synchronization of the nano-magnets.
Charge carrier coherence and Hall effect in organic semiconductors
Office of Scientific and Technical Information (OSTI)
OPEN: Charge carrier coherence and Hall effect in organic semiconductors H. T. Yi1, Y. N. Gartstein2 & V. Podzorov1-3 Received: 21 January 2016 Accepted: 29 February 2016 ...
Edge-channel interferometer at the graphene quantum Hall pn junction
Morikawa, Sei; Moriya, Rai; Masubuchi, Satoru Machida, Tomoki; Watanabe, Kenji; Taniguchi, Takashi
2015-05-04
We demonstrate a quantum Hall edge-channel interferometer in a high-quality graphene pn junction under a high magnetic field. The co-propagating p and n quantum Hall edge channels traveling along the pn interface functions as a built-in Aharonov-Bohm-type interferometer, the interferences in which are sensitive to both the external magnetic field and the carrier concentration. The trajectories of peak and dip in the observed resistance oscillation are well reproduced by our numerical calculation that assumes magnetic flux quantization in the area enclosed by the co-propagating edge channels. Coherent nature of the co-propagating edge channels is confirmed by the checkerboard-like pattern in the dc-bias and magnetic-field dependences of the resistance oscillations.
Optical detection of spin Hall effect in metals
Erve, O. M. J. van ‘t Hanbicki, A. T.; McCreary, K. M.; Li, C. H.; Jonker, B. T.
2014-04-28
Optical techniques have been widely used to probe the spin Hall effect in semiconductors. In metals, however, only electrical methods such as nonlocal spin valve transport, ferromagnetic resonance, or spin torque transfer experiments have been successful. These methods require complex processing techniques and measuring setups. We show here that the spin Hall effect can be observed in non-magnetic metals such as Pt and β-W, using a standard bench top magneto-optical Kerr system with very little sample preparation. Applying a square wave current and using Fourier analysis significantly improve our detection level. One can readily determine the angular dependence of the induced polarization on the bias current direction (very difficult to do with voltage detection), the orientation of the spin Hall induced polarization, and the sign of the spin Hall angle. This optical approach is free from the complications of various resistive effects, which can compromise voltage measurements. This opens up the study of spin Hall effect in metals to a variety of spin dynamic and spatial imaging experiments.
Study of the effects of guide field on Hall reconnection
Tharp, T. D.; Yamada, M.; Ji, H.; Lawrence, E.; Dorfman, S.; Myers, C.; Yoo, J.; Huang, Y.-M.; Bhattacharjee, A.
2013-05-15
The results from guide field studies on the Magnetic Reconnection Experiment (MRX) are compared with results from Hall magnetohydrodynamic (HMHD) reconnection simulation with guide field. The quadrupole field, a signature of two-fluid reconnection at zero guide field, is modified by the presence of a finite guide field in a manner consistent with HMHD simulation. The modified Hall current profile contains reduced electron flows in the reconnection plane, which quantitatively explains the observed reduction of the reconnection rate. The present results are consistent with the hypothesis that the local reconnection dynamics is dominated by Hall effects in the collisionless regime of the MRX plasmas. While very good agreement is seen between experiment and simulations, we note that an important global feature of the experiments, a compression of the guide field by the reconnecting plasma, is not represented in the simulations.
Inverse spin Hall effect in Pt/(Ga,Mn)As
Nakayama, H.; Chen, L.; Chang, H. W.; Ohno, H.; Matsukura, F.
2015-06-01
We investigate dc voltages under ferromagnetic resonance in a Pt/(Ga,Mn)As bilayer structure. A part of the observed dc voltage is shown to originate from the inverse spin Hall effect. The sign of the inverse spin Hall voltage is the same as that in Py/Pt bilayer structure, even though the stacking order of ferromagnetic and nonmagnetic layers is opposite to each other. The spin mixing conductance at the Pt/(Ga,Mn)As interface is determined to be of the order of 10{sup 19 }m{sup −2}, which is about ten times greater than that of (Ga,Mn)As/p-GaAs.
Zhou, Miao; Ming, Wenmei; Liu, Zheng; Wang, Zhengfei; Yao, Yugui; Liu, Feng
2014-11-19
For potential applications in spintronics and quantum computing, it is desirable to place a quantum spin Hall insulator [i.e., a 2D topological insulator (TI)] on a substrate while maintaining a large energy gap. Here, we demonstrate a unique approach to create the large-gap 2D TI state on a semiconductor surface, based on first-principles calculations and effective Hamiltonian analysis. We show that when heavy elements with strong spin orbit coupling (SOC) such as Bi and Pb atoms are deposited on a patterned H-Si(111) surface into a hexagonal lattice, they exhibit a 2D TI state with a large energy gap of ≥0.5more » eV. The TI state arises from an intriguing substrate orbital filtering effect that selects a suitable orbital composition around the Fermi level, so that the system can be matched onto a four-band effective model Hamiltonian. Furthermore, it is found that within this model, the SOC gap does not increase monotonically with the increasing strength of SOC. These interesting results may shed new light in future design and fabrication of large-gap topological quantum states.« less
Effects of Enhanced Eathode Electron Emission on Hall Thruster Operation
Y. Raitses, A. Smirnov and N. J. Fisch
2009-04-24
Interesting discharge phenomena are observed that have to do with the interaction between the magnetized Hall thruster plasma and the neutralizing cathode. The steadystate parameters of a highly ionized thruster discharge are strongly influenced by the electron supply from the cathode. The enhancement of the cathode electron emission above its self-sustained level affects the discharge current and leads to a dramatic reduction of the plasma divergence and a suppression of large amplitude, low frequency discharge current oscillations usually related to an ionization instability. These effects correlate strongly with the reduction of the voltage drop in the region with the fringing magnetic field between the thruster channel and the cathode. The measured changes of the plasma properties suggest that the electron emission affects the electron cross-field transport in the thruster discharge. These trends are generalized for Hall thrusters of various configurations.
Robustness of fractional quantum Hall states with dipolar atoms in artificial gauge fields
Grass, T.; Baranov, M. A.; Lewenstein, M.
2011-10-15
The robustness of fractional quantum Hall states is measured as the energy gap separating the Laughlin ground state from excitations. Using thermodynamic approximations for the correlation functions of the Laughlin state and the quasihole state, we evaluate the gap in a two-dimensional system of dipolar atoms exposed to an artificial gauge field. For Abelian fields, our results agree well with the results of exact diagonalization for small systems but indicate that the large value of the gap predicted [Phys. Rev. Lett. 94, 070404 (2005)] was overestimated. However, we are able to show that the small gap found in the Abelian scenario dramatically increases if we turn to non-Abelian fields squeezing the Landau levels.
Effects of wall electrodes on Hall effect thruster plasma
Langendorf, S. Walker, M.; Xu, K.
2015-02-15
This paper investigates the physical mechanisms that cause beneficial and detrimental performance effect observed to date in Hall effect thrusters with wall electrodes. It is determined that the wall electrode sheath can reduce ion losses to the wall if positioned near the anode (outside the dense region of the plasma) such that an ion-repelling sheath is able to form. The ability of the wall electrode to form an ion-repelling sheath is inversely proportional to the current drawn—if the wall electrode becomes the dominant sink for the thruster discharge current, increases in wall electrode bias result in increased local plasma potential rather than an ion-repelling sheath. A single-fluid electron flow model gives results that mimic the observed potential structures and the current-sharing fractions between the anode and wall electrodes, showing that potential gradients in the presheath and bulk plasma come at the expense of current draw to the wall electrodes. Secondary electron emission from the wall electrodes (or lack thereof) is inferred to have a larger effect if the electrodes are positioned near the exit plane than if positioned near the anode, due to the difference in energy deposition from the plasma.
Martin, L. N.; Dmitruk, P.; Gomez, D. O.
2010-11-15
In this work we numerically test a model of Hall magnetohydrodynamics in the presence of a strong mean magnetic field: the reduced Hall magnetohydrodynamic model (RHMHD) derived by [Gomez et al., Phys. Plasmas 15, 102303 (2008)] with the addition of weak compressible effects. The main advantage of this model lies in the reduction of computational cost. Nevertheless, up until now the degree of agreement with the original Hall MHD system and the range of validity in a regime of turbulence were not established. In this work direct numerical simulations of three-dimensional Hall MHD turbulence in the presence of a strong mean magnetic field are compared with simulations of the weak compressible RHMHD model. The results show that the degree of agreement is very high (when the different assumptions of RHMHD, such as spectral anisotropy, are satisfied). Nevertheless, when the initial conditions are isotropic but the mean magnetic field is maintained strong, the results differ at the beginning but asymptotically reach a good agreement at relatively short times. We also found evidence that the compressibility still plays a role in the dynamics of these systems, and the weak compressible RHMHD model is able to capture these effects. In conclusion the weak compressible RHMHD model is a valid approximation of the Hall MHD turbulence in the relevant physical context.
Kühne, P. Schubert, M. Hofmann, T.; Herzinger, C. M. Woollam, J. A.
2014-07-15
We report on the development of the first integrated mid-infrared, far-infrared, and terahertz optical Hall effect instrument, covering an ultra wide spectral range from 3 cm{sup −1} to 7000 cm{sup −1} (0.1–210 THz or 0.4–870 meV). The instrument comprises four sub-systems, where the magneto-cryostat-transfer sub-system enables the usage of the magneto-cryostat sub-system with the mid-infrared ellipsometer sub-system, and the far-infrared/terahertz ellipsometer sub-system. Both ellipsometer sub-systems can be used as variable angle-of-incidence spectroscopic ellipsometers in reflection or transmission mode, and are equipped with multiple light sources and detectors. The ellipsometer sub-systems are operated in polarizer-sample-rotating-analyzer configuration granting access to the upper left 3 × 3 block of the normalized 4 × 4 Mueller matrix. The closed cycle magneto-cryostat sub-system provides sample temperatures between room temperature and 1.4 K and magnetic fields up to 8 T, enabling the detection of transverse and longitudinal magnetic field-induced birefringence. We discuss theoretical background and practical realization of the integrated mid-infrared, far-infrared, and terahertz optical Hall effect instrument, as well as acquisition of optical Hall effect data and the corresponding model analysis procedures. Exemplarily, epitaxial graphene grown on 6H-SiC, a tellurium doped bulk GaAs sample and an AlGaN/GaN high electron mobility transistor structure are investigated. The selected experimental datasets display the full spectral, magnetic field and temperature range of the instrument and demonstrate data analysis strategies. Effects from free charge carriers in two dimensional confinement and in a volume material, as well as quantum mechanical effects (inter-Landau-level transitions) are observed and discussed exemplarily.
Zhao, Bao; Zhang, Jiayong; Wang, Yicheng; Yang, Zhongqin
2014-12-28
The electronic states and topological behaviors of Pt(Ni, Pd)-decorated silicene are investigated by using an ab-initio method. All the three kinds of the adatoms prefer hollow sites of the silicene, guaranteeing the Dirac cones unbroken. The Pt(Ni, Pd)-decorated silicene systems all present quantum valley Hall (QVH) states with the gap opened exactly at the Fermi level. The gaps of the QVH states can be increased substantially by applying a positive electric field. Very fascinating phase transitions from QVH to quantum spin Hall (QSH) and then to QVH again are achieved in the Pt/Ni-decorated silicene when a negative electric field is applied. The QSH state in the Pd case with a negative electric field is, however, quenched because of relatively larger Rashba spin-orbit coupling (SOC) than the intrinsic SOC in the system. Our findings may be useful for the applications of silicene-based devices in valleytronics and spintronics.
Anomalous Hall effect in magnetic disordered alloys: Effects of spin orbital coupling
Ma, L.; Gao, W. B.; Zhou, S. M.; Shi, Z.; He, P.; Miao, J.; Jiang, Y.
2013-12-28
For disordered ternary Fe{sub 0.5}(Pd{sub 1−x}Pt{sub x}){sub 0.5} alloy films, the anomalous Hall effect obeys the conventional scaling law ρ{sub AH}=aρ{sub xx}+bρ{sub xx}{sup 2} with the longitudinal resistivity ρ{sub xx} and anomalous Hall resistivity ρ{sub AH}. Contributed by the intrinsic term and the extrinsic side-jump one, the scattering-independent anomalous Hall conductivity b increases with increasing Pt/Pd concentration. In contrast, the skew scattering parameter a is mainly influenced by the residual resistivity. The present results will facilitate the theoretical studies of the anomalous Hall effect in magnetic disordered alloys.
Perturbation analysis of ionization oscillations in Hall effect thrusters
Hara, Kentaro Sekerak, Michael J.; Boyd, Iain D.; Gallimore, Alec D.
2014-12-15
A perturbation analysis of ionization oscillations, which cause low frequency oscillations of the discharge plasma, in Hall effect thrusters is presented including the electron energy equation in addition to heavy-species transport. Excitation and stabilization of such oscillations, often called the breathing mode, are discussed in terms of the growth rate obtained from the linear perturbation equations of the discharge plasma. The instability induced from the ionization occurs only when the perturbation in the electron energy is included while the neutral atom flow contributes to the damping of the oscillation. Effects of the electron energy loss mechanisms such as wall heat loss, inelastic collisions, and convective heat flux are discussed. It is shown that the ionization oscillations can be damped when the electron transport is reduced and the electron temperature increases so that the energy loss to the wall stabilizes the ionization instability.
Zhang, Wei; Jungfleisch, Matthias B.; Freimuth, Frank; Jiang, Wanjun; Sklenar, Joseph; Pearson, John E.; Ketterson, John B.; Mokrousov, Yuri; Hoffmann, Axel
2015-10-06
We investigate spin-orbit torques of metallic CuAu-I-type antiferromagnets using spin-torque ferromagnetic resonance tuned by a dc-bias current. The observed spin torques predominantly arise from diffusive transport of spin current generated by the spin Hall effect. We find a growth-orientation dependence of the spin torques by studying epitaxial samples, which may be correlated to the anisotropy of the spin Hall effect. The observed anisotropy is consistent with first-principles calculations on the intrinsic spin Hall effect. Our work suggests large tunable spin-orbit effects in magnetically-ordered materials.
Ultrahigh sensitivity of anomalous Hall effect sensor based on Cr-doped
Office of Scientific and Technical Information (OSTI)
Bi2Te3 topological insulator thin films (Journal Article) | SciTech Connect Ultrahigh sensitivity of anomalous Hall effect sensor based on Cr-doped Bi2Te3 topological insulator thin films Citation Details In-Document Search This content will become publicly available on July 1, 2017 Title: Ultrahigh sensitivity of anomalous Hall effect sensor based on Cr-doped Bi2Te3 topological insulator thin films Anomalous Hall effect (AHE) was recently discovered in magnetic element-doped topological
Kozuka, Y.; Tsukazaki, A.; Maryenko, D.; Falson, J.; Bell, C.; Kim, M.; Hikita, Y.; Hwang, H. Y.; Kawasaki, M.
2012-02-03
We investigate the spin susceptibility (g*m*) of dilute two-dimensional (2D) electrons confined at the MgxZn1-xO/ZnO heterointerface. Magnetotransport measurements show a four-fold enhancement of g*m*, dominated by the increase in the Landé g-factor. The g-factor enhancement leads to a ferromagnetic instability of the electron gas as evidenced by sharp resistance spikes. At high magnetic field, the large g*m* leads to full spin polarization, where we found sudden increase in resistance around the filling factors of half-integer, accompanied by complete disappearance of fractional quantum Hall (QH) states. Along with its large effective mass and the high electron mobility, our result indicates thatmore » the ZnO 2D system is ideal for investigating the effect of electron correlations in the QH regime.« less
Metallization and Hall-effect of Mg{sub 2}Ge under high pressure
Li, Yuqiang; Gao, Yang; Han, Yonghao Liu, Cailong; Peng, Gang; Ke, Feng; Gao, Chunxiao; Wang, Qinglin; Ma, Yanzhang
2015-10-05
The electrical transport properties of Mg{sub 2}Ge under high pressure were studied with the in situ temperature-dependent resistivity and Hall-effect measurements. The theoretically predicted metallization of Mg{sub 2}Ge was definitely found around 7.4 GPa by the temperature-dependent resistivity measurement. Other two pressure-induced structural phase transitions were also reflected by the measurements. Hall-effect measurement showed that the dominant charge carrier in the metallic Mg{sub 2}Ge was hole, indicating the “bad metal” nature of Mg{sub 2}Ge. The Hall mobility and charge carrier concentration results pointed out that the electrical transport behavior in the antifluorite phase was controlled by the increase quantity of drifting electrons under high pressure, but in both anticotunnite and Ni{sub 2}In-type phases it was governed by the Hall mobility.
Tang, Chiu-Chun [Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Ling, D. C. [Department of Physics, Tamkang University, Tamsui Dist., New Taipei City 25137, Taiwan (China); Chi, C. C.; Chen, Jeng-Chung [Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan (China)
2014-11-03
We have developed a highly tunable, narrow band far-infrared (FIR) photodetector which utilizes the characteristic merits of graphene and two-dimensional electron gas (2DEG) in GaAs/Al{sub x}Ga{sub 1?x}As heterostructure in the Quantum Hall states (QHS). The heterostructure surface is covered with chemical vapor-deposited graphene, which functions as a transparent top-gate to vary the electron density of the 2DEG. FIR response observed in the vicinity of integer QH regime can be effectively tuned in a wide range of 27102?cm{sup ?1} with a bias voltage less than ?1?V. In addition, we have found that the presence of graphene can genuinely modulate the photoresponse. Our results demonstrate a promising direction for realizing a tunable long-wavelength FIR detector using QHS in GaAs 2DEG/ graphene composite material.
Shakouri, Kh.; Peeters, F. M. [Departement Fysica, Universiteit Antwerpen, Groenenborgerlaan 171, B-2020 Antwerpen (Belgium); Vasilopoulos, P.; Vargiamidis, V. [Department of Physics, Concordia University, 7141 Sherbrooke Ouest Montral, Qubec H4B 1R6 (Canada); Hai, G.-Q. [Instituto de Fisica de So Carlos, Universidade de So Paulo, So Carlos, SP 13560-970 (Brazil)
2014-05-26
We study the commensurability oscillations in silicene subject to a perpendicular electric field E{sub z}, a weak magnetic field B, and a weak periodic potential V=V{sub 0}cos(Cy),C=2?/a{sub 0} with a{sub 0} its period. The field E{sub z} and/or the modulation lift the spin degeneracy of the Landau levels and lead to spin and valley resolved Weiss oscillations. The spin resolution is maximal when the field E{sub z} is replaced by a periodic one E{sub z}=E{sub 0}cos(Dy),D=2?/b{sub 0}, while the valley one is maximal for b{sub 0}?=?a{sub 0}. In certain ranges of B values, the current is fully spin or valley polarized. Additional quantum Hall conductivity plateaux arise due to spin and valley intra-Landau-level transitions.
Driving and detecting ferromagnetic resonance in insulators with the spin Hall effect.
Sklenar, Joseph; Zhang, Wei; Jungfleisch, Matthias B.; Jiang, Wanjun; Chang, Houchen; Pearson, John E.; Wu, Mingzhong; Ketterson, John B.; Hoffmann, Axel
2015-11-06
We demonstrate the generation and detection of spin-torque ferromagnetic resonance in Pt/Y3Fe5O12 (YIG) bilayers. A unique attribute of this system is that the spin Hall effect lies at the heart of both the generation and detection processes and no charge current is passing through the insulating magnetic layer. When the YIG undergoes resonance, a dc voltage is detected longitudinally along the Pt that can be described by two components. One is the mixing of the spin Hall magnetoresistance with the microwave current. The other results from spin pumping into the Pt being converted to a dc current through the inverse spin Hall effect. The voltage is measured with applied magnetic field directions that range in-plane to nearly perpendicular. We find that for magnetic fields that are mostly out-of-plane, an imaginary component of the spin mixing conductance is required to model our data.
Quantum Anomalous Hall Effect in 2D Organic Topological Insulators...
Office of Scientific and Technical Information (OSTI)
Publisher: American Physical Society Sponsoring Org: USDOE Country of Publication: United States Language: English Word Cloud More Like This Free Publicly Accessible Full Text ...
Observation of the Integer Quantum Hall Effect in Record High...
Office of Scientific and Technical Information (OSTI)
DOE Contract Number: DE-AC04-94AL85000 Resource Type: Journal Article Resource Relation: Journal Name: Applied Physics Letters; Related Information: Proposed for publication in ...
Fractional quantum spin Hall effect in flat-band checkerboard...
Office of Scientific and Technical Information (OSTI)
GrantContract Number: FG02-06ER46305 Type: Publisher's Accepted Manuscript Journal Name: Physical Review B Additional Journal Information: Journal Volume: 90; Journal Issue: 8; ...
Microscopic theory of quantum anomalous Hall effect in graphene...
Office of Scientific and Technical Information (OSTI)
American Physical Society Sponsoring Org: USDOE Country of Publication: United States Language: English Word Cloud More Like This Free Publicly Accessible Full Text Accepted...
Quantum Anomalous Hall Effect in 2D Organic Topological Insulators...
Office of Scientific and Technical Information (OSTI)
American Physical Society Sponsoring Org: USDOE Country of Publication: United States Language: English Word Cloud More Like This Free Publicly Accessible Full Text Accepted...
Spin Hall effect-controlled magnetization dynamics in NiMnSb
Dürrenfeld, P. Ranjbar, M.; Gerhard, F.; Gould, C.; Molenkamp, L. W.; Åkerman, J.
2015-05-07
We investigate the influence of a spin current generated from a platinum layer on the ferromagnetic resonance (FMR) properties of an adjacent ferromagnetic layer composed of the halfmetallic half-Heusler material NiMnSb. Spin Hall nano-oscillator devices are fabricated, and the technique of spin torque FMR is used to locally study the magnetic properties as in-plane anisotropies and resonance fields. A change in the FMR linewidth, in accordance with the additional spin torque produced by the spin Hall effect, is present for an applied dc current. For sufficiently large currents, this should yield auto-oscillations, which however are not achievable in the present device geometry.
Experimental evidences of a large extrinsic spin Hall effect in AuW alloy
Laczkowski, P.; Rojas-Sánchez, J.-C.
2014-04-07
We report an experimental study of a gold-tungsten alloy (7 at. % W concentration in Au host) displaying remarkable properties for spintronics applications using both magneto-transport in lateral spin valve devices and spin-pumping with inverse spin Hall effect experiments. A very large spin Hall angle of about 10% is consistently found using both techniques with the reliable spin diffusion length of 2 nm estimated by the spin sink experiments in the lateral spin valves. With its chemical stability, high resistivity, and small induced damping, this AuW alloy may find applications in the nearest future.
Spin-torque switching of a nano-magnet using giant spin hall effect
Penumatcha, Ashish V. Das, Suprem R.; Chen, Zhihong; Appenzeller, Joerg
2015-10-15
The Giant Spin Hall Effect(GSHE) in metals with high spin-orbit coupling is an efficient way to convert charge currents to spin currents, making it well-suited for writing information into magnets in non-volatile magnetic memory as well as spin-logic devices. We demonstrate the switching of an in-plane CoFeB magnet using a combination of GSHE and an external magnetic field. The magnetic field dependence of the critical current is used to estimate the spin hall angle with the help of a thermal activation model for spin-transfer torque switching of a nanomagnet.
Hysteretic magnetoresistance and unconventional anomalous Hall effect in the frustrated magnet TmB4
Sunku, Sai Swaroop; Kong, Tai; Ito, Toshimitsu; Canfield, Paul C.; Shastry, B. Sriram; Sengupta, Pinaki; Panagopoulos, Christos
2016-05-11
We study TmB4, a frustrated magnet on the Archimedean Shastry-Sutherland lattice, through magnetization and transport experiments. The lack of anisotropy in resistivity shows that TmB4 is an electronically three-dimensional system. The magnetoresistance (MR) is hysteretic at low temperature even though a corresponding hysteresis in magnetization is absent. The Hall resistivity shows unconventional anomalous Hall effect (AHE) and is linear above saturation despite a large MR. In conclusion, we propose that complex structures at magnetic domain walls may be responsible for the hysteretic MR and may also lead to the AHE.
EX/P5-4 Two-Fluid Hall Effect on Plasma Relaxation
U.S. Department of Energy (DOE) all webpages (Extended Search)
EXP5-4 Two-Fluid Hall Effect on Plasma Relaxation in a High-Temperature Plasma W.X. Ding 1,3), V. Mirnov 2,3), A. F. Almagri 2,3), D.L. Brower 1,3), D. Craig 2,3), B.H. Deng 1,3), ...
Magnetoresistance, electrical conductivity, and Hall effect of glassy carbon
Baker, D.F.
1983-02-01
These properties of glassy carbon heat treated for three hours between 1200 and 2700/sup 0/C were measured from 3 to 300/sup 0/K in magnetic fields up to 5 tesla. The magnetoresistance was generally negative and saturated with reciprocal temperature, but still increased as a function of magnetic field. The maximum negative magnetoresistance measured was 2.2% for 2700/sup 0/C material. Several models based on the negative magnetoresistance being proportional to the square of the magnetic moment were attempted; the best fit was obtained for the simplest model combining Curie and Pauli paramagnetism for heat treatments above 1600/sup 0/C. Positive magnetoresistance was found only in less than 1600/sup 0/C treated glassy carbon. The electrical conductivity, of the order of 200 (ohm-cm)/sup -1/ at room temperature, can be empirically written as sigma = A + Bexp(-CT/sup -1/4) - DT/sup -1/2. The Hall coefficient was independent of magnetic field, insensitive to temperature, but was a strong function of heat treatment temperature, crossing over from negative to positive at about 1700/sup 0/C and ranging from -0.048 to 0.126 cm/sup 3//coul. The idea of one-dimensional filaments in glassy carbon suggested by the electrical conductivity is compatible with the present consensus view of the microstructure.
Observation of inverse spin Hall effect in ferromagnetic FePt alloys using spin Seebeck effect
Seki, Takeshi Takanashi, Koki; Uchida, Ken-ichi; Kikkawa, Takashi; Qiu, Zhiyong; Saitoh, Eiji
2015-08-31
We experimentally observed the inverse spin Hall effect (ISHE) of ferromagnetic FePt alloys. Spin Seebeck effect due to the temperature gradient generated the spin current (J{sub s}) in the FePt|Y{sub 3}Fe{sub 5}O{sub 12} (YIG) structure, and J{sub s} was injected from YIG to FePt and converted to the charge current through ISHE of FePt. The significant difference in magnetization switching fields for FePt and YIG led to the clear separation of the voltage of ISHE from that of anomalous Nernst effect in FePt. We also investigated the effect of ordering of FePt crystal structure on the magnitude of ISHE voltage in FePt.
Determination of the Pt spin diffusion length by spin-pumping and spin Hall effect
Zhang, Wei; Pearson, John E.; Hoffmann, Axel; Vlaminck, Vincent; Divan, Ralu; Bader, Samuel D.
2013-12-09
The spin diffusion length of Pt at room temperature and at 8 K is experimentally determined via spin pumping and spin Hall effect in permalloy/Pt bilayers. Voltages generated during excitation of ferromagnetic resonance from the inverse spin Hall effect and anisotropic magnetoresistance effect were investigated with a broadband approach. Varying the Pt layer thickness gives rise to an evolution of the voltage line shape due to the superposition of the above two effects. By studying the ratio of the two voltage components with the Pt layer thickness, the spin diffusion length of Pt can be directly extracted. We obtain a spin diffusion length of ∼1.2 nm at room temperature and ∼1.6 nm at 8 K.
Sheath oscillation characteristics and effect on near-wall conduction in a krypton Hall thruster
Zhang, Fengkui Kong, Lingyi; Li, Chenliang; Yang, Haiwei; Li, Wei
2014-11-15
Despite its affordability, the krypton Hall-effect thruster in applications always had problems in regard to performance. The reason for this degradation is studied from the perspective of the near-wall conductivity of electrons. Using the particle-in-cell method, the sheath oscillation characteristics and its effect on near-wall conduction are compared in the krypton and xenon Hall-effect thrusters both with wall material composed of BNSiO{sub 2}. Comparing these two thrusters, the sheath in the krypton-plasma thruster will oscillate at low electron temperatures. The near-wall conduction current is only produced by collisions between electrons and wall, thereby causing a deficiency in the channel current. The sheath displays spatial oscillations only at high electron temperature; electrons are then reflected to produce the non-oscillation conduction current needed for the krypton-plasma thruster. However, it is accompanied with intensified oscillations.
Realization of tunable spin-dependent splitting in intrinsic photonic spin Hall effect
Ling, Xiaohui; Yi, Xunong; Zhou, Xinxing; Liu, Yachao; Shu, Weixing; Wen, Shuangchun; Luo, Hailu
2014-10-13
We report the realization of tunable spin-dependent splitting in intrinsic photonic spin Hall effect. By breaking the rotational symmetry of a cylindrical vector beam, the intrinsic vortex phases that the two spin components of the vector beam carries, which is similar to the geometric Pancharatnam-Berry phase, are no longer continuous in the azimuthal direction, and leads to observation of spin accumulation at the opposite edge of the beam. Due to the inherent nature of the phase and independency of light-matter interaction, the observed photonic spin Hall effect is intrinsic. Modulating the topological charge of the vector beam, the spin-dependent splitting can be enhanced and the direction of spin accumulation is switchable. Our findings may provide a possible route for generation and manipulation of spin-polarized photons, and enables spin-based photonics applications.
Enhanced spin Hall effect by electron correlations in CuBi alloys
Gu, Bo Xu, Zhuo; Mori, Michiyasu; Maekawa, Sadamichi; Ziman, Timothy
2015-05-07
A recent experiment in CuBi alloys obtained a large spin Hall angle (SHA) of −0.24 (Niimi et al., Phys. Rev. Lett. 109, 156602 (2012)). We find that the SHA can be dramatically enhanced by Bi impurities close to the Cu surface. The mechanisms of this enhancement are two-fold. One is that the localized impurity state on surface has a decreased hybridization and combined with Coulomb correlation effect. The other comes from the low-dimensional state of conduction electrons on surface, which results in a further enhancement of skew scattering by impurities. Furthermore, we note that a discrepancy in sign of SHA between the experiment and previous theories is simply caused by different definitions of SHA. This re-establishes skew scattering as the essential mechanism underlying the spin Hall effect in CuBi alloys.
Comparison of quantum confinement effects between quantum wires and dots
Li, Jingbo; Wang, Lin-Wang
2004-03-30
Dimensionality is an important factor to govern the electronic structures of semiconductor nanocrystals. The quantum confinement energies in one-dimensional quantum wires and zero-dimensional quantum dots are quite different. Using large-scale first-principles calculations, we systematically study the electronic structures of semiconductor (including group IV, III-V, and II-VI) surface-passivated quantum wires and dots. The band-gap energies of quantum wires and dots have the same scaling with diameter for a given material. The ratio of band-gap-increases between quantum wires and dots is material-dependent, and slightly deviates from 0.586 predicted by effective-mass approximation. Highly linear polarization of photoluminescence in quantum wires is found. The degree of polarization decreases with the increasing temperature and size.
Interface effect in coupled quantum wells
Hao, Ya-Fei
2014-06-28
This paper intends to theoretically investigate the effect of the interfaces on the Rashba spin splitting of two coupled quantum wells. The results show that the interface related Rashba spin splitting of the two coupled quantum wells is both smaller than that of a step quantum well which has the same structure with the step quantum well in the coupled quantum wells. And the influence of the cubic Dresselhaus spin-orbit interaction of the coupled quantum wells is larger than that of a step quantum well. It demonstrates that the spin relaxation time of the two coupled quantum wells will be shorter than that of a step quantum well. As for the application in the spintronic devices, a step quantum well may be better than the coupled quantum wells, which is mentioned in this paper.
Hall-effect-controlled gas dynamics in protoplanetary disks. I. Wind solutions at the inner disk
Bai, Xue-Ning
2014-08-20
The gas dynamics of protoplanetary disks (PPDs) is largely controlled by non-ideal magnetohydrodynamic (MHD) effects including Ohmic resistivity, the Hall effect, and ambipolar diffusion. Among these the role of the Hall effect is the least explored and most poorly understood. In this series, we have included, for the first time, all three non-ideal MHD effects in a self-consistent manner to investigate the role of the Hall effect on PPD gas dynamics using local shearing-box simulations. In this first paper, we focus on the inner region of PPDs, where previous studies (Bai and Stone 2013; Bai 2013) excluding the Hall effect have revealed that the inner disk up to ∼10 AU is largely laminar, with accretion driven by a magnetocentrifugal wind. We confirm this basic picture and show that the Hall effect modifies the wind solutions depending on the polarity of the large-scale poloidal magnetic field B{sub 0} threading the disk. When B{sub 0}⋅Ω>0, the horizontal magnetic field is strongly amplified toward the disk interior, leading to a stronger disk wind (by ∼50% or less in terms of the wind-driven accretion rate). The enhanced horizontal field also leads to much stronger large-scale Maxwell stress (magnetic braking) that contributes to a considerable fraction of the wind-driven accretion rate. When B{sub 0}⋅Ω<0, the horizontal magnetic field is reduced, leading to a weaker disk wind (by ≲ 20%) and negligible magnetic braking. Under fiducial parameters, we find that when B{sub 0}⋅Ω>0, the laminar region extends farther to ∼10-15 AU before the magnetorotational instability sets in, while for B{sub 0}⋅Ω<0, the laminar region extends only to ∼3-5 AU for a typical accretion rate of ∼10{sup –8} to10{sup –7} M {sub ☉} yr{sup –1}. Scaling relations for the wind properties, especially the wind-driven accretion rate, are provided for aligned and anti-aligned field geometries.
Chemical reaction at ferromagnet/oxide interface and its influence on anomalous Hall effect
Liu, Yi-Wei; Teng, Jiao E-mail: ghyu@mater.ustb.edu.cn; Zhang, Jing-Yan; Liu, Yang; Chen, Xi; Li, Xu-Jing; Feng, Chun; Wang, Hai-Cheng; Li, Ming-Hua; Yu, Guang-Hua E-mail: ghyu@mater.ustb.edu.cn; Wu, Zheng-Long
2014-09-08
Chemical reactions at the ferromagnet/oxide interface in [Pt/Fe]{sub 3}/MgO and [Pt/Fe]{sub 3}/SiO{sub 2} multilayers before and after annealing were investigated by X-ray photoelectron spectroscopy. The results show that Fe atoms at the Fe/MgO interface were completely oxidized in the as-grown state and significantly deoxidized after vacuum annealing. However, only some of the Fe atoms at the Fe/SiO{sub 2} interface were oxidized and rarely deoxidized after annealing. The anomalous Hall effect was modified by this interfacial chemical reaction. The saturation anomalous Hall resistance (R{sub xy}) was greatly increased in the [Pt/Fe]{sub 3}/MgO multilayers after annealing and was 350% higher than that in the as-deposited film, while R{sub xy} of the [Pt/Fe]{sub 3}/SiO{sub 2} multilayer only increased 10% after annealing.
Hall effect in the extremely large magnetoresistance semimetal WTe{sub 2}
Luo, Yongkang Dai, Y. M.; Taylor, A. J.; Yarotski, D. A.; Prasankumar, R. P.; Thompson, J. D.; Li, H.; Miao, H.; Shi, Y. G.; Ding, H.
2015-11-02
We systematically measured the Hall effect in the extremely large magnetoresistance semimetal WTe{sub 2}. By carefully fitting the Hall resistivity to a two-band model, the temperature dependencies of the carrier density and mobility for both electron- and hole-type carriers were determined. We observed a sudden increase in the hole density below ∼160 K, which is likely associated with the temperature-induced Lifshitz transition reported by a previous photoemission study. In addition, a more pronounced reduction in electron density occurs below 50 K, giving rise to comparable electron and hole densities at low temperature. Our observations indicate a possible electronic structure change below 50 K, which might be the direct driving force of the electron-hole “compensation” and the extremely large magnetoresistance as well. Numerical simulations imply that this material is unlikely to be a perfectly compensated system.
Influence of oblique magnetic field on electron cross-field transport in a Hall effect thruster
Miedzik, Jan; Daniłko, Dariusz; Barral, Serge
2015-04-15
The effects of the inclination of the magnetic field with respect to the channel walls in a Hall effect thruster are numerically studied with the use of a one-dimensional quasi-neutral Particle-In-Cell model with guiding center approximation of electron motion along magnetic lines. Parametric studies suggest that the incidence angle strongly influences electron transport across the magnetic field. In ion-focusing magnetic topologies, electrons collide predominantly on the side of the magnetic flux tube closer to the anode, thus increasing the electron cross-field drift. The opposite effect is observed in ion-defocussing topology.
Optimal preselection and postselection in weak measurements for observing photonic spin Hall effect
Zhou, Xinxing; Li, Xing; Luo, Hailu Wen, Shuangchun
2014-02-03
Photonic spin Hall effect (SHE) holds great potential applications in precision metrology. How to obtain a high measurement precision is an important issue to detect the photonic SHE. In this Letter, we propose using optimal preselection and postselection in weak measurements to enhance the measurement precision. We find that the maximum weak value and pointer shift can be obtained with an optimal overlap of preselection and postselection states. These findings offer the possibility for improving the precision of weak measurements and thereby have possible applications for accurately characterizing the parameters of nanostructures.
Temperature-driven band inversion in Pb?.??Sn?.??Se: Optical and Hall-effect studies
Anand, Naween; Gu, Genda; Buvaev, Sanal; Hebard, A. F.; Tanner, D. B.; Chen, Zhiguo; Li, Zhiqiang; Choudhary, Kamal; Sinnott, S. B.; Martin, C.
2014-12-23
Optical and Hall-effect measurements have been performed on single crystals of Pb?.??Sn?.??Se, a IV-VI mixed chalcogenide. The temperature dependent (10300 K) reflectance was measured over 407000 cm? (5870 meV) with an extension to 15,500 cm? (1.92 eV) at room temperature. The reflectance was fit to the Drude-Lorentz model using a single Drude component and several Lorentz oscillators. The optical properties at the measured temperatures were estimated via Kramers-Kronig analysis as well as by the Drude-Lorentz fit. The carriers were p-type with the carrier density determined by Hall measurements. A signature of valence intraband transition is found in the low-energy optical spectra. It is found that the valence-conduction band transition energy as well as the free carrier effective mass reach minimum values at 100 K, suggesting temperature-driven band inversion in the material. Density function theory calculation for the electronic band structure also make similar predictions.
Temperature-driven band inversion in Pb?.??Sn?.??Se: Optical and Hall-effect studies
Anand, Naween; Gu, Genda; Buvaev, Sanal; Hebard, A. F.; Tanner, D. B.; Chen, Zhiguo; Li, Zhiqiang; Choudhary, Kamal; Sinnott, S. B.; Martin, C.
2014-12-23
Optical and Hall-effect measurements have been performed on single crystals of Pb?.??Sn?.??Se, a IV-VI mixed chalcogenide. The temperature dependent (10300 K) reflectance was measured over 407000 cm? (5870 meV) with an extension to 15,500 cm? (1.92 eV) at room temperature. The reflectance was fit to the Drude-Lorentz model using a single Drude component and several Lorentz oscillators. The optical properties at the measured temperatures were estimated via Kramers-Kronig analysis as well as by the Drude-Lorentz fit. The carriers were p-type with the carrier density determined by Hall measurements. A signature of valence intraband transition is found in the low-energy opticalmorespectra. It is found that the valence-conduction band transition energy as well as the free carrier effective mass reach minimum values at 100 K, suggesting temperature-driven band inversion in the material. Density function theory calculation for the electronic band structure also make similar predictions.less
Resonant cavity mode dependence of anomalous and inverse spin Hall effect
Kim, Sang-Il; Seo, Min-Su; Park, Seung-young
2014-05-07
The direct current electric voltage induced by the Inverse Spin Hall Effect (ISHE) and Anomalous Hall Effect (AHE) was investigated in the TE{sub 011} and TE{sub 102} cavities. The ISHE and AHE components were distinguishable through the fitting of the voltage spectrum. The unwanted AHE was minimized by placing the DUT (Device Under Test) at the center of both the TE{sub 011} and TE{sub 102} cavities. The voltage of ISHE in the TE{sub 011} cavity was larger than that in the TE{sub 102} cavity due to the higher quality factor of the former. Despite optimized centering, AHE voltage from TE{sub 011} cavity was also higher. The reason was attributed to the E-field distribution inside the cavity. In the case of the TE{sub 011} cavity, the DUT was easily exposed to the E-field in all directions. Therefore, the parasitic AHE voltage in the TE{sub 102} cavity was less sensitive than that in the TE{sub 011} cavity to decentering problem.
Beta (β) tungsten thin films: Structure, electron transport, and giant spin Hall effect
Hao, Qiang; Chen, Wenzhe; Xiao, Gang
2015-05-04
We use a simple magnetron sputtering process to fabricate beta (β) tungsten thin films, which are capable of generating giant spin Hall effect. As-deposited thin films are always in the metastable β-W phase from 3.0 to 26.7 nm. The β-W phase remains intact below a critical thickness of 22.1 nm even after magnetic thermal annealing at 280 °C, which is required to induce perpendicular magnetic anisotropy (PMA) in a layered structure of β-W/Co{sub 40}Fe{sub 40}B{sub 20}/MgO. Intensive annealing transforms the thicker films (>22.1 nm) into the stable α-W phase. We analyze the structure and grain size of both β- and α-W thin films. Electron transport in terms of resistivity and normal Hall effect is studied over a broad temperature range of 10 K to at least 300 K on all samples. Very low switching current densities are achieved in β-W/Co{sub 40}Fe{sub 40}B{sub 20}/MgO with PMA. These basic properties reveal useful behaviors in β-W thin films, making them technologically promising for spintronic magnetic random access memories and spin-logic devices.
Wu Zhiwen; Liu Xiangyang; Wang Ningfei; Yu Daren
2010-07-15
The effect of magnetic lens on the electron current due to near wall conductivity (NWC) in a Hall thruster is studied. A Monte Carlo model is employed to simulate the effect of the large magnetic field incidence angle on the electron current. The simulation results show that the electron current due to NWC decreases in the case of large incidence. The simulation qualitatively agrees with the related experimental result. And the simulation also demonstrates that choosing the curvature angle of the magnetic field is also a key factor to design a Hall thruster with high operation performance.
Detection of in-depth helical spin structures by planar Hall effect
Basaran, Ali C. Guénon, S.; Schuller, Ivan K.; Morales, R.
2015-06-22
We developed a method to determine the magnetic helicity and to study reversal mechanisms in exchange biased nanostructures using Planar Hall Effect (PHE). As a test case, we use an in-depth helical spin configuration that occurs during magnetization reversal in exchange coupled Ni/FeF{sub 2} heterostructures. We show the way to induce and determine the sign of the helicity from PHE measurements on a lithographically patterned cross. The helicity sign can be controlled by the angle between the externally applied magnetic field and a well-defined unidirectional anisotropy axis. Furthermore, the PHE signal reveals complex reversal features due to small deviations of the local unidirectional anisotropy axes from the crystallographic easy axis. The simulations using an incomplete domain wall model are in excellent agreement with the experimental data. These studies show that helical spin formations in nanomagnetic systems can be studied using laboratory-based magnetotransport.
Extrinsic anomalous Hall effect in epitaxial Mn{sub 4}N films
Meng, M.; Wu, S. X. Ren, L. Z.; Zhou, W. Q.; Wang, Y. J.; Wang, G. L.; Li, S. W.
2015-01-19
Anomalous Hall effect (AHE) in ferrimagnetic Mn{sub 4}N epitaxial films grown by molecular-beam epitaxy is investigated. The longitudinal conductivity σ{sub xx} is within the superclean regime, indicating Mn{sub 4}N is a highly conducting material. We further demonstrate that the AHE signal in 40-nm-thick films is mainly due to the extrinsic contributions based on the analysis fitted by ρ{sub AH}=a′ρ{sub xx0}+bρ{sub xx}{sup 2} and σ{sub AH}∝σ{sub xx}. Our study not only provide a strategy for further theoretical work on antiperovskite manganese nitrides but also shed promising light on utilizing their extrinsic AHE to fabricate spintronic devices.
Design and Implementation of a Hall Effect Sensor Array Applied to Recycling Hard Drive Magnets
Kisner, Roger; Lenarduzzi, Roberto; Killough, Stephen M; McIntyre, Timothy J
2015-01-01
Rare earths are an important resource for many electronic components and technologies. Examples abound including Neodymium magnets used in mobile devices and computer hard drives (HDDs), and a variety of renewable energy technologies (e.g., wind turbines). Approximately 21,000 metric tons of Neodymium is processed annually with less than 1% being recycled. An economic system to assist in the recycling of magnet material from post-consumer goods, such as Neodymium Iron Boron magnets commonly found in hard drives is presented. A central component of this recycling measurement system uses an array of 128 Hall Effect sensors arranged in two columns to detect the magnetic flux lines orthogonal to the HDD. Results of using the system to scan planar shaped objects such as hard drives to identify and spatially locate rare-earth magnets for removal and recycling from HDDs are presented. Applications of the sensor array in other identification and localization of magnetic components and assemblies will be presented.
Maxwell-Garnett effective medium theory: Quantum nonlocal effects
Moradi, Afshin
2015-04-15
We develop the Maxwell-Garnett theory for the effective medium approximation of composite materials with metallic nanoparticles by taking into account the quantum spatial dispersion effects in dielectric response of nanoparticles. We derive a quantum nonlocal generalization of the standard Maxwell-Garnett formula, by means the linearized quantum hydrodynamic theory in conjunction with the Poisson equation as well as the appropriate additional quantum boundary conditions.
Quantum effects in the dynamics of deeply supercooled water ...
Office of Scientific and Technical Information (OSTI)
Quantum effects in the dynamics of deeply supercooled water Citation Details In-Document Search Title: Quantum effects in the dynamics of deeply supercooled water Authors: Agapov, ...
Effects of Strain and Quantum Confinement in Optically Pumped...
Office of Scientific and Technical Information (OSTI)
Effects of Strain and Quantum Confinement in Optically Pumped Nuclear Magnetic Resonance ... Citation Details In-Document Search Title: Effects of Strain and Quantum Confinement in ...
Xu, Zhuo Gu, Bo; Mori, Michiyasu; Maekawa, Sadamichi; Ziman, Timothy
2015-05-07
We analyze the spin Hall effect in CuIr alloys in theory by the combined approach of the density functional theory (DFT) and Hartree-Fock (HF) approximation. The spin Hall angle (SHA) is obtained to be negative without the local correlation effects. After including the local correlation effects of the 5d orbitals of Ir impurities, the SHA becomes positive with realistic correlation parameters and consistent with experiment [Niimi et al., Phys. Rev. Lett. 106, 126601 (2011)]. Moreover, our analysis shows that the DFT + HF approach is a convenient and general method to study the influence of local correlation effects on the spin Hall effect.
Magnetometry of micro-magnets with electrostatically defined Hall bars
Lachance-Quirion, Dany; Camirand Lemyre, Julien; Bergeron, Laurent; Sarra-Bournet, Christian; Pioro-Ladrière, Michel
2015-11-30
Micro-magnets are key components for quantum information processing with individual spins, enabling arbitrary rotations and addressability. In this work, characterization of sub-micrometer sized CoFe ferromagnets is performed with Hall bars electrostatically defined in a two-dimensional electron gas. Due to the ballistic nature of electron transport in the cross junction of the Hall bar, anomalies such as the quenched Hall effect appear near zero external magnetic field, thus hindering the sensitivity of the magnetometer to small magnetic fields. However, it is shown that the sensitivity of the diffusive limit can be almost completely restored at low temperatures using a large current density in the Hall bar of about 10 A/m. Overcoming the size limitation of conventional etched Hall bars with electrostatic gating enables the measurement of magnetization curves of 440 nm wide micro-magnets with a signal-to-noise ratio above 10{sup 3}. Furthermore, the inhomogeneity of the stray magnetic field created by the micro-magnets is directly measured using the gate-voltage-dependent width of the sensitive area of the Hall bar.
Observation of a Macroscopically Quantum-Entangled Insulator
U.S. Department of Energy (DOE) all webpages (Extended Search)
... The only previously known example was the Nobel-Prize-winning discovery of the quantum Hall effect insulator in the 1980s in a two-dimensional electron system under a large ...
Large anomalous Hall effect in ferromagnetic insulator-topological insulator heterostructures
Alegria, L. D.; Petta, J. R.; Ji, H.; Cava, R. J.; Yao, N.; Clarke, J. J.
2014-08-04
We demonstrate the van der Waals epitaxy of the topological insulator compound Bi{sub 2}Te{sub 3} on the ferromagnetic insulator Cr{sub 2}Ge{sub 2}Te{sub 6}. The layers are oriented with (001)Bi{sub 2}Te{sub 3}||(001)Cr{sub 2}Ge{sub 2}Te{sub 6} and (110)Bi{sub 2}Te{sub 3}||(100)Cr{sub 2}Ge{sub 2}Te{sub 6}. Cross-sectional transmission electron microscopy indicates the formation of a sharp interface. At low temperatures, bilayers consisting of Bi{sub 2}Te{sub 3} on Cr{sub 2}Ge{sub 2}Te{sub 6} exhibit a large anomalous Hall effect (AHE). Tilted field studies of the AHE indicate that the easy axis lies along the c-axis of the heterostructure, consistent with magnetization measurements in bulk Cr{sub 2}Ge{sub 2}Te{sub 6}. The 61 K Curie temperature of Cr{sub 2}Ge{sub 2}Te{sub 6} and the use of near-stoichiometric materials may lead to the development of spintronic devices based on the AHE.
Shen, Xi; Shigematsu, Kei; Chikamatsu, Akira Fukumura, Tomoteru; Hirose, Yasushi; Hasegawa, Tetsuya
2014-08-18
We report the electrical transport properties of ferrimagnetic Mn{sub 4}N (001) epitaxial thin films grown by pulsed laser deposition on MgO (001) substrates. The Mn{sub 4}N thin films were tetragonally distorted with a ratio of out-of-plane to in-plane lattice constants of 0.987 and showed perpendicular magnetic anisotropy with an effective magnetic anisotropy constant of 0.16 MJ/m{sup 3}, which is comparable with that of a recently reported molecular-beam-epitaxy-grown film. The thin films exhibited metallic transport with a room temperature resistivity of 125 μΩ cm in addition to a large anomalous Hall effect with a Hall angle tangent of 0.023.
Ren, Jin-Li; Wang, Bo; Xiao, Yun-Feng; Gong, Qihuang; Li, Yan
2015-09-14
We theoretically and experimentally demonstrate that it is possible to directly observe the resolvable spin separation in the spin Hall effect of light at an air-glass interface by choosing optimal parameters. When a P-polarized light with a beam waist of 10 μm is incident around Brewster's angle, the two spin components of the reflected beam can be completely separated by eliminating the influence of the in-plane wavevector spread. This not only obviously reveals the strong impacts of the polarization state, the incident angle, the beam waist, and the in-plane wavevector spread, but also intuitively visualizes the observation of the spin Hall effect of light.
Kikuchi, N. Furuta, M.; Okamoto, S.; Kitakami, O.; Shimatsu, T.
2014-12-15
Anomalous Hall effect (AHE) based ferromagnetic resonance (FMR) measurements were carried out on perpendicularly magnetized Co/Pt multilayer single dots of 0.4–3 μm in diameter. The resonance behavior was measured by detecting the decrease of perpendicular magnetization component due to magnetization precession. Resonance behavior was observed as a clear decrease of Hall voltages, and the obtained resonance fields were consistent with the results of vector-network-analyzer FMR. Spin-waves with cylindrical symmetry became significant by decreasing the dot diameter, and quantized multiple resonances were observed in the dot of 0.4 μm in diameter. The AHE based FMR proposed here is a powerful method to approach magnetization dynamics including spin waves and non-linear behavior excited in a finite nanostructure.
Planar Hall effect in Y{sub 3}Fe{sub 5}O{sub 12}/IrMn films
Zhang, X. Zou, L. K.
2014-12-29
The planar Hall effect of IrMn on an yttrium iron garnet (YIG = Y{sub 3}Fe{sub 5}O{sub 12}) was measured in the magnetic field rotating in the film plane. The magnetic field angular dependence of planar Hall resistance (PHR) was observed in YIG/IrMn bilayer at different temperatures, while the Gd{sub 3}Ga{sub 5}O{sub 12}/IrMn film shows constant PHR for different magnetic field angles at both 10 K and 300 K. This provides evidence that IrMn has interfacial spins which can be led by ferrimagnetic layer in YIG/IrMn structure. A hysteresis can be observed in PHR-magnetic field angle loop of YIG/IrMn film at 10 K, indicative of the irreversible switching of IrMn interfacial spins at low temperature.
Gong, Zhirui; Liu, G. B.; Yu, Hongyi; Xiao, Di; Cui, Xiaodong; Xu, Xiaodong; Yao, Wang
2013-01-01
In monolayer group-VI transition metal dichalcogenides, charge carriers have spin and valley degrees of freedom, both associated with magnetic moments. On the other hand, the layer degree of freedom in multilayers is associated with electrical polarization. Here we show that transition metal dichalcogenide bilayers offer an unprecedented platform to realize a strong coupling between the spin, valley and layer pseudospin of holes. Such coupling gives rise to the spin Hall effect and spin-dependent selection rule for optical transitions in inversion symmetric bilayer and leads to a variety of magnetoelectric effects permitting quantum manipulation of these electronic degrees of freedom. Oscillating electric and magnetic fields can both drive the hole spin resonance where the two fields have valley-dependent interference, making an interplay between the spin and valley as information carriers possible for potential valley-spintronic applications. We show how to realize quantum gates on the spin qubit controlled by the valley bit.
Prestgard, Megan C.; Tiwari, Ashutosh
2014-03-24
The inverse spin Hall effect (ISHE) is a newly discovered, quantum mechanical phenomenon where an applied spin current results in the generation of an electrical voltage in the transverse direction. It is anticipated that the ISHE can provide a more simple way of measuring spin currents in spintronic devices. The ISHE was first observed in noble metals that exhibit strong spin-orbit coupling. However, recently, the ISHE has been detected in conventional semiconductors (such as Si and Ge), which possess weak spin-orbit coupling. This suggests that large-spin orbit coupling is not a requirement for observing the ISHE. In this paper, we are reporting the observation of the ISHE in an alternative semiconductor material, zinc oxide (ZnO) using all-electrical means. In our study, we found that when a spin-polarized current is injected into the ZnO film from a NiFe ferromagnetic injector via an MgO tunnel barrier layer, a voltage transverse to both the direction of the current as well as its spin-polarization is generated in the ZnO layer. The polarity of this voltage signal was found to flip on reversing the direction of the injected current as well as on reversing the polarization of the current, consistent with the predictions of the ISHE process. Through careful analysis of the ISHE data, we determined a spin-Hall angle of approximately 1.651 × 10{sup −2} for ZnO, which is two orders of magnitude higher than that of silicon. Observation of a detectable room-temperature ISHE signal in ZnO via electrical injection and detection is a groundbreaking step that opens a path towards achieving transparent spin detectors for next-generation spintronic device technology.
U.S. Department of Energy (DOE) all webpages (Extended Search)
Miles Hall - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy
Significant Quantum Effects in Hydrogen Activation
Kyriakou, Georgios; Davidson, Erlend R.; Peng, Guowen; Roling, Luke T.; Singh, Suyash; Boucher, Matthew B.; Marcinkowski, Matthew D.; Mavrikakis, Manos; Michaelides, Angelos; Sykes, E. Charles H.
2014-05-27
Dissociation of molecular hydrogen is an important step in a wide variety of chemical, biological, and physical processes. Due to the light mass of hydrogen, it is recognized that quantum effects are often important to its reactivity. However, understanding how quantum effects impact the reactivity of hydrogen is still in its infancy. Here, we examine this issue using a well-defined Pd/Cu(111) alloy that allows the activation of hydrogen and deuterium molecules to be examined at individual Pd atom surface sites over a wide range of temperatures. Experiments comparing the uptake of hydrogen and deuterium as a function of temperature reveal completely different behavior of the two species. The rate of hydrogen activation increases at lower sample temperature, whereas deuterium activation slows as the temperature is lowered. Density functional theory simulations in which quantum nuclear effects are accounted for reveal that tunneling through the dissociation barrier is prevalent for H2 up to 190 K and for D2 up to 140 K. Kinetic Monte Carlo simulations indicate that the effective barrier to H2 dissociation is so low that hydrogen uptake on the surface is limited merely by thermodynamics, whereas the D2 dissociation process is controlled by kinetics. These data illustrate the complexity and inherent quantum nature of this ubiquitous and seemingly simple chemical process. Examining these effects in other systems with a similar range of approaches may uncover temperature regimes where quantum effects can be harnessed, yielding greater control of bond-breaking processes at surfaces and uncovering useful chemistries such as selective bond activation or isotope separation.
Bai, Xue-Ning
2015-01-10
We perform three-dimensional stratified shearing-box magnetohydrodynamic (MHD) simulations on the gas dynamics of protoplanetary disks with a net vertical magnetic flux of B {sub z0}. All three nonideal MHD effects, Ohmic resistivity, the Hall effect, and ambipolar diffusion, are included in a self-consistent manner based on equilibrium chemistry. We focus on regions toward outer disk radii, from 5 to 60 AU, where Ohmic resistivity tends to become negligible, ambipolar diffusion dominates over an extended region across the disk height, and the Hall effect largely controls the dynamics near the disk midplane. We find that at around R = 5 AU the system launches a laminar or weakly turbulent magnetocentrifugal wind when the net vertical field B {sub z0} is not too weak. Moreover, the wind is able to achieve and maintain a configuration with reflection symmetry at the disk midplane. The case with anti-aligned field polarity (Ω⋅B{sub z0}<0) is more susceptible to the magnetorotational instability (MRI) when B {sub z0} decreases, leading to an outflow oscillating in radial directions and very inefficient angular momentum transport. At the outer disk around and beyond R = 30 AU, the system shows vigorous MRI turbulence in the surface layer due to far-UV ionization, which efficiently drives disk accretion. The Hall effect affects the stability of the midplane region to the MRI, leading to strong/weak Maxwell stress for aligned/anti-aligned field polarities. Nevertheless, the midplane region is only very weakly turbulent in both cases. Overall, the basic picture is analogous to the conventional layered accretion scenario applied to the outer disk. In addition, we find that the vertical magnetic flux is strongly concentrated into thin, azimuthally extended shells in most of our simulations beyond 15 AU, leading to enhanced radial density variations know as zonal flows. Theoretical implications and observational consequences are briefly discussed.
Effect of Cusps in Time-Dependent Quantum Mechanics (Journal...
Office of Scientific and Technical Information (OSTI)
Effect of Cusps in Time-Dependent Quantum Mechanics Title: Effect of Cusps in Time-Dependent Quantum Mechanics Authors: Yang, Zeng-hui ; Maitra, Neepa T. ; Burke, Kieron ...
Ni, Y.; Zhang, Z.; Nlebedim, I. C.; Hadimani, R. L.; Jiles, D. C.
2015-06-11
Hall-effect (HE) sensors based on high-quality Mn-doped Bi2Te3 topological insulator (TI) thin films have been systematically studied in this paper. Improvement of Hall sensitivity is found after doping the magnetic element Mn into Bi2Te3. The sensors with low Mn concentrations, MnxBi2-xTe3, x = 0.01 and 0.08 show the linear behavior of Hall resistance with sensitivity about 5 Ω/T. And their Hall sensitivity shows weak dependence on temperature. For sensors with high Mn concentration (x = 0.23), the Hall resistance with respect to magnetic field shows a hysteretic behavior. Moreover, its sensitivity shows almost eight times as high as that ofmore » the HE sensors with low Mn concentration. The highest sensitivity can reach 43 Ω/T at very low magnetic field. This increase of Hall sensitivity is caused by the occurrence of anomalous HE (AHE) after ferromagnetic phase transition. Our work indicates that the magnetic-element-doped TIs with AHE are good candidates for HE sensors.« less
Ni, Y.; Zhang, Z.; Nlebedim, I. C.; Hadimani, R. L.; Jiles, D. C.
2015-06-11
Hall-effect (HE) sensors based on high-quality Mn-doped Bi2Te3 topological insulator (TI) thin films have been systematically studied in this paper. Improvement of Hall sensitivity is found after doping the magnetic element Mn into Bi2Te3. The sensors with low Mn concentrations, MnxBi2-xTe3, x = 0.01 and 0.08 show the linear behavior of Hall resistance with sensitivity about 5 Ω/T. And their Hall sensitivity shows weak dependence on temperature. For sensors with high Mn concentration (x = 0.23), the Hall resistance with respect to magnetic field shows a hysteretic behavior. Moreover, its sensitivity shows almost eight times as high as that ofmore »the HE sensors with low Mn concentration. The highest sensitivity can reach 43 Ω/T at very low magnetic field. This increase of Hall sensitivity is caused by the occurrence of anomalous HE (AHE) after ferromagnetic phase transition. Our work indicates that the magnetic-element-doped TIs with AHE are good candidates for HE sensors.« less
Temperature dependence of the photo-induced inverse spin Hall effect in Au/InP hybrid structures
Khamari, Shailesh K. Porwal, S.; Dixit, V. K.; Sharma, T. K.
2014-01-27
Photo-induced Inverse Spin Hall Effect (ISHE) measurements on Au/InP hybrid structures are performed over a temperature range of 45 to 300 K. Dependence of the spin current density on the degree of circular polarization and also on the angle of incidence of laser beam confirms the ISHE origin of measured signal. The magnitude of ISHE increases with sample cooling. A numerical model based on the spin relaxation of non-equilibrium spin-polarized electrons is proposed for predicting the temperature dependence of ISHE. Our results indicate that the proposed device can be used as a spin photodetector over a wide temperature range.
Quantum Transport Effects and Coherent Ultrafast Multidimensional
U.S. Department of Energy (DOE) all webpages (Extended Search)
Spectroscopy of Light Harvesting Photosynthetic Complexes | MIT-Harvard Center for Excitonics Transport Effects and Coherent Ultrafast Multidimensional Spectroscopy of Light Harvesting Photosynthetic Complexes March 16, 2010 at 3pm/36-428 Shaul Mukamel Department of Chemistry, University of California, Irvine shaul_001 abstract: The harvesting of solar energy and its conversion to chemical energy is essential for all forms of life. Whether quantum effects persist in the energy transport is
The influence of an MgO nanolayer on the planar Hall effect in NiFe films
Li, Minghua; Zhao, Zhiduo; Ma, Lin; Lu, Xiangan; Teng, Jiao; Yu, Guanghua; Yu, Guoqiang; Amiri, Pedram Khalili; Wang, Kang L.; Zhou, Wenping
2015-03-28
The Planar Hall Effect (PHE) in NiFe films was studied using MgO as the buffer and capping layer to reduce the shunt effect. The thermal annealing was found to be effective in increasing the sensitivity. The sensitivity of the magnetic field reached as high as 865 V/AT in a MgO (3 nm)/NiFe (5 nm)/MgO(3 nm)/Ta(3 nm) structure after annealing at 500 °C for 2 h, which is close to the sensitivity of semiconductor Hall Effect (HE) sensors. X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) were used to study the sample. The results show that the top crystallization of MgO and NiFe (111) texture were improved by proper annealing. The smooth and clear bottom MgO/NiFe and top NiFe/MgO interface is evident from our data. In addition, the shunt current of Ta was decreased. These combined factors facilitate the improvement of the sensitivity of the magnetic field.
Temperature-driven band inversion in Pb0.77Sn0.23Se: Optical and Hall effect studies
Anand, Naween; Buvaev, Sanal; Hebard, A. F.; Tanner, D. B.; Chen, Zhiguo; Li, Zhiqiang; Choudhary, Kamal; Sinnott, S. B.; Gu, Genda; Martin, C.
2014-12-23
Optical and Hall-effect measurements have been performed on single crystals of Pb₀.₇₇Sn₀.₂₃Se, a IV-VI mixed chalcogenide. The temperature dependent (10–300 K) reflectance was measured over 40–7000 cm⁻¹ (5–870 meV) with an extension to 15,500 cm⁻¹ (1.92 eV) at room temperature. The reflectance was fit to the Drude-Lorentz model using a single Drude component and several Lorentz oscillators. The optical properties at the measured temperatures were estimated via Kramers-Kronig analysis as well as by the Drude-Lorentz fit. The carriers were p-type with the carrier density determined by Hall measurements. A signature of valence intraband transition is found in the low-energy opticalmore » spectra. It is found that the valence-conduction band transition energy as well as the free carrier effective mass reach minimum values at 100 K, suggesting temperature-driven band inversion in the material. Thus, density function theory calculation for the electronic band structure also make similar predictions.« less
Quantum gravity effects in the Kerr spacetime
Reuter, M.; Tuiran, E.
2011-02-15
We analyze the impact of the leading quantum gravity effects on the properties of black holes with nonzero angular momentum by performing a suitable renormalization group improvement of the classical Kerr metric within quantum Einstein gravity. In particular, we explore the structure of the horizons, the ergosphere, and the static limit surfaces as well as the phase space available for the Penrose process. The positivity properties of the effective vacuum energy-momentum tensor are also discussed and the 'dressing' of the black hole's mass and angular momentum are investigated by computing the corresponding Komar integrals. The pertinent Smarr formula turns out to retain its classical form. As for their thermodynamical properties, a modified first law of black-hole thermodynamics is found to be satisfied by the improved black holes (to second order in the angular momentum); the corresponding Bekenstein-Hawking temperature is not proportional to the surface gravity.
Wang, Hailong; Du, Chunhui; Chris Hammel, P. Yang, Fengyuan
2014-05-19
Using ferromagnetic (FM) resonance spin pumping, we observe injection of spin currents from Y{sub 3}Fe{sub 5}O{sub 12} (YIG) films to FM metals, including Ni{sub 81}Fe{sub 19} (Py), Fe, Co, and Ni, and detection of spin currents by inverse spin Hall effect (ISHE) in the FM metals. We obtain a high effective spin mixing conductance of 6.3 × 10{sup 18} m{sup −2} in a YIG/Cu/Py trilayer and a spin Hall angle of 0.020 for Py. The spin pumping signals in Fe, Co, and Ni confirm the mechanism of ISHE in FMs is the inverse process of the anomalous Hall effect.
Tuning giant anomalous Hall resistance ratio in perpendicular Hall balance
Zhang, J. Y.; Yang, G.; Wang, S. G. E-mail: ghyu@mater.ustb.edu.cn; Liu, J. L.; Wang, R. M.; Amsellem, E.; Kohn, A.; Yu, G. H. E-mail: ghyu@mater.ustb.edu.cn
2015-04-13
Anomalous Hall effect at room temperature in perpendicular Hall balance with a core structure of [Pt/Co]{sub 4}/NiO/[Co/Pt]{sub 4} has been tuned by functional CoO layers, where [Pt/Co]{sub 4} multilayers exhibit perpendicular magnetic anisotropy. A giant Hall resistance ratio up to 69 900% and saturation Hall resistance (R{sub S}{sup P}) up to 2590 mΩ were obtained in CoO/[Pt/Co]{sub 4}/NiO/[Co/Pt]{sub 4}/CoO system, which is 302% and 146% larger than that in the structure without CoO layers, respectively. Transmission electron microscopy shows highly textured [Co/Pt]{sub 4} multilayers and oxide layers with local epitaxial relations, indicating that the crystallographic structure has significant influence on spin dependent transport properties.
Quantum nonlocal effects on optical properties of spherical nanoparticles
Moradi, Afshin
2015-02-15
To study the scattering of electromagnetic radiation by a spherical metallic nanoparticle with quantum spatial dispersion, we develop the standard nonlocal Mie theory by allowing for the excitation of the quantum longitudinal plasmon modes. To describe the quantum nonlocal effects, we use the quantum longitudinal dielectric function of the system. As in the standard Mie theory, the electromagnetic fields are expanded in terms of spherical vector wavefunctions. Then, the usual Maxwell boundary conditions are imposed plus the appropriate additional boundary conditions. Examples of calculated extinction spectra are presented, and it is found that the frequencies of the subsidiary peaks, due to quantum bulk plasmon excitations exhibit strong dependence on the quantum spatial dispersion.
Intrinsic synchronization of an array of spin-torque oscillators driven by the spin-Hall effect
Siracusano, G. Puliafito, V.; Giordano, A.; Azzerboni, B.; Finocchio, G.; Tomasello, R.; La Corte, A.; Carpentieri, M.
2015-05-07
This paper micromagnetically studies the magnetization dynamics driven by the spin-Hall effect in a Platinum/Permalloy bi-layer. For a certain field and current range, the excitation of a uniform mode, characterized by a power with a spatial distribution in the whole ferromagnetic cross section, is observed. We suggest to use the ferromagnet of the bi-layer as basis for the realization of an array of spin-torque oscillators (STOs): the Permalloy ferromagnet will act as shared free layer, whereas the spacers and the polarizers are built on top of it. Following this strategy, the frequency of the uniform mode will be the same for the whole device, creating an intrinsic synchronization. The synchronization of an array of parallely connected STOs will allow to increase the output power, as necessary for technological applications.
Giant spontaneous Hall effect in zero-moment Mn{sub 2}Ru{sub x}Ga
Thiyagarajah, Naganivetha; Lau, Yong-Chang; Betto, Davide; Borisov, Kiril; Coey, J. M. D.; Stamenov, Plamen; Rode, Karsten
2015-03-23
Spin-dependent transport properties of Mn{sub 2}Ru{sub x}Ga thin-films are studied as function of the Ru concentration and the substrate-induced strain. The large spontaneous Hall angle of 7.7% twenty times bigger than in other 3d metals is a signature of its half-metallicity. The compensation temperature where the magnetization of the two inequivalent antiferromagnetically coupled Mn sublattices cancel can be tuned by varying x or the biaxial strain. This zero-moment half metal is free from demagnetizing forces and creates no stray field, effectively removing two obstacles to integrating magnetic elements in densely packed, nanometer-scale memory elements, and millimeter-wave generators.
Spin Hall magnetoresistance at Pt/CoFe{sub 2}O{sub 4} interfaces and texture effects
Isasa, Miren; Bedoya-Pinto, Amilcar; Vlez, Sal; Golmar, Federico; Snchez, Florencio; Fontcuberta, Josep; Hueso, Luis E.; Casanova, Flix
2014-10-06
We report magnetoresistance measurements on thin Pt bars grown on epitaxial (001) and (111) CoFe{sub 2}O{sub 4} (CFO) ferrimagnetic insulating films. The results can be described in terms of the recently discovered spin Hall magnetoresistance (SMR). The magnitude of the SMR depends on the interface preparation conditions, being optimal when the Pt/CFO samples are prepared in situ, in a single process. The spin-mixing interface conductance, the key parameter governing SMR and other relevant spin-dependent phenomena, such as spin pumping or spin Seebeck effect, is found to be different depending on the crystallographic orientation of CFO, highlighting the role of the composition and density of magnetic ions at the interface on spin mixing.
Disorder Matters in the 5/2 Fractional Quantum Hall Effect (invited...
Office of Scientific and Technical Information (OSTI)
Close Cite: Bibtex Format Close 0 pages in this document matching the terms "" Search For Terms: Enter terms in the toolbar above to search the full text of this document for ...
Quantum anomalous Hall effect in single-layer and bilayer graphene...
Office of Scientific and Technical Information (OSTI)
B Additional Journal Information: Journal Volume: 83; Journal Issue: 15; Journal ID: ISSN 1098-0121 Publisher: American Physical Society Sponsoring Org: USDOE Country of...
Non-abelian fractional quantum hall effect for fault-resistant...
Office of Scientific and Technical Information (OSTI)
Authors: Pan, Wei ; Thalakulam, Madhu ; Shi, Xiaoyan ; Crawford, Matthew ; Nielsen, Erik ; Cederberg, Jeffrey George Publication Date: 2013-10-01 OSTI Identifier: 1121903 Report ...
Disorder Matters in the 5/2 Fractional Quantum Hall Effect (invited...
Office of Scientific and Technical Information (OSTI)
National Laboratories contract DE-AC04-94AL85000. Outline: * Introduction * Spin ... VxyI More fractions n 1.55 x 10 cm T 50 mK 13 25 35 37 23 47 10 15 RXy(h...
Cost-Effective Fabrication Routes for the Productionof Quantum...
Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)
Cost-Effective Fabrication Routes for the Production of Quantum Well Type Structures and Recovery of Waste Heat from Heavy Duty Trucks Automotive Thermoelectric Generators and HVAC ...
Anti-Zeno effect for quantum transport in disordered systems...
Office of Scientific and Technical Information (OSTI)
We demonstrate that repeated measurements in disordered systems can induce a quantum ... The optimal measurement interval for the anti-Zeno effect and the maximal efficiency of ...
Quantum dissipative effect of one dimension coupled anharmonic oscillator
Sulaiman, A.; Zen, Freddy P.
2015-04-16
Quantum dissipative effect of one dimension coupled anharmonic oscillator is investigated. The systems are two coupled harmonic oscillator with the different masses. The dissipative effect is studied based on the quantum state diffusion formalism. The result show that the anharmonic effect increase the amplitude but the lifetime of the oscillation depend on the damping coefficient and do not depend on the temperature.
Fermilab Wilson Hall and Vicinity
U.S. Department of Energy (DOE) all webpages (Extended Search)
Wilson Hall and Vicinity Wilson Hall Ramsey Auditorium Booster Linac Antiproton Source Leon M. Lederman Science Education Center...
Spin Hall controlled magnonic microwaveguides
Demidov, V. E.; Urazhdin, S.; Rinkevich, A. B.; Reiss, G.; Demokritov, S. O.
2014-04-14
We use space-resolved magneto-optical spectroscopy to study the influence of spin Hall effect on the excitation and propagation of spin waves in microscopic magnonic waveguides. We find that the spin Hall effect not only increases the spin-wave propagation length, but also results in an increased excitation efficiency due to the increase of the dynamic susceptibility in the vicinity of the inductive antenna. We show that the efficiency of the propagation length enhancement is strongly dependant on the type of the excited spin-wave mode and its wavelength.
Oveshnikov, L. N.; Kulbachinskii, V. A.; Davydov, A. B.; Aronzon, B. A.; Rozhansky, I. V.; Averkiev, N. S.; Kugel, K. I.; Tripathi, V.
2015-11-24
In this study, the anomalous Hall effect (AHE) arises from the interplay of spin-orbit interactions and ferromagnetic order and is a potentially useful probe of electron spin polarization, especially in nanoscale systems where direct measurement is not feasible. While AHE is rather well-understood in metallic ferromagnets, much less is known about the relevance of different physical mechanisms governing AHE in insulators. As ferromagnetic insulators, but not metals, lend themselves to gatecontrol of electron spin polarization, understanding AHE in the insulating state is valuable from the point of view of spintronic applications. Among the mechanisms proposed in the literature for AHEmore » in insulators, the one related to a geometric (Berry) phase effect has been elusive in past studies. The recent discovery of quantized AHE in magnetically doped topological insulators - essentially a Berry phase effect - provides strong additional motivation to undertake more careful search for geometric phase effects in AHE in the magnetic semiconductors. Here we report our experiments on the temperature and magnetic field dependences of AHE in insulating, strongly-disordered two-dimensional Mn delta-doped semiconductor heterostructures in the hopping regime. In particular, it is shown that at sufficiently low temperatures, the mechanism of AHE related to the Berry phase is favoured.« less
Oveshnikov, L. N.; Kulbachinskii, V. A.; Davydov, A. B.; Aronzon, B. A.; Rozhansky, I. V.; Averkiev, N. S.; Kugel, K. I.; Tripathi, V.
2015-11-24
In this study, the anomalous Hall effect (AHE) arises from the interplay of spin-orbit interactions and ferromagnetic order and is a potentially useful probe of electron spin polarization, especially in nanoscale systems where direct measurement is not feasible. While AHE is rather well-understood in metallic ferromagnets, much less is known about the relevance of different physical mechanisms governing AHE in insulators. As ferromagnetic insulators, but not metals, lend themselves to gatecontrol of electron spin polarization, understanding AHE in the insulating state is valuable from the point of view of spintronic applications. Among the mechanisms proposed in the literature for AHE in insulators, the one related to a geometric (Berry) phase effect has been elusive in past studies. The recent discovery of quantized AHE in magnetically doped topological insulators - essentially a Berry phase effect - provides strong additional motivation to undertake more careful search for geometric phase effects in AHE in the magnetic semiconductors. Here we report our experiments on the temperature and magnetic field dependences of AHE in insulating, strongly-disordered two-dimensional Mn delta-doped semiconductor heterostructures in the hopping regime. In particular, it is shown that at sufficiently low temperatures, the mechanism of AHE related to the Berry phase is favoured.
Jefferson Lab Experimental Hall D
U.S. Department of Energy (DOE) all webpages (Extended Search)
D Privacy and Security Notice Skip over navigation search Group This site's design is only visible in a graphical browser that supports web standards, but its content is accessible to any browser. Concerns? Hall D Navigation Hall D Main Hall D Engineering Hall D Staff Hall D Safety print version Hall D in October 2014 Related Links CEBAF at 12 GEV JLab Visitor's Center JLab Virtual Tour JLab page for scientists Experimental Hall A Experimental Hall B Experimental Hall C Hall D Task List - HDList
Quantum size effects in classical hadrodynamics
Nix, J.R.
1994-03-01
The author discusses future directions in the development of classical hydrodynamics for extended nucleons, corresponding to nucleons of finite size interacting with massive meson fields. This new theory provides a natural covariant microscopic approach to relativistic nucleus-nucleus collisions that includes automatically spacetime nonlocality and retardation, nonequilibrium phenomena, interactions among all nucleons, and particle production. The present version of the theory includes only the neutral scalar ({sigma}) and neutral vector ({omega}) meson fields. In the future, additional isovector pseudoscalar ({pi}{sup +}, {pi}{sup {minus}}, {pi}{sup 0}), isovector vector ({rho}{sup +}, {rho}{sup {minus}}, {rho}{sup 0}), and neutral pseudoscalar ({eta}) meson fields should be incorporated. Quantum size effects should be included in the equations of motion by use of the spreading function of Moniz and Sharp, which generates an effective nucleon mass density smeared out over a Compton wavelength. However, unlike the situation in electrodynamics, the Compton wavelength of the nucleon is small compared to its radius, so that effects due to the intrinsic size of the nucleon dominate.
Kumar, Yogesh Bern, Francis; Barzola-Quiquia, Jose; Lorite, Israel; Esquinazi, Pablo
2015-07-13
We report magnetotransport studies on microstructured ZnO film grown by pulsed laser deposition in N{sub 2} atmosphere on a-plane Al{sub 2}O{sub 3} substrates and the effect of low energy H{sup +}-implantation. Non-linearity has been found in the magnetic field dependent Hall resistance, which decreases with temperature. We explain this effect with a two-band model assuming the conduction through two different parallel channels having different types of charge carriers. Reduced non-linearity after H{sup +}-implantation in the grown film is due to the shallow-donor effect of hydrogen giving rise to an increment in the electron density, reducing the effect of the other channel.
Kim, Sang-Il; Seo, Min-Su; Park, Seung-Young; Kim, Dong-Jun; Park, Byong-Guk
2015-01-19
Ta-layer thickness (t{sub Ta}) dependence of the measured DC voltage V from the inverse-spin Hall effect (ISHE) in Ta/CoFeB bilayer structure is experimentally investigated using the ferromagnetic resonance in the TE{sub 011} resonant cavity. The ISHE signals excluding the spin-rectified effect (SRE) were separated from the fitted curve of V against t{sub Ta}. For t{sub Ta} ≈ λ{sub Ta} (Ta-spin diffusion length = 2.7 nm), the deviation in ISHE voltage V{sub ISH} between the experimental and theoretical values is significantly increased because of the large SRE contribution, which also results in a large deviation in the spin Hall angle θ{sub SH} (from 10% to 40%). However, when t{sub Ta} ≫ λ{sub Ta}, the V{sub ISH} values are consistent with theoretical values because the SRE terms become negligible, which subsequently improves the accuracy of the obtained θ{sub SH} within 4% deviation. The results will provide an outline for an accurate estimation of the θ{sub SH} for materials with small λ value, which would be useful for utilizing the spin Hall effect in a 3-terminal spintronic devices in which magnetization can be controlled by in-plane current.
Comparison of Secondary Islands in Collisional Reconnection to Hall Reconnection
Shepherd, L. S.; Cassak, P. A.
2010-07-02
Large-scale resistive Hall-magnetohydrodynamic simulations of the transition from Sweet-Parker (collisional) to Hall (collisionless) magnetic reconnection are presented; the first to separate secondary islands from collisionless effects. Three main results are described. There exists a regime with secondary islands but without collisionless effects, and the reconnection rate is faster than Sweet-Parker, but significantly slower than Hall reconnection. This implies that secondary islands do not cause the fastest reconnection rates. The onset of Hall reconnection ejects secondary islands from the vicinity of the X line, implying that energy is released more rapidly during Hall reconnection. Coronal applications are discussed.
U.S. Department of Energy (DOE) all webpages (Extended Search)
From Hall et al, "Maximizing Multiprocessor Performance with the SUIF Compiler", IEEE Computer, Dec. 1996. 50% higher Specfp95 ratio than previously reported 3 1990s View *...
... fracturing our communities." Secretary Hillary Rodham Clinton WORKFORCE DIVERSITY TOWN HALL Agenda I. Welcome Mel Williams, Jr., Associate Deputy Secretary II. Opening Remarks Dr. ...
Anomalous Hall effect in epitaxial ferrimagnetic anti-perovskite Mn{sub 4−x}Dy{sub x}N films
Meng, M.; Wu, S. X. Zhou, W. Q.; Ren, L. Z.; Wang, Y. J.; Wang, G. L.; Li, S. W.
2015-08-07
Anomalous Hall effect (AHE) has been studied for ferrimagnetic antiperovskite Mn{sub 4−x}Dy{sub x}N films grown by molecular-beam epitaxy. The introduction of Dy changes the AHE dramatically, even changes its sign, while the variations in magnetization are negligible. Two sign reversals of the AHE (negative-positive-negative) are ascribed to the variation of charge carriers as a result of Fermi surface reconstruction. We further demonstrate that the AHE current J{sub AH} is dissipationless (independent of the scattering rate), by confirming that anomalous Hall conductivity, σ{sub AH}, is proportional to the carrier density n at 5 K. Our study may provide a route to further utilize antiperovskite manganese nitrides in spintronics.
Du, Chunhui; Wang, Hailong; Hammel, P. Chris; Yang, Fengyuan
2015-05-07
Using Y{sub 3}Fe{sub 5}O{sub 12} (YIG) thin films grown by our sputtering technique, we study dynamic spin transport in nonmagnetic, ferromagnetic, and antiferromagnetic (AF) materials by ferromagnetic resonance spin pumping. From both inverse spin Hall effect and damping enhancement, we determine the spin mixing conductance and spin Hall angle in many metals. Surprisingly, we observe robust spin conduction in AF insulators excited by an adjacent YIG at resonance. This demonstrates that YIG spin pumping is a powerful and versatile tool for understanding spin Hall physics, spin-orbit coupling, and magnetization dynamics in a broad range of materials.
Plasmon modes of metallic nanowires including quantum nonlocal effects
Moradi, Afshin
2015-03-15
The properties of electrostatic surface and bulk plasmon modes of cylindrical metallic nanowires are investigated, using the quantum hydrodynamic theory of plasmon excitation which allows an analytical study of quantum tunneling effects through the Bohm potential term. New dispersion relations are obtained for each type of mode and their differences with previous treatments based on the standard hydrodynamic model are analyzed in detail. Numerical results show by considering the quantum effects, as the value of wave number increases, the surface modes are slightly red-shifted first and then blue-shifted while the bulk modes are blue-shifted.
Quantum effects in electron beam pumped GaAs
Yahia, M. E.; National Institute of Laser Enhanced Sciences , Cairo University ; Azzouz, I. M.; Moslem, W. M.
2013-08-19
Propagation of waves in nano-sized GaAs semiconductor induced by electron beam are investigated. A dispersion relation is derived by using quantum hydrodynamics equations including the electrons and holes quantum recoil effects, exchange-correlation potentials, and degenerate pressures. It is found that the propagating modes are instable and strongly depend on the electron beam parameters, as well as the quantum recoil effects and degenerate pressures. The instability region shrinks with the increase of the semiconductor number density. The instability arises because of the energetic electron beam produces electron-hole pairs, which do not keep in phase with the electrostatic potential arising from the pair plasma.
Tunable Pseudogap Kondo Effect and Quantum Phase Transitions...
Office of Scientific and Technical Information (OSTI)
We study two quantum dots embedded in the arms of an Aharonov-Bohm ring threaded by a magnetic flux. This system can be described by an effective one-impurity Anderson model with ...
Effective quantum dynamics of interacting systems with inhomogeneous coupling
Lopez, C. E.; Retamal, J. C.; Christ, H.; Solano, E.
2007-03-15
We study the quantum dynamics of a single mode (particle) interacting inhomogeneously with a large number of particles and introduce an effective approach to find the accessible Hilbert space, where the dynamics takes place. Two relevant examples are given: the inhomogeneous Tavis-Cummings model (e.g., N atomic qubits coupled to a single cavity mode, or to a motional mode in trapped ions) and the inhomogeneous coupling of an electron spin to N nuclear spins in a quantum dot.
Dalton, Mark M.
2014-02-01
Report over the experimental activities in Hall A at Thomas Jefferson National Accelerator Facility during 2013.
Laroche, Dominique; Huang, ShiHsien; Nielsen, Erik; Liu, Chee Wee; Li, Jiun -Yun; Lu, Tzu -Ming
2015-04-08
We report the design, the fabrication, and the magneto-transport study of an electron bilayer system embedded in an undoped Si/SiGe double-quantum-well heterostructure. Additionally, the combined Hall densities (n Hall ) ranging from 2.6 × 1010 cm-2 to 2.7 × 1011 cm-2 were achieved, yielding a maximal combined Hall mobility (μHall ) of 7.7 × 105 cm2/(V • s) at the highest density. Simultaneous electron population of both quantum wells is clearly observed through a Hall mobility drop as the Hall density is increased to nHall > 3.3 × 1010 cm-2, consistent with Schrödinger-Poisson simulations. Furthermore, the integer and fractional quantummore » Hall effects are observed in the device, and single-layer behavior is observed when both layers have comparable densities, either due to spontaneous interlayer coherence or to the symmetric-antisymmetric gap.« less
Ni, Y.; Zhang, Z.; Nlebedim, I. C.; Hadimani, R. L.; Jiles, D. C.
2015-06-11
Hall-effect (HE) sensors based on high-quality Mn-doped Bi_{2}Te_{3} topological insulator (TI) thin films have been systematically studied in this paper. Improvement of Hall sensitivity is found after doping the magnetic element Mn into Bi_{2}Te_{3}. The sensors with low Mn concentrations, Mn_{x}Bi_{2-x}Te_{3}, x = 0.01 and 0.08 show the linear behavior of Hall resistance with sensitivity about 5 Ω/T. And their Hall sensitivity shows weak dependence on temperature. For sensors with high Mn concentration (x = 0.23), the Hall resistance with respect to magnetic field shows a hysteretic behavior. Moreover, its sensitivity shows almost eight times as high as that of the HE sensors with low Mn concentration. The highest sensitivity can reach 43 Ω/T at very low magnetic field. This increase of Hall sensitivity is caused by the occurrence of anomalous HE (AHE) after ferromagnetic phase transition. Our work indicates that the magnetic-element-doped TIs with AHE are good candidates for HE sensors.
Schöche, S. Kühne, P.; Hofmann, T.; Schubert, M.; Nilsson, D.; Kakanakova-Georgieva, A.; Janzén, E.; Darakchieva, V.
2013-11-18
The effective electron mass parameter in Si-doped Al{sub 0.72}Ga{sub 0.28}N is determined to be m{sup ∗}=(0.336±0.020) m{sub 0} from mid-infrared optical Hall effect measurements. No significant anisotropy of the effective electron mass parameter is found supporting theoretical predictions. Assuming a linear change of the effective electron mass with the Al content in AlGaN alloys and m{sup ∗}=0.232 m{sub 0} for GaN, an average effective electron mass of m{sup ∗}=0.376 m{sub 0} can be extrapolated for AlN. The analysis of mid-infrared spectroscopic ellipsometry measurements further confirms the two phonon mode behavior of the E{sub 1}(TO) and one phonon mode behavior of the A{sub 1}(LO) phonon mode in high-Al-content AlGaN alloys as seen in previous Raman scattering studies.
Photon energy dependence of photo-induced inverse spin-Hall effect in Pt/GaAs and Pt/Ge
Isella, Giovanni Bottegoni, Federico; Ferrari, Alberto; Finazzi, Marco; Ciccacci, Franco
2015-06-08
We report the photon energy dependence of photo-induced inverse spin Hall effect (ISHE) in Pt/GaAs and Pt/Ge Schottky junctions. The experimental results are compared with a spin drift-diffusion model, which highlights the role played by the different spin lifetime in the two semiconductors, in determining the energy dependence of the ISHE signal detected in the Pt layer. The good qualitative agreement between experiments and modelling indicates that photo-induced ISHE can be used as a tool to characterize spin lifetime in semiconductors.
Joint statement providing interim policy on processing proposals for leasing DOE real property using the authority in 42 U.S.C. 7256, commonly referred to as the "Hall Amendment."
Jefferson Lab Experimental Hall B
U.S. Department of Energy (DOE) all webpages (Extended Search)
Hall B Privacy and Security Notice Skip over navigation search Group Please upgrade your browser. This site's design is only visible in a graphical browser that supports web standards, but its content is accessible to any browser. Concerns? Hall B Navigation Hall B Main CLAS CLAS12 Other Expts Run Info Publications Public Interest print version Hall B Main CLAS Collaboration and Hall B CLAS Collaboration Information Phonebook, Opt-in, and Database Reviews and Service Work Login Working Groups
Quantum effects in unimolecular reaction dynamics
Gezelter, J.D.
1995-12-01
This work is primarily concerned with the development of models for the quantum dynamics of unimolecular isomerization and photodissociation reactions. We apply the rigorous quantum methodology of a Discrete Variable Representation (DVR) with Absorbing Boundary Conditions (ABC) to these models in an attempt to explain some very surprising results from a series of experiments on vibrationally excited ketene. Within the framework of these models, we are able to identify the experimental signatures of tunneling and dynamical resonances in the energy dependence of the rate of ketene isomerization. Additionally, we investigate the step-like features in the energy dependence of the rate of dissociation of triplet ketene to form {sup 3}B{sub 1} CH{sub 2} + {sup 1}{sigma}{sup +} CO that have been observed experimentally. These calculations provide a link between ab initio calculations of the potential energy surfaces and the experimentally observed dynamics on these surfaces. Additionally, we develop an approximate model for the partitioning of energy in the products of photodissociation reactions of large molecules with appreciable barriers to recombination. In simple bond cleavage reactions like CH{sub 3}COCl {yields} CH{sub 3}CO + Cl, the model does considerably better than other impulsive and statistical models in predicting the energy distribution in the products. We also investigate ways of correcting classical mechanics to include the important quantum mechanical aspects of zero-point energy. The method we investigate is found to introduce a number of undesirable dynamical artifacts including a reduction in the above-threshold rates for simple reactions, and a strong mixing of the chaotic and regular energy domains for some model problems. We conclude by discussing some of the directions for future research in the field of theoretical chemical dynamics.
Unexpected edge conduction in mercury telluride quantum wells under broken time-reversal symmetry
Ma, Eric Yue; Calvo, M. Reyes; Wang, Jing; Lian, Biao; Muhlbauer, Mathias; Brune, Christoph; Cui, Yong -Tao; Lai, Keji; Kundhikanjana, Worasom; Yang, Yongliang; Baenninger, Matthias; Konig, Markus; Ames, Christopher; Buhmann, Hartmut; Leubner, Philipp; Molenkamp, Laurens W.; Zhang, Shou -Cheng; Goldhaber-Gordon, David; Kelly, Michael A.; Shen, Zhi -Xun
2015-05-26
The realization of quantum spin Hall effect in HgTe quantum wells is considered a milestone in the discovery of topological insulators. Quantum spin Hall states are predicted to allow current flow at the edges of an insulating bulk, as demonstrated in various experiments. A key prediction yet to be experimentally verified is the breakdown of the edge conduction under broken time-reversal symmetry. Here we first establish a systematic framework for the magnetic field dependence of electrostatically gated quantum spin Hall devices. We then study edge conduction of an inverted quantum well device under broken time-reversal symmetry using microwave impedance microscopy, and compare our findings to a non-inverted device. At zero magnetic field, only the inverted device shows clear edge conduction in its local conductivity profile, consistent with theory. Surprisingly, the edge conduction persists up to 9 T with little change. Finally, this indicates physics beyond simple quantum spin Hall model, including material-specific properties and possibly many-body effects.
Unexpected edge conduction in mercury telluride quantum wells under broken time-reversal symmetry
Ma, Eric Yue; Calvo, M. Reyes; Wang, Jing; Lian, Biao; Muhlbauer, Mathias; Brune, Christoph; Cui, Yong -Tao; Lai, Keji; Kundhikanjana, Worasom; Yang, Yongliang; et al
2015-05-26
The realization of quantum spin Hall effect in HgTe quantum wells is considered a milestone in the discovery of topological insulators. Quantum spin Hall states are predicted to allow current flow at the edges of an insulating bulk, as demonstrated in various experiments. A key prediction yet to be experimentally verified is the breakdown of the edge conduction under broken time-reversal symmetry. Here we first establish a systematic framework for the magnetic field dependence of electrostatically gated quantum spin Hall devices. We then study edge conduction of an inverted quantum well device under broken time-reversal symmetry using microwave impedance microscopy,more » and compare our findings to a non-inverted device. At zero magnetic field, only the inverted device shows clear edge conduction in its local conductivity profile, consistent with theory. Surprisingly, the edge conduction persists up to 9 T with little change. Finally, this indicates physics beyond simple quantum spin Hall model, including material-specific properties and possibly many-body effects.« less
Madami, M. Carlotti, G.; Gubbiotti, G.; Tacchi, S.; Siracusano, G.; Finocchio, G.; Carpentieri, M.
2015-05-07
We employed micro-focused Brillouin light scattering to study the amplification of the thermal spin wave eigenmodes by means of a pure spin current, generated by the spin-Hall effect, in a transversely magnetized Pt(4 nm)/NiFe(4 nm)/SiO{sub 2}(5 nm) layered nanowire with lateral dimensions 500 × 2750 nm{sup 2}. The frequency and the cross section of both the center (fundamental) and the edge spin wave modes have been measured as a function of the intensity of the injected dc electric current. The frequency of both modes exhibits a clear redshift while their cross section is greatly enhanced on increasing the intensity of the injected dc. A threshold-like behavior is observed for a value of the injected dc of 2.8 mA. Interestingly, an additional mode, localized in the central part of the nanowire, appears at higher frequency on increasing the intensity of the injected dc above the threshold value. Micromagnetic simulations were used to quantitatively reproduce the experimental results and to investigate the complex non-linear dynamics induced by the spin-Hall effect, including the modification of the spatial profile of the spin wave modes and the appearance of the extra mode above the threshold.
Quantum effects in the dynamics of deeply supercooled water
Agapov, Alexander L.; Kolesnikov, Alexander I.; Novikov, Vladimir N.; Richert, Ranko; Sokolov, Alexei P
2015-02-26
In spite of its simple chemical structure, water remains one of the most puzzling liquids with many anomalies at low temperatures. Combining neutron scattering and dielectric relaxation spectroscopy, we show that quantum fluctuations are not negligible in deeply supercooled water. Our dielectric measurements reveal the anomalously weak temperature dependence of structural relaxation in vapor-deposited water close to the glass transition temperature Tg~136K. We demonstrate that this anomalous behavior can be explained well by quantum effects. In conclusion, these results have significant implications for our understanding of water dynamics.
Tong, H.; Yu, N. N.; Yang, Z.; Cheng, X. M.; Miao, X. S.
2015-08-21
Opposite to the almost persistent p-type conductivity of the crystalline chalcogenides along the GeTe-Sb{sub 2}Te{sub 3} tie line, n-type Hall mobility is observed in crystalline GeTe/Sb{sub 2}Te{sub 3} superlattice-like material (SLL) with a short period length. We suggest that this unusual carrier characteristic originates from the structural disorder introduced by the lattice strain and dangling bonds at the SLL interfaces, which makes the crystalline SLLs behave like the amorphous chalcogenides. Detailed structural disorder in crystalline SLL has been studied by Raman scattering, X-ray photoelectron spectroscopy, as well as Variable-energy positron annihilation spectroscopy measurements. First-principles calculations results show that this structural disorder gives rise to three-site junctions that dominate the charge transport as the period length decreases and result in the anomalously signed Hall effect in the crystalline SLL. Our findings indicate a similar tetrahedral structure in the amorphous and crystalline states of SLLs, which can significantly reduce the entropy difference. Due to the reduced entropy loss and increased resistivity of crystalline phase introduced by disorder, it is not surprising that the SLLs exhibit extremely lower RESET current and power consumption.
Granovskii, A. B. Prudnikov, V. N.; Kazakov, A. P.; Zhukov, A. P.; Dubenko, I. S.
2012-11-15
The magnetization, the electrical resistivity, the magnetoresistance, and the Hall resistivity of Ni{sub 50}Mn{sub 35}In{sub 15-x}Si{sub x} (x = 1.0, 3.0, 4.0) Heusler alloys are studied at T = 80-320 K. The martensitic transformation in these alloys occurs at T = 220-280 K from the high-temperature ferromagnetic austenite phase into the low-temperature martensite phase having a substantially lower magnetization. A method is proposed to determine the normal and anomalous Hall effect coefficients in the presence of magnetoresistance and a possible magnetization dependence of these coefficients. The resistivity of the alloys increases jumpwise during the martensitic transformation, reaches 150-200 {mu}{Omega} cm, and is almost temperature-independent. The normal Hall effect coefficient is negative, is higher than that of nickel by an order of magnitude at T = 80 K, decreases monotonically with increasing temperature, approaches zero in austenite, and does not undergo sharp changes in the vicinity of the martensitic transformation. At x = 3, a normal Hall effect nonlinear in magnetization is detected in the immediate vicinity of the martensitic transformation. The temperature dependences of the anomalous Hall effect coefficient in both martensite and austenite and, especially, in the vicinity of the martensitic transformation cannot be described in terms of the skew scattering, the side jump, and the Karplus-Lutinger mechanisms from the anomalous Hall effect theory. The possible causes of this behavior of the magnetotransport properties in Heusler alloys are discussed.
Accelerating quantum instanton calculations of the kinetic isotope effects
Karandashev, Konstantin; Vaníček, Jiří
2015-11-21
Path integral implementation of the quantum instanton approximation currently belongs among the most accurate methods for computing quantum rate constants and kinetic isotope effects, but its use has been limited due to the rather high computational cost. Here, we demonstrate that the efficiency of quantum instanton calculations of the kinetic isotope effects can be increased by orders of magnitude by combining two approaches: The convergence to the quantum limit is accelerated by employing high-order path integral factorizations of the Boltzmann operator, while the statistical convergence is improved by implementing virial estimators for relevant quantities. After deriving several new virial estimators for the high-order factorization and evaluating the resulting increase in efficiency, using ⋅H{sub α} + H{sub β}H{sub γ} → H{sub α}H{sub β} + ⋅ H{sub γ} reaction as an example, we apply the proposed method to obtain several kinetic isotope effects on CH{sub 4} + ⋅ H ⇌ ⋅ CH{sub 3} + H{sub 2} forward and backward reactions.
Experimental Hall C | Jefferson Lab
U.S. Department of Energy (DOE) all webpages (Extended Search)
C Jefferson Lab has four experimental halls. Hall C is 150 feet in diameter and 60 feet tall. Hall C houses a High Momentum Spectrometer and provides space for large-installation experiments. These are stand-alone experiments requiring unique or highly specialized detectors, magnets and targeting systems. The research equipment in Hall C is used to study the weak charge of the proton, form factors of simple quark systems, the transition from hadrons to quarks and nuclei with a strange quark
Energy spectrum, dissipation, and spatial structures in reduced Hall magnetohydrodynamic
Martin, L. N.; Dmitruk, P.; Gomez, D. O.
2012-05-15
We analyze the effect of the Hall term in the magnetohydrodynamic turbulence under a strong externally supported magnetic field, seeing how this changes the energy cascade, the characteristic scales of the flow, and the dynamics of global magnitudes, with particular interest in the dissipation. Numerical simulations of freely evolving three-dimensional reduced magnetohydrodynamics are performed, for different values of the Hall parameter (the ratio of the ion skin depth to the macroscopic scale of the turbulence) controlling the impact of the Hall term. The Hall effect modifies the transfer of energy across scales, slowing down the transfer of energy from the large scales up to the Hall scale (ion skin depth) and carrying faster the energy from the Hall scale to smaller scales. The final outcome is an effective shift of the dissipation scale to larger scales but also a development of smaller scales. Current sheets (fundamental structures for energy dissipation) are affected in two ways by increasing the Hall effect, with a widening but at the same time generating an internal structure within them. In the case where the Hall term is sufficiently intense, the current sheet is fully delocalized. The effect appears to reduce impulsive effects in the flow, making it less intermittent.
Fisch, N.J.; Fruchtman, A.
1998-08-01
The acceleration of the plasma in the Hall thruster to supersonic velocities is examined by the use of a steady state model. Flows that are smooth across the sonic transition plane are found. The possibility of generating flows in which the acceleration across the sonic plane is abrupt, is also studied.
Experimental Hall A | Jefferson Lab
U.S. Department of Energy (DOE) all webpages (Extended Search)
A Jefferson Lab has four experimental halls. Hall A is the largest of these four experimental staging areas. It is 174 feet across and 80 feet tall from the floor to the highest spot on its domed ceiling. The foundation for the hall is 35 feet below ground. Hall A is outfitted with two primary detector systems - both high-resolution spectrometers, each weighing about 3 million pounds or 1,500 short tons. The hall is used primarily for experiments that study the structure of the nucleus and the
Band structure effects on resonant tunneling in III-V quantum...
Office of Scientific and Technical Information (OSTI)
in III-V quantum wells versus two-dimensional vertical heterostructures Citation Details In-Document Search Title: Band structure effects on resonant tunneling in III-V quantum ...
Semiclassical states, effective dynamics, and classical emergence in loop quantum cosmology
Singh, Parampreet; Vandersloot, Kevin
2005-10-15
We construct physical semiclassical states annihilated by the Hamiltonian constraint operator in the framework of loop quantum cosmology as a method of systematically determining the regime and validity of the semiclassical limit of the quantum theory. Our results indicate that the evolution can be effectively described using continuous classical equations of motion with nonperturbative corrections down to near the Planck scale below which the Universe can only be described by the discrete quantum constraint. These results, for the first time, provide concrete evidence of the emergence of classicality in loop quantum cosmology and also clearly demarcate the domain of validity of different effective theories. We prove the validity of modified Friedmann dynamics incorporating discrete quantum geometry effects which can lead to various new phenomenological applications. Furthermore the understanding of semiclassical states allows for a framework for interpreting the quantum wave functions and understanding questions of a semiclassical nature within the quantum theory of loop quantum cosmology.
Effect of carrier dynamics and temperature on two-state lasing in semiconductor quantum dot lasers
Korenev, V. V. Savelyev, A. V.; Zhukov, A. E.; Omelchenko, A. V.; Maximov, M. V.
2013-10-15
It is analytically shown that the both the charge carrier dynamics in quantum dots and their capture into the quantum dots from the matrix material have a significant effect on two-state lasing phenomenon in quantum dot lasers. In particular, the consideration of desynchronization in electron and hole capture into quantum dots allows one to describe the quenching of ground-state lasing observed at high injection currents both qualitatevely and quantitatively. At the same time, an analysis of the charge carrier dynamics in a single quantum dot allowed us to describe the temperature dependences of the emission power via the ground- and excited-state optical transitions of quantum dots.
Cylindrical geometry hall thruster
Raitses, Yevgeny; Fisch, Nathaniel J.
2002-01-01
An apparatus and method for thrusting plasma, utilizing a Hall thruster with a cylindrical geometry, wherein ions are accelerated in substantially the axial direction. The apparatus is suitable for operation at low power. It employs small size thruster components, including a ceramic channel, with the center pole piece of the conventional annular design thruster eliminated or greatly reduced. Efficient operation is accomplished through magnetic fields with a substantial radial component. The propellant gas is ionized at an optimal location in the thruster. A further improvement is accomplished by segmented electrodes, which produce localized voltage drops within the thruster at optimally prescribed locations. The apparatus differs from a conventional Hall thruster, which has an annular geometry, not well suited to scaling to small size, because the small size for an annular design has a great deal of surface area relative to the volume.
Observation of the Kondo effect in a spin-3/2 hole quantum dot (Journal
Office of Scientific and Technical Information (OSTI)
Article) | SciTech Connect Observation of the Kondo effect in a spin-3/2 hole quantum dot Citation Details In-Document Search Title: Observation of the Kondo effect in a spin-3/2 hole quantum dot We report the observation of the Kondo effect in a spin-3/2 hole quantum dot formed near pinch-off in a GaAs quantum wire. We clearly observe two distinctive hallmarks of quantum dot Kondo physics. First, the zero-bias peak in the differential conductance splits an in-plane magnetic field and the
Moderate positive spin Hall angle in uranium
Singh, Simranjeet; Anguera, Marta; Barco, Enrique del E-mail: cwmsch@rit.edu; Springell, Ross; Miller, Casey W. E-mail: cwmsch@rit.edu
2015-12-07
We report measurements of spin pumping and the inverse spin Hall effect in Ni{sub 80}Fe{sub 20}/uranium bilayers designed to study the efficiency of spin-charge interconversion in a super-heavy element. We employ broad-band ferromagnetic resonance on extended films to inject a spin current from the Ni{sub 80}Fe{sub 20} (permalloy) into the uranium layer, which is then converted into an electric field by the inverse spin Hall effect. Surprisingly, our results suggest a spin mixing conductance of order 2 × 10{sup 19} m{sup −2} and a positive spin Hall angle of 0.004, which are both merely comparable with those of several transition metals. These results thus support the idea that the electronic configuration may be at least as important as the atomic number in governing spin pumping across interfaces and subsequent spin Hall effects. In fact, given that both the magnitude and the sign are unexpected based on trends in d-electron systems, materials with unfilled f-electron orbitals may hold additional exploration avenues for spin physics.
Experimental Hall B | Jefferson Lab
U.S. Department of Energy (DOE) all webpages (Extended Search)
and electromagnetic calorimeters for electron and neutral particle identification. Major research programs in Hall B include experiments to measure the spectrum of excited ...
Experimental Hall B | Jefferson Lab
U.S. Department of Energy (DOE) all webpages (Extended Search)
B Jefferson Lab has four experimental halls. Hall B is the smallest of the experimental staging areas. It is 98 feet in diameter and 65 feet from floor to ceiling. Experiments that take data in Hall B employ beams of either electrons or photons. From 1995 to 2012, the heart of the Hall B physics program involved the use of the CEBAF Large Acceptance Spectrometer, or CLAS. This detector system spanned nearly the full angular range about the target and was specifically developed for the study of
Experimental Hall D | Jefferson Lab
U.S. Department of Energy (DOE) all webpages (Extended Search)
D A fourth experimental hall, known as Hall D, is currently under construction and is scheduled to begin experiments in 2015. The Hall D project consists of an extension to the accelerator tunnel to house a new beam transport line, a dedicated magnet to tag photons created in beam-target interactions, a counting house, cryogenics plant and service buildings. When it is completed, Hall D will make it possible for scientists to study what are known as exotic mesons or hybrids. You can learn more
U.S. Department of Energy (DOE) all webpages (Extended Search)
Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox ...
Directions to Wilson Hall, Fermilab
U.S. Department of Energy (DOE) all webpages (Extended Search)
in Wilson Hall, the central laboratory building of Fermi National Accelerator Laboratory, as shown on the map below. Ramsey Auditorium is located at the south end of Wilson ...
U.S. Department of Energy (DOE) all webpages (Extended Search)
8, 2014 CBFO Manager's weekly update to local residents Read Carlsbad Field Office Manager Joe Franco's letter to Eddy and Lea County residents for the week of April 14: at http://1.usa.gov/1mkxm7b Town Hall Questions Answered Q. What is the condition of Panel 7 right now? A. Work teams entering the underground facility as part of ongoing Phase 3 activities are still working to determine the full condition of Panel 7. Initial entries indicate good roof conditions. Q. What's the presumed reason
Fourfold symmetric planar Hall effect in epitaxial La{sub 1−x}Sr{sub x}CoO{sub 3} thin films
Cui, W. Y.; Li, P.; Bai, H. L.
2015-04-07
The effect of Sr concentration on the planar Hall effect (PHE) in epitaxial magnetic phase separated La{sub 1−x}Sr{sub x}CoO{sub 3} (0.07 ≤ x ≤ 0.60) thin films was studied systematically. It was found that crystalline anisotropy and spin-orbital coupling are the main contributions to the unexpected fourfold symmetric PHE. The uniaxial anisotropy field was given by H{sub uni} = 70 Oe and cubic anisotropic field H{sub cub} = 143 Oe, respectively. The magnetic anisotropy was weakened by Sr doping, which corresponds with the disappearance of the fourfold symmetry in PHE with the increasing Sr concentration. The first principle calculations proved that the contribution of Co-d orbitals to the magnetic anisotropy strongly depends on the Sr concentration. e{sub g}−d{sub x{sup 2}−y{sup 2}} and e{sub g}−d{sub 3z{sup 2}−r{sup 2}} orbitals play a dominant role in the magnetic anisotropy of the samples with x = 0.125, 0.25, while the t{sub 2g}−d{sub xy}, d{sub yz}, d{sub xz} orbitals contribute mainly to the magnetic anisotropy of the samples with x = 0.375, 0.5, 0.625.
Kotera, N.; Tanaka, K.; Jones, E.D.
1997-06-01
Two-dimensional natures of energy-band and the effective mass of conduction subband in narrow InGaAs/InAlAs quantum well layers have been clarified via magneto-photoluminescence, cyclotron resonance, Shubnikov-de Haas oscillations and quantum Hall effect, interband optical transmittance, and photoluminescence. Heavy effective masses of 0.07m{sub 0} were determined in 5- and 10-nm-wide quantum wells, which were 70% larger than the bulk bandedge mass, 0.041m{sub 0}. Sheet carrier concentration in the quantum wells was as high as 1 x 10{sup 12} cm{sup {minus}2}.
Forest County Potawatomi Community Wundar Hall Project
Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)
... Wundar Hall Project Wundar Hall is a 34,000 sq ft building located on the former ... by the Tribe and taken into Trust in 1990. Wundar Hall is currently not in use. ...
Semianalytical quantum model for graphene field-effect transistors
Pugnaghi, Claudio; Grassi, Roberto Gnudi, Antonio; Di Lecce, Valerio; Gnani, Elena; Reggiani, Susanna; Baccarani, Giorgio
2014-09-21
We develop a semianalytical model for monolayer graphene field-effect transistors in the ballistic limit. Two types of devices are considered: in the first device, the source and drain regions are doped by charge transfer with Schottky contacts, while, in the second device, the source and drain regions are doped electrostatically by a back gate. The model captures two important effects that influence the operation of both devices: (i) the finite density of states in the source and drain regions, which limits the number of states available for transport and can be responsible for negative output differential resistance effects, and (ii) quantum tunneling across the potential steps at the source-channel and drain-channel interfaces. By comparison with a self-consistent non-equilibrium Green's function solver, we show that our model provides very accurate results for both types of devices, in the bias region of quasi-saturation as well as in that of negative differential resistance.
I and my family own land in Ashfield next to the proposed Kinder Morgan/Tennessee Pipeline route. We are opposed to the pipeline for a variety of reasons, including the highly questionable need for the proposed commodity increase and the inevitable damage to the environment and communities along the proposed route. Addison Hall for the Hall Family Trust.
Anthony Kathryn Hall | Open Energy Information
Open Energy Information (Open El) [EERE & EIA]
Anthony Kathryn Hall Jump to: navigation, search Name: Anthony & Kathryn Hall Place: United Kingdom Sector: Wind energy Product: UK-based private wind farm in Highland. References:...
Dancheva, Y.; Biancalana, V.; Pagano, D.; Scortecci, F.
2013-06-15
Near exit plane non-resonant light induced fluorescence spectroscopy is performed in a Hall effect low-power Xenon thruster at discharge voltage of 250 V and anode flow rate of 0.7 mg/s. Measurements of the axial and radial velocity components are performed, exciting the 6s{sup 2}[3/2]{sub 2}{sup o}{yields}6p{sup 2}[3/2]{sub 2} transition at 823.16 nm in XeI and the 5d[4]{sub 7/2}{yields}6p[3]{sub 5/2}{sup o} transition at 834.724 nm in XeII. No significant deviation from the thermal velocity is observed for XeI. Two most probable ion velocities are registered at a given position with respect to the thruster axis, which are mainly attributed to different areas of creation of ions inside the acceleration channel. The spatial resolution of the set-up is limited by the laser beam size (radius of the order of 0.5 mm) and the fluorescence collection optics, which have a view spot diameter of 8 mm.
Kondo effect in coupled quantum dots under magnetic fields
Aono, Tomosuke; Eto, Mikio
2001-08-15
The Kondo effect in coupled quantum dots is investigated theoretically under magnetic fields. We show that the magnetoconductance (MC) illustrates the peak structures of Kondo resonant spectra. When the dot-dot tunneling coupling V{sub C} is smaller than the dot-lead coupling {Delta} (level broadening), Kondo resonant levels appear at the Fermi level (E{sub F}). The Zeeman splitting of the levels weakens the Kondo effect, which results in a negative MC. When V{sub C} is larger than {Delta}, the Kondo resonances form bonding and antibonding levels, located below and above E{sub F}, respectively. We observe a positive MC since the Zeeman splitting increases the overlap between the levels at E{sub F}. In the presence of antiferromagnetic spin coupling between the dots, the sign of the MC can change as a function of the gate voltage.
Effective Theory of Chiral Superfluids and Superconductors
U.S. Department of Energy (DOE) all webpages (Extended Search)
They are of interest in different fields such as the physics of 3He, quantum Hall physics, unconventional superconductivity and topological quantum computing. In the first part of ...
Magnetoelectric transport and quantum interference effect in ultrathin manganite films
Wang, Cong; Jin, Kui-juan Gu, Lin; Lu, Hui-bin; Li, Shan-ming; Zhou, Wen-jia; Zhao, Rui-qiang; Guo, Hai-zhong; He, Meng; Yang, Guo-zhen
2014-04-21
The magnetoelectric transport behavior with respect to the thicknesses of ultrathin La{sub 0.9}Sr{sub 0.1}MnO{sub 3} films is investigated in detail. The metal-insulator phase transition, which has never been observed in bulk La{sub 0.9}Sr{sub 0.1}MnO{sub 3}, is found in ultrathin films with thicknesses larger than 6 unit cells. Low-temperature resistivity minima appeared in films with thicknesses less than 10 unit cells. This is attributed to the presence of quantum interference effects. These data suggest that the influence of the weak localization becomes much pronounced as the film thickness decreases from 16 to 8 unit cells.
Cost-Effective Fabrication Routes for the Production of Quantum...
Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)
Quantum-Well-Type Structures and Recovoery of Waste Heat from Heavy-Duty Trucks Thermoelectric Developments for Vehicular Applications Automotive Thermoelectric Generators and HVAC
Office of Energy Efficiency and Renewable Energy (EERE)
Secretary Steven Chu hosted an online town hall to discuss the clean energy and innovation agenda President Obama laid out in his 2011 State of the Union address. (January 26, 2011)
Watch a live broadcast of the Science & Energy Town Hall on Wednesday, January 20, 2016 from 2:30 p.m. to 3:30 p.m. EST.
Experimental Hall C | Jefferson Lab
U.S. Department of Energy (DOE) all webpages (Extended Search)
in Hall C is used to study the weak charge of the proton, form factors of simple quark systems, the transition from hadrons to quarks and nuclei with a strange quark embedded....
Optimization of Cylindrical Hall Thrusters
Yevgeny Raitses, Artem Smirnov, Erik Granstedt, and Nathaniel J. Fi
2007-07-24
The cylindrical Hall thruster features high ionization efficiency, quiet operation, and ion acceleration in a large volume-to-surface ratio channel with performance comparable with the state-of-the-art annular Hall thrusters. These characteristics were demonstrated in low and medium power ranges. Optimization of miniaturized cylindrical thrusters led to performance improvements in the 50-200W input power range, including plume narrowing, increased thruster efficiency, reliable discharge initiation, and stable operation. __________________________________________________
Optimization of Cylindrical Hall Thrusters
Yevgeny Raitses, Artem Smirnov, Erik Granstedt, and Nathaniel J. Fisch
2007-11-27
The cylindrical Hall thruster features high ionization efficiency, quiet operation, and ion acceleration in a large volume-to-surface ratio channel with performance comparable with the state-of-the-art annular Hall thrusters. These characteristics were demonstrated in low and medium power ranges. Optimization of miniaturized cylindrical thrusters led to performance improvements in the 50-200W input power range, including plume narrowing, increased thruster efficiency, reliable discharge initiation, and stable operation.
Piezoelectric effect in InAs/InP quantum rod nanowires grown on silicon substrate
Anufriev, Roman; Chauvin, Nicolas Bru-Chevallier, Catherine; Khmissi, Hammadi; Naji, Khalid; Gendry, Michel; Patriarche, Gilles
2014-05-05
We report on the evidence of a strain-induced piezoelectric field in wurtzite InAs/InP quantum rod nanowires. This electric field, caused by the lattice mismatch between InAs and InP, results in the quantum confined Stark effect and, as a consequence, affects the optical properties of the nanowire heterostructure. It is shown that the piezoelectric field can be screened by photogenerated carriers or removed by increasing temperature. Moreover, a dependence of the piezoelectric field on the quantum rod diameter is observed in agreement with simulations of wurtzite InAs/InP quantum rod nanowire heterostructures.
Quantum fluctuations and isotope effects in ab initio descriptions of water
Wang, Lu; Markland, Thomas E.; Ceriotti, Michele
2014-09-14
Isotope substitution is extensively used to investigate the microscopic behavior of hydrogen bonded systems such as liquid water. The changes in structure and stability of these systems upon isotope substitution arise entirely from the quantum mechanical nature of the nuclei. Here, we provide a fully ab initio determination of the isotope exchange free energy and fractionation ratio of hydrogen and deuterium in water treating exactly nuclear quantum effects and explicitly modeling the quantum nature of the electrons. This allows us to assess how quantum effects in water manifest as isotope effects, and unravel how the interplay between electronic exchange and correlation and nuclear quantum fluctuations determine the structure of the hydrogen bond in water.
Acceleration of positrons by a relativistic electron beam in the presence of quantum effects
Niknam, A. R.; Aki, H.; Khorashadizadeh, S. M.
2013-09-15
Using the quantum magnetohydrodynamic model and obtaining the dispersion relation of the Cherenkov and cyclotron waves, the acceleration of positrons by a relativistic electron beam is investigated. The Cherenkov and cyclotron acceleration mechanisms of positrons are compared together. It is shown that growth rate and, therefore, the acceleration of positrons can be increased in the presence of quantum effects.
Eslami, L., E-mail: Leslami@iust.ac.ir; Faizabadi, E. [School of Physics, Iran University of Science and Technology, Tehran 16846 (Iran, Islamic Republic of)
2014-05-28
The effect of magnetic contacts on spin-dependent electron transport and spin-accumulation in a quantum ring, which is threaded by a magnetic flux, is studied. The quantum ring is made up of four quantum dots, where two of them possess magnetic structure and other ones are subjected to the Rashba spin-orbit coupling. The magnetic quantum dots, referred to as magnetic quantum contacts, are connected to two external leads. Two different configurations of magnetic moments of the quantum contacts are considered; the parallel and the anti-parallel ones. When the magnetic moments are parallel, the degeneracy between the transmission coefficients of spin-up and spin-down electrons is lifted and the system can be adjusted to operate as a spin-filter. In addition, the accumulation of spin-up and spin-down electrons in non-magnetic quantum dots are different in the case of parallel magnetic moments. When the intra-dot Coulomb interaction is taken into account, we find that the electron interactions participate in separation between the accumulations of electrons with different spin directions in non-magnetic quantum dots. Furthermore, the spin-accumulation in non-magnetic quantum dots can be tuned in the both parallel and anti-parallel magnetic moments by adjusting the Rashba spin-orbit strength and the magnetic flux. Thus, the quantum ring with magnetic quantum contacts could be utilized to create tunable local magnetic moments which can be used in designing optimized nanodevices.
Effect of noise on time-dependent quantum chaos
Ott, E.; Antonsen T.M. Jr.; Hanson, J.D.
1984-12-03
The dynamics of a time-dependent quantum system can be qualitatively different from that of its classical counterpart when the latter is chaotic. It is shown that small noise can strongly alter this situation.
Physics and modeling of an end-Hall (gridless) ion source
Oudini, N.; Hagelaar, G. J. M.; Boeuf, J.-P.; Garrrigues, L.
2011-04-01
In an end-Hall source, an ion beam is extracted from a magnetized plasma and accelerated by the plasma electric field without grids. The principle of end-Hall sources is similar to that of Hall effect thrusters (or closed-drift thrusters), but their design is optimized for processing applications (ion beam assisted deposition or substrate cleaning) rather than propulsion. The beam divergence is larger in end-Hall ion sources, and these sources can operate at low ion energies. Although end-Hall sources are commonly used in the surface processing industry, no detailed modeling of these sources is available, and their operation is quite empirical. In this paper, a self-consistent, two-dimensional, quasineutral model of an end-Hall ion source is developed and used in order to improve the understanding of the basic physics of these plasma sources and to quantify the parameters controlling the properties of the extracted ion beam.
Observation of the Kondo effect in a spin-3/2 hole quantum dot...
Office of Scientific and Technical Information (OSTI)
Citation Details In-Document Search Title: Observation of the Kondo effect in a spin-32 hole quantum dot We report the ... OSTI Identifier: 22261852 Resource Type: Journal Article ...
Cost-Effective Fabrication Routes for the Productionof Quantum-Well-Type
Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)
Structures and Recovoery of Waste Heat from Heavy-Duty Trucks | Department of Energy Productionof Quantum-Well-Type Structures and Recovoery of Waste Heat from Heavy-Duty Trucks Cost-Effective Fabrication Routes for the Productionof Quantum-Well-Type Structures and Recovoery of Waste Heat from Heavy-Duty Trucks 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005_deer_willigan.pdf (494.58 KB) More Documents & Publications Cost-Effective Fabrication
Jefferson Lab Experimental Hall C
U.S. Department of Energy (DOE) all webpages (Extended Search)
C Privacy and Security Notice Skip over navigation search Group This site's design is only visible in a graphical browser that supports web standards, but its content is accessible to any browser. Concerns? Hall C Navigation Users Public Interest print version HES, HKS and Splitter Qweak spectrometer used to measure proton weak charge 12 GeV Upgrade Upgrade information 12 GeV Experiments SHMS-HMS User's Group User's Group mailing list Newsletter 12 GeV wiki Hall C Collaboration Information
Town Hall meeting | OpenEI Community
Open Energy Information (Open El) [EERE & EIA]
picture Submitted by Graham7781(2017) Super contributor 16 November, 2012 - 11:23 LEDS the focus of Monday's 10 a.m. Town Hall Meeting LEDS Town Hall meeting What: OpenEI's...
Hendra, P. I. B. Rahayu, F. Darma, Y.
2014-03-24
Intermediate band solar cell (IBSC) has become a promising technology in increasing solar cell efficiency. In this work we compare absorption coefficient profile between InAs quantum dots with GaAs bulk. We calculate the efficiency of GaAs bulk and GaAs doped with 2, 5, and 10 nm InAs quantum dot. Effective distances in quantum dot arrangement based on electron tunneling consideration were also calculated. We presented a simple calculation method with low computing power demand. Results showed that arrangement of quantum dot InAs in GaAs can increase solar cell efficiency from 23.9 % initially up to 60.4%. The effective distance between two quantum dots was found 2 nm in order to give adequate distance to prevent electron tunneling and wave functions overlap.
Stability of Hall equilibria in neutron star crusts
Marchant, Pablo; Reisenegger, Andreas; Valdivia, Juan Alejandro; Hoyos, Jaime H.
2014-12-01
In the solid crusts of neutron stars, the advection of the magnetic field by the current-carrying electrons, an effect known as Hall drift, should play a very important role as the ions remain essentially fixed (as long as the solid does not break). Although Hall drift preserves the magnetic field energy, it has been argued that it may drive a turbulent cascade to scales at which ohmic dissipation becomes effective, allowing a much faster decay in objects with very strong fields. On the other hand, it has been found that there are 'Hall equilibria', i.e., field configurations that are unaffected by Hall drift. Here we address the crucial question of the stability of these equilibria through axially symmetric (two-dimensional (2D)) numerical simulations of Hall drift and ohmic diffusion, with the simplifying assumption of uniform electron density and conductivity. We demonstrate the 2D stability of a purely poloidal equilibrium, for which ohmic dissipation makes the field evolve toward an attractor state through adjacent stable configurations, around which damped oscillations occur. For this field, the decay scales with the ohmic timescale. We also study the case of an unstable equilibrium consisting of both poloidal and toroidal field components that are confined within the crust. This field evolves into a stable configuration, which undergoes damped oscillations superimposed on a slow evolution toward an attractor, just as the purely poloidal one.
Observation of the Kondo effect in a spin-3/2 hole quantum dot
Klochan, O.; Micolich, A. P.; Hamilton, A. R.; Trunov, K.; Reuter, D.; Wieck, A. D.
2013-12-04
We report the observation of the Kondo effect in a spin-3/2 hole quantum dot formed near pinch-off in a GaAs quantum wire. We clearly observe two distinctive hallmarks of quantum dot Kondo physics. First, the zero-bias peak in the differential conductance splits an in-plane magnetic field and the splitting is independent of gate voltage. Second, the splitting rate is twice as large as that for the lowest one-dimensional subband. We show that the Zeeman splitting of the zero-bias peak is highly anisotropic and attribute this to the strong spin-orbit interaction for holes in GaAs.
The effect of Coulomb interactions on thermoelectric properties of quantum dots
Zimbovskaya, Natalya A.
2014-03-14
Thermoelectric effects in a quantum dot coupled to the source and drain charge reservoirs are explored using a nonequilibrium Green's functions formalism beyond the Hartree-Fock approximation. Thermal transport is analyzed within a linear response regime. A transition from Coulomb blockade regime to Kondo regime in thermoelectric transport through a single-level quantum dot is traced using unified approximations for the relevant Green's functions.
Pfeiffer, P.; Egusquiza, I. L.; Di Ventra, M.; Sanz, M.; Solano, E.
2016-07-06
Technology based on memristors, resistors with memory whose resistance depends on the history of the crossing charges, has lately enhanced the classical paradigm of computation with neuromorphic architectures. However, in contrast to the known quantized models of passive circuit elements, such as inductors, capacitors or resistors, the design and realization of a quantum memristor is still missing. Here, we introduce the concept of a quantum memristor as a quantum dissipative device, whose decoherence mechanism is controlled by a continuous-measurement feedback scheme, which accounts for the memory. Indeed, we provide numerical simulations showing that memory effects actually persist in the quantummore » regime. Our quantization method, specifically designed for superconducting circuits, may be extended to other quantum platforms, allowing for memristor-type constructions in different quantum technologies. As a result, the proposed quantum memristor is then a building block for neuromorphic quantum computation and quantum simulations of non-Markovian systems.« less
Reconnection dynamics with secondary tearing instability in compressible Hall plasmas
Ma, Z. W. Wang, L. C.; Li, L. J.
2015-06-15
The dynamics of a secondary tearing instability is systematically investigated based on compressible Hall magnetohydrodynamic. It is found that in the early nonlinear phase of magnetic reconnection before onset of the secondary tearing instability, the geometry of the magnetic field in the reconnection region tends to form a Y-type structure in a weak Hall regime, instead of an X-type structure in a strong Hall regime. A new scaling law is found that the maximum reconnection rate in the early nonlinear stage is proportional to the square of the ion inertial length (γ∝d{sub i}{sup 2}) in the weak Hall regime. In the late nonlinear phase, the thin elongated current sheet associated with the Y-type geometry of the magnetic field breaks up to form a magnetic island due to a secondary tearing instability. After the onset of the secondary tearing mode, the reconnection rate is substantially boosted by the formation of the X-type geometries of magnetic field in the reconnection regions. With a strong Hall effect, the maximum reconnection rate linearly increases with the increase of the ion inertial length (γ∝d{sub i})
Out-of-Equilibrium Kondo Effect in Double Quantum Dots
Aguado, Ramon; Langreth, David C.
2000-08-28
The out-of-equilibrium transport properties of a double quantum dot system in the Kondo regime are studied theoretically by means of a two-impurity Anderson Hamiltonian with interimpurity hopping. The Hamiltonian is solved by means of a nonequilibrium generalization of the slave-boson mean-field theory. It is demonstrated that measurements of the differential conductance dI/dV , for appropriate values of voltages and tunneling couplings, can give a direct observation of the coherent superposition between the many-body Kondo states of each dot. For large voltages and arbitrarily large interdot tunneling, there is a critical voltage above which the physical behavior of the system again resembles that of two decoupled quantum dots. (c) 2000 The American Physical Society.
Nanoconstriction-based spin-Hall nano-oscillator
Demidov, V. E.; Urazhdin, S.; Zholud, A.; Sadovnikov, A. V.; Demokritov, S. O.
2014-10-27
We experimentally demonstrate magnetic nano-oscillators driven by pure spin current produced by the spin Hall effect in a bow tie-shaped nanoconstriction. These devices exhibit single-mode auto-oscillation and generate highly-coherent electronic microwave signals with a significant power and the spectral linewidth as low as 6.2 MHz at room temperature. The proposed simple and flexible device geometry is amenable to straightforward implementation of advanced spintronic structures such as chains of mutually coupled spin-Hall nano-oscillators.
Hyodo, Kazushige Sakuma, Akimasa; Kota, Yohei
2014-05-07
We studied quantitative relationship between the intrinsic anomalous Hall conductivity (σ{sub xy}) and the uniaxial magnetic anisotropy constant (K{sub u}) of bct-Fe{sub 50}Co{sub 50} using first-principles calculation because these quantities originate from spin-orbit interaction. We found that the obtained σ{sub xy} and K{sub u} with changing the axial ratio c/a (1≤c/a≤√(2)) exhibit similar behavior mainly arising from the common band mixing of the minority-spin d{sub xy} and d{sub x{sup 2}−y{sup 2}} states near the Fermi level which is sensitive to c/a.
A molecular dynamics study of nuclear quantum effect on the diffusion of hydrogen in condensed phase
Nagashima, Hiroki; Tokumasu, Takashi; Tsuda, Shin-ichi; Tsuboi, Nobuyuki; Koshi, Mitsuo; Hayashie, A. Koichi
2014-10-06
In this paper, the quantum effect of hydrogen molecule on its diffusivity is analyzed using Molecular Dynamics (MD) method. The path integral centroid MD (CMD) method is applied for the reproduction method of time evolution of the molecules. The diffusion coefficient of liquid hydrogen is calculated using the Green-Kubo method. The simulation is performed at wide temperature region and the temperature dependence of the quantum effect of hydrogen molecule is addressed. The calculation results are compared with those of classical MD results. As a result, it is confirmed that the diffusivity of hydrogen molecule is changed depending on temperature by the quantum effect. It is clarified that this result can be explained that the dominant factor by quantum effect on the diffusivity of hydrogen changes from the swollening the potential to the shallowing the potential well around 30 K. Moreover, it is found that this tendency is related to the temperature dependency of the ratio of the quantum kinetic energy and classical kinetic energy.
Tunable Pseudogap Kondo Effect and Quantum Phase Transitions in Aharonov-Bohm Interferometers
Dias Da Silva, Luis G; Sandler, Nancy; Simon, Pascal; Ingersent, Kevin; Ulloa, Sergio E
2009-01-01
We study two quantum dots embedded in the arms of an Aharonov-Bohm ring threaded by a magnetic flux. This system can be described by an effective one-impurity Anderson model with an energy- and flux- dependent density of states. For specific values of the flux, this density of states vanishes at the Fermi energy, yielding a controlled realization of the pseudogap Kondo effect. The conductance and trans- mission phase shifts reflect a nontrivial interplay between wave interference and interactions, providing clear signatures of quantum phase transitions between Kondo and non-Kondo ground states.
Pai, Chi-Feng; Nguyen, Minh-Hai; Vilela-Leão, Luis Henrique; Buhrman, R. A.; Belvin, Carina; Ralph, D. C.
2014-02-24
We report that strong perpendicular magnetic anisotropy of the ferromagnetic layer in a W/CoFeB/MgO multilayer structure can be established by inserting a Hf layer as thin as 0.25 nm between the W and CoFeB layers. The Hf spacer also allows transmission of spin currents generated by an in-plane charge current in the W layer to apply strong spin torque on the CoFeB, thereby enabling current-driven magnetic switching. The antidamping-like and field-like components of the spin torque exerted on a 1 nm CoFeB layer are of comparable magnitudes in this geometry. Both components originate from the spin Hall effect in the underlying W layer.
Jahn-Teller versus quantum effects in the spin-orbital material LuVO3
Skoulatos, M.; Toth, S.; Roessli, B.; Enderle, M.; Habicht, K.; Sheptyakov, D.; Cervellino, A.; Freeman, P. G.; Reehuis, M.; Stunault, A.; et al
2015-04-13
In this article, we report on combined neutron and resonant x-ray scattering results, identifying the nature of the spin-orbital ground state and magnetic excitations in LuVO3 as driven by the orbital parameter. In particular, we distinguish between models based on orbital-Peierls dimerization, taken as a signature of quantum effects in orbitals, and Jahn-Teller distortions, in favor of the latter. In order to solve this long-standing puzzle, polarized neutron beams were employed as a prerequisite in order to solve details of the magnetic structure, which allowed quantitative intensity analysis of extended magnetic-excitation data sets. The results of this detailed study enabledmore » us to draw definite conclusions about the classical versus quantum behavior of orbitals in this system and to discard the previous claims about quantum effects dominating the orbital physics of LuVO3 and similar systems.« less
Magnetic field sensing beyond the standard quantum limit under the effect of decoherence
Matsuzaki, Yuichiro; Benjamin, Simon C.; Fitzsimons, Joseph
2011-07-15
Entangled states can potentially be used to outperform the standard quantum limit by which every classical sensor is bounded. However, entangled states are very susceptible to decoherence, and so it is not clear whether one can really create a superior sensor to classical technology via a quantum strategy which is subject to the effect of realistic noise. This paper presents an investigation of how a quantum sensor composed of many spins is affected by independent dephasing. We adopt general noise models including non-Markovian effects, and in these noise models the performance of the sensor depends crucially on the exposure time of the sensor to the field. We have found that, by choosing an appropriate exposure time within the non-Markovian time region, an entangled sensor does actually beat the standard quantum limit. Since independent dephasing is one of the most typical sources of noise in many systems, our results suggest a practical and scalable approach to beating the standard quantum limit.
Henderson Hall's Education and Career Fair
Location: Smith Gym, Henderson Hall, Arlington, VAPOC: Donna FriendWebsite: http://www.mccshh.com/EducationCareerFairFall2014.html
Building Green in Greensburg: City Hall Building
This poster highlights energy efficiency, renewable energy, and sustainable features of the high-performing City Hall building in Greensburg, Kansas.
Rebuilding It Better: Greensburg, Kansas, City Hall
D. Egan
2010-04-13
This document showcases the LEED-Platinum designed Greensburg City Hall, which was rebuilt green, after a massive tornado destroyed Greensburg, Kansas in May 2007.
Portland State University Shattuck Hall
High Performance Buildings Database
Portland, OR Portland State's Shattuck hall was originally constructed as an elementary school in 1915. In 2007 the university undertook extensive renovations of the building to bring it up to current seismic requirements. In addition to structural improvements, the design team was able to upgraded the building's aging mechanical and electrical systems, upgrade plumbing, and restore the large light wells that bring daylight into the U-shaped building. The resulting building houses Portland State's Architecture department, where students are able to learn from the exposed building systems.
Town Hall with Secretary Moniz
Energy Secretary Ernest Moniz; Deputy Secretary of Energy Daniel Poneman
2013-07-18
In a town hall meeting with Department staff, Energy Secretary Ernest Moniz spoke about his plans for a reorganization of the Energy Department’s management structure. The plans will help better achieve the Department’s key priorities and those of the President, including implementing the President’s Climate Action Plan, “all of the above” energy strategy and nuclear security agenda. After his remarks, Moniz, joined by Deputy Secretary Dan Poneman, took questions from the audience in the Forrestal Auditorium as well as email questions from other Department locations.
Town Hall with Secretary Moniz
Energy Secretary Ernest Moniz; Deputy Secretary of Energy Daniel Poneman
2013-07-25
In a town hall meeting with Department staff, Energy Secretary Ernest Moniz spoke about his plans for a reorganization of the Energy Department?s management structure. The plans will help better achieve the Department?s key priorities and those of the President, including implementing the President?s Climate Action Plan, ?all of the above? energy strategy and nuclear security agenda. After his remarks, Moniz, joined by Deputy Secretary Dan Poneman, took questions from the audience in the Forrestal Auditorium as well as email questions from other Department locations.
Non-singular bounce scenarios in loop quantum cosmology and the effective field description
Cai, Yi-Fu; Wilson-Ewing, Edward E-mail: wilson-ewing@phys.lsu.edu
2014-03-01
A non-singular bouncing cosmology is generically obtained in loop quantum cosmology due to non-perturbative quantum gravity effects. A similar picture can be achieved in standard general relativity in the presence of a scalar field with a non-standard kinetic term such that at high energy densities the field evolves into a ghost condensate and causes a non-singular bounce. During the bouncing phase, the perturbations can be stabilized by introducing a Horndeski operator. Taking the matter content to be a dust field and an ekpyrotic scalar field, we compare the dynamics in loop quantum cosmology and in a non-singular bouncing effective field model with a non-standard kinetic term at both the background and perturbative levels. We find that these two settings share many important properties, including the result that they both generate scale-invariant scalar perturbations. This shows that some quantum gravity effects of the very early universe may be mimicked by effective field models.
Karpman-Washimi magnetization with electron-exchange effects in quantum plasmas
Hong, Woo-Pyo; Jamil, M.; Rasheed, A.; Jung, Young-Dae
2015-07-15
The influence of quantum electron-exchange on the Karpman-Washimi ponderomotive magnetization is investigated in quantum plasmas. The ponderomotive magnetization and the total radiation power due to the non-stationary Karpman-Washimi interaction related to the time-varying field intensity are obtained as functions of the de Broglie wave length, Debye length, and electron-exchange parameter. The result shows that the electron-exchange effect enhances the cyclotron frequency due to the ponderomotive interactions in quantum plasmas. It is also shown that the electron-exchange effect on the Karpman-Washimi magnetization increases with increasing wave number. In addition, the Karpman-Washimi magnetization and the total radiation power increase with an increase in the ratio of the Debye length to the de Broglie wave length. In streaming quantum plasmas, it is shown that the electron-exchange effect enhances the ponderomotive magnetization below the resonant wave number and, however, suppresses the ponderomotive magnetization above the resonant wave number. The variation of the Karpman-Washimi magnetization and the radiation power due to the variation of the electron-exchange effect and plasma parameters is also discussed.
Nuclear quantum effects in water exchange around lithium and fluoride ions
Wilkins, David M.; Manolopoulos, David E.; Dang, Liem X.
2015-02-14
We employ classical and ring polymer molecular dynamics simulations to study the effect of nuclear quantum fluctuations on the structure and the water exchange dynamics of aqueous solutions of lithium and fluoride ions. While we obtain reasonably good agreement with experimental data for solutions of lithium by augmenting the Coulombic interactions between the ion and the water molecules with a standard Lennard-Jones ion-oxygen potential, the same is not true for solutions of fluoride, for which we find that a potential with a softer repulsive wall gives much better agreement. A small degree of destabilization of the first hydration shell is found in quantum simulations of both ions when compared with classical simulations, with the shell becoming less sharply defined and the mean residence time of the water molecules in the shell decreasing. In line with these modest differences, we find that the mechanisms of the exchange processes are unaffected by quantization, so a classical description of these reactions gives qualitatively correct and quantitatively reasonable results. We also find that the quantum effects in solutions of lithium are larger than in solutions of fluoride. This is partly due to the stronger interaction of lithium with water molecules, partly due to the lighter mass of lithium and partly due to competing quantum effects in the hydration of fluoride, which are absent in the hydration of lithium.
Nuclear quantum effects in water exchange around lithium and fluoride ions
Wilkins, David M.; Manolopoulos, David; Dang, Liem X.
2015-02-14
We employ classical and ring polymer molecular dynamics simulations to study the effect of nuclear quantum fluctuations on the structure and the water exchange dynamics of aqueous solutions of lithium and fluoride ions. While we obtain reasonably good agreement with experimental data for solutions of lithium by augmenting the Coulombic interactions between the ion and the water molecules with a standard Lennard-Jones ion-oxygen potential, the same is not true for solutions of fluoride, for which we find that a potential with a softer repulsive wall gives much better agreement. A small degree of destabilization of the first hydration shell is found in quantum simulations of both ions when compared with classical simulations, with the shell becoming less sharply defined and the mean residence time of the water molecules in the shell decreasing. In line with these modest differences, we find that the mechanisms of the water exchange reactions are unaffected by quantization, so a classical description of these reactions gives qualitatively correct and quantitatively reasonable results. We also find that the quantum effects in solutions of lithium are larger than in solutions of fluoride. This is partly due to the stronger interaction of lithium with water molecules, partly due to the lighter mass of lithium, and partly due to competing quantum effects in the hydration of fluoride, which are absent in the hydration of lithium. LXD was supported by US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences.
Hall County, Texas: Energy Resources | Open Energy Information
Open Energy Information (Open El) [EERE & EIA]
B. Places in Hall County, Texas Estelline, Texas Lakeview, Texas Memphis, Texas Turkey, Texas Retrieved from "http:en.openei.orgwindex.php?titleHallCounty,Texas&oldid...
Data acquisition system of Moeller polarimeter Hall A Jefferson...
Office of Scientific and Technical Information (OSTI)
Data acquisition system of Moeller polarimeter Hall A Jefferson Lab (in Russian) Citation Details In-Document Search Title: Data acquisition system of Moeller polarimeter Hall A ...
Building America Top Innovations Hall of Fame Profile - Building...
Building America Top Innovations Hall of Fame Profile - Building Energy Optimization Analysis Method (BEopt) Building America Top Innovations Hall of Fame Profile - Building Energy...
Effects of stacking faults on the electronic structures of quantum rods
Wang, Lin-Wang
2004-03-30
Atomistic semiempirical pseudopotential method is used to study the effects of stacking faults in a wurtzite structure quantum rod. It is found that a single stacking fault can cause a 10-50 meV change in the conduction state eigen energy, and a localization in the electron wave function. However, the effects on the hole eigen energies and wave functions are very small.
Quantification of the spin-Hall anti-damping torque with a resonance spectrometer
Emori, Satoru Nan, Tianxiang; Oxholm, Trevor M.; Boone, Carl T.; Sun, Nian X.; Jones, John G.; Howe, Brandon M.; Brown, Gail J.; Budil, David E.
2015-01-12
We present a simple technique using a cavity-based resonance spectrometer to quantify the anti-damping torque due to the spin Hall effect. Modification of ferromagnetic resonance is observed as a function of small DC current in sub-mm-wide strips of bilayers, consisting of magnetically soft FeGaB and strong spin-Hall metal Ta. From the detected current-induced linewidth change, we obtain an effective spin Hall angle of 0.08–0.09 independent of the magnetic layer thickness. Our results demonstrate that a sensitive resonance spectrometer can be a general tool to investigate spin Hall effects in various material systems, even those with vanishingly low conductivity and magnetoresistance.
Towards a graphene-based quantum impedance standard
Kalmbach, C.-C.; Schurr, J. Ahlers, F. J.; Mller, A.; Novikov, S.; Lebedeva, N.; Satrapinski, A.
2014-08-18
Precision measurements of the quantum Hall resistance with alternating current (ac) in the kHz range were performed on epitaxial graphene in order to assess its suitability as a quantum standard of impedance. The quantum Hall plateaus measured with alternating current were found to be flat within one part in 10{sup 7}. This is much better than for plain GaAs quantum Hall devices and shows that the magnetic-flux-dependent capacitive ac losses of the graphene device are less critical. The observed frequency dependence of about ?8??10{sup ?8}/kHz is comparable in absolute value to the positive frequency dependence of plain GaAs devices, but the negative sign is attributed to stray capacitances which we believe can be minimized by a careful design of the graphene device. Further improvements thus may lead to a simpler and more user-friendly quantum standard for both resistance and impedance.
Electron-exchange effects on the charge capture process in degenerate quantum plasmas
Jung, Young-Dae; Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 426-791 ; Akbari-Moghanjoughi, M.; International Centre for Advanced Studies in Physical Sciences and Institute for Theoretical Physics, Ruhr University Bochum, D-44780 Bochum
2014-03-15
The electron-exchange effects on the charge capture process are investigated in degenerate quantum plasmas. The Bohr-Lindhard formalism with the effective interaction potential is employed to obtain the charge capture radius, capture probability, and capture cross section as functions of the impact parameter, projectile energy, electron-exchange parameter, Fermi energy, and plasmon energy. The result shows that the electron-exchange effect enhances the charge capture radius and the charge capture cross section in semiconductor quantum plasmas. It is also found that the charge capture radius and charge capture cross section increases with an increase of the Fermi energy and, however, decreases with increasing plasmon energy. Additionally, it is found that the peak position of the charge capture cross section is receded from the collision center with an increase of the electron-exchange parameter.
Communication: Nucleation of water on ice nanograins: Size, charge, and quantum effects
Marciante, Mathieu; Calvo, Florent
2015-05-07
The sticking cross sections of water molecules on cold size-selected water clusters have been simulated using classical and quantum (path-integral) molecular dynamics trajectories under realistic conditions. The integrated cross sections for charged clusters show significant size effects with comparable trends as in experiments, as well as essentially no sign effect. Vibrational delocalization, although it contributes to enlarging the geometric cross sections, leads to a counter-intuitive decrease in the dynamical cross section obtained from the trajectories. These results are interpreted based on the apparent reduction in the effective interaction between the projectile and the target owing to zero-point effects.
Quantum confinement effect in cheese like silicon nano structure fabricated by metal induced etching
Saxena, Shailendra K. Sahu, Gayatri; Sagdeo, Pankaj R.; Kumar, Rajesh
2015-08-28
Quantum confinement effect has been studied in cheese like silicon nano-structures (Ch-SiNS) fabricated by metal induced chemical etching using different etching times. Scanning electron microscopy is used for the morphological study of these Ch-SiNS. A visible photoluminescence (PL) emission is observed from the samples under UV excitation at room temperature due to quantum confinement effect. The average size of Silicon Nanostructures (SiNS) present in the samples has been estimated by bond polarizability model using Raman Spectroscopy from the red-shift observed from SiNSs as compared to its bulk counterpart. The sizes of SiNS present in the samples decreases as etching time increase from 45 to 75 mintunes.
Nonlinear spectroscopic effects in quantum gases induced by atom-atom interactions
Safonov, A. I. Safonova, I. I.; Yasnikov, I. S.
2013-05-15
We consider nonlinear spectroscopic effects-interaction-enhanced double resonance and spectrum instability-that appear in ultracold quantum gases owing to collisional frequency shift of atomic transitions and, consequently, due to the dependence of the frequencies on the population of various internal states of the particles. Special emphasis is put to two simplest cases, (a) the gas of two-level atoms and (b) double resonance in a gas of three-level bosons, in which the probe transition frequency remains constant.
Aloisio, R.; Grillo, A.; Galante, A.; Liberati, S.; Luzio, E.; Mendez, F.
2006-02-15
In this article we elaborate on a recently proposed interpretation of deformed special relativity (DSR) as an effective measurement theory in the presence of non-negligible (albeit small) quantum gravitational fluctuations. We provide several heuristic arguments to explain how such a new theory can emerge and discuss the possible observational consequences of this framework. Given that our discussion considers leading order corrections to the standard dispersion relations, our results apply to a very wide class of possible modifications of special relativity.
Quantum Effects in Photosynthesis | MIT-Harvard Center for Excitonics
U.S. Department of Energy (DOE) all webpages (Extended Search)
Effects in Photosynthesis December 8, 2009 at Room 330, 60 Oxford Street, Harvard Campus K. Birgitta Whaley Department of Chemistry, University of California, Berkeley whaley abstract: The initial light-harvesting step of photosynthesis is known to be exceptionally efficient, transporting absorbed light energy as electronic excitation to the reaction center with near unity efficiency within a few picoseconds. It was recently shown that this process is accompanied by surprisingly long-lived
Naquin, Clint; Lee, Mark; Edwards, Hal; Mathur, Guru; Chatterjee, Tathagata; Maggio, Ken
2014-11-24
Introducing explicit quantum transport into Si transistors in a manner amenable to industrial fabrication has proven challenging. Hybrid field-effect/bipolar Si transistors fabricated on an industrial 45 nm process line are shown to demonstrate explicit quantum transport signatures. These transistors incorporate a lateral ion implantation-defined quantum well (QW) whose potential depth is controlled by a gate voltage (V{sub G}). Quantum transport in the form of negative differential transconductance (NDTC) is observed to temperatures >200 K. The NDTC is tied to a non-monotonic dependence of bipolar current gain on V{sub G} that reduces drain-source current through the QW. These devices establish the feasibility of exploiting quantum transport to transform the performance horizons of Si devices fabricated in an industrially scalable manner.
Experiment Hall & Beamline | Advanced Photon Source
U.S. Department of Energy (DOE) all webpages (Extended Search)
1104-m-circumference optical bench. The hall floor is made of 1-ft-thick poured concrete. Usual practice in poured concrete construction is the use of evenly spaced cuts in...
OpenEI Community - Town Hall meeting
Open Energy Information (Open El) [EERE & EIA]
st, 2012 http:en.openei.orgcommunityblogtown-hall-meeting-october-1st-2012
OSDBU Federal Contracting Town Hall Meeting
Office of Energy Efficiency and Renewable Energy (EERE)
In June of 2015, John Hale III, Director of the Office of Small and Disadvantaged Business Utilization, served as the moderator for the Federal Contracting Town Hall Meeting during the CelebrAsian...
DOE2016 Exhibit Hall | Department of Energy
Exhibit Hall DOE2016 Exhibit Hall Addthis 1 of 25 2 of 25 3 of 25 4 of 25 5 of 25 6 of 25 7 of 25 8 of 25 9 of 25 10 of 25 11 of 25 12 of 25 13 of 25 14 of 25 15 of 25 16 of 25 17 of 25 18 of 25 19 of 25 20 of 25 21 of 25 22 of 25 23 of 25 24 of 25 25 of 25
Hypernuclei in Hall C | Jefferson Lab
U.S. Department of Energy (DOE) all webpages (Extended Search)
Hypernuclei in Hall C Hypernuclei in Hall C High Resolution Electron Spectrometer The High Resolution Electron Spectrometer (teal and red, top left) was recently built with a grant from Japan's Ministry of Education, Culture, Sports, Science and Technology. The ministry also funded the new splitter magnet (dark green) and the High Resolution Kaon Spectrometer (purple and light green, top right). Nuclear scientists have gone to great lengths to pry open the nucleus and peer deep inside. They've
Effect of matrix on InAs self-organized quantum dots on InP substrate
Ustinov, V.M.; Weber, E.R.; Ruvimov, S.; Liliental-Weber, Z.; Zhukov, A.E.; Egorov, A.Y.; Kovsh, A.R.; Tsatsulnikov, A.F.; Kopev, P.S.
1998-01-01
InAs self-organized quantum dots in In{sub 0.53}Ga{sub 0.47}As and In{sub 0.52}Al{sub 0.48}As matrices have been grown on InP substrates by molecular beam epitaxy. The dot size in InGaAs has been found to be 3{endash}4 times larger, but the areal density about an order of magnitude smaller than that in InAlAs. Low-temperature photoluminescence (PL) of the InAs/InGaAs quantum dots is characterized by a narrow (35 meV) PL line as compared to that of InAs/InAlAs quantum dots (170 meV). Quantum dot formation increases the carrier localization energy as compared to quantum well structures with the same InAs thickness in a similar manner for both InAs/InGaAs and InAs/InAlAs structures. The effect of the barrier band gap on the optical transition energy is qualitatively the same for quantum well and quantum dot structures. The results demonstrate a possibility of controlling the quantum dot emission wavelength by varying the matrix composition. {copyright} {ital 1998 American Institute of Physics.}
Measurements of Plasma Potential Distribution in Segmented Electrode Hall Thruster
Y. Raitses; D. Staack; N.J. Fisch
2001-10-16
Use of a segmented electrode placed at the Hall thruster exit can substantially reduce the voltage potential drop in the fringing magnetic field outside the thruster channel. In this paper, we investigate the dependence of this effect on thruster operating conditions and segmented electrode configuration. A fast movable emissive probe is used to measure plasma potential in a 1 kW laboratory Hall thruster with semented electrodes made of a graphite material. Relatively small probe-induced perturbations of the thruster discharge in the vicinity of the thruster exit allow a reasonable comparison of the measured results for different thruster configurations. It is shown that the plasma potential distribution is almost not sensitive to changes of the electrode potential, but depends on the magnetic field distribution and the electrode placement.
Intermittency in Hall-magnetohydrodynamics with a strong guide field
Rodriguez Imazio, P.; Martin, L. N.; Dmitruk, P.; Mininni, P. D.; National Center for Atmospheric Research, P.O. Box 3000, Boulder, Colorado 80307
2013-05-15
We present a detailed study of intermittency in the velocity and magnetic field fluctuations of compressible Hall-magnetohydrodynamic turbulence with an external guide field. To solve the equations numerically, a reduced model valid when a strong guide field is present is used. Different values for the ion skin depth are considered in the simulations. The resulting data are analyzed computing field increments in several directions perpendicular to the guide field, and building structure functions and probability density functions. In the magnetohydrodynamic limit, we recover the usual results with the magnetic field being more intermittent than the velocity field. In the presence of the Hall effect, field fluctuations at scales smaller than the ion skin depth show a substantial decrease in the level of intermittency, with close to monofractal scaling.
The density gradient effect on quantum Weibel instability
Mahdavi, M. Khodadadi Azadboni, F.
2015-03-15
The Weibel instability plays an important role in stopping the hot electrons and energy deposition mechanism in the fast ignition of inertial fusion process. In this paper, the effects of the density gradient and degeneracy on Weibel instability growth rate are investigated. Calculations show that decreasing the density degenerate in the plasma corona, near the relativistic electron beam emitting region by 8.5% leads to a 92% reduction in the degeneracy parameter and about 90% reduction in Weibel instability growth rate. Also, decreasing the degenerate density near the fuel core by 8.5% leads to 1% reduction in the degeneracy parameter and about 8.5% reduction in Weibel instability growth rate. The Weibel instability growth rate shrinks to zero and the deposition condition of relativistic electron beam energy can be shifted to the fuel core for a suitable ignition by increasing the degeneracy parameter in the first layer of plasma corona.
Magnetic shielding of a laboratory Hall thruster. II. Experiments
Hofer, Richard R. Goebel, Dan M.; Mikellides, Ioannis G.; Katz, Ira
2014-01-28
The physics of magnetic shielding in Hall thrusters were validated through laboratory experiments demonstrating essentially erosionless, high-performance operation. The magnetic field near the walls of a laboratory Hall thruster was modified to effectively eliminate wall erosion while maintaining the magnetic field topology away from the walls necessary to retain efficient operation. Plasma measurements at the walls validate our understanding of magnetic shielding as derived from the theory. The plasma potential was maintained very near the anode potential, the electron temperature was reduced by a factor of two to three, and the ion current density was reduced by at least a factor of two. Measurements of the carbon backsputter rate, wall geometry, and direct measurement of plasma properties at the wall indicate that the wall erosion rate was reduced by a factor of 1000 relative to the unshielded thruster. These changes effectively eliminate wall erosion as a life limitation in Hall thrusters, enabling a new class of deep-space missions that could not previously be attempted.
Gerber, U.; Wiese, U.-J.; Hofmann, C. P.; Kaempfer, F.
2010-02-01
We consider a microscopic model for a doped quantum ferromagnet as a test case for the systematic low-energy effective field theory for magnons and holes, which is constructed in complete analogy to the case of quantum antiferromagnets. In contrast to antiferromagnets, for which the effective field theory approach can be tested only numerically, in the ferromagnetic case, both the microscopic and the effective theory can be solved analytically. In this way, the low-energy parameters of the effective theory are determined exactly by matching to the underlying microscopic model. The low-energy behavior at half-filling as well as in the single- and two-hole sectors is described exactly by the systematic low-energy effective field theory. In particular, for weakly bound two-hole states the effective field theory even works beyond perturbation theory. This lends strong support to the quantitative success of the systematic low-energy effective field theory method not only in the ferromagnetic but also in the physically most interesting antiferromagnetic case.
Edge State Induced Andreev Oscillation in Quantum Anomalous Hall...
Office of Scientific and Technical Information (OSTI)
Close Cite: Bibtex Format Close 0 pages in this document matching the terms "" Search For Terms: Enter terms in the toolbar above to search the full text of this document for ...
Engineering quantum anomalous/valley Hall states in graphene...
Office of Scientific and Technical Information (OSTI)
Publication Date: 2011-11-15 OSTI Identifier: 1101181 Type: Publisher's Accepted Manuscript Journal Name: Physical Review B Additional Journal Information: Journal Volume: 84; ...
A two fluid description of the Quantum Hall Soliton (Journal...
Office of Scientific and Technical Information (OSTI)
Research Org: SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States) Sponsoring Org: USDOE Office of Science (SC), High Energy Physics (HEP) (SC-25) Country of ...
Quantum Hall ice (Journal Article) | SciTech Connect
Office of Scientific and Technical Information (OSTI)
Authors: Chern, Gia-Wei ; Rahmani, Armin ; Martin, Ivar ; Batista, Cristian D. Publication Date: 2014-12-01 OSTI Identifier: 1181136 GrantContract Number: LANLLDRD Type: ...
Thermal vibration of a rectangular single-layered graphene sheet with quantum effects
Wang, Lifeng, E-mail: walfe@nuaa.edu.cn; Hu, Haiyan [State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, 210016 Nanjing (China)
2014-06-21
The thermal vibration of a rectangular single-layered graphene sheet is investigated by using a rectangular nonlocal elastic plate model with quantum effects taken into account when the law of energy equipartition is unreliable. The relation between the temperature and the Root of Mean Squared (RMS) amplitude of vibration at any point of the rectangular single-layered graphene sheet in simply supported case is derived first from the rectangular nonlocal elastic plate model with the strain gradient of the second order taken into consideration so as to characterize the effect of microstructure of the graphene sheet. Then, the RMS amplitude of thermal vibration of a rectangular single-layered graphene sheet simply supported on an elastic foundation is derived. The study shows that the RMS amplitude of the rectangular single-layered graphene sheet predicted from the quantum theory is lower than that predicted from the law of energy equipartition. The maximal relative difference of RMS amplitude of thermal vibration appears at the sheet corners. The microstructure of the graphene sheet has a little effect on the thermal vibrations of lower modes, but exhibits an obvious effect on the thermal vibrations of higher modes. The quantum effect is more important for the thermal vibration of higher modes in the case of smaller sides and lower temperature. The relative difference of maximal RMS amplitude of thermal vibration of a rectangular single-layered graphene sheet decreases monotonically with an increase of temperature. The absolute difference of maximal RMS amplitude of thermal vibration of a rectangular single-layered graphene sheet increases slowly with the rising of Winkler foundation modulus.
Stapp, Henry P.
2011-05-10
The principle of sufficient reason asserts that anything that happens does so for a reason: no definite state of affairs can come into being unless there is a sufficient reason why that particular thing should happen. This principle is usually attributed to Leibniz, although the first recorded Western philosopher to use it was Anaximander of Miletus. The demand that nature be rational, in the sense that it be compatible with the principle of sufficient reason, conflicts with a basic feature of contemporary orthodox physical theory, namely the notion that nature's response to the probing action of an observer is determined by pure chance, and hence on the basis of absolutely no reason at all. This appeal to pure chance can be deemed to have no rational fundamental place in reason-based Western science. It is argued here, on the basis of the other basic principles of quantum physics, that in a world that conforms to the principle of sufficient reason, the usual quantum statistical rules will naturally emerge at the pragmatic level, in cases where the reason behind nature's choice of response is unknown, but that the usual statistics can become biased in an empirically manifest way when the reason for the choice is empirically identifiable. It is shown here that if the statistical laws of quantum mechanics were to be biased in this way then the basically forward-in-time unfolding of empirical reality described by orthodox quantum mechanics would generate the appearances of backward-time-effects of the kind that have been reported in the scientific literature.
Interdot Coulomb correlation effects and spin-orbit coupling in two carbon nanotube quantum dots
Wang, Zhen-Hua; Kuang, Xiao-Yu Zhong, Ming-Min; Shao, Peng; Li, Hui
2014-01-28
Transport properties of the two-level Kondo effect involving spin, orbital, and pseudospin degrees of freedom are examined in a parallel carbon nanotube double quantum dot with a sufficient interdot Coulomb interaction and small interdot tunneling. The interdot Coulomb correlation effects are taken into account, and it plays an important role in forming bonding and antibonding states. Attached to ferromagnetic leads, the Kondo effect is observed at the interdot Coulomb blockade region with degeneracy of spin, orbital, and pseudospin degrees of freedom. A crossover from a two-level Kondo state involving the fivefold degeneracy of the double quantum dots to an SU(4) spin-orbit Kondo state and to an SU(2) spin-Kondo effect is demonstrated. At finite magnetic field, the splitting of the spin, orbital, and pseudospin Kondo resonance can be restored. For finite intradot Coulomb interaction U, there is a competition between the single-dot Kondo effect and the antiferromagnetic exchange coupling J{sub AFM}, resulting in the suppression of the Kondo resonance. Moreover, both the J{sub AFM} and the Zeeman interactions compete, leading to need a much higher value of the magnetic field to compensate for the Kondo splitting.
Surface waves on quantum plasma half-space with electron exchange-correlation effects
Khalilpour, H.
2015-12-15
The propagation of surface waves on a quantum plasma half-space is investigated, taking into account the electron exchange-correlation effect. Using the modified quantum hydrodynamic model in conjunction with the Poisson equation, the dispersion relation of surface waves is obtained. It is found that due to the presence of electron exchange-correlation effect the wave frequency is shifted to lower frequencies. For different ranges of Brueckner parameter r{sub s}, the effect of electron exchange-correlation is investigated. It is indicated that for weak coupling region with r{sub s} < 0.1, the wave frequency remains unchanged and in this region the effect of electron exchange-correlation is negligible. For moderate coupling region, i.e., (0.1 < r{sub s} < 1), the influence of electron exchange-correlation is important and as r{sub s} increases, the electron exchange-correlation effect also increases.
Search for: All records | SciTech Connect
Office of Scientific and Technical Information (OSTI)
... Scalar spin chirality and quantum hall effect on triangular lattices Martin, Ivar ; ... We show that the obtained chiral phase exhibits a spontaneous quantum Hall-effect with ...
The quantum interference effects in the SC II 4247 Å line of the second solar spectrum
Smitha, H. N.; Nagendra, K. N.; Stenflo, J. O.; Bianda, M.; Ramelli, R. E-mail: knn@iiap.res.in E-mail: mbianda@irsol.ch
2014-10-10
The Sc II 4247 Å line formed in the chromosphere is one of the lines well known, like the Na I D{sub 2} and Ba II D{sub 2}, for its prominent triple-peak structure in Q/I and the underlying quantum interference effects governing it. In this paper, we try to study the nature of this triple-peak structure using the theory of F-state interference including the effects of partial frequency redistribution (PRD) and radiative transfer (RT). We compare our results with the observations taken in a quiet region near the solar limb. In spite of accounting for PRD and RT effects, it has not been possible to reproduce the observed triple-peak structure in Q/I. While the two wing PRD peaks (on either side of central peak) and the near wing continuum can be reproduced, the central peak is completely suppressed by the enhanced depolarization resulting from the hyperfine structure splitting. This suppression remains for all the tested widely different one-dimensional model atmospheres or for any multi-component combinations of them. While multidimensional RT effects may improve the fit to the intensity profiles, they do not appear capable of explaining the enigmatic central Q/I peak. This leads us to suspect that some aspect of quantum physics is missing.
Georgiou, C.; Leontiou, T.; Kelires, P. C.
2014-07-15
Atomistic Monte Carlo simulations, coupling thermodynamic and kinetic effects, resolve a longstanding controversy regarding the origin of composition profiles in heteroepitaxial SiGe quantum dots. It is shown that profiles with cores rich in the unstrained (Si) component derive from near-equilibrium processes and intraisland diffusion. Profiles with cores rich in the strained (Ge) component are of nonequilibrium nature, i.e., they are strain driven but kinetically limited. They are shaped by the distribution of kinetic barriers of atomic diffusion in the islands. The diffusion pathways are clearly revealed for the first time. Geometrical kinetics play a minor role.
Hybridization and the effective mass of quantum-well states in magnetic multilayers
Johnson, P.D.; Garrison, K.; Dong, Q. ); Smith, N.V. ); Li, D.; Mattson, J.; Pearson, J.; Bader, S.D. )
1994-09-15
Angle-resolved-photoemission studies of the dispersion of the quantum-well states in copper thin films deposited on a Co(001) substrate reveal that hybridization in the interface leads to a large increase in the effective mass of the electrons. These observations have implications for theories of the oscillatory exchange coupling in the related magnetic multilayers, particularly where Fermi-surface spanning vectors away from the center of the zone are invoked as in the case of the short-period oscillation in the Co/Cu(001) multilayers.
Dirac Equation and Quantum Relativistic Effects in a Single Trapped Ion
Lamata, L.; Leon, J.; Schaetz, T.; Solano, E.
2007-06-22
We present a method of simulating the Dirac equation in 3+1 dimensions for a free spin-1/2 particle in a single trapped ion. The Dirac bispinor is represented by four ionic internal states, and position and momentum of the Dirac particle are associated with the respective ionic variables. We show also how to simulate the simplified 1+1 case, requiring the manipulation of only two internal levels and one motional degree of freedom. Moreover, we study relevant quantum-relativistic effects, like the Zitterbewegung and Klein's paradox, the transition from massless to massive fermions, and the relativistic and nonrelativistic limits, via the tuning of controllable experimental parameters.
Xu, Yang; Miotkowski, Ireneusz; Chen, Yong P.
2016-05-04
Topological insulators are a novel class of quantum matter with a gapped insulating bulk, yet gapless spin-helical Dirac fermion conducting surface states. Here, we report local and non-local electrical and magneto transport measurements in dual-gated BiSbTeSe2 thin film topological insulator devices, with conduction dominated by the spatially separated top and bottom surfaces, each hosting a single species of Dirac fermions with independent gate control over the carrier type and density. We observe many intriguing quantum transport phenomena in such a fully tunable two-species topological Dirac gas, including a zero-magnetic-field minimum conductivity close to twice the conductance quantum at the doublemore » Dirac point, a series of ambipolar two-component half-integer Dirac quantum Hall states and an electron-hole total filling factor zero state (with a zero-Hall plateau), exhibiting dissipationless (chiral) and dissipative (non-chiral) edge conduction, respectively. As a result, such a system paves the way to explore rich physics, ranging from topological magnetoelectric effects to exciton condensation.« less
Forest County Potawatomi Community Parking Ramp and Wundar Hall...
Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)
... into Trust in 1990 The Tribe has been leasing to a long-term tenant whose lease will end in July 2010 Wundar Hall Project Wundar Hall is a 34,000 sq ft dormitory building ...
TBB-0042- In the Matter of Curtis Hall
This letter concerns the complaint of retaliation filed by Curtis Hall (the complainant or Mr. Hall) with the Department of Energy under 10 C . F. R. Part 7 0 8 , the DOE Con tractor Employee ...
Jackson, Robert L.; Crandall, Erika R.; Bozack, Michael J.
2015-05-21
The objective of this work is to evaluate the effect of scale dependent mechanical and electrical properties on electrical contact resistance (ECR) between rough surfaces. This work attempts to build on existing ECR models that neglect potentially important quantum- and size-dependent contact and electrical conduction mechanisms present due to the asperity sizes on typical surfaces. The electrical conductance at small scales can quantize or show a stepping trend as the contact area is varied in the range of the free electron Fermi wavelength squared. This work then evaluates if these effects remain important for the interface between rough surfaces, which may include many small scale contacts of varying sizes. The results suggest that these effects may be significant in some cases, while insignificant for others. It depends on the load and the multiscale structure of the surface roughness.
Effect of geometry and composition on the intraband transitions of holes in quantum dots
Singh, Satish Kumar Kumar, Jitendra
2014-12-28
The effect of shape and size anisotropy on unipolar intraband transitions of holes in quantum dots (QDs) is studied. The optical matrix elements are calculated for transitions of holes in valence band. To get the optical matrix elements, energy eigenvalues and eigenvectors are calculated using 4??4 Luttinger Hamiltonian in the effective mass approximation. The formulation is applied to InGaAs/GaAs QD with parabolic confinement potential in xy-plane. The optical matrix elements for intraband hole transitions are calculated for x and y polarised light. The transitions are considered from ground state to other excited states. The effect of In concentration on optical matrix elements is also investigated. It is important to note that the transitions of holes are governed by the character of initial and final states for different light polarisations that give specific transition selection rules. It is found that the polarisation is strongly dependent on the in-plane anisotropy of the QDs.
Strain and localization effects in InGaAs(N) quantum wells: Tuning the magnetic response
Lopes-Oliveira, V. Herval, L. K. S.; Orsi Gordo, V.; Cesar, D. F.; Godoy, M. P. F. de; Galvão Gobato, Y.; Henini, M.; Khatab, A.; Sadeghi, M.; Wang, S.; Schmidbauer, M.
2014-12-21
We investigated effects of localization and strain on the optical and magneto-optical properties of diluted nitrogen III–V quantum wells theoretically and experimentally. High-resolution x-ray diffraction, photoluminescence (PL), and magneto-PL measurements under high magnetic fields up to 15 T were performed at low temperatures. Bir-Pikus Hamiltonian formalism was used to study the influence of strain, confinement, and localization effects. The circularly polarized magneto-PL was interpreted considering localization aspects in the valence band ground state. An anomalous behavior of the electron-hole pair magnetic shift was observed at low magnetic fields, ascribed to the increase in the exciton reduced mass due to the negative effective mass of the valence band ground state.
A Wolcott; V Doyeux; C Nelson; R Gearba; K Lei; K Yager; A dolocan; K Williams; D Nguyen; X Zhu
2011-12-31
The formation of solid thin films from colloidal semiconductor quantum dots (QDs) is often accompanied by red shifts in excitonic transitions, but the mechanisms responsible for the red shifts are under debate. We quantitatively address this issue using optical absorption spectroscopy of two-dimensional (2D) and three-dimensional (3D) arrays of PbSe QDs with controlled inter-QD distance, which was determined by the length of alkanedithiol linking molecules. With decreasing inter-QD distance, the first and second exciton absorption peaks show increasing red shifts. Using thin films consisting of large and isolated QDs embedded in a matrix of small QDs, we determine that a dominant contribution to the observed red shift is due to changes in polarization of the dielectric environment surrounding each QD ({approx}88%), while electronic or transition dipole coupling plays a lesser role. However, the observed red shifts are more than 1 order of magnitude larger than theoretical predictions based on the dielectric polarization effect for spherical QDs. We attribute this anomalously large polarization effect to deviations of the exciton wave functions from eigenfunctions of the idealized spherical quantum well model.
Spin Hall magnetoresistance in CoFe2O4/Pt films
Wu, Hao; Qintong, Zhang; Caihua, Wan; Ali, Syed Shahbaz; Yuan, Zhonghui; You, Lu; Wang, Junling; Choi, Yongseong; Han, Xiufeng
2015-05-13
Pulse laser deposition and magnetron sputtering techniques have been employed to prepare MgO(001)//CoFe2O4/Pt samples. Cross section transmission electron microscope results prove that the CoFe2O4 film epitaxially grew along (001) direction. X-ray magnetic circular dichroism results show that magnetic proximity effect in this sample is negligible. Magnetoresistance (MR) properties confirm that spin Hall MR (SMR) dominates in this system. Spin Hall effect-induced anomalous Hall voltage was also observed in this sample. Lastly, these results not only demonstrate the universality of SMR effect but also demonstrate the utility in spintronics of CoFe2O4 as a new type of magnetic insulator.
Diversity and Inclusion Town Hall Program Book | Department of Energy
Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)
Town Hall Program Book Diversity and Inclusion Town Hall Program Book As part of a larger effort to create a culture that values diversity, we have been conducting focus groups to engage in a dialog and hear feedback on how diversity can be improved. At the Town Hall, DOE employees will hear the results of these discussions. View the program booklet from the Diversity and Inclusion Town Hall below. For more information about the Department's diversity and inclusion programs, visit
Spring 2015 Henderson Hall Education and Career Fair
Office of Energy Efficiency and Renewable Energy (EERE)
Location: Smith Gym, Henderson Hall, Arlington, VAPOC: DOECorporateRecruitment@hq.doe.govWebsite: http://bit.ly/1FRIJOF
Parametric Investigations of Non-Conventional Hall Thruster
Raitses, Y.; Fisch, N.J.
2001-01-12
Hall thrusters might better scale to low power with non-conventional geometry. A 9 cm cylindrical, ceramic-channel, Hall thruster with a cusp-type magnetic field distribution has been investigated. It exhibits discharge characteristics similar to conventional coaxial Hall thrusters, but does not expose as much channel surface. Significantly, its operation is not accompanied by large amplitude discharge low frequency oscillations.
Controlling atomistic processes on Pb films via quantum size effects and lattice rotation
Binz, Steven
2012-06-14
The two main techniques used to record the data in this dissertation were Spot Profile Analysis - Low Energy Electron Diffraction (SPA-LEED) and Scanning Tunneling Microscopy (STM). A specific data analysis technique for LEED data called G(S) curves is described in depth. G(S) curves can provide a great deal of structural information about the surface; including step heights, island size, and island separation. The effects of quantum size effects (QSE) on the diffusion and critical island sizes of Pb and In on Pb films are reported. Pb depositions on the 2D In phases {radical}3 and {radical}31 to see how the phases affect the Pb growth and its strong QSE are reported.
InP quantum dots: Electronic structure, surface effects, and the redshifted emission
Fu, H.; Zunger, A.
1997-07-01
We present pseudopotential plane-wave electronic-structure calculations on InP quantum dots in an effort to understand quantum confinement and surface effects and to identify the origin of the long-lived and redshifted luminescence. We find that (i) unlike the case in small GaAs dots, the lowest unoccupied state of InP dots is the {Gamma}{sub 1c}-derived direct state rather than the X{sub 1c}-derived indirect state and (ii) unlike the prediction of {bold k}{center_dot}{bold p} models, the highest occupied state in InP dots has a 1sd-type envelope function rather than a (dipole-forbidden) 1pf envelope function. Thus explanations (i) and (ii) to the long-lived redshifted emission in terms of an orbitally forbidden character can be excluded. Furthermore, (iii) fully passivated InP dots have no surface states in the gap. However, (iv) removal of the anion-site passivation leads to a P dangling bond (DB) state just above the valence band, which will act as a trap for photogenerated holes. Similarly, (v) removal of the cation-site passivation leads to an In dangling-bond state below the conduction band. While the energy of the In DB state depends only weakly on quantum size, its radiative lifetime increases with quantum size. The calculated {approximately}300-meV redshift and the {approximately}18 times longer radiative lifetime relative to the dot-interior transition for the 26-{Angstrom} dot with an In DB are in good agreement with the observations of full-luminescence experiments for unetched InP dots. Yet, (vi) this type of redshift due to surface defect is inconsistent with that measured in {ital selective} excitation for HF-etched InP dots. (vii) The latter type of ({open_quotes}resonant{close_quotes}) redshift is compatible with the calculated {ital screened} singlet-triplet splitting in InP dots, suggesting that the slow emitting state seen in selective excitation could be a triplet state. {copyright} {ital 1997} {ital The American Physical Society}
Newmark-Hall synthetic history development
Aramayo, G.A.
1990-11-01
The methodology used to develop synthetic acceleration time histories with spectral content that envelopes the Newmark-Hall spectra is described. Six acceleration time histories are developed for two conditions of foundation and 3 critical damping factors. The target spectra corresponds to the mediam centered probability level.
Plasma lens and plume divergence in the Hall thruster
Fruchtman, A.; Cohen-Zur, A.
2006-09-11
The effect of magnetic field curvature on the plume divergence in the Hall thruster is analyzed. The two-dimensional plasma flow and electric field are determined self-consistently within the paraxial approximation in this plasma lens, a nearly axial electric field perpendicular to the curved magnetic field lines. The ion radial velocity along the thruster is described analytically. The authors suggest positioning the ionization layer near the zero of the magnetic field in a reversing-direction field configuration for a minimal beam divergence. They also show that an additional emitting electrode can reduce plume divergence.
Effect of Ligands on Characteristics of (CdSe)13 Quantum Dot
Gao, Yang; Zhou, Bo; Kang, Seung-gu; Xin, Minsi; Yang, Ping; Dai, Xing; Wang, Zhigang; Zhou, Ruhong
2014-01-01
The widespread applications of quantum dots (QDs) have spurred an increasing interest in the study of their coating ligands, which can not only protect the electronic structures of the central QDs, but also control their permeability through biological membranes with both size and shape. In this work, we have used density functional theory (DFT) to investigate the electronic structures of (CdSe)13 passivated by OPMe2(CH2)nMe ligands with different lengths and various numbers of branches (Me=methyl group, n = 0, 1-3). Our results show that the absorption peak in the ultraviolet-visible (UV-vis) spectra displays a clear blue-shift, on the scale of ~100 nm, upon the binding of ligands. Once the total number of ligands bound with (CdSe)13 reached a saturated number (9 or 10), no more blue-shift occurred in the absorption peak in the UV-vis spectra. On the other hand, the aliphatic chain length of ligands has a negligible effect on the optical properties of the QD core. Analyses of the bonding characteristics confirm that optical transitions are dominantly governed by the central QD core rather than the organic passivation. Interestingly, the density of states (DOS) share similar characteristics as vibrational spectra, even though there is no coordination vibration mode between the ligands and the central QD. These findings might provide insights on the material design for the passivation of quantum dots for biomedical applications.
Karan, Niladri S.; Keller, Aaron M.; Sampat, Siddharth; Roslyak, Oleksiy; Arefin, Ayesha; Hanson, Christina J.; Casson, Joanna L.; Desireddy, Anil; Ghosh, Yagnaseni; Piryatinski, Andrei; et al
2015-02-09
Hybrid semiconductor–metal nanoscale constructs are of both fundamental and practical interest. Semiconductor nanocrystals are active emitters of photons when stimulated optically, while the interaction of light with nanosized metal objects results in scattering and ohmic damping due to absorption. In a combined structure, the properties of both components can be realized together. At the same time, metal–semiconductor coupling may intervene to modify absorption and/or emission processes taking place in the semiconductor, resulting in a range of effects from photoluminescence quenching to enhancement. We show here that photostable ‘giant’ quantum dots when placed at the center of an ultrathin gold shellmore » retain their key optical property of bright and blinking-free photoluminescence, while the metal shell imparts efficient photothermal transduction. The latter is despite the highly compact total particle size (40–60 nm “inorganic” diameter and <100 nm hydrodynamic diameter) and the very thin nature of the optically transparent Au shell. Furthermore, the sensitivity of the quantum dot emission to local temperature provides a novel internal thermometer for recording temperature during infrared irradiation-induced photothermal heating.« less
Spin Hall effects in metallic antiferromagnets - perspectives...
Office of Scientific and Technical Information (OSTI)
60439, USA, Department of Physics and Astronomy, Northwestern University, Evanston IL ... IL 60616, USA Department of Physics and Astronomy, Northwestern University, Evanston IL ...
Spin coherence of the two-dimensional electron gas in a GaAs quantum well
Larionov, A. V.
2015-01-15
The coherent spin dynamics of the quasi-two-dimensional electron gas in a GaAs quantum well is experimentally investigated using the time-resolved spin Kerr effect in an optical cryostat with a split coil inducing magnetic fields of up to 6 T at a temperature of about 2 K. The electron spin dephasing times and degree of anisotropy of the spin relaxation of electrons are measured in zero magnetic field at different electron densities. The dependence of the spin-orbit splitting on the electron-gas density is established. In the integral quantum-Hall-effect mode, the unsteady behavior of the spin dephasing time of 2D electrons of the lower Landau spin sublevel near the odd occupation factor ν = 3 is found. The experimentally observed unsteady behavior of the spin dephasing time can be explained in terms of new-type cyclotron modes that occur in a liquid spin texture.
Diffusive and quantum effects of water properties in different states of matter
Yeh, Kuan-Yu; Huang, Shao-Nung; Chen, Li-Jen E-mail: stlin@ntu.edu.tw; Lin, Shiang-Tai E-mail: stlin@ntu.edu.tw
2014-07-28
The enthalpy, entropy, and free energy of water are important physical quantities for understanding many interesting phenomena in biological systems. However, conventional approaches require different treatments to incorporate quantum and diffusive effects of water in different states of matter. In this work, we demonstrate the use of the two-phase thermodynamic (2PT) model as a unified approach to obtain the properties of water over the whole phase region of water from short (∼20 ps) classical molecular dynamics trajectories. The 2PT model provides an effective way to separate the diffusive modes (gas-like component) from the harmonic vibrational modes (solid-like component) in the vibrational density of states (DoS). Therefore, both diffusive and quantum effect can be properly accounted for water by applying suitable statistical mechanical weighting functions to the DoS components. We applied the 2PT model to systematically examine the enthalpy, entropy, and their temperature dependence of five commonly used rigid water models. The 2PT results are found to be consistent with those obtained from more sophisticated calculations. While the thermodynamic properties determined from different water models are largely similar, the phase boundary determined from the equality of free energy is very sensitive to the small inaccuracy in the values of enthalpy and absolute entropy. The enthalpy, entropy, and diffusivity of water are strongly interrelated, which challenge further improvement of rigid water model via parameter fitting. Our results show that the 2PT is an efficient method for studying the properties of water under various chemical and biological environments.
Onset of fast reconnection in Hall magnetohydrodynamics mediated by the plasmoid instability
Huang Yimin; Bhattacharjee, A.; Sullivan, Brian P.
2011-07-15
The role of a super-Alfvenic plasmoid instability in the onset of fast reconnection is studied by means of the largest Hall magnetohydrodynamics simulations to date, with system sizes up to 10{sup 4} ion skin depths (d{sub i}). It is demonstrated that the plasmoid instability can facilitate the onset of rapid Hall reconnection, in a regime where the onset would otherwise be inaccessible because the Sweet-Parker width is significantly above d{sub i}. However, the topology of Hall reconnection is not inevitably a single stable X-point. There exists an intermediate regime where the single X-point topology itself exhibits instability, causing the system to alternate between a single X-point geometry and an extended current sheet with multiple X-points produced by the plasmoid instability. Through a series of simulations with various system sizes relative to d{sub i}, it is shown that system size affects the accessibility of the intermediate regime. The larger the system size is, the easier it is to realize the intermediate regime. Although our Hall magnetohydrodynamics (MHD) model lacks many important physical effects included in fully kinetic models, the fact that a single X-point geometry is not inevitable raises the interesting possibility for the first time that Hall MHD simulations may have the potential to realize reconnection with geometrical features similar to those seen in fully kinetic simulations, namely, extended current sheets and plasmoid formation.
Casimir effect in the nonequilibrium steady state of a quantum spin chain
Gonzalez-Cabrera, D. L.; Racz, Z.
2010-05-15
We present a fully microscopics-based calculation of the Casimir effect in a nonequilibrium system, namely, an energy-flux-driven quantum XX chain. The force between the walls (transverse-field impurities) is calculated in a nonequilibrium steady state which is prepared by letting the system evolve from an initial state with the two halves of the chain prepared at equilibrium at different temperatures. The steady state emerging in the large-time limit is homogeneous but carries an energy flux. The Casimir force in this nonequilibrium state is calculated analytically in the limit when the transverse fields are small. We find that the the Casimir force range is reduced compared to the equilibrium case, and suggest that the reason for this is the reduction of fluctuations in the flux-carrying steady state.
Cho, Chang-Hee; Kim, Baek-Hyun; Kim, Tae-Wook; Park, Seong-Ju; Park, Nae-Man; Sung, Gun-Yong
2005-04-04
The effect of hydrogen passivation on the charge storage characteristics of two types of silicon nitride films containing silicon quantum dots (Si QDs) grown by SiH{sub 4}+N{sub 2} and SiH{sub 4}+NH{sub 3} plasma was investigated. The transmission electron microscope analysis and the capacitance-voltage measurement showed that the silicon nitride film grown by SiH{sub 4}+NH{sub 3} plasma has a lower interface trap density and a higher density of Si QDs compared to that grown by SiH{sub 4}+N{sub 2} plasma. It was also found that the charge retention characteristics in the Si QDs were greatly enhanced in the samples grown by means of SiH{sub 4}+NH{sub 3} plasma, due to the hydrogen passivation of the defects in the silicon nitride films by NH{sub 3} during the growth of the Si QDs.
Ning, Feng; Tang, Li-Ming Zhang, Yong; Chen, Ke-Qiu
2013-12-14
We have used first principles methods to systematically investigate the quantum confinement effect on the electronic properties of zinc-blende (ZB) and wurtzite (WZ) InAs nanowires (NWs) with different orientations and diameters, and compared their electronic properties before and after pseudo-hydrogen passivation. The results show that the calculated carrier effective masses are dependent on the NW diameter, except for [110] ZB NWs, and the hole effective masses of [111] ZB NWs are larger than the electron effective masses when the NW diameter is ?26?. The band alignments of [111] ZB and [0001] WZ NWs reveal that the effect of quantum confinement on the conduction bands is greater than on the valence bands, and the position of the valence band maximum level changes little with increasing NW diameter. The pseudo-hydrogen passivated NWs have larger band gaps than the corresponding unpassivated NWs. The carrier effective masses and mobilities can be adjusted by passivating the surface dangling bonds.
Ultra-sensitive Hall sensors based on graphene encapsulated in hexagonal boron nitride
Dauber, Jan; Stampfer, Christoph; Sagade, Abhay A.; Neumaier, Daniel; Oellers, Martin; Watanabe, Kenji; Taniguchi, Takashi
2015-05-11
The encapsulation of graphene in hexagonal boron nitride provides graphene on substrate with excellent material quality. Here, we present the fabrication and characterization of Hall sensor elements based on graphene boron nitride heterostructures, where we gain from high mobility and low charge carrier density at room temperature. We show a detailed device characterization including Hall effect measurements under vacuum and ambient conditions. We achieve a current- and voltage-related sensitivity of up to 5700 V/AT and 3 V/VT, respectively, outpacing state-of-the-art silicon and III/V Hall sensor devices. Finally, we extract a magnetic resolution limited by low frequency electric noise of less than 50 nT/√(Hz) making our graphene sensors highly interesting for industrial applications.
CONTROL OF NON-RESONANT EFFECTS IN A NUCLERA SPIN QUANTUM COMPUTER...
Office of Scientific and Technical Information (OSTI)
COMPUTER WITH A LARGE NUMBER OF QUBITS G. BERMAN; ET AL 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; 99 GENERAL AND MISCELLANEOUSMATHEMATICS, COMPUTING, AND...
Analysis of geometric phase effects in the quantum-classical Liouville formalism
Ryabinkin, Ilya G.; Izmaylov, Artur F.; Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6 ; Hsieh, Chang-Yu; Kapral, Raymond
2014-02-28
We analyze two approaches to the quantum-classical Liouville (QCL) formalism that differ in the order of two operations: Wigner transformation and projection onto adiabatic electronic states. The analysis is carried out on a two-dimensional linear vibronic model where geometric phase (GP) effects arising from a conical intersection profoundly affect nuclear dynamics. We find that the Wigner-then-Adiabatic (WA) QCL approach captures GP effects, whereas the Adiabatic-then-Wigner (AW) QCL approach does not. Moreover, the Wigner transform in AW-QCL leads to an ill-defined Fourier transform of double-valued functions. The double-valued character of these functions stems from the nontrivial GP of adiabatic electronic states in the presence of a conical intersection. In contrast, WA-QCL avoids this issue by starting with the Wigner transform of single-valued quantities of the full problem. As a consequence, GP effects in WA-QCL can be associated with a dynamical term in the corresponding equation of motion. Since the WA-QCL approach uses solely the adiabatic potentials and non-adiabatic derivative couplings as an input, our results indicate that WA-QCL can capture GP effects in two-state crossing problems using first-principles electronic structure calculations without prior diabatization or introduction of explicit phase factors.
Jiang, Jian-Hua
2014-11-21
We propose a scheme of multilayer thermoelectric engine where one electric current is coupled to two temperature gradients in three-terminal geometry. This is realized by resonant tunneling through quantum dots embedded in two thermal and electrical resisting polymer matrix layers between highly conducting semiconductor layers. There are two thermoelectric effects, one of which is pertaining to inelastic transport processes (if energies of quantum dots in the two layers are different), while the other exists also for elastic transport processes. These two correspond to the transverse and longitudinal thermoelectric effects, respectively, and are associated with different temperature gradients. We show that cooperation between the two thermoelectric effects leads to markedly improved figure of merit and power factor, which is confirmed by numerical calculation using material parameters. Such enhancement is robust against phonon heat conduction and energy level broadening. Therefore, we demonstrated cooperative effect as an additional way to effectively improve performance of thermoelectrics in three-terminal geometry.
Fast Camera Imaging of Hall Thruster Ignition
C.L. Ellison, Y. Raitses and N.J. Fisch
2011-02-24
Hall thrusters provide efficient space propulsion by electrostatic acceleration of ions. Rotating electron clouds in the thruster overcome the space charge limitations of other methods. Images of the thruster startup, taken with a fast camera, reveal a bright ionization period which settles into steady state operation over 50 μs. The cathode introduces azimuthal asymmetry, which persists for about 30 μs into the ignition. Plasma thrusters are used on satellites for repositioning, orbit correction and drag compensation. The advantage of plasma thrusters over conventional chemical thrusters is that the exhaust energies are not limited by chemical energy to about an electron volt. For xenon Hall thrusters, the ion exhaust velocity can be 15-20 km/s, compared to 5 km/s for a typical chemical thruster
The Honorable,Edward Rendell, '. City Hall
Office of Legacy Management (LM)
I:! i394 .\ . The Honorable,Edward Rendell, '. City Hall Philadelphia, Pennsylvania 19107 Dear Mayor Rendell : ', ,' . , Secretary of Energy Hazel O',teary has announced-a new approach.to.openness in the Department of Energy (DDE) and its communications with the public. . In support of this initiative, we are.pleased to forward the enclosed information related to the,former. Penn Salt Manufacturing' Co. site in your jurisdiction that performed.work for DOE or its predecessor agencies. This
Peleshchak, R. M.; Guba, S. K.; Kuzyk, O. V.; Kurilo, I. V.; Dankiv, O. O.
2013-03-15
The distribution of hydrostatic strains in Bi{sup 3+}-doped InAs quantum dots embedded in a GaAs matrix are calculated in the context of the deformation-potential model. The dependences of strains in the material of spherical InAs quantum dots with substitutional (Bi {yields} As) and interstitial (Bi) impurities on the quantum-dot size are derived. The qualitative correlation of the model with the experiment is discussed. The data on the effect of doping on the morphology of self-assembled InAs:Bi quantum dots in a GaAs matrix are obtained.
Global Hall-MHD simulations of magnetorotational instability in a plasma Couette flow experiment
Ebrahimi, F.; Lefebvre, B.; Bhattacharjee, A.; Forest, C. B.
2011-06-15
Global MHD and Hall-MHD numerical simulations relevant to the Madison plasma Couette flow experiment (MPCX) have been performed using the extended MHD code NIMROD. The MPCX has been constructed to study the magnetorotational instability (MRI) in a plasma. The two-fluid Hall effect, which is relevant to some astrophysical situations such as protostellar disks, is also expected to be important in the MPCX. Here, we first derive the local Hall dispersion relation including viscosity, extending earlier work by Balbus and Terquem [Astrophys. J. 552, 235 (2001)]. The predictions of the local analysis are then compared with nonlocal calculations of linear stability of the MRI for a parameter range relevant to the MPCX. It is found that the MHD stability limit and mode structure are altered by the Hall term, and nonlocal analysis is necessary to obtain quantitatively reliable predictions for MPCX. Two-fluid physics also significantly changes the nonlinear evolution and saturation of the axisymmetric MRI. Both the Reynolds and Maxwell stresses contribute significantly to momentum transport. In the Hall regime, when the magnetic field is parallel to the rotation axis, the Maxwell stress is larger than the Reynolds stress (similar to the MHD regime). However, when the magnetic field is antiparallel to the rotation axis in the Hall regime, the Reynolds stress is much larger than the Maxwell stress. To further study the role of non-axisymmetric modes, we have also carried out fully nonlinear MHD computations. Non-axisymmetric modes play an increasingly important role as the magnetic Reynolds number increases and grow to large amplitudes in a saturated turbulent state.
Scalable optical quantum computer
Manykin, E A; Mel'nichenko, E V [Institute for Superconductivity and Solid-State Physics, Russian Research Centre 'Kurchatov Institute', Moscow (Russian Federation)
2014-12-31
A way of designing a scalable optical quantum computer based on the photon echo effect is proposed. Individual rare earth ions Pr{sup 3+}, regularly located in the lattice of the orthosilicate (Y{sub 2}SiO{sub 5}) crystal, are suggested to be used as optical qubits. Operations with qubits are performed using coherent and incoherent laser pulses. The operation protocol includes both the method of measurement-based quantum computations and the technique of optical computations. Modern hybrid photon echo protocols, which provide a sufficient quantum efficiency when reading recorded states, are considered as most promising for quantum computations and communications. (quantum computer)
Anand, Naween; Buvaev, Sanal; Hebard, A. F.; Tanner, D. B.; Chen, Zhiguo; Li, Zhiqiang; Choudhary, Kamal; Sinnott, S. B.; Gu, Genda; Martin, C.
2014-12-23
Optical and Hall-effect measurements have been performed on single crystals of Pb₀.₇₇Sn₀.₂₃Se, a IV-VI mixed chalcogenide. The temperature dependent (10–300 K) reflectance was measured over 40–7000 cm⁻¹ (5–870 meV) with an extension to 15,500 cm⁻¹ (1.92 eV) at room temperature. The reflectance was fit to the Drude-Lorentz model using a single Drude component and several Lorentz oscillators. The optical properties at the measured temperatures were estimated via Kramers-Kronig analysis as well as by the Drude-Lorentz fit. The carriers were p-type with the carrier density determined by Hall measurements. A signature of valence intraband transition is found in the low-energy optical spectra. It is found that the valence-conduction band transition energy as well as the free carrier effective mass reach minimum values at 100 K, suggesting temperature-driven band inversion in the material. Thus, density function theory calculation for the electronic band structure also make similar predictions.
Quantum optics. Gravity meets quantum physics
Adams, Bernhard W.
2015-02-27
Albert Einstein’s general theory of relativity is a classical formulation but a quantum mechanical description of gravitational forces is needed, not only to investigate the coupling of classical and quantum systems but simply to give a more complete description of our physical surroundings. In this issue of Nature Photonics, Wen-Te Liao and Sven Ahrens reveal a link between quantum and gravitational physics. They propose that in the quantum-optical effect of superradiance, the world line of electromagnetic radiation is changed by the presence of a gravitational field.
Effects of inter-nanocrystal distance on luminescence quantum yield in ensembles of Si nanocrystals
Valenta, J. Greben, M.; Gutsch, S.; Hiller, D.; Zacharias, M.
2014-12-15
The absolute photoluminescence (PL) quantum yield (QY) of multilayers of Silicon nanocrystals (SiNCs) separated by SiO{sub 2} barriers were thoroughly studied as function of the barrier thickness, excitation wavelength, and temperature. By mastering the plasma-enhanced chemical vapor deposition growth, we produce a series of samples with the same size-distribution of SiNCs but variable interlayer barrier distance. These samples enable us to clearly demonstrate that the increase of barrier thickness from ∼1 to larger than 2 nm induces doubling of the PL QY value, which corresponds to the change of number of close neighbors in the hcp structure. The temperature dependence of PL QY suggests that the PL QY changes are due to a thermally activated transport of excitation into non-radiative centers in dark NCs or in the matrix. We estimate that dark NCs represent about 68% of the ensemble of NCs. The PL QY excitation spectra show no significant changes upon changing the barrier thickness and no clear carrier multiplication effects. The dominant effect is the gradual decrease of the PL QY with increasing excitation photon energy.
Cotlet, Mircea; Huang, Yuan Zang; Chen, Jia -Shiang; Huidong Zang; Sutter, Eli A.; Sutter, Peter W.; Nam, Chang -Yong
2016-03-24
We report an improved photosensitivity in few-layer tin disulfide (SnS2) field-effect transistors(FETs) following doping with CdSe/ZnS core/shell quantum dots(QDs). The hybrid QD-SnS2 FET devices achieve more than 500% increase in the photocurrent response compared with the starting SnS2-only FET device and a spectral responsivity reaching over 650 A/W at 400 nm wavelength. The negligible electrical conductance in a control QD-only FET device suggests that the energy transfer between QDs and SnS2 is the main mechanism responsible for the sensitization effect, which is consistent with the strong spectral overlap between QDphotoluminescence and SnS2 optical absorption as well as the large nominalmore » donor-acceptor interspacing between QD core and SnS2. Furthermore, we also find enhanced charge carrier mobility in hybrid QD-SnS2 FETs which we attribute to a reduced contact Schottky barrier width due to an elevated background charge carrier density.« less
Electrical and Optical Gain Lever Effects in InGaAs Double Quantum Well Diode Lasers
Pocha, M D; Goddard, L L; Bond, T C; Nikolic, R J; Vernon, S P; Kallman, J S; Behymer, E M
2007-01-03
In multisection laser diodes, the amplitude or frequency modulation (AM or FM) efficiency can be improved using the gain lever effect. To study gain lever, InGaAs double quantum well (DQW) edge emitting lasers have been fabricated with integrated passive waveguides and dual sections providing a range of split ratios from 1:1 to 9:1. Both the electrical and the optical gain lever have been examined. An electrical gain lever with greater than 7 dB enhancement of AM efficiency was achieved within the range of appropriate DC biasing currents, but this gain dropped rapidly outside this range. We observed a 4 dB gain in the optical AM efficiency under non-ideal biasing conditions. This value agreed with the measured gain for the electrical AM efficiency under similar conditions. We also examined the gain lever effect under large signal modulation for digital logic switching applications. To get a useful gain lever for optical gain quenched logic, a long control section is needed to preserve the gain lever strength and a long interaction length between the input optical signal and the lasing field of the diode must be provided. The gain lever parameter space has been fully characterized and validated against numerical simulations of a semi-3D hybrid beam propagation method (BPM) model for the coupled electron-photon rate equation. We find that the optical gain lever can be treated using the electrical injection model, once the absorption in the sample is known.
U.S. Department of Energy (DOE) all webpages (Extended Search)
Quantum Institute Quantum Institute A new research frontier awaits! Our door is open and we thrive on mutually beneficial partnerships, collaborations that drive innovations and new technologies. Contact Leader Malcolm Boshier (505) 665-8892 Email Two of LANL's most successful quantum technology initiatives: quantum cryptography and the race for quantum computer The area of quantum information, science, and technology is rapidly evolving, with important applications in the areas of quantum
Town_Hall_Meeting_10_29_15.pdf
U.S. Department of Energy (DOE) all webpages (Extended Search)
Town Hall with Secretary Moniz Town Hall with Secretary Moniz July 18, 2013 - 3:42pm Addthis Secretary Moniz speaks at a townhall with DOE employees on the Departmental reorganization. Dan Leistikow Dan Leistikow Former Director, Office of Public Affairs In a town hall meeting with Department staff, Energy Secretary Ernest Moniz spoke about his plans for a reorganization of the Energy Department's management structure. The plans will help better achieve the Department's key priorities and those
Webcast: National Energy Literacy Virtual Town Hall | Department of Energy
Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)
Webcast: National Energy Literacy Virtual Town Hall Webcast: National Energy Literacy Virtual Town Hall Webcast: National Energy Literacy Virtual Town Hall On August 5, 2014, the Department of Energy (DOE) hosted a dynamic virtual conversation of ongoing efforts from across the country in utilizing the Energy Literacy Framework to address one of our nations' biggest national challenges, "Energy Illiteracy." The goal of this webinar was to share resources in energy education and provide
Eckle, H.-P.; Johannesson, H.; Stafford, C. A.
2001-07-02
We study the persistent currents induced by both the Aharonov-Bohm and Aharonov-Casher effects in a one-dimensional mesoscopic ring coupled to a sidebranch quantum dot at Kondo resonance. For privileged values of the Aharonov-Bohm-Casher fluxes, the problem can be mapped onto an integrable model, exactly solvable by a Bethe ansatz. In the case of a pure magnetic Aharonov-Bohm flux, we find that the presence of the quantum dot has no effect on the persistent current. In contrast, the Kondo resonance interferes with the spin-dependent Aharonov-Casher effect to induce a current which, in the strong-coupling limit, is independent of the number of electrons in the ring.
Effect of swift heavy ion irradiation on bare and coated ZnS quantum dots
Chowdhury, S. Hussain, A.M.P.; Ahmed, G.A.; Singh, F.; Avasthi, D.K.; Choudhury, A.
2008-12-01
The present study compares structural and optical modifications of bare and silica (SiO{sub 2}) coated ZnS quantum dots under swift heavy ion (SHI) irradiation. Bare and silica coated ZnS quantum dots were prepared following an inexpensive chemical route using polyvinyl alcohol (PVA) as the dielectric host matrix. X-ray diffraction (XRD) and transmission electron microscopy (TEM) study of the samples show the formation of almost spherical ZnS quantum dots. The UV-Vis absorption spectra reveal blue shift relative to bulk material in absorption energy while photoluminescence (PL) spectra suggests that surface state and near band edge emissions are dominating in case of bare and coated samples, respectively. Swift heavy ion irradiation of the samples was carried out with 160 MeV Ni{sup 12+} ion beam with fluences 10{sup 12} to 10{sup 13} ions/cm{sup 2}. Size enhancement of bare quantum dots after irradiation has been indicated in XRD and TEM analysis of the samples which has also been supported by optical absorption spectra. However similar investigations on irradiated coated quantum dots revealed little change in quantum dot size and emission. The present study thus shows that the coated ZnS quantum dots are stable upon SHI irradiation compared to the bare one.
Missed Today's Town Hall with Sec. Chu? | Department of Energy
Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)
Missed Today's Town Hall with Sec. Chu? Missed Today's Town Hall with Sec. Chu? January 26, 2011 - 4:02pm Addthis We have the video of today's online town hall event with Secretary Chu up and ready for your viewing. Check it out here. Ginny Simmons Ginny Simmons Former Managing Editor for Energy.gov, Office of Public Affairs We have the video of today's online town hall event with Secretary Chu up and ready for your viewing. Check it out here. During the event, Secretary Chu highlighted several
Lecture & Dining Halls - Combustion Energy Frontier Research Center
U.S. Department of Energy (DOE) all webpages (Extended Search)
Lecture & Dining Halls Lecture & Dining Halls Lecture Halls: Friend Center SeeSchedule of Events for schedule and location of lectures. How far are the lecture halls from the dormitories? Friend Center is a quick 10 minute walk from the Butler dormitories. See campus map for walking directions. There is also a free campus shuttle that will take you from outside the Icahn Lab on Washington Road to the Friend Center. See http://www.princeton.edu/transportation/ttroutes/ for shuttle times.
Hall's Warehouse Corp Solar Project | Open Energy Information
Open Energy Information (Open El) [EERE & EIA]
Corp. Solar Project" Retrieved from "http:en.openei.orgwindex.php?titleHall%27sWarehouseCorpSolarProject&oldid397541" Feedback Contact needs updating Image...
Building America Top Innovations Hall of Fame Profile High...
Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)
... TOP INNOVATIONS BUILDING AMERICA BUILDING AMERICA TOP INNOVATIONS HALL OF FAME PROFILE Habitat affiliates across the country held "blitz builds" to construct homes for Gulf Coast ...
Rebuilding It Better: Greensburg, Kansas. City Hall (Brochure)
Not Available
2010-04-01
This document showcases the LEED-Platinum designed Greensburg City Hall, which was rebuilt green, after a massive tornado destroyed Greensburg, Kansas in May 2007.
Building America Top Innovations Hall of Fame Profile - Building...
Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)
Building America Top Innovations Hall of Fame Profile - Building America's Top Innovations Propel the Home Building Industry toward Higher Performance Building America Top ...
Systems and Methods for Cylindrical Hall Thrusters with Independently...
U.S. Department of Energy (DOE) all webpages (Extended Search)
Systems and Methods for Cylindrical Hall Thrusters with Independently Controllable Ionization and Acceleration Stages Yevgeny Raitses, Nathaniel J. Fisch and Kevin D. Diamant (The...
Centre Hall, Pennsylvania: Energy Resources | Open Energy Information
Open Energy Information (Open El) [EERE & EIA]
Hall, Pennsylvania: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.8475635, -77.6861093 Show Map Loading map... "minzoom":false,"mappingser...
Hall County, Georgia: Energy Resources | Open Energy Information
Open Energy Information (Open El) [EERE & EIA]
Hall County, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.30778, -83.804868 Show Map Loading map... "minzoom":false,"mappingserv...
Rebuilding It Better: Greensburg, Kansas. City Hall (Brochure)
This brochure details the energy efficient and sustainable aspects of the LEED Platinum-designated City Hall building in Greensburg, Kansas.
Town Hall with Secretary Moniz | Department of Energy
Secretary Moniz speaks at a townhall with DOE employees on the Departmental ... In a town hall meeting with Department staff, Energy Secretary Ernest Moniz spoke about ...
Rebuilding It Better: Greensburg, Kansas, City Hall (Brochure)
Not Available
2010-09-01
This brochure details the energy efficient and sustainable aspects of the LEED Platinum-designated City Hall building in Greensburg, Kansas.
Miura, H., E-mail: miura.hideaki@nifs.ac.jp [Department of Helical Plasma Research, National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Araki, K. [Faculty of Engineering, Okayama University of Science, 1-1 Ridai-cho, Okayama 700-0005 (Japan)
2014-07-15
Hall effects on local structures in homogeneous, isotropic, and incompressible magnetohydrodynamic turbulence are studied numerically. The transition of vortices from sheet-like to tubular structures induced by the Hall term is found, while the kinetic energy spectrum does not distinguish the two types of structures. It is shown by the use of the sharp low-pass filter that the transition occurs not only in the scales smaller than the ion skin depth but also in a larger scale. The transition is related with the forward energy transfer in the spectral space. Analyses by the use of the sharp low-pass filter show that the nonlinear energy transfer associated with the Hall term is dominated by the forward transfer and relatively local in the wave number space. A projection of the simulation data to a Smagorinsky-type sub-grid-scale model shows that the high wave number component of the Hall term may possibly be replaced by the model effectively.
The impact of Hall physics on magnetized high energy density plasma jets
Gourdain, P.-A.; Seyler, C. E.; Atoyan, L.; Greenly, J. B.; Hammer, D. A.; Kusse, B. R.; Pikuz, S. A.; Potter, W. M.; Schrafel, P. C.; Shelkovenko, T. A.
2014-05-15
Hall physics is often neglected in high energy density plasma jets due to the relatively high electron density of such jets (n{sub e} ∼ 10{sup 19} cm{sup −3}). However, the vacuum region surrounding the jet has much lower densities and is dominated by Hall electric field. This electric field redirects plasma flows towards or away from the axis, depending on the radial current direction. A resulting change in the jet density has been observed experimentally. Furthermore, if an axial field is applied on the jet, the Hall effect is enhanced and ignoring it leads to serious discrepancies between experimental results and numerical simulations. By combining high currents (∼1 MA) and magnetic field helicity (15° angle) in a pulsed power generator such as COBRA, plasma jets can be magnetized with a 10 T axial field. The resulting field enhances the impact of the Hall effect by altering the density profile of current-free plasma jets and the stability of current-carrying plasma jets (e.g., Z-pinches)
Dynamics of quantum-classical hybrid systems: Effect of matter-wave pressure
Shen, J. [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Huang, X. L. [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); School of Physics and Electronic Technology, Liaoning Normal University, Dalian 116029 (China); Yi, X. X. [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Centre for Quantum Technologies and Department of Physics, National University of Singapore, Singapore 117543 (Singapore); Wu Chunfeng; Oh, C. H. [Centre for Quantum Technologies and Department of Physics, National University of Singapore, Singapore 117543 (Singapore)
2010-12-15
Radiation pressure affects the kinetics of a system exposed to radiation and it constitutes the basis of laser cooling. In this article, we study matter-wave pressure through examining the dynamics of a quantum-classical hybrid system. The quantum and classical subsystems are affected mutually via a changing boundary condition. Two systems, that is, an atom and a Bose-Einstein condensate (BEC), are considered as the quantum subsystems, while an oscillating wall is taken as the classical subsystem. We show that the classical subsystem would experience a force proportional to Q{sup -3} from the quantum atom, where Q denotes the distance between the two walls, whereas it acquires an additional force proportional to Q{sup -2} from the BEC due to the atom-atom interaction in the BEC. These forces can be understood as the matter-wave pressure.
The effect of quantum correction on plasma electron heating in ultraviolet laser interaction
Zare, S.; Sadighi-Bonabi, R. Anvari, A.; Yazdani, E.; Hora, H.
2015-04-14
The interaction of the sub-picosecond UV laser in sub-relativistic intensities with deuterium is investigated. At high plasma temperatures, based on the quantum correction in the collision frequency, the electron heating and the ion block generation in plasma are studied. It is found that due to the quantum correction, the electron heating increases considerably and the electron temperature uniformly reaches up to the maximum value of 4.91 × 10{sup 7 }K. Considering the quantum correction, the electron temperature at the laser initial coupling stage is improved more than 66.55% of the amount achieved in the classical model. As a consequence, by the modified collision frequency, the ion block is accelerated quicker with higher maximum velocity in comparison with the one by the classical collision frequency. This study proves the necessity of considering a quantum mechanical correction in the collision frequency at high plasma temperatures.
Quantum Universe James Hartle University of California, Santa Barbara
U.S. Department of Energy (DOE) all webpages (Extended Search)
Einstein's Vision and the Quantum Universe James Hartle University of California, Santa Barbara October 21, 2015 4:00 p.m. - Wilson Hall, One West Einstein's theory of gravity -- general relativity --- is important on two major frontiers in physics: The frontier of the very large --- the domain of astrophysics and cosmology. The frontier of the very small --- quantum mechanics and elementary particle physics. Large and small are one at the big bang. We will review some successes of classical
Effect of graphene on photoluminescence properties of graphene/GeSi quantum dot hybrid structures
Chen, Y. L.; Ma, Y. J.; Wang, W. Q.; Ding, K.; Wu, Q.; Fan, Y. L.; Yang, X. J.; Zhong, Z. Y.; Jiang, Z. M., E-mail: zmjiang@fudan.edu.cn [State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education) and Department of Physics, Fudan University, Shanghai 200433 (China); Chen, D. D.; Xu, F. [SHU-SolarE R and D Lab, Department of Physics, College of Science, Shanghai University, Shanghai 200444 (China)
2014-07-14
Graphene has been discovered to have two effects on the photoluminescence (PL) properties of graphene/GeSi quantum dot (QD) hybrid structures, which were formed by covering monolayer graphene sheet on the multilayer ordered GeSi QDs sample surfaces. At the excitation of 488?nm laser line, the hybrid structure had a reduced PL intensity, while at the excitation of 325?nm, it had an enhanced PL intensity. The attenuation in PL intensity can be attributed to the transferring of electrons from the conducting band of GeSi QDs to the graphene sheet. The electron transfer mechanism was confirmed by the time resolved PL measurements. For the PL enhancement, a mechanism called surface-plasmon-polariton (SPP) enhanced absorption mechanism is proposed, in which the excitation of SPP in the graphene is suggested. Due to the resonant excitation of SPP by incident light, the absorption of incident light is much enhanced at the surface region, thus leading to more exciton generation and a PL enhancement in the region. The results may be helpful to provide us a way to improve optical properties of low dimensional surface structures.
Lees-Kubota Lecture Hall, Guggenheim 101
U.S. Department of Energy (DOE) all webpages (Extended Search)
SPECIAL SEMINAR - Monday, November 3 rd Lees-Kubota Lecture Hall, Guggenheim 101 11:15am-12:15pm "Perovskite Solar Cells: Towards New Materials and New Applications" Professor Nripan Mathews Nanyang Technological University, Singapore Abstract: Perovskite solar cells have attracted a lot of attention primarily due to its high efficiency (~19%). Much of the attention has focused on CH 3 NH 3 PbI 3 (Eg-1.55eV) whose high performance can be traced to a high absorption coefficient as well
Segmented electrode hall thruster with reduced plume
Fisch, Nathaniel J.; Raitses, Yevgeny
2004-08-17
An apparatus and method for thrusting plasma, utilizing a Hall thruster with segmented electrodes along the channel, which make the acceleration region as localized as possible. Also disclosed are methods of arranging the electrodes so as to minimize erosion and arcing. Also disclosed are methods of arranging the electrodes so as to produce a substantial reduction in plume divergence. The use of electrodes made of emissive material will reduce the radial potential drop within the channel, further decreasing the plume divergence. Also disclosed is a method of arranging and powering these electrodes so as to provide variable mode operation.
Halls Middle School students get a taste of science at Y-12 ...
U.S. Department of Energy (DOE) all webpages (Extended Search)
Halls Middle School ... Halls Middle School students get a taste of science at Y-12 Posted: May 21, 2013 - 12:40pm Engineering, science and history experts give Halls Middle School...
Nagashima, H.; Tsuda, S.; Tsuboi, N.; Koshi, M.; Hayashi, K. A.; Tokumasu, T.
2014-04-07
In this paper, we describe the analysis of the thermodynamic properties of cryogenic hydrogen using classical molecular dynamics (MD) and path integral MD (PIMD) method to understand the effects of the quantum nature of hydrogen molecules. We performed constant NVE MD simulations across a wide densitytemperature region to establish an equation of state (EOS). Moreover, the quantum effect on the difference of molecular mechanism of pressurevolumetemperature relationship was addressed. The EOS was derived based on the classical mechanism idea only using the MD simulation results. Simulation results were compared with each MD method and experimental data. As a result, it was confirmed that although the EOS on the basis of classical MD cannot reproduce the experimental data of saturation property of hydrogen in the high-density region, the EOS on the basis of PIMD well reproduces those thermodynamic properties of hydrogen. Moreover, it was clarified that taking quantum effects into account makes the repulsion force larger and the potential well shallower. Because of this mechanism, the intermolecular interaction of hydrogen molecules diminishes and the virial pressure increases.
Internal plasma potential measurements of a Hall thruster using plasma lens focusing
Linnell, Jesse A.; Gallimore, Alec D.
2006-10-15
Magnetic field topology has been found to be a central design concern for high-efficiency Hall thrusters. For future improvements in Hall thruster design, it is necessary to better understand the effects that magnetic field topology has on the internal plasma structure. The Plasmadynamics and Electric Propulsion Laboratory's High-speed Axial Reciprocating Probe system is used in conjunction with a floating emissive probe to map the internal plasma potential structure of the NASA-173Mv1 Hall thruster [R. R. Hofer, R. S. Jankovsky, and A. D. Gallimore, J. Propul. Power 22, 721 (2006); 22, 732 (2006)]. Measurements are taken at 300 and 500 V with a xenon propellant. Electron temperature and electric field are also measured and reported. The acceleration zone and equipotential lines are found to be strongly linked to the magnetic field lines. Moreover, in some cases the ions are accelerated strongly toward the center of the discharge channel. The agreement between magnetic field lines and equipotential lines is best for high-voltage operation. These results have strong implications on the performance and lifetime optimization of Hall thrusters.
A low-cost multiple Hall probe current transducer
Scoville, J.T.; Petersen, P.I. )
1991-03-01
An inexpensive but highly stable and accurate transducer has been developed for the measurement of large currents associated with the operation of the DIII-D tokamak at General Atomics. The inherent problems with integrator circuits required by Rogowski loops and the excessive cost of secondary compensation current'' devices have led to this development. The transducer requires several inexpensive Hall effect devices and a simple, stable, and linear interface circuit. Analysis of the initial performance characteristics is very encouraging and has led to several useful applications of the transducer to date, with plans for the installation of additional devices in the future. The low cost and reasonable accuracy of the transducer make it an attractive alternative to commercially available devices.
Cylindrical Hall Thrusters with Permanent Magnets
Raitses, Yevgeny; Merino, Enrique; Fisch, Nathaniel J.
2010-10-18
The use of permanent magnets instead of electromagnet coils for low power Hall thrusters can offer a significant reduction of both the total electric power consumption and the thruster mass. Two permanent magnet versions of the miniaturized cylindrical Hall thruster (CHT) of different overall dimensions were operated in the power range of 50W-300 W. The discharge and plasma plume measurements revealed that the CHT thrusters with permanent magnets and electromagnet coils operate rather differently. In particular, the angular ion current density distribution from the permanent magnet thrusters has an unusual halo shape, with a majority of high energy ions flowing at large angles with respect to the thruster centerline. Differences in the magnetic field topology outside the thruster channel and in the vicinity of the channel exit are likely responsible for the differences in the plume characteristics measured for the CHTs with electromagnets and permanent magnets. It is shown that the presence of the reversing-direction or cusp-type magnetic field configuration inside the thruster channel without a strong axial magnetic field outside the thruster channel does not lead to the halo plasma plume from the CHT. __________________________________________________
Undulator Hall Air Temperature Fault Scenarios
Sevilla, J.; Welch, J.; ,
2010-11-17
Recent experience indicates that the LCLS undulator segments must not, at any time following tuning, be allowed to change temperature by more than about {+-}2.5 C or the magnetic center will irreversibly shift outside of acceptable tolerances. This vulnerability raises a concern that under fault conditions the ambient temperature in the Undulator Hall might go outside of the safe range and potentially could require removal and retuning of all the segments. In this note we estimate changes that can be expected in the Undulator Hall air temperature for three fault scenarios: (1) System-wide power failure; (2) Heating Ventilation and Air Conditioning (HVAC) system shutdown; and (3) HVAC system temperature regulation fault. We find that for either a system-wide power failure or an HVAC system shutdown (with the technical equipment left on), the short-term temperature changes of the air would be modest due to the ability of the walls and floor to act as a heat ballast. No action would be needed to protect the undulator system in the event of a system-wide power failure. Some action to adjust the heat balance, in the case of the HVAC power failure with the equipment left on, might be desirable but is not required. On the other hand, a temperature regulation failure of the HVAC system can quickly cause large excursions in air temperature and prompt action would be required to avoid damage to the undulator system.
Pair spectrometer hodoscope for Hall D at Jefferson Lab
Barbosa, Fernando J.; Hutton, Charles L.; Sitnikov, Alexandre; Somov, Alexander S.; Somov, S.; Tolstukhin, Ivan
2015-09-21
We present the design of the pair spectrometer hodoscope fabricated at Jefferson Lab and installed in the experimental Hall D. The hodoscope consists of thin scintillator tiles; the light from each tile is collected using wave-length shifting fibers and detected using a Hamamatsu silicon photomultiplier. Light collection was measured using relativistic electrons produced in the tagger area of the experimental Hall B.
WIPP Employee Inducted Into Mine Rescue Hall of Fame - WIPP Teams...
Office of Environmental Management (EM)
Employee Inducted Into Mine Rescue Hall of Fame - WIPP Teams Recognized at National Competition WIPP Employee Inducted Into Mine Rescue Hall of Fame - WIPP Teams Recognized at ...
Spin pumping and inverse spin Hall effects—Insights for future spin-orbitronics (invited)
Zhang, Wei Jungfleisch, Matthias B.; Jiang, Wanjun; Fradin, Frank Y.; Pearson, John E.; Hoffmann, Axel; Sklenar, Joseph; Ketterson, John B.
2015-05-07
Quantification of spin-charge interconversion has become increasingly important in the fast-developing field of spin-orbitronics. Pure spin current generated by spin pumping acts as a sensitive probe for many bulk and interface spin-orbit effects, which has been indispensable for the discovery of many promising new spin-orbit materials. We apply spin pumping and inverse spin Hall effect experiments, as a useful metrology, and study spin-orbit effects in a variety of metals and metal interfaces. We quantify the spin Hall effects in Ir and W using the conventional bilayer structures and discuss the self-induced voltage in a single layer of ferromagnetic permalloy. Finally, we extend our discussions to multilayer structures and quantitatively reveal the spin current flow in two consecutive normal metal layers.
Nonequilibrium thermal effects on exciton time correlations in coupled semiconductor quantum dots
Castillo, J. C.; Rodrguez, F. J.; Quiroga, L.
2013-12-04
Theoretical guides to test 'macroscopic realism' in solid-state systems under quantum control are highly desirable. Here, we report on the evolution of a Leggett-Garg inequality (LGI), a combination of two-time correlations, in an out-of-equilibrium set up consisting of two interacting excitons confined in separate semiconductor quantum dots which are coupled to independent baths at different temperatures (T{sub 1} ? T{sub 2}). In a Markovian steady-state situation we found a rich variety of dynamical behaviors in different sectors of the average temperature (T{sub M}?=?(T{sub 1}+T{sub 2})/2) vs. coupling strength to the reservoirs (?) space parameter. For high T{sub M} and ? values the LGI is not violated, as expected. However, by decreasing T{sub M} or ? a sector of parameters appears where the LGI is violated at thermal equilibrium (T{sub 1} = T{sub 2}) and the violation starts decreasing when the system is moved out of the equilibrium. Surprisingly, at even lower T{sub M} values, for any ?, there is an enhancement of the LGI violation by exposing the system to a temperature gradient, i.e. quantum correlations increase in a nonequilibrium thermal situation. Results on LGI violations in a steady-state regime are compared with other non-locality-dominated quantum correlation measurements, such as concurrence and quantum discord, between the two excitons under similar temperature gradients.
Spin Hall magnetoresistance in CoFe_{2}O_{4}/Pt films
Wu, Hao; Qintong, Zhang; Caihua, Wan; Ali, Syed Shahbaz; Yuan, Zhonghui; You, Lu; Wang, Junling; Choi, Yongseong; Han, Xiufeng
2015-05-13
Pulse laser deposition and magnetron sputtering techniques have been employed to prepare MgO(001)//CoFe_{2}O_{4}/Pt samples. Cross section transmission electron microscope results prove that the CoFe_{2}O_{4} film epitaxially grew along (001) direction. X-ray magnetic circular dichroism results show that magnetic proximity effect in this sample is negligible. Magnetoresistance (MR) properties confirm that spin Hall MR (SMR) dominates in this system. Spin Hall effect-induced anomalous Hall voltage was also observed in this sample. Lastly, these results not only demonstrate the universality of SMR effect but also demonstrate the utility in spintronics of CoFe_{2}O_{4} as a new type of magnetic insulator.
Blois, A. Rozhko, S.; Romans, E. J.; Hao, L.; Gallop, J. C.
2013-12-21
Superconducting quantum interference devices (SQUIDs) incorporating thin film nanobridges as weak links have sensitivities approaching that required for single spin detection at 4.2 K. However, due to thermal hysteresis they are difficult to operate at much lower temperatures which hinder their application to many quantum measurements. To overcome this, we have developed nanoscale SQUIDs made from titanium-gold proximity bilayers. We show that their electrical properties are consistent with a theoretical model developed for heat flow in bilayers and demonstrate that they enable magnetic measurements to be made on a sample at system temperatures down to 60 mK.
Sethi, P.; Murapaka, C.; Lim, G. J.; Lew, W. S.
2015-11-09
Hall cross structures in magnetic nanowires are commonly used for electrical detection of magnetization reversal in which a domain wall (DW) is conventionally nucleated by a local Oersted field. In this letter, we demonstrate DW nucleation in Co/Ni perpendicular magnetic anisotropy nanowire at the magnetic Hall cross junction. The DWs are nucleated by applying an in-plane pulsed current through the nanowire without the need of a local Oersted field. The change in Hall resistance, detected using anomalous Hall effect, is governed by the magnetic volume switched at the Hall junction, which can be tuned by varying the magnitude of the applied current density and pulse width. The nucleated DWs are driven simultaneously under the spin transfer torque effect when the applied current density is above a threshold. The possibility of multiple DW generation and variation in magnetic volume switched makes nucleation process stochastic in nature. The in-plane current induced stochastic nature of DW generation may find applications in random number generation.
Salvagnini, Elena; Bosmans, Hilde; Marshall, Nicholas W.; Struelens, Lara
2013-10-15
Purpose: The aim of this paper was to illustrate the value of the new metric effective detective quantum efficiency (eDQE) in relation to more established measures in the optimization process of two digital mammography systems. The following metrics were included for comparison against eDQE: detective quantum efficiency (DQE) of the detector, signal difference to noise ratio (SdNR), and detectability index (d′) calculated using a standard nonprewhitened observer with eye filter.Methods: The two systems investigated were the Siemens MAMMOMAT Inspiration and the Hologic Selenia Dimensions. The presampling modulation transfer function (MTF) required for the eDQE was measured using two geometries: a geometry containing scattered radiation and a low scatter geometry. The eDQE, SdNR, and d′ were measured for poly(methyl methacrylate) (PMMA) thicknesses of 20, 40, 60, and 70 mm, with and without the antiscatter grid and for a selection of clinically relevant target/filter (T/F) combinations. Figures of merit (FOMs) were then formed from SdNR and d′ using the mean glandular dose as the factor to express detriment. Detector DQE was measured at energies covering the range of typical clinically used spectra.Results: The MTF measured in the presence of scattered radiation showed a large drop at low spatial frequency compared to the low scatter method and led to a corresponding reduction in eDQE. The eDQE for the Siemens system at 1 mm{sup −1} ranged between 0.15 and 0.27, depending on T/F and grid setting. For the Hologic system, eDQE at 1 mm{sup −1} varied from 0.15 to 0.32, again depending on T/F and grid setting. The eDQE results for both systems showed that the grid increased the system efficiency for PMMA thicknesses of 40 mm and above but showed only small sensitivity to T/F setting. While results of the SdNR and d′ based FOMs confirmed the eDQE grid position results, they were also more specific in terms of T/F selection. For the Siemens system at 20 mm PMMA
Spin Hall magnetoresistance at high temperatures
Uchida, Ken-ichi; Qiu, Zhiyong; Kikkawa, Takashi; Iguchi, Ryo; Saitoh, Eiji
2015-02-02
The temperature dependence of spin Hall magnetoresistance (SMR) in Pt/Y{sub 3}Fe{sub 5}O{sub 12} (YIG) bilayer films has been investigated in a high temperature range from room temperature to near the Curie temperature of YIG. The experimental results show that the magnitude of the magnetoresistance ratio induced by the SMR monotonically decreases with increasing the temperature and almost disappears near the Curie temperature. We found that, near the Curie temperature, the temperature dependence of the SMR in the Pt/YIG film is steeper than that of a magnetization curve of the YIG; the critical exponent of the magnetoresistance ratio is estimated to be 0.9. This critical behavior of the SMR is attributed mainly to the temperature dependence of the spin-mixing conductance at the Pt/YIG interface.
Wing, Waylin J.; Sadeghi, Seyed M. Gutha, Rithvik R.; Campbell, Quinn; Mao, Chuanbin
2015-09-28
We investigate the shape and size effects of gold metallic nanoparticles on the enhancement of exciton-plasmon coupling and emission of semiconductor quantum dots induced via the simultaneous impact of metal-oxide and plasmonic effects. This enhancement occurs when metallic nanoparticle arrays are separated from the quantum dots by a layered thin film consisting of a high index dielectric material (silicon) and aluminum oxide. Our results show that adding the aluminum oxide layer can increase the degree of polarization of quantum dot emission induced by metallic nanorods by nearly two times, when these nanorods have large aspect ratios. We show when the aspect ratio of these nanorods is reduced to half, the aluminum oxide loses its impact, leading to no improvement in the degree of polarization. These results suggest that a silicon/aluminum oxide layer can significantly enhance exciton-plasmon coupling when quantum dots are in the vicinity of metallic nanoantennas with high aspect ratios.
Vukmirovic, Nenad; Wang, Lin-Wang
2009-11-10
This review covers the description of the methodologies typically used for the calculation of the electronic structure of self-assembled and colloidal quantum dots. These are illustrated by the results of their application to a selected set of physical effects in quantum dots.
Search for: All records | DOE PAGES
Office of Scientific and Technical Information (OSTI)
Graphene electrodynamics in the presence of the extrinsic spin Hall effect Huang, Chunli ; ... Anomalous spin precession and spin Hall effect in semiconductor quantum wells Bi, Xintao ; ...
Search for: All records | DOE PAGES
Office of Scientific and Technical Information (OSTI)
Microscopic theory of quantum anomalous Hall effect in graphene Qiao, Zhenhua ; Jiang, Hua ... Scattering universality classes of side jump in the anomalous Hall effect Yang, Shengyuan ...
Anh Tuan, Duong; Shin, Yooleemi; Viet Cuong, Tran; Cho, Sunglae; Phan, The-Long
2014-05-07
The Fe{sub 1−x}Ga{sub x} thin films (x = 0.4, 0.5) have been grown on GaSb(100) substrate using molecular beam epitaxy. An epitaxial film with bcc α-Fe crystal structure (A2) is observed in Fe{sub 0.6}Ga{sub 0.4} film, while an impure Fe{sub 3}Ga phase with DO{sub 3} structure is appeared in Fe{sub 0.5}Ga{sub 0.5} film. The saturated magnetizations at room temperature are observed to be 570 emu/cm{sup 3} and 180 emu/cm{sup 3} and the coercivities to be 170 and 364 Oe for Fe{sub 0.6}Ga{sub 0.4} and Fe{sub 0.5}Ga{sub 0.5}, respectively. A hysteresis trend in Hall resistance vs. magnetic field is observed for Fe{sub 0.5}Ga{sub 0.5} film. However, there is a weak hysteresis noticed in Fe{sub 0.4}Ga{sub 0.6} thin film.
Schrade, Matthias; Norby, Truls; Finstad, Terje G.
2015-05-28
The Hall coefficient R{sub H} and electrical conductivity of misfit calcium cobalt oxide (Ca{sub 2}CoO{sub 3−δ}){sub q}(CoO{sub 2}) (CCO) were measured at room temperature for different oxygen vacancy concentrations δ. Based on these and numerous previous results, it is shown that the charge carrier concentrations n obtained by the classical formula R{sub H} = 1/ne are between 3 and 6 × 10{sup 20} cm{sup −3} and thereby much lower than those derived by other experimental techniques and fail to explain the observed electric properties of CCO. We show that the experimental results are well described using an earlier proposed t–J-model for strongly correlated electrons on a triangular lattice. The hopping parameter t for CCO was found to be ≈ −20 K and the charge carrier concentration of fully oxidized CCO to be 5.7 × 10{sup 21} cm{sup −3} (0.41 hole type carriers per formula unit), in agreement with other experimental techniques.
Discovery of Weyl Semimetals May Lead to Novel Future Spintronic...
U.S. Department of Energy (DOE) all webpages (Extended Search)
effects, negative magnetoresistance, the quantum anomalous Hall effect, novel quantum oscillations in magneto-transport, and quantum interference in tunnelling spectroscopy. ...
Parametric Investigations of Miniaturized Cylindrical and Annular Hall Thrusters
A. Smirnov; Y. Raitses; N.J. Fisch
2001-10-16
A cylindrical geometry Hall thruster may overcome certain physical and technological limitations in scaling down of Hall thrusters to miniature sizes. The absence of the inner wall and use of the cusp magnetic field can potentially reduce heating of the thruster parts and erosion of the channel. A 2.6 cm miniaturized Hall thruster of a flexible design was built and successfully operated in the power range of 50-300 W. Comparison of preliminary results obtained for cylindrical and annular thruster configurations is presented.
Notify Work Coordinators Before Working in/Entering Halls | Jefferson Lab
U.S. Department of Energy (DOE) all webpages (Extended Search)
Notify Work Coordinators Before Working in/Entering Halls Remember to Notify Work Coordinators Before Working in/Entering Hall A, B, C & D The Worker Safety Committee reminds all members of the Jefferson Lab community that they must notify the appropriate experimental hall Work Coordinator (WC) - for Hall A, B, C or D - in advance of doing any work in that hall or in advance of taking any materials or equipment into or out of that hall. Hall Work Coordinators ask to be notified by phone call
Band filling effects on temperature performance of intermediate band quantum wire solar cells
Kunets, Vas. P. Furrow, C. S.; Ware, M. E.; Souza, L. D. de; Benamara, M.; Salamo, G. J.; Mortazavi, M.
2014-08-28
Detailed studies of solar cell efficiency as a function of temperature were performed for quantum wire intermediate band solar cells grown on the (311)A plane. A remotely doped one-dimensional intermediate band made of self-assembled In{sub 0.4}Ga{sub 0.6}As quantum wires was compared to an undoped intermediate band and a reference p-i-n GaAs sample. These studies indicate that the efficiencies of these solar cells depend on the population of the one-dimensional band by equilibrium free carriers. A change in this population by free electrons under various temperatures affects absorption and carrier transport of non-equilibrium carriers generated by incident light. This results in different efficiencies for both the doped and undoped intermediate band solar cells in comparison with the reference GaAs p-i-n solar cell device.
Davies, M. J. Dawson, P.; Massabuau, F. C.-P.; Oliver, R. A.; Kappers, M. J.; Humphreys, C. J.
2014-09-01
In this paper, we report on the effects of including Si-doped (In)GaN prelayers on the low temperature optical properties of a blue-light emitting InGaN/GaN single quantum well. We observed a large blue shift of the photoluminescence peak emission energy and significant increases in the radiative recombination rate for the quantum well structures that incorporated Si-doped prelayers. Simulations of the variation of the conduction and valence band energies show that a strong modification of the band profile occurs for the quantum wells on Si-doped prelayers due to an increase in strength of the surface polarization field. The enhanced surface polarization field opposes the built-in field across the quantum well and thus reduces this built-in electric field. This reduction of the electric field across the quantum well reduces the Quantum Confined Stark Effect and is responsible for the observed blue shift and the change in the recombination dynamics.
Property:Building/FloorAreaTheatresConcertHallsCinemas | Open...
Open Energy Information (Open El) [EERE & EIA]
Property Edit with form History Property:BuildingFloorAreaTheatresConcertHallsCinemas Jump to: navigation, search This is a property of type Number. Floor area for Theatres,...
SubTER Presentation at Town Hall- American Geophysical Union
Subter, the Subsurface Crosscut at the Energy Department, conducted a Town Hall meeting to share information and create a dialogue regarding the grand challenges of energy production and storage in the subsurface.
Hall County, Nebraska: Energy Resources | Open Energy Information
Open Energy Information (Open El) [EERE & EIA]
Hide Map This article is a stub. You can help OpenEI by expanding it. Hall County is a county in Nebraska. Its FIPS County Code is 079. It is classified as ASHRAE...
Building America Top Innovations Hall of Fame Profile EEBA...
... TOP INNOVATIONS BUILDING AMERICA BUILDING AMERICA TOP INNOVATIONS HALL OF FAME PROFILE The ... Drain all water away from the structure The secret to water management is to construct the ...
Building America Top Innovations Hall of Fame Profile - Building
Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)
America's Top Innovations Propel the Home Building Industry toward Higher Performance | Department of Energy Building America Top Innovations Hall of Fame Profile - Building America's Top Innovations Propel the Home Building Industry toward Higher Performance Building America Top Innovations Hall of Fame Profile - Building America's Top Innovations Propel the Home Building Industry toward Higher Performance This Building America Innovations profile describes the concept for the U.S.
Public invited to LANL-sponsored Energy Town Hall
U.S. Department of Energy (DOE) all webpages (Extended Search)
Day event showcases LANL energy work April 19, 2010 Public invited to LANL-sponsored Energy Town Hall April 21 at the J. Robert Oppenheimer Study Center LOS ALAMOS, New Mexico, April 19, 2010-The public is invited to learn about projects in energy conservation, generation, research, and management at an Energy Town Hall April 21. Other energy-related issues, such as server virtualization, solar energy, and Los Alamos National Laboratory's perspective on renewable energy, also will be explored in
Exact solutions of the incompressible dissipative Hall magnetohydrodynamics
Xia, Zhenwei; Yang, Weihong
2015-03-15
By using analytical method, the exact solutions of the incompressible dissipative Hall magnetohydrodynamics (MHD) equations are derived. It is found that a phase difference may occur between the velocity and magnetic field fluctuations when the kinetic and magnetic Reynolds numbers are both very large. Since velocity and magnetic field fluctuations are both circular polarized, the phase difference makes them no longer parallel or anti-parallel like that in the incompressible ideal Hall MHD.
Diffusion Compton profondement virtuelle dans le Hall A au Jefferson Laboratory
Carlos Munoz Camacho
2005-12-01
Generalized Parton Distributions (GPDs), introduced in the late 90s, provide a universal description of hadrons in terms of the underlying degrees of freedom of Quantum Chromodynamics: quarks and gluons. GPDs appear in a wide variety of hard exclusive reactions and the advent of high luminosity accelerator facilities has made the study of GPDs accessible to experiment. Deeply Virtual Compton Scattering (DVCS) is the golden process involving GPDs. The first dedicated DVCS experiment ran in the Hall A of Jefferson Lab in Fall 2004. An electromagnetic calorimeter and a plastic scintillator detector were constructed for this experiment, together with specific electronics and acquisition system. The experiment preparation, data taking and analysis are described in this document. Results on the absolute cross section difference for opposite beam helicities provide the first measurement of a linear combination of GPDs as a function of the momentum transfer to the nucleon.
Magnetic shielding of the channel walls in a Hall plasma accelerator
Mikellides, Ioannis G.; Katz, Ira; Hofer, Richard R.; Goebel, Dan M.; Grys, Kristi de; Mathers, Alex
2011-03-15
In a qualification life test of a Hall thruster it was found that the erosion of the acceleration channel practically stopped after {approx}5600 h. Numerical simulations using a two-dimensional axisymmetric plasma solver with a magnetic field-aligned mesh reveal that when the channel receded from its early-in-life to its steady-state configuration the following changes occurred near the wall: (1) reduction of the electric field parallel to the wall that prohibited ions from acquiring significant impact kinetic energy before entering the sheath, (2) reduction of the potential fall in the sheath that further diminished the total energy ions gained before striking the material, and (3) reduction of the ion number density that decreased the flux of ions to the wall. All these changes, found to have been induced by the magnetic field, constituted collectively an effective shielding of the walls from any significant ion bombardment. Thus, we term this process in Hall thrusters 'magnetic shielding'.
Gate-controlled terahertz single electron photovoltaic effect in self-assembled InAs quantum dots
Zhang, Y. Nagai, N.; Shibata, K.; Hirakawa, K.; Ndebeka-Bandou, C.; Bastard, G.
2015-09-07
We have observed a terahertz (THz) induced single electron photovoltaic effect in self-assembled InAs quantum dots (QDs). We used a single electron transistor (SET) geometry that consists of a single InAs QD and nanogap electrodes coupled with a bowtie antenna. Under a weak, broadband THz radiation, a photocurrent induced by THz intersublevel transitions in the QD is generated even when no bias voltage is applied to the SET. The observed single electron photovoltaic effect is due to an energy-dependent tunneling asymmetry in the QD-SET. Moreover, the tunneling asymmetry changes not only with the shell but also with the electron number in the QD, suggesting the manybody nature of the electron wavefunctions. The THz photovoltaic effect observed in the present QD-SET system may have potential applications to nanoscale energy harvesting.
Derivative expansion of the effective action for quantum electrodynamics in 2+1 and 3+1 dimensions
Gusynin, V.P.; Shovkovy, I.A.
1999-11-01
The derivative expansion of the one-loop effective action in QED{sub 3} and QED{sub 4} (quantum electrodynamics) is considered. The first term in such an expansion is the effective action for a constant electromagnetic field. An explicit expression for the next term containing two derivatives of the field strength F{sub {mu}{nu}}, but exact in the magnitude of the field strength, is obtained. The general results for both fermion and scalar electrodynamics are presented. The cases of pure electric and pure magnetic external fields are considered in detail. The Feynman technique for the perturbative expansion of the one-loop effective action in the number of derivatives is developed. {copyright} {ital 1999 American Institute of Physics.}
Fu, H.; Zunger, A.
1998-06-01
We predict that the difference in quantum confinement energies of {Gamma} -like and X -like conduction states in a covalent quantum dot will cause the direct-to-indirect transition to occur at substantially lower pressure than in the bulk material. Furthermore, the first-order transition in the bulk is predicted to become, for certain dot sizes, a second-order transition. Measurements of the {open_quotes}anticrossing gap{close_quotes} could thus be used to obtain unique information on the {Gamma}-X- L intervalley coupling, predicted here to be surprisingly large (50{endash}100thinspthinspmeV). {copyright} {ital 1998} {ital The American Physical Society}
Fan, Wenjiang; Lawrie, Benjamin J.; Pooser, Raphael C.
2015-11-04
Surface plasmon resonance (SPR) sensors can reach the quantum noise limit of the optical readout field in various configurations. We demonstrate that two-mode intensity squeezed states produce a further enhancement in sensitivity compared with a classical optical readout when the quantum noise is used to transduce an SPR sensor signal in the Kretschmann configuration. The quantum noise reduction between the twin beams when incident at an angle away from the plasmonic resonance, combined with quantum noise resulting from quantum anticorrelations when on resonance, results in an effective SPR-mediated modulation that yields a measured sensitivity 5 dB better than that withmore » a classical optical readout in this configuration. Furthermore, the theoretical potential of this technique points to resolving particle concentrations with more accuracy than is possible via classical approaches to optical transduction.« less
Fan, Wenjiang; Lawrie, Benjamin J.; Pooser, Raphael C.
2015-11-04
Surface plasmon resonance (SPR) sensors can reach the quantum noise limit of the optical readout field in various configurations. We demonstrate that two-mode intensity squeezed states produce a further enhancement in sensitivity compared with a classical optical readout when the quantum noise is used to transduce an SPR sensor signal in the Kretschmann configuration. The quantum noise reduction between the twin beams when incident at an angle away from the plasmonic resonance, combined with quantum noise resulting from quantum anticorrelations when on resonance, results in an effective SPR-mediated modulation that yields a measured sensitivity 5 dB better than that with a classical optical readout in this configuration. Furthermore, the theoretical potential of this technique points to resolving particle concentrations with more accuracy than is possible via classical approaches to optical transduction.
Gate-tunable high mobility remote-doped InSb/In{sub 1−x}Al{sub x}Sb quantum well heterostructures
Yi, Wei E-mail: MSokolich@hrl.com; Kiselev, Andrey A.; Thorp, Jacob; Noah, Ramsey; Nguyen, Binh-Minh; Bui, Steven; Rajavel, Rajesh D.; Hussain, Tahir; Gyure, Mark F.; Sokolich, Marko E-mail: MSokolich@hrl.com; Kratz, Philip; Qian, Qi; Manfra, Michael J.; Pribiag, Vlad S.; Kouwenhoven, Leo P.; Marcus, Charles M.
2015-04-06
Gate-tunable high-mobility InSb/In{sub 1−x}Al{sub x}Sb quantum wells (QWs) grown on GaAs substrates are reported. The QW two-dimensional electron gas (2DEG) channel mobility in excess of 200 000 cm{sup 2}/V s is measured at T = 1.8 K. In asymmetrically remote-doped samples with an HfO{sub 2} gate dielectric formed by atomic layer deposition, parallel conduction is eliminated and complete 2DEG channel depletion is reached with minimal hysteresis in gate bias response of the 2DEG electron density. The integer quantum Hall effect with Landau level filling factor down to 1 is observed. A high-transparency non-alloyed Ohmic contact to the 2DEG with contact resistance below 1 Ω·mm is achieved at 1.8 K.
Eslami, Leila, E-mail: Leslami@iust.ac.ir; Esmaeilzadeh, Mahdi, E-mail: mahdi@iust.ac.ir [Department of Physics, Iran University of Science and Technology, Tehran 16846 (Iran, Islamic Republic of)
2014-02-28
Spin-dependent electron transport in an open double quantum ring, when each ring is made up of four quantum dots and threaded by a magnetic flux, is studied. Two independent and tunable gate voltages are applied to induce Rashba spin-orbit effect in the quantum rings. Using non-equilibrium Green's function formalism, we study the effects of electron-electron interaction on spin-dependent electron transport and show that although the electron-electron interaction induces an energy gap, it has no considerable effect when the bias voltage is sufficiently high. We also show that the double quantum ring can operate as a spin-filter for both spin up and spin down electrons. The spin-polarization of transmitted electrons can be tuned from ?1 (pure spin-down current) to +1 (pure spin-up current) by changing the magnetic flux and/or the gates voltage. Also, the double quantum ring can act as AND and NOR gates when the system parameters such as Rashba coefficient are properly adjusted.
Photoinduced Surface Oxidation and Its Effect on the Exciton Dynamics of CdSe Quantum Dots
Hines, Douglas A.; Becker, Matthew A.; Kamat, Prashant V.
2012-11-14
With increased interest in semiconductor nanoparticles for use in quantum dot solar cells there comes a need to understand the long-term photostability of such materials. Colloidal CdSe quantum dots (QDs) were suspended in toluene and stored in combinations of light/dark and N{sub 2}/O{sub 2} to simulate four possible benchtop storage environments. CdSe QDs stored in a dark, oxygen-free environment were observed to better retain their optical properties over the course of 90 days. The excited state lifetimes, determined through femtosecond transient absorption spectroscopy, of air-equilibrated samples exposed to light exhibit a decrease in average lifetime (0.81 ns) when compared to samples stored in a nitrogen/dark environment (8.3 ns). A photoetching technique commonly used for controlled reduction of QD size was found to induce energetic trap states to CdSe QDs and accelerate the rate of electron-hole recombination. X-ray absorption near edge structure (XANES) analysis confirms surface oxidation, the extent of which is shown to be dependent on the thickness of the ligand shell.
Domain wall motion driven by spin Hall effect—Tuning with in-plane magnetic anisotropy
Rushforth, A. W.
2014-04-21
This letter investigates the effects of in-plane magnetic anisotropy on the current induced motion of magnetic domain walls in systems with dominant perpendicular magnetic anisotropy, where accumulated spins from the spin Hall effect in an adjacent heavy metal layer are responsible for driving the domain wall motion. It is found that that the sign and magnitude of the domain wall velocity in the uniform flow regime can be tuned significantly by the in-plane magnetic anisotropy. These effects are sensitive to the ratio of the adiabatic and non-adiabatic spin transfer torque parameters and are robust in the presence of pinning and thermal fluctuations.
T-QUAKE Quantum Mechanical Microchip
U.S. Department of Energy (DOE) all webpages (Extended Search)
Principal application T-QUAKE Quantum Mechanical Microchip The quantum world defies intuition. One of its axioms, the Heisenberg Uncertainty Principle, states that any attempt to measure the position or momentum of a quantum object changes the object itself. Historically, this principle was viewed as a hindrance by scientists trying to examine quantum particles. But the same quantum effects that make them difficult to measure have long been of interest to the cryptography and intelligence
Strain-tunable topological quantum phase transition in buckled honeycomb lattices
Yan, Jia-An Cruz, Mack A. Dela; Barraza-Lopez, Salvador; Yang, Li
2015-05-04
Low-buckled silicene is a prototypical quantum spin Hall insulator with the topological quantum phase transition controlled by an out-of-plane electric field. We show that this field-induced electronic transition can be further tuned by an in-plane biaxial strain ?, owing to the curvature-dependent spin-orbit coupling (SOC): There is a Z{sub 2}?=?1 topological insulator phase for biaxial strain |?| smaller than 0.07, and the band gap can be tuned from 0.7?meV for ?=+0.07 up to 3.0?meV for ?=?0.07. First-principles calculations also show that the critical field strength E{sub c} can be tuned by more than 113%, with the absolute values nearly 10 times stronger than the theoretical predictions based on a tight-binding model. The buckling structure of the honeycomb lattice thus enhances the tunability of both the quantum phase transition and the SOC-induced band gap, which are crucial for the design of topological field-effect transistors based on two-dimensional materials.
Ganguly, A.; Haldar, A.; Sinha, J.; Barman, A. E-mail: del.atkinson@durham.ac.uk; Rowan-Robinson, R. M.; Jaiswal, S.; Hindmarch, A. T.; Atkinson, D. A. E-mail: del.atkinson@durham.ac.uk
2014-09-15
The effect of spin torque from the spin Hall effect in Pt/Ni{sub 81}Fe{sub 19} rectangular bilayer film was investigated using time-resolved magneto-optical Kerr microscopy. Current flow through the stack resulted in a linear variation of effective damping up to ±7%, attributed to spin current injection from the Pt into the Ni{sub 81}Fe{sub 19}. The spin Hall angle of Pt was estimated as 0.11 ± 0.03. The modulation of the damping depended on the angle between the current and the bias magnetic field. These results demonstrate the importance of optical detection of precessional magnetization dynamics for studying spin transfer torque due to spin Hall effect.
Reconnection events in two-dimensional Hall magnetohydrodynamic turbulence
Donato, S.; Servidio, S.; Carbone, V. [Dipartimento di Fisica, Universita della Calabria, I-87036 Cosenza (Italy); Dmitruk, P. [Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Fisica de Buenos Aires, CONICET, Buenos Aires (Argentina); Shay, M. A.; Matthaeus, W. H. [Bartol Research Institute and Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716 (United States); Cassak, P. A. [Department of Physics, West Virginia University, Morgantown, West Virginia 26506 (United States)
2012-09-15
The statistical study of magnetic reconnection events in two-dimensional turbulence has been performed by comparing numerical simulations of magnetohydrodynamics (MHD) and Hall magnetohydrodynamics (HMHD). The analysis reveals that the Hall term plays an important role in turbulence, in which magnetic islands simultaneously reconnect in a complex way. In particular, an increase of the Hall parameter, the ratio of ion skin depth to system size, broadens the distribution of reconnection rates relative to the MHD case. Moreover, in HMHD the local geometry of the reconnection region changes, manifesting bifurcated current sheets and quadrupolar magnetic field structures in analogy to laminar studies, leading locally to faster reconnection processes in this case of reconnection embedded in turbulence. This study supports the idea that the global rate of energy dissipation is controlled by the large scale turbulence, but suggests that the distribution of the reconnection rates within the turbulent system is sensitive to the microphysics at the reconnection sites.
On the question of hysteresis in Hall magnetohydrodynamic reconnection
Sullivan, Brian P.; Bhattacharjee, A.; Huang Yimin
2010-11-15
Controversy has been raised regarding the cause of hysteresis, or bistability, of solutions to the equations that govern the geometry of the reconnection region in Hall magnetohydrodynamic (MHD) systems. This brief communication presents a comparison of the frameworks within which this controversy has arisen and illustrates that the Hall MHD hysteresis originally discovered numerically by Cassak et al. [Phys. Rev. Lett. 95, 235002 (2005)] is a different phenomenon from that recently reported by Zocco et al. [Phys. Plasmas 16, 110703 (2009)] on the basis of analysis and simulations in electron MHD with finite electron inertia. We demonstrate that the analytic prediction of hysteresis in EMHD does not describe or explain the hysteresis originally reported in Hall MHD, which is shown to persist even in the absence of electron inertia.
Diaz-Torres, Alexis
2010-11-15
The coupled-channels density-matrix technique for nuclear reaction dynamics, which is based on the Liouville-von Neumann equation with Lindblad dissipative terms, is developed with the inclusion of full angular momentum couplings. It allows a quantitative study of the role and importance of quantum decoherence in nuclear scattering. Formulas of asymptotic observables that can reveal effects of quantum decoherence are given. A method for extracting energy-resolved scattering information from the time-dependent density matrix is introduced. As an example, model calculations are carried out for the low-energy collision of the {sup 16}O projectile on the {sup 154}Sm target.
High resolution InSb quantum well ballistic nanosensors for room temperature applications
Gilbertson, Adam; Cohen, L. F.; Lambert, C. J.; Solin, S. A.
2013-12-04
We report the room temperature operation of a quasi-ballistic InSb quantum well Hall sensor that exhibits a high frequency sensitivity of 560nT/?Hz at 20uA bias current. The device utilizes a partitioned buffer layer design that suppresses leakage currents through the mesa floor and can sustain large current densities.
U.S. Department of Energy (DOE) all webpages (Extended Search)
Energy Frontier Research Centers: Solid-State Lighting Science Center for Frontiers of ... Quantum Optics HomeEnergy ResearchEFRCsSolid-State Lighting Science EFRCQuantum Optics ...
06.27.14 SRS Retirees Town Hall Meeting-Dave Hepner Page...
U.S. Department of Energy (DOE) all webpages (Extended Search)
Meeting-Dave Hepner Page 1 SRSRA TOWN HALL MEETING New Ellenton Community Center JUNE 27, 2014 After reviewing the notes and discussing the Town Hall Meeting held on June 27, 2014,...
VEE-0067- In the Matter of M.L. Halle Oil Service, Inc.
On August 9, 1999 M.L. Halle Oil Service, Inc. (Halle) of Manchester, New Hampshire, filed an Application for Exception with the Office of Hearings and Appeals (OHA) of the Department of Energy ...
Quantum ground state effect on fluctuation rates in nano-patterned superconducting structures
Eftekharian, Amin; Jafari Salim, Amir; University of Waterloo, 200 University Ave West, Waterloo, Ontario N2L 3G1 ; Atikian, Haig; Akhlaghi, Mohsen K.; Hamed Majedi, A.
2013-12-09
In this Letter, we present a theoretical model with experimental verifications to describe the abnormal behaviors of the measured fluctuation rates occurring in nano-patterned superconducting structures below the critical temperature. In the majority of previous works, it is common to describe the fluctuation rate by defining a fixed ground state or initial state level for the singularities (vortex or vortex-antivortex pairs), and then employing the well-known rate equations to calculate the liberation rates. Although this approach gives an acceptable qualitative picture, without utilizing free parameters, all the models have been inadequate in describing the temperature dependence of the rate for a fixed width or the width dependence of the rate for a fixed temperature. Here, we will show that by defining a current-controlled ground state level for both the vortex and vortex-antivortex liberation mechanisms, the dynamics of these singularities are described for a wide range of temperatures and widths. According to this study, for a typical strip width, not only is the vortex-antivortex liberation higher than the predicted rate, but also quantum tunneling is significant in certain conditions and can not be neglected.
Razm-Pa, M; Emami, F
2015-01-31
We report a new circuit model for a self-assembled quantum-dot (SAQD) laser made of InGaAs/GaAs structures. The model is based on the excited state and standard rate equations, improves the previously suggested circuit models and also provides and investigates the performance of this kind of laser. The carrier dynamic effects on static and dynamic characteristics of a SAQD laser are analysed. The phonon bottleneck problem is simulated. Quantum-dot lasers are shown to be quite sensitive to the crystal quality outside and inside quantum dots. The effects of QD coverage factor, inhomogeneous broadening, the physical source of which is the size fluctuation of quantum dots formed by self-assembly of atoms, and cavity length on the SAQD laser characteristics are analysed. The results of simulation show that an increase in the cavity length and in the QD coverage factor results in the growth of the output power. On the other hand, an increase in the coverage factor and a degradation of inhomogeneous broadening lead to an increase in the modulation bandwidth. The effect of the QD height (cylindrical shape) and stripe width of the laser cavity on QD laser modulation is also analysed. (lasers)
Bernhard Mecking steps down as Hall B leader at Jefferson Lab | Jefferson
U.S. Department of Energy (DOE) all webpages (Extended Search)
Lab Bernhard Mecking steps down as Hall B leader at Jefferson Lab Bernhard Mecking Jefferson Lab staff scientist Bernhard Mecking with the CEBAF Large Acceptance Spectrometer (CLAS) in Hall B. Bernhard Mecking steps down as Hall B leader at Jefferson Lab April 2, 2003 On 1 February 2003, Bernhard Mecking stepped down as leader of Hall B to return to full-time research at the Department of Energy's Thomas Jefferson National Accelerator Facility (Jefferson Lab) in Newport News, Virginia.
Jiang, F.-J.; Wiese, U.-J.
2011-04-15
The two-dimensional (2D) spin-(1/2) Heisenberg antiferromagnet with exchange coupling J is investigated on a periodic square lattice of spacing a at very small temperatures using the loop-cluster algorithm. Monte Carlo data for the staggered and uniform susceptibilities are compared with analytic results obtained in the systematic low-energy effective field theory for the staggered magnetization order parameter. The low-energy parameters of the effective theory, i.e., the staggered magnetization density M{sub s}=0.307 43(1)/a{sup 2}, the spin stiffness {rho}{sub s}=0.180 81(11)J, and the spin wave velocity c=1.6586(3)Ja, are determined with very high precision. Our study may serve as a test case for the comparison of lattice quantum chromodynamics Monte Carlo data with analytic predictions of the chiral effective theory for pions and nucleons, which is vital for the quantitative understanding of the strong interaction at low energies.
AC transport in p-Ge/GeSi quantum well in high magnetic fields
Drichko, I. L.; Malysh, V. A.; Smirnov, I. Yu.; Golub, L. E.; Tarasenko, S. A.; Suslov, A. V.; Mironov, O. A.; Kummer, M.; Känel, H. von
2014-08-20
The contactless surface acoustic wave technique is implemented to probe the high-frequency conductivity of a high-mobility p-Ge/GeSi quantum well structure in the regime of integer quantum Hall effect (IQHE) at temperatures 0.3–5.8 K and magnetic fields up to 18 T. It is shown that, in the IQHE regime at the minima of conductivity, holes are localized and ac conductivity is of hopping nature and can be described within the “two-site” model. The analysis of the temperature and magnetic-field-orientation dependence of the ac conductivity at odd filing factors enables us to determine the effective hole g-factor, |g{sub zz}|≈4.5. It is shown that the in-plane component of the magnetic field leads to a decrease in the g-factor as well as increase in the cyclotron mass, which is explained by orbital effects in the complex valence band of germanium.
Tao, X. D.; Feng, Z.; Miao, B. F.; Sun, L.; You, B.; Wu, D.; Du, J.; Zhang, W.; Ding, H. F., E-mail: hfding@nju.edu.cn [Department of Physics, National Laboratory of Solid State Microstructures, Nanjing University, 22 Hankou Road, Nanjing 210093 (China)
2014-05-07
We present the experimental study of the spin Hall angle (SHA) and spin diffusion length of Pd with the spin pumping and microwave photoresistance effects. The Py/Pd bilayer stripes are excited with an out-of-plane microwave magnetic field. The pure spin current is thus pumped and transforms into charge current via the inverse spin Hall effect (ISHE) in Pd layer, yielding an ISHE voltage. The ISHE voltage can be distinguished from the unwanted signal caused by the anisotropic magnetoresistance according to their different symmetries. Together with Pd thickness dependent measurements of in and out-of-plane precessing angles and effective spin mixing conductance, the SHA and spin-diffusion length of Pd are quantified as 0.0056??0.0007 and 7.3??0.7?nm, respectively.
Quantum-to-classical crossover near quantum critical point
Vasin, M.; Ryzhov, V.; Vinokur, V. M.
2015-12-21
A quantum phase transition (QPT) is an inherently dynamic phenomenon. However, while non-dissipative quantum dynamics is described in detail, the question, that is not thoroughly understood is how the omnipresent dissipative processes enter the critical dynamics near a quantum critical point (QCP). Here we report a general approach enabling inclusion of both adiabatic and dissipative processes into the critical dynamics on the same footing. We reveal three distinct critical modes, the adiabatic quantum mode (AQM), the dissipative classical mode [classical critical dynamics mode (CCDM)], and the dissipative quantum critical mode (DQCM). We find that as a result of the transitionmore » from the regime dominated by thermal fluctuations to that governed by the quantum ones, the system acquires effective dimension d+zΛ(T), where z is the dynamical exponent, and temperature-depending parameter Λ(T)ε[0, 1] decreases with the temperature such that Λ(T=0) = 1 and Λ(T →∞) = 0. Lastly, our findings lead to a unified picture of quantum critical phenomena including both dissipation- and dissipationless quantum dynamic effects and offer a quantitative description of the quantum-to-classical crossover.« less
Quantum-to-classical crossover near quantum critical point
Vasin, M.; Ryzhov, V.; Vinokur, V. M.
2015-12-21
A quantum phase transition (QPT) is an inherently dynamic phenomenon. However, while non-dissipative quantum dynamics is described in detail, the question, that is not thoroughly understood is how the omnipresent dissipative processes enter the critical dynamics near a quantum critical point (QCP). Here we report a general approach enabling inclusion of both adiabatic and dissipative processes into the critical dynamics on the same footing. We reveal three distinct critical modes, the adiabatic quantum mode (AQM), the dissipative classical mode [classical critical dynamics mode (CCDM)], and the dissipative quantum critical mode (DQCM). We find that as a result of the transition from the regime dominated by thermal fluctuations to that governed by the quantum ones, the system acquires effective dimension d+zΛ(T), where z is the dynamical exponent, and temperature-depending parameter Λ(T)ε[0, 1] decreases with the temperature such that Λ(T=0) = 1 and Λ(T →∞) = 0. Lastly, our findings lead to a unified picture of quantum critical phenomena including both dissipation- and dissipationless quantum dynamic effects and offer a quantitative description of the quantum-to-classical crossover.
Quantum Mechanical Calculations of Charge Effects on gating the KcsA channel
Kariev, Alisher M.; Znamenskiy, Vasiliy S.; Green, Michael E.
2007-02-06
The research described in this product was performed in part in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. A series of ab initio (density functional) calculations were carried out on side chains of a set of amino acids, plus water, from the (intracellular) gating region of the KcsA K+ channel. Their atomic coordinates, except hydrogen, are known from X-ray structures [D.A. Doyle, J.M. Cabral, R.A. Pfuetzner, A. Kuo, J.M. Gulbis, S.L. Cohen, B.T. Chait, R. MacKinnon, The structure of the potassium channel: molecular basis of K+ conduction and selectivity, Science 280 (1998) 6977; R. MacKinnon, S.L. Cohen, A. Kuo, A. Lee, B.T. Chait, Structural conservation in prokaryotic and eukaryotic potassium channels, Science 280 (1998) 106109; Y. Jiang, A. Lee, J. Chen, M. Cadene, B.T. Chait, R. MacKinnon, The open pore conformation of potassium channels. Nature 417 (2001) 523526], as are the coordinates of some water oxygen atoms. The 1k4c structure is used for the starting coordinates. Quantum mechanical optimization, in spite of the starting configuration, places the atoms in positions much closer to the 1j95, more tightly closed, configuration. This state shows four water molecules forming a basket under the Q119 side chains, blocking the channel. When a hydrated K+ approaches this basket, the optimized system shows a strong set of hydrogen bonds with the K+ at defined positions, preventing further approach of the K+ to the basket. This optimized structure with hydrated K+ added shows an ice-like 12 molecule nanocrystal of water. If the water molecules exchange, unless they do it as a group, the channel will remain blocked. The basket itself appears to be very stable, although it is possible that the K+ with its hydrating water molecules may be more mobile, capable of withdrawing from
Quantum fluctuations in beam dynamics.
Kim, K.-J.
1998-06-04
Quantum effects could become important for particle and photon beams used in high-luminosity and high brightness applications in the current and next generation accelerators and radiation sources. This paper is a review of some of these effects.
Zhu, Laipan; Liu, Yu; Jiang, Chongyun; Yu, Jinling; Gao, Hansong; Ma, Hui; Qin, Xudong; Li, Yuan; Wu, Qing; Chen, Yonghai
2014-10-13
The spin polarization under low electric fields (≤300 V/cm) at low temperatures has been studied in undoped InGaAs/AlGaAs multiple quantum well. The spin polarization was created by optical spin orientation using circularly polarized light and the inverse spin-Hall effect was employed to measure the spin polarization current. We observed an obvious spin depolarization especially at lower temperatures (80–120 K). We ascribed the spin depolarization of the photoinduced electrons to the heating effect from the low electric fields (the low field regime 50–300 V/cm). This spin depolarization due to the heating effect is sensitive to temperature and electric field, suggesting a wide range of potential applications and devices.
Spin Hall switching of the magnetization in Ta/TbFeCo structures with bulk perpendicular anisotropy
Zhao, Zhengyang; Jamali, Mahdi; Smith, Angeline K.; Wang, Jian-Ping
2015-03-30
Spin-orbit torques are studied in Ta/TbFeCo/MgO patterned structures, where the ferrimagnetic material TbFeCo provides a strong bulk perpendicular magnetic anisotropy (bulk-PMA) independent of the interfaces. The current-induced magnetization switching in TbFeCo is investigated in the presence of a perpendicular, longitudinal, or transverse field. An unexpected partial-switching phenomenon is observed in the presence of a transverse field unique to our bulk-PMA material. It is found that the anti-damping torque related with spin Hall effect is very strong, and a spin Hall angle is determined to be 0.12. The field-like torque related with Rashba effect is unobservable, suggesting that the interface play a significant role in Rashba-like torque.
Method for analyzing ExB probe spectra from Hall thruster plumes
Shastry, Rohit; Hofer, Richard R.; Reid, Bryan M.; Gallimore, Alec D.
2009-06-15
Various methods for accurately determining ion species' current fractions using ExB probes in Hall thruster plumes are investigated. The effects of peak broadening and charge exchange on the calculated values of current fractions are quantified in order to determine the importance of accounting for them in the analysis. It is shown that both peak broadening and charge exchange have a significant effect on the calculated current fractions over a variety of operating conditions, especially at operating pressures exceeding 10{sup -5} torr. However, these effects can be accounted for using a simple approximation for the velocity distribution function and a one-dimensional charge exchange correction model. In order to keep plume attenuation from charge exchange below 30%, it is recommended that pz{<=}2, where p is the measured facility pressure in units of 10{sup -5} torr and z is the distance from the thruster exit plane to the probe inlet in meters. The spatial variation of the current fractions in the plume of a Hall thruster and the error induced from taking a single-point measurement are also briefly discussed.
Magnetic shielding of Hall thrusters at high discharge voltages
Mikellides, Ioannis G. Hofer, Richard R.; Katz, Ira; Goebel, Dan M.
2014-08-07
A series of numerical simulations and experiments have been performed to assess the effectiveness of magnetic shielding in a Hall thruster operating in the discharge voltage range of 300–700 V (I{sub sp} ≈ 2000–2700 s) at 6 kW, and 800 V (I{sub sp} ≈ 3000) at 9 kW. At 6 kW, the magnetic field topology with which highly effective magnetic shielding was previously demonstrated at 300 V has been retained for all other discharge voltages; only the magnitude of the field has been changed to achieve optimum thruster performance. It is found that magnetic shielding remains highly effective for all discharge voltages studied. This is because the channel is long enough to allow hot electrons near the channel exit to cool significantly upon reaching the anode. Thus, despite the rise of the maximum electron temperature in the channel with discharge voltage, the electrons along the grazing lines of force remain cold enough to eliminate or reduce significantly parallel gradients of the plasma potential near the walls. Computed maximum erosion rates in the range of 300–700 V are found not to exceed 10{sup −2} mm/kh. Such rates are ∼3 orders of magnitude less than those observed in the unshielded version of the same thruster at 300 V. At 9 kW and 800 V, saturation of the magnetic circuit did not allow for precisely the same magnetic shielding topology as that employed during the 6-kW operation since this thruster was not designed to operate at this condition. Consequently, the maximum erosion rate at the inner wall is found to be ∼1 order of magnitude higher (∼10{sup −1} mm/kh) than that at 6 kW. At the outer wall, the ion energy is found to be below the sputtering yield threshold so no measurable erosion is expected.
Krishtopenko, S. S. Gavrilenko, V. I.; Ikonnikov, A. V.; Orlita, M.; Sadofyev, Yu. G.; Goiran, M.; Teppe, F.; Knap, W.
2015-03-21
We report observation of electron-electron (e-e) interaction effect on cyclotron resonance (CR) in InAs/AlSb quantum well heterostructures. High mobility values allow us to observe strongly pronounced triple splitting of CR line at noninteger filling factors of Landau levels ν. At magnetic fields, corresponding to ν > 4, experimental values of CR energies are in good agreement with single-electron calculations on the basis of eight-band k ⋅ p Hamiltonian. In the range of filling factors 3 < ν < 4 pronounced, splitting of CR line, exceeding significantly the difference in single-electron CR energies, is discovered. The strength of the splitting increases when occupation of the partially filled Landau level tends to a half, being in qualitative agreement with previous prediction by MacDonald and Kallin [Phys. Rev. B 40, 5795 (1989)]. We demonstrate that such behaviour of CR modes can be quantitatively described if one takes into account both electron correlations and the mixing between conduction and valence bands in the calculations of matrix elements of e-e interaction.
U.S. Department of Energy (DOE) all webpages (Extended Search)
Quantum ESPRESSOPWscf Quantum ESPRESSOPWscf Description Quantum ESPRESSO is an integrated suite of computer codes for electronic structure calculations and materials modeling at...
Quantum chaos and order based on classically moving reference frames
Hai Wenhua [Department of Physics, Hunan Normal University, Changsha 410081 (China); Department of Physics, Jishou University, Jishou 416000, Hunan (China); Xie Qiongtao; Fang Jianshu [Department of Physics, Hunan Normal University, Changsha 410081 (China)
2005-07-15
We develop a mathematically consistent approach for treating the quantum systems based on moving classical reference frames. The classical and quantum exact solutions show excellently classical-quantum correspondence, in which the quantum chaotic coherent states correspond to the classically chaotic motions. Applying the approach to the periodically driven linear and nonlinear oscillators, the regular and chaotic quantum states and quantum levels, and the quantum chaotic regions are evidenced. The results indicate that chaos may cause the collapse of matter wave packets and suppress the quantum effect of energy.
Metallic conductance below T{sub c} inferred by quantum interference...
Office of Scientific and Technical Information (OSTI)
Metallic conductance below Tsub c inferred by quantum interference effects in layered ... Title: Metallic conductance below Tsub c inferred by quantum interference effects in ...
Nuclear quantum effects on the structure and the dynamics of [H{sub 2}O]{sub 8} at low temperatures
Videla, Pablo E.; Rossky, Peter J.; Laria, D.
2013-11-07
We use ring-polymer-molecular-dynamics (RPMD) techniques and the semi-empirical q-TIP4P/F water model to investigate the relationship between hydrogen bond connectivity and the characteristics of nuclear position fluctuations, including explicit incorporation of quantum effects, for the energetically low lying isomers of the prototype cluster [H{sub 2}O]{sub 8} at T = 50 K and at 150 K. Our results reveal that tunneling and zero-point energy effects lead to sensible increments in the magnitudes of the fluctuations of intra and intermolecular distances. The degree of proton spatial delocalization is found to map logically with the hydrogen-bond connectivity pattern of the cluster. Dangling hydrogen bonds exhibit the largest extent of spatial delocalization and participate in shorter intramolecular O-H bonds. Combined effects from quantum and polarization fluctuations on the resulting individual dipole moments are also examined. From the dynamical side, we analyze the characteristics of the infrared absorption spectrum. The incorporation of nuclear quantum fluctuations promotes red shifts and sensible broadening relative to the classical profile, bringing the simulation results in much more satisfactory agreement with direct experimental information in the mid and high frequency range of the stretching band. While RPMD predictions overestimate the peak position of the low frequency shoulder, the overall agreement with that reported using an accurate, parameterized, many-body potential is reasonable, and far superior to that one obtains by implementing a partially adiabatic centroid molecular dynamics approach. Quantum effects on the collective dynamics, as reported by instantaneous normal modes, are also discussed.
Recent Results of TMD Measurements from Jefferson Lab Hall A
Jiang, Xiaodong
2013-10-01
This slide-show presents results on transverse momentum distributions. The presentation covers: target single-spin asymmetry (SSA) (in parity conserving interactions); Results of JLab Hall A polarized {sup 3}He target TMD measurement; Semi-?inclusive deep-inelastic scattering channels (E06-010); Target single-spin asymmetry A{sub UT}, Collins and Sivers SSA on neutron; Double-spin asymmetry A{sub LT}, extract TMD g{sub 1T} on neutron; Inclusive channels SSA (E06-010, E05-015, E07-013) Target SSA: inclusive {sup 3}He(e,e) quasi-elastic scattering; Target SSA: inclusive {sup 3}He(e,e) deep inelastic-elastic scattering; New SIDIS experiments planned in Hall-A for JLab-12 GeV.
NE-24 Gilman Hall, University of California, Certification Documentation
Office of Legacy Management (LM)
Gilman Hall, University of California, Certification Documentation Berkeley, California, Conditional Verlette Gatlin, MA-232 I am attaching for entry into the Public Document Room, two copies of the subject documentation. These documents are the backup data for the conditional certification that the site is radiologically acceptable for restricted use as noted in the certification statement published in the Federal Register. Inasmuch as the conditional certification is made public through the
Gradient instabilities of electromagnetic waves in Hall thruster plasma
Tomilin, Dmitry
2013-04-15
This paper presents a linear analysis of gradient plasma instabilities in Hall thrusters. The study obtains and analyzes the dispersion equation of high-frequency electromagnetic waves based on the two-fluid model of a cold plasma. The regions of parameters corresponding to unstable high frequency modes are determined and the dependence of the increments and intrinsic frequencies on plasma parameters is obtained. The obtained results agree with those of previously published studies.
Jackie Chen inducted into Alameda County Women's Hall of Fame
U.S. Department of Energy (DOE) all webpages (Extended Search)
inducted into Alameda County Women's Hall of Fame - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste
Transition in Electron Transport in a Cylindrical Hall Thruster
J.B. Parker, Y. Raitses, and N.J. Fisch
2010-06-02
Through the use of high-speed camera and Langmuir probe measurements in a cylindrical Hall thruster, we report the discovery of a rotating spoke of increased plasma density and light emission which correlates with increased electron transport across the magnetic field. As cathode electron emission is increased, a sharp transition occurs where the spoke disappears and electron transport decreases. This suggests that a significant fraction of the electron current might be directed through the spoke.
D0 Collision Hall Outdoor Fresh Air Makeup
Markley, D.; /Fermilab
1992-03-27
This note will briefly describe the collision hall ventilation system and how D0 will monitor outside air makeup and what actions occur in the event of system failures. The Dzero collision hall has two different fresh air makeup conditions it must meet. They are: (1) Tunnel Barriers removed-Fresh air makeup = 4500 CFM; and (2) Tunnel Barriers in place-Fresh air makeup = 2800 CFM. This note demonstrates how the fresh air minimums are met and guaranteed. The air flow paths and ducts at D0 for both AHU1 and EF-7 are fixed. The blower throughputs are not variable. The software stops on AHU1's dampers will be set for a minimum of 2800 cfm or 4500 cfm of outdoor air continuously added to the HVAC flow stream depending on the tunnel barrier state. AHU1 and EF-7 both have monitoring that can determine reliably as to whether the respective blower is on or off. Since the outside air makeup is fixed as long as the blowers are running, and the software AHU1 damper limits are set, we can rely on the blower status indicators to determine as to whether the collision hall is receiving the proper amount of outside makeup air.
Quantum Darwinism, Decoherence, and the Randomness of Quantum Jumps
Zurek, Wojciech H.
2014-06-05
Tracing flows of information in our quantum Universe explains why we see the world as classical. Quantum principle of superposition decrees every combination of quantum states a legal quantum state. This is at odds with our experience. Decoherence selects preferred pointer states that survive interaction with the environment. They are localized and effectively classical. They persist while their superpositions decohere. Here we consider emergence of `the classical' starting at a more fundamental pre-decoherence level, tracing the origin of preferred pointer states and deducing their probabilities from the core quantum postulates. We also explore role of the environment as medium through which observers acquire information. This mode of information transfer leads to perception of objective classical reality.
Quasiperiodically kicked quantum systems
Milonni, P.W.; Ackerhalt, J.R.; Goggin, M.E.
1987-02-15
We consider a two-state system kicked quasiperiodically by an external force. When the two kicking frequencies assumed for the force are incommensurate, there can be quantum chaos in the sense that (a) the autocorrelation function of the state vector decays, (b) the power spectrum of the state vector is broadband, and (c) the motion on the Bloch sphere is ergodic. The time evolution of the state vector is nevertheless dynamically stable in the sense that memory of the initial state is retained. We also consider briefly the kicked quantum rotator and find, in agreement with Shepelyansky (Physica 8D, 208 (1983)), that the quantum localization effect is greatly weakened by the presence of two incommensurate driving frequencies.
So, Hye-Mi; Shim, Hyung Cheoul; Choi, Hyekyoung; Lee, Seung-Mo; Jeong, Sohee; Chang, Won Seok
2015-03-02
We have investigated the effect of atomic layer deposition (ALD) on the electrical properties of colloidal PbS quantum dot field-effect transistors (PbS QD-FETs). Low-temperature Al{sub 2}O{sub 3} ALD process was used to fill up the pore spaces of PbS QD films containing 1, 2-ethanedithiol ligands. Upon deposition of Al{sub 2}O{sub 3} on PbS film, the PbS QD-FETs showed ambipolar behavior. The treated film retained this property for over 2 months, despite of exposure to air. This change in the electrical properties of the PbS QD-FETs is attributed to the formation of electron channels in the Al{sub 2}O{sub 3}-passivated PbS film. We conclude that these electron transport channels in the Al{sub x}O{sub y}-PbS film are formed due to substitution of the Pb sites by Al metal and chemical reduction of Pb{sup 2+} ions, as determined by an analysis of the depth profile of the film using secondary ion mass spectrometry and X-ray photoelectron spectroscopy.
Panwar, Anuraj; Ryu, Chang-Mo
2014-06-15
The modulational instability and associated rogue structures of a slow magnetosonic wave are investigated for a Hall magnetohydrodynamic plasma. Nonlinear Schrodinger equation is obtained by using the multiple scale method, which shows a modulationally unstable slow magnetosonic mode evolving into bright wavepackets. The dispersive effects induced by the Hall electron current increase with the increase in plasma β and become weaker as the angle of propagation increases. The growth rate of the modulational instability also increases with the increase in plasma β. The growth rate is greatest for the parallel propagation and drops to zero for perpendicular propagation. The envelope wavepacket of a slow magnetosonic is widened with less oscillations as plasma β increases. But the wavepacket becomes slightly narrower and more oscillatory as the angle of propagation increases. Further a non-stationary envelope solution of the Peregrine soliton is analyzed for rogue waves. The Peregrine soliton contracts temporally and expands spatially with increase in plasma β. However, the width of a slow magnetosonic Peregrine soliton decreases both temporally and spatially with increase of the propagation angle.
Ahmad, Faisal R.
2015-03-21
In this report, results of the temperature dependent electrical conductivity measurements conducted on single crystalline cadmium telluride (CdTe), containing sodium (Na) impurities are presented and discussed. The electrical conductivity measurements were conducted using an apparatus that allowed the implementation of a standard van der Pauw-Hall effect technique through which the electrical resistivity, concentration of majority carriers, as well as the carrier mobility were determined for temperatures ranging between 24 K and 350 K. Over this temperature range, the electrical resistivity was observed to change by 7 orders of magnitude. Hall measurements showed that the hole concentration at 300 K was ∼3 × 10{sup 15 }cm{sup –3} and the hole mobility at the same temperature was ∼80 cm{sup 2}/V s. Measuring the concentration of holes as a function of the sample temperature enabled the estimation of the acceptor energy level with respect to the valence band maximum to be ∼60 meV. The same data also revealed the potential presence of a compensating donor level. Furthermore, the hole mobility was also analyzed over the entire temperature range and the data revealed that above 100 K, the carrier mobility was dominated by the scattering of holes from lattice vibrations.
Quantum Criticality and Black Holes
Sachdev, Subir [Harvard University, Cambridge, Massachusetts, United States
2009-09-01
I will describe the behavior of a variety of condensed matter systems in the vicinity of zero temperature quantum phase transitions. There is a remarkable analogy between the hydrodynamics of such systems and the quantum theory of black holes. I will show how insights from this analogy have shed light on recent experiments on the cuprate high temperature superconductors. Studies of new materials and trapped ultracold atoms are yielding new quantum phases, with novel forms of quantum entanglement. Some materials are of technological importance: e.g. high temperature superconductors. Exact solutions via black hole mapping have yielded first exact results for transport coefficients in interacting many-body systems, and were valuable in determining general structure of hydrodynamics. Theory of VBS order and Nernst effect in cuprates. Tabletop 'laboratories for the entire universe': quantum mechanics of black holes, quark-gluon plasma, neutrons stars, and big-bang physics.
Kojima, Osamu, E-mail: kojima@phoenix.kobe-u.ac.jp; Okumura, Shouhei; Kita, Takashi [Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501 (Japan); Akahane, Kouichi [National Institute of Information and Communications Technology, 4-2-1 Nukui-kitamachi, Koganei, Tokyo 184-8795 (Japan)
2014-11-03
We report upconversion photoluminescence (UCPL) in GaAs/AlAs multiple quantum wells. UCPL from the AlAs barrier is caused by the resonant excitation of the excitons in the GaAs well. When the quantum well has sufficient miniband width, UCPL is hardly observed because of the small exciton oscillator strength. The excitation-energy and excitation-density dependences of UCPL intensity show the exciton resonant profile and a linear increase, respectively. These results demonstrate that the observed UCPL caused by the saturated two-step excitation process requires a large number of excitons.
Lincoln, Don
2014-10-24
The laws of quantum mechanics and relativity are quite perplexing however it is when the two theories are merged that things get really confusing. This combined theory predicts that empty space isnt empty at all its a seething and bubbling cauldron of matter and antimatter particles springing into existence before disappearing back into nothingness. Scientists call this complicated state of affairs quantum foam. In this video, Fermilabs Dr. Don Lincoln discusses this mind-bending idea and sketches some of the experiments that have convinced scientists that this crazy prediction is actually true.
Effective field theory of fractional quantized Hall nematics...
Office of Scientific and Technical Information (OSTI)
Publication Date: 2011-11-28 OSTI Identifier: 1101247 Type: Publisher's Accepted Manuscript Journal Name: Physical Review B Additional Journal Information: Journal Volume: 84; ...
Probing the thermal Hall effect using miniature capacitive strontium...
Office of Scientific and Technical Information (OSTI)
Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA Department of Physics, University of California, Berkeley, California 94720, USA Publication Date: ...
Effective Field Theory of Fractional Quantized Hall Nematics...
Office of Scientific and Technical Information (OSTI)
We interpret recent experiments at Landau level filling factor nu 73 in terms of our theory. Authors: Mulligan, Michael ; MIT, LNS ; Nayak, Chetan ; Station Q, UCSB ; ...
Reduced spin-Hall effects from magnetic proximity (Journal Article...
Office of Scientific and Technical Information (OSTI)
Authors: Zhang, Wei ; Jungfleisch, Matthias B. ; Jiang, Wanjun ; Liu, Yaohua ; Pearson, John E. ; Velthuis, Suzanne G. E. te ; Hoffmann, Axel ; Freimuth, Frank ; Mokrousov,...
Spin Hall Effects in Metallic Antiferromagnets (Journal Article...
Office of Scientific and Technical Information (OSTI)
American Physical Society Sponsoring Org: USDOE Country of Publication: United States Language: English Word Cloud More Like This Free Publicly Accessible Full Text Accepted...
Spin Hall Effects in Metallic Antiferromagnets (Journal Article...
Office of Scientific and Technical Information (OSTI)
Publisher: American Physical Society Sponsoring Org: USDOE Country of Publication: United States Language: English Word Cloud More Like This Free Publicly Accessible Full Text ...
Effective Field Theory of Fractional Quantized Hall Nematics...
Office of Scientific and Technical Information (OSTI)
Close Cite: Bibtex Format Close 0 pages in this document matching the terms "" Search For Terms: Enter terms in the toolbar above to search the full text of this document for ...
AGU SubTER Town Hall Presentation 2015 | Department of Energy
Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)
AGU SubTER Town Hall Presentation 2015 AGU SubTER Town Hall Presentation 2015 AGU SubTER Townhall 2015.pdf (4.49 MB) More Documents & Publications SubTER Presentation at Town Hall - American Geophysical Union Poster on Subsurface Technology & Engineering Research, Development, and Demonstration Crosscut (SubTER) Controlling Subsurface Fractures and Fluid Flow: A Basic Research Agenda
Jeans stability in collisional quantum dusty magnetoplasmas
Jamil, M.; Asif, M.; Mir, Zahid; Salimullah, M.
2014-09-15
Jeans instability is examined in detail in uniform dusty magnetoplasmas taking care of collisional and non-zero finite thermal effects in addition to the quantum characteristics arising through the Bohm potential and the Fermi degenerate pressure using the quantum hydrodynamic model of plasmas. It is found that the presence of the dust-lower-hybrid wave, collisional effects of plasma species, thermal effects of electrons, and the quantum mechanical effects of electrons have significance over the Jeans instability. Here, we have pointed out a new class of dissipative instability in quantum plasma regime.
Tunable Anderson metal-insulator transition in quantum spin-Hall...
Office of Scientific and Technical Information (OSTI)
GrantContract Number: FG02-99ER45747 Type: Publisher's Accepted Manuscript Journal Name: Physical Review B Additional Journal Information: Journal Volume: 91; Journal Issue: 21; ...
Competing Quantum Hall Phases in the Second Landau Level in Low...
Office of Scientific and Technical Information (OSTI)
Number: AC04-94AL85000 Resource Type: Journal Article Resource Relation: Journal Name: Physical Review Letters; Related Information: Proposed for publication in Physical Review...
Formation of quantum spin Hall state on Si surface and energy...
Office of Scientific and Technical Information (OSTI)
Univ. of Utah, Salt Lake City, UT (United States) Beijing Institute of Technology, Beijing (China) Univ. of Utah, Salt Lake City, UT (United States); Collaborative Innovation ...
Wood, R. M.; Saha, D.; McCarthy, L. A.; Tokarski, III, J. T.; Sanders, G. D.; Kuhns, P. L.; McGill, S. A.; Reyes, A. P.; Reno, J. L.; Stanton, C. J.; Bowers, C. R.
2014-10-29
A combined experimental-theoretical study of optically pumped NMR (OPNMR) has been performed in a GaAs/Al_{0.1}Ga_{0.9}As quantum well film with thermally induced biaxial strain. The photon energy dependence of the Ga-71 OPNMR signal was recorded at magnetic fields of 4.9 and 9.4 T at a temperature of 4.8-5.4 K. The data were compared to the nuclear spin polarization calculated from differential absorption to spin-up and spin-down states of the conduction band using a modified Pidgeon Brown model. Reasonable agreement between theory and experiment is obtained, facilitating assignment of features in the OPNMR energy dependence to specific interband transitions. Despite the approximations made in the quantum-mechanical model and the inexact correspondence between the experimental and calculated observables, the results provide insight into how effects of strain and quantum confinement are manifested in OPNMR signals
Wood, R. M.; Saha, D.; McCarthy, L. A.; Tokarski, III, J. T.; Sanders, G. D.; Kuhns, P. L.; McGill, S. A.; Reyes, A. P.; Reno, J. L.; Stanton, C. J.; et al
2014-10-29
A combined experimental-theoretical study of optically pumped NMR (OPNMR) has been performed in a GaAs/Al0.1Ga0.9As quantum well film with thermally induced biaxial strain. The photon energy dependence of the Ga-71 OPNMR signal was recorded at magnetic fields of 4.9 and 9.4 T at a temperature of 4.8-5.4 K. The data were compared to the nuclear spin polarization calculated from differential absorption to spin-up and spin-down states of the conduction band using a modified Pidgeon Brown model. Reasonable agreement between theory and experiment is obtained, facilitating assignment of features in the OPNMR energy dependence to specific interband transitions. Despite the approximationsmore » made in the quantum-mechanical model and the inexact correspondence between the experimental and calculated observables, the results provide insight into how effects of strain and quantum confinement are manifested in OPNMR signals« less
Biswas, Dipankar Panda, Siddhartha
2014-04-07
Experimental capacitance–voltage (C-V) profiling of semiconductor heterojunctions and quantum wells has remained ever important and relevant. The apparent carrier distributions (ACDs) thus obtained reveal the carrier depletions, carrier peaks and their positions, in and around the quantum structures. Inevitable errors, encountered in such measurements, are the deviations of the peak concentrations of the ACDs and their positions, from the actual carrier peaks obtained from quantum mechanical computations with the fundamental parameters. In spite of the very wide use of the C-V method, comprehensive discussions on the qualitative and quantitative nature of the errors remain wanting. The errors are dependent on the fundamental parameters, the temperature of measurements, the Debye length, and the series resistance. In this paper, the errors have been studied with doping concentration, band offset, and temperature. From this study, a rough estimate may be drawn about the error. It is seen that the error in the position of the ACD peak decreases at higher doping, higher band offset, and lower temperature, whereas the error in the peak concentration changes in a strange fashion. A completely new method is introduced, for derivation of the carrier profiles from C-V measurements on quantum structures to minimize errors which are inevitable in the conventional formulation.
Authentication of quantum messages.
Barnum, Howard; Crépeau, Jean-Claude; Gottesman, D.; Smith, A.; Tapp, Alan
2001-01-01
Authentication is a well-studied area of classical cryptography: a sender A and a receiver B sharing a classical private key want to exchange a classical message with the guarantee that the message has not been modified or replaced by a dishonest party with control of the communication line. In this paper we study the authentication of messages composed of quantum states. We give a formal definition of authentication in the quantum setting. Assuming A and B have access to an insecure quantum channel and share a private, classical random key, we provide a non-interactive scheme that both enables A to encrypt and authenticate (with unconditional security) an m qubit message by encoding it into m + s qubits, where the probability decreases exponentially in the security parameter s. The scheme requires a private key of size 2m + O(s). To achieve this, we give a highly efficient protocol for testing the purity of shared EPR pairs. It has long been known that learning information about a general quantum state will necessarily disturb it. We refine this result to show that such a disturbance can be done with few side effects, allowing it to circumvent cryptographic protections. Consequently, any scheme to authenticate quantum messages must also encrypt them. In contrast, no such constraint exists classically: authentication and encryption are independent tasks, and one can authenticate a message while leaving it publicly readable. This reasoning has two important consequences: On one hand, it allows us to give a lower bound of 2m key bits for authenticating m qubits, which makes our protocol asymptotically optimal. On the other hand, we use it to show that digitally signing quantum states is impossible, even with only computational security.
June 24, 2015 in 100E Hildebrand Hall | Center for Gas SeparationsRele...
U.S. Department of Energy (DOE) all webpages (Extended Search)
4, 2015 in 100E Hildebrand Hall Previous Next List Stephen Meckler (Lawrence Berkeley National Laboratory) Layered Zif-Polymer Composites Accessed through Metal Oxide Precursors...
Search for: All records | SciTech Connect
Office of Scientific and Technical Information (OSTI)
and quantum mechanics, general physics (2) electron gas (2) electrons (2) hall effect (2) materials science (2) quantum wells (2) scattering (2) spectroscopy (2) spin (2) aluminium...
Correa, J. D.; Mora-Ramos, M. E.; Duque, C. A.
2014-06-07
We report a study on the optical absorption coefficient associated to hydrogenic impurity interstate transitions in zinc-blende GaN quantum wires of cylindrical shape taking into account the effects of externally applied static electric and magnetic fields. The electron states emerge within the effective mass approximation, via the exact diagonalization of the donor-impurity Hamiltonian with parabolic confinement and external field effects. The nonlinear optical absorption is calculated using a recently derived expression for the dielectric susceptibility, obtained via a nonperturbative solution of the density-matrix Bloch equation. Our results show that this treatment eliminates not only the intensity-dependent bleaching effect but also the change in sign of the nonlinear contribution due to the combined effect of asymmetric impurity location and the applied electric field.
Surface plasmon oscillations on a quantum plasma half-space
Moradi, Afshin
2015-01-15
We investigate the propagation of surface electrostatic oscillations on a quantum plasma half-space, taking into account the quantum effects. We derive the quantum surface wave frequencies of the system, by means the quantum hydrodynamic theory in conjunction with the Poisson equation and applying the appropriate additional quantum boundary conditions. Numerical results show in the presence of the slow nonlocal variations, plasmon wave energies of the system are significantly modified and plasmonic oscillations with blue-shifted frequencies emerge.
Topological Hall conductivity of vortex and skyrmion spin textures
Jalil, M. B. A. Ghee Tan, Seng; Eason, Kwaku; Kong, Jian Feng
2014-05-07
We analyze the topological Hall conductivity experienced by conduction electrons whose spins are strongly coupled to axially symmetric spin textures, such as magnetic vortex and skyrmion of types I and II, theoretically by gauge theory, and numerically via micromagnetic simulations. The numerical results are in agreement with the theoretical predictions. Divergence between the two is seen when the vortex/skyrmion core radius is comparable or larger than the element size, and when the skyrmion configuration breaks down at high Dzyaloshinskii-Moriya interaction strength.
Materials for Giant Spin Hall Device | Argonne National Laboratory
U.S. Department of Energy (DOE) all webpages (Extended Search)
Materials for Giant Spin Hall Device September 7, 2016 11:00AM to 12:00PM Presenter Avyaya Jayanthinarasimham, State University of New York-Albany Location Building 223, Room S105 Type Seminar Series MSD Seminar Abstract: Spin-orbit coupling in metastable β-W generates spin-orbit torques (SOTs) strong enough to flip the magnetic moment of an adjacent magnetic layer. In a magnetic tunnel junction (MTJ) stack, these torques can be used to switch between high and low resistive states. Deposition
,The Honorable Thomas Henino City Hall Plaza I
Office of Legacy Management (LM)
Department of Energy Washington,. DC 20585 MAR 29 1995 ,The Honorable Thomas Henino City Hall Plaza I Boston, Massachusetts 02201 '. ! Dear Mayor Menino: Even though additional involvement by DOE is,not necessary at this site, we are prepared to respond to any concerns you may have. -' : __ if you have any questions,' please feel free to call me eat 301-427li721 or Dr. W. Alexander Willlams (301-427-1719)~of my staff. ' gyp , ,~.&.Qz J ~ J / d .!~a : T- " ames W. Wagoner I -. Secretary
Titanium diboride ceramic fiber composites for Hall-Heroult cells
Besmann, T.M.; Lowden, R.A.
1990-05-29
An improved cathode structure is described for Hall-Heroult cells for the electrolytic production of aluminum metal. This cathode structure is a preform fiber base material that is infiltrated with electrically conductive titanium diboride using chemical vapor infiltration techniques. The structure exhibits good fracture toughness, and is sufficiently resistant to attack by molten aluminum. Typically, the base can be made from a mat of high purity silicon carbide fibers. Other ceramic or carbon fibers that do not degrade at temperatures below about 1000 C can be used.
Titanium diboride ceramic fiber composites for Hall-Heroult cells
Besmann, Theodore M.; Lowden, Richard A.
1990-01-01
An improved cathode structure for Hall-Heroult cells for the electrolytic production of aluminum metal. This cathode structure is a preform fiber base material that is infiltrated with electrically conductive titanium diboride using chemical vapor infiltration techniques. The structure exhibits good fracture toughness, and is sufficiently resistant to attack by molten aluminum. Typically, the base can be made from a mat of high purity silicon carbide fibers. Other ceramic or carbon fibers that do not degrade at temperatures below about 1000 deg. C can be used.
Quantum technology and its applications
Boshier, Malcolm; Berkeland, Dana; Govindan, Tr; Abo - Shaeer, Jamil
2010-12-10
considered the physics and engineering of quantum and conventional technologies, and how quantum techniques could (or could not) overcome limitations of conventional systems. They identified several auxiliary technologies that needed to be further developed in order to make quantum technology more accessible. Much of the discussion also focused on specific applications of quantum technology and how to push the technology into broader communities, which would in turn identify new uses of the technology. Since our main interest is practical improvement of devices and techniques, we take a liberal definition of 'quantum technology': a system that utilizes preparation and measurement of a well-defined coherent quantum state. This nomenclature encompasses features broader than entanglement, squeezing or quantum correlations, which are often more difficult to utilize outside of a laboratory environment. Still, some applications discussed in the workshop do take advantage of these 'quantum-enhanced' features. They build on the more established quantum technologies that are amenable to manipulation at the quantum level, such as atom magnetometers and atomic clocks. Understanding and developing those technologies through traditional engineering will clarify where quantum-enhanced features can be used most effectively, in addition to providing end users with improved devices in the near-term.
Effects of localization on hot carriers in InAs/AlAs{sub x}Sb{sub 1–x} quantum wells
Tang, J.; Whiteside, V. R.; Esmaielpour, H.; Vijeyaragunathan, S.; Mishima, T. D.; Santos, M. B.; Sellers, I. R.
2015-02-09
The temperature dependence of a InAs/AlAs{sub 0.84}Sb{sub 0.16} multi-quantum-well sample is studied using continuous wave photoluminescence. An “s-shape” shift in peak energy is observed and attributed to low energy localization states. High incident power density photoluminescence measurements were performed to probe the nature of such localization. The results opposed the possibility of a type-II band structure and supported the idea of low energy localization states. The effect of such localization on hot carriers in our system was studied and an improvement in their stability due to hole mobility at elevated temperature is presented.
Buyanova, I. A.; Wang, X. J.; Chen, W. M.; Pozina, G.; Lim, W.; Norton, D. P.; Pearton, S. J.; Osinsky, A.; Dong, J. W.; Hertog, B.
2008-06-30
Temperature-dependent cw- and time-resolved photoluminescence (PL), as well as optically detected magnetic resonance (ODMR) measurements are employed to evaluate effects of deuterium (2H) doping on optical properties of ZnCdO/ZnO quantum well structures grown by molecular beam epitaxy. It is shown that incorporation of {sup 2}H from a remote plasma causes a substantial improvement in radiative efficiency of the investigated structures. Based on transient PL measurements, the observed improvements are attributed to efficient passivation by hydrogen of competing nonradiative recombination centers via defects. This conclusion is confirmed from the ODMR studies.
U.S. Department of Energy (DOE) all webpages (Extended Search)
Quantum Optics - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear
Hall magnetohydrodynamic reconnection in the plasmoid unstable regime
Baalrud, S. D.; Bhattacharjee, A.; Huang, Y.-M.; Germaschewski, K.
2011-09-15
A set of reduced Hall magnetohydrodynamic (MHD) equations are used to evaluate the stability of large aspect ratio current sheets to the formation of plasmoids (secondary islands). Reconnection is driven by resistivity in this analysis, which occurs at the resistive skin depth d{sub {eta}}{identical_to}S{sub L}{sup -1/2}{radical}(L{nu}{sub A}/{gamma}), where S{sub L} is the Lundquist number, L, the length of the current sheet, {nu}{sub A,} the Alfven speed, and {gamma}, the growth rate. Modifications to a recent resistive MHD analysis [N. F. Loureiro et al., Phys. Plasmas 14, 100703 (2007)] arise when collisions are sufficiently weak that d{sub {eta}} is shorter than the ion skin depth d{sub i}{identical_to}c/{omega}{sub pi}. Secondary islands grow faster in this Hall MHD regime: the maximum growth rate scales as (d{sub i}/L){sup 6/13}S{sub L}{sup 7/13}{nu}{sub A}/L and the number of plasmoids as (d{sub i}/L){sup 1/13}S{sub L}{sup 11/26}, compared to S{sub L}{sup 1/4}{nu}{sub A}/L and S{sup 3/8}, respectively, in resistive MHD.
Refrigeration Recovery for Experiment Hall High Target Loads
Peter Knudsen, Venkatarao Ganni, Errol Yuksek, Jonathan Creel
2010-04-01
The Qweak experiment at Jefferson Lab (JLab) is a 3000 W hydrogen target scheduled for the summer of 2010 and running for two years until the planned shut-down for 12GeV. The End Station Refrigerator (ESR) supports the three experiment halls, two of which may normally have a hydrogen target. The refrigerator for the ESR is a CTI/Helix 1500 W 4.5-K refrigerator nominally capable of supporting a 1250 W target load at 12 bar and 15-K (plus 1100 W of 4.5-K refrigeration). As such, this refrigerator is not capable of supporting the Qweak experiment target load in its present condition. Additionally, since the installation of an ambient air vaporizer for a single use, two week run duration of a high target load in the summer of 2003 there has been a consistent usage of the Central Helium Liquefier’s (CHL’s) 3 bar 4.5-K helium, supplied via an existing transfer-line to the ESR, for other high target loads. By the fall of 2004, it was apparent that this continued use of CHL’s supercritical helium was routinely being sought by the hall experimenters. As such, a method of refrigeration recovery was proposed to reduce the support required of CHL for these high target loads, including the anticipated Qweak experiment, while utilizing the recovered CHL refrigeration from the target to increase ESR’s 12 bar 15-K capacity.
Halder, Nripendra N.; Biswas, Pranab; Banerji, P.; Dhabal Das, Tushar; Das, Sanat Kr.; Chattopadhyay, S.; Biswas, D.
2014-01-28
A detailed analysis of photoluminescence (PL) from InP quantum dots (QDs) grown on Si has been carried out to understand the effect of substrate/host material in the luminescence and carrier escape process from the surface quantum dots. Such studies are required for the development of monolithically integrated next generation III-V QD based optoelectronics with fully developed Si microelectronics. The samples were grown by atmospheric pressure metalorganic chemical vapor deposition technique, and the PL measurements were made in the temperature range 1080?K. The distribution of the dot diameter as well as the dot height has been investigated from atomic force microscopy. The origin of the photoluminescence has been explained theoretically. The band alignment of InP/Si heterostructure has been determined, and it is found be type II in nature. The positions of the conduction band minimum of Si and the 1st excited state in the conduction band of InP QDs have been estimated to understand the carrier escape phenomenon. A blue shift with a temperature co-efficient of 0.19?meV/K of the PL emission peak has been found as a result of competitive effect of different physical processes like quantum confinement, strain, and surface states. The corresponding effect of blue shift by quantum confinement and strain as well as the red shift by the surface states in the PL peaks has been studied. The origin of the luminescence in this heterojunction is found to be due to the recombination of free excitons, bound excitons, and a transition from the 1st electron excited state in the conduction band (e{sub 1}) to the heavy hole band (hh{sub 1}). Monotonic decrease in the PL intensity due to increase of thermally escaped carriers with temperature has been observed. The change in barrier height by the photogenerated electric-field enhanced the capture of the carriers by the surface states rather than their accumulation in the QD excited state. From an analysis of the dependence of the
Magnetic shielding of walls from the unmagnetized ion beam in a Hall thruster
Mikellides, Ioannis G.; Katz, Ira; Hofer, Richard R.; Goebel, Dan M.
2013-01-14
We demonstrate by numerical simulations and experiments that the unmagnetized ion beam formed in a Hall thruster can be controlled by an applied magnetic field in a manner that reduces by 2-3 orders of magnitude deleterious ion bombardment of the containing walls. The suppression of wall erosion in Hall thrusters to such low levels has remained elusive for decades.
Stapp, Henry
2011-11-10
Robert Griffiths has recently addressed, within the framework of a consistent quantum theory (CQT) that he has developed, the issue of whether, as is often claimed, quantum mechanics entails a need for faster-than-light transfers of information over long distances. He argues, on the basis of his examination of certain arguments that claim to demonstrate the existence of such nonlocal influences, that such influences do not exist. However, his examination was restricted mainly to hidden-variable-based arguments that include in their premises some essentially classical-physics-type assumptions that are fundamentally incompatible with the precepts of quantum physics. One cannot logically prove properties of a system by attributing to the system properties alien to that system. Hence Griffiths rejection of hidden-variable-based proofs is logically warranted. Griffiths mentions the existence of a certain alternative proof that does not involve hidden variables, and that uses only macroscopically described observable properties. He notes that he had examined in his book proofs of this general kind, and concluded that they provide no evidence for nonlocal influences. But he did not examine the particular proof that he cites. An examination of that particular proof by the method specified by his consistent quantum theory shows that the cited proof is valid within that restrictive framework. This necessary existence, within the consistent framework, of long range essentially instantaneous influences refutes the claim made by Griffiths that his consistent framework is superior to the orthodox quantum theory of von Neumann because it does not entail instantaneous influences. An added section responds to Griffiths reply, which cites a litany of ambiguities that seem to restrict, devastatingly, the scope of his CQT formalism, apparently to buttress his claim that my use of that formalism to validate the nonlocality theorem is flawed. But the vagaries that he cites do
Coordinate time dependence in quantum gravity
Bojowald, Martin; Singh, Parampreet; Skirzewski, Aureliano
2004-12-15
The intuitive classical space-time picture breaks down in quantum gravity, which makes a comparison and the development of semiclassical techniques quite complicated. Using ingredients of the group averaging method to solve constraints one can nevertheless introduce a classical coordinate time into the quantum theory, and use it to investigate the way a semiclassical continuous description emerges from discrete quantum evolution. Applying this technique to test effective classical equations of loop cosmology and their implications for inflation and bounces, we show that the effective semiclassical theory is in good agreement with the quantum description even at short scales.
Ganguly, A. E-mail: aganguly@maths.iitkgp.ernet.in; Das, A.
2014-11-15
We consider one-dimensional stationary position-dependent effective mass quantum model and derive a generalized Korteweg-de Vries (KdV) equation in (1+1) dimension through Lax pair formulation, one being the effective mass Schrödinger operator and the other being the time-evolution of wave functions. We obtain an infinite number of conserved quantities for the generated nonlinear equation and explicitly show that the new generalized KdV equation is an integrable system. Inverse scattering transform method is applied to obtain general solution of the nonlinear equation, and then N-soliton solution is derived for reflectionless potentials. Finally, a special choice has been made for the variable mass function to get mass-deformed soliton solution. The influence of position and time-dependence of mass and also of the different representations of kinetic energy operator on the nature of such solitons is investigated in detail. The remarkable features of such solitons are demonstrated in several interesting figures and are contrasted with the conventional KdV-soliton associated with constant-mass quantum model.
Quasi-superactivation for the classical capacity of quantum channels
Gyongyosi, Laszlo; Imre, Sandor
2014-12-04
The superactivation effect has its roots in the extreme violation of additivity of the channel capacity and enables to reliably transmit quantum information over zero-capacity quantum channels. In this work we demonstrate a similar effect for the classical capacity of a quantum channel which previously was thought to be impossible.
Lattice Quantum Chromodynamics
U.S. Department of Energy (DOE) all webpages (Extended Search)
Lattice Quantum Chromodynamics Lattice Quantum Chromodynamics QCD-BU.jpg Key Challenges: Although the QCD theory has been extensively tested at at high energies, at low energies or...
Electron-hole asymmetry, Dirac fermions, and quantum magnetoresistance in BaMnBi2
Li, Lijun; Wang, Kefeng; Graf, D.; Wang, Limin; Wang, Aifeng; Petrovic, C.
2016-03-28
Here, we report two-dimensional quantum transport and Dirac fermions in BaMnBi2 single crystals. BaMnBi2 is a layered bad metal with highly anisotropic conductivity and magnetic order below 290 K. Magnetotransport properties, nonzero Berry phase, small cyclotron mass, and the first-principles band structure calculations indicate the presence of Dirac fermions in Bi square nets. Quantum oscillations in the Hall channel suggest the presence of both electron and hole pockets, whereas Dirac and parabolic states coexist at the Fermi level.
Mehdian, H., E-mail: mehdian@khu.ac.ir; Hajisharifi, K., E-mail: std-hajisharifi@khu.ac.ir, E-mail: k.hajisharifi@gmail.com; Hasanbeigi, A., E-mail: hbeigi@khu.ac.ir, E-mail: ahbeigi@gmail.com [Department of Physics and Institute for Plasma Research, Kharazmi University, 49 Dr. Mofatteh Avenue, Tehran 15614 (Iran, Islamic Republic of)
2014-07-15
In this paper, quantum fluid equations together with Maxwell's equations are used to study the stability problem of non-parallel and non-relativistic plasma shells colliding over a background plasma at arbitrary angle, as a first step towards a microscopic understanding of the collision shocks. The calculations have been performed for all magnitude and directions of wave vectors. The colliding plasma shells in the vacuum region have been investigated in the previous works as a counter-streaming model. While, in the presence of background plasma (more realistic system), the colliding shells are mainly non-paralleled. The obtained results show that the presence of background plasma often suppresses the maximum growth rate of instabilities (in particular case, this behavior is contrary). It is also found that the largest maximum growth rate occurs for the two-stream instability of the configuration consisting of counter-streaming currents in a very dilute plasma background. The results derived in this study can be used to analyze the systems of three colliding plasma slabs, provided that the used coordinate system is stationary relative to the one of the particle slabs. The present analytical investigations can be applied to describe the quantum violent astrophysical phenomena such as white dwarf stars collision with other dense astrophysical bodies or supernova remnants. Moreover, at the limit of ??0, the obtained results described the classical (sufficiently dilute) events of colliding plasma shells such as gamma-ray bursts and flares in the solar winds.
Quantitative analytical model for magnetic reconnection in hall magnetohydrodynamics
Simakov, Andrei N
2008-01-01
Magnetic reconnection is of fundamental importance for laboratory and naturally occurring plasmas. Reconnection usually develops on time scales which are much shorter than those associated with classical collisional dissipation processes, and which are not fully understood. While such dissipation-independent (or 'fast') reconnection rates have been observed in particle and Hall magnetohydrodynamics (MHD) simulations and predicted analytically in electron MHD, a quantitative analytical theory of fast reconnection valid for arbitrary ion inertial lengths d{sub i} has been lacking. Here we propose such a theory without a guide field. The theory describes two-dimensional magnetic field diffusion regions, provides expressions for the reconnection rates, and derives a formal criterion for fast reconnection in terms of dissipation parameters and di. It also demonstrates that both open X-point and elongated diffusion regions allow dissipation-independent reconnection and reveals a possibility of strong dependence of the reconnection rates on d{sub i}.
Hall MHD Stability and Turbulence in Magnetically Accelerated Plasmas
H. R. Strauss
2012-11-27
The object of the research was to develop theory and carry out simulations of the Z pinch and plasma opening switch (POS), and compare with experimental results. In the case of the Z pinch, there was experimental evidence of ion kinetic energy greatly in excess of the ion thermal energy. It was thought that this was perhaps due to fine scale turbulence. The simulations showed that the ion energy was predominantly laminar, not turbulent. Preliminary studies of a new Z pinch experiment with an axial magnetic field were carried out. The axial magnetic is relevant to magneto - inertial fusion. These studies indicate the axial magnetic field makes the Z pinch more turbulent. Results were also obtained on Hall magnetohydrodynamic instability of the POS.
The Hall D solenoid helium refrigeration system at JLab
Laverdure, Nathaniel A.; Creel, Jonathan D.; Dixon, Kelly d.; Ganni, Venkatarao; Martin, Floyd D.; Norton, Robert O.; Radovic, Sasa
2014-01-01
Hall D, the new Jefferson Lab experimental facility built for the 12GeV upgrade, features a LASS 1.85 m bore solenoid magnet supported by a 4.5 K helium refrigerator system. This system consists of a CTI 2800 4.5 K refrigerator cold box, three 150 hp screw compressors, helium gas management and storage, and liquid helium and nitrogen storage for stand-alone operation. The magnet interfaces with the cryo refrigeration system through an LN2-shielded distribution box and transfer line system, both designed and fabricated by JLab. The distribution box uses a thermo siphon design to respectively cool four magnet coils and shields with liquid helium and nitrogen. We describe the salient design features of the cryo system and discuss our recent commissioning experience.
President Obama Talks Clean Energy At Facebook Town Hall | Department of
Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)
Energy At Facebook Town Hall President Obama Talks Clean Energy At Facebook Town Hall April 25, 2011 - 10:24am Addthis Ginny Simmons Ginny Simmons Former Managing Editor for Energy.gov, Office of Public Affairs What does this mean for me? We are investing in new technologies that will help us reduce our dependence on fossil fuels. By investing in STEM education, we are investing in our future. President Obama hosted a town hall at Facebook's headquarters last Wednesday to discuss the
TBA-0042 - In the Matter of Curtis Hall | Department of Energy
Office of Environmental Management (EM)
42 - In the Matter of Curtis Hall TBA-0042 - In the Matter of Curtis Hall This Decision considers two Appeals of an Initial Agency Decision (IAD) issued on March 15, 2007, by a Hearing Officer in the Department of Energy's (DOE) Office of Hearings and Appeals (OHA). The IAD addressed the merits of a whistleblower complaint filed by Curtis Hall against his former employer, Bechtel National, Inc. (BNI), under the Department of Energy's Contractor Employee Protection Program, 10 C.F.R. Part 708.
Omidi, Mahboubeh Faizabadi, Edris
2015-03-21
Magnetic susceptibility is investigated in a man-made elliptical quantum ring in the presence of Rashba spin-orbit interactions and the magnetic flux. It is shown that magnetic susceptibility as a function of magnetic flux changes between negative and positive signs periodically. The periodicity of the Aharonov-Bohm oscillations depends on the geometry of the region where magnetic field is applied, the eccentricity, and number of sites in each chain ring (the elliptical ring is composed of chain rings). The magnetic susceptibility sign can be reversed by tuning the Rashba spin-orbit strength as well. Both the magnetic susceptibility strength and sign can be controlled via external spin-orbit interactions, which can be exploited in spintronics and nanoelectronics.
Quantum Fuel Systems Technologies Worldwide Inc Quantum Technologies...
Open Energy Information (Open El) [EERE & EIA]
Fuel Systems Technologies Worldwide Inc Quantum Technologies Jump to: navigation, search Name: Quantum Fuel Systems Technologies Worldwide Inc (Quantum Technologies) Place: Irvine,...
U.S. Department of Energy (DOE) all webpages (Extended Search)
Not Magic...Quantum 1663 Los Alamos science and technology magazine Latest Issue:July 2016 past issues All Issues » submit Not Magic...Quantum A nascent commercial quantum computer has arrived at Los Alamos and may solve certain problems with such astonishing speed that it would be like pulling answers out of a hat. July 21, 2016 commercial quantum-computer processor The world's first commercial quantum-computer processor is smaller than a wristwatch and can evaluate more possibilities
Hong, Jiyun; Jeon, SuKyung; Kim, Janice J.; Devi, Diane; Chacon-Madrid, Kelly; Lee, Wynee; Koo, Seung Moh; Wildeman, Jurjen; Sfeir, Matthew Y.; Peteanu, Linda A.; Wen, Jin; Ma, Jing
2014-07-24
Oligomeric thiophenes are commonly-used components in organic electronics and solar cells. These molecules stack and/or aggregate readily under the processing conditions used to form thin films for these applications, significantly altering their optical and charge-transport properties. To determine how these effects depend on the substitution pattern of the thiophene main chains, nano-aggregates of three sexi-thiophene (6T) oligomers having different alkyl substitution patterns were formed using solvent poisoning techniques and studied using steady-state and time-resolved emission spectroscopy. The results indicate the substantial role played by the side-chain substituents in determining the emissive properties of these species. Both the measured spectral changes and their dependence on substitution are well modeled by combined quantum chemistry and molecular dynamics simulations. The simulations connect the side-chain-induced disorder, which determines the favorable chain packing configurations within the aggregates, with their measured electronic spectra.
Terent'ev, Ya. V.; Danilov, S. N.; Plank, H.; Loher, J.; Schuh, D.; Bougeard, D.; Weiss, D.; Ganichev, S. D.; Durnev, M. V.; Ivanov, S. V.; Tarasenko, S. A.; Rozhansky, I. V.; Yakovlev, D. R.
2015-09-21
We report on a magneto-photoluminescence (PL) study of Zeeman effect in Mn modulation-doped InAs/InGaAs/InAlAs quantum wells (QW). Two PL lines corresponding to the radiative recombination of photoelectrons with free and bound-on-Mn holes have been observed. In the presence of a magnetic field applied in the Faraday geometry, both lines split into two circularly polarized components. While temperature and magnetic field dependence of the splitting are well described by the Brillouin function, providing an evidence for exchange interaction with spin polarized manganese ions, the value of the splitting exceeds by two orders of magnitude the value of the giant Zeeman splitting estimated for the average Mn density in QW obtained by the secondary ion mass spectroscopy.
Hong, Jiyun; Sfeir, Matthew Y.; Jeon, SuKyung; Kim, Janice J.; Devi, Diane; Chacon-Madrid, Kelly; Lee, Wynee; Koo, Seung Moh; Wildeman, Jurjen; Peteanu, Linda A.; Wen, Jin; Ma, Jing
2014-11-13
Oligomeric thiophenes are commonly-used components in organic electronics and solar cells. These molecules stack and/or aggregate readily under the processing conditions used to form thin films for these applications, significantly altering their optical and charge-transport properties. To determine how these effects depend on the substitution pattern of the thiophene main chains, nano-aggregates of three sexi-thiophene (6T) oligomers having different alkyl substitution patterns were formed using solvent poisoning techniques and studied using steady-state and time-resolved emission spectroscopy. The results indicate the substantial role played by the side-chain substituents in determining the emissive properties of these species. Both the measured spectral changes and their dependence on substitution are well modeled by combined quantum chemistry and molecular dynamics simulations. The simulations connect the side-chain-induced disorder, which determines the favorable chain packing configurations within the aggregates, with their measured electronic spectra.
Kolmann, Stephen J.; D'Arcy, Jordan H.; Jordan, Meredith J. T.
2013-12-21
Quantum and anharmonic effects are investigated in H{sub 2}-Li{sup +}-benzene, a model for hydrogen adsorption in metal-organic frameworks and carbon-based materials. Three- and 8-dimensional quantum diffusion Monte Carlo (QDMC) and rigid-body diffusion Monte Carlo (RBDMC) simulations are performed on potential energy surfaces interpolated from electronic structure calculations at the M05-2X/6-31+G(d,p) and M05-2X/6-311+G(2df,p) levels of theory using a three-dimensional spline or a modified Shepard interpolation. These calculations investigate the intermolecular interactions in this system, with three- and 8-dimensional 0 K H{sub 2} binding enthalpy estimates, ?H{sub bind} (0 K), being 16.5 kJmol{sup ?1} and 12.4 kJmol{sup ?1}, respectively: 0.1 and 0.6 kJmol{sup ?1} higher than harmonic values. Zero-point energy effects are 35%of the value of ?H{sub bind} (0 K) at M05-2X/6-311+G(2df,p) and cannot be neglected; uncorrected electronic binding energies overestimate ?H{sub bind} (0 K) by at least 6 kJmol{sup ?1}. Harmonic intermolecular binding enthalpies can be corrected by treating the H{sub 2} helicopter and ferris wheel rotations as free and hindered rotations, respectively. These simple corrections yield results within 2% of the 8-dimensional anharmonic calculations. Nuclear ground state probability density histograms obtained from the QDMC and RBDMC simulations indicate the H{sub 2} molecule is delocalized above the Li{sup +}-benzene system at 0 K.
LEDS the focus of Monday's 10 a.m. Town Hall Meeting | OpenEI...
Open Energy Information (Open El) [EERE & EIA]
LEDS the focus of Monday's 10 a.m. Town Hall Meeting Home > Blogs > Graham7781's blog Graham7781's picture Submitted by Graham7781(2017) Super contributor 16 November, 2012 - 11:23...
Electron Cross-field Transport in a Low Power Cylindrical Hall Thruster
A. Smirnov; Y. Raitses; N.J. Fisch
2004-06-24
Conventional annular Hall thrusters become inefficient when scaled to low power. Cylindrical Hall thrusters, which have lower surface-to-volume ratio, are therefore more promising for scaling down. They presently exhibit performance comparable with conventional annular Hall thrusters. Electron cross-field transport in a 2.6 cm miniaturized cylindrical Hall thruster (100 W power level) has been studied through the analysis of experimental data and Monte Carlo simulations of electron dynamics in the thruster channel. The numerical model takes into account elastic and inelastic electron collisions with atoms, electron-wall collisions, including secondary electron emission, and Bohm diffusion. We show that in order to explain the observed discharge current, the electron anomalous collision frequency {nu}{sub B} has to be on the order of the Bohm value, {nu}{sub B} {approx} {omega}{sub c}/16. The contribution of electron-wall collisions to cross-field transport is found to be insignificant.
Town Hall Meeting October 1st, 2012 | OpenEI Community
Open Energy Information (Open El) [EERE & EIA]
Town Hall Meeting October 1st, 2012 Home > Blogs > Graham7781's blog Graham7781's picture Submitted by Graham7781(2017) Super contributor 19 September, 2012 - 13:40 OpenEI Town...
The Honoradle':Rudolf Juiliani City'Hall New York, New York I0007
Office of Legacy Management (LM)
Wasthgton, DC 20585 ' ,,' . .' . . s ,' FEi,l 6 jg& ,. . . ' I s. i ,-' .' ,, -. ,. The Honoradle':Rudolf Juiliani City'Hall New York, New York I0007 i ', 1" Dear ...
Beam Position Reconstruction for the g2p Experiment in Hall A...
Office of Scientific and Technical Information (OSTI)
Journal Article: Beam Position Reconstruction for the g2p Experiment in Hall A at Jefferson Lab Citation Details In-Document Search Title: Beam Position Reconstruction for the g2p...
After 105 Years, Historic City Hall in West Des Moines, Iowa...
Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)
... credit: Vicky Saylor EECBG Success Story: After 105 Years, Historic City Hall in West Des Moines, Iowa Goes Green Using money from the Energy Efficiency Block Grant Program, St. ...
Micromagnetic study of auto-oscillation modes in spin-Hall nano-oscillators
Ulrichs, H. Demidov, V. E.; Demokritov, S. O.
2014-01-27
We present a numerical study of magnetization dynamics in a recently introduced spin torque nano-oscillator, whose operational principle relies on the spin-Hall effect—spin-Hall nano-oscillators. Our numerical results show good agreement with the experimentally observed behaviors and provide detailed information about the features of the primary auto-oscillation mode observed in the experiments. They also clarify the physical nature of the secondary auto-oscillation mode, which was experimentally observed under certain conditions only.
Concept for Reducing Hall Thruster Chamber Wall Erosion with Lithium Vapor
U.S. Department of Energy (DOE) all webpages (Extended Search)
Shielding. | Princeton Plasma Physics Lab Concept for Reducing Hall Thruster Chamber Wall Erosion with Lithium Vapor Shielding. Hall thrusters have been established as a compact and reliable means for satellite applications. Erosion of the surfaces of such thrusters, however, has been a serious factor in limiting their lifetimes. Replacing eroded surfaces by replenishing them is generally unattractive because of the mechanical complexity and added weight that could be required. This
Kaszlikowski, Dagomir; Lim, J.Y.; Willeboordse, Frederick H.; Oi, D.K.L.; Gopinathan, Ajay; Kwek, L.C.
2005-01-01
We present a generalized tomographic quantum key distribution protocol in which the two parties share a Bell diagonal mixed state of two qubits. We show that if an eavesdropper performs a coherent measurement on many quantum ancilla states simultaneously, classical methods of secure key distillation are less effective than quantum entanglement distillation protocols. We also show that certain classes of Bell diagonal states are resistant to any attempt at incoherent eavesdropping.