National Library of Energy BETA

Sample records for oz kilograms uranium

  1. Cecilia Muñoz

    Energy.gov [DOE]

    Cecilia Muñoz is the Assistant to the President and Director of the Domestic Policy Council, which coordinates the domestic policy-making process in the White House. 

  2. Italy Highly Enriched Uranium and Plutonium Removals | National...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Highly Enriched Uranium and Plutonium Removals March 24, 2014 Italy has been a global ... more than 100 kilograms of highly enriched uranium (HEU) and separated plutonium. ...

  3. uranium

    National Nuclear Security Administration (NNSA)

    to prepare surplus plutonium for disposition, and readiness to begin the Second Uranium Cycle, to start processing spent nuclear fuel.

    H Canyon is also being...

  4. Uranium

    SciTech Connect (OSTI)

    Gabelman, J.W.; Chenoweth, W.L.; Ingerson, E.

    1981-10-01

    The uranium production industry is well into its third recession during the nuclear era (since 1945). Exploration is drastically curtailed, and many staffs are being reduced. Historical market price production trends are discussed. A total of 3.07 million acres of land was acquired for exploration; drastic decrease. Surface drilling footage was reduced sharply; an estimated 250 drill rigs were used by the uranium industry during 1980. Land acquisition costs increased 8%. The domestic reserve changes are detailed by cause: exploration, re-evaluation, or production. Two significant discoveries of deposits were made in Mohave County, Arizona. Uranium production during 1980 was 21,850 short tons U/sub 3/O/sub 8/; an increase of 17% from 1979. Domestic and foreign exploration highlights were given. Major producing areas for the US are San Juan basin, Wyoming basins, Texas coastal plain, Paradox basin, northeastern Washington, Henry Mountains, Utah, central Colorado, and the McDermitt caldera in Nevada and Oregon. 3 figures, 8 tables. (DP)

  5. Simulations of the OzDES AGN reverberation mapping project

    SciTech Connect (OSTI)

    King, Anthea L.; Martini, Paul; Davis, Tamara M.; Denney, K. D.; Kochanek, C. S.; Peterson, Bradley M.; Skielboe, Andreas; Vestergaard, Marianne; Huff, Eric; Watson, Darach; Banerji, Manda; McMahon, Richard; Sharp, Rob; Lidman, C.

    2015-08-26

    As part of the Australian spectroscopic dark energy survey (OzDES) we are carrying out a large-scale reverberation mapping study of ~500 quasars over five years in the 30 deg2 area of the Dark Energy Survey (DES) supernova fields. These quasars have redshifts ranging up to 4 and have apparent AB magnitudes between 16.8 mag < r < 22.5 mag. The aim of the survey is to measure time lags between fluctuations in the quasar continuum and broad emission-line fluxes of individual objects in order to measure black hole masses for a broad range of active galactic nuclei (AGN) and constrain the radius–luminosity (R–L) relationship. Here we investigate the expected efficiency of the OzDES reverberation mapping campaign and its possible extensions. We expect to recover lags for ~35–45 % of the quasars. AGN with shorter lags and greater variability are more likely to yield a lag measurement, and objects with lags ≲6 months or ~1 yr are expected to be recovered the most accurately. The baseline OzDES reverberation mapping campaign is predicted to produce an unbiased measurement of the R–L relationship parameters for Hβ, MgIIλ2798, and C IVλ1549. As a result, extending the baseline survey by either increasing the spectroscopic cadence, extending the survey season, or improving the emission-line flux measurement accuracy will significantly improve the R–L parameter constraints for all broad emission lines.

  6. Simulations of the OzDES AGN reverberation mapping project

    DOE PAGES-Beta [OSTI]

    King, Anthea L.; Martini, Paul; Davis, Tamara M.; Denney, K. D.; Kochanek, C. S.; Peterson, Bradley M.; Skielboe, Andreas; Vestergaard, Marianne; Huff, Eric; Watson, Darach; et al

    2015-08-26

    As part of the Australian spectroscopic dark energy survey (OzDES) we are carrying out a large-scale reverberation mapping study of ~500 quasars over five years in the 30 deg2 area of the Dark Energy Survey (DES) supernova fields. These quasars have redshifts ranging up to 4 and have apparent AB magnitudes between 16.8 mag < r < 22.5 mag. The aim of the survey is to measure time lags between fluctuations in the quasar continuum and broad emission-line fluxes of individual objects in order to measure black hole masses for a broad range of active galactic nuclei (AGN) and constrainmore » the radius–luminosity (R–L) relationship. Here we investigate the expected efficiency of the OzDES reverberation mapping campaign and its possible extensions. We expect to recover lags for ~35–45 % of the quasars. AGN with shorter lags and greater variability are more likely to yield a lag measurement, and objects with lags ≲6 months or ~1 yr are expected to be recovered the most accurately. The baseline OzDES reverberation mapping campaign is predicted to produce an unbiased measurement of the R–L relationship parameters for Hβ, MgIIλ2798, and C IVλ1549. As a result, extending the baseline survey by either increasing the spectroscopic cadence, extending the survey season, or improving the emission-line flux measurement accuracy will significantly improve the R–L parameter constraints for all broad emission lines.« less

  7. EA-1255: Project Partnership Transportation of Foreign-Owned Enriched Uranium from the Republic of Georgia

    Office of Energy Efficiency and Renewable Energy (EERE)

    This EA evaluates the environmental impacts for the proposal to transport 5.26 kilograms of enriched uranium-23 5 in the form of nuclear fuel, from the Republic of Georgia to the United Kingdom.

  8. EA-1123: Transfer of Normal and Low-Enriched Uranium Billets to the United Kingdom, Hanford Site, Richland, Washington

    Office of Energy Efficiency and Renewable Energy (EERE)

    This EA evaluates the environmental impacts of the proposal to transfer approximately 710,000 kilograms (1,562,000 pounds) of unneeded normal and low-enriched uranium to the United Kingdom; thus,...

  9. Conversion of ethanol to 1,3-butadiene over Na doped ZnxZryOz...

    Office of Scientific and Technical Information (OSTI)

    Conversion of ethanol to 1,3-butadiene over Na doped ZnxZryOz mixed metal oxides Citation Details In-Document Search Title: Conversion of ethanol to 1,3-butadiene over Na doped ...

  10. US, Kazakhstan Cooperate to Eliminate Highly Enriched Uranium | National

    National Nuclear Security Administration (NNSA)

    Nuclear Security Administration | (NNSA) US, Kazakhstan Cooperate to Eliminate Highly Enriched Uranium January 07, 2015 WASHINGTON D.C - The Department of Energy's National Nuclear Security Administration (DOE/NNSA) announced today the removal of 36 kilograms (approximately 80 pounds) of highly enriched uranium (HEU) spent fuel from the Institute of Nuclear Physics (INP) in Almaty, Kazakhstan. The HEU was transported via two air shipments to a secure facility in Russia for permanent

  11. URANIUM ALLOYS

    DOE Patents [OSTI]

    Colbeck, E.W.

    1959-12-29

    A uranium alloy is reported containing from 0.1 to 5 per cent by weight of molybdenum and from 0.1 to 5 per cent by weight of silicon, the balance being uranium.

  12. Secret Mission to Remove Highly Enriched Uranium Spent Nuclear Fuel from

    National Nuclear Security Administration (NNSA)

    Uzbekistan Successfully Completed | National Nuclear Security Administration | (NNSA) Secret Mission to Remove Highly Enriched Uranium Spent Nuclear Fuel from Uzbekistan Successfully Completed April 20, 2006 Four Shipments Have Been Sent to a Secure Facility in Russia WASHINGTON, D.C. -- The Department of Energy's National Nuclear Security Administration (NNSA) announced today that 63 kilograms (139 pounds) of highly enriched uranium (HEU) in spent nuclear fuel were safely and securely

  13. Active neutron multiplicity counting of bulk uranium

    SciTech Connect (OSTI)

    Ensslin, N.; Krick, M.S.; Langner, D.G.; Miller, M.C. )

    1991-01-01

    This paper describes a new nondestructive assay technique being developed to assay bulk uranium containing kilogram quantities of {sup 235}U. The new technique uses neutron multiplicity analysis of data collected with a coincidence counter outfitted with AmLi neutron sources. The authors have calculated the expected neutron multiplicity count rate and assay precision for this technique and will report on its expected performance as a function of detector design characteristics, {sup 235}U sample mass, AmLi source strength, and source-to-sample coupling.

  14. Disposition of Uranium Oxide From Conversion of Depleted Uranium...

    Energy Savers

    Disposition of Uranium Oxide From Conversion of Depleted Uranium Hexafluoride Disposition of Uranium Oxide From Conversion of Depleted Uranium Hexafluoride Disposition of Uranium ...

  15. URANIUM COMPOSITIONS

    DOE Patents [OSTI]

    Allen, N.P.; Grogan, J.D.

    1959-05-12

    This patent relates to high purity uranium alloys characterized by improved stability to thermal cycling and low thermal neutron absorption. The high purity uranium alloy contains less than 0.1 per cent by weight in total amount of any ore or more of the elements such as aluminum, silicon, phosphorous, tin, lead, bismuth, niobium, and zinc.

  16. OzDES multifibre spectroscopy for the Dark Energy Survey: First-year operation and results

    SciTech Connect (OSTI)

    Yuan, Fang

    2015-07-29

    The Australian Dark Energy Survey (OzDES) is a five-year, 100-night, spectroscopic survey on the Anglo-Australian Telescope, whose primary aim is to measure redshifts of approximately 2500 Type Ia supernovae host galaxies over the redshift range 0.1 < z < 1.2, and derive reverberation-mapped black hole masses for approximately 500 active galactic nuclei and quasars over 0.3 < z < 4.5. This treasure trove of data forms a major part of the spectroscopic follow-up for the Dark Energy Survey for which we are also targeting cluster galaxies, radio galaxies, strong lenses, and unidentified transients, as well as measuring luminous red galaxies and emission line galaxies to help calibrate photometric redshifts. Here, we present an overview of the OzDES programme and our first-year results. Between 2012 December and 2013 December, we observed over 10 000 objects and measured more than 6 000 redshifts. Our strategy of retargeting faint objects across many observing runs has allowed us to measure redshifts for galaxies as faint as mr = 25 mag. We outline our target selection and observing strategy, quantify the redshift success rate for different types of targets, and discuss the implications for our main science goals. In conclusion, we highlight a few interesting objects as examples of the fortuitous yet not totally unexpected discoveries that can come from such a large spectroscopic survey.

  17. OzDES multifibre spectroscopy for the Dark Energy Survey: First-year operation and results

    DOE PAGES-Beta [OSTI]

    Yuan, Fang; Plazas, A. A.; Lidman, C.; Davis, T. M.; Childress, M.; Abdalla, F. B.

    2015-07-29

    OzDES is a five-year, 100-night, spectroscopic survey on the Anglo-Australian Telescope, whose primary aim is to measure redshifts of approximately 2,500 Type Ia supernovae host galaxies over the redshift range 0.1 morehelp calibrate photometric redshifts. Here we present an overview of the OzDES program and our first-year results. Between Dec 2012 and Dec 2013, we observed over 10,000 objects and measured more than 6,000 redshifts. Our strategy of retargeting faint objects across many observing runs has allowed us to measure redshifts for galaxies as faint as mr = 25 mag. We outline our target selection and observing strategy, quantify the redshift success rate for different types of targets, and discuss the implications for our main science goals. Finally, we highlight a few interesting objects as examples of the fortuitous yet not totally unexpected discoveries that can come from such a large spectroscopic survey.less

  18. OzDES multifibre spectroscopy for the Dark Energy Survey: First-year operation and results

    DOE PAGES-Beta [OSTI]

    Yuan, Fang

    2015-07-29

    The Australian Dark Energy Survey (OzDES) is a five-year, 100-night, spectroscopic survey on the Anglo-Australian Telescope, whose primary aim is to measure redshifts of approximately 2500 Type Ia supernovae host galaxies over the redshift range 0.1 < z < 1.2, and derive reverberation-mapped black hole masses for approximately 500 active galactic nuclei and quasars over 0.3 < z < 4.5. This treasure trove of data forms a major part of the spectroscopic follow-up for the Dark Energy Survey for which we are also targeting cluster galaxies, radio galaxies, strong lenses, and unidentified transients, as well as measuring luminous red galaxiesmore » and emission line galaxies to help calibrate photometric redshifts. Here, we present an overview of the OzDES programme and our first-year results. Between 2012 December and 2013 December, we observed over 10 000 objects and measured more than 6 000 redshifts. Our strategy of retargeting faint objects across many observing runs has allowed us to measure redshifts for galaxies as faint as mr = 25 mag. We outline our target selection and observing strategy, quantify the redshift success rate for different types of targets, and discuss the implications for our main science goals. In conclusion, we highlight a few interesting objects as examples of the fortuitous yet not totally unexpected discoveries that can come from such a large spectroscopic survey.« less

  19. Uranium industry annual 1997

    SciTech Connect (OSTI)

    1998-04-01

    This report provides statistical data on the U.S. uranium industry`s activities relating to uranium raw materials and uranium marketing.

  20. JACKETING URANIUM

    DOE Patents [OSTI]

    Saller, H.A.; Keeler, J.R.

    1959-07-14

    The bonding to uranium of sheathing of iron or cobalt, or nickel, or alloys thereof is described. The bonding is accomplished by electro-depositing both surfaces to be joined with a coating of silver and amalgamating or alloying the silver layer with mercury or indium. Then the silver alloy is homogenized by exerting pressure on an assembly of the uranium core and the metal jacket, reducing the area of assembly and heating the assembly to homogenize by diffusion.

  1. Uranium enrichment

    SciTech Connect (OSTI)

    Not Available

    1991-04-01

    This book presents the GAO's views on the Department of Energy's (DOE) program to develop a new uranium enrichment technology, the atomic vapor laser isotope separation process (AVLIS). Views are drawn from GAO's ongoing review of AVLIS, in which the technical, program, and market issues that need to be addressed before an AVLIS plant is built are examined.

  2. Uranium industry annual 1996

    SciTech Connect (OSTI)

    1997-04-01

    The Uranium Industry Annual 1996 (UIA 1996) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1996 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. Data on uranium raw materials activities for 1987 through 1996 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2006, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. A feature article, The Role of Thorium in Nuclear Energy, is included. 24 figs., 56 tabs.

  3. Uranium enrichment

    SciTech Connect (OSTI)

    Not Available

    1991-08-01

    This paper reports that in 1990 the Department of Energy began a two-year project to illustrate the technical and economic feasibility of a new uranium enrichment technology-the atomic vapor laser isotope separation (AVLIS) process. GAO believes that completing the AVLIS demonstration project will provide valuable information about the technical viability and cost of building an AVLIS plant and will keep future plant construction options open. However, Congress should be aware that DOE still needs to adequately demonstrate AVLIS with full-scale equipment and develop convincing cost projects. Program activities, such as the plant-licensing process, that must be completed before a plant is built, could take many years. Further, an updated and expanded uranium enrichment analysis will be needed before any decision is made about building an AVLIS plant. GAO, which has long supported legislation that would restructure DOE's uranium enrichment program as a government corporation, encourages DOE's goal of transferring AVLIS to the corporation. This could reduce the government's financial risk and help ensure that the decision to build an AVLIS plant is based on commercial concerns. DOE, however, has no alternative plans should the government corporation not be formed. Further, by curtailing a planned public access program, which would have given private firms an opportunity to learn about the technology during the demonstration project, DOE may limit its ability to transfer AVLIS to the private sector.

  4. Uranium Marketing Annual Report -

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    9. Foreign purchases of uranium by U.S. suppliers and owners and operators of U.S. ... Foreign Purchase: A uranium purchase of foreign-origin uranium from a firm located outside ...

  5. COPPER COATED URANIUM ARTICLE

    DOE Patents [OSTI]

    Gray, A.G.

    1958-10-01

    Various techniques and methods for obtaining coppercoated uranium are given. Specifically disclosed are a group of complex uranium coatings having successive layers of nickel, copper, lead, and tin.

  6. Uranium Marketing Annual Report -

    Annual Energy Outlook

    2. Maximum anticipated uranium market requirements of owners and operators of U.S. ... Source: U.S. Energy Information Administration: Form EIA-858 "Uranium Marketing Annual ...

  7. Uranium Marketing Annual Report -

    Annual Energy Outlook

    a. Uranium purchased by owners and operators of U.S. civilian nuclear power reactors ... 1 Distribution divides total quantity of uranium delivered (with a price) into eight ...

  8. Uranium Industry Annual, 1992

    SciTech Connect (OSTI)

    Not Available

    1993-10-28

    The Uranium Industry Annual provides current statistical data on the US uranium industry for the Congress, Federal and State agencies, the uranium and electric utility industries, and the public. The feature article, ``Decommissioning of US Conventional Uranium Production Centers,`` is included. Data on uranium raw materials activities including exploration activities and expenditures, resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities including domestic uranium purchases, commitments by utilities, procurement arrangements, uranium imports under purchase contracts and exports, deliveries to enrichment suppliers, inventories, secondary market activities, utility market requirements, and uranium for sale by domestic suppliers are presented in Chapter 2.

  9. URANIUM EXTRACTION

    DOE Patents [OSTI]

    Harrington, C.D.; Opie, J.V.

    1958-07-01

    The recovery of uranium values from uranium ore such as pitchblende is described. The ore is first dissolved in nitric acid, and a water soluble nitrate is added as a salting out agent. The resulting feed solution is then contacted with diethyl ether, whereby the bulk of the uranyl nitrate and a portion of the impurities are taken up by the ether. This acid ether extract is then separated from the aqueous raffinate, and contacted with water causing back extractioa of the uranyl nitrate and impurities into the water to form a crude liquor. After separation from the ether extract, this crude liquor is heated to about 118 deg C to obtain molten uranyl nitrate hexahydratc. After being slightly cooled the uranyl nitrate hexahydrate is contacted with acid free diethyl ether whereby the bulk of the uranyl nitrate is dissolved into the ethcr to form a neutral ether solution while most of the impurities remain in the aqueous waste. After separation from the aqueous waste, the resultant ether solution is washed with about l0% of its volume of water to free it of any dissolved impurities and is then contacted with at least one half its volume of water whereby the uranyl nitrate is extracted into the water to form an aqueous product solution.

  10. PRODUCTION OF URANIUM MONOCARBIDE

    DOE Patents [OSTI]

    Powers, R.M.

    1962-07-24

    A method of making essentially stoichiometric uranium monocarbide by pelletizing a mixture of uranium tetrafluoride, silicon, and carbon and reacting the mixture at a temperature of approximately 1500 to 1700 deg C until the reaction goes to completion, forming uranium monocarbide powder and volatile silicon tetrafluoride, is described. The powder is then melted to produce uranium monocarbide in massive form. (AEC)

  11. PRODUCTION OF URANIUM TETRACHLORIDE

    DOE Patents [OSTI]

    Calkins, V.P.

    1958-12-16

    A process is descrlbed for the production of uranium tetrachloride by contacting uranlum values such as uranium hexafluoride, uranlum tetrafluoride, or uranium oxides with either aluminum chloride, boron chloride, or sodium alumlnum chloride under substantially anhydrous condltlons at such a temperature and pressure that the chlorldes are maintained in the molten form and until the uranium values are completely converted to uranlum tetrachloride.

  12. DECONTAMINATION OF URANIUM

    DOE Patents [OSTI]

    Feder, H.M.; Chellew, N.R.

    1958-02-01

    This patent deals with the separation of rare earth and other fission products from neutron bombarded uranium. This is accomplished by melting the uranium in contact with either thorium oxide, maguesium oxide, alumnum oxide, beryllium oxide, or uranium dioxide. The melting is preferably carried out at from 1150 deg to 1400 deg C in an inert atmosphere, such as argon or helium. During this treatment a scale of uranium dioxide forms on the uranium whtch contains most of the fission products.

  13. 2015 Domestic Uranium Production Report

    U.S. Energy Information Administration (EIA) (indexed site)

    of the U.S. uranium industry, 1993-2015" ,"Exploration and Development Surface ","Exploration and Development Drilling","Mine Production of Uranium ","Uranium Concentrate ...

  14. URANIUM DECONTAMINATION

    DOE Patents [OSTI]

    Buckingham, J.S.; Carroll, J.L.

    1959-12-22

    A process is described for reducing the extractability of ruthenium, zirconium, and niobium values into hexone contained in an aqueous nitric acid uranium-containing solution. The solution is made acid-deficient, heated to between 55 and 70 deg C, and at that temperature a water-soluble inorganic thiosulfate is added. By this, a precipitate is formed which carries the bulk of the ruthenium, and the remainder of the ruthenium as well as the zirconium and niobium are converted to a hexone-nonextractable form. The rutheniumcontaining precipitate can either be removed from the solu tion or it can be dissolved as a hexone-non-extractable compound by the addition of sodium dichromate prior to hexone extraction.

  15. Occurrence of Metastudtite (Uranium Peroxide Dihydrate) at a FUSRAP Site

    SciTech Connect (OSTI)

    Young, C.M.; Nelson, K.A.; Stevens, G.T.; Grassi, V.J.

    2006-07-01

    correspond to the footprints of the former production buildings. U{sub nat} concentrations in soil exceed the investigative screening value, 518 Becquerels per kilogram (Bq/kg) [14 pico-curies per gram (pCi/g)], to an approximate depth of 2.5 m. This depth corresponds to the depth of buried demolition debris from the uranium processing site. Aqueous-phase uranium has also been confirmed at the site and appears to coincide with uranium-impacted soils. Soil textures in the impacted area consist mainly of fine-grained silty sand and rubble. The hydraulic conductivities range from 5 E-6 to 1 E-5 m/s. Groundwater seepage velocity ranges from 0.003 m/day to 0.7 m/day in the impacted area. Groundwater investigations conducted throughout the FUSRAP site indicate that redox conditions in the shallow groundwater are reducing, with low dissolved oxygen concentrations, as would be expected underlying a petrochemical facility. In contrast, groundwater in the uranium source area is an oxidizing microenvironment, with elevated pH conditions, despite the presence of free-phase liquid hydrocarbons in close proximity. Dissolved oxygen is elevated in the uranium source area, which may be due to the presence of metastudtite. Metastudtite has been shown to produce hydrogen peroxide through the process of alpha irradiation of water molecules. Uranium peroxide dihydrate is more soluble in water than other hexavalent mineral forms. The literature suggests that in the absence of hydrogen peroxide, metastudtite is unstable in groundwater. Although the presence of metastudtite in the source area may have caused locally high levels of aqueous-phase uranium to form, the uranium ions may not be mobile outside of this small area because of significant abrupt changes in geochemical conditions. The ongoing groundwater investigation includes tasks to confirm the presence of metastudtite and hydrogen peroxide, and monitor for seasonal geochemical or hydrogeologic changes. (authors)

  16. Uranium industry annual 1998

    SciTech Connect (OSTI)

    1999-04-22

    The Uranium Industry Annual 1998 (UIA 1998) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. It contains data for the period 1989 through 2008 as collected on the Form EIA-858, ``Uranium Industry Annual Survey.`` Data provides a comprehensive statistical characterization of the industry`s activities for the survey year and also include some information about industry`s plans and commitments for the near-term future. Data on uranium raw materials activities for 1989 through 1998, including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment, are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2008, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, and uranium inventories, are shown in Chapter 2. The methodology used in the 1998 survey, including data edit and analysis, is described in Appendix A. The methodologies for estimation of resources and reserves are described in Appendix B. A list of respondents to the ``Uranium Industry Annual Survey`` is provided in Appendix C. The Form EIA-858 ``Uranium Industry Annual Survey`` is shown in Appendix D. For the readers convenience, metric versions of selected tables from Chapters 1 and 2 are presented in Appendix E along with the standard conversion factors used. A glossary of technical terms is at the end of the report. 24 figs., 56 tabs.

  17. Uranium industry annual 1994

    SciTech Connect (OSTI)

    1995-07-05

    The Uranium Industry Annual 1994 (UIA 1994) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing during that survey year. The UIA 1994 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. It contains data for the 10-year period 1985 through 1994 as collected on the Form EIA-858, ``Uranium Industry Annual Survey.`` Data collected on the ``Uranium Industry Annual Survey`` (UIAS) provide a comprehensive statistical characterization of the industry`s activities for the survey year and also include some information about industry`s plans and commitments for the near-term future. Where aggregate data are presented in the UIA 1994, care has been taken to protect the confidentiality of company-specific information while still conveying accurate and complete statistical data. A feature article, ``Comparison of Uranium Mill Tailings Reclamation in the United States and Canada,`` is included in the UIA 1994. Data on uranium raw materials activities including exploration activities and expenditures, EIA-estimated resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities, including purchases of uranium and enrichment services, and uranium inventories, enrichment feed deliveries (actual and projected), and unfilled market requirements are shown in Chapter 2.

  18. Process for electroslag refining of uranium and uranium alloys

    DOE Patents [OSTI]

    Lewis, P.S. Jr.; Agee, W.A.; Bullock, J.S. IV; Condon, J.B.

    1975-07-22

    A process is described for electroslag refining of uranium and uranium alloys wherein molten uranium and uranium alloys are melted in a molten layer of a fluoride slag containing up to about 8 weight percent calcium metal. The calcium metal reduces oxides in the uranium and uranium alloys to provide them with an oxygen content of less than 100 parts per million. (auth)

  19. URANIUM RECOVERY PROCESS

    DOE Patents [OSTI]

    Bailes, R.H.; Long, R.S.; Olson, R.S.; Kerlinger, H.O.

    1959-02-10

    A method is described for recovering uranium values from uranium bearing phosphate solutions such as are encountered in the manufacture of phosphate fertilizers. The solution is first treated with a reducing agent to obtain all the uranium in the tetravalent state. Following this reduction, the solution is treated to co-precipitate the rcduced uranium as a fluoride, together with other insoluble fluorides, thereby accomplishing a substantially complete recovery of even trace amounts of uranium from the phosphate solution. This precipitate usually takes the form of a complex fluoride precipitate, and after appropriate pre-treatment, the uranium fluorides are leached from this precipitate and rccovered from the leach solution.

  20. PRODUCTION OF PURIFIED URANIUM

    DOE Patents [OSTI]

    Burris, L. Jr.; Knighton, J.B.; Feder, H.M.

    1960-01-26

    A pyrometallurgical method for processing nuclear reactor fuel elements containing uranium and fission products and for reducing uranium compound; to metallic uranium is reported. If the material proccssed is essentially metallic uranium, it is dissolved in zinc, the sulution is cooled to crystallize UZn/sub 9/ , and the UZn/sub 9/ is distilled to obtain uranium free of fission products. If the material processed is a uranium compound, the sollvent is an alloy of zinc and magnesium and the remaining steps are the same.

  1. Method of recovering uranium hexafluoride

    DOE Patents [OSTI]

    Schuman, S.

    1975-12-01

    A method of recovering uranium hexafluoride from gaseous mixtures which comprises adsorbing said uranium hexafluoride on activated carbon is described.

  2. METHOD FOR PURIFYING URANIUM

    DOE Patents [OSTI]

    Knighton, J.B.; Feder, H.M.

    1960-04-26

    A process is given for purifying a uranium-base nuclear material. The nuclear material is dissolved in zinc or a zinc-magnesium alloy and the concentration of magnesium is increased until uranium precipitates.

  3. Uranium Marketing Annual Report -

    Annual Energy Outlook

    7. Uranium purchased by owners and operators of U.S. civilian nuclear power reactors by ... Weighted-average prices are not adjusted for inflation. UF6 is uranium hexafluoride. The ...

  4. Uranium Marketing Annual Report

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Notes: Totals may not equal sum of components because of independent rounding. Foreign purchase: A uranium purchase of foreign-origin uranium from a firm located outside the United ...

  5. Nuclear Fuel Facts: Uranium

    Energy.gov [DOE]

    Uranium is a silvery-white metallic chemical element in the periodic table, with atomic number 92. It is assigned the chemical symbol U. A uranium atom has 92 protons and 92 electrons, of which 6...

  6. Uranium Marketing Annual Report -

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    0. Contracted purchases of uranium from suppliers by owners and operators of U.S. civilian ... Source: U.S. Energy Information Administration, Form EIA-858 "Uranium Marketing Annual ...

  7. Uranium Marketing Annual Report -

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    3. Uranium purchased by owners and operators of U.S. civilian nuclear power reactors by ... Source: U.S. Energy Information Administration: Form EIA-858 "Uranium Marketing Annual ...

  8. Uranium Marketing Annual Report -

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    0. U.S. broker and trader purchases of uranium by origin, supplier, and delivery year, ... 2012 2013 2014 2015 Received U.S.-origin uranium Purchases 1,668 1,194 W 410 2,702 ...

  9. Uranium Marketing Annual Report -

    Gasoline and Diesel Fuel Update

    Uranium in fuel assemblies loaded into U.S. civilian nuclear power reactors by year, 2011-15 thousand pounds U3O8 equivalent Origin of uranium 2011 2012 2013 2014 P2015 ...

  10. Uranium Marketing Annual Report -

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    5. Shipments of uranium feed by owners and operators of U.S. civilian nuclear power ... Source: U.S. Energy Information Administration: Form EIA-858 "Uranium Marketing Annual ...

  11. Uranium Marketing Annual Report -

    Annual Energy Outlook

    Inventories of uranium by owner as of end of year, 2011-15 thousand pounds U3O8 equivalent Inventories at the end of the year Owner of uranium inventory 2011 2012 2013 2014 P2015 ...

  12. Uranium Marketing Annual Report -

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    natural and enriched uranium by material type as of end of year, 2011-15 thousand pounds U3O8 equivalent Inventories at the end of the year Type of uranium inventory owned by 2011 ...

  13. NICKEL COATED URANIUM ARTICLE

    DOE Patents [OSTI]

    Gray, A.G.

    1958-10-01

    Nickel coatings on uranium and various methods of obtaining such coatings are described. Specifically disclosed are such nickel or nickel alloy layers as barriers between uranium and aluminum- silicon, chromium, or copper coatings.

  14. PREPARATION OF URANIUM HEXAFLUORIDE

    DOE Patents [OSTI]

    Lawroski, S.; Jonke, A.A.; Steunenberg, R.K.

    1959-10-01

    A process is described for preparing uranium hexafluoride from carbonate- leach uranium ore concentrate. The briquetted, crushed, and screened concentrate is reacted with hydrogen fluoride in a fluidized bed, and the uranium tetrafluoride formed is mixed with a solid diluent, such as calcium fluoride. This mixture is fluorinated with fluorine and an inert diluent gas, also in a fluidized bed, and the uranium hexafluoride obtained is finally purified by fractional distillation.

  15. PROCESS OF PURIFYING URANIUM

    DOE Patents [OSTI]

    Seaborg, G.T.; Orlemann, E.F.; Jensen, L.H.

    1958-12-23

    A method of obtaining substantially pure uranium from a uranium composition contaminated with light element impurities such as sodium, magnesium, beryllium, and the like is described. An acidic aqueous solution containing tetravalent uranium is treated with a soluble molybdate to form insoluble uranous molybdate which is removed. This material after washing is dissolved in concentrated nitric acid to obtaln a uranyl nitrate solution from which highly purified uranium is obtained by extraction with ether.

  16. Uranium industry annual 1995

    SciTech Connect (OSTI)

    1996-05-01

    The Uranium Industry Annual 1995 (UIA 1995) provides current statistical data on the U.S. uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1995 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. It contains data for the period 1986 through 2005 as collected on the Form EIA-858, ``Uranium Industry Annual Survey``. Data collected on the ``Uranium Industry Annual Survey`` provide a comprehensive statistical characterization of the industry`s plans and commitments for the near-term future. Where aggregate data are presented in the UIA 1995, care has been taken to protect the confidentiality of company-specific information while still conveying accurate and complete statistical data. Data on uranium raw materials activities for 1986 through 1995 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2005, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. The methodology used in the 1995 survey, including data edit and analysis, is described in Appendix A. The methodologies for estimation of resources and reserves are described in Appendix B. A list of respondents to the ``Uranium Industry Annual Survey`` is provided in Appendix C. For the reader`s convenience, metric versions of selected tables from Chapters 1 and 2 are presented in Appendix D along with the standard conversion factors used. A glossary of technical terms is at the end of the report. 14 figs., 56 tabs.

  17. PRODUCTION OF URANIUM TETRAFLUORIDE

    DOE Patents [OSTI]

    Shaw, W.E.; Spenceley, R.M.; Teetzel, F.M.

    1959-08-01

    A method is presented for producing uranium tetrafluoride from the gaseous hexafluoride by feeding the hexafluoride into a high temperature zone obtained by the recombination of molecularly dissociated hydrogen. The molal ratio of hydrogen to uranium hexnfluoride is preferably about 3 to 1. Uranium tetrafluoride is obtained in a finely divided, anhydrous state.

  18. Final Uranium Leasing Program Programmatic Environmental Impact...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Uranium Leasing Program Programmatic Environmental Impact Statement (PEIS) Final Uranium Leasing Program Programmatic Environmental Impact Statement (PEIS) Uranium Leasing ...

  19. U.S. Uranium Reserves Estimates

    Gasoline and Diesel Fuel Update

    Major U.S. Uranium Reserves

  20. URANIUM SEPARATION PROCESS

    DOE Patents [OSTI]

    Hyde, E.K.; Katzin, L.I.; Wolf, M.J.

    1959-07-14

    The separation of uranium from a mixture of uranium and thorium by organic solvent extraction from an aqueous solution is described. The uranium is separrted from an aqueous mixture of uranium and thorium nitrates 3 N in nitric acid and containing salting out agents such as ammonium nitrate, so as to bring ihe total nitrate ion concentration to a maximum of about 8 N by contacting the mixture with an immiscible aliphatic oxygen containing organic solvent such as diethyl carbinol, hexone, n-amyl acetate and the like. The uranium values may be recovered from the organic phase by back extraction with water.

  1. PRODUCTION OF URANIUM

    DOE Patents [OSTI]

    Spedding, F.H.; Wilhelm, H.A.; Keller, W.H.

    1958-04-15

    The production of uranium metal by the reduction of uranium tetrafluoride is described. Massive uranium metal of high purily is produced by reacting uranium tetrafluoride with 2 to 20% stoichiometric excess of magnesium at a temperature sufficient to promote the reaction and then mantaining the reaction mass in a sealed vessel at temperature in the range of 1150 to 2000 d C, under a superatomospheric pressure of magnesium for a period of time sufficient 10 allow separation of liquid uranium and liquid magnesium fluoride into separate layers.

  2. PROCESS OF RECOVERING URANIUM

    DOE Patents [OSTI]

    Carter, J.M.; Larson, C.E.

    1958-10-01

    A process is presented for recovering uranium values from calutron deposits. The process consists in treating such deposits to produce an oxidlzed acidic solution containing uranium together with the following imparities: Cu, Fe, Cr, Ni, Mn, Zn. The uranium is recovered from such an impurity-bearing solution by adjusting the pH of the solution to the range 1.5 to 3.0 and then treating the solution with hydrogen peroxide. This results in the precipitation of uranium peroxide which is substantially free of the metal impurities in the solution. The peroxide precipitate is then separated from the solution, washed, and calcined to produce uranium trioxide.

  3. URANIUM RECOVERY PROCESS

    DOE Patents [OSTI]

    Yeager, J.H.

    1958-08-12

    In the prior art processing of uranium ores, the ore is flrst digested with nitric acid and filtered, and the uranium values are then extracted tom the filtrate by contacting with an organic solvent. The insoluble residue has been processed separately in order to recover any uranium which it might contain. The improvement consists in contacting a slurry, composed of both solution and residue, with the organic solvent prior to filtration. Tbe result is that uranium values contained in the residue are extracted along with the uranium values contained th the solution in one step.

  4. Conversion of ethanol to 1,3-butadiene over Na doped ZnxZryOz mixed metal oxides

    SciTech Connect (OSTI)

    Baylon, Rebecca A.; Sun, Junming; Wang, Yong

    2016-01-01

    Despite numerous studies on different oxide catalysts for the ethanol to 1,3-butadiene reaction, few have identified active sites (i.e., type of acidity) correlated to the catalytic performances. In this work, the type of acidity needed for ethanol to 1,3-butadiene conversion has been studied over Zn/Zr mixed oxide catalysts. Specifically, synthesis method, Zn/Zr ratio, and Na doping have been used to control the surface acid-base properties, as confirmed by characterizations such as NH3-TPD and IR-Py techniques. The 2000 ppm Na doped Zn1Zr10Oz-H with balanced base and weak Bronsted acid sites was found to give not only high selectivity to 1,3-butadiene (47%) at near complete ethanol conversion (97%), but also exhibited a much higher 1,3-butadiene productivity than other mixed oxides studied.

  5. Method for converting uranium oxides to uranium metal

    DOE Patents [OSTI]

    Duerksen, Walter K.

    1988-01-01

    A process is described for converting scrap and waste uranium oxide to uranium metal. The uranium oxide is sequentially reduced with a suitable reducing agent to a mixture of uranium metal and oxide products. The uranium metal is then converted to uranium hydride and the uranium hydride-containing mixture is then cooled to a temperature less than -100.degree. C. in an inert liquid which renders the uranium hydride ferromagnetic. The uranium hydride is then magnetically separated from the cooled mixture. The separated uranium hydride is readily converted to uranium metal by heating in an inert atmosphere. This process is environmentally acceptable and eliminates the use of hydrogen fluoride as well as the explosive conditions encountered in the previously employed bomb-reduction processes utilized for converting uranium oxides to uranium metal.

  6. Preliminary Results of Voloxidation Processing of Kilogram Quantities of Used Nuclear Fuel

    SciTech Connect (OSTI)

    Spencer, Barry B; DelCul, Guillermo D; Jubin, Robert Thomas; Owens, R Steven; Ramey, Dan W; Collins, Emory D

    2009-01-01

    Advanced nuclear fuel processing methodologies are being studied as part of the Advanced Fuel Cycle Initiative (AFCI) program at ORNL. To support this initiative, processes and equipment were deployed at ORNL to perform all steps in the recycle process on actual used nuclear fuels, ranging from used fuel receipt to production of products and waste forms at the kilogram-scale (with capacity to process 20 kg of used fuel per year in up to four campaigns). In the first campaign, approximately 4 kg of used fuel was processed. As previously reported, the head-end processing was completed using saw-segmented Dresden fuel in lab-scale equipment in multiple batches. The second processing campaign used a new single pin shear and a new bench-scale voloxidizer to perform the dry head-end treatment prior to fuel dissolution. Approximately ~5 kg of used fuel (heavy metal basis) was processed in the second campaign. Two different fuels were oxidized in three separate batches to provide a range of processing conditions. The material used for each batch and general processing conditions are summarized in Table 1. Progress of the oxidation reaction was monitored continuously by two primary measurements; the concentration of oxygen in the effluent stream which was depressed as the oxygen was consumed, and the concentration of krypton-85 in the effluent stream as measured by a gamma counter on the off-gas pipeline. Table 1. Voloxidation test conditions for second campaign. Batch Fuel Source Burnup (GWd/MT)Batch size (kg*)/(kg**)Segment Length (in) Oxidation GasOperation Temperature ( C) 1Surry-2361.223/1.7041.0Air500 2North Anna63 702.071/2.8850.88Air600 3North Anna63 702.012/2.8030.88Oxygen600 * Heavy metal basis. ** Total fuel (oxide + cladding) basis. Fission product gases evolved from the fuel during the oxidation process were trapped for subsequent chemical and radiochemical analysis. The series of traps included a bed of molecular sieves to recover tritium (as HTO), silver

  7. About the Uranium Mine Team | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Uranium Mine Team About the Uranium Mine Team Text coming

  8. Disposition of DOE Excess Depleted Uranium, Natural Uranium,...

    Energy.gov (indexed) [DOE]

    U.S. Department of Energy (DOE) owns and manages an inventory of depleted uranium (DU), natural uranium (NU), and low-enriched uranium (LEU) that is currently stored in large ...

  9. March market review. [Spot market prices for uranium (1993)

    SciTech Connect (OSTI)

    Not Available

    1993-04-01

    The spot market price for uranium in unrestricted markets weakened further during March, and at month end, the NUEXCO Exchange Value had fallen $0.15, to $7.45 per pound U3O8. The Restricted American Market Penalty (RAMP) for concentrates increased $0.15, to $2.55 per pound U3O8. Ample UF6 supplies and limited demand led to a $0.50 decrease in the UF6 Value, to $25.00 per kgU as UF6, while the RAMP for UF6 increased $0.75, to $5.25 per kgU. Nine near-term uranium transactions were reported, totalling almost 3.3 million pounds equivalent U3O8. This is the largest monthly spot market volume since October 1992, and is double the volume reported in January and February. The March 31 Conversion Value was $4.25 per kgU as UF6. Beginning with the March 31 Value, NUEXCO now reports its Conversion Value in US dollars per kilogram of uranium (US$/kgU), reflecting current industry practice. The March loan market was inactive with no transactions reported. The Loan Rate remained unchanged at 3.0 percent per annum. Low demand and increased competition among sellers led to a one-dollar decrease in the SWU Value, to $65 per SWU, and the RAMP for SWU declined one dollar, to $9 per SWU.

  10. Uranium Marketing Annual Report

    Gasoline and Diesel Fuel Update

    S2. Uranium feed deliveries, enrichment services, and uranium loaded by owners and operators of U.S. civilian nuclear power reactors, 1994-2015 million pounds U3O8 equivalent million separative work units (SWU) Year Feed deliveries by owners and operators of U.S. civilian nuclear power reactors Uranium in fuel assemblies loaded into U.S. civilian nuclear power reactors U.S.-origin enrichment services purchased Foreign-origin enrichment services purchased Total purchased enrichment services

  11. Preparation of uranium compounds

    DOE Patents [OSTI]

    Kiplinger, Jaqueline L; Montreal, Marisa J; Thomson, Robert K; Cantat, Thibault; Travia, Nicholas E

    2013-02-19

    UI.sub.3(1,4-dioxane).sub.1.5 and UI.sub.4(1,4-dioxane).sub.2, were synthesized in high yield by reacting turnings of elemental uranium with iodine dissolved in 1,4-dioxane under mild conditions. These molecular compounds of uranium are thermally stable and excellent precursor materials for synthesizing other molecular compounds of uranium including alkoxide, amide, organometallic, and halide compounds.

  12. Process for continuous production of metallic uranium and uranium alloys

    DOE Patents [OSTI]

    Hayden, Jr., Howard W.; Horton, James A.; Elliott, Guy R. B.

    1995-01-01

    A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO.sub.3), or any other substantially stable uranium oxide, to form the uranium dioxide (UO.sub.2). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl.sub.4), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation.

  13. Process for continuous production of metallic uranium and uranium alloys

    DOE Patents [OSTI]

    Hayden, H.W. Jr.; Horton, J.A.; Elliott, G.R.B.

    1995-06-06

    A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO{sub 3}), or any other substantially stable uranium oxide, to form the uranium dioxide (UO{sub 2}). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl{sub 4}), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation. 4 figs.

  14. highly enriched uranium

    National Nuclear Security Administration (NNSA)

    and radioisotope supply capabilities of MURR and Nordion with General Atomics' selective gas extraction technology-which allows their low-enriched uranium (LEU) targets to remain...

  15. Uranium Marketing Annual Report -

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Note: Totals may not equal sum of components because of independent rounding. Source: U.S. Energy Information Administration, Form EIA-858 "Uranium Marketing Annual Survey" (20

  16. Uranium Marketing Annual Report -

    Annual Energy Outlook

    because of independent rounding. Average prices are not adjusted for inflation. Source: U.S. Energy Information Administration: Form EIA-858 "Uranium Marketing Annual Survey" (2011

  17. COATING URANIUM FROM CARBONYLS

    DOE Patents [OSTI]

    Gurinsky, D.H.; Storrs, S.S.

    1959-07-14

    Methods are described for making adherent corrosion resistant coatings on uranium metal. According to the invention, the uranium metal is heated in the presence of an organometallic compound such as the carbonyls of nickel, molybdenum, chromium, niobium, and tungsten at a temperature sufficient to decompose the metal carbonyl and dry plate the resultant free metal on the surface of the uranium metal body. The metal coated body is then further heated at a higher temperature to thermally diffuse the coating metal within the uranium bcdy.

  18. PRODUCTION OF URANIUM

    DOE Patents [OSTI]

    Ruehle, A.E.; Stevenson, J.W.

    1957-11-12

    An improved process is described for the magnesium reduction of UF/sub 4/ to produce uranium metal. In the past, there have been undesirable premature reactions between the Mg and the bomb liner or the UF/sub 4/ before the actual ignition of the bomb reaction. Since these premature reactions impair the yield of uranium metal, they have been inhibited by forming a protective film upon the particles of Mg by reacting it with hydrated uranium tetrafluoride, sodium bifluoride, uranyl fluoride, or uranium trioxide. This may be accomplished by adding about 0.5 to 2% of the additive to the bomb charge.

  19. Uranium Purchases Report

    Reports and Publications

    1996-01-01

    Final issue. This report details natural and enriched uranium purchases as reported by owners and operators of commercial nuclear power plants. 1996 represents the most recent publication year.

  20. Uranium Dispersion & Dosimetry Model.

    Energy Science and Technology Software Center (OSTI)

    2002-03-22

    The Uranium Dispersion and Dosimetry (UDAD) program provides estimates of potential radiation exposure to individuals and to the general population in the vicinity of a uranium processing facility such as a uranium mine or mill. Only transport through the air is considered. Exposure results from inhalation, external irradiation from airborne and ground-deposited activity, and ingestion of foodstuffs. Individual dose commitments, population dose commitments, and environmental dose commitments are computed. The program was developed for applicationmore » to uranium mining and milling; however, it may be applied to dispersion of any other pollutant.« less

  1. URANIUM RECOVERY PROCESS

    DOE Patents [OSTI]

    Kaufman, D.

    1958-04-15

    A process of recovering uranium from very low-grade ore residues is described. These low-grade uraniumcontaining hydroxide precipitates, which also contain hydrated silica and iron and aluminum hydroxides, are subjected to multiple leachings with aqueous solutions of sodium carbonate at a pH of at least 9. This leaching serves to selectively extract the uranium from the precipitate, but to leave the greater part of the silica, iron, and aluminum with the residue. The uranium is then separated from the leach liquor by the addition of an acid in sufficient amount to destroy the carbonate followed by the addition of ammonia to precipitate uranium as ammonium diuranate.

  2. METHOD OF ROLLING URANIUM

    DOE Patents [OSTI]

    Smith, C.S.

    1959-08-01

    A method is described for rolling uranium metal at relatively low temperatures and under non-oxidizing conditions. The method involves the steps of heating the uranium to 200 deg C in an oil bath, withdrawing the uranium and permitting the oil to drain so that only a thin protective coating remains and rolling the oil coated uranium at a temperature of 200 deg C to give about a 15% reduction in thickness at each pass. The operation may be repeated to accomplish about a 90% reduction without edge cracking, checking or any appreciable increase in brittleness.

  3. Retaining large and adjustable elastic strains of kilogram-scale Nb nanowires [Better Superconductor by Elastic Strain Engineering: Kilogram-scale Free-Standing Niobium Metal Composite with Large Retained Elastic Strains

    DOE PAGES-Beta [OSTI]

    Hao, Shijie; Cui, Lishan; Wang, Hua; Jiang, Daqiang; Liu, Yinong; Yan, Jiaqiang; Ren, Yang; Han, Xiaodong; Brown, Dennis E.; Li, Ju

    2016-02-10

    Crystals held at ultrahigh elastic strains and stresses may exhibit exceptional physical and chemical properties. Individual metallic nanowires can sustain ultra-large elastic strains of 4-7%. However, retaining elastic strains of such magnitude in kilogram-scale nanowires is challenging. Here, we find that under active load, ~5.6% elastic strain can be achieved in Nb nanowires in a composite material. Moreover, large tensile (2.8%) and compressive (-2.4%) elastic strains can be retained in kilogram-scale Nb nanowires when the composite is unloaded to a free-standing condition. It is then demonstrated that the retained tensile elastic strains of Nb nanowires significantly increase their superconducting transitionmore » temperature and critical magnetic fields, corroborating ab initio calculations based on BCS theory. This free-standing nanocomposite design paradigm opens new avenues for retaining ultra-large elastic strains in great quantities of nanowires and elastic-strain-engineering at industrial scale.« less

  4. 2015 Uranium Marketing Annual Report

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Energy SOPAMIN (Socit de Patrimoine des Mines du Niger "Heritage Society of Mines in Niger") Rossing Uranium Limited Rio Tinto Uranium Limited TENAM Corporation SOPAMIN ...

  5. 2015 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) (indexed site)

    "SOPAMIN (Socit de Patrimoine des Mines du Niger ""Heritage Society of Mines in Niger"")","Rossing Uranium Limited","Rio Tinto Uranium Limited" "TENAM Corporation","SOPAMIN ...

  6. PROCESS FOR MAKING URANIUM HEXAFLUORIDE

    DOE Patents [OSTI]

    Rosen, R.

    1959-07-14

    A process is described for producing uranium hexafluoride by reacting uranium hexachloride with hydrogen fluoride at a temperature below about 150 deg C, under anhydrous conditions.

  7. 2015 Uranium Marketing Annual Report

    Gasoline and Diesel Fuel Update

    U.S. Energy Information Administration 2015 Uranium Marketing Annual Report 2015 Uranium Marketing Annual Report Release Date: May 24, 2016 Next Release Date: May 2017 thousand ...

  8. URANIUM LEACHING AND RECOVERY PROCESS

    DOE Patents [OSTI]

    McClaine, L.A.

    1959-08-18

    A process is described for recovering uranium from carbonate leach solutions by precipitating uranium as a mixed oxidation state compound. Uranium is recovered by adding a quadrivalent uranium carbon;te solution to the carbonate solution, adjusting the pH to 13 or greater, and precipitating the uranium as a filterable mixed oxidation state compound. In the event vanadium occurs with the uranium, the vanadium is unaffected by the uranium precipitation step and remains in the carbonate solution. The uranium-free solution is electrolyzed in the cathode compartment of a mercury cathode diaphragm cell to reduce and precipitate the vanadium.

  9. 2015 Uranium Marketing Annual Report

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    U.S. Energy Information Administration 2015 Uranium Marketing Annual Report 2015 Uranium Marketing Annual Report Release Date: May 24, 2016 Next Release Date: May 2017 ...

  10. 2015 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) (indexed site)

    U.S. Energy Information Administration, Form EIA-858 ""Uranium Marketing Annual Survey"" (2015)." " U.S. Energy Information Administration 2015 Uranium Marketing Annual Report 25

  11. 2015 Uranium Market Annual Report

    U.S. Energy Information Administration (EIA) (indexed site)

    U.S. Energy Information Administration, Form EIA-858 ""Uranium Marketing Annual Survey"" (2015)." "16 U.S. Energy Information Administration 2015 Uranium Marketing Annual Report

  12. 2015 Uranium Marketing Annual Survey

    U.S. Energy Information Administration (EIA) (indexed site)

    5 2015 Uranium Marketing Annual Report Release Date: May 24, 2016 Next Release Date: May ... Source: U.S. Energy Information Administration, Form EIA-858 "Uranium Marketing Annual ...

  13. :- : DRILLING URANIUM BILLETS ON A

    Office of Legacy Management (LM)

    ' z . , -, .- . >. ; . .. :- : DRILLING URANIUM BILLETS ON A .-... r .. .. i ' ... DRILLING URANIUM BILLETS ON A LEBLOND-CARLSTEDT RAPID BORER By R. J. Jansen* TECHNICAL ...

  14. 2015 Uranium Marketing Annual Report

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Uranium Marketing Annual Report 2015 Uranium Marketing Annual Report Release Date: May 24, 2016 Next Release Date: May 2017 Purchases Weighted- average price Purchases Weighted- ...

  15. 2015 Uranium Marketing Annual Report

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    5 2015 Uranium Marketing Annual Report Release Date: May 24, 2016 Next Release Date: May ... Source: U.S. Energy Information Administration, Form EIA-858 "Uranium Marketing Annual ...

  16. 2015 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) (indexed site)

    b. Uranium purchased by owners and operators of U.S. civilian nuclear power reactors ... Administration: Form EIA-858 ""Uranium Marketing Annual Survey"" (2013-15)." "14 ...

  17. 2015 Uranium Marketing Annual Report

    Gasoline and Diesel Fuel Update

    Uranium Marketing Annual Report 2015 Uranium Marketing Annual Report Release Date: May 24, 2016 Next Release Date: May 2017 Number of purchasers Quantity with reported price ...

  18. 2015 Uranium Marketing Annual Report

    Gasoline and Diesel Fuel Update

    Uranium Marketing Annual Report 2015 Uranium Marketing Annual Report Release Date: May 24, 2016 Next Release Date: May 2017 Deliveries 2011 2012 2013 2014 2015 Purchases of ...

  19. 2015 Uranium Marketing Annual Report

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    U.S. Energy Information Administration 2015 Uranium Marketing Annual Report 2015 Uranium Marketing Annual Report Release Date: May 24, 2016 Next Release Date: May 2017 Origin of ...

  20. 2015 Uranium Marketing Annual Report

    Annual Energy Outlook

    3 2015 Uranium Marketing Annual Report Release Date: May 24, 2016 Next Release Date: May ... 1 Distribution divides total quantity of uranium delivered (with a price) into eight ...

  1. 2015 Uranium Market Annual Report

    U.S. Energy Information Administration (EIA) (indexed site)

    6 U.S. Energy Information Administration 2015 Uranium Marketing Annual Report 2015 Uranium Marketing Annual Report Release Date: May 24, 2016 Next Release Date: May 2017 Purchase ...

  2. 2015 Uranium Marketing Annual Report

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    U.S. Energy Information Administration 2015 Uranium Marketing Annual Report 2015 Uranium Marketing Annual Report Release Date: May 24, 2016 Next Release Date: May 2017 Minimum ...

  3. 2015 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) (indexed site)

    6a. Uranium purchased by owners and operators of U.S. civilian nuclear power reactors ... Distribution divides total quantity of uranium delivered (with a price) into eight ...

  4. U.S.Uranium Reserves

    Gasoline and Diesel Fuel Update

    Uranium Reserves Data for: 2003 Release Date: June 2004 Next Release: Not determined Uranium Reserves Estimates The Energy Information Administration (EIA) has reported the...

  5. Uranium industry annual 1993

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    Uranium production in the United States has declined dramatically from a peak of 43.7 million pounds U{sub 3}O{sub 8} (16.8 thousand metric tons uranium (U)) in 1980 to 3.1 million pounds U{sub 3}O{sub 8} (1.2 thousand metric tons U) in 1993. This decline is attributed to the world uranium market experiencing oversupply and intense competition. Large inventories of uranium accumulated when optimistic forecasts for growth in nuclear power generation were not realized. The other factor which is affecting U.S. uranium production is that some other countries, notably Australia and Canada, possess higher quality uranium reserves that can be mined at lower costs than those of the United States. Realizing its competitive advantage, Canada was the world`s largest producer in 1993 with an output of 23.9 million pounds U{sub 3}O{sub 8} (9.2 thousand metric tons U). The U.S. uranium industry, responding to over a decade of declining market prices, has downsized and adopted less costly and more efficient production methods. The main result has been a suspension of production from conventional mines and mills. Since mid-1992, only nonconventional production facilities, chiefly in situ leach (ISL) mining and byproduct recovery, have operated in the United States. In contrast, nonconventional sources provided only 13 percent of the uranium produced in 1980. ISL mining has developed into the most cost efficient and environmentally acceptable method for producing uranium in the United States. The process, also known as solution mining, differs from conventional mining in that solutions are used to recover uranium from the ground without excavating the ore and generating associated solid waste. This article describes the current ISL Yang technology and its regulatory approval process, and provides an analysis of the factors favoring ISL mining over conventional methods in a declining uranium market.

  6. Excess Uranium Management

    Office of Energy Efficiency and Renewable Energy (EERE)

    On July 19, 2016, the Department issued a Request for Information on the effects of DOE transfers of excess uranium on domestic uranium mining, conversion, and enrichment industries. The Request for Information established an August 18, 2016 deadline for the submission of written comments. On August 1, 2016, the Department extended the comment period to September 19, 2016.

  7. Uranium Marketing Annual Report -

    Gasoline and Diesel Fuel Update

    1. Foreign sales of uranium from U.S. suppliers and owners and operators of U.S. civilian ... 2011 2012 2013 2014 2015 U.S.-origin uranium Foreign sales 4,387 4,798 4,148 4,210 ...

  8. Uranium Marketing Annual Report -

    Annual Energy Outlook

    . Uranium purchased by owners and operators of U.S. civilian nuclear power reactors by ... 2011 2012 2013 2014 2015 U.S.-Origin Uranium Purchases 5,205 9,807 9,484 3,316 3,419 ...

  9. DECONTAMINATION OF URANIUM

    DOE Patents [OSTI]

    Spedding, F.H.; Butler, T.A.

    1962-05-15

    A process is given for separating fission products from uranium by extracting the former into molten aluminum. Phase isolation can be accomplished by selectively hydriding the uranium at between 200 and 300 deg C and separating the hydride powder from coarse particles of fissionproduct-containing aluminum. (AEC)

  10. URANIUM SEPARATION PROCESS

    DOE Patents [OSTI]

    McVey, W.H.; Reas, W.H.

    1959-03-10

    The separation of uranium from an aqueous solution containing a water soluble uranyl salt is described. The process involves adding an alkali thiocyanate to the aqueous solution, contacting the resulting solution with methyl isobutyl ketons and separating the resulting aqueous and organic phase. The uranium is extracted in the organic phase as UO/sub 2/(SCN)/sub/.

  11. Uranium dioxide electrolysis

    DOE Patents [OSTI]

    Willit, James L.; Ackerman, John P.; Williamson, Mark A.

    2009-12-29

    This is a single stage process for treating spent nuclear fuel from light water reactors. The spent nuclear fuel, uranium oxide, UO.sub.2, is added to a solution of UCl.sub.4 dissolved in molten LiCl. A carbon anode and a metallic cathode is positioned in the molten salt bath. A power source is connected to the electrodes and a voltage greater than or equal to 1.3 volts is applied to the bath. At the anode, the carbon is oxidized to form carbon dioxide and uranium chloride. At the cathode, uranium is electroplated. The uranium chloride at the cathode reacts with more uranium oxide to continue the reaction. The process may also be used with other transuranic oxides and rare earth metal oxides.

  12. URANIUM PRECIPITATION PROCESS

    DOE Patents [OSTI]

    Thunaes, A.; Brown, E.A.; Smith, H.W.; Simard, R.

    1957-12-01

    A method for the recovery of uranium from sulfuric acid solutions is described. In the present process, sulfuric acid is added to the uranium bearing solution to bring the pH to between 1 and 1.8, preferably to about 1.4, and aluminum metal is then used as a reducing agent to convert hexavalent uranium to the tetravalent state. As the reaction proceeds, the pH rises amd a selective precipitation of uranium occurs resulting in a high grade precipitate. This process is an improvement over the process using metallic iron, in that metallic aluminum reacts less readily than metallic iron with sulfuric acid, thus avoiding consumption of the reducing agent and a raising of the pH without accomplishing the desired reduction of the hexavalent uranium in the solution. Another disadvantage to the use of iron is that positive ferric ions will precipitate with negative phosphate and arsenate ions at the pH range employed.

  13. METHOD FOR PURIFYING URANIUM

    DOE Patents [OSTI]

    Kennedy, J.W.; Segre, E.G.

    1958-08-26

    A method is presented for obtaining a compound of uranium in an extremely pure state and in such a condition that it can be used in determinations of the isotopic composition of uranium. Uranium deposited in calutron receivers is removed therefrom by washing with cold nitric acid and the resulting solution, coataining uranium and trace amounts of various impurities, such as Fe, Ag, Zn, Pb, and Ni, is then subjected to various analytical manipulations to obtain an impurity-free uranium containing solution. This solution is then evaporated on a platinum disk and the residue is ignited converting it to U2/sub 3//sub 8/. The platinum disk having such a thin film of pure U/sub 2/O/sub 8/ is suitable for use with isotopic determination techaiques.

  14. PROCESS OF RECOVERING URANIUM

    DOE Patents [OSTI]

    Kilner, S.B.

    1959-12-29

    A method is presented for separating and recovering uranium from a complex mixure of impurities. The uranium is dissolved to produce an aqueous acidic solution including various impurities. In accordance with one method, with the uranium in the uranyl state, hydrogen cyanide is introduced into the solution to complex the impurities. Subsequently, ammonia is added to the solution to precipitate the uraniunn as ammonium diuranate away from the impurities in the solution. Alternatively, the uranium is precipitated by adding an alkaline metal hydroxide. In accordance with the second method, the uranium is reduced to the uranous state in the solution. The reduced solution is then treated with solid alkali metal cyanide sufficient to render the solution about 0.1 to 1.0 N in cyanide ions whereat cyanide complex ions of the metal impurities are produced and the uranium is simultaneously precipituted as uranous hydroxide. Alternatively, hydrogen cyanide may be added to the reduced solution and the uranium precipitated subsequently by adding ammonium hydroxide or an alkali metal hydroxide. Other refinements of the method are also disclosed.

  15. India's Worsening Uranium Shortage

    SciTech Connect (OSTI)

    Curtis, Michael M.

    2007-01-15

    As a result of NSG restrictions, India cannot import the natural uranium required to fuel its Pressurized Heavy Water Reactors (PHWRs); consequently, it is forced to rely on the expediency of domestic uranium production. However, domestic production from mines and byproduct sources has not kept pace with demand from commercial reactors. This shortage has been officially confirmed by the Indian Planning Commission’s Mid-Term Appraisal of the country’s current Five Year Plan. The report stresses that as a result of the uranium shortage, Indian PHWR load factors have been continually decreasing. The Uranium Corporation of India Ltd (UCIL) operates a number of underground mines in the Singhbhum Shear Zone of Jharkhand, and it is all processed at a single mill in Jaduguda. UCIL is attempting to aggrandize operations by establishing new mines and mills in other states, but the requisite permit-gathering and development time will defer production until at least 2009. A significant portion of India’s uranium comes from byproduct sources, but a number of these are derived from accumulated stores that are nearing exhaustion. A current maximum estimate of indigenous uranium production is 430t/yr (230t from mines and 200t from byproduct sources); whereas, the current uranium requirement for Indian PHWRs is 455t/yr (depending on plant capacity factor). This deficit is exacerbated by the additional requirements of the Indian weapons program. Present power generation capacity of Indian nuclear plants is 4350 MWe. The power generation target set by the Indian Department of Atomic Energy (DAE) is 20,000 MWe by the year 2020. It is expected that around half of this total will be provided by PHWRs using indigenously supplied uranium with the bulk of the remainder provided by breeder reactors or pressurized water reactors using imported low-enriched uranium.

  16. Uranium Marketing Annual Report

    Gasoline and Diesel Fuel Update

    4. Uranium sellers to owners and operators of U.S. civilian nuclear power reactors, 2013-15 2013 2014 2015 American Fuel Resources, LLC Advance Uranium Asset Management Ltd. AREVA / AREVA NC, Inc. AREVA NC, Inc. AREVA / AREVA NC, Inc. ARMZ (AtomRedMetZoloto) BHP Billiton Olympic Dam Corporation Pty Ltd ARMZ (AtomRedMetZoloto) BHP Billiton Olympic Dam Corporation Pty Ltd CAMECO BHP Billiton Olympic Dam Corporation Pty Ltd CAMECO ConverDyn CAMECO CGN Global Uranium Limited Deutsche Bank Deutsche

  17. Depleted uranium management alternatives

    SciTech Connect (OSTI)

    Hertzler, T.J.; Nishimoto, D.D.

    1994-08-01

    This report evaluates two management alternatives for Department of Energy depleted uranium: continued storage as uranium hexafluoride, and conversion to uranium metal and fabrication to shielding for spent nuclear fuel containers. The results will be used to compare the costs with other alternatives, such as disposal. Cost estimates for the continued storage alternative are based on a life-cycle of 27 years through the year 2020. Cost estimates for the recycle alternative are based on existing conversion process costs and Capital costs for fabricating the containers. Additionally, the recycle alternative accounts for costs associated with intermediate product resale and secondary waste disposal for materials generated during the conversion process.

  18. URANIUM RECOVERY PROCESS

    DOE Patents [OSTI]

    Stevenson, J.W.; Werkema, R.G.

    1959-07-28

    The recovery of uranium from magnesium fluoride slag obtained as a by- product in the production of uranium metal by the bomb reduction prccess is presented. Generally the recovery is accomplished by finely grinding the slag, roasting ihe ground slag air, and leaching the roasted slag with a hot, aqueous solution containing an excess of the sodium bicarbonate stoichiometrically required to form soluble uranium carbonate complex. The roasting is preferably carried out at between 425 and 485 deg C for about three hours. The leaching is preferably done at 70 to 90 deg C and under pressure. After leaching and filtration the uranium may be recovered from the clear leach liquor by any desired method.

  19. Uranium Marketing Annual Report -

    Gasoline and Diesel Fuel Update

    b. Uranium purchased by owners and operators of U.S. civilian nuclear power reactors ranked by price and distributed by purchaser, 2013-15 deliveries thousand pounds U3O8 ...

  20. Uranium Marketing Annual Report -

    Annual Energy Outlook

    3. Deliveries of uranium feed by owners and operators of U.S. civilian nuclear power reactors by enrichment country and delivery year, 2013-15 thousand pounds U3O8 equivalent Feed ...

  1. Uranium Marketing Annual Report -

    Annual Energy Outlook

    9. Contracted purchases of uranium by owners and operators of U.S. civilian nuclear power reactors, signed in 2015, by delivery year, 2016-25 thousand pounds U3O8 equivalent Year ...

  2. Uranium Marketing Annual Report -

    Gasoline and Diesel Fuel Update

    4. Deliveries of uranium feed for enrichment by owners and operators of U.S. civilian nuclear power reactors by origin country and delivery year, 2013-15 thousand pounds U3O8 ...

  3. PURIFICATION OF URANIUM FUELS

    DOE Patents [OSTI]

    Niedrach, L.W.; Glamm, A.C.

    1959-09-01

    An electrolytic process of refining or decontaminating uranium is presented. The impure uranium is made the anode of an electrolytic cell. The molten salt electrolyte of this cell comprises a uranium halide such as UF/sub 4/ or UCl/sub 3/ and an alkaline earth metal halide such as CaCl/sub 2/, BaF/sub 2/, or BaCl/sub 2/. The cathode of the cell is a metal such as Mn, Cr, Co, Fe, or Ni which forms a low melting eutectic with U. The cell is operated at a temperature below the melting point of U. In operation the electrodeposited uranium becomes alloyed with the metal of the cathode, and the low melting alloy thus formed drips from the cathode.

  4. Domestic Uranium Production Report

    Gasoline and Diesel Fuel Update

    9. Summary production statistics of the U.S. uranium industry, 1993-2015 Year Exploration and development surface drilling (million feet) Exploration and development drilling expenditures 1 (million dollars) Mine production of uranium (million pounds U3O8) Uranium concentrate production (million pounds U3O8) Uranium concentrate shipments (million pounds U3O8) Employment (person-years) 1993 1.1 5.7 2.1 3.1 3.4 871 1994 0.7 1.1 2.5 3.4 6.3 980 1995 1.3 2.6 3.5 6.0 5.5 1,107 1996 3.0 7.2 4.7 6.3

  5. ANODIC TREATMENT OF URANIUM

    DOE Patents [OSTI]

    Kolodney, M.

    1959-02-01

    A method is presented for effecting eloctrolytic dissolution of a metallic uranium article at a uniform rate. The uranium is made the anode in an aqueous phosphoric acid solution containing nitrate ions furnished by either ammonium nitrate, lithium nitrate, sodium nitrate, or potassium nitrate. A stainless steel cathode is employed and electrolysls carried out at a current density of about 0.1 to 1 ampere per square inch.

  6. URANIUM EXTRACTION PROCESS

    DOE Patents [OSTI]

    Baldwin, W.H.; Higgins, C.E.

    1958-12-16

    A process is described for recovering uranium values from acidic aqueous solutions containing hexavalent uranium by contacting the solution with an organic solution comprised of a substantially water-immiscible organlc diluent and an organic phosphate to extract the uranlum values into the organic phase. Carbon tetrachloride and a petroleum hydrocarbon fraction, such as kerosene, are sultable diluents to be used in combination with organlc phosphates such as dibutyl butylphosphonate, trlbutyl phosphine oxide, and tributyl phosphate.

  7. Method for the recovery of uranium values from uranium tetrafluoride

    DOE Patents [OSTI]

    Kreuzmann, A.B.

    1982-10-27

    The invention is a novel method for the recovery of uranium from dry, particulate uranium tetrafluoride. In one aspect, the invention comprises reacting particulate uranium tetrafluoride and calcium oxide in the presence of gaseous oxygen to effect formation of the corresponding alkaline earth metal uranate and alkaline earth metal fluoride. The product uranate is highly soluble in various acidic solutions whereas the product fluoride is virtually insoluble therein. The product mixture of uranate and alkaline earth metal fluoride is contacted with a suitable acid to provide a uranium-containing solution, from which the uranium is recovered. The invention can achieve quantitative recovery of uranium in highly pure form.

  8. Method for the recovery of uranium values from uranium tetrafluoride

    DOE Patents [OSTI]

    Kreuzmann, Alvin B.

    1983-01-01

    The invention is a novel method for the recovery of uranium from dry, particulate uranium tetrafluoride. In one aspect, the invention comprises reacting particulate uranium tetrafluoride and calcium oxide in the presence of gaseous oxygen to effect formation of the corresponding alkaline earth metal uranate and alkaline earth metal fluoride. The product uranate is highly soluble in various acidic solutions wherein the product fluoride is virtually insoluble therein. The product mixture of uranate and alkaline earth metal fluoride is contacted with a suitable acid to provide a uranium-containing solution, from which the uranium is recovered. The invention can achieve quantitative recovery of uranium in highly pure form.

  9. Process for electrolytically preparing uranium metal

    DOE Patents [OSTI]

    Haas, Paul A.

    1989-01-01

    A process for making uranium metal from uranium oxide by first fluorinating uranium oxide to form uranium tetrafluoride and next electrolytically reducing the uranium tetrafluoride with a carbon anode to form uranium metal and CF.sub.4. The CF.sub.4 is reused in the fluorination reaction rather than being disposed of as a hazardous waste.

  10. Process for electrolytically preparing uranium metal

    DOE Patents [OSTI]

    Haas, Paul A.

    1989-08-01

    A process for making uranium metal from uranium oxide by first fluorinating uranium oxide to form uranium tetrafluoride and next electrolytically reducing the uranium tetrafluoride with a carbon anode to form uranium metal and CF.sub.4. The CF.sub.4 is reused in the fluorination reaction rather than being disposed of as a hazardous waste.

  11. Influence of uranium hydride oxidation on uranium metal behaviour

    SciTech Connect (OSTI)

    Patel, N.; Hambley, D.; Clarke, S.A.; Simpson, K.

    2013-07-01

    This work addresses concerns that the rapid, exothermic oxidation of active uranium hydride in air could stimulate an exothermic reaction (burning) involving any adjacent uranium metal, so as to increase the potential hazard arising from a hydride reaction. The effect of the thermal reaction of active uranium hydride, especially in contact with uranium metal, does not increase in proportion with hydride mass, particularly when considering large quantities of hydride. Whether uranium metal continues to burn in the long term is a function of the uranium metal and its surroundings. The source of the initial heat input to the uranium, if sufficient to cause ignition, is not important. Sustained burning of uranium requires the rate of heat generation to be sufficient to offset the total rate of heat loss so as to maintain an elevated temperature. For dense uranium, this is very difficult to achieve in naturally occurring circumstances. Areas of the uranium surface can lose heat but not generate heat. Heat can be lost by conduction, through contact with other materials, and by convection and radiation, e.g. from areas where the uranium surface is covered with a layer of oxidised material, such as burned-out hydride or from fuel cladding. These rates of heat loss are highly significant in relation to the rate of heat generation by sustained oxidation of uranium in air. Finite volume modelling has been used to examine the behaviour of a magnesium-clad uranium metal fuel element within a bottle surrounded by other un-bottled fuel elements. In the event that the bottle is breached, suddenly, in air, it can be concluded that the bulk uranium metal oxidation reaction will not reach a self-sustaining level and the mass of uranium oxidised will likely to be small in relation to mass of uranium hydride oxidised. (authors)

  12. Uranium hexafluoride handling. Proceedings

    SciTech Connect (OSTI)

    Not Available

    1991-12-31

    The United States Department of Energy, Oak Ridge Field Office, and Martin Marietta Energy Systems, Inc., are co-sponsoring this Second International Conference on Uranium Hexafluoride Handling. The conference is offered as a forum for the exchange of information and concepts regarding the technical and regulatory issues and the safety aspects which relate to the handling of uranium hexafluoride. Through the papers presented here, we attempt not only to share technological advances and lessons learned, but also to demonstrate that we are concerned about the health and safety of our workers and the public, and are good stewards of the environment in which we all work and live. These proceedings are a compilation of the work of many experts in that phase of world-wide industry which comprises the nuclear fuel cycle. Their experience spans the entire range over which uranium hexafluoride is involved in the fuel cycle, from the production of UF{sub 6} from the naturally-occurring oxide to its re-conversion to oxide for reactor fuels. The papers furnish insights into the chemical, physical, and nuclear properties of uranium hexafluoride as they influence its transport, storage, and the design and operation of plant-scale facilities for production, processing, and conversion to oxide. The papers demonstrate, in an industry often cited for its excellent safety record, continuing efforts to further improve safety in all areas of handling uranium hexafluoride. Selected papers were processed separately for inclusion in the Energy Science and Technology Database.

  13. PRODUCTION OF URANIUM HEXAFLUORIDE

    DOE Patents [OSTI]

    Fowler, R.D.

    1957-08-27

    A process for the production of uranium hexafluoride from the oxides of uranium is reported. In accordance with the method, the higher oxides of uranium may be reduced to uranium dioxide (UO/sub 2/), the latter converted into uranium tetrafluoride by reaction with hydrogen fluoride, and the UF/sub 4/ converted to UF/sub 6/ by reaction with a fluorinating agent, such as CoF/sub 3/. The UO/sub 3/ or U/sub 3/O/sub 8/ is placed in a reac tion chamber in a copper boat or tray enclosed in a copper oven, and heated to 500 to 650 deg C while hydrogen gas is passed through the oven. After nitrogen gas is used to sweep out the hydrogen and the water vapor formed, and while continuing to inaintain the temperature between 400 deg C and 600 deg C, anhydrous hydrogen fluoride is passed through. After completion of the conversion of UO/sub 2/ to UF/sub 4/ the temperature of the reaction chamber is lowered to about 400 deg C or less, the UF/sub 4/ is mixed with the requisite quantity of CoF/sub 3/, and after evacuating the chamber, the mixture is heated to 300 to 400 deg C, and the resulting UF/sub 6/ is led off and delivered to a condenser.

  14. 2015 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) (indexed site)

    9 2015 Uranium Marketing Annual Report Release Date: May 24, 2016 Next Release Date: May ... Figure 3. Uranium purchased by owners and operators of U.S. civilian nuclear power ...

  15. 2015 Uranium Marketing Annual Report

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    1 2015 Uranium Marketing Annual Report Release Date: May 24, 2016 Next Release Date: May 2017 Deliveries Uranium concentrate Natural UF 6 Enriched UF 6 Natural UF 6 and Enriched UF ...

  16. 2015 Uranium Marketing Annual Report

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    9 2015 Uranium Marketing Annual Report Release Date: May 24, 2016 Next Release Date: May ... Figure 10. Annual unfilled uranium market requirements of owners and operators of U.S. ...

  17. 2015 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) (indexed site)

    7 2015 Uranium Marketing Annual Report Release Date: May 24, 2016 Next Release Date: May ... Figure 17. Foreign purchases of uranium by U.S. suppliers and owners and operators of U.S. ...

  18. 2015 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) (indexed site)

    1 2015 Uranium Marketing Annual Report Release Date: May 24, 2016 Next Release Date: May ... Table 13. Deliveries of uranium feed by owners and operators of U.S. civilian nuclear ...

  19. 2015 Uranium Marketing Annual Report

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    7 2015 Uranium Marketing Annual Report Release Date: May 24, 2016 Next Release Date: May ... Figure S6. Weighted-average price of foreign purchases and foreign sales of uranium, ...

  20. 2015 Uranium Marketing Annual Report

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    1 2015 Uranium Marketing Annual Report Release Date: May 24, 2016 Next Release Date: May ... Figure 22. Commercial inventories of uranium by owner as of end of year, 2011-15 ...

  1. 2015 Uranium Marketing Annual Report

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    3 2015 Uranium Marketing Annual Report Release Date: May 24, 2016 Next Release Date: May ... Figure 14. Shipments of uranium feed by owners and operators of U.S. civilian nuclear ...

  2. 2015 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) (indexed site)

    9 2015 Uranium Marketing Annual Report Release Date: May 24, 2016 Next Release Date: May ... Figure 19. Foreign sales of uranium from U.S. suppliers and owners and operators of U.S. ...

  3. 2015 Uranium Marketing Annual Report

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    7 2015 Uranium Marketing Annual Report Release Date: May 24, 2016 Next Release Date: May ... Table 9. Contracted purchases of uranium by owners and operators of U.S. civilian ...

  4. Microsoft Word - uranium.doc

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Utah, is contaminated with up to 17 mgL uranium leached from processed tailings at an ore ... PRB in-situ treatment technologies for abating the ground water uranium contamination. ...

  5. 2015 Uranium Marketing Annual Report

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    2015 Uranium Marketing Annual Report 2015 Uranium Marketing Annual Report Release Date: May 24, 2016 Next Release Date: May 2017 thousand pounds U 3 O 8 equivalent Year Maximum ...

  6. METHOD OF RECOVERING URANIUM COMPOUNDS

    DOE Patents [OSTI]

    Poirier, R.H.

    1957-10-29

    S>The recovery of uranium compounds which have been adsorbed on anion exchange resins is discussed. The uranium and thorium-containing residues from monazite processed by alkali hydroxide are separated from solution, and leached with an alkali metal carbonate solution, whereby the uranium and thorium hydrorides are dissolved. The carbonate solution is then passed over an anion exchange resin causing the uranium to be adsorbed while the thorium remains in solution. The uranium may be recovered by contacting the uranium-holding resin with an aqueous ammonium carbonate solution whereby the uranium values are eluted from the resin and then heating the eluate whereby carbon dioxide and ammonia are given off, the pH value of the solution is lowered, and the uranium is precipitated.

  7. 2015 Uranium Marketing Annual Survey

    U.S. Energy Information Administration (EIA) (indexed site)

    7. Uranium purchased by owners and operators of U.S. civilian nuclear power reactors by ... Weighted-average prices are not adjusted for inflation. " "UF6 is uranium hexafluoride. ...

  8. 2015 Domestic Uranium Production Report

    U.S. Energy Information Administration (EIA) (indexed site)

    7. Employment in the U.S. uranium production industry by state, 2003-15" "person-years" ... Administration: Form EIA-851A, ""Domestic Uranium Production Report"" (2003-15)." "10

  9. 2015 Domestic Uranium Production Report

    U.S. Energy Information Administration (EIA) (indexed site)

    3. U.S. uranium concentrate production, shipments, and sales, 2003-15" "Activity at U.S. ..."W","W","W","W","W","W","W","W","W","W" "Uranium Concentrate Produced at U.S. Mills" ...

  10. METHOD OF SINTERING URANIUM DIOXIDE

    DOE Patents [OSTI]

    Henderson, C.M.; Stavrolakis, J.A.

    1963-04-30

    This patent relates to a method of sintering uranium dioxide. Uranium dioxide bodies are heated to above 1200 nif- C in hydrogen, sintered in steam, and then cooled in hydrogen. (AEC)

  11. Uranium resources: Issues and facts

    SciTech Connect (OSTI)

    Delene, J.G.

    1993-12-31

    Although there are several secondary issues, the most important uranium resource issue is, ``will there be enough uranium available at a cost which will allow nuclear power to be competitive in the future?`` This paper will attempt to answer this question by discussing uranium supply, demand, and economics from the perspective of the United States. The paper will discuss: how much uranium is available; the sensitivity of nuclear power costs to uranium price; the potential future demand for uranium in the Unites States, some of the options available to reduce this demand, the potential role of the Advanced Liquid Metal Cooled Reactor (ALMR) in reducing uranium demand; and potential alternative uranium sources and technologies.

  12. Uranium-titanium-niobium alloy

    DOE Patents [OSTI]

    Ludtka, Gail M.; Ludtka, Gerard M.

    1990-01-01

    A uranium alloy having small additions of Ti and Nb shows improved strength and ductility in cross section of greater than one inch over prior uranium alloy having only Ti as an alloying element.

  13. 2015 Domestic Uranium Production Report

    Annual Energy Outlook

    Domestic Uranium Production Report 2015 Domestic Uranium Production Report Release Date: May 5, 2016 Next Release Date: May 2017 State(s) 2003 2004 2005 2006 2007 2008 2009 2010 ...

  14. 2015 Domestic Uranium Production Report

    Gasoline and Diesel Fuel Update

    Domestic Uranium Production Report 2015 Domestic Uranium Production Report Release Date: May 5, 2016 Next Release Date: May 2017 Activity at U.S. Mills and In-Situ-Leach Plants ...

  15. 2015 Domestic Uranium Production Report

    Annual Energy Outlook

    Domestic Uranium Production Report 2015 Domestic Uranium Production Report Release Date: May 5, 2016 Next Release Date: May 2017 Table 9. Summary production statistics of the U.S. ...

  16. uranium | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    uranium Klotz visits Y-12 to see progress on new projects and ongoing work on NNSA's national security missions Last week, NNSA Administrator Lt. Gen. Frank Klotz (Ret.) visited the Y-12 National Security Complex to check on the status of ongoing projects like the Uranium Processing Facility as well as the site's continuing uranium operations. He also met with the Region 2 volunteers of the Radiogical... NNSA Announces Arrival of Plutonium and Uranium from Japan's Fast Critical Assembly at

  17. Uranium Marketing Annual Report -

    Gasoline and Diesel Fuel Update

    . Uranium purchased by owners and operators of U.S. civilian nuclear power reactors by supplier and delivery year, 2011-15 thousand pounds U3O8 equivalent, dollars per pound U3O8 equivalent Deliveries 2011 2012 2013 2014 2015 Purchased from U.S. producers Purchases of U.S.-origin and foreign-origin uranium 550 W W W 1,455 Weighted-average price 58.12 W W W 52.35 Purchased from U.S. brokers and traders Purchases of U.S.-origin and foreign-origin uranium 14,778 11,545 12,835 17,111 13,852

  18. EXTRACTION OF URANIUM

    DOE Patents [OSTI]

    Kesler, R.D.; Rabb, D.D.

    1959-07-28

    An improved process is presented for recovering uranium from a carnotite ore. In the improved process U/sub 2/O/sub 5/ is added to the comminuted ore along with the usual amount of NaCl prior to roasting. The amount of U/sub 2/O/ sub 5/ is dependent on the amount of free calcium oxide and the uranium in the ore. Specifically, the desirable amount of U/sub 2/O/sub 5/ is 3.2% for each 1% of CaO, and 5 to 6% for each 1% of uranium. The mixture is roasted at about 1560 deg C for about 30 min and then leached with a 3 to 9% aqueous solution of sodium carbonate.

  19. Process for recovering uranium

    DOE Patents [OSTI]

    MacWood, G. E.; Wilder, C. D.; Altman, D.

    1959-03-24

    A process useful in recovering uranium from deposits on stainless steel liner surfaces of calutrons is presented. The deposit is removed from the stainless steel surface by washing with aqueous nitric acid. The solution obtained containing uranium, chromium, nickel, copper, and iron is treated with an excess of ammonium hydroxide to precipitnte the uranium, iron, and chromium and convert the nickel and copper to soluble ammonio complexions. The precipitated material is removed, dried and treated with carbon tetrachloride at an elevated temperature of about 500 to 600 deg C to form a vapor mixture of UCl/ sub 4/, UCl/sub 5/, FeCl/sub 3/, and CrCl/sub 4/. The UCl/sub 4/ is separated from this vapor mixture by selective fractional condensation at a temperature of about 500 to 400 deg C.

  20. Uranium industry annual, 1987

    SciTech Connect (OSTI)

    Not Available

    1988-09-29

    This report provides current statistical data on the US uranium industry for the Congress, federal and state agencies, the uranium and utility industries, and the public. It utilizes data from the mandatory ''Uranium Industry Annual Survey,'' Form EIA-858; historical data collected by the Energy Information Administration (EIA) and by the Grand Junction (Colorado) Project Office of the Idaho Operations Office of the US Department of Energy (DOE); and other data from federal agencies that preceded the DOE. The data provide a comprehensive statistical characterization of the industry's annual activities and include some information about industry plans and commitments over the next several years. Where these data are presented in aggregate form, care has been taken to protect the confidentiality of company-specific data while still conveying an accurate and complete statistical representation of the industry data.

  1. PROCESS FOR RECOVERING URANIUM

    DOE Patents [OSTI]

    MacWood, G.E.; Wilder, C.D.; Altman, D.

    1959-03-24

    A process is described for recovering uranium from deposits on stainless steel liner surfaces of calutrons. The deposit is removed from the stainless steel surface by washing with aqueous nitric acid. The solution obtained containing uranium, chromium, nickels copper, and iron is treated with excess of ammonium hydroxide to precipitatc the uranium, irons and chromium and convert thc nickel and copper to soluble ammonia complexions. The precipitated material is removed, dried, and treated with carbon tetrachloride at an elevated temperature of about 500 to 600 deg C to form a vapor mixture of UCl/sub 4/, UCl/sub 5/, FeCl/ sub 3/, and CrCl/sub 4/. The UCl/sub 4/ is separated from this vapor mixture by selective fractional condensation at a temprrature of about 300 to400 deg C.

  2. Domestic Uranium Production Report

    Gasoline and Diesel Fuel Update

    3. U.S. uranium concentrate production, shipments, and sales, 2003-15 Activity at U.S. mills and In-Situ-Leach plants 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 Estimated contained U3O8 (thousand pounds) Ore from Mines and Stockpiles Fed to Mills1 0 W W W 0 W W W W W W W 0 Other Feed Materials 2 W W W W W W W W W W W W W Total Mill Feed W W W W W W W W W W W W W Uranium Concentrate Produced at U.S. Mills (thousand pounds U3O8) W W W W W W W W W W W W W Uranium Concentrate

  3. Uranium immobilization and nuclear waste

    SciTech Connect (OSTI)

    Duffy, C.J.; Ogard, A.E.

    1982-02-01

    Considerable information useful in nuclear waste storage can be gained by studying the conditions of uranium ore deposit formation. Further information can be gained by comparing the chemistry of uranium to nuclear fission products and other radionuclides of concern to nuclear waste disposal. Redox state appears to be the most important variable in controlling uranium solubility, especially at near neutral pH, which is characteristic of most ground water. This is probably also true of neptunium, plutonium, and technetium. Further, redox conditions that immobilize uranium should immobilize these elements. The mechanisms that have produced uranium ore bodies in the Earth's crust are somewhat less clear. At the temperatures of hydrothermal uranium deposits, equilibrium models are probably adequate, aqueous uranium (VI) being reduced and precipitated by interaction with ferrous-iron-bearing oxides and silicates. In lower temperature roll-type uranium deposits, overall equilibrium may not have been achieved. The involvement of sulfate-reducing bacteria in ore-body formation has been postulated, but is uncertain. Reduced sulfur species do, however, appear to be involved in much of the low temperature uranium precipitation. Assessment of the possibility of uranium transport in natural ground water is complicated because the system is generally not in overall equilibrium. For this reason, Eh measurements are of limited value. If a ground water is to be capable of reducing uranium, it must contain ions capable of reducing uranium both thermodynamically and kinetically. At present, the best candidates are reduced sulfur species.

  4. PROCESS OF PREPARING URANIUM CARBIDE

    DOE Patents [OSTI]

    Miller, W.E.; Stethers, H.L.; Johnson, T.R.

    1964-03-24

    A process of preparing uranium monocarbide is de scribed. Uranium metal is dissolved in cadmium, zinc, cadmium-- zinc, or magnesium-- zinc alloy and a small quantity of alkali metal is added. Addition of stoichiometric amounts of carbon at 500 to 820 deg C then precipitates uranium monocarbide. (AEC)

  5. Environmental assessment: Transfer of normal and low-enriched uranium billets to the United Kingdom, Hanford Site, Richland, Washington

    SciTech Connect (OSTI)

    1995-11-01

    Under the auspices of an agreement between the U.S. and the United Kingdom, the U.S. Department of Energy (DOE) has an opportunity to transfer approximately 710,000 kilograms (1,562,000 pounds) of unneeded normal and low-enriched uranium (LEU) to the United Kingdom; thus, reducing long-term surveillance and maintenance burdens at the Hanford Site. The material, in the form of billets, is controlled by DOE`s Defense Programs, and is presently stored as surplus material in the 300 Area of the Hanford Site. The United Kingdom has expressed a need for the billets. The surplus uranium billets are currently stored in wooden shipping containers in secured facilities in the 300 Area at the Hanford Site (the 303-B and 303-G storage facilities). There are 482 billets at an enrichment level (based on uranium-235 content) of 0.71 weight-percent. This enrichment level is normal uranium; that is, uranium having 0.711 as the percentage by weight of uranium-235 as occurring in nature. There are 3,242 billets at an enrichment level of 0.95 weight-percent (i.e., low-enriched uranium). This inventory represents a total of approximately 532 curies. The facilities are routinely monitored. The dose rate on contact of a uranium billet is approximately 8 millirem per hour. The dose rate on contact of a wooden shipping container containing 4 billets is approximately 4 millirem per hour. The dose rate at the exterior of the storage facilities is indistinguishable from background levels.

  6. Uranium Transport Modeling

    SciTech Connect (OSTI)

    Bostick, William D.

    2008-01-15

    Uranium contamination is prevalent at many of the U.S. DOE facilities and at several civilian sites that have supported the nuclear fuel cycle. The potential off-site mobility of uranium depends on the partitioning of uranium between aqueous and solid (soil and sediment) phases. Hexavalent U (as uranyl, UO{sub 2}{sup 2+}) is relatively mobile, forming strong complexes with ubiquitous carbonate ion which renders it appreciably soluble even under mild reducing conditions. In the presence of carbonate, partition of uranyl to ferri-hydrate and select other mineral phases is usually maximum in the near-neutral pH range {approx} 5-8. The surface complexation reaction of uranyl with iron-containing minerals has been used as one means to model subsurface migration, used in conjunction with information on the site water chemistry and hydrology. Partitioning of uranium is often studied by short-term batch 'equilibrium' or long-term soil column testing ; MCLinc has performed both of these methodologies, with selection of method depending upon the requirements of the client or regulatory authority. Speciation of uranium in soil may be determined directly by instrumental techniques (e.g., x-ray photoelectron spectroscopy, XPS; x-ray diffraction, XRD; etc.) or by inference drawn from operational estimates. Often, the technique of choice for evaluating low-level radionuclide partitioning in soils and sediments is the sequential extraction approach. This methodology applies operationally-defined chemical treatments to selectively dissolve specific classes of macro-scale soil or sediment components. These methods recognize that total soil metal inventory is of limited use in understanding bioavailability or metal mobility, and that it is useful to estimate the amount of metal present in different solid-phase forms. Despite some drawbacks, the sequential extraction method can provide a valuable tool to distinguish among trace element fractions of different solubility related to

  7. Uranium Marketing Annual Report

    Gasoline and Diesel Fuel Update

    b. Weighted-average price of uranium purchased by owners and operators of U.S. civilian nuclear power reactors, 1994-2015 dollars per pound U3O8 equivalent Delivery year Total purchased (weighted-average price) Purchased from U.S. producers Purchased from U.S. brokers and traders Purchased from other owners and operators of U.S. civilian nuclear power reactors, other U.S. suppliers, (and U.S. government for 2007)1 Purchased from foreign suppliers U.S.-origin uranium (weighted-average price)

  8. TREATMENT OF URANIUM SURFACES

    DOE Patents [OSTI]

    Slunder, C.J.

    1959-02-01

    An improved process is presented for prcparation of uranium surfaces prior to electroplating. The surfacc of the uranium to be electroplated is anodized in a bath comprising a solution of approximately 20 to 602 by weight of phosphoric acid which contains about 20 cc per liter of concentrated hydrochloric acid. Anodization is carried out for approximately 20 minutes at a current density of about 0.5 amperes per square inch at a temperature of about 35 to 45 C. The oxidic film produced by anodization is removed by dipping in strong nitric acid, followed by rinsing with water just prior to electroplating.

  9. PREPARATION OF URANIUM TRIOXIDE

    DOE Patents [OSTI]

    Buckingham, J.S.

    1959-09-01

    The production of uranium trioxide from aqueous solutions of uranyl nitrate is discussed. The uranium trioxide is produced by adding sulfur or a sulfur-containing compound, such as thiourea, sulfamic acid, sulfuric acid, and ammonium sulfate, to the uranyl solution in an amount of about 0.5% by weight of the uranyl nitrate hexahydrate, evaporating the solution to dryness, and calcining the dry residue. The trioxide obtained by this method furnished a dioxide with a considerably higher reactivity with hydrogen fluoride than a trioxide prepared without the sulfur additive.

  10. METHOD OF ELECTROPOLISHING URANIUM

    DOE Patents [OSTI]

    Walker, D.E.; Noland, R.A.

    1959-07-14

    A method of electropolishing the surface of uranium articles is presented. The process of this invention is carried out by immersing the uranium anticle into an electrolyte which contains from 35 to 65% by volume sulfuric acid, 1 to 20% by volume glycerine and 25 to 50% by volume of water. The article is made the anode in the cell and polished by electrolyzing at a voltage of from 10 to 15 volts. Discontinuing the electrolysis by intermittently withdrawing the anode from the electrolyte and removing any polarized film formed therein results in an especially bright surface.

  11. PROCESS OF RECOVERING URANIUM

    DOE Patents [OSTI]

    Price, T.D.; Jeung, N.M.

    1958-06-17

    An improved precipitation method is described for the recovery of uranium from aqueous solutions. After removal of all but small amounts of Ni or Cu, and after complexing any iron present, the uranium is separated as the peroxide by adding H/sub 2/O/sub 2/. The improvement lies in the fact that the addition of H/sub 2/O/sub 2/ and consequent precipitation are carried out at a temperature below the freezing; point of the solution, so that minute crystals of solvent are present as seed crystals for the precipitation.

  12. Domestic Uranium Production Report

    Gasoline and Diesel Fuel Update

    5. U.S. uranium in-situ-leach plants by owner, location, capacity, and operating status at end of the year, 2011-15 In-Situ-Leach plant owner In-Situ-Leach plant name County, state (existing and planned locations) Production capacity (pounds U3O8 per year) Operating status at end of the year 2011 2012 2013 2014 2015 AUC LLC Reno Creek Campbell, Wyoming 2,000,000 - - Developing Developing Partially Permitted and Licensed Azarga Uranium Corp Dewey Burdock Project Fall River and Custer, South

  13. Domestic Uranium Production Report

    Gasoline and Diesel Fuel Update

    4. U.S. uranium mills by owner, location, capacity, and operating status at end of the year, 2011-15 Owner Mill and Heap Leach1 Facility name County, state (existing and planned locations) Capacity (short tons of ore per day) Operating status at end of the year 2011 2012 2013 2014 2015 Anfield Resources Shootaring Canyon Uranium Mill Garfield, Utah 750 Standby Standby Standby Standby Standby EPR White Mesa LLC White Mesa Mill San Juan, Utah 2,000 Operating Operating Operating- Processing

  14. Domestic Uranium Production Report

    Gasoline and Diesel Fuel Update

    10. Uranium reserve estimates at the end of 2014 and 2015 million pounds U3O8 End of 2014 End of 2015 Forward Cost2 Uranium Reserve Estimates1 by Mine and Property Status, Mining Method, and State(s) $0 to $30 per pound $0 to $50 per pound $0 to $100 per pound $0 to $30 per pound $0 to $50 per pound $0 to $100 per pound Properties with Exploration Completed, Exploration Continuing, and Only Assessment Work W W 154.6 24.3 W 151.6 Properties Under Development for Production and Development

  15. Corrosion-resistant uranium

    DOE Patents [OSTI]

    Hovis, V.M. Jr.; Pullen, W.C.; Kollie, T.G.; Bell, R.T.

    1981-10-21

    The present invention is directed to the protecting of uranium and uranium alloy articles from corrosion by providing the surfaces of the articles with a layer of an ion-plated metal selected from aluminum and zinc to a thickness of at least 60 microinches and then converting at least the outer surface of the ion-plated layer of aluminum or zinc to aluminum chromate or zinc chromate. This conversion of the aluminum or zinc to the chromate form considerably enhances the corrosion resistance of the ion plating so as to effectively protect the coated article from corrosion.

  16. Corrosion-resistant uranium

    DOE Patents [OSTI]

    Hovis, Jr., Victor M.; Pullen, William C.; Kollie, Thomas G.; Bell, Richard T.

    1983-01-01

    The present invention is directed to the protecting of uranium and uranium alloy articles from corrosion by providing the surfaces of the articles with a layer of an ion-plated metal selected from aluminum and zinc to a thickness of at least 60 microinches and then converting at least the outer surface of the ion-plated layer of aluminum or zinc to aluminum chromate or zinc chromate. This conversion of the aluminum or zinc to the chromate form considerably enhances the corrosion resistance of the ion plating so as to effectively protect the coated article from corrosion.

  17. URANIUM PRODUCERS OF AMERICA 141 EAST PALACE AVENUE, POST OFFICE...

    Office of Environmental Management (EM)

    Excess Uranium on Domestic Uranium Mining, Conversion, and Enrichment Industries: Dear Mr. ... uranium transfers on the domestic uranium mining, conversion, and enrichment industries. ...

  18. High loading uranium fuel plate

    DOE Patents [OSTI]

    Wiencek, Thomas C.; Domagala, Robert F.; Thresh, Henry R.

    1990-01-01

    Two embodiments of a high uranium fuel plate are disclosed which contain a meat comprising structured uranium compound confined between a pair of diffusion bonded ductile metal cladding plates uniformly covering the meat, the meat having a uniform high fuel loading comprising a content of uranium compound greater than about 45 Vol. % at a porosity not greater than about 10 Vol. %. In a first embodiment, the meat is a plurality of parallel wires of uranium compound. In a second embodiment, the meat is a dispersion compact containing uranium compound. The fuel plates are fabricated by a hot isostatic pressing process.

  19. RECOVERY OF URANIUM FROM PITCHBLENDE

    DOE Patents [OSTI]

    Ruehle, A.E.

    1958-06-24

    The decontamination of uranium from molybdenum is described. When acid solutions containing uranyl nitrate are contacted with ether for the purpose of extracting the uranium values, complex molybdenum compounds are coextracted with the uranium and also again back-extracted from the ether with the uranium. This invention provides a process for extracting uranium in which coextraction of molybdenum is avoided. It has been found that polyhydric alcohols form complexes with molybdenum which are preferentially water-soluble are taken up by the ether extractant to only a very minor degree. The preferred embodiment of the process uses mannitol, sorbitol or a mixture of the two as the complexing agent.

  20. STRIPPING OF URANIUM FROM ORGANIC EXTRACTANTS

    DOE Patents [OSTI]

    Crouse, D.J. Jr.

    1962-09-01

    A liquid-liquid extraction method is given for recovering uranium values from uranium-containing solutions. Uranium is removed from a uranium-containing organic solution by contacting said organic solution with an aqueous ammonium carbonate solution substantially saturated in uranium values. A uranium- containing precipitate is thereby formed which is separated from the organic and aqueous phases. Uranium values are recovered from this separated precipitate. (AE C)

  1. Uranium Reduction by Clostridia

    SciTech Connect (OSTI)

    Francis, A.J.; Dodge, Cleveland J.; Gillow, Jeffrey B.

    2006-04-05

    The FRC groundwater and sediment contain significant concentrations of U and Tc and are dominated by low pH, and high nitrate and Al concentrations where dissimilatory metal reducing bacterial activity may be limited. The presence of Clostridia in Area 3 at the FRC site has been confirmed and their ability to reduce uranium under site conditions will be determined. Although the phenomenon of uranium reduction by Clostridia has been firmly established, the molecular mechanisms underlying such a reaction are not very clear. The authors are exploring the hypothesis that U(VI) reduction occurs through hydrogenases and other enzymes (Matin and Francis). Fundamental knowledge of metal reduction using Clostridia will allow us to exploit naturally occurring processes to attenuate radionuclide and metal contaminants in situ in the subsurface. The outline for this report are as follows: (1) Growth of Clostridium sp. under normal culture conditions; (2) Fate of metals and radionuclides in the presence of Clostridia; (3) Bioreduction of uranium associated with nitrate, citrate, and lepidocrocite; and (4) Utilization of Clostridium sp. for immobilization of uranium at the FRC Area 3 site.

  2. URANIUM RECOVERY PROCESS

    DOE Patents [OSTI]

    Hyman, H.H.; Dreher, J.L.

    1959-07-01

    The recovery of uranium from the acidic aqueous metal waste solutions resulting from the bismuth phosphate carrier precipitation of plutonium from solutions of neutron irradiated uranium is described. The waste solutions consist of phosphoric acid, sulfuric acid, and uranium as a uranyl salt, together with salts of the fission products normally associated with neutron irradiated uranium. Generally, the process of the invention involves the partial neutralization of the waste solution with sodium hydroxide, followed by conversion of the solution to a pH 11 by mixing therewith sufficient sodium carbonate. The resultant carbonate-complexed waste is contacted with a titanated silica gel and the adsorbent separated from the aqueous medium. The aqueous solution is then mixed with sufficient acetic acid to bring the pH of the aqueous medium to between 4 and 5, whereby sodium uranyl acetate is precipitated. The precipitate is dissolved in nitric acid and the resulting solution preferably provided with salting out agents. Uranyl nitrate is recovered from the solution by extraction with an ether such as diethyl ether.

  3. Profile of World Uranium Enrichment Programs-2009

    SciTech Connect (OSTI)

    Laughter, Mark D

    2009-04-01

    It is generally agreed that the most difficult step in building a nuclear weapon is acquiring fissile material, either plutonium or highly enriched uranium (HEU). Plutonium is produced in a nuclear reactor, whereas HEU is produced using a uranium enrichment process. Enrichment is also an important step in the civil nuclear fuel cycle, in producing low enriched uranium (LEU) for use as fuel for nuclear reactors to generate electricity. However, the same equipment used to produce LEU for nuclear reactor fuel can also be used to produce HEU for weapons. Safeguards at an enrichment plant are the array of assurances and verification techniques that ensure uranium is not diverted or enriched to HEU. There are several techniques for enriching uranium. The two most prevalent are gaseous diffusion, which uses older technology and requires a lot of energy, and gas centrifuge separation, which uses more advanced technology and is more energy efficient. Gaseous diffusion plants (GDPs) provide about 40% of current world enrichment capacity but are being phased out as newer gas centrifuge enrichment plants (GCEPs) are constructed. Estimates of current and future enrichment capacity are always approximate, due to the constant upgrades, expansions, and shutdowns occurring at enrichment plants, largely determined by economic interests. Currently, the world enrichment capacity is approximately 56 million kilogram separative work units (SWU) per year, with 22.5 million in gaseous diffusion and more than 33 million in gas centrifuge plants. Another 34 million SWU/year of capacity is under construction or planned for the near future, almost entirely using gas centrifuge separation. Other less-efficient techniques have also been used in the past, including electromagnetic and aerodynamic separations, but these are considered obsolete, at least from a commercial perspective. Laser isotope separation shows promise as a possible enrichment technique of the future but has yet to be

  4. Uranium Isotopic Assay Instrument

    SciTech Connect (OSTI)

    Anheier, Norman C.; Wojcik, Michael D.; Bushaw, Bruce A.

    2006-12-01

    The isotopic assay instrument under development at Pacific Northwest National Laboratory (PNNL) is capable of rapid prescreening to detect small and rare particles containing high concentrations of uranium in a heterogeneous sample. The isotopic measurement concept is based on laser vaporization of solid samples followed with sensitive isotope specific detection using either uranium atomic fluorescence emission or uranium atomic absorbance. Both isotopes are measured concurrently, following a single ablation laser pulse, using two external-cavity violet diode lasers. The simultaneous measurement of both isotopes enables the correlation of the fluorescence and absorbance signals on a shot-to-shot basis. This measurement approach demonstrated negligible channel crosstalk between isotopes. Rapid sample scanning provides high spatial resolution isotopic fluorescence and absorbance sample imagery of heterogeneous samples. Laser ablation combined with measurements of laser-induced fluorescence (LALIF) and through-plume laser absorbance (LAPLA) was applied to measure gadolinium isotope ratios in solid samples. Gadolinium has excitation wavelengths very close to the transitions of interest in uranium. Gadolinium has seven stable isotopes, and the natural 152Gd:160Gd ratio of 0.009 is in the range of what will be encountered for 235U:238U isotopic ratios. LAPLA measurements were demonstrated clearly using 152Gd (0.2% isotopic abundance) with a good signal-to-noise ratio. The ability to measure gadolinium abundances at this level indicates that measurements of 235U/238U isotopic ratios for natural (0.72%), depleted (0.25%), and low enriched uranium samples will be feasible.

  5. Uranium from seawater

    SciTech Connect (OSTI)

    Gregg, D.; Folkendt, M.

    1982-09-21

    A novel process for recovering uranium from seawater is proposed and some of the critical technical parameters are evaluated. The process, in summary, consists of two different options for contacting adsorbant pellets with seawater without pumping the seawater. It is expected that this will reduce the mass handling requirements, compared to pumped seawater systems, by a factor of approximately 10/sup 5/, which should also result in a large reduction in initial capital investment. Activated carbon, possibly in combination with a small amount of dissolved titanium hydroxide, is expected to be the preferred adsorbant material instead of the commonly assumed titanium hydroxide alone. The activated carbon, after exposure to seawater, can be stripped of uranium with an appropriate eluant (probably an acid) or can be burned for its heating value (possible in a power plant) leaving the uranium further enriched in its ash. The uranium, representing about 1% of the ash, is then a rich ore and would be recovered in a conventional manner. Experimental results have indicated that activated carbon, acting alone, is not adequately effective in adsorbing the uranium from seawater. We measured partition coefficients (concentration ratios) of approximately 10/sup 3/ in seawater instead of the reported values of 10/sup 5/. However, preliminary tests carried out in fresh water show considerable promise for an extraction system that uses a combination of dissolved titanium hydroxide (in minute amounts) which forms an insoluble compound with the uranyl ion, and the insoluble compound then being sorbed out on activated carbon. Such a system showed partition coefficients in excess of 10/sup 5/ in fresh water. However, the system was not tested in seawater.

  6. Transportation of foreign-owned enriched uranium from the Republic of Georgia. Environmental assessment for Project Partnership

    SciTech Connect (OSTI)

    1998-03-31

    The Department of Energy (DOE) Office of Nonproliferation and National Security (NN) has prepared a classified environmental assessment to evaluate the potential environmental impact for the transportation of 5.26 kilograms of enriched uranium-235 in the form of nuclear fuel, from the Republic of Georgia to the United Kingdom. The nuclear fuel consists of primarily fresh fuel, but also consists of a small quantity (less than 1 kilogram) of partially-spent fuel. Transportation of the enriched uranium fuel would occur via US Air Force military aircraft under the control of the Defense Department European Command (EUCOM). Actions taken in a sovereign nation (such as the Republic of Georgia and the United Kingdom) are not subject to analysis in the environmental assessment. However, because the action would involve the global commons of the Black Sea and the North Sea, the potential impact to the global commons has been analyzed. Because of the similarities in the two actions, the Project Sapphire Environmental Assessment was used as a basis for assessing the potential impacts of Project Partnership. However, because Project Partnership involves a small quantity of partially-spent fuel, additional analysis was conducted to assess the potential environmental impacts and to consider reasonable alternatives as required by NEPA. The Project Partnership Environmental Assessment found the potential environmental impacts to be well below those from Project Sapphire.

  7. PRODUCTION OF URANIUM METAL BY CARBON REDUCTION

    DOE Patents [OSTI]

    Holden, R.B.; Powers, R.M.; Blaber, O.J.

    1959-09-22

    The preparation of uranium metal by the carbon reduction of an oxide of uranium is described. In a preferred embodiment of the invention a charge composed of carbon and uranium oxide is heated to a solid mass after which it is further heated under vacuum to a temperature of about 2000 deg C to produce a fused uranium metal. Slowly ccoling the fused mass produces a dendritic structure of uranium carbide in uranium metal. Reacting the solidified charge with deionized water hydrolyzes the uranium carbide to finely divide uranium dioxide which can be separated from the coarser uranium metal by ordinary filtration methods.

  8. Method of preparation of uranium nitride

    DOE Patents [OSTI]

    Kiplinger, Jaqueline Loetsch; Thomson, Robert Kenneth James

    2013-07-09

    Method for producing terminal uranium nitride complexes comprising providing a suitable starting material comprising uranium; oxidizing the starting material with a suitable oxidant to produce one or more uranium(IV)-azide complexes; and, sufficiently irradiating the uranium(IV)-azide complexes to produce the terminal uranium nitride complexes.

  9. file://\\fs-f1\shared\uranium\uranium.html

    U.S. Energy Information Administration (EIA) (indexed site)

    Glossary Home > Nuclear > U.S. Uranium Reserves Estimates U.S. Uranium Reserves Estimates Data for: 2008 Report Released: July 2010 Next Release Date: 2012 Summary The U.S. Energy Information Administration (EIA) has updated its estimates of uranium reserves for year-end 2008. This represents the first revision of the estimates since 2004. The update is based on analysis of company annual reports, any additional information reported by companies at conferences and in news releases,

  10. Method of preparing uranium nitride or uranium carbonitride bodies

    DOE Patents [OSTI]

    Wilhelm, Harley A.; McClusky, James K.

    1976-04-27

    Sintered uranium nitride or uranium carbonitride bodies having a controlled final carbon-to-uranium ratio are prepared, in an essentially continuous process, from U.sub.3 O.sub.8 and carbon by varying the weight ratio of carbon to U.sub.3 O.sub.8 in the feed mixture, which is compressed into a green body and sintered in a continuous heating process under various controlled atmospheric conditions to prepare the sintered bodies.

  11. RECOVERY OF URANIUM FROM ZIRCONIUM-URANIUM NUCLEAR FUELS

    DOE Patents [OSTI]

    Gens, T.A.

    1962-07-10

    An improvement was made in a process of recovering uranium from a uranium-zirconium composition which was hydrochlorinated with gsseous hydrogen chloride at a temperature of from 350 to 800 deg C resulting in volatilization of the zirconium, as zirconium tetrachloride, and the formation of a uranium containing nitric acid insoluble residue. The improvement consists of reacting the nitric acid insoluble hydrochlorination residue with gaseous carbon tetrachloride at a temperature in the range 550 to 600 deg C, and thereafter recovering the resulting uranium chloride vapors. (AEC)

  12. Method for fabricating uranium foils and uranium alloy foils

    DOE Patents [OSTI]

    Hofman, Gerard L.; Meyer, Mitchell K.; Knighton, Gaven C.; Clark, Curtis R.

    2006-09-05

    A method of producing thin foils of uranium or an alloy. The uranium or alloy is cast as a plate or sheet having a thickness less than about 5 mm and thereafter cold rolled in one or more passes at substantially ambient temperatures until the uranium or alloy thereof is in the shape of a foil having a thickness less than about 1.0 mm. The uranium alloy includes one or more of Zr, Nb, Mo, Cr, Fe, Si, Ni, Cu or Al.

  13. PREPARATION OF DENSE URANIUM DIOXIDE PARTICLES FROM URANIUM HEXAFLUORI...

    Office of Scientific and Technical Information (OSTI)

    Visit OSTI to utilize additional information resources in energy science and technology. A ... A fluid-bed method was developed for the direct preparation from uranium hexafluoride of ...

  14. METHOD OF PRODUCING URANIUM

    DOE Patents [OSTI]

    Foster, L.S.; Magel, T.T.

    1958-05-13

    A modified process is described for the production of uranium metal by means of a bomb reduction of UF/sub 4/. Difficulty is sometimes experienced in obtaining complete separation of the uranium from the slag when the process is carried out on a snnall scale, i.e., for the production of 10 grams of U or less. Complete separation may be obtained by incorporating in the reaction mixture a quantity of MnCl/sub 2/, so that this compound is reduced along with the UF/sub 4/ . As a result a U--Mn alloy is formed which has a melting point lower than that of pure U, and consequently the metal remains molten for a longer period allowing more complete separation from the slag.

  15. PROCESS FOR PRODUCING URANIUM TETRAFLUORIDE

    DOE Patents [OSTI]

    Harvey, B.G.

    1954-09-14

    >This patent relates to improvements in the method for producing uranium tetrafluoride by treating an aqueous solutlon of a uranyl salt at an elevated temperature with a reducing agent effective in acld solutlon in the presence of hydrofluoric acid. Uranium tetrafluoride produced this way frequentiy contains impurities in the raw material serving as the source of uranium. Uranium tetrafluoride much less contaminated with impurities than when prepared by the above method can be prepared from materials containing such impurities by first adding a small proportion of reducing agent so as to cause a small fraction, for example 1 to 5% of the uranium tetrafluoride to be precipitated, rejecting such precipitate, and then precipitating and recovering the remainder of the uranium tetrafluoride.

  16. ELECTROLYSIS OF THORIUM AND URANIUM

    DOE Patents [OSTI]

    Hansen, W.N.

    1960-09-01

    An electrolytic method is given for obtaining pure thorium, uranium, and thorium-uranium alloys. The electrolytic cell comprises a cathode composed of a metal selected from the class consisting of zinc, cadmium, tin, lead, antimony, and bismuth, an anode composed of at least one of the metals selected from the group consisting of thorium and uranium in an impure state, and an electrolyte composed of a fused salt containing at least one of the salts of the metals selected from the class consisting of thorium, uranium. zinc, cadmium, tin, lead, antimony, and bismuth. Electrolysis of the fused salt while the cathode is maintained in the molten condition deposits thorium, uranium, or thorium-uranium alloys in pure form in the molten cathode which thereafter may be separated from the molten cathode product by distillation.

  17. Recovery of uranium from seawater

    SciTech Connect (OSTI)

    Sugasaka, K.; Katoh, S.; Takai, N.; Takahashi, H.; Umezawa, Y.

    1981-01-01

    Seawater contains various elements in solution. Deuterium, lithium, and uranium are the important ingredients for energy application at present and in the future. This paper deals with the recovery of uranium from seawater, with emphasis on the development of an adsorbent with high selectivity and rate of adsorption for uranium. Polyacrylamidoxime chelating resins were synthesized from various co-polymers of acrylonitrile and cross-linking agents. The resulting resins with the chelating amidoxime group showed selective adsorption for uranium in seawater. The amount of uranium adsorbed from seawater at room temperature reached 3.2 mg/g resin after 180 days. Polyacrylamidoxime fiber, which was prepared from polyacrylonitrile fiber and hydroxylamine, showed a high rate of adsorption for uranium. The polyacrylamidoxime fiber conditioned with 1 M HC1 and 1 M NaOH adsorbed 4 mg U/g fiber from seawater in ten days. 9 figures, 6 tables.

  18. WELDED JACKETED URANIUM BODY

    DOE Patents [OSTI]

    Gurinsky, D.H.

    1958-08-26

    A fuel element is presented for a neutronic reactor and is comprised of a uranium body, a non-fissionable jacket surrounding sald body, thu jacket including a portion sealed by a weld, and an inclusion in said sealed jacket at said weld of a fiux having a low neutron capture cross-section. The flux is provided by combining chlorine gas and hydrogen in the intense heat of-the arc, in a "Heliarc" welding muthod, to form dry hydrochloric acid gas.

  19. Research Reactor Preparations for the Air Shipment of Highly Enriched Uranium from Romania

    SciTech Connect (OSTI)

    K. J. Allen; I. Bolshinsky; L. L. Biro; M. E. Budu; N. V. Zamfir; M. Dragusin; C. Paunoiu; M. Ciocanescu

    2010-03-01

    In June 2009 two air shipments transported both unirradiated (fresh) and irradiated (spent) Russian-origin highly enriched uranium (HEU) nuclear fuel from two research reactors in Romania to the Russian Federation for conversion to low enriched uranium. The Institute for Nuclear Research at Pitesti (SCN Pitesti) shipped 30.1 kg of HEU fresh fuel pellets to Dimitrovgrad, Russia and the Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH) shipped 23.7 kilograms of HEU spent fuel assemblies from the VVR S research reactor at Magurele, Romania, to Chelyabinsk, Russia. Both HEU shipments were coordinated by the Russian Research Reactor Fuel Return Program (RRRFR) as part of the U.S. Department of Energy Global Threat Reduction Initiative (GTRI), were managed in Romania by the National Commission for Nuclear Activities Control (CNCAN), and were conducted in cooperation with the Russian Federation State Corporation Rosatom and the International Atomic Energy Agency. Both shipments were transported by truck to and from respective commercial airports in Romania and the Russian Federation and stored at secure nuclear facilities in Russia until the material is converted into low enriched uranium. These shipments resulted in Romania becoming the 3rd country under the RRRFR program and the 14th country under the GTRI program to remove all HEU. This paper describes the research reactor preparations and license approvals that were necessary to safely and securely complete these air shipments of nuclear fuel.

  20. PROCESS FOR PREPARING URANIUM METAL

    DOE Patents [OSTI]

    Prescott, C.H. Jr.; Reynolds, F.L.

    1959-01-13

    A process is presented for producing oxygen-free uranium metal comprising contacting iodine vapor with crude uranium in a reaction zone maintained at 400 to 800 C to produce a vaporous mixture of UI/sub 4/ and iodine. Also disposed within the maction zone is a tungsten filament which is heated to about 1600 C. The UI/sub 4/, upon contacting the hot filament, is decomposed to molten uranium substantially free of oxygen.

  1. 2014 Domestic Uranium Production Report

    U.S. Energy Information Administration (EIA) (indexed site)

    Domestic Uranium Production Report 2015 Domestic Uranium Production Report Release Date: May 5, 2016 Next Release Date: May 2017 2011 2012 2013 2014 2015 AUC LLC Reno Creek Campbell, Wyoming 2,000,000 - - Developing Developing Partially Permitted and Licensed Azarga Uranium Corp Dewey Burdock Project Fall River and Custer, South Dakota 1,000,000 Undeveloped Developing Developing Partially Permitted And Licensed Partially Permitted And Licensed Cameco Crow Butte Operation Dawes, Nebraska

  2. METHOD OF DISSOLVING URANIUM METAL

    DOE Patents [OSTI]

    Slotin, L.A.

    1958-02-18

    This patent relates to an economicai means of dissolving metallic uranium. It has been found that the addition of a small amount of perchloric acid to the concentrated nitric acid in which the uranium is being dissolved greatly shortens the time necessary for dissolution of the metal. Thus the use of about 1 or 2 percent of perchioric acid based on the weight of the nitric acid used, reduces the time of dissolution of uranium by a factor of about 100.

  3. VANE Uranium One JV | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    VANE Uranium One JV Jump to: navigation, search Name: VANE-Uranium One JV Place: London, England, United Kingdom Zip: EC4V 6DX Product: JV between VANE Minerals Plc & Uranium One....

  4. SEPARATION OF THORIUM FROM URANIUM

    DOE Patents [OSTI]

    Bane, R.W.

    1959-09-01

    A description is given for the separation of thorium from uranium by forming an aqueous acidic solution containing ionic species of thorium, uranyl uranium, and hydroxylamine, flowing the solution through a column containing the phenol-formaldehyde type cation exchange resin to selectively adsorb substantially all the thorium values and a portion of the uranium values, flowing a dilute solution of hydrochloric acid through the column to desorb the uranium values, and then flowing a dilute aqueous acidic solution containing an ion, such as bisulfate, which has a complexing effect upon thortum through the column to desorb substantially all of the thorium.

  5. 2015 Domestic Uranium Production Report

    U.S. Energy Information Administration (EIA) (indexed site)

    Prior editions of this report may be found: http:www.eia.govnuclearreports.cfm ... U.S. uranium mills and heap leach facilities by owner, location, capacity, and ...

  6. 2014 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) (indexed site)

    By law, EIA's data, analyses, and forecasts are independent ... on information reported on Form EIA-858, "Uranium Marketing ... nuclear power reactors by contract type and material type, ...

  7. THERMAL DECOMPOSITION OF URANIUM COMPOUNDS

    DOE Patents [OSTI]

    Magel, T.T.; Brewer, L.

    1959-02-10

    A method is presented of preparing uranium metal of high purity consisting contacting impure U metal with halogen vapor at between 450 and 550 C to form uranium halide vapor, contacting the uranium halide vapor in the presence of H/sub 2/ with a refractory surface at about 1400 C to thermally decompose the uranium halides and deposit molten U on the refractory surface and collecting the molten U dripping from the surface. The entire operation is carried on at a sub-atmospheric pressure of below 1 mm mercury.

  8. 2015 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) (indexed site)

    Uranium Marketing Annual Report 2015 Uranium Marketing Annual Report Release Date: May 24, 2016 Next Release Date: May 2017 Delivery year Total purchased (weighted- average price) Purchased from U.S. producers Purchased from U.S. brokers and traders Purchased from other owners and operators of U.S. civilian nuclear power reactors, other U.S. suppliers, (and U.S. government for 2007) 1 Purchased from foreign suppliers U.S.-origin uranium (weighted- average price) Foreign-origin uranium (weighted-

  9. 2015 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) (indexed site)

    5 2015 Uranium Marketing Annual Report Release Date: May 24, 2016 Next Release Date: May 2017 Table S2. Uranium feed deliveries, enrichment services, and uranium loaded by owners and operators of U.S. civilian nuclear power reactors, 1994-2015 Year Feed deliveries by owners and operators of U.S. civilian nuclear power reactors Uranium in fuel assemblies loaded into U.S. civilian nuclear power reactors U.S.-origin enrichment services purchased Foreign-origin enrichment services purchased Total

  10. ELECTROLYTIC PRODUCTION OF URANIUM TETRAFLUORIDE

    DOE Patents [OSTI]

    Lofthouse, E.

    1954-08-31

    This patent relates to electrolytic methods for the production of uranium tetrafluoride. According to the present invention a process for the production of uranium tetrafluoride comprises submitting to electrolysis an aqueous solution of uranyl fluoride containing free hydrofluoric acid. Advantageously the aqueous solution of uranyl fluoride is obtained by dissolving uranium hexafluoride in water. On electrolysis, the uranyl ions are reduced to uranous tons at the cathode and immediately combine with the fluoride ions in solution to form the insoluble uranium tetrafluoride which is precipitated.

  11. Highly Enriched Uranium Materials Facility

    National Nuclear Security Administration (NNSA)

    Appropriations Subcommittee, is shown some of the technology in the Highly Enriched Uranium Materials Facility by Warehousing and Transportation Operations Manager Byron...

  12. METHOD FOR RECOVERING URANIUM FROM OILS

    DOE Patents [OSTI]

    Gooch, L.H.

    1959-07-14

    A method is presented for recovering uranium from hydrocarbon oils, wherein the uranium is principally present as UF/sub 4/. According to the invention, substantially complete removal of the uranium from the hydrocarbon oil may be effected by intimately mixing one part of acetone to about 2 to 12 parts of the hydrocarbon oil containing uranium and separating the resulting cake of uranium from the resulting mixture. The uranium in the cake may be readily recovered by burning to the oxide.

  13. RUSSIAN-ORIGIN HIGHLY ENRICHED URANIUM SPENT NUCLEAR FUEL SHIPMENT FROM BULGARIA

    SciTech Connect (OSTI)

    Kelly Cummins; Igor Bolshinsky; Ken Allen; Tihomir Apostolov; Ivaylo Dimitrov

    2009-07-01

    In July 2008, the Global Threat Reduction Initiative and the IRT 2000 research reactor in Sofia, Bulgaria, operated by the Institute for Nuclear Research and Nuclear Energy (INRNE), safely shipped 6.4 kilograms of Russian origin highly enriched uranium (HEU) spent nuclear fuel (SNF) to the Russian Federation. The shipment, which resulted in the removal of all HEU from Bulgaria, was conducted by truck, barge, and rail modes of transport across two transit countries before reaching the final destination at the Production Association Mayak facility in Chelyabinsk, Russia. This paper describes the work, equipment, organizations, and approvals that were required to complete the spent fuel shipment and provides lessons learned that might assist other research reactor operators with their own spent nuclear fuel shipments.

  14. Uranium Biomineralization By Natural Microbial Phosphatase Activities...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Uranium Biomineralization By Natural Microbial Phosphatase Activities in the Subsurface Citation Details In-Document Search Title: Uranium Biomineralization By ...

  15. Nuclear radiation cleanup and uranium prospecting (Patent) |...

    Office of Scientific and Technical Information (OSTI)

    Nuclear radiation cleanup and uranium prospecting Citation Details In-Document Search Title: Nuclear radiation cleanup and uranium prospecting Apparatus, systems, and methods for...

  16. Nuclear radiation cleanup and uranium prospecting (Patent) |...

    Office of Scientific and Technical Information (OSTI)

    Nuclear radiation cleanup and uranium prospecting Citation Details In-Document Search Title: Nuclear radiation cleanup and uranium prospecting You are accessing a document from...

  17. PROCESS OF PRODUCING REFRACTORY URANIUM OXIDE ARTICLES

    DOE Patents [OSTI]

    Hamilton, N.E.

    1957-12-01

    A method is presented for fabricating uranium oxide into a shaped refractory article by introducing a uranium halide fluxing reagent into the uranium oxide, and then mixing and compressing the materials into a shaped composite mass. The shaped mass of uranium oxide and uranium halide is then fired at an elevated temperature so as to form a refractory sintered article. It was found in the present invention that the introduction of a uraninm halide fluxing agent afforded a fluxing action with the uranium oxide particles and that excellent cohesion between these oxide particles was obtained. Approximately 90% of uranium dioxide and 10% of uranium tetrafluoride represent a preferred composition.

  18. Consolidated Edison Uranium Solidification Project | Department...

    Energy Savers

    Consolidated Edison Uranium Solidification Project Consolidated Edison Uranium Solidification Project CEUSP Inventory11-6-13Finalprint-ready.pdf (4.03 MB) CEUSPtimelinefinalp...

  19. Uranium Weapons Components Successfully Dismantled | National...

    National Nuclear Security Administration (NNSA)

    Uranium Weapons Components Successfully Dismantled Uranium Weapons Components Successfully Dismantled Oak Ridge, TN Continuing its efforts to reduce the size of the U.S. nuclear ...

  20. Calculating Atomic Number Densities for Uranium

    Energy Science and Technology Software Center (OSTI)

    1993-01-01

    Provides method to calculate atomic number densities of selected uranium compounds and hydrogenous moderators for use in nuclear criticality safety analyses at gaseous diffusion uranium enrichment facilities.

  1. Uranium Processing Facility team signs partnering agreement ...

    National Nuclear Security Administration (NNSA)

    Uranium Processing Facility team signs partnering agreement Thursday, July 24, 2014 - 9:40am Officials from NNSA's Uranium Processing Facility Project Office and Consolidated ...

  2. Uranium Resources Inc URI | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    exploring, developing and mining uranium properties using the in situ recovery (ISR) or solution mining process. References: Uranium Resources, Inc. (URI)1 This article...

  3. Uranium Enrichment Decontamination and Decommissioning Fund's...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Uranium Enrichment Decontamination and Decommissioning Fund's Fiscal Year 2008 and 2007 Financial Statement Audit, OAS-FS-10-05 Uranium Enrichment Decontamination and...

  4. Conversion of depleted uranium hexafluoride to a solid uranium compound

    DOE Patents [OSTI]

    Rothman, Alan B.; Graczyk, Donald G.; Essling, Alice M.; Horwitz, E. Philip

    2001-01-01

    A process for converting UF.sub.6 to a solid uranium compound such as UO.sub.2 and CaF. The UF.sub.6 vapor form is contacted with an aqueous solution of NH.sub.4 OH at a pH greater than 7 to precipitate at least some solid uranium values as a solid leaving an aqueous solution containing NH.sub.4 OH and NH.sub.4 F and remaining uranium values. The solid uranium values are separated from the aqueous solution of NH.sub.4 OH and NH.sub.4 F and remaining uranium values which is then diluted with additional water precipitating more uranium values as a solid leaving trace quantities of uranium in a dilute aqueous solution. The dilute aqueous solution is contacted with an ion-exchange resin to remove substantially all the uranium values from the dilute aqueous solution. The dilute solution being contacted with Ca(OH).sub.2 to precipitate CaF.sub.2 leaving dilute NH.sub.4 OH.

  5. SOLVENT EXTRACTION OF URANIUM VALUES

    DOE Patents [OSTI]

    Feder, H.M.; Ader, M.; Ross, L.E.

    1959-02-01

    A process is presented for extracting uranium salt from aqueous acidic solutions by organic solvent extraction. It consists in contacting the uranium bearing solution with a water immiscible dialkylacetamide having at least 8 carbon atoms in the molecule. Mentioned as a preferred extractant is dibutylacetamide. The organic solvent is usually used with a diluent such as kerosene or CCl/sub 4/.

  6. PLUTONIUM-URANIUM-TITANIUM ALLOYS

    DOE Patents [OSTI]

    Coffinberry, A.S.

    1959-07-28

    A plutonium-uranium alloy suitable for use as the fuel element in a fast breeder reactor is described. The alloy contains from 15 to 60 at.% titanium with the remainder uranium and plutonium in a specific ratio, thereby limiting the undesirable zeta phase and rendering the alloy relatively resistant to corrosion and giving it the essential characteristic of good mechanical workability.

  7. ELECTRODEPOSITION OF NICKEL ON URANIUM

    DOE Patents [OSTI]

    Gray, A.G.

    1958-08-26

    A method is described for preparing uranium objects prior to nickel electroplating. The process consiats in treating the surface of the uranium with molten ferric chloride hexahydrate, at a slightiy elevated temperature. This treatment etches the metal surface providing a structure suitable for the application of adherent electrodeposits and at the same time plates the surface with a thin protective film of iron.

  8. METHOD OF ELECTROPLATING ON URANIUM

    DOE Patents [OSTI]

    Rebol, E.W.; Wehrmann, R.F.

    1959-04-28

    This patent relates to a preparation of metallic uranium surfaces for receiving coatings, particularly in order to secure adherent electroplated coatings upon uranium metal. In accordance with the invention the uranium surface is pretreated by degreasing in trichloroethylene, followed by immersion in 25 to 50% nitric acid for several minutes, and then rinsed with running water, prior to pickling in trichloroacetic acid. The last treatment is best accomplished by making the uranium the anode in an aqueous solution of 50 per cent by weight trichloroacetic acid until work-distorted crystals or oxide present on the metal surface have been removed and the basic crystalline structure of the base metal has been exposed. Following these initial steps the metallic uranium is rinsed in dilute nitric acid and then electroplated with nickel. Adnerent firmly-bonded coatings of nickel are obtained.

  9. PREPARATION OF URANIUM-ALUMINUM ALLOYS

    DOE Patents [OSTI]

    Moore, R.H.

    1962-09-01

    A process is given for preparing uranium--aluminum alloys from a solution of uranium halide in an about equimolar molten alkali metal halide-- aluminum halide mixture and excess aluminum. The uranium halide is reduced and the uranium is alloyed with the excess aluminum. The alloy and salt are separated from each other. (AEC)

  10. Process for removing carbon from uranium

    DOE Patents [OSTI]

    Powell, George L.; Holcombe, Jr., Cressie E.

    1976-01-01

    Carbon contamination is removed from uranium and uranium alloys by heating in inert atmosphere to 700.degree.-1900.degree.C in effective contact with yttrium to cause carbon in the uranium to react with the yttrium. The yttrium is either in direct contact with the contaminated uranium or in indirect contact by means of an intermediate transport medium.

  11. THE RECOVERY OF URANIUM FROM GAS MIXTURE

    DOE Patents [OSTI]

    Jury, S.H.

    1964-03-17

    A method of separating uranium from a mixture of uranium hexafluoride and other gases is described that comprises bringing the mixture into contact with anhydrous calcium sulfate to preferentially absorb the uranium hexafluoride on the sulfate. The calcium sulfate is then leached with a selective solvent for the adsorbed uranium. (AEC)

  12. ELUTION OF URANIUM FROM RESIN

    DOE Patents [OSTI]

    McLEan, D.C.

    1959-03-10

    A method is described for eluting uranium from anion exchange resins so as to decrease vanadium and iron contamination and permit recycle of the major portion of the eluats after recovery of the uranium. Diminution of vanadium and iron contamination of the major portion of the uranium is accomplished by treating the anion exchange resin, which is saturated with uranium complex by adsorption from a sulfuric acid leach liquor from an ore bearing uranium, vanadium and iron, with one column volume of eluant prepared by passing chlorine into ammonium hydroxide until the chloride content is about 1 N and the pH is about 1. The resin is then eluted with 8 to 9 column volumes of 0.9 N ammonium chloride--0.1 N hydrochloric acid solution. The eluants are collected separately and treated with ammonia to precipitate ammonium diuranate which is filtered therefrom. The uranium salt from the first eluant is contaminated with the major portion of ths vanadium and iron and is reworked, while the uranium recovered from the second eluant is relatively free of the undesirable vanadium and irons. The filtrate from the first eluant portion is discarded. The filtrate from the second eluant portion may be recycled after adding hydrochloric acid to increase the chloride ion concentration and adjust the pH to about 1.

  13. Secretary Moniz Announces Removal of All Highly Enriched Uranium...

    National Nuclear Security Administration (NNSA)

    than 700 kilograms of HEU from Poland, effectively reducing a major proliferation threat. ... of terrorism through the removal of proliferation-attractive material," said Secretary ...

  14. SEPARATION OF URANIUM FROM THORIUM

    DOE Patents [OSTI]

    Hellman, N.N.

    1959-07-01

    A process is presented for separating uranium from thorium wherein the ratio of thorium to uranium is between 100 to 10,000. According to the invention the thoriumuranium mixture is dissolved in nitric acid, and the solution is prepared so as to obtain the desired concentration within a critical range of from 4 to 8 N with regard to the total nitrate due to thorium nitrate, with or without nitric acid or any nitrate salting out agent. The solution is then contacted with an ether, such as diethyl ether, whereby uranium is extracted into ihe organic phase while thorium remains in the aqueous phase.

  15. URANIUM RECOVERY FROM NUCLEAR FUEL

    DOE Patents [OSTI]

    Vogel, R.C.; Rodger, W.A.

    1962-04-24

    A process of recovering uranium from a UF/sub 4/-NaFZrF/sub 4/ mixture by spraying the molten mixture at about 200 deg C in nitrogen of super- atmospheric pressure into droplets not larger than 100 microns, and contacting the molten droplets with fluorine at about 200 deg C for 0.01 to 10 seconds in a container the walls of which have a temperature below the melting point of the mixture is described. Uranium hexafluoride is formed and volatilized and the uranium-free salt is solidified. (AEC)

  16. 2015 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) (indexed site)

    2015 Uranium Marketing Annual Report Release Date: May 24, 2016 Next Release Date: May 2017 Table S1a. Uranium purchased by owners and operators of U.S. civilian nuclear power reactors, 1994-2015 Delivery year Total purchased Purchased from U.S. producers Purchased from U.S. brokers and traders Purchased from other owners and operators of U.S. civilian nuclear power reactors, other U.S. suppliers, (and U.S. government for 2007) 1 Purchased from foreign suppliers U.S.-origin uranium

  17. 2015 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) (indexed site)

    Uranium Marketing Annual Report 2015 Uranium Marketing Annual Report Release Date: May 24, 2016 Next Release Date: May 2017 Table S3a. Foreign purchases, foreign sales, and uranium inventories owned by U.S. suppliers and owners and operators of U.S. civilian nuclear power reactors, 1994-2015 Delivery year Foreign purchases by U.S. suppliers Foreign purchases by owners and operators of U.S. civilian nuclear power reactors Total foreign purchases U.S. broker and trader purchases from foreign

  18. Uranium Processing Facility | Y-12 National Security Complex

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Y-12 Uranium Processing Facility Uranium Processing Facility UPF will be a state-of-the-art, consolidated facility for enriched uranium operations including assembly,...

  19. Researchers use light to create rare uranium molecule

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Rare uranium molecule Researchers use light to create rare uranium molecule Uranium nitride materials show promise as advanced nuclear fuels due to their high density, high ...

  20. Uranium Processing Facility | Y-12 National Security Complex

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Uranium Processing Facility Uranium Processing Facility UPF will be a state-of-the-art, consolidated facility for enriched uranium operations including assembly, disassembly, ...

  1. Ex Parte Communications - Uranium Producers of America | Department...

    Energy Savers

    - Uranium Producers of America Ex Parte Communications - Uranium Producers of America On Thursday, February 12, 2015, representatives from the Uranium Producers of America (UPA) ...

  2. DOE Uranium Leasing Program 2015 Mitigation Action Plan Activity...

    Office of Environmental Management (EM)

    DOE Uranium Leasing Program 2015 Mitigation Action Plan Activity Summary Report DOE Uranium Leasing Program 2015 Mitigation Action Plan Activity Summary Report DOE Uranium Leasing ...

  3. 2nd Quarter 2016 Domestic Uranium Production Report

    U.S. Energy Information Administration (EIA) (indexed site)

    2. Number of uranium mills and plants producing uranium concentrate in the United States" ,"Uranium concentrate processing facilities" "End of","Mills - conventional milling ...

  4. FLUX COMPOSITION AND METHOD FOR TREATING URANIUM-CONTAINING METAL

    DOE Patents [OSTI]

    Foote, F.

    1958-08-26

    A flux composition is preseated for use with molten uranium and uranium alloys. It consists of about 60% calcium fluoride, 30% calcium chloride and 10% uranium tetrafluoride.

  5. Microsoft Word - L15 01-22 Uranium Tranfers

    Energy Savers

    of Excess Uranium on Domestic Uranium Mining, Conversion, and Enrichment Industries To ... adverse impact on the domestic uranium mining, conversion, or enrichment industry..." ...

  6. Excess Uranium Inventory Management Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Excess Uranium Inventory Management Plan Excess Uranium Inventory Management Plan The 2013 Excess Uranium Inventory Management Plan describes a framework for the effective...

  7. URANIUM PURIFICATION PROCESS

    DOE Patents [OSTI]

    Ruhoff, J.R.; Winters, C.E.

    1957-11-12

    A process is described for the purification of uranyl nitrate by an extraction process. A solution is formed consisting of uranyl nitrate, together with the associated impurities arising from the HNO/sub 3/ leaching of the ore, in an organic solvent such as ether. If this were back extracted with water to remove the impurities, large quantities of uranyl nitrate will also be extracted and lost. To prevent this, the impure organic solution is extracted with small amounts of saturated aqueous solutions of uranyl nitrate thereby effectively accomplishing the removal of impurities while not allowing any further extraction of the uranyl nitrate from the organic solvent. After the impurities have been removed, the uranium values are extracted with large quantities of water.

  8. Uranium hexafluoride bibliography

    SciTech Connect (OSTI)

    Burnham, S.L.

    1988-01-01

    This bibliography is a compilation of reports written about the transportation, handling, safety, and processing of uranium hexafluoride. An on-line literature search was executed using the DOE Energy files and the Nuclear Science Abstracts file to identify pertinent reports. The DOE Energy files contain unclassified information that is processed at the Office of Scientific and Technical Information of the US Department of Energy. The reports selected from these files were published between 1974 and 1983. Nuclear Science Abstracts contains unclassified international nuclear science and technology literature published from 1948 to 1976. In addition, scientific and technical reports published by the US Atomic Energy Commission and the US Energy Research and Development Administration, as well as those published by other agencies, universities, and industrial and research organizations, are included in the Nuclear Science Abstracts file. An alphabetical listing of the acronyms used to denote the corporate sponsors follows the bibliography.

  9. Domestic Uranium Production Report

    Gasoline and Diesel Fuel Update

    1. U.S. uranium drilling activities, 2003-15 Exploration drilling Development drilling Exploration and development drilling Year Number of holes Feet (thousand) Number of holes Feet (thousand) Number of holes Feet (thousand) 2003 NA NA NA NA W W 2004 W W W W 2,185 1,249 2005 W W W W 3,143 1,668 2006 1,473 821 3,430 1,892 4,903 2,713 2007 4,351 2,200 4,996 2,946 9,347 5,146 2008 5,198 2,543 4,157 2,551 9,355 5,093 2009 1,790 1,051 3,889 2,691 5,679 3,742 2010 2,439 1,460 4,770 3,444 7,209 4,904

  10. Domestic Uranium Production Report

    Gasoline and Diesel Fuel Update

    6. Employment in the U.S. uranium production industry by category, 2003-15 person-years Year Exploration Mining Milling Processing Reclamation Total 2003 W W W W 117 321 2004 18 108 W W 121 420 2005 79 149 142 154 124 648 2006 188 121 W W 155 755 2007 375 378 107 216 155 1,231 2008 457 558 W W 154 1,563 2009 175 441 W W 162 1,096 2010 211 400 W W 125 1,073 2011 208 462 W W 102 1,191 2012 161 462 W W 179 1,196 2013 149 392 W W 199 1,156 2014 86 246 W W 161 787 2015 58 251 W W 116

  11. Domestic Uranium Production Report

    Gasoline and Diesel Fuel Update

    7. Employment in the U.S. uranium production industry by state, 2003-15 person-years State(s) 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 Wyoming 134 139 181 195 245 301 308 348 424 512 531 416 343 Colorado and Texas 48 140 269 263 557 696 340 292 331 248 198 105 79 Nebraska and New Mexico 92 102 123 160 149 160 159 134 127 W W W W Arizona, Utah, and Washington 47 40 75 120 245 360 273 281 W W W W W Alaska, Michigan, Nevada, and South Dakota 0 0 0 16 25 30 W W W W W 0 0

  12. Domestic Uranium Production Report

    Gasoline and Diesel Fuel Update

    2. U.S. uranium mine production and number of mines and sources, 2003-15 Production / Mining method 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 Underground (estimated contained thousand pounds U3O8) W W W W W W W W W W W W W Open Pit (estimated contained thousand pounds U3O8) 0 0 0 0 0 0 0 0 0 0 0 0 0 In-Situ Leaching (thousand pounds U3O8) W W 2,681 4,259 W W W W W W W W W Other1 (thousand pounds U3O8) W W W W W W W W W W W W W Total Mine Production (thousand pounds U3O8)

  13. 2015 Domestic Uranium Production Report

    U.S. Energy Information Administration (EIA) (indexed site)

    May 5, 2016" "Next Release Date: May 2017" "Table 4. U.S. uranium mills and heap leach facilities by owner, location, capacity, and operating status at end of the year, 2011-15" ...

  14. 2015 Uranium Marketing Annual Report

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Figure 7. Average price for uranium purchased by owners and operators of U.S. civilian nuclear power reactors by pricing mechanisms and delivery year, 2014-15 Source: U.S. Energy ...

  15. Y-12 and uranium history

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    did happen six days after he was given the assignment. The history of uranium at Y-12 began with that decision, which will be commemorated on September 19, 2012, at...

  16. Laser induced phosphorescence uranium analysis

    DOE Patents [OSTI]

    Bushaw, B.A.

    1983-06-10

    A method is described for measuring the uranium content of aqueous solutions wherein a uranyl phosphate complex is irradiated with a 5 nanosecond pulse of 425 nanometer laser light and resultant 520 nanometer emissions are observed for a period of 50 to 400 microseconds after the pulse. Plotting the natural logarithm of emission intensity as a function of time yields an intercept value which is proportional to uranium concentration.

  17. LIQUID METAL COMPOSITIONS CONTAINING URANIUM

    DOE Patents [OSTI]

    Teitel, R.J.

    1959-04-21

    Liquid metal compositions containing a solid uranium compound dispersed therein is described. Uranium combines with tin to form the intermetallic compound USn/sub 3/. It has been found that this compound may be incorporated into a liquid bath containing bismuth and lead-bismuth components, if a relatively small percentage of tin is also included in the bath. The composition has a low thermal neutron cross section which makes it suitable for use in a liquid metal fueled nuclear reactor.

  18. 2015 Domestic Uranium Production Report

    U.S. Energy Information Administration (EIA) (indexed site)

    7 2015 Domestic Uranium Production Report Release Date: May 5, 2016 Next Release Date: May 2017 Capacity (short tons of ore per day) 2011 2012 2013 2014 2015 Anfield Resources Shootaring Canyon Uranium Mill Garfield, Utah 750 Standby Standby Standby Standby Standby EFR White Mesa LLC White Mesa Mill San Juan, Utah 2,000 Operating Operating Operating- Processing Alternate Feed Operating- Processing Alternate Feed Operating- Processing Alternate Feed Energy Fuels Wyoming Inc Sheep Mountain

  19. 2015 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) (indexed site)

    Uranium Marketing Annual Report May 2016 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | 2015 Uranium Marketing Annual Report i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States

  20. Laser induced phosphorescence uranium analysis

    DOE Patents [OSTI]

    Bushaw, Bruce A.

    1986-01-01

    A method is described for measuring the uranium content of aqueous solutions wherein a uranyl phosphate complex is irradiated with a 5 nanosecond pulse of 425 nanometer laser light and resultant 520 nanometer emissions are observed for a period of 50 to 400 microseconds after the pulse. Plotting the natural logarithm of emission intensity as a function of time yields an intercept value which is proportional to uranium concentration.

  1. MELTING AND PURIFICATION OF URANIUM

    DOE Patents [OSTI]

    Spedding, F.H.; Gray, C.F.

    1958-09-16

    A process is described for treating uranium ingots having inner metal portions and an outer oxide skin. The method consists in partially supporting such an ingot on the surface of a grid or pierced plate. A sufficient weight of uranium is provided so that when the mass becomes molten, the oxide skin bursts at the unsupported portions of its bottom surface, allowing molten urantum to flow through the burst skin and into a container provided below.

  2. SURFACE TREATMENT OF METALLIC URANIUM

    DOE Patents [OSTI]

    Gray, A.G.; Schweikher, E.W.

    1958-05-27

    The treatment of metallic uranium to provide a surface to which adherent electroplates can be applied is described. Metallic uranium is subjected to an etchant treatment in aqueous concentrated hydrochloric acid, and the etched metal is then treated to dissolve the resulting black oxide and/or chloride film without destroying the etched metal surface. The oxide or chloride removal is effected by means of moderately concentrated nitric acid in 3 to 20 seconds.

  3. PROCESS FOR PRODUCING URANIUM HEXAFLUORIDE

    DOE Patents [OSTI]

    Fowler, R.D.

    1957-10-22

    A process for the production of uranium hexafluoride from the oxides of uranium is reported. In accordance with the method the higher oxides of uranium may be reduced to uranium dioxide (UO/sub 2/), the latter converted into uranium tetrafluoride by reaction with hydrogen fluoride, and the UF/sub 4/ convented to UF/sub 6/ by reaction with a fluorinating agent. The UO/sub 3/ or U/sub 3/O/sub 8/ is placed in a reaction chamber in a copper boat or tray enclosed in a copper oven, and heated to 500 to 650 deg C while hydrogen gas is passed through the oven. The oven is then swept clean of hydrogen and the water vapor formed by means of nitrogen and then while continuing to maintain the temperature between 400 and 600 deg C, anhydrous hydrogen fluoride is passed through. After completion of the conversion to uranium tetrafluoride, the temperature of the reaction chamber is lowered to ahout 400 deg C, and elemental fluorine is used as the fluorinating agent for the conversion of UF/sub 4/ into UF/sub 6/. The fluorine gas is passed into the chamber, and the UF/sub 6/ formed passes out and is delivered to a condenser.

  4. Beneficial Uses of Depleted Uranium

    SciTech Connect (OSTI)

    Brown, C.; Croff, A.G.; Haire, M. J.

    1997-08-01

    Naturally occurring uranium contains 0.71 wt% {sup 235}U. In order for the uranium to be useful in most fission reactors, it must be enriched the concentration of the fissile isotope {sup 235}U must be increased. Depleted uranium (DU) is a co-product of the processing of natural uranium to produce enriched uranium, and DU has a {sup 235}U concentration of less than 0.71 wt%. In the United States, essentially all of the DU inventory is in the chemical form of uranium hexafluoride (UF{sub 6}) and is stored in large cylinders above ground. If this co-product material were to be declared surplus, converted to a stable oxide form, and disposed, the costs are estimated to be several billion dollars. Only small amounts of DU have at this time been beneficially reused. The U.S. Department of Energy (DOE) has begun the Beneficial Uses of DU Project to identify large-scale uses of DU and encourage its reuse for the primary purpose of potentially reducing the cost and expediting the disposition of the DU inventory. This paper discusses the inventory of DU and its rate of increase; DU disposition options; beneficial use options; a preliminary cost analysis; and major technical, institutional, and regulatory issues to be resolved.

  5. Rescuing a Treasure Uranium-233

    SciTech Connect (OSTI)

    Krichinsky, Alan M; Goldberg, Dr. Steven A.; Hutcheon, Dr. Ian D.

    2011-01-01

    Uranium-233 (233U) is a synthetic isotope of uranium formed under reactor conditions during neutron capture by natural thorium (232Th). At high purities, this synthetic isotope serves as a crucial reference for accurately quantifying and characterizing natural uranium isotopes for domestic and international safeguards. Separated 233U is stored in vaults at Oak Ridge National Laboratory. These materials represent a broad spectrum of 233U from the standpoint isotopic purity the purest being crucial for precise analyses in safeguarding uranium. All 233U at ORNL currently is scheduled to be down blended with depleted uranium beginning in 2015. Such down blending will permanently destroy the potential value of pure 233U samples as certified reference material for use in uranium analyses. Furthermore, no replacement 233U stocks are expected to be produced in the future due to a lack of operating production capability and the high cost of returning to operation this currently shut down capability. This paper will describe the efforts to rescue the purest of the 233U materials arguably national treasures from their destruction by down blending.

  6. Air Shipment of Highly Enriched Uranium Spent Nuclear Fuel from Romania

    SciTech Connect (OSTI)

    K. J. Allen; I. Bolshinsky; L. L. Biro; M. E. Budu; N. V. Zamfir; M. Dragusin

    2010-07-01

    Romania safely air shipped 23.7 kilograms of Russian origin highly enriched uranium (HEU) spent nuclear fuel from the VVR S research reactor at Magurele, Romania, to the Russian Federation in June 2009. This was the world’s first air shipment of spent nuclear fuel transported in a Type B(U) cask under existing international laws without special exceptions for the air transport licenses. This shipment was coordinated by the Russian Research Reactor Fuel Return Program (RRRFR), part of the U.S. Department of Energy Global Threat Reduction Initiative (GTRI), in cooperation with the Romania National Commission for Nuclear Activities Control (CNCAN), the Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH), and the Russian Federation State Corporation Rosatom. The shipment was transported by truck to and from the respective commercial airports in Romania and the Russian Federation and stored at a secure nuclear facility in Russia where it will be converted into low enriched uranium. With this shipment, Romania became the 3rd country under the RRRFR program and the 14th country under the GTRI program to remove all HEU. This paper describes the work, equipment, and approvals that were required to complete this spent fuel air shipment.

  7. SOLVENT EXTRACTION PROCESS FOR URANIUM RECOVERY

    DOE Patents [OSTI]

    Clark, H.M.; Duffey, D.

    1958-06-17

    A process is described for extracting uranium from uranium ore, wherein the uranium is substantially free from molybdenum contamination. In a solvent extraction process for recovering uranium, uranium and molybdenum ions are extracted from the ore with ether under high acidity conditions. The ether phase is then stripped with water at a lower controiled acidity, resaturated with salting materials such as sodium nitrate, and reextracted with the separation of the molybdenum from the uranium without interference from other metals that have been previously extracted.

  8. METHOD OF APPLYING NICKEL COATINGS ON URANIUM

    DOE Patents [OSTI]

    Gray, A.G.

    1959-07-14

    A method is presented for protectively coating uranium which comprises etching the uranium in an aqueous etching solution containing chloride ions, electroplating a coating of nickel on the etched uranium and heating the nickel plated uranium by immersion thereof in a molten bath composed of a material selected from the group consisting of sodium chloride, potassium chloride, lithium chloride, and mixtures thereof, maintained at a temperature of between 700 and 800 deg C, for a time sufficient to alloy the nickel and uranium and form an integral protective coating of corrosion-resistant uranium-nickel alloy.

  9. 2015 Annual Site Inspection and Monitoring Report for Uranium...

    Office of Legacy Management (LM)

    Summary The Grand Junction, Colorado, Uranium Mill Tailings Radiation Control Act ... sulfate, total dissolved solids, uranium, vanadium, and polychlorinated biphenyls. ...

  10. Uranium reference materials

    SciTech Connect (OSTI)

    Donivan, S.; Chessmore, R.

    1987-07-01

    The Technical Measurements Center has prepared uranium mill tailings reference materials for use by remedial action contractors and cognizant federal and state agencies. Four materials were prepared with varying concentrations of radionuclides, using three tailings materials and a river-bottom soil diluent. All materials were ground, dried, and blended thoroughly to ensure homogeneity. The analyses on which the recommended values for nuclides in the reference materials are based were performed, using independent methods, by the UNC Geotech (UNC) Chemistry Laboratory, Grand Junction, Colorado, and by C.W. Sill (Sill), Idaho National Engineering Laboratory, Idaho Falls, Idaho. Several statistical tests were performed on the analytical data to characterize the reference materials. Results of these tests reveal that the four reference materials are homogeneous and that no large systematic bias exists between the analytical methods used by Sill and those used by TMC. The average values for radionuclides of the two data sets, representing an unbiased estimate, were used as the recommended values for concentrations of nuclides in the reference materials. The recommended concentrations of radionuclides in the four reference materials are provided. Use of these reference materials will aid in providing uniform standardization among measurements made by remedial action contractors. 11 refs., 9 tabs.

  11. Domestic Uranium Production Report

    Gasoline and Diesel Fuel Update

    8. U.S. uranium expenditures, 2003-15 million dollars Year Drilling1 Production2 Land and other 3 Total expenditures Total land and other Land Exploration Reclamation 2003 W W 31.3 NA NA NA W 2004 10.6 27.8 48.4 NA NA NA 86.9 2005 18.1 58.2 59.7 NA NA NA 136.0 2006 40.1 65.9 115.2 41.0 23.3 50.9 221.2 2007 67.5 90.4 178.2 77.7 50.3 50.2 336.2 2008 81.9 221.2 164.4 65.2 50.2 49.1 467.6 2009 35.4 141.0 104.0 17.3 24.2 62.4 280.5 2010 44.6 133.3 99.5 20.2 34.5 44.7 277.3 2011 53.6 168.8 96.8 19.6

  12. Uranium Leasing Program Environmental Documents | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Environmental Documents Uranium Leasing Program Environmental Documents Uranium Leasing Program 2015 Mitigation Action Plan Activity Summary Report (March 2016) The DOE Uranium Leasing Program's 2015 Mitigation Action Plan Activity Summary fulfills the mitigation plan's requirement to annually notify the public of mitigation activities completed by Uranium Leasing Program lessees. Uranium Leasing Program Mitigation Action Plan for the Final Uranium Leasing Program Programmatic Environmental

  13. Reducing emissions from uranium dissolving

    SciTech Connect (OSTI)

    Griffith, W.L.; Compere, A.L.; Huxtable, W.P.; Googin, J.M.

    1992-10-01

    This study was designed to assess the feasibility of decreasing NO[sub x] emissions from the current uranium alloy scrap tray dissolving facility. In the current process, uranium scrap is dissolved in boiling nitric acid in shallow stainless-steel trays. As scrap dissolves, more metal and more nitric acid are added to the tray by operating personnel. Safe geometry is assured by keeping liquid level at or below 5 cm, the depth of a safe infinite slab. The accountability batch control system provides additional protection against criticality. Both uranium and uranium alloys are dissolved. Nitric acid is recovered from the vapors for reuse. Metal nitrates are sent to uranium recovery. Brown NO[sub x] fumes evolved during dissolving have occasionally resulted in a visible plume from the trays. The fuming is most noticeable during startup and after addition of fresh acid to a tray. Present environmental regulations are expected to require control of brown NO[sub x] emissions. A detailed review of the literature, indicated the feasibility of slightly altering process chemistry to favor the production of NO[sub 2] which can be scrubbed and recycled as nitric acid. Methods for controlling the process to manage offgas product distribution and to minimize chemical reaction hazards were also considered.

  14. Reducing emissions from uranium dissolving

    SciTech Connect (OSTI)

    Griffith, W.L.; Compere, A.L.; Huxtable, W.P.; Googin, J.M.

    1992-10-01

    This study was designed to assess the feasibility of decreasing NO{sub x} emissions from the current uranium alloy scrap tray dissolving facility. In the current process, uranium scrap is dissolved in boiling nitric acid in shallow stainless-steel trays. As scrap dissolves, more metal and more nitric acid are added to the tray by operating personnel. Safe geometry is assured by keeping liquid level at or below 5 cm, the depth of a safe infinite slab. The accountability batch control system provides additional protection against criticality. Both uranium and uranium alloys are dissolved. Nitric acid is recovered from the vapors for reuse. Metal nitrates are sent to uranium recovery. Brown NO{sub x} fumes evolved during dissolving have occasionally resulted in a visible plume from the trays. The fuming is most noticeable during startup and after addition of fresh acid to a tray. Present environmental regulations are expected to require control of brown NO{sub x} emissions. A detailed review of the literature, indicated the feasibility of slightly altering process chemistry to favor the production of NO{sub 2} which can be scrubbed and recycled as nitric acid. Methods for controlling the process to manage offgas product distribution and to minimize chemical reaction hazards were also considered.

  15. Domestic Uranium Production Report - Quarterly - Energy Information...

    U.S. Energy Information Administration (EIA) (indexed site)

    All Nuclear Reports Domestic Uranium Production Report - Quarterly Data for 2nd Quarter ... was produced at seven U.S. uranium facilities, one more than in the first quarter ...

  16. The Electrolytic Production of Metallic Uranium

    DOE Patents [OSTI]

    Rosen, R.

    1950-08-22

    This patent covers a process for producing metallic uranium by electrolyzing uranium tetrafluoride at an elevated temperature in a fused bath consisting essentially of mixed alkali and alkaline earth halides.

  17. Inherently safe in situ uranium recovery

    DOE Patents [OSTI]

    Krumhansl, James L; Brady, Patrick V

    2014-04-29

    An in situ recovery of uranium operation involves circulating reactive fluids through an underground uranium deposit. These fluids contain chemicals that dissolve the uranium ore. Uranium is recovered from the fluids after they are pumped back to the surface. Chemicals used to accomplish this include complexing agents that are organic, readily degradable, and/or have a predictable lifetime in an aquifer. Efficiency is increased through development of organic agents targeted to complexing tetravalent uranium rather than hexavalent uranium. The operation provides for in situ immobilization of some oxy-anion pollutants under oxidizing conditions as well as reducing conditions. The operation also artificially reestablishes reducing conditions on the aquifer after uranium recovery is completed. With the ability to have the impacted aquifer reliably remediated, the uranium recovery operation can be considered inherently safe.

  18. Uranium Biomineralization By Natural Microbial Phosphatase Activities...

    Office of Scientific and Technical Information (OSTI)

    Finally, the minerals produced during this process are stable in low pH conditions or ... strategy to uranium bioreduction in low pH uranium-contaminated environments. ...

  19. Absorption of Thermal Neutrons in Uranium

    DOE R&D Accomplishments [OSTI]

    Creutz, E. C.; Wilson, R. R.; Wigner, E. P.

    1941-09-26

    A knowledge of the absorption processes for neutrons in uranium is important for planning a chain reaction experiment. The absorption of thermal neutrons in uranium and uranium oxide has been studied. Neutrons from the cyclotron were slowed down by passage through a graphite block. A uranium or uranium oxide sphere was placed at various positions in the block. The neutron intensity at different points in the sphere and in the graphite was measured by observing the activity induced in detectors or uranium oxide or manganese. It was found that both the fission activity in the uranium oxide and the activity induced in manganese was affected by non-thermal neutrons. An experimental correction for such effects was made by making measurements with the detectors surrounded by cadmium. After such corrections the results from three methods of procedure with the uranium oxide detectors and from the manganese detectors were consistent to within a few per cent.

  20. RECOVERY OF URANIUM VALUES FROM URANIUM BEARING RAW MATERIALS

    DOE Patents [OSTI]

    Michal, E.J.; Porter, R.R.

    1959-06-16

    Uranium leaching from ground uranium-bearing raw materials using MnO/sub 2/ in H/sub 2/SO/sub 4/ is described. The MnO/sub 2/ oxidizes U to the leachable hexavalent state. The MnO/sub 2/ does not replace Fe normally added, because the Fe complexes P and catalyzes the MnO/sub 2/ reaction. Three examples of continuous processes are given, but batch operation is also possible. The use of MnO/sub 2/ makes possible recovery of very low U values. (T.R.H.)

  1. PROCESS FOR THE RECOVERY OF URANIUM

    DOE Patents [OSTI]

    Morris, G.O.

    1955-06-21

    This patent relates to a process for the recovery of uranium from impure uranium tetrafluoride. The process consists essentially of the steps of dissolving the impure uranium tetrafluoride in excess dilute sulfuric acid in the presence of excess hydrogen peroxide, precipitating ammonium uranate from the solution so formed by adding an excess of aqueous ammonia, dissolving the precipitate in sulfuric acid and adding hydrogen peroxide to precipitate uranium peroxdde.

  2. METHOD OF APPLYING COPPER COATINGS TO URANIUM

    DOE Patents [OSTI]

    Gray, A.G.

    1959-07-14

    A method is presented for protecting metallic uranium, which comprises anodic etching of the uranium in an aqueous phosphoric acid solution containing chloride ions, cleaning the etched uranium in aqueous nitric acid solution, promptly electro-plating the cleaned uranium in a copper electro-plating bath, and then electro-plating thereupon lead, tin, zinc, cadmium, chromium or nickel from an aqueous electro-plating bath.

  3. URANIUM BISMUTHIDE DISPERSION IN MOLTEN METAL

    DOE Patents [OSTI]

    Teitel, R.J.

    1959-10-27

    The formation of intermetallic bismuth compounds of thorium or uranium dispersed in a liquid media containing bismuth and lead is described. A bismuthide of uranium dispersed in a liquid metal medium is formed by dissolving uranium in composition of lead and bismuth containing less than 80% lead and lowering the temperature of the composition to a temperature below the point at which the solubility of uranium is exceeded and above the melting point of the composition.

  4. Statistical data of the uranium industry

    SciTech Connect (OSTI)

    1981-01-01

    Data are presented on US uranium reserves, potential resources, exploration, mining, drilling, milling, and other activities of the uranium industry through 1980. The compendium reflects the basic programs of the Grand Junction Office. Statistics are based primarily on information provided by the uranium exploration, mining, and milling companies. Data on commercial U/sub 3/O/sub 8/ sales and purchases are included. Data on non-US uranium production and resources are presented in the appendix. (DMC)

  5. Uranium Management and Policy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Uranium Management and Policy Uranium Management and Policy The Paducah Gaseous Diffusion Plant is located 3 miles south of the Ohio River and is 12 miles west of Paducah, Kentucky. Paducah remains the only operating gaseous diffusion uranium enrichment plant in the United States. The Paducah Gaseous Diffusion Plant is located 3 miles south of the Ohio River and is 12 miles west of Paducah, Kentucky. Paducah remains the only operating gaseous diffusion uranium enrichment plant in the United

  6. Uranium Processing Facility | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Uranium Processing Facility Uranium Processing Facility Project Celebrates Changing the Skyline of Y-12 Klotz visits Y-12 to see progress on new projects and ongoing work on NNSA's national security missions Last week, NNSA Administrator Lt. Gen. Frank Klotz (Ret.) visited the Y-12 National Security Complex to check on the status of ongoing projects like the Uranium Processing Facility as well as the site's continuing uranium operations. He also met with the Region 2 volunteers of the

  7. Uranium Downblending and Disposition Project Technology Readiness

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Assessment | Department of Energy Uranium Downblending and Disposition Project Technology Readiness Assessment Uranium Downblending and Disposition Project Technology Readiness Assessment Full Document and Summary Versions are available for download Uranium Downblending and Disposition Project Technology Readiness Assessment (1.11 MB) Summary - Uranium233 Downblending and Disposition Project (146.5 KB) More Documents & Publications Compilation of TRA Summaries EA-1574: Final

  8. Continuous reduction of uranium tetrafluoride

    SciTech Connect (OSTI)

    DeMint, A.L.; Maxey, A.W.

    1993-10-21

    Operation of a pilot-scale system for continuous metallothermic reduction of uranium tetrafluoride (UF{sub 4} or green salt) has been initiated. This activity is in support of the development of a cost- effective process to produce uranium-iron (U-Fe) alloy feed for the Uranium-Atomic Vapor Laser Isotope Separation (U-AVLIS) program. To date, five runs have been made to reduce green salt (UF{sub 4}) with magnesium. During this quarter, three runs were made to perfect the feeding system, examine feed rates, and determine the need for a crust breaker/stirrer. No material was drawn off in any of the runs; both product metal and by-product salt were allowed to accumulate in the reactor.

  9. Domestic Uranium Production Report - Quarterly

    Gasoline and Diesel Fuel Update

    2. Number of uranium mills and plants producing uranium concentrate in the United States Uranium concentrate processing facilities End of Mills - conventional milling 1 Mills - other operations 2 In-situ-leach plants 3 Byproduct recovery plants 4 Total 1996 0 2 5 2 9 1997 0 3 6 2 11 1998 0 2 6 1 9 1999 1 2 4 0 7 2000 1 2 3 0 6 2001 0 1 3 0 4 2002 0 1 2 0 3 2003 0 0 2 0 2 2004 0 0 3 0 3 2005 0 1 3 0 4 2006 0 1 5 0 6 2007 0 1 5 0 6 2008 1 0 6 0 7 2009 0 1 3 0 4 2010 1 0 4 0 5 2011 1 0 5 0 6 2012 1

  10. Uranium distribution and geology in the Fish Lake surficial uranium deposit, Esmeralda County, Nevada

    SciTech Connect (OSTI)

    Macke, D.L.; Schumann, R.R.; Otton, J.K.

    1990-01-01

    This paper reports on approximately 675 acres of uranium-enriched lacustrine and marsh sediments in Fish Lake Valley, in southern Nevada and California. Uranium concentrations from 253 samples averaged 64.3 ppm uranium, with a range from 6 to 800 ppm. Uranium was supplied to the marsh sediments by ground water derived from Tertiary volcanic rocks of the Silver Peak Range. Reconnaissance sampling in the surrounding areas shows minor enrichment of uranium in other wetland areas.

  11. High strength uranium-tungsten alloy process

    DOE Patents [OSTI]

    Dunn, Paul S.; Sheinberg, Haskell; Hogan, Billy M.; Lewis, Homer D.; Dickinson, James M.

    1990-01-01

    Alloys of uranium and tungsten and a method for making the alloys. The amount of tungsten present in the alloys is from about 4 wt % to about 35 wt %. Tungsten particles are dispersed throughout the uranium and a small amount of tungsten is dissolved in the uranium.

  12. High strength uranium-tungsten alloys

    DOE Patents [OSTI]

    Dunn, Paul S.; Sheinberg, Haskell; Hogan, Billy M.; Lewis, Homer D.; Dickinson, James M.

    1991-01-01

    Alloys of uranium and tungsten and a method for making the alloys. The amount of tungsten present in the alloys is from about 4 wt % to about 35 wt %. Tungsten particles are dispersed throughout the uranium and a small amount of tungsten is dissolved in the uranium.

  13. PROCESS FOR SEPARATING URANIUM FISSION PRODUCTS

    DOE Patents [OSTI]

    Spedding, F.H.; Butler, T.A.; Johns, I.B.

    1959-03-10

    The removal of fission products such as strontium, barium, cesium, rubidium, or iodine from neutronirradiated uranium is described. Uranium halide or elemental halogen is added to melted irradiated uranium to convert the fission products to either more volatile compositions which vaporize from the melt or to higher melting point compositions which separate as solids.

  14. CATALYZED OXIDATION OF URANIUM IN CARBONATE SOLUTIONS

    DOE Patents [OSTI]

    Clifford, W.E.

    1962-05-29

    A process is given wherein carbonate solutions are employed to leach uranium from ores and the like containing lower valent uranium species by utilizing catalytic amounts of copper in the presence of ammonia therein and simultaneously supplying an oxidizing agent thereto. The catalysis accelerates rate of dissolution and increases recovery of uranium from the ore. (AEC)

  15. METHOD OF PROTECTIVELY COATING URANIUM

    DOE Patents [OSTI]

    Eubank, L.D.; Boller, E.R.

    1959-02-01

    A method is described for protectively coating uranium with zine comprising cleaning the U for coating by pickling in concentrated HNO/sub 3/, dipping the cleaned U into a bath of molten zinc between 430 to 600 C and containing less than 0 01% each of Fe and Pb, and withdrawing and cooling to solidify the coating. The zinccoated uranium may be given a; econd coating with another metal niore resistant to the corrosive influences particularly concerned. A coating of Pb containing small proportions of Ag or Sn, or Al containing small proportions of Si may be applied over the zinc coatings by dipping in molten baths of these metals.

  16. 2015 Domestic Uranium Production Report

    U.S. Energy Information Administration (EIA) (indexed site)

    Domestic Uranium Production Report 2015 Domestic Uranium Production Report Release Date: May 5, 2016 Next Release Date: May 2017 million pounds U 3 O 8 $0 to $30 per pound $0 to $50 per pound $0 to $100 per pound $0 to $30 per pound $0 to $50 per pound $0 to $100 per pound Properties with Exploration Completed, Exploration Continuing, and Only Assessment Work W W 154.6 24.3 W 151.6 Properties Under Development for Production and Development Drilling W 38.2 W W 38.2 W Mines in Production W 19.2 W

  17. 2015 Domestic Uranium Production Report

    U.S. Energy Information Administration (EIA) (indexed site)

    10. Uranium reserve estimates at the end of 2014 and 2015" "million pounds U3O8" ,"End of 2014",,,"End of 2015" "Uranium Reserve Estimates1 by Mine and Property Status, Mining Method, and State(s)","Forward Cost 2" ,"$0 to $30 per pound","$0 to $50 per pound","$0 to $100 per pound","$0 to $30 per pound","$0 to $50 per pound","$0 to $100 per pound" "Properties with Exploration

  18. PROCESS FOR PRODUCTION OF URANIUM

    DOE Patents [OSTI]

    Crawford, J.W.C.

    1959-09-29

    A process is described for the production of uranium by the autothermic reduction of an anhydrous uranium halide with an alkaline earth metal, preferably magnesium One feature is the initial reduction step which is brought about by locally bringing to reaction temperature a portion of a mixture of the reactants in an open reaction vessel having in contact with the mixture a lining of substantial thickness composed of calcium fluoride. The lining is prepared by coating the interior surface with a plastic mixture of calcium fluoride and water and subsequently heating the coating in situ until at last the exposed surface is substantially anhydrous.

  19. Domestic Uranium Production Report - Quarterly

    Gasoline and Diesel Fuel Update

    3. U.S. uranium mills and heap leach facilities by owner, location, capacity, and operating status Operating status at the end of Owner Mill and Heap Leach1 Facility name County, state (existing and planned locations) Capacity (short tons of ore per day) 2015 1st Quarter 2016 2nd quarter 2016 Anfield Resources Inc. Shootaring Canyon Uranium Mill Garfield, Utah 750 Standby Standby Standby EFR White Mesa LLC White Mesa Mill San Juan, Utah 2,000 Operating-Processing Alternate Feed

  20. Domestic Uranium Production Report - Quarterly

    Gasoline and Diesel Fuel Update

    4. U.S. uranium in-situ-leach plants by owner, location, capacity, and operating status Operating status at the end of In-situ-leach plant owner In-situ-leach plant name County, state (existing and planned locations) Production capacity (pounds U3O8 per year) 2015 1st quarter 2016 2nd quarter 2016 AUC LLC Reno Creek Campbell, Wyoming 2,000,000 Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Azarga Uranium Corp Dewey Burdock Project Fall River

  1. Electron Backscatter Diffraction (EBSD) Characterization of Uranium and Uranium Alloys

    SciTech Connect (OSTI)

    McCabe, Rodney J.; Kelly, Ann Marie; Clarke, Amy J.; Field, Robert D.; Wenk, H. R.

    2012-07-25

    Electron backscatter diffraction (EBSD) was used to examine the microstructures of unalloyed uranium, U-6Nb, U-10Mo, and U-0.75Ti. For unalloyed uranium, we used EBSD to examine the effects of various processes on microstructures including casting, rolling and forming, recrystallization, welding, and quasi-static and shock deformation. For U-6Nb we used EBSD to examine the microstructural evolution during shape memory loading. EBSD was used to study chemical homogenization in U-10Mo, and for U-0.75Ti, we used EBSD to study the microstructure and texture evolution during thermal cycling and deformation. The studied uranium alloys have significant microstructural and chemical differences and each of these alloys presents unique preparation challenges. Each of the alloys is prepared by a sequence of mechanical grinding and polishing followed by electropolishing with subtle differences between the alloys. U-6Nb and U-0.75Ti both have martensitic microstructures and both require special care in order to avoid mechanical polishing artifacts. Unalloyed uranium has a tendency to rapidly oxidize when exposed to air and a two-step electropolish is employed, the first step to remove the damaged surface layer resulting from the mechanical preparation and the second step to passivate the surface. All of the alloying additions provide a level of surface passivation and different one and two step electropolishes are employed to create good EBSD surfaces. Because of its low symmetry crystal structure, uranium exhibits complex deformation behavior including operation of multiple deformation twinning modes. EBSD was used to observe and quantify twinning contributions to deformation and to examine the fracture behavior. Figure 1 shows a cross section of two mating fracture surfaces in cast uranium showing the propensity of deformation twinning and intergranular fracture largely between dissimilarly oriented grains. Deformation of U-6Nb in the shape memory regime occurs by the motion

  2. Method for producing uranium atomic beam source

    DOE Patents [OSTI]

    Krikorian, Oscar H.

    1976-06-15

    A method for producing a beam of neutral uranium atoms is obtained by vaporizing uranium from a compound UM.sub.x heated to produce U vapor from an M boat or from some other suitable refractory container such as a tungsten boat, where M is a metal whose vapor pressure is negligible compared to that of uranium at the vaporization temperature. The compound, for example, may be the uranium-rhenium compound, URe.sub.2. An evaporation rate in excess of about 10 times that of conventional uranium beam sources is produced.

  3. Process for alloying uranium and niobium

    DOE Patents [OSTI]

    Holcombe, Cressie E.; Northcutt, Jr., Walter G.; Masters, David R.; Chapman, Lloyd R.

    1991-01-01

    Alloys such as U-6Nb are prepared by forming a stacked sandwich array of uraniun sheets and niobium powder disposed in layers between the sheets, heating the array in a vacuum induction melting furnace to a temperature such as to melt the uranium, holding the resulting mixture at a temperature above the melting point of uranium until the niobium dissolves in the uranium, and casting the uranium-niobium solution. Compositional uniformity in the alloy product is enabled by use of the sandwich structure of uranium sheets and niobium powder.

  4. Development of pulsed neutron uranium logging instrument

    SciTech Connect (OSTI)

    Wang, Xin-guang; Liu, Dan; Zhang, Feng

    2015-03-15

    This article introduces a development of pulsed neutron uranium logging instrument. By analyzing the temporal distribution of epithermal neutrons generated from the thermal fission of {sup 235}U, we propose a new method with a uranium-bearing index to calculate the uranium content in the formation. An instrument employing a D-T neutron generator and two epithermal neutron detectors has been developed. The logging response is studied using Monte Carlo simulation and experiments in calibration wells. The simulation and experimental results show that the uranium-bearing index is linearly correlated with the uranium content, and the porosity and thermal neutron lifetime of the formation can be acquired simultaneously.

  5. Removal of uranium from aqueous HF solutions

    DOE Patents [OSTI]

    Pulley, Howard; Seltzer, Steven F.

    1980-01-01

    This invention is a simple and effective method for removing uranium from aqueous HF solutions containing trace quantities of the same. The method comprises contacting the solution with particulate calcium fluoride to form uranium-bearing particulates, permitting the particulates to settle, and separting the solution from the settled particulates. The CaF.sub.2 is selected to have a nitrogen surface area in a selected range and is employed in an amount providing a calcium fluoride/uranium weight ratio in a selected range. As applied to dilute HF solutions containing 120 ppm uranium, the method removes at least 92% of the uranium, without introducing contaminants to the product solution.

  6. METHOD OF PURIFYING URANIUM METAL

    DOE Patents [OSTI]

    Blanco, R.E.; Morrison, B.H.

    1958-12-23

    The removal of lmpurities from uranlum metal can be done by a process conslstlng of contacting the metal with liquid mercury at 300 icient laborato C, separating the impunitycontalnlng slag formed, cooling the slag-free liquld substantlally below the point at which uranlum mercurlde sollds form, removlng the mercury from the solids, and recovering metallic uranium by heating the solids.

  7. GRAIN REFINEMENT OF URANIUM BILLETS

    DOE Patents [OSTI]

    Lewis, L.

    1964-02-25

    A method of refining the grain structure of massive uranium billets without resort to forging is described. The method consists in the steps of beta- quenching the billets, annealing the quenched billets in the upper alpha temperature range, and extrusion upset of the billets to an extent sufficient to increase the cross sectional area by at least 5 per cent. (AEC)

  8. SEPARATION OF PLUTONIUM FROM URANIUM

    DOE Patents [OSTI]

    Feder, H.M.; Nuttall, R.L.

    1959-12-15

    A process is described for extracting plutonium from powdered neutron- irradiated urarium metal by contacting the latter, while maintaining it in the solid form, with molten magnesium which takes up the plutonium and separating the molten magnesium from the solid uranium.

  9. Reducing Emissions from Uranium Dissolving

    SciTech Connect (OSTI)

    Griffith, W.L.

    1992-01-01

    This study was designed to assess the feasibility of decreasing NO{sub x} emissions from the current uranium alloy scrap tray dissolving facility. In the current process, uranium scrap is dissolved in boiling nitric acid in shallow stainless-steel trays. As scrap dissolves, more metal and more nitric acid are added to the tray by operating personnel. Safe geometry is assured by keeping liquid level at or below 5 cm, the depth of a safe infinite slab. The accountability batch control system provides additional protection against criticality. The trays are steam coil heated. The process has operated satisfactorily, with few difficulties, for decades. Both uranium and uranium alloys are dissolved. Nitric acid is recovered from the vapors for reuse. Metal nitrates are sent to uranium recovery. Brown NO{sub x} fumes evolved during dissolving have occasionally resulted in a visible plume from the trays. The fuming is most noticeable during startup and after addition of fresh acid to a tray. Present environmental regulations are expected to require control of brown NO{sub x} emissions. Because NO{sub x} is hazardous, fumes should be suppressed whenever the electric blower system is inoperable. Because the tray dissolving process has worked well for decades, as much of the current capital equipment and operating procedures as possible were preserved. A detailed review of the literature, indicated the feasibility of slightly altering process chemistry to favor the production of NO{sub 2}, which can be scrubbed and recycled as nitric acid. Methods for controlling the process to manage offgas product distribution and to minimize chemical reaction hazards were also considered.

  10. Uranium isotopes fingerprint biotic reduction

    DOE PAGES-Beta [OSTI]

    Stylo, Malgorzata; Neubert, Nadja; Wang, Yuheng; Monga, Nikhil; Romaniello, Stephen J.; Weyer, Stefan; Bernier-Latmani, Rizlan

    2015-04-20

    Knowledge of paleo-redox conditions in the Earth’s history provides a window into events that shaped the evolution of life on our planet. The role of microbial activity in paleo-redox processes remains unexplored due to the inability to discriminate biotic from abiotic redox transformations in the rock record. The ability to deconvolute these two processes would provide a means to identify environmental niches in which microbial activity was prevalent at a specific time in paleo-history and to correlate specific biogeochemical events with the corresponding microbial metabolism. Here, we demonstrate that the isotopic signature associated with microbial reduction of hexavalent uranium (U),more » i.e., the accumulation of the heavy isotope in the U(IV) phase, is readily distinguishable from that generated by abiotic uranium reduction in laboratory experiments. Thus, isotope signatures preserved in the geologic record through the reductive precipitation of uranium may provide the sought-after tool to probe for biotic processes. Because uranium is a common element in the Earth’s crust and a wide variety of metabolic groups of microorganisms catalyze the biological reduction of U(VI), this tool is applicable to a multiplicity of geological epochs and terrestrial environments. The findings of this study indicate that biological activity contributed to the formation of many authigenic U deposits, including sandstone U deposits of various ages, as well as modern, Cretaceous, and Archean black shales. In addition, engineered bioremediation activities also exhibit a biotic signature, suggesting that, although multiple pathways may be involved in the reduction, direct enzymatic reduction contributes substantially to the immobilization of uranium.« less

  11. Uranium isotopes fingerprint biotic reduction

    SciTech Connect (OSTI)

    Stylo, Malgorzata; Neubert, Nadja; Wang, Yuheng; Monga, Nikhil; Romaniello, Stephen J.; Weyer, Stefan; Bernier-Latmani, Rizlan

    2015-04-20

    Knowledge of paleo-redox conditions in the Earth’s history provides a window into events that shaped the evolution of life on our planet. The role of microbial activity in paleo-redox processes remains unexplored due to the inability to discriminate biotic from abiotic redox transformations in the rock record. The ability to deconvolute these two processes would provide a means to identify environmental niches in which microbial activity was prevalent at a specific time in paleo-history and to correlate specific biogeochemical events with the corresponding microbial metabolism. Here, we demonstrate that the isotopic signature associated with microbial reduction of hexavalent uranium (U), i.e., the accumulation of the heavy isotope in the U(IV) phase, is readily distinguishable from that generated by abiotic uranium reduction in laboratory experiments. Thus, isotope signatures preserved in the geologic record through the reductive precipitation of uranium may provide the sought-after tool to probe for biotic processes. Because uranium is a common element in the Earth’s crust and a wide variety of metabolic groups of microorganisms catalyze the biological reduction of U(VI), this tool is applicable to a multiplicity of geological epochs and terrestrial environments. The findings of this study indicate that biological activity contributed to the formation of many authigenic U deposits, including sandstone U deposits of various ages, as well as modern, Cretaceous, and Archean black shales. In addition, engineered bioremediation activities also exhibit a biotic signature, suggesting that, although multiple pathways may be involved in the reduction, direct enzymatic reduction contributes substantially to the immobilization of uranium.

  12. Toxic Substances Control Act Uranium Enrichment Federal Facility Compliance

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Agreement | Department of Energy Toxic Substances Control Act Uranium Enrichment Federal Facility Compliance Agreement Toxic Substances Control Act Uranium Enrichment Federal Facility Compliance Agreement Toxic Substances Control Act (TSCA) Uranium Enrichment Federal Facility Compliance Agreement establishes a plan to bring DOE's Uranium Enrichment Plants (and support facilities) located in Portsmouth, Ohio and Paducah, Kentucky and DOE's former Uranium Enrichment Plant (and support

  13. Inherently safe in situ uranium recovery.

    SciTech Connect (OSTI)

    Krumhansl, James Lee; Beauheim, Richard Louis; Brady, Patrick Vane; Arnold, Bill Walter; Kanney, Joseph F.; McKenna, Sean Andrew

    2009-05-01

    Expansion of uranium mining in the United States is a concern to some environmental groups and sovereign Native American Nations. An approach which may alleviate some problems is to develop inherently safe in situ uranium recovery ('ISR') technologies. Current ISR technology relies on chemical extraction of trace levels of uranium from aquifers that, once mined, can still contain dissolved uranium and other trace metals that are a health concern. Existing ISR operations are few in number; however, high uranium prices are driving the industry to consider expanding operations nation-wide. Environmental concerns and enforcement of the new 30 ppb uranium drinking water standard may make opening new mining operations more difficult and costly. Here we propose a technological fix: the development of inherently safe in situ recovery (ISISR) methods. The four central features of an ISISR approach are: (1) New 'green' leachants that break down predictably in the subsurface, leaving uranium, and associated trace metals, in an immobile form; (2) Post-leachant uranium/metals-immobilizing washes that provide a backup decontamination process; (3) An optimized well-field design that increases uranium recovery efficiency and minimizes excursions of contaminated water; and (4) A combined hydrologic/geochemical protocol for designing low-cost post-extraction long-term monitoring. ISISR would bring larger amounts of uranium to the surface, leave fewer toxic metals in the aquifer, and cost less to monitor safely - thus providing a 'win-win-win' solution to all stakeholders.

  14. Reports on investigations of uranium anomalies. National Uranium Resource Evaluation

    SciTech Connect (OSTI)

    Goodknight, C.S.; Burger, J.A.

    1982-10-01

    During the National Uranium Resource Evaluation (NURE) program, conducted for the US Department of Energy (DOE) by Bendix Field Engineering Corporation (BFEC), radiometric and geochemical surveys and geologic investigations detected anomalies indicative of possible uranium enrichment. Data from the Aerial Radiometric and Magnetic Survey (ARMS) and the Hydrogeochemical and Stream-Sediment Reconnaissance (HSSR), both of which were conducted on a national scale, yielded numerous anomalies that may signal areas favorable for the occurrence of uranium deposits. Results from geologic evaluations of individual 1/sup 0/ x 2/sup 0/ quadrangles for the NURE program also yielded anomalies, which could not be adequately checked during scheduled field work. Included in this volume are individual reports of field investigations for the following six areas which were shown on the basis of ARMS, HSSR, and (or) geologic data to be anomalous: (1) Hylas zone and northern Richmond basin, Virginia; (2) Sischu Creek area, Alaska; (3) Goodman-Dunbar area, Wisconsin; (4) McCaslin syncline, Wisconsin; (5) Mt. Withington Cauldron, Socorro County, New Mexico; (6) Lake Tecopa, Inyo County, California. Field checks were conducted in each case to verify an indicated anomalous condition and to determine the nature of materials causing the anomaly. The ultimate objective of work is to determine whether favorable conditions exist for the occurrence of uranium deposits in areas that either had not been previously evaluated or were evaluated before data from recent surveys were available. Most field checks were of short duration (2 to 5 days). The work was done by various investigators using different procedures, which accounts for variations in format in their reports. All papers have been abstracted and indexed.

  15. Conversion of High-Enriched to Low-Enriched Uranium Fuel:Uranium...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Conversion of High-Enriched to Low-Enriched Uranium Fuel: Uranium-Molybdenum Dispersion Fuels October 3, 2016 2:30PM to 3:30PM Presenter Laura Jamison (NE) Location Building 203, ...

  16. 2015 Domestic Uranium Production Report

    U.S. Energy Information Administration (EIA) (indexed site)

    Domestic Uranium Production Report 2015 Domestic Uranium Production Report Release Date: May 5, 2016 Next Release Date: May 2017 Number of Holes Feet (thousand) Number of Holes Feet (thousand) Number of Holes Feet (thousand) 2003 NA NA NA NA W W 2004 W W W W 2,185 1,249 2005 W W W W 3,143 1,668 2006 1,473 821 3,430 1,892 4,903 2,713 2007 4,351 2,200 4,996 2,946 9,347 5,146 2008 5,198 2,543 4,157 2,551 9,355 5,093 2009 1,790 1,051 3,889 2,691 5,679 3,742 2010 2,439 1,460 4,770 3,444 7,209 4,904

  17. 2015 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) (indexed site)

    U.S. Energy Information Administration / 2015 Uranium Marketing Annual Report 2015 Uranium Marketing Annual Report Release Date: May 24, 2016 Next Release Date: May 2017 thousand pounds U 3 O 8 equivalent U.S. enrichment Foreign enrichment Total U.S. enrichment Foreign enrichment Total U.S. enrichment Foreign enrichment Total Australia 2,417 2,476 4,893 910 4,467 5,377 1,673 3,797 5,470 Brazil 0 W W 0 W W 0 W W Canada 4,889 4,673 9,562 5,424 4,315 9,738 6,212 9,698 15,910 China 0 W W 0 W W 0 W

  18. 2015 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) (indexed site)

    U.S. Energy Information Administration / 2015 Uranium Marketing Annual Report 2015 Uranium Marketing Annual Report Release Date: May 24, 2016 Next Release Date: May 2017 thousand separative work units (SWU) Country of enrichment service (SWU-origin) 2011 2012 2013 2014 2015 China W W W 636 W France W 0 0 0 0 Germany 1,539 1,075 753 1,005 1,281 Netherlands 1,506 1,496 2,112 1,801 2,385 Russia 5,308 6,560 2,491 3,083 2,234 United Kingdom 2,813 2,648 2,674 2,435 2,522 Europe 1 670 W 0 W 0 Other 2

  19. Depleted uranium disposal options evaluation

    SciTech Connect (OSTI)

    Hertzler, T.J.; Nishimoto, D.D.; Otis, M.D.

    1994-05-01

    The Department of Energy (DOE), Office of Environmental Restoration and Waste Management, has chartered a study to evaluate alternative management strategies for depleted uranium (DU) currently stored throughout the DOE complex. Historically, DU has been maintained as a strategic resource because of uses for DU metal and potential uses for further enrichment or for uranium oxide as breeder reactor blanket fuel. This study has focused on evaluating the disposal options for DU if it were considered a waste. This report is in no way declaring these DU reserves a ``waste,`` but is intended to provide baseline data for comparison with other management options for use of DU. To PICS considered in this report include: Retrievable disposal; permanent disposal; health hazards; radiation toxicity and chemical toxicity.

  20. Uranium Metal Analysis via Selective Dissolution

    SciTech Connect (OSTI)

    Delegard, Calvin H.; Sinkov, Sergey I.; Schmidt, Andrew J.; Chenault, Jeffrey W.

    2008-09-10

    Uranium metal, which is present in sludge held in the Hanford Site K West Basin, can create hazardous hydrogen atmospheres during sludge handling, immobilization, or subsequent transport and storage operations by its oxidation/corrosion in water. A thorough knowledge of the uranium metal concentration in sludge therefore is essential to successful sludge management and waste process design. The goal of this work was to establish a rapid routine analytical method to determine uranium metal concentrations as low as 0.03 wt% in sludge even in the presence of up to 1000-fold higher total uranium concentrations (i.e., up to 30 wt% and more uranium) for samples to be taken during the upcoming sludge characterization campaign and in future analyses for sludge handling and processing. This report describes the experiments and results obtained in developing the selective dissolution technique to determine uranium metal concentration in K Basin sludge.

  1. PRETREATING URANIUM FOR METAL PLATING

    DOE Patents [OSTI]

    Wehrmann, R.F.

    1961-05-01

    A process is given for anodically treating the surface of uranium articles, prior to metal plating. The metal is electrolyzed in an aqueous solution of about 10% polycarboxylic acid, preferably oxalic acid, from 1 to 5% by weight of glycerine and from 1 to 5% by weight of hydrochloric acid at from 20 to 75 deg C for from 30 seconds to 15 minutes. A current density of from 60 to 100 amperes per square foot is used.

  2. 2015 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) (indexed site)

    3 2015 Uranium Marketing Annual Report Release Date: May 24, 2016 Next Release Date: May 2017 2013 2014 2015 AREVA NC, Inc. AREVA Enrichment Services, LLC / AREVA NC, Inc. AREVA Enrichment Services, LLC / AREVA NC, Inc. CNEIC (China Nuclear Energy Industry Corporation) CNEIC (China Nuclear Energy Industry Corporation) CAMECO LES, LLC (Louisiana Energy Services) LES, LLC (Louisiana Energy Services) CNEIC (China Nuclear Energy Industry Corporation) NUKEM, Inc. NYNCO Trading, LTD Energy Northwest

  3. Review of uranium bioassay techniques

    SciTech Connect (OSTI)

    Bogard, J.S.

    1996-04-01

    A variety of analytical techniques is available for evaluating uranium in excreta and tissues at levels appropriate for occupational exposure control and evaluation. A few (fluorometry, kinetic phosphorescence analysis, {alpha}-particle spectrometry, neutron irradiation techniques, and inductively-coupled plasma mass spectrometry) have also been demonstrated as capable of determining uranium in these materials at levels comparable to those which occur naturally. Sample preparation requirements and isotopic sensitivities vary widely among these techniques and should be considered carefully when choosing a method. This report discusses analytical techniques used for evaluating uranium in biological matrices (primarily urine) and limits of detection reported in the literature. No cost comparison is attempted, although references are cited which address cost. Techniques discussed include: {alpha}-particle spectrometry; liquid scintillation spectrometry, fluorometry, phosphorometry, neutron activation analysis, fission-track counting, UV-visible absorption spectrophotometry, resonance ionization mass spectrometry, and inductively-coupled plasma mass spectrometry. A summary table of reported limits of detection and of the more important experimental conditions associated with these reported limits is also provided.

  4. REMOVAL OF URANIUM FROM ORGANIC LIQUIDS

    DOE Patents [OSTI]

    Vavalides, S.P.

    1959-08-25

    A process is described for recovering small quantities of uranium from organic liquids such as hydrocarbon oils. halogen-substituted hydrocarbons, and alcohols. The organic liquid is contacted with a comminuted alkaline earth hydroxide, calcium hydroxide particularly, and the resulting uranium-bearing solid is separated from the liquid by filtration. Uranium may then be recovered from the solid by means of dissolution in nitric acid and conventional extraction with an organic solvent such as tributyl phosphate.

  5. METHOD FOR THE REDUCTION OF URANIUM COMPOUNDS

    DOE Patents [OSTI]

    Cooke, W.H.; Crawford, J.W.C.

    1959-05-12

    An improved technique of preparing massive metallic uranium by the reaction at elevated temperature between an excess of alkali in alkaline earth metal and a uranium halide, such ss uranium tetrafluoride is presented. The improvement comprises employing a reducing atmosphere of hydrogen or the like, such as coal gas, in the vessel during the reduction stage and then replacing the reducing atmosphere with argon gas prior to cooling to ambient temperature.

  6. METHOD OF PRODUCING URANIUM METAL BY ELECTROLYSIS

    DOE Patents [OSTI]

    Piper, R.D.

    1962-09-01

    A process is given for making uranium metal from oxidic material by electrolytic deposition on the cathode. The oxidic material admixed with two moles of carbon per one mole of uranium dioxide forms the anode, and the electrolyte is a mixture of from 40 to 75% of calcium fluoride or barium fluoride, 15 to 45% of uranium tetrafluoride, and from 10 to 20% of lithium fluoride or magnesium fluoride; the temperature of the electrolyte is between 1150 and 1175 deg C. (AEC)

  7. ELECTROCHEMICAL DECONTAMINATION AND RECOVERY OF URANIUM VALUES

    DOE Patents [OSTI]

    McLaren, J.A.; Goode, J.H.

    1958-05-13

    An electrochemical process is described for separating uranium from fission products. The method comprises subjecting the mass of uranium to anodic dissolution in an electrolytic cell containing aqueous alkali bicarbonate solution as its electrolyte, thereby promoting a settling from the solution of a solid sludge from about the electrodes and separating the resulting electrolyte solution containing the anodically dissolved uranium from the sludge which contains the rare earth fission products.

  8. Uranium Leasing Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    » Uranium Leasing Program Uranium Leasing Program Reclaimed C-CM-25 Mine Site, Montrose County, Colorado Reclaimed C-CM-25 Mine Site, Montrose County, Colorado LM currently manages the Uranium Leasing Program and continues to administer 31 lease tracts, all located within the Uravan Mineral Belt in southwestern Colorado. Twenty-nine of these lease tracts are actively held under lease and two tracts have been placed in inactive status indefinitely. Administrative duties include ongoing

  9. ELECTROLYTIC CLADDING OF ZIRCONIUM ON URANIUM

    DOE Patents [OSTI]

    Wick, J.J.

    1959-09-22

    A method is presented for coating uranium with zircoalum by rendering the uranium surface smooth and oxidefree, immersing it in a molten electrolytic bath in NaCI, K/sub 2/ZrF/sub 6/, KF, and ZrO/sub 2/, and before the article reaches temperature equilibrium with the bath, applying an electrolyzing current of 60 amperes per square dectmeter at approximately 3 volts to form a layer of zirconium metal on the uranium.

  10. Uranium Weapons Components Successfully Dismantled | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) Uranium Weapons Components Successfully Dismantled Uranium Weapons Components Successfully Dismantled Oak Ridge, TN Continuing its efforts to reduce the size of the U.S. nuclear weapons stockpile, the National Nuclear Security Administration announced that uranium components from two major nuclear weapons systems formerly deployed on U.S. Air Force missiles and aircraft have been dismantled at the Y-12 National Security Complex in Oak Ridge, TN. Y-12 workers

  11. highly enriched uranium | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    highly enriched uranium Secretary Moniz Announces Removal of All Highly Enriched Uranium from Poland NNSA Helps Poland Become 31st Country Plus Taiwan to Be HEU-free VIENNA - At the 60th IAEA General Conference, U.S. Secretary of Energy Ernest Moniz today announced that the U.S. Department of Energy's National Nuclear Security Administration (NNSA), in cooperation with Poland, the... NNSA Announces Elimination of Highly Enriched Uranium (HEU) from Indonesia All of Southeast Asia Now HEU-Free

  12. Quadrilateral Cooperation on High-density Low-enriched Uranium...

    National Nuclear Security Administration (NNSA)

    Quadrilateral Cooperation on High-density Low-enriched Uranium Fuel Production: Fact Sheet ... world from the use of highly-enriched uranium (HEU) fuel to low-enriched uranium (LEU) ...

  13. Think Uranium. Think Y-12 | Y-12 National Security Complex

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Think Uranium. Think Y-12 Think Uranium. Think Y-12 Posted: July 22, 2013 - 3:12pm | Y-12 Report | Volume 10, Issue 1 | 2013 Uranium fever: Much like the California gold rush of ...

  14. Y-12 Knows Uranium | Y-12 National Security Complex

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Knows Uranium Y-12 Knows Uranium Posted: July 22, 2013 - 3:45pm | Y-12 Report | Volume 10, Issue 1 | 2013 Y-12 produces many forms of uranium. They may be used in chemical ...

  15. Uranium metal reactions with hydrogen and water vapour and the reactivity of the uranium hydride produced

    SciTech Connect (OSTI)

    Godfrey, H.; Broan, C.; Goddard, D.; Hodge, N.; Woodhouse, G.; Diggle, A.; Orr, R.

    2013-07-01

    Within the nuclear industry, metallic uranium has been used as a fuel. If this metal is stored in a hydrogen rich environment then the uranium metal can react with the hydrogen to form uranium hydride which can be pyrophoric when exposed to air. The UK National Nuclear Laboratory has been carrying out a programme of research for Sellafield Limited to investigate the conditions required for the formation and persistence of uranium hydride and the reactivity of the material formed. The experimental results presented here have described new results characterising uranium hydride formed from bulk uranium at 50 and 160 C. degrees and measurements of the hydrolysis kinetics of these materials in liquid water. It has been shown that there is an increase in the proportion of alpha-uranium hydride in material formed at lower temperatures and that there is an increase in the rate of reaction with water of uranium hydride formed at lower temperatures. This may at least in part be attributable to a difference in the reaction rate between alpha and beta-uranium hydride. A striking observation is the strong dependence of the hydrolysis reaction rate on the temperature of preparation of the uranium hydride. For example, the reaction rate of uranium hydride prepared at 50 C. degrees was over ten times higher than that prepared at 160 C. degrees at 20% extent of reaction. The decrease in reaction rate with the extent of reaction also depended on the temperature of uranium hydride preparation.

  16. SEPARATION OF URANIUM, PLUTONIUM AND FISSION PRODUCTS FROM NEUTRON- BOMBARDED URANIUM

    DOE Patents [OSTI]

    Martin, A.E.; Johnson, I.; Burris, L. Jr.; Winsch, I.O.; Feder, H.M.

    1962-11-13

    A process is given for removing plutonium and/or fission products from uranium fuel. The fuel is dissolved in molten zinc--magnesium (10 to 18% Mg) alloy, more magnesium is added to obtain eutectic composition whereby uranium precipitates, and the uranium are separated from the Plutoniumand fission-product- containing eutectic. (AEC)

  17. Oxidation and crystal field effects in uranium

    SciTech Connect (OSTI)

    Tobin, J. G.; Booth, C. H.; Shuh, D. K.; van der Laan, G.; Sokaras, D.; Weng, T. -C.; Yu, S. W.; Bagus, P. S.; Tyliszczak, T.; Nordlund, D.

    2015-07-06

    An extensive investigation of oxidation in uranium has been pursued. This includes the utilization of soft x-ray absorption spectroscopy, hard x-ray absorption near-edge structure, resonant (hard) x-ray emission spectroscopy, cluster calculations, and a branching ratio analysis founded on atomic theory. The samples utilized were uranium dioxide (UO2), uranium trioxide (UO3), and uranium tetrafluoride (UF4). As a result, a discussion of the role of non-spherical perturbations, i.e., crystal or ligand field effects, will be presented.

  18. Colorimetric detection of uranium in water

    DOE Patents [OSTI]

    DeVol, Timothy A.; Hixon, Amy E.; DiPrete, David P.

    2012-03-13

    Disclosed are methods, materials and systems that can be used to determine qualitatively or quantitatively the level of uranium contamination in water samples. Beneficially, disclosed systems are relatively simple and cost-effective. For example, disclosed systems can be utilized by consumers having little or no training in chemical analysis techniques. Methods generally include a concentration step and a complexation step. Uranium concentration can be carried out according to an extraction chromatographic process and complexation can chemically bind uranium with a detectable substance such that the formed substance is visually detectable. Methods can detect uranium contamination down to levels even below the MCL as established by the EPA.

  19. SEPARATION OF URANIUM, PLUTONIUM AND FISSION PRODUCTS

    DOE Patents [OSTI]

    Nicholls, C.M.; Wells, I.; Spence, R.

    1959-10-13

    The separation of uranium and plutonium from neutronirradiated uranium is described. The neutron-irradiated uranium is dissolved in nitric acid to provide an aqueous solution 3N in nitric acid. The fission products of the solution are extruded by treating the solution with dibutyl carbitol substantially 1.8N in nitric acid. The organic solvent phase is separated and neutralized with ammonium hydroxide and the plutonium reduced with hydroxylamine base to the trivalent state. Treatment of the mixture with saturated ammonium nitrate extracts the reduced plutonium and leaves the uranium in the organic solvent.

  20. METHOD FOR DISSOLVING ZIRCONIUM-URANIUM COMPOSITIONS

    DOE Patents [OSTI]

    Gens, T.A.

    1961-07-18

    A method is descrioed for treating a zirconium-- uranium composition to form a stable solution from which uranium and other values may be extracted by contacting the composition with at least a 4 molar aqueous solution of ammonium fluoride at a temperature of about 100 deg C, adding a peroxide, in incremental amounts, to the heated solution throughout the period of dissolution until all of the uranium is converted to soluble uranyl salt, adding nitric acid to the resultant solution to form a solvent extraction feed solution to convert the uranyl salt to a solvent extractable state, and thereafter recovering the uranium and other desired values from the feed solution by solvent extraction.

  1. Assessment of radionuclides (uranium and thorium) atmospheric...

    Office of Scientific and Technical Information (OSTI)

    Title: Assessment of radionuclides (uranium and thorium) atmospheric pollution around Manjung district, Perak using moss as bio-indicator Bio-monitoring method using mosses have ...

  2. SEPARATION OF URANIUM FROM OTHER METALS

    DOE Patents [OSTI]

    Hyman, H.H.

    1959-07-01

    The separation of uranium from other elements, such as ruthenium, zirconium, niobium, cerium, and other rare earth metals is described. According to the invention, this is accomplished by adding hydrazine to an acid aqueous solution containing salts of uranium, preferably hexavalent uranium, and then treating the mixture with a substantially water immiscible ketone, such as hexone. A reaction takes place between the ketone and the hydrazine whereby a complex, a ketazine, is formed; this complex has a greater power of extraction for uranium than the ketone by itself. When contaminating elements are present, they substantially remain in ihe aqueous solution.

  3. Potentiometric determination of uranium in organic extracts

    SciTech Connect (OSTI)

    Bodnar, L.Z.

    1980-05-01

    The potentimetric determination of uranium in organic extracts was studied. A mixture of 30% TBP, (tributylphosphate), in carbon tetrachloride was used, with the NBL (New Brunswick Laboratory) titrimetric procedure. Results include a comparative analysis performed on organic extracts of fissium alloys vs those performed on aqueous samples of the same alloys which had been treated to remove interfering elements. Also comparative analyses were performed on sample solutions from a typical scrap recovery operation common in the uranium processing industry. A limited number of residue type materials, calciner products, and presscakes were subjected to analysis by organic extraction. The uranium extraction was not hindered by 30% TBP/CCl/sub 4/. To fully demonstrate the capabilities of the extraction technique and its compatibility with the NBL potentiometric uranium determination, a series of uranium standards was subjected to uranium extraction with 30% TBP/CCl/sub 4/. The uranium was then stripped out of the organic phase with 40 mL of H/sub 3/PO/sub 4/, 15 mL of H/sub 2/0, and 1 mL of 1M FeSO/sub 4/ solution. The uranium was then determined in the aqueous phosphoric phase by the regular NBL potentiometric method, omitting only the addition of another 40 mL of H/sub 3/PO/sub 4/. Uranium determinations ranging from approximately 20 to 150 mg of U were successfully made with the same accuracy and precision normally achieved. 8 tables. (DP)

  4. High strength and density tungsten-uranium alloys

    DOE Patents [OSTI]

    Sheinberg, Haskell

    1993-01-01

    Alloys of tungsten and uranium and a method for making the alloys. The amount of tungsten present in the alloys is from about 55 vol % to about 85 vol %. A porous preform is made by sintering consolidated tungsten powder. The preform is impregnated with molten uranium such that (1) uranium fills the pores of the preform to form uranium in a tungsten matrix or (2) uranium dissolves portions of the preform to form a continuous uranium phase containing tungsten particles.

  5. Highly Enriched Uranium Materials Facility | Y-12 National Security Complex

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Highly Enriched Uranium ... Highly Enriched Uranium Materials Facility HEUMF The Highly Enriched Uranium Materials Facility is our nation's central repository for highly enriched uranium, a vital national security asset. HEUMF is a massive concrete and steel structure that provides maximum security for the highly enriched uranium material that it protects. Approximately 300 feet by 475 feet, HEUMF has areas for receiving, shipping and providing long-term storage of the enriched uranium, as well

  6. COULOMETRIC DETERMINATION OF URANIUM WITH A PLATINUM WORKING...

    Office of Scientific and Technical Information (OSTI)

    COULOMETRIC DETERMINATION OF URANIUM WITH A PLATINUM WORKING ELECTRODE. Citation Details In-Document Search Title: COULOMETRIC DETERMINATION OF URANIUM WITH A PLATINUM WORKING ...

  7. Manhattan Project: Early Uranium Research, 1939-1941

    Office of Scientific and Technical Information (OSTI)

    ... Retaining programmatic responsibilities for uranium research in the new organizational setup, the Uranium Committee recommended that all four isotope separation methods and the ...

  8. Mined Land Reclamation on DOE's Uranium Lease Tracts, Southwestern...

    Office of Environmental Management (EM)

    Mined Land Reclamation on DOE's Uranium Lease Tracts, Southwestern Colorado Mined Land Reclamation on DOE's Uranium Lease Tracts, Southwestern Colorado Mined Land Reclamation on...

  9. EIS-0360: Depleted Uranium Oxide Conversion Product at the Portsmouth...

    Energy.gov (indexed) [DOE]

    decommissioning of the proposed depleted uranium hexafluoride (DUF6) conversion facility ... cylinders; transportation of depleted uranium conversion products and waste materials ...

  10. DOE Extends Contract to Operate Depleted Uranium Hexafluoride...

    Energy.gov (indexed) [DOE]

    its contract for Operations of Depleted Uranium Hexafluoride (DUF6) Conversion Facilities ... tons of DUF6 left over from decades of uranium enrichment at DOE's gaseous diffusion ...

  11. 2nd Quarter 2016 Domestic Uranium Production Report

    Annual Energy Outlook

    Next Release Date: November 2016 Table 1. Total production of uranium concentrate in the ... Administration: Form EIA-851A and Form EIA-851Q, "Domestic Uranium Production Report."

  12. President Truman Increases Production of Uranium and Plutonium...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Increases Production of Uranium and Plutonium President Truman Increases Production of Uranium and Plutonium Washington, DC President Truman approves a 1.4 billion expansion of ...

  13. Uranium and Strontium Batch Sorption and Diffusion Kinetics into...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Uranium and Strontium Batch Sorption and Diffusion Kinetics into Mesoporous Silica Friday, ... and fate of radioactive material such as uranium (U) and strontium (Sr) in the environment ...

  14. DOE Extends Contract to Operate Depleted Uranium Hexafluoride...

    Office of Environmental Management (EM)

    Extends Contract to Operate Depleted Uranium Hexafluoride Conversion Plants DOE Extends Contract to Operate Depleted Uranium Hexafluoride Conversion Plants September 29, 2016 - ...

  15. DOE Awards Contract for the Operation of Depleted Uranium Hexafluoride...

    Office of Environmental Management (EM)

    Contract for the Operation of Depleted Uranium Hexafluoride (DUF6) Conversion Facilities DOE Awards Contract for the Operation of Depleted Uranium Hexafluoride (DUF6) Conversion ...

  16. Depleted Uranium Hexafluoride (DUF6) Fully Operational at the...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Depleted Uranium Hexafluoride (DUF6) Fully Operational at the Portsmouth and Paducah Gaseous Diffusion Sites Depleted Uranium Hexafluoride (DUF6) Fully Operational at the ...

  17. Process for Transition of Uranium Mill Tailings Radiation Control...

    Office of Environmental Management (EM)

    Uranium Mill Tailings Radiation Control Act Title II Disposal Sites to the U.S. Department ... Maintenance Process for Transition of Uranium Mill Tailings Radiation Control Act Title ...

  18. Excess Uranium Inventory Management Plan 2008 | Department of...

    Energy.gov (indexed) [DOE]

    of the U.S. Department of Energy's (DOE) excess uranium inventory (Policy Statement). ... requirements; (2) maintains sufficient uranium inventories at all times to meet the ...

  19. Uranium Processing Facility (UPF) - Getting the Right Project...

    Office of Environmental Management (EM)

    Uranium Processing Facility (UPF) - Getting the Right Project Structure and Acquisition Plan Uranium Processing Facility (UPF) - Getting the Right Project Structure and Acquisition ...

  20. Record of Decision for the Uranium Leasing Program Programmatic...

    Office of Environmental Management (EM)

    Record of Decision for the Uranium Leasing Program Programmatic Environmental Impact Statement Record of Decision for the Uranium Leasing Program Programmatic Environmental Impact ...

  1. DOE Seeks Contractor for Depleted Uranium Hexafluoride (DUF6...

    Energy Savers

    DOE Seeks Contractor for Depleted Uranium Hexafluoride (DUF6) Operations at Ohio and Kentucky Facilities DOE Seeks Contractor for Depleted Uranium Hexafluoride (DUF6) Operations at ...

  2. 2nd Quarter 2016 Domestic Uranium Production Report

    U.S. Energy Information Administration (EIA) (indexed site)

    Administration: Form EIA-851A and Form EIA-851Q, ""Domestic Uranium Production Report.""" " U.S. Energy Information Administration Domestic Uranium Production Report 2nd Quarter

  3. EIS-0359: Uranium Hexafluoride Conversion Facility at the Paducah...

    Energy.gov (indexed) [DOE]

    of the proposed depleted uranium hexafluoride (DUF6) conversion facility at three locations within the Paducah site; transportation of depleted uranium conversion products and ...

  4. 2nd Quarter 2016 Domestic Uranium Production Report

    U.S. Energy Information Administration (EIA) (indexed site)

    Figure 1. Uranium concentrate production in the United States, 1996 - 2nd quarter 2016 ... Administration: Form EIA-851A and Form EIA-851Q, "Domestic Uranium Production Report."

  5. Uranium Sequestration via Phosphate Infiltration/Injection Test...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Uranium Sequestration via Phosphate InfiltrationInjection Test History Supporting the Preferred Alternative 1 300 Area GW Concentrations - Uranium High River Stage - GW ...

  6. Excess Uranium Inventory Management Plan | Department of Energy

    Energy Savers

    Plan Excess Uranium Inventory Management Plan The 2013 Excess Uranium Inventory Management Plan describes a framework for the effective management of the Energy Department's ...

  7. 2015 Annual Site Inspection and Monitoring Report for Uranium...

    Office of Legacy Management (LM)

    Summary The Gunnison, Colorado, Uranium Mill Tailings Radiation Control Act ... The indicator analyte for cell performance at the site is uranium. This analyte was ...

  8. 2nd Quarter 2016 Domestic Uranium Production Report

    U.S. Energy Information Administration (EIA) (indexed site)

    EIA-851Q, ""Domestic Uranium Production Report.""" "Source: U.S. Energy Information Administration: Form EIA-851A and Form EIA-851Q, ""Domestic Uranium Production Report.""" " ...

  9. Decommissioning of U.S. Uranium Production Facilities

    Reports and Publications

    1995-01-01

    This report analyzes the uranium production facility decommissioning process and its potential impact on uranium supply and prices. 1995 represents the most recent publication year.

  10. Tag: uranium processing facility | Y-12 National Security Complex

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    uranium processing ... Tag: uranium processing facility Displaying 1 - 3 of 3... Category: News UPF Project celebrates changing the Y-12 skyline Groundbreaking Ceremony Held for ...

  11. Secret Mission to Remove Highly Enriched Uranium Spent Nuclear...

    National Nuclear Security Administration (NNSA)

    Secret Mission to Remove Highly Enriched Uranium Spent Nuclear Fuel from Uzbekistan ... (139 pounds) of highly enriched uranium (HEU) in spent nuclear fuel were safely ...

  12. Uranium-Bearing Evaporite Mineralization Influencing Plume Persistence...

    Energy.gov (indexed) [DOE]

    Uranium-Bearing Evaporite Mineralization Influencing Plume Persistence: Literature Review and DOE-LM Site Surveys Uranium-Bearing Evaporite Mineralization Influencing Plume ...

  13. Toxic Substances Control Act Uranium Enrichment Federal Facilities...

    Office of Environmental Management (EM)

    Toxic Substance Control Act Uranium Enrichment Federal Facilities Compliance Agreement ... for bringing DOE's former and active Uranium Enrichment Plants in Paducah, Portsmouth, ...

  14. Uranium Marketing Annual Report - Release Date: May 31, 2011

    Annual Energy Outlook

    1. Unfilled uranium market requirements of owners and operators of U.S. civilian nuclear ... Source: U.S. Energy Information Administration, Form EIA-858 "Uranium Marketing Annual ...

  15. Notice of Availability of the Remediation of the Moab Uranium...

    Office of Environmental Management (EM)

    ... DEPARTMENT OF ENERGY Remediation of the Moab Uranium Mill Tailings Final Environmental ... of the Remediation of the Moab Uranium Mill Tailings Final Environmental Impact ...

  16. DOE - Office of Legacy Management -- Colonial Uranium Co - CO...

    Office of Legacy Management (LM)

    Colonial Uranium Co - CO 10 FUSRAP Considered Sites Site: Colonial Uranium Co. (CO.10 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: ...

  17. Los Alamos probes mysteries of uranium dioxide's thermal conductivity

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Mysteries of uranium dioxide's thermal conductivity Los Alamos probes mysteries of uranium dioxide's thermal conductivity New research is showing that the thermal conductivity of ...

  18. Secretarial Determination of No Adverse Material Impact for Uranium...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Secretarial Determination of No Adverse Material Impact for Uranium Transfers Secretarial Determination of No Adverse Material Impact for Uranium Transfers The determination covers ...

  19. Appraisal of the Uranium Processing Facility Safety Basis Preliminary...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Independent Oversight Appraisal of the Uranium Processing Facility Safety Basis ... Evaluation Study HEUMF Highly Enriched Uranium Materials Facility HSS Office of Health, ...

  20. 2013 Annual Site Inspection and Monitoring Report for Uranium...

    Office of Scientific and Technical Information (OSTI)

    for Uranium Mill Tailings Radiation Control Act Title II Disposal Sites Citation Details In-Document Search Title: 2013 Annual Site Inspection and Monitoring Report for Uranium ...

  1. Belgium Highly Enriched Uranium and Plutonium Removals | National...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Uranium and Plutonium Removals March 24, 2014 Belgium has been a global leader in nonproliferation, working with the United States since 2006 to minimize highly enriched uranium ...

  2. Moab Project Disposes 2 Million Tons of Uranium Mill Tailings...

    Office of Environmental Management (EM)

    The Moab Uranium Mill Tailings Remedial Action Project reached its primary American ... of schedule on Wednesday with the disposal of 2 million tons of uranium mill tailings. ...

  3. Speciation of Uranium in Biologically Reduced Sediments in the...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Speciation of Uranium in Biologically Reduced Sediments in the Old Rifle Aquifer ... Juan S. Lezama Pacheco The speciation and dynamics of Uranium(IV) in naturally and ...

  4. Toxic Substances Control Act Uranium Enrichment Federal Facility...

    Energy.gov (indexed) [DOE]

    Toxic Substances Control Act (TSCA) Uranium Enrichment Federal Facility Compliance Agreement establishes a plan to bring DOE's Uranium Enrichment Plants (and support facilities) ...

  5. Uranium Lease and Take-Back | National Nuclear Security Administration

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Lease and Take-Back DOENNSA Successfully Establishes Uranium Lease and Takeback Program ... (DOENNSA) successfully established the Uranium Lease and Take-Back (ULTB) program, as ...

  6. PROGRAMFOR DEVEZOPING URANIUM FABRICATION PROCESSES WGtfORD

    Office of Legacy Management (LM)

    Srrie* January 16, 1952 PROGRAMFOR DEVEZOPING URANIUM FABRICATION PROCESSES WGtfORD I. ... -number -20683. Discussion Samples of uranium rods taken from the fourth rolling at the ...

  7. Sequestering Uranium from Seawater: Binding Strength and Modes...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Sequestering Uranium from Seawater: Binding Strength and Modes of Uranyl Complexes with Glutarimidedioxime Sequestering Uranium from Seawater: Binding Strength and Modes of Uranyl ...

  8. EOI: Offsite Depleted Uranium Metalworking | Y-12 National Security...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Offsite Depleted ... EOI: Offsite Depleted Uranium Metalworking Consolidated Nuclear ... of Depleted Uranium, for the Y-12 National Security Complex in Oak Ridge, Tennessee. ...

  9. Uranium Oxide Solar Cell (Technical Report) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Uranium Oxide Solar Cell Citation Details In-Document Search Title: Uranium Oxide Solar Cell Authors: Usov, Igor Olegovich 1 ; Sykora, Milan 1 + Show Author ...

  10. Highly Enriched Uranium Materials Facility, Major Design Changes...

    Energy Savers

    Highly Enriched Uranium Materials Facility, Major Design Changes Late...Lessons Learned Report, NNSA, Dec 2010 Highly Enriched Uranium Materials Facility, Major Design Changes...

  11. Uranium Nitride: Enabling New Applications for TRISO Fuel Particles...

    Office of Scientific and Technical Information (OSTI)

    Uranium Nitride: Enabling New Applications for TRISO Fuel Particles Citation Details In-Document Search Title: Uranium Nitride: Enabling New Applications for TRISO Fuel Particles ...

  12. Evaluation of ultra-low background materials for uranium and thorium using ICP-MS

    SciTech Connect (OSTI)

    Hoppe, E. W.; Overman, N. R.; LaFerriere, B. D.

    2013-08-08

    An increasing number of physics experiments require low background materials for their construction. The presence of Uranium and Thorium and their progeny in these materials present a variety of unwanted background sources for these experiments. The sensitivity of the experiments continues to drive the necessary levels of detection ever lower as well. This requirement for greater sensitivity has rendered direct radioassay impractical in many cases requiring large quantities of material, frequently many kilograms, and prolonged counting times, often months. Other assay techniques have been employed such as Neutron Activation Analysis but this requires access to expensive facilities and instrumentation and can be further complicated and delayed by the formation of unwanted radionuclides. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) is a useful tool and recent advancements have increased the sensitivity particularly in the elemental high mass range of U and Th. Unlike direct radioassay, ICP-MS is a destructive technique since it requires the sample to be in liquid form which is aspirated into a high temperature plasma. But it benefits in that it usually requires a very small sample, typically about a gram. This paper discusses how a variety of low background materials such as copper, polymers, and fused silica are made amenable to ICP-MS assay and how the arduous task of maintaining low backgrounds of U and Th is achieved.

  13. Evaluation of Ultra-Low Background Materials for Uranium and Thorium Using ICP-MS

    SciTech Connect (OSTI)

    Hoppe, Eric W.; Overman, Nicole R.; LaFerriere, Brian D.

    2013-08-08

    An increasing number of physics experiments require low background materials for their construction. The presence of Uranium and Thorium and their progeny in these materials present a variety of unwanted background sources for these experiments. The sensitivity of the experiments continues to drive the necessary levels of detection ever lower as well. This requirement for greater sensitivity has rendered direct radioassay impractical in many cases requiring large quantities of material, frequently many kilograms, and prolonged counting times, often months. Other assay techniques have been employed such as Neutron Activation Analysis but this requires access to expensive facilities and instrumentation and can be further complicated and delayed by the formation of unwanted radionuclides. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) is a useful tool and recent advancements have increased the sensitivity particularly in the elemental high mass range of U and Th. Unlike direct radioassay, ICP-MS is a destructive technique since it requires the sample to be in liquid form which is aspirated into a high temperature plasma. But it benefits in that it usually requires a very small sample, typically about a gram. Here we will discuss how a variety of low background materials such as copper, polymers, and fused silica are made amenable to ICP-MS assay and how the arduous task of maintaining low backgrounds of U and Th is achieved.

  14. PRODUCTION OF URANIUM AND THORIUM COMPOUNDS

    DOE Patents [OSTI]

    Arden, T.V.; Burstall, F.H.; Linstead, R.P.; Wells, R.A.

    1955-12-27

    Compounds of Th and U are extracted with an organic solvent in the presence of an adsorbent substance which has greater retentivity for impurities present than for the uranium and/or thorium. The preferred adsorbent material is noted as being cellulose. The uranium and thoriumcontaining substances treated are preferably in the form of dissolved nitrates, and the preferred organic solvent is diethyl ether.

  15. TERNARY ALLOYS OF URANIUM, COLUMBIUM, AND ZIRCONIUM

    DOE Patents [OSTI]

    Foote, F.G.

    1960-08-01

    Ternary alloys of uranium are described which are useful as neutron- reflecting materials in a fast neutron reactor. They are especially resistant to corrosion caused by oxidative processes of gascous or aqueous origin and comprise uranium as the predominant metal with zirconiunn and niobium wherein the total content of the minor alloying elements is between 2 and 8% by weight.

  16. Uranium Management - Preservation of a National Asset

    SciTech Connect (OSTI)

    Jackson, J. D.; Stroud, J. C.

    2002-02-27

    The Uranium Management Group (UMG) was established at the Department of Energy's (DOE's) Oak Ridge Operations in 1999 as a mechanism to expedite the de-inventory of surplus uranium from the Fernald Environmental Management Project site. This successful initial venture has broadened into providing uranium material de-inventory and consolidation support to the Hanford site as well as retrieving uranium materials that the Department had previously provided to universities under the loan/lease program. As of December 31, 2001, {approx} 4,300 metric tons of uranium (MTU) have been consolidated into a more cost effective interim storage location at the Portsmouth site near Piketon, OH. The UMG continues to uphold its corporate support mission by promoting the Nuclear Materials Stewardship Initiative (NMSI) and the twenty-five (25) action items of the Integrated Nuclear Materials Management Plan (1). Before additional consolidation efforts may commence to remove excess inventory from Environmental Management closure sites and universities, a Programmatic Environmental Assessment (PEA) must be completed. Two (2) noteworthy efforts currently being pursued involve the investigation of re-use opportunities for surplus uranium materials and the recovery of usable uranium from the shutdown Portsmouth cascade. In summary, the UMG is available as a DOE complex-wide technical resource to promote the responsible management of surplus uranium.

  17. Deep drawing of uranium metal

    SciTech Connect (OSTI)

    Jackson, R J; Lundberg, M R

    1987-01-19

    A procedure was developed to fabricate uranium forming blanks with high ''draw-ability'' so that cup shapes could be easily and uniformly deep drawn. The overall procedure involved a posttreatment to develop optimum mechanical and structural properties in the deep-drawn cups. The fabrication sequence is casting high-purity logs, pucking cast logs, cross-rolling pucks to forming blanks, annealing and outgassing forming blanks, cold deep drawing to hemispherical shapes, and stress relieving, outgassing, and annealing deep-drawn parts to restore ductility and impart dimensional stability. The fabrication development and the resulting fabrication procedure are discussed in detail. The mechanical properties and microstructural properties are discussed.

  18. 2014 Domestic Uranium Production Report

    U.S. Energy Information Administration (EIA) (indexed site)

    5. U.S. uranium in-situ-leach plants by owner, location, capacity, and operating status at end of the year, 2011-15" "In-Situ-Leach Plant Owner","In-Situ-Leach Plant Name","County, State (existing and planned locations)","Production Capacity (pounds U3O8 per year)","Operating Status at End of the Year" ,,,,2011,2012,2013,2014,2015 "AUC LLC","Reno Creek","Campbell,

  19. 2015 Domestic Uranium Production Report

    U.S. Energy Information Administration (EIA) (indexed site)

    2. U.S. uranium mine production and number of mines and sources, 2003-15" "Production / Mining Method",2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013,2014,2015 "Underground" "(estimated contained thousand pounds U3O8)","W","W","W","W","W","W","W","W","W","W","W","W","W" "Open Pit" "(estimated contained thousand

  20. Scrap uranium recycling via electron beam melting

    SciTech Connect (OSTI)

    McKoon, R.

    1993-11-01

    A program is underway at the Lawrence Livermore National Laboratory (LLNL) to recycle scrap uranium metal. Currently, much of the material from forging and machining processes is considered radioactive waste and is disposed of by oxidation and encapsulation at significant cost. In the recycling process, uranium and uranium alloys in various forms will be processed by electron beam melting and continuously cast into ingots meeting applicable specifications for virgin material. Existing vacuum processing facilities at LLNL are in compliance with all current federal and state environmental, safety and health regulations for the electron beam melting and vaporization of uranium metal. One of these facilities has been retrofitted with an auxiliary electron beam gun system, water-cooled hearth, crucible and ingot puller to create an electron beam melt furnace. In this furnace, basic process R&D on uranium recycling will be performed with the goal of eventual transfer of this technology to a production facility.

  1. National Uranium Resource Evaluation, Tonopah quadrangle, Nevada

    SciTech Connect (OSTI)

    Hurley, B W; Parker, D P

    1982-04-01

    The Tonopah Quadrangle, Nevada, was evaluated using National Uranium Resource Evaluation criteria to identify and delineate areas favorable for uranium deposits. Investigations included reconnaissance and detailed surface geologic and radiometric studies, geochemical sampling and evaluation, analysis and ground-truth followup of aerial radiometric and hydrogeochemical and stream-sediment reconnaissance data, and subsurface data evaluation. The results of these investigations indicate environments favorable for hydroallogenic uranium deposits in Miocene lacustrine sediments of the Big Smoky Valley west of Tonopah. The northern portion of the Toquima granitic pluton is favorable for authigenic uranium deposits. Environments considered unfavorable for uranium deposits include Quaternary sediments; intermediate and mafic volcanic and metavolcanic rocks; Mesozoic, Paleozoic, and Precambrian sedimentary and metasedimentary rocks; those plutonic rocks not included within favorable areas; and those felsic volcanic rocks not within the Northumberland and Mount Jefferson calderas.

  2. National uranium resource evaluation. Winnemucca Quadrangle, Nevada

    SciTech Connect (OSTI)

    Berridge, W.C.; Wolverson, N.J.

    1982-05-01

    The Winnemucca 2/sup 0/ quadrangle, Nevada, was evaluated for geologic environments favorable for uranium deposits, using criteria developed for the National Uranium Resource Evaluation program. Reconnaissance radiometric and geochemical surveys were conducted for all geologic environments open to evaluation. Detailed surface and subsurface investigations were conducted in potential host and source environments. Subsurface data collected by private industry were obtained for favorable environments. The results of this investigation indicate environments favorable for hydroallogenic uranium deposits in the Fish Creek Basin sedimentary rocks of Miocene age, and for hydroallogenic and sandstone uranium deposits in the Home Station Wash sedimentary rocks of Miocene age. Environments in the quadrangle considered unfavorable for uranium deposits are exposed sedimentary rocks of Precambrian, Paleozoic, Mesozoic, and Tertiary ages (other than those in the Fish Creek Basin and Home Station Wash areas); Mesozoic and Tertiary plutonic rocks; and Mesozoic and Tertiary volcanic rocks. Substantial portions of the quadrangle remain unevaluated because of restricted access or insufficient subsurface data.

  3. PROCESSES OF RECOVERING URANIUM FROM A CALUTRON

    DOE Patents [OSTI]

    Baird, D.O.; Zumwalt, L.R.

    1958-07-15

    An improved process is described for recovering the residue of a uranium compound which has been subjected to treatment in a calutron, from the parts of the calutron disposed in the source region upon which the residue is deposited. The process may be utilized when the uranium compound adheres to a surface containing metals of the group consisting of copper, iron, chromium, and nickel. The steps comprise washing the surface with an aqueous acidic oxidizing solvent for the uranium whereby there is obtained an acidic aqueous Solution containing uranium as uranyl ions and metals of said group as impurities, treating the acidic solution with sodium acetate in the presenee of added sodium nitrate to precipitate the uranium as sodium uranyl acetate away from the impurities in the solution, and separating the sodium uranyl acetate from the solution.

  4. Method for fabricating laminated uranium composites

    DOE Patents [OSTI]

    Chapman, L.R.

    1983-08-03

    The present invention is directed to a process for fabricating laminated composites of uranium or uranium alloys and at least one other metal or alloy. The laminated composites are fabricated by forming a casting of the molten uranium with the other metal or alloy which is selectively positioned in the casting and then hot-rolling the casting into a laminated plate in or around which the casting components are metallurgically bonded to one another to form the composite. The process of the present invention provides strong metallurgical bonds between the laminate components primarily since the bond disrupting surface oxides on the uranium or uranium alloy float to the surface of the casting to effectively remove the oxides from the bonding surfaces of the components.

  5. Removal of uranium from uranium-contaminated soils -- Phase 1: Bench-scale testing. Uranium in Soils Integrated Demonstration

    SciTech Connect (OSTI)

    Francis, C. W.

    1993-09-01

    To address the management of uranium-contaminated soils at Fernald and other DOE sites, the DOE Office of Technology Development formed the Uranium in Soils Integrated Demonstration (USID) program. The USID has five major tasks. These include the development and demonstration of technologies that are able to (1) characterize the uranium in soil, (2) decontaminate or remove uranium from the soil, (3) treat the soil and dispose of any waste, (4) establish performance assessments, and (5) meet necessary state and federal regulations. This report deals with soil decontamination or removal of uranium from contaminated soils. The report was compiled by the USID task group that addresses soil decontamination; includes data from projects under the management of four DOE facilities [Argonne National Laboratory (ANL), Los Alamos National Laboratory (LANL), Oak Ridge National Laboratory (ORNL), and the Savannah River Plant (SRP)]; and consists of four separate reports written by staff at these facilities. The fundamental goal of the soil decontamination task group has been the selective extraction/leaching or removal of uranium from soil faster, cheaper, and safer than current conventional technologies. The objective is to selectively remove uranium from soil without seriously degrading the soil`s physicochemical characteristics or generating waste forms that are difficult to manage and/or dispose of. Emphasis in research was placed more strongly on chemical extraction techniques than physical extraction techniques.

  6. Uranium Pyrophoricity Phenomena and Prediction

    SciTech Connect (OSTI)

    DUNCAN, D.R.

    2000-04-20

    We have compiled a topical reference on the phenomena, experiences, experiments, and prediction of uranium pyrophoricity for the Hanford Spent Nuclear Fuel Project (SNFP) with specific applications to SNFP process and situations. The purpose of the compilation is to create a reference to integrate and preserve this knowledge. Decades ago, uranium and zirconium fires were commonplace at Atomic Energy Commission facilities, and good documentation of experiences is surprisingly sparse. Today, these phenomena are important to site remediation and analysis of packaging, transportation, and processing of unirradiated metal scrap and spent nuclear fuel. Our document, bearing the same title as this paper, will soon be available in the Hanford document system [Plys, et al., 2000]. This paper explains general content of our topical reference and provides examples useful throughout the DOE complex. Moreover, the methods described here can be applied to analysis of potentially pyrophoric plutonium, metal, or metal hydride compounds provided that kinetic data are available. A key feature of this paper is a set of straightforward equations and values that are immediately applicable to safety analysis.

  7. DISSOLUTION OF URANIUM FUELS BY MONOOR DIFLUOROPHOSPHORIC ACID

    DOE Patents [OSTI]

    Johnson, R.; Horn, F.L.; Strickland, G.

    1963-05-01

    A method of dissolving and separating uranium from a uranium matrix fuel element by dissolving the uraniumcontaining matrix in monofluorophosphoric acid and/or difluorophosphoric acid at temperatures ranging from 150 to 275 un. Concent 85% C, thereafter neutralizing the solution to precipitate uranium solids, and converting the solids to uranium hexafluoride by treatment with a halogen trifluoride is presented. (AEC)

  8. Uranium Lease Tracts Location Map | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Uranium Lease Tracts Location Map Uranium Lease Tracts Location Map Uranium Lease Tracts Location Map Uranium Lease Tracts Location Map (999.93 KB) More Documents & Publications EA-1037: Final Environmental Assessment EA-1535: Final Programmatic Environmental Assessment EIS-0472: Notice of Intent to Prepare a Programmatic Environmental Impact Statement

  9. Technical Basis for Assessing Uranium Bioremediation Performance

    SciTech Connect (OSTI)

    PE Long; SB Yabusaki; PD Meyer; CJ Murray; AL N’Guessan

    2008-04-01

    In situ bioremediation of uranium holds significant promise for effective stabilization of U(VI) from groundwater at reduced cost compared to conventional pump and treat. This promise is unlikely to be realized unless researchers and practitioners successfully predict and demonstrate the long-term effectiveness of uranium bioremediation protocols. Field research to date has focused on both proof of principle and a mechanistic level of understanding. Current practice typically involves an engineering approach using proprietary amendments that focuses mainly on monitoring U(VI) concentration for a limited time period. Given the complexity of uranium biogeochemistry and uranium secondary minerals, and the lack of documented case studies, a systematic monitoring approach using multiple performance indicators is needed. This document provides an overview of uranium bioremediation, summarizes design considerations, and identifies and prioritizes field performance indicators for the application of uranium bioremediation. The performance indicators provided as part of this document are based on current biogeochemical understanding of uranium and will enable practitioners to monitor the performance of their system and make a strong case to clients, regulators, and the public that the future performance of the system can be assured and changes in performance addressed as needed. The performance indicators established by this document and the information gained by using these indicators do add to the cost of uranium bioremediation. However, they are vital to the long-term success of the application of uranium bioremediation and provide a significant assurance that regulatory goals will be met. The document also emphasizes the need for systematic development of key information from bench scale tests and pilot scales tests prior to full-scale implementation.

  10. uranium

    National Nuclear Security Administration (NNSA)

    a>

    NNSA Removes U.S.-Origin HEU from Jamaica, Makes the Caribbean HEU Free http:nnsa.energy.govmediaroompressreleasesnnsa-removes-u.s.-origin-heu-jamaica-mak...

  11. Secretarial Determination for the Sale or Transfer of Uranium | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Secretarial Determination for the Sale or Transfer of Uranium Secretarial Determination for the Sale or Transfer of Uranium Secretarial Determination for the Sale or Transfer of Uranium, May 15, 2012 Secretarial Determination for the Sale or Transfer of Uranium.pdf (291.48 KB) More Documents & Publications Secretarial Determination Pursuant to USEC Privatization Act for the Sale or Transfer of Low-Enriched Uranium Before the House Committee on Oversight and Government Reform

  12. Special Nuclear Materials: EM Manages Plutonium, Highly Enriched Uranium

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    and Uranium-233 | Department of Energy Waste Management » Nuclear Materials & Waste » Special Nuclear Materials: EM Manages Plutonium, Highly Enriched Uranium and Uranium-233 Special Nuclear Materials: EM Manages Plutonium, Highly Enriched Uranium and Uranium-233 105-K building houses the K-Area Material Storage (KAMS) facility, designated for the consolidated storage of surplus plutonium at Savannah River Site pending disposition. The plutonium shipped to KAMS is sealed inside a

  13. Final Uranium Leasing Program Programmatic Environmental Impact Statement

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    (PEIS) | Department of Energy Uranium Leasing Program Programmatic Environmental Impact Statement (PEIS) Final Uranium Leasing Program Programmatic Environmental Impact Statement (PEIS) Uranium Leasing Program-Mesa, Montrose, and San Miguel Counties, Colorado EIS-0472 evaluated the environmental impacts of management alternatives for DOE's Uranium Leasing Program, under which DOE administers tracts of land in western Colorado for exploration, development, and the extraction of uranium and

  14. Uranium Leasing Program: Program Summary | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Uranium Leasing Program » Uranium Leasing Program: Program Summary Uranium Leasing Program: Program Summary Uranium Leasing Program: Program Summary The Atomic Energy Act and other legislative actions authorized the U.S. Atomic Energy Commission (AEC), predecessor agency to the DOE, to withdraw lands from the public domain and then lease them to private industry for mineral exploration and for development and mining of uranium and vanadium ore. A total of 25,000 acres of land in southwestern

  15. Microsoft PowerPoint - 5_Pat Smith_NMMSS_2013_Presentation_NRC...

    National Nuclear Security Administration (NNSA)

    - possess one gram or more of special nuclear material (SNM) (plutonium, uranium-233, or uranium-235 contained in enriched uranium) - one kilogram or more of foreign obligated ...

  16. SEPARATION OF THORIUM FROM URANIUM BY EXTRACTION

    DOE Patents [OSTI]

    Bohlmann, E.G.

    1959-07-28

    A method is presented for the recovery and separation of uranium and thorium values contained in an aqueous nitric acid solution which is more than 3 M in nitric acid. The uranium and thorium containing solution preferable about 7 M in nitric acid is contacted with tributyl phosphatekerosene mixture. Both U and Th are extracted by the immiscible organic. After phase separation the Th is selectively back extracted by contacting with an aqueous nitric acid solution preferably between 0.1 to 1.5 M in nitric acid. The uranium which is still in the organic extractant phase may be recovered by contacting with water.

  17. METHOD OF SEPARATING URANIUM FROM ALLOYS

    DOE Patents [OSTI]

    Chiotti, P.; Shoemaker, H.E.

    1960-06-28

    Uranium can be recovered from metallic uraniumthorium mixtures containing uranium in comparatively small amounts. The method of recovery comprises adding a quantity of magnesium to a mass to obtain a content of from 48 to 85% by weight; melting and forming a magnesium-thorium alloy at a temperature of between 585 and 800 deg C; agitating the mixture, allowing the mixture to settle whereby two phases, a thorium-containing magnesium-rich liquid phase and a solid uranium-rich phase, are formed; and separating the two phases.

  18. Statistical data of the uranium industry

    SciTech Connect (OSTI)

    1983-01-01

    This report is a compendium of information relating to US uranium reserves and potential resources and to exploration, mining, milling, and other activities of the uranium industry through 1982. The statistics are based primarily on data provided voluntarily by the uranium exploration, mining and milling companies. The compendium has been published annually since 1968 and reflects the basic programs of the Grand Junction Area Office of the US Department of Energy. Statistical data obtained from surveys conducted by the Energy Information Administration are included in Section IX. The production, reserves, and drilling data are reported in a manner which avoids disclosure of proprietary information.

  19. RECOVERY OF URANIUM FROM CARBONATE LEACH LIQUORS

    DOE Patents [OSTI]

    Wilson, H.F.

    1958-07-01

    An improved process is described for the recovery of uranium from vanadifrous ores. In the prior art such ores have been digested with alkali carbonate solutions at a pH of less than 10 and then contacted with a strong base anion exchange resin to separate uranium from vanadium. It has been found that if the exchamge resin feed solution has its pH adjusted to the range 10.8 to 11.8, that vanadium adsorption on the resin is markedly decreased and the separation of uranium from the vanadium is thereby improved.

  20. Electrolytic process for preparing uranium metal

    DOE Patents [OSTI]

    Haas, Paul A.

    1990-01-01

    An electrolytic process for making uranium from uranium oxide using Cl.sub.2 anode product from an electrolytic cell to react with UO.sub.2 to form uranium chlorides. The chlorides are used in low concentrations in a melt comprising fluorides and chlorides of potassium, sodium and barium in the electrolytic cell. The electrolysis produces Cl.sub.2 at the anode that reacts with UO.sub.2 in the feed reactor to form soluble UCl.sub.4, available for a continuous process in the electrolytic cell, rather than having insoluble UO.sub.2 fouling the cell.

  1. Method of Making Uranium Dioxide Bodies

    DOE Patents [OSTI]

    Wilhelm, H. A.; McClusky, J. K.

    1973-09-25

    Sintered uranium dioxide bodies having controlled density are produced from U.sub.3 O.sub.8 and carbon by varying the mole ratio of carbon to U.sub.3 O.sub.8 in the mixture, which is compressed and sintered in a neutral or slightly oxidizing atmosphere to form dense slightly hyperstoichiometric uranium dioxide bodies. If the bodies are to be used as nuclear reactor fuel, they are subsequently heated in a hydrogen atmosphere to achieve stoichiometry. This method can also be used to produce fuel elements of uranium dioxide -- plutonium dioxide having controlled density.

  2. Uranium Mining, Conversion, and Enrichment Industries

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Analysis of Potential Impacts of Uranium Transfers on the Domestic Uranium Mining, Conversion, and Enrichment Industries May 1, 2015 ii EXECUTIVE SUMMARY: The Department of Energy ("Department" or "DOE") plans to transfer the equivalent of up to 2,100 metric tons ("MTU") of natural uranium per year (with a higher total for calendar year 2015, mainly because of transfers already executed or under way before today's determination). These transfers would include 1,600

  3. Inherently safe in situ uranium recovery (Patent) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Inherently safe in situ uranium recovery Citation Details In-Document Search Title: Inherently safe in situ uranium recovery An in situ recovery of uranium operation involves...

  4. Uranium isotopic composition and uranium concentration in special reference material SRM A (uranium in KCl/LiCl salt matrix)

    SciTech Connect (OSTI)

    Graczyk, D.G.; Essling, A.M.; Sabau, C.S.; Smith, F.P.; Bowers, D.L.; Ackerman, J.P.

    1997-07-01

    To help assure that analysis data of known quality will be produced in support of demonstration programs at the Fuel Conditioning Facility at Argonne National Laboratory-West (Idaho Falls, ID), a special reference material has been prepared and characterized. Designated SRM A, the material consists of individual units of LiCl/KCl eutectic salt containing a nominal concentration of 2.5 wt. % enriched uranium. Analyses were performed at Argonne National Laboratory-East (Argonne, IL) to determine the uniformity of the material and to establish reference values for the uranium concentration and uranium isotopic composition. Ten units from a batch of approximately 190 units were analyzed by the mass spectrometric isotope dilution technique to determine their uranium concentration. These measurements provided a mean value of 2.5058 {+-} 0.0052 wt. % U, where the uncertainty includes estimated limits to both random and systematic errors that might have affected the measurements. Evidence was found of a small, apparently random, non-uniformity in uranium content of the individual SRM A units, which exhibits a standard deviation of 0.078% of the mean uranium concentration. Isotopic analysis of the uranium from three units, by means of thermal ionization mass spectrometry with a special, internal-standard procedure, indicated that the uranium isotopy is uniform among the pellets with a composition corresponding to 0.1115 {+-} 0.0006 wt. % {sup 234}U, 19.8336 {+-} 0.0059 wt. % {sup 235}U, 0.1337 {+-} 0.0006 wt. % {sup 236}U, and 79.9171 {+-} 0.0057 wt. % {sup 238}U.

  5. Thermodynamic properties of uranium dioxide

    SciTech Connect (OSTI)

    Fink, J.K.; Chasanov, M.G.; Leibowitz, L.

    1981-04-01

    In order to provide reliable and consistent data on the thermophysical properties of reactor materials for reactor safety studies, this revision is prepared for the thermodynamic properties of the uranium dioxide portion of the fuel property section of the report Properties for LMFBR Safety Analysis. Since the original report was issued in 1976, there has been international agreement on a vapor pressure equation for the total pressure over UO/sub 2/, new methods have been suggested for the calculation of enthalpy and heat capacity, and a phase change at 2670 K has been proposed. In this report, an electronic term is used in place of the Frenkel defect term in the enthalpy and heat capacity equation and the phase transition is accepted.

  6. PROCESS FOR PRODUCING URANIUM HALIDES

    DOE Patents [OSTI]

    Murphree, E.V.

    1957-10-29

    A process amd associated apparatus for producing UF/sub 4/ from U/sub 3/ O/sub 8/ by a fluidized'' technique are reported. The U/sub 3/O/sub 8/ is first reduced to UO/sub 2/ by reaction with hydrogen, and the lower oxide of uranium is then reacted with gaseous HF to produce UF/sub 4/. In each case the reactant gas is used, alone or in combination with inert gases, to fluidize'' the finely divided reactant solid. The complete setup of the plant equipment including bins, reactor and the associated piping and valving, is described. An auxiliary fluorination reactor allows for the direct production of UF/sub 6/ from UF/sub 4/ and fluorine gas, or if desired, UF/sub 4/ may be collected as the product.

  7. 2015 Domestic Uranium Production Report

    U.S. Energy Information Administration (EIA) (indexed site)

    9 2015 Domestic Uranium Production Report Release Date: May 5, 2016 Next Release Date: May 2017 Year Exploration Mining Milling Processing Reclamation Total 2003 W W W W 117 321 2004 18 108 W W 121 420 2005 79 149 142 154 124 648 2006 188 121 W W 155 755 2007 375 378 107 216 155 1,231 2008 457 558 W W 154 1,563 2009 175 441 W W 162 1,096 2010 211 400 W W 125 1,073 2011 208 462 W W 102 1,191 2012 161 462 W W 179 1,196 2013 149 392 W W 199 1,156 2014 86 246 W W 161 787 2015 58 251 W W 116 625

  8. 2015 Domestic Uranium Production Report

    U.S. Energy Information Administration (EIA) (indexed site)

    5 2015 Domestic Uranium Production Report Release Date: May 5, 2016 Next Release Date: May 2017 Production / Mining Method 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 (estimated contained thousand pounds U 3 O 8 ) W W W W W W W W W W W W W (estimated contained thousand pounds U 3 O 8 ) 0 0 0 0 0 0 0 0 0 0 0 0 0 (thousand pounds U 3 O 8 ) W W 2,681 4,259 W W W W W W W W W (thousand pounds U 3 O 8 ) W W W W W W W W W W W W W (thousand pounds U 3 O 8 ) E2,200 2,452 3,045 4,692

  9. Domestic Uranium Production Report - Quarterly

    Gasoline and Diesel Fuel Update

    1. Total production of uranium concentrate in the United States, 1996 - 2nd Quarter 2016 pounds U3O8 Calendar-year quarter 1st quarter 2nd quarter 3rd quarter 4th quarter Calendar-year total 1996 1,734,427 1,460,058 1,691,796 1,434,425 6,320,706 1997 1,149,050 1,321,079 1,631,384 1,541,052 5,642,565 1998 1,151,587 1,143,942 1,203,042 1,206,003 4,704,574 1999 1,196,225 1,132,566 1,204,984 1,076,897 4,610,672 2000 1,018,683 983,330 981,948 973,585 3,975,545 2001 709,177 748,298 628,720 553,060

  10. Table 4.10 Uranium Reserves, 2008 (Million Pounds Uranium Oxide)

    U.S. Energy Information Administration (EIA) (indexed site)

    0 Uranium Reserves,1 2008 (Million Pounds Uranium Oxide) State Forward-Cost 2 Category (dollars 3 per pound) $50 or Less $100 or Less Total 539 1,227 Wyoming 220 446 New Mexico 179 390 Arizona, Colorado, Utah 63 198 Texas 27 40 Others 4 50 154 1The U.S. Energy Information Administration (EIA) category of uranium reserves is equivalent to the internationally reported category of "Reasonably Assured Resources" (RAR). Notes: * Estimates are at end of year. * See "Uranium Oxide"

  11. Synthesis of uranium nitride and uranium carbide powder by carbothermic reduction

    SciTech Connect (OSTI)

    Dunwoody, J.T.; Stanek, C.R.; McClellan, K.J.; Voit, S.L.; Volz, H.M.; Hickman, R.R.

    2007-07-01

    Uranium nitride and uranium carbide are being considered as high burnup fuels in next generation nuclear reactors and accelerated driven systems for the transmutation of nuclear waste. The same characteristics that make nitrides and carbides candidates for these applications (i.e. favorable thermal properties, mutual solubility of nitrides, etc.), also make these compositions candidate fuels for space nuclear reactors. In this paper, we discuss the synthesis and characterization of depleted uranium nitride and carbide for a space nuclear reactor program. Importantly, this project emphasized that to synthesize high quality uranium nitride and carbide, it is necessary to understand the exact stoichiometry of the oxide feedstock. (authors)

  12. JACKETED URANIUM NUCLEAR REACTOR FUEL ELEMENT

    DOE Patents [OSTI]

    Huey, W.R.

    1960-03-01

    A uranium rod encased by iwo aluminum cans internested together from opposite directions along their full lengths and with all interfaces bonded together by an aluminum - silicon alloy was developed.

  13. Nuclear radiation cleanup and uranium prospecting

    DOE Patents [OSTI]

    Mariella, Jr., Raymond P.; Dardenne, Yves M.

    2016-02-02

    Apparatus, systems, and methods for nuclear radiation cleanup and uranium prospecting include the steps of identifying an area; collecting samples; sample preparation; identification, assay, and analysis; and relating the samples to the area.

  14. Radiological Safety Training for Uranium Facilities

    Energy Savers

    ... to 236 U in reactors. It is also present in reprocessed reactor fuel. 238 U 4.5 x 10 9 y 99.3% The most abundant uranium isotope. It is fissionable with fast neutrons; ...

  15. Process for reducing beta activity in uranium

    DOE Patents [OSTI]

    Briggs, G.G.; Kato, T.R.; Schonegg, E.

    1985-04-11

    This invention is a method for lowering the beta radiation hazards associated with the casting of uranium. The method reduces the beta radiation emitted from the as-cast surfaces of uranium ingots. The method also reduces the amount of beta radiation emitters retained on the interiors of the crucibles that have been used to melt the uranium charges and which undergone cleaning in a remote handling facility. The lowering of the radioactivity is done by scavenging the beta emitters from the molten uranium with a molten mixture containing the fluorides of magnesium and calcium. The method provides a means of collection and disposal of the beta emitters in a manner that reduces radiation exposure to operating personnel in the work area where the ingots are cast and processed. 5 tabs.

  16. Federal Actions to Address Impacts of Uranium

    Office of Legacy Management (LM)

    Federal Actions to Address Impacts of Uranium Contamination in the Navajo Nation 2014 Page | i TABLE OF CONTENTS Executive Summary ....................................................................................................................... 1 Introduction .................................................................................................................................... 2 Summary of Work Completed 2008-2012

  17. Domestic Uranium Production Report - Energy Information Administration

    Annual Energy Outlook

    ... of properties than the earlier EIA data and NURE data, EIA believes that within its scope the EIA-851A data provides more reliable estimates of the uranium recoverable at the ...

  18. In the beginning; Measurements of uranium

    SciTech Connect (OSTI)

    White, J.C. )

    1989-11-01

    After World War II, Oak Ridge continued to be involved in measurements of uranium materials, both for the weapons program and for early reactor development programs. These early tasks, and some of the people involved in them, are discussed.

  19. Summary - Uranium233 Downblending and Disposition Project

    Office of Environmental Management (EM)

    The projec blended materia or the Nevada cted to coincid ack-end" of the ng observation ... Oak RidgeOR 233 Uranium Do Project September 20 Departmen anium D E-EM Did This em and ...

  20. PROCESSES OF RECLAIMING URANIUM FROM SOLUTIONS

    DOE Patents [OSTI]

    Zumwalt, L.R.

    1959-02-10

    A process is described for reclaiming residual enriched uranium from calutron wash solutions containing Fe, Cr, Cu, Ni, and Mn as impurities. The solution is adjusted to a pH of between 2 and 4 and is contacted with a metallic reducing agent, such as iron or zinc, in order to reduce the copper to metal and thereby remove it from the solution. At the same time the uranium present is reduced to the uranous state The solution is then contacted with a precipitate of zinc hydroxide or barium carbonate in order to precipitate and carry uranium, iron, and chromium away from the nickel and manganese ions in the solution. The uranium is then recovered fronm this precipitate.

  1. The Uranium Resource: A Comparative Analysis

    SciTech Connect (OSTI)

    Schneider, Erich A.; Sailor, William C.

    2007-07-01

    An analogy was drawn between uranium and thirty five minerals for which the USGS maintains extensive records. The USGS mineral price data, which extends from 1900 to the present, was used to create a simple model describing long term price evolution. Making the assumption that the price of uranium, a geologically unexceptional mineral, will evolve in a manner similar to that of the USGS minerals, the model was used to project its price trend for this century. Based upon the precedent set by the USGS data, there is an 80% likelihood that the price of uranium will decline. Moreover, the most likely scenario would see the equilibrium price of uranium decline by about 40% by mid-century. (authors)

  2. High-strength ductile uranium alloy

    DOE Patents [OSTI]

    Hemperly, Vernon C.

    1976-07-13

    A novel alloy composition consisting essentially of 0.7 to 0.8 weight percent titanium and 0.2 to 0.3 weight percent vanadium with the balance being uranium.

  3. Process for reducing beta activity in uranium

    DOE Patents [OSTI]

    Briggs, Gifford G.; Kato, Takeo R.; Schonegg, Edward

    1986-10-07

    This invention is a method for lowering the beta radiation hazards associated with the casting of uranium. The method reduces the beta radiation emitted from the as-cast surfaces of uranium ingots. The method also reduces the amount of beta radiation emitters retained on the interiors of the crucibles that have been used to melt the uranium charges and which have undergone cleaning in a remote handling facility. The lowering of the radioactivity is done by scavenging the beta emitters from the molten uranium with a molten mixture containing the fluorides of magnesium and calcium. The method provides a means of collection and disposal of the beta emitters in a manner that reduces radiation exposure to operating personnel in the work area where the ingots are cast and processed.

  4. DIRECT INGOT PROCESS FOR PRODUCING URANIUM

    DOE Patents [OSTI]

    Leaders, W.M.; Knecht, W.S.

    1960-11-15

    A process is given in which uranium tetrafluoride is reduced to the metal with magnesium and in the same step the uranium metal formed is cast into an ingot. For this purpose a mold is arranged under and connected with the reaction bomb, and both are filled with the reaction mixture. The entire mixture is first heated to just below reaction temperature, and thereafter heating is restricted to the mixture in the mold. The reaction starts in the mold whereby heat is released which brings the rest of the mixture to reaction temperature. Pure uranium metal settles in the mold while the magnesium fluoride slag floats on top of it. After cooling, the uranium is separated from the slag by mechanical means.

  5. Process for reducing beta activity in uranium

    DOE Patents [OSTI]

    Briggs, Gifford G.; Kato, Takeo R.; Schonegg, Edward

    1986-01-01

    This invention is a method for lowering the beta radiation hazards associated with the casting of uranium. The method reduces the beta radiation emitted from the as-cast surfaces of uranium ingots. The method also reduces the amount of beta radiation emitters retained on the interiors of the crucibles that have been used to melt the uranium charges and which have undergone cleaning in a remote handling facility. The lowering of the radioactivity is done by scavenging the beta emitters from the molten uranium with a molten mixture containing the fluorides of magnesium and calcium. The method provides a means of collection and disposal of the beta emitters in a manner that reduces radiation exposure to operating personnel in the work area where the ingots are cast and processed.

  6. Domestic Uranium Production Report - Energy Information Administration

    Gasoline and Diesel Fuel Update

    Figure 1. U.S. Uranium drilling by number of holes, 2004-14 Mining, production, shipments, ... Additionally, seven in-situ-leach (ISL) mining operations produced solutions containing ...

  7. RECOVERY OF URANIUM BY SECONDARY XANTHATE COMPLEXING

    DOE Patents [OSTI]

    Neville, O.K.

    1959-09-01

    A method is described for separating and recovering uranium values contained in an acidic aqueous solution together with thorium or protactinium values. In accordance with the invention, the acidic solution containing uranium in the uranyl form is contacted with an organic xanthate. The xanthate forms a urano-xanthate complex but is substantially non-reactive with thorium and protactinium. The urano-xanthate complex is recovered by organic solvent extraction.

  8. Depleted uranium: A DOE management guide

    SciTech Connect (OSTI)

    1995-10-01

    The U.S. Department of Energy (DOE) has a management challenge and financial liability in the form of 50,000 cylinders containing 555,000 metric tons of depleted uranium hexafluoride (UF{sub 6}) that are stored at the gaseous diffusion plants. The annual storage and maintenance cost is approximately $10 million. This report summarizes several studies undertaken by the DOE Office of Technology Development (OTD) to evaluate options for long-term depleted uranium management. Based on studies conducted to date, the most likely use of the depleted uranium is for shielding of spent nuclear fuel (SNF) or vitrified high-level waste (HLW) containers. The alternative to finding a use for the depleted uranium is disposal as a radioactive waste. Estimated disposal costs, utilizing existing technologies, range between $3.8 and $11.3 billion, depending on factors such as applicability of the Resource Conservation and Recovery Act (RCRA) and the location of the disposal site. The cost of recycling the depleted uranium in a concrete based shielding in SNF/HLW containers, although substantial, is comparable to or less than the cost of disposal. Consequently, the case can be made that if DOE invests in developing depleted uranium shielded containers instead of disposal, a long-term solution to the UF{sub 6} problem is attained at comparable or lower cost than disposal as a waste. Two concepts for depleted uranium storage casks were considered in these studies. The first is based on standard fabrication concepts previously developed for depleted uranium metal. The second converts the UF{sub 6} to an oxide aggregate that is used in concrete to make dry storage casks.

  9. The ultimate disposition of depleted uranium

    SciTech Connect (OSTI)

    Lemons, T.R.

    1991-12-31

    Depleted uranium (DU) is produced as a by-product of the uranium enrichment process. Over 340,000 MTU of DU in the form of UF{sub 6} have been accumulated at the US government gaseous diffusion plants and the stockpile continues to grow. An overview of issues and objectives associated with the inventory management and the ultimate disposition of this material is presented.

  10. FABRICATION OF URANIUM-ALUMINUM ALLOYS

    DOE Patents [OSTI]

    Saller, H.A.

    1959-12-15

    A process is presented for producing a workable article of a uranium- aluminum alloy in which the uranium content is between 14 and 70% by weight; aluminum powder and powdered UAl/sub 2/, UAl/sub 3/, UAl/sub 5/, or UBe/sub 9/ are mixed, and the mixture is compressed into the shape desired and sintered at between 450 and 600 deg C.

  11. Uranium Leasing Program Documents | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Documents Uranium Leasing Program Documents U.S. District Court's Order of October 18, 2011, in Colorado Environmental Coalition v. Office of Legacy Management, Civil Action No. 08-cv-01624 (D. Colo.). The Court has issued the injunctive relief described on pages 51-52 of the Order. U.S. District Court's Order of February 27, 2012, in Colorado Environmental Coalition v. Office of Legacy Management, Civil Action No. 08-cv-01624 (D. Colo.). Uranium Lease Tracts Location Map

  12. U.S. Uranium Reserves Estimates

    Gasoline and Diesel Fuel Update

    Methodology The U.S. uranium ore reserves reported by EIA for specific MFC categories represent the sums of quantities estimated to occur in known deposits on properties where data about the ore grade, configuration, and depth indicate that the quantities estimated could be recovered at or less than the stated costs given current mining and milling technology and regulations. The reserves estimates for year-end (delete: December 31, 2008), are based on historical data for uranium properties

  13. Electrochemical method of producing eutectic uranium alloy and apparatus

    DOE Patents [OSTI]

    Horton, James A.; Hayden, H. Wayne

    1995-01-01

    An apparatus and method for continuous production of liquid uranium alloys through the electrolytic reduction of uranium chlorides. The apparatus includes an electrochemical cell formed from an anode shaped to form an electrolyte reservoir, a cathode comprising a metal, such as iron, capable of forming a eutectic uranium alloy having a melting point less than the melting point of pure uranium, and molten electrolyte in the reservoir comprising a chlorine or fluorine containing salt and uranium chloride. The method of the invention produces an eutectic uranium alloy by creating an electrolyte reservoir defined by a container comprising an anode, placing an electrolyte in the reservoir, the electrolyte comprising a chlorine or fluorine containing salt and uranium chloride in molten form, positioning a cathode in the reservoir where the cathode comprises a metal capable of forming an uranium alloy having a melting point less than the melting point of pure uranium, and applying a current between the cathode and the anode.

  14. Cordilleran metamorphic core complexes and their uranium favorability

    SciTech Connect (OSTI)

    Coney, P.J.; Reynolds, S.J.

    1980-11-01

    The objective of this report is to provide a descriptive body of knowledge on Cordilleran metamorphic core complexes including their lithologic and structural characteristics, their distribution within the Cordillera, and their evolutionary history and tectonic setting. The occurrence of uranium in the context of possibility for uranium concentration is also examined. This volume contains appendices of the following: annotated bibliography of Cordilleran metamorphic core complexes; annotated bibliography of the uranium favorability of Cordilleran metamorphic core complexes; uranium occurrences in the Cordilleran metamorphic core complex belt; and geology, uranium favorability, uranium occurrences and tectonic maps of individual Cordilleran metamorphic core complexes; and locations, lithologic descriptions, petrographic information and analytical data for geochemical samples.

  15. URANIUM RECOVERY AND PURIFICATION PROCESS AND PRODUCTION OF HIGH PURITY URANIUM TETRAFLUORIDE

    DOE Patents [OSTI]

    Bailes, R.H.; Long, R.S.; Grinstead, R.R.

    1957-09-17

    A process is described wherein an anionic exchange technique is employed to separate uramium from a large variety of impurities. Very efficient and economical purification of contamimated uranium can be achieved by treatment of the contaminated uranium to produce a solution containing a high concentration of chloride. Under these conditions the uranium exists as an aniomic chloride complex. Then the uranium chloride complex is adsorbed from the solution on an aniomic exchange resin, whereby a portion of the impurities remain in the solution and others are retained with the uramium by the resin. The adsorbed impurities are then removed by washing the resin with pure concentrated hydrochloric acid, after which operation the uranium is eluted with pure water yielding an acidic uranyl chloride solution of high purity.

  16. 2015 Domestic Uranium Production Report

    U.S. Energy Information Administration (EIA) (indexed site)

    11 2015 Domestic Uranium Production Report Release Date: May 5, 2016 Next Release Date: May 2017 Total Land and Other 2003 W W 31.3 NA NA NA W 2004 10.6 27.8 48.4 NA NA NA 86.9 2005 18.1 58.2 59.7 NA NA NA 136.0 2006 40.1 65.9 115.2 41.0 23.3 50.9 221.2 2007 67.5 90.4 178.2 77.7 50.3 50.2 336.2 2008 81.9 221.2 164.4 65.2 50.2 49.1 467.6 2009 35.4 141.0 104.0 17.3 24.2 62.4 280.5 2010 44.6 133.3 99.5 20.2 34.5 44.7 277.3 2011 53.6 168.8 96.8 19.6 43.5 33.7 319.2 2012 66.6 186.9 99.4 16.8 33.3

  17. Uranium mill ore dust characterization

    SciTech Connect (OSTI)

    Knuth, R.H.; George, A.C.

    1980-11-01

    Cascade impactor and general air ore dust measurements were taken in a uranium processing mill in order to characterize the airborne activity, the degree of equilibrium, the particle size distribution and the respirable fraction for the /sup 238/U chain nuclides. The sampling locations were selected to limit the possibility of cross contamination by airborne dusts originating in different process areas of the mill. The reliability of the modified impactor and measurement techniques was ascertained by duplicate sampling. The results reveal no significant deviation from secular equilibrium in both airborne and bulk ore samples for the /sup 234/U and /sup 230/Th nuclides. In total airborne dust measurements, the /sup 226/Ra and /sup 210/Pb nuclides were found to be depleted by 20 and 25%, respectively. Bulk ore samples showed depletions of 10% for the /sup 226/Ra and /sup 210/Pb nuclides. Impactor samples show disequilibrium of /sup 226/Ra as high as +-50% for different size fractions. In these samples the /sup 226/Ra ratio was generally found to increase as particle size decreased. Activity median aerodynamic diameters of the airborne dusts ranged from 5 to 30 ..mu..m with a median diameter of 11 ..mu..m. The maximum respirable fraction for the ore dusts, based on the proposed International Commission on Radiological Protection's (ICRP) definition of pulmonary deposition, was < 15% of the total airborne concentration. Ore dust parameters calculated for impactor duplicate samples were found to be in excellent agreement.

  18. 2nd Quarter 2016 Domestic Uranium Production Report

    U.S. Energy Information Administration (EIA) (indexed site)

    Source: U.S. Energy Information Administration: Form EIA-851A and Form EIA-851Q, "Domestic Uranium Production Report." Table 3. U.S. uranium mills and heap leach facilities by ...

  19. Uranium distribution in relation to sedimentary facies, Kern Lake, California

    SciTech Connect (OSTI)

    Merifield, P.M.; Carlisle, D.; Idiz, E.; Anderhalt, R.; Reed, W.E.; Lamar, D.L.

    1980-04-01

    Kern Lake has served as a sink for drainage from the southern Sierra Nevada and, in lesser amounts, from the southern Temblor Range. Both areas contain significant uranium source rocks. The uranium content in Holocene Kern Lake sediments correlates best with the mud (silt and clay) fraction. It correlates less well with organic carbon. Biotite grains could account for much of the uranium in the sand fraction, and perhaps the silt fraction as well. The data suggest that fixation of uranium by adsorption on mineral grains is a dominant process in this lake system. Further work is required to determine the importance of cation-exchange of uranium on clays and micas and of organically complexed uranium adsorbed to mineral surfaces. These findings also raise the question of whether uranium transport down the Kern River occurs largely as uranium adsorbed to mineral surfaces.

  20. DOE - Office of Legacy Management -- Abandoned Uranium Mines

    Office of Legacy Management (LM)

    Uranium Mines Report to Congress The U.S. Department of Energy (DOE) Office of Legacy Management completed a report on defense-related uranium mines in consultation with...

  1. Task Order Awarded for Moab Uranium Mill Tailings Remedial Action...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    for Moab Uranium Mill Tailings Remedial Action (UMTRA) Follow-On Effort Task Order Awarded for Moab Uranium Mill Tailings Remedial Action (UMTRA) Follow-On Effort April 20, 2016 - ...

  2. 2nd Quarter 2016 Domestic Uranium Production Report

    Gasoline and Diesel Fuel Update

    Table 2. Number of uranium mills and plants producing uranium concentrate in the United States End of Mills - conventional milling 1 Mills - other operations 2 In-situ-leach plants ...

  3. Uranium at Y-12: Recovery | Y-12 National Security Complex

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Recovery Uranium at Y-12: Recovery Posted: July 22, 2013 - 3:44pm | Y-12 Report | Volume 10, Issue 1 | 2013 Recovery involves reclaiming uranium from numerous sources and ...

  4. The Office of Environmental Management Uranium Enrichment D&D...

    Energy Savers

    Uranium Enrichment D&D The Office of Environmental Management Uranium Enrichment D&D Microsoft Word - B996F741.doc (100.04 KB) More Documents & Publications Microsoft Word - PSRP ...

  5. Uranium at Y-12: Accountability | Y-12 National Security Complex

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ... Uranium at Y-12: Accountability Posted: July 22, 2013 - 3:37pm | Y-12 Report | Volume 10, Issue 1 | 2013 Accountability of enriched uranium is facilitated by the ability to put ...

  6. Uranium Marketing Annual Report - Release Date: May 31, 2011

    Gasoline and Diesel Fuel Update

    4. Uranium purchased by owners and operators of U.S. civilian nuclear power reactors by ... per pound U3O8 equivalent Deliveries Uranium concentrate Natural UF6 Enriched UF6 ...

  7. GC GUIDANCE ON BARTER TRANSACTIONS INVOLVING DOE-OWNED URANIUM...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    GUIDANCE ON BARTER TRANSACTIONS INVOLVING DOE-OWNED URANIUM GC GUIDANCE ON BARTER TRANSACTIONS INVOLVING DOE-OWNED URANIUM The Department of Energy has on a variety of occasions ...

  8. NNSA Highly Enriched Uranium Removal Featured on The Rachel Maddow...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    NNSA Highly Enriched Uranium Removal Featured on The Rachel Maddow Show NNSA Highly Enriched Uranium Removal Featured on The Rachel Maddow Show March 22, 2012 - 11:37am Addthis ...

  9. Secretary Moniz Announces Removal of All Highly Enriched Uranium...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Announces Removal of All Highly Enriched Uranium from Poland Secretary Moniz Announces Removal of All Highly Enriched Uranium from Poland September 26, 2016 - 9:45am Addthis News ...

  10. EA-1290: Disposition of Russian Federation Titled Natural Uranium

    Office of Energy Efficiency and Renewable Energy (EERE)

    This EA evaluates the potential environmental impacts of a proposal to transport up to an average of 9,000 metric tons per year of natural uranium as uranium hexafluoride (UF6) from the United...

  11. EM Plan Accelerates Uranium-233 Disposal, Saves Taxpayers Half...

    Energy.gov (indexed) [DOE]

    For more than 50 years, the uranium-233 (U-233) supply has been stored at the Oak Ridge ... For more than 50 years, the uranium-233 (U-233) supply has been stored at the Oak Ridge ...

  12. Uranium Track Team | Y-12 National Security Complex

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Uranium Track Team Posted: July 22, 2013 - 3:31pm | Y-12 Report | Volume 10, Issue 1 | 2013 Y-12's inventory and accounting processes for enriched uranium are more meticulous than ...

  13. Uranium at Y-12: Inspection | Y-12 National Security Complex

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Inspection Uranium at Y-12: Inspection Posted: July 22, 2013 - 3:36pm | Y-12 Report | Volume 10, Issue 1 | 2013 Inspection of enriched uranium is performed by dimensional checks and ...

  14. Y-12 Bulletin Uranium Articles | Y-12 National Security Complex

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Bulletin Uranium ... Y-12 Bulletin Uranium Articles Posted: July 22, 2013 - 3:13pm | Y-12 Report | Volume 10, Issue 1 | 2013 These and other articles can be found in archived ...

  15. RESOLUTION OF URANIUM ISOTOPES WITH KINETIC PHOSPHORESCENCE ANALYSIS

    SciTech Connect (OSTI)

    Miley, Sarah M.; Hylden, Anne T.; Friese, Judah I.

    2013-04-01

    This study was conducted to test the ability of the Chemchek™ Kinetic Phosphorescence Analyzer Model KPA-11 with an auto-sampler to resolve the difference in phosphorescent decay rates of several different uranium isotopes, and therefore identify the uranium isotope ratios present in a sample. Kinetic phosphorescence analysis (KPA) is a technique that provides rapid, accurate, and precise determination of uranium concentration in aqueous solutions. Utilizing a pulsed-laser source to excite an aqueous solution of uranium, this technique measures the phosphorescent emission intensity over time to determine the phosphorescence decay profile. The phosphorescence intensity at the onset of decay is proportional to the uranium concentration in the sample. Calibration with uranium standards results in the accurate determination of actual concentration of the sample. Different isotopes of uranium, however, have unique properties which should result in different phosphorescence decay rates seen via KPA. Results show that a KPA is capable of resolving uranium isotopes.

  16. Reducing the environmental impact of uranium in-situ recovery.

    SciTech Connect (OSTI)

    Siegel, Malcolm Dean; Simmons, Ardyth

    2010-10-01

    This session will explore the current technical approaches to reducing the environmental effects of uranium ISR in comparison to the historical environmental impact of uranium mining to demonstrate advances in this controversial subject.

  17. Legacy Management Work Progresses on Defense-Related Uranium...

    Energy Savers

    legacy uranium mine sites located within 11 uranium mining districts in 6 western states. ... at a subsided mine portal in the Yellow Cat mining area of Grand County, Utah. ...

  18. Borehole Logging Methods for Exploration and Evaluation of Uranium Deposits

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    (1967) | Department of Energy Borehole Logging Methods for Exploration and Evaluation of Uranium Deposits (1967) Borehole Logging Methods for Exploration and Evaluation of Uranium Deposits (1967) Borehole Logging Methods for Exploration and Evaluation of Uranium Deposits (1967) Borehole Logging Methods for Exploration and Evaluation of Uranium Deposits (1967) (13.97 MB) More Documents & Publications Gamma-Ray Logging Workshop (February 1981) Grade Assignments for Models Used for

  19. Secretarial Determination of No Adverse Material Impact for Uranium

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Transfers | Department of Energy Secretarial Determination of No Adverse Material Impact for Uranium Transfers Secretarial Determination of No Adverse Material Impact for Uranium Transfers The determination covers the Department's sales or transfers of no more than 2,705 metric tons (MTU) of natural uranium (NU) or NU equivalent in a calendar year. The proposed transfers include up to 650 MTU per year by the National Nuclear Security Administration in support of highly enriched uranium down

  20. Uranium-Bearing Evaporite Mineralization Influencing Plume Persistence...

    Office of Scientific and Technical Information (OSTI)

    ... Subject: 58 GEOSCIENCES; 54 ENVIRONMENTAL SCIENCES; EVAPORITES; URANIUM; REVIEWS; PLUMES; CHLORIDES; GEOLOGIC DEPOSITS; NUCLEAR FACILITIES; MINERALIZATION; TAILINGS; SITE ...

  1. Retrieval of buried depleted uranium from the T-1 trench

    SciTech Connect (OSTI)

    Burmeister, M.; Castaneda, N.; Greengard, T. |; Hull, C.; Barbour, D.; Quapp, W.J.

    1998-07-01

    The Trench 1 remediation project will be conducted this year to retrieve depleted uranium and other associated materials from a trench at Rocky Flats Environmental Technology Site. The excavated materials will be segregated and stabilized for shipment. The depleted uranium will be treated at an offsite facility which utilizes a novel approach for waste minimization and disposal through utilization of a combination of uranium recycling and volume efficient uranium stabilization.

  2. DOE Releases Excess Uranium Inventory Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Excess Uranium Inventory Plan DOE Releases Excess Uranium Inventory Plan December 16, 2008 - 8:51am Addthis WASHINGTON, D.C. - The United States Department of Energy (DOE) today issued its Excess Uranium Inventory Management Plan (the Plan), which outlines the Department's strategy for the management and disposition of its excess uranium inventories. The Plan highlights DOE's ongoing efforts to enhance national security and promote a healthy domestic nuclear infrastructure through the efficient

  3. Testing for Uranium Deuteride Initiation in Liquid Deuterium

    SciTech Connect (OSTI)

    Siekhaus, W. J.; Teslich, N. E.; Kucheyev, S. O.; Go, J.

    2015-10-29

    This report offers a description of the testing related to Uranium foil and its interaction with liquid deuterium.

  4. SOLVENT EXTRACTION PROCESS FOR URANIUM FROM CHLORIDE SOLUTIONS

    DOE Patents [OSTI]

    Blake, C.A. Jr.; Brown, K.B.; Horner, D.E.

    1960-05-24

    An improvement was made in a uranium extraction process wherein the organic extractant is a phosphine oxide. An aqueous solution containing phosphate ions or sulfate ions together with uranium is provided with a source of chloride ions during the extraction step. The presence of the chloride ions enables a phosphine oxide to extract uranium in the presence of strong uranium- complexing ions such as phosphate or sulfate ions.

  5. Monitoring Uranium Transformations Determined by the Evolution of Biogeochemical Processes

    SciTech Connect (OSTI)

    Marsh, Terence L.

    2013-07-30

    Our contribution to the larger project (ANL) was the phylogenetic analysis of evolved communities capable of reducing metals including uranium.

  6. The Uranium Processing Facility (UPF) Finite Element Meshing Discussion

    Energy.gov [DOE]

    The Uranium Processing Facility (UPF) Finite Element Meshing Discussion Loring Wyllie Arne Halterman Degenkolb Engineers, San Francisco

  7. Moab Uranium Mill Tailings Cleanup Project Steps into Spotlight at

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    International Meeting in Vienna | Department of Energy Uranium Mill Tailings Cleanup Project Steps into Spotlight at International Meeting in Vienna Moab Uranium Mill Tailings Cleanup Project Steps into Spotlight at International Meeting in Vienna October 22, 2012 - 12:00pm Addthis Moab Federal Project Director Donald Metzler presents at the Uranium Mining Remediation Exchange Group meeting in Germany in September 2011. Moab Federal Project Director Donald Metzler presents at the Uranium

  8. Reimbursements to Licensees of Active Uranium and Thorium Processing Sites,

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fiscal Year 2009 and 2010 Status Report | Department of Energy Reimbursements to Licensees of Active Uranium and Thorium Processing Sites, Fiscal Year 2009 and 2010 Status Report Reimbursements to Licensees of Active Uranium and Thorium Processing Sites, Fiscal Year 2009 and 2010 Status Report Reimbursements to Licensees of Active Uranium and Thorium Processing Sites, Fiscal Year 2009 and 2010 Status Report (March 2010) Reimbursements to Licensees of Active Uranium and Thorium Processing

  9. U.S. Uranium Reserves Estimates - Energy Information Administration

    U.S. Energy Information Administration (EIA) (indexed site)

    Nuclear & Uranium Glossary › FAQS › Overview Data Status of U.S. nuclear outages (interactive) Nuclear power plants Uranium & nuclear fuel Spent nuclear fuel All nuclear data reports Analysis & Projections Major Topics Most popular Nuclear plants and reactors Projections Recurring Uranium All reports Browse by Tag Alphabetical Frequency Tag Cloud ‹ See all Nuclear Reports U.S. Uranium Reserves Estimates Data for: 2008 | Release Date: July 2010 | Next Release Date: Discontinued

  10. Uranium-Bearing Evaporite Mineralization Influencing Plume Persistence:

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Literature Review and DOE-LM Site Surveys | Department of Energy Uranium-Bearing Evaporite Mineralization Influencing Plume Persistence: Literature Review and DOE-LM Site Surveys Uranium-Bearing Evaporite Mineralization Influencing Plume Persistence: Literature Review and DOE-LM Site Surveys Uranium-Bearing Evaporite Mineralization Influencing Plume Persistence: Literature Review and DOE-LM Site Surveys Uranium-Bearing Evaporite Mineralization Influencing Plume Persistence: Literature Review

  11. Workshop on Preserving High Purity Uranium-233

    SciTech Connect (OSTI)

    Krichinsky, Alan M; Giaquinto, Joseph; Canaan, R Douglas {Doug}

    2016-01-01

    A workshop was held on at the MARC X conference to provide a forum for the scientific community to communicate needs for high-purity 233U and its by-products in order to preserve critical items otherwise slated for downblending and disposal. Currently, only a small portion of the U.S. holdings of separated 233U is being preserved. However, many additional kilograms of 233U (>97% pure) still are destined to be downblended which will permanently destroy their potential value for many other applications. It is not likely that this material will ever be replaced due to a lack of operating production capability. Summaries of information conveyed at the workshop and feedback obtained from the scientific community are presented herein.

  12. SEPARATION OF URANIUM FROM THORIUM AND PROTACTINIUM

    DOE Patents [OSTI]

    Musgrave, W.K.R.

    1959-06-30

    This patent relates to the separation of uranium from thorium and protactinium; such mixtures of elements usually being obtained by neutron irradiation of thorium. The method of separating the constituents has been first to dissolve the mixture of elements in concertrated nitric acid and then to remove the protactinium by absorption on manganese dioxide and the uranium by solvent extraction with ether. Prior to now, comparatively large amounts of thorium were extracted with the uranium. According to the invention this is completely prevented by adding sodium diethyldithiocarbamate to the mixture of soluble nitrate salts. The organic salt has the effect of reacting only with the uranyl nitrate to form the corresponding uranyl salt which can then be selectively extracted from the mixture with amyl acetate.

  13. Depleted uranium hexafluoride: Waste or resource?

    SciTech Connect (OSTI)

    Schwertz, N.; Zoller, J.; Rosen, R.; Patton, S.; Bradley, C.; Murray, A.

    1995-07-01

    the US Department of Energy is evaluating technologies for the storage, disposal, or re-use of depleted uranium hexafluoride (UF{sub 6}). This paper discusses the following options, and provides a technology assessment for each one: (1) conversion to UO{sub 2} for use as mixed oxide duel, (2) conversion to UO{sub 2} to make DUCRETE for a multi-purpose storage container, (3) conversion to depleted uranium metal for use as shielding, (4) conversion to uranium carbide for use as high-temperature gas-cooled reactor (HTGR) fuel. In addition, conversion to U{sub 3}O{sub 8} as an option for long-term storage is discussed.

  14. Method for fluorination of uranium oxide

    DOE Patents [OSTI]

    Petit, George S. (Oak Ridge, TN)

    1987-01-01

    Highly pure uranium hexafluoride is made from uranium oxide and fluorine. The uranium oxide, which includes UO.sub.3, UO.sub.2, U.sub.3 O.sub.8 and mixtures thereof, is introduced together with a small amount of a fluorine-reactive substance, selected from alkali chlorides, silicon dioxide, silicic acid, ferric oxide, and bromine, into a constant volume reaction zone. Sufficient fluorine is charged into the zone at a temperature below approximately 0.degree. C. to provide an initial pressure of at least approximately 600 lbs/sq. in. at the ambient atmospheric temperature. The temperature is then allowed to rise in the reaction zone until reaction occurs.

  15. Depleted uranium plasma reduction system study

    SciTech Connect (OSTI)

    Rekemeyer, P.; Feizollahi, F.; Quapp, W.J.; Brown, B.W.

    1994-12-01

    A system life-cycle cost study was conducted of a preliminary design concept for a plasma reduction process for converting depleted uranium to uranium metal and anhydrous HF. The plasma-based process is expected to offer significant economic and environmental advantages over present technology. Depleted Uranium is currently stored in the form of solid UF{sub 6}, of which approximately 575,000 metric tons is stored at three locations in the U.S. The proposed system is preconceptual in nature, but includes all necessary processing equipment and facilities to perform the process. The study has identified total processing cost of approximately $3.00/kg of UF{sub 6} processed. Based on the results of this study, the development of a laboratory-scale system (1 kg/h throughput of UF6) is warranted. Further scaling of the process to pilot scale will be determined after laboratory testing is complete.

  16. SEPARATION OF URANIUM, PLUTONIUM, AND FISSION PRODUCTS

    DOE Patents [OSTI]

    Spence, R.; Lister, M.W.

    1958-12-16

    Uranium and plutonium can be separated from neutron-lrradiated uranium by a process consisting of dissolvlng the lrradiated material in nitric acid, saturating the solution with a nitrate salt such as ammonium nitrate, rendering the solution substantially neutral with a base such as ammonia, adding a reducing agent such as hydroxylamine to change plutonium to the trivalent state, treating the solution with a substantially water immiscible organic solvent such as dibutoxy diethylether to selectively extract the uranium, maklng the residual aqueous solutlon acid with nitric acid, adding an oxidizing agent such as ammonlum bromate to oxidize the plutonium to the hexavalent state, and selectlvely extracting the plutonium by means of an immlscible solvent, such as dibutoxy dlethyletber.

  17. TRACE ELEMENT ANALYSES OF URANIUM MATERIALS

    SciTech Connect (OSTI)

    Beals, D; Charles Shick, C

    2008-06-09

    The Savannah River National Laboratory (SRNL) has developed an analytical method to measure many trace elements in a variety of uranium materials at the high part-per-billion (ppb) to low part-per-million (ppm) levels using matrix removal and analysis by quadrapole ICP-MS. Over 35 elements were measured in uranium oxides, acetate, ore and metal. Replicate analyses of samples did provide precise results however none of the materials was certified for trace element content thus no measure of the accuracy could be made. The DOE New Brunswick Laboratory (NBL) does provide a Certified Reference Material (CRM) that has provisional values for a series of trace elements. The NBL CRM were purchased and analyzed to determine the accuracy of the method for the analysis of trace elements in uranium oxide. These results are presented and discussed in the following paper.

  18. Technical analysis in short-term uranium price forecasting

    SciTech Connect (OSTI)

    Schramm, D.S.

    1990-03-01

    As market participants anticipate the end of the current uranium price decline and its subsequent reversal, increased attention will be focused upon forecasting future price movements. Although uranium is economically similar to other mineral commodities, it is questionable whether methodologies used to forecast price movements of such commodities may be successfully applied to uranium.

  19. Plutonium recovery from spent reactor fuel by uranium displacement

    DOE Patents [OSTI]

    Ackerman, J.P.

    1992-03-17

    A process is described for separating uranium values and transuranic values from fission products containing rare earth values when the values are contained together in a molten chloride salt electrolyte. A molten chloride salt electrolyte with a first ratio of plutonium chloride to uranium chloride is contacted with both a solid cathode and an anode having values of uranium and fission products including plutonium. A voltage is applied across the anode and cathode electrolytically to transfer uranium and plutonium from the anode to the electrolyte while uranium values in the electrolyte electrolytically deposit as uranium metal on the solid cathode in an amount equal to the uranium and plutonium transferred from the anode causing the electrolyte to have a second ratio of plutonium chloride to uranium chloride. Then the solid cathode with the uranium metal deposited thereon is removed and molten cadmium having uranium dissolved therein is brought into contact with the electrolyte resulting in chemical transfer of plutonium values from the electrolyte to the molten cadmium and transfer of uranium values from the molten cadmium to the electrolyte until the first ratio of plutonium chloride to uranium chloride is reestablished.

  20. Plutonium recovery from spent reactor fuel by uranium displacement

    DOE Patents [OSTI]

    Ackerman, John P.

    1992-01-01

    A process for separating uranium values and transuranic values from fission products containing rare earth values when the values are contained together in a molten chloride salt electrolyte. A molten chloride salt electrolyte with a first ratio of plutonium chloride to uranium chloride is contacted with both a solid cathode and an anode having values of uranium and fission products including plutonium. A voltage is applied across the anode and cathode electrolytically to transfer uranium and plutonium from the anode to the electrolyte while uranium values in the electrolyte electrolytically deposit as uranium metal on the solid cathode in an amount equal to the uranium and plutonium transferred from the anode causing the electrolyte to have a second ratio of plutonium chloride to uranium chloride. Then the solid cathode with the uranium metal deposited thereon is removed and molten cadmium having uranium dissolved therein is brought into contact with the electrolyte resulting in chemical transfer of plutonium values from the electrolyte to the molten cadmium and transfer of uranium values from the molten cadmium to the electrolyte until the first ratio of plutonium chloride to uranium chloride is reestablished.