National Library of Energy BETA

Sample records for outdoor tests experiments

  1. NREL: Photovoltaics Research - Outdoor Test Facility

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Outdoor Test Facility Aerial photo of the Outdoor Test Facility. The Outdoor Test Facility at NREL is used to evaluate prototype, precommercial, and commercial modules. Outdoor ...

  2. Outdoor performance stability and controlled light-soak testing of amorphous silicon multijunction modules at NREL

    SciTech Connect (OSTI)

    Mrig, L.; Burdick, J.; Luft, W.; Kroposki, B.

    1994-12-31

    The National Renewable Energy Laboratory (NREL) has been testing amorphous silicon (a-Si) Photovoltaic (PV) modules for more than a decade. NREL has been conducting controlled light-soak testing of multijunction a-Si modules to characterize their performance for stability evaluation as well as to benchmark the technology status. Some of the test modules, after controlled light-soak testing, have been installed outdoors. The authors have observed that under outdoor exposure, the modules further degrade in performance, possibly due to lower outdoor temperatures and varying spectra. The paper presents data on the light-induced degradation for the third controlled light-soak test on multijunction a-Si modules as well as outdoor performance data on single- and multijunction modules under prevailing conditions.

  3. Outdoor performance stability and controlled light-soak testing of amorphous silicon multijunction modules at NREL

    SciTech Connect (OSTI)

    Mrig, L.; Burdick, J.; Luft, W.; Kroposki, B.

    1995-10-01

    The National Renewable Energy Laboratory (NREL) has been testing amorphous silicon (a-Si) Photovoltaic (PV) modules for more than a decade. NREL has been conducting controlled light-soak testing of multifunction a-Si modules to characterize their performance for stability evaluation as well as to benchmark the technology status. Some of the test modules, after controlled light-soak testing, have been installed outdoors. The authors have observed that under outdoor exposure, the modules further degrade in performance, possibly due to lower outdoor temperatures and varying spectra. The paper presents data on the light-induced degradation for the third controlled light-soak test on multijunction a-Si modules as well as outdoor performance data on single and multijunction modules under prevailing conditions.

  4. CASL Test Stand Experience

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Industry Test Stand Experience Stephen Hess, EPRI Heather Feldman, EPRI Brenden Mervin, EPRI Martin Pytel, EPRI Rose Montgomery, TVA Bill Bird, TVA Fausto Franceschini, Westinghouse Electric Company LLC Advanced Modeling Applications 28 March 2014 CASL-U-2014-0036-000 Consortium for Advanced Simulation of LWRs ii CASL-U-2014-0036-000 REVISION LOG Revision Date Affected Pages Revision Description 0 3/28/2014 All Original Report Document pages that are: Export Controlled

  5. Measuring the Optical Performance of Evacuated Receivers via an Outdoor Thermal Transient Test: Preprint

    SciTech Connect (OSTI)

    Kutscher, C.; Burkholder, F.; Netter, J.

    2011-08-01

    Modern parabolic trough solar collectors operated at high temperatures to provide the heat input to Rankine steam power cycles employ evacuated receiver tubes along the collector focal line. High performance is achieved via the use of a selective surface with a high absorptance for incoming short-wave solar radiation and a low emittance for outgoing long-wave infrared radiation, as well as the use of a hard vacuum to essentially eliminate convective and conductive heat losses. This paper describes a new method that determines receiver overall optical efficiency by exposing a fluid-filled, pre-cooled receiver to one sun outdoors and measuring the slope of the temperature curve at the point where the receiver temperature passes the glass envelope temperature (that is, the point at which there is no heat gain or loss from the absorber). This transient test method offers the potential advantages of simplicity, high accuracy, and the use of the actual solar spectrum.

  6. ZEST flight test experiments, Kauai Test Facility, Hawaii. Test report

    SciTech Connect (OSTI)

    Cenkci, M.J.

    1991-07-01

    The Strategic Defense Initiative Organization (SDIO) is proposing to execute two ZEST flight experiments to obtain information related to the following objectives: validation of payload modeling; characterization of a high energy release cloud; and documentation of scientific phenomena that may occur as a result of releasing a high energy cloud. The proposed action is to design, develop, launch, and detonate two payloads carrying high energy explosives. Activities required to support this proposal include: (1) execution of component assembly tests at Space Data Division (SDD) in Chandler, Arizona and Los Alamos National Laboratory (LANL) in Los Alamos, New Mexico, and (2) execution of pre-flight flight test activities at Kauai Test Facility.

  7. Fracturing experiments: Nevada Test Site

    SciTech Connect (OSTI)

    Warpinski, N.R.; Chu, T.Y.

    1987-01-01

    The purpose of this program is to develop techniques for efficient and economic recovery of natural gas from low permeability reservoirs in both Western US basins and the Eastern Appalachian area. Experiments have been conducted at G-tunnel to improve this conventional technology and to develop novel techniques for improved recovery. These experiments offer a unique opportunity to perform fracturing research under conditions combining the best aspects of field tests and laboratory experiments; they are conducted under realistic in situ conditions, yet mining allows for direct observation. The development of controlled-pulse fracturing technology has been the major focus of the program the last two years. We find that explosive fracturing can often have detrimental results such as crushing, a stress cage, and reduced permeability. Hydraulic fracturing produces a single fracture which may not adequately drain a naturally fractured reservoir. A controlled-pulse-fracturing stimulation can result in multiple fratures extending in all directions. This is attractive for draining naturally fractured reservoirs. 11 refs.

  8. FEMP Outdoor Solid-State Lighting Intiative: Resources for Outdoor...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Outdoor Solid-State Lighting Intiative: Resources for Outdoor SSL Applications FEMP Outdoor Solid-State Lighting Intiative: Resources for Outdoor SSL Applications Fact sheet ...

  9. PNNL_DOE-CX_00153_-_B3.11_Outdoor_tests_and_experiments.pdf

    U.S. Department of Energy (DOE) all webpages (Extended Search)

  10. First Subcritical Experiment Conducted at Nevada Test Site |...

    National Nuclear Security Administration (NNSA)

    Subcritical Experiment Conducted at Nevada Test Site First Subcritical Experiment Conducted at Nevada Test Site Nevada Test Site, NV The first "subcritical" physics experiment at ...

  11. Property:Past Pertinent Test Experience | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Past Pertinent Test Experience Jump to: navigation, search Property Name Past Pertinent Test Experience Property Type Text Pages using the property "Past Pertinent Test Experience"...

  12. Outdoor Testing of GaInP2/GaAs Tandem Cells with Top Cell Thickness Varied

    SciTech Connect (OSTI)

    McMahon, W. E.; Emergy, K. E.; Friedman, D. J.; Ottoson, L.; Young, M. S.; Ward, J. S.; Kramer, C. M.; Duda, A.; Kurtz, S.

    2005-08-01

    In this study, we measure the performance of GaInP2/GaAs tandem cells under direct beam sunlight outdoors in order to quantify their sensitivity to both spectral variation and GaInP2 top-cell thickness. A set of cells with five different top-cell thicknesses was mounted on a two-axis tracker with the incident sunlight collimated to exclude all except the direct beam. Current-voltage (I-V) curves were taken throughout the course of several days, along with measurements of the direct solar spectrum. Our two major conclusions are: (1) GaInP2/GaAs tandem cells designed for either the ASTM G-173 direct (G-173D) spectrum or the "air mass 1.5 global" (AM1.5G) spectrum perform the best, and (2) cells can be characterized indoors and modeled using outdoor spectra with the same result. These results are equally valid for GaInP2/GaAs/Ge triple-junction cells.

  13. Accelerated Stress Testing, Qualification Testing, HAST, Field Experience

    Office of Energy Efficiency and Renewable Energy (EERE)

    This presentation, which was the opening session of the NREL 2013 Photovoltaic Module Reliability Workshop held on February 26, 2013 in Golden, CO, was presented by John Wohlgemuth. Entitled "Accelerated Stress Testing, Qualification Testing, HAST, Field Experience -- What Do They All Mean?" the presentation details efforts to develop accelerated stress tests beyond the qualification test levels, which are necessary to predict PV module wear-out. The commercial success of PVs is ultimately based on the long-term reliability and safety of the deployed PV modules.

  14. OTEC-1 test operations experience. Final report

    SciTech Connect (OSTI)

    Hoshide, R.K.; Klein, A.; Polino, D.L.; Poucher, F.W.

    1983-07-15

    During Phase III, the complete integrated system was operated, and information was obtained on the performance of the test article, the performance of the seawater and ammonia systems, the operation of the platform and moor systems, the effects of biofouling countermeasures, and the effects of the OTEC cycle on the environment. After several months spent in completing construction of the test system and checking out and repairing the various systems, 4 months of test operations were conducted before funding constraints caused the discontinuation of the test program. Plans were made for long-term storage and/or disposition of the test facility. The OEC test platform is currently located at Pearl Harbor, in the US Navy Inactive Reserve Fleet anchorage. The CWP was placed in underwater storage adjacent to the moor, awaiting a decision on final disposition. In October 1982, the CWP was recovered and custody given to the State of Hawaii. Although the test period lasted only about 4 months, deployment and at-sea operation of a large-scale OTEC plant was demonstrated, and information was obtained towards satisfying each of the objectives of the OTEC-1 project. This document summarizes the OTEC-1 test operations experience, discusses technical lessons learned, and makes recommendations for future OTEC plants.

  15. Development of an Outdoor Concentrating Photovoltaic Module Testbed, Module Handling and Testing Procedures, and Initial Energy Production Results

    SciTech Connect (OSTI)

    Muller, M.

    2009-09-01

    This report addresses the various aspects of setting up a CPV testbed and procedures for handling and testing CPV modules.

  16. First Subcritical Experiment Conducted at Nevada Test Site | National

    National Nuclear Security Administration (NNSA)

    Nuclear Security Administration | (NNSA) Subcritical Experiment Conducted at Nevada Test Site First Subcritical Experiment Conducted at Nevada Test Site Nevada Test Site, NV The first "subcritical" physics experiment at the Nevada Test Site, code-name "Rebound," provides scientific data on the behavior of plutonium without underground nuclear-weapons testing

  17. Operating Experience Level 3, Update to Requalification Test...

    Energy Savers

    Operating Experience Level 3, Update to Requalification Test Failure of Certain High Efficiency Particulate Air (HEPA) Filters Operating Experience Level 3, Update to...

  18. EXPERIENCES ON PID TESTING OF PV MODULES IN 2012 | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    EXPERIENCES ON PID TESTING OF PV MODULES IN 2012 EXPERIENCES ON PID TESTING OF PV MODULES IN 2012 Presented at the PV Module Reliability Workshop, February 26 - 27 2013, Golden, ...

  19. User Experience Testing | GE Global Research

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Software's Design and User Experience Studio Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) GE Software's Design and User Experience Studio Looking to the future, GE created the Design and Experience Studio dedicated to developing clean, delightful, understandable, and actionable software experiences for GE customers,

  20. Outdoor Solar Lighting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Electricity & Fuel Lighting Outdoor Solar Lighting Outdoor Solar Lighting Outdoor solar lights use solar cells, which convert sunlight into electricity, and are easy to ...

  1. Kauai Test Facility two experiment rocket campaign. [Kauai Test Facility; Two Experiment Rocket Campaign

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    The Kauai Test Facility (KTF) is a Department of Energy (DOE) owned facility located at Barking Sands, on the west coast of the island of Kauai, Hawaii. The KTF has a rocket preparation and launching capability for both rail-launched and vertical-launched capability for both rail-launched and vertical-launched rockets. Launches primarily support high altitude scientific research and re-entry vehicle systems and carry experimental non-nuclear payloads. This environmental assessment (EA) has been prepared for the Two Experiment Rocket Campaign, during which the STRYPI/LACE (STRYPI is not an acronym -- its the name of the rocket; LACE is the acronym for Low Altitude Compensation Experiment) and the RAP-501 (Rocket Accelerated Penetration) will be flown in conjunction from the KTF in February 1991 to reduce costs. There have been numerous rocket campaigns at the KTF in prior years that have used the same motors to be used in the current two experiment rocket campaign. The main difference noted in this environmental documentation is that the two rockets have not previously been flown in conjunction. Previous National Environmental Policy Act (NEPA) approvals of launches using these motors were limited to different and separate campaigns with diverse sources of funding. 2 figs., 5 tabs.

  2. Outdoor Lighting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Outdoor Lighting Outdoor Lighting Outdoor lighting consumes a significant amount of energy-about 1.3 quadrillion Btu annually-costing about $10 billion per year. In the last five years, a number of municipalities have switched to new LED technologies that can reduce energy costs by approximately 50% over conventional lighting technologies and provide additional savings of 20 to 40% with advance lighting controls. Beyond cost and energy savings, the higher efficiency of LED lights provides other

  3. Outdoor Area Lighting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    for outdoor areas. Outdoor Area Lighting (June 2008) More Documents & Publications Philadelphia International Airport Apron Lighting: LED System Performance in a Trial...

  4. Snapshot: Outdoor Area Lighting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Outdoor Area Lighting Snapshot: Outdoor Area Lighting A report using LED Lighting Facts data to examine the current state of the market for outdoor area lighting. (8 pages, September 2016) Snapshot: Outdoor Area Lighting (3.02 MB) More Documents & Publications Snapshot: Downlights October 2016 Postings LED ADOPTION REPORT

  5. LED Outdoor Area Lighting Fact Sheet

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Outdoor Area Lighting LED technology is rapidly becoming competitive with high-intensity discharge light sources for outdoor area lighting. This document reviews the major design and specification concerns for outdoor area lighting, and discusses the potential for LED luminaires to save energy while providing high quality lighting for outdoor areas. Terms LCS - luminaire classification system for outdoor luminaires, published as an IESNA technical memorandum, TM-15-07. Addresses three zones of

  6. Outdoor Area Lighting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Outdoor Area Lighting Outdoor Area Lighting This document reviews the major design and specification concerns for outdoor area lighting, and discusses the potential for LED luminaires to save energy plant-wide while providing high quality lighting for outdoor areas. Outdoor Area Lighting (June 2008) (3.16 MB) More Documents & Publications Philadelphia International Airport Apron Lighting: LED System Performance in a Trial Installation Model Specification for LED Roadway Luminaires, V2.0

  7. Benchmark enclosure fire suppression experiments - phase 1 test report.

    SciTech Connect (OSTI)

    Figueroa, Victor G.; Nichols, Robert Thomas; Blanchat, Thomas K.

    2007-06-01

    A series of fire benchmark water suppression tests were performed that may provide guidance for dispersal systems for the protection of high value assets. The test results provide boundary and temporal data necessary for water spray suppression model development and validation. A review of fire suppression in presented for both gaseous suppression and water mist fire suppression. The experimental setup and procedure for gathering water suppression performance data are shown. Characteristics of the nozzles used in the testing are presented. Results of the experiments are discussed.

  8. Ideal balance of work, play makes outdoor enthusiast's James Miller life

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    enviable Ideal balance of work, play makes outdoor enthusiast's life enviable Ideal balance of work, play makes outdoor enthusiast's James Miller life enviable Nuclear engineer graduate research assistant gets valuable experience while taking advantage of local outdoor recreational activities. August 2, 2012 James Miller Miller first came to the Lab in 2006 as a summer student. His college advisor, a former Laboratory employee, found him an internship through the student programs office.

  9. Superconducting radio-frequency modules test faciilty operating experience

    SciTech Connect (OSTI)

    Soyars, W.; Bossert, R.; Darve, C.; Degraff, B.; Klebaner, A.; Martinez, A.; Pei, L.; Theilacker, J.; /Fermilab

    2007-07-01

    Fermilab is heavily engaged and making strong technical contributions to the superconducting radio-frequency research and development program (SRF R&D). Four major SRF test areas are being constructed to enable vertical and horizontal cavity testing, as well as cryomodule testing. The existing Fermilab cryogenic infrastructure has been modified to service Fermilab SRF R&D needs. The first stage of the project has been successfully completed, which allows for distribution of cryogens for a single cavity cryomodule using the existing Cryogenic Test Facility (CTF) that houses three Tevatron satellite refrigerators. The cooling capacity available for cryomodule testing at MDB results from the liquefaction capacity of the CTF cryogenic system. The cryogenic system for a single 9-cell cryomodule is currently operational. The paper describes the status, challenges and operational experience of the initial phase of the project.

  10. PFR/Treat Safety Experiments: HEDL Transient Test Program Engineering Test Plan

    SciTech Connect (OSTI)

    Hoffman, M.A.; Metcalf, I.L.; Myron, D.L.

    1981-03-01

    The purpose of the PFR/TREAT Safety Test Program is to obtain experimental data of fuel pin behavior during hypothetical, unprotected accidents for cores of large liquid metal cooled fast breeder reactors. The steady state and transient experiments, which will be performed under the joint program, are to be as prototypic of fast reactor performance as is possible. The specific objectives of this document are: (1) dictate the activities and responsibilities for the HEDL Transient Test Program; (2) specify the technical requirements for the CO4, CO5, CO6 and CO7 test train (SPTTs); and (3) specify the technical requirement for the CO6 and CO7 Single Pin Test Loops (SPTLs). Specific requirements for single pin loop experiments beyond CO7 and multi pin experiments will be covered in the addenda to this test plan.

  11. Alpha Particle Physics Experiments in the Tokamak Fusion Test Reactor

    SciTech Connect (OSTI)

    Budny, R.V.; Darrow, D.S.; Medley, S.S.; Nazikian, R.; Zweben, S.J.; et al.

    1998-12-14

    Alpha particle physics experiments were done on the Tokamak Fusion Test Reactor (TFTR) during its deuterium-tritium (DT) run from 1993-1997. These experiments utilized several new alpha particle diagnostics and hundreds of DT discharges to characterize the alpha particle confinement and wave-particle interactions. In general, the results from the alpha particle diagnostics agreed with the classical single-particle confinement model in magnetohydrodynamic (MHD) quiescent discharges. Also, the observed alpha particle interactions with sawteeth, toroidal Alfvn eigenmodes (TAE), and ion cyclotron resonant frequency (ICRF) waves were roughly consistent with theoretical modeling. This paper reviews what was learned and identifies what remains to be understood.

  12. Test data from the US-Demonstration Poloidal Coil experiment

    SciTech Connect (OSTI)

    Painter, T.A.; Steeves, M.M.; Takayasu, M.; Gung, C.; Hoenig, M.O. . Plasma Fusion Center); Tsuji, H.; Ando, T.; Hiyama, T.; Takahashi, Y.; Nishi, M.; Yoshida, K.; Okuno, K.; Nakajima, H.; Kato, T.; Sugimoto, M.; Isono, T.; Kawano, K.; Koizumi, N.; Osikiri, M.; Hanawa, H.; Ouchi, H.; Ono, M.; Ishida, H.; Hiue, H.; Yoshida, J.; Kamiyauchi, Y.; Ouchi, T.; Tajiri, F.

    1992-01-01

    The US Demonstration Poloidal Field Coil (US-DPC) experiment took place successfully at the Japan Atomic Energy Research Institute (JAERI) in late 1990. The 8 MJ niobium-tin coil was leak tight; it performed very well in DC tests; it performed well in AC tests, achieving approximately 70% of its design goal. An unexpected ramp-rate barrier at high currents was identified. The barrier could not be explored in the regime of higher fields and slower ramp rates due to limitations of the background-field coils. This document presents the results of the experiment with as little editing as possible. The coil, conductor, and operating conditions are given. The intent is to present data in a form that can be used by magnet analysts and designers.

  13. Five years operating experience at the Fast Flux Test Facility

    SciTech Connect (OSTI)

    Baumhardt, R. J.; Bechtold, R. A.

    1987-04-01

    The Fast Flux Test Facility (FFTF) is a 400 Mw(t), loop-type, sodium-cooled, fast neutron reactor. It is operated by the Westinghouse Hanford Company for the United States Department of Energy at Richland, Washington. The FFTF is a multipurpose test reactor used to irradiate fuels and materials for programs such as Liquid Metal Reactor (LMR) research, fusion research, space power systems, isotope production and international research. FFTF is also used for testing concepts to be used in Advanced Reactors which will be designed to maximize passive safety features and not require complex shutdown systems to assure safe shutdown and heat removal. The FFTF also provides experience in the operation and maintenance of a reactor having prototypic components and systems typical of large LMR (LMFBR) power plants. The 5 year operational performance of the FFTF reactor is discussed in this report. 6 refs., 10 figs., 2 tabs.

  14. LED Outdoor Area Lighting Fact Sheet

    SciTech Connect (OSTI)

    2008-06-01

    This fact sheet reviews the major design and specification concerns for outdoor area lighting, and discusses the potential for LED luminaires to save energy while providing high quality lighting for outdoor areas.

  15. High Performance Outdoor Lighting Accelerator

    Energy.gov [DOE]

    Hosted by the U.S. Department of Energy (DOE)’s Weatherization and Intergovernmental Programs Office (WIPO), this webinar covered the expansion of the Better Buildings platform to include the newest initiative for the public sector: the High Performance Outdoor Lighting Accelerator (HPOLA).

  16. Relationships between stress corrosion cracking tests and utility operating experience

    SciTech Connect (OSTI)

    Baum, Allen

    1999-10-22

    Several utility steam generator and stress corrosion cracking databases are synthesized with the view of identifying the crevice chemistry that is most consistent with the plant cracking data. Superheated steam and neutral solution environments are found to be inconsistent with the large variations in the observed SCC between different plants, different support plates within a plant, and different crevice locations. While the eddy current response of laboratory tests performed with caustic chemistries approximates the response of the most extensively affected steam generator tubes, the crack propagation kinetics in these tests differ horn plant experience. The observations suggest that there is a gradual conversion of the environment responsible for most steam generator ODSCC from a concentrated, alkaline-forming solution to a progressively more steam-enriched environment.

  17. Three tritium systems test assembly (TSTA) off-loop experiments

    SciTech Connect (OSTI)

    Talcott, C.L.; Anderson, J.L.; Carlson, R.V.; Coffin, D.O.; Walthers, C.R.; Hamerdinger, D.; Binning, K.; Trujillo, R.D.; Moya, J.S.; Hayashi, T.; Okuno, K.; Yamanishi, T.

    1993-11-01

    This report contains the results from three different experiments. Experiment one was initiated to establish the possibility of using a soft elastomer in ITER (International Thermonuclear Experimental Reactor) applications. Used in this application, the sealing material is anticipated to be in tritium at pressures in the range of 1 {times} 10{sup {minus}3} torr for many years. Here two O-ring valve seals each of Viton-A, Buna-N, and EDPM were exposed to 1, 40, or 400 torr of tritium while being cycled open and closed approximately 11,500 times in 192 days. EDPM is the least susceptible to damage from the tritium. Both Buna-N and Viton-A showed deterioration following the first cycling at 400 torr. Using commercially available materials, the Tritium Systems Test Assembly (TSTA) designed and built a Portable Water Removal (PWR) Unit to reduce tritium oxide emissions during glovebox breaches. The PWR removes 99.9% of all tritium and saves between 0.7 and 3.5 curies of tritium oxide from being stacked during each of the five tests. Finally, a series of tests are done to determine whether the presence of SF{sub 6} changes the ability of palladium and platinum to catalyze the T{sub 2}-O{sub 2} reaction to form T{sub 2}O. No deterioration of the catalytic activity is observed. This is important because the Tokamak Fusion Test Reactor (TFTR) requires information about the effect of SF{sub 6}, an electrical insulator, on the catalytic behavior of Pt and Pd in a T{sub 2} environment. This information is necessary for the accident analysis in the Safety Analysis Report for TFTR. This study is done using an apparatus supplied to TSTA by TFTR.

  18. Design and experimental testing of the performance of an outdoor LiBr/H{sub 2}O solar thermal absorption cooling system with a cold store

    SciTech Connect (OSTI)

    Agyenim, Francis; Knight, Ian; Rhodes, Michael

    2010-05-15

    A domestic-scale prototype experimental solar cooling system has been developed based on a LiBr/H{sub 2}O absorption system and tested during the 2007 summer and autumn months in Cardiff University, UK. The system consisted of a 12 m{sup 2} vacuum tube solar collector, a 4.5 kW LiBr/H{sub 2}O absorption chiller, a 1000 l cold storage tank and a 6 kW fan coil. The system performance, as well as the performances of the individual components in the system, were evaluated based on the physical measurements of the daily solar radiation, ambient temperature, inlet and outlet fluid temperatures, mass flow rates and electrical consumption by component. The average coefficient of thermal performance (COP) of the system was 0.58, based on the thermal cooling power output per unit of available thermal solar energy from the 12 m{sup 2} Thermomax DF100 vacuum tube collector on a hot sunny day with average peak insolation of 800 W/m{sup 2} (between 11 and 13.30 h) and ambient temperature of 24 C. The system produced an electrical COP of 3.6. Experimental results prove the feasibility of the new concept of cold store at this scale, with chilled water temperatures as low as 7.4 C, demonstrating its potential use in cooling domestic scale buildings. (author)

  19. Combined Experiment Phase 1. [Horizontal axis wind turbines: wind tunnel testing versus field testing

    SciTech Connect (OSTI)

    Butterfield, C.P.; Musial, W.P.; Simms, D.A.

    1992-10-01

    How does wind tunnel airfoil data differ from the airfoil performance on an operating horizontal axis wind turbine (HAWT) The National Renewable Energy laboratory has been conducting a comprehensive test program focused on answering this question and understanding the basic fluid mechanics of rotating HAWT stall aerodynamics. The basic approach was to instrument a wind rotor, using an airfoil that was well documented by wind tunnel tests, and measure operating pressure distributions on the rotating blade. Based an the integrated values of the pressure data, airfoil performance coefficients were obtained, and comparisons were made between the rotating data and the wind tunnel data. Care was taken to the aerodynamic and geometric differences between the rotating and the wind tunnel models. This is the first of two reports describing the Combined Experiment Program and its results. This Phase I report covers background information such as test setup and instrumentation. It also includes wind tunnel test results and roughness testing.

  20. OSI Passive Seismic Experiment at the Former Nevada Test Site

    SciTech Connect (OSTI)

    Sweeney, J J; Harben, P

    2010-11-11

    its effectiveness for OSI purposes has yet to be determined. For this experiment, we took a broad approach to the definition of ''resonance seismometry''; stretching it to include any means that employs passive seismic methods to infer the character of underground materials. In recent years there have been a number of advances in the use of correlation and noise analysis methods in seismology to obtain information about the subsurface. Our objective in this experiment was to use noise analysis and correlation analysis to evaluate these techniques for detecting and characterizing the underground damage zone from a nuclear explosion. The site that was chosen for the experiment was the Mackerel test in Area 4 of the former Nevada Test Site (now named the Nevada National Security Site, or NNSS). Mackerel was an underground nuclear test of less than 20 kT conducted in February of 1964 (DOENV-209-REV 15). The reason we chose this site is because there was a known apical cavity occurring at about 50 m depth above a rubble zone, and that the site had been investigated by the US Geological Survey with active seismic methods in 1965 (Watkins et al., 1967). Note that the time delay between detonation of the explosion (1964) and the time of the present survey (2010) is nearly 46 years - this would not be typical of an expected OSI under the CTBT.

  1. Comparing Accelerated Testing and Outdoor Exposure | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado pvmrw13ps5isekoehl.pdf (1.65 MB) More Documents & Publications PID Failure of c-Si and Thin-Film ...

  2. GATEWAY Demonstration Outdoor Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Outdoor Projects GATEWAY Demonstration Outdoor Projects DOE shares the results of completed GATEWAY demonstration projects, publishing detailed reports that include analysis of data collected, projected energy savings, economic analyses, and user feedback. Report briefs summarize key findings in a quick-scan format. Both the reports and briefs are available as Adobe Acrobat PDFs. Completed Outdoor Projects yuma3-thumb.jpg LED Area Lighting Retrofit: Yuma Border Patrol Along the Yuma Sector

  3. SRRL: Broadband Outdoor Radiometer CALibrations (BORCAL)

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Broadband Outdoor Radiometer Calibrations Accurate measurements of solar radiation require regular recalibration of the radiometers used to make the irradiance measurement. NREL has developed the Broadband Outdoor Radiometer Calibration (BORCAL) approach for the annual calibration of pyranometers, pyrheliometers, and pyrgeometers used by the Department of Energy. BORCALs are conducted at the Solar Radiation Research Laboratory (SRRL) and at the Atmospheric Radiation Measurement (ARM) Program's

  4. NREL: Performance and Reliability R&D - Field Testing

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Field Testing Photo of an aerial view of the Outdoor Test Facility and array field. The Outdoor Test Facility forms the backbone of our field-testing capabilities. Photo of some of ...

  5. Outdoor OLED Luminaire Using Solar Energy for Lighting Pedestrian...

    Office of Environmental Management (EM)

    Outdoor OLED Luminaire Using Solar Energy for Lighting Pedestrian Areas Outdoor OLED Luminaire Using Solar Energy for Lighting Pedestrian Areas Lead Performer: OLEDWorks LLC - ...

  6. 54 USC Subtitle II - Outdoor Recreation Programs | Open Energy...

    Open Energy Information (Open El) [EERE & EIA]

    II - Outdoor Recreation Programs Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: 54 USC Subtitle II - Outdoor Recreation...

  7. Outdoor Solid-State Lighting Technology Deployment | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Outdoor Solid-State Lighting Technology Deployment Solid-state lighting (SSL) technology ... The Federal Energy Management Program (FEMP) outdoor SSL initiative offers a unique ...

  8. Development of an Outdoor Temperature-Based Control Algorithm...

    Office of Scientific and Technical Information (OSTI)

    Development of an Outdoor Temperature-Based Control Algorithm for Residential Mechanical Ventilation Control Citation Details In-Document Search Title: Development of an Outdoor ...

  9. Test experience with multiterminal HVDC load flow and stability programs

    SciTech Connect (OSTI)

    Chapman, D.G.; Davies, J.B. ); McNichol, J.R. ); Gulachenski, E.M.; Doe, S. ); Balu, N.J. )

    1988-07-01

    A powerful new set of load flow and stability programs for the study of HVdc systems has recently been completed. During the development of the programs novel applications of multiterminal HVdc systems were investigated, firstly on a large test system and later on actual utility models. This paper describes the test systems used, the HVdc systems studied and some of the interesting system related aspects of the HVdc system performance.

  10. Safety assessment of outdoor live fire range

    SciTech Connect (OSTI)

    1989-05-01

    The following Safety Assessment (SA) pertains to the outdoor live fire range facility (LFR). The purpose of this facility is to supplement the indoor LFR. In particular it provides capacity for exercises that would be inappropriate on the indoor range. This SA examines the risks that are attendant to the training on the outdoor LFR. The outdoor LFR used by EG&G Mound is privately owned. It is identified as the Miami Valley Shooting Grounds. Mondays are leased for the exclusive use of EG&G Mound.

  11. Experience with the ground test accelerator beam-measurement instrumentation

    SciTech Connect (OSTI)

    Gilpatrick, J.D.; Johnson, K.F.; Connolly, R.C.; Power, J.F.; Rose, C.R.; Sander, O.R.; Shafer, R.E.; Sandoval, D.P.; Yuan, V.W. )

    1994-10-10

    During the past two years, the Ground Test Accelerator (GTA) has used a variety of off- and on-line beam diagnostic measurements to understand and verify the transverse and longitudinal phase space characteristics of a 35-mA, low-energy (2.5- to 3.2-MeV) H[sup [minus

  12. High temperature materials experience at the Central Receiver Test Facility

    SciTech Connect (OSTI)

    Holmes, J.T.

    1982-01-01

    During four years of operation at the Central Receiver Test Facility (CRTF) ceramics have performed well in cyclic solar flux densities of less than 30 W/cm/sup 2/. Above 100 W/cm/sup 2/, serious limitations exist. Important application considerations include: the geometry, cyclic and long time exposures, flux density gradients, thermal shock, weathering, and soiling.

  13. Standard Model Tests at the NA62 CERN Experiment

    SciTech Connect (OSTI)

    Bifani, Simone

    2010-02-10

    The physics program of the NA62 experiment aims to search for phenomena beyond the Standard Model by measuring the ratio R{sub K} (GammaK->ev{sub e}(gamma))/GAMMA(K->muv{sub mu}{sub (gamma)}) and studying the ultra rare decay K{sup +}->pi{sup +}vv-bar. The status of the R{sub K} analysis based on approx40% of the data collected during 2007 and 2008 is summarized and the proposed detector layout to measure the branching ratio of the K{sup +}->pi{sup +}vv-bar decay is described.

  14. Bull Outdoor Products: Order (2015-CE-14014)

    Energy.gov [DOE]

    DOE ordered Bull Outdoor Products, Inc. to pay a $8,000 civil penalty after finding Bull had failed to certify that refrigerator basic model BC-130 complies with the applicable energy conservation standards.

  15. Outdoor Solar Lighting | Department of Energy

    Energy.gov (indexed) [DOE]

    on Outdoor Lighting Solar panels are a great way to produce clean energy at home | Photo courtesy of Stefano Paltera, U.S. Department of Energy. Harnessing Solar Energy at Home...

  16. TAP Webinar: High Performance Outdoor Lighting Accelerator

    Energy.gov [DOE]

    Hosted by the Technical Assistance Program (TAP), this webinar will cover the recently announced expansion of the Better Buildings platform —the High Performance Outdoor Lighting Accelerator (HPOLA).

  17. Micromechanical tests of ion irradiated materials: Atomistic simulations and experiments

    SciTech Connect (OSTI)

    Shin, C.; Jin, H. H.; Kwon, J.

    2012-07-01

    We investigated irradiation effects on Fe-Cr binary alloys by using a nano-indentation combined with a continuous stiffness measurement (CSM) technique. We modeled the nano-indentation test by using a finite element method. We could extract the intrinsic hardness and the yield stress of an irradiation hardened region by using a so-called inverse method. SiC micro-pillars of various sizes were fabricated by mask and inductively coupled plasma etching technique and compressed by using flat punch nano-indentation. Compressive fracture strength showed a clear specimen size effect. Brittle-to-Ductile transition at room temperature was observed as the specimen size decreases. The effect of irradiation on the fracture strength of SiC micro-pillars was evaluated by performing ion irradiation with Si ions. We have performed molecular dynamics simulations of nano-indentation and nano-pillar compression tests. Radiation effect was observed which is found to be due to the interaction of dislocations nucleated by spherical indenter with pre-existing radiation defects (voids). These atomistic simulations are expected to significantly contribute to the investigation of the fundamental deformation mechanism of small scale irradiated materials. (authors)

  18. Accelerated Stress Testing, Qualification Testing, HAST, Field Experience - What Do They All Mean? (Presentation)

    SciTech Connect (OSTI)

    Wohlgemuth, J.

    2013-05-01

    This presentation discusses the need for a set of tests for modules that would predict their long term-field performance.

  19. Outdoor polymeric insulators long-term exposed to HVDC

    SciTech Connect (OSTI)

    Soerqvist, T.; Vlastos, A.E.

    1997-04-01

    Field experience from outdoor polymeric insulators exposed to HVDC under natural contamination conditions is presented. This paper summarizes the peak leakage current statistics, the hydrophobicity and the surface material conditions studied by electron spectroscopy for chemical analysis (ESCA) and attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. The results show a strong interrelation between the surface conditions and the performance with respect to leakage currents. Moreover, the results show that the surface conditions and the performance of the insulators exposed to HVDC are rather similar to those of the insulators exposed to HVAC.

  20. Chemical Explosion Experiments to Improve Nuclear Test Monitoring [Developing a New Paradigm for Nuclear Test Monitoring with the Source Physics Experiments (SPE)

    DOE PAGES-Beta [OSTI]

    Snelson, Catherine M.; Abbott, Robert E.; Broome, Scott T.; Mellors, Robert J.; Patton, Howard J.; Sussman, Aviva J.; Townsend, Margaret J.; Walter, William R.

    2013-07-02

    A series of chemical explosions, called the Source Physics Experiments (SPE), is being conducted under the auspices of the U.S. Department of Energy’s National Nuclear Security Administration (NNSA) to develop a new more physics-based paradigm for nuclear test monitoring. Currently, monitoring relies on semi-empirical models to discriminate explosions from earthquakes and to estimate key parameters such as yield. While these models have been highly successful monitoring established test sites, there is concern that future tests could occur in media and at scale depths of burial outside of our empirical experience. This is highlighted by North Korean tests, which exhibit poormore » performance of a reliable discriminant, mb:Ms (Selby et al., 2012), possibly due to source emplacement and differences in seismic responses for nascent and established test sites. The goal of SPE is to replace these semi-empirical relationships with numerical techniques grounded in a physical basis and thus applicable to any geologic setting or depth.« less

  1. Hitting the Target: ENERGY STAR® SSL Outdoor Area Lighting Webcast |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Hitting the Target: ENERGY STAR® SSL Outdoor Area Lighting Webcast Hitting the Target: ENERGY STAR® SSL Outdoor Area Lighting Webcast In this October 8, 2009 webcast, ENERGY STAR Program Manager Richard Karney gave an overview of ENERGY STAR criteria covering SSL-based outdoor area and roadway lighting, outdoor wall packs, parking garage, and canopy luminaires. Jason Tuenge of Pacific Northwest National Laboratory then provided a detailed description of the new

  2. Comparison of indoor-outdoor thermal performance for the Sunpak evacuated tube liquid collector

    SciTech Connect (OSTI)

    Not Available

    1980-03-01

    Performance data is provided for current Sunpak production collectors. The effects of an improved manifold are seen from the test results. The test results show excellent correlation between the solar simulator derived test results and outdoor test results. Also, because of different incident angle modifiers, the all-day efficiency of this collector with a diffuse reflector is found to be comparable to the performance with the standard shaped specular reflector.

  3. A decade of radiological and shielding experience at the Fast Flux Test Facility

    SciTech Connect (OSTI)

    Bunch, W.L.

    1990-01-01

    The Fast Flux Test Facility (FFTF) was designed to permit irradiation testing of fuels and materials to support the commercial development of liquid-metal-cooled fast reactors (LMRs). A secondary objective was to gain experience in the design, construction, and operation of a relatively large LMR. The radiological experience gained from the operation of the facility as it applies to the area of radiation protection and shielding is presented. Experience from 8 yr of FFTF operation has demonstrated that radiological safety can be achieved in large LMRs. Layout of plant equipment in shielded compartments, careful operational planning, and adherence to procedures have combined to minimize personnel doses at FFTF and the release of radioactivity to the environment. The experience derived form the design, construction, and operation of FFTF should be of inestimable value in supporting future LMR development.

  4. Wind-To-Hydrogen Project: Operational Experience, Performance Testing, and Systems Integration

    SciTech Connect (OSTI)

    Harrison, K. W.; Martin, G. D.; Ramsden, T. G.; Kramer, W. E.; Novachek, F. J.

    2009-03-01

    The Wind2H2 system is fully functional and continues to gather performance data. In this report, specifications of the Wind2H2 equipment (electrolyzers, compressor, hydrogen storage tanks, and the hydrogen fueled generator) are summarized. System operational experience and lessons learned are discussed. Valuable operational experience is shared through running, testing, daily operations, and troubleshooting the Wind2H2 system and equipment errors are being logged to help evaluate the reliability of the system.

  5. Determining Outdoor CPV Cell Temperature: Preprint

    SciTech Connect (OSTI)

    Muller, M.; Deline, C.; Marion, B.; Kurtz, S.; Bosco, N.

    2011-07-01

    An accurate method is needed for determining cell temperature when measuring CPV modules outdoors. It has been suggested that cell temperature can be calculated though a procedure that shutters sunlight to the cells while measuring the transients in open-circuit voltage (Voc) and heat sink temperature. This paper documents application of this shutter procedure to multiple CPV modules at NREL. The challenges and limitations are presented along with an alternate approach to measuring CPV cell operating temperature.

  6. TESTING AND ACCEPTANCE OF FUEL PLATES FOR RERTR FUEL DEVELOPMENT EXPERIMENTS

    SciTech Connect (OSTI)

    J.M. Wight; G.A. Moore; S.C. Taylor

    2008-10-01

    This paper discusses how candidate fuel plates for RERTR Fuel Development experiments are examined and tested for acceptance prior to reactor insertion. These tests include destructive and nondestructive examinations (DE and NDE). The DE includes blister annealing for dispersion fuel plates, bend testing of adjacent cladding, and microscopic examination of archive fuel plates. The NDE includes Ultrasonic (UT) scanning and radiography. UT tests include an ultrasonic scan for areas of “debonds” and a high frequency ultrasonic scan to determine the "minimum cladding" over the fuel. Radiography inspections include identifying fuel outside of the maximum fuel zone and measurements and calculations for fuel density. Details of each test are provided and acceptance criteria are defined. These tests help to provide a high level of confidence the fuel plate will perform in the reactor without a breach in the cladding.

  7. Experiment data report for Multirod Burst Test (MRBT) bundle B-4. [PWR; BWR

    SciTech Connect (OSTI)

    Longest, A.W.; Chapman, R.H.; Crowley, J.L.

    1982-12-01

    A compilation of bundle B-4 test data is presented. These data were obtained during the test and from pretest and posttest examination of the test array. They are presented in considerable detail but with minimum interpretation. The B-4 test is the only 6 x 6 array in a series of 4 x 4, 6 x 6, and 8 x 8 bundle tests performed by the Multirod Burst Test Program at Oak Ridge National Laboratory. This research is sponsored by the Nuclear Regulatory Commission and is designed to investigate Zircaloy cladding deformation behavior under simulated light-water-reactor loss-of-coolant accident conditions. A brief description of the experiment and a summary of the test results are included with the detailed results of the B-4 test. Both graphical and tabular formats are used to show temperature and pressure data as functions of test time and strain data for the cladding in each of the fuel rod simulators. Photographic documentation is provided for both the overall bundle, before and after testing, and the 36 tubes as they were removed from the tested bundle for strain measurements.

  8. Nuclear facility licensing, documentaion, and reviews, and the SP-100 test site experience

    SciTech Connect (OSTI)

    Cornwell, B.C.; Deobald, T.L.; Bitten, E.J.

    1991-06-01

    The required approvals and permits to test a nuclear facility are extensive. Numerous regulatory requirements result in the preparation of documentation to support the approval process. The principal regulations for the SP-100 Ground Engineering System (GES) include the National Environmental Policy Act, Clean Air Act, and Atomic Energy Act. The documentation prepared for the SP-100 Nuclear Assembly Test (NAT) included an Environmental Assessment, state permit applications, and Safety Analysis Reports. This paper discusses the regulation documentation requirements and the SP-100 NAT Test Site experience. 12 refs., 2 figs., 2 tabs.

  9. As-Run Physics Analysis for the UCSB-1 Experiment in the Advanced Test Reactor

    SciTech Connect (OSTI)

    Nielsen, Joseph Wayne

    2015-09-01

    The University of California Santa Barbara (UCSB) -1 experiment was irradiated in the A-10 position of the ATR. The experiment was irradiated during cycles 145A, 145B, 146A, and 146B. Capsule 6A was removed from the test train following Cycle 145A and replaced with Capsule 6B. This report documents the as-run physics analysis in support of Post-Irradiation Examination (PIE) of the test. This report documents the as-run fluence and displacements per atom (DPA) for each capsule of the experiment based on as-run operating history of the ATR. Average as-run heating rates for each capsule are also presented in this report to support the thermal analysis.

  10. The Next Generation Nuclear Plant Graphite Creep Experiment Irradiation in the Advanced Test Reactor

    SciTech Connect (OSTI)

    Blaine Grover

    2010-10-01

    The United States Department of Energys Next Generation Nuclear Plant (NGNP) Program will be irradiating six gas reactor graphite creep experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the United States Department of Energys lead laboratory for nuclear energy development. The ATR is one of the worlds premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These graphite irradiations are being accomplished to support development of the next generation reactors in the United States. The graphite experiments will be irradiated over the next six to eight years to support development of a graphite irradiation performance data base on the new nuclear grade graphites now available for use in high temperature gas reactors. The goals of the irradiation experiments are to obtain irradiation performance data, including irradiation creep, at different temperatures and loading conditions to support design of the Next Generation Nuclear Plant (NGNP) Very High Temperature Gas Reactor, as well as other future gas reactors. The experiments will each consist of a single capsule that will contain six stacks of graphite specimens, with half of the graphite specimens in each stack under a compressive load, while the other half of the specimens will not be subjected to a compressive load during irradiation. The six stacks will have differing compressive loads applied to the top half of each pair of specimen stacks, while a seventh stack will not have a compressive load. The specimens will be irradiated in an inert sweep gas atmosphere with on-line temperature and compressive load monitoring and control. There will also be the capability of sampling the sweep gas effluent to determine if any oxidation or off-gassing of the specimens occurs during initial start-up of the

  11. Status of the NGNP Fuel Experiment AGR-2 Irradiated in the Advanced Test Reactor

    SciTech Connect (OSTI)

    Blaine Grover

    2012-10-01

    The United States Department of Energys Next Generation Nuclear Plant (NGNP) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating up to seven separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States, and will be irradiated over the next several years to demonstrate and qualify new TRISO coated particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of at least six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006 and was completed in November 2009. The second experiment (AGR-2), which utilized the same experiment design as well as control and monitoring systems as AGR-1, started irradiation in June 2010 and is currently scheduled to be completed in April 2013. The design of this experiment and support systems will be briefly discussed, followed by the progress and status of the experiment to date.

  12. Advanced Gas Reactor (AGR)-5/6/7 Fuel Irradiation Experiments in the Advanced Test Reactor

    SciTech Connect (OSTI)

    A. Joseph Palmer; David A. Petti; S. Blaine Grover

    2014-04-01

    The United States Department of Energys Very High Temperature Reactor (VHTR) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating up to seven separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which each consist of at least five separate capsules, are being irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gases also have on-line fission product monitoring the effluent from each capsule to track performance of the fuel during irradiation. The first two experiments (designated AGR-1 and AGR-2), have been completed. The third and fourth experiments have been combined into a single experiment designated AGR-3/4, which started its irradiation in December 2011 and is currently scheduled to be completed in April 2014. The design of the fuel qualification experiment, designated AGR-5/6/7, is well underway and incorporates lessons learned from the three previous experiments. Various design issues will be discussed with particular details related to selection of thermometry.

  13. Re-evaluation of a subsurface injection experiment for testing flow and transport models

    SciTech Connect (OSTI)

    Fayer, M.J.; Lewis, R.E.; Engelman, R.E.; Pearson, A.L.; Murray, C.J.; Smoot, J.L. Lu, A.H.; Randall, P.R.; Wegener, W.H.

    1995-12-01

    The current preferred method for disposal of low-level radioactive waste (LLW) at the Hanford Site is to vitrify the wastes so they can be stored in a near-surface, shallow-land burial facility (Shord 1995). Pacific Northwest Laboratory (PNL) managed the PNL Vitrification Technology Development (PVTD) Project to assist Westinghouse Hanford Company (WHC) in designing and assessing the performance of a disposal facility for the vitrified LLW. Vadose zone flow and transport models are recognized as necessary tools for baseline risk assessments of stored waste forms. The objective of the Controlled Field Testing task of the PVTD Project is to perform and analyze field experiments to demonstrate the appropriateness of conceptual models for the performance assessment. The most convincing way to demonstrate appropriateness is to show that the model can reproduce the movement of water and contaminants in the field. Before expensive new experiments are initiated, an injection experiment conducted at the Hanford Site in 1980 (designated the ``Sisson and the Lu experiment``) should be completely analyzed and understood. Briefly, in that test, a solution containing multiple tracers was injected at a single point into the subsurface sediments. The resulting spread of the water and tracers was monitored in wells surrounding the injection point. Given the advances in knowledge, computational capabilities, and models over the last 15 years, it is important to re-analyze the data before proceeding to other experiments and history-matching exercises.

  14. Connected Outdoor Lighting Systems for Municipalities - Text-Alt Version |

    Energy Savers

    Department of Energy Outdoor Lighting Systems for Municipalities - Text-Alt Version Connected Outdoor Lighting Systems for Municipalities - Text-Alt Version Welcome, everyone. This is Bruce Kinzey with the Pacific Northwest National Laboratory and director of the U.S. Department of Energy's Municipal Solid-State Street Lighting Consortium. Welcome to today's webinar, Connected Outdoor Lighting Systems for Municipalities, brought you by the DOE Better Buildings Challenge. This webinar was

  15. Outdoor OLED Luminaire Using Solar Energy for Lighting Pedestrian Areas |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Outdoor OLED Luminaire Using Solar Energy for Lighting Pedestrian Areas Outdoor OLED Luminaire Using Solar Energy for Lighting Pedestrian Areas Lead Performer: OLEDWorks LLC - Rochester, NY DOE Total Funding: $148,368 Project Term: June 8, 2015 - March 8, 2016 Funding Opportunity: FY2015 Phase I Release 2 SBIR Awards PROJECT OBJECTIVE The recipient, currently the only commercial OLED lighting panel manufacturer in the U.S., will develop a concept for an outdoor OLED

  16. Connected Outdoor Lighting Systems For Municipalities | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Outdoor Lighting Systems For Municipalities Connected Outdoor Lighting Systems For Municipalities This webinar is intended for municipal staff who have had some introduction to connected outdoor lighting systems, and want to further explore whether today's commercially available offerings suit their needs. Presented by Michael Poplawski of Pacific Northwest National Laboratory, the webinar covers basic capabilities, key differentiators between systems, and common adoption issues - as

  17. Next Generation Luminaires Design Competition Announces 2013 Outdoor

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Winners | Department of Energy Next Generation Luminaires Design Competition Announces 2013 Outdoor Winners Next Generation Luminaires Design Competition Announces 2013 Outdoor Winners February 27, 2014 - 12:00am Addthis The 2013 winners in the outdoor category of the Next Generation LuminairesTM Solid-State Lighting Design Competition were announced at the Strategies in Light conference in Santa Clara, CA. Sponsored by DOE, the Illuminating Engineering Society of North America, and the

  18. Status of the NGNP fuel experiment AGR-2 irradiated in the advanced test reactor

    SciTech Connect (OSTI)

    S. Blaine Grover; David A. Petti

    2014-05-01

    The United States Department of Energy's Next Generation Nuclear Plant (NGNP) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating up to seven separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States, and will be irradiated over the next several years to demonstrate and qualify new TRISO coated particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of at least six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also undergo on-line fission product monitoring to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006 and was completed in November 2009. The second experiment (AGR-2), which utilized the same experiment design as well as control and monitoring systems as AGR-1, started irradiation in June 2010 and is currently scheduled to be completed in April 2013. The design of this experiment and sup

  19. Non-contact Electroluminescence Imaging of Outdoor Modules (ROI...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Solar Photovoltaic Solar Photovoltaic Energy Analysis Energy Analysis Find More Like This Return to Search Non-contact Electroluminescence Imaging of Outdoor Modules (ROI 14-95) ...

  20. Status and Planned Experiments of the Hiradmat Pulsed Beam Material Test Facility at CERN SPS

    SciTech Connect (OSTI)

    Charitonidis, Nikolaos; Efthymiopoulos, Ilias; Fabich, Adrian; Meddahi, Malika; Gianfelice-Wendt, Eliana

    2015-06-01

    HiRadMat (High Irradiation to Materials) is a facility at CERN designed to provide high-intensity pulsed beams to an irradiation area where material samples as well as accelerator component assemblies (e.g. vacuum windows, shock tests on high power targets, collimators) can be tested. The beam parameters (SPS 440 GeV protons with a pulse energy of up to 3.4 MJ, or alternatively lead/argon ions at the proton equivalent energy) can be tuned to match the needs of each experiment. It is a test area designed to perform single pulse experiments to evaluate the effect of high-intensity pulsed beams on materials in a dedicated environment, excluding long-time irradiation studies. The facility is designed for a maximum number of 1016 protons per year, in order to limit the activation of the irradiated samples to acceptable levels for human intervention. This paper will demonstrate the possibilities for research using this facility and go through examples of upcoming experiments scheduled in the beam period 2015/2016.

  1. Lattice design of the integrable optics test accelerator and optical stochastic cooling experiment at Fermilab

    SciTech Connect (OSTI)

    Kafka, Gene

    2015-05-01

    The Integrable Optics Test Accelerator (IOTA) storage ring at Fermilab will serve as the backbone for a broad spectrum of Advanced Accelerator R&D (AARD) experiments, and as such, must be designed with signi cant exibility in mind, but without compromising cost e ciency. The nonlinear experiments at IOTA will include: achievement of a large nonlinear tune shift/spread without degradation of dynamic aperture; suppression of strong lattice resonances; study of stability of nonlinear systems to perturbations; and studies of di erent variants of nonlinear magnet design. The ring optics control has challenging requirements that reach or exceed the present state of the art. The development of a complete self-consistent design of the IOTA ring optics, meeting the demands of all planned AARD experiments, is presented. Of particular interest are the precise control for nonlinear integrable optics experiments and the transverse-to-longitudinal coupling and phase stability for the Optical Stochastic Cooling Experiment (OSC). Since the beam time-of- ight must be tightly controlled in the OSC section, studies of second order corrections in this section are presented.

  2. Electrostatic sensors for SPIDER experiment: Design, manufacture of prototypes, and first tests

    SciTech Connect (OSTI)

    Brombin, M. Spolaore, M.; Serianni, G.; Barzon, A.; Franchin, L.; Pasqualotto, R.; Pomaro, N.; Taliercio, C.; Trevisan, L.; Schiesko, L.

    2014-02-15

    A system of electrostatic sensors has been designed for the SPIDER (Source for the production of Ions of Deuterium Extracted from RF plasma) experiment, prototype RF source of the ITER NBI (neutral beam injection). A prototype of the sensor system was manufactured and tested at the BATMAN (BAvarian Test MAchine for Negative ions) facility, where the plasma environment is similar to that of SPIDER. Different aspects concerning the mechanical manufacturing and the signal conditioning are presented, among them the RF compensation adopted to reduce the RF effects which could lead to overestimated values of the electron temperature. The first commissioning tests provided ion saturation current values in the range assumed for the design, so the deduced plasma density estimate is consistent with the expected values.

  3. ORNL evaluation of the ORR-PSF metallurgical experiment and blind test

    SciTech Connect (OSTI)

    Stallmann, F.W.

    1984-01-01

    A methodology is described to evaluate the dosimetry and metallurgical data from the two-year ORR-PSF metallurgical irradiation experiment. The first step is to obtain a three-dimensional map of damage exposure parameter values based on neutron transport calculations and dosimetry measurements which are obtained by means of the LSL-M2 adjustment procedure. Metallurgical test data are then combined with damage parameter, temperature, and chemistry information to determine the correlation between radiation and steel embrittlement in reactor pressure vessels including estimates for the uncertainties. Statistical procedures for the evaluation of Charpy data, developed earlier, are used for this investigation. The data obtained in this investigation provide a benchmark against which the predictions of the PSF Blind Test can be compared. The results of this investigation and the Blind Test comparison are discussed.

  4. Ground Testing a Nuclear Thermal Rocket: Design of a sub-scale demonstration experiment

    SciTech Connect (OSTI)

    David Bedsun; Debra Lee; Margaret Townsend; Clay A. Cooper; Jennifer Chapman; Ronald Samborsky; Mel Bulman; Daniel Brasuell; Stanley K. Borowski

    2012-07-01

    In 2008, the NASA Mars Architecture Team found that the Nuclear Thermal Rocket (NTR) was the preferred propulsion system out of all the combinations of chemical propulsion, solar electric, nuclear electric, aerobrake, and NTR studied. Recently, the National Research Council committee reviewing the NASA Technology Roadmaps recommended the NTR as one of the top 16 technologies that should be pursued by NASA. One of the main issues with developing a NTR for future missions is the ability to economically test the full system on the ground. In the late 1990s, the Sub-surface Active Filtering of Exhaust (SAFE) concept was first proposed by Howe as a method to test NTRs at full power and full duration. The concept relied on firing the NTR into one of the test holes at the Nevada Test Site which had been constructed to test nuclear weapons. In 2011, the cost of testing a NTR and the cost of performing a proof of concept experiment were evaluated.

  5. Connected Outdoor Lighting Systems For Municipalities - Presentation Slides

    Energy Savers

    | Department of Energy Outdoor Lighting Systems For Municipalities - Presentation Slides Connected Outdoor Lighting Systems For Municipalities - Presentation Slides Presentation Slides (2.08 MB) More Documents & Publications SALC 2014 Presentations Downloads CONNECTED LIGHTING SYSTEMS RESOURCES Technical Meeting: Data/Communication Standards and Interoperability of Building Appliances, Equipment, and Systems

  6. Evaluation of flow oscillation during long-term cooling experiments in the APEX integral test facility

    SciTech Connect (OSTI)

    Bessette, D.; Marzo, M. di

    1996-12-31

    The Westinghouse Electric Corporation has developed a new, advanced light water reactor, the AP600, and has submitted the design for U.S. Nuclear Regulatory Commission certification. Westinghouse conducted supporting testing programs to provide experimental data to validate its computer codes used to analyze the performance of the AP600 design. One of these facilities was a reduced-pressure, reduced-height (1:4) integral system test facility located at Oregon State University-the Advanced Plant Experiment (APEX). The governing objective of the testing program was to evaluate system depressurization, transition to in-containment refueling water storage tank (IRWST) injection, and long-term cooling. A key feature in the long-term cooling data from some of the APEX experiments is flow oscillations that begin upon return to saturated conditions at the core exit. In this paper, the mechanism for these oscillations is explained, their relevance to the AP600 is discussed, and conclusions about their safety significance are drawn.

  7. Photoluminescence and Electroluminescence Outdoor Module Imaging; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Johnson, S.; Silverman, T.

    2015-02-24

    This poster describes using camera imaging to characterize PV modules while the modules are still mounted outdoors, details the benefits of outdoor imaging, and provides photos for comparison.

  8. Outdoor durability of radiation-cured coatings

    SciTech Connect (OSTI)

    Holman, R.; Kennedy, R.

    1997-12-31

    Radiation cured coatings are used almost exclusively on products which have little or no exposure to moisture or the weather; inks, furniture varnishes, floor varnishes and coatings for electronic components. However there is considerable interest in being able to use this technology in exterior environments as a substitute for solvent-borne coatings. A 3-year study examining the possible reasons for the poor durability of radiation curable coatings showed that the resistance of the monomers and oligomers to hydrogen abstraction was crucially important, and the water permeability of the cured coating influenced the long-term adhesion performance. The project concluded that with the appropriate combination of curing technology and monomer/oligomer selection, the prospects of UV curable coatings for outdoor exposure are very encouraging.

  9. Status of the direct absorption receiver panel research experiment: Salt flow and solar test requirements and plans

    SciTech Connect (OSTI)

    Tyner, C.E.

    1989-03-01

    The Panel Research Experiment (PRE) is the first large-scale solar test of the molten nitrate salt direct absorption receiver (DAR) concept. The purpose of the PRE is to demonstrate the engineering feasibility and practicality of the DAR. We will conduct the test at the Central Receiver Test Facility in Albuquerque in two phases: salt flow testing and solar testing. This is a working document to define PRE test objectives and requirements, document the test hardware design, and define test plans. 13 refs., 12 figs., 1 tab.

  10. Outdoor Test Facility and Related Facilities | Photovoltaic Research...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Lambda 9 Spectrophotometer-Versatile, high-performance double-beam, double-monochrometer UV-visible-NIR spectrophotometer with integrating-sphere attachments; can measure the ...

  11. CX-00083_CHPRC Annual Outdoor Testing.pdf

    U.S. Department of Energy (DOE) all webpages (Extended Search)

  12. Field Results from Application of the Outdoor-Air/Economizer Diagnostician for Commissioning and O&M

    SciTech Connect (OSTI)

    Pratt, Robert G.; Katipamula, Srinivas; Brambley, Michael R.; Blanc, Steven L.

    2000-05-31

    This paper presents results of field testing an automated diagnostician for outdoor-air-supply and economizer systems that can be used for commissioning purposes. The fundamental capabilities of the tool are described and key results of its application on six air handlers in a large hotel building are discussed. Ancillary issues pertinent to the development and application of such tools are also presented.

  13. Outdoor Performance of a Thin-Film Gallium-Arsenide Photovoltaic Module

    SciTech Connect (OSTI)

    Silverman, T. J.; Deceglie, M. G.; Marion, B.; Cowley, S.; Kayes, B.; Kurtz, S.

    2013-06-01

    We deployed a 855 cm2 thin-film, single-junction gallium arsenide (GaAs) photovoltaic (PV) module outdoors. Due to its fundamentally different cell technology compared to silicon (Si), the module responds differently to outdoor conditions. On average during the test, the GaAs module produced more power when its temperature was higher. We show that its maximum-power temperature coefficient, while actually negative, is several times smaller in magnitude than that of a Si module used for comparison. The positive correlation of power with temperature in GaAs is due to temperature-correlated changes in the incident spectrum. We show that a simple correction based on precipitable water vapor (PWV) brings the photocurrent temperature coefficient into agreement with that measured by other methods and predicted by theory. The low operating temperature and small temperature coefficient of GaAs give it an energy production advantage in warm weather.

  14. Capture cavity cryomodule for quantum beam experiment at KEK superconducting RF test facility

    SciTech Connect (OSTI)

    Tsuchiya, K.; Hara, K.; Hayano, H.; Kako, E.; Kojima, Y.; Kondo, Y.; Nakai, H.; Noguchi, S.; Ohuchi, N.; Terashima, A.; Horikoshi, A.; Semba, T.

    2014-01-29

    A capture cavity cryomodule was fabricated and used in a beam line for quantum beam experiments at the Superconducting RF Test Facility (STF) of the High Energy Accelerator Research Organization in Japan. The cryomodule is about 4 m long and contains two nine-cell cavities. The cross section is almost the same as that of the STF cryomodules that were fabricated to develop superconducting RF cavities for the International Linear Collider. An attempt was made to reduce the large deflection of the helium gas return pipe (GRP) that was observed in the STF cryomodules during cool-down and warm-up. This paper briefly describes the structure and cryogenic performance of the captures cavity cryomodule, and also reports the measured displacement of the GRP and the cavity-containing helium vessels during regular operation.

  15. Strain gauge validation experiments for the Sandia 34-meter VAWT (vertical axis wind turbine) Test Bed

    SciTech Connect (OSTI)

    Sutherland, H.J.

    1988-08-01

    Sandia National Laboratories has erected a research oriented, 34- meter diameter, Darrieus vertical axis wind turbine near Bushland, Texas. This machine, designated the Sandia 34-m VAWT Test Bed, is equipped with a large array of strain gauges that have been placed at critical positions about the blades. This manuscript details a series of four-point bend experiments that were conducted to validate the output of the blade strain gauge circuits. The output of a particular gauge circuit is validated by comparing its output to ''equivalent'' gauge circuits (in this stress state) and to theoretical predictions. With only a few exceptions, the difference between measured and predicted strain values for a gauge circuit was found to be of the order of the estimated repeatability for the measurement system. 8 refs., 20 figs., 3 tabs.

  16. APEX: A Prime EXperiment at Jefferson Lab - Test Run Results and Full Run Plans; Update

    SciTech Connect (OSTI)

    Beacham, James

    2015-06-01

    APEX is an experiment at Thomas Jefferson National Accelerator Facility (JLab) in Virginia, USA, that searches for a new gauge boson (A') with sub-GeV mass and coupling to ordinary matter of g' ~ (10-6 - 10⁻²)e. Electrons impinge upon a fixed target of high-Z material. An A' is produced via a process analogous to photon bremsstrahlung, decaying to an e⁺+e⁻ pair. A test run was held in July of 2010, covering mA' = 175 to 250 MeV and couplings g'/e > 10⁻³. A full run is approved and will cover mA' ~ 65 to 525 MeV and g'/e > 2.3 x 10⁻⁴, and is expected to occur sometime in 2016 or 2017.

  17. Assessment of Initial Test Conditions for Experiments to Assess Irradiation Assisted Stress Corrosion Cracking Mechanisms

    SciTech Connect (OSTI)

    Busby, Jeremy T; Gussev, Maxim N

    2011-04-01

    Irradiation-assisted stress corrosion cracking is a key materials degradation issue in today s nuclear power reactor fleet and affects critical structural components within the reactor core. The effects of increased exposure to irradiation, stress, and/or coolant can substantially increase susceptibility to stress-corrosion cracking of austenitic steels in high-temperature water environments. . Despite 30 years of experience, the underlying mechanisms of IASCC are unknown. Extended service conditions will increase the exposure to irradiation, stress, and corrosive environment for all core internal components. The objective of this effort within the Light Water Reactor Sustainability program is to evaluate the response and mechanisms of IASCC in austenitic stainless steels with single variable experiments. A series of high-value irradiated specimens has been acquired from the past international research programs, providing a valuable opportunity to examine the mechanisms of IASCC. This batch of irradiated specimens has been received and inventoried. In addition, visual examination and sample cleaning has been completed. Microhardness testing has been performed on these specimens. All samples show evidence of hardening, as expected, although the degree of hardening has saturated and no trend with dose is observed. Further, the change in hardening can be converted to changes in mechanical properties. The calculated yield stress is consistent with previous data from light water reactor conditions. In addition, some evidence of changes in deformation mode was identified via examination of the microhardness indents. This analysis may provide further insights into the deformation mode under larger scale tests. Finally, swelling analysis was performed using immersion density methods. Most alloys showed some evidence of swelling, consistent with the expected trends for this class of alloy. The Hf-doped alloy showed densification rather than swelling. This observation may be

  18. Bull Outdoor Products: Proposed Penalty (2015-CE-14014)

    Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that Bull Outdoor Products, Inc. failed to certify refrigerator basic model BC-130 as compliant with the applicable energy conservation standards.

  19. New CALiPER Snapshot Report on Outdoor Area Lighting

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Energy's CALiPER program has released a new Snapshot report on outdoor area lighting that covers area/roadway luminaires, parking garage luminaires, and canopy luminaires....

  20. DOE Publishes GATEWAY Report on Pedestrian Friendly Outdoor Lighting

    Energy.gov [DOE]

    The U.S. Department of Energy (DOE) has published a new GATEWAY report entitled Pedestrian Friendly Outdoor Lighting. Recognizing that pedestrian lighting has different criteria for success than street and area lighting, GATEWAY followed t

  1. DOE Publishes GATEWAY Report on Pedestrian Friendly Outdoor Lighting

    Energy.gov [DOE]

    The U.S. Department of Energy (DOE) has published a new GATEWAY report entitled Pedestrian Friendly Outdoor Lighting. Recognizing that pedestrian lighting has different criteria for success than...

  2. Solar Decathlon Design Places People and the Outdoors at its...

    Office of Environmental Management (EM)

    Design Places People and the Outdoors at its Heart Solar Decathlon Design Places People ... How can I participate? The next Solar Decathlon will be held Sept. 23-Oct. 2, 2011, at the ...

  3. Model Specification for Networked Outdoor Lighting Control Systems

    Energy.gov [DOE]

    The DOE Municipal Solid-State Street Lighting Consortium's Model Specification for Networked Outdoor Lighting Control Systems is a tool designed to help cities, utilities, and other local agencies...

  4. A spheromak ignition experiment reusing Mirror Fusion Test Facility (MFTF) equipment

    SciTech Connect (OSTI)

    Fowler, T.K.

    1993-09-28

    Based on available experimental results and theory, a scenario is presented to achieve ohmic ignition in a spheromak by slow ({approximately} 10 sec.) helicity injection using power from the Mirror Fusion Test Facility (MFTF) substation. Some of the other parts needed (vacuum vessel, coils, power supplies, pumps, shielded building space) might also be obtained from MFTF or other salvage, as well as some components needed for intermediate experiments for additional verification of the concept (especially confinement scaling). The proposed ignition experiment would serve as proof-of-principle for the spheromak DT fusion reactor design published by Hagenson and Krakowski, with a nuclear island cost about ten times less than a tokamak of comparable power. Designs at even higher power density and lower cost might be possible using Christofilos` concept of a liquid lithium blanket. Since all structures would be protected from neutrons by the lithium blanket and the tritium inventory can be reduced by continuous removal from the liquid blanket, environmental and safety characteristics appear to be favorable.

  5. Operating Experience Level 3, Update to Requalification Test Failure of Certain High Efficiency Particulate Air (HEPA) Filters

    Energy.gov [DOE]

    Operating Experience Level 3 (OE-3) document provides information regarding the previous requalification test failure and subsequent successful requalification, of certain high efficiency particulate air (HEPA) Filters models manufactured by Flanders Corporation.

  6. Broadband Outdoor Radiometer Calibration Process for the Atmospheric

    Office of Scientific and Technical Information (OSTI)

    Radiation Measurement Program (Technical Report) | SciTech Connect Broadband Outdoor Radiometer Calibration Process for the Atmospheric Radiation Measurement Program Citation Details In-Document Search Title: Broadband Outdoor Radiometer Calibration Process for the Atmospheric Radiation Measurement Program The Atmospheric Radiation Measurement program (ARM) maintains a fleet of monitoring stations to aid in the improved scientific understanding of the basic physics related to radiative

  7. The materials irradiation experiment for testing plasma facing materials at fusion relevant conditions

    DOE PAGES-Beta [OSTI]

    Garrison, L. M.; Zenobia, Samuel J.; Egle, Brian J.; Kulcinski, Gerald L.; Santarius, John F.

    2016-08-01

    The Materials Irradiation Experiment (MITE-E) was constructed at the University of Wisconsin-Madison Inertial Electrostatic Confinement Laboratory to test materials for potential use as plasma-facing materials (PFMs) in fusion reactors. PFMs in fusion reactors will be bombarded with x-rays, neutrons, and ions of hydrogen and helium. More needs to be understood about the interactions between the plasma and the materials to validate their use for fusion reactors. The MITE-E simulates some of the fusion reactor conditions by holding samples at temperatures up to 1000°C while irradiating them with helium or deuterium ions with energies from 10 to 150 keV. The ionmore » gun can irradiate the samples with ion currents of 20 μA–500 μA; the typical current used is 72 μA, which is an average flux of 9 × 1014 ions/(cm2 s). The ion gun uses electrostatic lenses to extract and shape the ion beam. A variable power (1-20 W), steady-state, Nd:YAG laser provides additional heating to maintain a constant sample temperature during irradiations. The ion beam current reaching the sample is directly measured and monitored in real-time during irradiations. The ion beam profile has been investigated using a copper sample sputtering experiment. In conclusion, the MITE-E has successfully been used to irradiate polycrystalline and single crystal tungsten samples with helium ions and will continue to be a source of important data for plasma interactions with materials.« less

  8. Potential Offsite Radiological Doses Estimated for the Proposed Divine Strake Experiment, Nevada Test Site

    SciTech Connect (OSTI)

    Ron Warren

    2006-12-01

    An assessment of the potential radiation dose that residents offsite of the Nevada Test Site (NTS) might receive from the proposed Divine Strake experiment was made to determine compliance with Subpart H of Part 61 of Title 40 of the Code of Federal Regulations, National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities. The Divine Strake experiment, proposed by the Defense Threat Reduction Agency, consists of a detonation of 700 tons of heavy ammonium nitrate fuel oil-emulsion above the U16b Tunnel complex in Area 16 of the NTS. Both natural radionuclides suspended, and historic fallout radionuclides resuspended from the detonation, have potential to be transported outside the NTS boundary by wind. They may, therefore, contribute radiological dose to the public. Subpart H states ''Emissions of radionuclides to the ambient air from Department of Energy facilities shall not exceed those amounts that would cause any member of the public to receive in any year an effective dose equivalent of 10 mrem/yr'' (Title 40 of the Code of Federal Regulations [CFR] 61.92) where mrem/yr is millirem per year. Furthermore, application for U.S. Environmental Protection Agency (EPA) approval of construction of a new source or modification of an existing source is required if the effective dose equivalent, caused by all emissions from the new construction or modification, is greater than or equal to 0.1 mrem/yr (40 CFR 61.96). In accordance with Section 61.93, a dose assessment was conducted with the computer model CAP88-PC, Version 3.0. In addition to this model, a dose assessment was also conducted by the National Atmospheric Release Advisory Center (NARAC) at the Lawrence Livermore National Laboratory. This modeling was conducted to obtain dose estimates from a model designed for acute releases and which addresses terrain effects and uses meteorology from multiple locations. Potential radiation dose to a hypothetical maximally

  9. Test beam results on the Proton Zero Degree Calorimeter for the ALICE experiment

    SciTech Connect (OSTI)

    Arnaldi, R.; Chiavassa, E.; De Marco, N.; Ferretti, A.; Gagliardi, M.; Gallio, M.; Gemme, R.; Mereu, P.; Musso, A.; Oppedisano, C.; Piccotti, A.; Poggio, F.; Scomparin, E.; Stocco, D.; Vercellin, E.; Yermia, F.; Cicalo, C.; De Falco, A.; Floris, M.; Masoni, A.

    2006-10-27

    The proton Zero Degree Calorimeter (ZP) for the ALICE experiment will measure the energy of the spectator protons in heavy ion collisions at the CERN LHC. Since all the spectator protons have the same energy, the calorimeter's response is proportional to their number, providing a direct information on the centrality of the collision. The ZP is a spaghetti calorimeter, which collects and measures the Cherenkov light produced by the shower particles in silica optical fibers embedded in a brass absorber. The details of its construction will be shown. The calorimeter was tested at the CERN SPS using pion and electron beams with momenta ranging from 50 to 200 GeV/c. The response of the calorimeter and its energy resolution have been studied as a function of the beam energy. Also, the signal uniformity and a comparison between the transverse profile of the hadronic and electromagnetic shower are presented. Moreover, the differences between the calorimeter's responses to protons and pions of the same energy have been investigated, exploiting the proton contamination in the positive pion beams.

  10. REVIEW OF FAST FLUX TEST FACILITY (FFTF) FUEL EXPERIMENTS FOR STORAGE IN INTERIM STORAGE CASKS (ISC)

    SciTech Connect (OSTI)

    CHASTAIN, S.A.

    2005-10-24

    Appendix H, Section H.3.3.10.11 of the Final Safety Analysis Report (FSAR), provides the limits to be observed for fueled components authorized for storage in the Fast Flux Test Facility (FFTF) spent fuel storage system. Currently, the authorization basis allows standard driver fuel assemblies (DFA), as described in the FSAR Chapter 17, Section 17.5.3.1, to be stored provided decay power per assembly is {le} 250 watts, post-irradiation time is four years minimum, average assembly burn-up is 150,000 MWD/MTHM maximum and the pre-irradiation enrichment is 29.3% maximum (per H.3.3.10.11). In addition, driver evaluation (DE), core characterizer assemblies (CCA), and run-to-cladding-breach (RTCB) assemblies are included based on their similarities to a standard DFA. Ident-69 pin containers with fuel pins from these DFAs can also be stored. Section H.3.3.10.11 states that fuel types outside the specification criteria above will be addressed on a case-by-case basis. There are many different types of fuel and blanket experiments that were irradiated in the FFTF which now require offload to the spent fuel storage system. Two reviews were completed for a portion of these special type fuel components to determine if placement into the Core Component Container (CCC)/Interim Storage Cask (ISC) would require any special considerations or changes to the authorization basis. Project mission priorities coupled with availability of resources and analysts prevented these evaluations from being completed as a single effort. Areas of review have included radiological accident release consequences, radiological shielding adequacy, criticality safety, thermal limits, confinement, and stress. The results of these reviews are available in WHC-SD-FF-RPT-005, Rev. 0 and 1, ''Review of FFTF Fuel Experiments for Storage at ISA'', (Reference I), which subsequently allowed a large portion of these components to be included in the authorization basis (Table H.3.3-21). The report also identified

  11. Testing CPT conservation using the NuMI neutrino beam with the MINOS experiment

    SciTech Connect (OSTI)

    Auty, David John

    2010-05-01

    The MINOS experiment was designed to measure neutrino oscillation parameters with muon neutrinos. It achieves this by measuring the neutrino energy spectrum and flavor composition of the man-made NuMI neutrino beam 1km after the beam is formed and again after 735 km. By comparing the two spectra it is possible to measure the oscillation parameters. The NuMI beam is made up of 7.0% {bar {nu}}{sub {mu}}, which can be separated from the {nu}{sub {mu}} because the MINOS detectors are magnetized. This makes it possible to study {bar {nu}}{sub {mu}} oscillations separately from those of muon neutrinos, and thereby test CPT invariance in the neutrino sector by determining the {bar {nu}}{sub {mu}} oscillation parameters and comparing them with those for {nu}{sub {mu}}, although any unknown physics of the antineutrino would appear as a difference in oscillation parameters. Such a test has not been performed with beam {bar {nu}}{sub {mu}} before. It is also possible to produce an almost pure {bar {nu}}{sub {mu}} beam by reversing the current through the magnetic focusing horns of the NuMI beamline, thereby focusing negatively, instead of positively charged particles. This thesis describes the analysis of the 7% {bar {nu}}{sub {mu}} component of the forward horn current NuMI beam. The {bar {nu}}{sub {mu}} of a data sample of 3.2 x 10{sup 20} protons on target analysis found 42 events, compared to a CPT conserving prediction of 58.3{sub -7.6}{sup +7.6}(stat.){sub -3.6}{sup +3.6}(syst.) events. This corresponds to a 1.9 {sigma} deficit, and a best fit value of {Delta}{bar m}{sub 32}{sup 2} = 18 x 10{sup -3} eV{sup 2} and sin{sup 2} 2{bar {theta}}{sub 23} = 0.55. This thesis focuses particularly on the selection of {bar {nu}}{sub {mu}} events, and investigates possible improvements of the selection algorithm. From this a different selector was chosen, which corroborated the findings of the original selector. The thesis also investigates how the systematic errors affect the

  12. Indoor and Outdoor Spectroradiometer Intercomparison for Spectral Irradiance Measurement

    SciTech Connect (OSTI)

    Habte, A.; Andreas, A.; Ottoson, L.; Gueymard, C.; Fedor, G.; Fowler, S.; Peterson, J.; Naranen, R.; Kobashi, T.; Akiyama, A.; Takagi, S.

    2014-05-01

    This report details the global spectral irradiance intercomparison using spectroradiometers that was organized by the National Renewable Energy Laboratory's Solar Radiation Research Laboratory. The intercomparison was performed both indoors and outdoors on September 17, 2013. Five laboratories participated in the intercomparison using 10 spectroradiometers, and a coordinated measurement setup and a common platform were employed to compare spectral irradiances under both indoor and outdoor conditions. The intercomparison aimed to understand the performance of the different spectroradiometers and to share knowledge in making spectral irradiance measurements. This intercomparison was the first of its kind in the United States.

  13. Engineering test plan for field radionuclide migration experiments in climax granite

    SciTech Connect (OSTI)

    Isherwood, D.; Raber, E.; Stone, R.; Lord, D.; Rector, N.; Failor, R.

    1982-05-01

    This Engineering Test Plan (ETP) describes field studies of radionuclide migration in fractured rock designed for the Climax grainite at the Nevada Test Site. The purpose of the ETP is to provide a detailed written document of the method of accomplishing these studies. The ETP contains the experimental test plans, an instrumentation plan, system schematics, a description of the test facility, and a brief outline of the laboratory support studies needed to understand the chemistry of the rock/water/radionuclide interactions. Results of our initial hydrologic investigations are presented along with pretest predictions based on the hydrologic test results.

  14. Experiment

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    MiniBooNE Experiment September, 2002 SeptemMyungkee Sung (LSU/MiniBooNE) 4th International Workshop on the Identification of Dark Matter Cosmologically Interesting Region; Hot Dark Matter? LSND Signal at High ∆m 2 KARMEN II narrowed the signal region MiniBooNE will fully address this signal. Neutrino Osillation at High ∆m 2 LSND: Searching for ν µ →ν e ν µ - From µ + decay at rest with endpoint energy 53 MeV L = 30m, L/E ~ 1m/MeV, 167 tons of Mineral Oil Look for ν e Appearance: ν

  15. Statistical evaluation of the metallurgical test data in the ORR-PSF-PVS irradiation experiment. [PWR; BWR

    SciTech Connect (OSTI)

    Stallmann, F.W.

    1984-08-01

    A statistical analysis of Charpy test results of the two-year Pressure Vessel Simulation metallurgical irradiation experiment was performed. Determination of transition temperature and upper shelf energy derived from computer fits compare well with eyeball fits. Uncertainties for all results can be obtained with computer fits. The results were compared with predictions in Regulatory Guide 1.99 and other irradiation damage models.

  16. On the modeling of the Taylor cylinder impact test for orthotropic textured materials: Calculations and experiments

    SciTech Connect (OSTI)

    Maudlin, P.J.; Bingert, J.F.; House, J.W.

    1997-04-01

    Taylor impact tests using specimens cut from a rolled plate of Ta were conducted. The Ta was well-characterized in terms of flow stress and crystallographic texture. A piece-wise yield surface was interrogated from this orthotropic texture, and used in EPIC-95 3D simulations of the Taylor test. Good agreement was realized between the calculations and the post-test geometries in terms of major and minor side profiles and impact-interface footprints.

  17. Cryogenic experiences during W7-X HTS-current lead tests

    SciTech Connect (OSTI)

    Richter, Thomas; Lietzow, Ralph

    2014-01-29

    The Karlsruhe Institute of Technology (KIT) was responsible for design, production and test of the High Temperature Superconductor (HTS) current leads (CL) for the stellerator Wendelstein 7-X (W7-X). 16 current leads were delivered. Detailed prototype tests as well as the final acceptance tests were performed at KIT, using a dedicated test cryostat assembled beside and connected to the main vacuum vessel of the TOSKA facility. A unique feature is the upside down orientation of the current leads due to the location of the power supplies in the basement of the experimental area of W7-X. The HTS-CL consists of three main parts: the cold end for the connection to the bus bar at 4.5 K, the HTS part operating in the temperature range from 4.5 K to 65 K and a copper heat exchanger (HEX) in the temperature range from 65 K to room temperature, which is cooled with 50 K helium. Therefore in TOSKA it is possible to cool test specimens simultaneously with helium at two different temperature levels. The current lead tests included different scenarios with currents up to 18.2 kA. In total, 10 cryogenic test campaigns with a total time of about 24 weeks were performed till beginning of 2013. The test facility as well as the 2 kW cryogenic plant of ITEP showed a very good reliability. However, during such a long and complex experimental campaign, one has to deal with failures, technical difficulties and incidents. The paper gives a summary of the test performance comprising the test preparation and operation. This includes the performance and reliability of the refrigerator and the test facility with reference to the process measuring and control system, the data acquisition system, as well as the building infrastructure.

  18. Text-Alternative Version: Hitting the Target: ENERGY STAR® SSL Outdoor

    Energy Savers

    Area Lighting | Department of Energy Hitting the Target: ENERGY STAR® SSL Outdoor Area Lighting Text-Alternative Version: Hitting the Target: ENERGY STAR® SSL Outdoor Area Lighting Below is the text-alternative version of the Hitting the Target: ENERGY STAR® SSL Outdoor Area Lighting Webcast. Terry Shoemaker: Welcome, ladies and gentlemen. I'm Terry Shoemaker with the Pacific Northwest Laboratory, and I'd like to welcome you to today's webcast, Hitting the Target: ENERGY STAR SSL Outdoor

  19. Outdoor Outfitter Gets Greener With Solar Water Heater

    Energy.gov [DOE]

    Using Recovery Act funding, L.L. Bean, the popular outdoor apparel company, recently installed a 180-tube solar hot water collector array on the roof of their flagship store in Freeport, Maine. Find out some how much energy and money they're saving thanks to the new solar installation.

  20. Direct containment heating experiments in Zion Nuclear Power Plant Geometry using prototypic core materials, the U2 test

    SciTech Connect (OSTI)

    Binder, J.L.; McUmber, L.M.; Spencer, B.W.

    1993-05-01

    A third Direct Containment Heating (DCH) experiments has been completed which utilizes prototypic core materials. The reactor material tests are a follow on to the Integral Effects Testing (IET) DCH program. The IET series of tests primarily addressed the effect of scale on DCH phenomena. This was accomplished by completing a series of counterpart tests in 1/40 and 1/10th linear scale DCH facilities at Argonne National Laboratory (ANL) and Sandia National Laboratories (SNL), respectively. The IET experiments modeled the Zion Nuclear Power Plant Geometry. The scale models included representations of the primary system volume, RPV lower head, cavity and instrument tunnel, and the lower containment structures. The experiments were steam driven at nominally 6.2 MPa. Iron-alumina thermite with chromium was used as a core melt simulant in the IET experiments. While the IET experiments at ANL and SNL provided useful data on the effect of scale on DCH phenomena, a significant question concerns the potential experiment distortions introduced by the use of non-prototypic iron/alumina thermite. Therefore, further testing with prototypic materials has been carried out at ANL. A prototypic core melt was produced for the experiment by first mixing powders of uranium, zirconium, iron oxide (Fe{sub 2}O{sub 3}), and chromium trioxide (CrO{sub 3}). When ignited the powders react exothermically to produce a molten mixture. The amounts of each powder were selected to produce the anticipated composition for a core melt following a station blackout: 57.8 mass% UO{sub 2} 10.5 mass% ZrO{sub 2} 14.3 mass% Fe, 13.7 mass% Zr, and 3.7 mass% Cr. Development tests measured the initial melt temperature to be in the range of 2600 - 2700 K. The total thermal specific energy content of the melt at 2700 K is 1.2 MJ/kg compared to 2.25 MJ/kg for the iron-alumina simulant at its measured initial temperature of 2500 K.

  1. Design and Status of the NGNP Fuel Experiment AGR-3/4 Irradiated in the Advanced Test Reactor

    SciTech Connect (OSTI)

    Blaine Grover

    2012-10-01

    The United States Department of Energy’s Next Generation Nuclear Plant (NGNP) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating up to seven separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States, and will be irradiated over the next several years to demonstrate and qualify new TRISO coated particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of at least six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006 and was completed in November 2009. The second experiment (AGR-2) started irradiation in June 2010 and is currently scheduled to be completed in April 2013. The third and fourth experiments have been combined into a single experiment designated AGR-3/4, which started its irradiation in December 2011 and is currently scheduled to be completed in November 2013. Since the purpose of this experiment is to provide data on fission product migration and retention in the NGNP reactor, the design of this experiment is

  2. Initial tensile test results from J316 stainless steel irradiated in the HFIR spectrally tailored experiment

    SciTech Connect (OSTI)

    Pawel, J.E.; Grossbeck, M.L.; Rowcliffe, A.F.

    1995-04-01

    The objective of this work is to determine the effects of neutron irradiation on the mechanical properties of austenitic stainless steel alloys. In this experiment, the spectrum has been tailored to reduce the thermal neutron flux and achieve a He/dpa level near that expected in a fusion reactor.

  3. Status of the NGNP Graphite Creep Experiments AGC-1 and AGC-2 Irradiated in the Advanced Test Reactor

    SciTech Connect (OSTI)

    Blaine Grover

    2012-10-01

    The United States Department of Energy’s Next Generation Nuclear Plant (NGNP) Program will be irradiating six nuclear graphite creep experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The graphite experiments will be irradiated over the next six to eight years to support development of a graphite irradiation performance data base on the new nuclear grade graphites now available for use in high temperature gas reactors. The goals of the irradiation experiments are to obtain irradiation performance data, including irradiation creep, at different temperatures and loading conditions to support design of the Next Generation Nuclear Plant (NGNP) Very High Temperature Gas Reactor, as well as other future gas reactors. The experiments will each consist of a single capsule that will contain six peripheral stacks of graphite specimens, with half of the graphite specimens in each stack under a compressive load, while the other half of the specimens will not be subjected to a compressive load during irradiation. The six peripheral stacks will have different compressive loads applied to the top half of each pair of specimen stacks, while a seventh stack will not have a compressive load. The specimens will be irradiated in an inert sweep gas atmosphere with on-line temperature and compressive load monitoring and control. There will also be sampling the sweep gas effluent to determine if any oxidation or off-gassing of the specimens occurs during irradiation of the experiment. The first experiment, AGC-1, started its irradiation in September 2009, and the irradiation was completed in January 2011. The second experiment, AGC-2, started its irradiation in April 2011 and completed its irradiation in May 2012. This paper will briefly discuss the design of the experiment and control systems, and then present the irradiation results for each experiment to date.

  4. Experiment data report for Multirod Burst Test (MRBT) Bundle B-5. [PWR

    SciTech Connect (OSTI)

    Chapman, R H; Crowley, J L; Longest, A W

    1984-08-01

    A reference source of MRBT bundle B-5 test data is presented with interpretation limited to that necessary to understand pertinent features of the test. Primary objectives of this 8 x 8 multirod burst test were to investigate the effects of array size and rod-to-rod interactions on cladding deformation in the high-alpha-Zircaloy temperature range under simulated light-water reactor loss-of-coolant accident (LOCA) conditions. B-5 test conditions, nominally the same as used in an earlier 4 x 4 (B-3) test, simulated the adiabatic heatup (reheat) phase of an LOCA and were conducive to large deformation. The fuel pin simulators were electrically heated (average linear power generation of 3.0 kW/m) and were slightly cooled with a very low flow (Re approx. 140) of low-pressure superheated steam. The cladding temperature increased from the initial temperature (335/sup 0/C) to the burst temperature at a rate of 9.8/sup 0/C/s. The simulators burst in a very narrow temperature range, with an average of 768/sup 0/C. Cladding burst strain ranged from 32% to 95%, with an average of 61%. Volumetric expansion over the heated length of the cladding ranged from 35% to 79%, with an average of 52%. The results clearly show deformation was greater in the bundle interior and suggest rod-to-rod mechanical interactions caused axial propagation of the deformation.

  5. Preliminary analyses of the excavation investigation experiments proposed for the exploratory shaft at Yucca Mountain, Nevada Test Site

    SciTech Connect (OSTI)

    Costin, L.S.; Bauer, S.J.

    1988-12-01

    The Yucca Mountain Project (YMP), is examining the feasibility of siting a repository for high-level nuclear waste at Yucca Mountain on and adjacent to the Nevada Test Site. Three excavation experiments, Shaft Convergence, Demonstration Breakout Rooms, and Sequential Drift Mining, will provide some of the data required to (1) assess the mechanical behavior of repository-size openings and (2) validate numerical models that may be used in the repository design process. In this report, the results of preliminary analyses of the three excavation experiments are presented. The major objective of these analyses was to provide some guidance to the experiment planners regarding the expected displacements and stresses near the experimental drifts so that selection and placement of instrumentation could be optimized. Further, successful completion of these analyses demonstrates the ability to model the experiments, given the simplifying assumptions presented. Limitations of the analyses performed and the experiments as currently designed are also discussed. Finally, the results of these analyses provided some indication of how the variation of some key geometric and material parameters would affect the predicted results. Once the experiment design is finalized and site-specific material data are collected, pretest predictive analyses will be conducted using the mechanical and material models that require validation. 15 refs., 123 figs., 13 tabs.

  6. Radiation-induced electrical degradation experiments in the Japan materials testing reactor

    SciTech Connect (OSTI)

    Farnum, E.; Scharborough, K.; Shikama, Tatsuo

    1995-04-01

    The objective of this experiment is to determine the extent of degradation during neutron irradiation of electrical and optical properties of candidate dielectric materials. The goals are to identify promising dielectrics for ITER and other fusion machines for diagnostic applications and establish the basis for optimization of candidate materials. An experiment to measure radiation-induced electrical degradation (REID) in sapphire and MgO-insulated cables was conducted at the JMTR light water reactor. The materials were irradiated at about 260 {degree}C to a fluence of 3{times}10{sup 24} n/m{sup 2} (E>1 MeV) with an applied DC electric field between 100 kV/m and 500 kV/m.

  7. A Serendipitous, Long-Term Infiltration Experiment: Water and Tritium Circulation Beneath the CAMBRIC Ditch at the Nevada Test Site

    SciTech Connect (OSTI)

    Maxwell, R M; Tompson, A B; Kollet, S J

    2008-11-20

    Underground nuclear weapons testing at the Nevada Test Site introduced numerous radionuclides that may be used to characterize subsurface hydrologic transport processes in arid climates. A sixteen year pumping experiment designed to examine radionuclide migration away from the CAMBRIC nuclear test, conducted in groundwater beneath Frenchman Flat in 1965, gave rise to an unintended second experiment involving radionuclide infiltration through the vadose zone, as induced by seepage of pumping effluents beneath an unlined discharge trench. The combined experiments have been reanalyzed using a detailed, three-dimensional numerical model of transient, variably saturated flow and mass transport, tailored specifically for large scale and efficient calculations. Simulations have been used to estimate radionuclide travel and residence times in various parts of the system for comparison with observations in wells. Model predictions of mass transport were able to clearly demonstrate radionuclide recycling behavior between the ditch and pumping well previously suggested by isotopic age dating information; match travel time estimates for radionuclides moving between the ditch, the water table, and monitoring wells; and provide more realistic ways in which to interpret the pumping well elution curves. Collectively, the results illustrate the utility of integrating detailed numerical modeling with diverse observational data in developing accurate interpretations and forecasts of contaminant migration processes.

  8. Theory of an Earth-bound clock comparison experiment as test of the principle of equivalence

    SciTech Connect (OSTI)

    Opat, G.I. Nuclear Physics Laboratory, GL-10, University of Washington, Seattle, Washington ); Unruh, W.G. )

    1991-11-15

    The comparison at sea level of the rates of two atomic clocks of differing geographical latitude is shown to provide a sensitive test of the principle of equivalence. Specifically, clocks of 1/10{sup 15} stability would effectively compare the rate of fall of the excitation energy of an atom with that of sea water to an accuracy of 1/10{sup 14} or better, a comparison which would be extremely difficult by normal techniques.

  9. Experiment data report for Multirod Burst Test (MRBT) bundle B-6. [PWR; BWR

    SciTech Connect (OSTI)

    Chapman, R H; Longest, A W; Crowley, J L

    1984-07-01

    A reference source of MRBT bundle B-6 test data is presented with minimum interpretation. The primary objective of this 8 x 8 multirod burst test was to investigate cladding deformation in the alpha-plus-beta-Zircaloy temperature range under simulated light-water-reactor (LWR) loss-of-coolant accident (LOCA) conditions. B-6 test conditions simulated the adiabatic heatup (reheat) phase of an LOCA and produced very uniform temperature distributions. The fuel pin simulators were electrically heated (average linear power generation of 1.42 kW/m) and were slightly cooled with a very low flow (Re approx. 140) of low-pressure superheated steam. The cladding temperature increased from the initial temperature (330/sup 0/C) to the burst temperature at a rate of 3.5/sup 0/C/s. The simulators burst in a very narrow temperature range, with an average of 930/sup 0/C. Cladding burst strain ranged from 21 to 56%, with an average of 31%. Volumetric expansion over the heated length of the cladding ranged from 16 to 32%, with an average of 23%. 23 references.

  10. Status of the NGNP graphite creep experiments AGC-1 and AGC-2 irradiated in the advanced test reactor

    SciTech Connect (OSTI)

    S. Blaine Grover

    2014-05-01

    The United States Department of Energy's Next Generation Nuclear Plant (NGNP) Program will be irradiating six nuclear graphite creep experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The graphite experiments will be irradiated over the next six to eight years to support development of a graphite irradiation performance data base on the new nuclear grade graphites now available for use in high temperature gas reactors. The goals of the irradiation experiments are to obtain irradiation performance data, including irradiation creep, at different temperatures and loading conditions to support design of the next generation nuclear plant (NGNP) very high temperature gas reactor, as well as other future gas reactors. The experiments will each consist of a single capsule that will contain six peripheral stacks of graphite specimens, with half of the graphite specimens in each stack under a compressive load, while the other half of the specimens will not be subjected to a compressive load during irradiation. The six peripheral stacks will have three different compressive loads applied to the top half of three diametrically opposite pairs of specimen stacks, while a seventh stack will not have a compressive load. The specimens will be irradiated in an inert sweep gas atmosphere with on-line temperature and compressive load monitoring and control. There will also be sampling the sweep gas effluent to determine if any oxidation or off-gassing of the specimens occurs during irradiation of the experiment.

  11. Prototype Systems for Measuring Outdoor Air Intake Rates in Rooftop Air Handlers

    SciTech Connect (OSTI)

    Fisk, William J.; Chan, Wanyu R.; Hotchi, Toshifumi

    2015-01-01

    The widespread absence of systems for real-time measurement and feedback control, of minimum outdoor air intake rates in HVAC systems contributes to the poor control of ventilation rates in commercial buildings. Ventilation rates affect building energy consumption and influence occupant health. The project designed fabricated and tested four prototypes of systems for measuring rates of outdoor air intake into roof top air handlers. All prototypes met the ±20% accuracy target at low wind speeds, with all prototypes accurate within approximately ±10% after application of calibration equations. One prototype met the accuracy target without a calibration. With two of four prototype measurement systems, there was no evidence that wind speed or direction affected accuracy; however, winds speeds were generally below usually 3.5 m s-1 (12.6 km h-1) and further testing is desirable. The airflow resistance of the prototypes was generally less than 35 Pa at maximum RTU air flow rates. A pressure drop of this magnitude will increase fan energy consumption by approximately 4%. The project did not have resources necessary to estimate costs of mass produced systems. The retail cost of components and materials used to construct prototypes ranged from approximately $1,200 to $1,700. The test data indicate that the basic designs developed in this project, particularly the designs of two of the prototypes, have considerable merit. Further design refinement, testing, and cost analysis would be necessary to fully assess commercial potential. The designs and test results will be communicated to the HVAC manufacturing community.

  12. Outdoor classroom inspires urban students to pursue technical careers |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration | (NNSA) Outdoor classroom inspires urban students to pursue technical careers Thursday, October 30, 2014 - 4:08pm At a time when middle school students are often apathetic toward science and learning, students in Kansas City are excited to learn about science and technology at the local Blue River. The National Security Campus has partnered with the T.R.U.E. Blue (Teaching Rivers in an Urban Environment) program to help local students make the

  13. Diagnostic experiments at a 3 MeV test stand at Rutherford Appleton Laboratory (United Kingdom)

    SciTech Connect (OSTI)

    Gabor, C.; Faircloth, D. C.; Lawrie, S. R.; Letchford, A. P.; Lee, D. A.; Pozimski, J. K.

    2010-02-15

    A front end is currently under construction consisting of a H{sup -} Penning ion source (65 keV, 60 mA), low energy beam transport (LEBT), and radio frequency quadrupole (3 MeV output energy) with a medium energy beam transport suitable for high power proton applications. Diagnostics can be divided either in destructive techniques such as beam profile monitor, pepperpot, slit-slit emittance scanner (preferably used during commissioning) or nondestructive, permanently installed devices such as photodetachment-based techniques. Another way to determine beam distributions is a scintillator with charge-coupled device camera. First experiments have been performed to control the beam injection into the LEBT. The influence of beam parameters such as particle energy and space-charge compensation on the two-dimensional distribution and profiles will be presented.

  14. Materials experience of the public domain portions of Tube Bank E' during Test Series A2

    SciTech Connect (OSTI)

    Not Available

    1990-06-01

    The tube banks at the Grimethorpe pressurized fluidized bed combustion facility are discussed. Tube Bank E'' was designed for operation as the in bed heat exchanger during Test Series A2 at the Grimethorpe PFBC Establishment between March and November 1987. The supply of the tube bank resulted from an agreement between Foster Wheeler Development Corporation (FWDC), the US Department of Energy, and the Operating Agent for the British Coal/CEGB Joint Programme on PFBC. The tube bank incorporated features, designed to produce acceptable and predictable wastage characteristics, suggested by both FWDC and BCC/CEGB interests. As part of the agreement between the various parties, it was agreed only data from 55% of the tube bank would enter the public domain. This report describes the tube bank, and describes and discusses the public domain wastage results following a total operating period approaching 1450 hours. It is concluded that although conditions varied throughout Test Series A2, there were no major differences in the aggressiveness of the bed. Armouring devices suggested by FWDC were not successful, but their chromised coatings offered promise. The results from UK proprietary parts of the tube bank indicated that the tube bank metal wastage need not be a life limiting problem for PFBC in-bed heat exchangers. 5 refs., 48 figs., 6 tabs.

  15. Hanford Waste Vitrification Program process development: Melt testing subtask, pilot-scale ceramic melter experiment, run summary

    SciTech Connect (OSTI)

    Nakaoka, R.K.; Bates, S.O.; Elmore, M.R.; Goles, R.W.; Perez, J.M.; Scott, P.A.; Westsik, J.H.

    1996-03-01

    Hanford Waste Vitrification Program (HWVP) activities for FY 1985 have included engineering and pilot-scale melter experiments HWVP-11/HBCM-85-1 and HWVP-12/PSCM-22. Major objectives designated by HWVP fo these tests were to evaluate the processing characteristics of the current HWVP melter feed during actual melter operation and establish the product quality of HW-39 borosilicate glass. The current melter feed, defined during FY 85, consists of reference feed (HWVP-RF) and glass-forming chemicals added as frit.

  16. Testing

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Test photo gallery Test photo gallery Addthis University of Texas Leadership Panel short 1 of 6 University of Texas Leadership Panel short University of Texas Leadership Panel short University of Kentucky Panel short 2 of 6 University of Kentucky Panel short University of Kentucky Panel short University of New Mexico Panel short 3 of 6 University of New Mexico Panel short University of New Mexico Panel short University of Texas Leadership Panel wide 4 of 6 University of Texas Leadership Panel

  17. Outdoor unit construction for an electric heat pump

    DOE Patents [OSTI]

    Draper, R.; Lackey, R.S.

    1984-09-11

    The outdoor unit for an electric heat pump is provided with an upper portion containing propeller fan means for drawing air through the lower portion containing refrigerant coil means in the form of four discrete coils connected together in a subassembly forming a W shape, the unit being provided with four adjustable legs which are retracted in shipment, and are adjusted on site to elevate the unit to a particular height suitable for the particular location in which the unit is installed. 4 figs.

  18. Outdoor unit construction for an electric heat pump

    DOE Patents [OSTI]

    Draper, Robert; Lackey, Robert S.

    1984-01-01

    The outdoor unit for an electric heat pump is provided with an upper portion 10 containing propeller fan means 14 for drawing air through the lower portion 12 containing refrigerant coil means 16 in the form of four discrete coils connected together in a subassembly forming a W shape, the unit being provided with four adjustable legs 64 which are retracted in shipment, and are adjusted on site to elevate the unit to a particular height suitable for the particular location in which the unit is installed.

  19. GPHS-RTG system explosion test direct course experiment 5000. [General Purpose Heat Source-Radioisotope Thermoelectric Generator

    SciTech Connect (OSTI)

    Not Available

    1984-03-01

    The General Purpose Heat Source-Radioisotope Thermoelectric Generator (GPHS-RTG) has been designed and is being built to provide electrical power for spacecrafts to be launched on the Space Shuttle. The objective of the RTG System Explosion Test was to expose a mock-up of the GPHS-RTG with a simulated heat source to the overpressure and impulse representative of a potential upper magnitude explosion of the Space Shuttle. The test was designed so that the heat source module would experience an overpressure at which the survival of the fuel element cladding would be expected to be marginal. Thus, the mock-up was placed where the predicted incident overpressure would be 1300 psi. The mock-up was mounted in an orientation representative of the launch configuration on the spacecraft to be used on the NASA Galileo Mission. The incident overpressure measured was in the range of 1400 to 2100 psi. The mock-up and simulated heat source were destroyed and only very small fragments were recovered. This damage is believed to have resulted from a combination of the overpressure and impact by very high velocity fragments from the ANFO sphere. Post-test analysis indicated that extreme working of the iridium clad material occurred, indicative of intensive impulsive loading on the metal.

  20. First elevated-temperature performance testing of coated particle fuel compacts from the AGR-1 irradiation experiment

    SciTech Connect (OSTI)

    Charles A. Baldwin; John D. Hunn; Robert N. Morris; Fred C. Montgomery; Chinthaka M. Silva; Paul A. Demkowicz

    2014-05-01

    In the AGR-1 irradiation experiment, 72 coated-particle fuel compacts were taken to a peak burnup of 19.5% fissions per initial metal atom with no in-pile failures. This paper discusses the first post-irradiation test of these mixed uranium oxide/uranium carbide fuel compacts at elevated temperature to examine the fuel performance under a simulated depressurized conduction cooldown event. A compact was heated for 400 h at 1600 degrees C. Release of 85Kr was monitored throughout the furnace test as an indicator of coating failure, while other fission product releases from the compact were periodically measured by capturing them on exchangeable, water-cooled deposition cups. No coating failure was detected during the furnace test, and this result was verified by subsequent electrolytic deconsolidation and acid leaching of the compact, which showed that all SiC layers were still intact. However, the deposition cups recovered significant quantities of silver, europium, and strontium. Based on comparison of calculated compact inventories at the end of irradiation versus analysis of these fission products released to the deposition cups and furnace internals, the minimum estimated fractional losses from the compact during the furnace test were 1.9 x 10-2 for silver, 1.4 x 10-3 for europium, and 1.1 x 10-5 for strontium. Other post-irradiation examination of AGR-1 compacts indicates that similar fractions of europium and silver may have already been released by the intact coated particles during irradiation, and it is therefore likely that the detected fission products released from the compact in this 1600 degrees C furnace test were from residual fission products in the matrix. Gamma analysis of coated particles deconsolidated from the compact after the heating test revealed that silver content within each particle varied considerably; a result that is probably not related to the furnace test, because it has also been observed in other as-irradiated AGR-1 compacts. X

  1. Rooftop Unitary Air Conditioner with Integral Dedicated Outdoor Air System

    SciTech Connect (OSTI)

    Tiax Llc

    2006-02-28

    Energy use of rooftop and other unitary air-conditioners in commercial applications accounts for about 1 quad (10{sup 15} Btu) of primary energy use annually in the U.S. [Reference 7]. The realization that this cooling equipment accounts for the majority of commercial building cooled floorspace and the majority also of commercial building energy use has spurred development of improved-efficiency equipment as well as development of stricter standards addressing efficiency levels. Another key market driver affecting design of rooftop air-conditioning equipment has been concern regarding comfort and the control of humidity. Trends for increases in outdoor air ventilation rates in certain applications, and the increasing concern about indoor air quality problems associated with humidity levels and moisture in buildings points to a need for improved dehumidification capability in air-conditioning equipment of all types. In many cases addressing this issue exacerbates energy efficiency, and vice versa. The integrated dedicated outdoor air system configuration developed in this project addresses both energy and comfort/humidity issues.

  2. An experiment to test the viability of a gallium-arsenide cathode in a SRF electron gun

    SciTech Connect (OSTI)

    Kewisch,J.; Ben-Zvi, I.; Rao, T.; Burrill, A.; Pate, D.; Wu, Q.; Todd, R.; Wang, E.; Bluem, H.; Holmes, D.; Schultheiss, T.

    2009-05-04

    Strained gallium arsenide cathodes are used in electron guns for the production of polarized electrons. In order to have a sufficient quantum efficiency lifetime of the cathode the vacuum in the gun must be 10{sup -11} Torr or better, so that the cathode is not destroyed by ion back bombardment or through contamination with residual gases. All successful polarized guns are DC guns, because such vacuum levels can not be obtained in normal conducting RF guns. A superconductive RF gun may provide a sufficient vacuum level due to cryo-pumping of the cavity walls. We report on the progress of our experiment to test such a gun with normal GaAs-Cs crystals.

  3. A lipid-accumulating alga maintains growth in outdoor, alkaliphilic raceway pond with mixed microbial communities

    DOE PAGES-Beta [OSTI]

    Bell, Tisza A.S.; Prithiviraj, Bharath; Wahlen, Brad D.; Fields, Matthew W.; Peyton, Brent M.

    2016-01-07

    Algal biofuels and valuable co-products are being produced in both open and closed cultivation systems. Growing algae in open pond systems may be a more economical alternative, but this approach allows environmental microorganisms to colonize the pond and potentially infect or outcompete the algal “crop.” In this study, we monitored the microbial community of an outdoor, open raceway pond inoculated with a high lipid-producing alkaliphilic alga, Chlorella vulgaris BA050. The strain C. vulgaris BA050 was previously isolated from Soap Lake, Washington, a system characterized by a high pH (~9.8). An outdoor raceway pond (200 L) was inoculated with C. vulgarismore » and monitored for 10 days and then the culture was transferred to a 2,000 L raceway pond and cultivated for an additional 6 days. Community DNA samples were collected over the 16-day period in conjunction with water chemistry analyses and cell counts. Universal primers for the SSU rRNA gene sequences for Eukarya, Bacteria, and Archaea were used for barcoded pyrosequence determination. The environmental parameters that most closely correlated with C. vulgaris abundance were pH and phosphate. Community analyses indicated that the pond system remained dominated by the Chlorella population (93% of eukaryotic sequences), but was also colonized by other microorganisms. Bacterial sequence diversity increased over time while archaeal sequence diversity declined over the same time period. Using SparCC co-occurrence network analysis, a positive correlation was observed between C. vulgaris and Pseudomonas sp. throughout the experiment, which may suggest a symbiotic relationship between the two organisms. The putative relationship coupled with high pH may have contributed to the success of C. vulgaris. As a result, the characterization of the microbial community dynamics of an alkaliphilic open pond system provides significant insight into open pond systems that could be used to control photoautotrophic biomass

  4. Testing Protocol for Module Encapsulant Creep (Presentation)

    SciTech Connect (OSTI)

    Kempe, M. D.; Miller, D. C.; Wohlgemuth, J. H.; Kurtz, S. R.; Moseley, J. M.; Shah, Q.; Tamizhmani, G.; Sakurai, K.; Inoue, M.; Doi, T.; Masuda, A.

    2012-02-01

    Recently there has been an interest in the use of thermoplastic encapsulant materials in photovoltaic modules to replace chemically crosslinked materials, e.g., ethylene-vinyl acetate. The related motivations include the desire to: reduce lamination time or temperature; use less moisture-permeable materials; or use materials with better corrosion characteristics. However, the use of any thermoplastic material in a high-temperature environment raises safety and performance concerns, as the standardized tests currently do not expose the modules to temperatures in excess of 85C, yet modules may experience temperatures above 100C in operation. Here we constructed eight pairs of crystalline-silicon modules and eight pairs of glass/encapsulation/glass mock modules using different encapsulation materials of which only two were designed to chemically crosslink. One module set was exposed outdoors with insulation on the back side in Arizona in the summer, and an identical set was exposed in environmental chambers. High precision creep measurements and performance measurements indicate that despite many of these polymeric materials being in the melt state at some of the highest outdoor temperatures achievable, very little creep was seen because of their high viscosity, temperature heterogeneity across the modules, and in the case of the crystalline-silicon modules, the physical restraint of the backsheet. These findings have very important implications for the development of IEC and UL qualification and safety standards, and in regards to the necessary level of cure during the processing of crosslinking encapsulants.

  5. Geologic Assessment of the Damage Zone from the Second Test at Source Physics Experiment-Nevada (SPE-N)

    SciTech Connect (OSTI)

    Townsend, M. J.; Huckins-Gang, H. E.; Prothro, L. B.; Reed, D. N.

    2012-12-01

    The National Center for Nuclear Security, established by the U.S. Department of Energy, National Nuclear Security Administration (NNSA), is conducting a series of explosive tests at the Nevada National Security Site that are designed to increase the understanding of certain basic physical phenomena associated with underground explosions. These tests will aid in developing technologies that might be used to detect underground nuclear explosions in support of verification activities for the Comprehensive Nuclear-Test-Ban Treaty. The initial project is a series of explosive tests, known collectively as the Source Physics Experiment-Nevada (SPE-N), being conducted in granitic rocks. The SPE-N test series is designed to study the generation and propagation of seismic waves. The results will help advance the seismic monitoring capability of the United States by improving the predictive capability of physics-based modeling of explosive phenomena. The first SPE N (SPE-N-1) test was conducted in May 2011, using 100 kg of explosives at the depth of 54.9 m in the U 15n source hole. SPE-N-2 was conducted in October 2011, using 1,000 kg of explosives at the depth of 45.7 m in the same source hole. The SPE-N-3 test was conducted in the same source hole in July 2012, using the same amount and type of explosive as for SPE-N-2, and at the same depth as SPE-N-2, within the damage zone created by the SPE-N-2 explosion to investigate damage effects on seismic wave propagation. Following the SPE-N-2 shot and prior to the SPE-N-3 shot, the core hole U-15n#10 was drilled at an angle from the surface to intercept the SPE-N-2 shot point location to obtain information necessary to characterize the damage zone. The objective was to determine the position of the damage zone near the shot point, at least on the northeast, where the core hole penetrated it, and obtain information on the properties of the damaged medium. Geologic characterization of the post-SPE-N-2 core hole included

  6. Thermosyphon coil arrangement for heat pump outdoor unit

    DOE Patents [OSTI]

    Draper, R.

    1984-05-22

    For a heat pump, the outdoor unit is provided with a coil and a refrigerant flow arrangement there for which is such that in the heating mode of operation of the heat pump they operate in a thermosyphon fashion. The coil has a feed portion and an exit portion leading to a separator drum from which liquid refrigerant is returned through downcomer line for recirculation to the feed portion. The coil is tilted upwardly from entry to exit by the angle alpha to enhance the clearance of the two phases of refrigerant from each other in the heating mode of operation. There is no thermosyphon function in the cooling mode of operation. 9 figs.

  7. Thermosyphon coil arrangement for heat pump outdoor unit

    DOE Patents [OSTI]

    Draper, Robert

    1984-01-01

    For a heat pump, the outdoor unit is provided with a coil and a refrigerant flow arrangement therefor which is such that in the heating mode of operation of the heat pump they operate in a thermosyphon fashion. The coil 32 has a feed portion 30 and an exit portion 34 leading to a separator drum 36 from which liquid refrigerant is returned through downcomer line 42 for recirculation to the feed portion. The coil is tilted upwardly from entry to exit by the angle alpha to enhance the clearance of the two phases of refrigerant from each other in the heating mode of operation. There is no thermosyphon function in the cooling mode of operation.

  8. Results of tests to demonstrate a six-inch diameter coater for production of TRISO-coated particles for advanced gas reactor experiments

    SciTech Connect (OSTI)

    Barnes, Charles M; Marshall, Douglas W; Keeley, Joseph T; Hunn, John D

    2009-01-01

    The Next Generation Nuclear Plant (NGNP)/Advanced Gas Reactor (AGR) Fuel Development and Qualification Program includes a series of irradiation experiments in Idaho National Laboratory's (INL's) Advanced Test Reactor. TRISO-coated particles for the first AGR experiment, AGR-1, were produced at Oak Ridge National Laboratory (ORNL) in a two-inch diameter coater. A requirement of the NGNP/AGR Program is to produce coated particles for later experiments in coaters more representative of industrial scale. Toward this end, tests have been performed by Babcock and Wilcox (B&W) in a six-inch diameter coater. These tests are expected to lead to successful fabrication of particles for the second AGR experiment, AGR-2.

  9. Spectroradiometric monitoring for open outdoor culturing of algae and cyanobacteria

    DOE PAGES-Beta [OSTI]

    Reichardt, Thomas A.; Collins, Aaron M.; McBride, Robert C.; Behnke, Craig A.; Timlin, Jerilyn A.

    2014-08-20

    We assess the measurement of hyperspectral reflectance for the outdoor monitoring of green algae and cyanobacteria cultures with a multi-channel, fiber-coupled spectroradiometer. Reflectance data acquired over a four-week period are interpreted via numerical inversion of a reflectance model, in which the above-water reflectance is expressed as a quadratic function of the single backscattering albedo, dependent on the absorption and backscatter coefficients. The absorption coefficient is treated as the sum of component spectra consisting of the cultured species (green algae or cyanobacteria), dissolved organic matter, and water (including the temperature dependence of the water absorption spectrum). The backscatter coefficient is approximatedmore » as the scaled Hilbert transform of the culture absorption spectrum with a wavelength-independent vertical offset. Additional terms in the reflectance model account for the pigment fluorescence features and the water surface reflection of sunlight and skylight. For both the green algae and cyanobacteria, the wavelength-independent vertical offset of the backscatter coefficient is found to scale linearly with daily dry weight measurements, providing the capability for a non-sampling measurement of biomass in outdoor ponds. Other fitting parameters in the reflectance model are compared to auxiliary measurements and physics-based calculations. The magnitudes of the sunlight and skylight water-surface contributions derived from the reflectance model compare favorably with Fresnel reflectance calculations, while the reflectance-derived quantum efficiency of Chl-a fluorescence is found to be in agreement with literature values. To conlclude, the water temperature derived from the reflectance model exhibits excellent agreement with thermocouple measurements during the morning hours and highlights significantly elevated temperatures in the afternoon hours.« less

  10. Spectroradiometric monitoring for open outdoor culturing of algae and cyanobacteria

    SciTech Connect (OSTI)

    Reichardt, Thomas A.; Collins, Aaron M.; McBride, Robert C.; Behnke, Craig A.; Timlin, Jerilyn A.

    2014-08-20

    We assess the measurement of hyperspectral reflectance for the outdoor monitoring of green algae and cyanobacteria cultures with a multi-channel, fiber-coupled spectroradiometer. Reflectance data acquired over a four-week period are interpreted via numerical inversion of a reflectance model, in which the above-water reflectance is expressed as a quadratic function of the single backscattering albedo, dependent on the absorption and backscatter coefficients. The absorption coefficient is treated as the sum of component spectra consisting of the cultured species (green algae or cyanobacteria), dissolved organic matter, and water (including the temperature dependence of the water absorption spectrum). The backscatter coefficient is approximated as the scaled Hilbert transform of the culture absorption spectrum with a wavelength-independent vertical offset. Additional terms in the reflectance model account for the pigment fluorescence features and the water surface reflection of sunlight and skylight. For both the green algae and cyanobacteria, the wavelength-independent vertical offset of the backscatter coefficient is found to scale linearly with daily dry weight measurements, providing the capability for a non-sampling measurement of biomass in outdoor ponds. Other fitting parameters in the reflectance model are compared to auxiliary measurements and physics-based calculations. The magnitudes of the sunlight and skylight water-surface contributions derived from the reflectance model compare favorably with Fresnel reflectance calculations, while the reflectance-derived quantum efficiency of Chl-a fluorescence is found to be in agreement with literature values. To conlclude, the water temperature derived from the reflectance model exhibits excellent agreement with thermocouple measurements during the morning hours and highlights significantly elevated temperatures in the afternoon hours.

  11. Tests of the Hardware and Software for the Reconstruction of Trajectories in the Experiment MINERvA

    SciTech Connect (OSTI)

    Palomino Gallo, Jose Luis; /Rio de Janeiro, CBPF

    2009-05-01

    MINERvA experiment has a highly segmented and high precision neutrino detector able to record events with high statistic (over 13 millions in a four year run). MINERvA uses FERMILAB NuMI beamline. The detector will allow a detailed study of neutrino-nucleon interactions. Moreover, the detector has a target with different materials allowing, for the first time, the study of nuclear effects in neutrino interactions. We present here the work done with the MINERvA reconstruction group that has resulted in: (a) development of new codes to be added to the RecPack package so it can be adapted to the MINERvA detector structure; (b) finding optimum values for two of the MegaTracker reconstruction package variables: PEcut = 4 (minimum number of photo electrons for a signal to be accepted) and Chi2Cut = 200 (maximum value of {chi}{sup 2} for a track to be accepted); (c) testing of the multi anode photomultiplier tubes used at MINERvA in order to determine the correlation between different channels and for checking the device's dark counts.

  12. EM 'Gets the Lead Out' Removing Portsmouth Site Outdoor Firing Range |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy 'Gets the Lead Out' Removing Portsmouth Site Outdoor Firing Range EM 'Gets the Lead Out' Removing Portsmouth Site Outdoor Firing Range August 15, 2016 - 12:25pm Addthis The 516-T, nicknamed the “spider,” included multiple conveyor belts carrying soil through a series of screens to sift bullet debris from the soil of the former outdoor firing range on the EM reservation. The 516-T, nicknamed the "spider," included multiple conveyor belts carrying soil

  13. Airborne measurements of total sulfur gases during NASA global tropospheric experiment/chemical instrumentation test and evaluation 3

    SciTech Connect (OSTI)

    Farwell, S.O.; MacTaggart, D.L.; Chatham, W.H.

    1995-04-20

    A metal foil collection/flash desorption/flame photometric detection (MFC/FD/FPD) technique was used by investigators from the University of Idaho (UI) to measure ambient total sulfur gas concentrations from an aircraft platform during the NASA Global Tropospheric Experiment/Chemical Instrumentation Test and Evaluation 3 (GTE/CITE 3) program. The MFC/FD/FPD technique allowed rapid quantitation of tropospheric background air masses using sample integration times of 1-3 min with little or no gap between measurements. The rapid and continual sampling nature of this technique yielded data covering approximately 75% of the entire CITE 3 program`s air track. Ambient air measurement data obtained during northern hemisphere (NH) flights often exhibited relatively high total sulfur gas values (up to 19 ppb) and an extremely high degree of sample heterogeneity, especially in coastal locations. Data from southern hemisphere (SH) flights typically exhibited relatively low total sulfur gas concentrations and a low degree of sample heterogeneity. A bimodal interhemispheric total sulfur gas gradient was observed using data obtained during transit flights between the two CITE 3 program ground bases. Comparisons were made of UI total sulfur gas measurements with composite sulfur gas values generated using speciated sulfur gas measurements from other CITE 3 participants. Only a relatively small number of overlap periods for comparison were obtained from all the available CITE 3 data because of large differences in measurement integration times and lack of synchronization of sample start/stop times for the various investigators. These effects were compounded with extreme sample heterogeneity in the NH and the speed at which the aircraft traversed the air masses being sampled. Comparison of NH UI total with composite sulfur gas values showed excellent correlation and linear curve fit, indicating substantial qualitative agreement. 20 refs., 10 figs., 7 tabs.

  14. Radiometric instrumentation and measurements guide for photovoltaic performance testing

    SciTech Connect (OSTI)

    Myers, D.

    1997-04-01

    The Photovoltaic Module and Systems Performance and Engineering Project at the National Renewable Energy Laboratory performs indoor and outdoor standardization, testing, and monitoring of the performance of a wide range of photovoltaic (PV) energy conversion devices and systems. The PV Radiometric Measurements and Evaluation Team (PVSRME) within that project is responsible for measurement and characterization of natural and artificial optical radiation which stimulates the PV effect. The PV manufacturing and research and development community often approaches project members for technical information and guidance. A great area of interest is radiometric instrumentation, measurement techniques, and data analysis applied to understanding and improving PV cell, module, and system performance. At the Photovoltaic Radiometric Measurements Workshop conducted by the PVSRME team in July 1995, the need to communicate knowledge of solar and optical radiometric measurements and instrumentation, gained as a result of NREL`s long-term experiences, was identified as an activity that would promote improved measurement processes and measurement quality in the PV research and manufacturing community. The purpose of this document is to address the practical and engineering need to understand optical and solar radiometric instrument performance, selection, calibration, installation, and maintenance applicable to indoor and outdoor radiometric measurements for PV calibration, performance, and testing applications. An introductory section addresses radiometric concepts and definitions. Next, concepts essential to spectral radiometric measurements are discussed. Broadband radiometric instrumentation and measurement concepts are then discussed. Each type of measurement serves as an important component of the PV cell, module, and system performance measurement and characterization process.

  15. A sun-tracking environmental chamber for the outdoor quantification of CPV modules

    SciTech Connect (OSTI)

    Faiman, David Melnichak, Vladimir Bokobza, Dov Kabalo, Shlomo

    2014-09-26

    The paper describes a sun-tracking environmental chamber and its associated fast electronics, devised for the accurate outdoor characterization of CPV cells, receivers, mono-modules, and modules. Some typical measurement results are presented.

  16. DOE Publishes CALiPER Snapshot Report on LED Outdoor Area Lighting

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Energy’s CALiPER program has released a Snapshot Report on LED outdoor area lighting. Based on LED Lighting Facts® data through the second quarter of 2014, the report focuses...

  17. Energy Department Announces Outdoor Winners of Next Generation Luminaires™ Solid-State Lighting Design Competition

    Energy.gov [DOE]

    The 2013 Next Generation LuminairesTM (NGL) Design Competition outdoor lighting category winners were announced Wednesday night at the Strategies in Light conference in Santa Clara, California. The...

  18. Indoor-Outdoor Air Leakage of Apartments and Commercial Buildings

    SciTech Connect (OSTI)

    Price, P.N.; Shehabi, A.; Chan, R.W.; Gadgil, A.J.

    2006-06-01

    We compiled and analyzed available data concerning indoor-outdoor air leakage rates and building leakiness parameters for commercial buildings and apartments. We analyzed the data, and reviewed the related literature, to determine the current state of knowledge of the statistical distribution of air exchange rates and related parameters for California buildings, and to identify significant gaps in the current knowledge and data. Very few data were found from California buildings, so we compiled data from other states and some other countries. Even when data from other developed countries were included, data were sparse and few conclusive statements were possible. Little systematic variation in building leakage with construction type, building activity type, height, size, or location within the u.s. was observed. Commercial buildings and apartments seem to be about twice as leaky as single-family houses, per unit of building envelope area. Although further work collecting and analyzing leakage data might be useful, we suggest that a more important issue may be the transport of pollutants between units in apartments and mixed-use buildings, an under-studied phenomenon that may expose occupants to high levels of pollutants such as tobacco smoke or dry cleaning fumes.

  19. D0 Collision Hall Outdoor Fresh Air Makeup

    SciTech Connect (OSTI)

    Markley, D.; /Fermilab

    1992-03-27

    This note will briefly describe the collision hall ventilation system and how D0 will monitor outside air makeup and what actions occur in the event of system failures. The Dzero collision hall has two different fresh air makeup conditions it must meet. They are: (1) Tunnel Barriers removed-Fresh air makeup = 4500 CFM; and (2) Tunnel Barriers in place-Fresh air makeup = 2800 CFM. This note demonstrates how the fresh air minimums are met and guaranteed. The air flow paths and ducts at D0 for both AHU1 and EF-7 are fixed. The blower throughputs are not variable. The software stops on AHU1's dampers will be set for a minimum of 2800 cfm or 4500 cfm of outdoor air continuously added to the HVAC flow stream depending on the tunnel barrier state. AHU1 and EF-7 both have monitoring that can determine reliably as to whether the respective blower is on or off. Since the outside air makeup is fixed as long as the blowers are running, and the software AHU1 damper limits are set, we can rely on the blower status indicators to determine as to whether the collision hall is receiving the proper amount of outside makeup air.

  20. Economizer control assembly for regulating the volume flow of outdoor ambient air

    SciTech Connect (OSTI)

    Michaels, D.D. Jr.

    1984-10-23

    An economizer assembly is disclosed wherein a sliding door is utilized for covering an outdoor ambient air opening allowing outdoor ambient air flow into a space to be conditioned. A motor shaft arrangement connected via a rotating drive rod is utilized to slidably displace the door to any position necessary to effectively regulate air flow. The utilization of this economizer control arrangement with a rooftop type air conditioning unit is further disclosed.

  1. Proceedings of the Symposium on the Non-Proliferation Experiment: Results and Implications for Test Ban Treaties, Rockville, Maryland, April 19-21, 1994

    SciTech Connect (OSTI)

    Denny, Marvin D

    1994-01-01

    To address a critical verification issue for the current Non-Proliferation Treaty (NPT) and for a possible future Comprehensive Test Ban Treaty (CTBT), the Department of Energy sought to measure certain differences between an underground nuclear test and a chemical test in the same geology, so that other explosions could be identified. This was done in a field experiment code-named the NonProliferation Experiment (NPE).This comprehensive experiment was designed to determine the signatures of chemical explosions for a broad range of phenomena for comparison with those of previous nuclear tests. If significant differences can be measured, then these measures can be used to discriminate between the two types of explosions. In addition, when these differences are understood, large chemical explosions can be used to seismically calibrate regions to discriminate earthquakes from explosions. Toward this end, on-site and off-site measurements of transient phenomena were made, and on-site measurements of residual effects are in progress.Perhaps the most striking result was that the source function for the chemical explosion was identical to that of a nuclear one of about twice the yield. These proceedings provide more detailed results of the experiment.

  2. BWR spent fuel storage cask performance test. Volume 1. Cask handling experience and decay heat, heat transfer, and shielding data

    SciTech Connect (OSTI)

    McKinnon, M.A.; Doman, J.W.; Tanner, J.E.; Guenther, R.J.; Creer, J.M.; King, C.E.

    1986-02-01

    This report documents a heat transfer and shielding performance test conducted on a Ridihalgh, Eggers and Associates REA 2023 boiling water reactor (BWR) spent fuel storage cask. The testing effort consisted of three parts: pretest preparations, performance testing, and post-test activities. Pretest preparations included conducting cask handling dry runs and characterizing BWR spent fuel assemblies from Nebraska Public Power District's Cooper Nuclear Station. The performance test matrix included 14 runs consisting of two loadings, two cask orientations, and three backfill environments. Post-test activities included calorimetry and axial radiation scans of selected fuel assemblies, in-basin sipping of each assembly, crud collection, video and photographic scans, and decontamination of the cask interior and exterior.

  3. Operating Experience Level 3, Laboratory Tests Indicate Conditions that Could Potentially Impact Certain Type of HEPA Filter Performance

    Energy.gov [DOE]

    OE-3: 2013-02 This Operating Experience Summary provides new information on a potential performance issue associated with certain axial flow high efficiency particulate air (HEPA) filters that do not contain separators in the folded media (separatorless).

  4. Langmuir probes for SPIDER (source for the production of ions of deuterium extracted from radio frequency plasma) experiment: Tests in BATMAN (Bavarian test machine for negative ions)

    SciTech Connect (OSTI)

    Brombin, M. Spolaore, M.; Serianni, G.; Pomaro, N.; Taliercio, C.; Palma, M. Dalla; Pasqualotto, R.; Schiesko, L.

    2014-11-15

    A prototype system of the Langmuir probes for SPIDER (Source for the production of Ions of Deuterium Extracted from RF plasma) was manufactured and experimentally qualified. The diagnostic was operated in RF (Radio Frequency) plasmas with cesium evaporation on the BATMAN (BAvarian Test MAchine for Negative ions) test facility, which can provide plasma conditions as expected in the SPIDER source. A RF passive compensation circuit was realised to operate the Langmuir probes in RF plasmas. The sensors holder, designed to better simulate the bias plate conditions in SPIDER, was exposed to a severe experimental campaign in BATMAN with cesium evaporation. No detrimental effect on the diagnostic due to cesium evaporation was found during the exposure to the BATMAN plasma and in particular the insulation of the electrodes was preserved. The paper presents the system prototype, the RF compensation circuit, the acquisition system (as foreseen in SPIDER), and the results obtained during the experimental campaigns.

  5. Multiple Irradiation Capsule Experiment (MICE)-3B Irradiation Test of Space Fuel Specimens in the Advanced Test Reactor (ATR) - Close Out Documentation for Naval Reactors (NR) Information

    SciTech Connect (OSTI)

    M. Chen; CM Regan; D. Noe

    2006-01-09

    Few data exist for UO{sub 2} or UN within the notional design space for the Prometheus-1 reactor (low fission rate, high temperature, long duration). As such, basic testing is required to validate predictions (and in some cases determine) performance aspects of these fuels. Therefore, the MICE-3B test of UO{sub 2} pellets was designed to provide data on gas release, unrestrained swelling, and restrained swelling at the upper range of fission rates expected for a space reactor. These data would be compared with model predictions and used to determine adequacy of a space reactor design basis relative to fission gas release and swelling of UO{sub 2} fuel and to assess potential pellet-clad interactions. A primary goal of an irradiation test for UN fuel was to assess performance issues currently associated with this fuel type such as gas release, swelling and transient performance. Information learned from this effort may have enabled use of UN fuel for future applications.

  6. RESULTS OF TESTS TO DEMONSTRATE A SIX-INCH DIAMETER COATER FOR PRODUCTION OF TRISO-COATED PARTICLES FOR ADVANCED GAS REACTOR EXPERIMENTS

    SciTech Connect (OSTI)

    Douglas W. Marshall

    2008-09-01

    The Next Generation Nuclear Plant (NGNP)/Advanced Gas Reactor (AGR) Fuel Development and Qualification Program includes a series of irradiation experiments in Idaho National Laboratory's (INL's) Advanced Test Reactor. TRISOcoated particles for the first AGR experiment, AGR-1, were produced at Oak Ridge National Laboratory (ORNL) in a twoinch diameter coater. A requirement of the NGNP/AGR Program is to produce coated particles for later experiments in coaters more representative of industrial scale. Toward this end, tests have been performed by Babcock and Wilcox (B&W) in a six-inch diameter coater. These tests are expected to lead to successful fabrication of particles for the second AGR experiment, AGR-2. While a thorough study of how coating parameters affect particle properties was not the goal of these tests, the test data obtained provides insight into process parameter/coated particle property relationships. Most relationships for the six-inch diameter coater followed trends found with the ORNL two-inch coater, in spite of differences in coater design and bed hydrodynamics. For example the key coating parameters affecting pyrocarbon anisotropy were coater temperature, coating gas fraction, total gas flow rate and kernel charge size. Anisotropy of the outer pyrolytic carbon (OPyC) layer also strongly correlates with coater differential pressure. In an effort to reduce the total particle fabrication run time, silicon carbide (SiC) was deposited with methyltrichlorosilane (MTS) concentrations up to 3 mol %. Using only hydrogen as the fluidizing gas, the high concentration MTS tests resulted in particles with lower than desired SiC densities. However when hydrogen was partially replaced with argon, high SiC densities were achieved with the high MTS gas fraction.

  7. RESULTS OF TESTS TO DEMONSTRATE A SIX-INCH-DIAMETER COATER FOR PRODUCTION OF TRISO-COATED PARTICLES FOR ADVANCED GAS REACTOR EXPERIMENTS

    SciTech Connect (OSTI)

    Charles M Barnes

    2008-09-01

    The Next Generation Nuclear Plant (NGNP)/Advanced Gas Reactor (AGR) Fuel Development and Qualification Program includes a series of irradiation experiments in Idaho National Laboratory’s (INL’s) Advanced Test Reactor. TRISOcoated particles for the first AGR experiment, AGR-1, were produced at Oak Ridge National Laboratory (ORNL) in a two inch diameter coater. A requirement of the NGNP/AGR Program is to produce coated particles for later experiments in coaters more representative of industrial scale. Toward this end, tests have been performed by Babcock and Wilcox (B&W) in a six-inch diameter coater. These tests are expected to lead to successful fabrication of particles for the second AGR experiment, AGR-2. While a thorough study of how coating parameters affect particle properties was not the goal of these tests, the test data obtained provides insight into process parameter/coated particle property relationships. Most relationships for the six-inch diameter coater followed trends found with the ORNL two-inch coater, in spite of differences in coater design and bed hydrodynamics. For example the key coating parameters affecting pyrocarbon anisotropy were coater temperature, coating gas fraction, total gas flow rate and kernel charge size. Anisotropy of the outer pyrolytic carbon (OPyC) layer also strongly correlates with coater differential pressure. In an effort to reduce the total particle fabrication run time, silicon carbide (SiC) was deposited with methyltrichlorosilane (MTS) concentrations up to 3 mol %. Using only hydrogen as the fluidizing gas, the high concentration MTS tests resulted in particles with lower than desired SiC densities. However when hydrogen was partially replaced with argon, high SiC densities were achieved with the high MTS gas fraction.

  8. Safety of Hydrogen Systems Installed in Outdoor Enclosures

    SciTech Connect (OSTI)

    Barilo, Nick F.

    2013-11-06

    The Hydrogen Safety Panel brings a broad cross-section of expertise from the industrial, government, and academic sectors to help advise the U.S. Department of Energy’s (DOE) Fuel Cell Technologies Office through its work in hydrogen safety, codes, and standards. The Panel’s initiatives in reviewing safety plans, conducting safety evaluations, identifying safety-related technical data gaps, and supporting safety knowledge tools and databases cover the gamut from research and development to demonstration and deployment. The Panel’s recent work has focused on the safe deployment of hydrogen and fuel cell systems in support of DOE efforts to accelerate fuel cell commercialization in early market applications: vehicle refueling, material handling equipment, backup power for warehouses and telecommunication sites, and portable power devices. This paper resulted from observations and considerations stemming from the Panel’s work on early market applications. This paper focuses on hydrogen system components that are installed in outdoor enclosures. These enclosures might alternatively be called “cabinets,” but for simplicity, they are all referred to as “enclosures” in this paper. These enclosures can provide a space where a flammable mixture of hydrogen and air might accumulate, creating the potential for a fire or explosion should an ignition occur. If the enclosure is large enough for a person to enter, and ventilation is inadequate, the hydrogen concentration could be high enough to asphyxiate a person who entered the space. Manufacturers, users, and government authorities rely on requirements described in codes to guide safe design and installation of such systems. Except for small enclosures used for hydrogen gas cylinders (gas cabinets), fuel cell power systems, and the enclosures that most people would describe as buildings, there are no hydrogen safety requirements for these enclosures, leaving gaps that must be addressed. This paper proposes that

  9. Direct containing heating experiments in Zion Nuclear Power Plant Geometry using prototypic core materials, the U1A and U1B tests

    SciTech Connect (OSTI)

    Binder, J.L.; McUmber, L.M.; Spencer, B.W.

    1993-04-01

    Direct Containment Heating (DCH) experiments have been performed which utilize prototypic core materials. The experiments reported on here are a continuation of the Integral Effects Testing (IET) DCH program. The IET series of tests primarily addressed the effect of scale on DCH phenomena. This was accomplished by completing a series of counterpart tests in 1/40 and 1/10th linear scale DCH facilities at Argonne National Laboratory (ANL) and Sandia National Laboratories (SNL), respectively. The IET experiments modeled the Zion Nuclear Power Plant Geometry. The scale models included representations of the primary system volume, RPV lower head, cavity and instrument tunnel, and the lower containment structures. The experiments were steam driven at nominally 6.2 MPa. Iron-alumina thermite with chromium was used as a core melt simulant in the IET experiments. While the IET experiments at ANL and SNL provided useful data on the effect of scale on DCH phenomena, a significant question concerns the potential experiment distortions introduced by the use of non-prototypic iron/alumina thermite. Therefore, further testing with prototypic materials has been carried out at ANL. A prototypic core melt was produced for the experiments by first mixing powders of uranium, zirconium, iron oxide (Fe{sub 2}O{sub 3}), and chromium trioxide (CrO{sub 3}). When ignited the powders react exothermically to produce a molten mixture. The amounts of each powder were selected to produce the anticipated composition for a core melt following a station blackout: 57.8 mass% UO{sub 2} 10.5 mass% ZrO{sub 2} 14.3 mass% Fe, 13.7 mass% Zr, and 3.7 mass% Cr. Development tests measured the initial melt temperature to be approximately 2700 K. The total thermal specific energy content of the melt at 2700 K is 1.2 MJ/kg compared to 2.25 MJ/kg for the iron-alumina simulant at its measured initial temperature of 2500 K.

  10. Compendium of NASA Data Base for the Global Tropospheric Experiment`s Chemical Instrumentation Test and Evaluation No. 3 (CITE-3)

    SciTech Connect (OSTI)

    Gregory, G.L.; Scott, A.D. Jr.

    1996-03-01

    This compendium describes aircraft data that are available from NASA`s Chemical Instrumentation Test and Evaluation - 3 (CITE-3) conducted over the north and tropical Atlantic Ocean during August/September 1989. CITE-3 objectives were to intercompare instrumentation for aircraft measurements of SO2, DMS (dimethyl sulfide), COS (carbonyl sulfide), C2S, and H2S and to determine for the marine environment, the abundance and distribution of these sulfur species. Sampling was conducted aboard the NASA Wallops Electra aircraft in ambient air over the North Atlantic Ocean east of Wallops Island, Virginia, and the tropical Atlantic east of Natal, Brazil. Intercomparison measurements included 5 techniques for SO2; 6 for DMS; and 3 each for COS, CS2, and H2S. Ancillary data important to ozone photochemistry and sulfur partitioning chemistry were also measured. This document provides a representation of NASA Electra data that are available from NASA Langley`s Distributed Active Archive Center (DAAC). The DAAC data bases include other data such as meteorological data/products, results from surface studies, satellite observations, and data from sonde releases.

  11. Planning for hybrid-cycle OTEC experiments using the HMTSTA test facility at the Natural Energy Laboratory of Hawaii

    SciTech Connect (OSTI)

    Panchal, C.; Rabas, T.; Genens, L.

    1989-01-01

    The US Department of Energy has built an experimental apparatus for studying the open-cycle Ocean Thermal Energy Conversion (OC-OTEC) system. Experiments using warm and cold seawater are currently uderway to validate the performance predictions for an OC-TEC flash evaporator, surface condenser, and direct-contact condenser. The hybrid cycle is another OTEC option that produces both power and desalinated water, it is comparable in capital cost to OC-OTEC, and it eliminates the problems associated with the large steam turbine. Means are presented in this paper for modifying the existing apparatus to conduct similar experiments on hybrid-cycle OTEC heat exchangers. These data are required to validate predictive methods of the components and for the system integration that were identified in an earlier study of hybrid-cycle OTEC power plants. 7 refs., 4 figs., 2 tabs.

  12. Practical experience applied to the design of injection and sample manifolds to perform in-place surveillance tests according to ANSI/ASME N-510

    SciTech Connect (OSTI)

    Banks, E.M.; Wikoff, W.O.; Shaffer, L.L.

    1997-08-01

    At the current level of maturity and experience in the nuclear industry, regarding testing of air treatment systems, it is now possible to design and qualify injection and sample manifolds for most applications. While the qualification of sample manifolds is still in its infancy, injection manifolds have reached a mature stage that helps to eliminate the {open_quotes}hit or miss{close_quotes} type of design. During the design phase, manifolds can be adjusted to compensate for poor airflow distribution, laminar flow conditions, and to take advantage of any system attributes. Experience has shown that knowing the system attributes before the design phase begins is an essential element to a successful manifold design. The use of a spreadsheet type program commonly found on most personal computers can afford a greater flexibility and a reduction in time spent in the design phase. The experience gained from several generations of manifold design has culminated in a set of general design guidelines. Use of these guidelines, along with a good understanding of the type of testing (theoretical and practical), can result in a good manifold design requiring little or no field modification. The requirements for manifolds came about because of the use of multiple banks of components and unconventional housing inlet configurations. Multiple banks of adsorbers and pre and post HEPA`s required that each bank be tested to insure that each one does not exceed a specific allowable leakage criterion. 5 refs., 5 figs., 1 tab.

  13. Electron Lenses for Experiments on Nonlinear Dynamics with Wide Stable Tune Spreads in the Fermilab Integrable Optics Test Accelerator

    SciTech Connect (OSTI)

    Stancari, G.; Carlson, K.; McGee, M. W.; Nobrega, L. E.; Romanov, A. L.; Ruan, J.; Valishev, A.; Noll, D.

    2015-06-01

    Recent developments in the study of integrable Hamiltonian systems have led to nonlinear accelerator lattice designs with two transverse invariants. These lattices may drastically improve the performance of high-power machines, providing wide tune spreads and Landau damping to protect the beam from instabilities, while preserving dynamic aperture. To test the feasibility of these concepts, the Integrable Optics Test Accelerator (IOTA) is being designed and built at Fermilab. One way to obtain a nonlinear integrable lattice is by using the fields generated by a magnetically confined electron beam (electron lens) overlapping with the circulating beam. The parameters of the required device are similar to the ones of existing electron lenses. We present theory, numerical simulations, and first design studies of electron lenses for nonlinear integrable optics.

  14. Passive Active Multi-Junction 3, 7 GHZ launcher for Tore-Supra Long Pulse Experiments. Manufacturing Process and Tests

    SciTech Connect (OSTI)

    Guilhem, D.; Achard, J.; Bertrand, B.; Bej, Z.; Bibet, Ph.; Brun, C.; Chantant, M.; Delmas, E.; Delpech, L.; Doceul, Y.; Ekedahl, A.; Goletto, C.; Goniche, M.; Hatchressian, J. C.; Hillairet, J.; Houry, M.; Joubert, P.; Lipa, M.; Madeleine, S.; Martinez, A.

    2009-11-26

    The design and the fabrication of a new Lower Hybrid (LH) actively cooled antenna based on the passive active concept is a part of the CIMES project (Components for the Injection of Mater and Energy in Steady-state). The major objectives of Tore-Supra program is to achieve 1000 s pulses with this LH launcher, by coupling routinely >3 MW of LH wave at 3.7 GHz to the plasma with a parallel index n{sub ||} = 1.7 {sup {+-}}{sup 0.2}. The launcher is on its way to achieve its validation tests--low power Radio Frequency (RF) measurements, vacuum and hydraulic leak tests--and will be installed and commissioned on plasma during the fall of 2009.

  15. Rocky Flats CAAS System Recalibrated, Retested, and Analyzed to Install in the Criticality Experiments Facility at the Nevada Test Site

    SciTech Connect (OSTI)

    Kim, S; Heinrichs, D; Biswas, D; Huang, S; Dulik, G; Scorby, J; Boussoufi, M; Liu, B; Wilson, R

    2009-05-27

    Neutron detectors and control panels transferred from the Rocky Flats Plant (RFP) were recalibrated and retested for redeployment to the CEF. Testing and calibration were successful with no failure to any equipment. Detector sensitivity was tested at a TRIGA reactor, and the response to thermal neutron flux was satisfactory. MCNP calculated minimum fission yield ({approx} 2 x 10{sup 15} fissions) was applied to determine the thermal flux at selected detector positions at the CEF. Thermal flux levels were greater than 6.39 x 10{sup 6} (n/cm{sup 2}-sec), which was about four orders of magnitude greater than the minimum alarm flux. Calculations of detector survivable distances indicate that, to be out of lethal area, a detector needs to be placed greater than 15 ft away from a maximum credible source. MCNP calculated flux/dose results were independently verified by COG. CAAS calibration and the testing confirmed that the RFP CAAS system is performing its functions as expected. New criteria for the CAAS detector placement and 12-rad zone boundaries at the CEF are established. All of the CAAS related documents and hardware have been transferred from LLNL to NSTec for installation at the CEF high bay areas.

  16. A New Interpretation of Alpha-particle-driven Instabilities in Deuterium-Tritium Experiments on the Tokamak Fusion Test Reactor

    SciTech Connect (OSTI)

    R. Nazikian; G.J. Kramer; C.Z. Cheng; N.N. Gorelenkov; H.L. Berk; S.E. Sharapov

    2003-03-26

    The original description of alpha-particle-driven instabilities in the Tokamak Fusion Test Reactor (TFTR) in terms of Toroidal Alfvin Eigenmodes (TAEs) remained inconsistent with three fundamental characteristics of the observations: (i) the variation of the mode frequency with toroidal mode number, (ii) the chirping of the mode frequency for a given toroidal mode number, and (iii) the anti-ballooning density perturbation of the modes. It is now shown that these characteristics can be explained by observing that cylindrical-like modes can exist in the weak magnetic shear region of the plasma that then make a transition to TAEs as the central safety factor decreases in time.

  17. Naval Reactors Prime Contractor Team (NRPCT) Experiences and Considerations With Irradiation Test Performance in an International Environment

    SciTech Connect (OSTI)

    MH Lane

    2006-02-15

    This letter forwards a compilation of knowledge gained regarding international interactions and issues associated with Project Prometheus. The following topics are discussed herein: (1) Assessment of international fast reactor capability and availability; (2) Japanese fast reactor (JOYO) contracting strategy; (3) NRPCT/Program Office international contract follow; (4) Completion of the Japan Atomic Energy Agency (JAEA)/Pacific Northwest National Laboratory (PNNL) contract for manufacture of reactor test components; (5) US/Japanese Departmental interactions and required Treaties and Agreements; and (6) Non-technical details--interactions and considerations.

  18. Methane enrichment digestion experiments at the anaerobic experimental test unit at Walt Disney World. Final report, March 1989-August 1990

    SciTech Connect (OSTI)

    Srivastava, V.J.; Hill, A.H.

    1993-06-01

    The goal of the project was to determine the technical feasibility of utilizing a novel concept in anaerobic digestion, in-situ methane enrichment digestion or MED for producing utility-grade gas from a pilot-scale anaerobic digester. MED tests conducted during this program consistently achieved digester product gas with a methane (CH4) content of greater than 90% (on a dry-, nitrogen-free basis). The MED concept, because it requires relatively simple equipment and modest energy input, has the potential to simplify gas cleanup requirements and substantially reduce the cost of converting wastes and biomass to pipeline quality gas.

  19. Generation of a Parabolic Trough Collector Efficiency Curve from Separate Measurements of Outdoor Optical Efficiency and Indoor Receiver Heat Loss: Preprint

    SciTech Connect (OSTI)

    Kutscher, C.; Burkholder, F.; Stynes, K.

    2010-10-01

    The overall efficiency of a parabolic trough collector is a function of both the fraction of direct normal radiation absorbed by the receiver (the optical efficiency) and the heat lost to the environment when the receiver is at operating temperature. The overall efficiency can be determined by testing the collector under actual operating conditions or by separately measuring these two components. This paper describes how outdoor measurement of the optical efficiency is combined with laboratory measurements of receiver heat loss to obtain an overall efficiency curve. Further, it presents a new way to plot efficiency that is more robust over a range of receiver operating temperatures.

  20. UPTF-TRAM experiments for SBLOCA: Evaluation of condensation processes in TRAM tests A6 and A7

    SciTech Connect (OSTI)

    Sonneburg, H.G.; Tuunanen, J.; Palazov, V.V.

    1995-09-01

    The investigation of thermal-hydraulic phenomena related to reactor transients with accident management measures is the goal of the TRansient and accident Management (TRAM) experimental programme being carried out at the Upper Plenum Test Facility (UPTF) at Mannheim (Germany). These experimental investigations and test analyses are funded by the German Federal Minister for Research and Technology (BMFT). The UPTF simulates these phenomena in a 1:1 such relative to the dimension of a PWR. Condensation of steam during Emergency Core Cooling (ECC) water injection from accumulators into the primary system is one of the phenomena studied within the accumulators into the primary system is one of the phenomena studied within the TRAM programme. This phenomenon partly controls the efficiency of accumulator injection if the high pressure safety systems fail. Beside this, the condensation within the nitrogen inside the accumulator for a certain period controls the pressure development inside the accumulator. Thus, both condensation phenomena determine the ECC flow rate delivered to the primary system. Concerning the condensation inside the primary system, this is also of safety relevance in the case of Pressurized Thermal Shock (PTS) during cold leg injection.

  1. Synergy between fast-ion transport by core MHD and test blanket module fields in DIII-D experiments

    DOE PAGES-Beta [OSTI]

    Heidbrink, W. W.; Austin, M. E.; Collins, C. S.; Gray, T.; Grierson, B. A.; Kramer, G. J.; Lanctot, M.; Pace, D. C.; Van Zeeland, M. A.; Mclean, A. G.

    2015-07-21

    We measured fast-ion transport caused by the combination of MHD and a mock-up test-blanket module (TBM) coil in the DIII-D tokamak. The primary diagnostic is an infrared camera that measures the heat flux on the tiles surrounding the coil. The combined effects of the TBM and four other potential sources of transport are studied: neoclassical tearing modes, Alfvén eigenmodes, sawteeth, and applied resonant magnetic perturbation fields for the control of edge localized modes. A definitive synergistic effect is observed at sawtooth crashes where, in the presence of the TBM, the localized heat flux at a burst increases from 0.36±0.27 tomore » 2.6±0.5 MW/m-2.« less

  2. Simulated Irradiation of Samples in HFIR for use as Possible Test Materials in the MPEX (Material Plasma Exposure Experiment) Facility

    SciTech Connect (OSTI)

    Ellis, Ronald James; Rapp, Juergen

    2014-01-01

    The importance of Plasma Material Interaction (PMI) is a major concern in fusion reactor design and analysis. The Material-Plasma Exposure eXperiment (MPEX) facility will explore PMI under fusion reactor plasma conditions. Samples with accumulated displacements per atom (DPA) damage produced by irradiations in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL) will be studied in the MPEX facility. The project presented in this paper involved performing assessments of the induced radioactivity and resulting radiation fields of a variety of potential fusion reactor materials. The scientific code packages MCNP and SCALE were used to simulate irradiation of the samples in HFIR; generation and depletion of nuclides in the material and the subsequent composition, activity levels, gamma radiation fields, and resultant dose rates as a function of cooling time. These state-of-the-art simulation methods were used in addressing the challenge of the MPEX project to minimize the radioactive inventory in the preparation of the samples for inclusion in the MPEX facility.

  3. An evaluation of technologies for real-time measurement of rates of outdoor airflow into HVAC systems

    SciTech Connect (OSTI)

    Fisk, William J.; Faulkner, David; Sullivan, Douglas P.

    2004-09-01

    During the last few years, new technologies have been introduced for real-time continuous measurement of the flow rates of outdoor air (OA) into HVAC systems; however, an evaluation of these measurement technologies has not previously been published. This document describes a test system and protocols developed for a controlled evaluation of these measurement technologies. The results of tests of four commercially available measurement technologies and one prototype based on a new design are also summarized. The test system and protocol were judged practical and very useful. The series of tests identified three commercially available measurement technologies that should provide reasonably accurate measurements of OA flow rates as long as air velocities are maintained high enough to produce accurately measurable pressure signals. In HVAC systems with economizer controls, to maintain the required air velocities the OA intake will need to be divided into two sections in parallel, each with a separate OA damper. The errors in OA flow rates measured with the fourth commercially available measurement technology were 20% to 30% with horizontal probes but much larger with vertical probes. The new prototype measurement technology was the only one that appears suitable for measuring OA flow rates over their full range from 20% OA to 100% OA without using two separate OA dampers. All of the measurement devices had pressure drops that are likely to be judged acceptable. The influence of wind on the accuracy of these measurement technologies still needs to be evaluated.

  4. Optimization of Saltcake Removal Flowsheet at SRS through Incorporation of Testing and In-Tank Waste Experience

    SciTech Connect (OSTI)

    Hansen, Adam G.; Tihey, John R.

    2015-01-15

    Saltcake removal at SRS may be performed for several reasons: to provide space for evaporator operation (i.e., to precipitate more salt in the drop tank), to provide feed for salt processing (i.e. immobilize the waste), or to remove the salt for tank closure. Many different salt dissolution techniques have been employed in the 40 years that SRS has been performing salt removal, from a basic “Add, Sit, Remove” method (water is added on top of the saltcake and time is allowed for diffusion), to performing interstitial liquid removal, or using mixing devices to promote contact with the liquid. Lessons learned from previous saltcake removal campaigns, in addition to testing and modeling, have led to opportunities for improvements to the overall saltcake removal process. This includes better understanding of salt properties and behavior during dissolution; the primary concerns for salt dissolution are the release of radiolytic hydrogen and criticality prevention (post-dissolution). Recent developments in salt dissolution include the reuse of dilute supernate and a semi-continuous dissolution (SCD) process, where low volume mixing eductors are used to deliver water near the surface of the saltcake at the same rate as the salt solution is removed and transferred to a receipt tank.

  5. Factors affecting the indoor concentrations of carbonaceous aerosols of outdoor origin

    SciTech Connect (OSTI)

    Lunden, Melissa M.; Kirchstetter, Thomas W.; Thatcher, Tracy L.; Hering, Susanne V.; Brown, Nancy J.

    2007-06-25

    A field study was conducted in an unoccupied single story residence in Clovis, California to provide data to address issues important to assess the indoor exposure to particles of outdoor origin. Measurements of black and organic carbonaceous aerosols were performed using a variety of methods, resulting in both near real-time measurements as well as integrated filter based measurements. Comparisons of the different measurement methods show that it is crucial to account for gas phase adsorption artifacts when measuring organic carbon (OC). Measured concentrations affected by the emissions of organic compounds sorbed to indoor surfaces imply a higher degree of infiltration of outdoor organic carbon aerosols into the indoor environment for our unoccupied house. Analysis of the indoor and outdoor data for black carbon (BC) aerosols show that, on average, the indoor concentration of black carbon aerosols behaves in a similar manner to sulfate aerosols. In contrast, organic carbon aerosols are subject to chemical transformations indoors that, for our unoccupied home, resulted in lower indoor OC concentrations than would be expected by physical loss mechanisms alone. These results show that gas to particle partitioning of organic compounds, as well as gas to surface interactions within the residence, are an important process governing the indoor concentration to OC aerosols of outdoor origin.

  6. An evaluation of three commercially available technologies forreal-time measurement of rates of outdoor airflow into HVAC systems

    SciTech Connect (OSTI)

    Fisk, William J.; Faulkner, David; Sullivan, Douglas P.

    2004-10-28

    During the last few years, new technologies have been introduced for real-time continuous measurement of the flow rates of outdoor air (OA) into HVAC systems; however, an evaluation of these measurements technologies has not previously been published. This document describes a test system and protocols developed for a controlled evaluation of these measurement technologies. The results of tests of three commercially available measurement technologies are also summarized. The test system and protocol were judged practical and very useful. The three commercially available measurement technologies should provide reasonably, e.g., 20%, accurate measurements of OA flow rates as long as air velocities are maintained high enough to produce accurately measurable pressure signals. In HVAC systems with economizer controls, to maintain the required air velocities the OA intake will need to be divided into two sections in parallel, each with a separate OA damper. All of the measurement devices had pressure drops that are likely to be judged acceptable. The influence of wind on the accuracy of these measurement technologies still needs to be evaluated.

  7. Overall results of and lessons learned from the IAEA CRP on sodium natural circulation test performed during the Phenix end-of-life experiments

    SciTech Connect (OSTI)

    Monti, S.; Toti, A.; Tenchine, D.; Pialla, D.

    2012-07-01

    In 2007, the International Atomic Energy Agency (IAEA) launched the Coordinated Research Project (CRP) 'Control Rod Withdrawal and Sodium Natural Circulation Tests Performed during the Phenix End-of-Life Experiments'. The overall purpose of the CRP, performed within the framework of the IAEA programme in support of innovative fast reactor technology development and deployment, is to improve the Member States' analytical capabilities in the various fields of research and design of sodium-cooled fast reactors through data and codes verification and validation. In particular the CRP, taking advantage of the End-of-Life set of experiments performed before the final shut-down of the French prototype fast breeder power reactor Phenix, aims at improving fast reactor simulation methods and design capabilities in the field of temperature and power distribution evaluation, as well as of the analysis of sodium natural circulation phenomena. The paper presents the overall results of the CRP, including blind calculations and post-test and sensitivity analyses carried out by the CRP participants, as well as lessons learned and recommendations for further future implementations to resolve open issues. (authors)

  8. An Integral Effects Test to investigate the effects of condensate levels of water and preexisting hydrogen on direct containment heating in the Surtsey Test Facility. The IET-7 experiment

    SciTech Connect (OSTI)

    Allen, M.D.; Blanchat, T.K.; Pilch, M.; Nichols, R.T.

    1993-01-01

    This report discusses the seventh experiment of the Integral Effects Test (IET-7) series. The experiment was conducted to investigate the effects of preexisting hydrogen in the Surtsey vessel on direct containment heating. Scale models of the Zion reactor pressure vessel (RPV), cavity, instrument tunnel, and subcompartment structures were constructed in the Surtsey Test Facility at Sandia National Laboratories. The RPV was modeled with a melt generator that consisted of a steel pressure barrier, a cast MgO crucible, and a thin steel inner liner. The melt generator/crucible had a hemispherical bottom head containing a graphite limitor plate with a 4-cm exit hole to simulate the ablated hole in the RPV bottom head that would be formed by ejection of an instrument guide tube in a severe nuclear power plant accident. The cavity contained 3.48 kg of water, and the containment basement floor inside the cranewall contained 71 kg of water, which corresponds to scaled condensate levels in the Zion plant. A 43-kg initial charge of iron oxide/aluminum/chromium thermite was used to simulate corium debris on the bottom head of the RPV. Molten thermite was ejected by steam at an initial pressure of 5.9 MPa into the reactor cavity.

  9. The Municipal Solid-State Street Lighting Consortium Public Outdoor Lighting Inventory: Phase I: Survey Results

    SciTech Connect (OSTI)

    Kinzey, Bruce R.; Smalley, Edward; Haefer, R.

    2014-09-30

    This document presents the results of a voluntary web-based inventory survey of public street and area lighting across the U.S. undertaken during the latter half of 2013.This survey attempts to access information about the national inventory in a “bottoms-up” manner, going directly to owners and operators. Adding to previous “top down” estimates, it is intended to improve understanding of the role of public outdoor lighting in national energy use.

  10. Factors affecting the concentration of outdoor particles indoors (COPI): Identification of data needs and existing data

    SciTech Connect (OSTI)

    Thatcher, Tracy L.; McKone, Thomas E.; Fisk, William J.; Sohn, Michael D.; Delp, Woody W.; Riley, William J.; Sextro, Richard G.

    2001-12-01

    The process of characterizing human exposure to particulate matter requires information on both particle concentrations in microenvironments and the time-specific activity budgets of individuals among these microenvironments. Because the average amount of time spent indoors by individuals in the US is estimated to be greater than 75%, accurate characterization of particle concentrations indoors is critical to exposure assessments for the US population. In addition, it is estimated that indoor particle concentrations depend strongly on outdoor concentrations. The spatial and temporal variations of indoor particle concentrations as well as the factors that affect these variations are important to health scientists. For them, knowledge of the factors that control the relationship of indoor particle concentrations to outdoor levels is particularly important. In this report, we identify and evaluate sources of data for those factors that affect the transport to and concentration of outdoor particles in the indoor environment. Concentrations of particles indoors depend upon the fraction of outdoor particles that penetrate through the building shell or are transported via the air handling (HVAC) system, the generation of particles by indoor sources, and the loss mechanisms that occur indoors, such as deposition. To address these issues, we (i) identify and assemble relevant information including the behavior of particles during air leakage, HVAC operations, and particle filtration; (ii) review and evaluate the assembled information to distinguish data that are directly relevant to specific estimates of particle transport from those that are only indirectly useful and (iii) provide a synthesis of the currently available information on building air-leakage parameters and their effect on indoor particle matter concentrations.

  11. Two-dimensional forced convection perpendicular to the outdoor fenestration surface--FEM solution

    SciTech Connect (OSTI)

    Curcija, D.; Goss, W.P.

    1995-08-01

    Two-dimensional laminar forced convection on an outdoor fenestration surface, with the wind perpendicular to the glazing surface, was analyzed using the penalty function approach finite-element method (FEM). The air far from the fenestration surface (free-stream conditions) was assumed to be at ASHRAE standard fenestration conditions of {minus}18 C (0 F) and 6.7 m/s (15 mph). A prototype fenestration configuration of a typical wood casement window, consisting of a double-step frame and an insulating glazing unit (IGU), was used in defining the outdoor fenestration profile. A flat-plate geometry was also considered for purposes of comparison with other available numerical and experimental results and for validation of the results for the actual fenestration profile. The results are reported in the form of velocity vector plots and local convective surface heat transfer coefficients. Recommendations on the local outdoor surface convective heat transfer coefficient for use in two- and three-dimensional heat transfer analyses of fenestration systems are presented.

  12. Calibrating Pyrgeometers Outdoors Independent from the Reference Value of the Atmospheric Longwave Irradiance

    SciTech Connect (OSTI)

    Reda, I.; Hickey, J. R.; Grobner, J.; Andreas, A.; Stoffel, T.

    2006-08-01

    In this article, we describe a method for the calibration of thermopile pyrgeometers in the absence of a reference for measurement of atmospheric longwave irradiance. This is referred to as the incoming longwave irradiance in this article. The method is based on an indoor calibration using a low-temperature blackbody source to obtain the calibration coefficients that determine the pyrgeometer's radiation characteristics. From these coefficients the outgoing irradiance of the pyrgeometer can be calculated. The pyrgeometer is then installed outdoors on an aluminum plate that is connected to a circulating temperature bath. By adjusting the temperature bath to the approximate value of the effective sky temperature, the pyrgeometer's body temperature is lowered changing the pyrgeometer's thermopile output. If the incoming longwave irradiance is stable, the slope of the outgoing irradiance versus the pyrgeometer's thermopile output is the outdoor net irradiance responsivity (RSnet), independent of the absolute value of the atmospheric longwave irradiance. The indoor calibration coefficients and the outdoor RSnet are then used in the pyrgeometer equation to calculate the incoming longwave irradiance. To evaluate this method, the calculated irradiance using the derived coefficients was compared to the irradiance measured using a pyrgeometer with direct traceability to the World Infrared Standard Group (WISG). This is maintained at the Physikalisch-Meteorologisches Observatorium Davos, World Radiation Center, Switzerland. Based on results from four pyrgeometers calibrations, this method suggests measurement agreement with the WISG to within +/- 3 W/m2 for all sky conditions.

  13. Accelerated Stress Testing, Qualification Testing, HAST, Field...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Accelerated Stress Testing, Qualification Testing, HAST, Field Experience This presentation, which was the opening session of the NREL 2013 Photovoltaic Module Reliability Workshop ...

  14. Generation of a Parabolic Trough Collector Efficiency Curve from Separate Measurements of Outdoor Optical Efficiency and Indoor Receiver Heat Loss

    SciTech Connect (OSTI)

    Kutscher, C.; Burkholder, F.; Stynes, J. K.

    2012-02-01

    The thermal efficiency of a parabolic trough collector is a function of both the fraction of direct normal radiation absorbed by the receiver (the optical efficiency) and the heat lost to the environment when the receiver is at operating temperature. The thermal efficiency can be determined by testing the collector under actual operating conditions or by separately measuring these two components. This paper describes how outdoor measurement of the optical efficiency is combined with laboratory measurements of receiver heat loss to obtain the thermal efficiency curve. This paper describes this approach and also makes the case that there are advantages to plotting collector efficiency versus the difference between the operating temperature and the ambient temperature at which the receiver heat loss was measured divided by radiation to a fractional power (on the order of 1/3 but obtained via data regression) - as opposed to the difference between operating and ambient temperatures divided by the radiation. The results are shown to be robust over wide ranges of ambient temperature, sky temperature, and wind speed.

  15. Testing ice microphysics parameterizations in the NCAR Community Atmospheric Model Version 3 using Tropical Warm Pool-International Cloud Experiment data

    SciTech Connect (OSTI)

    Wang, Weiguo; Liu, Xiaohong; Xie, Shaocheng; Boyle, Jim; McFarlane, Sally A.

    2009-07-23

    Here, cloud properties have been simulated with a new double-moment microphysics scheme under the framework of the single-column version of NCAR Community Atmospheric Model version 3 (CAM3). For comparison, the same simulation was made with the standard single-moment microphysics scheme of CAM3. Results from both simulations compared favorably with observations during the Tropical Warm Pool–International Cloud Experiment by the U.S. Department of Energy Atmospheric Radiation Measurement Program in terms of the temporal variation and vertical distribution of cloud fraction and cloud condensate. Major differences between the two simulations are in the magnitude and distribution of ice water content within the mixed-phase cloud during the monsoon period, though the total frozen water (snow plus ice) contents are similar. The ice mass content in the mixed-phase cloud from the new scheme is larger than that from the standard scheme, and ice water content extends 2 km further downward, which is in better agreement with observations. The dependence of the frozen water mass fraction on temperature from the new scheme is also in better agreement with available observations. Outgoing longwave radiation (OLR) at the top of the atmosphere (TOA) from the simulation with the new scheme is, in general, larger than that with the standard scheme, while the surface downward longwave radiation is similar. Sensitivity tests suggest that different treatments of the ice crystal effective radius contribute significantly to the difference in the calculations of TOA OLR, in addition to cloud water path. Numerical experiments show that cloud properties in the new scheme can respond reasonably to changes in the concentration of aerosols and emphasize the importance of correctly simulating aerosol effects in climate models for aerosol-cloud interactions. Further evaluation, especially for ice cloud properties based on in-situ data, is needed.

  16. Testing ice microphysics parameterizations in the NCAR Community Atmospheric Model Version 3 using Tropical Warm Pool-International Cloud Experiment data

    DOE PAGES-Beta [OSTI]

    Wang, Weiguo; Liu, Xiaohong; Xie, Shaocheng; Boyle, Jim; McFarlane, Sally A.

    2009-07-23

    Here, cloud properties have been simulated with a new double-moment microphysics scheme under the framework of the single-column version of NCAR Community Atmospheric Model version 3 (CAM3). For comparison, the same simulation was made with the standard single-moment microphysics scheme of CAM3. Results from both simulations compared favorably with observations during the Tropical Warm Pool–International Cloud Experiment by the U.S. Department of Energy Atmospheric Radiation Measurement Program in terms of the temporal variation and vertical distribution of cloud fraction and cloud condensate. Major differences between the two simulations are in the magnitude and distribution of ice water content within themore » mixed-phase cloud during the monsoon period, though the total frozen water (snow plus ice) contents are similar. The ice mass content in the mixed-phase cloud from the new scheme is larger than that from the standard scheme, and ice water content extends 2 km further downward, which is in better agreement with observations. The dependence of the frozen water mass fraction on temperature from the new scheme is also in better agreement with available observations. Outgoing longwave radiation (OLR) at the top of the atmosphere (TOA) from the simulation with the new scheme is, in general, larger than that with the standard scheme, while the surface downward longwave radiation is similar. Sensitivity tests suggest that different treatments of the ice crystal effective radius contribute significantly to the difference in the calculations of TOA OLR, in addition to cloud water path. Numerical experiments show that cloud properties in the new scheme can respond reasonably to changes in the concentration of aerosols and emphasize the importance of correctly simulating aerosol effects in climate models for aerosol-cloud interactions. Further evaluation, especially for ice cloud properties based on in-situ data, is needed.« less

  17. The Tokamak Fusion Test Reactor decontamination and decommissioning project and the Tokamak Physics Experiment at the Princeton Plasma Physics Laboratory. Environmental Assessment

    SciTech Connect (OSTI)

    1994-05-27

    If the US is to meet the energy needs of the future, it is essential that new technologies emerge to compensate for dwindling supplies of fossil fuels and the eventual depletion of fissionable uranium used in present-day nuclear reactors. Fusion energy has the potential to become a major source of energy for the future. Power from fusion energy would provide a substantially reduced environmental impact as compared with other forms of energy generation. Since fusion utilizes no fossil fuels, there would be no release of chemical combustion products to the atmosphere. Additionally, there are no fission products formed to present handling and disposal problems, and runaway fuel reactions are impossible due to the small amounts of deuterium and tritium present. The purpose of the TPX Project is to support the development of the physics and technology to extend tokamak operation into the continuously operating (steady-state) regime, and to demonstrate advances in fundamental tokamak performance. The purpose of TFTR D&D is to ensure compliance with DOE Order 5820.2A ``Radioactive Waste Management`` and to remove environmental and health hazards posed by the TFTR in a non-operational mode. There are two proposed actions evaluated in this environmental assessment (EA). The actions are related because one must take place before the other can proceed. The proposed actions assessed in this EA are: the decontamination and decommissioning (D&D) of the Tokamak Fusion Test Reactor (TFTR); to be followed by the construction and operation of the Tokamak Physics Experiment (TPX). Both of these proposed actions would take place primarily within the TFTR Test Cell Complex at the Princeton Plasma Physics Laboratory (PPPL). The TFTR is located on ``D-site`` at the James Forrestal Campus of Princeton University in Plainsboro Township, Middlesex County, New Jersey, and is operated by PPPL under contract with the United States Department of Energy (DOE).

  18. Distributed Energy Resources Test Facility | Energy Systems Integration |

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    NREL Distributed Energy Resources Test Facility At the Distributed Energy Resources Test Facility (DERTF), researchers use state-of-the-art laboratories and outdoor test beds to characterize the performance and reliability of distributed power systems, support standards development, and investigate emerging and complex system integration issues. The DERTF contains a variety of distributed generation and storage, interconnection and testing, and electric power systems equipment. Researchers

  19. An Integral Effects Test in a zion-like geometry to investigate the effects of pre-existing hydrogen on direct containment heating in the Surtsey Test Facility. The IET-6 experiment

    SciTech Connect (OSTI)

    Allen, M.D.; Blanchat, T.K.; Pilch, M.; Nichols, R.T.

    1993-01-01

    The sixth experiment of the Integral Effects Test (IET-6) series was conducted to investigate the effects of high pressure melt ejection on direct containment heating. Scale models of the Zion reactor pressure vessel (RPV), cavity, instrument tunnel, and subcompartment structures were constructed in the Surtsey Test Facility at Sandia National Laboratories. The RPV was modeled with a melt generator that consisted of a steel pressure barrier, a cast MgO crucible, and a thin steel inner liner. The melt generator/crucible had a hemispherical bottom head containing a graphite limitor plate with a 4-cm exit hole to simulate the ablated hole in the RPV bottom head that would be formed by ejection of an instrument guide tube in a severe nuclear power plant accident. The cavity contained 3.48 kg of water, which corresponds to condensate levels in the Zion plant, and the containment basement floor was dry. A 43-kg initial charge of iron oxide/aluminum/chromium thermite was used to simulate corium debris on the bottom head of the RPV. Molten thermite was ejected by steam at an initial pressure of 6.3 MPa into the reactor cavity. The Surtsey vessel atmosphere contained pre-existing hydrogen to represent partial oxidation of the zirconium in the Zion core. The initial composition of the vessel atmosphere was 87.1 mol.% N{sub 2}, 9.79 mol.% O{sub 2}, and 2.59 mol.% H{sub 2}, and the initial absolute pressure was 198 kPa. A partial hydrogen burn occurred in the Surtsey vessel. The peak vessel pressure increase was 279 kPa in IET-6, compared to 246 kPa in the IET-3 test. The total debris mass ejected into the Surtsey vessel in IET-6 was 42.5 kg. The gas grab sample analysis indicated that there were 180 g{center_dot} moles of pre-existing hydrogen, and that 308{center_dot}moles of hydrogen were produced by steam/metal reactions. About 335 g{center_dot}moles of hydrogen burned, and 153 g{center_dot}moles remained unreacted.

  20. Summer outdoor temperature and occupational heat-related illnesses in Quebec (Canada)

    SciTech Connect (OSTI)

    Adam-Poupart, Ariane; Smargiassi, Audrey; Busque, Marc-Antoine; Duguay, Patrice; Fournier, Michel; Zayed, Joseph; Labrèche, France

    2014-10-15

    Background: Predicted rise in global mean temperature and intensification of heat waves associated with climate change present an increasing challenge for occupational health and safety. Although important scientific knowledge has been gathered on the health effects of heat, very few studies have focused on quantifying the association between outdoor heat and mortality or morbidity among workers. Objective: To quantify the association between occupational heat-related illnesses and exposure to summer outdoor temperatures. Methods: We modeled 259 heat-related illnesses compensated by the Workers' Compensation Board of Quebec between May and September, from 1998 to 2010, with maximum daily summer outdoor temperatures in 16 health regions of Quebec (Canada) using generalized linear models with negative binomial distributions, and estimated the pooled effect sizes for all regions combined, by sex and age groups, and for different time lags with random-effect models for meta-analyses. Results: The mean daily compensation count was 0.13 for all regions of Quebec combined. The relationship between daily counts of compensations and maximum daily temperatures was log-linear; the pooled incidence rate ratio (IRR) of daily heat-related compensations per 1 °C increase in daily maximum temperatures was 1.419 (95% CI 1.326 to 1.520). Associations were similar for men and women and by age groups. Increases in daily maximum temperatures at lags 1 and 2 and for two and three-day lag averages were also associated with increases in daily counts of compensations (IRRs of 1.206 to 1.471 for every 1 °C increase in temperature). Conclusion: This study is the first to quantify the association between occupational heat-related illnesses and exposure to summer temperatures in Canada. The model (risk function) developed in this study could be useful to improve the assessment of future impacts of predicted summer outdoor temperatures on workers and vulnerable groups, particularly in colder

  1. RELAP5 / MOD3.2 analysis of INSC standard problem INSCSP - R7 : void fraction distribution over RBMK fuel channel height for experiments performed in the ENTEK BM test facility.

    SciTech Connect (OSTI)

    Garner, P. L.

    2002-08-22

    The RELAP5/MOD3.2 computer program has been used to analyze a series of tests investigating void fraction distribution over height in RBMK fuel channels performed in Facility BM at the ENTEK. This is RBMK Standard Problem 7 in Joint Project 6, which is the investigation of Computer Code Validation for Transient Analysis of RBMK and VVER Reactors, between the United States and Russian Minatom International Nuclear Safety Centers. The experiment facility and data, RELAP5 nodalization, and results are shown for all tests. Agreement between RELAP5 and the experiment data is reasonable.

  2. RELAP5/MOD3.2 analysis of INSC standard problem INSCSP - R7 : void fraction distribution over RBMK fuel channel height for experiments performed in the ENTEK BM test facility.

    SciTech Connect (OSTI)

    Garner, P. L.

    2002-05-24

    The RELAP5/MOD3.2 computer program has been used to analyze a series of tests investigating void fraction distribution over height in RBMK fuel channels performed in Facility BM at the ENTEK. This is RBMK Standard Problem 7 in Joint Project 6, which is the investigation of Computer Code Validation for Transient Analysis of RBMK and VVER Reactors, between the United States and Russian Minatom International Nuclear Safety Centers. The experiment facility and data, RELAP5 nodalization, and results are shown for all tests. Agreement between RELAP5 and the experiment data is reasonable.

  3. Multiwell experiment

    SciTech Connect (OSTI)

    Sattler, A.R.; Warpinski, N.R.; Lorenz, J.C.; Hart, C.M.; Branagan, P.T.

    1985-01-01

    The Multiwell Experiment is a research-oriented field laboratory. Its overall objectives are to characterize lenticular, low-permeability gas reservoirs and to develop technology for their production. This field laboratory has been established at a site in the east-central Piceance basin, Colorado. Here the Mesaverde formation lies at a depth of 4000 to 8250 ft. This interval contains different, distinct reservoir types depending upon their depositional environments. These different zones serve as the focus of the various testing and stimulation programs. Field work began in late 1981 and is scheduled through mid-1988. One key to the Multiwell Experiment is three closely spaced wells. Core, log, well testing, and well-to-well seismic data are providing a far better definition of the geological setting than has been available previously. The closely spaced wells also allow interference and tracer tests to obtain in situ reservoir parameters. The vertical variation of in situ stress throughout the intervals of interest is being measured. A series of stimulation experiments is being conducted in one well and the other two wells are being used as observation wells for improved fracture diagnostics and well testing. Another key to achieving the Multiwell Experiment objectives is the synergism resulting from a broad spectrum of activities: geophysical surveys, sedimentological studies, core and log analyses, well testing, in situ stress determination, stimulation, fracture diagnostics, and reservoir analyses. The results from the various activities will define the reservoir and the hydraulic fracture. These, in turn, define the net pay stimulated: the intersection of a hydraulic fracture of known geometry with a reservoir of known morphology and properties. Accomplishments of the past year are listed. 4 refs.

  4. Direct Analysis of JV-Curves Applied to an Outdoor-Degrading CdTe Module (Presentation)

    SciTech Connect (OSTI)

    Jordan, D; Kurtz, S.; Ulbrich, C.; Gerber, A.; Rau, U.

    2014-03-01

    We present the application of a phenomenological four parameter equation to fit and analyze regularly measured current density-voltage JV curves of a CdTe module during 2.5 years of outdoor operation. The parameters are physically meaningful, i.e. the short circuit current density Jsc, open circuit voltage Voc and differential resistances Rsc, and Roc. For the chosen module, the fill factor FF degradation overweighs the degradation of Jsc and Voc. Interestingly, with outdoor exposure, not only the conductance at short circuit, Gsc, increases but also the Gsc(Jsc)-dependence. This is well explained with an increase in voltage dependent charge carrier collection in CdTe.

  5. Comparison of the effect of outdoor exposure on the optical properties of solar mirrors and transparent encapsulant materials

    SciTech Connect (OSTI)

    Dake, L.S.; Lind, M.A.; Maag, C.R.

    1981-09-01

    The effects of outdoor exposure on solar mirrors and transparent encapsulant materials are assessed and compared. The encapsulant materials tested included glasses, polymers and silicones. Samples of the materials were placed on stationary exposure racks in six locations that represented urban, desert, oceanside and high altitude mountain areas. Samples were removed periodically for optical characterizations. The spectral hemispherical and diffuse reflectance of the mirror samples and the spectral hemispherical transmittance and diffuse reflectance of the encapsulant materials was measured. The relative normal hemispherical transmittance of the encapsulant materials was measured. Correlations between the glass and mirror data showed that the average diffuse reflectance losses were six times larger for the mirrors than for the glass samples. The average specular reflectance losses for the mirror samples were seven times as large as the average hemispherical transmittance losses for the glass samples. These correlations may enable one to predict the performance of mirrors made using the other encapsulant materials for superstrates. It was found that the urban and oceanside sites were the dirtiest, while the desert and mountain sites were the cleanest. Average specular reflectance losses varied from 4% at the cleanest site to 50% at the dirtiest site. The range in hemispherical transmittance losses for the encapsulant materials varied between 0% and 6%. At one site, the average daily specular reflectance losses were .04% for the mirror samples and average daily hemispherical transmittance losses were about .01% for the glass samples. The polymer materials degraded somewhat more rapidly than the glasses, and the silicones irreversible degraded too rapidly and severely to be useful for either photovoltaic or solar thermal applications.

  6. Argonne Liquid-Metal Advanced Burner Reactor : components and in-vessel system thermal-hydraulic research and testing experience - pathway forward.

    SciTech Connect (OSTI)

    Kasza, K.; Grandy, C.; Chang, Y.; Khalil, H.; Nuclear Engineering Division

    2007-06-30

    This white paper provides an overview and status report of the thermal-hydraulic nuclear research and development, both experimental and computational, conducted predominantly at Argonne National Laboratory. Argonne from the early 1970s through the early 1990s was the Department of Energy's (DOE's) lead lab for thermal-hydraulic development of Liquid Metal Reactors (LMRs). During the 1970s and into the mid-1980s, Argonne conducted thermal-hydraulic studies and experiments on individual reactor components supporting the Experimental Breeder Reactor-II (EBR-II), Fast Flux Test Facility (FFTF), and the Clinch River Breeder Reactor (CRBR). From the mid-1980s and into the early 1990s, Argonne conducted studies on phenomena related to forced- and natural-convection thermal buoyancy in complete in-vessel models of the General Electric (GE) Prototype Reactor Inherently Safe Module (PRISM) and Rockwell International (RI) Sodium Advanced Fast Reactor (SAFR). These two reactor initiatives involved Argonne working closely with U.S. industry and DOE. This paper describes the very important impact of thermal hydraulics dominated by thermal buoyancy forces on reactor global operation and on the behavior/performance of individual components during postulated off-normal accident events with low flow. Utilizing Argonne's LMR expertise and design knowledge is vital to the further development of safe, reliable, and high-performance LMRs. Argonne believes there remains an important need for continued research and development on thermal-hydraulic design in support of DOE's and the international community's renewed thrust for developing and demonstrating the Global Nuclear Energy Partnership (GNEP) reactor(s) and the associated Argonne Liquid Metal-Advanced Burner Reactor (LM-ABR). This white paper highlights that further understanding is needed regarding reactor design under coolant low-flow events. These safety-related events are associated with the transition from normal high

  7. The North Carolina Field Test

    SciTech Connect (OSTI)

    Sharp, T.R.; Ternes, M.P.

    1990-08-01

    The North Carolina Field Test will test the effectiveness of two weatherization approaches: the current North Carolina Low-Income Weatherization Assistance Program and the North Carolina Field Test Audit. The Field Test Audit will differ from North Carolina's current weatherization program in that it will incorporate new weatherization measures and techniques, a procedure for basing measure selection of the characteristics of the individual house and the cost-effectiveness of the measure, and also emphasize cooling energy savings. The field test will determine the differences of the two weatherization approaches from the viewpoints of energy savings, cost effectiveness, and implementation ease. This Experimental Plan details the steps in performing the field test. The field test will be a group effort by several participating organizations. Pre- and post-weatherization data will be collected over a two-year period (November 1989 through August 1991). The 120 houses included in the test will be divided into a control group and two treatment groups (one for each weatherization procedure) of 40 houses each. Weekly energy use data will be collected for each house representing whole-house electric, space heating and cooling, and water heating energy uses. Corresponding outdoor weather and house indoor temperature data will also be collected. The energy savings of each house will be determined using linear-regression based models. To account for variations between the pre- and post-weatherization periods, house energy savings will be normalized for differences in outdoor weather conditions and indoor temperatures. Differences between the average energy savings of treatment groups will be identified using an analysis of variance approach. Differences between energy savings will be quantified using multiple comparison techniques. 9 refs., 8 figs., 5 tabs.

  8. The Potential Role of a New Generation of Outdoor Building Test Facilities for Validation of Whole Building Simulation Tools

    Energy Savers

    Oak Ridge Reservation 41,1EsEiiS WORKING GROUP July, 1998 This report was written and edited by members of the Stewardship Committee with the assistance of Phoenix Environmental Corporation of Alexandria, Virginia. Additional copies and information can be found on the DOE Oak Ridge Operations site on the world wide web: ornl.gov/doe~oro/em/emhome.html or by calling the Information Resource Center at 423-241-4582 Stakeholder R e ~ o r t on stewards hi^ TABLE OF CONTENTS 1 . 0 INTRODUCTION

  9. Operation Greenhouse. Scientific director's report of atomic weapon tests at Eniwetok, 1951. Annex 1. 5. Neutron measurements. Part 1. Diagnostic neutron experiments, Section 2. Final report

    SciTech Connect (OSTI)

    Krause, E.H.

    1985-09-01

    The effects of radiation on the passage of an electromagnetic wave along a cable are too complicated to predict accurately from theory alone. Also, near the bomb, the intensity during the shot is so high that the results of laboratory measurements must be extrapolated by too many orders of magnitude to be applied with much confidence to the test conditions. Therefore, a number of cables were installed near the bomb for the sole purpose of study the radiation effects, both to help correct the data obtained in the present tests and to help predict shielding requirements in future tests. The two types of effects looked for were (1) a simple attenuation of a voltage across the line due to the shunt conductance set up when Compton-recoil electrons from the gamma rays ionize the gas between the inner and outer conductors; and (2) an induced signal due to the Compton electrons being knocked out of the inner and outer conductors in unequal amounts. On the basis of the results, a discussion is given of the adequacy of the coral shielding actually used to protect the horizontal cable runs.

  10. Thermal-Hydraulic Analysis of an Experimental Reactor Cavity Cooling System with Air. Part I: Experiments; Part II: Separate Effects Tests and Modeling

    SciTech Connect (OSTI)

    Corradin, Michael; Anderson, M.; Muci, M.; Hassan, Yassin; Dominguez, A.; Tokuhiro, Akira; Hamman, K.

    2014-10-15

    This experimental study investigates the thermal hydraulic behavior and the heat removal performance for a scaled Reactor Cavity Cooling System (RCCS) with air. A quarter-scale RCCS facility was designed and built based on a full-scale General Atomics (GA) RCCS design concept for the Modular High Temperature Gas Reactor (MHTGR). The GA RCCS is a passive cooling system that draws in air to use as the cooling fluid to remove heat radiated from the reactor pressure vessel to the air-cooled riser tubes and discharged the heated air into the atmosphere. Scaling laws were used to preserve key aspects and to maintain similarity. The scaled air RCCS facility at UW-Madison is a quarter-scale reduced length experiment housing six riser ducts that represent a 9.5° sector slice of the full-scale GA air RCCS concept. Radiant heaters were used to simulate the heat radiation from the reactor pressure vessel. The maximum power that can be achieved with the radiant heaters is 40 kW with a peak heat flux of 25 kW per meter squared. The quarter-scale RCCS was run under different heat loading cases and operated successfully. Instabilities were observed in some experiments in which one of the two exhaust ducts experienced a flow reversal for a period of time. The data and analysis presented show that the RCCS has promising potential to be a decay heat removal system during an accident scenario.

  11. Assessment of RELAP5/MOD2, Cycle 36-04 using LOFT (Loss of Fluid Test) Large Break Experiment L2-5

    SciTech Connect (OSTI)

    Bank, Young Seok; Lee, Sang Yong; Kim, Hho-Jung . Korea Nuclear Safety Center)

    1990-04-01

    The LOFT L2-5 LBLOCA Experiment was simulated using the RELAP5/MOD2 Cycle 36.04 code to assess its capability to predict the phenomena in LBLOCA. One base case calculation and three cases of different nodalizations were carried out. The effect of different nodalization was studied in the area of the downcomer and core. For a sensitivity study, another calculation was executed using an updated version of RELAP5/MOD2 Cycle 36.04. A Split downcomer with one crossflow junction and two core channels were found to be effective in describing the ECC bypass and hot channel behavior. And the updated version was found to be effective in overcoming the code deficiency in the interfacial friction and reflood quenching. 11 refs., 55 figs., 10 tabs.

  12. Evaluation Project 4492

    National Nuclear Security Administration (NNSA)

    B3.8 - Outdoor ecologicalenvironmental research in small area B3.9 - Certain CCT demonstration activities, emissions unchanged B3.11 - Outdoor tests, experiments on materials and ...

  13. Jefferson Lab to Test Tornado Warning Siren | Jefferson Lab

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Oct. 7 Jefferson Lab's tornado warning siren will undergo its monthly operational test at 10:30 a.m. on Friday, Oct. 7. Depending on weather conditions at the time of the test, the siren may be heard by anyone within a 1.5-mile radius of the lab. Don't respond to the siren; this is a test of the siren system and not a personnel response exercise. The test shouldn't last more than three-minutes. Jefferson Lab uses the siren to notify members of the lab community, who are outdoors, to "take

  14. Jefferson Lab to Test Tornado Warning Siren | Jefferson Lab

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Nov. 4 Jefferson Lab's tornado warning siren will undergo its monthly operational test at 10:30 a.m. on Friday, Nov. 4. Depending on weather conditions at the time of the test, the siren may be heard by anyone within a 1.5-mile radius of the lab. Don't respond to the siren; this is a test of the siren system and not a personnel response exercise. The test shouldn't last more than three-minutes. Jefferson Lab uses the siren to notify members of the lab community, who are outdoors, to "take

  15. Effectiveness of 700{degrees}C thermal treatment on primary water stress corrosion sensitivity of Alloy 600 steam generator tubes: Laboratory tests and in field experience

    SciTech Connect (OSTI)

    Cattant, F.; Keroulas, F. de; Garriga-Majo, D.; Todeschini, P.; Van Duysen, J.C.

    1992-12-31

    In France, the steam generators of some 900 MWe reactors, and of all the 1 300 MWe reactors in service are equipped with heat treated Alloy 600 tubes. The purpose of the heat treatment, performed at 700{degrees}C, is to relieve the residual stresses. Generally, it also increases the SCC resistance of the alloy. A laboratory study has been carried out in order to gain a better understanding of the metallurgical factors influencing the PWSCC resistance of Alloy 600 after heat treatment. It has been shown that there are two kinds of tubes for which the heat treatment does not produce a microstructure having a potentially high resistance to SCC: tubes with a high carbon content (over 0.032%) or tubes mill-annealed at high temperatures and heavily cold-worked by the straightening. The analysis of the behaviour of french steam generators reveals that the heat treatment generally had the expected beneficial effect. However, the early cracking in service of some treated tubes led EDF (national power company) to proceed with removals. The majority of the cracked pulled-out tubes exhibit microstructures having a potentially high PWSCC sensibility in laboratory tests. It has been shown that these microstructures can be correlated to a high carbon content.

  16. IBA for novice experimentalists. I. Introduction to IBA: mostly symmetries. II. Tests in even-even nuclei: mostly transitional systems. III. Supersymmetries: theory and experiment

    SciTech Connect (OSTI)

    Cizewski, J.A.

    1982-08-01

    The report contains the notes from a series of lectures on the Interacting Boson Approximation (IBA) model. The lectures were presented at Lawrence Livermore National Laboratory on July 28, 30 and August 1, 1982 by Jolie A. Cizewski from Yale University. The IBA was developed by F. Iachello and A. Arima starting about seven years ago to understand collective quadrupole excitations in medium and heavy mass nuclei away from closed shells. Since then the formalism has been extended to odd-mass nuclei and considerable work has gone into understanding the microscopic construction of the bosons in this model. The IBA has been applied to nuclei as light as Zn and Ge and as heavy as U and Pu; to nuclei near closed shells, such as Mo and Hg; to stable nuclei and nuclei far from stability. The present lectures were designed to give the experimentalist an introduction to the IBA and to give specific examples of how it could be applied to understand the structure of heavy even and odd mass nuclei. Much of the emphasis was on the symmetries (and supersymmetries) of the model and how the use of symmetries enabled the relatively straightforward understanding of empirical systems as deviations from these symmetries. The richness of possible applications of the IBA to understanding collective phenomena in nuclei was not fully explored, but rather a few illustrative examples were selected and described in detail. The references, accumulated at the end of this report, provide a more comprehensive, although not complete, list of tests of the IBA in even mass nuclei and the new symmetries in odd mass nuclei. The references also list the main theoretical papers which provide the details of the IBA formalism.

  17. Performance Test of Amorphous Silicon Modules in Different Climates - Year Four: Progress in Understanding Exposure History Stabilization Effects; Preprint

    SciTech Connect (OSTI)

    Ruther, R.; Montenegro, A. A.; del Cueto, J.; Rummel, S.; Anderberg, A.; von Roedern, B.; Tamizh-Mani, G.

    2008-05-01

    The four-year experiment involved three identical sets of thin-film a-Si modules from various manufacturers deployed outdoors simultaneously in three sites with distinct climates. Each PV module set spent a one-year period at each site before a final period at the original site where it was first deployed.

  18. Absolute Cavity Pyrgeometer to Measure the Absolute Outdoor Longwave Irradiance with Traceability to International System of Units, SI

    SciTech Connect (OSTI)

    Reda, I.; Zeng, J.; Scheuch, J.; Hanssen, L.; Wilthan, B.; Myers, D.; Stoffel, T.

    2012-03-01

    This article describes a method of measuring the absolute outdoor longwave irradiance using an absolute cavity pyrgeometer (ACP), U.S. Patent application no. 13/049, 275. The ACP consists of domeless thermopile pyrgeometer, gold-plated concentrator, temperature controller, and data acquisition. The dome was removed from the pyrgeometer to remove errors associated with dome transmittance and the dome correction factor. To avoid thermal convection and wind effect errors resulting from using a domeless thermopile, the gold-plated concentrator was placed above the thermopile. The concentrator is a dual compound parabolic concentrator (CPC) with 180{sup o} view angle to measure the outdoor incoming longwave irradiance from the atmosphere. The incoming irradiance is reflected from the specular gold surface of the CPC and concentrated on the 11 mm diameter of the pyrgeometer's blackened thermopile. The CPC's interior surface design and the resulting cavitation result in a throughput value that was characterized by the National Institute of Standards and Technology. The ACP was installed horizontally outdoor on an aluminum plate connected to the temperature controller to control the pyrgeometer's case temperature. The responsivity of the pyrgeometer's thermopile detector was determined by lowering the case temperature and calculating the rate of change of the thermopile output voltage versus the changing net irradiance. The responsivity is then used to calculate the absolute atmospheric longwave irradiance with an uncertainty estimate (U{sub 95}) of {+-}3.96 W m{sup 02} with traceability to the International System of Units, SI. The measured irradiance was compared with the irradiance measured by two pyrgeometers calibrated by the World Radiation Center with traceability to the Interim World Infrared Standard Group, WISG. A total of 408 readings were collected over three different nights. The calculated irradiance measured by the ACP was 1.5 W/m{sup 2} lower than that

  19. Results of First Outdoor Comparison Between Absolute Cavity Pyrgeometer (ACP) and Infrared Integrating Sphere (IRIS) Radiometer at PMOD (Presentation)

    SciTech Connect (OSTI)

    Reda, I.; Grobner, J.; Wacker, S.; Stoffel, T.

    2013-03-01

    The ACP and IRIS are developed to establish a world reference for calibrating pyrgeometers with traceability to SI units. The two radiometers are unwindowed with negligible spectral dependence, and traceable to SI units through the temperature scale (ITS-90). The first outdoor comparison between the two designs was held from January 28 to February 8, 2013 at the Physikalisch-Metorologisches Observatorium Davos (PMOD). The difference between the irradiance measured by ACP and that of IRIS was within 1 W/m2. A difference of 5 W/m2 was observed between the irradiance measured by ACP&IRIS and that of the interim World Infrared Standard Group (WISG).

  20. NREL Determines Better Testing Methods for Photovoltaic Module Durability (Fact Sheet), NREL Highlights, Research & Development

    SciTech Connect (OSTI)

    Not Available

    2011-11-01

    NREL discoveries will enable manufacturers to produce more robust photovoltaic modules. Over the past decade, some photovoltaic (PV) modules have experienced power losses because of the system voltage stress that modules experience in fielded arrays. This is partly because qualification tests and standards do not adequately evaluate the durability of modules that undergo the long-term effects of high voltage. Scientists at the National Renewable Energy Laboratory (NREL) tried various testing methods and stress levels to demonstrate module durability to system voltage potential-induced degradation (PID) mechanisms. The results of these accelerated tests, along with outdoor testing, were used to estimate the acceleration factors needed to more accurately evaluate the durability of modules to system voltage stress. NREL was able to determine stress factors, levels, and methods for testing based on the stresses experienced by modules in the field. These results, in combination with those in the literature, suggest that constant stress with humidity and system voltage is more damaging than stress applied intermittently or with periods of recovery comprising hot and dry conditions or alternating bias in between. NREL has determined some module constructions to be extremely durable to PID. These findings will help the manufacturers of PV materials and components produce more durable products that better satisfy their customers. NREL determined that there is rapid degradation of some PV modules under system voltage stress and evaluated degradation rates in the field to develop more accurate accelerated testing methods. PV module manufacturers will be better able to choose robust materials and durable designs and guarantee sturdier, longer-lasting products. As PV modules become more durable, and thus more efficient over the long term, the risks and the cost of PV power will be reduced.

  1. Adhesion and chemical vapor testing of second surface silver/glass solar mirrors

    SciTech Connect (OSTI)

    Dake, L.S.; Lind, M.A.

    1980-09-01

    Second surface silvered glass mirrors supplied by four different commercial manufacturers were evaluated for silver-to-glass adhesion and resistance to chemical vapor attack. The mirrors were chemically silvered on identical substrates of low iron float glass. Experiments were performed in order to assess the viability of using adhesion and chemical attack as screening tests for predicting the relative long-term durability of solar mirrors. The results of these tests will be compared at a future time with the survivability of field mirrors deployed in stationary exposure racks at ten locations throughout the United States. The adhesion tests were performed using a commercially-available thin film tensile pull tester in which a stud bonded to the film is pulled and the yield load recorded. Numerous subtleties regarding the selection of the adhesive used to bond the study and the validity of the testing procedure are discussed. Several different methods of normalizing the results were attempted in an effort to reduce the scatter in the data. The same set of samples were exposed to salt spray, water, HCl, H/sub 2/SO/sub 4/, and HNO/sub 3/ vapors and then ranked according to their performance. Visual comparison of tested samples did not yield consistent results; however, definite trends were observed favoring one of the manufacturers. Some SEM/EDX analysis was performed on these mirrors subject to accelerated degradation in order to compare them to mirrors subject to natural degradation. However, insufficient data has been collected to show that any of the tests performed will accurately predict the relative life expectancy of the mirrors in an outdoor environment.

  2. Programs for Assembling SBH Experiments

    Energy Science and Technology Software Center (OSTI)

    1995-11-28

    DB EXP ASSEMBLY is a suite of programs that enable selection of bundles of data, which are referred to as experiments, from the DB SBH archival database. In other words, an experiment is a bundle of data which is analyzed as a unit. Program DBJ creates raw experiments based on initial specification. Program DBK then tests the experiments for a number of consistemcy and completeness criteria, reports bugs in the experiment and recommends solutions, andmore » performs the desired corrections. An experiment that has passed the final DBK test is ready for analysis by the DB DISCOVERY programs.« less

  3. Proceedings of the Symposium on the Non-Proliferation Experiment...

    Office of Scientific and Technical Information (OSTI)

    Symposium on the Non-Proliferation Experiment: Results and Implications for Test Ban ... Experiment: Results and Implications for Test Ban Treaties, Rockville, Maryland, April ...

  4. A New Method to Determine the Thermal Properties of Soil Formations from In Situ Field Tests

    SciTech Connect (OSTI)

    Shonder, J.A.

    2000-05-02

    The geothermal or ground-source heat pump (GHP) has been shown to be a very efficient method of providing heating and cooling for buildings. GHPs exchange (reject or extract) heat with the earth by way of circulating water, rather than by use of circulating outdoor air, as with an air-source heat pump. The temperature of water entering a GHP is generally cooler than that of outdoor air when space cooling is required, and warmer than that of outdoor air when space heating is required. Consequently, the temperature lift across a GHP is less than the lift across an air-source heat pump. The lower temperature lift leads to greater efficiency, higher capacity at extreme outdoor air temperatures, and better indoor humidity control. These benefits are achieved, however, at the cost of installing a ground heat exchanger. In general, this cost is proportional to length of the heat exchanger, and for this reason there is an incentive to install the minimum possible length such that design criteria are met. The design of a ground heat exchanger for a GHP system requires, at a minimum, the operating characteristics of the heat pumps, estimates of annual and peak block loads for the building, and information about the properties of the heat exchanger: the size of the U-tubes, the grouting material, etc. The design also requires some knowledge of the thermal properties of the soil, namely thermal conductivity, thermal diffusivity, and undisturbed soil temperature. In the case of a vertical borehole heat exchanger (BHEx) these properties generally vary with depth; therefore, in the design, effective or average thermal properties over the length of the borehole are usually sought. When the cost of doing so can be justified, these properties are measured in an in situ experiment: a test well is drilled to a depth on the same order as the expected depth of the heat pump heat exchangers; a U-tube heat exchanger is inserted and the borehole is grouted according to applicable state and

  5. Ignition Experiments

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Precision experiments devoted to ignition began in May 2011 and have since produced unprecedented high-energy-density environments. The National Ignition Campaign Ignition ...

  6. ICAP (International Code Assessment and Applications Program) assessment of RELAP5/MOD2, Cycle 36. 05 against LOFT (Loss of Fluid Test) Small Break Experiment L3-7

    SciTech Connect (OSTI)

    Lee, Euy-Joon; Chung, Bud-Dong; Kim, Hho-Jung . Korea Nuclear Safety Center)

    1990-04-01

    The LOFT small break (1 in-dia) experiment L3-7 has been analyzed using the reactor thermal hydraulic analysis code RELAP5/MOD2, Cycle 36.05. The base calculation (Case A) was completed and compared with the experimental data. Three types of sensitivity studies (Cases B, Cm, and D) were carried out to investigate the effects of (1) break discharge coefficient Cd, (2) pump two-phase difference multiplier and (3) High Pressure Injection System (HPIS) capacity on major thermal and hydraulic (T/H) parameters. A nodalization study (Case E) was conducted to assess the phenomena with a simplified nodalization. The results indicate that Cd of 0.9 and 0.1 fit to the single discharge flow rate of Test L3-7 best among the tried cases. The pump two-phase multiplier has little effects on the T/H parameters because of the low discharge flow rate and the early pump coast down in this smaller size SBLOCA. But HPIS capacity has a very strong influence on parameters such as pressure, flow and temperature. It is also shown that a simplified nodalization could accomodate the dominant T/H phenomena with the same degree of code accuracy and efficiency.

  7. Mixture Experiments

    SciTech Connect (OSTI)

    Piepel, Gregory F.

    2007-12-01

    A mixture experiment involves combining two or more components in various proportions or amounts and then measuring one or more responses for the resulting end products. Other factors that affect the response(s), such as process variables and/or the total amount of the mixture, may also be studied in the experiment. A mixture experiment design specifies the combinations of mixture components and other experimental factors (if any) to be studied and the response variable(s) to be measured. Mixture experiment data analyses are then used to achieve the desired goals, which may include (i) understanding the effects of components and other factors on the response(s), (ii) identifying components and other factors with significant and nonsignificant effects on the response(s), (iii) developing models for predicting the response(s) as functions of the mixture components and any other factors, and (iv) developing end-products with desired values and uncertainties of the response(s). Given a mixture experiment problem, a practitioner must consider the possible approaches for designing the experiment and analyzing the data, and then select the approach best suited to the problem. Eight possible approaches include 1) component proportions, 2) mathematically independent variables, 3) slack variable, 4) mixture amount, 5) component amounts, 6) mixture process variable, 7) mixture of mixtures, and 8) multi-factor mixture. The article provides an overview of the mixture experiment designs, models, and data analyses for these approaches.

  8. The New Test Site 1

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    will reduce costs by consolidating this kind of high explosive testing at one facility. ... and secure facility to support nuclear explosive operations, subcritical experiments, and ...

  9. Advanced Test Reactor Tour

    SciTech Connect (OSTI)

    Miley, Don

    2011-01-01

    The Advanced Test Reactor at Idaho National Laboratory is the foremost nuclear materials test reactor in the world. This virtual tour describes the reactor, how experiments are conducted, and how spent nuclear fuel is handled and stored. For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

  10. Advanced Test Reactor Tour

    ScienceCinema (OSTI)

    Miley, Don

    2016-07-12

    The Advanced Test Reactor at Idaho National Laboratory is the foremost nuclear materials test reactor in the world. This virtual tour describes the reactor, how experiments are conducted, and how spent nuclear fuel is handled and stored. For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

  11. CALiPER Round 7 Testing Results and SSL Product Life Issues | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy 7 Testing Results and SSL Product Life Issues CALiPER Round 7 Testing Results and SSL Product Life Issues This April 9, 2009 webcast provided an overview of CALiPER's Round 7 testing results, and an update on the emerging understanding of service life and long-term reliability for solid-state lighting products. Heidi Steward of Pacific Northwest National Laboratory (PNNL) highlighted the testing results from CALiPER Round 7, including featured product categories outdoor lighting,

  12. JLab to Test Tornado Warning Siren on Friday Morning | Jefferson Lab

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    NEWPORT NEWS, Va., May 31, 2012 - The Thomas Jefferson National Accelerator Facility will test its tornado warning siren at 10:30 a.m. on Friday, June 1. Depending on weather conditions at the time of the test, the siren could be heard by anyone outdoors within a 1.5-mile radius of the lab. The test will be carried out over a period that could last from 30 seconds to three minutes. The test will be of the wavering tone (also called high-low-high or 10-4-10). Jefferson Lab uses the siren to

  13. JLab to Test Tornado Warning Siren on Friday Morning | Jefferson Lab

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Newport News, Va., May 3, 2012 - The Thomas Jefferson National Accelerator Facility will test its tornado warning siren at 10:30 a.m. on Friday, May 4. Depending on weather conditions at the time of the test, the siren could be heard by anyone outdoors within a 1.5-mile radius of the lab. The test will be carried out over a period that could last from 30 seconds to three minutes. The test will be of the wavering tone (also called high-low-high or 10-4-10). Jefferson Lab uses the siren to quickly

  14. Jefferson Lab to Test New Siren Warning System on Tuesday Afternoon |

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Jefferson Lab New Siren Warning System on Tuesday Afternoon Jefferson Lab to Test New Siren Warning System on Tuesday Afternoon Newport News, Va., Dec. 5, 2011 - The Thomas Jefferson National Accelerator Facility is installing a severe weather warning siren on its campus and will test the system for the first time on Tuesday afternoon, Dec. 6. Depending on weather conditions at the time of the test, the siren could be heard by anyone outdoors within a 1.5-mile radius of the lab. The test

  15. Jefferson Lab to Test Tornado Warning Siren on Friday Morning | Jefferson

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Lab - The Thomas Jefferson National Accelerator Facility will test its tornado warning siren at 10:30 a.m. on Friday, Aug. 3. Depending on weather conditions at the time of the test, the siren could be heard by anyone outdoors within a 1.5-mile radius of the lab. The test will be carried out over a period that could last from 30 seconds to three minutes. The test will be of the wavering tone (also called high-low-high or 10-4-10). Jefferson Lab uses the siren to quickly alert members of the

  16. Jefferson Lab to Test Tornado Warning Siren on Friday Morning | Jefferson

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Lab , Oct. 4, 2012 - The Thomas Jefferson National Accelerator Facility will test its tornado warning siren at 10:30 a.m. on Friday, Oct. 5. Depending on weather conditions at the time of the test, the siren could be heard by anyone outdoors within a 1.5-mile radius of the lab. The test will be carried out over a period that could last from 30 seconds to three minutes. The test will be of the wavering tone (also called high-low-high or 10-4-10). Jefferson Lab uses the siren to quickly alert

  17. Jefferson Lab to Test Tornado Warning Siren on Friday Morning | Jefferson

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Lab Posted Sept. 5, 2012 NEWPORT NEWS, Va. - The Thomas Jefferson National Accelerator Facility will test its tornado warning siren at 10:30 a.m. on Friday, Sept. 7. Depending on weather conditions at the time of the test, the siren could be heard by anyone outdoors within a 1.5-mile radius of the lab. The test will be carried out over a period that could last from 30 seconds to three minutes. The test will be of the wavering tone (also called high-low-high or 10-4-10). Jefferson Lab uses

  18. The Tokamak Fusion Test Reactor (TFTR) Story

    SciTech Connect (OSTI)

    2015-08-05

    Princeton Plasma Physics Laboratory provides an overview of the purpose, mission, and progress of the Tokamak Fusion Test Reactor experiment.

  19. Tokamak Fusion Test Reactor (TFTR) Closing

    SciTech Connect (OSTI)

    2015-08-05

    Closing remarks are provided in honor of the scientists whom worked diligently on the Tokamak Fusion Test Reactor (TFTR) experiment.

  20. Tokamak Fusion Test Reactor (TFTR) First Plasma

    SciTech Connect (OSTI)

    2015-08-05

    The Tokamak Fusion Test Reactor (TFTR) First Plasma experiment was implemented at the Princeton Plasma Physics Laboratory.

  1. Current Schedule of Experiments

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    current schedule of experiments Current Schedule of Experiments Current Schedule of Experiments - Updated 4/2016

  2. Forklift Test

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Forklift Safety Test Instructions: All Training and Testing Material is for LSU CAMD Users ... A minimum passing score is 80% (8 out of 10) This test can only be taken once in a thirty ...

  3. A validated model to predict microalgae growth in outdoor pond cultures subjected to fluctuating light intensities and water temperatures

    DOE PAGES-Beta [OSTI]

    Huesemann, Michael H.; Crowe, Braden J.; Waller, Peter; Chavis, Aaron R.; Hobbs, Samuel J.; Edmundson, Scott J.; Wigmosta, Mark S.

    2015-12-11

    Here, a microalgae biomass growth model was developed for screening novel strains for their potential to exhibit high biomass productivities under nutrient-replete conditions in outdoor ponds subjected to fluctuating light intensities and water temperatures. Growth is modeled by first estimating the light attenuation by biomass according to a scatter-corrected Beer-Lambert Law, and then calculating the specific growth rate in discretized culture volume slices that receive declining light intensities due to attenuation. The model requires the following experimentally determined strain-specific input parameters: specific growth rate as a function of light intensity and temperature, biomass loss rate in the dark as amore » function of temperature and average light intensity during the preceding light period, and the scatter-corrected biomass light absorption coefficient. The model was successful in predicting the growth performance and biomass productivity of three different microalgae species (Chlorella sorokiniana, Nannochloropsis salina, and Picochlorum sp.) in raceway pond cultures (batch and semi-continuous) subjected to diurnal sunlight intensity and water temperature variations. Model predictions were moderately sensitive to minor deviations in input parameters. To increase the predictive power of this and other microalgae biomass growth models, a better understanding of the effects of mixing-induced rapid light dark cycles on photo-inhibition and short-term biomass losses due to dark respiration in the aphotic zone of the pond is needed.« less

  4. Results of Second Outdoor Comparison Between Absolute Cavity Pyrgeometer (ACP) and Infrared Integrating Sphere (IRIS) Radiometer at PMOD (Presentation)

    SciTech Connect (OSTI)

    Reda, I.; Grobner, J.; Wacker, S.

    2014-01-01

    The Absolute Cavity Pyrgeometer (ACP) and InfraRed Integrating Sphere radiometer (IRIS) are developed to establish a world reference for calibrating pyrgeometers with traceability to SI units. The two radiometers are un-windowed with negligible spectral dependence, and traceable to SI units through the temperature scale (ITS-90). The second outdoor comparison between the two designs was held from September 30 to October 11, 2013 at the Physikalisch-Metorologisches Observatorium Davos (PMOD). The difference between the irradiance measured by ACP and that of the IRIS was within 1 W/m2 (3 IRISs: PMOD + Australia + Germany). From the first and second comparisons, a difference of 4-6 W/m2 was observed between the irradiance measured by ACP&IRIS and that of the interim World Infrared Standard Group (WISG). This presentation includes results from the first and second comparison in an effort to establish the world reference for pyrgeometer calibrations, a key deliverable for the World Meteorological Organization (WMO), and the DOE-ASR.

  5. A validated model to predict microalgae growth in outdoor pond cultures subjected to fluctuating light intensities and water temperatures

    SciTech Connect (OSTI)

    Huesemann, Michael H.; Crowe, Braden J.; Waller, Peter; Chavis, Aaron R.; Hobbs, Samuel J.; Edmundson, Scott J.; Wigmosta, Mark S.

    2015-12-11

    Here, a microalgae biomass growth model was developed for screening novel strains for their potential to exhibit high biomass productivities under nutrient-replete conditions in outdoor ponds subjected to fluctuating light intensities and water temperatures. Growth is modeled by first estimating the light attenuation by biomass according to a scatter-corrected Beer-Lambert Law, and then calculating the specific growth rate in discretized culture volume slices that receive declining light intensities due to attenuation. The model requires the following experimentally determined strain-specific input parameters: specific growth rate as a function of light intensity and temperature, biomass loss rate in the dark as a function of temperature and average light intensity during the preceding light period, and the scatter-corrected biomass light absorption coefficient. The model was successful in predicting the growth performance and biomass productivity of three different microalgae species (Chlorella sorokiniana, Nannochloropsis salina, and Picochlorum sp.) in raceway pond cultures (batch and semi-continuous) subjected to diurnal sunlight intensity and water temperature variations. Model predictions were moderately sensitive to minor deviations in input parameters. To increase the predictive power of this and other microalgae biomass growth models, a better understanding of the effects of mixing-induced rapid light dark cycles on photo-inhibition and short-term biomass losses due to dark respiration in the aphotic zone of the pond is needed.

  6. Blower Door Tests | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Avoiding uncomfortable drafts caused by cold air leaking in from the outdoors Determining how much mechanical ventilation might be needed to provide acceptable indoor air quality. ...

  7. Lustre Tests

    Energy Science and Technology Software Center (OSTI)

    2007-08-31

    Lustre-tests is a package of regression tests for the Lustre file system containing I/O workloads representative of problems discovered on production systems.

  8. SANE experiment

    SciTech Connect (OSTI)

    H. Baghdasaryan, SANE Collaboration

    2012-04-01

    The Spin Asymmetries of the Nucleon Experiment (SANE) is a measurement of parallel and near-perpendicular double spin asymmetries in an inclusive electron scattering. The main goal of the experiment was to measure A{sub {parallel}} and A{sub 80} and extract the spin asymmetries of the proton A{sub 1}{sup p}, A{sub 2}{sup p} and spin structure functions g{sub 1}{sup p} and g{sub 2}{sup p}. Using the Thomas Jefferson National Accelerator Facility's polarized electron beam and the University of Virginia's polarized frozen ammonia ({sup 14}NH{sub 3}) target in Hall C, the experiment ran in 2009, collecting data in a Q{sup 2} region from 2.5 to 6.5 GeV{sup 2} and between Bjorken x of 0.3 to 0.8. Particle detection was accomplished using the Big Electron Telescope Array (BETA), a novel non-magnetic detector. This talk will address the progress of the analysis designed to extract the proton spin asymmetries and structure functions. Preliminary results will be presented.

  9. Stirling machine operating experience

    SciTech Connect (OSTI)

    Ross, B.; Dudenhoefer, J.E.

    1991-01-01

    Numerous Stirling machines have been built and operated, but the operating experience of these machines is not well known. It is important to examine this operating experience in detail, because it largely substantiates the claim that Stirling machines are capable of reliable and lengthy lives. The amount of data that exists is impressive, considering that many of the machines that have been built are developmental machines intended to show proof of concept, and were not expected to operate for any lengthy period of time. Some Stirling machines (typically free-piston machines) achieve long life through non-contact bearings, while other Stirling machines (typically kinematic) have achieved long operating lives through regular seal and bearing replacements. In addition to engine and system testing, life testing of critical components is also considered.

  10. Schedule and status of irradiation experiments

    SciTech Connect (OSTI)

    Rowcliffe, A.F.; Grossbeck, M.L.; Robertson, J.P.

    1998-09-01

    The current status of reactor irradiation experiments is presented in tables summarizing the experimental objectives, conditions, and schedule. Currently, the program has one irradiation experiment in reactor and five experiments in the design or construction stages. Postirradiation examination and testing is in progress on ten experiments.

  11. Test quality

    SciTech Connect (OSTI)

    Hartley, R.S.; Keller, A.E.

    1992-09-01

    This document discusses inservice testing of safety-related components at nuclear power plants which is performed under the American Society of Mechanical Engineers Boiler and Pressure Vessel Code (the Code). Subsections IWP and IWV of Section XI of the Code state test method and frequency requirements for pumps and valves respectively. Tests vary greatly in quality and frequency. This paper explores the concept of test quality and its relationship with operational readiness and preventive maintenance. This paper also considers the frequencies of component testing. Test quality is related to a test`s ability to detect degradation that can cause component failure. The quality of the test depends on several factors, including specific parameters measured, system or component conditions, and instrument accuracy. The quality of some currently required tests for check valves, motor-operated valves, and pumps is also discussed. Suggestions are made to improve test quality by measuring different parameters, testing valves under load, and testing positive displacement pumps at high pressure and centrifugal pumps at high flow rate conditions. These suggestions can help to improve the level of assurance of component operational readiness gained from testing.

  12. Approved Experiments

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Cycle 31OCT97 Exp# Spokesperson Experiment Title Days 666 Clark Magnetic Rotation in 104Sn 5 667 Janssens Unsafe COULEX of the 240Pu Nucleus 3 670 Smith Exotic Structures in very Neutron-Deficient 55 < Z < 59, A ~ 120 Nuclei 6 671LI Butler The Feasibility of Studying Octupole Correlations in 224,226U using Gammasphere and the FMA 1 672 Svensson Superdeformation in 3060Zn30 and Proton-Decay from Excited States in 3366As33 5 677 Woods Structure of Deformed Ho Isotopes Beyond the Proton

  13. Seawater magnetohydrodynamic test apparatus

    SciTech Connect (OSTI)

    Meng, J.

    1993-02-11

    Accordingly, it is an object of the present invention to provide a hydrodynamic test facility suitable for low turbulence and low radiated noise experiments. It is another object to provide a hydrodynamic test facility having no moving parts in the water flow path. It is yet another to provide a hydrodynamic test facility having a water flow powered by a magnetohydrodynamic pump. Accordingly, the invention is a hydrodynamic test facility using a magnetohydrodynamic (MHD) drive unit to provide the force necessary to circulate water in the test loop section. The test loop is fed by water from a pretreatment section which mixes seawater and tapwater to provide the desired salinity. A post-treatment section neutralizes emitted chlorine gases.

  14. Net Test

    Energy Science and Technology Software Center (OSTI)

    2001-09-01

    Nettest is a secure, real-time network utility. The nettest framework is designed to incorporate existing and new network tests, and be run as a daemon or an interactive process. Requests for network tests are received via a SSL connection or the user interface and are authorized using a ACL list (in the future authorization using Akenti will also be supported). For tests that require coordination between the two ends of the test, Nettest establishes anmore » SSL connection to accomplish this coordination. A test between two remote computers can be requested via the user interlace if the Nettest daemon is running on both remote machines and the user is authorized. Authorization for the test is through a chain of trust estabtished by the nettest daemons. Nettest is responsible for determining if the test request is authorized, but it does nothing further to secure the test once the test is running. Currently the Nettest framework incorporates lperf-vl.2, a simple ping type test, and a tuned TCP test that uses a given required throughput and ping results to determine the round trip time to set a buffer size (based on the delay bandwidth product) and then performs an iperf TCP throughput test. Additional network test tools can be integrated into the Nettest framework in the future.« less

  15. Test quality

    SciTech Connect (OSTI)

    Hartley, R.S. ); Keller, A.E. )

    1992-01-01

    This document discusses inservice testing of safety-related components at nuclear power plants which is performed under the American Society of Mechanical Engineers Boiler and Pressure Vessel Code (the Code). Subsections IWP and IWV of Section XI of the Code state test method and frequency requirements for pumps and valves respectively. Tests vary greatly in quality and frequency. This paper explores the concept of test quality and its relationship with operational readiness and preventive maintenance. This paper also considers the frequencies of component testing. Test quality is related to a test's ability to detect degradation that can cause component failure. The quality of the test depends on several factors, including specific parameters measured, system or component conditions, and instrument accuracy. The quality of some currently required tests for check valves, motor-operated valves, and pumps is also discussed. Suggestions are made to improve test quality by measuring different parameters, testing valves under load, and testing positive displacement pumps at high pressure and centrifugal pumps at high flow rate conditions. These suggestions can help to improve the level of assurance of component operational readiness gained from testing.

  16. Operating Experience Summary, 2015-01

    Energy Savers

    1 September 16, 2015 Inside This Issue * Explosion at the Nonproliferation Test and Evaluation Complex ... 1 Page 1 of 8 Operating Experience Summary Office of Environment,...

  17. Pedestrian Friendly Outdoor Lighting

    SciTech Connect (OSTI)

    Miller, Naomi J.; Koltai, Rita; McGowan, Terry

    2013-12-31

    This GATEWAY report discusses the problems of pedestrian lighting that occur with all technologies with a focus on the unique optical options and opportunities offered by LEDs through the findings from two pedestrian-focused projects, one at Stanford University in California, and one at the Chautauqua Institution in upstate New York. Incorporating user feedback this report reviews the tradeoffs that must be weighed among visual comfort, color, visibility, efficacy and other factors to stimulate discussion among specifiers, users, energy specialists, and in industry in hopes that new approaches, metrics, and standards can be developed to support pedestrian-focused communities, while reducing energy use.

  18. Pedestrian Friendly Outdoor Lighting

    SciTech Connect (OSTI)

    Miller, N. J.; Koltai, R. N.; McGowan, T. K.

    2013-12-01

    The GATEWAY program followed two pedestrian-scale lighting projects that required multiple mockups – one at Stanford University in California and the other at Chautauqua Institution in upstate New York. The report provides insight into pedestrian lighting criteria, how they differ from street and area lighting criteria, and how solid-state lighting can be better applied in pedestrian applications.

  19. Los Alamos conducts important hydrodynamic experiment in Nevada

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    nuclear testing," said Webster. These experiments with surrogate materials provide a principle linkage with scaledfull-scale hydrodynamic tests, the suite of prior underground...

  20. Reliability Testing Beyond Qualification as a Key Component in Photovoltaic's Progress Toward Grid Parity: Preprint

    SciTech Connect (OSTI)

    Wohlgemuth, J. H.; Kurtz, S.

    2011-02-01

    This paper discusses why it is necessary for new lower cost PV modules to be tested using a reliability test sequence that goes beyond the Qualification test sequence now utilized for modules. Today most PV modules are warranted for 25 years, but the Qualification Test Sequence does not test for 25-year life. There is no accepted test protocol to validate a 25-year lifetime. This paper recommends the use of long term accelerated testing to compare now designs directly with older designs that have achieved long lifetimes in outdoor exposure. If the new designs do as well or better than the older ones, then it is likely that they will survive an equivalent length of time in the field.

  1. Evaluation of the DHCE Experiment

    SciTech Connect (OSTI)

    Greenwood, Lawrence R.; Baldwin, David L.; Hollenberg, Glenn W.; Kurtz, Richard J.

    2002-03-31

    The Dynamic Helium Charging Experiment (DHCE) experiment was conducted in the Fast Flux Test Facility (FFTF) during cycle 12, which was completed in 1992. The purpose of the experiment was to enhance helium generation in vanadium alloys to simulate fusion reactor helium-to-dpa ratios with a target goal of 4-5 appm He/dpa. The Fusion Materials Science Program is considering mounting another experiment in hopes of gathering additional data on the effect of helium on the mechanical and physical properties of vanadium structural materials. Pacific Northwest National Laboratory was assigned the task of evaluating the feasibility of conducting another DHCE experiment by carefully evaluating the results obtained of the first DHCE experiment. This report summarizes the results of our evaluation and presents recommendations for consideration by the Materials Science Coordinators Organization.

  2. Laboratory-Scale Column Testing Using IONSIV IE-911 for Removing Cesium from Acidic Tank Waste Simulant. 2: Determination of Cesium Exchange Capacity and Effective Mass Transfer Coefficient from a 500-cm3 Column Experiement

    SciTech Connect (OSTI)

    T.J. Tranter; R.D. Tillotson; T.A. Todd

    2005-04-01

    A semi-scale column test was performed using a commercial form of crystalline silicotitanate (CST) for removing radio-cesium from a surrogate acidic tank solution, which represents liquid waste stored at the Idaho National Engineering and Environmental Laboratory (INEEL). The engineered form of CST ion exchanger, known as IONSIVtmIE-911 (UOP, Mt. Laurel,NJ, USA), was tested in a 500-cm3 column to obtain a cesium breakthrough curve. The cesium exchange capacity of this column matched that obtained from previous testing with a 15-mc3 column. A numerical algorithm using implicit finite difference approximations was developed to solve the governing mass transport equations for the CST columns. An effective mass transfer coefficient was derived from solving these equations for previously reported 15 cm3 tests. The effective mass transfer coefficient was then used to predict the cesium breakthrough curve for the 500-cm3 column and compared to the experimental data reported in this paper. The calculated breakthrough curve showed excellent agreement with the data from the 500-cm3 column even though the interstitial velocity was a factor of two greater. Thus, this approach should provide a reasonable method for scale up to larger columns for treating actual tank waste.

  3. LANL Conducts Watusi Experiment | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    | (NNSA) Conducts Watusi Experiment LANL Conducts Watusi Experiment Nevada Test Site, NV The Los Alamos National Laboratory conducts Watusi, a spectacular high-explosives experiment with a yield equivalent to about 37,000 pounds of TNT, at the Nevada Test Site's Big Explosive Experimental Facility (BEEF). The experiment seeks to demonstrate that existing seismic and infrasound sensors at the test site and across the West used when DOE was conducting underground nuclear tests still can detect

  4. Preoperational test report, primary ventilation condenser cooling system

    SciTech Connect (OSTI)

    Clifton, F.T.

    1997-10-29

    This represents the preoperational test report for the Primary Ventilation Condenser Cooling System, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system uses a closed chilled water piping loop to provide offgas effluent cooling for tanks AY101, AY102, AZ1O1, AZ102; the offgas is cooled from a nominal 100 F to 40 F. Resulting condensation removes tritiated vapor from the exhaust stack stream. The piping system includes a package outdoor air-cooled water chiller with parallel redundant circulating pumps; the condenser coil is located inside a shielded ventilation equipment cell. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.

  5. Crane Test

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Crane Safety Test Instructions: All Training and Testing Material is for LSU CAMD Users ONLY! Please enter your personal information in the spaces below. A minimum passing score is 80% (8 out of 10) This test can only be taken once in a thirty day period. All fields are required to be filled in. Login: Login First Name: Last Name: Phone Number: Contact: 1. The first thing you should do when using the crane is to: a. verify the battery power on the remote control. b. drag the load to the desired

  6. Test Anxiety: Considerations for Educators/Students

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Test Anxiety - Considerations f or Educators/Students Test anxiety... is that a real thing? Yes, it's real. Test anxiety has real symptoms and real effects on student performance. 25% to 50% of students experience test anxiety. Test anxiety looks like this: * Heightened physical and emotional state * Negative w orry t houghts * Reduced performance through impaired memory and focus Test anxiety... but I'm an e ducator not a psychologist. Can I really help? Yes, you can help your students. Test

  7. SU-E-J-97: Pretreatment Test and Post-Treatment Evaluation for Iso-NTCP Dose Guided Adapive Radiotherapy (DGART), Experience with Prostate Cancer Patients Treated with Rectal Balloons

    SciTech Connect (OSTI)

    Yu, J; Hardcastle, N; Bender, E; Jeong, K; Tome', M

    2014-06-01

    Purpose: To explore the feasibility of pretreatment test for iso-NTCP DGART and to compare the pretreatment test results with post-treatment evaluations. Methods: NTCP here refers to late rectal wall toxicity only and is calculated with the ring rectal wall DVH. Simulation for one time iso- NTCP DGART starts after half of the total dose was done for 10 patients to investigate if TCP gains could be achieved. Six patients were treated using a 12-fraction 4.3Gy technique and four using 16-fraction 3.63Gy technique. For each of the 12-fraction cases a VMAT plan was generated in Pinnacle3 using the daily CT obtained prior to the 6th fraction. A pretreatment simulation was performed using only the first 6 daily CTs. The idea is to add the 6 original plan delivered doses with 6 DGART plan delivered doses by deformable dose accumulation (DDA) on each of the first 6 CTs, resulting in 6 rectal wall doses (RWDs) and NTCPs. The 95% confidence interval (95%CI) for the 6 NTCPs were computed.The posttreatment evaluation was done by: a) copy the DGART plan to 6 CTs for fraction 712 and calculate the 6 actual DGART delivered fractional doses; b) sum the 6 actual DGART doses with the 6 original plan delivered doses by DDA on each of the 12 CTs resulting in 12 post-treatment RWDs and NTCPs; c) boxplot the 12 post-treatment NTCPs. Results: Target dose gain is 0.761.93 Gy. The 95%CI widths of the pretreatment tests NTCPs were 1.12.7%. For 5 patients, the planned NTCP fell within the 95%CI. For 4 patients, the planned NTCP was lower than the 95%CI lines. Post-treatment results show that for 7 patients, the upper quartile was within the 95%CI; for 2 patients, the upper quartile were higher than the 95%CI. Conclusion: The pretreatment test yields conservative prediction of the actual delivered NTCP.

  8. Stirling machine operating experience

    SciTech Connect (OSTI)

    Ross, B.; Dudenhoefer, J.E.

    1994-09-01

    Numerous Stirling machines have been built and operated, but the operating experience of these machines is not well known. It is important to examine this operating experience in detail, because it largely substantiates the claim that stirling machines are capable of reliable and lengthy operating lives. The amount of data that exists is impressive, considering that many of the machines that have been built are developmental machines intended to show proof of concept, and are not expected to operate for lengthy periods of time. Some Stirling machines (typically free-piston machines) achieve long life through non-contact bearings, while other Stirling machines (typically kinematic) have achieved long operating lives through regular seal and bearing replacements. In addition to engine and system testing, life testing of critical components is also considered. The record in this paper is not complete, due to the reluctance of some organizations to release operational data and because several organizations were not contacted. The authors intend to repeat this assessment in three years, hoping for even greater participation.

  9. Background information on RSO Test Deeming Guidance

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    information on RSO Test Deeming Guidance BPA has now had over two years of experience implementing Slice under the Regional Dialogue contract. Slice product customers are required...

  10. testing | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    testing Meet a Machine: Explosive science is booming at Livermore Lab's Contained Firing Facility A key mission of the National Nuclear Security Administration is to maintain the safety, security, and effectiveness of the U.S. nuclear weapons stockpile without nuclear explosive testing. Data gathered from experiments at the Contained Firing Facility (CFF) help validate computer

  11. An apparatus for studying electrical breakdown in liquid helium at 0.4 K and testing electrode materials for the neutron electric dipole moment experiment at the Spallation Neutron Source

    DOE PAGES-Beta [OSTI]

    Ito, T. M.; Ramsey, J. C.; Yao, W.; Beck, D. H.; Cianciolo, V.; Clayton, S. M.; Crawford, C.; Currie, S. A.; Filippone, B. W.; Griffith, W. C.; et al

    2016-04-25

    In this study, we have constructed an apparatus to study DC electrical breakdown in liquid helium at temperatures as low as 0.4 K and at pressures between the saturated vapor pressure and ~600 Torr. The apparatus can house a set of electrodes that are 12 cm in diameter with a gap of 1–2 cm between them, and a potential up to ±50 kV can be applied to each electrode. Initial results demonstrated that it is possible to apply fields exceeding 100 kV/cm in a 1 cm gap between two electropolished stainless steel electrodes 12 cm in diameter for a widemore » range of pressures at 0.4 K. We also measured the current between two electrodes. Our initial results, I < 1 pA at 45 kV, correspond to a lower bound on the effective volume resistivity of liquid helium of ρV > 5 × 1018 Ω cm. This lower bound is 5 times larger than the bound previously measured. Finally, we report the design, construction, and operational experience of the apparatus, as well as initial results« less

  12. Testing technology

    SciTech Connect (OSTI)

    Not Available

    1993-10-01

    This bulletin from Sandia National Laboratories presents current research highlights in testing technology. Ion microscopy offers new nondestructive testing technique that detects high resolution invisible defects. An inexpensive thin-film gauge checks detonators on centrifuge. Laser trackers ride the range and track helicopters at low-level flights that could not be detected by radar. Radiation transport software predicts electron/photon effects via cascade simulation. Acoustic research in noise abatement will lead to quieter travelling for Bay Area Rapid Transport (BART) commuters.

  13. Combustion Safety Simplified Test Protocol Field Study

    SciTech Connect (OSTI)

    Brand, L; Cautley, D.; Bohac, D.; Francisco, P.; Shen, L.; Gloss, S.

    2015-11-05

    "9Combustions safety is an important step in the process of upgrading homes for energy efficiency. There are several approaches used by field practitioners, but researchers have indicated that the test procedures in use are complex to implement and provide too many false positives. Field failures often mean that the house is not upgraded until after remediation or not at all, if not include in the program. In this report the PARR and NorthernSTAR DOE Building America Teams provide a simplified test procedure that is easier to implement and should produce fewer false positives. A survey of state weatherization agencies on combustion safety issues, details of a field data collection instrumentation package, summary of data collected over seven months, data analysis and results are included. The project provides several key results. State weatherization agencies do not generally track combustion safety failures, the data from those that do suggest that there is little actual evidence that combustion safety failures due to spillage from non-dryer exhaust are common and that only a very small number of homes are subject to the failures. The project team collected field data on 11 houses in 2015. Of these homes, two houses that demonstrated prolonged and excessive spillage were also the only two with venting systems out of compliance with the National Fuel Gas Code. The remaining homes experienced spillage that only occasionally extended beyond the first minute of operation. Combustion zone depressurization, outdoor temperature, and operation of individual fans all provide statistically significant predictors of spillage.

  14. Experiment Design and Analysis Guide - Neutronics & Physics

    SciTech Connect (OSTI)

    Misti A Lillo

    2014-06-01

    The purpose of this guide is to provide a consistent, standardized approach to performing neutronics/physics analysis for experiments inserted into the Advanced Test Reactor (ATR). This document provides neutronics/physics analysis guidance to support experiment design and analysis needs for experiments irradiated in the ATR. This guide addresses neutronics/physics analysis in support of experiment design, experiment safety, and experiment program objectives and goals. The intent of this guide is to provide a standardized approach for performing typical neutronics/physics analyses. Deviation from this guide is allowed provided that neutronics/physics analysis details are properly documented in an analysis report.

  15. Status of the irradiation test vehicle for testing fusion materials in the Advanced Test Reactor

    SciTech Connect (OSTI)

    Tsai, H.; Gomes, I.C.; Smith, D.L.; Palmer, A.J.; Ingram, F.W.; Wiffen, F.W.

    1998-09-01

    The design of the irradiation test vehicle (ITV) for the Advanced Test Reactor (ATR) has been completed. The main application for the ITV is irradiation testing of candidate fusion structural materials, including vanadium-base alloys, silicon carbide composites, and low-activation steels. Construction of the vehicle is underway at the Lockheed Martin Idaho Technology Company (LMITCO). Dummy test trains are being built for system checkout and fine-tuning. Reactor insertion of the ITV with the dummy test trains is scheduled for fall 1998. Barring unexpected difficulties, the ITV will be available for experiments in early 1999.

  16. Laboratory Performance Testing of Residential Window Air Conditioners

    SciTech Connect (OSTI)

    Winkler, J.; Booten, C.; Christensen, D.; Tomerlin, J.

    2013-03-01

    Window air conditioners are the dominant cooling product for residences, in terms of annual unit sales. They are inexpensive, portable and can be installed by the owner. For this reason, they are an attractive solution for supplemental cooling, for retrofitting air conditioning into a home which lacks ductwork, and for renters. Window air conditioners for sale in the United States are required to meet very modest minimum efficiency standards. Four window air conditioners' performance were tested in the Advanced HVAC Systems Laboratory on NREL's campus in Golden, CO. In order to separate and study the refrigerant system's performance, the unit's internal leakage pathways, the unit's fanforced ventilation, and the leakage around the unit resulting from installation in a window, a series of tests were devised that focused on each aspect of the unit's performance. These tests were designed to develop a detailed performance map to determine whole-house performance in different climates. Even though the test regimen deviated thoroughly from the industry-standard ratings test, the results permit simple calculation of an estimated rating for both capacity and efficiency that would result from a standard ratings test. Using this calculation method, it was found that the three new air conditioners' measured performance was consistent with their ratings. This method also permits calculation of equivalent SEER for the test articles. Performance datasets were developed across a broad range of indoor and outdoor operating conditions, and used them to generate performance maps.

  17. Microgrid Testing

    SciTech Connect (OSTI)

    Shirazi, M.; Kroposki, B.

    2012-01-01

    With the publication of IEEE 1574.4 Guide for Design, Operation, and Integration of Distributed Resource Island Systems with Electric Power Systems, there is an increasing amount of attention on not only the design and operations of microgrids, but also on the proper operation and testing of these systems. This standard provides alternative approaches and good practices for the design, operation, and integration of microgrids. This includes the ability to separate from and reconnect to part of the utility grid while providing power to the islanded power system. This presentation addresses the industry need to develop standardized testing and evaluation procedures for microgrids in order to assure quality operation in the grid connected and islanded modes of operation.

  18. Basis to demonstrate compliance with the National Emission Standards for Hazardous Air Pollutants for the Stand-off Experiments Range

    SciTech Connect (OSTI)

    Michael Sandvig

    2011-01-01

    The purpose of this report is to provide the basis and the documentation to demonstrate general compliance with the National Emission Standard for Hazardous Air Pollutants (NESHAPS) 40 CFR 61 Subpart H, National Emission Standards for Emissions of Radionuclides Other Than Radon from Department of Energy Facilities, (the Standard) for outdoor linear accelerator operations at the Idaho National Laboratory (INL) Stand-off Experiments Range (SOX). The intent of this report is to inform and gain acceptance of this methodology from the governmental bodies regulating the INL.

  19. QCD tests in electron-positron scattering

    SciTech Connect (OSTI)

    Maruyama, T.

    1995-11-01

    Recent results on QCD tests at the Z{sup o} resonance are described. Measurements of Color factor ratios, and studies of final state photon radiation are performed by the LEP experiments. QCD tests using a longitudinally polarized beam are reported by the SLD experiment.

  20. Side-by-Side Thermal Tests of Modular Offices: A Validation Study of the STEM Method

    SciTech Connect (OSTI)

    Judkoff, R.; Balcomb, J.D.; Hancock, C.E.; Barker, G.; Subbarao, K.

    2001-01-11

    Two modular office units were tested at the National Renewable Energy Laboratory (NREL) to establish each unit's thermal performance. The two units were nearly identical in appearance, but one was built with structural insulating panels (SIP), and the other was built using standard frame construction. The primary objective of these tests was to compare the thermal performance of buildings using SIP and standard frame construction. Both units were tested under carefully controlled steady-state conditions in the NREL large-scale environmental enclosure. They were then moved outdoors where Short-Term Energy Monitoring (STEM) tests were performed, and long-term heating and cooling energy use was measured. A secondary objective was to evaluate the accuracy of the NREL STEM method by comparing the results of outdoor STEM tests to steady-state indoor test results. STEM is a method developed by NREL to determine key thermal parameters of a building in-situ, based on a 3-day test sequence. The indoor test facility also provided the opportunity to investigate the phenomenon of infiltration heat recovery in a real building, under carefully controlled conditions, to evaluate the stability of the concentration decay method of tracer gas-based infiltration monitoring, and to compare the blower-door method with the tracer-gas technique in determining infiltration.This project was a cooperative effort with the Structural Insulated Panel Association, the Modular Building Institute, All-American Modular (AAM, the manufacturer of the units), and GE Capitol (the owner of the units). Richard Harmon, the president of AAM, requested NREL's assistance in exploring the feasibility of converting his manufacturing process to SIP construction. His engineering staff needed to assess which comfort and energy benefits might be associated with this new technology. AAM manufactured the two units, and NREL tested the modules for 8 months.

  1. 2169 steel waveform experiments.

    SciTech Connect (OSTI)

    Furnish, Michael David; Alexander, C. Scott; Reinhart, William Dodd; Brown, Justin L.

    2012-11-01

    In support of LLNL efforts to develop multiscale models of a variety of materials, we have performed a set of eight gas gun impact experiments on 2169 steel (21% Cr, 6% Ni, 9% Mn, balance predominantly Fe). These experiments provided carefully controlled shock, reshock and release velocimetry data, with initial shock stresses ranging from 10 to 50 GPa (particle velocities from 0.25 to 1.05 km/s). Both windowed and free-surface measurements were included in this experiment set to increase the utility of the data set, as were samples ranging in thickness from 1 to 5 mm. Target physical phenomena included the elastic/plastic transition (Hugoniot elastic limit), the Hugoniot, any phase transition phenomena, and the release path (windowed and free-surface). The Hugoniot was found to be nearly linear, with no indications of the Fe - phase transition. Releases were non-hysteretic, and relatively consistent between 3- and 5-mm-thick samples (the 3 mm samples giving slightly lower wavespeeds on release). Reshock tests with explosively welded impactors produced clean results; those with glue bonds showed transient releases prior to the arrival of the reshock, reducing their usefulness for deriving strength information. The free-surface samples, which were steps on a single piece of steel, showed lower wavespeeds for thin (1 mm) samples than for thicker (2 or 4 mm) samples. A configuration used for the last three shots allows release information to be determined from these free surface samples. The sample strength appears to increase with stress from ~1 GPa to ~ 3 GPa over this range, consistent with other recent work but about 40% above the Steinberg model.

  2. August 30, 2006: Subcritical Test at NTS | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    30, 2006: Subcritical Test at NTS August 30, 2006: Subcritical Test at NTS August 30, 2006: Subcritical Test at NTS August 30, 2006 The Department's Los Alamos National Laboratory successfully conducts a subcritical experiment, Unicorn, at 11:00 a.m. at the Nevada Test Site. The experiment provides crucial scientific information to maintain the safety and reliability of the nation's nuclear weapons without having to conduct underground nuclear tests. Unicorn is the 23rd subcritical experiment to

  3. Automation of mechanical testing

    SciTech Connect (OSTI)

    Heberling, D.T.

    1993-01-01

    This publication, Automation of Mechanical Testing, contains papers presented at the symposium of the same name, held in Pittsburgh, PA on 21 May 1992. The symposium was sponsored by ASTM Committee E-28 on Mechanical Testing. David T. Heberling, Armco Steel Co., L.P., Middletown Works Metallurgical Laboratory, Middletown, OH, presided as symposium chairman and is editor of the resulting publication. Hopefully, the initial flurry of activity has now subsided enough that the 90s can be a decade of maturing and standardization of automated test procedures. To help achieve this goal, the authors present in this STP nine technical papers on the automation of mechanical testing. The first five form a primer for those preparing to implement automated testing. These papers consist of information obtained the hard way--from experience with automation projects. Beginning with the fifth, which fits into both categories, the papers focus on specific technical issues and topics, many of which affect or need to be addressed by ASTM standards.

  4. Categorical Exclusion Determinations: B3.11 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    1 Categorical Exclusion Determinations: B3.11 Existing Regulations B3.11: Outdoor tests and experiments on materials and equipment components Outdoor tests and experiments for the development, quality assurance, or reliability of materials and equipment (including, but not limited to, weapon system components) under controlled conditions. Covered actions include, but are not limited to, burn tests (such as tests of electric cable fire resistance or the combustion characteristics of fuels),

  5. Sensitivity of acoustic PD detection in GIS laboratory experiments and on-site experience

    SciTech Connect (OSTI)

    Schlemper, H.D.; Feser, K.; Blaum, H.; Kirchesch, P.

    1996-12-31

    The paper reports on acoustic partial discharge detection in the ultrasonic range for on-site testing of GIS installations. Laboratory experiments demonstrate sensitivities comparable to sensitive electrical PD measuring methods. More than 1,500 gas compartments of GIS installations were checked during commissioning tests. A test procedure was developed. The on-site experience motivated the development of an automatic signal classification system.

  6. Long term experiences with HDD SCR Catalysts

    Energy.gov [DOE]

    Test bench results and on-road experiences of more than 1 million km offer comparisons of fresh and used catalyst activity and NOx conversion capability using appropriate methods of catalyst analysis.

  7. ORISE: Research Experiences

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Research Experiences Research Experiences The Oak Ridge Institute for Science and Education (ORISE) administers more than 150 science education programs on behalf of the U.S....

  8. Operational experience of the OC-OTEC experiments at NELH

    SciTech Connect (OSTI)

    Link, H.

    1989-02-01

    The Solar Energy Research Institute, under funding and program direction from the US Department of Energy, has been operating a small-scale test apparatus to investigate key components of open- cycle ocean thermal energy conversion (OC-OTEC). The apparatus started operations in October 1987 and continues to provide valuable information on heat-and mass-transfer processes in evaporators and condensers, gas sorption processes as seawater is depressurized and repressurized, and control and instrumentation characteristics of open-cycle systems. Although other test facilities have been used to study some of these interactions, this is the largest apparatus of its kind to use seawater since Georges Claude's efforts in 1926. The information obtained from experiments conducted in this apparatus is being used to design a larger scale experiment in which a positive net power production is expected to be demonstrated for the first time with OC-OTEC. This paper describes the apparatus, the major tests conducted during its first 18 months of operation, and the experience gained in OC-OTEC system operation. 13 refs., 8 figs.

  9. Operational experience of the OC-OTEC experiments at NELH

    SciTech Connect (OSTI)

    Link, H.

    1989-02-01

    The Solar Energy Research Institute, under funding and program direction from the US Department of Energy, has been operating a small-scale test apparatus to investigate key components of open- cycle ocean thermal energy conversion (OC-OTEC). The apparatus started operations in October 1987 and continues to provide valuable information on heat-and mass-transfer processes in evaporators and condensers, gas sorption processes as seawater is depressurized and repressurized, and control and instrumentation characteristics of open-cycle systems. Although other test facilities have been used to study some of these interactions, this is the largest apparatus of its kind to use seawater since Georges Claude`s efforts in 1926. The information obtained from experiments conducted in this apparatus is being used to design a larger scale experiment in which a positive net power production is expected to be demonstrated for the first time with OC-OTEC. This paper describes the apparatus, the major tests conducted during its first 18 months of operation, and the experience gained in OC-OTEC system operation. 13 refs., 8 figs.

  10. Operating Experience Level 3, Laboratory Tests Indicate Conditions...

    Energy Savers

    provides new information on a potential performance issue associated with certain axial flow high efficiency particulate air (HEPA) filters that do not contain separators in the...

  11. Operating Experience Committee Charter

    Energy.gov [DOE]

    The Operating Experience Committe Charter explains the purpose of the Department of Energy (DOE) Operating Experience Committee (OEC), which is to support line management within DOE and the DOE community in developing and sustaining effective oeprating experience programs so that lessons from inernal and external operating experience lead to improvement in future operational and safety performance.

  12. Testing and Analysis for Lifetime Prediction of Crystalline Silicon PV Modules Undergoing Degradation by System Voltage Stress: Preprint

    SciTech Connect (OSTI)

    Hacke, P.; Smith, R.; Terwiliger, K.; Glick, S.; Jordan, D.; Johnston, S.; Kempe, M.; Kurtz, S.

    2012-07-01

    Acceleration factors are calculated for crystalline silicon PV modules under system voltage stress by comparing the module power during degradation outdoors to that in accelerated testing at three temperatures and 85% relative humidity. A lognormal analysis is applied to the accelerated lifetime test data considering failure at 80% of the initial module power. Activation energy of 0.73 eV for the rate of failure is determined, and the probability of module failure at an arbitrary temperature is predicted. To obtain statistical data for multiple modules over the course of degradation in-situ of the test chamber, dark I-V measurements are obtained and transformed using superposition, which is found well suited for rapid and quantitative evaluation of potential-induced degradation. It is determined that shunt resistance measurements alone do not represent the extent of power degradation. This is explained with a two-diode model analysis that shows an increasing second diode recombination current and ideality factor as the degradation in module power progresses. Failure modes of the modules stressed outdoors are examined and compared to those stressed in accelerated tests.

  13. Technologies to characterize natural gas emissions tested in field

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    experiments Natural gas emissions tested in field experiments Technologies to characterize natural gas emissions tested in field experiments A new collaborative science program is pioneering the development of ultra-sensitive methane-sensing technology. October 28, 2013 The Rocky Mountain Oilfield Test Center, RMOTC, which includes a small areas with active oil and gas production. The Rocky Mountain Oilfield Test Center, RMOTC, which includes a small areas with active oil and gas production.

  14. test | Department of Energy

    Office of Environmental Management (EM)

    test test test test (510.91 KB) More Documents & Publications 2009 ECR FINAL REPORT 2010 Final ECR 2008 Report Environmental Conflict Resolution

  15. A comparison of Nannochloropsis salina growth performance in two outdoor pond designs: conventional raceways versus the ARID pond with superior temperature management

    SciTech Connect (OSTI)

    Crowe, Braden J.; Attalah, Said; Agrawal, Shweta; Waller, Peter; Ryan, Randy; Van Wagenen, Jonathan M.; Chavis, Aaron R.; Kyndt, John; Kacira, Murat; Ogden, Kimberly L.; Huesemann, Michael H.

    2012-10-01

    The present study examines how climatic conditions and pond design affect the growth performance of microalgae. From January to April of 2011, outdoor batch cultures of Nannochloropsis salina were grown in three replicate 780 L conventional raceways, as well as in an experimental 7500 L ARID (Algae Raceway Integrated Design) pond. The ARID culture system utilizes a series of 8 to 20 cm deep basins and a 1.5 m deep canal to enhance light exposure and mitigate temperature variations and extremes. The ARID culture reached the stationary phase 27 days earlier than the conventional raceways, which can be attributed to its superior temperature management and shallower basins. On a night when the air temperature dropped to -9 C, the water temperature was 18 C higher in the ARID pond than in the conventional raceways. Lipid and fatty acid content ranged from 16 - 25 % and 5 - 15 %, respectively, as a percentage of AFDW. Palmitic, palmitoleic, and eicosapentaenoic acid comprised the majority of fatty acids. While the ARID culture system achieved nearly double the volumetric productivity relative to the conventional raceways (0.023 vs 0.013 g L-1day-1), areal biomass productivities were of similar magnitude in both pond systems (3.34 vs. 3.47 g m-2day-1), suggesting that the ARID pond design has to be further optimized, most likely by increasing the culture depth or operating at higher cell densities while maintaining adequate mixing.

  16. INL User Facility welcomes three new experiments | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    research reactor has now reached an even dozen. Three universities have been chosen to begin the next round of experiments at INL's Advanced Test Reactor National ...

  17. Experiments on a ceramic electrolysis cell and a palladium diffuser...

    Office of Scientific and Technical Information (OSTI)

    on a ceramic electrolysis cell and a palladium diffuser at the tritium systems test assembly Citation Details In-Document Search Title: Experiments on a ceramic...

  18. Hydrodynamic experiment provides key data for Stockpile Stewardship

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    weapon performance in the absence of full-scale underground nuclear testing," said Webster. Los Alamos hydrodynamic experiment provides key data for Stockpile Stewardship In...

  19. Beam Dynamics Studies for a Laser Acceleration Experiment (Conference...

    Office of Scientific and Technical Information (OSTI)

    Citation Details In-Document Search Title: Beam Dynamics Studies for a Laser Acceleration Experiment The NLC Test Accelerator (NLCTA) at SLAC was built to address various beam ...

  20. Data report for the Northeast Residential Experiment Station, November 1981

    SciTech Connect (OSTI)

    Russell, M.C.; Raghuraman, P.; Mahoney, P.C.

    1981-12-01

    Physical performance data for the month of November 1981 obtained from photovoltaic energy systems under test at the Northeast Residential Experiment Station in Concord, Massachusetts are tabulated.

  1. Subterranean stress engineering experiments

    SciTech Connect (OSTI)

    Campbell, J.R.; Colgate, S.A.; Wheat, B.M.

    1980-01-01

    The state of stress in a subterranean rock mass has classically been assumed to be constant at best. In soil with a high clay content, preconsolidation and drainage methods can lead to more stable foundation material, but methods for engineering the stresses in large masses of rock are not well known. This paper shows the results from an experiment designed to alter the in situ rock stress field in an oil shale mine. This was done by hydrofracturing the rock by use of a packed-well injection system and then propping the crack open with a thixotropic gel, which slowly hardened to the consistency of cement. Successive hydrofracture and high-pressure grouting resulted in an overstressed region. Well-head injection pressures, surface tilts, injection rates, and subterranean strains were measured and recorded on floppy disk by a Z-80 microprocessor. The results were then transmitted to the large computer system at the Los Alamos Scientific Laboratory (LASL). To put the data in a more useful form, computer-generated movies of the tilts and strains were made by use of computer graphics developed at LASL. The purpose of this paper is to present results from the Single Large Instrumented Test conducted in the Colony Oil Shale Mine near Rifle, Colorado. 13 figures.

  2. Experimental Tests of Special Relativity

    ScienceCinema (OSTI)

    Roberts, Tom [Illinois Institute of Technology, Chicago, Illinois, United States

    2016-07-12

    Over the past century Special Relativity has become a cornerstone of modern physics, and its Lorentz invariance is a foundation of every current fundamental theory of physics. So it is crucial that it be thoroughly tested experimentally. The many tests of SR will be discussed, including several modern high-precision measurements. Several experiments that appear to be in conflict with SR will also be discussed, such as claims that the famous measurements of Michelson and Morley actually have a non-null result, and the similar but far more extensive measurements of Dayton Miller that 'determined the absolute motion of the earth'. But the errorbars for these old experiments are huge, and are larger than their purported signals. In short, SR has been tested extremely well and stands un-refuted today, but current thoughts about quantum gravity suggest that it might not truly be a symmetry of nature.

  3. Experiment Safety Requirements

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Experiment Safety Experiment Safety Requirements Print Safety at the ALS The mission of the ALS is to "Support users in doing outstanding science in a safe environment." How Do...

  4. Operating Experience Committee Charter

    Energy.gov [DOE]

    The Operating Experience Committee (OEC) charter provides a description of the OEC's purpose, background, membership, functions, and operations.

  5. Facility for Advanced Accelerator Experimental Tests (FACET)...

    Office of Science (SC) [DOE]

    ... Early experiments in the 1990's at SLAC's first plasma wakefield experimental area, the Final Focus Test Beam (FFTB), showed that incoming high energy electrons can "surf" on waves ...

  6. Laboratory testing for enhanced undersea cable survivability

    SciTech Connect (OSTI)

    Stange, W.F.

    1983-01-01

    Examples of useful testing procedures with summaries of test results gleaned from years of cable testing experience illustrate how laboratory testing has identified failure modes, uncovered design deficiencies, characterized performance and supported system design for improved at-sea survivability. Repeated test results give insight into the performance capabilities and limitations of contemporary cables with metal and aramid strength members and demonstrate that successful at-sea performance invariably depends upon the effective mating of cable, attachment hardware and handling equipment. Analysis of the potentially high cost of cable failure at sea clearly demonstrates that it pays to test in the laboratory.

  7. CX-006069: Categorical Exclusion Determination

    Energy.gov [DOE]

    Outdoor Tests, Experiments on Materials and Equipment ComponentsCX(s) Applied: B3.11Date: 06/21/2011Location(s): Richland, WashingtonOffice(s): Office of River Protection-Richland Office

  8. CX-006066: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Outdoor Tests, Experiments on Materials and Equipment ComponentsCX(s) Applied: B3.11Date: 06/21/2011Location(s): Richland, WashingtonOffice(s): Office of River Protection-Richland Office

  9. CX-009684: Categorical Exclusion Determination

    Energy.gov [DOE]

    Washington River Protection Solutions LLC - Outdoor Tests and Experiments on Materials and Equipment Components CX(s) Applied: B3.11 Date: 12/14/2012 Location(s): Washington Offices(s): River Protection-Richland Operations Office

  10. Design and Status of RERTR Irradiation Tests in the Advanced Test Reactor

    SciTech Connect (OSTI)

    Daniel M. Wachs; Richard G. Ambrosek; Gray Chang; Mitchell K. Meyer

    2006-10-01

    Irradiation testing of U-Mo based fuels is the central component of the Reduced Enrichment for Research and Test Reactors (RERTR) program fuel qualification plan. Several RERTR tests have recently been completed or are planned for irradiation in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory in Idaho Falls, ID. Four mini-plate experiments in various stages of completion are described in detail, including the irradiation test design, objectives, and irradiation conditions. Observations made during and after the in-reactor RERTR-7A experiment breach are summarized. The irradiation experiment design and planned irradiation conditions for full-size plate test are described. Progress toward element testing will be reviewed.

  11. A Comparison of Nannochloropsis salina Growth Performance in Two Outdoor Pond Designs: Conventional Raceways versus the ARID Pond with Superior Temperature Management

    DOE PAGES-Beta [OSTI]

    Crowe, Braden; Attalah, Said; Agrawal, Shweta; Waller, Peter; Ryan, Randy; Van Wagenen, Jon; Chavis, Aaron; Kyndt, John; Kacira, Murat; Ogden, Kim L.; et al

    2012-01-01

    The present study examines how climatic conditions and pond design affect the growth performance of microalgae. From January to April of 2011, outdoor batch cultures of Nannochloropsis salina were grown in three replicate 780 L conventional raceways, as well as in an experimental 7500 L algae raceway integrated design (ARID) pond. The ARID culture system utilizes a series of 8-20 cm deep basins and a 1.5 m deep canal to enhance light exposure and mitigate temperature variations and extremes. The ARID culture reached the stationary phase 27 days earlier than the conventional raceways, which can be attributed to its superiormore » temperature management and shallower basins. On a night when the air temperature dropped to -9°C, the water temperature was 18°C higher in the ARID pond than in the conventional raceways. Lipid and fatty acid content ranged from 16 to 25% and from 5 to15%, respectively, as a percentage of AFDW. Palmitic, palmitoleic, and eicosapentaenoic acids comprised the majority of fatty acids. While the ARID culture system achieved nearly double the volumetric productivity relative to the conventional raceways (0.023 versus 0.013 g L-1day-1), areal biomass productivities were of similar magnitude in both pond systems (3.47 versus 3.34 g m-2day-1), suggesting that the ARID pond design has to be further optimized, most likely by increasing the culture depth or operating at higher cell densities while maintaining adequate mixing.« less

  12. A Comparison of Nannochloropsis salina Growth Performance in Two Outdoor Pond Designs: Conventional Raceways versus the ARID Pond with Superior Temperature Management

    SciTech Connect (OSTI)

    Crowe, Braden; Attalah, Said; Agrawal, Shweta; Waller, Peter; Ryan, Randy; Van Wagenen, Jon; Chavis, Aaron; Kyndt, John; Kacira, Murat; Ogden, Kim L.; Huesemann, Michael

    2012-01-01

    The present study examines how climatic conditions and pond design affect the growth performance of microalgae. From January to April of 2011, outdoor batch cultures of Nannochloropsis salina were grown in three replicate 780 L conventional raceways, as well as in an experimental 7500 L algae raceway integrated design (ARID) pond. The ARID culture system utilizes a series of 8-20 cm deep basins and a 1.5 m deep canal to enhance light exposure and mitigate temperature variations and extremes. The ARID culture reached the stationary phase 27 days earlier than the conventional raceways, which can be attributed to its superior temperature management and shallower basins. On a night when the air temperature dropped to -9C, the water temperature was 18C higher in the ARID pond than in the conventional raceways. Lipid and fatty acid content ranged from 16 to 25% and from 5 to15%, respectively, as a percentage of AFDW. Palmitic, palmitoleic, and eicosapentaenoic acids comprised the majority of fatty acids. While the ARID culture system achieved nearly double the volumetric productivity relative to the conventional raceways (0.023 versus 0.013 g L-1day-1), areal biomass productivities were of similar magnitude in both pond systems (3.47 versus 3.34 g m-2day-1), suggesting that the ARID pond design has to be further optimized, most likely by increasing the culture depth or operating at higher cell densities while maintaining adequate mixing.

  13. Range gated imaging experiments using gated intensifiers

    SciTech Connect (OSTI)

    McDonald, T.E. Jr.; Yates, G.J.; Cverna, F.H.; Gallegos, R.A.; Jaramillo, S.A.; Numkena, D.M.; Payton, J.; Pena-Abeyta, C.R.

    1999-03-01

    A variety of range gated imaging experiments using high-speed gated/shuttered proximity focused microchannel plate image intensifiers (MCPII) are reported. Range gated imaging experiments were conducted in water for detection of submerged mines in controlled turbidity tank test and in sea water for the Naval Coastal Sea Command/US Marine Corps. Field experiments have been conducted consisting of kilometer range imaging of resolution targets and military vehicles in atmosphere at Eglin Air Force Base for the US Air Force, and similar imaging experiments, but in smoke environment, at Redstone Arsenal for the US Army Aviation and Missile Command (AMCOM). Wavelength of the illuminating laser was 532 nm with pulse width ranging from 6 to 12 ns and comparable gate widths. These tests have shown depth resolution in the tens of centimeters range from time phasing reflected LADAR images with MCPII shutter opening.

  14. Pulsed reactor experiments at Oak Ridge

    SciTech Connect (OSTI)

    Mihalczo, J.T.

    1994-12-31

    This paper describes dynamic experiments for 3 pulsed reactors. 1st reactor was pulsed from some average power by rotating a partial Be reflector past an unreflected core face; the other 2 reactors were pulsed by rapid insertion of a fuel rod into the unmoderated and unreflected reactor at essentially zero neutron level with no significant neutron source present. The first reactor was a mockup of an EURATOM design (never constructed) of the proposed SORA Reactor, and the other two were the Health Physics Research Reactor and the Army Pulse Radiation Facility Reactor (APRFR). This paper describes the experiments performed in initial testing of these systems, including destructive tests of APRFR, to set operating limits for this type of reactor in pulsed operation. All the experiments described were performed at the Oak Ridge Critical Experiments Facility.

  15. LANSCE | Materials Test Station

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Training Office Contact Administrative nav background Materials Test Station dotline ... Materials Test Station: the Preferred Alternative When completed, the Materials Test ...

  16. NEV America Test Sequence

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    NEVAmerica TEST SEQUENCE Revision 2 Effective February 1, 2008 Prepared by Electric ... All Rights Reserved NEVAmerica Test Sequence Rev 2 Page 1 NEV PERFORMANCE TEST ...

  17. CNP_TEST_SUITE

    Energy Science and Technology Software Center (OSTI)

    002854MLTPL00 Automated Nuclear Data Test Suite file:///usr/gapps/CNP_src/us/RR/test_suite_cz/cnp_test_suite

  18. NREL: Wind Research - Testing

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Testing Photo of a large wind turbine blade sticking out of the structural testing ... Power performance, noise, loads, and power quality testing: NREL is one of only two ...

  19. SLAC Accelerator Test Facilities

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    FACET & TF Careers & Education Archived FACET User Facility Quick Launch About FACET & Test Facilities Expand About FACET & Test Facilities FACET & Test Facilities User Portal...

  20. A 2-D Test Problem for CFD Modeling Heat Transfer in Spent Fuel Transfer Cask Neutron Shields

    SciTech Connect (OSTI)

    Zigh, Ghani; Solis, Jorge; Fort, James A.

    2011-01-14

    well as the tradeoff between steady state and transient solutions. Solutions are compared for two commercial CFD codes, FLUENT and STAR-CCM+. The results can be used to provide input to the CFD Best Practices for this application. Following study results for the 2-D test problem, a comparison of simulation results is provided for a high Rayleigh number experiment with large annular gap. Because the geometry of this validation is significantly different from the neutron shield, and due to the critical nature of this application, the argument is made for new experiments at representative scales

  1. Flatback airfoil wind tunnel experiment.

    SciTech Connect (OSTI)

    Mayda, Edward A.; van Dam, C.P.; Chao, David D.; Berg, Dale E.

    2008-04-01

    A computational fluid dynamics study of thick wind turbine section shapes in the test section of the UC Davis wind tunnel at a chord Reynolds number of one million is presented. The goals of this study are to validate standard wind tunnel wall corrections for high solid blockage conditions and to reaffirm the favorable effect of a blunt trailing edge or flatback on the performance characteristics of a representative thick airfoil shape prior to building the wind tunnel models and conducting the experiment. The numerical simulations prove the standard wind tunnel corrections to be largely valid for the proposed test of 40% maximum thickness to chord ratio airfoils at a solid blockage ratio of 10%. Comparison of the computed lift characteristics of a sharp trailing edge baseline airfoil and derived flatback airfoils reaffirms the earlier observed trend of reduced sensitivity to surface contamination with increasing trailing edge thickness.

  2. Future reactor experiments

    SciTech Connect (OSTI)

    Wen, Liangjian

    2015-07-15

    The non-zero neutrino mixing angle θ{sub 13} has been discovered and precisely measured by the current generation short-baseline reactor neutrino experiments. It opens the gate of measuring the leptonic CP-violating phase and enables the neutrino mass ordering. The JUNO and RENO-50 proposals aim at resolving the neutrino mass ordering using reactors. The experiment design, physics sensitivity, technical challenges as well as the progresses of those two proposed experiments are reviewed in this paper.

  3. Double Beta Decay Experiments

    SciTech Connect (OSTI)

    Nanal, Vandana [Dept. of Nuclear and Atomic Physics, Tata Institute of Fundamental Research, Mumbai 400 005 (India)

    2011-11-23

    At present, neutrinoless double beta decay is perhaps the only experiment that can tell us whether the neutrino is a Dirac or a Majorana particle. Given the significance of the 0{nu}{beta}{beta}, there is a widespread interest for these rare event studies employing a variety of novel techniques. This paper describes the current status of DBD experiments. The Indian effort for an underground NDBD experiment at the upcoming INO laboratory is also presented.

  4. ORISE: Faculty Research Experiences

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Faculty Research Experiences The Oak Ridge Institute for Science and Education (ORISE) provides short- and long-term programs for either faculty or faculty-student teams to...

  5. Nuclear Physics: Experiment Research

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Additional Information Computing at JLab Operations Logbook Current Experiments Archive E04-116: Beyond the Born Approximation: A Precise Comparison of Positron-Proton and ...

  6. Tritium Plasma Experiment and

    Office of Environmental Management (EM)

    Plasma Experiment and its role in PHENIX program Masashi Shimada, Chase Taylor Fusion ... in metal - Tritium behavior in the fusion nuclear environment is not fully ...

  7. ORISE: Research Team Experiences

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Research Team Experiences The Oak Ridge Institute for Science and Education (ORISE) brings together mentors and research teams to serve as a bridge between the classroom and the...

  8. Wake Steering Experiment

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Steering Experiment - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy ...

  9. Operating Experience Summaries

    Energy.gov [DOE]

    The Office of Environment, Health, Safety and Security (AU) Office of Analysis publishes the Operating Experience Summary to exchange lessons-learned information between DOE facilities.

  10. Experiment Research | Jefferson Lab

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Most experiments carried out with the Continuous Electron Beam Accelerator Facility (CEBAF) are in the field of nuclear physics and can be described in terms of the following. ...

  11. Nuclear Physics: Experiment Research

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Physics Home Seminars & Colloquia Experiment Research UserResearcher Information print version Research Highlights Public Interest Nuclear Physics Accelerator Free Electron Laser ...

  12. Nuclear Physics: Experiment Research

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Free Electron Laser (FEL) Medical Imaging Physics Topics Campaigns Meetings Recent Talks Archived Talks Additional Information Computing at JLab Operations Logbook Experiment ...

  13. Small-Scale Experiments.10-gallon drum experiment summary

    SciTech Connect (OSTI)

    Rosenberg, David M.

    2015-02-05

    A series of sub-scale (10-gallon) drum experiments were conducted to characterize the reactivity, heat generation, and gas generation of mixtures of chemicals believed to be present in the drum (68660) known to have breached in association with the radiation release event at the Waste Isolation Pilot Plant (WIPP) on February 14, 2014, at a scale expected to be large enough to replicate the environment in that drum but small enough to be practical, safe, and cost effective. These tests were not intended to replicate all the properties of drum 68660 or the event that led to its breach, or to validate a particular hypothesis of the release event. They were intended to observe, in a controlled environment and with suitable diagnostics, the behavior of simple mixtures of chemicals in order to determine if they could support reactivity that could result in ignition or if some other ingredient or event would be necessary. There is a significant amount of uncertainty into the exact composition of the barrel; a limited sub-set of known components was identified, reviewed with Technical Assessment Team (TAT) members, and used in these tests. This set of experiments was intended to provide a framework to postulate realistic, data-supported hypotheses for processes that occur in a “68660-like” configuration, not definitively prove what actually occurred in 68660.

  14. ZiaTest

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ZiaTest ZiaTest Description This test executes a new proposed standard benchmark method ... Specifically, the test consists of the following steps: Record a time stamp for when the ...

  15. Nonlinearity in modal and vibration testing.

    SciTech Connect (OSTI)

    Hunter, N. F.

    2003-01-01

    This set of slides describes some aspects of nonlinear Vibration analysis thru use of analytical fromulas and Examples from real or simulated test systems . The Systems are drawn from a set of examples based on Years of vibration testing experience . Both traditional and new methods are used to describe nonlinear vibration.

  16. nuclear testing | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    testing NNSA scientists find more effective ways to detect nuclear explosions near and far NNSA activities are vital to detecting nuclear explosions and helping verify compliance with the testing ban worldwide. Recent developments at NNSA's Livermore National Laboratory (LLNL) will help NNSA meet this commitment. Using computer-generated models and field experiments, LLNL simulates how

  17. Control of Test Conduct

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Revision 1 Effective June 2008 Control of Test Conduct Prepared by Electric ......... 4 6.1 Test Activities ......

  18. Pratt Whitney Rocketdyne Testing

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Battery Abuse Testing Laboratory Cylindrical Boiling Facility Distributed Energy Technology Lab Microsystems and Engineering Sciences Applications National Solar Thermal Test ...

  19. FEMP Outdoor Solid State Lighting Intiative: Resources for Outdoor...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    applications. http:apps1.eere.energy.govbuildings publicationspdfssslconsortiumfs.pdf DOE SSL GATEWAY Demonstration Project Results - DOE GATEWAY dem- onstrations ...

  20. Franklin: User Experiences

    SciTech Connect (OSTI)

    National Energy Research Supercomputing Center; He, Yun; Kramer, William T.C.; Carter, Jonathan; Cardo, Nicholas

    2008-05-07

    The newest workhorse of the National Energy Research Scientific Computing Center is a Cray XT4 with 9,736 dual core nodes. This paper summarizes Franklin user experiences from friendly early user period to production period. Selected successful user stories along with top issues affecting user experiences are presented.

  1. Nuclear Physics: Experiment Research

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Events Experiment Research User/Researcher Information print version Research Highlights Public Interest Nuclear Physics Accelerator Free-Electron Laser (FEL) Medical Imaging Physics Topics Campaigns Meetings Recent Talks Archived Talks Additional Information Computing at JLab Operations Logbook Accelerator and Experimental Schedule Beam Time Request Form Experiment Scheduling and General Information Radiation Budget Form (pdf) Interactive beam request form (for contact persons / spokespersons)

  2. BooNE Experiment

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Experiment Goals of BooNE BooNE in a Nutshell Making Neutrinos Detecting Neutrinos schematic of BooNE experiment A sample event (3M animated PDF file) A cosmic ray event as displayed by the MiniBooNE detector.

  3. Accelerator/Experiment Operations - FY 2015

    SciTech Connect (OSTI)

    Czarapata, P.

    2015-10-01

    This Technical Memorandum summarizes the Fermilab accelerator and experiment operations for FY 2015. It is one of a series of annual publications intended to gather information in one place. In this case, the information concerns the FY 2015 NOvA, MINOS+ and MINERvA experiments using the Main Injector Neutrino Beam (NuMI), the activities in the SciBooNE Hall using the Booster Neutrino Beam (BNB), and the SeaQuest experiment and Meson Test Beam (MTest) activities in the 120 GeV external Switchyard beam (SY120).

  4. Picture of the Week: The 100-Ton Test

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    6 The 100-Ton Test Before the historic Trinity test on July 16th, 1945, Los Alamos scientists conducted a host of other experiments designed to ensure that they would be ready to...

  5. Colloid research for the Nevada Test Site

    SciTech Connect (OSTI)

    Bryant, E.A.

    1992-05-01

    Research is needed to understand the role of particulates in the migration of radionuclides away from the sites of nuclear tests at the Nevada Test Site. The process of testing itself may produce a reservoir of particles to serve as vectors for the transport of long-lived radionuclides in groundwater. Exploratory experiments indicate the presence of numerous particulates in the vicinity of the Cambric test but a much lower loading in a nearby well that has been pumped continuously for 15 years. Recent groundwater colloid research is briefly reviewed to identify sampling and characterization methods that may be applicable at the Nevada Test Site.

  6. The Full Function Test Explosive Generator

    SciTech Connect (OSTI)

    Reisman, D B; Javedani, J B; Griffith, L V; Ellsworth, G F; Kuklo, R M; Goerz, D A; White, A D; Tallerico, L J; Gidding, D A; Murphy, M J; Chase, J B

    2009-12-13

    We have conducted three tests of a new pulsed power device called the Full Function Test (FFT). These tests represented the culmination of an effort to establish a high energy pulsed power capability based on high explosive pulsed power (HEPP) technology. This involved an extensive computational modeling, engineering, fabrication, and fielding effort. The experiments were highly successful and a new US record for magnetic energy was obtained.

  7. Interpretations of Colloid-Facilitated Transport Experiments at the Grimsel

    Office of Scientific and Technical Information (OSTI)

    Test Site from 2008 through 2012 (Technical Report) | SciTech Connect Technical Report: Interpretations of Colloid-Facilitated Transport Experiments at the Grimsel Test Site from 2008 through 2012 Citation Details In-Document Search Title: Interpretations of Colloid-Facilitated Transport Experiments at the Grimsel Test Site from 2008 through 2012 Authors: Reimus, Paul W. [1] + Show Author Affiliations Los Alamos National Laboratory Publication Date: 2013-09-24 OSTI Identifier: 1095208 Report

  8. Booster Neutrino Experiment - Introduction

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    close The MiniBooNE Experiment next The Oscillating Neutrino The first phase of the Booster Neutrino Experiment (BooNE) at the Fermi National Accelerator Laboratory is a smaller version of the final planned experiment, and has been dubbed "MiniBooNE." The physicists working on MiniBooNE are trying to find out more about the fundamental properties of neutrinos. But, what exactly is a neutrino? To answer that question, we need to look at what's called the Standard Model of particles and

  9. Experiment Safety Requirements

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Experiment Safety Requirements Print Safety at the ALS The mission of the ALS is to "Support users in doing outstanding science in a safe environment." How Do I...? Complete an...

  10. Experiment Scheduling Committee

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Experiment Scheduling Committee Title Name Phome Email Deputy Director for Research Bob McKeown (757) 269-6481 bmck@jlab.org Physics Division AD (co-chair) Rolf Ent (757) 269-7373...

  11. Corporate Operating Experience Program

    Energy.gov [DOE]

    The DOE Corporate Operating Experience Program helps to prevent the recurrence of significant adverse events/trends by sharing performance information, lessons learned and good practices across the DOE complex.

  12. The MAJORANA Experiment

    SciTech Connect (OSTI)

    Aguayo Navarrete, Estanislao; Avignone, F. T.; Back, Henning O.; Barabash, Alexander S.; Bergevin, M.; Bertrand, F.; Boswell, M.; Brudanin, V.; Busch, Matthew; Chan, Yuen-Dat; Christofferson, Cabot-Ann; Collar, J. I.; Combs, Dustin C.; Cooper, R. J.; Detwiler, Jason A.; Doe, Peter J.; Efremenko, Yuri; Egorov, Viatcheslav; Ejiri, H.; Elliott, Steven R.; Esterline, James H.; Fast, James E.; Fields, N.; Finnerty, P.; Fraenkle, Florian; Gehman, Victor M.; Giovanetti, G. K.; Green, Matthew P.; Guiseppe, Vincente; Gusey, K.; Hallin, A. L.; Hazama, R.; Henning, R.; Hime, Andrew; Hoppe, Eric W.; Horton, Mark; Howard, Stanley; Howe, M. A.; Johnson, R. A.; Keeter, K.; Keillor, Martin E.; Keller, C.; Kephart, Jeremy D.; Kidd, Mary; Knecht, A.; Kochetov, Oleg; Konovalov, S.; Kouzes, Richard T.; LaFerriere, Brian D.; LaRoque, B. H.; Leon, Jonathan D.; Leviner, L.; Loach, J. C.; MacMullin, S.; Marino, Michael G.; Martin, R. D.; Mei, Dong-Ming; Merriman, Jason H.; Miller, M. L.; Mizouni, Leila; Nomachi, Masaharu; Orrell, John L.; Overman, Nicole R.; Phillips, D.; Poon, Alan; Perumpilly, Gopakumar; Prior, Gersende; Radford, D. C.; Rielage, Keith; Robertson, R. G. H.; Ronquest, M. C.; Schubert, Alexis G.; Shima, T.; Shirchenko, M.; Snavely, Kyle J.; Sobolev, V.; Steele, David; Strain, J.; Thomas, K.; Timkin, V.; Tornow, W.; Vanyushin, I.; Varner, R. L.; Vetter, Kai; Vorren, Kris R.; Wilkerson, John; Wolfe, B. A.; Yakushev, E.; Young, A.; Yu, Chang-Hong; Yumatov, Vladimir; Zhang, C.

    2011-10-01

    The Majorana collaboration is actively pursuing research and development aimed at a tonne-scale {sup 76}Ge neutrinoless double-beta decay ({beta}{beta}(0{nu})-decay) experiment. The current, primary focus is the construction of the Majorana Demonstrator experiment, an R and D effort that will field approximately 40 kg of germanium detectors with mixed enrichment levels. This article provides a status update on the construction of the Demonstrator.

  13. Tritium Plasma Experiment and

    Office of Environmental Management (EM)

    Plasma Experiment and its role in PHENIX program Masashi Shimada, Chase Taylor Fusion Safety Program Idaho National Laboratory Rob Kolasinski Sandia National Laboratories, Livermore Tritium Focus Group meeting September 23-25, 2014 at Idaho National Laboratory, Idaho Falls, ID Outline: 1. Motivation 2. Tritium Plasma Experiment 3. INL/STAR's role on US-Japan collaboration 4. Role of TPE in PHENIX project 5. TPE modification and development of plasma-driven permeation M.Shimada | Tritium Focus

  14. Sharing Smart Grid Experiences

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Sharing Smart Grid Experiences through Performance Feedback March 31, 2011 DOE/NETL- DE-FE0004001 U.S. Department of Energy Office of Electricity Delivery and Energy Reliability Prepared by: National Energy Technology Laboratory Sharing Smart Grid Experiences through Performance Feedback v1.0 Page ii Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their

  15. The GLUEX Experiment

    SciTech Connect (OSTI)

    M.R. Shepherd

    2009-12-01

    The GLUEX experiment, to be constructed in the new Hall D at Jefferson Lab as part of the 12 GeV upgrade, will utilize a linearly polarized 9 GeV photon beam, produced via coherent bremsstrahlung radiation off of a diamond wafer, incident on a proton target to conduct a search for exotic hybrid mesons. A summary of the physics motivation for the experiment and the key factors that drive the design of the detector and beam line is presented.

  16. The Majorana Experiment

    SciTech Connect (OSTI)

    Aguayo, E.; Fast, J. E.; Hoppe, E. W.; Keillor, M. E.; Kephart, J. D.; Kouzes, R. T.; LaFerriere, B. D.; Merriman, J. H.; Orrell, J. L.; Overman, N. R. [Pacific Northwest National Laboratory, Richland, WA (United States); Avignone, F. T. III [Department of Physics and Astronomy, University of South Carolina, Columbia, SC (United States); Oak Ridge National Laboratory, Oak Ridge, TN (United States); Back, H. O. [Department of Physics, North Carolina State University, Raleigh, NC (United States); Triangle Universities Nuclear Laboratory, Durham, NC (United States); Barabash, A. S.; Konovalov, S. I.; Vanyushin, I.; Yumatov, V. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Bergevin, M.; Chan, Y.-D.; Detwiler, J. A.; Loach, J. C. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); and others

    2011-12-16

    The Majorana collaboration is actively pursuing research and development aimed at a tonne-scale {sup 76}Ge neutrinoless double-beta decay ({beta}{beta}(0{nu})-decay) experiment. The current, primary focus is the construction of the Majorana Demonstrator experiment, an R and D effort that will field approximately 40 kg of germanium detectors with mixed enrichment levels. This article provides a status update on the construction of the Demonstrator.

  17. Vendor System Vulnerability Testing Test Plan

    SciTech Connect (OSTI)

    James R. Davidson

    2005-01-01

    The Idaho National Laboratory (INL) prepared this generic test plan to provide clients (vendors, end users, program sponsors, etc.) with a sense of the scope and depth of vulnerability testing performed at the INL’s Supervisory Control and Data Acquisition (SCADA) Test Bed and to serve as an example of such a plan. Although this test plan specifically addresses vulnerability testing of systems applied to the energy sector (electric/power transmission and distribution and oil and gas systems), it is generic enough to be applied to control systems used in other critical infrastructures such as the transportation sector, water/waste water sector, or hazardous chemical production facilities. The SCADA Test Bed is established at the INL as a testing environment to evaluate the security vulnerabilities of SCADA systems, energy management systems (EMS), and distributed control systems. It now supports multiple programs sponsored by the U.S. Department of Energy, the U.S. Department of Homeland Security, other government agencies, and private sector clients. This particular test plan applies to testing conducted on a SCADA/EMS provided by a vendor. Before performing detailed vulnerability testing of a SCADA/EMS, an as delivered baseline examination of the system is conducted, to establish a starting point for all-subsequent testing. The series of baseline tests document factory delivered defaults, system configuration, and potential configuration changes to aid in the development of a security plan for in depth vulnerability testing. The baseline test document is provided to the System Provider,a who evaluates the baseline report and provides recommendations to the system configuration to enhance the security profile of the baseline system. Vulnerability testing is then conducted at the SCADA Test Bed, which provides an in-depth security analysis of the Vendor’s system.b a. The term System Provider replaces the name of the company/organization providing the system

  18. Major Partner Test Sites

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Major Test Partners Once a technology is ready to be tested at pilot or commercial scale, the cost of building a test facility becomes significant -- often beyond the funding ...

  19. Test | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Test Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Test Published Publisher Not Provided, Date Not Provided Report Number Test DOI Not Provided Check...

  20. Combined Experiment Phase 1. Final report

    SciTech Connect (OSTI)

    Butterfield, C.P.; Musial, W.P.; Simms, D.A.

    1992-10-01

    How does wind tunnel airfoil data differ from the airfoil performance on an operating horizontal axis wind turbine (HAWT)? The National Renewable Energy laboratory has been conducting a comprehensive test program focused on answering this question and understanding the basic fluid mechanics of rotating HAWT stall aerodynamics. The basic approach was to instrument a wind rotor, using an airfoil that was well documented by wind tunnel tests, and measure operating pressure distributions on the rotating blade. Based an the integrated values of the pressure data, airfoil performance coefficients were obtained, and comparisons were made between the rotating data and the wind tunnel data. Care was taken to the aerodynamic and geometric differences between the rotating and the wind tunnel models. This is the first of two reports describing the Combined Experiment Program and its results. This Phase I report covers background information such as test setup and instrumentation. It also includes wind tunnel test results and roughness testing.

  1. Review of Test Results

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    4 Revision 1 Effective June 2008 Review of Test Results Prepared by Electric ... 7 Appendices Appendix A, Test Results Review and Approval Form ...

  2. HICEV America Test Sequence

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    HICEV America TEST SEQUENCE Revision 0 November 1, 2004 Prepared by Electric ... Donald B. Karner HICEV America Test Sequence Page 1 2004 Electric ...

  3. Nevada Test Site

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    in greater detail in the Nevada Test Site Environ- mental Report 2004 (DOENV11718-1080). ... mental programs and efforts Nevada Test Site Environmental Report 2004 Summary ...

  4. wave energy testing

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ... Successful testing of Sandia Labs' Wave Energy Converter (WEC) system News, Partnership, Water Power Successful testing of Sandia Labs' Wave Energy Converter (WEC) system Sandia ...

  5. OMB MPI Tests

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    OMB MPI Tests OMB MPI Tests Description The Ohio MicroBenchmark suite is a collection of independent MPI message passing performance microbenchmarks developed and written at The...

  6. Limited Test Ban Treaty

    National Nuclear Security Administration (NNSA)

    Detection System (USNDS), which monitors compliance with the international Limited Test Ban Treaty (LTBT). The LTBT, signed by 108 countries, prohibits nuclear testing in the...

  7. Gyroharmonic conversion experiments

    SciTech Connect (OSTI)

    Hirshfield, J.L.; LaPointe, M.A.; Ganguly, A.K. [Omega-P, Inc., New Haven, Connecticut 06520 (United States); LaPointe, M.A. [Yale University, New Haven, Connecticut 06511 (United States)

    1999-05-01

    Generation of high power microwaves has been observed in experiments where a 250{endash}350 kV, 20{endash}30 A electron beam accelerated in a cyclotron autoresonance accelerator (CARA) passes through a cavity tuned gyroharmonic) and at 8.6 GHz (3rd harmonic) will be described. Theory indicates that high conversion efficiency can be obtained for a high quality beam injected into CARA, and when mode competition can be controlled. Comparisons will be made between the experiments and theory. Planned 7th harmonic experiments will also be described, in which phase matching between the TE-72 mode at 20 GHz, and the TE-11 mode at 2.86 GHz, allows efficient 20 GHz co-generation within the CARA waveguide itself. {copyright} {ital 1999 American Institute of Physics.}

  8. Gyroharmonic conversion experiments

    SciTech Connect (OSTI)

    Hirshfield, J. L.; LaPointe, M. A. [Omega-P, Inc., New Haven, Connecticut 06520 (United States); Yale University, New Haven, Connecticut 06511 (United States); Ganguly, A. K. [Omega-P, Inc., New Haven, Connecticut 06520 (United States)

    1999-05-07

    Generation of high power microwaves has been observed in experiments where a 250-350 kV, 20-30 A electron beam accelerated in a cyclotron autoresonance accelerator (CARA) passes through a cavity tuned gyroharmonic) and at 8.6 GHz (3rd harmonic) will be described. Theory indicates that high conversion efficiency can be obtained for a high quality beam injected into CARA, and when mode competition can be controlled. Comparisons will be made between the experiments and theory. Planned 7th harmonic experiments will also be described, in which phase matching between the TE-72 mode at 20 GHz, and the TE-11 mode at 2.86 GHz, allows efficient 20 GHz co-generation within the CARA waveguide itself.

  9. Fermilab SRF cryomodule operational experience

    SciTech Connect (OSTI)

    Martinez, A.; Klebaner, A.L.; Theilacker, J.C.; DeGraff, B.D.; White, M.; Johnson, G.S.; /Fermilab

    2011-06-01

    Fermi National Accelerator Laboratory is constructing an Advanced Accelerator Research and Development facility at New Muon Lab. The cryogenic infrastructure in support of the initial phase of the facility consists of two Tevatron style standalone refrigerators, cryogenic distribution system as well as an ambient temperature pumping system to achieve 2K operations with supporting purification systems. During this phase of the project a single Type III plus 1.3 GHz cryomodule was installed, cooled and tested. Design constraints of the cryomodule required that the cryomodule individual circuits be cooled at predetermined rates. These constraints required special design solutions to achieve. This paper describes the initial cooldown and operational experience of a 1.3 GHz cryomodule using the New Muon Lab cryogenic system.

  10. Test report for core drilling ignitability testing

    SciTech Connect (OSTI)

    Witwer, K.S.

    1996-08-08

    Testing was carried out with the cooperation of Westinghouse Hanford Company and the United States Bureau of Mines at the Pittsburgh Research Center in Pennsylvania under the Memorandum of Agreement 14- 09-0050-3666. Several core drilling equipment items, specifically those which can come in contact with flammable gasses while drilling into some waste tanks, were tested under conditions similar to actual field sampling conditions. Rotary drilling against steel and rock as well as drop testing of several different pieces of equipment in a flammable gas environment were the specific items addressed. The test items completed either caused no ignition of the gas mixture, or, after having hardware changes or drilling parameters modified, produced no ignition in repeat testing.

  11. Dual Axis Radiographic Hydrodynamic Test | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration Dual Axis Radiographic Hydrodynamic Test NNSA releases Stockpile Stewardship Program quarterly experiments summary WASHIGTON, DC. - The National Nuclear Security Administration today released its current quarterly summary of experiments conducted as part of its science-based Stockpile Stewardship Program. The experiments carried out within the program are used in combination with complex computational models

  12. Working testing process

    SciTech Connect (OSTI)

    Sparkman, D.

    1997-11-01

    This report contains viewgraphs on the process of testing security and intrusion detection software.

  13. Dynamometer Testing (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-11-01

    This fact sheet describes the dynamometer and its testing capabilities at the National Wind Technology Center.

  14. ISOTHERMAL AIR INGRESS VALIDATION EXPERIMENTS

    SciTech Connect (OSTI)

    Chang H Oh; Eung S Kim

    2011-09-01

    Idaho National Laboratory carried out air ingress experiments as part of validating computational fluid dynamics (CFD) calculations. An isothermal test loop was designed and set to understand the stratified-flow phenomenon, which is important as the initial air flow into the lower plenum of the very high temperature gas cooled reactor (VHTR) when a large break loss-of-coolant accident occurs. The unique flow characteristics were focused on the VHTR air-ingress accident, in particular, the flow visualization of the stratified flow in the inlet pipe to the vessel lower plenum of the General Atomic’s Gas Turbine-Modular Helium Reactor (GT-MHR). Brine and sucrose were used as heavy fluids, and water was used to represent a light fluid, which mimics a counter current flow due to the density difference between the stimulant fluids. The density ratios were changed between 0.87 and 0.98. This experiment clearly showed that a stratified flow between simulant fluids was established even for very small density differences. The CFD calculations were compared with experimental data. A grid sensitivity study on CFD models was also performed using the Richardson extrapolation and the grid convergence index method for the numerical accuracy of CFD calculations . As a result, the calculated current speed showed very good agreement with the experimental data, indicating that the current CFD methods are suitable for predicting density gradient stratified flow phenomena in the air-ingress accident.

  15. Closure Report for Corrective Action Unit 254: Area 25, R-MAD Decontamination Facility, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    G. N. Doyle

    2002-02-01

    Corrective Action Unit (CAU) 254 is located in Area 25 of the Nevada Test Site (NTS), approximately 100 kilometers (km) (62 miles) northwest of Las Vegas, Nevada. The site is located within the Reactor Maintenance, Assembly and Disassembly (R-MAD) compound and consists of Building 3126, two outdoor decontamination pads, and surrounding areas within an existing fenced area measuring approximately 50 x 37 meters (160 x 120 feet). The site was used from the early 1960s to the early 1970s as part of the Nuclear Rocket Development Station program to decontaminate test-car hardware and tooling. The site was reactivated in the early 1980s to decontaminate a radiologically contaminated military tank. This Closure Report (CR) describes the closure activities performed to allow un-restricted release of the R-MAD Decontamination Facility.

  16. Entry/Exit Port testing, test report

    SciTech Connect (OSTI)

    Winkelman, R.H.

    1993-05-01

    The Waste Receiving and Processing Module I (WRAP-1) facility must have the ability to allow 55-gallon drums to enter and exit glovebox enclosures. An Entry/Exit Port (Appendix 1, Figure 1), designed by United Engineers and Constructors (UE&C), is one method chosen for drum transfer. The Entry/Exit Port is to be used for entry of 55-gallon drums into both process entry gloveboxes, exit of 55-gallon drum waste pucks from the low-level waste (LLW) glovebox, and loadout of waste from the restricted waste management glovebox. The Entry/Exit Port relies on capture velocity air flow and a neoprene seal to provide alpha confinement when the Port is in the open and closed positions, respectively. Since the glovebox is in a slight vacuum, air flow is directed into the glovebox through the space between the overpack drum and glovebox floor. The air flow is to direct any airborne contamination into the glovebox. A neoprene seal is used to seal the Port door to the glovebox floor, thus maintaining confinement in the closed position. Entry/Exit Port testing took place February 17, 1993, through April 14, 1993, in the 305 building of Westinghouse Hanford Company. Testing was performed in accordance with the Entry/Exit Port Testing Test Plan, document number WHC-SD-WO26-TP-005. A prototype Entry/Exit Port built at the Hanford Site was tested using fluorescent paint pigment and smoke candles as simulant contaminants. This test report is an interim test report. Further developmental testing is required to test modifications made to the Port as the original design of the Port did not provide complete confinement during all stages of operation.

  17. The Majorana Experiment

    SciTech Connect (OSTI)

    Aalseth, Craig E.; Aguayo Navarrete, Estanislao; Amman, M.; Avignone, F. T.; Back, Henning O.; Bai, Xinhua; Barabash, Alexander S.; Barbeau, P. S.; Bergevin, M.; Bertrand, F.; Boswell, M.; Brudanin, V.; Bugg, William; Burritt, Tom H.; Busch, Matthew; Capps, Greg L.; Chan, Yuen-Dat; Collar, J. I.; Cooper, R. J.; Creswick, R.; Detwiler, Jason A.; Diaz, J.; Doe, Peter J.; Efremenko, Yuri; Egorov, Viatcheslav; Ejiri, H.; Elliott, S. R.; Ely, James H.; Esterline, James H.; Farach, H. A.; Fast, James E.; Fields, N.; Finnerty, P.; Fraenkle, Florian; Gehman, Victor M.; Giovanetti, G. K.; Green, M.; Guiseppe, Vincente; Gusey, K.; Hallin, A. L.; Harper, Gregory; Hazama, R.; Henning, Reyco; Hime, Andrew; Hong, H.; Hoppe, Eric W.; Hossbach, Todd W.; Howard, Stanley; Howe, M. A.; Johnson, R. A.; Keeter, K.; Keillor, Martin E.; Keller, C.; Kephart, Jeremy D.; Kidd, M. F.; Knecht, A.; Kochetov, Oleg; Konovalov, S.; Kouzes, Richard T.; LaRoque, B. H.; Leviner, L.; Loach, J. C.; Luke, P.; MacMullin, S.; Marino, Michael G.; Martin, R. D.; Medlin, D.; Mei, Dong-Ming; Miley, Harry S.; Miller, M. L.; Mizouni, Leila; Myers, Allan W.; Nomachi, Masaharu; Orrell, John L.; Peterson, David; Phillips, D.; Poon, Alan; Perevozchikov, O.; Perumpilly, Gopakumar; Prior, Gersende; Radford, D. C.; Reid, Douglas J.; Rielage, Keith; Robertson, R. G. H.; Rodriguez, Larry; Ronquest, M. C.; Salazar, Harold; Schubert, Alexis G.; Shima, T.; Shirchenko, M.; Sobolev, V.; Steele, David; Strain, J.; Swift, Gary; Thomas, K.; Timkin, V.; Tornow, W.; Van Wechel, T. D.; Vanyushin, I.; Varner, R. L.; Vetter, Kai; Vorren, Kris R.; Wilkerson, J. F.; Wolfe, B. A.; Xiang, W.; Yakushev, E.; Yaver, Harold; Young, A.; Yu, Chang-Hong; Yumatov, V.; Zhang, C.

    2011-08-01

    The Majorana Collaboration is assembling an array of HPGe detectors to search for neutrinoless double-beta decay in 76Ge. Initially, Majorana aims to construct a prototype module to demonstrate the potential of a future 1-tonne experiment. The design and potential reach of this prototype Demonstrator module are presented.

  18. The MAJORANA Experiment

    SciTech Connect (OSTI)

    Guiseppe, V.E.; Keller, C.; Mei, D-M; Perevozchikov, O.; Perumpilly, G.; Thomas, K.; Xiang, W.; Zhang, C.; Aalseth, C.E.; Aguayo, E.; Ely, J.; Fast, J.E.; Hoppe, E.W.; Hossbach, T.W.; Keillor, M.; Kephart, J.D.; Kouzes, R.; Miley, H.S.; Mizouni, L.; Myers, A.W.; Reid, D.; Amman, M.; Bergevin, M.; Chan, Y-D; Detwiler, J.A.; Loach, J.C.; Luke, P.N.; Martin, R.D.; Poon, A.W.P.; Prior, G.; Vetter, K.; Yaver, H.; Avignone, F.T. III; Creswick, R.; Farach, H.; Mizouni, L.; Avignone, Frank Titus; Bertrand Jr, Fred E; Capps, Gregory L; Cooper, Reynold J; Radford, David C; Varner Jr, Robert L; Wilkerson, John F; Yu, Chang-Hong; Back, H.O.; Leviner, L.; Young, A.R.; Back , H.O.; Bai, X.; Hong, H.; Howard, S.; Medlin, D.; Sobolev, V.; Barabash, A.S.; Konovalov, S.I.; Vanyushin, I.; Yumatov, V.; Barbeau, P.S.; Collar, J.I.; Fields, N.; Boswell , M.; Brudanin, V.; Egorov, V.; Gusey, K.; Kochetov, O.; Shirchenko, M.; Timkin, V.; Yakushev, E.; Bugg, W.; Efremenko, M.; Burritt , T.H.; Burritt , T.H.; Busch, M.; Esterline, J.; Swift, G.; Tornow, W.; Hazama, R.; Nomachi, M.; Shima, T.; Finnerty , P.; et al.

    2011-01-01

    The Majorana Collaboration is assembling an array of HPGe detectors to search for neutrinoless double-beta decay in {sup 76}Ge. Initially, Majorana aims to construct a prototype module to demonstrate the potential of a future 1-tonne experiment. The design and potential reach of this prototype Demonstrator module are presented.

  19. Kelp growth experiments

    SciTech Connect (OSTI)

    North, W. J.

    1980-01-01

    Harvest yields obtainable from giant kelp plants that are adequately fertilized were investigated. The following topics are discussed: desirable characteristics in a candidate macroalga, and giant kelp as a candidate macroalga for ocean farming. Nutrient requirements, field experiments, and approaches to acquiring yield data are reviewed. (MHR)

  20. Solderability test system

    DOE Patents [OSTI]

    Yost, F.; Hosking, F.M.; Jellison, J.L.; Short, B.; Giversen, T.; Reed, J.R.

    1998-10-27

    A new test method to quantify capillary flow solderability on a printed wiring board surface finish. The test is based on solder flow from a pad onto narrow strips or lines. A test procedure and video image analysis technique were developed for conducting the test and evaluating the data. Feasibility tests revealed that the wetted distance was sensitive to the ratio of pad radius to line width (l/r), solder volume, and flux predry time. 11 figs.

  1. Solderability test system

    DOE Patents [OSTI]

    Yost, Fred; Hosking, Floyd M.; Jellison, James L.; Short, Bruce; Giversen, Terri; Reed, Jimmy R.

    1998-01-01

    A new test method to quantify capillary flow solderability on a printed wiring board surface finish. The test is based on solder flow from a pad onto narrow strips or lines. A test procedure and video image analysis technique were developed for conducting the test and evaluating the data. Feasibility tests revealed that the wetted distance was sensitive to the ratio of pad radius to line width (l/r), solder volume, and flux predry time.

  2. Calibration curves for some standard Gap Tests

    SciTech Connect (OSTI)

    Bowman, A.L.; Sommer, S.C.

    1989-01-01

    The relative shock sensitivities of explosive compositions are commonly assessed using a family of experiments that can be described by the generic term ''Gap Test.'' Gap tests include a donor charge, a test sample, and a spacer, or gap, between two explosives charges. The donor charge, gap material, and test dimensions are held constant within each different version of the gap test. The thickness of the gap is then varied to find the value at which 50% of the test samples will detonate. The gap tests measure the ease with a high-order detonation can be established in the test explosive, or the ''detonability,'' of the explosive. Test results are best reported in terms of the gap thickness at the 50% point. It is also useful to define the shock pressure transmitted into the test sample at the detonation threshold. This requires calibrating the gap test in terms of shock pressure in the gap as a function of the gap thickness. It also requires a knowledge of the shock Hugoniot of the sample explosive. We used the 2DE reactive hydrodynamic code with Forest Fire burn rates for the donor explosives to calculate calibration curves for several gap tests. The model calculations give pressure and particle velocity on the centerline of the experimental set-up and provide information about the curvature and pulse width of the shock wave. 10 refs., 1 fig.

  3. Experiment operations plan for the TH-2 experiment in the NRU reactor. [PWR; BWR

    SciTech Connect (OSTI)

    Russcher, G.E.; Wilson, C.L.; Parchen, L.J.; Freshley, M.D.

    1983-06-01

    A series of thermal-hydraulic and cladding materials deformation experiments were conducted using light-water reactor fuel bundles as part of the Pacific Northwest Laboratory Loss-of-Coolant Accident (LOCA) Simulation Program. This report is the formal operations plan for TH-2--the second experiment in the series of thermal-hydraulic tests conducted in the National Research Universal (NRU) reactor, Chalk River, Ontario, Canada. The major objective of TH-2 was to develop the experiment reflood control parameters and the procedures to be used in subsequent experiments in this program. In this experiment, the data acquisition and control system was used to control the fuel cladding temperature during a simulated LOCA by using variable reflood coolant flow.

  4. BNl 703 MHz superconducting RF cavity testing

    SciTech Connect (OSTI)

    Sheehy, B.; Altinbas, Z.; Burrill, A.; Ben-Zvi, I.; Gassner, D.; Hahn, H.; Hammons, L.; Jamilkowski, J.; Kayran, D.; Kewisch, J.; Laloudakis, N.; Lederle, D.; Litvinenko, V.; McIntyre, G.; Pate, D.; Phillips, D.; Schultheiss, C.; Seda,T.; Than, R.; Xu, W.; Zaltsman, A.; Schultheiss, T.

    2011-03-28

    The BNL 5-cell, 703 MHz superconducting accelerating cavity has been installed in the high-current ERL experiment. This experiment will function as a proving ground for the development of high-current machines in general and is particularly targeted at beam development for an electron-ion collider (eRHIC). The cavity performed well in vertical tests, demonstrating gradients of 20 MV/m and a Q{sub 0} of 1e10. Here we will present its performance in the horizontal tests, and discuss technical issues involved in its implementation in the ERL.

  5. Accelerator/Experiment Operations - FY 2007

    SciTech Connect (OSTI)

    Brice, S.; Buchanan, N.; Coleman, R.; Convery, M.; Denisov, D.; Ginther, G.; Habig, A.; Holmes, S.; Kissel, W.; Lee, W.; Nakaya, T.; /Fermilab

    2007-10-01

    This Technical Memorandum (TM) summarizes the Fermilab accelerator and accelerator experiment operations for FY 2007. It is one of a series of annual publications intended to gather information in one place. In this case, the information concerns the FY 2007 Run II at the Tevatron Collider, the MiniBooNE and SciBooNE experiments running in the Booster Neutrino Beam (BNB), MINOS using the Main Injector Neutrino Beam (NuMI), and the Meson Test Beam (MTest) activities in the 120 GeV external Switchyard beam (SY120). Each section was prepared by the relevant authors, and was somewhat edited for inclusion in this summary.

  6. The MicroBooNE Experiment - Home Page

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Experiments LArIAT - Test Beam DUNE - Long Baseline ArgoNeuT More FNAL Neutrino Exps Fermilab Links FNAL Neutrino Division FNAL at Work FNAL Phone Book FNAL Indico FNAL Home...

  7. Sensitivity Test Analysis

    Energy Science and Technology Software Center (OSTI)

    1992-02-20

    SENSIT,MUSIG,COMSEN is a set of three related programs for sensitivity test analysis. SENSIT conducts sensitivity tests. These tests are also known as threshold tests, LD50 tests, gap tests, drop weight tests, etc. SENSIT interactively instructs the experimenter on the proper level at which to stress the next specimen, based on the results of previous responses. MUSIG analyzes the results of a sensitivity test to determine the mean and standard deviation of the underlying population bymore » computing maximum likelihood estimates of these parameters. MUSIG also computes likelihood ratio joint confidence regions and individual confidence intervals. COMSEN compares the results of two sensitivity tests to see if the underlying populations are significantly different. COMSEN provides an unbiased method of distinguishing between statistical variation of the estimates of the parameters of the population and true population difference.« less

  8. Full-Scale Cookoff Model Validation Experiments

    SciTech Connect (OSTI)

    McClelland, M A; Rattanapote, M K; Heimdahl, E R; Erikson, W E; Curran, P O; Atwood, A I

    2003-11-25

    This paper presents the experimental results of the third and final phase of a cookoff model validation effort. In this phase of the work, two generic Heavy Wall Penetrators (HWP) were tested in two heating orientations. Temperature and strain gage data were collected over the entire test period. Predictions for time and temperature of reaction were made prior to release of the live data. Predictions were comparable to the measured values and were highly dependent on the established boundary conditions. Both HWP tests failed at a weld located near the aft closure of the device. More than 90 percent of unreacted explosive was recovered in the end heated experiment and less than 30 percent recovered in the side heated test.

  9. Gas Test Loop Booster Fuel Hydraulic Testing

    SciTech Connect (OSTI)

    Gas Test Loop Hydraulic Testing Staff

    2006-09-01

    The Gas Test Loop (GTL) project is for the design of an adaptation to the Advanced Test Reactor (ATR) to create a fast-flux test space where fuels and materials for advanced reactor concepts can undergo irradiation testing. Incident to that design, it was found necessary to make use of special booster fuel to enhance the neutron flux in the reactor lobe in which the Gas Test Loop will be installed. Because the booster fuel is of a different composition and configuration from standard ATR fuel, it is necessary to qualify the booster fuel for use in the ATR. Part of that qualification is the determination that required thermal hydraulic criteria will be met under routine operation and under selected accident scenarios. The Hydraulic Testing task in the GTL project facilitates that determination by measuring flow coefficients (pressure drops) over various regions of the booster fuel over a range of primary coolant flow rates. A high-fidelity model of the NW lobe of the ATR with associated flow baffle, in-pile-tube, and below-core flow channels was designed, constructed and located in the Idaho State University Thermal Fluids Laboratory. A circulation loop was designed and constructed by the university to provide reactor-relevant water flow rates to the test system. Models of the four booster fuel elements required for GTL operation were fabricated from aluminum (no uranium or means of heating) and placed in the flow channel. One of these was instrumented with Pitot tubes to measure flow velocities in the channels between the three booster fuel plates and between the innermost and outermost plates and the side walls of the flow annulus. Flow coefficients in the range of 4 to 6.5 were determined from the measurements made for the upper and middle parts of the booster fuel elements. The flow coefficient for the lower end of the booster fuel and the sub-core flow channel was lower at 2.3.

  10. Ganges Valley Aerosol Experiment

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Ganges Valley Aerosol Experiment In northeastern India, the fertile land around the Ganges River supports several hundred million people. This river, the largest in India, is fed by monsoon rains and runoff from the nearby Himalayan Mountains. Through an intergovernmental agreement with India, the U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facility deployed its portable laboratory, the ARM Mobile Facility (AMF), to Nainital, India, in June 2011. During

  11. The LUX experiment

    SciTech Connect (OSTI)

    Akerib, D. S.; Araújo, H. M.; Bai, X.; Bailey, A. J.; Balajthy, J.; Bernard, E.; Bernstein, A.; Bradley, A.; Byram, D.; Cahn, S. B.; Carmona-Benitez, M. C.; Chan, C.; Chapman, J. J.; Chiller, A. A.; Chiller, C.; Coffey, T.; Currie, A.; de Viveiros, L.; Dobi, A.; Dobson, J.; Druszkiewicz, E.; Edwards, B.; Faham, C. H.; Fiorucci, S.; Flores, C.; Gaitskell, R. J.; Gehman, V. M.; Ghag, C.; Gibson, K. R.; Gilchriese, M. G. D.; Hall, C.; Hertel, S. A.; Horn, M.; Huang, D. Q.; Ihm, M.; Jacobsen, R. G.; Kazkaz, K.; Knoche, R.; Larsen, N. A.; Lee, C.; Lindote, A.; Lopes, M. I.; Malling, D. C.; Mannino, R.; McKinsey, D. N.; Mei, D. -M.; Mock, J.; Moongweluwan, M.; Morad, J.; Murphy, A. St.J.; Nehrkorn, C.; Nelson, H.; Neves, F.; Ott, R. A.; Pangilinan, M.; Parker, P. D.; Pease, E. K.; Pech, K.; Phelps, P.; Reichhart, L.; Shutt, T.; Silva, C.; Solovov, V. N.; Sorensen, P.; O'Sullivan, K.; Sumner, T. J.; Szydagis, M.; Taylor, D.; Tennyson, B.; Tiedt, D. R.; Tripathi, M.; Uvarov, S.; Verbus, J. R.; Walsh, N.; Webb, R.; White, J. T.; Witherell, M. S.; Wolfs, F. L.H.; Woods, M.; Zhang, C.

    2015-03-24

    We present the status and prospects of the LUX experiment, which employs approximately 300 kg of two-phase xenon to search for WIMP dark matter interactions. The LUX detector was commissioned at the surface laboratory of the Sanford Underground Research Facility in Lead, SD, between December 2011 and February 2012 and the detector has been operating underground since January, 2013. These proceedings review the results of the commissioning run as well as the status of underground data-taking.

  12. Booster Neutrino Experiment - Introduction

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    back The MiniBooNE Experiment next The Oscillating Neutrino Normal matter is made of atoms. Atoms are also composite objects, made up in turn of protons and neutrons (in the nucleus) and the lightweight and familiar electrons. Electrons belong to a class of particles called leptons, the same family to which neutrinos belong. Neutrinos are the very lightweight (originally thought massless) neutral partners of the electrically charged electron and its more exotic cousins the muon and the tau.

  13. 8. Transient Testing Instrumentation Needs_C Jensen_INL_10-12-2016

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Experiment Instrumentation for Transient Testing Colby Jensen, Ph.D. Experiment Instrumentation Lead for Transient Testing Idaho National Laboratory, Idaho Falls, Idaho Advanced Sensors and Instrumentation 2016 NE I&C Review October 12-13, 2016 Introduction to Transient Testing, TREAT, and Current Experimental Efforts 2 What is Transient Testing? * Transient testing is like car crash testing for nuclear fuel - Demonstrate performance phenomena and limits for fuel development and reactor

  14. Photomultiplier Tube Testing

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    e oscillation search designed to confirm or rule out the neutrino oscillation signal seen by the LSND 1 experiment at the Los Alamos National Laboratory. The...

  15. Radiation Safety Test

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Safety Test. This form can also be picked up and filled out in the CAMD front office, rm. 107 A minimum passing score is 80% (24 out of 30) After completing the test, you will ...

  16. High Explosives Testing

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    August 1, 2013 The design and testing for "Little Boy" took place at Gun Site The design and testing for "Little Boy" took place at Gun Site. RELATED IMAGES http:...

  17. Atmospheric Line of Site Experiment (ALOSE) Final Campaign Summary

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Atmospheric Line of Site Experiment (ALOSE) Final Campaign Summary Citation Details In-Document Search Title: Atmospheric Line of Site Experiment (ALOSE) Final Campaign Summary The Atmospheric Line of Site Experiment (ALOSE) was a project to produce best-estimate atmospheric state measurements at the: 1. DOE Atmospheric Radiation Measurement (ARM) Clouds and Radiation Test-bed (CART) site located in Lamont, Oklahoma (11-14 December 2012) 2. Poker Flat

  18. Coaxial test fixture

    DOE Patents [OSTI]

    Praeg, W.F.

    1984-03-30

    This invention pertains to arrangements for performing electrical tests on contact material samples, and in particular for testing contact material test samples in an evacuated environment under high current loads. Frequently, it is desirable in developing high-current separable contact material, to have at least a preliminary analysis of selected candidate conductor materials. Testing of material samples will hopefully identify materials unsuitable for high current electrical contact without requiring incorporation of the materials into a completed and oftentimes complex structure.

  19. Blade Testing Trends (Presentation)

    SciTech Connect (OSTI)

    Desmond, M.

    2014-08-01

    As an invited guest speaker, Michael Desmond presented on NREL's NWTC structural testing methods and capabilities at the 2014 Sandia Blade Workshop held on August 26-28, 2014 in Albuquerque, NM. Although dynamometer and field testing capabilities were mentioned, the presentation focused primarily on wind turbine blade testing, including descriptions and capabilities for accredited certification testing, historical methodology and technology deployment, and current research and development activities.

  20. OMB MPI Tests

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    OMB MPI Tests OMB MPI Tests Description The Ohio MicroBenchmark suite is a collection of independent MPI message passing performance microbenchmarks developed and written at The Ohio State University. It includes traditional benchmarks and performance measures such as latency, bandwidth and host overhead and can be used for both traditional and GPU-enhanced nodes. For the purposes of the Trinity / NERSC-8 acquisition this includes only the following tests: (name of OSU test: performance

  1. Massive Hanford Test Reactor Removed - Plutonium Recycle Test...

    Office of Environmental Management (EM)

    Massive Hanford Test Reactor Removed - Plutonium Recycle Test Reactor removed from Hanford's 300 Area Massive Hanford Test Reactor Removed - Plutonium Recycle Test Reactor removed ...

  2. Improvement in understanding the deposition of ambient dust particles on ECAM (environmental continuous air monitor) filters, reduction of the alpha-particle interference of radon progeny and other radioactive aerosols in different particle size ranges on filters, and development of ECAMs with increased sensitivity under dusty outdoor conditions.

    SciTech Connect (OSTI)

    Schery, Stephen D., Wasiolek, Piotr; Rodgers, John

    1999-06-01

    Improvement in understanding the deposition of ambient dust particles on ECAM (environmental continuous air monitor) filters, reduction of the alpha-particle interference of radon progeny and other radioactive aerosols in different particle size ranges on filters, and development of ECAMs with increased sensitivity under dusty outdoor conditions.

  3. NCCS Regression Test Harness

    Energy Science and Technology Software Center (OSTI)

    2015-09-09

    The NCCS Regression Test Harness is a software package that provides a framework to perform regression and acceptance testing on NCCS High Performance Computers. The package is written in Python and has only the dependency of a Subversion repository to store the regression tests.

  4. Testing Technology, June 1992

    SciTech Connect (OSTI)

    Getsch, B; Floyd, H L; Parrott, L; Van Arsdall, A

    1992-01-01

    This report highlights the following topics: Photon Correlation Spectroscopy--a new application in jet fuel analysis, Testing news in brief; Solar test facility supports space station research; Shock isolation technique developed for piezoresistive accelerometer; High-speed photography captures Distant Image measurements; and, Radiation effects test revised for CMOS electronics.

  5. DOE Field Operations Program EV and HEV Testing

    SciTech Connect (OSTI)

    Francfort, James Edward; Slezak, L. A.

    2001-10-01

    The United States Department of Energy’s (DOE) Field Operations Program tests advanced technology vehicles (ATVs) and disseminates the testing results to provide fleet managers and other potential ATV users with accurate and unbiased information on vehicle performance. The ATVs (including electric, hybrid, and other alternative fuel vehicles) are tested using one or more methods - Baseline Performance Testing (EVAmerica and Pomona Loop), Accelerated Reliability Testing, and Fleet Testing. The Program (http://ev.inel.gov/sop) and its nine industry testing partners have tested over 30 full-size electric vehicle (EV) models and they have accumulated over 4 million miles of EV testing experience since 1994. In conjunction with several original equipment manufacturers, the Program has developed testing procedures for the new classes of hybrid, urban, and neighborhood EVs. The testing of these vehicles started during 2001. The EVS 18 presentation will include (1) EV and hybrid electric vehicle (HEV) test results, (2) operating experience with and performance trends of various EV and HEV models, and (3) experience with operating hydrogen-fueled vehicles. Data presented for EVs will include vehicle efficiency (km/kWh), average distance driven per charge, and range testing results. The HEV data will include operating considerations, fuel use rates, and range testing results.

  6. STELLA experiment{emdash}microbunch diagnostic

    SciTech Connect (OSTI)

    He, P.; Liu, Y.; Cline, D.B.; Babzien, M.; Gallardo, J.C.; Kusche, K.P.; Pogorelsky, I.V.; Skaritka, J.; van Steenbergen, A.; Yakimenko, V.; Kimura, W.D.

    1999-07-01

    A microbunch diagnostic system is built at the Accelerator Test Facility (ATF) of Brookhaven National Laboratory for monitoring microbunches (10-fs bunch length) produced by the Inverse Free Electron Laser accelerator in Staged Electron Laser Acceleration experiment. It is similar to one already demonstrated at the ATF. With greatly improved beam optics conditions higher order harmonic coherent transition radiation will be measurable to determine the microbunch length and shape. {copyright} {ital 1999 American Institute of Physics.}

  7. Drum drop test report

    SciTech Connect (OSTI)

    McBeath, R.S.

    1995-02-28

    Testing was performed to determine actual damage to drums when dropped from higher than currently stacked elevations. The drum configurations were the same as they are placed in storage; single drums and four drums banded to a pallet. Maximum drop weights were selected based on successful preliminary tests. Material was lost from each of the single drum tests while only a small amount of material was lost from one of the pelletized drums. The test results are presented in this report. This report also provides recommendations for further testing to determine the appropriate drum weight which can be stored on a fourth tier.

  8. ZiaTest

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ZiaTest ZiaTest Description This test executes a new proposed standard benchmark method for MPI startup that is intended to provide a realistic assessment of both launch and wireup requirements. Accordingly, it exercises both the launch system of the environment and the interconnect subsystem in a specified pattern. Specifically, the test consists of the following steps: Record a time stamp for when the test started - this is passed to rank=0 upon launch. Launch a 100MB executable on a specified

  9. High Explosives Testing

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    High Explosives Testing High Explosives Testing In the 1940s, high explosives were tested at Los Alamos. August 1, 2013 The design and testing for "Little Boy" took place at Gun Site The design and testing for "Little Boy" took place at Gun Site. RELATED IMAGES http://farm8.staticflickr.com/7390/9778165821_9976c43bda_t.jpg Enlarge http://farm4.staticflickr.com/3817/9631800990_1c130beec7

  10. Lower Hybrid Experiments

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Lower Hybrid Experiments on MST M.C. Kaufman, J.A. Goetz, M.A. Thomas, D.R. Burke and D.J. Clayton Department of Physics, University of Wisconsin, Madision, WI 53706 Abstract. Current drive using RF waves has been proposed as a means to reduce the tearing fluctuations responsible for anomalous energy transport in the RFP. A traveling wave antenna op- erating at 800 MHz is being used to launch lower hybrid waves into MST to assess the feasibility of this approach. Parameter studies show that edge

  11. Fundamental experiments in velocimetry

    SciTech Connect (OSTI)

    Briggs, Matthew Ellsworth; Hull, Larry; Shinas, Michael

    2009-01-01

    One can understand what velocimetry does and does not measure by understanding a few fundamental experiments. Photon Doppler Velocimetry (PDV) is an interferometer that will produce fringe shifts when the length of one of the legs changes, so we might expect the fringes to change whenever the distance from the probe to the target changes. However, by making PDV measurements of tilted moving surfaces, we have shown that fringe shifts from diffuse surfaces are actually measured only from the changes caused by the component of velocity along the beam. This is an important simplification in the interpretation of PDV results, arising because surface roughness randomizes the scattered phases.

  12. Integrated Efficiency Test for Pyrochemical Fuel Cycles

    SciTech Connect (OSTI)

    S. X. Li; D. Vaden; R. W. Benedict; T. A. Johnson; B. R. Westphal; Guy L. Frederickson

    2007-09-01

    An integrated efficiency test was conducted with sodium bonded, spent EBR-II drive fuel elements. The major equipment involved in the test were the element chopper, Mk-IV electrorefiner, cathode processor, and casting furnace. Four electrorefining batches (containing 54.4 kg heavy metal) were processes under the fixed operating parameters that have been developed for this equipment based on over a decades worth of processing experience. A mass balance across this equipment was performed. Actinide dissolution and recovery efficiencies were established based on the mass balance and chemical analytical results of various samples taken from process streams during the integrated efficiency test.

  13. Integrated Efficiency Test for Pyrochemical Fuel Cycles

    SciTech Connect (OSTI)

    Li, S.X.; Vaden, D.; Westphal, B.R.; Fredrickson, G.L.; Benedict, R.W.; Johnson, T.A.

    2007-07-01

    An integrated efficiency test was conducted with sodium bonded, spent EBR-II drive fuel elements. The major equipment involved in the test were the element chopper, Mk-IV electro-refiner, cathode processor, and casting furnace. Four electrorefining batches (containing 54.4 kg heavy metal) were processed under the fixed operating parameters that have been developed for this equipment based on over a decade's worth of processing experience. A mass balance across this equipment was performed. Actinide dissolution and recovery efficiencies were established based on the mass balance and chemical analytical results of various samples taken from process streams during the integrated efficiency test. (authors)

  14. Value of Laboratory Experiments for Code Validations

    SciTech Connect (OSTI)

    Wawersik, W.R.

    1998-12-14

    Numerical codes have become indispensable for designing underground structures and interpretating the behavior of geologic systems. Because of the complexities of geologic systems, however, code calculations often are associated with large quantitative uncertainties. This papers presents three examples to demonstrate the value of laboratory(or bench scale) experiments to evaluate the predictive capabilities of such codes with five major conclusions: Laboratory or bench-scale experiments are a very cost-effective, controlled means of evaluating and validating numerical codes, not instead of but before or at least concurrent with the implementation of in situ studies. The design of good laboratory validation tests must identifj what aspects of a code are to be scrutinized in order to optimize the size, geometry, boundary conditions, and duration of the experiments. The design of good and sometimes difficult numerical analyses and sensitivity studies. Laboratory validation tests must involve: Good validation experiments will generate independent data sets to identify the combined effect of constitutive models, model generalizations, material parameters, and numerical algorithms. Successfid validations of numerical codes mandate a close collaboration between experimentalists and analysts drawing from the full gamut of observations, measurements, and mathematical results.

  15. (Boiling water reactor (BWR) CORA experiments)

    SciTech Connect (OSTI)

    Ott, L.J.

    1990-10-16

    To participate in the 1990 CORA Workshop at Kernforschungszentrum Karlsruhe (KfK) GmbH, Karlsruhe, FRG, on October 1--4, and to participate in detailed discussions on October 5 with the KfK CORA Boiling Water Reactor (BWR) experiments. The traveler attended the 1990 CORA Workshop at KfK, FRG. Participation included the presentation of a paper on work performed by the Boiling Water Reactor Core Melt Progression Phenomena Program at Oak Ridge National Laboratory (ORNL) on posttest analyses of CORA BWR experiments. The Statement of Work (November 1989) for the BWR Core Melt Progression Phenomena Program provides for pretest and posttest analyses of the BWR CORA experiments performed at KfK. Additionally, it is intended that ORNL personnel participate in the planning process for future CORA BWR experiments. For these purposes, meetings were held with KfK staff to discuss such topics as (1) experimental test schedule, (2) BWR test conduct, (3) perceived BWR experimental needs, and (4) KfK operational staff needs with respect to ORNL support. 19 refs.

  16. Project Description Advanced Fuel Cycle Initiative AFC-2A and AFC-2B Experiments

    SciTech Connect (OSTI)

    AFCI AFC-2A and AFC-2B Experiments Project Executi

    2007-03-01

    The proposed AFC-2A and AFC-2B irradiation experiments are a continuation of the AFC-1 fuel test series currently in progress in the ATR. This document discusses the experiments and the planned activities that will take place.

  17. Sample Proficiency Test exercise

    SciTech Connect (OSTI)

    Alcaraz, A; Gregg, H; Koester, C

    2006-02-05

    The current format of the OPCW proficiency tests has multiple sets of 2 samples sent to an analysis laboratory. In each sample set, one is identified as a sample, the other as a blank. This method of conducting proficiency tests differs from how an OPCW designated laboratory would receive authentic samples (a set of three containers, each not identified, consisting of the authentic sample, a control sample, and a blank sample). This exercise was designed to test the reporting if the proficiency tests were to be conducted. As such, this is not an official OPCW proficiency test, and the attached report is one method by which LLNL might report their analyses under a more realistic testing scheme. Therefore, the title on the report ''Report of the Umpteenth Official OPCW Proficiency Test'' is meaningless, and provides a bit of whimsy for the analyses and readers of the report.

  18. Pendulum detector testing device

    DOE Patents [OSTI]

    Gonsalves, John M.

    1997-01-01

    A detector testing device which provides consistent, cost-effective, repeatable results. The testing device is primarily constructed of PVC plastic and other non-metallic materials. Sensitivity of a walk-through detector system can be checked by: 1) providing a standard test object simulating the mass, size and material content of a weapon or other contraband, 2) suspending the test object in successive positions, such as head, waist and ankle levels, simulating where the contraband might be concealed on a person walking through the detector system; and 3) swinging the suspended object through each of the positions, while operating the detector system and observing its response. The test object is retained in a holder in which the orientation of the test device or target can be readily changed, to properly complete the testing requirements.

  19. Pendulum detector testing device

    DOE Patents [OSTI]

    Gonsalves, J.M.

    1997-09-30

    A detector testing device is described which provides consistent, cost-effective, repeatable results. The testing device is primarily constructed of PVC plastic and other non-metallic materials. Sensitivity of a walk-through detector system can be checked by: (1) providing a standard test object simulating the mass, size and material content of a weapon or other contraband, (2) suspending the test object in successive positions, such as head, waist and ankle levels, simulating where the contraband might be concealed on a person walking through the detector system; and (3) swinging the suspended object through each of the positions, while operating the detector system and observing its response. The test object is retained in a holder in which the orientation of the test device or target can be readily changed, to properly complete the testing requirements. 5 figs.

  20. National Solar Thermal Test Facility

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    SunShot Grand Challenge: Regional Test Centers National Solar Thermal Test Facility HomeTag:National Solar Thermal Test Facility Permalink Air Force Research Laboratory Testing ...

  1. Screening tests report. Volume I

    SciTech Connect (OSTI)

    Not Available

    1984-07-01

    A Pressurized Fluidized Bed Combustion (PFBC) Experimental Facility has been established by UK, US and FRG Sponsors under the auspices of the International Energy Agency at Grimethorpe, South Yorkshire, England. The objective is to study combustion, sulfur removal, heat transfer, emissions, gas clean-up, corrosion and energy recovery in PFBC systems. The facility has undergone a number of modifications as a result of experience gained in a program of experimental operation with a UK datum coal and sorbent. Before making further planned modifications, and embarking on a program of experimental operation with US and FRG coal/sorbent combinations, a short series of tests was performed to establish the basic combustion parameters and to forewarn the project of any operational problem related to particular coal/sorbent combinations. This series of tests, the Screening Tests, is described in the present report. Bed material agglomerated during some of the Screening Test runs, and the operating conditions were altered from those originally planned in an attempt to minimize the occurrence. It is now believed that agglomeration resulted from changes that had been made to combustor design details and start-up procedures in an attempt to alleviate tube bank metal wastage. These factors have been subsequently corrected. The data obtained over the revized range of operating conditions included those relating to combustion and sulfur retention performance, in-bed tube bank metal wastage, gaseous and particulate emissions and the behavior of static turbine blades in a cascade. The information provided, in advance of the comprehensive series of tests with the US and FRG coal/sorbent combinations, the preliminary characterization required.

  2. Superconducting focusing quadrupoles for heavy ion fusion experiments

    SciTech Connect (OSTI)

    Sabbi, G.L.; Faltens, A.; Leitner, M.; Lietzke, A.; Seidl, P.; Barnard, J.; Lund, S.; Martovetsky, N.; Gung, C.; Minervini, J.; Radovinsky, A.; Schultz, J.; Meinke, R.

    2003-05-01

    The Heavy Ion Fusion (HIF) Program is developing superconducting focusing magnets for both near-term experiments and future driver accelerators. In particular, single bore quadrupoles have been fabricated and tested for use in the High Current Experiment (HCX) at Lawrence Berkeley National Laboratory (LBNL). The next steps involve the development of magnets for the planned Integrated Beam Experiment (IBX) and the fabrication of the first prototype multi-beam focusing arrays for fusion driver accelerators. The status of the magnet R&D program is reported, including experimental requirements, design issues and test results.

  3. Janus Experiments: Data from Mouse Irradiation Experiments 1972 - 1989

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Janus Experiments, carried out at Argonne National Laboratory from 1972 to 1989 and supported by grants from the US Department of Energy, investigated the effects of neutron and gamma radiation on mouse tissues primarily from B6CF1 mice. 49,000 mice were irradiated: Death records were recorded for 42,000 mice; gross pathologies were recorded for 39,000 mice; and paraffin embedded tissues were preserved for most mice. Mouse record details type and source of radiation [gamma, neutrons]; dose and dose rate [including life span irradiation]; type and presence/absence of radioprotector treatment; tissue/animal morphology and pathology. Protracted low dose rate treatments, short term higher dose rate treatments, variable dose rates with a same total dose, etc. in some cases in conjunction with radioprotectors, were administered. Normal tissues, tumors, metastases were preserved. Standard tissues saved were : lung, liver, spleen, kidney, heart, any with gross lesions (including mammary glands, Harderian gland with eye, adrenal gland, gut, ovaries or testes, brain and pituitary, bone). Data are searchable and specimens can be obtained by request.

  4. Advanced Technology Vehicle Testing

    SciTech Connect (OSTI)

    James Francfort

    2003-11-01

    The light-duty vehicle transportation sector in the United States depends heavily on imported petroleum as a transportation fuel. The Department of Energy’s Advanced Vehicle Testing Activity (AVTA) is testing advanced technology vehicles to help reduce this dependency, which would contribute to the economic stability and homeland security of the United States. These advanced technology test vehicles include internal combustion engine vehicles operating on 100% hydrogen (H2) and H2CNG (compressed natural gas) blended fuels, hybrid electric vehicles, neighborhood electric vehicles, urban electric vehicles, and electric ground support vehicles. The AVTA tests and evaluates these vehicles with closed track and dynamometer testing methods (baseline performance testing) and accelerated reliability testing methods (accumulating lifecycle vehicle miles and operational knowledge within 1 to 1.5 years), and in normal fleet environments. The Arizona Public Service Alternative Fuel Pilot Plant and H2-fueled vehicles are demonstrating the feasibility of using H2 as a transportation fuel. Hybrid, neighborhood, and urban electric test vehicles are demonstrating successful applications of electric drive vehicles in various fleet missions. The AVTA is also developing electric ground support equipment (GSE) test procedures, and GSE testing will start during the fall of 2003. All of these activities are intended to support U.S. energy independence. The Idaho National Engineering and Environmental Laboratory manages these activities for the AVTA.

  5. Wind Technology Testing Center Acquires New Blade Fatigue Test...

    Energy.gov (indexed) [DOE]

    Act, the WTTC is one of the largest blade test facilities in the world, testing some of ... tests on the larger blades at higher test frequencies-and thus shorter testing ...

  6. Advanced Technology Vehicle Testing

    SciTech Connect (OSTI)

    James Francfort

    2004-06-01

    The goal of the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) is to increase the body of knowledge as well as the awareness and acceptance of electric drive and other advanced technology vehicles (ATV). The AVTA accomplishes this goal by testing ATVs on test tracks and dynamometers (Baseline Performance testing), as well as in real-world applications (Fleet and Accelerated Reliability testing and public demonstrations). This enables the AVTA to provide Federal and private fleet managers, as well as other potential ATV users, with accurate and unbiased information on vehicle performance and infrastructure needs so they can make informed decisions about acquiring and operating ATVs. The ATVs currently in testing include vehicles that burn gaseous hydrogen (H2) fuel and hydrogen/CNG (H/CNG) blended fuels in internal combustion engines (ICE), and hybrid electric (HEV), urban electric, and neighborhood electric vehicles. The AVTA is part of DOE's FreedomCAR and Vehicle Technologies Program.

  7. Testing of the structural evaluation test unit

    SciTech Connect (OSTI)

    Ammerman, D.J.; Bobbe, J.G.

    1995-12-31

    In the evaluation of the safety of radioactive material transportation it is important to consider the response of Type B packages to environments more severe than that prescribed by the hypothetical accident sequence in Title 10 Part 71 of the Code of Federal Regulations (NRC 1995). The impact event in this sequence is a 9-meter drop onto an essentially unyielding target, resulting in an impact velocity of 13.4 m/s. The behavior of 9 packages when subjected to impacts more severe than this is not well known. It is the purpose of this program to evaluate the structural response of a test package to these environments. Several types of structural response are considered. Of primary importance is the behavior of the package containment boundary, including the bolted closure and 0-rings. Other areas of concern are loss of shielding capability due to lead slump and the deceleration loading of package contents, that may cause damage to them. This type of information is essential for conducting accurate risk assessments on the transportation of radioactive materials. Currently very conservative estimates of the loss of package protection are used in these assessments. This paper will summarize the results of a regulatory impact test and three extra-regulatory impact tests on a sample package.

  8. The US Hot Dry Rock Program-20 Years of Experience in Reservoir...

    Open Energy Information (Open El) [EERE & EIA]

    The US Hot Dry Rock Program-20 Years of Experience in Reservoir Testing Author Donald Brown Conference World Geothermal Congress; Florence, Italy; 19950101 Published...

  9. HPCToolsExperiences.pptx

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Experiences w ith T ools a t N ERSC Richard G erber NERSC User Services Programming w eather, c limate, a nd e arth---system m odels on h eterogeneous m ul>---core p la?orms September 7 , 2 011 a t t he N a>onal C enter f or A tmospheric R esearch i n B oulder, C olorado 2 * Thanks f or t he i nvita>on * My p rofessional g oal i s t o e nable s cien>sts t o u se H PC easily a nd e ffec>vely * Contribute t o i mportant d iscoveries a bout h ow o ur natural w orld w orks * Make a d

  10. The PANTHER User Experience

    SciTech Connect (OSTI)

    Coram, Jamie L.; Morrow, James D.; Perkins, David Nikolaus

    2015-09-01

    This document describes the PANTHER R&D Application, a proof-of-concept user interface application developed under the PANTHER Grand Challenge LDRD. The purpose of the application is to explore interaction models for graph analytics, drive algorithmic improvements from an end-user point of view, and support demonstration of PANTHER technologies to potential customers. The R&D Application implements a graph-centric interaction model that exposes analysts to the algorithms contained within the GeoGraphy graph analytics library. Users define geospatial-temporal semantic graph queries by constructing search templates based on nodes, edges, and the constraints among them. Users then analyze the results of the queries using both geo-spatial and temporal visualizations. Development of this application has made user experience an explicit driver for project and algorithmic level decisions that will affect how analysts one day make use of PANTHER technologies.

  11. Automated Testing System

    Energy Science and Technology Software Center (OSTI)

    2006-05-09

    ATS is a Python-language program for automating test suites for software programs that do not interact with thier users, such as scripted scientific simulations. ATS features a decentralized approach especially suited to larger projects. In its multinode mode it can utilize many nodes of a cluster in order to do many test in parallel. It has features for submitting longer-running tests to a batch system and would have to be customized for use elsewhere.

  12. Test (Dataset) | Data Explorer

    Office of Scientific and Technical Information (OSTI)

    Test Title: Test Trest Authors: Test Publication Date: 2016-01-20 OSTI Identifier: 1324454 DOE Contract Number: DE-AC05-00OR22725 Resource Type: Dataset Data Type: Numeric Data Research Org: Atmospheric Radiation Measurement (ARM) Archive, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (US); Sponsoring Org: USDOE Office of Science (SC), Biological and Environmental Research (BER) Country of Publication: United States Availability: ORNL Language: English Subject: 54 Environmental Sciences

  13. Material Testing Priorities for Hydrogen (H2) Infrastructure | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Material Testing Priorities for Hydrogen (H2) Infrastructure Material Testing Priorities for Hydrogen (H2) Infrastructure American Society of Mechanical Engineers (ASME) Pressure Boundary Needs, Tests and Data Requirements, Recent Testing by Secat, Inc. and Sandia pipeline_group_hayden_ms.pdf (979.17 KB) More Documents & Publications Hydrogen Embrittlement Fundamentals, Modeling, and Experiment Permeation, Diffusion, Solubility Measurements: Results and Issues From Cleanup to

  14. Leak test fitting

    DOE Patents [OSTI]

    Pickett, Patrick T.

    1981-01-01

    A hollow fitting for use in gas spectrometry leak testing of conduit joints is divided into two generally symmetrical halves along the axis of the conduit. A clip may quickly and easily fasten and unfasten the halves around the conduit joint under test. Each end of the fitting is sealable with a yieldable material, such as a piece of foam rubber. An orifice is provided in a wall of the fitting for the insertion or detection of helium during testing. One half of the fitting also may be employed to test joints mounted against a surface.

  15. Leak test fitting

    DOE Patents [OSTI]

    Pickett, P.T.

    A hollow fitting for use in gas spectrometry leak testing of conduit joints is divided into two generally symmetrical halves along the axis of the conduit. A clip may quickly and easily fasten and unfasten the halves around the conduit joint under test. Each end of the fitting is sealable with a yieldable material, such as a piece of foam rubber. An orifice is provided in a wall of the fitting for the insertion or detection of helium during testing. One half of the fitting also may be employed to test joints mounted against a surface.

  16. Request for Testing

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear Energy Safety Technologies Facilities Battery Abuse Testing Laboratory Cylindrical Boiling Facility ...

  17. Flexibility in Testing Configurations

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    PSEL also has a demonstrated history of appropriately ... characterization of cells, modules, arrays, and ... and the National Solar Thermal Test Facility to ...

  18. Charcoal filter testing

    SciTech Connect (OSTI)

    Lyons, J.

    1997-08-01

    In this very brief, informal presentation, a representative of the US Nuclear Regulatory Commission outlines some problems with charcoal filter testing procedures and actions being taken to correct the problems. Two primary concerns are addressed: (1) the process to find the test method is confusing, and (2) the requirements of the reference test procedures result in condensation on the charcoal and causes the test to fail. To address these problems, emergency technical specifications were processed for three nuclear plants. A generic or an administrative letter is proposed as a more permanent solution. 1 fig.

  19. experimental tank tests

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    experimental tank tests - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power ...

  20. Sensitivity testing and analysis

    SciTech Connect (OSTI)

    Neyer, B.T.

    1991-01-01

    New methods of sensitivity testing and analysis are proposed. The new test method utilizes Maximum Likelihood Estimates to pick the next test level in order to maximize knowledge of both the mean, {mu}, and the standard deviation, {sigma} of the population. Simulation results demonstrate that this new test provides better estimators (less bias and smaller variance) of both {mu} and {sigma} than the other commonly used tests (Probit, Bruceton, Robbins-Monro, Langlie). A new method of analyzing sensitivity tests is also proposed. It uses the Likelihood Ratio Test to compute regions of arbitrary confidence. It can calculate confidence regions, for {mu}, {sigma}, and arbitrary percentiles. Unlike presently used methods, such as the program ASENT which is based on the Cramer-Rao theorem, it can analyze the results of all sensitivity tests, and it does not significantly underestimate the size of the confidence regions. The new test and analysis methods will be explained and compared to the presently used methods. 19 refs., 12 figs.

  1. Performance testing accountability measurements

    SciTech Connect (OSTI)

    Oldham, R.D.; Mitchell, W.G.; Spaletto, M.I.

    1993-12-31

    The New Brunswick Laboratory (NBL) provides assessment support to the DOE Operations Offices in the area of Material Control and Accountability (MC and A). During surveys of facilities, the Operations Offices have begun to request from NBL either assistance in providing materials for performance testing of accountability measurements or both materials and personnel to do performance testing. To meet these needs, NBL has developed measurement and measurement control performance test procedures and materials. The present NBL repertoire of performance tests include the following: (1) mass measurement performance testing procedures using calibrated and traceable test weights, (2) uranium elemental concentration (assay) measurement performance tests which use ampulated solutions of normal uranyl nitrate containing approximately 7 milligrams of uranium per gram of solution, and (3) uranium isotopic measurement performance tests which use ampulated uranyl nitrate solutions with enrichments ranging from 4% to 90% U-235. The preparation, characterization, and packaging of the uranium isotopic and assay performance test materials were done in cooperation with the NBL Safeguards Measurements Evaluation Program since these materials can be used for both purposes.

  2. Lighting Test Facilities

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Lighting-Test-Facilities Sign In About | Careers | Contact | Investors | bpa.gov Search Policy & Reporting Expand Policy & Reporting EE Sectors Expand EE Sectors Technology &...

  3. test and evaluation

    National Nuclear Security Administration (NNSA)

    5%2A en Office of Test and Evaluation http:nnsa.energy.govaboutusourprogramsdefenseprogramsstockpilestewardshiptestcapabilitiesand-eval

  4. Nanoparticle toxicity testing

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    submit Nanoparticle toxicity testing Assessing the potential health hazards of nanotechnology March 25, 2013 Robot In the search for more accurate and efficient techniques to...

  5. Experiment-specific analyses in support of code development

    SciTech Connect (OSTI)

    Ott, L.J.

    1990-01-01

    Experiment-specific models have been developed since 1986 by Oak Ridge National Laboratory Boiling Water Reactor (BWR) severe accident analysis programs for the purpose of BWR experimental planning and optimum interpretation of experimental results. These experiment-specific models have been applied to large integral tests (ergo, experiments) which start from an initial undamaged core state. The tests performed to date in BWR geometry have had significantly different-from-prototypic boundary and experimental conditions because of either normal facility limitations or specific experimental constraints. These experiments (ACRR: DF-4, NRU: FLHT-6, and CORA) were designed to obtain specific phenomenological information such as the degradation and interaction of prototypic components and the effects on melt progression of control-blade materials and channel boxes. Applications of ORNL models specific to the ACRR DF-4 and KfK CORA-16 experiments are discussed and significant findings from the experimental analyses are presented. 32 refs., 16 figs.

  6. Overview of the Fermilab Muon g-2 Experiment

    SciTech Connect (OSTI)

    Kim, SeungCheon

    2015-01-01

    The measurement of the anomalous magnetic moment of muon provides a precision test of the Standard Model. The Brookhaven muon g-2 experiment (E821) measured the muon magnetic moment anomaly with 0.54 ppm precision, a more than 3 deviation from the Standard Model predictions, spurring speculation about the possibility of new physics. The new g-2 experiment at Fermilab (E989) will reduce the combined statistical and systematic error of the BNL experiment by a factor of 4. An overview of the new experiment is described in this article.

  7. LOCA simulation in the NRU reactor: materials test-1

    SciTech Connect (OSTI)

    Russcher, G.E.; Marshall, R.K.; Hesson, G.M.; Wildung, N.J.; Rausch, W.N.

    1981-10-01

    A simulated loss-of-coolant accident was performed with a full-length test bundle of pressurized water reactor fuel rods. This second experiment of the program produced peak fuel cladding temperatures of 1148K (1607/sup 0/F) and resulted in six ruptured fuel rods. Test data and initial results from the experiment are presented here in the form of photographs and graphical summaries. These results are also compared with the preceding prototypic thermal-hydraulic test results and with computer model test predictions.

  8. The polarized SRF gun experiment

    SciTech Connect (OSTI)

    Kewisch,J.; Ben-Zvi, I.; Rao, T.; Burrill, A.; Pate, D.; Todd, R.; Wang, E.; Bluem, H.; Holmes, D.; Shultheiss, T.

    2008-10-01

    An experiment is under way to prove the feasibility of a super-conducting RF gun for the production of polarized electrons. We report on the progress of the experiment and on simulations predicting the possibility of success.

  9. Coaxial test fixture

    DOE Patents [OSTI]

    Praeg, Walter F.

    1986-01-01

    An assembly is provided for testing one or more contact material samples in a vacuum environment. The samples are positioned as an inner conductive cylinder assembly which is mounted for reciprocal vertical motion as well as deflection from a vertical axis. An outer conductive cylinder is coaxially positioned around the inner cylinder and test specimen to provide a vacuum enclosure therefor. A power source needed to drive test currents through the test specimens is connected to the bottom of each conductive cylinder, through two specially formed conductive plates. The plates are similar in form, having a plurality of equal resistance current paths connecting the power source to a central connecting ring. The connecting rings are secured to the bottom of the inner conductive assembly and the outer cylinder, respectively. A hydraulic actuator is also connected to the bottom of the inner conductor assembly to adjust the pressure applied to the test specimens during testing. The test assembly controls magnetic forces such that the current distribution through the test samples is symmetrical and that contact pressure is not reduced or otherwise disturbed.

  10. Prematurely terminated slug tests

    SciTech Connect (OSTI)

    Karasaki, K. )

    1990-07-01

    A solution of the well response to a prematurely terminated slug test (PTST) is presented. The advantages of a PTST over conventional slug tests are discussed. A systematized procedure of a PTST is proposed, where a slug test is terminated in the midpoint of the flow point, and the subsequent shut-in data is recorded and analyzed. This method requires a downhole shut-in device and a pressure transducer, which is no more than the conventional deep-well slug testing. As opposed to slug tests, which are ineffective when a skin is present, more accurate estimate of formation permeability can be made using a PTST. Premature termination also shortens the test duration considerably. Because in most cases no more information is gained by completing a slug test to the end, the author recommends that conventional slug tests be replaced by the premature termination technique. This study is part of an investigation of the feasibility of geologic isolation of nuclear wastes being carried out by the US Department of Energy and the National Cooperative for the Storage of Radioactive Waste of Switzerland.

  11. Laboratory Test Report for Fujitsu 12RLS and Mitsubishi FE12NA Mini-Split Heat Pumps

    SciTech Connect (OSTI)

    Winkler, J.

    2011-09-01

    Mini-split heat pumps are being proposed as a new retrofit option to replace resistance heating in the Pacific Northwest. NREL has previously developed a field test protocol for mini-split systems to ensure consistent results from field tests. This report focuses on the development of detailed system performance maps for mini-split heat pumps so that the potential benefits of mini-split systems can be accurately analyzed for different climate regions and housing types. This report presents laboratory test results for two mini-split heat pumps. Steady-state heating and cooling performance for the Fujitsu 12RLS and Mitsubishi FE12NA was tested under a wide range of outdoor and indoor temperatures at various compressor and fan speeds. Cycling performance for each unit was also tested under both modes of operation. Both systems performed quite well under low loads and the experimental test data aligned with manufacturer reported values. Adequate datasets were attained to promote performance modeling of these two systems in the future.

  12. Kauai Test Facility

    SciTech Connect (OSTI)

    Hay, R.G.

    1982-01-01

    The Kauai Test Facility (KTF) is a Department of Energy rocket launch facility operated by Sandia National Laboratories. Originally it was constructed in support of the high altitude atmospheric nuclear test phase of operation Dominic in the early 1960's. Later, the facility went through extensive improvement and modernization to become an integral part of the Safeguard C readiness to resume nuclear testing program. Since its inception and build up, in the decade of the sixties and the subsequent upgrades of the seventies, range test activities have shifted from full scale test to emphasis on research and development of materials and components, and to making high altitude scientific measurements. Primarily, the facility is intended to be utilized in support of development programs at the DOE weapons laboratories, however, other organizations may make use of the facility on a non-interface basis. The physical components at KTF and their operation are described.

  13. Nanomechanical testing system

    DOE Patents [OSTI]

    Vodnick, David James; Dwivedi, Arpit; Keranen, Lucas Paul; Okerlund, Michael David; Schmitz, Roger William; Warren, Oden Lee; Young, Christopher David

    2015-01-27

    An automated testing system includes systems and methods to facilitate inline production testing of samples at a micro (multiple microns) or less scale with a mechanical testing instrument. In an example, the system includes a probe changing assembly for coupling and decoupling a probe of the instrument. The probe changing assembly includes a probe change unit configured to grasp one of a plurality of probes in a probe magazine and couple one of the probes with an instrument probe receptacle. An actuator is coupled with the probe change unit, and the actuator is configured to move and align the probe change unit with the probe magazine and the instrument probe receptacle. In another example, the automated testing system includes a multiple degree of freedom stage for aligning a sample testing location with the instrument. The stage includes a sample stage and a stage actuator assembly including translational and rotational actuators.

  14. Nanomechanical testing system

    DOE Patents [OSTI]

    Vodnick, David James; Dwivedi, Arpit; Keranen, Lucas Paul; Okerlund, Michael David; Schmitz, Roger William; Warren, Oden Lee; Young, Christopher David

    2015-02-24

    An automated testing system includes systems and methods to facilitate inline production testing of samples at a micro (multiple microns) or less scale with a mechanical testing instrument. In an example, the system includes a probe changing assembly for coupling and decoupling a probe of the instrument. The probe changing assembly includes a probe change unit configured to grasp one of a plurality of probes in a probe magazine and couple one of the probes with an instrument probe receptacle. An actuator is coupled with the probe change unit, and the actuator is configured to move and align the probe change unit with the probe magazine and the instrument probe receptacle. In another example, the automated testing system includes a multiple degree of freedom stage for aligning a sample testing location with the instrument. The stage includes a sample stage and a stage actuator assembly including translational and rotational actuators.

  15. Nanomechanical testing system

    DOE Patents [OSTI]

    Vodnick, David James; Dwivedi, Arpit; Keranen, Lucas Paul; Okerlund, Michael David; Schmitz, Roger William; Warren, Oden Lee; Young, Christopher David

    2014-07-08

    An automated testing system includes systems and methods to facilitate inline production testing of samples at a micro (multiple microns) or less scale with a mechanical testing instrument. In an example, the system includes a probe changing assembly for coupling and decoupling a probe of the instrument. The probe changing assembly includes a probe change unit configured to grasp one of a plurality of probes in a probe magazine and couple one of the probes with an instrument probe receptacle. An actuator is coupled with the probe change unit, and the actuator is configured to move and align the probe change unit with the probe magazine and the instrument probe receptacle. In another example, the automated testing system includes a multiple degree of freedom stage for aligning a sample testing location with the instrument. The stage includes a sample stage and a stage actuator assembly including translational and rotational actuators.

  16. System Voltage Potential-Induced Degradation Mechanisms in PV Modules and Methods for Test: Preprint

    SciTech Connect (OSTI)

    Hacke, P.; Terwilliger, K.; Smith, R.; Glick, S.; Pankow, J.; Kempe, M.; Kurtz, S.; Bennett, I.; Kloos, M.

    2011-07-01

    Over the past decade, degradation and power loss have been observed in PV modules resulting from the stress exerted by system voltage bias. This is due in part to qualification tests and standards that do not adequately evaluate for the durability of modules to the long-term effects of high voltage bias experienced in fielded arrays. High voltage can lead to module degradation by multiple mechanisms. The extent of the voltage bias degradation is linked to the leakage current or coulombs passed from the silicon active layer through the encapsulant and glass to the grounded module frame, which can be experimentally determined; however, competing processes make the effect non-linear and history-dependent. Appropriate testing methods and stress levels are described that demonstrate module durability to system voltage potential-induced degradation (PID) mechanisms. This information, along with outdoor testing that is in progress, is used to estimate the acceleration factors needed to evaluate the durability of modules to system voltage stress. Na-rich precipitates are observed on the cell surface after stressing the module to induce PID in damp heat with negative bias applied to the active layer.

  17. Third invitational well-testing symposium: well testing in low...

    Office of Scientific and Technical Information (OSTI)

    session, case histories and related phenomena, well test design in low permeability formations, analysis and interpretation of well test data, and instrumentation for well tests. ...

  18. TEST PROCEDURE VALIDATION TEST OF A DISCRIMINATING TRITIUM MONITOR...

    Office of Environmental Management (EM)

    Test Results For Physical Separation Of Tritium From Noble Gases And It's Implications For ... AIR SAMPLERS NEW FAMILY OF STACK MONITORS TEST PROCEDURE VALIDATION TEST OF A ...

  19. Rapid prototype and test

    SciTech Connect (OSTI)

    Gregory, D.L.; Hansche, B.D.

    1996-06-01

    In order to support advanced manufacturing, Sandia has acquired the capability to produce plastic prototypes using stereolithography. Currently, these prototypes are used mainly to verify part geometry and ``fit and form`` checks. This project investigates methods for rapidly testing these plastic prototypes, and inferring from prototype test data actual metal part performance and behavior. Performances examined include static load/stress response, and structural dynamic (modal) and vibration behavior. The integration of advanced non-contacting measurement techniques including scanning laser velocimetry, laser holography, and thermoelasticity into testing of these prototypes is described. Photoelastic properties of the epoxy prototypes to reveal full field stress/strain fields are also explored.

  20. STAR Test Environment

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    STAR Test Environment STAR Test Environment These instructions describe how to set up the STAR environment independent of the production environment in order to test different installations in $OPTSTAR and $GROUP_DIR. If you want to modify those installations you will need access to the starofl account. Bypass STAR envionment login Edit your ~/.pdsf_setup file changing the STAR_LINUX_SETUP to "use_none" and start a new session. You should not see all the STAR environmental variables

  1. Robust Systems Test Framework

    Energy Science and Technology Software Center (OSTI)

    2003-01-01

    The Robust Systems Test Framework (RSTF) provides a means of specifying and running test programs on various computation platforms. RSTF provides a level of specification above standard scripting languages. During a set of runs, standard timing information is collected. The RSTF specification can also gather job-specific information, and can include ways to classify test outcomes. All results and scripts can be stored into and retrieved from an SQL database for later data analysis. RSTF alsomore » provides operations for managing the script and result files, and for compiling applications and gathering compilation information such as optimization flags.« less

  2. Robust Systems Test Framework

    SciTech Connect (OSTI)

    Ballance, Robert A.

    2003-01-01

    The Robust Systems Test Framework (RSTF) provides a means of specifying and running test programs on various computation platforms. RSTF provides a level of specification above standard scripting languages. During a set of runs, standard timing information is collected. The RSTF specification can also gather job-specific information, and can include ways to classify test outcomes. All results and scripts can be stored into and retrieved from an SQL database for later data analysis. RSTF also provides operations for managing the script and result files, and for compiling applications and gathering compilation information such as optimization flags.

  3. Westinghouse Test Stand Report

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Westinghouse Non-Proprietary Class 3 © 2014 Westinghouse Electric Company LLC. All Rights Reserved MT-14-12 Westinghouse VERA Test Stand Zero Power Physics Test Simulations for the AP1000® PWR Fausto Franceschini, Westinghouse Electric Company LLC Andrew Godfrey, Oak Ridge National Laboratory Joel Kulesza, Westinghouse Electric Company LLC Robert Oelrich, Westinghouse Electric Company LLC L3.AMA.VDT.P8.01 Milestone Report CASL-U-2014-0012-000 March 6, 2014 MT-14-12 Westinghouse VERA Test Stand

  4. Materials Test-2 LOCA Simulation in the NRU Reactor

    SciTech Connect (OSTI)

    Barner, J. O.; Hesson, G. M.; King, I. L.; Marshall, R. K.; Parchen, L. J.; Pilger, J. P.; Rausch, W. N.; Russcher, G. E.; Webb, B. J.; Wildung, N. J.; Wilson, C. L.; Wismer, M. D.; Mohr, C. L.

    1982-03-01

    A simulated loss-of-coolant accident was performed with a full-length test bundle of pressurized water reactor fuel rods. This third experiment of the program produced fuel cladding temperatures exceeding 1033 K (1400F) for 155 s and resulted in eight ruptured fuel rods. Experiment data and initial results are presented in the form of photographs and graphical summaries.

  5. Fermilab Test Beam Facility Annual Report. FY 2014

    SciTech Connect (OSTI)

    Brandt, A.

    2015-01-01

    Fermilab Test Beam Facility (FTBF) operations are summarized for FY 2014. It is one of a series of publications intended to gather information in one place. In this case, the information concerns the individual experiments that ran at FTBF. Each experiment section was prepared by the relevant authors, and was edited for inclusion in this summary.

  6. Wave Energy Research, Testing and Demonstration Center

    SciTech Connect (OSTI)

    Batten, Belinda

    2014-09-30

    The purpose of this project was to build upon the research, development and testing experience of the Northwest National Marine Renewable Energy Center (NNMREC) to establish a non-grid connected open-ocean testing facility for wave energy converters (WECs) off the coast of Newport, Oregon. The test facility would serve as the first facility of its kind in the continental US with a fully energetic wave resource where WEC technologies could be proven for west coast US markets. The test facility would provide the opportunity for self-contained WEC testing or WEC testing connected via an umbilical cable to a mobile ocean test berth (MOTB). The MOTB would act as a “grid surrogate” measuring energy produced by the WEC and the environmental conditions under which the energy was produced. In order to realize this vision, the ocean site would need to be identified through outreach to community stakeholders, and then regulatory and permitting processes would be undertaken. Part of those processes would require environmental baseline studies and site analysis, including benthic, acoustic and wave resource characterization. The MOTB and its myriad systems would need to be designed and constructed.The first WEC test at the facility with the MOTB was completed within this project with the WET-NZ device in summer 2012. In summer 2013, the MOTB was deployed with load cells on its mooring lines to characterize forces on mooring systems in a variety of sea states. Throughout both testing seasons, studies were done to analyze environmental effects during testing operations. Test protocols and best management practices for open ocean operations were developed. As a result of this project, the non-grid connected fully energetic WEC test facility is operational, and the MOTB system developed provides a portable concept for WEC testing. The permitting process used provides a model for other wave energy projects, especially those in the Pacific Northwest that have similar

  7. Symmetry tests in photo-pion production

    SciTech Connect (OSTI)

    Bernstein, A. M.

    2013-11-07

    Small angle electron scattering with intense electron beams opens up the possibility of performing almost real photon induced reactions with thin, polarized hydrogen and few body targets, allowing for the detection of low energy charged particles. This promises to be much more effective than conventional photon tagging techniques. For photo-pion reactions some fundamental new possibilities include: tests of charge symmetry in the N-N system by measurement of the neutron-neutron scattering length a{sub nn} in the and ggrD ? ?{sup +}nn reaction; tests of isospin breaking due to the mass difference of the up and down quarks; measurements with polarized targets are sensitive to ?N phase shifts and will test the validity of the Fermi-Watson (final state interaction) theorem. All of these experiments will test the accuracy and energy region of validity of chiral effective theories.

  8. PAM stack test utility

    Energy Science and Technology Software Center (OSTI)

    2007-08-22

    The pamtest utility calls the normal PAM hooks using a service and username supplied on the command line. This allows an administratory to test any one of many configured PAM stacks as any existing user on the machine.

  9. Irrigation Pump Testing

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    of the pump's operating performance including lift, discharge pressure, power input, and water flow. The results of the pump test provide a value for the overall efficiency of the...

  10. HBLED Hot Testing

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    hot testing (est. 15-30 tools) b. The mid-term opportunity is the retooling in the industry driven by abandoning tile fabrication pathways plus growth in HBLED (est. 120-200 ...

  11. Final focus test beam

    SciTech Connect (OSTI)

    Not Available

    1991-03-01

    This report discusses the following: the Final Focus Test Beam Project; optical design; magnets; instrumentation; magnetic measurement and BPM calibration; mechanical alignment and stabilization; vacuum system; power supplies; control system; radiation shielding and personnel protection; infrastructure; and administration.

  12. National Solar Thermal Test Facility

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    SunShot Grand Challenge: Regional Test Centers National Solar Thermal Test Facility HomeTag:National Solar Thermal Test Facility Illuminated receiver on top of tower Permalink ...

  13. Galveston Test | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Galveston Test Jump to: navigation, search Name Galveston Test Facility Galveston Test Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Coastal Point...

  14. Testing of GFL Geosiphon

    SciTech Connect (OSTI)

    Steimke, J.L.

    2001-07-10

    A full-scale, transparent replica of a GeoSiphon was constructed in the TFL to test a new concept, using a solar powered vacuum pump to remove accumulated gases from the air chamber. It did not have a treatment cell containing iron filings as do the actual TNX GeoSiphons in the field, but it was accurate in all other respects. The gas generation that is observed in an actual GeoSiphon was simulated by air injection at the inlet of the TFL GeoSiphon. After facility shakedown, three stages of testing were conducted: verification testing, parametric testing and long term testing. In verification testing, the TFL GeoSiphon was used to reproduce a particular test at TNX in which the water flowrate decreased gradually as the result of air accumulation at the crest of a siphon without an air chamber. For this test the vacuum pump was not used and the air chamber was initially filled with air rather than water. Agreement between data from the TNX GeoSiphon and the TFL GeoSiphon was good, which gave confidence that the TFL GeoSiphon was a good hydraulic representation of the TNX GeoSiphon. For the remaining tests, the solar powered vacuum pump and air chamber were used. In parametric testing, steady state runs were made for water flowrates ranging from 1 gpm to 19 gpm, air injection rates ranging from 0 to 77 standard cc/min and outfall line angles ranging from vertical to 60 degrees from vertical. In all cases, the air chamber and vacuum pump removed nearly all of the air and the GeoSiphon operated without problems. In long term testing, the GeoSiphon was allowed to run continuously for 21 days at one set of conditions. During this time the solar cell kept the storage battery fully charged at all times and the control circuit for the vacuum pump operated reliably. The solar panel was observed to have a large excess capacity when used with the vacuum pump. With two changes, the concept of using a solar powered vacuum pump attached to an air chamber should be ready for long

  15. Test Protocol Document, Hydrogen Safety Sensor Testing; Phase...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Test Protocol Document, Hydrogen Safety Sensor Testing Phase I: Non-Flammable Mixtures R. ... DE-AC36-99-GO10337 Test Protocol Document, Hydrogen Safety Sensor Testing Phase I: ...

  16. Request for Information: Operation of Regional Test Center Test...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Information: Operation of Regional Test Center Test Bed Located at SolarTAC Request for Information: Operation of Regional Test Center Test Bed Located at SolarTAC Solicitation...

  17. LEAKAGE TESTING METHOD

    DOE Patents [OSTI]

    McAdams, Wm.A.; Foss, M.H.

    1958-08-12

    A method of testing containers for leaks is described, particularly the testing of containers or cans in which the uranium slugs for nuelear reactors are jacketed. This method involves the immersion of the can in water under l50 pounds of pressure, then removing, drying, and coating the can with anhydrous copper sulfate. Amy water absorbed by the can under pressure will exude and discolor the copper sulfate in the area about the leak.

  18. Test Circuit Service

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Test Circuit Service Network R&D Software-Defined Networking (SDN) Experimental Network Testbeds 100G SDN Testbed Dark Fiber Testbed Test Circuit Service Testbed Results Current Testbed Research Previous Testbed Research Performance (perfSONAR) Software & Tools Development Data for Researchers Partnerships Publications Workshops Contact Us Technical Assistance: 1 800-33-ESnet (Inside US) 1 800-333-7638 (Inside US) 1 510-486-7600 (Globally) 1 510-486-7607 (Globally) Report Network

  19. Diesel Engine Idling Test

    SciTech Connect (OSTI)

    Larry Zirker; James Francfort; Jordon Fielding

    2006-02-01

    In support of the Department of Energy’s FreedomCAR and Vehicle Technology Program Office goal to minimize diesel engine idling and reduce the consumption of millions of gallons of diesel fuel consumed during heavy vehicle idling periods, the Idaho National Laboratory (INL) conducted tests to characterize diesel engine wear rates caused by extended periods of idling. INL idled two fleet buses equipped with Detroit Diesel Series 50 engines, each for 1,000 hours. Engine wear metals were characterized from weekly oil analysis samples and destructive filter analyses. Full-flow and the bypass filter cartridges were removed at four stages of the testing and sent to an oil analysis laboratory for destructive analysis to ascertain the metals captured in the filters and to establish wear rate trends. Weekly samples were sent to two independent oil analysis laboratories. Concurrent with the filter analysis, a comprehensive array of other laboratory tests ascertained the condition of the oil, wear particle types, and ferrous particles. Extensive ferrogram testing physically showed the concentration of iron particles and associated debris in the oil. The tests results did not show the dramatic results anticipated but did show wear trends. New West Technologies, LLC, a DOE support company, supplied technical support and data analysis throughout the idle test.

  20. Project W-320, combined pump winch assembly test - Test report

    SciTech Connect (OSTI)

    Bellomy, J.R., Westinghouse Hanford

    1996-05-15

    Test report documenting results of the Project W-320 combined pump/winch test performed at Lawrence Pumps.

  1. CMM Interim Check Design of Experiments (U)

    SciTech Connect (OSTI)

    Montano, Joshua Daniel

    2015-07-29

    Coordinate Measuring Machines (CMM) are widely used in industry, throughout the Nuclear Weapons Complex and at Los Alamos National Laboratory (LANL) to verify part conformance to design definition. Calibration cycles for CMMs at LANL are predominantly one year in length and include a weekly interim check to reduce risk. The CMM interim check makes use of Renishaw’s Machine Checking Gauge which is an off-the-shelf product simulates a large sphere within a CMM’s measurement volume and allows for error estimation. As verification on the interim check process a design of experiments investigation was proposed to test a couple of key factors (location and inspector). The results from the two-factor factorial experiment proved that location influenced results more than the inspector or interaction.

  2. The CAPTAIN liquid argon neutrino experiment

    SciTech Connect (OSTI)

    Liu, Qiuguang

    2015-01-01

    The CAPTAIN liquid argon experiment is designed to make measurements of scientific importance to long-baseline neutrino physics and physics topics that will be explored by large underground detectors. The experiment employs two detectors – a primary detector with approximately 10-ton of liquid argon that will be deployed at different facilities for physics measurements and a prototype detector with 2-ton of liquid argon for configuration testing. The physics programs for CAPTAIN include measuring neutron interactions at Los Alamos Neutron Science Center, measuring neutrino interactions in medium energy regime (1.5–5 GeV) at Fermilab's NuMI beam, and measuring neutrino interactions in low energy regime (< 50 MeV) at stopped pion sources for supernova neutrino studies.

  3. Multiple Scattering Measurements in the MICE Experiment

    SciTech Connect (OSTI)

    Carlisle, T.; Cobb, J.; Neuffer, D.; /Fermilab

    2012-05-01

    The international Muon Ionization Cooling Experiment (MICE), under construction at RAL, will test a prototype cooling channel for a future Neutrino Factory or Muon Collider. The cooling channel aims to achieve, using liquid hydrogen absorbers, a 10% reduction in transverse emittance. The change in 4D emittance will be determined with an accuracy of 1% by measuring muons individually. Step IV of MICE will make the first precise emittance-reduction measurements of the experiment. Simulation studies using G4MICE, based on GEANT4, find a significant difference in multiple scattering in low Z materials, compared with the standard expression quoted by the Particle Data Group. Direct measurement of multiple scattering using the scintillating-fibre trackers is found to be possible, but requires the measurement resolution to be unfolded from the data.

  4. Calibration Monitor for Dark Energy Experiments

    SciTech Connect (OSTI)

    Kaiser, M. E.

    2009-11-23

    The goal of this program was to design, build, test, and characterize a flight qualified calibration source and monitor for a Dark Energy related experiment: ACCESS - 'Absolute Color Calibration Experiment for Standard Stars'. This calibration source, the On-board Calibration Monitor (OCM), is a key component of our ACCESS spectrophotometric calibration program. The OCM will be flown as part of the ACCESS sub-orbital rocket payload in addition to monitoring instrument sensitivity on the ground. The objective of the OCM is to minimize systematic errors associated with any potential changes in the ACCESS instrument sensitivity. Importantly, the OCM will be used to monitor instrument sensitivity immediately after astronomical observations while the instrument payload is parachuting to the ground. Through monitoring, we can detect, track, characterize, and thus correct for any changes in instrument senstivity over the proposed 5-year duration of the assembled and calibrated instrument.

  5. The CAPTAIN liquid argon neutrino experiment

    SciTech Connect (OSTI)

    Liu, Qiuguang [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-01-01

    The CAPTAIN liquid argon experiment is designed to make measurements of scientific importance to long-baseline neutrino physics and physics topics that will be explored by large underground detectors. The experiment employs two detectors a primary detector with approximately 10-ton of liquid argon that will be deployed at different facilities for physics measurements and a prototype detector with 2-ton of liquid argon for configuration testing. The physics programs for CAPTAIN include measuring neutron interactions at Los Alamos Neutron Science Center, measuring neutrino interactions in medium energy regime (1.55 GeV) at Fermilab's NuMI beam, and measuring neutrino interactions in low energy regime (< 50 MeV) at stopped pion sources for supernova neutrino studies.

  6. The CAPTAIN liquid argon neutrino experiment

    DOE PAGES-Beta [OSTI]

    Liu, Qiuguang

    2015-01-01

    The CAPTAIN liquid argon experiment is designed to make measurements of scientific importance to long-baseline neutrino physics and physics topics that will be explored by large underground detectors. The experiment employs two detectors – a primary detector with approximately 10-ton of liquid argon that will be deployed at different facilities for physics measurements and a prototype detector with 2-ton of liquid argon for configuration testing. The physics programs for CAPTAIN include measuring neutron interactions at Los Alamos Neutron Science Center, measuring neutrino interactions in medium energy regime (1.5–5 GeV) at Fermilab's NuMI beam, and measuring neutrino interactions in low energymore » regime (< 50 MeV) at stopped pion sources for supernova neutrino studies.« less

  7. Test report - caustic addition system operability test procedure

    SciTech Connect (OSTI)

    Parazin, R.E.

    1995-10-13

    This Operability Test Report documents the test results of test procedure WHC-SD-WM-OTP-167 ``Caustic Addition System Operability Test Procedure``. The Objective of the test was to verify the operability of the 241-AN-107 Caustic Addition System. The objective of the test was met

  8. The Phenix ultimate natural convection test

    SciTech Connect (OSTI)

    Gauthe, P.; Pialla, D.; Tenchine, D.; Vasile, A.; Rochwerger, D.

    2012-07-01

    The French sodium cooled fast reactor Phenix was shut down in 2009 after 35 years of operation. Before decommissioning, a final set of tests were performed by the CEA during 9 months. Several topics were involved such as thermal hydraulics, core physics and fuel behaviour. Among these ultimate experiments, two thermal hydraulic tests were performed: an asymmetrical test consisting in a trip of one secondary pump and a natural convection test in the primary circuit. Recognizing the unique opportunity offered by these Phenix ultimate tests, IAEA decided in 2007 to launch a Coordinated Research Project (CRP) devoted to benchmarking analyses with system codes on the Phenix natural convection test. One objective of the natural convection test in Phenix reactor is the assessment of the CATHARE system code for safety studies on future and advanced sodium cooled fast reactors. The aim of this paper is to describe this test, which was performed on June 22-23, 2009, and the associated benchmark specifications for the CRP work. The paper reminds briefly the Phenix reactor with the main physical parameters and the instrumentation used during the natural convection test. After that, the test scenario is described: - initial state at a power of 120 MWth, - test beginning resulting from a manual dry out of the two steam generators, - manual scram, - manual trip on the three primary pumps without back-up by pony motors, - setting and development of natural convection in the primary circuit, in a first phase without significant heat sink in the secondary circuits and in a second phase with significant heat sink in the secondary circuits, by opening the casing of steam generators to create an efficient heat sink, by air natural circulation in the steam generators casing. The benchmark case ends after this second phase, which corresponds to the experimental test duration of nearly 7 hours. The paper presents also the benchmark specifications data supplied by the CEA to all

  9. National Solar Thermal Test Facility

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    SunShot Grand Challenge: Regional Test Centers National Solar Thermal Test Facility HomeTag:National Solar Thermal Test Facility Molten Nitrate Salt Initial Flow Testing is a ...

  10. The ArgoNeuT Experiment

    SciTech Connect (OSTI)

    Szelc, Andrzej M.

    2015-05-15

    The ArgoNeuT (Argon Neutrino Test) Experiment ran on the NuMI beam line at the Fermi National Accelerator Laboratory, from Sep 2009 to Feb 2010. It is the first stage of the US R and D effort on using Liquid Argon Time Projection Chambers (LArTPCs) as neutrino detectors. ArgoNeuT has collected thousands of beam neutrino events in the 0.1 -10 GeV energy range during its run and, apart from fulfilling its R and D goals, is now publishing physics results, including the first measurement of the inclusive muon neutrino charged current differential cross sections on argon. These proceedings will present these results, together with the perspectives for ongoing and future analyses, as well as ideas for running the detector in a test beam of charged particles.

  11. Results from Neutrino Oscillations Experiments

    SciTech Connect (OSTI)

    Aguilar-Arevalo, Alexis

    2010-09-10

    The interpretation of the results of early solar and atmospheric neutrino experiments in terms of neutrino oscillations has been verified by several recent experiments using both, natural and man-made sources. The observations provide compelling evidence in favor of the existence of neutrino masses and mixings. These proceedings give a general description of the results from neutrino oscillation experiments, the current status of the field, and some possible future developments.

  12. ORISE: Graduate Student Research Experiences

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Graduate Student Research Experiences The Oak Ridge Institute for Science and Education (ORISE) provides well-rounded laboratory experiences that expand graduate students' expertise beyond the traditional university setting. Some graduate students come to ORISE looking for the right setting to conduct their thesis research; some are master's students preparing to pursue their doctorates; some are looking for a program to help fund their education; others seek or a short-term experience, like a

  13. Turner-Fairbank Scour Experiments

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    real scour 1 Turner-Fairbank Pressure Scour Flow Experiments TRACC RESEARCH Computational Fluid Dynamics Computational Structural Mechanics Transportation Systems Modeling Three dimensional data from bridge deck pressure flow scour experiments under clear water conditions conducted at the Federal Highway Administration's (FHWA) Turner-Fairbank Highway Research Center (TFHRC) J. Sterling Jones Hydraulics Laboratory. The experiments included 3 girder, 6 girder, and streamlined scale bridge decks,

  14. Corrosion testing using isotopes

    DOE Patents [OSTI]

    Hohorst, Frederick A.

    1995-12-05

    A method for determining the corrosion behavior of a material with respect to a medium in contact with the material by: implanting a substantially chemically inert gas in a matrix so that corrosion experienced by the material causes the inert gas to enter the medium; placing the medium in contact with the material; and measuring the amount of inert gas which enters the medium. A test sample of a material whose resistance to corrosion by a medium is to be tested, composed of: a body of the material, which body has a surface to be contacted by the medium; and a substantially chemically inert gas implanted into the body to a depth below the surface. A test sample of a material whose resistance to corrosion by a medium is to be tested, composed of: a substrate of material which is easily corroded by the medium, the substrate having a surface; a substantially chemically inert gas implanted into the substrate; and a sheet of the material whose resistance to corrosion is to be tested, the sheet being disposed against the surface of the substrate and having a defined thickness.

  15. Corrosion testing using isotopes

    DOE Patents [OSTI]

    Hohorst, F.A.

    1995-12-05

    A method is described for determining the corrosion behavior of a material with respect to a medium in contact with the material by: implanting a substantially chemically inert gas in a matrix so that corrosion experienced by the material causes the inert gas to enter the medium; placing the medium in contact with the material; and measuring the amount of inert gas which enters the medium. A test sample of a material whose resistance to corrosion by a medium is to be tested is described composed of: a body of the material, which body has a surface to be contacted by the medium; and a substantially chemically inert gas implanted into the body to a depth below the surface. A test sample of a material whose resistance to corrosion by a medium is to be tested is described composed of: a substrate of material which is easily corroded by the medium, the substrate having a surface; a substantially chemically inert gas implanted into the substrate; and a sheet of the material whose resistance to corrosion is to be tested, the sheet being disposed against the surface of the substrate and having a defined thickness. 3 figs.

  16. Aluminum Stabilized NbTi Conductor Test Coil Design, Fabrication, and Test Results

    SciTech Connect (OSTI)

    Andreev, N.; Chlachidze, G.; Evbota, D.; Kashikhin, V.S.; Lamm, M.; Makarov, A.; Tartaglia, M.; Nakamoto, T.; Ogitsu, T.; Tanaka, K.; Yamamoto, A.; /KEK, Tsukuba

    2011-09-01

    A new generation of precision muon conversion experiments is planned at both Fermilab and KEK. These experiments will depend upon a complex set of solenoid magnets for the production, momentum selection and transport of a muon beam to a stopping target, and for tracking detector momentum analysis of candidate conversion electrons from the target. Baseline designs for the production and detector solenoids use NbTi cable that is heavily stabilized by an extruded high RRR aluminum jacket. A U.S.-Japan research collaboration has begun whose goal is to advance the development of optimized Al-NbTi conductors, gain experience with the technology of winding coils from this material, and test the conductor performance as modest length samples become available. For this purpose, a 'conductor test' solenoid with three coils was designed and built at Fermilab. A sample of the RIKEN Al-NbTi conductor from KEK was wound into a 'test' coil; this was sandwiched between two 'field' coils wound from doubled SSC cable, to increase the peak field on the RIKEN test coil. All three solenoid coils were epoxy impregnated, and utilized aluminum outer bandage rings to apply preload to the coils when cold. The design and fabrication details, and results of the magnet quench performance tests are presented and discussed.

  17. Quarterly SSP Experiment Summary-Q1FY14 1

    National Nuclear Security Administration (NNSA)

    Q1FY14 1 Summary of Experiments Conducted in Support of Stockpile Stewardship First Quarter FY 2014 The U.S. Stockpile Stewardship Program is a robust program of scientific inquiry used to sustain and assess the nuclear weapons stockpile without the use of underground nuclear tests. The experiments carried out within the program are used in combination with Advanced Simulation and Computing (ASC) to continually assess the stockpile to ensure it is safe, secure, and effective. (For links to the

  18. ARM West Antarctic Radiation Experiment

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    West Antarctic Radiation Experiment of the most advanced atmospheric research ... From the fall of 2015 to early 2017, the Atmospheric Radiation Measurement (ARM) West ...

  19. AMIE (ACRF MJO Investigation Experiment)

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    AMIE (ACRF MJO Investigation Experiment) Planning Meeting AMIE Science Steering Committee Chuck Long, Tony DelGenio, Bill Gustafson, Bob Houze, Mike Jensen, Steve Klein, Ruby...

  20. Booster Neutrino Experiment - About Neutrinos

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    from major neutrino experiments and important results in neutrino physics. Includes java applets. Janet's Neutrino Oscillation Page More extensive material about neutrino...