National Library of Energy BETA

Sample records for oilc gasd ngle

  1. table2.4_02.xls

    U.S. Energy Information Administration (EIA) (indexed site)

    Number of Establishments by Nonfuel (Feedstock) Use of Combustible Energy, 2002; Level: National Data; Row: NAICS Codes (3-Digit Only); Column: Energy Sources; Unit: Establishment Counts. Any Combustible RSE NAICS Energy Residual Distillate Natural LPG and Coke Row Code(a) Subsector and Industry Source(b) Fuel Oil Fuel Oil(c) Gas(d) NGL(e) Coal and Breeze Other(f) Factors Total United States RSE Column Factors: 1.5 0.6 1.1 1 1.1 0.7 1 1.4 311 Food 406 W 152 185 0 0 4 83 9.6 311221 Wet Corn

  2. Table 5.4 End Uses of Fuel Consumption, 2010;

    Annual Energy Outlook

    Coal Code(a) End Use for Electricity(b) Fuel Oil Diesel Fuel(c) Natural Gas(d) NGL(e) Coke and Breeze) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL ...

  3. table5.2_02

    U.S. Energy Information Administration (EIA) (indexed site)

    Row Code(a) End Use Total Electricity(b) Fuel Oil Diesel Fuel(c) Gas(d) NGL(e) Coke and Breeze) Other(f) Factors Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES RSE ...

  4. table5.4_02

    U.S. Energy Information Administration (EIA) (indexed site)

    Coal Row Code(a) End Use Electricity(b) Fuel Oil Diesel Fuel(c) Gas(d) NGL(e) Coke and Breeze) Factors Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES RSE Column ...

  5. Table 5.2 End Uses of Fuel Consumption, 2010;

    U.S. Energy Information Administration (EIA) (indexed site)

    Coal Code(a) End Use Total Electricity(b) Fuel Oil Diesel Fuel(c) Natural Gas(d) NGL(e) Coke and Breeze) Other(f) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL ...

  6. Level: National Data; Row: End Uses within NAICS Codes; Column...

    U.S. Energy Information Administration (EIA) (indexed site)

    Coal Code(a) End Use for Electricity(b) Fuel Oil Diesel Fuel(c) Natural Gas(d) NGL(e) Coke and Breeze) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL ...

  7. Table 5.1 End Uses of Fuel Consumption, 2010;

    U.S. Energy Information Administration (EIA) (indexed site)

    5.1 End Uses of Fuel Consumption, 2010; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Residual and Natural Gas(d) LPG and Coke and Breeze) NAICS Total Electricity(b) Fuel Oil Diesel Fuel(c) (billion NGL(e) (million Other(f) Code(a) End Use (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) (trillion Btu) Total United States

  8. Table 5.3 End Uses of Fuel Consumption, 2010;

    U.S. Energy Information Administration (EIA) (indexed site)

    3 End Uses of Fuel Consumption, 2010; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Demand Residual and Natural Gas(d) LPG and Coke and Breeze) NAICS for Electricity(b) Fuel Oil Diesel Fuel(c) (billion NGL(e) (million Code(a) End Use (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) Total United States 311 - 339 ALL

  9. table5.1_02

    U.S. Energy Information Administration (EIA) (indexed site)

    1 End Uses of Fuel Consumption, 2002; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Fuel Oil Coal Net Residual and Natural LPG and (excluding Coal RSE NAICS Total Electricity(b) Fuel Oil Diesel Fuel(c) Gas(d) NGL(e) Coke and Breeze) Other(f) Row Code(a) End Use (trillion Btu) (million kWh) (million bbl) (million bbl) (billion cu ft) (million bbl) (million short tons) (trillion Btu) Factors Total

  10. table5.3_02

    U.S. Energy Information Administration (EIA) (indexed site)

    3 End Uses of Fuel Consumption, 2002; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity; Unit: Physical Units or Btu. Distillate Net Demand Fuel Oil Coal for Residual and Natural LPG and (excluding Coal RSE NAICS Electricity(b) Fuel Oil Diesel Fuel(c) Gas(d) NGL(e) Coke and Breeze) Row Code(a) End Use (million kWh) (million bbl) (million bbl) (billion cu ft) (million bbl) (million short tons) Factors Total United States 311 - 339

  11. Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity;

    U.S. Energy Information Administration (EIA) (indexed site)

    Next MECS will be conducted in 2010 Table 5.3 End Uses of Fuel Consumption, 2006; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Demand Residual and Natural Gas(d) LPG and Coke and Breeze) NAICS for Electricity(b) Fuel Oil Diesel Fuel(c) (billion NGL(e) (million Code(a) End Use (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons)

  12. Released: December 2015

    U.S. Energy Information Administration (EIA) (indexed site)

    8 Percent of Establishments by Levels of Price Difference that Would Cause Fuel" " Switching from Distillate Fuel Oil to a Less Expensive Substitute, 2010; " " Level: National Data;" " Row: NAICS Codes;" " Column: Levels of Price Difference;" " Unit: Establishment Counts." ,,,"Levels of Price Difference that Would Cause a Switch from Distillate Fuel Oil(c) " " "," ",,,,,,,,,,,," " ,,,,,,,,,"Would

  13. Released: December 2015

    U.S. Energy Information Administration (EIA) (indexed site)

    9 Percent of Establishments by Levels of Price Difference that Would Cause Fuel" " Switching from Residual Fuel Oil to a Less Expensive Substitute, 2010; " " Level: National Data;" " Row: NAICS Codes;" " Column: Levels of Price Difference;" " Unit: Establishment Counts." ,,,"Levels of Price Difference that Would Cause a Switch from Residual Fuel Oil(c) " " "," ",,,,,,,,,,,," " ,,,,,,,,,"Would

  14. "Table A47. Selected Energy Operating Ratios for Total Energy Consumption for"

    U.S. Energy Information Administration (EIA) (indexed site)

    7. Selected Energy Operating Ratios for Total Energy Consumption for" " Heat, Power, and Electricity Generation by Census Region, Census Division, Industry Group, and" " Selected Industries, 1994" ,,,,,"Major" ,,,,"Consumption","Byproducts(b)" ,,,"Consumption","per Dollar","as a","Fuel Oil(c) as" ,,"Consumption","per Dollar","of Value","Percent of","a

  15. "Table A8. Selected Energy Operating Ratios for Total Energy Consumption for"

    U.S. Energy Information Administration (EIA) (indexed site)

    A8. Selected Energy Operating Ratios for Total Energy Consumption for" " Heat, Power, and Electricity Generation by Census Region, Industry Group, and" " Selected Industries, 1991" ,,,,,"Major" ,,,,"Consumption","Byproducts(b)" ,,,"Consumption","per Dollar","as a","Fuel Oil(c) as" ,,"Consumption","per Dollar","of Value","Percent of","a Percent

  16. A

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    have demonstrated that very high efficiencies, up to 38%, may be achievable using r ay o p&cal a ngle r estric&on i n u ltrathin (50nm) GaAs cells. Light trapping cell geometry a nd a n e xcellent b ack r eflector a re key t o t he h ighest e fficiencies. Significance and Impact The high efficiencies and thin cells that are possible in this regime could allow for significantly reduced PV cost per waO and with r educed m aterials u sage. Research D etails - Used detailed balance modeling

  17. High-density genetic map of the BRCA1 region of chromosome 17q12-q21

    SciTech Connect (OSTI)

    Anderson, L.A.; Friedman, L.; Lynch, E.; King, M.C. ); Osborne-Lawrence, S.; Bowcock, A. ); Weissenbach, J. )

    1993-09-01

    To facilitate the positional cloning of the breast-ovarian cancer gene BRCA1, the authors constructed a high-density genetic map of the 8.3-cM interval between D17S250 and GIP on chromosome 17q12-q21. Markers were mapped by linkage in the CEPH and in extended kindreds in the breast cancer series. The map comprises 33 ordered polymorphisms, including 12 genes and 21 anonymous markers, yielding an average of one polymorphism every 250 kb. Twenty-five of the markers are PCR-based systems. The order of polymorphic genes and markers is cen-D17S250-D17S518-HER2-THRA1-RARA-D17S80-KRT10-[D17S800-D17S857]-GAS-D17S856-EDH17B-D17S855-D17S859-D17S858-[PPY-D17S78]-D17S183-EPB3-D17S579-D17S509-[D17S508-D17S190 = D17S810]-D17S791-[D17S181 = D17S806]-D17S797-HOX2B-GP3A-[D17S507 = GIP]-qter. BRCA1 lies in the middle of the interval, between THRA1 and D17S183. Markers from this map can be used to determine whether cancer is linked to BRCA1 in families, to evaluate whether tumors have lost heterozygosity at loci in the region, and to identify probes for characterizing chromosomal rearrangements from patients and from tumors. 21 refs., 1 fig., 3 tabs.

  18. Developmental bisphenol A (BPA) exposure leads to sex-specific modification of hepatic gene expression and epigenome at birth that may exacerbate high-fat diet-induced hepatic steatosis

    SciTech Connect (OSTI)

    Strakovsky, Rita S.; Wang, Huan; Engeseth, Nicki J.; Flaws, Jodi A.; Helferich, William G.; Pan, Yuan-Xiang; Lezmi, Stéphane

    2015-04-15

    Developmental bisphenol A (BPA) exposure increases adulthood hepatic steatosis with reduced mitochondrial function. To investigate the potential epigenetic mechanisms behind developmental BPA-induced hepatic steatosis, pregnant Sprague–Dawley rats were dosed with vehicle (oil) or BPA (100 μg/kg/day) from gestational day 6 until postnatal day (PND) 21. After weaning, offspring were either challenged with a high-fat (HF; 45% fat) or remained on a control (C) diet until PND110. From PND60 to 90, both BPA and HF diet increased the fat/lean ratio in males only, and the combination of BPA and HF diet appeared to cause the highest ratio. On PND110, Oil-HF, BPA-C, and BPA-HF males had higher hepatic lipid accumulation than Oil-C, with microvesicular steatosis being marked in the BPA-HF group. Furthermore, on PND1, BPA increased and modified hepatic triglyceride (TG) and free fatty acid (FFA) compositions in males only. In PND1 males, BPA increased hepatic expression of FFA uptake gene Fat/Cd36, and decreased the expression of TG synthesis- and β-oxidation-related genes (Dgat, Agpat6, Cebpα, Cebpβ, Pck1, Acox1, Cpt1a, Cybb). BPA altered DNA methylation and histone marks (H3Ac, H4Ac, H3Me2K4, H3Me3K36), and decreased the binding of several transcription factors (Pol II, C/EBPβ, SREBP1) within the male Cpt1a gene, the key β-oxidation enzyme. In PND1 females, BPA only increased the expression of genes involved in FFA uptake and TG synthesis (Lpl, Fasn, and Dgat). These data suggest that developmental BPA exposure alters and reprograms hepatic β-oxidation capacity in males, potentially through the epigenetic regulation of genes, and further alters the response to a HF diet. - Highlights: • Developmental BPA exposure exacerbates HF-diet induced steatosis in adult males. • Gestational BPA exposure increases hepatic lipid accumulation in neonatal males. • BPA decreases Cpt1a and other hepatic β-oxidation genes in neonatal males. • BPA alters neonatal male Cpt1a